

DATA MODELING
FUNDAMENTALS
A Practical Guide for

IT Professionals

Paulraj Ponniah

DATA MODELING
FUNDAMENTALS

DATA MODELING
FUNDAMENTALS
A Practical Guide for

IT Professionals

Paulraj Ponniah

Copyright # 2007 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any

form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise,

except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without

either the prior written permission of the Publisher, or authorization through payment of the

appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers,

MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com.

Requests to the Publisher for permission should be addressed to the Permissions Department,

John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011,

fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best

efforts in preparing this book, they make no representations or warranties with respect to

the accuracy or completeness of the contents of this book and specifically disclaim any implied

warranties of merchantability or fitness for a particular purpose. No warranty may be created

or extended by sales representatives or written sales materials. The advice and strategies contained

herein may not be suitable for your situation. You should consult with a professional where

appropriate. Neither the publisher nor author shall be liable for any loss of profit or any

other commercial damages, including but not limited to special, incidental, consequential,

or other damages.

For general information on our other products and services or for technical support, please

contact our Customer Care Department within the United States at (800) 762-2974,

outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print

may not be available in electronic formats. For more information about Wiley products, visit

our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data

Ponniah, Paulraj.

Data modeling fundamentals: a practical guide for IT professionals / by Paulraj Ponniah.

p. cm.

ISBN-13: 978-0-471-79049-5 (cloth)

ISBN-10: 0-471-79049-4 (cloth)

1. Database design. 2. Data structures (Computer science) I. Title.

QA76.9.D26P574 2007

005.74--dc22

2006038737

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com

To

Daniel Arjun, my dear son-in-law

and to

Reisha and Shoba, my dear daughters-in-law

CONTENTS

PREFACE xvii

ACKNOWLEDGMENTS xxi

I INTRODUCTION TO DATA MODELING 1

1 Data Modeling: An Overview 3

Chapter Objectives / 3

Data Model Defined / 4

What Is a Data Model? / 5

Why Data Modeling? / 6

Who Performs Data Modeling? / 9

Information Levels / 10

Classification of Information Levels / 11

Data Models at Information Levels / 13

Conceptual Data Modeling / 17

Data Model Components / 18

Data Modeling Steps / 20

Data Model Quality / 26

Significance of Data Model Quality / 27

Data Model Characteristics / 27

Ensuring Data Model Quality / 28

Data System Development / 29

Data System Development Life Cycle / 29

Roles and Responsibilities / 33

Modeling the Information Requirements / 33

Applying Agile Modeling Principles / 34

Data Modeling Approaches and Trends / 35

Data Modeling Approaches / 36

Modeling for Data Warehouse / 38

vii

Other Modeling Trends / 39

Chapter Summary / 41

Review Questions / 41

2 Methods, Techniques, and Symbols 43

Chapter Objectives / 43

Data Modeling Approaches / 44

Semantic Modeling / 44

Relational Modeling / 45

Entity-Relationship Modeling / 46

Binary Modeling / 46

Methods and Techniques / 47

Peter Chen (E-R) Modeling / 48

Information Engineering / 50

Integration Definition for Information Modeling / 51

Richard Barker’s Model / 53

Object-Role Modeling / 55

eXtensible Markup Language / 57

Summary and Comments / 60

Unified Modeling Language / 61

Data Modeling Using UML / 61

UML in the Development Process / 64

Chapter Summary / 68

Review Questions / 68

II DATA MODELING FUNDAMENTALS 71

3 Anatomy of a Data Model 73

Chapter Objectives / 73

Data Model Composition / 74

Models at Different Levels / 74

Conceptual Model: Review Procedure / 76

Conceptual Model: Identifying Components / 77

Case Study / 81

Description / 81

E-R Model / 84

UML Model / 87

Creation of Models / 89

User Views / 90

View Integration / 92

Entity Types / 96

Specialization/Generalization / 98

Relationships / 98

Attributes / 100

viii CONTENTS

Identifiers / 101

Review of the Model Diagram / 103

Logical Model: Overview / 104

Model Components / 104

Transformation Steps / 107

Relational Model / 109

Physical Model: Overview / 111

Model Components / 111

Transformation Steps / 112

Chapter Summary / 113

Review Questions / 113

4 Objects or Entities in Detail 115

Chapter Objectives / 115

Entity Types or Object Sets / 116

Comprehensive Definition / 116

Identifying Entity Types / 120

Homonyms and Synonyms / 125

Category of Entity Types / 127

Exploring Dependencies / 130

Dependent or Weak Entity Types / 131

Classifying Dependencies / 132

Representation in the Model / 133

Generalization and Specialization / 134

Why Generalize or Specialize? / 136

Supertypes and Subtypes / 137

Generalization Hierarchy / 138

Inheritance of Attributes / 140

Inheritance of Relationships / 140

Constraints / 141

Rules Summarized / 144

Special Cases and Exceptions / 144

Recursive Structures / 145

Conceptual and Physical / 145

Assembly Structures / 147

Entity Type Versus Attribute / 148

Entity Type Versus Relationship / 148

Modeling Time Dimension / 149

Categorization / 150

Entity Validation Checklist / 153

Completeness / 153

Correctness / 154

Chapter Summary / 155

Review Questions / 155

CONTENTS ix

5 Attributes and Identifiers in Detail 157

Chapter Objectives / 157

Attributes / 158

Properties or Characteristics / 158

Attributes as Data / 161

Attribute Values / 162

Names and Descriptions / 163

Attribute Domains / 164

Definition of a Domain / 164

Domain Information / 165

Attribute Values and Domains / 166

Split Domains / 167

Misrepresented Domains / 167

Resolution of Mixed Domains / 168

Constraints for Attributes / 169

Value Set / 169

Range / 170

Type / 170

Null Values / 170

Types of Attributes / 171

Single-Valued and Multivalued Attributes / 171

Simple and Composite Attributes / 171

Attributes with Stored and Derived Values / 172

Optional Attributes / 173

Identifiers or Keys / 175

Need for Identifiers / 175

Definitions of Keys / 175

Guidelines for Identifiers / 176

Key in Generalization Hierarchy / 177

Attribute Validation Checklist / 178

Completeness / 178

Correctness / 179

Chapter Summary / 180

Review Questions / 180

6 Relationships in Detail 183

Chapter Objectives / 183

Relationships / 184

Associations / 184

Relationship: Two-Sided / 186

Relationship Sets / 187

Double Relationships / 187

Relationship Attributes / 189

Degree of Relationships / 190

Unary Relationship / 191

Binary Relationship / 191

x CONTENTS

Ternary Relationship / 193

Quaternary Relationship / 193

Structural Constraints / 194

Cardinality Constraint / 195

Participation Constraint / 198

Dependencies / 200

Entity Existence / 200

Relationship Types / 201

Identifying Relationship / 202

Nonidentifying Relationship / 204

Maximum and Minimum Cardinalities / 204

Mandatory Conditions: Both Ends / 206

Optional Condition: One End / 206

Optional Condition: Other End / 207

Optional Conditions: Both Ends / 208

Special Cases / 209

Gerund / 209

Aggregation / 210

Access Pathways / 211

Design Issues / 215

Relationship or Entity Type? / 215

Ternary Relationship or Aggregation? / 216

Binary or N-ary Relationship? / 216

One-to-One Relationships / 217

One-to-Many Relationships / 219

Circular Structures / 219

Redundant Relationships / 221

Multiple Relationships / 221

Relationship Validation Checklist / 222

Completeness / 223

Correctness / 224

Chapter Summary / 225

Review Questions / 225

III DATA MODEL IMPLEMENTATION 227

7 Data Modeling to Database Design 229

Chapter Objectives / 229

Relational Model: Fundamentals / 231

Basic Concepts / 231

Structure and Components / 233

Data Integrity Constraints / 238

Transition to Database Design / 242

Design Approaches / 243

CONTENTS xi

Conceptual to Relational Model / 243

Traditional Method / 244

Evaluation of Design Methods / 245

Model Transformation Method / 246

The Approach / 246

Mapping of Components / 249

Entity Types to Relations / 250

Attributes to Columns / 250

Identifiers to Keys / 252

Transformation of Relationships / 252

Transformation Summary / 267

Chapter Summary / 269

Review Questions / 269

8 Data Normalization 271

Chapter Objectives / 271

Informal Design / 272

Forming Relations from Requirements / 272

Potential Problems / 273

Update Anomaly / 275

Deletion Anomaly / 275

Addition Anomaly / 276

Normalization Methodology / 276

Strengths of the Method / 277

Application of the Method / 277

Normalization Steps / 277

Fundamental Normal Forms / 278

First Normal Form / 278

Second Normal Form / 279

Third Normal Form / 281

Boyce-Codd Normal Form / 284

Higher Normal Forms / 285

Fourth Normal Form / 286

Fifth Normal Form / 287

Domain-Key Normal Form / 288

Normalization Summary / 290

Review of the Steps / 290

Normalization as Verification / 291

Chapter Summary / 292

Review Questions / 292

9 Modeling for Decision-Support Systems 295

Chapter Objectives / 295

Decision-Support Systems / 296

Need for Strategic Information / 296

xii CONTENTS

History of Decision-Support Systems / 297

Operational Versus Informational Systems / 299

System Types and Modeling Methods / 299

Data Warehouse / 301

Data Warehouse Defined / 301

Major Components / 302

Data Warehousing Applications / 305

Modeling: Special Requirements / 305

Dimensional Modeling / 308

Dimensional Modeling Basics / 309

STAR Schema / 312

Snowflake Schema / 318

Families of STARS / 321

Transition to Logical Model / 322

OLAP Systems / 325

Features and Functions of OLAP / 325

Dimensional Analysis / 326

Hypercubes / 328

OLAP Implementation Approaches / 330

Data Modeling for OLAP / 332

Data Mining Systems / 334

Basic Concepts / 334

Data Mining Techniques / 338

Data Preparation and Modeling / 339

Data Preprocessing / 339

Data Modeling / 341

Chapter Summary / 342

Review Questions / 343

IV PRACTICAL APPROACH TO DATA MODELING 345

10 Ensuring Quality in the Data Model 347

Chapter Objectives / 347

Significance of Quality / 348

Why Emphasize Quality? / 348

Good and Bad Models / 349

Approach to Good Modeling / 351

Quality of Definitions / 351

Importance of Definitions / 352

Aspects of Quality Definitions / 353

Correctness / 353

Completeness / 354

Clearness / 357

Format / 358

CONTENTS xiii

Checklists / 358

High-Quality Data Model / 360

Meaning of Data Model Quality / 360

Quality Dimensions / 361

What Is a High-Quality Model? / 363

Benefits of High-Quality Models / 364

Quality Assurance Process / 365

Aspects of Quality Assurance / 365

Stages of Quality Assurance Process / 366

Data Model Review / 369

Data Model Assessment / 370

Chapter Summary / 373

Review Questions / 373

11 Agile Data Modeling in Practice 375

Chapter Objectives / 375

The Agile Movement / 376

How It Got Started / 377

Principles of Agile Development / 378

Philosophies / 378

Generalizing Specialists / 379

Agile Modeling / 379

What Is Agile Modeling? / 380

Basic Principles / 380

Auxiliary Principles / 381

Practicing Agile Modeling / 381

Primary Practices / 381

Additional Practices / 382

Role of Agile DBA / 383

Agile Documentation / 383

Recognizing an Agile Model / 384

Feasibility / 384

Evolutionary Data Modeling / 385

Traditional Approach / 385

Need for Flexibility / 386

Nature of Evolutionary Modeling / 386

Benefits / 387

Chapter Summary / 388

Review Questions / 388

12 Data Modeling: Practical Tips 391

Chapter Objectives / 391

Tips and Suggestions / 392

Nature of Tips / 392

How Specified / 392

How to Use Them / 392

xiv CONTENTS

Requirements Definition / 393

Interviews / 393

Group Sessions / 394

Geographically Dispersed Groups / 394

Documentation / 395

Change Management / 395

Notes for Modeling / 396

Stakeholder Participation / 396

Organizing Participation / 397

User Liaison / 397

Continuous Interaction / 398

Multiple Sites / 399

Iterative Modeling / 399

Establishing Cycles / 399

Determining Increments / 400

Requirements: Model Interface / 400

Integration of Partial Models / 401

Special Cases / 401

Legal Entities / 402

Locations and Places / 403

Time Periods / 405

Persons / 407

Bill-of-Materials / 409

Conceptual Model Layout / 409

Readability and Usability / 409

Component Arrangement / 410

Adding Texts / 416

Visual Highlights / 417

Logical Data Model / 417

Enhancement Motivation / 418

Easier Database Implementation / 418

Performance Improvement / 418

Storage Management / 419

Enhanced Representation / 419

Chapter Summary / 421

Review Questions / 421

Bibliography 423

Glossary 425

Index 433

CONTENTS xv

PREFACE

Do you want to build a hybrid automobile? First, you need to create a model of the car. Do

you want to build a mansion? First, you need to have blueprints and create a model of the

dwelling. Do you want to build a spaceship? First, you need to design a miniature model of

the vehicle. Do you want to implement a database for your organization? First, you need to

create a data model of the information requirements.

Without a proper data model of the information requirements of an enterprise, an ade-

quate database system cannot be correctly designed and implemented for the organization.

A good data model of high quality forms an essential prerequisite for any successful data-

base system. Unless the data modelers represent the information requirements of the

organization in a proper data model, the database design will be totally ineffective.

The theme of this book is to present the fundamentals and ideas and practices about

creating good and useful data models—data models that can function effectively as

tools of communication with the user community and as database blueprints for database

practitioners.

THE NEED

In every industry across the board, from retail chain stores to financial institutions, from

manufacturing enterprises to government agencies, and from airline companies to utility

businesses, database systems have become the norm for information storage and retrieval.

Whether it is a Web-based application driving electronic commerce or an inventory

control application managing just-in-time inventory or a data warehouse system support-

ing strategic decision making, you need an effective technology to store, retrieve, and use

data in order to make the application successful. It is no wonder that institutions have

adopted database technology without any reservations.

In this scenario, the information technology (IT) department of every organization has a

primary responsibility to design and implement database systems and keep them running.

One set of special skills for accomplishing this relates to data modeling. Information

technology professionals with data modeling skills constitute a significant group. Infor-

mation technology professionals specializing in data modeling must be experts with a

thorough knowledge of data modeling fundamentals. They must be well versed in the

methodologies, techniques, and practices of data modeling.

xvii

ADDRESSING THE NEED

How can IT professionals desirous of acquiring data modeling skills learn the required

techniques and gain proficiency in data modeling? Many seminar companies, colleges,

and other teaching institutions offer courses in database design and development.

However, such courses do not have data modeling as a primary focus. Very few

courses, if any, concentrate just on data modeling. So, eager IT professionals are left

with the choice of learning data modeling and gaining expert knowledge from books

exclusively on this subject. How many such books should they read to learn the principles

and concepts?

This book intends to be the one definitive publication to fulfill the needs of aspiring data

modelers, of those experienced data modelers desiring to have a refresher, and even of

expert data modelers wishing to review additional concepts. In this volume, I have

attempted to present my knowledge and insights acquired through three decades of IT con-

sulting, through many years of teaching data-related subjects in seminar and college

environments, and through graduate and postgraduate levels of studies. I do hope this

experience will be of use to you.

WHAT THIS BOOK CAN DO FOR YOU

Are you a novice data modeler? Are you fairly new to data modeling but aspire to pick up

the necessary skills? Alternatively, are you a practicing data modeler with experience in

the discipline? Are you a generalizing specialist, meaning that you want to add data mod-

eling as another skill to your arsenal of IT proficiency? Irrespective of the level of your

interest in data modeling, this is the one book that is specially designed to cover all the

essentials of data modeling in a manner exactly suitable for IT professionals. The book

takes a practical approach in presenting the underlying principles and fundamentals, aug-

menting the presentation with numerous examples from the real world.

The book begins in Part I with a broad overview of data modeling. In Chapter 1, you are

introduced to all the essential concepts. Before proceeding into further details, you need to

familiarize yourself with the data modeling techniques. Chapter 2 explores the leading

techniques—the approaches, the symbols, the syntax, the semantics, and so on.

Part II of the book presents the fundamentals in great detail. It does not matter what

your knowledge level of data modeling is. You will find this part interesting and useful.

You are presented with a real-world case study with a completed data model. You are

asked to study the anatomy of the data model and understand how the actual design and

creation of the data model works. Part II also digs deeper into individual components of

a data model with several real-world examples.

In Part III, you will learn the transition from data model to database design. In recent

times, decision-support systems have come to the forefront of computing. Part III

describes decision-support systems such as data warehousing and data mining and

guides you through data modeling methods for these systems. This is essential knowledge

for modern data modelers.

In Part IV of the book, you will find a chapter exclusively devoted to quality in the data

model. Every data modeler aspires to create a model of the highest quality. This chapter is

required reading. A new wave known as agile software development is on the rise

xviii PREFACE

producing great benefits. You will learn about this movement and gain insights into agile

data modeling—its principles and practices.

Finally, are you looking for practical suggestions on data modeling distilled from years

of experience of many practitioners? If so, the final chapter is for you. The book aptly

concludes with such a chapter filled with numerous practical tips and suggestions.

PAULRAJ PONNIAH

Milltown, New Jersey

April 2007

PREFACE xix

ACKNOWLEDGMENTS

The authors listed in the bibliography at the end of the book greatly expanded and

enhanced my understanding and appreciation for data modeling. I am deeply indebted

to the authors, individually and collectively, for their insights and presentations. A great

part of this book is a reinterpretation of their concepts and observations. I wish to

express my special thanks to these authors.

I must also record my gratitude to the several professional colleagues who had worked

with me on various data modeling and database projects during my long IT consulting

career. Also, thanks are due to the many students in my data modeling and database

classes over the years. Interactions with my colleagues and students have shaped this

book in a format especially suitable for the needs of IT professionals.

xxi

I

INTRODUCTION TO
DATA MODELING

1

1

DATA MODELING:
AN OVERVIEW

CHAPTER OBJECTIVES

. Introduce the process of data modeling

. Present why data modeling is important

. Explain how a data model represents information requirements

. Describe conceptual, logical, and physical data models

. Briefly discuss the steps for building a data model

. Show the role of data modeling in system development

. Provide an initial glimpse of data modeling history and trends

James Watson and Francis Crick, working at Cambridge University, deduced the

three-dimensional structure of DNA (deoxyribonucleic acid). In 1953, they published a

brief paper describing their now-famous double helix model of DNA. This important mile-

stone of creating a true model of DNA gave a tremendous boost to biology and genetics.

For the discovery and creation of the double helix model, Watson and Crick shared the

Nobel Prize for Physiology and Medicine in 1962.

Well, what does Watson and Crick’s achievement have to do with our current study?

Essentially, they built a model. The model is a true representation of the structure of

DNA—something we find in the real world. Models are replicas or representations of par-

ticular aspects and segments of the real world. Building of models is quite common in

many disciplines. When you think about it, the representation “5þ 4 ¼ 9” is a mathe-

matical model using symbols and logic. This model represents the fact that if you put

five things together with four things of the same kind, you get nine things of the same

kind. In physics, we create models to represent physical properties of the world. In econ-

omics, we create models of economic trends and forecast economic outcomes.

3

Data Modeling Fundamentals. By Paulraj Ponniah
Copyright # 2007 John Wiley & Sons, Inc.

Let us get a more vivid picture of what we mean by a model. Let us say that you are

interested in buying a new home in one of the upcoming posh developments. You go to

the sales office of the real estate developer. They point to a large open site where they

plan to build the houses and to complete the development in 3 years. Right now, you

cannot see any houses; you cannot observe the layout of roads and houses; all you can

notice is a lot of vacant space and numerous trees. How can you get a picture of how

the development will look in the future? How can you imagine how the house you

want to buy will be structured? While you appear puzzled, the sales staff leads you

into a large room. On a big table, in the middle of the room, sits a scale model of the

development. They had created the model based on the requirements of the future

homeowners in the community. You see roads, houses, swimming pools, tennis courts,

and other amenities in the future development. These are not the real roads and

houses. These are just components in the model. The model is a true representation of

the real estate development. The sales people are able to point to different components

in the model and communicate with you clearly and vividly. Now, you are able to under-

stand, and you are happy.

A model serves two primary purposes:

. As a true representation of some aspects of the real world, a model enables clearer

communication about those aspects of the real world.

. A model serves as a blueprint to shape and construct the proposed structures in the

real world.

DATA MODEL DEFINED

Data modeling is an integral part of the process of designing and developing a data system.

While designing and developing a data system for an organization, you take into account

all the information that would be needed to support the various business processes of the

organization. If you are designing a data system for a banking institution, you have to

provide data for the business processes of checking, savings, and loan account operations.

If you are creating a data system for a medical center, you have to provide data for inpa-

tient and outpatient services. You start with the analysis and gathering of details about

which data elements would be needed for the business. You need to ensure that the

results of requirements definition are completely implemented as the data content of the

database that would support the organization.

You start with planning and requirements definition. Based on these, you have to come

up with the proper database system. During this process, you have to keep on communicat-

ing with the business stakeholders about the data elements, their structures, relationships

among the structures, and the rules governing the structures and relationships. You have to

make sure that these data elements are exactly the ones that are needed to support the

business. The users must be able to understand clearly what you are designing and give

their affirmation.

Making the users understand the information content of the database system being built is

one crucial aspect of the development process. The other significant aspect of the develop-

ment process is your ability to create a database system that meets the information require-

ments exactly and conforms to what you have presented and described to your users. As

database practitioners, what technique can we adopt to achieve these dual goals? How can

4 CHAPTER 1 DATA MODELING: AN OVERVIEW

we communicatewith the users and keep them informed?How canwe dowhatwe promise to

deliver and meet the information requirements exactly?

What Is a Data Model?

Data modeling provides a method and means for describing the real-world information

requirements in a manner understandable to the stakeholders in an organization. In

addition, data modeling enables the database practitioners to take these information

requirements and implement these as a computer database system to support the business

of the organization.

So, what is a data model? A data model is a device that

. helps the users or stakeholders understand clearly the database system that is being

implemented based on the information requirements of an organization, and

. enables the database practitioners to implement the database system exactly conform-

ing to the information requirements.

A data model, therefore, serves as a critical tool for communication with the users; it

also serves as a blueprint of the database system for the developers. Figure 1-1 illustrates

these two significant aspects of a data model. Notice how the data model serves the needs

of the two groups: users and developers. Also notice the place of the data model between

requirements definition and database system implementation.

Data modeling is a technique for exploring the data structures needed to support an

organization. A data model must record and indicate the content, shape, size, and rules

of the data elements used throughout the scope of the various business processes of the

organization. It would be a conceptual representation or replica of the data structures

required in the database system. A data model focuses on what data is required and

FIGURE 1-1 Data model: communication tool and database blueprint.

DATA MODEL DEFINED 5

how the data should be organized. It does not necessarily reflect the operations expected to

be performed on the data.

Data modeling can be applied to representation of the information requirements at

various levels. At the highest conceptual level, the data model is independent of any hard-

ware or software constraints. At this level, the data model is generic; it does not vary

whether you want to implement an object-relational database, a relational database, a hier-

archical database, or a network database. At the next level down, a data model is a logical

model relating to the particular type of database—relational, hierarchical, network, and so

on. This is because in each of these types, data structures are perceived differently. If you

proceed further down, a data model is a physical model relating to the particular database

management system (DBMS) you may use to implement the database. We will discuss

these levels further.

Why Data Modeling?

You have understood that a data model is created as a representation of the information

requirements of an organization. You have also noted that a data model functions as an

effective communication tool for discussions with the users; it also serves as a blueprint

for the database system. A data model, therefore, acts as a bridge from real-world infor-

mation to database storing relevant data content.

But, why this bridge? Why not go from real-world information to the database itself?

Let us take a simple example. A business sells products to customers. We want to create a

database just to support such sale transactions, nothing more. In our database, we need to

keep data to support the business. In the real world of this business, data exists about cus-

tomers, products, and sales of products to customers. Now, look at Figure 1-2, which

shows these data elements for the business.

The method for showing the information requirements as indicated in the figure is hap-

hazard and arbitrary. If you are asked to depict the information requirements, you might do

FIGURE 1-2 Sales: real-world information requirements.

6 CHAPTER 1 DATA MODELING: AN OVERVIEW

it in a different way. If someone else does it, that person might do it in yet a different way.

Now consider the database to be built to contain these data elements. Two overall actions

need to be performed. First, you have to describe the database system to the users and

obtain their confirmation. Then you have to create the database system to provide the

necessary information. The depiction of information requirements as shown in the

figure falls short of these expectations.

Let us try to improve the situation a bit. Let us try to depict the information require-

ments in slightly better and more standard manner. See Figure 1-3, where the depiction

is somewhat clearer.

This figure presents a picture that could better help us to communicate with the users

with a little more clarity and also enable us to proceed with the implementation of the data-

base system. Now you can show the users the business objects of CUSTOMER,

PRODUCT, and SALE about which the database system will contain data. You can

also point to the various pieces of data about these objects. Further, you can also

explain how these objects are related.

Still, this depiction falls somewhat short of the expectations. This figure is an attempt

toward a good data model. When we take the depiction a few steps further and create a

satisfactory data model—a true representation of the information requirements—we can

achieve our goals of user communication and database blueprint. But that is not all. A

data model serves useful purposes in the various stages of the data life cycle in an organ-

ization. Let us see how.

Data Life Cycle. Follow the stages that data goes through in an organization. First, a

need for data arises to perform the various business processes of an organization. Then

FIGURE 1-3 Sales: a step toward a data model.

DATA MODEL DEFINED 7

a determination is made about exactly what data is needed. Gathering of the data takes

place. Then the data gets stored in the database system. In the next stage, data is manipu-

lated by reading it from storage, combining it in various desired ways, and changing it.

After a while some of the data gets archived and stored elsewhere. After some of the

data completes its usefulness, the corresponding data elements get deleted from the data-

base system. Figure 1-4 presents the stages in the data life cycle of an organization and also

the interaction with the data model at the different stages.

Now let us walk through the various stages of the data life cycle. At each stage, we will

note how a data model is helpful and serves useful purposes.

Needing Data. In this earliest stage, an organization recognizes the need for data for per-

forming the various business processes. For example, to perform the process of taking

orders, you need data about products and inventory. For producing invoices, you need

data about orders and shipments. Thus, this stage in the data life cycle recognizes the

need for data in the organization. At this stage, a high-level conceptual data model is

useful to point to the various business processes and the data created or used in these

processes.

Determining Needed Data. Once you recognize the need for data, you have to deter-

mine which data elements are needed for performing business processes. At this stage,

you will come up with the various types of data, which data is really needed and which

data would be superfluous, and how much of each type of data is needed. At this stage,

FIGURE 1-4 Organization’s data life cycle.

8 CHAPTER 1 DATA MODELING: AN OVERVIEW

all the required details of the needed data elements are discovered and documented in the

data model.

Gathering Needed Data. After the determination of which data is needed, collection of

data takes place. Here you apply a sort of filter to gather only the data that is needed and

ignore the irrelevant data that is not necessary for any of your business processes. You will

apply different methods of data creation and data gathering in this stage. The data gather-

ing trials and methodologies are scoped out with the aid of the data model.

Storing Data. The collected data must be stored in the database using appropriate

methods of storage. You will decide on the storage medium and consider the optimal

storage method to suit the needs of users for accessing and using data. The data model

in this stage enables you to assemble the components of the global data repository.

Each part of the data model determines a specific local data structure, and the conglomera-

tion of all the parts produces the global structure for data storage.

Using Data. Data, collected and stored, is meant for usage. That is the ultimate goal in the

data life cycle. At this stage, you will combine various data elements, retrieve data

elements for usage, modify and store modified data, and add new data created during

the business processes. At this stage, the data model acts as a directory and map to

direct the ways of combining and using data.

Deleting Obsolete Data. After a while, a particular data element in storage may become

stale and obsolete. After a period of time, the data element may no longer be useful and,

therefore, not accessed in any transactions at all. For example, orders that have been ful-

filled and invoiced need not remain in the database indefinitely beyond the statutory time

of legal and tax reporting purposes. An organization may decide that such orders may be

deleted from the database after a period of 10 years. Deleting obsolete data becomes an

ongoing operation. A particular data element may fall into the category qualifying for del-

etion. At this stage, the data model is used to examine the various data elements that can be

safely deleted after specified periods.

Archiving Historical Data. However, some data elements may still be useful even long

after any activity on those data elements had ceased. Data relating to customer purchases

can be useful to forecast future trends. Historical data is useful in the organization’s data

warehouse. Any such useful data elements are removed from the current database and

archived into a separate historical repository. The data model in this stage provides the

ability to point to the original and final spots of data storage and trace the movement

from active to archived repositories.

Who Performs Data Modeling?

In a database project, depending on the size and complexity of the database system, one or

more persons are entrusted with the responsibility of creating the data models. Data

models at various levels call for different skills and training. Creating a conceptual data

model involves capturing the overall information requirements at a high level. A logical

data model is different and is meant for different purposes. A physical data model, on

the other hand, pictures the information at the lowest level of hardware and physical

DATA MODEL DEFINED 9

storage. So, who performs data modeling? Data modeling specialists with appropriate

training, knowledge, and skills do the work of data modeling.

However, the recent trend is not to employ persons having data modeling skills alone.

This is an age of generalizing specialists. Data modeling is usually an additional set of

skills acquired by certain persons on the database project. These generalists are trained

in the principles and practice of data modeling and assigned the responsibility of creating

the data models.

Who Are the Data Modelers? This is another way of asking the same question. In an

organization, who are these folks? What functions do they perform? How can we think of

the various tasks performed by the data modelers? Are they like architects? Are they like

librarians? Are they like document specialists?

The primary responsibility of data modelers is to model and describe that part of the

real world that is of interest to the organization to achieve its goals and purposes. In

doing so, a data modeler may be thought of performing the following functions.

Scanning Current Details. The data modeler scans and captures details of the current

state of the data system of the enterprise. New models are built by looking at the

current data structures.

Designing the Architecture. The data modeler is an architect designing the new data

model. He or she puts together all the pieces of the architecture.

Documenting andMaintaining Meta-Data. The data modeler is like a librarian and cus-

todian of the data about the data of the organization. The data modeler is also a tremendous

source of information about the data structures and elements, current and proposed.

Providing Advice and Consultation. With in-depth knowledge about the composition of

the data system of an organization, the data modeler is the expert for consultation.

INFORMATION LEVELS

By now, it is clear to you that a data model is a representation of the information require-

ments of an organization. A data model must truly reflect the data requirements of an

enterprise. Every aspect of the data for the company’s business operations must be indi-

cated clearly and precisely in the data model. As we defined a data model, we also con-

sidered the two major purposes of a data model. A data model serves as a means for

communication with the users or domain experts. It is also a blueprint for the proposed

database system for the organization.

Let us examine the first purpose. A data model is a tool for communication with the

users. You will use the data model, review its components, describe the various parts,

explain the different connections, and make the users understand the ultimate data

system that is being built for them. The data model, therefore, must be at a level that

can be easily understood by the users. For this purpose, the data model must be devoid

of any complexities. Any complexity in terms of the data structures must be hidden

from the users. In the data model, there can be no indication of any physical storage con-

siderations. Any reference to how data structures are laid out or perceived by analysts and

10 CHAPTER 1 DATA MODELING: AN OVERVIEW

programmers must be absent from the model. The data model must just be a conceptual

portrayal of the information requirements in human terms. The data model must be a rep-

resentation using a high level of ideas. The primary purpose here is clear communication

with the domain experts.

Now let us go to the second major purpose of a data model. The data model has to serve

as a blueprint for building the database system. In this case, the database practitioners must

be able take the data model, step through the components, one by one, and use the model to

design and create the database system. If so, a data model as a representation at a high level

of ideas is not good enough as a blueprint. To serve as a blueprint, the data model must

include details of the data structures. It should indicate the relationships. It should rep-

resent how data is viewed by analysts and programmers. It should bear connections to

how database vendors view data and design their database products.

In order to build the database system and determine how data will be stored on physical

storage and how data will be accessed and used, more intricate and complex details must

be present in the data model. This is even more detailed than how data is viewed by pro-

grammers and analysts.

So, we see that a data model must be at a high and general level that can be easily under-

stood by the users. This will help the communication with the users. At the same time, we

understand that the data model must also be detailed enough to serve as a blueprint. How

can the data model serve these two purposes? At one level, the data model needs to be

general; at another level, it has to be detailed. What this means is that representation of

information must be done at different levels. The data model must fit into different infor-

mation levels. In practice, data models are created at different information levels to rep-

resent information requirements.

Classification of Information Levels

Essentially, four information levels exist, and data models are created at each of these four

levels. Let us briefly examine and describe these levels. Figure 1-5 indicates the infor-

mation levels and their characteristics.

Conceptual Level. This is the highest level consisting of general ideas about the infor-

mation content. At this level, you have the description of application domain in terms of

human concepts. This is the level at which the users are able to understand the data system.

This is a stable information level.

At this level, the data model portrays the base type business objects, constraints on the

objects, their characteristics, and any derivation rules. The data model is independent of all

physical considerations. The model hides all complexities about the data structures from

the users through levels of abstraction. At this level, the data model serves as an excellent

tool for communication with the domain experts or users.

External Level. At the conceptual level, the data model represents the information

requirements for the entire set of user groups in the organization. The data model is com-

prehensive and complete. Every piece of information required for every department and

every user group is depicted by the comprehensive conceptual model. However, when

you consider a particular user group, that group is not likely to be interested in the

entire conceptual model. For example, the accounting user group may be interested in

just customer information, order information, and information about invoices and

INFORMATION LEVELS 11

payments. On the other hand, the inventory user group may be interested in only the

product and stock information. For each user group, looking at the conceptual model

from an external viewpoint, only a portion of the entire conceptual model is relevant.

This is the external level of information—external to the data system. At the external

level, portions of the entire conceptual model are relevant. Each user group relates to a

portion of the conceptual model.

A data model at the external level consists of fragments of the entire conceptual model.

In a way, each fragment is a miniconceptual model. If you consider an external data model,

it contains representation of a particular segment of information requirements applicable

to only one user group. Thus, if you create all the external data models for all the user

groups and aggregate all the external data models, then you will arrive at the comprehen-

sive conceptual model for the entire organization. External data model enables the data-

base practitioners to separate out the conceptual data model by individual user groups

and thus allocate data access authorizations appropriately.

Logical Level. At this level, the domain concepts and their relationships are explored

further. This level accommodates more details about the information content. Still,

storage and physical considerations are not part of this level. Not even considerations of

a specific DBMS find a place at this level. However, representation is made based on

the type of database implementation—relational, hierarchical, network, and so on.

If you are designing and implementing a relational database, the data model at this level

will depict the information content in terms of how data is perceived in a relational model.

In the relational model, data is perceived to be in the form of two-dimensional tables. So, a

logical data model for a relational database will consist of tables and their relationships.

FIGURE 1-5 Information levels for data modeling.

12 CHAPTER 1 DATA MODELING: AN OVERVIEW

Data in the tables will be represented as rows and columns. The data model at the logical

level will be used in the ultimate construction of the database system.

Internal or Physical Level. This information level deals with the implementation of

the database on secondary storage. Considerations of storage management, access man-

agement, and database performance apply at this level. Here intricate and complex

details of the particular database are relevant. The intricacies of the particular DBMS

are taken into account at the physical level.

The physical data model represents the details of implementation. The data model at

this level is primarily intended as a blueprint for implementation. It cannot be used as a

means for communication with the users. The data model represents the information

requirements in terms of files, data blocks, data records, index records, file organizations,

and so on.

Data Models at Information Levels

When we began our discussion on data models, it appeared as if a data model is a single

type of representation of information requirements for an organization. When we analyzed

the purposes of a data model, it became clear that a single type of representation is not

sufficient to satisfy the two major purposes. The type of representation that is conducive

for communication with users does not have the lower level details needed for the

model to serve as a blueprint. On the other hand, the type of representation with details

about the data structure is necessary in a construction blueprint; but such a representation

is not easy to be used as a communication tool with the users.

This has led to the need to create data models at different information models. We have

understood the necessity for different types of representations for the different purposes.

These are the data models at the various levels of information—conceptual data model,

external data model, logical data model, and physical data model. Figure 1-6 shows the

data models at the different information levels. Note the nature of the data model at

each level and also notice the transition from one level to the next. The figure also indi-

cates the purpose of the data model at each level.

Earlier we had developed an initial data model consisting of three business objects,

namely, CUSTOMER, PRODUCT, and SALES. Let us use these three objects to illustrate

data models at different levels. In the section of our real world, all the information we need

is only about these three objects. For the purpose of illustrating the different data models,

let us make this restrictive assumption and proceed. Also, we will assume that our ultimate

database will be a relational database.

External Data Model. The external data model is a depiction of the database system

from the viewpoints of individual user groups. This model may be used for communication

with individual groups of users. Each individual user group is interested in a set of data

items for performing its specific business functions. The set of data items relevant for a

specific user group forms part of the external data model for this particular user group.

For the purpose of our example, let us consider three user groups: accounting, market-

ing, and inventory control. Try to figure out the data items each user group would be inter-

ested in. For the sake of simplicity, let us consider a minimum set of data items.

Figure 1-7 shows the set of data items each of these groups is interested in. This figure

illustrates the formation of an external data model.

INFORMATION LEVELS 13

Conceptual Data Model. The conceptual data model is at a high and general level,

intended mainly as a communication tool with the user community. In the model,

there is no room for details of data structure or for any considerations of hardware and

database software. This model does not even address whether the final database

system is going to be implemented as a relational database system or any other type

of database system. However, the model should be complete and include sufficient com-

ponents so that it would be a true representation of the information requirements of the

organization.

Figure 1-8 illustrates the idea of a conceptual data model. The information require-

ments we are considering relate to the data items for the user groups of accounting, mar-

keting, and inventory control. That was the external data model shown in Figure 1-7. You

see that the conceptual data model has representations for the three business objects of

CUSTOMER, PRODUCT, and SALES. You can easily see the connection between the

external data model and the conceptual data model. The figure also shows the intrinsic

characteristics of these business objects—the data about these objects. Further, the con-

ceptual model also indicates the relationships among the business objects. In the real

world, business objects in an organization do not exist as separate entities; they are

related with one another and interact with one another. For example, customer orders

product, and products are sold to customers.

By looking at the figure, you would have noticed that for the conceptual data model to

serve as a communication tool with the users, there must be some easily understood nota-

tions or symbols to represent components of the model. Some accepted symbol must indi-

cate a business object; some notation must indicate the characteristics or attributes of a

FIGURE 1-6 Data models at different information levels.

14 CHAPTER 1 DATA MODELING: AN OVERVIEW

business object; some representation must be made to show the relationship between any

two objects. Over time, several useful techniques have evolved to make these represen-

tations. We will introduce some of the techniques at the end of this chapter. Further,

Chapter 2 is totally dedicated to a discussion of data modeling methods, techniques,

and symbols.

Logical Data Model. In a sense, the logical data model for an organization is the aggre-

gation of all the parts of the external data model. In the above external data model, three

user groups are shown. We assume that there are only three user groups in the organiz-

ation. Therefore, the complete logical model must represent all the combined information

requirements of these three user groups.

For the relational type of database system, the logical model represents the information

requirements in the form of two-dimensional tables with rows and columns. Refer to

Figure 1-9 for an example of the logical data model. At this stage, the figure just gives

you an indication of the logical data model. We will discuss this concept a lot more

elaborately in subsequent chapters.

FIGURE 1-7 External data model.

INFORMATION LEVELS 15

FIGURE 1-8 Conceptual data model.

FIGURE 1-9 Logical data model.

16 CHAPTER 1 DATA MODELING: AN OVERVIEW

As can be seen from the figure, the logical data model may serve both purposes—

communication tool and database blueprint. In this case, it will serve as a blueprint for

a relational database system along with the physical data model.

Physical Data Model. A physical data model has little use as a means of communi-

cation with the users. Its primary purpose is to act as a blueprint for the implementation

of the database system. The details contained in a physical data model are beyond the

normal comprehension of the users. The model expresses too many intricate details. It

includes considerations of the particular DBMS and the hardware environment in which

the database system gets implemented.

See Figure 1-10 for an example of the physical data model. Notice how the model rep-

resents the information requirements in terms of files, data blocks, records, fields, and so on.

Themodel is a representation at the lowest level of abstraction with a lot of complex details.

CONCEPTUAL DATA MODELING

Having considered the different types of data models and their purposes, we are now ready

to ponder the question how exactly is a data model created. What are the major steps?

What are the various components that make up a data model? Let us get an initial intro-

duction to the terminology, components, and the steps for creating a data model. Here we

want to be brief and just introduce the topics. Part II covers the topics in elaborate detail

with a comprehensive case study. So, let us now confine ourselves to getting a quick

glimpse of the components and the steps.

FIGURE 1-10 Physical data model.

CONCEPTUAL DATA MODELING 17

For our purposes here, let us take a simple example to identify the components and the

steps. We will deal with the conceptual data model because that is generic and is usually

the first data model that is created. As you know, the conceptual data model has no con-

siderations about the type of database system being implemented, no reference to the par-

ticular DBMS, and absolutely no concern about the storage and hardware environment

where the ultimate data system will reside and perform. These are details that are deliber-

ately kept out of the conceptual model. Later on in the following chapters, discussions will

cover the logical and physical data models.

Again, as mentioned earlier, several standard techniques and notations exist for creating

a data model. We will be discussing those in Chapter 2. For now, we will not get bogged

down with specific techniques or symbols. We can use some meaningful and easily under-

stood symbols for now. Remember the main goals at this stage: identification of the major

components of a data model and overview of the major steps in the modeling process.

Data Model Components

Before proceeding further, let us introduce some terminology and identify the primary data

model components. Our simple introductory data model will contain these components. At

this early stage, we will not represent the components using any standard technique. That

will come later. Let us just use very basic symbols to represent the components for now.

For the purpose of our simple data model, we will consider four basic components and

define them. Most of the conceptual data models we come across in practice consist of

these basic components. Remember, the data model reflects and represents the information

requirements of an organization. What are the pieces of information a company or business

is interested in? What are the parts of the information a company requires to run its

business? Data model components are derived from such business considerations. Let

us move on to identify the components.

Objects or Entities. When you analyze the information requirements of a company,

you will notice that the company needs information about the business objects that are

of interest to it. The company needs data about business objects. The organization

needs to know how these business objects are related and the implications of such

relationships.

What are such business objects? For example, a bank is interested in data about its

customers and about checking, savings, and loan accounts. So, for a bank, CUSTOMER,

CHECKING-ACCOUNT, SAVINGS-ACCOUNT, and LOAN-ACCOUNT would be

examples of business objects. Similarly, for a hospital, PATIENT, PHYSICIAN,

PROCEDURE, and HOSPITAL-VISIT would be examples of business objects. Each

organization has its own set of business objects. A particular institution needs data

about its own set of business objects. Data about the business objects or entities must

be present in the data system for the organization to function.

Attributes or Characteristics. Consider a specific business object. Let us take the

business object called CUSTOMER. What would this business object represent in a

data model? The object will represent the set of all the customers of the organization.

How can all the customers be grouped and represented by a single object called

CUSTOMER? This is because all these customers mostly possess the same characteristics.

18 CHAPTER 1 DATA MODELING: AN OVERVIEW

Each customer has an intrinsic characteristic known asCustomer Name. Every customer

has a specific name. Every customer has other inherent of intrinsic characteristics such as

Customer Address,Customer Phone Number,Customer Balance, and so on. These intrinsic

characteristics are known as attributes. The business object CUSTOMER has attributes of

CustomerName, CustomerAddress, CustomerPhoneNumber, Customer Balance, and so

on. Each individual customer will have distinct values for these attributes. Thus, attributes

of an object or entity are representations of its inherent or intrinsic characteristics.

Identifiers. Let us get back to the definition of an object or entity. The object CUSTOMER

represents all the customers of the organization. Each customer has a distinct set of values

for the attributes of the object CUSTOMER. If the CUSTOMER object represents all and

every customer, then how can we distinguish one customer from another represented

through the object called CUSTOMER? Why do we need to make this distinction?

Frequently in business situations, we need to find information about a single customer.

Where does the customer live so that we may send invoices to the customer? What are

the recent orders placed by that customer?

How can we distinguish one customer from another and indicate this distinction in the

data model? We can use values of a particular attribute to make the distinction. You can

say that you need information about that particular customer for whom the value of the

CustomerNumber is 1234. In this case, CustomerNumber would be an attribute that can

be used to distinguish one customer from another. Provided values of customer

numbers are not duplicated in the data system, values of the attribute CustomerNumber

can be used to make the distinction between customers. In such a case, the attribute

CustomerNumber is an identifying attribute or an identifier for the object CUSTOMER.

In practice, one or more attributes whose values would uniquely determine specific

instances of an object are chosen as the identifier for that object.

Relationships. Let us get back to the example of business objects for a bank. Consider

the objects CUSTOMER and CHECKING-ACCOUNT. These are two separate objects

with their own attributes. For the purpose of running the banking business, the users in

the bank need data about customers and checking accounts. They need the data about

these two objects separately, but even more so about the relationship between customers

and their checking accounts. For a particular customer, what is the status of the customer’s

checking account?

In a company’s environment, business objects do not exist in isolation. They are related

to one another. What is the relationship between CUSTOMER and CHECKING-

ACCOUNT? Customers operate checking accounts. That is the relationship. For a data

model to be a true representation of the real-world situation for a bank, the model must

reflect the relationships among the business objects.

Simple Symbols. We have identified the primary components of a data model. We

have introduced business objects, attributes, identifiers, and relationships. Let us assign

some simple symbols to these components. Make a square box to represent a business

object. Small circles connected to a square box may represent attributes. Two concentric

circles may be used to represent identifiers. When two objects are directly related, let us

indicate the relationship by joining the two square boxes by a straight line. For our initial

discussion of the data modeling steps, these simple symbols are sufficient.

Figure 1-11 shows examples of these data model components.

CONCEPTUAL DATA MODELING 19

Data Modeling Steps

Armed with the definition and description of the major data model components, let us

quickly walk through the process of creating a conceptual data model using these com-

ponents. A simple business example will illustrate the steps. Let us consider a rather

easy and uncomplicated business.

The company is called Raritan Catering started by two sisters, Mary and Jane. They

offer catering projects for birthday parties, anniversaries, student reunions, small business

luncheons, and so on. They have four permanent employees and also use temporary help

whenever necessary. For each project, the clients specify the type of food to be served and

also the number of people to be served. Raritan Catering charges the client on a per-plate

basis. Permanent and temporary employees working on a project are compensated based

on the proceeds from the project. Twenty-five percent of the revenues from each project is

shared among the employees working on that project.

In order to run the catering business, the two sisters perform various business processes.

For the purpose of illustrating the data modeling steps, let us concentrate on the following

major business processes:

. Plan for projects

. Assign employees to projects

. Bill clients

. Receive payments

. Compensate employees

With this information about the business processes and operations, let us walk through

the process of creating a data model.

FIGURE 1-11 Data model components: simple representation.

20 CHAPTER 1 DATA MODELING: AN OVERVIEW

Identify Business Objects. In this step, the data modeler identifies those business

objects about which data would be needed. How does he or she do this? The data

modeler examines and studies the business processes that are necessary to run the

business. In the case of Raritan Catering, we have noted the major business processes

to run the business. The business needs information to perform these business processes.

Examining each of these processes closely, we can come up with the follow data

elements that are necessary for each process. The data elements noted below comprise

the basic information requirements for the processes.

Plan for Projects. For performing this business process, the business needs data about

clients, their scheduled projects, and the type of food items to be served at the projects.

Let us list these data items.

ClientName

ClientPhone

DateOfProject

NumberOfGuests

EstimatedCost

TypeOfFood

Assign Employees to Projects. For doing this function and assigning a particular

employee to a specific project, the business requires some data about client, project, and

employee. The following date elements are needed.

ClientName

DateOfProject

EmployeeName

Bill Clients. For performing this business process, the business needs to send invoices to

the clients for the projects served. The following data items are required.

ClientName

ClientAddress

ClientCity

ClientState

ClientZip

DateOfProject

NumberOfGuests

AmoutCharged

Receive Payments. For this business process, the organization needs data about the

payment received and from whom it is received. The following data items are essential.

ClientName

DateOfProject

CONCEPTUAL DATA MODELING 21

PaymentDate

TypeOfPayment

AmountPaid

Compensate Employees. For this business process, the company must have infor-

mation about each project and the employees who worked on the project. Here is the

list of data items.

DateOfProject

AmountCharged

EmployeeName

EmployeeSSNo

After collecting the list of data items that would be required for all the business pro-

cesses, the data modeler examines the list and groups together data items that are about

the same thing. This process of aggregation results in the ability to identify the business

objects. Let us aggregate the data items listed above for the five business processes.

When you look at the data items and group similar data items together, it becomes

clear to you that the data items relate to the following business objects:

CLIENT

PROJECT

EMPLOYEE

FOOD TYPE

PAYMENT

Identify Direct Relationships. In an organization, the business objects are

interrelated. For Raritan Catering, clients order projects. So the business objects

CLIENT and PROJECT are connected through this relationship. Similarly, other pairs

of objects are likely to be connected by such direct relationships.

Let us examine each pair of potentially related objects. We are looking for potential

relationships. The following direct relationships become apparent:

Employees are assigned to projects.

Projects use food types.

Clients order projects.

Client makes payments for projects.

Thus we can identify the following direct relationships between the pairs of business

objects noted below:

EMPLOYEE —— assigned to —— PROJECT

PROJECT —— uses —— FOOD TYPE

CLIENT —— orders —— PROJECT

CLIENT —— makes —— PAYMENT

22 CHAPTER 1 DATA MODELING: AN OVERVIEW

We have identified the direct relationships among the business objects. Well and good.

But what about some compelling questions about each of these relationships? Let us take

the relationship between EMPLOYEE and PROJECT. We see that information in our data

system must tell us which employees were assigned to which projects. Right away, we

observe that in our data system, the following restrictions would apply:

One employee may be assigned to one or more projects.

One project can have one or more employees.

That means the two objects EMPLOYEE and PROJECT are in a many-to-many

relationship. See Figure 1-12, which illustrates the many-to-many relationship. Note

also how the many-to-many relationship is indicated with asterisks (�).
Let us examine one more relationship. Take the relationship between CLIENT and

PROJECT. We see that we need information in our data system about which clients

ordered which projects. In this case, we note the following restrictions that apply to the

relationship:

One client can order one or more projects.

However, one project can have only one client.

This is a one-to-one relationship. Relationships between business objects can be

one-to-one or one-to-many or many-to-many. This aspect of a relationship is known as

the cardinality of the relationship. The cardinality indicator such as “�” or “1” indicates

how many instances of one object may be related to how many instances of the other

object. Our data model must not only represent the relationships but their cardinalities

as well.

Let us pause at this point and summarize what we have done so far. We have identified

the business objects. We have noted the relationships among the objects and recorded

the cardinalities of each relationship. Let us draw an initial data model diagram to rep-

resent the steps up to now. Figure 1-13 shows the initial data model diagram for

Raritan Catering.

FIGURE 1-12 Many-to-many relationship.

CONCEPTUAL DATA MODELING 23

Add Attributes. Attributes describe the business objects. Therefore, attributes are

necessary components in a data model. After identifying the business objects and deter-

mining the relationships among the objects, the next step is to include the attributes and

make the data model diagram even more complete.

Initially,whenwe examined the business processes and noted the data elements needed for

each business process, we had made a list. This list of data elements will form the set of attri-

butes to be included now.Let us collect the data items and form the set of attributes as follows:

CLIENT

Name

Address

City

State

Zip

Phone

PROJECT

Date

NoOfGuests

EstCost

AmtCharged

EMPLOYEE

SSNumber

EmpName

FOOD TYPE

FoodName

PAYMENT

Date

FIGURE 1-13 Raritan Catering: initial data model diagram.

24 CHAPTER 1 DATA MODELING: AN OVERVIEW

PymntType

Amount

Assign Identifiers. An identifier for a business object is one or more attributes whose

values uniquely identify individual instances of the object. In this step, we examine the

set of attributes for each object and determine which ones are candidates to be the iden-

tifier. If none of the known attributes of an object qualifies to be an identifier, then we

have to introduce one or more new attributes to form the identifier. Let us examine

the list of attributes.

For the object EMPLOYEE, one of its attributes, namely, SSNumber qualifies to be the

identifier. The values of Social Security number are not duplicated. Therefore, the values

of this attribute can be used to identify individual employees.

Scrutinizing the attributes of the other objects, we note that in each case there are no

candidates for identifiers. So, for these objects, we have to add new attributes to serve

as identifiers. After doing that, we come up with the following list of identifiers:

CLIENT

ClientNo

PROJECT

ProjectNo

EMPLOYEE

SSNumber

FOOD TYPE

TypeId

PAYMENT

PymntSeq

Let us return to the data model diagram and add the attributes and identifiers.

Figure 1-14 shows the revised and more complete data model diagram.

At this point, the data model diagram is generally complete.

Incorporate Business Rules. Already when we marked the cardinality indicators for

the relationships, we have indicated some business rules in the data model. For example, a

rule guiding this business is that a particular food type can relate to several projects and

that many different food types may be served at a single project. We have incorporated

this business rule by marking the relationship between PROJECT and FOOD TYPE as

many-to-many.

For a different business, there could business rules governing how invoices may be

paid. Partial payments may be allowed against a single invoice; on the other hand, one

payment may cover several invoices. This is a business rule, and the data model must

reflect this rule. Business rules govern objects, relationships, and even attributes. Business

rules must be incorporated into the data model so that the model could truly represent the

real-world business situation. We will elaborate on business rules later in Part II.

CONCEPTUAL DATA MODELING 25

Validate the Data Model. This step is really a review and validation step. We want to

make sure the conceptual data model we have created satisfies two criteria. Does the data

model truly reflect and represent the information requirements of the organization? Is the

data model complete and simple enough to be used as a communication tool with the

users? If so, we have succeeded in creating an effective conceptual data model.

In this step, you will review the models for completeness of the number of business

objects. Have you missed any object that must be in the data model? Then you will

review the relationships and ensure that the cardinalities are correctly specified. Again,

you will go over the list of attributes and make sure no attributes are missing. Finally,

you will verify the appropriateness of the identifiers. After this validation process, the

data modeling steps are completed and the diagram represents the information require-

ments of the organization.

In real life, data modeling is not as simple as this example tends to make us believe.

However, the overall steps for creating a conceptual data model are more or less the

same for all situations. Part II pursues the topics in great depth. Using a comprehensive

case study, you will go through the data modeling process in elaborate detail. What we

have done in this section now is just a preliminary introduction to the modeling process.

DATA MODEL QUALITY

When we walked through the steps for creating a conceptual data model, we validated the

model in the final step. We indicated a few of the tasks for validating the model. These

FIGURE 1-14 Raritan Catering: revised data model diagram.

26 CHAPTER 1 DATA MODELING: AN OVERVIEW

tasks ensure that the model is of high quality. But ensuring data quality involves a lot more

than indicated in that final step. The importance of high quality in a data model cannot be

overemphasized. Further phases follow the data modeling phase for implementing a data

system for an organization. If the model is inadequate and of poor quality, then the inade-

quacy will be propagated to all the phases that follow data modeling.

Chapter 10 is dedicated completely to data model quality. There we will discuss the

topic in elaborate detail. We will examine the reasons for the need for high quality. We

will explore quality dimensions as they relate to data models. We will study how to recog-

nize a high-quality data model. Also, we will review the methods for ensuring high quality

in a data model. In this section, we just want to introduce the concept of quality in a data

model and catch a glimpse of the relevant topics.

Significance of Data Model Quality

Two basic concepts of quality are completeness and correctness. For a data model to be of

high quality, it must be both complete and correct. Let us briefly examine these two con-

cepts and see how they relate to the significance of data model quality.

Data Model Completeness. When you scrutinize a data model for completeness, let

us suppose you find that representations of some of the business objects are missing in

the model. Consequently, you will also find that any direct relationships among these

objects will also be missing. What is the result of lack of completeness?

To that extent, the data model will not truly represent the information requirements of

the organization. Therefore, the final data system implemented based on the defective data

model will not be able support the business of the company. Business processes that

depend on the data about the missing objects and relationships cannot be performed.

Data Model Correctness. Similarly, let us suppose that the attributes of an object

shown in the data model are wrong. Also, assume that two of the relationships are

shown in the data model with erroneous cardinality indicators.

To that extent, the data model represents the information requirements incorrectly.

These errors will filter through to the final data system and will affect the corresponding

business processes.

Data Model Characteristics

What makes a data model to be of high quality? When can we say that a data model is good

and adequate? Can we specify any general characteristics for a high-quality data model?

Let us explore some of these features.

Involves Users. Unless the relevant users are completely involved during the process of

data modeling, the resulting model cannot be good and valuable. The domain experts need

to provide continuous input. While reviewing business operations for the purpose of iden-

tifying the right business objects, the involvement of the users with appropriate expertise

in the particular business domain is absolutely necessary. Also, the right stakeholders must

participate in the process.

At every iteration in the modeling process, the data model will be used as a means of

communication with the domain experts and stakeholders. The input from these users will

DATA MODEL QUALITY 27

enable the data modeler to refine the model as it is being created. With this kind of close

participation, the data model is expected to be of high data quality.

Covers the Proper Enterprise Segments. If the goal is to represent the information

requirements of the entire enterprise, then your data model must be comprehensive to

include all the business processes of the whole enterprise. In this case, the final data

system built based on the comprehensive model will be of use for all the users.

In practice, however, unless the enterprise is of small to medium size, all information

requirements will not come within the scope of the data model. The data model will be

created to cover only those enterprise segments of immediate interest. In a large

company, it is possible to start with a data system to support the functions of only a

few divisions such as marketing and finance. Then the data model will represent the infor-

mation requirements to support only the business processes of marketing and finance.

Here, the emphasis is on knowing what to include and what not to include so that the

data model will be correct as well as complete.

Uses Accepted Standard Rules and Conventions. In the previous section when

we reviewed the components of a data model and walked through the steps for creating

a conceptual data model, we improvised and used our own simple set of symbols. For

the purpose of introducing the data modeling process, these symbols and conventions

were sufficient. However, if you showed the data model diagram to someone else, that

person may not understand the representations. This is because the symbols and conven-

tions are not an accepted standard. To this extent, our data model is not of high quality.

A good data model must be governed by standard rules and diagramming conventions.

Only if you use industry-accepted standards can your data model be good and universal.

We will introduce some modeling techniques toward the end of this chapter. Chapter 2 is

completely dedicated to accepted standard modeling techniques.

Produces High-Quality Design. One of the primary goals of data modeling is to

produce a good blueprint for the final database system of the organization. The complete-

ness and correctness of the blueprint are essential for a successful implementation. A poor

data model cannot serve as an effective blueprint.

For a data model to be considered a high-quality model, you must be able to complete

the design phase effectively and produce an excellent end product. Otherwise, the model

lacks quality.

Ensuring Data Model Quality

The importance of data model quality necessitates measures to ensure the quality. A poor-

quality data model results in a poor-quality data system. Quality control must be given a

high priority in the whole modeling process. Let us just mention how quality consider-

ations must be approached and also a few quality control methods.

Approach to Data Model Quality. At every step of the data modeling process, you

must review and ensure that the completed data model will truly serve each of its two

major purposes. Is the data model clear, complete, and accurate to serve as an effective

communication tool? Can the data model be used as a good working blueprint for the

28 CHAPTER 1 DATA MODELING: AN OVERVIEW

data system? The data model must be reviewed for clarity, completeness, and accuracy at

every stage of its creation.

Quality control comprises three distinct tasks: review, detection, and fixing. Every step

of the way, the model must be reviewed for quality control. There must be techniques and

tools for detecting problems with quality. Once quality problems are detected, they must

be fixed forthwith. The data modeling team must develop and use proper methods to fix the

quality problems.

Quality Control Methods. Quality control methods include the three tasks of review,

detection, and repair. Usually, these tasks are performed in two ways. First, the tasks are

performed continuously at every modeling step. In this way, less problems are likely to

surface at the end of the modeling process. Second, when the modeling is complete, the

overall model is again reviewed for any residual quality problems. When any residual pro-

blems are detected at this stage, they are fixed to assure high quality for the complete data

model.

Who performs the quality control functions? A good approach is to share these func-

tions. In the review and detection tasks, the data modeling team and the users must

work cooperatively. Fixing of quality problems is generally the responsibility of the

data modelers.

DATA SYSTEM DEVELOPMENT

As an IT professional, you are familiar with how a database system for an organization is

developed and implemented. You have fairly good ideas of the various phases and tasks of

the development process. Perhaps you are also knowledgeable of who does what in the

process. In this section, we want to consolidate your ideas with particular emphasis on

data modeling. Where does data modeling fit in the whole process? What purposes does

it serve and what is its significance?

Data modeling forms an integral part of the design phase. It plays the role of the link

between the requirements definition phase and the actual implementation of the data

system. We have already reviewed data models at the different information levels. We

have discussed the external, conceptual, logical, and physical data models that, in their

specific ways, represent the information requirements. Where do these types of data

models fit in the development process? How are they used?

Data System Development Life Cycle

Modern organizations depend upon the effectiveness of their data systems for their

success. The information content of the data system of an organization is a key asset

for the enterprise. The data system provides information critical for achieving the organ-

izational goals. The data system enables the fulfillment of the organization’s core business

and drives the various business processes. The importance of the data system cannot be

overstated.

Because the data system is a precious asset, each organization develops the data system

with utmost care utilizing the best available resources. The design and development of the

data system must be substantially significant. If so, how should an organization go about

establishing its data system? The organization needs to do sufficient planning for the data

DATA SYSTEM DEVELOPMENT 29

system project. The development of a data system calls for a coordinated systematic

approach with distinct and purposeful phases. Organizations adopt a systematic life

cycle approach. A life cycle approach addresses all the phases from beginning to end in

an organized and methodical manner. Let us discuss a few major aspects of the data

system development life cycle (DDLC).

Starting the Process. After all the preliminary administrative functions are performed,

the following are a few major factors in starting the project.

Data-Oriented Approach. At the outset, you must realize that this project requires a

data-oriented approach instead of a function-oriented approach. This means emphasis

on the data remains throughout the development and implementation phases.

Development Framework. Create and work with a structured framework for the devel-

opment of the data system. The following components of a framework may be adapted to

suit your individual organization: scope of the data system, goals and objectives, expec-

tations, justification, current and future requirements, implementation strategy, time con-

straints, and development tools and techniques.

Initiation Report. Initiate the project with a report whose standard contents would include

the following: scope, goals and values, key business objects, core and primary business

processes, tentative schedule, project authorization.

Planning. Do sufficient initial planning to get the project started. The planning for the

data system should include the interpretation of the organization’s long-term plan and

application to the data system.

Feasibility Study. This is assessment of the organization’s readiness for the implemen-

tation. Assess the resource requirements, estimate costs, and determine tangible and intan-

gible benefits.

Requirements Definition. Business analysts and data analysts review the various

business processes and study the information requirements to support the processes.

The study would include one-on-one and group interviews with the users. Existing docu-

mentation must be reviewed. The analysts would watch and analyze how each business

process is performed and what data is generated or used in each process.

Requirement definition comprises the following major tasks:

. Study overall business operations

. Observe business processes

. Understand business needs

. Interview users

. Determine information requirements

. Identify data to be collected and stored

. Establish data access patterns

. Estimate data volumes

30 CHAPTER 1 DATA MODELING: AN OVERVIEW

When the requirements definition gets completed, an appropriate definition document

will be issued. This document will be reviewed with the users and confirmed for correct-

ness and completeness.

Design. Data modeling forms an integral part of the design effort. You design the data

system based on the data models created at the different information levels. Conceptual

design is based on the conceptual data model; logical design results from the logical

model. The physical implementation works on the basis of the physical data model.

Figure 1-15 illustrates the design process. Note the different types of data models and

how they are related. Also, notice how each part of the design effort rests on the particular

data model.

Implementation. When the design phase is completed, the data system is ready for

implementation. Completion of the physical data model and using it for implementation

are responsibilities of the database administrator. He or she defines the data structures,

relationships, business rule constraints, storage areas, performance improvement tech-

niques, and completes the physical data model. This is at the physical level of hardware

and storage.

Using the facilities of the selected DBMS, the database administrator establishes the

data system. Once the structures and relationships are defined, the database is ready for

initial data. Typically, organizations make the transition from earlier file systems to the data-

base environment. Programmers extract data from the earlier systems and use the data to

populate the new database. Special utility programs that are usually part of the DBMS

enable the data loading with considerable ease.

FIGURE 1-15 Data modeling in the design function.

DATA SYSTEM DEVELOPMENT 31

Phases and Tasks. The life cycle approach comprises systematic and well-defined

phases or steps to complete the design and development of a data system. Each phase con-

sists of specific major activities; each activity contains individual tasks. Although the

project progresses from phase to phase, the people working on the project do not necess-

arily complete one phase and then move on to the next. Parts of the phases may be

performed in parallel. Sometimes it becomes essential to repeat and refine some of the

phases in an iterative manner.

Figure 1-16 shows the major phases of the DDLC. Note the sequence of the phases

from bottom to top. Notice how the figure illustrates that the phases may be performed

in an iterative fashion. Although some aspects of requirements definition remain to be

completed, the design phase may commence. When you bring the design phase to

partial completion, you may go back to the requirements phase and fine-tune some

aspects there.

The scope of our discussion here does not call for detailed description of each phase.

Nevertheless, let us highlight the objectives in each phase.

Planning. Review the organization’s long-term business plan; plan specifically for the

data system.

Feasibility Study. Study the state of readiness: estimate costs and explore benefits.

Requirements Definition. Define the business objects and relationships; document data

requirements.

Design. Complete data modeling; design at conceptual, logical, and physical levels.

Implementation and Deployment. Complete physical design and define data structures

and relationships using DBMS; populate data system; get data system ready for

applications.

Maintenance and Growth. Perform ongoing maintenance; plan and manage growth of

data system.

FIGURE 1-16 DDLC: major phases.

32 CHAPTER 1 DATA MODELING: AN OVERVIEW

Roles and Responsibilities

Although we are mainly interested in data modeling within the DDLC, we here just want

to identify who plays which roles in the entire process. Here is an indication of the

participation by users and practitioners.

Planning: Senior management

Feasibility study: Business analysts

Requirements definition: Systems analysts, data analysts, user representatives

Design: Data modelers, database designers

Implementation and deployment: Systems analysts, programmers, database administrators

Maintenance and growth: database administrators

Modeling the Information Requirements

Let us now turn our attention to data modeling within the design phase. Let us discuss how

data models are created to represent the information requirements. We will take a simple

specific example. Let us consider the information requirements for an insurance company.

Each of the user groups performs specific business processes. While performing business

processes, each user group either uses relevant stored data or creates and stores data for

later use. In either case, each user group is interested in a set of data elements.

FIGURE 1-17 User groups and user views of data system.

DATA SYSTEM DEVELOPMENT 33

For the sake of simplicity, assume four user groups for the insurance company: agent

management, new policy issuance, claims processing, and customer promotion. Each user

group uses or requires a set of data elements. These sets of data elements form the user

views of the data system. Figure 1-17 indicates the user views for these four user groups.

The complete list of user views comprises the external data model. The external data

model is simply the various sets of data elements the different user groups are interested

in. If you take into account all the user groups in the organization for which the data system

is being implemented, then the aggregation of all the user views produces the conceptual

data model. See Figure 1-18 for the external and conceptual data models for the insurance

company.

The next data modeling task produces the physical data model from the conceptual.

Every business object, attribute, and relationship represented in the conceptual data

model gets transformed in the physical data model. Figure 1-19 gives an indication of

the physical data model.

Applying Agile Modeling Principles

In recent years, system developers and data modelers have been adopting agile develop-

ment principles. This is because agile development principles enable professionals to be

proactive and produce results. The literature on agile system development and agile

project management continues to grow. See the bibliography at the end of the book for

some leading authors on these subjects. Throughout the subsequent chapters, we will be

FIGURE 1-18 Insurance company: external and conceptual data models.

34 CHAPTER 1 DATA MODELING: AN OVERVIEW

mentioning agile modeling principles as they are applicable to our study. Chapter 11 is

totally dedicated to agile modeling as it is practiced.

Agile modeling is not a complete software development process. It is more a set of

valuable principles than a methodology for data modeling. The principles act as catalysts

to any chosen modeling technique. Agile modeling enables putting values and principles

into practice for effective, easy modeling.

DATA MODELING APPROACHES AND TRENDS

Thus far we have reviewed the basic concepts of data modeling. We discussed how and

why information perceived at various information levels in an organization must be

modeled. At each level, the data model serves specific purposes. We concentrated more

on the conceptual data model at this stage and reviewed its components. We walked

through the phases of the data system development life cycle. More explicitly, we

covered the steps that are taken to create a data model—particularly, conceptual data

model. We also touched upon the importance of data model quality.

Let us now conclude this introductory chapter with a historical note and review the

evolution of data modeling over time. The need for data modeling was realized from

the earliest times when database systems began to appear on the scene. Joint participation

of users and information technology (IT) professionals in system development ensued. As

organizations expanded in size and complexity, translating information requirements

FIGURE 1-19 Insurance company: conceptual and physical data models.

DATA MODELING APPROACHES AND TRENDS 35

directly into database systems became almost impossible. Users had to understand and

confirm the understanding of IT professionals. Information technology professionals

also needed an intermediary representation of information requirements that could act

as a blueprint for the database system. Hence, data modeling evolved as a distinct effort in

the process of system development.

Data Modeling Approaches

Earlier when we created a data model diagram, remember we used a set of symbols. A few

basic rules guided us in the formation of a data model. We used square boxes, circles, and

straight lines. This was a method of abstraction for representing information requirements

in a somewhat understandable way. Every modeling method, therefore, has a set of nota-

tions or symbols. Each symbol means something and represents some aspect of the real

world we are trying to represent. A data modeling method also has a set of rules or pro-

cedures for using the symbols.

Data modeling, especially conceptual modeling, is a collaborative effort between data

modelers and users who are domain experts. The real-world information requirements

must somehow be made clear in the data model through natural language, easily under-

stood and intuitive diagrams, and also through data examples. These examples are the

examples of the type of data that the data model is expected to portray. Sometimes,

these are referred to as data use cases because they are the data used by the system.

Data modelers adopt three major data modeling approaches: entity-relationship data

modeling, fact-oriented data modeling, and object-oriented data modeling. Chapter 2 is

fully dedicated to the discussion of data modeling methods. Therefore, in this section,

we will just introduce these approaches and consider some major points.

Entity-Relationship Modeling. This approach, introduced byPeter Chen in 1976, is still

the most popular andwidely used technique. Vendors have produced several computer-aided

software engineering (CASE) tools to support this method. This method perceives and

portrays the information requirements of an organization as a set of entities with attributes

participating in relationships. Based on earlier discussions and examples, we are already

somewhat familiar with this method. Over the years, newer versions of entity-relationship

modeling came on the scene. The newer versions included improvements and enhance-

ments. Symbols used in entity-relationship modeling are not fully standardized although

if you know one convention, it would be easy to guess the meaning of similar symbols

in another convention.

Entity-relationship modeling portrays the information domain of an organization in a

way that is free from any considerations of database software or hardware. Because of

this independence, this method is well suited for conceptual data modeling. It does not

burden the domain experts with unnecessary details. However, an entity-relationship

(E-R) data model diagram has its shortcomings. The diagram does not clearly indicate con-

straints in the relationships. Does every instance of one entity always relate to instances of

the related entity? How are constraints on mandatory and optional relationships indicated?

Those practitioners who tried to remove the defects have attempted some enhancements to

E-R modeling. But these attempts are not fully satisfactory.

Domain experts want to relate data use cases to the model diagram. They want to know

how each use of a set of data is specified in the model. This link of data use case to the

model is not obvious. Not all domain experts are comfortable with the notations in the

36 CHAPTER 1 DATA MODELING: AN OVERVIEW

E-R model and find some of the notations, especially those for relationships, incomplete

and imprecise. The fact-oriented data modeling approach attempts to overcome some of

the deficiencies of the E-R approach.

Fact-Oriented Modeling. In the 1970s, an approach to data modeling arose by viewing

the information domain in terms of objects playing roles. What are roles? A role is the part

played by one object in a relationship. Object-role modeling (ORM) is such a fact-oriented

modeling approach. This is perhaps the only major fact-oriented modeling technique with

fairly wide industry support.

Let us try to understand ORM with an example. Consider the data use case for schedul-

ing the time of doctors for patient visits. The domain expert who is familiar with this

simple use case is able to verbalize the information content of this use case. The data

modeler must be able to transform this verbalization into a data model to discuss easily

and to validate the model. In this data modeling technique, the data modeler verbalizes

sample data as instances of facts and then abstracts them into fact types. Constraints

and rules of relationships and derivation get added to the model to make it complete.

Figure 1-20 shows an ORM diagram for doctor scheduling. Named ellipses indicate

entity types and have a method for referencing them. The reference (last name) shown

in parentheses within the ellipse for Doctor means that doctors are referred to by last

names. The sample data form the fact instances, and these get abstracted into the fact

types. The ORM diagram indicates the structure consisting of the fact types of Doctor,

Time, Patient, and PatientName. A named sequence of one or more role boxes depicts a

relationship. In this case, we have a three-role or ternary relationship: Doctor at Time is

scheduled for Patient. We also have a binary or two-role association between Patient

and PatientName. The model diagram also includes some counterdata to indicate appro-

priate constraints.

An ORM diagram presents all facts in terms of entities or values. Unlike as in E-R, attri-

butes are not specified in the base ORM models. Object-role modeling allows for relation-

ships with multiple roles. Object-role modeling diagrams tend to be large; nevertheless, an

attribute-free model is simpler, more stable, and easier for validation. The arrow-tipped

lines indicate uniqueness constraints showing which roles or combination of roles must

FIGURE 1-20 ORM diagram: doctor scheduling.

DATA MODELING APPROACHES AND TRENDS 37

have unique entries. A black dot on Patient refers to a mandatory role constraint. The coun-

terexamples of data with question marks (?) provide means to test such constraints while

validating the model with a domain expert.

Compared with ORM, E-R has the following shortcomings:

. It is not closer to natural language for validation with domain experts.

. E-R techniques generally support only two-way relationships. Although n-way

relationships in E-R are broken down into two-way relationships by introducing inter-

section identities, these intersection identifies seem arbitrary and not understood by

domain experts.

Object-Oriented Modeling. In this approach, both data and behavior are encapsulated

within objects. Thus, object-oriented modeling was primarily devised for designing code

of object-oriented programs. However, this modeling approach can be adapted for concep-

tual modeling and eventually for database design.

By far, the most popular and widely used object-oriented approach is the Unified

Modeling Language (UML). The Unified Modeling Language has an array of diagram

types, and class diagrams form one important type. Class diagrams can represent data

structures and may be considered as extensions of the E-R technique. Apart from this

brief mention of UML here, we will postpone our detailed discussion of UML until the

end of Chapter 2.

Modeling for Data Warehouse

As an IT professional, one must have worked on computer applications as an analyst, pro-

grammer, designer, or project manager. One must have been involved in the design,

implementation, or maintenance of systems that support the day-to-day business oper-

ations of an organization. Examples of such systems are order processing, inventory

control, human resources, payroll, insurance claims, and so on. These applications that

support the running of the business operations are sometimes known as OLTP (online tele-

processing) systems. Although OLTP systems provide information and support for

running the day-to-day business, they are not designed for analysis and spotting trends.

In the 1990s, as businesses grew more complex, corporations spread globally, and com-

petition became fiercer, business executives became desperate for information to stay

competitive and improve the bottom line. They wanted to know which product lines to

expand, which markets to strengthen, which new stores and industrial warehouses

would be worthwhile. They became hungry for information to make strategic decisions.

Although companies had accumulated vast quantities of data in their OLTP systems,

these systems themselves could not support intricate queries and analysis for providing

strategic information.

Data warehousing is a recent paradigm specifically intended to provide vital strategic

information. It is a decision-support system. In a data warehouse, data has to be viewed

and represented differently. Data modeling appropriate for building OLTP database

systems becomes ineffective for data warehouse systems. Techniques such as entity-

relationship data modeling do not meet the requirements. Let us consider a simple

example to illustrate why a different modeling technique becomes desirable.

Suppose we take all the sales data accumulated in the OLTP systems and want to use it

for analysis. We want to ask a question such as: What are the sales of Product A for the

38 CHAPTER 1 DATA MODELING: AN OVERVIEW

current year, broken down by regions, compared with prior year and targets, sorting the

sales in ascending sequence by region? After viewing the sales data, suppose we want

to zero in on the region with the lowest performance. We would then want to ask a

follow-up question such as: For the region with the lowest performance, what is the break-

down by sales representatives, districts, and shipment methods. This approach of querying

and analysis is likely to lead us to the reasons for the low performance so that we can make

strategic decisions to rectify the situation. Therefore, a data warehouse must contain data

extracted from OLTP systems—data that can be viewed and modeled for querying and

analysis.

In this example, we want a data model that enables analysis of sales by year, region,

sales representative, and shipment method. We need a model that supports analysis of

sales data or facts about sales by combinations of the business dimensions of year,

region, sales representative, and shipment method. The model should depict the infor-

mation content in a data warehouse using dimensional modeling. We will discuss dimen-

sional modeling technique in great detail in Chapter 9. That chapter describes data

modeling for decision-support systems extensively.

Other Modeling Trends

Some recent data modeling and related trends include very-high-level languages for

querying information systems, enhanced schema or model abstraction methods, newer

techniques for creating external models, and extended modeling languages such as exten-

sible markup language (XML). In the remaining chapters, we will include discussions on

these as and when necessary.

Let us now conclude with brief discussions on a few other trends.

Postrelational Databases. In our earlier discussions, we have noted that a relational

data model views data in the form of two-dimensional tables. We have also seen that a

conceptual model may be mapped to a relational model. Prior to the advent of the rela-

tional model on the database scene, other models such as the hierarchical and network

models preceded the relational model. In these models, data is viewed differently. The

hierarchical model presents data as hierarchical segments in parent–child relationships.

On the other hand, the network model consists of data nodes arranged as a network.

Still, a conceptual model while being transformed into a logical model may take any

one of these forms.

The relational model is still the most popular and widely used model; most data system

implementations are relational databases. However, the recent uses of data and the gener-

ation of newer types of data pose problems for the relational model. Now we have to deal

with data in the form of images, sounds, and spatial elements. More complex data objects

have become common in industry. A relational model does not seem to be adequate for

representing recent trends in data usage. Organizations adopt postrelational models to

address the recent requirements. Data modelers need to adapt their modeling techniques

to accommodate postrelational models.

Let us briefly highlight a few of these postrelational approaches.

Object-Oriented Databases. In addition to features of relational databases, these data-

bases possess additional features such as support for complex objects, encapsulation invol-

ving bundling of operations and data together, and user-defined data types.

DATA MODELING APPROACHES AND TRENDS 39

Deductive Databases. These databases offer powerful and elegant methods for declar-

ing and managing complex data. For data that has to be derived by the use of a series of

recursions, this approach proves very effective.

Spatial Databases. These databases provide support for spatial data types (points, lines,

multisided figures, etc.) and spatial operators (intersect, overlap, contain, etc.). Because of

these facilities, spatial databases efficiently manage spatial data such as maps (land, coun-

ties, states or provinces, etc.) and two- and three-dimensional designs such town plans,

flight paths, and so on.

Process Modeling. Data modeling primarily confines itself to creating conceptual,

external, logical, and physical models. If you examine each of these models, they represent

the data content, perhaps, in a static manner. However, other aspects of working with the

data exist in an organization. Somehow these other aspects such as business processes that

use the data content must also be modeled. Many types of model diagrams depict these

other aspects. The Unified Modeling Language includes such diagrams: use-case

diagrams, sequential diagrams, collaboration diagrams, state charts, and activity diagrams.

Other modeling techniques include data flow diagrams, process flow charts, and function

trees.

As our primary emphasis rests on data modeling, we do not intend to discuss the process

modeling techniques in detail. However, we will list the functions of the important ones.

Use Case Diagrams. These provide comprehensive overviews of the processes in a

system.

Activity Diagrams. These show activities of each process. Activity diagrams at succes-

sive levels refine the activities as you proceed to the lower levels. Domain experts under-

stand activity diagrams intuitively and find them very valuable.

Function Trees. These decompose major functions into subfunctions at several levels.

Data Flow Diagrams. These display flow of information between processes.

Meta-Meodeling. Data modeling creates models of data content in a database system.

Process modeling deals with modeling the activities and functions surrounding the data

system. Modeling involves creating models of the application domain. Meta-modeling

involves creating models of the models themselves. A meta-model represents the contents

of the model itself.

You can create meta-models for data models at various levels. A meta-model at a par-

ticular level describes the data model at that level. Thus, a conceptual meta-model contains

the representation of the components of a conceptual data model. A conceptual data model

describes business objects and their relationships. A conceptual meta-model expresses the

components of a conceptual model, that is, the representations themselves as meta-objects

and meta-relationships. A meta-model may be used to verify and validate the correspond-

ing data model.

40 CHAPTER 1 DATA MODELING: AN OVERVIEW

CHAPTER SUMMARY

. A data model is a representation of the information content in the real world.

. Essentially, a data model serves two purposes: as a communication tool and as a blue-

print for constructing the database.

. A data model plays a significant role in the data life cycle of an organization.

. In an organization, four information levels are discerned; data models are created at

these levels.

. A conceptual data model depicts the information requirements of an organization at

the highest general level. Logical and physical data models are representations at the

next two lower levels with more intricate details.

. A conceptual data model has the following major components or building blocks:

objects, attributes, identifiers, and relationships.

. The process of data modeling consists of specific modeling steps or activities.

. Quality of a data model is of paramount importance.

. Data system development life cycle (DDLC) phases: planning, feasibility study,

requirements definition, design, implementation and deployment.

. Data modeling techniques have evolved and been refined during the past decade.

REVIEW QUESTIONS

1. Match the column entries:

1. Data model A. Closest to the users

2. Storing data B. Intrinsic characteristic

3. External model C. Popular modeling technique

4. Attribute D. Representation of real world

5. Patient E. Completeness and correctness

6. Conceptual model F. Data life cycle stage

7. Model quality parameters G. Blueprint for database

8. Feasibility study H. Fragment of logical model

9. Physical model I. Determine state of readiness

10. Entity-relationship

modeling

J. Business object for a hospital

2. Describe the two primary purposes served by a data model.

3. What are the various stages of the data life cycle in an organization? How can a

data model be useful in these stages?

4. Name some major functions performed by a data modeler. What types of skills are

needed to perform these functions?

5. Describe the notion of information levels in an organization. What are the typical

levels and why are they important?

6. Name the different types of data models and relate them to the information levels.

What are the essential purposes of these types of data models at these levels?

REVIEW QUESTIONS 41

7. Name and briefly describe the components of a conceptual data model. Give

examples.

8. Briefly describe the general data modeling steps. Indicate the activities at each step.

9. List the major phases of DDLC. What are the objectives of each phase?

10. Name any three data modeling approaches. Describe one of the approaches.

42 CHAPTER 1 DATA MODELING: AN OVERVIEW

2

METHODS, TECHNIQUES,
AND SYMBOLS

CHAPTER OBJECTIVES

. As preparation for in-depth study of data modeling, get to know the leading modeling
approaches

. Review the main aspects of data modeling

. Provide an overview of common techniques

. Present the notations, symbols, and semantics of these techniques

. Specifically introduce Unified Modeling Language in some depth

Through our discussion of the basics of data modeling, you have understood that the

modeling process attempts to depict the real world of an organization. You expect to

create a model that truly represents the data requirements of the organization. Recall

that the data model must serve not only as a tool for communication with the domain

experts by representing their requirements but must also act as a blueprint for the data

system to be implemented on computers. The kinds of models must be able to be

encoded and manipulated by computers. For this reason, we presented data models at

different levels of abstraction— conceptual, logical, and physical.

At this time, we will continue our discussions mainly pertaining to the conceptual data

model. Once you have created the conceptual data model, you may then proceed to trans-

form it into a logical model and, thereafter, into a physical model taking into consideration

the hardware and software environment.

A data model refers to objects, their properties, and the relationships among one

another. We can think of four aspects of an object: object name, object property, property

value, and time. The time element relates to the time of capture of the data about the

object. Many models drop the notion of time and replace it with methods of ordering of

43

Data Modeling Fundamentals. By Paulraj Ponniah
Copyright # 2007 John Wiley & Sons, Inc.

data or other explicit properties. Thus, an elementary idea of an object consists of object

name, property, and property value.

An example of a specific object is John Smith; a value for a particular property for this

object is 30 Main Street. John Smith is a specific instance of the category EMPLOYEE; 30

Main Street is a specific value for the category StreetAddress. This is an example of strictly

typed data. Most common data models deal with strictly typed data. These models make

clear distinction between data and categories of data. In strictly typed data models, prop-

erties of data can be abstracted and explored in terms of their categories. Usually each

piece of data fits into some category and makes it easy for abstraction.

A data model defines the rules for the data structures and relationships. Generic rules for

defining categories determine allowable objects and relationships. Disallowed objects, their

properties, and relationships are excluded by the use of constraints. Different modeling

techniques work with variable structuring rules and constraints. In the first part of this

chapter, we will briefly discuss four common data modeling approaches. We will consider

how data structures are perceived and defined. We will also review the basic notations and

the diagramming techniques. After that, we will proceed to study six popular data modeling

methods. We will conclude with a presentation of Unified Modeling Language (UML).

DATA MODELING APPROACHES

Of the four modeling approaches discussed here, we have already mentioned two of these

briefly, namely, entity-relationship and relational. However, we will review these and the

others on the basis of a limited collection of concepts through which the models can be

expressed. These concepts may be summarized by the semantic concepts of type and

aggregation.

Let us review how these concepts are applied in the four approaches. We will also briefly

look at the data structures and relationships. This discussion of the four modeling approaches

serves as a prelude to the study of the common modeling techniques that follows.

We will use a specific simple example to illustrate the four approaches. Let us say we

want to model the real-world situation of students registering for courses at a university.

The data model must represent the registration of students in courses. From these infor-

mation requirements we can derive the objects, properties, and relationships utilizing

the concepts of type and aggregation.

Semantic Modeling

In this approach, the concept of type plays a prominent role. A type is defined as the aggre-

gation or collection of a certain number of properties into a unit or component. Further, the

properties themselves are also considered as types. The student registration example cited

above is specified as shown as follows:

type registration ¼ student, course

type student ¼ name, student id, street address, city, state, zip code

type course ¼ course name, course number, day-of-week, time

Figure 2-1 shows the abstraction hierarchy in semantic modeling.

44 CHAPTER 2 METHODS, TECHNIQUES, AND SYMBOLS

Aggregation is represented in the model diagram by placing it above the properties. Base

types such as name, student id, address, and so on are not represented in the graphical notation.

Relational Modeling

The concept of mathematical relation forms the basis for the data structure in the relational

data model. A relation is visualized as a two-dimensional table with rows and columns

containing only atomic values. Our example of student registration is defined as follows

in the relational model:

registration (student id, course number)

student (name, student id, street address, city, state, zip code)

course (course name, course number, day-of-week, time)

FIGURE 2-1 Semantic modeling: abstraction hierarchy.

FIGURE 2-2 E-R diagram: student registration.

DATA MODELING APPROACHES 45

Relation registration has two attributes forming two table columns. The number of rows

in each table depends on the actual data stored. Each row is uniquely identified by values

of the columns shown in bold type. The relationships and reference between student and

registration is expressed by the column student id in the registration table.

Entity-Relationship Modeling

The concepts of entity type, attribute type, and relationship type form the basis for the entity-

relationship (E-R) model. The structuring concept is the entity type consisting of basic

attribute types. A complete E-R model shows the attributes for each entity type (Fig. 2-2).

The parameters (m1,n1) and (m2,n2) denote maximum and minimum cardinalities of

the relationships. Cardinalities specify how many instances of one entity type may be

associated with how many instances of the other entity type. Cardinality parameters

take the value of 0, 1, or � (indicating “many”).

Binary Modeling

The binary model rests on many concepts. Central to this approach is the binary separation

of object types into lexical and nonlexical object types. Lexical object types are those

that can be used as names for other object types or for references to other object types.

Nonlexical object types are named object types or those referred by other object types.

FIGURE 2-3 Binary model: information structure diagram.

46 CHAPTER 2 METHODS, TECHNIQUES, AND SYMBOLS

A bridge type is a relationship between a lexical and a nonlexical object type. A

relationship between two nonlexical object types is known as an idea type. Graphical con-

straints may be imposed on an information structure diagram of the binary model. Unique-

ness constraint and totality constraint are among the imposable constraints. In a binary

model, it must always be possible to refer uniquely to a nonlexical object type, that is,

each binary model must be referable.

The information structure diagram for the student registration example becomes more

complex than those using the other modeling approaches. Figure 2-3 shows this model

diagram.

Note the dotted circles denoting lexical object types and closed circles representing non-

lexical object types. Note the bridge type indicating the relationship between student and

course. Uniqueness constraints are indicated by “u” and totality constraints by “v.”

METHODS AND TECHNIQUES

In the 1970s, Peter Chen invented and introduced the entity-relationship modeling tech-

nique revolutionizing the way data is represented. Over time, many data modelers and

others have refined and enhanced Chen’s original version. A host of modeling techniques

arose based on the concepts of entities and relationships.

As data and process requirements became more complex in the 1980s, object modeling

techniques began to be applied to representing information requirements of an organiz-

ation. Unified Modeling Language, introduced in the mid-1990s, was expected to over-

come the shortcomings of earlier object modeling methods and become one definitive

object modeling method. Unified Modeling Language is not quite up to this task yet.

Although UML is the premier object modeling technique, it has done little to replace

entity-relationship techniques.

Whether it is data modeling or object modeling, the primary purpose of a modeling

technique is to describe the data elements of an organization. Because of this underlying

purpose, you will be able to convert the notations of one method into those of another

method. Syntactic aspects of a data model refer to the symbols used. How clearly the

symbols are laid out and connected in a data model diagram helps in the readability of

the model. The meanings conveyed by the symbols and their arrangement refer to the

semantic viability of the model.

A good model must be technically complete and be clearly readable. Readability serves

the first audience for a data model—the domain experts. Technical completeness provides

a foundation for the data model to act as a blueprint for the data system. Technical com-

pleteness comprises proper and complete representations of entities, attributes, relation-

ships, unique identifiers, subtypes and supertypes, and constraints on the structure and

relationships.

We will now present a few leading data modeling techniques. After the presentation of

the models, we will conclude with a comparison and evaluation of them. Mainly our evalu-

ation will be based on readability and technical completeness. In order to facilitate the

comparison and evaluation, we will use the same example to create data models using

each of these different techniques.

The example relates to customer purchases. Customers place orders on the company to

buy products or services. A customer order contains line items that may cover product

items or service items or both. We will construct data models for the information

METHODS AND TECHNIQUES 47

requirements for the buying and selling activities of the company. For the sake of simpli-

city, we will restrict the model to a few important business objects.

Peter Chen (E-R) Modeling

Even after about three decades, this method is still widely used. This is because of its unique

ability to represent attributes and relationships. Instead of inclusion as annotations on a

diagram consisting of entities only, attributes are clearly denoted separately. This model

also shows relationships intuitively and clearly with lines and diamonds mentioning the

name of the relationships.

Figure 2-4 contains the E-R model diagram for the example described above. The

model diagram shows the entities, their attributes, and the relationships among the entities.

It also has an example of supertype and subtype. The cardinality parameters indicate the

relationship constraints.

Entities and Attributes. Square-cornered boxes represent entities. Attributes, rep-

resented by ellipses, are attached to the corresponding entities. Entity names and attribute

names appear inside these notations. Hyphens separate multiword names. Entity and attri-

bute names are in the singular.

The diagram gives no indication of any constraints on the values of the attributes. It

does not tell you whether values for a particular attribute are mandatory or optional

for individual instances of the entity type. Also, the model does not denote if an attribute

participates in being an identifier for the entity type.

Relationships. Among the various modeling techniques, the Chen model represents a

relationship in a unique manner. A relationship type has its own symbol: a diamond or

rhombus on a line between entities denotes a relationship. The Chen model allows

FIGURE 2-4 Chen model: customer purchases.

48 CHAPTER 2 METHODS, TECHNIQUES, AND SYMBOLS

one-to-one, one-to-many, and many-to-many relationship types. Cardinality indicators at

either end of the relationship line show the number of instances of the entities participating

in the relationship. Relationships need not just be binary; several entities may participate

in a single relationship and be linked through a single relationship rhombus.

Names. The Chen model definitely considers relationships as data objects in their own

right; it therefore usually identifies them with names that are nouns. Sometimes the

name of a relationship is the concatenation of the names of the two participating entities.

However, later enhancements to this model attempt to indicate the action by means of a

verb such as “places” between CUSTOMER and ORDER.

Cardinality/Optionality. The original version of the Chen model provided for showing

only the maximum cardinality indicator at each end of the relationship line. A “1” as

the cardinality indicator shows that one instance of an entity associates with one or

more instances of the other entity. An “n” as the cardinality indicator denotes that more

than one instance of an entity associates with one instance of the other entity. However,

a single number does not provide for the fact that relationships could be mandatory or

optional. In mandatory relationships, every instance must participate in the relationship

associating with one or more of the other entity. In optional relationships, not every

instance needs to participate; for example, in our sample, those CUSTOMER instances

that have not placed any orders yet need not participate in the relationship. Later enhance-

ments to the Chen model included maximum and minimum cardinalities to address the

mandatory and optional conditions. For now, just note the two numbers shown as cardin-

ality indicators for the relationships. We will cover this in more detail in later chapters

because we will be using the E-R modeling technique for most of the examples later on.

Constraints. Quite often we need to indicate that each instance of a base entity must be

related to instances of one other entity, but not more. This common case of constraints is

the “exclusive OR” constraint. The Chen model does not deal with constraints in a direct

manner. Other methods had to be adopted to include this and enhance the model.

Unique Identifiers. A combination of attributes and relationships that uniquely identify

an instance of an entity forms a unique identifier for the entity. The Chen model has no

provision to show combination of attributes as identifiers. However, if the unique identifier

of an entity includes a relationship to another entity, the model indicates this by expressing

the relationship name as “E” and connectingwith an arrow the dependent entity represented

by a double box (see ORDER and LINE-ITEM relationship in Fig. 2-4).

Supertypes and Subtypes. A subtype entity is a specialization of a supertype entity; a

supertype entity is a generalization of a subtype entity. An instance of the subtype entity is

also an instance of the supertype entity. Similarly, an instance of the supertype entity must

be an instance of just one or another subtype entity.

The original version of the Chen model has no provision to indicate supertype and

subtype entities. But later enhancements to the model included supertype and subtype enti-

ties. Separate boxes represent subtype entities. Each subtype entity is moved out of the

supertype representation and indicated by a separate box. An “isa” linkage connects a

subtype entity with its supertype entity meaning that each instance of the subtype is an

instance of the supertype. Pay special attention in Figure 2-4 to the relationships

METHODS AND TECHNIQUES 49

between the supertype entity CUSTOMER and its subtype entities INDIVIDUAL and

COMPANY. Also note the cardinality parameters for these relationships.

Information Engineering

In the late 1970s, Clive Finkelstein in Australia developed this data modeling technique.

Later, he worked with James Martin to make it popular in the United States and Europe.

Afterward, James Martin became the significant proponent of this method with his own

revisions. Later on, Finkelstein publicized his own version of the revisions. You will

notice traces of the dual origin of the technique in the information engineering (IE) data

model.

Let us express our customer purchases example using IE notations and conventions.

Figure 2-5 shows the information engineering model.

Entities and Attributes. Definitions of entities by Finkelstein and Martin varied

slightly. Finkelstein defined entity as representing data to be stored for later reference;

Martin reckoned entity as something, real or abstract, about which we store data.

As in the Chen model, square-cornered boxes represent entities. Entity names appear

inside the boxes. Hyphens separate multiword names. Entity names are in the singular.

But unlike the Chen model, the IE model does not show attributes at all. In the Finkelstein

version, a separate document lists the attributes. Martin has another modeling method

called bubble charts specifically for including attributes and keys.

Relationships. Relationships are simply indicated with solid lines connecting pairs of

entities. There is no separate notation for the relationship type object. Symbols at each

end indicate cardinality and optionality.

Names. Finkelstein’s version does not name the relationships at all. However, Martin’s

version names relationships with verbs, mostly only in one direction.

Cardinality/Optionality. The IE model depicts each relationship as having two halves

with one or more symbols describing each half. Optionality and mandatory conditions

are expressed by placing a small open circle near the entity on the relationship line. For

expressing an optional condition, if an instance of the first entity may or may not be

related to instances of the second, a small open circle appears near the second entity. If

FIGURE 2-5 IE model: customer purchases.

50 CHAPTER 2 METHODS, TECHNIQUES, AND SYMBOLS

the relationship is to be mandatory, that is, if an instance of the first entity must be related

to at least one instance of the second entity, a short line crosses the relationship line.

Further, if an instance of the first entity can be associated with one and only one of the

second entity, another short line crosses the relationship. If it can be related to more

than one instance of the second entity, a crow’s-foot is placed at the intersection of the

relationship line and the second entity box. Examine the placements of these symbols

on the relationship lines in Figure 2-5.

Constraints. Relationship lines of three or more entities meeting at a small circle

expresses a constraint between the relationships. A solid circle represents an “exclusive

OR” condition; that is, each instance of the base entity must be related to instances of

one other entity, but not more than one entity. In the figure, this is illustrated where

each line item is for either one product or is for one service, but not both. Quite often

we need to indicate that each instance of a base entity must be related to instances of

one other entity, but not more. On the other hand, an open circle represents an “inclusive

OR” condition; that is, an instance of the base entity may be related to instances of one,

some, or all of the other related entities.

Unique Identifiers. The IEmodel does not include representations for unique identifiers.

However, Martin’s revised version shows unique identifiers in separate bubble charts.

Supertypes and Subtypes. Martin’s version of the IE model denotes subtypes as sep-

arate entity boxes connected to the supertype entity by an “isa” relationship. Each instance of

a subtype is an instance of the supertype. Refer to Figure 2-5 and see how this may be done.

Integration Definition for Information Modeling

Many agencies of the United States government use the IDEF1X (integration definition

for information modeling) technique. This methodology has been adopted as a Federal

Information Processing Standard.

Figure 2-6 shows the IDEF1X version for our customer purchases sample. We will go

through the components illustrated in the figure and discuss them.

Entities and Attributes. Either square-cornered or round-cornered rectangular boxes

represent entities. Round-cornered boxes denote dependent entities, that is, entities whose

identifier is a concatenation of its identifier with that of the related entity. Refer to the LINE-

ITEMentity in the figure. Square-cornered boxes show independent entities whose identifiers

are not derived for others. Entity names appear outside, usually above the boxes. Hyphens,

underscores, or blanks separate multiword names. Entity names are in the singular.

The IDEF1X model displays the attributes and identifiers within the entity box, the two

sets separated by a dividing line. The identifiers (primary key) appear above the dividing

line and all the other attributes below the line.

Relationships. Representation of relationships is not symmetrical; different symbols

indicate optionality, depending on the cardinality of the relationship. You cannot

examine and parse the symbols independently for cardinality and optionality. In effect,

each set of symbols denotes a combination of optionality and cardinality of the entity

next to it.

METHODS AND TECHNIQUES 51

Solid lines and broken lines connect the entity boxes to represent relationships. A solid

line expresses a relationship if the relationship is between independent and dependent

entities. However, this differentiation using solid and broken lines is not present in all

implementations of IDEF1X. In addition to the relationship line, foreign keys are

shown as attributes for implementation as a relational model. We will discuss foreign

keys in great length in later chapters.

Names. IDEF1X names relationships with verbs or verb phrases in both directions.

Note the verbs expressing the actions as shown in Figure 2-6.

Cardinality/Optionality. Expression of cardinality and optionality has many variations

in this model. Although at the conceptual modeling level, so many subtle variations

may not be considered necessary, IDEF1X enables good and detailed transformation

when the conceptual is transformed into the logical and then into the physical model.

Note the various symbols shown for the relationships in Figure 2-6. Usually, solid dot

on the relationship line next to an identity box stands for zero, one, or more instances

of that entity. The letter P indicates a mandatory relationship. A solid dot may mean

“must be” or “may be” and “one or more” or “one and only one,” depending on the

other symbols around it. Let us summarize the notations with a figure: see Figure 2-7

showing IDEF1X components.

Constraints. IDEF1X has no explicit method for representing constraints between

relationships. If entity A is related to entity B or entity C, this has to be represented by

defining an intermediary entity D and use of subtype notation. This would show that

entity A is related to entity D, which must be either B or entity C.

FIGURE 2-6 IDEF1X model: customer purchases.

52 CHAPTER 2 METHODS, TECHNIQUES, AND SYMBOLS

Unique Identifiers. The primary key is indicated as the unique identifier and shown

inside the entity box. The primary key may consist of foreign key and non-foreign-key

attributes because all relationships are indicated with foreign keys.

Supertypes and Subtypes. The IDEF1X model denotes subtypes as separate entity

boxes connected to the supertype entity by a distinct symbol. Each instance of a subtype is

an instance of the supertype. Refer to Figure 2-6 and examine how this is represented.

This model indicates two kinds of subtypes: complete subtyping denoted by a circle

with two horizontal lines under it; incomplete subtyping with only one horizontal under

the circle. In complete subtyping, all instances of the supertype must be occurrences of

one or the other subtype. Incomplete subtyping does not include all possible instances

of the supertype in the subtypes.

The model expresses mutually exclusive subtype by extending the subtypes from a

single subtype symbol. Subtypes descending from different subtype symbols attached to

the same supertype are not mutually exclusive.

Richard Barker’s Model

Initially developed by aBritish company, thismodel was promoted byRichard Barker in the

late 1980s. Oracle adopted this technique for its CASE method. Oracle later renamed the

technique “CustomDevelopmentMethod” and incorporated it in its database software suite.

Our product distribution example using Barker notations is illustrated in Figure 2-8.

Note the various components and diagramming conventions.

FIGURE 2-7 IDEF1X modeling components.

METHODS AND TECHNIQUES 53

Entities and Attributes. Round-cornered rectangular boxes represent entities. Entity

names appear inside the boxes at the top. Hyphens or spaces separate multiword names.

Entity names are in the singular. Attribute names appear inside the entity boxes.

Sometimes Barker notation differentiates the kinds of attributes by marking them. A

small open circle in front of an attribute name denotes an optional attribute; a small solid

circle in front of the name marks a required attribute; a hash mark (#) in front of the

name represents an attribute that participates in a unique identifier. However, Barker nota-

tion also accommodates all types of attributes by being marked with dots in front of them.

Relationships. Relationships are indicated with lines connecting pairs of entities. Each

half of a relationship line may be solid or broken (dashed), with the solid half representing

the mandatory nature of the relationship at that end and the dashed half indicating the

optional nature of the relationship at the other end.

Many instances of an entity participating in the relationship is indicated by a crow’s-

foot on the relationship line at that end. The absence of a crow’s-foot at an end indicates

no more than one instance of that entity participating in the relationship.

Names. Naming conventions and symbols of relationships express relationships in a

precise and understandable manner at each end. The Barker method has a unique way

of expressing relationship names. Prepositions or prepositional phrases are used to

name relationships; from such phrases you can make meaningful plain English sentences

to describe the relationships. Note these phrases in Figure 2-8. For example, from the

figure you can derive the relationships as follows:

Each customer may place one or more orders.

Each order must be placed by one and only one customer.

FIGURE 2-8 Barker model: customer purchases.

54 CHAPTER 2 METHODS, TECHNIQUES, AND SYMBOLS

Cardinality/Optionality. As mentioned earlier, the bifurcation of a relationship gets

expressed clearly, the two parts going in opposite directions. In a relationship half, the

upper and lower boundaries of the maximum cardinalities are expressed by the presence

or absence of the crow’s-feet. A dashed line near an entity box denotes that the relationship

is optional, meaning zero or more instances (“may be”) participating in the relationship. On

the other hand, a solid line near an entity box indicates that the relationship is mandatory,

meaning at least one instance (“must be”) participating in the relationship.

Constraints. The Barker method represents the “exclusive OR” with an arc across the

corresponding two relationship lines. An arc indicates that each instance of one entity

must or may be related to instances in one or more other entities, but not more than one.

Refer to the arc in Figure 2-8 expressing the constraint that each line item must be for

either one product or one service, but not both. Expressions for other types of relationship

constraints do not exist in the Barker model.

Unique Identifiers. As you know, one or more attributes together make up the unique

identifier for an entity. As mentioned earlier, hash marks (#) indicate attributes that are part

of the unique identifier.

See Figure 2-8 and note the relationship between ORDER and LINE-ITEM. The

unique identifier of LINE-ITEM is the combination of “sequence no” and the relationship

“is in” one and only one ORDER. Note how this is indicated with a short line across the

relationship line.

Supertypes and Subtypes. The Barker model represents subtypes as entity boxes

within the supertype entity box. This elegant representation reinforces the concept that an

instance of a subtype is an instance of the supertype and that subtypes and supertypes are

not merely related entities. Also, this representation takes up less space on model diagrams.

This method represents only mutually exclusive subtypes. It does not allow overlapping

subtypes. Also, subtypes are expected to be complete, that is, instances of the subtypes

must account for all the instances of the supertype. In practice, however, this restriction

gets overcome by adding an “OTHER” subtype entity to catch any remaining instances

of the supertype.

Object-Role Modeling

G.M. Nijssen originally initiated this method that data modeling practitioners called NIAM

(Nijssen’s information analysis methodology). However, because many others got involved

in its development and enhancement, the methodology became known with the more gener-

alized name of natural language information analysis method. Many data modelers still use

this method, now commonly known as object-role modeling (ORM).

In contrast with the methods explored until now, ORM takes a different approach for

representing information. In ORM, the relationship or role is the primary modeling

concept. You cannot depict entities independently apart from relationships. This method

stands upon the notion that a model describes facts that includes entities, attributes,

domains, and relationship—all together in combination.

Object-role modeling makes use of natural language extensively to render it more

accessible to the domain experts and the user community in general. Nevertheless, it

also has a great capacity to describe constraints and business rules.

METHODS AND TECHNIQUES 55

Figure 2-9 shows the model for our customer purchases example using the ORM tech-

nique. You will notice that this diagram is much more elaborate and detailed than diagrams

using other modeling techniques. Study this figure more closely to follow the discussions

about the components. Although the ORMmodel bases its portrayal mainly on the roles or

relationships, for the sake of uniformity, we will discuss the components in the same order

we adopted until now in discussing the other modeling techniques.

Entities and Attributes. An ellipse or a circle represents an entity. Our figure portrays

entities with circles. Entity names appear inside the circles. Multiword names are shown

without spaces. Entity names are in the singular. All names begin with a capital letter.

Circles also indicate attributes with the names of the attributes shown inside. Each attri-

bute circle gets connected to the corresponding entity circle that it describes. Connection

or relationship lines not only link entities to each other but also attach attributes to entities.

Thus, in ORM you can ask the question: What is the kind of relationship an attribute has

with an entity it describes?

The model records value domains explicitly as attribute definitions within separate

circles, even for those attributes that are merely terms of reference. Attributes that have

the same domains may be tied together with a common domain definition. Note the

common definition of value (money) connected to the attributes representing unit cost

of product, service charge for service, and actual cost for line item.

Relationships. Without specifying relationships per se, ORM presents the roles that are

played by entities, attributes, and domains in the organization’s data structure.

FIGURE 2-9 ORM model: customer purchases.

56 CHAPTER 2 METHODS, TECHNIQUES, AND SYMBOLS

Nevertheless, these roles signify the relationships between entities. A set of adjacent boxes

represents roles. In a two-way relationship, two adjacent boxes indicate the role, each box

with a relationship name inside and connected to the appropriate entity using a solid line.

Relationships need not just be binary; ORM permits tertiary and higher order relationships.

A quick note about the transformation of any model into a relational model for

implementation: whereas other techniques allow entity representations to be directly

transformed into relational tables, for ORM the portrayal of roles or relationships must

be transformed into relational tables. The two or more parts of a relationship become

columns in a relational table, each part serving as a foreign key.

Names. Verb phrases, usually containing “is” or “has,” describe relationships. Some-

times a clever distinction gets established by using the past and present tenses for the

verb phrases. Past tense signifies temporal relationships that happened at certain points

of time; present term designates permanent relationships.

Cardinality/Optionality. In ORM, cardinality is meshed up with the unique existence of

instances of a fact, relationship being a fact. Each instance of a fact comprises a single

occurrence of each entity participating in the relationship. For example, each customer

may be the source of one or more orders, each instance of a customer, being the source

of an order, by definition, applies to one customer and one order. A double arrow indicates

an entity’s uniqueness for the relationship. In a one-to-many relationship, the arrowhead

appears on the side closest to the “many” side; a bar appears over each half for a one-to-one

relationship; the arrow crosses both halves of the relationship for many-to-many relation-

ships. For a mandatory relationship, a solid circle next to the entity that is the subject of

the fact designates the mandatory nature of the relationship.

Constraints. Circles linking relationships express constraints between relationships. An

exclusion constraint, represented by an “x” in the circle, means that one or the other

relationship may apply, but not both. Note this representation between the two roles of

LineItem to Product and LineItem to Service. For an inclusion constraint, a dot replaces

the “x” in the circle representing the constraint.

Unique Identifiers. Ellipses or circles using dashed or broken lines stand for unique

identifiers or entity labels. Alternatively, identifiers may also be shown in parenthesis

within the entity circle just below the entity name.

If two or more attributes are required to establish a unique identifier, a special symbol is

used. Representation with a special symbol also applies to the need for relationships to

establish uniqueness for an identity.

Supertypes and Subtypes. Apart from circles that signify a supertype, separate

circles indicate the subtypes. A thick arrow points to the supertype from a subtype. For

example, in the figure, note the representation of individual and company as subtypes

for the supertype customer.

eXtensible Markup Language

This technique is not a data modeling method as such. Why then do we want to include this

in our discussions at all? This is a method of representing data structures in text format by

METHODS AND TECHNIQUES 57

using specific tags or labels. Even though the method does not deal with data modeling in

the strictest sense, it is a way of representing data structures. A data model describes data

structures; XML provides a way of looking at data structures. Just this similarity alone

warrants some discussion of XML in the context of data structures.

You must have heard of Hypertext Markup Language (HTML), which is used to describe

pages to theWorldWideWeb.XML is similar toHTML.Both are subsets of themore generic

language known as Standard Generalized Markup Language (SGML). While using these

languages, a set of tags are inserted in the body of the text. When you go on the Internet,

your browser software interprets the various HTML tags and displays the page properly on

your computer screen. Hypertext Markup Language uses standard tags that can be correctly

interpreted by any standard browser software.

On the other hand, XML allows users to define their own tags and allow the tags to be

interpreted by specially written software. Because of this generality, XML and its tag

system may be used to define data structures. Any group of XML users may define

special tags to describe their own data structures.

Therefore, as part of the discussion here, we can use XML to describe the data struc-

tures for our customer purchases example. Figure 2-10 shows the XML representation

for a customer purchase record with data.

You will notice that in the XML document, each tag is surrounded by the less-than and

greater-than signs (,and.). You will also note a number of different types of tags used.

What do these tags mean and how are they to be interpreted? A document type declaration

(DTD) defines the meaning of each tag. DTD defines tags using a set of elements. Thus,

DTD code enables you to specify a data structure. An XML document contains the data;

the DTD represents the data as a model. So, in a way, a DTD may be compared with

FIGURE 2-10 XML representation: customer purchases.

58 CHAPTER 2 METHODS, TECHNIQUES, AND SYMBOLS

any of the earlier data modeling techniques. Figure 2-11 displays the DTD for customer

purchases. We will use this figure for our data model discussion.

Entities and Attributes. Notice all the elements defined in the DTD. Each element in

the DTD refers to a piece of the whole structure. XML does not distinguish between entities

and attributes while defining them as elements. All are defined as elements.

However, in some cases additional information about an element is given through

one or more predicates. A predicate may add to the representation of either an entity or

an attribute. Note the predicate PLACED_BY_CUSTOMER that amplifies the element

CUSTOMER.

Relationships. Predicates attached to elements represent relationships. There is no

other special way for denoting relationships.

Names. The same naming convention applies to all elements and predicates whether they

represent entities, attributes, or relationships. XML does not allow spaces in names and it

is case-sensitive. The case of a tag name in an element definition must be the same as used

if the element had appeared as a predicate; the case of an element used in the XML docu-

ment must be the same as it is in the DTD. All XML keywords must be in uppercase.

Cardinality/Optionality. The absence of any special characters following a predicate sig-

nifies that there must be exactly one instance of each of the predicate for each instance of

the parent element. A question mark (?) following a predicate implies that it is not

required. If it is followed by an asterisk (�), then the predicate is not required, however,

if it occurs, it may have more than one instance. If it is followed by a plus sign (þ), at

least one instance is required, but it may have more than one.

Constraints. XML has no method for describing constraints between relationships.

Unique Identifiers. XML does not recognize and express any unique identifiers.

FIGURE 2-11 XML DTD: customer purchases.

METHODS AND TECHNIQUES 59

Supertypes and Subtypes. XML has no facility to identify subtypes. Special software

would be needed to enforce supertype and subtype relationships.

Summary and Comments

In the foregoing discussions, we have reviewed six modeling techniques. Before we move

to discuss another technique that is object-oriented, let us summarize what we have

covered so far.

Chen Model. Being one of the earliest modeling techniques, the first version of the Chen

model lacked some components to portray the various nuances of an organization’s infor-

mation requirements. However, later enhancements rectified these deficiencies.

Here are some comments on this model:

. It allows displaying of multiple inheritance and multiple type hierarchies;

however, this multibox approach results in undue increase in the size of the model

diagram.

. Separate symbols to each attribute and each relationship seem to produce clutter.

. The model does not clearly get across the fact that an instance of subtype is an

instance of a supertype.

IE Model. Because two prominent authorities, Clive Finkelstein and James Martin,

promulgated this method, it is still widely used. The two proponents complemented

each other to produce a good technique.

The following are a few remarks about the IE model:

. It is reasonably concise and free from clutter.

. Notations for important components of attributes and unique identifiers are lacking.

. It has a compact approach to subtypes, easily understood by the nontechnical users.

IDEF1X Model. The symbols in this model do not clearly match and portray the necess-

ary modeling concepts. Sometimes several symbols are needed to indicate a single

concept. Particular situations need more than one set of symbols; the same set of symbols

may have a differentmeaning depending on the context. For example, the symbol for option-

ality depends on the cardinality of the relationship. The solid circle symbol canmean differ-

ent things depending on its setting.

With this background, here are a few comments:

. It is difficult to review an IDEF1X model with a nontechnical domain expert.

. It may be a good design tool for data modelers but is unduly hard for analysis with

users.

. Making corrections and refining the model is not easy; one simple correction may

involve changing many symbols.

. The multibox approach to subtypes and separate notation for each attribute and

relationship use up extra room on the model diagram.

60 CHAPTER 2 METHODS, TECHNIQUES, AND SYMBOLS

Barker Model. This modeling technique is ideally suited for requirement analysis with

the domain experts. Several aspects distinguish this methodology making it more desirable

than other techniques as a good communication tool with the users.

Here are a few remarks:

. Attributes are portrayed with indicators of their optionality.

. Subtypes are shown as entities inside other entities as opposed to the way of repre-

senting them as separate entities in other models.

. It permits “exclusive OR” constraints and expresses them better than other

techniques.

. It has a unique and rigorous naming convention for relationships—relationship names

are prepositions, not verbs.

ORM Model. Being perhaps the most versatile and most descriptive of the modeling

techniques, ORM has extensive capabilities to describe objects and their roles. The

model is not simply oriented toward entities and relationships. An object may be an

entity, attribute, or a domain.

A few remarks:

. Ordinality and cardinality of attributes are treated in exactly the same way.

. It makes domains explicit, unlike flavors of entity/relationship modeling.

. It is much more detailed than most techniques resulting in model diagram becoming

less aesthetic.

. The multibox approach for representing subtypes takes more room in the diagram.

XML Representation. As noted earlier, XML is not really a data modeling technique.

Therefore, it lacks the ability to represent all the finer points of data structures and relation-

ships. However, XML is a robust method for describing the essence of data structures and

to serve as a template for data transmission.

The proper use of tags provides an excellent method to describe, organize, and commu-

nicate data structures. Although tags form the most apt tools, the responsibility and skill of

database administrators are what make the tools work.

UNIFIED MODELING LANGUAGE

Unified Modeling Language is more an object modeling technique than a data modeling

technique. As you have seen, most of the data modeling techniques deal with entities;

UML, on the other hand, models object classes. However, modeling object classes

resembles entity modeling. To this extent, UML may be adopted for modeling data.

Data Modeling Using UML

Classes or entity objects in UML compare well with entities as noted in all the modeling

techniques discussed earlier. Similarly, associations in UML are equivalent to relation-

ships. In addition to the ability to represent entities in class diagrams, UML can also

UNIFIED MODELING LANGUAGE 61

describe the behavior of each object. We will briefly review some of the other abilities in

later sections. First, let us consider UML as a data modeling technique.

Class Diagram. Figure 2-12 shows the class diagram for the customer purchases

example. This diagram looks similar to the model diagrams in the techniques discussed

earlier. Note the rectangular boxes and lines joining them.

Entities and Attributes. Object classes in UML denote entities. A square-cornered rec-

tangular box represents an object class. Usually, the box has three divisions: the top part

contains the class name, the middle section has a list of attributes, and the bottom part, if

present, shows descriptions of its behavior. Behavior descriptions are generally in pseudo-

code or some object-oriented language. Multiword names are shown without spaces.

Entity names are in the singular. All names usually begin with a capital letter.

One or more of the following parameters qualify the attributes:

Stereotype: provides annotation such as �ident� indicating attributes that are part

of a unique identifiers.

Visibility: shows to which classes the attribute must be visible while being

implemented, (þ) indicating that attribute must be visible to all, and (#) denoting

that the attribute must be visible only to the subtypes of this class.

Type: indicates the data type (character, string, number, etc.).

Initial value: specifies a default value.

Multiplicity: defines the number of different values the attribute may have.

Relationships. In the object-oriented realm, associations denote relationships. Textual

phrases convey information about relationships.

Names. A simple verb phrase can name a relationship completely. A triangle next to the

name indicates how you read the name. Also, roles defined at each end may be used to

describe the part played by the class in the association.

FIGURE 2-12 UML class diagram: customer purchases.

62 CHAPTER 2 METHODS, TECHNIQUES, AND SYMBOLS

Cardinality/Optionality. Lower and upper limit symbols represent optionality and car-

dinality. Lower limits of 0 or 1 indicate optionality; 0 for optional and 1 for mandatory

condition. The upper limit, indicating cardinality, may be an asterisk (�) for “more than

one” or “many,” or an explicit number, or a set of numbers, or a range. The indicator

strings shown in the figure have the following meanings:

0..� may be zero, one, or more

1..� may be one or more

0..1 may be zero or 1

1..1 must be exactly one

Composed of/Part of. Additional symbols denote where each object in one class is com-

posed of one or more objects in the second class. Each object in the second class must be

part of one and only object in the first class. A diamond symbol is placed on the relation-

ship line next to the parent or “composed of” class to indicate actions on the connected

classes. If the association is mandatory, a solid diamond symbolizes deletion of all chil-

dren classes when the corresponding parent class gets deleted. If the association is

optional, an open diamond denotes that the parent class may be deleted without affecting

the children classes. Unified Modeling Language does not address the restricted rule in

which deletion of the parent is not permitted if children classes exist.

Constraints. A dashed or broken line between two relationship lines represents a con-

straint. Note the dashed line between the relationship lines connecting Product and

Service to LineItem. Annotations on these dashed lines indicate the type of constraint

as follows:

Annotation fxorg or forg: Each instance of the base entity must be or may be related to

either an instance of one entity or an instance of the other entity, but not to instances

of both.

Annotation fiorg: Each instance of the base entity must be or may be related to either an

instance of one entity or to an instance of the other entity or to instances of both.

Unique Identifiers. In object-orientation, unique identifiers are not generally indicated.

This representation will be part of modeling that involves behavior of objects. When the

behavior of objects in a class needs to locate a specific instance of another class, the attribute

used to locate the instance will be shown next to the entity that needs it.

However, stereotype parameters described above may be used to designate attributes

and relationship that make up unique identifiers. Refer to Figure 2-12 and note the

marks �ident� in front of attribute names.

Supertypes and Subtypes. Separate rectangular boxes represent subtypes, each

connected to the corresponding supertype box by relationship lines. Each instance of a

subtype is an instance of a supertype.

When each instance of the supertype must be an instance of one of the subtypes (com-

plete) and when an instance of a supertype may not be an instance of more than one

subtype, as seen in Figure 2-12, the supertype/subtype relationship is marked fdisjoint,

UNIFIED MODELING LANGUAGE 63

completeg. UML does not force this constraint. The subtype structure could be

foverlapping, incompleteg or any other combinations of the other two.

UML for Data Modeling: Comments. Unified Modeling Language has several advan-

tages over the other data modeling techniques. The method provides a solid basis for

design. UML is essentially a design tool. Many of its components and representations

lack the generality and simplicity for use as a communication tool with domain experts.

Here are a few comments:

. Attributes may be expressed in greater detail.

. The idea of a small flag to contain descriptive text enhances representation of difficult

business rules governing relationships.

. Constraints between relationships that could not be expressed in other techniques may

be adequately denoted in this method.

. UMLmethodology for optionality and cardinality is quite expansive to accommodate

complex upper limits.

. It allows overlapping and incomplete subtypes.

. It permits multiple inheritance and multiple type hierarchies.

. It seems to contain too many unnecessary symbols for distinguishing kinds of

relationships.

. The handling of unique identifiers is incomplete.

UML in the Development Process

In the 1980s and early 1990s, several methods and tools appeared in the industry for analy-

sis, design, and implementation of object-oriented systems. UML attempts to unify, con-

solidate, and enhance these various techniques into one language for the entire system

development process.

One aspect of the system development process deals with the modeling of the data

structures and relationships that would support the system. However important, this is

just one part of the entire development. Modeling the data content alone does not consti-

tute the whole development. You have to model how the various data structures would be

used and produce information to run the many business processes.

We have seen the usefulness of UML as an approach to modeling the data structures and

relationships by means of class diagram. In this section, we will trace the application of

UML to other aspects of system development. You need to model how the system and

how the data in the system will be used. You need to model the functionality to be provided

by the system. Let us follow the use and application of UML in the complete development

life cycle to a reasonable extent.

Use case diagrams illustrate the system’s functions. Once the functions are explored

and modeled, object class diagrams describe the relevant data structures and relationships.

We have already discussed class diagrams at some length. Integration diagrams provide

models of how groups of objects collaborate in some function or behavior. A sequence

diagram, one form of an interaction diagram, portrays the sequence in which messages

flow and behaviors ensue. A collaboration diagram displays the layout of objects

showing how they are statically connected and interact with one another. Another

useful tool to describe the behavior of a system is the set of state diagrams, especially

64 CHAPTER 2 METHODS, TECHNIQUES, AND SYMBOLS

the behavior of objects across use cases. When you need to describe workflow, particularly

where behavior has much parallel processing, activity diagrams come in handy. Closer to

deployment and system implementation are deployment diagrams and component

diagrams. These physical diagrams model the implementation features.

We have mentioned some of the important tools in UML to model the entire system

development life cycle. However, as data modeling is the primary thrust of this textbook,

process modeling facilities in UML are not within our scope. Nevertheless, in the next few

sections, we will present an example of each of the leading techniques in UML. However,

the physical diagrams are excluded from our discussions.

Use Case Diagram. Figure 2-13 shows an example of a use case diagram.

Note the role of actors and their behaviors. Notice the functions represented in the

diagram. Observe how generalizations and extensions are used and shown in the diagram.

Sequence Diagram. In Figure 2-14, you may review an example of a UML sequence

diagram.

Note the objects shown as boxes at the top of dashed vertical lines. These lines are called

the lifelines of the object. Each lifeline symbolizes the life of the object during the specific

interaction. Notice the arrows between two lifelines representing the messages.

Collaboration Diagram. Figure 2-15 displays an example of a collaboration diagram.

In this version of an interaction diagram, sequence numbers indicate the order of

execution of the messages. More spatial arrangement of a collaboration diagram

enables it to display other components and explanations more easily.

State Diagram. State diagrams may be used to depict the behavior of a system. You may

want to draw a state diagram for each of the significant objects in a system. Each state

FIGURE 2-13 UML use case diagram.

UNIFIED MODELING LANGUAGE 65

diagram would describe all possible states for an object resulting from various events that

reach the object.

State diagrams come in different flavors. Figure 2-16 shows one example of a state

diagram.

FIGURE 2-15 UML collaboration diagram.

FIGURE 2-14 UML sequence diagram.

66 CHAPTER 2 METHODS, TECHNIQUES, AND SYMBOLS

FIGURE 2-16 UML state diagram.

FIGURE 2-17 UML activity diagram.

UNIFIED MODELING LANGUAGE 67

Activity Diagram. Figure 2-17 illustrates the concept of an activity diagram. You may

want to use activity diagrams for analyzing a use case, understanding a workflow, working

with a multithreaded application, or for describing a complex sequential algorithm.

Note the core symbol for an activity state or activity in the form of an elongated circle.

Note the various junctions of fork, merge, join, and branch. Note also the start and end

points in an activity diagram signifying the range of the activities.

CHAPTER SUMMARY

. A data model defines the rules for the data structures and relationships. Different

modeling techniques work with varying structuring rules and constraints.

. There are four modeling approaches: semantic modeling, relational modeling,

entity-relationship modeling, and binary modeling.

. The Peter Chen (E-R) modeling technique is still widely used even after three

decades. It can represent business entities, their attributes, and the relationships

among entities. Enhanced E-R technique includes representations of supertype and

subtype entities.

. The information engineering modeling technique, developed by Clive Finkelstein of

Australia and enhanced by James Martin of the United States, is another popular

methodology. A data model created using this technique is fairly concise.

. Many United States government agencies use the IDEF1X modeling technique.

Although a good design methodology for data modelers, this technique produces

models that are not easily intelligible to users.

. Richard Barker’s modeling technique has ways of differentiating between types of

entities and types of attributes. A data model created using this method is well

suited for use as a communication tool with the users.

. Object-role modeling techniques have been perfected. The role or relationship is the

primary modeling concept. ORM can describe constraints and business rules well.

Perhaps this is the most versatile and descriptive of all techniques.

. Although XML is not exactly a data modeling methodology, a few data modelers use

XML for modeling purposes. However, the proper use of tags provides an excellent

method to describe, organize, and communicate data structures.

. Unified Modeling Language is an object-modeling methodology. UML may be used

for data modeling. Its strength lies in the ability to represent application functions as

well. UML consolidates techniques for modeling data and processes into one unified

language for the entire system development life cycle.

REVIEW QUESTIONS

1. True or false:

A. In semantic modeling approach, the concept of type plays a significant role.

B. The earliest version of the Chen (E-R) modeling technique provided for

maximum and minimum cardinalities.

C. The IE modeling method has no provision to show attributes.

D. The IDEF1X model displays attributes and identifiers outside the entity boxes.

68 CHAPTER 2 METHODS, TECHNIQUES, AND SYMBOLS

E. Richard Barker’s notation does not distinguish between different kinds of

attributes.

F. In ORM, the relationship or role is the primary modeling concept.

G. XML has very limited data modeling capabilities.

H. Enhanced E-R modeling technique includes supertypes and subtypes.

I. The IDEF1X model is easily understood by nontechnical users.

J. UML class diagrams are suitable for data modeling.

2. Explain what is meant by semantic modeling. How does the concept of type play an

important role in this method?

3. Describe how the E-R model represents entities. Draw a partial E-R model diagram

to show examples of entities.

4. How does the E-R modeling technique handle generalization and specialization of

entity types? Give two examples.

5. Describe how the IE method represents cardinality and optionality in relationships.

Give an example to illustrate this.

6. Explain the representation of relationships in the IDEF1X modeling technique.

How would you show the relationship between CUSTOMER and ORDER in

this model?

7. How does the Richard Barker’s method represent the “exclusive OR” constraint?

Give an example.

8. How are attributes represented in the ORM technique? Draw a partial ORM model

showing the attributes for STUDENT and COURSE.

9. Draw a UML class diagram for the student registration example shown in

Figure 2-2. Describe the components.

10. Name any four types of diagrams in UML used in the system development process.

Give examples for two of the types of diagrams.

REVIEW QUESTIONS 69

II

DATA MODELING
FUNDAMENTALS

71

3

ANATOMY OF A
DATA MODEL

CHAPTER OBJECTIVES

. Provide a refresher on data modeling at different information levels

. Present a real-world case study

. Display data model diagrams for the case study

. Scrutinize and analyze the data model diagrams

. Arrive at the steps for creating the conceptual data model

. Provide an overview of logical and physical models

In Chapter 1, we covered the basics of the data modeling process. We discussed the need

for data modeling and showed how a data model represents the information requirements

of an organization. Chapter 1 described data models at different information levels.

Although an introductory chapter, it even discussed the steps for building a data model.

Chapter 1 has given you a comprehensive overview of fundamental data modeling

concepts.

As preparation for further study, Chapter 2 introduced the various data modeling

approaches. In that chapter, we discussed several data modeling techniques and tools,

evaluating each and comparing one to the other. Some techniques are well suited as a com-

munication tool with the domain experts and others are more slanted toward the database

practitioners for use as a database construction blueprint. Of the techniques covered there,

entity-relationship (E-R) modeling and Unified Modeling Language (UML) are worth

special attention mainly because of their wide acceptance. In future discussions, we will

adopt these two methodologies, especially the E-R technique, for describing and creating

data models.

In this chapter, we will get deeper into the overall data modeling process. For this

purpose, we have selected a real-world case study. You will examine the data model for

Data Modeling Fundamentals. By Paulraj Ponniah
Copyright # 2007 John Wiley & Sons, Inc.

73

a real-world situation, analyze it, and derive the steps for creating the data model. We

intend to make use of E-R and UML techniques for the case study. By looking at the

modeling process for the case study, you will understand a practical approach on how

to apply the data modeling steps in practice.

First, let us understand how to examine a data model, what components to look for, and

learn about its composition. In particular, we will work on the composition of a conceptual

data model. Then, we will move on to the case study and present the data model diagrams.

We will proceed to scrutinize the data model diagrams and review them, component by

component. We will examine the anatomy of a data model.

This examination will lead us into the steps that will produce a data model. In

Chapter 1, you had a glimpse of the steps. Here the discussion will be more intense and

broad. You will learn how each set of components is designed and created. Finally, you

will gain knowledge of how to combine and put all the components together in a clear

and understandable data model diagram.

DATA MODEL COMPOSITION

Many times so far we have reiterated that a datamodel must act as ameans of communication

with the domain experts. For a data modeler, the data model is your vehicle for verbalizing

the information requirements with the user groups. You have to walk through the various

components of a data model and explain how the individual components and the data

model as a whole represent the information requirements of the organization. First, you

need to point out each individual component. Then you should be describing the relation-

ships. After that, you show the subtle elements. Overall, you have to get the confirmation

from the domain experts that the data model truly represents their information requirements.

How can you accomplish all of this? In this section, we will study the method for scru-

tinizing and examining a data model. We will learn what to look for and how to describe a

data model to the domain experts. We will adopt a slightly unorthodox approach. Of

course, we will start with a description of the set of information requirements. We will

note the various business functions and the data use for the functions. However, instead

of going through the steps for creating a data model for the set of information require-

ments, we will present the completed data model. Using the data model, we will try to

describe it as if we are communicating with the domain experts. After that, we will try

to derive the steps of how to create the data model. We will accomplish this by using a

comprehensive case study. So, let us proceed with the initial procedure for reviewing

the set of components of a data model.

Models at Different Levels

You will recall the four information levels in an organization. Data models are created at

these four information levels. We went through the four types of data models: external data

model, conceptual data model, logical data model, and physical data model. We also

reasoned out the need for these four types of data models.

The four types of data models must together fulfill the purposes of data modeling. At

one end of the development process for a data system is the definition and true represen-

tation of the organization’s data. This representation has to be readable and understandable

so that the data modelers can easily communicate with the domain experts. At the other

74 CHAPTER 3 ANATOMY OF A DATA MODEL

end of the development process is the implementation of the data system. In order to do

this, we need a blueprint with sufficient technical details about the data. The four types

of data models address these two separate challenges. Let us quickly revisit the four

types of data models.

Conceptual Data Model. A conceptual data model is the highest level of abstraction to

represent the information requirements of an organization. At this highest level, the

primary goal is to make the representation clear and comprehensible to the domain

experts. Clarity and simplicity dictate the underlying construct of a conceptual data

model. Details of data structures, software features, and hardware considerations must

be totally absent in this type of data model.

Essentially, the data model provides a sufficiently high-level overview of the basic

business objects about which data must be stored and available in the final data system.

The model depicts the basic characteristics of the objects and indicates the various

relationships among the objects. Despite its simplicity and clarity, the data model must

be complete with all the necessary information requirements represented without any

exceptions. It should be a global data model for the organization. If ease of use and

clarity are prime goals, the conceptual data model must be constructed with simple

generic notations or symbols that could be intuitively understood by the user community.

External Data Model. At the conceptual level, the data model represents the infor-

mation requirements for the whole organization. This means that the conceptual data

model symbolizes the information requirements for the entire set of user groups in an

organization. Consider each user group. Each user group has a specific set of information

requirements. It is as if a user group looks at the total conceptual data model from an exter-

nal point of view and indicates the pieces of the conceptual data model that are of interest

to it. Then that part of the conceptual data model is a partial external data model specific

for that user group. What about the other user groups? Each of the other groups has its own

partial data model.

The external data model is the set of all the partial models of the entire set of user

groups in an organization. What happens when you combine all the partial models and

form an aggregate? The aggregate will then become the global conceptual model. Thus,

the partial models are a high-level abstraction of the information requirements of individ-

ual user groups. Similar to the conceptual data model, the external data model is free from

all complexities about data structures and software and hardware features. Each partial

model serves as a means of communication with the relevant user group.

Logical Data Model. The logical data model brings data modeling closer to implemen-

tation. Here the type of database system to be implemented has a bearing on the construc-

tion of the data model. If you are implementing a relational database system, the logical

data model takes one specific form. If it is going to be a hierarchical or network database

system, the form and composition of the logical data model differs. Nevertheless, still con-

siderations of specific DBMS (particular database software) and hardware are kept out.

As mentioned earlier in Chapter 1, if you are implementing a relational database

system, your logical model consists of two-dimensional tables called relations with

columns and rows. In the relational convention, data content is perceived in the form of

tables or relations. Relationships among the tables are established and indicated through

logical links using foreign key columns. More details on foreign keys will follow later on.

DATA MODEL COMPOSITION 75

Physical Data Model. A physical data model is far removed from the purview of

domain experts and user groups. It has little use as a means of communication with

them. At this information level, the primary purpose of the data model is to serve as a con-

struction blueprint, so it has to contain complex and intricate details of data structures,

relationships, and constraints. The features and capabilities of the selected DBMS have

enormous impact on the physical data model. The model must comply with the restrictions

and the general framework of the database software and the hardware environment where

the database system is being implemented.

A physical data model consists of details of how the database gets implemented in

secondary storage. You will find details of file structures, file organizations, blocking

within files, storage space parameters, special devices for performance improvements,

and so on.

Conceptual Model: Review Procedure

In this chapter, we are going to concentrate mainly on the conceptual data model. Once we

put together the conceptual data model correctly, we can arrive at the lower level models

by adopting standard transformation techniques. Therefore, understanding conceptual

modeling ranks higher in importance.

In Chapter 1, we introduced the components of a conceptual data model and reviewed

some examples. You know the main parts of the model, and that all the parts hang together

in a model diagram. In this chapter, we intend to review conceptual data model diagrams in

greater detail. We will be reviewing model diagrams drawn using E-R and UML

techniques.

Let us say we are presented with a conceptual data model diagram. How could we go

about scrutinizing the diagram and understanding what the diagram signifies? What are

the information requirements represented by the diagram? What do the components

signify? Are there any constraints? If so, how are they shown in the diagram? On the

whole, how will the domain experts understand the diagram and confirm that it is a

true representation?

In Chapter 1, you noted the various symbols used to represent data model components.

Chapter 2 expanded the meaning of the notations as prescribed in various modeling tech-

niques. At this time, let us formulate a systematic approach to reviewing a data model

diagram. Let us consider an E-R data model diagram. The systematic approach would

render itself to be adopted for other modeling techniques as well. We will apply the for-

mulated systematic approach to the data model diagrams to be presented in the next

section for the case study.

First and foremost, we need to make a list of all the various notations used in the

diagram and the exact nature of the symbols. What does each notation signify? What

does it represent?What is the correlation between an element in the real-world information

requirements and its representation in the data model diagram? Essentially, a database

contains data about the business entities or objects of an organization. What are the

business entities for the organization? So, we look for the representations of business enti-

ties or objects in the data model diagram. The business entities in a company are all con-

nected in some way or other. Customers place orders. Clients buy at auctions. Passengers

make reservations on airline flights. The business objects denoting customers and orders

are related. Similarly, the business objects of passengers and flights are related. Therefore,

the next logical step in the review of a data model diagram would involve the examination

76 CHAPTER 3 ANATOMY OF A DATA MODEL

of relationships among objects. Pursuing this further, we can formulate a systematic

approach to the examination and description of a data model.

Let us summarize these steps:

Symbols and Meanings. Study the entire data model diagram. Note the symbols and

their meanings.

Entity Types. Observe and examine all the entity types or objects displayed, one by one.

Generalization/Specialization. Notice if any superset and subsets are present. If they

are shown, examine the nature and relationships between each group of subsets and their

superset.

Relationships. Note all the relationship lines connecting entity types. Examine each

relationship. Note the cardinalities and any constraints.

Attributes. Inspect all the attributes of each entity type. Determine their meanings.

Identifiers. Check the identifier for each entity type. Verify the validity and uniqueness

of each identifier.

Constraints. Scrutinize the entire diagram for any representations of constraints. Deter-

mine the implication of each constraint.

High-Level Description. Provide an overall description of the representations.

Conceptual Model: Identifying Components

Before proceeding to the comprehensive case study in the next section, let us take a simple

small conceptual data model diagram. We will study the diagram and examine its com-

ponents using the systematic approach formulated in the previous section. This will

prepare you to tackle the larger and more comprehensive model diagrams of the case

study. Figure 3-1 shows the conceptual data model diagram for a magazine distributor.

Let us examine the conceptual data model diagram using a systematic approach.

Symbols and Meanings. The model diagram represents the information requirements

using the E-R modeling technique. Note the square-cornered boxes; these represent the

entity types. You find six of them indicating that information relates to six business

objects. Observe the lines connecting the various boxes. A line connecting two boxes indi-

cates that the business objects represented by those two boxes are related; that is, the

instances within one box are associated with instances within the other. The diamond or

rhombus placed on a relationship line denotes the nature of the association. Also, note

the indicators as a pair of parameters at either end of a relationship line. These are cardin-

ality indicators for the relationship.

Notice the ovals branching out from each entity boxes. These ovals or ellipses embody

the inherent characteristics or attributes for the particular entity type. These ovals contain

the names of the attributes. Note that the names in certain ovals for each entity type are

DATA MODEL COMPOSITION 77

underscored. The attributes for each box with underscored names form the identifier for

that entity type.

In the model diagram, you will observe two subset entity types as specializations of the

supertype entity types. Although the initial version of the E-R model lacked provision for

indicating supersets and subsets, later enhancements included these representations.

Entity Types. Look at the square-cornered boxes in the data model diagram closely. In

each box, the name of the entity type appears. Notice how, by convention, these names are

printed in singular and usually in uppercase letters. Hyphens separate the words in multi-

word names. What does each entity type box represent? For example, the entity type box

PUBLISHER symbolizes the complete set of publishers dealing with this magazine distri-

buting company. You can imagine the box as containing a number of points each of which

is an instance of the entity type—each point indicating a single publisher.

Notice the name of one entity type MAGAZINE enclosed in a double-bordered box.

This is done to mark this entity type distinctly in the diagram. MAGAZINE is a dependent

entity type; its existence depends on the existence of the entity type PUBLISHER. What

do we mean by this? For an instance of the entity type MAGAZINE to exist or be present

in the database, a corresponding instance of the entity type PUBLISHER must already

exist in the database. Entity types such as MAGAZINE are known as weak entity types;

entity types such as PUBLISHER are called strong entity types.

Generalization/Specialization. Notice the entity type boxes for INDIVIDUAL and

INSTITUTION. These are special cases of the entity type SUBSCRIBER. Some subscri-

bers are individuals and others are institutional subscribers. It appears that the data model

FIGURE 3-1 Conceptual data model: magazine distributor.

78 CHAPTER 3 ANATOMY OF A DATA MODEL

wants to distinguish between the two types of entities. Therefore, these two types of sub-

scribers are removed out and shown separately. INDIVIDUAL and INSTITUTION are

subtypes of the supertype SUBSCRIBER. When we consider attributes, we will note

some of the reasons for separating out subtypes. Note also that an instance of the supertype

is an instance of exactly one or the other of the two subtypes.

Observe how the connections are made to link the subtypes to the supertype and what

kinds of symbols are used to indicate generalization and specialization. The kinds of

symbols vary in the different CASE tools from various vendors.

Relationships. Note the direct relationships among the various entity types. The

relationship lines indicate which pairs of entity types are directly related. For example,

publishers publish magazines; therefore, the entity types PUBLISHER and MAGAZINE

are connected by a relationship line. Find all the other direct relationships: MAGAZINE

with EDITION, SUBSCRIBER with MAGAZINE, SUBSCRIBER with EDITION.

The model diagram shows two more relationship lines. These are between the supertype

SUBSCRIBER and each of the subtypes INDIVIDUAL and INSTITUTION. Observe the

special symbols on these relationship lines indicating generalization and specialization.

The names within the diamonds on the relationship lines denote the nature of the

relationships. Whenever the model diagram intends to indicate the nature of the relation-

ships, verbs or verb phrases are shown inside the diamonds. For example, the verb “pub-

lishes” indicates the act of publishing in the relationship between PUBLISHER and

MAGAZINE. However, some versions of the data model consider relationships as

objects in their own right. In these versions, relationship names shown inside the diamonds

are nouns. Sometimes these would be concatenations of the two entity type names, for

example, something like the compound word publisher-magazine.

Let us consider the cardinality and optionality depicted in the relationships. The second

parameter in the pair indicates the cardinality; that is, how many occurrences of one entity

type may be associated with how many of occurrences of the other entity type. The first

parameter denotes the optionality; that is, whether the association of occurrences are

optional or mandatory. The business rules dictate the assignment of cardinality and option-

ality parameters to relationships. By reviewing these parameters, you can know the

business rules governing the relationships.

Figure 3-2 lists all the relationships and their cardinalities and optionalities. Study the

interpretation of each pair of parameters and the business rule each pair represents in the

data model diagram.

Attributes. Review the attributes indicated for each entity type. Because this is a simple

example just to illustrate the examination of a data model, only a few attributes are shown.

In the real world, many more attributes for each type will be present. A database is simply

a storehouse of values for all the attributes of all the entity types.

Each attribute name is shown in the noun form within an oval. Usually, they are speci-

fied in mixed case, compound words being separated by hyphens. However, some conven-

tions allow multiword names to be written together with no spaces or hyphens in-between;

the separation is done by capitalizing each word in a multiword name.

An E-R diagram does not indicate whether values for a particular attribute are manda-

tory or optional. In other words, from the diagram you cannot infer if every instance of

entity type must have values for a specific attribute.

DATA MODEL COMPOSITION 79

As this is a conceptual data model at the highest level of abstraction, the model diagram

does not specify the size, data type, format, and so on for the attributes. Those specifica-

tions will be part of the next lower level data models.

Identifiers. Although the inventor of the E-R modeling technique recognized the role of

attributes in forming unique identifiers for entity types, he did not provide any special

notation to indicate identifiers. The model diagrams would show identifiers as one or

more attributes with oval symbols and spouting out of entity type boxes.

Later enhanced versions of the E-R modeling technique indicate identifiers by under-

scoring the attribute names. For example, PublisherId indicates an identifier.

Note the identifier for the weak entity type MAGAZINE. Its identifier consists

of two attributes: the identifier PublisherId of the strong entity type PUBLISHER

concatenated with its own identifier MagazineNo. This indicates the dependency of

the weak entity type on the strong entity type for identifying individual occurrences

of MAGAZINE.

Constraints. The “exclusive OR” is a common case of a relationship constraint. With

this constraint, one instance of a base entity type must be related to instances with one

other entity, but with not more than one entity. The E-R modeling technique has no pro-

vision to signify the “exclusive OR” constraint.

Nevertheless, in our data model diagram, we do not see any entity type with relation-

ship lines connecting to more than one other entity type. Therefore, the “exclusive OR”

situation does not arise in this case.

High-Level Description. After scrutinizing and studying the data model diagram, what

can we say about the real-world information requirements it portrays? What overall

remarks can we make about the magazine distribution business and its data requirements?

FIGURE 3-2 Relationships: cardinality/optionality.

80 CHAPTER 3 ANATOMY OF A DATA MODEL

The following few comments apply:

. The organization distributes magazines from different publishers. One publisher may

be publishing more than one of the magazines being distributed. No magazine can

exist without a publisher.

. Magazine editions are distributed. Any particular edition relates to one and only one

magazine. In the initial stage before publication of editions, data about a magazine

may be set up to get it started.

. Subscribers subscribe to magazines. A subscriber may subscribe to one or more maga-

zines. On the other hand, a magazine may be subscribed to by one or more subscribers.

. A subscriber may be an individual or an institution, but not both.

. Subscribers receive the appropriate magazine editions. This is the distribution or ful-

fillment of editions.

CASE STUDY

We derived a method for examining and studying a data model. Then we applied the

method to a simple data model and studied the model. Now we want to expand our

study to a larger, more complex set of information requirements that approximate real-

world situations to a great extent. We will take a comprehensive case study and present

the data model diagrams using two modeling techniques: E-R and UML. The data

models will be based on the set of information requirements for the case study.

We will then use the method derived earlier and examine the data models. Our exam-

ination will result in a description of what information requirements are represented in the

models. The examination and study themselves will prompt us into steps that are necessary

to create the data models. We will walk through these for creating the data models and

learn the process of designing and creating the data models.

First, the description of the case study.

Description

The case study deals with a world-class, upscale auctioneer known as Barnaby’s. The

company finds buyers for rare and expensive art and other objects. These objects or prop-

erty items range anywhere from Van Gogh’s multimillion-dollar paintings to distinguished

100-karat diamonds owned by princesses. The owners or dealers of the property items who

bring them to Barnaby’s for auctions are known as consignors. The buyers purchase the

property items by bidding for them at the respective auctions.

Barnaby’s collects a commission from the consignors for their services and a buyer’s

premium from the buyers for making the property items available for sale at auctions.

The commission and the buyer’s premium are calculated as percentages of the selling

price on a published sliding scale.

Many of the consigned property items are one-of-a-kind; there are no two versions of

Van Gogh’s Irises. Incidentally, this single 1600 by 2000 painting has been sold for more than

$40 million at auction. Barnaby’s unique service extends to appraising a property item,

ensuring that it is genuine and not a fake, and suggesting high and low estimates of its

value. For this purpose, Barnaby’s has a band of world-class experts in each area, for

example, in contemporary paintings, Chinese jade, Florentine vases, European jewelry,

CASE STUDY 81

and in many, many more similar specialties. The company has more than 100 such speci-

alty departments.

Barnaby’s runs its worldwide business from its headquarters in New York and its

main branch offices in leading cities in the United Kingdom, Europe, Asia, Africa, and

Australia. Consignors can bring their property items to any of the worldwide offices.

The company holds its auctions at nearly 25 sites in various parts of the world. A property

item may be transferred from the office where it was consigned to the auction site where it

is likely to sell and fetch the best price.

A property item that is received at a particular Barnaby’s office moves through various

stages until it is sold at an auction and delivered to the buyer. At each stage, Barnaby’s

employees perform various functions to move the property item toward sale. Data is

required or collected at these stages for the employees to perform the functions and

conduct the company’s business. Our modeling task is to capture these data requirements

in the form of conceptual data models that can be used for communicating with the domain

experts and getting their confirmation.

Let us record the different stages in the movement of property items and arrive at the set

of information requirements that need to be modeled.

Initial Receipting. The property item consigned for sale arrives at Barnaby’s. The com-

pany’s receiving department examines the property item, collects basic information such

as ownership, high and low estimates of the value as determined by the consignor, the

reserve price below which consignor does not want to sell, and notes down the condition

of the property item. The receiving department prints a formal receipt and forwards it to

the consignor. Many times consignors send more than one property item, and a single

receipt may cover all these several items.

The receiving employee notes down the particular property department that will handle

the property for inclusion in their auctions. The employee then transfers the property item

to that department. If more than one property item will be consigned together, the

employee transfers the different items to the various appropriate departments.

Appraisal. The property department receives the property from the receiving depart-

ment, acknowledges the transfer, and examines the condition of the property. If the prop-

erty item needs some minor repairs, the department will transfer the property item to the

restoration department or to an outside restorer. The transfer is also documented. On the

other hand, if the department feels that the property item is not saleable, the department

will return it to the consignor with a note saying it has “no sale value” (NSV).

The department experts then scrutinize the object very carefully, verify its authenticity,

compile its provenance, and, if necessary, revise the high and low estimates. If the reserve

price is not at the right level, the experts discuss this with the consignor and revise it.

If the property department in the office of original receipting thinks that a property item

would sell better at an auction at a different site, then the department will transfer the prop-

erty item to that site for further processing.

Restoration. Those property items needing restoration or repairs are acknowledged

based on the transfer documents sent from the property department. After restoration, a

property item is sent back to the original department for further action.

82 CHAPTER 3 ANATOMY OF A DATA MODEL

Restoration and repairs takes several forms and may be done at different levels of sever-

ity. Provision is made to get the restoration done at the proper places, within the company

or outside.

Cataloguing. This function prepares a property item to be included in a sale catalogue

and be ready for sale at an auction. The department cataloguers add catalogue texts and

other information to the property item. The data added includes: a proper description of

the property item, firmed up high and low estimates, confirmed reserve price, edited pro-

venance information, and any additional text that will help in the sale of the item.

At this stage, the property item is ready to be included in a particular auction. The prop-

erty department checks their inventory to ensure that all catalogued items are there, readily

available, and in top condition for sale.

Sale Assignment. An auction sale consists of several lots that are assigned to be sold at

that auction. Usually, an auction runs into more than one session. Sale lots are assigned to

be sold in specific sessions. Thus, sale assignment refers to the assignment of a lot to a

particular sale and session.

The property department assigns a lot number to each catalogued property item. It then

includes that lot in a specific session of a particular auction sale. Each sale lot is an object

originally receipted as a property item on the initial receipt. A link, therefore, exists

between a sale lot and the initial receipt and item on the receipt.

The catalogue subscription department prints attractive catalogues for every sale and

mails them to regular subscribers or for one-time purchasers of catalogues. Potentially,

buyers and consignors are part of catalogue subscribers and one-time buyers of catalogues.

Sale at Auction. Buyers may purchase lots by bidding for them from the auction floor or

by calling the auction staff during the auction or by sending in absentee bids in advance.

The highest bidder gets the sale lot. The auctioneer accepts the highest bid by lowering

down his or her gavel or hammer. The hammer price is the sale price for the sold lot.

This price forms the basis for consignor commission and buyer’s premium.

In order for a prospective buyer to participate in an auction, the buyer must first register

for the auction and obtain a paddle. A paddle is small flat device with a handle like a ping-

pong racquet. The paddles are numbered with a number prominently painted on each

paddle. Prospective buyers raise their paddles during the auction to indicate that they

are bidding for the lot. A sold lot at an auction is thus associated with a specific paddle

number in that auction. A paddle number is also assigned to each absentee bid.

After a lot has been assigned to a sale, these are the alternative disposal options: the

assigned lot may be withdrawn from the sale by the consignor for valid reasons or ques-

tions of authenticity; the lot may be sold to the highest bidder; the lot may be passed and

withdrawn from the auction because of total lack of interest by potential buyers; the lot

may be “bought in” (BI) by the auctioneer on behalf of the consignor because the

highest bid for it did not reach the reserve price.

Processing of Sold Items. Sold lots are delivered to the buyer using the requested

shipment method. For cash sales, money is collected before shipment. This includes lot

hammer price due to the consignor and buyer’s premium due to Barnaby’s. The

company bills those buyers purchasing on credit and processes the amounts through

Buyers Receivable Accounts.

CASE STUDY 83

The amounts due to the consignors are handled through Consignor Payable Accounts.

Hammer price monies received on cash sales are passed on to the consignors. For credit

sales, hammer price monies are passed on to the consignors only after they are collected

from the buyers. On sold items, consignor commission amounts based on the hammer

prices are collected from the consignors.

Disposal of Unsold Items. Barnaby’s adopts a few options for disposing unsold lots.

Sometimes the company would determine that the unsold lot may do well in a future

auction at the same site or at another site. Then the property item is reassigned to the new sale.

If the company deems that the property item does not have another chance of being sold,

it returns the item to the owner (“returned to owner”; RTO). Barnaby’s may collect expenses

it incurred on processing the item from the consignor. This is based on prior agreement with

the consignor. A transfer document covers the return of the property item to the consignor.

E-R Model

Close study and consideration of the business functions described above enables you to come

up with a list of required data elements. These data elements support those business func-

tions. End-users in the various departments carrying out the business functions either

record the data elements in the data system or use the data elements to perform the functions.

The set of data elements that support the business functions performed by a department

forms the data view or external schema for that department. The set of data elements in the

external schema or external model provides all that the department needs from the final

data system. That is the external view of the data system for that department as if it

stands outside the data system and views the system.

When you combine or integrate all the data views of every user group, you arrive at the

total conceptual data model, modeling the entire information requirements of relevant

business domains in the organization. What do we mean by relevant business domains?

In the above description of the case study, we have considered the auction processing

of Barnaby’s. Apart from this primary major process, the company performs several

other auxiliary processes. For example, the company prints terrific, glossy catalogues

for all the auctions and runs a catalogue subscription business. Clients bring high-value

art and other objects to get them appraised for insurance; the company runs a property

appraisal business. Companies such as Barnaby’s are also involved in upscale real

estate business to cater to the needs of their very wealthy clients. In our data model, we

do not consider these auxiliary business functions. These are not part of the business

domain considered for modeling.

After integrating all the external models, we will obtain the conceptual data model. Such

a data model using the E-R modeling technique is now presented to you for study and

review. Figures 3-3 through 3-5 show the conceptual data model for the auction system.

Examine the data model diagram closely. You know the symbols used in the E-R mod-

eling technique. Look for the various notations and understand what each component in

the diagram represents. Use the systematic method derived earlier to scrutinize the data

model diagram.

Entity Types. Note all the square-cornered boxes. Take each box and understand the

entity type it represents. What types of entities are these? Tangible, concepts, people, or

things? Are there any weak entity types indicated in the diagram?

84 CHAPTER 3 ANATOMY OF A DATA MODEL

FIGURE 3-3 Barnaby’s auction system: E-R data model, part 1.

FIGURE 3-4 Barnaby’s auction system: E-R data model, part 2.

CASE STUDY 85

Generalization/Specialization. Notice supersets and their subsets. What type of

specialization does each represent? Complete, overlapping, or partial?

Relationships. Note all the relationship lines connecting entity types. Examine each

relationship. Make a note of the cardinalities. Look at the minimum cardinality indicators.

What business rules or constraints do these denote? Do these business rules make sense?

Attributes. Go back to each entity type box. Inspect all the attributes attached to each

entity type box. Determine their meanings. Is each attribute name precise to convey the

correct meaning?

Identifiers. Check the identifier for each entity type. Verify the validity and uniqueness

of each identifier. Note the identifiers where new arbitrary attributes are introduced to form

the identifiers.

Constraints. Scrutinize the entire diagram for any representations of constraints. Deter-

mine the implication of each constraint.

High-Level Description. Looking at each component and the overall data model

diagram, come up with a high-level description of information requirements represented

by the data model.

FIGURE 3-5 Barnaby’s auction system: E-R data model, part 3.

86 CHAPTER 3 ANATOMY OF A DATA MODEL

UML Model

In Chapter 2, you were introduced to the UML data modeling technique. In order to illus-

trate the facilities of the UML modeling technique, we now present the UML data model

for the information requirements of the Barnaby’s auction processing.

As you remember, object classes in UML represent what corresponds with entity types in

E-R modeling. Because of its ability to model all aspects of system development process,

UML has several types of modeling diagrams. Class diagrams are what we are primarily

interested in for data modeling. Recall the other types of diagrams in UML such as use

case diagrams, sequence diagrams, collaboration diagrams, state diagrams, activity dia-

grams, and so on. We will not get into these other types of diagrams here. To present a

data model, use of class diagrams and application of use case diagrams is sufficient.

For our case study, we will consider only the class diagram. Figures 3-6 through 3-8

show this class diagram for your careful study and review.

Entity Types. Note all the square-cornered boxes. Each of the boxes represents an object

class. Note each object class and match it up with the representation in the E-R model

shown earlier. What types of object classes are these? Is the class diagram complete?

Typical UML representation of an object class shows a box separated into three sections.

Note the top section in each box displaying the name of the class. Observe how the class

names are printed—singular nouns in upper case. The bottom section contains the beha-

vior of the object class—the interactions with other classes. For our purposes, the

bottom sections are blank and, therefore, are not shown.

FIGURE 3-6 Barnaby’s auction system: UML class diagram, part 1.

CASE STUDY 87

FIGURE 3-7 Barnaby’s auction system: UML class diagram, part 2.

FIGURE 3-8 Barnaby’s auction system: UML class diagram, part 3.

88 CHAPTER 3 ANATOMY OF A DATA MODEL

Attributes. Unlike the E-R diagram, the UML class diagram presents the attributes of an

object class within the box representing the class itself. Observe the middle section within

each object class box. You will note the list of attributes. Inspect all the attributes in each

box. Understand their meanings. UML has additional capabilities to provide more infor-

mation about each attribute. Note the parameters qualifying each attribute.

Relationships. Note all the relationship lines connecting the object classes. These indi-

cate the associations between the various classes. Each end of an association line connects

to one class. Association ends denote roles. You may name the end of an association with

a role name. Customarily, labels may used at the end of association lines to indicate role

names. As our data model is kept simple, labels for role names are not shown. Further, an

association end also has multiplicity indicating how many objects may participate in the

specific relationship. Note the multiplicity indicators (0..�, 1..1, 1..�, and so on) placed at

the ends of association lines. Compare these with cardinality indicators in the E-R model.

Identifiers. As you know, UML does not indicate identifiers of object classes explicitly.

We can derive the attributes that participate in the identifier by noting the parameter

� ident� placed in front of an attribute name within the object class box.

Generalization/Specialization. Notice the subsets connected to the superset by the

“isa” relationship. The combinations of the words “disjoint/overlapping/complete/
incomplete” indicate how subtypes relate to their superset. Usually, such indications are

included in the UML class diagram.

Constraints. A broken line connecting two relationship lines would indicate a

constraint imposed on the relationship. Usually, you will see the annotations forg, fxorg,
or fiorg placed on this broken line to describe the constraints of entity instances being

inclusive or exclusive.

High-Level Description. Compare your overall understanding of the information

requirements as derived from the UML diagram with your understanding from the E-R

diagram. In which areas does the UML technique provide more information? On which

aspects is it lacking?

CREATION OF MODELS

You have now reviewed the data models for Barnaby’s auction processing based on two

modeling techniques: E-R and UML. You have noticed that the two model diagrams

portray the information requirements in more or less similar fashion, but you have also

observed the essential differences between the two approaches.

Now we will address the task of analyzing how the data models were created. Given the

statements about the business operations and information required to carry out these oper-

ations, how do you go about designing and creating the model? We had already looked at

the methodology for performing data modeling for limited examples. However, we now

want to review the process more systematically in a wider context. For our purposes

CREATION OF MODELS 89

here, we will consider creating a data model for information requirements using the E-R

modeling technique. Creating a UML data model would be a similar process. You can

attempt to derive the UML model on your own.

As you know, a conceptual data model portrays the information for the entire domain of

interest. On the other hand, an external data model comprises the individual user views of

the various user groups making up the entire domain of interest. Thus, it makes sense to

prepare the individual data views and then arrive at the conceptual data model by combin-

ing all the user views. This will be our general methodology. See Figure 3-9 summarizing

the steps from information requirements to conceptual data model.

User Views

Let us begin with the business processes described earlier. These business processes

support Barnaby’s auction processing. As a property item travels through the various

departments and the business processes get performed, the item reaches the final stages

when it is either sold or unsold. Let us track the data requirements for each of these pro-

cesses. Let us make a list of the data items that either get generated during each process or

are needed for the process to complete.

Here are the business processes: initial receipting, appraisal, restoration, cataloguing,

sale assignment, sale at auction, sold item processing, unsold items disposal. Figures 3-10

through 3-12 show the list of data items for these business processes.

Who performs these business processes? The various user departments. The collection of

user views of data for these departments forms the external data model. From the data items

for the different business processes, let us derive the user views for the various departments.

FIGURE 3-9 From information requirements to conceptual model.

90 CHAPTER 3 ANATOMY OF A DATA MODEL

FIGURE 3-10 Barnaby’s: data items for business processes, part 1.

FIGURE 3-11 Barnaby’s: data items for business processes, part 2.

CREATION OF MODELS 91

Match the business processes with the specific departments. The following is the

business process and department list:

Business Process Performing Department

Initial receipting Receipting department

Appraisal Property department

Restoration Restoration department

Cataloguing Property department

Sale assignment Property department

Sale at auction Auction department, bids department

Sold items processing Property department, shipping

department

Unsold items disposal Property department, shipping

department

Now recast the list of data items and put them under the various departments. The

purpose of this recasting is to find the user view of each department. The complete set

of data items by departments forms the external data model we referred to earlier.

Figures 3-13 through 3-18 display the external data model.
Compare these figures with Figures 3-10 through 3-12 and note how the various data

items have shifted around from business processes to the various user groups.

View Integration

We have so far completed the tasks to arrive at the external data model from the statements

and analysis of the information requirements. The next task relates to the combination or

FIGURE 3-12 Barnaby’s: data items for business processes, part 3.

92 CHAPTER 3 ANATOMY OF A DATA MODEL

FIGURE 3-13 Barnaby’s: external model, part 1.

FIGURE 3-14 Barnaby’s: external model, part 2.

CREATION OF MODELS 93

FIGURE 3-15 Barnaby’s: external model, part 3.

FIGURE 3-16 Barnaby’s: external model, part 4.

94 CHAPTER 3 ANATOMY OF A DATA MODEL

FIGURE 3-17 Barnaby’s: external model, part 5.

FIGURE 3-18 Barnaby’s: external model, part 6.

CREATION OF MODELS 95

integration of all the user views that are part of the external data model. Let us integrate the

user views.

As we perform the process of view integration, you will note that data groups form

rather naturally. What do we mean by this? When you combine data items from the

various data views, you tend to put all data items about a property item in one group,

all data items about a consignor in another group, all data items about a buyer in yet

another group, and so on. You actually tend to form data groups. Of course, while

forming each data group, you will eliminate duplicates, that is, by not recording the

same data item more than once in a data group. As you assemble the data items and

form data groups, you may name each data group to suggest what business object

might be described by the attributes of the data items. Now consider Figure 3-19, which

presents the data groups formed by integrating the user views. Each group has a suggested

object name. Notice these names and determine if the names make sense.

Entity Types

Go back to Figure 3-19 and examine the data groups carefully. What does each data group

represent? Does not each group represent data items that describe some entity type or

business object? Identify these data types and derive a first iteration of the entity types

for the data model. Let us represent this initial set of entity types by square-cornered

boxes and present them in Figure 3-20.

Communication with Domain Experts. Remember, the conceptual data model is a

vehicle for communication with the domain experts and for obtaining their confirmation

of its correctness. This communication process is not just a one-time conversation after

you complete the data model. It is an ongoing process until the final diagram is firmed up.

FIGURE 3-19 Barnaby’s: integrated data groups.

96 CHAPTER 3 ANATOMY OF A DATA MODEL

Let us pursue the discussions with the domain experts about the suggested initial entity

types as shown in Figure 3-20. The results of the discussions are indicated below.

Receipt. Although property items seem to have independent existence, however, within

Barnaby’s data system, a property item makes its appearance only after it is receipted.

Each property item is associated with a receipt under which it was received. Within

Barnaby’s data system, a property item needs a corresponding receipt for its existence.

Therefore, in the data model, PROPERTY-ITEM must be designated as a weak entity

type dependent on the strong entity type RECEIPT.

Department. This entity type represents various departments within the Barnaby’s

offices. Some are administrative departments; some are functional departments; others

such as the departments that provide expertise in specific areas of art are specialty depart-

ments. Nevertheless, all the departments may be represented by a single entity type.

Buyer. Most of the buyers are direct buyers; they or their representatives are either

present at the auctions or send absentee bids or call in phone bids. Some of the buyers

are dealers in art who buy for resale. However, there is no need to symbolize the

dealers with a separate entity type. All buyers may be represented by a single entity type.

Transfer. Transfers of property items take place in a variety of situations. This entity type

as shown can accommodate all the various transfers from one location to another, within

the company or to the outside.

Session. This entity type depends on the entity type SALE for its existence. Usually, the

sessions are simply numbered in sequence within a particular sale. Therefore, SESSION

entity type is a weak entity type depending on the strong entity type SALE.

Lot. Lots are numbered sequentially from “001” onward for each sale. A lot has no exist-

ence without its corresponding sale. LOT will be symbolized as a weak entity type depend-

ing on the strong entity type SALE.

FIGURE 3-20 Data types: initial set.

CREATION OF MODELS 97

Shipment. Looking at the data items for this entity type, you would note that the entity

type seeks to represent not only the shipments of sold and unsold items but also the ship-

pers themselves. The company wants to keep information about individual shippers in its

data system. Therefore, we will separate out an entity type SHIPPER to represent infor-

mation about individual shipping companies.

Specialization/Generalization

Let us review the initial set of entity types especially looking for specialization and gen-

eralization of entity types. If you find that a particular entity type contains other similar

entity types, then this is a case of generalization. That is, the entity type is the superset

of the other entity types contained within. Normally, this becomes apparent when you

examine the initial set of data items for the entity type. Does every instance of the

entity type have each of the data items present? If not, you need to break up the entity

type into subtypes.

On the other hand, are there similar entity types that are shown separately and dis-

tinctly? Can these form subtypes of a supertype entity? If so, you have case of speciali-

zation that can be put together in supertype–subtype relationship.

Let us look at the initial set of entity types. Our investigation would produce the follow-

ing results.

Consignor. Barnaby’s primarily deals with three types of consignors: direct consignor,

dealers who sell property items on behalf of their clients, and estates usually of deceased

collectors. Therefore, we need to introduce a superset CONSIGNOR with subsets of

DIRECT, DEALER, and ESTATE.

Office. This entity type represents the various Barnaby’s offices. Most of the time, auc-

tions are held at an office that houses a number of departments. Sometimes, auctions are

held at off-site locations like an old princely castle where the entire contents are catalogued

and auctioned off. Some auctions are held at seasonal locations, for example, St. Moritz,

known as the millionaire’s ski town in Switzerland. A temporary office is set up at such

off-site locations. The OFFICE entity type can, therefore, be a supertype with subtypes

of REGULAR and OFF-SITE.

Relationships

After reviewing and recasting the entity types, we now arrive at the following entity types

to be part of the conceptual data model:

CONSIGNOR, DIRECT, DEALER, and ESTATE

OFFICE, REGULAR, and OFF-SITE, DEPARTMENT

RECEIPT and PROPERTY-ITEM

TRANSFER

BUYER

SALE, SESSION, and LOT

SHIPPER, SHIPMENT

98 CHAPTER 3 ANATOMY OF A DATA MODEL

Let us look for direct relationships among the entity types.

First, let us mark the supertype–subtype relationships. Here are these: supertype CON-

SIGNOR with subtypes DIRECT, DEALER, and ESTATE; supertype OFFICE with sub-

types REGULAR and OFF-SITE.

Next, note the strong and weak entity types respectively: RECEIPT and

PROPERTY-ITEM; SALE and SESSION; SALE and LOT.

Let us record the remaining direct relationships as follows:

CONSIGNOR to RECEIPT (one-to-many)

PROPERTY-ITEM to LOT (one-to-many)

BUYER to LOT (one-to-many)

SHIPPER to SHIPMENT (one-to-many)

SHIPMENT to LOT (one-to-many)

SHIPMENT to PROPERTY-ITEM (one-to-many)

OFFICE to DEPARTMENT (one-to-many)

TRANSFER to PROPERTY-ITEM (many-to-many)

DEPARTMENT to PROPERTY-ITEM (many-to-many)

Draw a preliminary data model diagram showing the entity types, the relationship lines,

and the cardinality indicators. Also show the optionality conditions of the relationship

using minimum cardinality indicators (see Fig. 3-21).

FIGURE 3-21 Preliminary model diagram.

CREATION OF MODELS 99

Attributes

Revisit Figures 3-19 and 3-20 to scrutinize the list of data items for each entity type. These

data items refer to the attributes for the entity types. Based on our review, we will have to

revise the list of attributes as follows:

Consignor. In this superset, retain only the common attributes. Other attributes specific

to particular subsets must be removed to the subset entity types DIRECT, DEALER, or

ESTATE.

Office. Retain the common attributes in the superset OFFICE. Include specific attributes

in the subset entity types REGULAR and OFF-SITE.

Receipt. This strong entity type sustains the existence of the corresponding weak

entity type PROPERTY-ITEM. Most of the attributes are found in PROPERTY-

ITEM. Add a few more attributes to RECEIPT such as ShipmentType, ReceiverInitials,

and so on.

Property-Item. Include attribute CurrencyCode to indicate the currency in which esti-

mates and reserve prices are recorded. As the property item moves through various

stages before being offered for sale, it is important to know the current status of the prop-

erty item. For this purpose, add attribute ItemStatus.

Department. Combine the attributes as generic attributes for all types of departments.

Add a few more relevant attributes. Include DepartmentType attribute to indicate the

type of department: receiving, shipping, property, restoration, and so forth.

Buyer. This entity type represents all types of buyers. Add BuyerType attribute to denote

the type of buyer after removing the specific attribute DealerName.

Transfer. This entity type refers to a concept, not something tangible—the transfer func-

tion itself. It represents all transfers from various locations to other locations. Remove

specific attributes such as TransferToRestnDate, TransferFromRestnDate, and Returned-

ToOwnerDate. Include attributes SendUserIntls and ReceiveUserIntls. Remove AgentAd-

dress and AgentPhone, which seem to be redundant. Include TransferMethod to indicate

how the property item was transferred.

Session. Separate out the attributes describing this entity type from entity type SALE.

Lot. The HammerPrice is determined in the local currency. So, add CurrencyCode attri-

bute to indicate the currency.

Shipment. Remove the attributes describing the shipper.

Shipper. Include the attributes ShipperName, ShipperAddress, ShipperContact, and

ShipperPhone.

100 CHAPTER 3 ANATOMY OF A DATA MODEL

Identifiers

Many of the entity types have attributes that can be used as unique identifiers. For the

other entity types, we need to add surrogate attributes that can be used as unique

identifiers.

Here is the set of attributes already present that can be used as identifiers:

Entity Type Identifier

CONSIGNOR ConsignorNo

RECEIPT ReceiptNo

BUYER BuyerNo

TRANSFER TransferNo

SALE SaleNo

The following entity types do not have attributes that can be used as identifiers. There-

fore, add attributes that can be used as identifiers as follows:

Entity Type Identifier

OFFICE OfficeCode

SHIPMENT ShipmentNo

SHIPPER ShipperId

A weak entity forms its identifier as the concatenation of its partial identifier with the

identifier of the corresponding strong entity type. Listed below are the weak entity types

and their concatenated identifiers:

Weak Entity Type Concatenated Identifier

PROPERTY-ITEM ReceiptNo, ItemNo

SESSION SaleNo, SessionNo

LOT SaleNo, LotNumber

The following subtypes inherit their identifiers from the corresponding supertypes:

Subtype Supertype Identifier

DIRECT CONSIGNOR ConsignorNo

DEALER CONSIGNOR ConsignorNo

ESTATE CONSIGNOR ConsignorNo

REGULAR OFFICE OfficeCode

OFF-SITE OFFICE OfficeCode

Refer to Figures 3-22 and 3-23. These figures now display all the entity types with their

attributes and identifiers. Observe the identifiers marked with underscores. Note how the

figures reflect all the revisions we have discussed earlier.

CREATION OF MODELS 101

FIGURE 3-23 Entity types, attributes, and identifiers, part 2.

FIGURE 3-22 Entity types, attributes, and identifiers, part 1.

102 CHAPTER 3 ANATOMY OF A DATA MODEL

Review of the Model Diagram

Go back and refer to Figures 3-3 through 3-5, which display the E-R data model diagram

for Barnaby’s auction processing. Also, please go back to the set of information require-

ments narrated earlier. We have arrived at the E-R model from these information require-

ments following a standard modeling procedure. Having gone through this procedure, step

by step, you are now in position to appreciate and understand the various components of

the model. Now you know how the different symbols have been used to represent the data

elements and their relationships.

Let us walk through the diagram quickly and observe the components:

Entity Types. Now notice all the square-cornered boxes representing entity types.

Observe the entity types PROPERTY-ITEM, SESSION, and LOT shown as boxes

enclosed by double lines. As you know, these are the weak entity types.

Generalization/Specialization. Notice supersets CONSIGNOR and OFFICE and their

corresponding subsets DIRECT/DEALER/ESTATE and REGULAR/OFF-SITE. E-R

modeling technique in its original version does not distinguish between the types of special-

ization such as complete, overlapping, or partial. Some later practitioners, however, have

come up with special notations for these. We will consider these in later chapters.

Relationships. Note all the relationship lines connecting entity types. Note the

maximum cardinality indicators denoting one-to-many and many-to-many relationships.

Observe the relationships as indicated between supersets and their subsets. See how the

subsets inherit the relationships from their supersets. For example, CONSIGNOR is

related to RECEIPT, therefore, DEALER is related to RECEIPT. Next, look at the

minimum cardinality indicators. What do you infer from these about optional and manda-

tory conditions of the relationships? Here are a few comments on some of the

relationships:

CONSIGNOR to RECEIPT (One-to-Many). One or more receipts associated with one

consignor; one receipt associated with not more than one consignor; some consignors may

not be associated with any receipt; every receipt associated with a consignor.

PROPERTY-ITEM to LOT (One-to-Many). One property item associated with one or

more lots (same property item might be unsold at one auction and then offered at another,

and so on); some property items may not be associated with any lot (property item not yet

assigned to a sale with a lot number); every lot associated with at least one property item.

BUYER to LOT (One-to-Many). One buyer associated with one or more lots; some

buyers not yet associated with any lots (registered, but not yet successful at an auction);

each lot associated with one and only one buyer; all lots must be associated with buyers.

SHIPPER to SHIPMENT (One-to-Many). One shipper associated with one or more

shipments; every shipment associated with one and only one shipper; some shippers not

associated with any shipments yet.

CREATION OF MODELS 103

SHIPMENT to LOT (One-to-Many). One shipment associated with one or more lots;

some lots not associated with any shipments (lots hand-carried by buyers themselves).

SHIPMENT to PROPERTY-ITEM (One-to-Many). One shipment associated with one

or more property items; some items not associated with any shipments (NSV items taken

back by the consignors themselves).

OFFICE to DEPARTMENT (One-to-Many). One office associated with one or more

departments; each department not associated with more than one office; some departments

not associated with offices (such as outside departments or locations used for restoration).

TRANSFER to PROPERTY-ITEM (Many-to-Many). One transfer relates to one ormore

property items (group transfers); every transfer must be associated; one property item may be

related to no transfers at all; a property item may participate in many transfers (over time).

Attributes. Inspect all the attributes attached to each entity type box. Especially, note

how the subsets inherit attributes from their corresponding supersets.

Identifiers. Check the identifier for each entity type. Verify the validity and uniqueness

of each identifier. Note the identifiers where new arbitrary attributes are introduced to form

the identifiers.

Constraints. The initial version of E-R modeling technique does not indicate constraints.

High-Level Description. Looking at each component and the overall data model

diagram, come up with a high-level description of information requirements represented

by the data model.

LOGICAL MODEL: OVERVIEW

The datamodel diagram so far discussed relates to the conceptual datamodel. At this level, as

you know, the main purpose is to represent the information requirements correctly and in a

readable manner for communication with the domain experts. This level of model does not

serve the purpose of implementation. It can hardly be used as a blueprint for implementation.

The logical data model at the next lower level of abstraction is closer to being a blue-

print. The logical model, therefore, depends on what type of database system you want to

implement. Necessarily, the logical model for a relational database system would differ

from that for, say, a hierarchical database system.

In our discussions, we will assume a relational database system. As such, the logical data

model in our consideration would be the one for this type of database system. Chapter 7

covers the logical data model in more detail. At this stage, we just want to review the com-

ponents of a logical data model for a relational implementation. Also, we want to highlight

the steps for proceeding from the conceptual model to the logical model.

Model Components

First, consider the components of the logical data model. The logical data model for a rela-

tional database system may be termed a relational data model. A relational data model

104 CHAPTER 3 ANATOMY OF A DATA MODEL

perceives data as in the form of two-dimensional tables or relations. Therefore, the com-

ponents of a relational model would be the components of a two-dimensional table.

Without getting into relational theory and the mathematical foundations of the relational

model, let us review its parts.

Relation or Table. A relation or a table is the primary data modeling concept of the rela-

tional model. What is a two-dimensional table? It is a collection of columns and rows. For

example, consider a table consisting of data about consignors. Call this the CONSIGNOR

table. This table consists of columns and rows holding pieces of data about consignors.

The concept of mathematical relation forms the basis for the data structure in the relational

data model. A relation is visualized as a two-dimensional table with rows and columns con-

taining only atomic values. Figure 3-24 shows an example of the CONSIGNOR table.

The following features of a relation are relevant:

. A relation is a table representing data about some business object.

. A relation is not just any random table, but a table whose rows and columns conform

to certain relational rules.

. A relation consists of a specific set of named columns and an arbitrary number of rows.

. Each row contains a set of data values.

. Table names and column names provide meaning to the data contained in a table.

Columns. Note the following remarks about the columns in a relation:

. Each column indicates a specific attribute of the business object or entity type.

. The column heading is the name of the attribute.

. No two columns in a table may have the same name because the column names refer

to the attributes in a relational model.

. For each row, the values of the attributes are shown in the appropriate columns.

. Each attribute takes its value from a set of allowable values for that attribute.

FIGURE 3-24 CONSIGNOR relation or table.

LOGICAL MODEL: OVERVIEW 105

Rows. Each row holds the values of attributes for a single occurrence of a business

object. Notice each row in the CONSIGNOR table. Each row contains the attribute

values for a single consignor. In a relation, each row represents one instance of the object.

Each column for that row indicates one piece of data describing a single occurrence of

the object. Take a particular row in the CONSIGNOR table. Look at the values in the

columns for this row. What are these values? These are the values of attributes for that

specific consignor.

Primary Key. One or more attributes in a relation get designated as the primary key for

the relation. Underscoring the column names denotes the primary key attributes.

The values in the primary key columns for a particular row uniquely identify that row.

Note the column values for ConsignorNo. This column cannot contain duplicate values in

the CONSIGNOR table. If you have duplicate values, then the rows, that is, individual

consignors, cannot be uniquely identified.

Relationships. In the E-R data model diagram for Barnaby’s, notice the one-to-many

relationship between entity types CONSIGNOR and RECEIPT. How does a relational

model indicate a relationship between two tables?

Consider Figure 3-25 showing CONSIGNOR and RECEIPT tables.

Relationships are established in the tables logically:

. Two related tables are linked logically through what are known as foreign keys.

. A new column, called the foreign key column, is added to the table on the “many”

side. Note the new column ConsignorNo in the RECEIPT table.

. To link a specific row in the “parent” table to one or more rows in the “child” table,

place the value in the primary key column for that row in the “parent” table as the

value in the foreign key column of the corresponding rows in the “child” table.

Observe the values in the foreign key column, namely, ConsignorNo in the

FIGURE 3-25 CONSIGNOR and RECEIPT tables: relationship.

106 CHAPTER 3 ANATOMY OF A DATA MODEL

RECEIPT table. Note how these values match up the values in the primary key

column in the CONSIGNOR table.

. A foreign key column in the “child” table need not have the same name as the corre-

sponding primary key column in the “parent” table. However, the data types and

length must match between the primary key and the foreign key.

Transformation Steps

Now let us turn our attention to the transformation of the conceptual data model into a

logical data model. In our case, the relational data model is the logical data model.

Note the following major components of a conceptual data model and a relational data

model.

E-R Data Model

Entity types

Attributes

Identifiers

Relationships

Generalization/specialization (superset/subset)

Relational Data Model

Relations or tables

Rows

Columns

Primary keys

Foreign keys

The transforming task comes down to mapping the components of the conceptual data

model to the components of the relational data model. Let us walk through the transform-

ation or mapping process.

Entity Types. Let us begin with the most obvious component—entity type in the E-R

data model. What is an entity type? If consignor is something Barnaby’s is interested in

storing information about, then consignor is an entity type represented in the conceptual

data model. The set of all consignors in the organization about whom data must be cap-

tured in the proposed relational database system is the entity type CONSIGNOR.

Note the following points about the transformation from conceptual E-R model to rela-

tional model:

. Entity type is transformed into a relation.

. Name of the entity type becomes the name of the relation.

. The entity instances viewed as present inside the entity type box transform into the

rows of the relation.

. The complete set of entity instances becomes the total set of rows of the relation or table.

. In the transformation, nothing is expressed about the order of the rows in the trans-

formed relation.

LOGICAL MODEL: OVERVIEW 107

Attributes. Entities have intrinsic or inherent characteristics. So, naturally the next com-

ponent to be considered is the set of attributes of an entity type.

Make note of the following points with regard to the transformation of attributes:

. Attributes of an entity type are transformed into the columns of the corresponding

relation.

. The names of the attributes become the names of the columns.

. The domain of values of each attribute translates into the domain of values for the

corresponding column.

. In the transformation, nothing is expressed about the order of the columns in the trans-

formed relation.

Identifiers. In the conceptual data model, each instance is uniquely identified by values

of one or more attributes. These attributes together form the identifier for the entity type.

Note the following points on the transformation of identifiers:

. The set of attributes forming the identifier becomes the primary key columns of the

relation.

. If there is more than one attribute, all the corresponding columns are indicated as

primary key columns.

. Because the primary key columns represent identifiers, the combined values in these

columns for each row is unique.

. No two rows in the relation can have the same values in the primary key columns.

. Because identifiers cannot have null values, no part of the primary key columns can

have null values.

Relationships. The E-R data modeling technique has notable ways for representing

relationships between two entity types. Wherever you perceive direct associations

between instances of two entity types, the two entity type boxes are connected by lines

with a diamond in the middle containing the name of the relationship. How many instances

of one entity type are associated with how many instances of the other? The indication about

the numbers is given by cardinality indicators, especially the maximum cardinality indicator.

The minimum cardinality indicator denotes whether a relationship is optional or mandatory.

You know that a relational data model establishes relationships between two relations

through foreign keys. Therefore, transformation of relationships as represented in the E-R

model involves mapping of the connections and cardinality indicators into foreign keys.

Note the following summary on the transformation of relationships.

One-to-One Relationships

. When two relations are in one-to-one relationship, place a foreign key column in

either one of the two relations. Values in foreign key columns for rows in this

table match with primary key values in corresponding rows of the related table.

. The foreign key attribute has the same data type, length, and domain values as the

corresponding primary key attribute in the other table.

. It does not really matter whether you place the foreign key column in one table or the

other. However, to avoid wasted storage space, it is better to place the foreign key

column in the table that is likely to have less number of rows.

108 CHAPTER 3 ANATOMY OF A DATA MODEL

One-to-Many Relationships

. When two relations are in a one-to-many relationship, place a foreign key column in

the relation that is on the “many” side of the relationship. Values in foreign key

column for rows in this table match with primary key values in corresponding

rows of the related table.

. The foreign key attribute has the same data type, length, and domain values as the

corresponding primary key attribute in the other table.

Many-to-Many Relationships

. Create a separate relation, called an intersection table. Use both primary keys of the

participating relations as the concatenated primary key for the intersection table. The

primary key of the intersection table contains two attributes: one attribute establishing

the relationship to one of the two relations and the other attribute linking the other relation.

. Each part of the primary key of the intersection table serves as a foreign key.

. Each foreign key attribute has the same data type, length, and domain values as the

corresponding primary key attribute in the related table.

. The relationship of the first relation to the intersection relation is one-to-many; the

relationship of the second relation to the intersection relation is also one-to-many.

In effect, transformation of many-to-many relationship is reduced to creating two

one-to-many relationships.

Generalization/Specialization. The superset entity types transform into relations;

similarly, the subset entity types convert into relations. The identifier and attributes of

the superset entity type migrate as columns to the relations representing the corresponding

subtypes.

Relational Model

Study Figures 3-26 through 3-28 showing the relational data model for Barnaby’s. This

relational model is the result of transformation of the E-R model displayed earlier in

Figures 3-3 through 3-5.

FIGURE 3-26 Barnaby’s auction system: relational model, part 1.

LOGICAL MODEL: OVERVIEW 109

Take some time to go over these three figures and note the statements, line by line. These

figures represent the relational data model using a standard notation. Study the statements

for each table or relation. Notice the relation or table names shown in upper case. Note how

the column names are shown within parentheses for each relation. See how the notation

indicates primary key columns with underscores. Specially make a note of the foreign

key clauses. Refer to the dependent or weak entity types and their corresponding strong

entity types. Observe how the primary keys are formed for the weak entity types.

FIGURE 3-27 Barnaby’s auction system: relational model, part 2.

FIGURE 3-28 Barnaby’s auction system: relational model, part 3.

110 CHAPTER 3 ANATOMY OF A DATA MODEL

PHYSICAL MODEL: OVERVIEW

From the prior discussions, you know the purpose of the logical data model. You have

reviewed the steps; and you have learned the steps and tasks of the process. First, you

model the information requirements by creating a conceptual data model. Then you trans-

form the conceptual data model into a logical data model such as the relational or hierarch-

ical or network data model. As the relational data model is superior to the others and

because it is widely used, we emphasized the relational data model in our discussions.

Remember, a conceptual data model is a generic data model. It has no relational or hier-

archical or network flavor. A conceptual data model does not consist of tables with rows

and columns; only a relational data model does. Only when you move from a conceptual

data model to a logical data model such as the relational data model will you represent and

perceive data as contained in two-dimensional tables or relations.

From the relational data model, we proceed to the physical data model to represent the

information requirements in physical hardware storage. Conceptual models and relational

models are not representations of how data is actually stored. Actual data is going to reside

on physical storage, and the physical model stipulates how, where, and which data gets

stored in physical storage. The emphasis here is exclusively on relational databases.

When we discuss any aspect of a physical model, assume that the discussion refers to rela-

tional databases.

In order to store and manage data on physical storage, the representation of the logical

model must be transformed into a representation for actual data storage. Why is this necess-

ary? Computer systems do not store data in the form of tables with columns and rows; they

typically store data in a different way. Computer storage systems store data as files and

records. Physical model is at the lowest level of abstraction for implementing the database

on physical storage. Therefore, in physical datamodeling, you are concernedwith the features

of the storage system onwhich your databasewill reside. Further, you are also concernedwith

the functions, features, and facilities of the DBMS selected to manage your database.

Model Components

When you finish with physical modeling, what is the collective set of components you

expect to produce? When you create a physical data model, what is the set of components

that are expected to emerge? What major components make up the physical model of your

database system? Here is a list of the essential components:

File Organization. For each file in the physical model, the method or technique for

arranging the records of the file on physical storage.

Indexes. Types and list of index files to improve data access.

Integrity Constraints. Constraints or rules in the form of data edit rules and business

rules; rules for enforcement of referential integrity on inserts and deletes.

Data Volumes. Sizing for each data and index file.

Data Usage. Analysis of expected data access paths and access frequencies.

Data Distribution. Strategy for providing data to users by means of centralized or parti-

tioned or replicated database systems.

PHYSICAL MODEL: OVERVIEW 111

Transformation Steps

Our scope of discussions excludes intricate details of physical modeling. Therefore, let us

conclude here with two figures about physical data models.

Refer to Figure 3-29 that shows the transition from conceptual data model to relational

data model and thereafter to physical data model. The figure gives some overall indi-

cations on the components in the models at these three levels.

Figure 3-30 indicates the mapping of components between a relational data model and a

physical data model.

FIGURE 3-29 Physical modeling in overall modeling.

FIGURE 3-30 Logical model to physical model.

112 CHAPTER 3 ANATOMY OF A DATA MODEL

CHAPTER SUMMARY

. Data models created at the four information levels in an organization: external data

model, conceptual data model, logical data model, and physical data model.

. Each type of model fulfills specific purposes: conceptual model, the highest level of

abstraction, is used for discussion with domain experts and user groups; external

model, a set of partial models for individual user groups, describes information rel-

evant to individual user groups; logical model, specified for the type of database

system, is closer to programmers and analysts; physical model, the lowest level

with details of software and hardware, is used as the database blueprint.

. Studying a data model includes examination of the symbols and meanings for the

components: entity types, relationships, attributes, identifiers, constraints, and gener-

alization/specialization.

. Studying a given data model helps learning the steps for creating data models. Note

the E-R and UML models for the case study—Barnaby’s auction system.

. The general methodology for creating a conceptual data model: create individual

external models and aggregate the partial models.

. Review entity type and look for generalization and specialization. Define supertype

and subtype entities.

. Note direct relationships.

. List all attributes for each entity type.

. Mark the identifier for each entity type.

. Draw the model diagram and review it for completeness and accuracy.

. A logical model for a relational database system consists of two-dimensional

tables.

REVIEW QUESTIONS

1. Match the column entries:

1. Generalization A. All subsets present

2. User view B. Restrictive rules

3. Entity type C. Dependent entity type

4. Minimum cardinality D. Bulk of database content

5. Complete specialization E. Partial model

6. Weak entity type F. No duplicate values

7. Constraints G. Combines partial models

8. Attribute values H. Supersets

9. View integration I. Indicates optionality

10. Primary key column J. Transforms into relation

2. List the steps for studying a given data model. What are supersets and subsets?

3. What are direct relationships among entity types? How do you identify these in a

model diagram as opposed to noting indirect relationships?

REVIEW QUESTIONS 113

4. Why are identifiers important? What purpose does an identifier serve in an entity

type?

5. Refer to Figures 3-3 through 3-5. List all the relationships with their cardinalities.

6. For Barnaby’s auction system, list all the supersets and their subsets. What type of

specialization does each represent? Explain.

7. Compare the E-R model and the UML class diagrams for Barnaby’s auction

system. List the similarities and differences.

8. List the steps for creating a conceptual data model. Describe each step briefly.

9. Name the relational tables in the logical data model for Barnaby’s auction system.

10. Pick any one-to-many relationship from the logical data model for Barnaby’s

auction system. Explain how the linkage is established through the foreign key.

114 CHAPTER 3 ANATOMY OF A DATA MODEL

4

OBJECTS OR ENTITIES
IN DETAIL

CHAPTER OBJECTIVES

. Provide an in-depth discussion of entities or business objects

. Show how to identify and define entity types

. Present categories of entity types and their application

. Explore dependencies between entity types

. Review generalization and specialization thoroughly

. Scrutinize special cases and exceptions

. Learn relevant advanced concepts

. Conclude with an entity validity checklist

After the discussions in the previous chapter, you are very familiar with several aspects of

a data model. You understand the various components that make up a conceptual data

model. We presented a comprehensive real-world data model. You went through the

model, component by component. You can recognize the significance of the different

components.

Using the data model as a basis, you also studied the steps and the tasks needed to arrive

at the various components and then the complete data model itself. This process reinforced

your comprehension of the concepts behind each type of component. You reviewed the

method for identifying business objects or entity types; you explored the attributes and

the identifiers; you scrutinized the relationships and their implications. Now we have

come to a point where you need to strengthen your comprehension of individual com-

ponent types even further.

In this chapter, you will launch an in-depth study of business objects or entity types. As

this is a primary modeling concept, it is proper that we begin our in-depth study with

115

Data Modeling Fundamentals. By Paulraj Ponniah
Copyright # 2007 John Wiley & Sons, Inc.

business objects. Then we will move on to other components. In the subsequent chapters,

we will discuss attributes and then relationships.

We will embark on the intense study of business objects as part of a conceptual data

model. As you know, this model, being at the highest level of abstraction and devoid of

technical details, renders itself to understanding easily both for the domain experts and

IT personnel. Your understanding of business objects as part of the conceptual model

can easily be shifted to the logical and physical models in later chapters.

Our study will use the E-R modeling technique to explore the features of the com-

ponents. You already know how the E-R modeling technique presents business objects

or entity types. Although this discussion may use other modeling techniques, we want

to stay with E-R technique because of its wider use and also because it has been in practice

longer than most of the other techniques.

ENTITY TYPES OR OBJECT SETS

What are entities? What are entity types? Can we think of these as objects and object sets?

How do you recognize objects in the context of the information content you want to

model? Are there different categories of entity types? We want to explore these questions

in detail.

When you consider the information that an organization needs for carrying out its

various business processes, when you break down this information into small elements,

you arrive at pieces of data about things the organization is interested in. For an organiz-

ation such as a bank, the information is about its customers, about its checking, savings,

and loan accounts, its various promotional products, and so on. For a medical center,

the information is about its patients, health care procedures, its laboratory services, the

medical personnel, and so on. The type of information and the type of things about

which information is needed depends on the particular organization and its domain of

operations.

What are these things about which an organization needs information? How can we

classify them? Are these individual things or groups of similar things? Take the case of

a medical center. Look at individual patients. Each patient is separate and unique. The

medical center needs to keep information about each patient. When you model the infor-

mation about patients, do you have to model information about each patient as separate

components? Let us define precisely what we mean by things about which an organization

needs to keep information.

Comprehensive Definition

Because business objects and their representation in a data model are of paramount import-

ance to an organization, we need to emphasize the clear understanding of the concept.

Only then you will be able to identify the relevant business objects and proceed further

in creating a data model. The business objects form the initial set of components to

begin the process of data modeling.

If you are creating a data system for an airlines company, you need to collect and store

information about the fleet of aircraft, the flight routes, the passenger reservations, and so

on. Again, if you are implementing a data system for a car dealership, you need infor-

mation on the inventory, the specific models your company sells, the promotions, and

116 CHAPTER 4 OBJECTS OR ENTITIES IN DETAIL

so on. Are these—aircraft, flight route, reservation, inventory, vehicle model, promotion—

the business objects to be represented in a data model?

We need to get a clear understanding of what constitutes a business object. Should a

business object be tangible? What about concepts that are intangible? What about business

events about which we need information? Are events business objects? Should they be

modeled? If so, how?

Definition Guidelines. Before attempting a precise and comprehensive definition of an

entity in data modeling, let us develop a few guidelines. The guidelines should suggest to

us the necessary ingredients in a good definition. We would need guidance on how to

produce a good definition. What are the considerations?

Here are a few guidelines for a good definition of an entity:

Clarity. The definition must be very clear and unambiguous. Readers of the definition

must understand the definition statements in one way and in only one way. The definition

must not mislead readers.

All-Inclusive. The definition must be comprehensive enough to include all relevant and

important aspects of an entity.

Succinctness. At the same time, the definition must be concise and to the point. It must

not be couched in unnecessary verbiage.

Precision. The definition must be clear-cut to mean exactly what it says.

Description. The definition must be able to describe an entity as adequately as possible.

Contextual. The definition must define an entity only in the context of the information for

an organization or its appropriate domains being modeled.

Significance. Notice if any superset and subsets are present. If they are shown, examine

the nature and relationships between each group of subsets and their superset.

Illustration. If necessary, the definition must include a few examples for further

clarification.

With the above guidelines in mind, if you refer to how various authors and data model-

ing experts define an entity or business object, you will notice a few different versions. If

you ask practicing data modelers for a definition, they would offer a few more variations.

Here is a sample of various definitions of an entity from authors and data modeling

experts:

. A thing that can be distinctively identified.

. Means anything about which we store information. For each entity type, certain attri-

butes are stored.

. Any distinguishable object that is to be represented in the database.

. Represents some “thing” that is to be stored for later reference. The term entity refers

to the logical representation of data.

ENTITY TYPES OR OBJECT SETS 117

. Any distinguishable person, place, thing, event, or concept about which information

is kept.

. May be an object with a physical existence (a particular person, car, house, or

employee) or it may be an object with conceptual existence (a company, a job, or

a university course).

. A “thing” or “object” in the real world that is distinguishable from all other objects.

. Is a person, place, thing, or concept that has characteristics of interest to the enterprise

and about which you want to store information.

. Is an object in the real world that is distinguishable from other objects.

. Is some item in the real world that we wish to track.

Defining Entities or Business Objects. Taking into considerations the various defi-

nitions mentioned above, can we formulate a proper definition of an entity? What can we

say about an entity? Reading the above definitions, you can detect the following under-

lying, common themes in them:

. An entity is a thing or object or concept.

. It is something in the real world.

. It is distinguishable from other objects.

. It is something about which an organization is interested and wants to store infor-

mation about and keep track of it.

. An entity is a single thing that may considered as part of a group of similar things.

Following the guidelines for definition and also considering the common themes in a

variety of definitions, let us arrive at a workable definition.

Definition of an Entity. An entity is a single distinguishable business object such as a

person, place, thing, event or concept, part of a group of similar objects, relevant to an

organization about which the organization is interested in storing and using information.

Let us examine this definition using an example. An airline business is interested in

storing and using information about all its passengers. Therefore, according to the defi-

nition, each passenger about whom the organization wants to store information is an

entity. What can we say about this entity?

. Each passenger is an entity or business object for the airline company.

. This entity is a person.

. Each entity called passenger is part of the group known as passengers with similar

characteristics.

. However, each passenger is uniquely identifiable. Passenger Mary Jones is unique

and different from passenger Sylvia Rodriguez.

. The entity is relevant to the airline company. The company wants to store information

about the entity.

At this stage, let us make the distinction between physical and conceptual entities. You

have noted from our discussions that some of the entities mentioned may be seen, heard, or

118 CHAPTER 4 OBJECTS OR ENTITIES IN DETAIL

touched—things that are tangible. However, examples of some other entities indicate that

these entities cannot be seen or experienced. These are intangible. Nevertheless, both cat-

egories are things of interest to an organization. Your data model will include both

categories.

Physical Entities. Things with physical existence: an employee, an automobile, a build-

ing, equipment, or an aircraft.

Conceptual Entities. Things with existence as concepts: a university course, a visit to the

doctor, an invoice, a bank account, an aircraft type.

Entity Types. So far in our discussion, we have indicated one particular thing of interest

to an organization as an entity. An entity is a single thing. One customer is a “thing” that an

organization is interested in. Of course, there would be thousands of customers for an

organization. So, data modelers make the distinction and refer to the notion that refers

to the collection of entities as an entity type. Entities are individual “things,” whereas

entity types refer to the group of entities.

Figure 4-1 illustrates the two notions of entity types and entities.

Note the two examples shown in the figure:

Entity types: EMPLOYEE, DEPARTMENT

Entity: Individual occurrences of each entity type

FIGURE 4-1 Entity types and entities.

ENTITY TYPES OR OBJECT SETS 119

Illustrations with Examples. Having defined entities and entity types, let us list a few

examples to illustrate the concepts. We will list some typical organizations, state their core

businesses, and present examples.

Refer to the columns shown in Figure 4-2. The first column lists examples of types of

organizations. In the second column, you will read about the core business of each organ-

ization type. The third and fourth columns present examples of entity types and entities

each organization type will be interested in. When you examine the E-R data models

for these organization types, you will notice the listed entity types shown as square-

cornered boxes.

Identifying Entity Types

Having successfully defined entities and entity types, you now have a clearer notion of

what constitutes business objects for an organization and what needs to be included in

your data model. You have noted that when we say an entity, we mean an individual

thing, and that an entity type refers to a collection of similar individual things. If you rep-

resent an entity type using a box in the model diagram, then you can imagine entities as

represented by single points within that box.

The next consideration relates to identification of entities and entity types within an

organization. We know that entities are those things of interest to the organization for

the purpose of collecting and storing information. But what are these things of interest?

Who is going to tell you? How do you find out? Are there any methodologies to ascertain-

ing entities? Are there any guidelines? Let us explore.

Identification Guidelines. Of course, the identification of entities occurs during the

requirements definition phase in the data system development life cycle. You work very

closely with the domain experts. You carefully study each business process and scrutinize

the data needs for each process. You come across many entities or business objects. You

are able to inventory the various data elements being used or needed.

FIGURE 4-2 Examples of entity types and entities.

120 CHAPTER 4 OBJECTS OR ENTITIES IN DETAIL

Of the multitude of data elements, which ones qualify to be modeled and which ones to

be ignored? Let us work out a few guidelines. Guidelines are not methodologies for identi-

fication of entities; whatever methodology is serviceable, the guidelines will have to influ-

ence the methodology. The guidelines should prompt you in your decision either to include

or exclude a type of entity in the data model. Here are a few guidelines for identifying

entity types:

Scope. Entity type must be within the scope of the information domain that is being

modeled within the organization.

Relevant, Not Redundant. It must be of immense interest to the organization—some-

thing about which the organization wants to collect and store information for running

its business.

Representation. It must represent a set of similar individual things.

Distinctiveness. It must be some set of individual things where each instance or occur-

rence of individual things within the set can be readily and uniquely identified.

Conceptual Integrity. It must represent a single concept that embraces a set of similar

things with cohesive characteristics.

Approaches to Identification. Different data modelers advocate a variety of

approaches for identifying entity types. As you become more and more adept at data mod-

eling, you will compile a set of techniques that works for you and produces a methodology

for yourself. We need to reiterate that whatever approach you might take, it must be com-

pletely grounded in proper requirements definition. This phase is where you begin the

process of identifying entity types. This is where you decide what to include and what

to ignore.

At this point, we want to suggest two basic approaches to the process of identifying

entity types. For either approach, you need to go through the requirements definition

phase. You have to complete the usual tasks of reviewing business operations, studying

all relevant business processes, poring over pertinent documents, conducting interviews,

meeting with all groups of stakeholders in the organization, and so on. All of these

must be done quite thoroughly for identifying entity types.

The first method is a meticulous, systematic approach. As you go through the various

business processes, you document all the data elements involved. Then you will use the

collection of data elements to proceed to the identification process.

The second approach is more intuitive. Based on your completed requirements defi-

nition phase, you try to come up with a list of entity types that must be present in your

data model. For small data systems, this method is likely to have better results.

Process-Oriented Method. This method is more rigorous and systematic than other

methods. Usually, where the model tends to be large and complex, this method proves

to be effective. In the past chapters, we have hinted at this method. Now let us examine

this method in more detail.

Every company exists for the purpose of fulfilling its core business. For example, the

core business for a banking business may be expressed by the following statement: help

ENTITY TYPES OR OBJECT SETS 121

customers manage their finances by providing banking services. The bank would fulfill its

core business by performing a number of individual business processes. The marketing

department would perform business processes relating to marketing and sales functions.

The loan department would perform business processes pertaining to loans and mortgages.

The sum total of all the processes enables the bank to fulfill its core business of providing

banking service to its customers.

While performing each of the many processes, the relevant user would collect data

elements or use data elements collected in other processes. As you observe and study

each process, you can list all the data elements applicable to that process. Recall that

the set of data elements for all the processes in a department forms a partial external

data model. This method of identifying entity types makes use of the principle of aggregat-

ing all partial external models.

Study Figure 4-3. This figure shows the various business processes for a bank and the

data elements associated with each process.

The next task in the method aggregates or combines all the data elements and forms

groups. Figure 4-4 shows how this is done.

As soon as the data groups are formed, you examine each group and see if that group of

data elements describes something of interest to the bank. You pose questions based on the

guidelines mentioned earlier. Is something that is being described within the scope of what

you are modeling? Is it relevant? Is that something representative of a set of similar indi-

vidual things? Can each unit in the set be uniquely identified?

One by one, you will be able to identify the business object sets or entity types. These

entity types will form the basic components in your data model. Figure 4-5 indicates how

the entity types are derived from the data groups.

FIGURE 4-3 Banking business: processes and data elements.

122 CHAPTER 4 OBJECTS OR ENTITIES IN DETAIL

FIGURE 4-4 Banking business: data aggregation.

FIGURE 4-5 Banking business: deriving entity types.

ENTITY TYPES OR OBJECT SETS 123

After we derive the entity types, we go ahead and classify the entity types into cat-

egories before proceeding further with the data model. Depending on the category,

additional effort will be warranted. In a way, this method is process-oriented because

we examine the various processes to determine the entity types.

Data-Oriented Method. This is somewhat an intuitive method. Based on everything

you have studied and documented during the requirements phase plays a key role in sup-

porting the intuition. Here is how this method works.

Based on the various business operations, the data modeler comes up with an initial set

of entity types. He tabulates the list and maybe even puts down some characteristics for

each entity type within each box. That is the end of the first iteration. Using this initial

crude diagram, the data modeler revisits the documented information requirements and

reviews the initial set with the domain experts. Now he or she is performing the second

iteration. The set of entity types gets refined. Then the modeler moves on to the next iter-

ation. After a few iterations, the data modeler will be able to produce a good working set of

entity types that must be included in the data model. Figure 4-6 gives an indication of the

iterations and shows the outputs of each iteration.

After a few iterations before concluding the activity of entity type identification, the

data modeler must validate the outputs with the domain experts and by referring to

some major business processes. However, if you are modeling a large and complex set

of information requirements, this method may not produce a complete set of entity

types. Even after filling out other components in the data model, you may have to go

back to keep refining the data model a few times.

FIGURE 4-6 Entity type identification: iterations.

124 CHAPTER 4 OBJECTS OR ENTITIES IN DETAIL

Homonyms and Synonyms

Homonyms and synonyms could cause problems in properly identifying entity types.

These could be problematic not only for entity types but also for attributes and, sometimes,

for other data model components. At this time, let us discuss homonyms and synonyms for

entity types. Why is detecting homonyms and synonyms important in data modeling? If

you do not detect and resolve them, the resulting data model could be seriously flawed.

Homonyms and synonyms cause misunderstandings and make the data model less precise.

Generally, homonyms and synonyms cause problems when the scope of the data model

is fairly wide. This is especially the case, when multiple data modelers undertake to look at

partial requirements and come up with partial data models. At the time of consolidating the

partial models, if homonyms and synonyms are not reckoned with, your integrated data

model will be flawed. So, let us briefly discuss the implications.

Homonyms. Two words or phrases that are spelt the same way or have similar sounds

constitute homonyms. For two words or phrases with similar spelling or sound to be homo-

nyms, they must refer to different business objects or entities. These different objects may

have completely different characteristics or may share some characteristics but differ from

each other in many other ways.

Homonyms sneak into a data model because of several reasons. Homonyms can be

quite prevalent when many teams of data modelers create partial models that will even-

tually be combined. In such situations, two or more entity types are referred to by the

same or similar names. In this case, if unresolved, the consolidated data model will

show more than one entity types with similar names. What will happen in this situation?

The final review will reveal more than one entity type with similar names. At that time,

because of confusion, only one entity type will be retained in the data model and others

discarded. This is a case of nonreconciled homonyms.

Another type of problem relates to implied homonyms. Here, homonyms are embodied

in a single entity type. In this case, only one entity type is identified. However, if you care-

fully notice, within its definition itself, you will understand that there are really two entity

types to be modeled. You need to separate out the two entity types. Let us consider

examples of these two cases of homonyms with ways to resolve them.

Nonreconciled Homonyms. See Figure 4-7 for an example. Note the definitions. The

definitions really tell us that these are homonyms that cannot be allowed on the data

model without resolving them. Note also the different identifiers. The figure illustrates

how the homonyms are reconciled.

Contained in One Entity Type. Figure 4-8 shows a single box to represent an entity type.

After reading the definition, it becomes clear that, in fact, this actually should be made to

represent two distinct entity types. Observe how the figure presents the resolution.

Synonyms. These are the opposite of homonyms. Here, two different words or phrases

that are spelled differently or sound differently are synonyms provided they refer to the

same business object or entity. Synonyms are more prevalent than homonyms. Synonyms

result from different departments or user groups calling the same thing by different names

over time. These departments must have been working separately, each using its own

ENTITY TYPES OR OBJECT SETS 125

terminology. One department may refer to workers as employees whereas another depart-

ment may call them associates.

Resolution of synonyms is harder than that of homonyms. Homonyms may be tracked

with comparative ease because of similarly spelled names or similar sounding words. But

FIGURE 4-7 Nonreconciled homonyms.

FIGURE 4-8 Homonyms embodied in one entity type.

126 CHAPTER 4 OBJECTS OR ENTITIES IN DETAIL

in the case of synonyms, you will have to sift through hundreds of terms to detect them.

During the initial iterations of the data modeling process, as soon as you suspect that two

entity types could be synonymous, put them through a thorough examination.

Determine the degree of similarity between two entity types by studying the following:

. Definition of the entity types

. Attributes of the two entity types (however, the attributes may themselves have differ-

ent names)

. Identifier for each of the two entity types

. Relationship of each entity type with other entity types

Just like homonyms, if synonyms are not resolved, the resulting data model will be

imprecise and have redundancies. Data consistency and data integrity could also be

compromised.

Figure 4-9 presents a set of unsolved synonyms and also indicates how these synonyms

are resolved.

Category of Entity Types

In the rest of this chapter, we will explore the various categories of entity types in detail.

Therefore, at this point, we just want to express that a data model will contain different

categories of entity types. All entity types shown in a data model represent a set of

similar business objects. You know that a CUSTOMER entity type symbolizes the set

of all the individual customers of an organization. An ORDER entity type represents

FIGURE 4-9 Resolution of synonyms.

ENTITY TYPES OR OBJECT SETS 127

the set of all the orders received by an organization. Similarly, an ORDER-DETAIL entity

type denotes the set of all the line-item details of all the orders.

However, variation in categories of entity types arise based on a few differences in con-

ditions and functions. Some entity types are different because of existence conditions.

Another entity type is different because of its special function in a certain type of relation-

ship. Some entity types may be derived from other general entity types. Let us list the

major categories of entity types.

Weak Entity Type. This entity type represents a set of individual entities that cannot

exist by themselves in a database. A weak entity type needs another strong entity type

in the data model. A weak entity type depends on the related strong entity type for its exist-

ence. Without the presence of strong entities and the association with these entities, weak

entities cannot stand on their own in the data system.

Here are a few examples:

Weak Entity Type Related Strong Entity Type

ORDER-DETAIL ORDER

INVOICE-DETAIL INVOICE

STATEMENT-ITEM VENDOR-STATEMENT

ORDER CUSTOMER

EMPLOYEE-DEPENDENT EMPLOYEE

Regular or Strong Entity Type. Entity occurrences that can exist in the database on

their own form a strong or regular entity type. Most entity types you find in a data

model are of this category. They are not dependent on other entity types for their existence.

When you identify an entity type to be included in the data model, you need to verify

whether the entity occurrences can have independent existences. If so, that would be a

strong entity type. Otherwise, the identified entity type would be a weak entity type that

would need another strong entity type for its existence.

In addition to the strong entity types noted above, the following are a few more

examples of regular entity types:

Strong or Regular Entity Type

STUDENT

FACULTY

COURSE

TEXTBOOK

EXAM-TYPE

Supertypes and Subtypes. As you already know, you find this category of entity

types in a data model because of generalization and specialization. In the real world,

business objects occur that are special cases of other types of business objects. On the

other hand, when you examine certain sets of business objects, you will discover that

these can be separated out into subsets of similar business objects. Such entity types are

categorized as subtypes and supertypes.

128 CHAPTER 4 OBJECTS OR ENTITIES IN DETAIL

Note the following examples of supertypes and the corresponding subtypes of entities:

Supertype Subtypes

PASSENGER ECONOMY, BUSINESS, FIRST

PERSON MALE, FEMALE

RENTAL-PROPERTY MOUNTAIN, BEACH

STOCKHOLDER INSTITUTIONAL, INDIVIDUAL

BANK-ACCOUNT CHECKING, SAVINGS, LOAN

Association or Intersection Entity Type. If you have two entity types in

many-to-many relationship, in a conceptual data model diagram you can show these

two entity types and mark their relationship as many-to-many. In a data model at the con-

ceptual data model, expressing many-to-many relationships is perfectly standard.

However, when you want to transform the conceptual data model into a logical model

for relational databases, you run into a problem. In a relational model, the two entity

types transform into two relational tables. But when you try to transform the

many-to-many relationship using foreign keys, you have to address the question of

where to place the foreign key—in the first table, or the second table, or in both.

The intersection entity type resolves this problem. In order to transform a

many-to-many relationship, you have to introduce a new entity type, called the intersec-

tion entity type, into your data model. You may do this in the conceptual data model

itself in preparation of its transformation into a relational model down the line. Chapter

7 covers this topic in more detail. At this point, take a look at Figure 4-10 showing an

example of intersection entity type.

Aggregation Entity Type. Consider three entity types: WAREHOUSE, SHIP-

METHOD, and ORDER. When you want to identity a particular shipment and describe

it, you need to include warehouse, shipping method, and order data. A shipment of a

specific order takes place from a particular warehouse and using a certain shipping

method. Therefore, we need an entity type SHIPMENT to indicate the three-way relation-

ship among WAREHOUSE, SHIP-METHOD, and ORDER. The identifier for this new

FIGURE 4-10 Intersection entity type.

ENTITY TYPES OR OBJECT SETS 129

entity type SHIPMENT has to be the aggregation of the identifiers of the three related enti-

ties. Aggregation entity type denotes three-way, four-way, and sometimes, higher degree

relationships.

Figure 4-11 illustrates the formation of an aggregation entity type for the above three-

way relationship:

EXPLORING DEPENDENCIES

Earlier in this chapter we reviewed methods for identifying entity types. As soon as you

identify an entity type, you need to recognize which category the entity type would

belong to. Depending on the category, your representation of that entity type will vary

from others. By taking into account the category and proper representation of the entity

type, you are paving the way for correct implementation of that entity type in the final

database. Proper representation enables you to impose the right constraints in the

implemented database.

One aspect of such scrutiny relates to exploring dependencies. What do we mean by

that? Let us say that you have identified an entity type called ORDER. Examine the indi-

vidual entities being represented by this entity type. These individual entities or business

objects are single orders. Now, ask the question. Does the existence of a single order

depend on the existence of entities of another entity type in the database? Does the exist-

ence of an order number 1234 depend on the existence of the corresponding customer

number 2244 in the database? If you delete customer number 2244 from the database,

does that mean that you have to delete order number 1234 also from the database to pre-

serve data integrity? The answers to these questions determine the dependency of ORDER

entity type on CUSTOMER entity type. This is the process of exploring dependencies of

entity types.

FIGURE 4-11 Aggregation entity type.

130 CHAPTER 4 OBJECTS OR ENTITIES IN DETAIL

Let us say you determine that ORDER entity type is dependent on CUSTOMER entity

type. Your representation of these two entity types and their relationship will be different

from how you will show other entity types and relationships. Differentiation in this respect

achieves two purposes. Your data model will reflect the information requirements truly;

proper constraints will be imposed on the implemented database.

Dependent or Weak Entity Types

Let us pursue the example of CUSTOMER and ORDER entity types. Let us suppose that

when you gather the information requirements, you find out more details about customers

and orders. You determine how orders are received and how they are recorded. You note

what is allowed to happen when orders are received from new customers.

Two cases are possible. In both cases, ORDER entity type is dependent of CUSTOMER

entity type for its existence.

Some Independent Orders. In this case, independent orders are allowed to exist in the

database even if it is for a short while. If an order is received from a new customer before

the customer data is recorded in the database, the order processing department wants to

record the order in the database and get a head-start on the fulfillment of the order.

Later on, when the customer data is recorded in the database, the connection between

order and customer will be made.

How do you distinguish this condition in the data model? You will make the distinction

by means of a minimum cardinality indicator on the relationship between the two entity

types. Still the data model will show ORDER as a weak entity type depending on the cor-

responding strong entity type CUSTOMER. If a customer occurrence gets deleted from the

database, all of the pertinent order occurrences must be deleted from the database.

Every Order Dependent. On the other hand, the organization does not permit any

orders to be recorded in the database before the relevant customer data is recorded. Even

for a new customer, first the customer data must be recorded and then the order must be

recorded. The order processing department must ensure this sequence of data entry.

In this case, the data model will simply show ORDER as a weak entity type depending

on the corresponding strong entity type CUSTOMER. There is no need to distinguish the

relationship further with minimum cardinality indicators.

Figure 4-12 illustrates these two cases of weak entity types.

FIGURE 4-12 Dependence and partial independence.

EXPLORING DEPENDENCIES 131

Classifying Dependencies

We have discussed that a weak entity type depends on its corresponding strong entity type.

The question arises whether all dependencies are of the same type. Are they different? If

we are able to differentiate between the types of dependencies, could we then classify the

weak entity types? What are the implications of the classification? How do they influence

your ability to use your data model as a communication tool for discussion with domain

experts? What effect does the classification have on the use of the data model as a blueprint

for implementation?

Weak entities may be classified into two groups based on how exactly they depend on

their corresponding strong entities. If ORDER is dependent on CUSTOMER, what exactly

is the nature of the dependency? Examining a number of weak entities and their dependen-

cies, we can establish that we can put weak entities into two classifications. Let us discuss

these groupings.

ID Dependency. Entities in some weak entity type cannot be uniquely identified by

their own attributes. The entities in such entity types will have to be identified by

means of their association with entities in the corresponding strong entity types. Let us

take a few examples.

Suppose we have a weak entity type ORDER-LINE. Each entity in this entity type rep-

resents a line-item of the corresponding order. The line-items will contain product, quan-

tity, and price data. The line-items on every order will usually be numbered sequentially

beginning with “01” and proceeding with higher numbers depending on how many line-

items there are on the order. The entities in every ORDER-LINE entity type will have

the same sequence numbers. None of the attributes—line item number, product, quantity,

or price—can be used as an identifier for ORDER-LINE entity type. What is the solution?

Each entity in ORDER-LINE weak entity type can be uniquely identified only through

its association with the relevant entity in the corresponding ORDER strong entity type. If

you want to identify and locate the third line-item on order number 123456, then you can

use the concatenation of “123456” and “03” for purposes of identification. Thus, the enti-

ties in ORDER-LINE depend on the entities in ORDER for identification. This is ID

(identification) dependency. The dependency of weak entity type ORDER-LINE on

strong entity type ORDER is an ID dependency.

Let us consider another example. Here, the weak entity type is CHILDREN depending

on strong entity type of EMPLOYEE. The relationship is established to associate children

with their parents for insurance coverage. The attributes of CHILDREN are name of child,

age, type of insurance, and, perhaps, a generic sequence number similar to the one used for

order line-items. None of the attributes of CHILDREN is of any use as a unique identifier.

CHILDREN entity type has to depend on entity type EMPLOYEE for identification. This

is also a case of ID dependency.

Because the strong entity type identifies the corresponding weak entity type, the strong

entity type is also known as an identifying entity type. The relationship between the strong

entity type and the weak entity type is called an identifying relationship.

Existence Dependency. Let us revisit the above two examples. We determined that

the dependency of ORDER-LINE on ORDER is an ID dependency. Similarly,

CHILDREN depends on EMPLOYEE for identification. The weak entity types need

132 CHAPTER 4 OBJECTS OR ENTITIES IN DETAIL

their corresponding strong entities for identification. But ID dependency also implies

existence dependency.

Entities in ORDER-LINE cannot exist in the database without their relevant entities in

ORDER. The existence of entities in ORDER-LINE depends on the existence of corre-

sponding entities in ORDER. If certain orders get deleted from the database, their corre-

sponding line-items must also be deleted. The line-items cannot exist in the database on

their own. The dependency is not only ID dependency, it is also existence dependency.

Similarly, the dependency of CHILDREN on EMPLOYEE is both ID dependency and

existence dependency. Entities of CHILDREN cannot exist in the database without the

existence of their corresponding entities in EMPLOYEE. If an employee is deleted

from the database, all the corresponding children must also be removed from the database.

Although ID dependency implies existence dependency, the converse need not be true.

Consider a data model where two entity types are represented. One entity type is CUSTO-

MER and the other is CREDIT-CARD. This model needs to show credit card information

for each customer. In the database, we need to record credit card data for each customer. A

customer may have more than one credit card. Examine these two entity types. Entities in

CREDIT-CARD cannot exist unless their corresponding entities in CUSTOMER also

exist. So, this is existence dependency. However, examine the attributes of CREDIT-

CARD: CardNo, CardType, ExpirationDate, and IssuedBy. In this case, clearly CardNo

can uniquely identify entities in CREDIT-CARD. These entities do not have to depend

on the corresponding entities in CUSTOMER for identification. Thus, this not ID

dependency.

Representation in the Model

Let us illustrate the dependencies by showing how they are indicated in data model dia-

grams. Carefully note the following figures. Observe the strong and weak entities and

FIGURE 4-13 ID dependency.

EXPLORING DEPENDENCIES 133

the relationship lines with arrowheads. Notice the double boxes symbolizing weak entity

types. Also, in the case of ID dependencies, make a note of the discriminator attributes in

the weak entity types. These are just partial identifiers. By themselves, they cannot

uniquely identify occurrences of weak entities. Identification is possible only when the dis-

criminators are combined with the identifiers of the strong entity type.

ID Dependency. Figure 4-13 shows two examples of ID dependency. Note the letter “I”

on the relationship line indicating ID dependency.

Existence Dependency. Figure 4-14 shows two examples of existence dependency.

Note the letter “E” on the relationship line indicating existence dependency.

GENERALIZATION AND SPECIALIZATION

A true data model must reflect every aspect of real-world information. If there are

peculiarities about certain business objects, then the model must represent those special

conditions. If some relationships are different from the regular ones, then the data

model must portray those special relationships. A realistic data model should display

everything about the set of real-world information requirements. Frequently, you will

find that some of the attributes and relationships are the same for more than one object.

Generalization and specialization of object sets is a common occurrence when you

observe business objects in the real world.

Take the case of modeling the real-world information for a medical center. One of the

main business objects to be modeled is the PATIENT entity type. Think about coming up

FIGURE 4-14 Existence dependency.

134 CHAPTER 4 OBJECTS OR ENTITIES IN DETAIL

with a model for this entity type. Modeling any object requires considerations of the

possible and relevant attributes for the object. Also, you must consider the relationships

that instances of this object have with instances of other objects. As you proceed to

model the entity type PATIENT, you realize that there are inpatients, outpatients, and

emergency room patients. Your model must include all these patient categories. Now

examine these patient categories for attributes. You notice that all these three categories

of patients have common attributes such as PatientID, PatientName, Address, Diagnosis,

and so on. But, you also realize that each category of patients has attributes that are not

common to the other two categories of patients. For example, inpatients have attributes

such as AdmissionDate, DischargeDate, LengthOfStay, TypeOfMeals, and so on, that are

not shared by outpatients and E-R patients. Further, inpatients are related to another

entity type in the model, namely, ROOM. Inpatients may be transferred from one

room to another.

You see that there is something special about the three categories of patients in the way

they share their attributes and in the manner in which some attributes are specific to each

category. Clearly, all patients in the medical center cannot be modeled with one entity type

PATIENT. Then what are the options? You can opt to model the patients with three sep-

arate entity types INPATIENT, OUTPATIENT, and ERPATIENT. If you make this

choice, then your model will repeat several attributes and perhaps relationships for each

of the three entity types.

Step back and look at the four entity types PATIENT, INPATIENT, OUTPATIENT,

and ERPATIENT. It appears as though an entity type PATIENT is a supertype object

and that the other three are subtypes whose attributes and relations may be derived

from the supertype object. You will find it best to use these four objects in your data

model to truly represent the real-world information in the case of the medical center.

Figure 4-15 explains the need for this method of representation in the model.

What you have noticed is the concept of generalization and specialization in a data

model. This concept enables special types of objects to be represented in a data model.

As you examine the information requirements of any business, you will observe these

types of objects.

FIGURE 4-15 PATIENT object: supertype and subtypes.

GENERALIZATION AND SPECIALIZATION 135

The initial version of the E-R modeling technique lacked provision for generalization

and specialization. However, later versions called enhanced entity relationship (EE-R)

techniques included these concepts and presented symbols for the representations.

Why Generalize or Specialize?

Generalization structures enable the data modeler to partition an entity type into subsets.

Each subset is a part of the whole. For example, trucks, cars, ships, and airplanes may be

considered as subtypes of the supertype called vehicle. This modeling structure preserves

cohesiveness in a model.

Attributes: Common and Variable. Sharing of attributes results in a supertype and

subtype representation. Each subtype may share most of its attributes with all the other

subtypes. These shared attributes may then be grouped together as the attributes of the

supertype. Further, certain attributes of each subtype may be different. Variation in attri-

butes necessitates representation of multiple subtypes in a model.

Variations in attributes produce subtypes. In the case of trucks, cars, ships, and air-

planes, each of these have specific attributes to make them distinct. Because of these vari-

able attributes, you have to show these four distinct subtypes in your model.

At the same time, these four entity types have a number of common attributes. They all

represent objects that are used in transportation. The common attributes can, therefore, be

included in the supertype entity type as a generalized entity type. Generalization structures

enable the data modeler to partition an entity type into subsets.

Relationships: Common and Variable. Similar to sharing of attributes, sharing of

relationships results in a supertype and subtype representation. Most of the relationships

with other entity types may be shared among all the subtypes. These shared relationships

may then be regarded as the relationships of the supertype with the other entity types.

Again, some of the relationships of each subtype may be different. Variation in relation-

ships makes it necessary to represent multiple subtypes in a model.

For example, all subtypes INPATIENT, OUTPATIENT, and ERPATIENT may have a

relationship with another entity type called SERVICE. Thus, this relationship may be gen-

eralized as a relationship between SERVICE and the supertype PATIENT. But, on the

other hand, only inpatients have associations with an entity type called ROOM. So, you

need to represent this variation by separating out inpatients into a distinct subtype

INPATIENT.

Effect of Generalization/Specialization. When attributes and relationships are

shared among entity types, if you represent the shared concepts with several entity

types, you will be unnecessarily introducing duplicate descriptions in your data model.

Generalization avoids such duplication. You will be representing significant semantic

content in a concise form.

Generalization hierarchies improve the stability of the data model by allowing changes

to be made only to those entity types germane to the changes. They simplify the model by

reducing the number of entity types, attributes, and relationships. Generalization and

specialization make the data model more readable.

136 CHAPTER 4 OBJECTS OR ENTITIES IN DETAIL

When to be Used. Generalization and specialization should be used when

. A large number of entity types appear to be of the same type

. Attributes are repeated for multiple entity types

. Relationships with other entity types are repeated for multiple entity types

. The model is continually evolving

Supertypes and Subtypes

We looked at the example of car being a subset of the superset known as vehicle. When

you come to think of this, is car an instance of the set vehicle or is it a subset of vehicle?

How do you make the determination? You have to examine the natural use of the set of

cars. Is this a distinct set within the set of vehicles? Or is car considered as just another

vehicle?

Defining criteria indicating whether one set is a subset of another superset:

. How the domain experts or users define the set

. The similarities and differences in the definitions

. What the users think about the member of the set

. The number of members in the set

. Inferences from sample data

In practice, how do you notice these special entity types while modeling the infor-

mation requirements? You may adopt the top-down or the bottom-up approach. You

may look at several entity types and realize that these may be subtypes of some supertype

entity. Conversely, you may examine an entity type and determine that it would break

down into subtypes.

Let us explore these two approaches.

Generalization. Generalization proceeds from the recognition of common features of

attributes and relationships of individual entity types. It is a bottom-up approach where

you minimize differences among similar entity types. You suppress the differences to

arrive at the common features and name an entity type with these common features.

Create boxes in the data model to represent every possible category of business objects.

Examine the objects and determine if some of these may be subtypes of some other

business object. Suppress the differences between the subtypes, identify the common attri-

butes and relationships. Generalize to define the supertype.

Figure 4-16 illustrates the generalization approach for medical center patients.

Specialization. Specialization results from emphasizing differences among attributes

and relationships among similar objects. It is a top-down approach where you recognize

differences among similar entity types. You magnify relevant differences to arrive at a

set of distinct entity types and define these as the subtypes of the original entity type

that gets represented as the supertype.

Create boxes in the data model for only the high-level business objects. That is, ignore

any possible variations in the set of attributes for instances within each high-level object.

GENERALIZATION AND SPECIALIZATION 137

In the case of a medical center, first you will come up with the PATIENT entity type. Then

examine the instances within the object and note the differences in the sets of attributes for

the instances. Separate out the instances that possess the same set of attributes as a special

subtype for the supertype PATIENT.

Figure 4-17 illustrates the specialization approach for medical center patients.

Generalization Hierarchy

Refer back to Figure 4-17 showing the subtypes and the supertype representing patients in

a medical center. As certain attributes for a subtype are derived from the supertype, the

supertype and its subtypes form a hierarchy in the arrangement of these entity types in

a data model. The hierarchical, top-down arrangement with the supertype box above the

subtype boxes gives indication of how the supertype provides the common attributes to

the subtypes in real-world situations.

That figure shows two levels of the hierarchy, PATIENT at the higher level and the

other three subtypes one level down. Sometimes, you will come across more than two

levels in the generalization/specialization hierarchy. Figure 4-18 shows three levels in

the hierarchy for POLICY and shows levels of subtypes for insurance policies.

What about the instances in the supertype and each of the subtypes? The set of instances

within the supertype is a collection of all the instances in the lower level subtypes. If a

particular instance is present in subtype AUTOPOLICY, then that instance also exists

in the supertype POLICY. Cardinality indicator “1,1” between the supertype and each

subtype will be shown to signify this.

There is no theoretical limit to the number of levels in a generalization hierarchy.

However, more than three or four levels are comparatively rare in practice. More levels

FIGURE 4-16 Patient: generalization approach.

138 CHAPTER 4 OBJECTS OR ENTITIES IN DETAIL

FIGURE 4-17 Patient: specialization approach.

FIGURE 4-18 POLICY: generalization/specialization hierarchy levels.

GENERALIZATION AND SPECIALIZATION 139

become cumbersome and unwieldy representations in a data model defeating the whole

purpose of the structure itself.

Inheritance of Attributes

A significant feature of a supertype and its subtypes is the inheritance of the attributes by

each subtype from the supertype. These are the attributes that are common to all the sub-

types. In the case of the objects for a medical center as discussed earlier, all the subsets

share common attributes such as PatientID, PatientName, Address, and Diagnosis.

Because the subtypes share these attributes, there is no point in repeating these as attributes

of each of the subtypes. In a data model diagram, you may, therefore, show these as attri-

butes of the supertype. The principle of inheritance of attributes by the subtypes from the

supertype implies that each of the subtypes has these attributes. In addition, each subtype

may have other attributes specific only to that subtype.

Figure 4-19 illustrates the principle of inheritance of attributes by the subsets. Note the

common attributes shown at the supertype level. Also, observe the attributes specific to

individual subtypes.

Inheritance of Relationships

Let us take an example of a company leasing vehicles to customers. A lease agreement

covers a particular leasing arrangement with a customer. Examining the information

requirements, you can come up with two initial entity types, namely, VEHICLE and

AGREEMENT. Of course, there would be other entity types. But let us consider these

two entity types for now. Over a period of time, the same vehicle would relate to different

lease agreements. That is, when a vehicle comes out of one lease agreement, it would be

FIGURE 4-19 Subtypes: inheritance of attributes.

140 CHAPTER 4 OBJECTS OR ENTITIES IN DETAIL

leased to another customer or the same customer with a new lease agreement. You note

that a direct relationship exists between the entity types AGREEMENT and VEHICLE.

Examine the instances of the entity type VEHICLE. Do all the instances have the same

attributes? You quickly notice that cars, trucks, and vans that are leased have common

attributes. More importantly, each of these three types has specific attributes not shared

with the other two types. You have now come across the situation of supertype and sub-

types in the information requirements. VEHICLE is the supertype and CAR, TRUCK, and

VAN are the subtypes.

What about the association of the instances of VEHICLE with instances of AGREE-

MENT? In the same way, do instances of CAR have associations with instances of

AGREEMENT? They do because cars are covered by lease agreements. You note that

if the supertype VEHICLE has a relationship with another entity type AGREEMENT,

then its subtype CAR also has the same relationship with the entity type AGREEMENT.

Figure 4-20 illustrates this principle of inheritance of relationships by the subtypes from

the supertype. Note that each of the subtypes inherits the relationship with the entity type

AGREEMENT.

Constraints

A supertype represents a set of entities. These entities in the superset are grouped by sub-

types. Thus each entity in any subtype must have the same entity as part of the supertype.

The converse is not necessarily true: every entity in the supertype may not have the same

entity in some subtype. The existence of entities of the superset in the subsets depends on

the conditions of business. The rules of the particular business govern this. The business

rules impose certain constraints on the generalization structure and features.

Let us examine the existence conditions that are determined by the business rules. The

rules determine the nature of generalization/specialization. Let us classify these

constraints.

FIGURE 4-20 Subtypes: inheritance of relationships.

GENERALIZATION AND SPECIALIZATION 141

Total/Partial. See examples shown in Figure 4-21.

Total Specialization. All subtypes are defined. Every entity in the supertype must be a

member of a subtype. This is represented by a double relationship line emanating from

the supertype.

Partial Specialization. Not all subtypes are known, defined, or chosen to be defined.

Some entities in the supertype may not be a member of any of the subtypes. This is rep-

resented by a single relationship line drawn from the supertype.

FIGURE 4-21 Total and partial specialization.

FIGURE 4-22 Disjoint and overlapping subtypes.

142 CHAPTER 4 OBJECTS OR ENTITIES IN DETAIL

Disjoint/Overlapping. See Figure 4-22 for examples.

Disjoint or Exclusive. Each instance of supertype must be an instance in one and only

one subtype; marked with a “d” on the relationship line.

Overlapping or Inclusive. Instances of supertype can be instances of any or all of the

subtypes; marked with an “o” on the relationship line.

Possible Combinations. The above two sets of constraints may be combined to be

shown in the data model to reflect the true nature of the governing business rules. Possible

combinations of the constraints are as follows:

. Disjoint, total

. Disjoint, partial

. Overlapping, total

. Overlapping, partial

Design Constraints. These are meant to have the generalization structure of your data

model portray information requirements very precisely. Sometimes, a discriminator attri-

bute is introduced in the supertype. The values in the discrimator attribute would be used

to break down the entities into subtypes. So, we can have the following two cases:

Condition- or Predicate-Defined. The predicate value is written on the relationship line;

discriminator attribute to contain the proper predicate value. Subtype entities are generated

based on predicate value. See Figure 4-23.

FIGURE 4-23 Predicate-defined specialization.

GENERALIZATION AND SPECIALIZATION 143

User-Defined. No discriminator attribute; user is responsible to create entities in the

subtypes.

Rules Summarized

Let us conclude our discussion of generalization and specialization by highlighting some

general rules:

Subtype Distinctiveness. Each subtype must have at least one distinct non–key attri-

bute or at least one distinct relationship with another entity type.

Supertype Justification. For a supertype to be defined, a large number of entities must

be of the same type, attributes must be repeated for multiple entities, and the model is in an

evolving state.

Entity Occurrences. Every entity in the supertype must be an entity of one or more of

its subtypes.

Relationship. The supertype is in a one-to-one relationship with each of its subtypes.

Subtype Discriminator. If the subtypes are predicate-defined, the supertype contains a

subtype discriminator as an additional attribute to establish which subtype each entity is

associated with.

Mutual Exclusivity. All subtypes governed by the same discriminator need not be

mutually exclusive.

Nested Generalization Hierarchy. A subtype may become a supertype in another

generalization hierarchy.

Supertype Limits. There is no theoretical limit to the number of levels in a generaliz-

ation hierarchy; but too many levels will impose the presence of multiple discriminators.

Relationship Dependency. A subtype cannot be a child entity type in any other iden-

tifying relationship.

Dependent Entity Types. Generalization hierarchies may be present for associative

and aggregation entity types just as if they were regular entity types.

SPECIAL CASES AND EXCEPTIONS

Most of the entity types you will come across in real-world situations are regular entity

types such as CUSTOMER, EMPLOYEE, DEPARTMENT, and so on. We discussed

such entity types in detail. We also reviewed a few of the other entity types. We

studied supertypes and subtypes at length. We examined association entity types. You

also learned about aggregation entity types.

144 CHAPTER 4 OBJECTS OR ENTITIES IN DETAIL

We are now at a point to complete our study of entity types by considering a few excep-

tions and special cases. More than being exceptions, these present special situations in

real-world modeling. Recursive structures are not that rare. You will see them in almost

every data model. We will visit recursive structures in this section and also later on

when we discuss relationships in Chapter 6. Conceptual and physical entity types must

be recognized and need special treatment in a data model.

Sometimes you will be run into a quandary as to how to treat a specific modeling

construct—as an attribute or as a separate entity type. Relationships also pose similar

questions in certain circumstances. We will explore these situations.

Recursive Structures

EMPLOYEE is a fairly common entity type in many real-world information requirements.

Think about the instances for this entity type. Every employee in the organization will be

represented by an instance. In the set of instances, you will find workers who supervise

other workers. An instance representing a supervisor associates with those instances of

employees under his or her supervision. What you find here is that instances of an

entity type associate with instances of the same entity type. Associations recur within

the same entity type among its own members. These are recursive associations. This

type of relationship is a recursive relationship. Your data model must be able to indicate

entity types participating in recursive relationships.

Figure 4-24 shows examples of a recursive structure in a data model.

Note how the relationship line from an entity type is linked back to itself. Cardinalities

may vary with recursive relationships just like it does with regular relationships. Observe

the different sets of cardinality indicators represented in the figure.

Conceptual and Physical

Assume that you are asked to model the information requirements for an airline

company. Very quickly you realize that AIRCRAFT must be one of the business

objects in your data model. You will represent this as an entity type in your data

FIGURE 4-24 EMPLOYEE: recursive structure.

SPECIAL CASES AND EXCEPTIONS 145

model. Now, examine the requirements of the company with regard to the entity type

AIRCRAFT. The company’s fleet consists of many aircrafts. Each of these aircrafts

has a serial number, a certain number of seats, the date the aircraft was placed in

service, the chief mechanic responsible to service the plane, and so on. The company

needs to keep track of all the planes in its fleet. Notice also that the company uses differ-

ent types of aircraft like Boeing 747, MD 11, Airbus 321, and so on. The company needs

to keep track of the aircraft categories used in its fleet as well. What are Boeing 747,

MD11, Airbus 321, and so on? Are these aircrafts? No, these are categories of aircraft,

not the physical aircraft themselves. In this case of information requirements for

the airline company, you find two kinds of related business objects. One is the object

AIRCRAFT and the other AIRCRAFT-CATEGORY.

Now, consider the information requirements for a library. The library has to keep track

of individual copies of books so that it will know which particular copy is out with a

member. Each copy is marked with a call number. Further, the library must also have a

catalogue of books available for the members. These are not the actual copies of the

books, but the titles. So, in this case, you see the need for two related objects in your

data model: BOOK and BOOK-COPY. The two are not the same. They will have to be

represented by separate entity types in the data model. The instances within each entity

type are different. In the case of the entity type BOOK, the instances are the individual

titles; for the entity type BOOK-COPY, the instances are individual copies of the books.

Consider just one more example. An appliance store needs to keep track of individual

units of each appliance. Also, the store has to maintain a list of the kinds of appliances

available in the store. Here, you note the need for two related entity types in the data

model: APPLIANCE-UNIT and APPLIANCE-CATEGORY.

Physical Objects. The entity types like AIRCRAFT, BOOK-COPY, and

APPLIANCE-UNIT are representations of physical objects. A physical object refers to

tangible object that you can see, touch, or feel. These are physical things. You need to

have entity types symbolizing physical objects in your data model, whenever the infor-

mation requirements call for keeping track of individual, physical things.

What about the instances within the entity type indicating a physical object? Each

instance represents a particular physical thing. The instances within the entity type AIR-

CRAFT are the physical aircraft in the company’s fleet. If the company owns 100 aircraft,

100 instances exist within the entity type. In the same way, if the library has a total inven-

tory of 10,000 physical copies of various books, the entity type BOOK-COPY contains

these 10,000 instances.

Conceptual Objects. AIRCRAFT-CATEGORY, BOOK, and APPLIANCE-

CATEGORY do not represent any tangible things. You cannot touch or see an

AIRCRAFT-CATEGORY. What you can see is a physical aircraft that is of the Boeing

747 category. So, these are not representations of physical objects. The objects represented

by these are conceptual; these are conceptual objects.

What kinds of instances does an entity representing a conceptual object contain? These

instances are not physical things. Each instance within the entity type BOOK refers to a

particular title in the library. The library may have the book A Brief History of Time by

Stephen Hawking. This title will be an instance of the entity type denoting the conceptual

object BOOK in the data model. If the library holds four copies of this book, then you will

146 CHAPTER 4 OBJECTS OR ENTITIES IN DETAIL

have four corresponding instances in the entity type representing the physical object

BOOK-COPY.

Data Model Diagram. Figure 4-25 presents the data model diagrams for the three

examples discussed.

Note the relationships between the conceptual object and the corresponding physical

object in each example. Also, observe the cardinality indicators and understand the associ-

ation of the instances.

Assembly Structures

What is a bill-of-materials structure? You come across bill-of-materials processing

(BOMP) in manufacturing. In manufacturing of automobiles, an assembly of a major

part consists of several subassemblies; each subassembly in turn may be broken down

FIGURE 4-25 Data model diagrams: conceptual and physical objects.

FIGURE 4-26 Assembly structure.

SPECIAL CASES AND EXCEPTIONS 147

further. Assembly structures are cases of recursive relationships where the associations

recur at many levels.

Figure 4-26 displays an example of an assembly structure.

Notice the attribute Quantity shown in the diagram for the object ITEM. This attribute

Quantity does not represent quantities of individual instances of the object. Quantity indi-

cates units for the various recursive associations. How many units for the combinations of

part number 1 with part numbers 4, 5, and 6? It is an attribute of an aggregate entity type

consisting of just one object.

Entity Type Versus Attribute

Consider the set of employees working in departments. These departments have depart-

ment numbers. When you model this, you will include an entity type called EMPLOYEE.

There would be the usual attributes such as name, address, and so on for the EMPLOYEE

entity type. Now what about the department in which each employee works in? How do

you indicate this aspect in your data model? Let us also consider the fact that an employee

may be working in a particular department during a specific duration. If the information

suggests that you need show the duration also, how should your data model represent that?

Frequently, you will be faced with questions of this nature. What are the options for

representation in the data model? The simplest solution is to show DeptNumber as an attri-

bute for the entity type. In this simplest resolution, all we know about each department is

the DeptNumber. What if we need to indicate other data about departments such as Dept-

Name, DeptLocation, and DeptManagerName in the data model? Then a simple represen-

tation of DeptNumber as an attribute of the entity type EMPLOYEE will be inadequate.

Further, if you represent DeptNumber as an attribute and nothing else in the data model,

what about the duration an employee works in a department? If you have to represent the

duration also in your data model, then the simple representation of DeptNumber as an attri-

bute of EMPLOYEE will be incomplete.

The ultimate question is whether department data can be represented just using attri-

butes of a different entity type, namely, EMPLOYEE. Or, if this is inadequate and the

data model will not truly represent the information requirements, then DEPARTMENT

must be represented as a separate and distinct entity type with relationship to

EMPLOYEE. Department data—attribute or entity type? The conditions and business

rules of the information requirements will dictate how this should be handled in a data

model.

Figure 4-27 shows the representation of department data as a separate entity type

because of the need for complete information about departments and durations.

Entity Type Versus Relationship

In the case discussed above, we were faced with the options of either representing data as

an attribute or as a separate entity type. Here we will address another type of question—

whether to represent data as a relationship or as separate entity types. Frequently, you may

run into situations such as these.

Let us take an example where you need to represent managers and the departments they

manage. This can easily be set up in a data model using MANAGER and DEPARTMENT

entity types and showing the relationship between them. However, when you explore the

data requirements further, you will come across managers who manage more than one

148 CHAPTER 4 OBJECTS OR ENTITIES IN DETAIL

department. Now think about this additional requirement. Still you can represent this by

making the relationship between MANANGER and DEPARTMENT as a one-to-many

relationship. The representation will hold. But, what about the fact that a manager mana-

ging many departments may have separate budgets for each department he or she

manages? Also, you may need to show the date from which each manager started mana-

ging each department. Thus, the simple representation showing MANAGER, DEPART-

MENT, and the relationship between them may not be adequate in a data model. You

will have to create another entity type to show the attributes such as Budget and StartDate

for each (manager, department) pair.

Thus, we are faced with the options about proper representation. Should the information

requirements be represented as a relationship between two object types? Or, should the

requirements be represented by introducing another entity type? Management data—

relationship or another entity type?

Figure 4-28 shows the representation of management data as a separate entity type

because of the need for complete information about managers and their departments.

Modeling Time Dimension

Think of the values of attributes stored in the database. Normally, the values stored are the

current values. What values do you find for the Address attribute of CUSTOMER entity

type? The current address of each customer. As a customer’s address changes, the new

address replaces the old address in the database. In the same way, what values will be

stored in the ProductUnitCost and ProductUnitPrice attributes of PRODUCT entity type?

FIGURE 4-27 Department as separate entity type.

SPECIAL CASES AND EXCEPTIONS 149

Assume that just the current costs and current prices are stored in the database for the

products. What happens if an old invoice to a customer has to be recalculated and

reprinted? What happens when you want to calculate the profit margin for the past

quarter using the unit cost and unit price? If there had been no intervening price or cost

changes, you can perform these tasks without any problems. What you notice is that

ProductUnitCost and ProductUnitPrice are time-dependent data elements and that your

data model must include historical entity types to keep track of the changes.

Figure 4-29 indicates how historical entity types are included in the data model. Note

why ProductNo and EffectiveDate are used together to form the primary key for the

historical entity types.

Categorization

While discussing generalization and specialization, you have noticed that a supertype may

be subdivided into multiple subtypes. The entities within a supertype occur within the sub-

types. One supertype, many subtypes. Every subtype has only one supertype related to it.

An entity in a subtype can be an entity of only one supertype.

However, in some situations you may find the need to create models with more than one

supertype associated with one or more subtypes. Here we do not have one distinct super-

type. We have multiple supertypes. This is different from our earlier discussion on gener-

alization and specialization. When a subtype is related to more than one supertype, we call

FIGURE 4-28 Management as separate entity type.

150 CHAPTER 4 OBJECTS OR ENTITIES IN DETAIL

the subtype a category. Categorization is the modeling of a single subtype with a relation-

ship involving two or more specific supertypes.

But before we look at categorization, let us consider an example that will lead us up to

that topic. This is the notion of shared subtype. Shared subtypes give rise to multiple

inheritance.

Shared Subtype. Consider trainees in an organization. Trainees are part of the total

employees in the organization. Observe that the set of employees may form subsets of

supervisors, secretaries, IT personnel, marketing personnel, finance personnel, manufac-

turing personnel, and trainees. How do you model this so far? You can make EMPLOYEE

as the supertype with SUPERVISOR, SECRETARY, INFOTECH, MKTNG, FINANCE,

MANUFACTURE, TRAINEE as subtypes. This is straightforward specialization.

Now, let us say we need to model information technology trainees distinctly because

they have particular attributes not shared by other types of trainees. So, you create a dis-

tinct entity type IT-TRAINEE which will be a subtype of INFOTECH and TRAINEE sub-

types. A subtype with more than one supertype–subtype relationship is called a shared

subtype. An entity of IT-TRAINEE must be an entity of INFOTECH and TRAINEE sub-

types. As a result, IT-TRAINEE inherits the attributes of INFOTECH and TRAINEE. In

addition, IT-TRAINEE has its own attributes. This is called multiple inheritance.

Figure 4-30 shows the portion of the data model illustrating shared subtype and mul-

tiple inheritance.

Categories. Consider the relationship between a subtype and its supertype. In all the

examples considered on generalization and specialization so far, every such relationship

has one supertype. For example, in the relationship between IT-TRAINEE and INFO-

TECH, INFOTECH is the supertype and IT-TRAINEE is the subtype. In this relationship,

FIGURE 4-29 Modeling time dimension.

SPECIAL CASES AND EXCEPTIONS 151

only one supertype is involved. Similarly, in the relationship between IT-TRAINEE and

TRAINEE, only one supertype TRAINEE is involved.

However, in some situations, the modeling of the supertype–subtype relationship may

involve two distinct supertypes. In such cases, the subtype is known as a category. Let us

review the entity types shown in Figure 4-31.

FIGURE 4-30 Shared subtype and multiple inheritance.

FIGURE 4-31 Example of categorization.

152 CHAPTER 4 OBJECTS OR ENTITIES IN DETAIL

The figure shows two categories OWNER and BUILDING. The OWNER category

relates to two distinct supertypes INDIVIDUAL and INSTITUTION. The BUILDING cat-

egory is associated with two distinct supertypes SALE-BUILDING and RENTAL-

BUILDING. Note the symbols on the relationship lines.

A category entity type has selective inheritance. For example, each entity in

BUILDING-OWNER inherits only the attributes of INDIVIDUAL or the attributes of

INSTITUTION, but not both.

ENTITY VALIDATION CHECKLIST

At the completion of a portion of the data modeling activity, it is always a good practice to

validate your work against a checklist. This enables you to ensure that you have not over-

looked any particular step or missed any specific component. You need to go back and

review the model as it evolves against information requirements.

Entities and entity types are primary model components. We collect and store data

about things. Your model must truly represent the entities about which you need to

collect and store data. You have to ensure that your model so far is complete; you must

ascertain that your model is free of errors. You need to confirm whether the model up

to this point represents the information requirements completely and correctly.

In this section, let us enumerate the items for validation of entities in the form of check-

lists. The first checklist relates to completeness of the entity types; the second deals with

correctness of the defined entity types.

Completeness

Requirements Review. Compare the model with requirements and ensure that all

entity types are defined.

Dependent Entity Types. Review each entity type to check for dependencies; ensure

that all weak entities and their corresponding strong entities are named and defined.

Association Entity Types. Wherever intersection or association entity types are

necessary to resolve many-to-many relationships, ensure that they are defined and

indicated.

Generalization/Specialization. Review individual entity types to check if each may

be a supertype or a subtype; make certain that all supertypes and subtypes are completely

defined.

Category Subtypes. Scrutinize each subtype to check whether it has a relationship

with two distinct supertypes; make sure all category subtypes are defined.

Attributes as Entity Types. Examine attributes and ensure all those needed to be

defined as entity types are expressed properly.

Relationships as Entity Types. Examine relationships and make sure all those that

must be defined as entity types are modeled properly.

ENTITY VALIDATION CHECKLIST 153

Entity Names. Review all entity type names and resolve vague abbreviations and non-

standard acronyms.

Entity Descriptions. Ensure that each entity is described completely in a supplemen-

tary document to the data model diagram.

Estimates. Estimate current and future number of occurrences for each entity type and

record in the design documentation. This is useful for the logical and physical design of the

database.

Correctness

Entity Type Representations. Ensure that each entity represents a true business

object in the real-world domain of the organization that is being modeled.

Entity Type Names. Ensure that all entity types have the names spelled and shown in

proper case according to the accepted standard in the organization. The general convention

for entity type names is to record them in uppercase and use singular nouns. The name of

each entity type should accurately indicate which business object that name stands for.

It must be a name that users accept as easily and correctly understood.

Entity Descriptions. Ensure that the modelers have noted each entity type correctly

according to acceptable standards and usage of the entity type by the users.

Entity Documentation. Ensure that each entity is noted completely in a supplementary

document to the data model diagram.

Homonyms and Synonyms. Review the complete list of entity type names, side by

side. Check suspected homonyms and synonyms. Guarantee that these are completely

resolved.

Weak Entity Types. Scrutinize each weak entity type and the strong entity type on

which it is dependent. Verify the notations in the data model diagram and make sure

that the symbols are correct. Check the weak entity type’s discriminator for correctness.

Ensure that the data model diagram correctly shows the type of dependency—existence,

identification, or both.

Association or Intersection Entity Types. Check each association entity type

between two entity types. Verify that the association entity correctly resolves the

many-to-many relationship between the two original entity types.

Generalization/Specialization. Carefully examine each generalization/specializ-
ation structure. Verify each set of subtypes to ensure that they are subtypes of the indicated

supertype. Review the relationships. Especially make certain that the proper notations are

correctly shown in the model diagram.

154 CHAPTER 4 OBJECTS OR ENTITIES IN DETAIL

Category Subtypes. Verify each category subtype and ensure that it is a true category

entity type. Check the correctness of its supertype–subtype relationships with two distinct

supertypes.

CHAPTER SUMMARY

. An entity is a single distinguishable business object such as a person, place, thing,

event, or concept, part of a group of similar objects, relevant to an organization,

and about which the organization is interested in storing and using information.

. An entity may be physical or conceptual.

. An entity type refers to a collection of similar entities.

. Methods for identifying entity types: process-oriented and data-oriented.

. Homonyms and synonyms must be resolved while identifying entity types.

. Various entity types: weak, regular or strong, super, sub, association or intersection,

aggregation.

. Dependent entity types—dependency may be partial or complete; dependency may

be ID dependency or existence dependency.

. Subsets inherit attributes and relationships from their corresponding superset.

Specialization may be (a) total or partial and (b) disjoint or overlapping.

. Recursive structures consists of entities within an entity type having associations with

entities with other entities within the same entity type.

. A data model may consist of physical objects such as book-copy and conceptual

objects such as book.

. Assembly structures as in manufacturing consist of recursive structures.

. Historical entity types are needed to include the time dimension in a data model.

. After defining entity types for a data model, use an entity validation checklist to verify

completeness and correctness.

REVIEW QUESTIONS

1. True or false:

A. In a data model, only tangible business objects must be represented.

B. Intersection entity types are introduced in a data model to resolve

many-to-many relationships.

C. For weak entity types, ID dependency implies existence dependency.

D. Only three levels of generalization hierarchy can be present in a data model.

E. For disjoint specialization, instances of supertype can be instances of any or all

of the subtypes.

F. In all recursive relationships, the cardinality must be one-to-one.

G. Historical entity types are needed to represent the time dimension in a data

model.

H. Aggregation entity types can represent four-way relationships.

REVIEW QUESTIONS 155

I. Resolution of synonyms is easier than that for homonyms.

J. In a recursive entity type, entities within the entity type may be associated with

other entities within the same entity type.

2. Enumerate the guidelines for a good definition of an entity. Using these guidelines,

define an entity for an organization.

3. Distinguish between entities and entity types using examples.

4. What are two common methods for identifying entity types for an organization?

Describe one of the methods with an example.

5. What are homonyms and synonyms in entity types? How could these cause pro-

blems in identifying entity types properly?

6. What are the two types of dependencies of weak entity types on their corresponding

strong entity types? Describe one of the two types with an example.

7. Discuss the need for generalization and specialization in data modeling. Explain

with examples of supersets and subsets.

8. Subsets inherit attributes and relationships from their corresponding superset.

Explain this statement with an example.

9. Give an example of an overlapping partial specialization. Describe the entities in

the representation.

10. What are conceptual and physical objects? When is it necessary to represent these

in a data model? Explain the relationship between a conceptual object and a phys-

ical object with an example.

156 CHAPTER 4 OBJECTS OR ENTITIES IN DETAIL

5

ATTRIBUTES AND
IDENTIFIERS IN DETAIL

CHAPTER OBJECTIVES

. Provide an in-depth discussion of attributes and identifiers

. Explore the nature and definition of attributes

. Discuss attribute domains in detail

. Study how constraints work for attributes

. Classify attributes by various types

. Establish the need and role of identifiers

. Present types of keys and the governing rules

. Conclude with an attribute validation checklist

Open up the database of an organization and look at the data content. What you will find is

a huge collection of values. Some of these will be in text form; others in numeric format;

and still others in complex formats depending on the type of data stored. What are these

values?

If CUSTOMER is one of the business objects about which data is collected and

stored, then you will find data values for data elements such as customer name, customer

address, customer phone number, and so on. If ORDER is another business object in your

database, then you will observe data values for such data elements such as order number,

order date, order amount, and shipping method. What are these data values? You know

that customer name, customer address, and customer phone describe the business object

CUSTOMER. These are attributes of the business object. Similarly, order number, order

date, order amount, and shipping method are attributes of the business object ORDER.

So, the data values you find stored in the database are values of the attributes of the

157

Data Modeling Fundamentals. By Paulraj Ponniah
Copyright # 2007 John Wiley & Sons, Inc.

business objects. Apart from a few other types of data stored in a database, attribute

values form the bulk of the data content.

Attributes, therefore, stand out as important components of a data model. What is the

true nature of an attribute? How should we understand the role of an attribute in terms of

entity types and relationships? What set of values can an attribute of a business object

take? Can the value sets be shared among different attributes? Are attributes subject to

constraints or restrictions or rules? If so, what types of constraints? Are all attributes of

a business object of the same type? If different, how can we differentiate them and

depict them in a data model?

We will address such questions in detail. In the previous chapters, you have been

exposed to various examples of attributes. In Chapter 3, when we considered a case

study example, you reviewed the attributes of the different entity types. Now, we want

to explore attributes and make an in-depth study.

ATTRIBUTES

What do we mean by an attribute of a business object? What are values for an attribute?

We consider CustomerName as an attribute of a business object or entity type we call

CUSTOMER. What does the term CustomerName imply in terms of an entity type

known as CUSTOMER? Is it a placeholder to contain values for customer names? Is it

a common characteristic of all entities known as customers in that business? How is the

term CustomerName used when we access the database for customer names? We wish

to explore these questions in detail.

When you take into account the various components of a data model, attribute ranks high

as an important building block. As the leading component whose values fill up the data

content in a database, attributes deserve serious study. Let us get a clear understanding of

attributes.

Properties or Characteristics

Every business object possesses certain properties or characteristics that are relevant to the

information requirements. These characteristics describe the various instances of an object

set. For example, last name Jones describes an instance of the object EMPLOYEE. Simi-

larly, if that employee was hired on 10/1/2006, hire date is another attribute describing

that instance of the object.

Figure 5-1 shows attributes of an object STUDENT. Note the names of the attributes

written inside the ellipses or ovals. Observe how these are characteristics or descriptors

of the individual instances of the object set.

So, what are attributes?

Inherent Characteristics. Consider the data elements StudentID, StudentName,

SocSecNo, StudentPhone, and StudentMajor. These data elements are associated with

the object STUDENT. They are innate or natural or intrinsic or inherent properties of

STUDENT. Next, think of a particular course for which a student has enrolled. CourseNo

is also a data element associated with the object STUDENT. If so, is CourseNo also an

attribute of the object STUDENT? Compare the two data elements StudentName and

CourseNo. StudentName is a natural characteristic of the object STUDENT, whereas

CourseNo does not indicate a basic property of the object. CourseNo does not describe

158 CHAPTER 5 ATTRIBUTES AND IDENTIFIERS IN DETAIL

some intrinsic property of STUDENT, but only its relationship with another object called

COURSE. Therefore, CourseNo does not qualify to be an attribute of STUDENT.

Distinct Characteristic. An attribute is a distinct and specific characteristic of an entity

type that is of interest to the organization.

Indicates Data. An attribute of an entity type designates the nature of the data that is

maintained in the database for that entity type.

Describes Entity. An attribute is a simple, separate, distinct, singular property that

describes an entity.

Grouping of Entities. In our prior discussions on entities and entity types, you must

have observed that a group of entities were put together and called an entity type

because those entities were similar. Customer entities are grouped together as CUSTO-

MER entity type for the reason that the entities share common characteristics. If one cus-

tomer entity possesses the characteristics of name, address, and phone, then another

customer entity also has these characteristics; yet another customer entity also shares

these characteristics. Common characteristics or attributes determine whether a number

of entities or “things” may be grouped together as one type. Thus, attributes play a key

role in the formation of entity types.

An entity set is a set of entities of the same type that share the same properties or attri-

butes. An entity set is represented by a set of attributes that are descriptive properties

possessed by each member of an entity set.

Ownership by Entity. Go back to the data elements StudentID, StudentName,

SocSecNo, StudentPhone, and StudentMajor. These data elements are associated with

the entity type STUDENT. They are innate or natural or inherent properties of

STUDENT. These attributes are “owned” by the entity type STUDENT.

In a database, there may be hundreds of attributes. Every one of these attributes is

“owned” by some entity type. Each attribute has a name that uniquely identifies it with

a description that can be clearly interpreted. An attribute “owned” by an entity type

may be either a key attribute or a non–key attribute. Key attributes serve as identifiers

FIGURE 5-1 STUDENT object: attributes.

ATTRIBUTES 159

for the entity type (more about key attributes in a later section). Non–key attributes

constitute the bulk of the data content. These non–key attributes describe the entity type.

Attributes of Relationships. Until now, we have been considering attributes insofar

as they apply to entity types. However, in certain cases, attributes may be needed to

describe relationships as well. Let us look at the case of employees being assigned to pro-

jects. Here we have two entity types EMPLOYEE and PROJECT in a many-to-many

relationship. One employee may be assigned to one or more projects; one project may

be carried out by one or more employees.

Think about the types of data that must be collected and stored in the database. For

example, you would have to store start date and the duration for each employee on the pro-

jects that person has worked on. What are these values? These are values for start date and

duration. These are values for attributes known as StartDate and AssignmentDuration. But

which entity types “own” these attributes?

StartDate for an employee does not make sense; nor does it make sense for a project.

Similarly, AssignmentDuration does not make sense for employee or project by them-

selves. However, StartDate has meaning for an employee working on a project; the attri-

bute StartDate makes sense only when you consider the association of the employee with a

specific project. StartDate has to be an attribute of the relationship between EMPLOYEE

and PROJECT, not an attribute of either entity type apart from the relationship.

Figure 5-2 shows the relationship and its attributes.

Mapping Between Sets. Another way to look at attributes: attributes are mappings

between an entity set or a relationship set with a set of values. Let us examine this

aspect of attributes. Suppose you look at the data content in a database. Let us say we

find a number of values in text format indicating names of persons. This is a set of

values. Let us say also we find a number of values indicating Social Security numbers.

Now we understand that the first set of values is names of students and the second set

of values is Social Security numbers of students.

A particular name (John Silverstein) and a specific Social Security number

(111-44-3456) are those of a certain student. What is the mapping or connection here?

The specific student entity from the set of students maps into the values “John Silverstein”

and “111-44-3456.” How is the mapping done between entity and the values? It is done

through what we call attributes. The attributes StudentName and SocialSecurityNumber

provide the mapping between the set of values for names and Social Security numbers

and the set of student entities.

An attribute associates an entity set with a set of values. A value set in a database gets

interpreted in the context of a set of entities.

FIGURE 5-2 Attributes of a relationship.

160 CHAPTER 5 ATTRIBUTES AND IDENTIFIERS IN DETAIL

Attributes as Data

Most people, even many data modelers, think of attributes as data. This is only partially

true. Representations of attributes exist in the database as values in the form of text,

codes, numeric measures, and even images. In advanced systems, complex values in the

form of audio and video compositions may exist representing attributes.

When you represent an attribute with an oval in a datamodel diagram, you are expressing

the representation of specific data values from a designated set. The attribute Customer-

Phone is manifested in the database as several valid phone numbers stored as data. Your

data model showing the attribute CustomerPhone depicts this representation of data

values of valid phone numbers.

Attributes as Data Holders. Consider the attributes of STUDENT entity type:

StudentId, StudentName, SocSecNo, StudentPhone, StudentMajor, and StudentFax.

Figure 5-3 shows a set of values for these attributes. Examine these values.

The values such as “Networking,” “Web Design,” “Engineering,” and so on are mani-

festations of the data model component known as StudentMajor. What is this data model

component? What does the name StudentMajor point to? You may think of it as the name

for a data holder that contains data values such as mentioned. The representation of an

attribute in a data model is the depiction of a data holder.

Attributes of a single entity hold values that describe that specific entity. For example,

look at the values for the student, Kristin Rogers. The attributes StudentId, StudentName,

SocSecNo, StudentPhone, StudentMajor, and StudentFax hold data values “111245,”

“Kristin Rogers,” “214-56-7835,” “516-777-9584,” “Networking,” and “516-777-9587,”

respectively, for this student.

Attributes Indicate Data Storage. When you designate an attribute for an entity type,

your data model shows this attribute. For example, when you name an attribute Student-

Phone for the entity type STUDENT, you are expressing that the database stores phone

numbers as data for each student.

The assignment of an attribute for an entity type makes the statement about data storage

of values for that attribute in the database. For each entity, a value is to be stored for that

attribute. Each entity may have its own value for the attribute to be stored in the database.

Entity as Attribute–Value Pairs. Once again, let us review the attributes of

STUDENT entity type: StudentId, StudentName, SocSecNo, StudentPhone, StudentMajor,

and StudentFax. What can we say about each entity in the set? In particular, how can we

describe the entity representing Kristin Rogers?

FIGURE 5-3 STUDENT entity type: attribute values.

ATTRIBUTES 161

This particular entity may be described as a set of attribute–value pairs as follows:

(StudentId, 111245),

(StudentName, Kristin Rogers),

(SocSecNo, 214-56-7835),

(StudentPhone, 516-777-9584),

(StudentMajor, Networking),

(StudentFax, 516-777-9587).

Thus, each entity may be described by a set of (attribute, value) pairs, one pair for each

attribute of the entity type.

Attribute Values

Take a few samples of the values of the attributes shown in Figure 5-3. Examine the data

values shown in each column. We want get a clear understanding of attribute values as

applicable to any entity type.

First of all, when you consider the attribute values for one single entity or instance of

the entity type, you will note the values are specific and unique for that entity. Second, the

data values for a specific entity instance may themselves change over time.

Unique Values for an Instance. Look at one set of values shown in one row

of Figure 5-3. These values for the attributes StudentID, StudentName, SocSecNo, and

StudentPhone relate to one student, a specific instance of the entity type STUDENT.

These attributes do not relate to any random instance of the entity type; they relate to

one particular student.

Let us say, this student is Mary Williams. Then these attributes are characteristics of

Mary Williams. If you observe a specific instance of the entity type STUDENT, namely

Mary Williams, then you will note a unique and specific set of values for the attributes.

This unique set of values describes Mary Williams. In the data model, each instance of

an entity type possesses a unique set of values for its attributes.

However, this does not mean a value for any attribute may not be repeated for other

students. In fact, look at the value for the attribute StudentMajor. For Mary Williams,

the value is “Networking.” This value applies to Mary Williams. It may also apply to

other students as well. Other students may also have the value “Networking” as the

value for the attribute StudentMajor.

Changeable Values. You have noted that each instance of an entity type is described

by a unique set of values for its attributes. Review the unique set of values for the attributes

describing the instance Mary Williams in Figure 5.3. Let us say Mary marries John

Pearson and changes her name to Mary Pearson. Also, she changes her phone number.

What are the implications?

What you notice is that although each instance is described by a unique set of values

for its attributes, these values may change over time. The values for StudentName and

StudentPhone would change, but still the instance refers to the same student. Again,

after the changes, a unique set of values for the attributes describes the student Mary

Pearson. It is important to note that values of the attributes for an object instance may

change, but the instance itself remains the same.

162 CHAPTER 5 ATTRIBUTES AND IDENTIFIERS IN DETAIL

Names and Descriptions

Attributes in a data model are indicated by their names. In the E-R data model, the attribute

names are shown within the ovals that represent the attributes. Attribute names and their

descriptions are intended to provide a clear understanding of the nature of the data we want

to store about each entity of an entity type.

The data model diagram displays the attribute names. Attribute descriptions are written

in an accompanying requirements definition document.

Attribute Names. Following are a few guidelines for choosing and assigning a name for

an attribute.

Nouns. Use a noun in the form of a single or compound word. Use minimum number of

words. Avoid the use of special characters such as �, #, @, and so on.

Logical Not Physical. In choosing a name, conform to logical considerations, not physical

characteristics of the attribute.

Naming Standards. Follow the naming standards and conventions of your organization.

Synonyms and Homonyms. Resolve all issues relating to synonyms and homonyms

before finalizing the attribute names.

Clarity. Pick a name that is clear, precise, and self-explanatory.

CASE Tool. If a CASE tool is being used for datamodeling, be guided by the requirements

of the CASE tool for assigning attribute names.

In Line with Description. Do not let the attribute name contradict the attribute

description.

To Be Avoided. In the attribute name, avoid abbreviations, acronyms, plural words,

possessive forms of nouns, articles, conjunctions, prepositions, and verbs.

Attribute Descriptions. Attribute descriptions provided in the supplementary docu-

mentation enable clear thinking about the attributes. The descriptions present the rationale

for each attribute and explain the reason and role of the attribute.

A good attribute description supplements the meaning derived from the name of

the attribute. It builds on the name and enhances the understanding. The description

must be concise. If any technical terms are used in the descriptions, these terms must

be explained.

While writing an attribute description, do not simply rephrase the name. The descrip-

tion must be able to stand alone by itself. A few examples may be used, but a description

by means of just examples is incomplete. Dictionary meaning of the attribute name is not a

good description. Avoid technical jargon in the description.

ATTRIBUTES 163

ATTRIBUTE DOMAINS

In our discussions on attributes, you have noted the use of the term domain. Each attribute

is related to a specific domain. A set of data values constitute a domain. Value sets may be

a set of integers, a set of valid phone numbers, a set of valid zip codes, and so on. The data

set or domain for a particular attribute provides values for individual entities.

When you examine the domain for an attribute, you get to know more about the attri-

bute. Domain information describes an attribute further. We will study the information that

may be obtained from a domain. We will look at examples of attributes and their domains.

We will also study special cases of domains.

Definition of a Domain

First let us get a clear understanding of an attribute domain. What are the characteristics of

a domain? How do the values in a domain apply to attributes?

What about the nature of the values in a domain? How do they depend on the attribute

itself? First let us define a domain.

What Is an Attribute Domain? An attribute domain is a set of values that may be

assigned to an attribute. A domain defines the possible, allowable, potential values of

an attribute. As noted earlier, a domain is simply a set of values.

When you relate a set of values to an attribute, the set of values becomes the domain for

that attribute. Make a list of all the department numbers in your organization. This list of

values of department numbers becomes the domain for an attribute called DeptNo. When

you link a set of values to an attribute, then the set of values takes a special role of containing

allowable values for the attribute.

Every attribute has values for each of the entities for which it is an attribute. If you have

an entity type known as DEPARTMENT and it has an attribute DeptName, then this attri-

bute has different values for the various occurrences of the entity type. Each department

has a specific department name. The set of possible department names constitutes the

domain for DeptName.

Every attribute must, therefore, have a domain consisting of at least two values. Most

attributes have domains consisting of large number of values. We understand that attribute

is a term used to indicate a business fact that can have values from a given domain.

Examples of Attribute Domains. Let us now consider the example of an entity type

and its possible attributes.

Entity type: EMPLOYEE

Attributes: EmployeeID, SocSecNo, EmpName,

EmpZip, Salary, HireDate

Examine the values of each of these attributes. You will note that the values for a

particular attribute are from a definite set of values. For example, the values for

EmployeeID may be any number with six digits. That means, the set of values from

which the value of EmployeeID for a particular instance of object EMPLOYEE is the

164 CHAPTER 5 ATTRIBUTES AND IDENTIFIERS IN DETAIL

set of numbers from 000001 to 999999. This is the domain of values for the attribute

EmployeeID.
Domain of an attribute is, therefore, the set of legal or allowable values for that attribute.

In the case EmployeeID, the attribute domain is the set of numbers from 000001 to 999999.

Attribute domains are sets based on natural limitations as for numbers or characters of the

alphabet. Mostly, business rules determine attribute domains.

Each attribute has its own domain for its values. Here are some examples of domains

for the above attributes:

EmployeeID: Set of numbers from 000001 to 999999

SocSecNo: Set of legal 9-digit Social Security numbers

EmpName: Any text up to 45 characters

EmpZip: Set of legal zip codes

Salary: Currency value from 000000.00 to

999999.99

HireDate: Legal values for date greater than

January 1, 1900

Domain Information

In the above example, you have looked at several examples of domains. Again, remember

each domain is a value set. You can examine the values in each domain.

For example, when you scrutinize the domain for the attribute Salary, what information

about the attribute does this domain convey to you? The values tell you that salary values

are numeric and that salary values must fall within a certain range. What about the domain

for HireDate? Here you note that the values for this attribute must have a correct date

format and that the dates must be after January 1, 1900.

How do you set up the domain for an attribute? Generally, the nature of the attribute

itself determines the contents of the domain. Beyond this, business rules regarding the

attribute shapes the contents of the domain. For example, for the attribute HireDate, the

set of values must be numeric and in date format. The nature of this attribute determines

this general aspect of the domain. In this organization, all employees were hired after

January 1, 1900. Therefore, no HireDate can be before January 1, 1990. This is a business

rule. And this business rule determines the special aspect of the domain. Sometimes, the

data type is known as the general domain and specific values, ranges, and so on are referred

to as the specific domain.

Domain Information Content. Having reviewed the examples of domains, what infor-

mation should attribute domains include? What should we be able to understand by

reviewing the definition and contents of a domain?

Domain information must include the following.

Data Type. Type of data such as text, numeric, character, integers, audio, and video.

Format. Input and display formats for numeric data such as groupings with comma

separation.

Length. Length for text data and formats such as long integer.

ATTRIBUTE DOMAINS 165

Distinct Formats. Specific formats such as currency and date.

Specific Values. Discrete values such as “Office,” “Store,” and “Warehouse” for attribute

BuildingType in a data model for a retail organization.

Range. Range of values with inclusive or exclusive terminal values such as A001 to

D999 for DeptNo attribute.

Constraints. Exclusions or exceptions in a set of domain values.

Nulls. Stipulation whether null is valid as part of the domain.

Default Values. Default value to be assigned for an attribute where input value is missing

or unavailable.

Attribute Values and Domains

As you already know, each attribute of the various entities of an entity type gets its values

from a set of allowable values. This set of legal values forms the domain of values for the

attribute.

In order to firm up our understanding of attributes and domains, let us consider one

more example of attributes and domains. Figure 5-4 displays examples of attributes and

respective domains for entity type ORDER.

Note how the domain for each attribute consists of a set of allowable values. Notice

how the two attributes OrderDate and ShipmentDate share the same domain. A domain

FIGURE 5-4 Attributes and domains for ORDER entity type.

166 CHAPTER 5 ATTRIBUTES AND IDENTIFIERS IN DETAIL

of values may apply to several attributes of an entity type. However, each attribute takes its

values from a single domain.

Split Domains

Quite often, domain values enable us to divide them into subsets so that we could dis-

tinguish between instances of attributes. Take the example of an entity type EMPLOYEE.

In this organization, employees have to be distinguished and categorized into married or

single groups. You can use values of an attribute known as MaritalStatus and split the

domain into two groups.

All employee entities with “M” as the value for MaritalStatus will fall into one category

and those with the value “S” will be in the other category. We are splitting the domain into

two subsets and making use of the splitting to categorize the employees. At the same time,

MaritalStatus represents a single business concept. Each attribute must represent a single

concept.

We may achieve the same categorization by using two separate attributes Married-

Indicator and SingleIndicator in the EMPLOYEE entity type. Here, “Y” in Married-

Indicator or SingleIndicator will allow us to group married employees and single

employees. However, if we do so, we will be splitting a logically complete domain into

two separate attributes. We will be separating a single concept and the model will not

reflect single concepts as single attributes. This will be an incorrect method of splitting

domains.

Figure 5-5 shows incorrect and correct methods for domain split.

Misrepresented Domains

Every domain must represent the business rules correctly. The data model must reflect the

information requirements and the business rules exactly. Sometimes, data modelers tend to

misrepresent domains, mix them up, and produce incorrect data models.

FIGURE 5-5 Incorrect and correct domain split.

ATTRIBUTE DOMAINS 167

Consider the data model for a university. One of the major entity types is STUDENT.

For this particular data model, two business rules need to be taken into account:

. The university has both full-time and part-time students.

. Some students receive scholarships, others do not.

The resulting data model must incorporate these business rules. Essentially, you need

to separate out student into groups as full-time and part-time students, as well as

students with scholarships and those without scholarships. How do you do that? You

have to use domain values to indicate which group a student belongs to. Here is how

the data modeler presented the partial model. Figure 5-6 displays the incorrect

representation.

What is wrong with the figure? The data modeler implicitly assumed that no part-time

students receive scholarships. In this model, two different concepts study schedule and

tuition payment are mixed. These attributes need separate value domains; however, the

domains are misrepresented in the model. Two domains have been mixed together

using a single attribute StudySchedule. We will look at how this case of mixed domains

could be resolved.

Resolution of Mixed Domains

We have to separate out the domains into two and express the two concepts separately.

For this purpose, we need to express the two distinct concepts with two separate attributes

StudySchedule and TuitionPayment. Then each of these attributes will have a separate

domain.

Figure 5-7 indicates a resolution to the problem of mixed domains. Examine how the

problem is resolved with two separate attributes.

FIGURE 5-6 Model not matching requirements.

168 CHAPTER 5 ATTRIBUTES AND IDENTIFIERS IN DETAIL

CONSTRAINTS FOR ATTRIBUTES

Constraints are rules or restrictions imposed on attributes. This is mainly done through

imposing restrictions on the values in the domains. While reviewing examples of attributes

and domains, you have already come across some of the constraints.

Constraints portray special aspects of the business rules. They provide character to the

attributes. Later on, in the development of the database, constraints get implemented by

means of facilities provided in the DBMS. In this section, let us summarize some of the

ways of imposing constraints on attributes.

Value Set

You may specify constraints for an attribute by allowing only distinct values in the

domain. Every entity is allowed to use only values from this restricted value set for the

particular attribute.

Note the following examples for this kind of constraint:

Attribute Domain

EmployeeGender “Male”/“Female”

ApplicanceColor “White”/“Black”/“Silver”/“Beige”
EmploymentStatus “Full-time”/“Part-time”

StudentZip Valid Zip Codes

CreditCardNumber Valid 10-digit card number

FIGURE 5-7 Resolution of misrepresented data model.

CONSTRAINTS FOR ATTRIBUTES 169

Range

This is a common method of imposing constraints. You do not provide specific values to

be part of the domain; instead, you give a range of values for the attribute. Each entity uses

a value within the range for the particular attribute.

Here are a few examples for range of domain values used as constraints:

Attribute Domain

HourlyWage From 5.00 to 50.00

EmployeeDOB Greater than 1/1/1930
WeeklyWorkHours 0.00 . and , ¼ 80.00

ShipmentCharge 4.99 to 24.99

ExamScore 0 to 100

Type

Data type governs all attribute values. Data type constraints are either stated explicitly or

they are implied. We have already seen some examples of data types such as numeric, text,

and so on.

In addition to data type, domain constraints include the lengths of the character strings

for text data and number of digits for numeric data. Note the following examples:

Attribute Domain

YearlySalary Numeric, long integer

DaysWorked Numeric

CustomerName Text up to 60 characters

ProductDesc Text up to 45 characters

CityName Text up to 65 characters

Null Values

Consider the attribute StudentFax for an entity type STUDENT. What about the values of

this attribute for the various entity instances? If Mary Pearson has a fax machine, then that

fax number will be the value for StudentFax for her.

On the other hand, if Rob Smith does not have a fax machine, then what about the value

for StudentFax forRobSmith?We then say that the attribute StudentFax forRobSmith has a

null value. If an object instance has no value for one of its attributes, then this attribute has

a null value for that instance. Null values are not blanks or spaces. Null value for an attribute

in an entity instance indicates the absence of a value for that attribute in that instance.

Null values for attributes play a significant role in databases. The value of an attribute

for a particular instance of an object may be set to null if a value is not available, missing,

or genuinely absent. In a database, null values may not be permitted for certain attributes.

Using appropriate language commands, you can check for null values in attributes for

object instances.

An attribute may have a null value for an instance of a entity type when

. this attribute is not applicable for that entity instance, or

. the actual value is missing or unavailable at input, or

. it is unknown whether a value exists for that entity instance.

170 CHAPTER 5 ATTRIBUTES AND IDENTIFIERS IN DETAIL

TYPES OF ATTRIBUTES

Mostly, a particular attribute of a single entity has only one value at any given time. For

example, the value of the attribute ProjectDuration for a single entity of the entity type

PROJECT has a value of 90 days. At any given time, this is the only value for that attribute.

However, in real-world situations, you will come across attributes that may have more than

one value at the same time. You will also notice other types of variations in attributes.

In this subsection, we will describe such variations in the types of attributes. As you

know, the datamodelmust reflect real-world information correctly. TheE-Rmodeling tech-

nique provides for representation of different attribute types. Let us go over a few examples.

Single-Valued and Multivalued Attributes

Note the following examples of single-valued and multivalued attributes. Observe the

values of attributes for a single entity. These are the values at a given point in time.

Single-Valued

Entity type: EMPLOYEE

Attribute: EmployeeJob

Attribute value for single entity: Salesperson

Entity type: EMPLOYEE

Attribute: EmployeeDOB

Attribute value for single entity: 24JAN2006

Multivalued

Entity type: AUTOMOBILE

Attribute: ExteriorColor

Attribute values for single entity: Beige, Gold (two-tone color)

Entity type: CUSTOMER

Attribute: CustomerPhone

Attribute values for single entity: 732-888-1234, 732-888-3456,

732-889-5566

Figure 5-8 illustrates how single-valued and multivalued attributes are represented in a

data model diagram with different notations for the two types.

Simple and Composite Attributes

This is another variation in attribute types. In real-world information, you will notice that

some attributes may be divided further into smaller units. The smaller units are known as

simple or atomic attributes, whereas the larger units are called composite attributes. Most

of the attributes in real-world information, however, are simple attributes. Your data

model has to represent these variations. Note the examples presented below.

Composite

Entity type: CUSTOMER

Composite attribute: CustomerAddress

Component simple attributes: Street, City, State, Zip

TYPES OF ATTRIBUTES 171

Composite

Entity type: EMPLOYEE

Composite attribute: EmployeeName

Component simple attributes: FirstName, LastName, MidInitial

Simple

Entity type: LOAN ACCOUNT

Simple attribute: LoanAmount

Entity type: EMPLOYEE

Simple attribute: SocialSecNumber

Figure 5-9 shows the notations used for representing composite attributes. Note how the

composite attribute branches into the simple attributes that are its components. Especially

observe how the attribute CustomerAddress may be broken down further into simple

attributes.

Attributes with Stored and Derived Values

In later phases of database development, you will transform the data model into the phys-

ical structure of how data gets stored in the database. From our discussion of attributes, you

must have realized that the physical data stored in the database consists of values of the

attributes of the complete set of all the entities. Stored data is really values of the attributes.

FIGURE 5-8 Single-valued and multivalued attributes.

172 CHAPTER 5 ATTRIBUTES AND IDENTIFIERS IN DETAIL

If you have a CUSTOMER entity type with CustomerName, CustomerAddress, and Phone

as the attributes, then your database stores the values of these attributes for all the customer

entities in your organization. These are attributes where values are stored in the database.

Sometimes, you would want to calculate and derive values from the values of one

or more attributes and store the derived values in separate attributes. These are attributes

containing derived values. Look at the following examples.

Attributes with Derived Values

Entity type: EMPLOYEE

Derived attribute: LengthOfEmployee

Attribute derived from: EmployeeStartDate (and today’s date)

Entity type: PRODUCT

Derived attribute: ProfitMargin

Attributes derived from: UnitPrice and UnitCost

Figure 5-10 illustrates how a derived attribute is represented in an entity-relationship

data model.

Optional Attributes

In some entity types, a good number of entity occurrences may not have values for specific

attributes. So, for such entity instances, the database will contain nulls for those attributes.

Simply, these attributes are not applicable to those entity instances.

Figure 5-11 shows CUSTOMER entity type with its attributes. Various attributes have

different data value domains, and individual instances of the entities will pick up data

FIGURE 5-9 Composite attribute.

TYPES OF ATTRIBUTES 173

values from the domains for their attributes. However, notice the following attributes:

ContactName, ContactPhone, ContactCellPhone, and ContactHours. These attributes

relate to the contact persons for individual customers.

Not all customers have separate contact persons. Maybe only about a third of the cus-

tomers have contact persons. Therefore, for about two-thirds of the entity instances of

FIGURE 5-10 Derived attribute.

FIGURE 5-11 Optional attributes for CUSTOMER.

FIGURE 5-12 Resolution of optional attributes.

174 CHAPTER 5 ATTRIBUTES AND IDENTIFIERS IN DETAIL

CUSTOMER, these attributes will have null values. These attributes are optional attri-

butes. Resolve this situation by splitting these attributes from CUSTOMER and creating

another entity type CONTACT-PERSON as shown in Figure 5-12.

IDENTIFIERS OR KEYS

Identifiers are attributes whose values enable us to uniquely identify individual occur-

rences of an entity type. If you have a CUSTOMER entity type, this represents the

complete set of customers. The representation of the entity type in a data model portrays

the entire set of customers. But in a database, we are interested in specific customers.

Which customers live in Dayton, Ohio? Which customers bought for more than

$100,000 last year? Who is the customer that sent order number 123456?

We need a method for identifying individual entities. In our earlier discussions, we have

covered entity identifiers. Now we would like to get into more details.

Need for Identifiers

Go back to Figure 5-3 displaying sample attributes for the entity type STUDENT. You have

noted that the set of values in each row describes a single instance. But, do you knowwhich

set describes a particular instance? If asked what is the address of Rob Smith, how can you

find the address from the database? You can go through all instances of entity type

STUDENT and check for the name value Rob Smith and then find the value for the

address. What if there are three students in the university with the same name Rob

Smith? Which Rob Smith are we referring to?

You need a method to identify a particular instance of an entity type. Obviously, values

of an attribute may be used to identify particular instances. You tried to do that by looking

for STUDENT instances with value “Rob Smith” for the attribute StudentName. However,

you could not say for sure that you found the correct student because of the possibility of

duplicate values for this attribute. On the other hand, if you had used values of the attribute

StudentID, you could uniquely identify the student. What is the address of the student with

StudentID 123456? It is MaryWilliams; nobody else has that StudentID. Therefore, values

of the attribute StudentID can be used to uniquely identify instances of STUDENT.

Attributes whose values can be used to uniquely identify instances of an entity type are

known as identifiers. They are also known as keys for the entity type. Now, review the

attributes for the entity type STUDENT. StudentName, StudentPhone, or StudentMajor

cannot be used to identify instances uniquely. This is because these may have duplicate

values in the set of instances for the entity type. Therefore, any attribute that is likely to

have duplicate values does not qualify to be a key or identifier for an entity type.

Definitions of Keys

Let us define a few versions of key that are applicable to entity types. These definitions will

help you to appreciate the differences and apply them correctly.

Candidate Key. A candidate key is an attribute or group of attributes whose values

uniquely identify individual occurrences of an entity type.

In the example for STUDENT entity type, either of the attributes StudentID or SocSecNo

qualifies to be a key. Values of either attribute will uniquely identify individual occurrences

IDENTIFIERS OR KEYS 175

of STUDENT entities. Such attributes are known as candidate keys—candidates to become

the key.

Primary Key. One of the candidate keys is chosen to serve as the unique identifier for the

entity type. The selected candidate key becomes the primary key.

For the STUDENT entity type, you can choose either StudentID or SocSecNo to be the

identifier. If you choose SocSecNo, then this attribute becomes the primary key for the

entity type.

Composite Key. For some entity types, one attribute alone will not be enough to form

the identifier. You may have to use the combination of two or more attributes as the iden-

tifier. A primary key consisting of more than one attribute is known as a composite key.

For example, for an entity type PROJECT-ASSIGNMENT representing the assignment

of employees to projects, the combination of attributes ProjectId and EmployeeNo—a

composite key—is needed to form the identifier.

Superkey. If a set of attributes is chosen to serve as the primary key and if there are

superfluous attributes in the combination, then such a key is known as a superkey. A super-

key contains redundant attributes.

For example, the attributes StudentID and StudentName together can serve as the

primary key for STUDENT. However, StudentID by itself is sufficient to form the key;

StudentName in the key is superfluous.

Natural Key. Natural key consists of attributes that represent some characteristics found

in the real world. For example, check numbers and credit card numbers are real-world

attributes.

If you form the primary key using such attributes, your key is a natural key. Commonly,

entity types use natural keys.

Surrogate Key. In many cases, natural keys are not consistent or stable enough for use

as primary keys. Some natural keys may be unduly long. In these situations, a new attribute

called the surrogate key or artificial key is introduced in the entity type.

Values generated manually or by the computer system are used for the surrogate

key attribute. For example, you can have autogenerated invoice numbers as values for

the surrogate key InvoiceNum of the entity type INVOICE.

Guidelines for Identifiers

Refer back to our discussion of null values for attributes. Can an attribute with null values

qualify to be a key? If null values are permitted for an attribute, then many instances of the

object may have null values for this attribute. That means this attribute is useless for iden-

tifying those instances for which the attribute has null values. Attributes for which null

values are allowed cannot be used as keys.

Let us summarize a few important guidelines for choosing primary keys.

Optional Attributes. Optional attributes may have null values for individual entity

instances. Therefore, do not include optional attributes in the primary key of an entity type.

176 CHAPTER 5 ATTRIBUTES AND IDENTIFIERS IN DETAIL

Single Attribute. Adopt the smallest key rule. If a single attribute will suffice, do not use

a composite primary key. If a single attribute is not enough to form the primary key, use

the minimum number of attributes to form the key.

Stable Attribute. Choose an attribute such that its value will not change or become null

for the lifetime of each entity instance.

Uniqueness. For primary key, choose an attribute that will have a unique value for each

individual instance of the entity type. No two instances may have the same value for the

chosen attribute.

Definitive. Choose an attribute for which a value exists for every instance of the entity

type at creation time such that an entity occurrence cannot be created unless a primary key

value also exists.

Length. Choose the candidate key that has the minimum length.

Single-Valued Attribute. Choose a single-valued attribute for primary key. A multiva-

lued attribute, by definition, may have multiple values for the same entity instance; there-

fore, it cannot serve as the primary key.

Built-in Meanings. Avoid any candidate key where values of parts of the attribute may

have built-in meanings. For example, ProductNumber where part of the attribute indicates

the production plant number is not a good candidate key. When another plant begins to

manufacture this product, the product number for the same product will have to be

changed. In other words, the primary key values must be “factless.”

Key in Generalization Hierarchy

In a generalization hierarchy, the primary key is inherited by the subtype entities. The hier-

archy may consist of several levels, yet the primary key values trickle down from the

supertype at the highest level.

FIGURE 5-13 College data model: multilevel generalization.

IDENTIFIERS OR KEYS 177

Figure 5-13 illustrates a multilevel generalization hierarchy in a college data model.

Notice the primary key attribute SocSecNo for the supertype PERSON at the highest

level. Observe the entity types at the second level. For each of these entity types, the

primary key attribute is still SocSecNo. As it is implied, the primary key in not explicitly

shown in the model diagram. The primary key attribute gets inherited by the entity types at

the next two lower levels also.

ATTRIBUTE VALIDATION CHECKLIST

Thus far in this chapter, we coveredmany topics on attributes in detail. We reviewed formal

definitions of attributes.We elaborated on attribute domains.We looked at the types of con-

straints relating to attributes. We studied various types of attributes and noted how these are

represented in a data model. We reviewed key attributes in sufficient depth.

During the data modeling process, at each stage, you need to check the data model for

completeness and correctness. Data modeling is an iterative process. After defining the

entity types, the next major activity refers to the representation of attributes and identifiers.

We now present a checklist of items for validation of attributes. Two checklists are pre-

sented: one to verify completeness and the other to verify correctness of attributes. Use

these checklists to complete the review process for attributes.

Completeness

Requirements Review. Go over the requirements for each entity type and make sure

all attributes are completely defined.

Attribute Names. Review each attribute name and ensure that it represents a single

business fact in the real world. Rewrite vague abbreviations and nonstandard acronyms.

Attribute Descriptions. Provide descriptions for all attributes as needed in the

supplementary documentation.

Domains. Ensure that the domain is clearly indicated for each attribute.

Constraints. Wherever business rules are present in the requirements relating to attri-

butes, ensure that these are properly noted in the definition of the domains. Use sup-

plementary documentation.

Composite Attributes. Make certain that all composite attributes are identified and

represented in the data model diagram.

Multivalued Attributes. Review each entity type for multivalued attributes. Mark mul-

tivalued attributes in the data model diagram with proper notation.

Derived Attributes. Wherever needed, ensure that derived attributes are shown in the

data model diagram. Also, verify that the derivation rules are recorded in the supplementary

documentation.

178 CHAPTER 5 ATTRIBUTES AND IDENTIFIERS IN DETAIL

Optional Attributes. Verify that all optional attributes are noted and documented as

notes in the data model diagram and in the supplementary documentation.

Primary Key. Ensure that every entity type has an assigned primary key.

Surrogate Key. Wherever there is a need for a surrogate key, make sure a separate

attribute is defined for the corresponding entity type and marked as primary key. Also,

document how values for the surrogate key are generated.

Correctness

Attribute Representation. Ensure that each attribute represents a single fact about the

organization.

Attribute Names. Make sure that all attribute names are spelled and shown in proper

case according to the accepted standard in the organization. Use the same standard such

as separating words in the names with hyphens, underscores, or embedded uppercase

letters, and so on. Review each attribute name and ensure that it represents a single

business fact in the real world.

Attribute Descriptions. Ensure that each attribute description correctly supplements

and describes the attribute name. Make sure descriptions exist for all attributes except

the very obvious ones where the meaning can be clearly inferred from the attribute

name itself.

Homonyms and Synonyms. Review the complete list of attribute names. Scan for

homonyms and synonyms and resolve these.

Domains. Review the domain for each attribute and make sure that the domain is appro-

priate and conforms to the requirements. Ensure that each domain contains at least two

data values.

Constraints. Review the expressions of constraints through domain definitions and

ensure correctness.

Composite Attributes. Goover all composite attributes and ensure that they are properly

broken down and shown in the data model diagram.

Multivalued Attributes. Verify representations of multivalued attributes in the data

model diagram for correctness.

Derived Attributes. Check representations of derived attributes in the data model

diagram. Verify derivation rules.

Optional Attributes. Verify documentation of optional attributes and ensure that these

are truly optional.

ATTRIBUTE VALIDATION CHECKLIST 179

Primary Key. Check each primary key attribute. Ensure that each primary key attribute

will contain unique values that will last for the lifetime of the entities. Double check and

ensure that the primary key attribute is not an optional attribute. Make sure that the

primary key does not contain any superfluous attributes. Review all candidate keys for

each entity type and make certain that the most suitable candidate key is chosen as the

primary key.

CHAPTER SUMMARY

. Attribute values form the bulk of the data content in a database.

. Attributes are distinct, intrinsic, and inherent characteristics of an entity type. An

attribute designates the nature of data for an entity type; an attribute describes an

entity type.

. An attribute associates an entity set with a set of values.

. Each entity may be described by a set of (attribute, value) pairs, one pair for each

attribute of the entity type.

. A set of allowable or legal values for an attribute constitutes the domain for that

attribute.

. Domain information includes data type, format, length, specific value, range, con-

straints, use of nulls, and default values.

. Attribute types: single-valued and multivalued, derived and stored, optional

attributes.

. Identifiers signify unique instances of entity types. One of the candidate keys is

chosen as the primary key for the entity type.

REVIEW QUESTIONS

1. Match the column entries:

1. Attributes A. Actual value missing

2. Default values B. Artificial key

3. Constraint on attribute C. More than one attribute

4. Null value D. Data holders

5. Composite attribute E. Integer

6. Surrogate key F. No duplicate values

7. Composite key G. Extra unnecessary attributes

8. Data type H. Range of domain values

9. Primary key I. Made up of simple attributes

10. Superkey J. Part of domain information

2. Discuss in detail what attributes are and what their features are. Use some examples

to enable the discussion to be understood.

3. Explain with an example how a relationship can have attributes.

180 CHAPTER 5 ATTRIBUTES AND IDENTIFIERS IN DETAIL

4. Stipulate any five criteria for selecting names for attributes.

5. What is an attribute domain? Describe clearly with examples.

6. List the types of information to be included in the domain definition.

7. What are split domains? Describe the correct method for domain split with an

example.

8. Name four types of constraints for attributes. Give examples for any two types.

9. Distinguish between stored and derived attributes. Give two examples.

10. List any six guidelines for choosing the primary key.

REVIEW QUESTIONS 181

6

RELATIONSHIPS IN DETAIL

CHAPTER OBJECTIVES

. Study various aspects of relationships in detail

. Explore the nature and definition of relationships

. Discuss relationships for dependent entity types

. Examine structural constraints for relationships

. Provide in-depth coverage of cardinality and nullability

. Investigate potential problems and study solution options

. Review several design issues and resolutions

. Conclude with a relationship validation checklist

We have reviewed entities in detail; entities are business object instances about which an

organization collects and stores information. We made an in-depth study of attributes;

these represent the data content about the entities. Entities or business objects do not

simply exist in isolation. In the real world, business objects interact with one another.

This interaction produces types of useful information for an organization.

Consider a question: Which are the orders placed by a specific customer? Here the

information can be derived only when you consider the interaction between the entity

representing that customer with the entities denoted by that customer’s orders. Another

question: Which are flights taken by a passenger in a frequent-flier program? This is per-

tinent information needed by an airlines company administering a frequent-flier program.

Interaction or relationship between passenger entities and entities representing flights

provides the required information.

Entity types and their attributes provide static information. In isolation, you can obtain

information about customers only and nothing else from the attributes of CUSTOMER

183

Data Modeling Fundamentals. By Paulraj Ponniah
Copyright # 2007 John Wiley & Sons, Inc.

entity type. Similarly, by themselves, the attributes of ORDER entity type provide infor-

mation about orders only. Only when you make use of the relationships between customer

and order entities you can obtain more dynamic and useful information.

In this chapter, we will explore relationships in greater detail. Although we have

covered relationships among entity types earlier, this is a more elaborate and intensive

study. We will walk through potential problems in modeling relationships and examine

some critical design issues.

RELATIONSHIPS

Consider an order entry process. This is a typical process in most organizations. Examine

the information requirements for an order entry process. Apart from others, three entity

types feature prominently in the information requirements. The information requirements

are about CUSTOMER, ORDER, and PRODUCT. Each entity type has its own set of attri-

butes. If your data model represents just the three entity type and their attributes, then the

model will not be a true representation of the information requirements. Of course, in the

real-world situation, you have these three entity types. But, that is not the whole story.

These three entity types do not just remain in seclusion from one another. The business

process of order entry takes place on the basis of associations between the three sets of

entities. Accordingly, the data model must reflect these associations.

Customers place orders; orders contains products. At a basic level, CUSTOMER entity

type and ORDER entity type are associated with each other. Similarly, the entity type

ORDER and the entity type PRODUCT are linked to each other. As you know, such

links and associations are represented as relationships in data model diagrams.

Associations

We expressed that relationships in data model diagrams symbolize associations or logical

links. Let us inspect the associations among the three entity types CUSTOMER, ORDER,

and PRODUCT. Figure 6-1 shows a data model diagram with these entity types.

First, observe the relationship between CUSTOMER and ORDER. The relationship

symbol indicates that the relationship exists because in the real-world situation, a customer

places an order. The action of placing an order forms the basis for the relationship. A

relationship name is an action word—usually a single verb. Relationships indicate inter-

action between objects. They represent associations between objects and the types of

action that govern the associations.

Next, review the relationship between ORDER and PRODUCT. Here the action is not

very apparent; nevertheless, it is the action of an order containing products. The associ-

ation of ORDER with PRODUCT rests on the fact that orders are for products; that is,

orders contain products. The verb or action word in this case is contains.

Role of Relationships. In Figure 6-1, look at the relationship symbol between

CUSTOMER and ORDER. Does the symbol indicate the linkage between the two

boxes representing the two objects or individual entity instances within each of the two

boxes? Figure 6-2 illustrates this important distinction.

The relationship indicated between two entity type boxes is actually the associations

between specific instances of one entity type with particular occurrences of another

184 CHAPTER 6 RELATIONSHIPS IN DETAIL

FIGURE 6-1 Relationships: CUSTOMER, ORDER, PRODUCT.

FIGURE 6-2 Relationships: links between instances.

RELATIONSHIPS 185

entity type. Take a little time to grasp the significance of the meaning and role of relation-

ships symbolized in data model diagrams. The connection shown between two entity type

boxes simply indicates that the instances are related with one another. The name of the

relationship as written within the diamond applies to each link between instances.

Relationship: Two-Sided

Consider a relationship between two entity types PROJECT and EMPLOYEE. This

relationship represents associations between project entities and employee entities. You

may select one project entity and look for the employee entities associated with that

project entity. Here you proceed to review the relationship from one side of the relation-

ship, namely, the PROJECT entity type. You may also study the associations by choosing

one employee entity and find the project entities associated with that employee entity. This

is the other side of the relationship.

Every relationship has two sides to it. Figure 6-3 illustrates the two-sided nature of the

relationship between PROJECT and EMPLOYEE.

Relationship from PROJECT. Let us review the relationship from the PROJECT side.

Note the association lines connecting individual instances of the two entity types. From

this side of the relationship, each project consists of certain employees.

Take specific examples. Look at one project instance that has the ProjectName

“Design.” Trace the association lines. These lines connect the “Design” project with

employee instances of “Mary Brown,” “Samuel Raymo,” and “Tabitha Daniels.” That

means the design project consists of three employees Mary Brown, Samuel Raymo, and

FIGURE 6-3 Relationship: two-sided.

186 CHAPTER 6 RELATIONSHIPS IN DETAIL

Tabitha Daniels. Tracing the relationship from PROJECT helps find employees working

on particular projects.

Later on, when the data model gets implemented, searches for employees working on a

specific project will make use of the relationship from this side. Also, when you examine

the relationship from this side, you understand the cardinality of how many employees

may be associated with one project.

Relationship from EMPLOYEE. Now look at the relationship from the other side,

namely, from EMPLOYEE. Note the association lines connecting individual instances

of EMPLOYEE and PROJECT. For this side of the relationship, each employee is

assigned to a certain project.

Let us check specific instances. Look at the employee instance Robert Solomon. Trace

the association line. This line connects the instance to the project instance “Programming.”

There are no other association lines from the employee instance Robert Solomon. What

does this mean? It conveys the information that the employee is assigned to one

project. This is different from looking at the relationship from the other side.

We therefore note that the relationship is a one-to-many relationship as seen from the

PROJECT side. One project may have one or many employees. On the other hand, one

employee is assigned to only one project.

Relationship Sets

When we consider an entity type, we refer to the set of entities of the same type. For

example, the EMPLOYEE entity type refers to a set of employees. This is a set of instances

with similar attributes. The notion of a set may be extended to relationships as well.

Take an example of the relationship between entity types EMPLOYEE and DEPART-

MENT. Find the associations between employee entities and department entities. Concen-

trate on one association such as Jerry Stone working in Sales Department. This association

is one instance of several such associations between employee instances and department

instances. Figure 6-4 shows the relationship between the two entity types and the associ-

ations among the individual instances.

Let us list the associations shown in the figure: (Sales—Jerry Stone), (Sales—Martha

Johnson), (Finance—Rudy Brunner), (Finance—Ashlee Thomas), and so on.

What are these associations? These associations form a set of pairs. What does this set

of associations indicate? The relationship between the entity types DEPARTMENT and

EMPLOYEE may be reckoned as a set of the associations noted above. A relationship

between two entity types constitutes a set of associations between entities of the first

entity type and entities of the second entity type.

Double Relationships

In the relationships considered so far, the entities of one entity type are associated with

entities of the other entity type in only one way. For example, in the relationship

between EMPLOYEE and DEPARTMENT, the relationship indicates employees

working in departments or, looking at it from the other side, departments having emp-

loyees. Nevertheless, the relationship expresses only one type of relationship.

Sometimes, two entity types may have dual relationships. That is, entities of one entity

type may be associated with entities of another entity type based on one type of

RELATIONSHIPS 187

association. Again, entities for the same two entity types may be associated with each other

based on a different criterion for the relationship.

Let us review a few examples of dual relationships.

Professor–Student Dual Relationship. Consider two entity types PROFESSOR

and STUDENT. A professor entity may be associated with a student entity when the

professor is teaching a class where the student is in the class. This is one type of relation-

ship between the two entity types.

In another case, a professor entity may be associated with a student entity in the sense of

the professor being a dissertation advisor for the student. Here, although the professor and

student entities are related, the relationship is of a different nature.

See Figure 6-5 illustrating the dual relationship.

Customer–Address Dual Relationship. Take another example for considering dual

relationship. Look at the requirements for relating orders with billing and shipping

addresses. Customers place orders, and for the orders there could be billing and shipping

addresses. For some orders, no such separate addresses may exist.

The entity types in question are CUSTOMER, ORDER, and ADDRESS. Here

addresses are not reckoned as attributes of customers; addresses have separate existence.

When residential, billing, and shipping addresses may apply to customers, you gain advan-

tage by not expressing the addresses as attributes. If you do so, you will have to permit

nulls and allow empty spaces on many customer instances that do not have such separate

addresses.

Figure 6-6 shows the entity types and the relationships.

FIGURE 6-4 Employee and department: relationship and associations.

188 CHAPTER 6 RELATIONSHIPS IN DETAIL

Observe how address and order entities are related in a dual relationship. A specific

address entity may be related to one or more order entities where the address is the

billing address. Again, some other address entity may be associated with one or more

order entities where the address is the shipping address.

Relationship Attributes

When we discussed attributes in detail in the previous chapter, we presented attributes as

descriptors of entities. An entity type has descriptive attributes. Values of each attributes

describe particular entities. If an entity type WATER-HEATER in a model for an appli-

ance store has attributes SerialNo and Color, then for each water heater in the store,

there are distinct values for SerialNo and Color. The entity type WATER-HEATER

FIGURE 6-5 Professor–Student: dual relationship.

FIGURE 6-6 Order–Address: dual relationship.

RELATIONSHIPS 189

comprises the set of all water heaters in the store. Values for attributes SerialNo and Color

are associated with each member of this set.

Earlier, we considered relationships as being sets. The members of this relationship set

consist of pairs indicating entities from participating entity types. Take an example of

two entity types RENTER and PROPERTY for a real estate rental organization. A

relationship “rents” exists between these two entity types. This relationship forms a set

of pairs of entities, one from each entity type—(renter1 to property3), and so on. Each

of these pairs itself has specific values such LeaseStartDate, LeaseEndDate, and

MonthlyRent. What are these specific values? These values describe each pair in the

relationship set. These are attributes for the relationship between entity types

RENTER and PROPERTY.

Figure 6-7 illustrates attributes for relationships themselves.

Note the relationship between RENTER and PROPERTY and the attributes for the

relationship apart from the attributes of the entity types themselves.

DEGREE OF RELATIONSHIPS

From the examples of relationships seen so far, you note that entity types are related in

twos or threes. That is, instances of two entity types are associated with each other, or

instances of three entity types are associated to form a combination.

The degree of a relationship in a data model refers to the number of entity types that

participate in the relationship. A three-way relationship is a ternary relationship with

FIGURE 6-7 Relationship attributes.

190 CHAPTER 6 RELATIONSHIPS IN DETAIL

degree three; two-way, a binary relationship with degree two; one-way, a unary relation-

ship with degree one. A unary relationship is also known as a recursive relationship as the

entities of the same entity type associate with one another. Relationships with degree four

are known as quaternary relationships. These are quite rare. Mostly, real-world situations

contain binary relationships.

When you examine a relationship and note the degree of the relationship, the degree

specifies how members of the relationships are constituted. Each relationship symbolizes

a relationship set. As we mentioned earlier, the relationship between two entity types

forms a set consisting of entity pairs, one entity from the first entity type pairing with

one entity from the second entity type. Thus a binary relationship indicates a set of

entity pairs. If the binary relationship has an attribute, then each entity pair in the relation-

ship set pertains to a specific value for this attribute.

What about a ternary relationship? How is this relationship constituted? A ternary

relationship set contains triplets of entities formed by one entity from each of the three

participating entity types. Thus, if the ternary relationship has an attribute, then each

entity triplet in the relationship set points to a particular value for this attribute.

We may extend the notion of constituents of a relationship set to quaternary

relationships and relationships with degrees higher than four. This is the main point

about relationship degrees. The degree determines how members of the relationship set

are formed—whether they are entity pairs, triplets, quadruplets, and so on.

Let us examine a few examples of relationships with varying degrees When you look at

each example, observe how the relationship set for the example gets formed.

Unary Relationship

As you already know, a unary relationship links an entity type with itself. Entities of a

single entity type associate with entities within itself. For forming an association, we

take an entity of the single entity type and revert back to the same entity type to find

the associative entity.

In a unary relationship, the relationship set consists of entity pairs, taking entities from

the same entity type. In the relationship pair, entities from the same entity types recur. In

the entity pair, an entity is taken for an entity type, and again another entity is picked from

the same entity type. Therefore, the name recursive relationship applies to a unary

relationship.

Figure 6-8 illustrates unary relationship with two examples.

In each example, explore how entity pairs from the same entity type form the relation-

ship set. Also, note the attributes in each unary relationship. We expressed that relation-

ships in data model diagrams symbolize associations or logical links.

Binary Relationship

You have seen several examples of binary relationships. When you scrutinize any data

model, you will notice that most of the associations are binary relationships. Providing

another example of a binary relationship may strike you as being redundant. Nevertheless,

we want to show a common example of a binary relationship between STUDENT and

COURSE. However, in this example we want to examine the contents of the relationship.

Figure 6-9 shows the binary relationship.

DEGREE OF RELATIONSHIPS 191

FIGURE 6-8 Unary relationship: examples.

FIGURE 6-9 Binary relationship and relationship set.

192 CHAPTER 6 RELATIONSHIPS IN DETAIL

Carefully examine the figure with the binary relationship. In particular, review the

members of the relationship set. As you know, the pairs made up of student and course

entities form the set. Note each member and values of the attribute for this relationship.

Ternary Relationship

Although binary relationships outnumber other types of relationships in a data model, you

will have occasion to design ternary relationships. When you run into attributes that

depend on three entities, one from each of three entity types, representing a three-way

relationship becomes essential.

Let us consider two examples. The first example relates to product shipments. Usually,

shipments involve entities from more than two entity types. This example covers the entity

types PRODUCT, VENDOR, and WAREHOUSE.

The second example deals with doctors, patients, and offices. In a group practice having

several locations, doctors may see patients in any of the offices of the group practice.

Therefore, the date and time of an appointment depend on entity triplets from

DOCTOR, PATIENT, and OFFICE. Here you find a ternary relationship.

See Figure 6-10 for the two examples of ternary relationship. Note the attributes of the

relationships and how the attribute values depend on triplets formed by entities from each

of the three entity types.

Quaternary Relationship

You may rarely run into a relationship with four participating entity types. Such a rep-

resentation becomes necessary only when attribute values rely on entities from four inde-

pendent entity types. This does not happen too often in real-world situations.

Let us look at one example of a quaternary relationship. A company procures loans to

its clients from lending institutions for properties. Agents bring this business to the

FIGURE 6-10 Ternary relationship: examples.

DEGREE OF RELATIONSHIPS 193

company. The company charges a small fee for its services based on specific consider-

ations of the type of property, lending institution, and rates for agents. The fee relates

to the client, property, lending institution, and agent. We note a four-way relationship.

Figure 6-11 illustrates the quaternary relationship with four participating entity types.

The figure also shows the quadruplets that make up the relationship set and their corres-

ponding values for fee.

STRUCTURAL CONSTRAINTS

Constraints are restrictions or rules that apply to any component of a data model. If the data

model represents real-world information requirements accurately, it must portray all

aspects of the requirements including any business rules that govern the information

content. Business rules may apply to the way each entity type gets constituted. Several

business rules affect attributes and their values. Now, we want to consider how business

rules in an organization influence relationships among entity types.

Let us work with a familiar example. In any organization, different types of projects

exist. Employees get assigned to the project. When you symbolize the assignment of

employees to projects, you create entity types of PROJECT and EMPLOYEE. The

relationship between these two entity types expresses the assignment of employees to

projects. Associations between employee entities and project entities exist.

With regard to these associations, the business rules may give rise to different scenarios.

How are these two types of entities related? Howmany entities of one typemay be associated

with howmany entities of the second type? Should every employee entity be associated with

one or more of the project entities? What about the opposite direction of the association?

Figure 6-12 indicates the relationship between PROJECT and EMPLOYEE expressing

some possible scenarios about the associations of individual entities.

FIGURE 6-11 Quaternary relationship and relationship set.

194 CHAPTER 6 RELATIONSHIPS IN DETAIL

When you study the types of questions that arise regarding the associations, you will

note that business rules can impose two types of constraints on relationships. The first

relates to the question: How many of one entity type with how many of another entity

type—one, none, several? This type of constraint, as you know, relates to the

cardinality of relationship—deals with numbers of associated entities. The second type

of constraint relates to the question: Whether an entity must be part of an association or

not? This constraint tells about whether the association is optional or mandatory. This con-

straint type is known as optionality constraint. It is also called participation constraint

because it indicates whether individual entities may or may not participate in the relation-

ship. Sometimes, the term nullability constraint also refers to this type of constraint.

We will note some examples of these two types of relationship constraints. In the next

section, we will elaborate on the cardinality and participation constraints with more

examples using the concept of maximum and minimum cardinalities.

Cardinality Constraint

Business rules stipulate how many of an entity type may be associated with how many of a

second entity type. The cardinality indicators placed on the relationship line denotes the

cardinality constraint. Let us revisit the three common types of cardinality constraint:

one-to-one, one-to-many, and many-to-many.

As you already know, a relationship between two entity types actually indicates the

nature of associations or links between individual instances of the two entity types.

Only occurrences of individual entities are connected—that is what the relationship line

between two entity types symbolizes. Let us review an example for each of the three

types of cardinality constraint.

Cardinality Constraint: One-to-One. Take the example of executives responsible to

administer company divisions. This responsibility differs in various organizations. When

you create a data model to show this relationship, you have to replicate the business rule

governing the administration in your organization.

FIGURE 6-12 Relationship between PROJECT and EMPLOYEE.

STRUCTURAL CONSTRAINTS 195

Let us consider a business rule about the administration of divisions and its represen-

tation a data model.

Business rule:

In the organization, one executive is responsible for one division and not more than one divi-

sion. Also, one division is supervised by one executive and not by more than one executive.

Representation of relationship constraint:

Each executive entity is associated with one division entity and not with more than one divi-

sion entity. Each division entity is associated with one executive entity and not with more than

one executive entity.

Figure 6-13 represents the one-to-one cardinality constraint. Note the individual associ-

ations between entities shown in the diagram.

Cardinality Constraint: One-to-Many. For an example of this type of constraint,

let us consider the information requirements for an airlines company where you have to

account for individual planes in the fleet by airplane type. Your model must reflect the

relationship between AIRPLANE-TYPE and AIRPLANE. The entity type AIRPLANE-

TYPE represents the various types of airplanes in the fleet such as Boeing 767, Boeing

747, Airbus 311, and so on whereas the entity type AIRPLANE includes the individual

planes in the fleet.

In this case, the business rule is fairly obvious. The associations between type entities

and plane entities must follow the basic business rule about types and instances.

Business rule:

In the airline company, one airplane type may have one or several planes of this type. On the

other hand, every single plane belongs to only one airplane type.

FIGURE 6-13 Cardinality constraint: one-to-one.

196 CHAPTER 6 RELATIONSHIPS IN DETAIL

Representation of relationship constraint:

Each airplane type entity is associated with one or many plane entities. Each plane entity is

linked to one and only one airplane type entity.

Figure 6-14 represents the one-to-many cardinality constraint. Observe the individual

associations between entities shown in the diagram. Notice how one type entity gets

linked to one or more of the plane entities. From the other side, one plane entity gets con-

nected to one and only one type entity. One-to-many constraint from one side of the

relationship implies many-to-one constraint from the other side of the relationship.

Cardinality Constraint: Many-to-Many. This type of constraint is quite common in

real-word situations. Take the familiar example of students enrolled in courses. Your model

must reflect the relationship between STUDENT and COURSE entity types. For a specific

student, youmust be able to ascertain which courses he or she is enrolled in. Also, the database

implementation should provide information on students enrolled for a particular course.

The business rule in the university dictates how students may enroll in a course.

Usually, there are no restrictions as to the number of courses a student may enroll in.

However, your data model must reflect the actual business rule governing the specific situ-

ation about enrollment.

Business rule:

In the university, one student may enroll in one or more courses. Also, one course may have

one or more students.

Representation of relationship constraint:

Each student entity is associated with one or more course entities. Each course entity is linked

to one or more student entities.

FIGURE 6-14 Cardinality constraint: one-to-many.

STRUCTURAL CONSTRAINTS 197

Figure 6-15 shows the many-to-many cardinality constraint. Pay attention to the indi-

vidual associations between entities shown in the diagram. Notice how one student entity

connects to one or more of the course entities. Also, the same type of linkage happens from

the other side, too. From the other side, one course entity gets connected to one or many

student entities. Many-to-many constraint is a symmetrical constraint on the relationship

from either side, though the exact numbers of associated entities may vary.

Participation Constraint

Other terminology also refers to participation constraints. Participation constraints deal

with whether participation of individual entities in a relationship between entity types is

mandatory or optional. Participation constraints are also known as optionality in the

relationship.

Let us reconsider the relationship between EMPLOYEE and PROJECT and examine if

participation constraint could apply to this relationship. In this relationship, employee

instances or occurrences associate with project occurrences. Suppose the relationship

between PROJECT and EMPLOYEE is one-to-many. This means one project entity is

associated with one or more employee entities, and one employee entity is associated

with one and only one project entity. This is the cardinality constraint.

In addition to stipulating the numbers or cardinalities, the business rule for the relation-

ship may include another type of constraint. For example, the business may specify

whether employee entities need to participate in the relationship. Two cases arise regard-

ing the participation. We will examine the two cases.

Partial Participation. It is likely that in an organization, some employees belong to

special cadres or work on routine operations. Such employees will not be working on

projects. Our data model must reflect this information about the relationship in addition

to the cardinality.

FIGURE 6-15 Cardinality constraint: many-to-many.

198 CHAPTER 6 RELATIONSHIPS IN DETAIL

We need to show how employee entities are associated with project entities both in

terms of numbers and participation. The data model must represent how participation

applies to the relationship. Let us review the business rule relating to partial participation.

Business rule:

In the company, one project has at least one employee assigned to it. Some employees may not

be working on any project at all.

Representation of relationship constraint:

Every project entity is associated with at least one employee entity. An employee entity may

not be associated with any project entity; if associated, an employee entity is linked to only

one project entity.

Figure 6-16 shows the relationship between EMPLOYEE and PROJECT indicating

partial participation of employee entities. The diagram denotes the partial participation

by means of a broken line meaning that the participation of entities from the EMPLOYEE

end is partial or optional. However, from the PROJECT end, the participation is not partial.

Every project entity participates in the relationship. Indication of partial participation with

broken lines is one method of representation. Other symbols such as single line for partial

participation and double lines for total participation are also in usage.

Total Participation. In this case, there are no exceptions; every employee works on

some project. This is typical of consulting companies where every employee is working

on one or more client projects. The data model must reflect this information about the

relationship in addition to the cardinality.

Our datamodel has to showhow employee entities are associatedwith project entities both

in terms of numbers and participation. The data model must represent how participation

applies to the relationship. Let us review the business rule relating to total participation.

Business rule:

In the company, one project has at least one employee assigned to it. Every employee works

on one or more projects.

Representation of relationship constraint:

Every project entity is associated with at least one employee entity. Every employee is linked

to at least one project entity.

FIGURE 6-16 Participation constraint: partial participation.

STRUCTURAL CONSTRAINTS 199

Figure 6-17 shows the relationship between EMPLOYEE and PROJECT indicating

total participation of employee entities. The diagram denotes the total participation by

means of a solid line meaning that the participation of entities from the EMPLOYEE

end is total or mandatory. Also, from the PROJECT end, the participation is total.

Every project entity participates in the relationship.

DEPENDENCIES

In Chapter 4, we covered weak entities that depend on strong or regular entities for their

existence. We will now revisit existence conditions for entities and also study relationships

between entity types in this context.

Exploring relationships in terms of entity existence conditions has a strong impact on

implementation of these in the database. When we study transformation of conceptual data

model into a logical data model, especially the relational framework, you will grasp the

significance of existence-dependent relationships.

Entity Existence

In a data model, entity types represented by rectangular boxes in the E-R technique do not

present themselves as isolated and separate. You know that entity types participate in

relationships. However, the relationships do not always determine whether entity types

may exist independently.

As we have already seen earlier, many entity types do exist independently irrespective

of their relationships with other entity types. Most of the entity types fall into this category.

However, you will note occasions when some entity types need other entity types for their

existence. Let us review some examples.

Independent Existence. Let us say you have a data model for a university. Two

important entity types are COURSE and INSTRUCTOR. The COURSE entity type rep-

resents all the courses offered in the university. Similarly, the INSTRUCTOR entity

type comprises all the instructors that teach the courses.

In fact, these two entity types are related because instructors teach courses. Individual

instructor entities associate with distinct course entities. Take a specific example: instruc-

tor Kassia Silverton teaches Data Modeling course. Irrespective of this association, the

instance of INSTRUCTOR, namely, Kassia Silverton, will exist in the database. In the

same manner, the instance of COURSE, namely, Data Modeling, will exist in the database

independent of the association.

FIGURE 6-17 Participation constraint: total participation.

200 CHAPTER 6 RELATIONSHIPS IN DETAIL

We can say that the entity instances of the two entity types INSTRUCTOR and

COURSE exist independent of each other. Also, the associations between entities of

these two entity types have no bearing on the existence of the entities. INSTRUCTOR

and COURSE entity types have independent existence.

Dependent Existence. Now take another example of entity types for a mortgage

company. Two important entity types we can consider would be LOAN and PAYMENT.

The PAYMENT entity type represents payments by mortgage customers toward their

loans. The LOAN entity type symbolizes mortgage loans given to the customers.

Examine the entity instances of the two entity types. Specifically, look at one loan to a

customer and a payment from the customer. Let us use concrete values. A payment with

PaymentSequence 77345 dated 9/15/2006 for $1500 is received against loan number

12345. Now review the existence of these two entity instances.

Loan 12345 will exist in the database whether the Payment 77345 is received or not. In

other words, this loan instance will exist irrespective of the existence of any payment

instance. All loan instances have independent existence. LOAN is an independent

entity type.

Now, turn your attention to the payment instance with PaymentSequence 77345. This

is a payment against Loan 12345. Without Loan 12345, Payment 77345 has no

meaning—has no existence. Payment 77345 can exist only if Loan 12345 exists in the

database and there is a relationship expressed between these two entities. PAYMENT

is a dependent entity type. We have covered such entity types, also known as weak

entity types, earlier.

One more example of existence dependency. Observe the nature of two entity types

CLIENT and ACCOUNT. ACCOUNT entity type includes client accounts holding

accounts-receivable data where debits and credits are recorded. These two entity types

are related because accounts transactions associate with client instances. Think about

the individual instances of the two entity types. If an account transaction number

113345 relates to client 54321, can that transaction exist in the database without the exist-

ence of client 54321 in the database? The transaction will have no relevance without the

existence of the client instance. Thus CLIENT is an independent entity type; ACCOUNT

is a dependent entity type.

Relationship Types

In the examples of independent and dependent entity types, you have noted the relation-

ships. In the example of INSTRUCTOR and COURSE, the relationship is between two

independent entity types. The other two examples of LOAN and PAYMENT as well as

CLIENT and ACCOUNT express relationships between an independent entity type and

a dependent entity type. These relationships differ from the first relationship between

INSTRUCTOR and COURSE.

Based on the existence conditions of entity types, we can divide relationships into two

types. The first type connects a dependent entity type to an independent entity type. The

second relationship type links two independent entity types.

Can there be a third type relating two dependent entity types? Obviously, this

relationship cannot be present. Dependent entity types, by definition, cannot exist by

themselves. Each dependent entity type requires an independent entity type for its

existence.

DEPENDENCIES 201

The two relationship types are named as follows:

Identifying Relationship. Occurs between a dependent entity type and an independent

entity type where the entity instances of the independent entity type identify entity

instances of the dependent entity type.

Nonidentifying Relationship. Occurs between two independent entity types where

there is no necessity for entity instances of one entity type to identify entity instances

of the other entity type.

Identifying Relationship

Let us study identifying relationships as these appear to be a special kind of relationship.

We will note various aspects of an identifying relationship with an example. Remember, in

this type of relationship, entity occurrences of an independent, strong entity type identify

entity instances of a dependent, weak entity type.

Take the case of a library that has to keep track of books and copies of books.Herewe have

two entity types: BOOK and COPY. BOOK represents entity instances of various book titles.

Instances of copies of books form the entity typeCOPY. If you think about the entity instances

of these entity types, you will determine that instances of COPY depend on the instances of

BOOK for their existence. Therefore, the two entity types form an identifying relationship.

Figure 6-18 illustrates the identifying relationship between the two entity types. The

diagram also gives an indication of the relationship set. Note the special notations to

FIGURE 6-18 BOOK and COPY: identifying relationship.

202 CHAPTER 6 RELATIONSHIPS IN DETAIL

indicate the identifying relationship. Observe the figure carefully and note the following

remarks about identifying relationships.

Relationship Set. Examine the relationship set consisting of entity pairs formed by

book and copy entities. Each entity pair has a book entity and a copy entity shown as a

combination. If the library has three copies of a specific book, then the relationship con-

tains three entity pairs, each pair formed by the same book entity instance with the three

copy instances.

Relationship set gives us a clear indication how entity instances combine to constitute the

relationship. Relationship sets for identifying relationships do not differ from those for non-

identifying relationships. So, no special treatment is warranted by such relationship sets.

Identifiers. Identifiers of entity types in identifying relationships present an essential

difference. As you know, the identifier of the independent entity type provides identifi-

cation for the dependent entity type. The value of the identifier BookCallNo for a specific

book instance identifies all the occurrences of copy instances. This is how the dependent

entities establish their existence. The independent entity type shares its identifier with its

dependent entity type.

For example, note the book with BookCallNo “231-5757” and all the copies of this

book. All copies of every book are numbered serially as 01, 02, 03, and so on. How do

instances of copies with serial numbers 01, 02, and 03 get identified in the identifying

relationship? Each of the copies gets identified by the concatenated values 231-575701,

231-575702, 231-575703, and so on. These are the values for the identifier of COPY

entity type.

Participation Constraint. We had reviewed participation constraints of relationships

in an earlier section. Participation constraint refers to whether entities of one entity type

must necessarily participate in the relationship. Participation of entities of one entity

type in a relationship may be partial or total. Total participation designates that every

entity instance must participate in associations with instances of the other entity type.

Partial participation implies optional condition—not all instances need to participate.

In an identifying relationship, what is the nature of the participation? Does every book

instance participate in the relationship? The answer would depend on the business rule. If

you need to record book information in the database before actual copies arrive in the

library, then the participation could be partial.

However, look at the other side. What about the participation constraint for copy

instances? Can a copy instance exist without the corresponding book instance and the

association between them? Of course, not. If there is copy instance, then that instance

must necessarily be part of an association with the corresponding book instance. Thus,

for the COPY entity type, the participation constraint has to be total participation.

Benefits. Having considered identifying relationships in some detail, you might derive

some benefits from the establishment of such relationships. Specifically, identifying

relationships provide the following benefits.

Easy Access. You can access all dependent entity occurrences once you locate the

instance of their independent entity type.

DEPENDENCIES 203

Data Integrity. Sharing of primary identifier between the dependent and independent

entity types enforces existence dependency.

Nonidentifying Relationship

A typical nonprofit organization runs its operations using volunteers. Volunteers serve on

various committees for rendering services. VOLUNTEER and COMMITTEE would be

two relevant entity types. Let us examine the relationship between these two entity types.

A volunteer may serve on one or more committees. A committee may consist of one or

more volunteers. Can entities of each of these two entity types exist independently? What

about participation constraints? Note the following about the relationship between entity

types VOLUNTEER and COMMITTEE:

Relationship Type. Nonidentifying type because each of the two entity types has

independent existence.

Identifiers. Each entity type has its own independent identifier; no identifier sharing.

Cardinality. Many-to-many relationship.

Optionality. Optional association at VOLUNTEER end and mandatory association at

COMMITTEE end. However, depending on the business rules, if committees may be

allowed without any members yet, associations at COMMITTEE end may also be optional.

MAXIMUM AND MINIMUM CARDINALITIES

Earlier, we briefly discussed cardinality constraints and participation constraints as appli-

cable to relationships between entity types. We looked at a few examples. You have noted

how these two types of constraints are shown in a data model. Cardinality indicators such

as 1 or � denote one or many while representing one-to-one, one-to-many, or many-to-

many relationships. You have also noticed that broken or solid lines provide a method

for denoting partial or total participation.

Maximum and minimum cardinality indicators also provide a method for representing

the cardinality and optionality constraints. We will explore a detailed example to review

these constraints. Maximum and minimum cardinality indicators are expressed as a pair of

indicators placed with or without parentheses and located on the relationship line at both

ends. The second indicator, the maximum cardinality indicator, denotes the cardinality

constraint; the first indicator, the minimum cardinality indicator, symbolizes the partici-

pation constraint.

Recall how the minimum cardinality indicator expresses the optional or mandatory

nature of a relationship. Placing a “0” as the minimum cardinality indicator near an

entity type indicates that some of the entities of that entity type may not participate in

the relationship. That means the relationship is optional for that entity type. Let us

explore the notion of optional and mandatory nature of relationships further.

Consider a real-world situation of employees working in departments. Normally, every

employee is assigned to a department, and every department will have employees. But, this

may not always be true. Newer employees may not be assigned to a department yet; some

204 CHAPTER 6 RELATIONSHIPS IN DETAIL

employees on special assignments may not be part of the conventional departments. On the

other hand, some special departments may have been created for costing raw materials and

equipment with no human resources being part of the departments. In this case, such

departments do not have employees associated with them. Your data model must be

able to represent such exceptional conditions found in real-world information require-

ments. Follow along to learn how these conditions are represented in the data model.

Four cases arise based on the exception conditions. Figure 6-19 illustrates the first two

cases; Figure 6-20 the next two cases. Note the minimum and maximum cardinality

FIGURE 6-19 Relationship: optional and mandatory conditions, part 1.

FIGURE 6-20 Relationship: optional and mandatory conditions, part 2.

MAXIMUM AND MINIMUM CARDINALITIES 205

indicators shown in ease case. Also, note each dotted line indicating that the relationship

on that side is optional.

Let us review these four cases in some detail. As you will observe, minimum cardinality

indicator denotes the optional or mandatory nature of the relationship—whether it is

partial participation or full participation in the relationship by the specific entity type.

Pay special attention to the figure while we discuss the four cases in detail.

Mandatory Conditions: Both Ends

Consider the case where the relationship is mandatory at EMPLOYEE and DEPART-

MENT ends.

Case 1
A department must have at least one employee, but it may have many employees.

Note minimum cardinality indicator 1 and maximum cardinality indicator � near

EMPLOYEE entity type.

Meaning of MinimumCardinality Indicator 1. Each department entity is associated with

at least one employee entity. That is, the minimum number of employee instances associ-

ated with one department entity is 1. Notice the solid relationship line next to DEPART-

MENT indicating that the relationship on this side is mandatory and that every department

entity participates in the relationship.

Meaning of Maximum Cardinality Indicator �. A department entity may be associated

with many instances of employee.

An employee must be assigned to at least one department, and he or she can be assigned to

only one department.

Note minimum cardinality indicator 1 and maximum cardinality indicator 1 near

DEPARTMENT entity type.

Meaning of Minimum Cardinality Indicator 1. Each employee entity is associated with

at least one department entity. That is, the minimum number of department instances

associated with one employee entity is 1. Notice the solid relationship line next to

EMPLOYEE indicating that the relationship on this side is mandatory and that every

employee entity participates in the relationship.

Meaning of Maximum Cardinality Indicator 1. An employee entity can be associated

with one instance of department at most.

Optional Condition: One End

Consider the case where the relationship is optional at EMPLOYEE end.

Case 2
A department must have at least one employee, but it may have many employees.

206 CHAPTER 6 RELATIONSHIPS IN DETAIL

Note minimum cardinality indicator 1 and maximum cardinality indicator � near

EMPLOYEE entity type.

Meaning of MinimumCardinality Indicator 1. Each department entity is associated with

at least one employee entity. That is, the minimum number of employee instances associ-

ated with one department entity is 1. Notice the solid relationship line next to DEPART-

MENT indicating that the relationship on this side is mandatory and that every department

entity participates in the relationship.

Meaning of Maximum Cardinality Indicator �. A department entity may be associated

with many employee entities.

Every employee may not be assigned to a department; if assigned, he or she can be assigned to

only one department.

Note minimum cardinality indicator 0 and maximum cardinality indicator 1 near

DEPARTMENT entity type.

Meaning of Minimum Cardinality Indicator 0. Some employee entities may not be

associated with any department entities. Not every employee entity is associated with a

department entity. That is, the minimum number of department instances associated

with one employee entity is 0. Not every employee entity participates in the relationship.

Notice the dotted or broken relationship line next to EMPLOYEE entity type indicating

that the relationship on this side is optional and that not every employee entity participates

in the relationship. A broken or dotted line denotes partial participation in the relationship.

Meaning of Maximum Cardinality Indicator 1. An employee entity can be associated

with one instance of department at most.

Optional Condition: Other End

Consider the case where the relationship is optional at DEPARTMENT end.

Case 3
Every department may not have employees; if it has, a department can have many employees.

Note minimum cardinality indicator 0 and maximum cardinality indicator � near

EMPLOYEE entity type.

Meaning of Minimum Cardinality Indicator 0. Some department entities may not be

associated with any employee entities. Not every department entity is associated with

employee entities. That is, the minimum number of employee instances associated with

one department entity is 0. Not every department entity participates in the relationship.

Notice the dotted or broken relationship line next to DEPARTMENT entity type indicating

that the relationship on this side is optional and that not every department entity partici-

pates in the relationship. A broken or dotted line denotes partial participation in the

relationship.

MAXIMUM AND MINIMUM CARDINALITIES 207

Meaning of Maximum Cardinality Indicator �. A department entity may be associated

with many employee entities.

An employee must be assigned to at least one department, and he or she can be assigned to

only one department.

Note minimum cardinality indicator 1 and maximum cardinality indicator 1 near

DEPARTMENT entity type.

Meaning of Minimum Cardinality Indicator 1. Each employee entity is associated with

at least one department entity. That is, the minimum number of department instances

associated with one employee entity is 1. Notice the solid relationship line next to

EMPLOYEE indicating that the relationship on this side is mandatory and that every

employee entity participates in the relationship.

Meaning of Maximum Cardinality Indicator 1. An employee entity can be associated

with one instance of department at most.

Optional Conditions: Both Ends

Consider the case where the relationship is optional at EMPLOYEE and DEPARTMENT

ends.

Case 4
Every department may not have employees; if it has, a department can have many employees.

Note minimum cardinality indicator 0 and maximum cardinality indicator � near

EMPLOYEE entity type.

Meaning of Minimum Cardinality Indicator 0. Some department entities may not be

associated with any employee entities. Not every department entity is associated with

employee entities. That is, the minimum number of employee instances associated with

one department entity is 0. Not every department entity participates in the relationship.

Notice the dotted or broken relationship line next to DEPARTMENT entity type indicating

that the relationship on this side is optional and that not every department entity partici-

pates in the relationship. A broken or dotted line denotes partial participation in the

relationship.

Every employee may not be assigned to a department; if assigned, he or she can be assigned to

only one department.

Note minimum cardinality indicator 0 and maximum cardinality indicator 1 near

DEPARTMENT entity type.

Meaning of Minimum Cardinality Indicator 0. Some employee entities may not be

associated with any department entities. Not every employee entity is associated with a

department entity. That is, the minimum number of department instances associated

with one employee entity is 0. Not every employee entity participates in the relationship.

208 CHAPTER 6 RELATIONSHIPS IN DETAIL

Notice the dotted or broken relationship line next to EMPLOYEE entity type indicating

that the relationship on this side is optional and that not every employee entity participates

in the relationship. A broken or dotted line denotes partial participation in the relationship.

Meaning of Maximum Cardinality Indicator 1. An employee entity can be associated

with one instance of department at most.

SPECIAL CASES

We have covered various types of relationships up to now. You have looked at examples of

relationships involving a single entity type, two entity types, and more than two entity

types. We had used the term degree to denote the number of entity types that participate

in a relationship. You had also noted that relationships of varying degrees could have attri-

butes attached to them.

We have also examined relationship sets. A relationship set consists of members

formed by combining entity occurrences from the participating entity types. Members

of a relationship set indicate how individual instances of entity types associate with one

another.

You also studied business rules and how they apply to cardinality and optionality con-

ditions in the relationships between entity types. Cardinality indicates how many instances

of one entity type may associate with instances of the related entity type. Optionality or

nullability denotes if all or some instances will participate in a relationship.

Some relationships present unique arrangements of entity types in a data model. They

arise out of special conditions in the information requirements of an organization. We will

consider some important special cases. Although special, these are by no means infre-

quent. Studying how to deal with such special cases will enhance your data modeling

skills.

Gerund

The first special case we want to look at is the use of a gerund. What is a gerund? Let us

first understand this special case.

We come across instances where many-to-many relationships themselves have attri-

butes. The question arises then whether the relationship is a relationship or an entity

type because it has attributes. This is where you may have to use a gerund.

In English grammar, the word writing is a gerund; the word is derived from the verb

to write but it behaves like a noun. Similarly, if a relationship behaves like an entity

type, that entity type may be termed a gerund.

Consider a three-way many-to-many relationship among three entity types CUSTO-

MER, PRODUCT, and WAREHOUSE. The real-world situation of shipping products

to customers from different supply warehouses gives rise to this type of ternary relation-

ship. As you know, in the E-R technique normally a diamond symbol denotes this

relationship.

However, actually, the relationship appears to be an entity type. The relationship

behaves like an entity type because it has two attributes ShipNumber and NoOfUnits. It

is a gerund. When do you, as a data modeler, represent a relationship as a gerund and

specify the relationship as an entity type to be represented in the E-R technique by a

SPECIAL CASES 209

box? You need to represent a relationship as an entity type if the relationship truly has

specific attributes.

Figure 6-21 illustrates the gerund as the entity type SHIPMENT, based on the relation-

ships among three distinct entity types CUSTOMER, PRODUCT, and WAREHOUSE.

Aggregation

This special case is similar to the case of gerunds. This may be taken as an extension of the

concept of gerunds. Aggregation attempts to resolve the issue of expressing relationships

of relationships.

Let us take a specific example. An internal consulting unit of an organization runs pro-

jects for departments within the company. A project may relate to one or more depart-

ments. Special user representatives are assigned as liaison personnel for projects of

different departments.

Think about the relationship. A relationship “performed for” exists between entity

types DEPARTMENT and PROJECT. This relationship has a relation set consisting of

entity pairs formed by entity instance pairs, one from each of these two entity types.

Now see how the relationship “liaises” fits in. Is this relationship entity type

USER-REP has with either DEPARTMENT or PROJECT by themselves? A representa-

tive does not liaise with entity instances of either DEPARTMENT or PROJECT. The

“liaises” relationship set, therefore, associates with “performs” relationship set.

For the purpose of defining a relationship set “liaises,” we introduce the notion of aggre-

gation, a feature of the enhanced E-R technique. Aggregation enables you to express that a

relationship participates in another relationship. A box enclosed by broken lines (a dashed

box) symbolizes aggregation. Figure 6-22 presents aggregation for the above example.

FIGURE 6-21 Representing a gerund in the E-R technique.

210 CHAPTER 6 RELATIONSHIPS IN DETAIL

We have used the notion of aggregation for the example of DEPARTMENT, PROJECT,

and USER-REP. We adopted aggregation to express the relationships between the two

relationships “performed for” and “liaises.” Why is there a need to use aggregation?

Why not make “performed for” a ternary relationship? Why aggregate? This is because

there are actually two separate and distinct relationships, each with its own attributes.

Note the attribute FromDate of “performed for” relationship and the attribute EndDate

for “liaises” relationship. These are attributes of two different relationships and, therefore,

using a ternary relationship will not work.

Access Pathways

Next we will examine two cases of relationships where access pathways between entity

occurrences could pose problems. What are access pathways? Access pathways lead

from an entity occurrence of one entity type to an entity instance of a second related

entity type. The access pathways could lead to difficulty when three entity types are

present and related.

Walk through a common example of customers ordering products. CUSTOMER,

ORDER, and PRODUCT entity types constitute the partial data model. The relationships

among these three entity types are as follows: CUSTOMER to ORDER, one-to-many;

ORDER to PRODUCT, many-to-many.

Figure 6-23 represents the relationships.

Study the entity occurrences and the lines linking the associated occurrences shown in

the figure. The lines connecting entity instances form the access pathways. For example, if

you want to know the orders and products bought under each order for a specific customer,

FIGURE 6-22 The notion of aggregation.

SPECIAL CASES 211

you start with entity occurrence for that customer, follow the links to the corresponding

order occurrences, and then continue on the links to the product occurrences from each

order occurrence. On the other hand, you can trace back on the links from product occur-

rences to the customer occurrences.

In the above example, the access paths are clear—not ambiguous, not missing. You can

proceed from one entity type and trace the access paths with no difficulty. The correct design

of the data model enables you to create correct access paths. However, if the data model is

not constructed correctly from information requirements, problems could arise with regard

to the access paths among entity occurrences. Two types of problems need to be addressed:

access paths ambiguous and access paths missing. We will examine two such special cases.

Ambiguous Access Pathways. Let us say you have to create a data model for a college

campus. Your partial data model must show computers in the various buildings of the

campus. Computers with specific serial numbers are set up in classrooms. Each building

in the campus has many classrooms. You have understood the information requirements

as follows: campus buildings have computers; classrooms are in campus buildings.

You come up with entity types BUILDING, COMPUTER, and CLASSROOM. You

also determine the relationships and cardinality indicators: BUILDING to COMPUTER,

one-to-many; BUILDING to CLASSROOM, one-to-many. Then you draw the model

diagram as shown in Figure 6-24, which results in ambiguous access pathways among

entity occurrences.

The figure also shows access pathways between instances of the three entity types.

Now, try to trace some pathways. Let us say, we want to find out in which classroom is

computer C1 placed? So, trace the access pathway from C1. You find that it is in building

B1. From building B1 follow the link to the classroom. But from B1 there are links to two

classrooms R4 and R5. Remember, the relationship between BUILDING to CLASS-

ROOM is one-to-many. We are not sure whether computer C1 is placed in classroom

R4 or R5. The access pathway is ambiguous.

FIGURE 6-23 Relationships and access pathways.

212 CHAPTER 6 RELATIONSHIPS IN DETAIL

Usually, the problem of this kind occurs when the data modeler does not comprehend

the relationships completely and correctly. When you run into possible ambiguous access

pathways, you can resolve the problem by recasting the relationships. Figure 6-25 illus-

trates resolution of ambiguous access pathways.

Missing Access Pathways. This type of problem occurs when you have incorrect

modeling of relationships with partial participation of entity occurrences. Here the

access pathway stops in the middle without going all the way.

FIGURE 6-24 Ambiguous access pathways.

FIGURE 6-25 Ambiguous pathways: resolution.

SPECIAL CASES 213

Let us consider an example. Take the case of a real estate agency. The agency has many

branch offices, and properties that come up for sale are allocated to branch offices based on

proximity. At each branch, one or more real estate agents work and liaise with the buyers. A

branch office assigns each property to a specific agent as soon as all the paperwork is com-

pleted. Until the paperwork is completed, a particular property awaits assignment of an agent.

Based on the requirements definition, you determine the entity types as OFFICE,

AGENT, and PROPERTY. You also decide on the relationships and cardinality indicators:

OFFICE to AGENT, one-to-many; AGENT to PROPERTY, one-to-many. You examine

FIGURE 6-26 Missing access pathways.

FIGURE 6-27 Missing pathways: resolution.

214 CHAPTER 6 RELATIONSHIPS IN DETAIL

the relationships and find that the relationship AGENT to PROPERTY has participation

constraints. At both ends, the associations are optional. There could be some agents just

started and no properties allocated to them yet. There could be some properties where

the paperwork has not been completed and, therefore, not yet allocated. You may draw

the model diagram as shown in Figure 6-26, which results in missing access pathways

among entity occurrences.

Observe the access pathways between instances of the three entity types. Now, try to

trace some pathways. Let us say, we want to find out which branch office is responsible

for property P25? You find that no link is present from property P25. Presumably, this

property has not been allocated to an agent because the paperwork is still pending. The

part of the access pathway for this property instance to an office instance is missing.

Apparently, the data model is faulty.

Again, this type of problem results from unclear understanding of the relationships and

their constraints. You can resolve the problem of missing access pathways by revising the

relationships. Figure 6-27 shows the resolution of missing access pathways.

DESIGN ISSUES

Our detailed discussion on relationships will not be complete without looking at some

design issues. As you study and understand the information requirements and begin to

prepare the data model, a few questions about denoting relationships are likely to arise.

Is this a relationship or should there be another entity type to represent requirements accu-

rately? Should the data model show an aggregation or just a relationship? Are the

one-to-one or one-to-many relationships indicated properly? These issues affect the

design of the data model.

Your ultimate goal consists of making your data model represent the information

requirements truly and completely. Relationships and their representation are major

factors in proper design of a data model. In this section, we are highlighting a few signifi-

cant and common issues you will be faced with in your data modeling projects. Study each

issue carefully, understand the exact nature of the issue, and then explore the options to be

applied in your data modeling efforts.

Relationship or Entity Type?

This is a fairly common design issue. You have to decide whether representation of infor-

mation requirements by means of a relationship between two entity types will do. Or do

you have to introduce another entity type to complete the picture? Here the decision is

between using a relationship or another entity type.

Let us look at an example of customers and bank accounts. You will represent this in the

data model with entity types CUSTOMER and BANK-ACCOUNT showing a relationship

“has” indicating customers having bank accounts. One customer may have one or more

bank accounts. Now, let us say, you have to indicate the StartDate in the data model.

You may show this as an attribute of the relationship. So far, the two entity type boxes

and the relationship between them will be sufficient.

Next, suppose you have to fit in another piece of information—Balance. This attribute

indicates to total balance for the customer adding up all the accounts if the customer has

more than one bank account. Obviously, this is not an attribute of the relationship between

DESIGN ISSUES 215

CUSTOMER and BANK-ACCOUNT. The members of this relationship set are pairs con-

sisting of single customer entity instances and single account entity instances.

When you face a design issue such as this, you have to examine the nature of the attri-

butes and make your decision as to whether to show just a relationship or to include

another entity type. Figure 6-28 shows the two configurations.

Ternary Relationship or Aggregation?

When you run into three-way relationships, this design issue may confront you. At that time,

you need to decide whether to introduce aggregation or stay with a ternary relationship. The

information requirements of the real-world situation will dictate the choice. In many situ-

ations, ternary relationships will be adequate to represent the requirements in the data model.

We have already looked at this issue partially when we covered aggregation earlier. Go

back and look at Figure 6-22 and study why aggregation was introduced in that example.

Mostly, the decision to choose between aggregation and ternary relationship rests on the

presence of a relationship that relates to a relationship set or to an entity set or a second

relationship set. Sometimes, the choice is further guided by the need to express relation-

ship constraints.

Binary or N-ary Relationship?

In the earlier sections, you have seen examples of ternary and quaternary relationships.

Relationships of higher degrees with more than four participating entity types may also

FIGURE 6-28 Relationship versus entity type.

216 CHAPTER 6 RELATIONSHIPS IN DETAIL

be present in a data model based on information requirements. Generally, you can break up

higher degree (or N-ary, where N is any number greater than 4) relationships and replace

them with a set of binary relationships. This is a design issue.

Binary relationships can be simpler and easier to understand. When you walk through a

data model with domain experts and user groups, you will find it less complicated to

discuss and to confirm the requirements. When you have ternary or quaternary relation-

ships, you will find it hard to explain the composition of relationship sets. With higher

degree relationships, the difficulty increases even more.

However, if you restrict your data model to contain only binary relationships, you may

have to face other types of problems. As you break down a higher degree relationship, you

will have to create additional entity sets, more binary relationship sets, and identifying

attributes. This increase in data model components may add to the complexity. Other

the other hand, if you leave the N-ary relationship in the data model, you may be able

to show the participation of several entity types with different participation constraints.

Therefore, whenever you are faced with higher degree relationships, consider the

options carefully. First, you have to decide if you can leave the higher degree relationship

intact in the data model. This may be the wise choice in some cases. If you have to replace

the higher degree relationship with multiple binary relationships, clearly define the

additional entity types, relationships, and extra identifying attributes.

Figure 6-29 shows a quaternary relationship and its break-down into binary relation-

ships. Study the figure carefully to understand the choices. Observe how the binary

relationships represent the original quaternary relationship.

One-to-One Relationships

A one-to-one relationship associates one instance of the first entity type to one instance of

the second entity type. Whenever you design a one-to-one relationship, you need to

FIGURE 6-29 Quaternary into binary relationships.

DESIGN ISSUES 217

consider a few questions about the relationship. Here the main issue is whether to preserve

the relationship and keep the two entity types intact in the data model. The other choice is

merging of the two entity types into a single entity type and including all the attributes of

both entity types in the merged entity type.

Let us work with a generic example. Some data modeling practitioners advocate the

elimination of one-to-one relationships altogether. Most database systems support

one-to-one relationships. It is up to you to make the choice depending on the particular

situations. Let us examine the generic example and offer some suggestions. This

example consists of two generic entity types A and B with a one-to-one relationship

between them. Consider the possible cases in terms of participation constraints.

Mandatory at Both Ends. Each instance of A associates with an instance of B. From

the other side, each instance of B associates with an instance of A. When you look at an

instance of A and the corresponding instance of B, the attributes of this association will be

combination of the attributes of both A and B.

Usually, this means that representation of the requirements as two separate entity types

is unnecessary. Combine the two entity types into one with a meaningful entity name. The

identifier of either of A or B can serve as the identifier for the merged entity type. The attri-

butes of the merged entity type will consist of the complete set of attributes from both

A and B.

Optional at One End. In this case, two possibilities exist. The relationship at the A end

is mandatory and it is optional at the B end. Or the converse may be true. In either case, the

relationship is mandatory at one end and optional at the other end. As these are symmetri-

cal, we can consider one possibility and apply the discussion to the other possibility.

Let the relationship be optional at the A end and mandatory at the B end. This means

not all instances of A participate in the relationship. For some instances of A there are no

corresponding instances of B. This is the case where A could represent customers and B

represent contact persons for the customers. Not all customers may have distinct contact

persons.

Assume that you want to merge the two entity types into one as you did in the previous

case. Then, for many instances of the merged entity types, values of attributes of B will be

null. If you have a much larger number of A occurrences compared with B occurrences,

this is not a recommended option. You can leave the two entity types in your conceptual

data model. So, consider your particular situation and make the decision on this

design issue.

Optional at Both Ends. This possibility refers to the case where not all instances of

either A or B may participate in the relationship. If you take a particular instance of A,

it may not be part of the relationship. Again, considering a particular instance of B, it

may not participate in the relationship.

Let us say you want to merge the two entity types and eliminate the one-to-one relation-

ship. What you will find is as follows: some merged entity instances will lack the attribute

values of B and other merged entity instances will not have the attribute values of A. So,

there will be many partial entity instances.

In general, merging of entity types is not advisable in this case. You want to avoid many

entity occurrences with the likely prospect of having a lot of null values for the attributes.

218 CHAPTER 6 RELATIONSHIPS IN DETAIL

Ascertain the participation constraints and if you have optional conditions at both ends,

choose to leave the relationship in the data model.

One-to-Many Relationships

Sometimes, participation constraints may lead to design issues in one-to-many relation-

ships as well. Let us look at a specific example. In a product warehouse, some of the pro-

ducts need industry standard certification. Other products do not. The certification

procedure designates the quality rating for the products that need certification. In order

to represent this business requirement, you start designing entity types and relationships.

You will come up with entity types CERTIFICATION and PRODUCT. Note these two

will form a one-to-many relationship. What about the participation constraints? At either

end, participation of entity instances is optional. We know that some products do not need

certification; these product instances will not participate in the relationship. Similarly,

there may some certification scores for which there are no products yet.

When you are faced with this type of issue, carefully examine if the data model depicts

the business rules correctly. Later on, when you transform your conceptual data model into

a logical data model for implementation, you may run into problems for linking related

entity instances. Figure 6-30 shows the one-to-many relationship and possible way of

eliminating the optional condition on the CERTIFICATION side. You will note that

products are separated out into certified products and others.

Circular Structures

Occasionally, you will run into what are known as circular structures or circular refer-

ences. You will create three entity types A, B, and C; you will then find A as the parent

of B, B as the parent of C, and C as the parent of A. Each relationship tends to be a

one-to-many relationship. This is a cyclical set of relationships.

FIGURE 6-30 Optional one-to-many relationship.

DESIGN ISSUES 219

If the business requirements are not transmitted correctly, this is a likely result. Poss-

ibly, parent–child relationships are reversed. Or a many-to-many relationship could

have been mistaken as a one-to-many relationship. Nevertheless, circular structures

cause problems and must be resolved.

Let us work out a partial data model for a manufacturing company. Each of its pro-

duction divisions supplies different product lines. Each product line gets sold in multiple

territories. Each territory relates to one or more divisions. Create a data model with entity

types DIVISION, PRODUCT-LINE, and TERRITORY. Establish the three one-to-many

relationships. Figure 6-31 presents this circular structure.

First, we want to reverse the cyclical progression of relationships. A better approach

would be to introduce additional entity types and resolve the circular structure of

parent–child relationships. Then we want to make each relationship amplified and clari-

fied. Figure 6-32 illustrates a refinement of the circular structure. Note the additional

entity types and new relationships introduced in the data model.

FIGURE 6-31 Circular structure.

FIGURE 6-32 Refinement of circular structure.

220 CHAPTER 6 RELATIONSHIPS IN DETAIL

Redundant Relationships

As you go through iterations in the data modeling process, you will come across redundant

relationships. In your review, you will specifically look for such redundancies and elim-

inate them. When you show two dependency paths between the same two entity types,

in effect, you create a triad involving a redundant relationship. Typically, you will see a

set of three entity types tangled as a triad with a redundant relationship.

Let us take an example. A supermarket has various departments such as paper goods,meat,

dairy, and so on. Each of these departments offers product types. Products belong to product

types. These entities form various relationships. Now consider the entity types DEPART-

MENT, PRODUCT-TYPE, and PRODUCT. DEPARTMENT to PRODUCT-TYPE is a

one-to-many relationship; PRODUCT-TYPE to PRODUCT is also a one-to-many relation-

ship.You create the datamodel showing these relationships. Then you realize the departments

and products are also associated in one-to-many relationship. So, you add another relationship

line between DEPARTMENT and PRODUCT. This last relationship is redundant and you

have created a triad. You have to resolve by eliminating the redundant relationship.

Figure 6-33 illustrates the triad and its resolution. Note how the redundant relationship

gets removed.

Multiple Relationships

At times, two entity types may be related to each other in multiple ways. Two or more

types of associations are possible between entity instances. A manufacturing plant may

serve both as a production unit as well as a storage area for products. In this case, two

entity types BUILDING and PRODUCT may be used to represent the entities as well

as two types of relationships between them. You probably want to represent the relation-

ships with two relationships lines, one representing the “produces” relationship and one

the “stores” relationships.

FIGURE 6-33 Triad and its resolution.

DESIGN ISSUES 221

When you have multiple relationships between the same two entity types, represented

with multiple relationship lines, problematic consequences may follow. The cardinalities

and participation constraints may be in conflict among the multiple relationships. Some-

times, multiple relationships may tend to represent process logic. A data model should

be devoid of process logic representation. Representation of multiple relationships may

also result in the data model becoming confusing and vague.

If you encounter situations with multiple relationships between the same two entity

types, carefully scrutinize the cardinalities and participation constraints. If you trace

any conflicts, resolve multiple relationships. If you note that process logic is being inter-

jected into the data model, again look for ways of resolving multiple relationships. This is

a significant design issue for relationships.

Let us present an example of multiple relationships and the resolution. Figure 6-34

shows multiple relationships between circuit boards and professionals who design, main-

tain, and fabricate them. Note the entity types PROFESSIONAL and BOARD and observe

the three types of relationships between them. Also, study the resolution achieved by the

introduction of two other entity types.

RELATIONSHIP VALIDATION CHECKLIST

Our detailed discussions of relationship are about to end. So far, in this chapter, we

covered several topics. We revisited the concept of relationship as associations of individ-

ual entity occurrences. This led us to the concept of relationship sets. A relationship set

consists of combinations of single entity instances taken one from each participating

entity type. If relationships themselves have attributes, then the attribute values relate to

members of the relationship sets.

FIGURE 6-34 Multiple relationships and resolution.

222 CHAPTER 6 RELATIONSHIPS IN DETAIL

We reviewed useful examples of binary, ternary, and quaternary relationships. The

degree of a relationship determines how individual entity instances combine to make

the relationship set. The significance of cardinality and optionality constraints on relation-

ships cannot be overemphasized. Participation constraints play an important role in repre-

senting relationship properly in a data model.

We brought the discussions to completion by considering special cases and important

design issues. You looked at several types of situations where resolution of relationships

becomes necessary. You have gone over examples of resolutions.

As you go through the data modeling process, at each stage, you need to check the data

model for completeness and correctness. Again, remember that data modeling is an itera-

tive process. After defining the entity types and their attributes, defining of relationships

follows. You may even begin representing relationships as soon as you have the first

cut of the entity types. In the iterative process, you may refine the model by adding or mod-

ifying previously included relationships.

What follows is a task list for validation of relationships as represented in your data

model. Two checklists are presented: one to verify completeness and the other to verify

correctness of relationships. These checklists should come in handy to conduct the

review process for relationships.

Completeness

Requirements Review. Go over the information requirements for each relationship

shown in the data model. Ensure that no relationships are missing. Regroup entity types

by pairs and make sure that no relationship between qualifying pairs is left undefined.

Relationship Names. Review each verb or verb phrase that indicates a relationship

either recording within the diamond symbol or written over the relationship line. Think

of connotation of each verb phrase and ensure that all relationships are properly described.

Relationship Descriptions. Provide clarifications for all relationships and descrip-

tions of cardinality and participation constraints in the supplementary documentation.

Cardinality Constraints. Go through every relationship. Be certain that the cardinality

indicators are shown for each end of each relationship line.

Optionality Constraints. Wherever business rules indicate participation constraints,

make sure these constraints are represented in the data model.

Identifying Relationships. Search for all weak entity types. Wherever you have noted

weak entity types, ensure the presence of identifying relationships.

Gerunds. Make certain that all gerunds are identified and represented in the data model.

Aggregations. Review pairs of entity types to verify if any aggregations are necessary.

If so, aggregate the qualifying entity types.

RELATIONSHIP VALIDATION CHECKLIST 223

Correctness

Relationship Representation. Ensure that each relationship represents the associ-

ations correctly.

Relationship Verb Phrases. Make sure that all verbs or verb phrases used to specify

relationships reflect the exact nature of the associations. Ensure that the verbs or verb

phrases are not vague or ambiguous.

Relationship Attributes. Wherever attributes are shown for relationships, make sure

these attributes are truly attributes of the relationships and not of any of the participating

entity types.

Cardinality Constraints. Go over each maximum cardinality indicator or any other

notation used to signify cardinality constraint. Make sure that these represent cardinalities

correctly.

Participation Constraints. Verify each minimum cardinality indicator or any other

corresponding notation. Ensure each optional or mandatory condition accurately reflects

the business rules.

Gerunds. Validate each gerund and justify formation of the gerund.

Aggregation. Review each aggregation to verify its correctness in terms of the grouping

of entity types and relationships. Make sure the correct decision has been made to rep-

resent the aggregation instead of a ternary relationship.

Access Pathways. Check access pathways to proceed from each entity instance and

trace through associated entity instances in the related entity types, one after the other

in sequence. Make sure that the pathways are unambiguous and present. If any pathway

is ambiguous or missing, recast the entity types and relationships to resolve potential

problems.

Relationship Review. Review each relationship to ensure that it need not be replaced

by an entity type.

N-ary Relationships. Check each higher degree relationship to determine if these

should be broken up into binary relationships.

One-to-One Relationships. Verify each one-to-one relationship for participation con-

straints. If necessary, merge participating entity types into a single entity type.

One-to-Many Relationships. Check each one-to-many relationships with optional

participation at both ends of the relationships. If necessary, resolve problematic

one-to-many relationships.

Circular Structures. Look for circular structures. If found, resolve these.

224 CHAPTER 6 RELATIONSHIPS IN DETAIL

Triads. Carefully examine the data model for triads. If found, remove the redundant

relationships.

Multiple Relationships. Scrutinize binary relationships. If you suspect multiple

relationships between the participating entity types, resolve this design issue.

CHAPTER SUMMARY

. Relationships between two entity types are associations between specific instances of

one entity type with particular occurrences of another entity type.

. Every relationship has two sides to it with respective cardinalities.

. A relationship between two entity types constitutes a set of associations between

entities of the first entity type and entities of the second entity type.

. A relationship itself may have attributes apart from the attributes of participating

entity types.

. The degree of a relationship in a data model refers to the number of entity types that

participate in the relationship.

. Three common types of cardinality constraints of relationships are one-to-one,

one-to-many, and many-to-many.

. Participation constraint refers to whether instances of one entity type need to partici-

pate in associations with instances of another entity type. Participation may be partial

or total.

. Identifying and nonidentifying relationships are two types of relationships. An iden-

tifying relationship is between a weak entity type and its corresponding strong entity

type.

. Minimum cardinality indicator denotes optional or mandatory nature of a

relationship.

. Aggregation is used to resolve the issue of expressing relationships of relationships.

. Triads must be resolved. A triad consists of redundant relationships.

REVIEW QUESTIONS

1. True or false:

A. A relationship constitutes a set of associations between entities of two entity

types.

B. Quaternary relationships are the most common form of relationship in real-

world situations.

C. Cardinality constraint refers to the numbers of entities participating in a

relationship.

D. Total participation also means mandatory nature of the relationship.

E. A weak entity type sometimes may have independent existence.

F. Minimum cardinality indicator of “0” means mandatory relationship.

REVIEW QUESTIONS 225

G. Merging of entity types in a one-to-one relationship is not advisable when the

relationship is optional at both ends.

H. Only some relationships have two sides.

I. In a ternary relationship, the relationship entity set consists of triplets.

J. Ambiguous access pathways can usually be resolved by recasting the

relationships.

2. A relationship is two-sided. Explain this statement with an example.

3. Show with an example how a relationship itself can have attributes.

4. What is a ternary relationship? Give an example.

5. Give two examples of many-to-many relationships. Describe the associations of

entities in each example.

6. What is partial participation in a relationship? Explain with an example.

7. Give an example with optional conditions at both ends of the relationship. Describe

the associations of entities.

8. What is a gerund in terms of relationships? How do you identify a gerund? Provide

an example.

9. What is the problem of missing pathways in relationships? Describe with an

example.

10. What are circular structures in relationship representation? Give an example and

show how to refine a circular structure.

226 CHAPTER 6 RELATIONSHIPS IN DETAIL

III

DATA MODEL
IMPLEMENTATION

227

7

DATA MODELING TO
DATABASE DESIGN

CHAPTER OBJECTIVES

. Make the transition from data modeling to database design

. Focus on the relational data model as the logical model of choice

. Study significant fundamentals of the relational model

. Examine the leading transition approaches

. Provide in-depth coverage of the model transformation method

. Walk through transformation of each model component

In an earlier chapter, we reviewed the different information levels that exist in an

organization. You need to model the information requirements of the organization at

these levels to satisfy different purposes. We looked at data models at the different infor-

mation levels. We started with an introduction to the conceptual data model. This is at the

highest level of abstraction. A conceptual data model serves as a communication tool to

converse about and confirm information requirements with domain experts.

Elaborate coverage of the conceptual data model spread over the previous chapters.

This data model provides the initial expression and representation of the data content of

the eventual database. Therefore, we studied the components of the conceptual data

model in great detail. However, we now need to proceed further on the path toward data-

base design and implementation. The next step in the process consists of creating a logical

data model. Naturally, the logical data model has to be derived from the conceptual data

model. The steps following logical data modeling consummate in designing the physical

details and implementing the database.

229

Data Modeling Fundamentals. By Paulraj Ponniah
Copyright # 2007 John Wiley & Sons, Inc.

For us, the relational data model will be the logical model of choice. As you know, the

logical data model is to serve as a blueprint for database construction. We have selected

the relational model because this has proved to be superior to other models such as hier-

archical and network models. Relational databases are the most popular ones, and these

work based on the relational data model.

Figure 7-1 shows the data models at different levels. Note how the figure illustrates the

transition from one level to the next.

Before we deal with the transition of a conceptual to a relational data model, we need to

cover the fundamentals of the relational model in sufficient detail. We have to study the

various components of that model so that you may appreciate the transition steps. After

the comprehensive coverage of the fundamentals, we will move into the mapping and

transformation of model components from conceptual to logical. This method is the

model transformation method.

We will also consider another method for creating a relational data model—a more

traditional or informal method. That method has elements of intuition, and trial and

error. We will do a quick review of the data normalization method. In a way, this is rela-

tional data modeling from scratch.

The above figure shows physical data modeling as a final modeling step. Physical data

modeling comes very close to implementation. Specific target DBMS and hardware con-

figurations directly influence physical design. Considerations of specific commercial

DBMSs or hardware components do not fall within the scope of our discussions in this

book. Therefore, we will exclude physical data modeling from our scope. You may

consult the several good books available on database design and implementation to

learn about that topic.

FIGURE 7-1 Data models at different levels.

230 CHAPTER 7 DATA MODELING TO DATABASE DESIGN

RELATIONAL MODEL: FUNDAMENTALS

The relational model uses familiar concepts to represent data. In this model, data is

perceived as organized in traditional, two-dimensional tables with columns and rows. You

find the rigor of mathematics incorporated into the formulation of the model. It has its

theoretical basis in mathematical set theory and first-order predicate logic. The concept

of a relation comes from mathematics and represents a simple two-dimensional table.

The relational model derives its strength from its simplicity and the mathematical foun-

dation on which it is built. Rows of a relation are treated as elements of a set. Therefore,

manipulation of rows may be based on mathematical set operations. Dr. Codd used this

principle and provided two generic languages for manipulating data organized as relations

or tables.

A relation or two-dimensional table forms the basic structure in the relational model.

What are the implications? In requirements gathering, you collect much information

about business objects or entities, their attributes, and relationships among them. You

create a conceptual data model as a replica of information requirements. All of these

various pieces of information can be represented in the form of relations. The entities,

their attributes, and even their relationships are all contained in the concept of relations.

This provides enormous simplicity and makes the relational model a superior logical

data model.

Basic Concepts

We will begin our examination of the relational data model by studying its basic concepts.

You need to review the inherent strengths of this model so that you can appreciate why it is

so widespread. Having grounding in solid mathematics, data represented as a relational

model renders itself for easy storage and manipulation.

Simple modeling concepts constitute the data model. When you need to transform a

conceptual data model into a relational data model, the transition becomes easy and

straightforward. We will also note how the mathematical concept of a relation serves as

the underlying modeling concept.

Strengths of the Relational Model. Before we proceed to explore the relational

model in detail, let us begin with a list of its major strengths. This will enable you to

appreciate the superiority of the model and help you understand the features in a better

light. Here is a summary of the strengths:

Mathematical Relation. The model uses the concept of a mathematical relation or two-

dimensional table to organize data; rests on solid mathematical foundation.

Mathematical Set Theory. The model applies the mathematical set theory for manipu-

lation of data in the database. Data storage and manipulation depend on a proven and

precise approach.

Disciplined Data Organization. The model rests on a solid mathematical foundation;

data organization and manipulation are carried out in a disciplined manner.

RELATIONAL MODEL: FUNDAMENTALS 231

Simple and Familiar View. The model provides a common and simple view of data in

the form of two-dimensional tables. Users can easily perceive how data is organized;

they need not be concerned with how data is actually stored in the database.

Logical Links for Relationships. Other data models such as hierarchical and network use

physical links to relate entities. If two entities such as CUSTOMER and ORDER are

related, you have to establish the relationship by means of physical addresses embedded

within the stored data records. In striking contrast, the relational model uses logical

links to establish relationships. This is a major advantage.

Mathematical Foundation. We have mentioned that the relational model rests on a

solid mathematical foundation. Specifically, in a relational model, the principles of

matrix theory apply. Relational model tables are similar to mathematical matrices

arranged as rows and columns. Thus, concepts of matrix manipulations can be applied

to the rows and columns in a relational table.

Again, the principles and operations of mathematical set theory may be applied to the

relational data model. The rows of a relational table are analogous to members of a mathe-

matical set. If you need to work with data rows in two relational tables, you may consider

these as members of two sets and apply set operations.

Figure 7-2 illustrates how mathematical principles can apply to relational tables. First,

notice the similarity between elements placed in a mathematical matrix and data in the

form of a relational table. Next, look at the two sets and their representations. Individual

entity instances may be taken as members of sets.

Single Modeling Concept. As mentioned earlier, a relation or table is the primary

data modeling concept in the relational mode. A table is a collection of columns that

describe a thing of interest to the organization. For example, if COURSE is a conceptual

thing of interest in a university, then a two-dimensional table or relation will represent

FIGURE 7-2 Mathematical foundation of relational model.

232 CHAPTER 7 DATA MODELING TO DATABASE DESIGN

COURSE in the relational data model for the university. Figure 7-3 shows a plain two-

dimensional table whose format represents an entity or object.

Note the following features about a relation or two-dimensional table:

. Relation is table, representing data about some entity type or object.

. Relation is not any random table, but one that conforms to certain relational rules.

. Relation consists of a specific set of columns that can be named and an arbitrary

number of rows.

. Each row contains a set of data values.

. Table names and column names are used to understand the data. The table or relation

name indicates the entity type; the column names, its characteristics.

Structure and Components

As we have been repeatedly saying, the relational data model possesses a simple structure.

What can you say about a simple two-dimensional table? The table has rows; the table has

columns. Somehow, the usual components of a data model—entity types, attributes,

relationships, and so on—must be mapped to the simple structure of a relational table.

Let us go over the basic form of a relational table. We will note which part of the table

would represent what component of a data model. What are the meanings of the rows,

columns, column headings, and the data values in the rows and columns? Which ones

are the attributes, attribute values, identifiers, and relationships?

Relation or Table. In the relational data model, a table stands for an entity type. Each

entity type in a conceptual data model gets represented by a separate table. If you have 15

entity types in your conceptual data model, then usually the corresponding relational

modelwill contain15 tables.Aswewill see later, additional tablesmaybebecomenecessary.

Nevertheless, an entity type in a conceptual model maps into a table or relation.

See Figure 7-4 representing the entity type called EMPLOYEE. The name of the table

is the name of the entity type.

FIGURE 7-3 Relation or two-dimensional table.

RELATIONAL MODEL: FUNDAMENTALS 233

Columns as Attributes. Figure 7-5 presents a relation representing an entity type

EMPLOYEE.

Make note of the following about the columns in a relation as illustrated in the figure.

. Each column indicates a specific attribute of the relation.

. The column heading is the name of the attribute.

. In the relationalmodel, the attributes are referred to by the columnnames andnot by their

displacements in a data record. Therefore, no two columns can have the same name.

. For each row, the values of the attributes are shown in the appropriate columns.

. For a row, if the value of an attribute is not known, not available, or not applicable, a

null value is placed in the specific column. A null value may be replaced with a

correct value at a later time.

. Each attribute takes its values from a set of allowable or legal values called the

attribute domain. A domain consists of a set of atomic values of the same data

type and format.

. The number of columns in a relation is referred to as the degree of the relation.

FIGURE 7-4 Employee relation or table.

FIGURE 7-5 Employee relation: attributes.

234 CHAPTER 7 DATA MODELING TO DATABASE DESIGN

Rows as Instances. Rows, also referred to by the mathematical name of tuples, indi-

cate the occurrences or instances of the entity type represented by a relation. In a relation,

each row represents one instance of the entity type. Each column in that row indicates one

piece of data about the instance.

Figure 7-6 shows the rows or tuples for the EMPLOYEE relation.

If there are 10,000 employees in the organization, the relation will contain 10,000 rows.

The number of tuples in a relation is known as the cardinality of the relation. For an

EMPLOYEE relation with 10,000 rows, the cardinality is 10,000.

Now, because a relation is considered as a mathematical set, this EMPLOYEE relation

is a set of 10,000 data elements. Manipulation of data in the EMPLOYEE relation, there-

fore, becomes a set operation. Each row represents a particular employee. Look at the row

for the employee Carey Smith. Note the value shown under each column in this row.

Each of the values in the columns describes the employee Carey Smith. Each value rep-

resents one piece of data about the employee. All data for the employee is contained in

the specific row.

Primary Key. As mentioned above, in a relation, each tuple represents one instance of

the relation. In an EMPLOYEE relation with 10,000 rows, each row represents a particular

employee. But, how can we know which row represents an employee we are looking for?

In order to identity a row uniquely, we can use the attribute values. We may say that, if the

value of the attribute EmployeeName is “Carey Smith,” then that row represents this par-

ticular employee. What if there is another Carey Smith in the organization? Thus, you need

some attribute whose values will uniquely identify individual tuples. Note that the attribute

SocSecNumber can be used to identify a tuple uniquely.

Given below are definitions of keys or identifiers in a relation:

Superkey. A set of columns whose values uniquely identify each tuple in a relation;

however, a superkey may contain extra unnecessary columns.

Key. A minimal set of columns whose values uniquely identify each tuple in a relation.

Composite Key. A key consisting of more than one column.

Candidate Key. A set of columns that can be chosen to serve as the key.

FIGURE 7-6 Employee relation: rows.

RELATIONAL MODEL: FUNDAMENTALS 235

Primary Key. One of the candidate keys actually selected as the key for a relation.

Surrogate Key. A key that is automatically generated for a relation by the computer

system; for example, CustomerNumber, generated in sequence by the system and assigned

to CUSTOMER rows. Surrogate keys ensure that no duplicate values are present in the

relation. Surrogate keys are artificial keys.

Relationship Through Foreign Keys. You have noted earlier that the relational

model is superior to other conventional data models because it does not use physical

links to establish relationships. The relational model uses logical links. How is this

done? What is a logical link?

Figure 7-7 presents two relations EMPLOYEE and DEPARTMENT. Obviously, these

two relations are related to each other because there are associations between employees

and departments. One or more employees are assigned to a particular department; an

employee is assigned to a specific department.

Observe the links shown between tuples in EMPLOYEE relation to corresponding

tuples in DEPARTMENT relation. The DeptCode attribute in EMPLOYEE relation is

called a foreign key attribute. Especially, note the value of the foreign key attribute and

the value of the primary key attribute of the related row in the other relation.

Let us summarize how relationships are established in the relational data model.

. Relationships in the relational data model are established through foreign keys, not

physical pointers.

. The logical link between a tuple in the first relation to a tuple in a second relation is

established by placing the primary key value in the tuple of the first relation as the

FIGURE 7-7 Department and employee relations: relationship.

236 CHAPTER 7 DATA MODELING TO DATABASE DESIGN

foreign key value in the corresponding tuple of the second relation. The first relation

may be referred to as the parent relation and the second as a child.

. If tuples of a relation are related to some other tuples of the same relation, then the

foreign key attribute is included in the same relation. This is a recursive relationship.

For example, in an EMPLOYEE relation, some tuples representing employees may

be related to other tuples in the same relation representing supervisors.

. Foreign key attributes need not have the same names as the corresponding primary

key attributes.

. However, a foreign key attribute must be of the same data type and length of the

related primary key attribute.

In the above figure, you notice that some tuples show null values for the foreign key

attributes. What is the significance of the null values?

Optional Relationship. Consider a tuple in EMPLOYEE relation with null value in the

foreign key column. This shows that the specific tuple is not linked to any tuple in

DEPARTMENT relation. This means that this particular employee is not assigned to

any department. He or she could be a new employee not yet assigned to a department

or an employee on special assignment not tied to a specific department. Null value in

the foreign key column indicates the nature of the relationship. Not all employees need

be associated with a department. Null values in foreign key indicate an optional relation-

ship between the two relations.

Mandatory Relationship. In EMPLOYEE relation, suppose that null values are not

allowed in the foreign key. This requires specific discrete values to be present in all the

tuples of this relation. Every tuple in EMPLOYEE relation, therefore, points to a

related tuple in DEPARTMENT relation. In other words, every employee must be

related to a department. If null values are not allowed in the foreign key, the relationship

between the two relations is a mandatory relationship.

Relational Model Notation. Figure 7-8 gives an example of relational tables.

Figure 7-9 presents a standard notation used to represent this relational data model.

Note the following description of the notation:

. Notation for each relation begins with the name of the relation. Examples: WORKER,

ASSIGNMENT, BUILDING, SKILL.

. For each relation, the column names are enclosed within parentheses. These are the

attributes for the relation.

. Primary key attributes are indicated with underscores. Examples: BuildingID,

SkillCode.

. Statements immediately following the notation of a relation indicate the foreign key

within that relation. Example: Foreign Keys: SkillCode references SKILL.

. The foreign key statement includes the name of the foreign key and the name of the

parent relation.

. Note the foreign key SupvID indicating a recursive relationship.

RELATIONAL MODEL: FUNDAMENTALS 237

Data Integrity Constraints

It is essential that a database built on any specific data model must ensure validity of data.

The data structure must be meaningful and be truly representative of the information

requirements. Constraints are rules that make sure proper restrictions are imposed on

the data values in a database. The purpose is to regulate and ensure that the data

content is valid and consistent. For example, in order to preserve the uniqueness of

each tuple in a relation, the constraint or rule is that the primary key has unique values

in the relation. Another example is a domain constraint that requires that all values of a

specific attribute be taken from the same set or domain of permissible values.

As mentioned earlier, a relational data model consists of tables or relations that conform

to relational rules and possess specific properties. We will now discuss the constraints and

properties that ensure data correctness and consistency in a relational data model. First, let

FIGURE 7-8 Relational tables.

FIGURE 7-9 Relational data model: notation.

238 CHAPTER 7 DATA MODELING TO DATABASE DESIGN

us establish the reasons for ensuring data integrity. A database is said to possess data integ-

rity if the data values will provide a correct and valid representation of the characteristics

of the entities or objects. Data integrity includes consistency of data values. Data values

derived from one business process must match up correctly with the same values

derived from another process.

Why Data Integrity? Let us summarize the reasons for data integrity and examine how

the relational data model must ensure data integrity

. In a mathematical set, no two elements can be the same. Similarly, in the relational

model that is based on set theory, no two rows can be exactly the same.

. Each tuple must represent one specific entity. There must be no ambiguity in identi-

fication of the tuple for each specific entity.

. The values in all tuples for any single attribute must be of the same data type, format,

and length. There must not be variations, confusion, or unpredictability in the values

for every attribute.

. The columns must be identified only by names and not by position or physical order in

a relation.

. A new row may be added anywhere in the table so that the content does not vary with

the order of the rows or tuples in a relation.

. The model should express relationships correctly and without any room for

exceptions.

. The data model must consist of well-structured relations with minimum data

redundancy.

. Data manipulations in a relational database must not result in any data

inconsistencies.

First, we will consider the basic relational properties that support data integrity and data

consistency. Next, we will address three special cases that further enhance data integrity.

Basic Relational Properties. Following is a list of the significant relational properties

that govern the relations in a relational model.

Row Uniqueness. Each row or tuple is unique—no duplicate rows with the same set of

values for the attributes are allowed. No two rows are completely identical.

Unique Identifier. The primary key identifies each tuple uniquely.

Atomic Values. Each value of every attribute is atomic. That is, for a single tuple, the

value of each attribute must be single-valued. Multiple values or repeating groups of attri-

butes are not allowed for any attribute in a tuple.

Domain Constraint. The value of each attribute must be an atomic value from a certain

domain.

Column Homogeneity. Each column gets values from same domain.

RELATIONAL MODEL: FUNDAMENTALS 239

Order of Columns. The sequence of the columns is insignificant. You may change the

sequence without changing the meaning or use of the relation. The primary key may be

in any column, not necessarily in the first column. Columns may be stored in any sequence

and, therefore, must be addressed by column names and not by column positions.

Order of Rows. The sequence of the rows is insignificant. Rows may be reordered or

interchanged without any consequence. New rows may be inserted anywhere in the

relation. It does not matter whether rows are added at the beginning, or middle, or at

the end of a relation.

Entity Integrity. Consider the relation EMPLOYEE. The rows in the relation represent

individual employees in an organization. The rows represent real-world entities. Each row

represents a specific employee. Similarly, a row in the relation CUSTOMER stands for a

particular customer. In other words, each tuple or row in a relation must be uniquely identi-

fied because each tuple represents a single and distinct entity. Entity integrity rule in the

relational data model establishes this principle for an entity.

But, how is a specific row or tuple in a relation uniquely identified? As you know, the

primary key serves this function. The primary key value of each tuple or row uniquely

identifies that row. Therefore, entity integrity rule is a rule about the primary key that is

meant to identify rows uniquely. The rule applies to single relations.

Entity integrity rule

No part of the primary key of any tuple in a relation can have a null value.

Figure 7-10 presents three relations EMPLOYEE, PROJECT, and ASSIGNMENT.

Relations EMPLOYEE and PROJECT have primary keys with single attributes; two attri-

butes make up the primary key for the ASSIGNMENT relation. The figure explains how

violation of entity integrity rule affects the integrity of the data model.

Note the null values present in a few rows, and because of these rows the entity integrity

rule is violated in the relation. If two or more rows have nulls as primary key values, how

can you distinguish between these rows? Which row denotes which specific entity? In the

case of the relation ASSIGNMENT, even if part of the primary key contains nulls for any

rows, the entity integrity rule is violated.

Referential Integrity. You have noted that foreign keys establish relationships between

tables or relations. The value placed in the foreign key column of one table for a specific

row links to a row with the same value in the primary key column in another table.

Figure 7-11 shows two relations DEPARTMENT and EMPLOYEE.

Note how the values in the foreign key column DeptNo in EMPLOYEE relation and in

the primary key column DeptNo in DEPARTMENT relation link related rows in the two

relations. In the figure, employee Charles is assigned to department Accounting; employee

Eldon, to Marketing. What about employee Mary who is supposed to be assigned to

department D555? But, the database does not have department D555. Look at the row

for employee Paul. This row has a null value in the foreign key column. Is this

allowed? What do nulls in foreign key columns indicate? You know that nulls in

foreign key columns denote optional relationships. That means employee Paul is not

assigned to any department.

240 CHAPTER 7 DATA MODELING TO DATABASE DESIGN

When one relation is related to another through foreign key values, the references of the

relationship must be clearly indicated. There should not be any ambiguities. A foreign key

value must clearly indicate how that row is related to a row in the other relation. Referen-

tial integrity rule addresses the establishment of clear references between related tables.

Referential integrity rule, therefore, applies to sets of two relations.

Referential integrity rule

The value of a foreign key in a table must either be null or be one of the values of the primary

key in the related table.

FIGURE 7-10 Entity integrity rule.

FIGURE 7-11 Referential integrity rule.

RELATIONAL MODEL: FUNDAMENTALS 241

Functional Dependencies. Let us use EMPLOYEE, PROJECT, and ASSIGNMENT

relations shown in Figure 7-10 to examine the concept of functional dependency. The

notion of functional dependency in a relation arises because the value of one attribute

in a tuple determines the value for another attribute. Let us look at some examples.

In the EMPLOYEE relation of Figure 7-10, note the tuple with key value 213-36-7854.

This determines that the tuple represents a distinct employee whose name is Samuel Kahn

and whose position is Analyst. Now, look at the tuple with key value 311-33-4520. This

key value uniquely identifies an employee whose name is Kaitlin Hayes and whose

position also happens to be Analyst. Let us inspect the dependencies.

Values of which attribute determine values of other attributes? Does the value of the

primary key uniquely and functionally determine the values of other attributes?

. Key value 213-36-7854 uniquely and functionally determines a specific row repre-

senting Samuel Kahn with position Analyst.

. Key value 311-33-4520 uniquely and functionally determines a specific row repre-

senting Kaitlin Hayes with position Analyst.

Let us ask the questions the other way around. Does the value of the attribute Position

uniquely and functionally determine the value of the primary key attribute?

. Attribute value Analyst does not uniquely determine a key value—in this case, it

determines two values of the key, namely, 213-36-7854 and 311-33-4520.

What you see clearly is that the value of the primary key uniquely and functionally

determines the values of other attributes, and not the other way around.

Let us express this concept using a functional dependency notation,

FD: SocSecNumber ! EmployeeName

FD: SocSecNumber ! Position

In the ASSIGNMENT relation, two attributes SocSecNumber and ProjectID together

make up the primary key. Here, too, the values of the other attribute in a tuple are uniquely

determined by the values of the composite primary key.

FD: SocSecNumber, ProjID ! StrtDate

The discussion of functional dependencies leads to another important rule or constraint

about the primary key of a relation.

Functional dependency rule

Each data item in a tuple of a relation is uniquely and functionally determined by the primary

key, by the whole primary key, and only by the primary key.

TRANSITION TO DATABASE DESIGN

From the discussion so far, you have captured the significance of the relational data model.

You have understood how it stands on a solid mathematical foundation and is, therefore, a

242 CHAPTER 7 DATA MODELING TO DATABASE DESIGN

disciplined approach to perceiving data. The view of data in the form of the common two-

dimensional tables adds to the elegance and simplicity of the model. At the same time,

relational constraints or rules, to which the two-dimensional tables must conform,

ensure data integrity and consistency.

Commercial relational database management systems are implementations of the rela-

tional data model. So, in order to develop and build a relational database system for your

organization, you need to learn how to design, put together a relational data model, and

make the transition to database design. Although the model appears to be simple, how

do you create a relational data model from the requirements? The previous chapters

covered details of creating data models. We went through the methods and steps for creat-

ing a conceptual data model using the E-R modeling technique. Now, the task is to create a

relational data model, which is not the same as one of designing the conceptual data model.

Why do you need to create a relational data model? If you are developing a relational data-

base system, then you require your information requirements represented in a relational

data model. Let us explore the methods for creating a relational data model.

Design Approaches

From the previous chapters, you know how to create a conceptual data model from the

information requirements. A conceptual data model captures all the meanings and

content of information requirements of an organization at a high level of abstraction.

Being a generic data model, a conceptual data model is not restricted by the structure

and format rules of the conventional data models such as hierarchical, network, or rela-

tional data models. Representing information requirements in the form of a conceptual

data model is the proper way to start the data modeling process.

Well, what are the steps between creating a conceptual data model and the implemen-

tation of a relational database system for your organization? You know that the conceptual

data model, if created correctly, will represent every aspect of the information that needs to

be found in the proposed database system. The next steps depend on the extent and com-

plexity of your database system. Let us examine the options.

Database practitioners adopt one of two approaches to design and put together a rela-

tional data model. The relational data model must, of course, truly represent the infor-

mation requirements. In the simplest terms, what is a relational data model? It is a

collection of two-dimensional tables with rows and columns, and with relationships

expressed within the tables themselves through foreign keys. So, in effect, designing

and creating a relational data model reduces to creating the proper collection of two-

dimensional tables.

Figure 7-12 presents the two design approaches for creating a relational data model.

Note how in one approach, you go through the steps of creating a conceptual data model

first and then transform the conceptual model into a relational data model. The other

approach appears to be a short-cut method bypassing the conceptual data model. In this

approach, you go to the task of creating the relational data model straight from require-

ments definitions. However, you may still want a conceptual data model to serve as the

communication vehicle between data modelers and user groups. Let us examine the

basics of the two approaches.

Conceptual to Relational Model

The first method shown in Figure 7-12 takes you through the conceptual data model. In this

approach, first you complete the conceptual data model. For creating the conceptual data

TRANSITION TO DATABASE DESIGN 243

model, you may use the E-R data modeling technique. Some other modeling techniques

would also produce conceptual data models.

Here are the general steps in this design approach:

. Gather the information requirements of the organization.

. Create a conceptual data model to truly represent the information requirements.

. Review the overall conceptual data model for completeness.

. Take each component of the conceptual data model at a time and examine it.

. Transform each component of the conceptual data model into a corresponding com-

ponent of the relational data model.

. Pull together all the components of the relational data model resulting from the trans-

formation from the conceptual data model.

. Complete the relational data model.

. Review the relational data model for completeness.

The next major section of this chapter elaborates on this approach to designing the rela-

tional data model. We will list the components of the conceptual model and the corre-

sponding components of the relational model. We will determine how each component

of the conceptual data model must be mapped to its corresponding component in the rela-

tional data model.

Traditional Method

Before the introduction and standardization of data modeling techniques, traditionally

database practitioners had adopted a different method. A relational data model is, after

all, a set of two-dimensional tables. Why not look at the information requirements and

try to come up with the necessary tables to represent the data that would satisfy the

FIGURE 7-12 Relational data model: design approaches.

244 CHAPTER 7 DATA MODELING TO DATABASE DESIGN

information requirements? Why do you need an intermediary step of creating a conceptual

data model? Does it not appear to be a practical design approach?

Although this approach is deceptively simple, as you will note in the next chapter, this

method is subject to serious problems if the tables are not defined properly. You are likely

to end up with a faulty set of tables in your relational data model with a high potential for

data corruption and inconsistency.

Dr. Codd suggested an orderly methodology for making this design approach work.

After an initial set of tables is put together intuitively, you must go through a step-by-step

process of normalization of the initial tables. After completing the normalization steps,

your relational data model will result in a set of tables that are free from redundancies

and errors.

Here are the steps in this design approach:

. Gather the information requirements of the organization.

. Review the information requirements to determine the types of tables that would be

needed.

. Come up with an initial set of tables.

. Ensure that your initial set of tables contains all the information requirements.

. Normalize the tables using a step-by-step methodology.

. Review the resulting set of tables, one by one, and ensure that none of the tables has

potential redundancies or errors.

. Complete the relational data model.

. Review the relational data model for completeness.

Chapter 8 covers the data normalization method. In that chapter, we will have a detailed

discussion of this approach to designing the relational data model. You will realize the

need and motivation for the normalization process. We will list the normalization steps

and show how to apply a single normalization principle at each step. You will note

how, after each step, the set of tables gets closer to being the correct set of tables and

being part of the final relational data model.

Evaluation of Design Methods

Naturally, when there are two ways for arriving at the same place, which path should you

take? If both methods produce the same desired result, which method is more appropriate?

The answers to these questions depend on the circumstances of the design process.

Note the following points about the two methods while making the choice between the

two ways:

Same Result. If you carry out the transformation of the conceptual data model into a

relational model or adopt the traditional method using normalization, you will arrive at

the same relational data model. However, either method must be used carefully, making

sure that every task is executed properly.

One Method Intuitive. In the traditional method, you are supposed to come up with an

initial and complete set of tables. But, how do you come up with the initial set? Using what

method? There is no standard method for arriving at an initial set of tables. You have to

TRANSITION TO DATABASE DESIGN 245

look at the information requirements and arrive at the initial set of tables mostly through

intuition. You just start with the best possible set that is complete. Then you go and nor-

malize the tables and complete the relational data model.

Other Method Systematic. The method of creating the conceptual data model first and

then transforming it into the required relational data model is a systematic method with

well-defined mapping algorithms. Creation of the conceptual data model is through

clearly defined data modeling techniques. Then you take the components of the conceptual

data model, one by one, and transform these in a disciplined manner.

Choosing Between the Two Methods. When can you adopt the traditional method?

Only when you can come up with a good initial set of tables through intuition. If the infor-

mation requirements are wide and complex, by looking at the information requirements it

is not easy to discern the tables for the initial set. If you attempt the process, you are likely

to miss portions of information requirements. Therefore, adopt the traditional approach

only for smaller and simpler relational database systems. For larger and complex relational

database systems, the transformation method is the prudent approach. As data modelers

gain experience, they tend to get better at defining the initial set of tables and go with

the normalization method.

MODEL TRANSFORMATION METHOD

This method is a straightforward procedure of examining the components of your concep-

tual data model and then transforming these components into components of the required

relational data model. A conceptual model is a generic model. We have chosen to trans-

form it into a relational model.

Let us study the transformation of a conceptual model created using E-R technique into

relational data model. The discussions here may also be adapted to a conceptual model

created using any other modeling technique. The transformation principles will be similar.

The Approach

Obviously, first you need to firm up your requirements definition before beginning any

data modeling. We had discussed requirements gathering methods and contents of require-

ments definition in great detail. Requirements definition drives the design of the concep-

tual data model.

Requirements definition captures details of real-world information. After the require-

ments definition phase, you move to conceptual data modeling to create a replica of infor-

mation requirements. From conceptual data modeling, you make the transition to a

relational data model. This completes the logical design phase. Physical design and

implementation follow; however, these are not completely within the purview of our study.

Merits. Why go through the process of creating a full-fledged conceptual model first and

then transforming it into a relational data model? Does it not sound like a longer route to

logical design? What are the merits and advantages of this approach? Although we have

addressed these questions earlier in bits and pieces, let us summarize the merits and ration-

ale for the model transformation approach.

246 CHAPTER 7 DATA MODELING TO DATABASE DESIGN

Need for Conceptual Model. You must ensure that your final database system stores and

manages all aspects of information requirements. Nothing must be missing from the data-

base system. Everything should be correct. The proposed database system must be able to

support all the relevant business processes and provide users with proper information.

Therefore, any data model as a prelude to the proposed database system must be a true

replica of information requirements.

A general data model captures the true and complete meaning of information require-

ments at a high level of abstraction understandable by user groups. The model is made up

of a complete set of components such as entity types, attributes, relationships, and so is

able to represent every aspect of information requirements. If there are variations in

entity types or relationship types in the information requirements, a generic data model

can correctly reflect such nuances.

Limitations of Implementation Models. Consider the conventional data models such as

the hierarchical, network, or relational data models. These are models that are

implemented in commercial database systems. You have hierarchical, network, and rela-

tional databases offered by vendors. The conventional or implementation models are the

ones that stipulate how data is perceived, stored, and managed in a database system.

For example, the relational data model lays down the structure and constraints on how

data can be perceived as two-dimensional tables and how relationships may be established

through logical links. As such, the implementation data models address data modeling

from the point of view of storing and managing data in the database system.

However, the objectives of database development are to ensure that any data model

used must truly replicate all aspects of information requirements. The conventional data

models do not directly perceive data from the point of view of information requirements;

they seem to come from the other side. Therefore, a conventional data model is not usually

created directly from information requirements. Such an attempt may not produce a com-

plete and correct data model.

Need for Generic Model. Imagine a process of creating a conventional data model from

information requirements. First of all, what is the conventional data model that is being

created? If it is a hierarchical data model, then you as a data modeler must know the com-

ponents of the hierarchical data model thoroughly and also know how to relate real-world

information to these model components. On the other hand, if your organization opts for a

relational data model, again, you as a data modeler must know the components of the rela-

tional data model and also know how to relate real-world information to the relational

model components.

However, data modeling must concentrate on correctly representing real-world infor-

mation irrespective of whether the implementation is going to be hierarchical, network,

or relational. As a data modeler, if you learn one set of components and gain expertise

in mapping the real-world to this generic set of components, then your concentration

will be on capturing the true meaning of real-world information and not on variations

in modeling components.

Simple and Straightforward. Theattraction for themodel transformationmethod for creat-

ing a relational model comes from the simplicity of the method. Once the conceptual data

model gets completed with due diligence, the rest of the process is straightforward. There

are no complex, convoluted steps. You have to simply follow an orderly sequence of tasks.

MODEL TRANSFORMATION METHOD 247

Suppose your organization desires to implement a relational database system.

Obviously, information requirements must be defined properly no matter which type of

database system is being implemented. Information requirements define the set of real-

world information that must be modeled. A data modeler who specializes in conceptual

data modeling techniques creates a conceptual data model based on information require-

ments. At this stage, the data modeler need not have any knowledge of the relational data

model. All the data modeler does is to represent information requirements in the form of a

conceptual model. The next straightforward step for the data designer is to review the com-

ponents of the conceptual data model and change each component to a component of the

relational data model.

Easy Mapping of Components. A conceptual data model is composed of a small dis-

tinct set of components. It does not matter how large and expansive the entire data

model is; the whole data model is still constructed with a few distinct components. You

may be creating an E-R data model for a large multinational corporation or a small

medical group practice. Yet, in both cases, you will be using a small set of components

to put together the E-R data model.

What then is the implication here? Your conceptual data model, however large it may

be, consists of only a few distinct components. This means you just need to know how to

transform a few distinct components. From the other side, a relational data model also con-

sists of a few distinct components. So, mapping and transforming the components

becomes easy and very manageable.

When to Use this Method. When there is more than one method for creating a rela-

tional data model, a natural question arises as to how do you choose and adopt one

method over the other? When do you use the model transformation method and not the

normalization method? In a previous section, we had a few hints. The model transform-

ation method applies when the normalization method is not feasible. Let us now list the

conditions that would warrant the use of the model transformation method.

Large Database System. When a proposed database system is large and the data model

is expected to contain numerous component pieces, the model transformation method is

preferable.

Complex Information Requirements. Some set of information requirements may

require modeling complex variations and many types of generalization and specialization.

There may be several variations in the relationships, and the attributes themselves may be

of different types. Under such conditions, modeling complex information requirements

directly in the relational model bypassing the conceptual data model proves to be very

difficult.

Large Project. A large project requires many data modelers to work in parallel to com-

plete the data modeling activity within a reasonable time. Each data modeler will work on

a portion of information requirements and produce a partial conceptual data model. When

a project is large and the data model is expected to contain numerous partial models, the

model transformation method is preferable. The partial conceptual data models are inte-

grated and then transformed into a relational data model.

248 CHAPTER 7 DATA MODELING TO DATABASE DESIGN

Steps and Tasks. Figure 7-13 presents the major steps in the model transformation

method. Study these major steps and note how each major step enables you to proceed

toward the final transformation of the data model.

Mapping of Components

While creating an E-R data model, the data modeler uses the components or building

blocks available in that technique to put together the data model. You have studied

such components in sufficient detail. Similarly, in order to create a relational model, the

building blocks are the ones available in the relational modeling technique. You reviewed

these components also. Essentially, transforming an E-R data model involves finding

matching components in the relational data model and transferring the representation of

information requirements from one model to the other. Model transformation primarily

consists of mapping of corresponding components from one data model to the other.

Let us recapitulate the components or building blocks for each of the two models—the

E-R and the relational data models. The list of components makes it easier to begin the

study of component mapping and model transformation.

Conceptual Data Model

ENTITY-RELATIONSHIP TECHNIQUE

Entity types

Attributes

Keys

Relationships

Cardinality indicators

Generalization/specialization

FIGURE 7-13 Model transformation: major steps.

MODEL TRANSFORMATION METHOD 249

Relational Data Model

Relations or tables

Rows

Columns

Primary key

Foreign key

Generalization/specialization

Just by going through the list of components, it is easy to form the basic concepts for

mapping and transformation. The conceptual data model deals with the things that are

of interest to the organization, the characteristics of these things, and the relationships

among these things. On the other hand, the relational model stipulates how data about

the things of interest must be perceived and represented, how the characteristics must

be symbolized, and how the links between related things must be established.

First, let us consider the mapping of things and their characteristics. Then we will move

on to the discussion of relationships. As you know, a major strength of the relational model

is the way it represents relationships through logical links. We will describe the mapping

of relationships in detail and also take up special conditions. Mapping involves taking the

components of the conceptual data model, one by one, and finding the corresponding com-

ponent or components in the relational data model.

Entity Types to Relations

Let us begin with the most obvious component—entity type in the E-R data model. What

is an entity type? If employee is a “thing” the organization is interested in storing infor-

mation about, then employee is an entity represented in the conceptual data model. The

set of all employees in the organization about whom data must be captured in the proposed

relational database system is the entity type EMPLOYEE.

Figure 7-14 shows the mapping of entity type EMPLOYEE. The mapping shows the

transformation of entity type represented in E-R modeling notation to a relation denoted

in relational data model notation.

From the figure, note the following points about the transformation from E-R data

model to relational data model:

. Entity type is transformed into a relation.

. Name of the entity type becomes the name of the relation.

. The entity instances perceived as present inside the entity type box transform into the

rows of the relation.

. The complete set of entity instances becomes the total set of rows of the relation or table.

. In the transformation, nothing is expressed about the order of the rows in the trans-

formed relation.

Attributes to Columns

Entities have intrinsic or inherent characteristics. So, naturally the next component to be con-

sidered is the set of attributes of an entity type. Figure 7-15 shows the transformation of

attributes.

250 CHAPTER 7 DATA MODELING TO DATABASE DESIGN

Make note of the following points with regard to the transformation of attributes:

. Attributes of an entity type are transformed into the columns of the corresponding

relation.

. The names of the attributes become the names of the columns.

. Domain of values of each attribute translates into the domain of values for corres-

ponding columns.

. In the transformation, nothing is expressed about the order of the columns in the trans-

formed relation.

. A single-valued or a derived attribute becomes one column in the resulting relation.

FIGURE 7-14 Mapping of entity type.

FIGURE 7-15 Mapping of attributes.

MODEL TRANSFORMATION METHOD 251

. If a multivalued attribute is present, then this is handled by forming a separate relation

with this attribute as a column in the separate relation.

. For a composite attribute, as many columns are incorporated as the number of com-

ponent attributes.

Identifiers to Keys

In the E-R data model, each instance of an entity type is uniquely identified by values in

one or more attributes. These attributes together form the instance identifier. Figure 7-16

indicates the transformation of instance identifiers.

Note the following points on this transformation:

. The set of attributes forming the instance identifier becomes the primary key of the

relation.

. If there is more than one attribute, all the corresponding columns are indicated as

primary key columns.

. Because the primary key columns represent instance identifiers, the combined value

in these columns for each row is unique.

. No two rows in the relation can have the same values in the primary key columns.

. Because instance identifiers cannot have null values, no part of the primary key

columns can have null values.

Transformation of Relationships

Methods for conceptual data modeling have elegant ways for representing relationships

between two entity types. Wherever you perceive direct associations between instances

FIGURE 7-16 Mapping of instance identifiers.

252 CHAPTER 7 DATA MODELING TO DATABASE DESIGN

of two entity types, the two entity types are connected by lines with a diamond in the

middle containing the name of the relationship. How many instances of one entity type

are associated with how many instances of the other? The indication about the numbers

is given by cardinality indicators, especially the maximum cardinality indicator. The

minimum cardinality indicator denotes whether a relationship is optional or mandatory.

You know that a relational data model establishes relationships between two relations

through foreign keys. Therefore, transformation of relationships as represented in the con-

ceptual model involves mapping of the connections and cardinality indicators into foreign

keys. We will discuss how this is done for one-to-one, one-to-many, and many-to-many

relationships. We will also go over the transformation of optional and mandatory con-

ditions for relationships. While considering transformation of relationships, we need to

review relationships between a superset and its subsets.

One-to-One Relationships. When one instance of an entity type is associated with a

maximum of only one instance of another entity type, we call this relationship a one-to-one

relationship. Figure 7-17 shows a one-to-one relationship between the two entity types

CLIENT and CONTACT-PERSON.

If a client of an organization has designated a contact person, then the contact person is

represented by CONTACT-PERSON entity type. Only one contact person exists for a

client. But some clientsmay not have contact persons, inwhich case there is no corresponding

instance in CONTACT-PERSON entity type. Now we can show the relationship by placing

the foreign key column in CLIENT relation. Figure 7-18 illustrates this transformation.

Observe how the transformation gets done. How are the rows of CLIENT relation

linked to corresponding rows of CONTACT-PERSON relation? The values in the

foreign key columns and primary key columns provide the linkage. Do you note some

foreign key columns in CLIENT relation with null values? What are these? For these

clients, client contact persons do not exist. If the majority of clients do not have assigned

contact persons, then many of the rows in CLIENT relation will contain null values in the

foreign key column. This is not a good transformation. A better transformation would be to

place the foreign key column in CONTACT-PERSON relation, not in CLIENT relation.

Figure 7-19 presents this better transformation.

Foreign key links two relations. If so, you must be able to get answers to queries invol-

ving data from two related tables by using the values in foreign key columns. From

Figure 7-19, examine how results for the following queries are obtained.

Who Is the Contact Person for Client Number 22222?. Read CONTACT-PERSON

table by values in the foreign key column. Find the row having the value 22222 in the

foreign key column.

FIGURE 7-17 One-to-one relationship.

MODEL TRANSFORMATION METHOD 253

FIGURE 7-18 Transformation of one-to-one relationship.

FIGURE 7-19 Better transformation of one-to-one relationship.

254 CHAPTER 7 DATA MODELING TO DATABASE DESIGN

Who Is the Client for Contact Person Number 345?. Read CONTACT-PERSON table

by values in the primary key column. Find the row having the value 345 in the primary key

column. Get the foreign key value of this row, namely, 55555. Read CLIENT table by

values in the primary key column. Find the row having the value 5555 for the primary

key attribute.

Let us summarize the points about transformation of one-to-one relationships.

. When two relations are in one-to-one relationship, place a foreign key column in

either one of the two relations. Values in the foreign key column for rows in this

table matches with primary key values in corresponding rows of the related table.

. The foreign key attribute has the same data type, length, and domain values as the

corresponding primary key attribute in the other table.

. It does not really matter whether you place the foreign key column in one table or the

other. However, to avoid wasted space, it is better to place the foreign key column in

the table that is likely to have the less number of rows.

One-to-Many Relationships. Let us begin our discussion of one-to-many relationship

by reviewing Figure 7-20. This figure shows the one-to-many relationship between the two

objects CUSTOMER and ORDER.

The figure also indicates how individual instances of these two entity types are associ-

ated with one another. You see a clear one-to-many relationship—one customer can have

one or more orders. So how should you transform this relationship? As you know, the

associations are established through the use of a foreign key column. But in which table

do you place the foreign key column? For transforming one-to-one relationship, you

noted that you might place the foreign key column in either relation. In the same way,

let us try to place the foreign key in CUSTOMER relation. Figure 7-21 shows this trans-

formation of one-to-many relationship.

What do you observe about the foreign keys in the transformed relations? In the CUS-

TOMER relation, the row for customer 1113 needs just one foreign key column to connect

FIGURE 7-20 CUSTOMER and ORDER: one-to-many relationship.

MODEL TRANSFORMATION METHOD 255

to order 1 in the ORDER relation. But the row for customer 1112 seems to need two

foreign key columns, and the row for customer 1111 seems to require three foreign key

columns. What if there is a customer with 50 orders? How many foreign key columns

are sufficient in the CUSTOMER relation? How will you search for a particular

ORDER from the several foreign key columns in the CUSTOMER relation? Obviously,

this transformation is not right.

We can try another solution by placing the foreign key column in the ORDER relation

instead of including the foreign key column in the other related table. Figure 7-22 illus-

trates the correct solution.

Examine this figure. First, you notice that there is no need for multiple foreign keys to

represent one relationship. Multiple rows in ORDER relation have the same value in the

foreign key column. This indicates the several orders related to the same customer. The

values in the foreign key column link the associated rows. From the figure, let us

examine how queries involving data from two related tables work.

Which Are the Orders Related to CUSTOMER Number 1112? Read ORDER table

by values in the foreign key column. Find the rows having the value 1112 in the

foreign key column.

What Is the Name of the Customer for Order Number 5? Read ORDER table by

values in the primary key column. Find the row having the value 5 for the primary key

attribute. Get foreign key value of this row, namely, 1112. Read CUSTOMER table

by values in its primary key column. Find the row having the value 1112 in the primary

key column.

FIGURE 7-21 Transformation of one-to-many relationship.

256 CHAPTER 7 DATA MODELING TO DATABASE DESIGN

Let us summarize the points about transformation of one-to-many relationships.

. When two relations are in one-to-many relationship, place the foreign key column in

the relation that is on the “many” side of the relationship. Values in foreign key

column for rows in this table match with primary key values in corresponding

rows of the related table.

. The foreign key attribute has the same data type, length, and domain values as the

corresponding primary key attribute in the other table.

Many-to-Many Relationships. As you know, in a many-to-many relationship, one

instance of an entity type is related to one or more instances of a second entity type,

and also one instance of the second entity type is related to one or more instances of

the first entity type. Figure 7-23 presents an example of a many-to-many relationship.

One employee is assigned to one or more projects simultaneously or over time. Again,

one project is related to one or more employees. Let us try to transform the E-R data model

to a relational data model and establish the many-to-many relationship. For establishing the

relationship, you have to create foreign key columns. While transforming a one-to-many

relationship, we placed the foreign key column in the relation on the “many” side of the

relationship; that is, we placed the foreign key column in the child relation.

In a many-to-many relationship, which of the two relations is the child relation? It is not

clear. Both relations participate in the relationship in the same way. Look at the associ-

ations shown in Figure 7-23. Transform the entity types into relations and place the

foreign key column in PROJECT relation. Figure 7-24 shows this transformation with

the foreign key column placed in PROJECT relation.

Note the foreign keys in the transformed relations? In PROJECT relation, the rows for

projects 1 and 4 need three foreign key columns, whereas the rows for projects 2, 3, and 4

FIGURE 7-22 Correct transformation of one-to-many relationship.

MODEL TRANSFORMATION METHOD 257

need two foreign key columns each. You get the picture. If some projects are related to

many employees, as many as 50 or so, how many foreign key columns must PROJECT

relation have? So, it appears that this method of transformation is not correct.

Let us determine how queries involving data from two related tables work.

Which Are the Projects Related to Employee 456? Read PROJECT table by values in

the foreign key columns But which foreign key columns? All of the foreign columns?

Right away, you note that finding the result for this query is going to be extremely difficult.

FIGURE 7-23 Example of many-to-many relationship.

FIGURE 7-24 Transformation of many-to-many relationship: first method.

258 CHAPTER 7 DATA MODELING TO DATABASE DESIGN

What Are the Names of Employees Assigned to Project 1?. Read PROJECT table by

values in the primary key column. Find the row having the value 1 for the primary key

attribute. Get foreign key values of this row, namely, 123, 234, and 345. Read

EMPLOYEE table by values in the primary key column. Find the rows having the

values 123, 234, and 345 for its primary key attribute. Getting the result for this query

seems to be workable.

Because the transformation from the first method does not work, let us try another sol-

ution by placing the foreign key columns in the EMPLOYEE relation instead of including

the foreign key columns in the other related table. Figure 7-25 illustrates this method of

transformation.

Where are the foreign keys in the transformed relations? In the EMPLOYEE relation,

the row for employee 123 needs two foreign key columns, whereas the rows for employees

234 and 456 need three foreign key columns each and the rows for employee 345 needs

four foreign key columns. By the reasoning similar to the one for the first method, if an

employee is related to 25 projects over time, then you need to have that many foreign

key columns in the EMPLOYEE relation.

Let us examine how queries involving data from two related tables work.

Which Are the Projects Related to Employee 456? Read EMPLOYEE table by values

in the primary key column Find the row having the value 456 for the primary key attribute.

Get foreign key values of this row, namely, 2, 3, and 4. Read PROJECT table by values in

the primary key column. Find the rows having the values 2, 3, and 4 for its primary key

attribute. Getting the result for this query seems to be workable.

What Are the Names of Employees Assigned to Project 1? Read EMPLOYEE table

by values in the foreign key columns But which foreign columns? All of the foreign

FIGURE 7-25 Transformation of many-to-many relationship: second method.

MODEL TRANSFORMATION METHOD 259

columns? Right away, you note that finding the result for this query is going to be very

difficult.

It is clear that the second method of transformation also does not work. We seem to be

in a quandary. Where should you place the foreign key column—in which of the two

related tables? Placing foreign key columns in either table does not seem to work. So,

this second method of transformation is also not correct.

Note the pairs of related primary key values shown in Figures 7-24 and 7-25. Each pair

represents a set of a project and a corresponding employee. Look at the pairs (1,123) and

(1,234). Each pair indicates a set of related rows from the two tables. For example, the pair

(1,123) indicates that the row for project 1 is related to employee 123, the pair (1,234) indi-

cates that the row for project 1 is related to employee 234, and so on. In fact, you note that

the complete set of pairs represents all the associations between rows in the two tables. In

other words, the set of pairs establishes the many-to-many relationship. But, the values in

the pairs are not present as foreign keys in either of the two tables. In our above two

attempts at transformation, the real problem is that we do not know where to place the

foreign keys—whether in the PROJECT relation or in the EMPLOYEE relation. What

if you make a separate table out of these pairs of related values and use the values in

the pairs as foreign key values? Then this new table can establish the many-to-many

relationship. This elegant technique is the standard method for representing many-to-many

relationships in the relational data model.

Figure 7-26 illustrates the correct method of transforming many-to-many relationship.

The table containing the pairs of related values of primary keys is known as the intersec-

tion table.

FIGURE 7-26 Transformation of many-to-many relationship: correct method.

260 CHAPTER 7 DATA MODELING TO DATABASE DESIGN

Note the primary key for the intersection table. The primary key consists of two parts:

one part, the primary key of PROJECT table and the other part the primary key of

EMPLOYEE table. The two parts act separately as the foreign keys to establish both

sides of the many-to-many relationship. Also, observe that each of the two relations

PROJECT and EMPLOYEE is in a one-to-many relation with the intersection relation

ASSIGNMENT.

Now, let us review how queries involving data from the two related tables work.

Which Are the Projects Related to Employee 456? Read intersection table by values

in one part of the primary key column, namely, EmpNo attribute showing values for

employee key numbers. Find the rows having the value 456 for this part of the primary

key. Read PROJECT table by values in its primary key column. Find the rows having

the values 2, 3, and 4 for primary key attribute. Getting the result for this query seems

to be workable.

What Are the Names of Employees Assigned to Project 1? Read intersection table by

values in one part of the primary key column, namely, ProjID attribute showing values for

project key numbers. Find the rows having the value 1 for this part of the primary key.

Read EMPLOYEE table by values in its primary key column. Find the rows having the

values 123, 234, and 345 for primary key attribute. Getting the result for this query is

straightforward and easy.

To end our discussion of transformation of many-to-many relationships, let us summar-

ize the main points.

. Create a separate relation, called the intersection table. Use both primary keys of the

participating relations as the concatenated primary key column for the intersection

table. The primary key column of the intersection table contains two attributes: one

attribute establishing the relationship to one of the two relations and the other attri-

bute linking the other relation.

. Each part of the primary key of the intersection table serves as a foreign key.

. Each foreign key attribute has the same data type, length, and domain values as the

corresponding primary key attribute in the related table.

. The relationship of the first relation to the intersection relation is one-to-many; the

relationship of the second relation to the intersection relation is also one-to-many.

In effect, transformation of many-to-many relationship is reduced to creating two

one-to-many relationships.

Mandatory and Optional Conditions. The conceptual model is able to represent

whether a relationship is optional or mandatory. As you know, the minimum cardinality

indicator denotes mandatory and optional conditions. Let us explore the implications of

mandatory and optional conditions for relationships in a relational model. In our discus-

sions so far, we have examined the relationships in terms of maximum cardinalities. If

the maximum cardinalities are 1 and 1, then the relationship is implemented by placing

the foreign key attribute in either of the participating relations. If the maximum cardinal-

ities are 1 and �, then the relationship is established by placing the foreign key attribute in

the relation on the “many” side of the relationship. Finally, if the maximum cardinalities

MODEL TRANSFORMATION METHOD 261

are � and �, then the relationship is broken down into two one-to-many relationships by

introducing an intersection relation. Let us consider a few examples with minimum cardin-

alities and determine the effect on the transformation.

Minimum Cardinality in One-to-Many Relationship. Figure 7-27 shows an example of

one-to-many relationship between the two entity types PROJECT and EMPLOYEE.

Note the cardinality indicators (1,1) shown next to PROJECT entity type. Intentionally,

the figure does not show the minimum cardinality indicator next to EMPLOYEE. We will

discuss the reason very shortly. What is the meaning of the cardinality indicators next to

PROJECT entity type? The indicators represent the following condition:

An employee can be assigned to a maximum of only one project.

Every employee must be assigned to a project. That is, an employee instance must be

associated with a minimum of 1 project instance. In other words, every employee

instance must participate in the relationship. The relationship as far as the employee

instances are concerned is mandatory.

Now look at the foreign key column in the EMPLOYEE table. If every employee is

assigned to a project, then every EMPLOYEE row must have a value in the foreign key

column. You know that this value must be the value of the primary key of the related

row in the PROJECT table. What does this tell you about the foreign key column? In a

mandatory relationship, the foreign key column cannot contain nulls. Observe the

Foreign Key statement under relational notation in the figure. It stipulates the constraints

with the words “NOT NULL” expressing that nulls are not allowed in the foreign key

attribute.

FIGURE 7-27 One-to-many relationship: mandatory and optional.

262 CHAPTER 7 DATA MODELING TO DATABASE DESIGN

Next, consider the optional condition. Suppose the cardinality indicators (0,1) are

shown next to PROJECT entity type. Then the indicators will represent the following

condition:

An employee can be assigned to a maximum of only one project.

Not every employee need be assigned to a project. That is, some employee instances

may not be associated with any project instance at all. At a minimum, an employee

instance may be associated with no project instance or with zero project instances. In

other words, not every employee instance needs to participate in the relationship.

The relationship as far as the employee instances are concerned is optional.

It follows, therefore, that in an optional relationship of this sort, nulls may be allowed in

the foreign key attribute. What do the rows with null foreign key attribute in the

EMPLOYEE relation represent? These rows represent those employees who are not

assigned to a project.

Minimum Cardinality in Many-to-Many Relationship. Figure 7-28 shows an example

of many-to-many relationship between the two entity types PROJECT and EMPLOYEE.

Note the cardinality indicators (1,�) shown next to PROJECT entity type and (1,�)
shown next to EMPLOYEE entity type. What do these cardinality indicators represent?

The indicators represent the following condition:

An employee may be assigned to many projects.

A project may have many employees.

FIGURE 7-28 Many-to-many relationship: minimum cardinality.

MODEL TRANSFORMATION METHOD 263

Every employee must be assigned to at least one project. That is, an employee instance

must be associated with a minimum of 1 project instance. In other words, every

employee instance must participate in the relationship. The relationship as far as

the employee instances are concerned is mandatory.

Every project must have at least one employee. That is, a project instance must be

associated with a minimum of 1 employee instance. In other words, every project

instance must participate in the relationship. The relationship as far as the project

instances are concerned is mandatory.

Carefully observe the transformed relations described in the figure. Look at the inter-

section relation and the concatenated primary key of this relation. As you know, each

part of the primary key forms the foreign key. Notice the two one-to-many relationships

and the corresponding tables showing attribute values. As discussed in the previous sub-

section on one-to-many relationship, the foreign keys in the intersection table, that is,

either of the two parts of the primary key table, cannot be nulls. You may stipulate the

constraints with the words “NOT NULL” in the Foreign Key statement for the intersection

table. However, the two foreign keys are part of the primary key and because the primary

key attribute cannot have nulls, the explicit stipulation of “NOT NULL” may be omitted.

Next, let us take up optional conditions on both sides. Suppose the cardinality indicators

(0,�) are shown next to PROJECT and EMPLOYEE entity types. Then the indicators will

represent the following condition:

An employee may be assigned to many projects.

A project may have many employees.

Not every employee need be assigned to a project. That is, some employee instances

may not be associated with any project instance at all. At a minimum, an employee

instance may be associated with no project instance or with zero project instances. In

other words, not every employee instance needs to participate in the relationship.

The relationship as far as the employee instances are concerned is optional.

Not every project needs to have an employee. That is, some project instances may not

be associated with any employee instance at all. At a minimum, a project instance

may be associated with no employee instance or with zero employee instances. In

other words, not every project instance needs to participate in the relationship.

The relationship as far as the project instances are concerned is optional.

It follows, therefore, that in an optional relationship of this sort, nulls may be allowed in

the foreign key columns. However, in the way the transformation is represented in

Figure 7-28, allowing nulls in foreign key columns would present a problem. You have

noted the foreign key attributes form the primary key of the intersection relation, and

no part of a primary key in a relation can have nulls according to the integrity rule for

the relational model. Therefore, in such cases, you may adopt an alternate transformation

approach by assigning a separate primary key as shown in Figure 7-29.

What do the rows with null foreign key attributes in the ASSIGNMENT relation rep-

resent? These rows represent those employeeswho are not assigned to a project or those pro-

jects that have no employees. In practice, youmaywant to include such rows in the relations

to indicate employees already eligible for assignment but not officially assigned and to

denote projects that usually have employees assigned but not yet ready for assignment.

264 CHAPTER 7 DATA MODELING TO DATABASE DESIGN

Aggregate Objects as Relationships. Recall that in relationships, the participating

entity types together form an aggregate entity type by virtue of the relationship itself. Let

us discuss how such aggregate entity types are transformed into the components of a rela-

tional data model. Figure 7-30 illustrates such a transformation of an aggregate entity type

ASSIGNMENT.

Notice the intersection relation and the attributes shown in this relation. These are the

attributes of the aggregate entity type. You will note that the aggregate entity type becomes

the intersection relation.

Identifying Relationship. While discussing conceptual data modeling, you studied

identifying relationships. A weak entity type is one that depends on another entity type

for its existence. A weak entity type is, in fact, identified by the other entity type. The

relationship is, therefore, called an identifying relationship.

Figure 7-31 illustrates the transformation of an identifying relationship. Especially note

the primary key attributes of the weak entity type.

Supersets and Subsets. While creating conceptual data models, you discover objects

in the real world that are subsets of other objects. Some objects are specializations of other

objects. On the other hand, you realize that individual entity types may be generalized in

supertype entity types. Each subset of a superset forms a special relationship with its

superset.

Figure 7-32 shows the transformation of a superset and its subsets. Notice how the primary

key attribute and other attributes migrate from the superset relation to subset relations.

FIGURE 7-29 Many-to-many relationship: alternative approach.

MODEL TRANSFORMATION METHOD 265

FIGURE 7-30 Transformation of aggregate entity type.

FIGURE 7-31 Transformation of identifying relationship.

266 CHAPTER 7 DATA MODELING TO DATABASE DESIGN

Transformation Summary

By now, you have a fairly good grasp of the principles of transformation of a conceptual

data model into a relational data model. We took each component of the conceptual data

model and reviewed how the component is transformed into a component in the relational

model. Let us list the components of the conceptual data model and note how each com-

ponent gets transformed.

Components of the conceptual data model and how they are transformed into relational

data model:

Entity Type

STRONG

Transform into relation.

WEAK

Transform into relation. Include primary key of the identifying relation in the primary key

of the relation representing the weak entity type.

Attribute

Transform into column.

Transform attribute name into column name.

Translate attribute domains into domains for corresponding columns.

SIMPLE, SINGLE-VALUED

Transform into a column of the corresponding relation.

FIGURE 7-32 Transformation of superset and subsets.

MODEL TRANSFORMATION METHOD 267

COMPOSITE

Transform into columns of the corresponding relation with as many columns as the

number of component attributes.

MULTIVALUED

Transform into a column of a separate relation.

DERIVED

Transform into a column of the corresponding relation.

Primary Key

SINGLE ATTRIBUTE

Transform into a single-column primary key.

COMPOSITE

Transform into a multicolumn primary key.

Relationship

ONE-TO-ONE

Establish relationship through a foreign key attribute in either of the two participating

relations.

ONE-TO-MANY

Establish relationship through a foreign key attribute in the participating relation on the

“many” side of the relationship.

MANY-TO-MANY

Transform by forming two one-to-many relationships with a new intersection relation in

between the participating relations. Establish relationship through foreign key attributes

in the intersection relation.

OPTIONAL AND MANDATORY CONDITIONS

Set constraint for the foreign key column. If nulls are not allowed in the foreign key

column, it represents a mandatory relationship. Allowing nulls denotes an optional

relationship. Mandatory and optional conditions apply only to the participation of the

relation on the “many” side of a one-to-many relationship, that is, to the participation of

rows in the relation that contains the foreign key column.

268 CHAPTER 7 DATA MODELING TO DATABASE DESIGN

CHAPTER SUMMARY

. The relationalmodelmaybeused as a logical datamodel.The relationalmodel is a popular

and widely used model that is superior to the earlier hierarchical and network models.

. The relational model rests on a solid mathematical foundation: it uses the concepts of

matrix operations and set theory.

. The relation or two-dimensional table is the single modeling concept in the relational

model.

. The columns of a relation or table denote the attributes and the rows represent the

instances of an entity type.

. Relationships are established through foreign keys.

. Entity integrity, referential integrity, and functional dependency rules enforce data

integrity in a relational model.

. There are two approaches to design from modeling: model transformation method

and traditional normalization method.

. Model transformation method from conceptual to logical data model: entity types to

relations, attributes to columns, identifiers to keys, relationships through foreign key

columns.

. One-to-one and one-to-many relationships are transformed by introducing a foreign

key column in the child relation.

. Many-to-many relationships are transformed by the introduction of another intersec-

tion relation.

. Optional and mandatory conditions in a relationship are indicated by allowing or dis-

allowing nulls in foreign key columns of relations.

REVIEW QUESTIONS

1. Match the column entries:

1. Relation tuples A. Primary key

2. Foreign key B. Conceptual to logical

3. Row uniqueness C. Relation

4. Entity integrity D. Column in separate relation

5. Model transformation E. Entity instances

6. Entity type F. Primary key not null

7. Identifier G. Order not important

8. Optional condition H. Establish logical link

9. Multivalued attribute I. Nulls in foreign key

10. Relation columns J. No duplicate rows

2. Show an example to illustrate how mathematical set theory is used for data

manipulation in the relational data model.

REVIEW QUESTIONS 269

3. What is a mathematical relation? Explain how it is used in the relational model to

represent an entity type.

4. Describe in detail how columns in a relation are used to represent attributes. Give

examples.

5. Using an example, illustrate how foreign key columns are used to establish

relationships in the relational data model.

6. Discuss the referential integrity rule in the relational model. Provide an example to

explain the rule.

7. What are the two design approaches to create a logical data model? What are the

circumstances under which you will prefer one to another?

8. Describe the features of the model transformation method.

9. Describe how many-to-many relationships are transformed into the relational

model. Provide a comprehensive example.

10. Discuss the transformation of a one-to-one relationship. Indicate with an example

where the foreign key column must be placed.

270 CHAPTER 7 DATA MODELING TO DATABASE DESIGN

8

DATA NORMALIZATION

CHAPTER OBJECTIVES

. Study data normalization as an alternative approach to creating the relational model

. Scrutinize the approach for potential problems

. Learn how the methodology removes potential problems

. Establish the significance of step-by-step normalization tasks

. Provide in-depth coverage of the various systematic steps

. Note outcome at each systematic step

. Examine the fundamental normal forms in detail

. Review the higher normal forms

As you studied the model transformation method in the previous chapter, you might

have wondered about the necessity of that method. You might have thought why you

need to create a conceptual E-R data model first and then bother to transform that

model into a relational data model. If you already know that your target database

system is going to be a relational database system, why not create a relational data

model directly from the information requirements? These are valid questions. Even

though you learned the merits of the model transformation method, is it not a longer

route for logical design?

In this chapter, we will pursue these thoughts. We will attempt to put together a rela-

tional data model from the information requirements. We will see what happens and

whether the resultant model readily becomes a relational data model. If not, we will

explore what should be done to make the initial outcome of this method become a good

relational model.

271

Data Modeling Fundamentals. By Paulraj Ponniah
Copyright # 2007 John Wiley & Sons, Inc.

INFORMAL DESIGN

In a sense, this attempt of creating a relational model seems to be an informal design tech-

nique. Creating a conceptual data model first is a rigorous and systematic approach. On the

other hand, if you want to create relational tables straight away, you seem to bypass stan-

dard and proven techniques. Therefore, first try to understand what exactly we mean by an

informal design method.

Let us describe this method first. Then let us review the steps that can formalize this

methodology. Although the attempt is to come up with relational tables in the initial

attempt, you will note that the initial attempt does not always produce a good relational

data model. Therefore, we need further specific steps to make the initial data model a

true relational model.

As you know very well by now, a relational model consists of relations or two-

dimensional tables with columns and rows. Because our desired outcome is a true relational

data model, let us quickly review its fundamental properties:

. Relationships are established through foreign keys.

. Each row in a relation is unique.

. Each attribute value in each row is atomic or single-valued.

. The order of the columns in a relation is immaterial.

. The sequence of the rows in a relation is immaterial.

. Relations must conform to entity integrity and referential integrity rules.

. Each relation must conform to the functional dependency rule.

Forming Relations from Requirements

Thus, the attempt in this method is simply to come up with relations or tables from the

information requirements. Figure 8-1 explains this seemingly informal approach in a

simple manner.

FIGURE 8-1 Informal design of a relational data model.

272 CHAPTER 8 DATA NORMALIZATION

Note the objectives of the method. When you create a relational data model using this

method, you must come up with tables that conform to the relational rules and possess the

right properties of a relational data model.

What are the steps to create a proper relational model? Create an initial data model by

putting together a set of initial tables. Examine this initial set of tables and then apply pro-

cedures to make this initial set into a proper set of relational tables. As you will understand

in the later sections, this application of procedures to rectify problems found in the initial

set of tables is known as normalization.

Of course, an obvious question is why you should go through normalization procedures.

Are you not able to produce a proper set of relational tables from information requirements

in the initial attempt itself? Let us explore the reasons.

Potential Problems

Let us consider a very simple set of information requirements. Using these information

requirements, we will attempt to create an initial relational data model and then

examine the model. Creating an initial relational data model using this approach simply

means coming up with an initial set of relational tables. Study the following statement

of information requirements for which you need to create a relational data model:

Assignment of Employees to Projects

Employees work in departments. Information about the employees such as name, salary,

position, and bonus amount must be represented in the data model. The model should

include names of the departments and their managers. Project numbers and project

descriptions are available. It is necessary to represent the start date, end date, and

hours worked on a project for each employee. New employees are not assigned to

a project before they finish training.

Examine the information requirements. Clearly, your data model must represent infor-

mation about the employees and their project assignments. Also, some information about

the departments must be included. Compared with other real-world information require-

ments, the information about employee–project assignments being modeled here is

very simple. With this set of information requirements, you need to come up with two-

dimensional tables. Let us say, you are able to put the data in the form of tables and also

express the relationships within the tables. If you are able to do this, then you are proceeding

toward creating the relational data model.

Looking at the simplicity of the information requirements, it appears that all the data

can be put in just one table. Let us create that single table and inspect the data content.

Figure 8-2 represents this single table showing sample data values.

Inspect the PROJECT-ASSIGNMENT table carefully. In order to uniquely identify

each row, you have to assign EmpId and ProjNo together and designate the concatenation

as the primary key. At first glance, you note that the table contains all the necessary data to

completely represent the data content of the information requirements. The table contains

columns and rows. Review each column. It represents an attribute, and the column name

represents the name of the attribute. Now look at the rows. Each row represents one

employee, a single instance of the entity represented by the table. So far, the table looks

like it qualifies to be part the required relational data model.

INFORMAL DESIGN 273

Before proceeding further, let us have a brief explanation about the column

named ChrgCD. When an employee is assigned to a project, a charge code is given for

that assignment. The charge code depends on the type of work done by the employee in

that assignment irrespective of his or her position or title. For example, when Simpson,

an analyst, does design work in a project, a charge code of D100 is given for that assign-

ment; when he does coding work in another project, a charge code of C100 is given for this

assignment. Charge codes indicate the type of work done by an employee in the various

projects.

Next, observe the projects for Davis, Berger, Covino, Smith, and Rogers. Each of the

employees has been assigned to multiple projects. The resulting relational database must

contain information about these multiple assignments. However, looking at the rows for

these employees, these rows contain multiple values for some attributes. In other words,

not all values in certain columns are atomic or single-valued. This is a violation of the

attribute atomicity requirement in a relational data model. Therefore, the random

PROJECT-ASSIGNMENT table we created quickly cannot be part of true relational

data model.

Let us now examine the table further and see how it will hold up when we try to manip-

ulate the data contents. As indicated in Figure 8-1, a proper relational data model must

avoid data redundancies and also ensure that data manipulation will not cause problems.

When we attempt to use the data model for data manipulation, you will find that we run

into three types of problems or anomalies as noted below:

Update anomaly: occurs while updating values of attributes in the database.

Deletion anomaly: occurs while deleting rows from a relation.

Addition anomaly: occurs while adding (inserting) new rows in a relation.

We will discuss these anomalies in the next subsections. Try to understand the nature of

these problems and how our PROJECT-ASSIGNMENT table has such problems and,

FIGURE 8-2 Table created from information requirements.

274 CHAPTER 8 DATA NORMALIZATION

therefore, cannot be correct. Unless we remove these anomalies, our table cannot be part of

a true relational model.

Update Anomaly

If a relational two-dimensional table does not conform to relational rules, you find that pro-

blems arise when you try to do updates to data in a database based on such a table. Our data

model at this point consists of the randomly created PROJECT-ASSIGNMENT table. Let

us try to do an update to the data in the PROJECT-ASSIGNMENT table and see what

happens.

After the database is populated, users find that the name “Simpson” is recorded incor-

rectly and that it should be changed to the correct name “Samson.” How is the correction

accomplished? The correction will have to be made wherever the name “Simpson” exists

in the database. Now look at the example of data content shown in Figure 8-2.

Even in this extremely limited set of rows in the table, you have to make the correction

in three rows. Imagine a database of 500 or 5000 employees. Even this is not a large data-

base. It is not unusual to store data aboutmany thousands of employees in a typical database.

Now go back to the correction. In a large database covering a large number of rows for

employees, the number of rows for PROJECT-ASSIGNMENT is expected to be many.

Therefore, it is very likely that when you make the correction to the name, you will miss

some rows that need to be changed. So, what is the effect of update anomaly in this case?

Update Anomaly

Results in data inconsistency because of possible partial update instead of the proper

complete update.

Deletion Anomaly

Again, if the relational two-dimensional table does not conform to relational rules, you

find that problems arise when you try to delete rows from a database based on such a

table. Let us try to delete some data from the PROJECT-ASSIGNMENT table and see

what happens.

Here is the situation. Employee Beeton leaves your organization. Therefore, it is no

longer necessary to keep any information about Beeton in your database. You are author-

ized to delete all data about Beeton from the database. Now inspect the sample database

contents shown in Figure 8-2.

How is the deletion of data about Beeton carried out? Luckily, you have to delete just one

row, namely the second row in the PROJECT-ASSIGNMENT table, to get rid of all data

about Beeton in the database. Now, consider another aspect of this operation. What

happens when you delete this row? Data such as Beeton’s EmpId, Name, Salary, Position,

and his project assignment gets deleted. This is fine because this is what you intended to do.

Now examine the row as shown in the figure. When you delete this row, you not only

remove data about Beeton, but you also delete data about Department 2. And by looking at

the entire contents of the table, you notice that this is the only row that has information

about Department 2. By deleting this row, you also delete data about Department 2

from the database. However, this is not your intention. Data about Department 2 has to

be preserved in the database for possible future uses. But, if you delete the second row,

unintentionally, data about Department 2 is also lost. Let us express the effect of deletion

anomaly.

INFORMAL DESIGN 275

Deletion Anomaly

Results in unintended loss of data because of possible deletion of data other than what

must be deleted.

Addition Anomaly

We have considered the effects of updates and deletions in a two-dimensional table that is

put together in a random fashion from information requirements. You have noted that

these operations cause anomalies or problems. Now, let us try to perform one more

common data operation on this table. Try to add new data to the database.

This is the situation. A new employee Potter has joined your organization. As usual, the

human resources department has already assigned a unique EmpId to Potter. So you need

to add data about Potter to the database. However, Potter is still in training and, therefore,

is not assigned to a project yet. You have data about Potter such as his salary, bonus, and

the department in which he is hired. You can add all of this data to the database.

Begin to create a row for Potter in the database. You are ready to create a row in our

PROJECT-ASSIGNMENT table for Potter. You can enter the name, department, and so

on. But what about the unique primary key for this row? As you know, the primary key

for this table consists of EmpId and ProjNo together. But you are unable to assign a

value for ProjNo for this row because he is not assigned to a project yet. So, you can

have null value for ProjNo until Potter is assigned to a project. But, can you really do

this? If you place a null value in the ProjNo column, you will be violating the entity integ-

rity rule that states no part of the primary key may be null. You are faced with a problem—

an anomaly concerning added new data. Data about Potter cannot be added to the database

until he is assigned to a project. Even though he is already an employee, data about Potter

will be missing in the database until then. This is the effect of addition anomaly.

Addition Anomaly

Results in inability to add data to the database because of the absence of some data

currently unavailable.

NORMALIZATION METHODOLOGY

Let us review our discussion so far. We inspected the information requirements about

employees, departments, projects, and project assignments. Our intention was to create

a relational data model directly from the study of the information requirements. This

meant creating a data model consisting of two-dimensional tables or relations that nor-

mally make up a relational data model. Because of the simplicity of the information

requirements, we were able to represent all the data in a single random table. So far,

this is the relational data model for us. If it has to be a good relational model, it must

conform to relational rules.

You have observed that the random table PROJECT-ASSIGNMENT violates some

relational rules at the outset. More importantly, when you attempt to update data, delete

data, or add data, our initial data model has serious problems. You have noted the problems

of update, deletion, and addition anomalies. So, what is next step? Do you simply abandon

the initial data model and look for other methods? Your goal is to create a good relational

model even while you attempt to do this directly from information requirements.

276 CHAPTER 8 DATA NORMALIZATION

It turns out that by adopting a systematic methodology you can, indeed, regularize

the initial data model created in the first attempt. This methodology is based on Dr. Codd’s

approach to normalizing the initial tables created in a random manner directly from

information requirements.

Strengths of the Method

Normalization methodology resolves the three types of anomalies encountered when data

manipulation operations are performed on a database based on an improper relational data

model. Therefore, after applying the principles of normalization to the initial data model,

the three types of anomalies will get eliminated.

This method

. Creates well-structured relations

. Removes data redundancies

. Ensures that the initial data model is properly transformed into a relational data model

conforming to relational rules

. Guarantees that data manipulation will not have anomalies or problems

Application of the Method

As mentioned, this normalization process is a step-by-step approach. It does not take place

in one large activity. The process breaks down the problem and applies remedies by per-

forming one task at a time. The initial data model is refined and standardized in a clear and

systematic manner, one step at a time.

At each step, the methodology consists of examining the data model, removing one type

of problem, and changing it to a better normal form. You take the initial data model created

directly from information requirements in a random fashion. This initial model, at best, con-

sists of two-dimensional tables representing the entire data content. Nothing more and

nothing less. As we have seen, such an initial data model is subject to data manipulation

problems.

You apply the principles of the first step. In this step, you are examining the initial data

model for only one type of nonconformance and seek to remove one type of irregularity.

Once this one type of irregularity is resolved, your datamodel becomes better and is rendered

into a first normal formof table structures. Then you look for another type of irregularity in the

second step and remove this type from the resulting data model from the previous step. After

this next step, your data model becomes still better and becomes a data model in the second

normal form. The process continues through a reasonable number of steps until the resulting

data model becomes truly relational.

Normalization Steps

The first few steps of the normalization methodology transform the initial data model into

a workable relational data model that is free from the common types of irregularities.

These first steps produce the normal forms of relations that are fundamental to creating

a good relational data model. After these initial steps, in some cases, further irregularities

still exist. When you remove the additional irregularities, the resulting relations become

higher normal form relations.

NORMALIZATION METHODOLOGY 277

In practice, only a few initial data models need to go through all the above steps.

Generally, a set of third normal form relations will form a good relational data model.

You may want to go one step further to make it a set of Boyce–Codd normal form

relations. Only very infrequently would you need to go to higher normal forms.

FUNDAMENTAL NORMAL FORMS

As explained earlier, normalization is a process of rectifying potential problems in two-

dimensional tables created at random. This process is a step-by-step method, each step

addressing one specific type of potential problem and remedying that type of problem.

As we proceed with the normalization process, you will clearly understand how this

step-by-step approach works so well. By taking a step-by-step approach, you will not over-

look any type of anomaly. And, when the process is completed, you will have resolved

every type of potential problem.

By the last subsection here, you will note that the first four steps that make up this

portion of the normalization process transform the initial data model into the fundamental

normal forms. After the third step, the initial data model becomes a third normal form rela-

tional data model. As already mentioned, for most practical purposes, a third normal form

data model is an adequate relational data model. You need not go further. Occasionally,

you may have to proceed to the fourth step and refine the data model further and make

it a Boyce–Codd normal form.

First Normal Form

Refer back to Figure 8-2 showing the PROJECT-ASSIGNMENT relation created as the

initial data model. You had already observed that the rows for Davis, Berger, Covino,

Smith, and Rogers contain multiple values for attributes in six different columns. You

know that this violates the rule for a relational model that states each row must have

atomic values for each of the attributes.

This step in the normalization process addresses the problem of repeating groups of

attribute values for single rows. If a relation has such repeating groups, we say that the

relation is not in the first normal form. The objective of this step is to transform the

data model into a model in the first normal form.

Here is what must be done to make this transformation.

Transformation to First Normal Form (1NF)

Remove repeating groups of attributes and create rows without repeating groups.

Figure 8-3 shows the result of the transformation to first normal form.

Carefully inspect the PROJECT-ASSIGNMENT table shown in the figure. Each row

has a set of single values in the columns. The composite primary key consisting of

EmpId and ProjNo uniquely identifies each row. No single row has multiple values for

any of its attributes. The result of this step has rectified the problem of multiple values

for the same attribute in a single row.

Let us examine whether the transformation step has rectified the other types of update,

deletion, and addition anomalies encountered before the model was transformed into first

278 CHAPTER 8 DATA NORMALIZATION

normal form. Compare the PROJECT-ASSIGNMENT table shown in Figure 8-3 with

the earlier version in Figure 8-2. Apply the tests to the transformed version of the relation

contained in Figure 8-3.

Update: Correction of Name “Simpson” to “Samson”

The correction has to be made in multiple rows. Update anomaly still persists.

Deletion: Deletion of Data About Beeton

This deletion will unintentionally delete data about Department 2. Deletion anomaly

still persists.

Addition: Addition of Data About New Employee Potter

Cannot add new employee Potter to the database until he is assigned to a project.

Addition anomaly still persists.

So, you note that although this step has resolved the problem of multivalued attributes,

still data manipulation problems remain. Nevertheless, this step has removed a major

deficiency from the initial data model. We have to proceed to the next steps and

examine the effect of data manipulation operations.

Second Normal Form

Recall the discussion on functional dependencies covering the properties and rules of the

relational data model. If the value of one attribute determines the value of a second

FIGURE 8-3 Data model in first normal form.

FUNDAMENTAL NORMAL FORMS 279

attribute in a relation, we say that the second attribute is functionally dependent on the

first attribute. The discussion on functional dependencies in Chapter 7 concluded with a

functional dependency rule.

Let us repeat the functional dependency rule:

Each data item in a tuple of a relation is uniquely and functionally determined by the primary

key, by the whole primary key, and only by the primary key.

Examine the dependencies of data items in the PROJECT-ASSIGNMENT table in

Figure 8-3. You know that this table is in the first normal form, having gone through

the process of removing repeating groups of attributes. Let us inspect the dependency

of each attribute on the whole primary consisting of EmpId and ProjNo. Only each of

the following attributes depends on the whole primary key: ChrgCD, Start, End, and

Hrs. The remaining non–key attributes do not appear to be functionally dependent on

the whole primary key. They seem to be functionally dependent on one or the other

part of the primary key.

This step in the normalization process specifically deals with this type of problem. Once

this type of problem is resolved, the data model becomes transformed to a data model in

the second normal form.

In other words, the condition for a second normal form data model is as follows:

If a data model is in the second normal form, no non–key attributes may be dependent on part

of the primary key.

Therefore, if there are partial key dependencies in a data model, this step resolves this

type of dependencies.

Here is what must be done to make this transformation.

Transformation to Second Normal Form (2NF)

Remove partial key dependencies.

If you look at the other attributes in the PROJECT-ASSIGNMENT table in Figure 8-3, you

will note that the following attributes depend on just EmpId, a part of the primary key: Name,

Salary, Position, Bonus,DptNo,DeptName, andManager. The attribute ProjDesc depends on

ProjNo, another part of the primarykey. These are partial key dependencies.This step resolves

partial key dependencies. Now look at Figure 8-4, which shows the resolution of partial key

dependencies. The tables shown in this figure are in the second normal form.

Notice how the resolution is done. The original table has been decomposed into three

separate tables. In each table, in order to make sure that each row is unique, duplicate rows

are eliminated. For example, multiple duplicate rows for employee Simpson have been

replaced by a single row in EMPLOYEE table.

Decomposition is an underlying technique for normalization. If you carefully go

through each of the three tables, you will be satisfied that none of these have any

partial key dependencies. Thus, this step has rectified the problem of partial key dependen-

cies. But what about the types of anomalies encountered during data manipulation?

Let us examine whether the transformation step has rectified the types of update, del-

etion, and addition anomalies encountered before the model was transformed into second

280 CHAPTER 8 DATA NORMALIZATION

normal form. Compare the relations shown in Figure 8-4 to the previous version in

Figure 8-3. Apply the tests to the transformed version of the tables contained in Figure 8-4.

Update: Correction of Name “Simpson” to “Samson”

The correction has to be made only in one row in the EMPLOYEE table. The update

anomaly has disappeared.

Deletion: Deletion of Data About Beeton

This deletion will unintentionally delete data about Department 2. The deletion

anomaly still persists.

Addition: Addition of Data About New Employee Potter

You can now add new employee Potter to the database in the EMPLOYEE table. The

addition anomaly has disappeared.

So, you note that although this step has resolved the problem of partial key dependen-

cies, still some data manipulation problems remain. Nevertheless, this step has removed a

major deficiency from the data model. We have to proceed to the next steps and examine

the effect of data manipulation operations.

Third Normal Form

After transformation to the second normal form, you note that a particular type of func-

tional dependency is removed from the preliminary data model and that the data model

FIGURE 8-4 Data model in second normal form.

FUNDAMENTAL NORMAL FORMS 281

is closer to becoming a correct and true relational data model. In the previous step, we have

removed partial key dependencies. Let us examine the resulting data model to see if any

more irregular functional dependencies still exist. Remember the goal is to make each

table in the data model in a form where each data item in a tuple is functionally dependent

only on the full primary key and nothing but the full primary key.

Refer to the three tables shown in Figure 8-4. Let us inspect these tables, one by one.

The attribute ProjDesc functionally depends on the primary key ProjNo. So, this table

PROJECT is correct. Next, look at the table EMPLOYEE-PROJECT. In this table, each

of the attributes ChrgCD, Start, End, and Hrs depends on full primary key EmpId, ProjNo.

Now examine the table EMPLOYEE carefully. What about the attributes Position and

Bonus? Bonus depends on the position. Bonus for an Analyst is different from that for a

Technician. Therefore, in that table, the attribute Bonus is functionally dependent on

another attribute Position, not on the primary key. Look further. How about the attributes

DeptName and Manager? Do they depend on the primary key EmpId? Not really. These

two attributes functionally depend on another attribute in the table, namely, DptNo.

So, what is the conclusion from your observation? In the table EMPLOYEE, only the

two attributes Name and Salary depend on the primary key EmpId. The other attributes do

not depend on the primary key. Bonus depends on Position; DeptName and Manager

depend on DptNo.

This step in the normalization process deals with this type of problem. Once this type of

problem is resolved, the data model is transformed to a data model in the third normal

form.

In other words, the condition for a third normal form data model is as follows:

If a data model is in the third normal form, no non–key attributes may be dependent on

another non–key attribute.

In the table EMPLOYEE, dependency of the attribute DeptName on the primary key

EmpId is not direct. The dependency is passed over to the primary key through another

non–key attribute, DptNo. This passing over of the dependency means that the depen-

dency on the primary key is a transitive dependency—passed over through another

non–key attribute, DptNo. Therefore, this type of problematic dependency is also

called a transitive dependency in a relation. If there are transitive dependencies in a

data model, this step resolves this type of dependency.

Here is what must be done to make this transformation.

Transformation to Third Normal Form (3NF)

Remove transitive dependencies.

Figure 8-5 shows the resolution of transitive dependencies. The tables shown in the

figure are all in the third normal form.

Notice how the resolution is done. EMPLOYEE table is further decomposed into two

additional tables POSITION and DEPARTMENT. In each table, in order to ensure that

each row is unique, duplicate rows are eliminated. For example, multiple duplicate

rows for position Analyst in EMPLOYEE table have been replaced by a single row in

POSITION table.

Again, you have already noted, decomposition is a basic technique for normalization. If

you carefully go through each of the tables, you will be satisfied that none of these have

282 CHAPTER 8 DATA NORMALIZATION

any transitive dependencies—one non–key attribute depending on some other non–key

attribute. So, this step has rectified the problem of transitive dependencies. But what

about the types of anomalies encountered during data manipulation?

Let us examine whether the transformation step has rectified the other types of update,

deletion, and addition anomalies encountered before the model was transformed into

first normal form. Compare the tables shown in Figure 8-5 with the previous version in

Figure 8-4. Apply the tests to the transformed version of the model contained in

Figure 8-5.

Update: Correction of Name “Simpson” to “Samson”

The correction has to be made only in one row in the EMPLOYEE table. The update

anomaly has disappeared.

Deletion: Deletion of Data About Beeton

Removal of Beeton and his assignments from the EMPLOYEE and EMPLOYEE-

PROJECT tables does not affect the data about Department 2 in the DEPARTMENT

table. The deletion anomaly has disappeared from the data model.

Addition: Addition of Data About New Employee Potter

You can now add new employee Potter to the database in the EMPLOYEE table. The

addition anomaly has disappeared.

FIGURE 8-5 Data model in third normal form.

FUNDAMENTAL NORMAL FORMS 283

So, you note that this step has resolved the problem of transitive dependencies and the

data manipulation problems, at least the ones we have considered. Before we declare that

the resultant data model is free from all types of data dependency problems, let us examine

the model one more time.

Boyce–Codd Normal Form

Consider the EMPLOYEE-PROJECT table in Figure 8-5. Think about the ChrgCD attri-

bute. A particular charge code indicates the specific employee’s role in an assignment.

Also, each project may be associated with several charge codes depending on the

employees and their roles in the project. The charge code is not for the project assign-

ment. The attribute ChrgCD does not depend on the full primary key nor on a partial

primary key. The dependency is the other way around.

In the EMPLOYEE-PROJECT table, EmpId depends on ChrgCD and not the other way

around.Notice how this is different frompartial key dependency.Here a partial key attribute

is dependent on a non–key attribute. This kind of dependency also violates the functional

dependency rule for the relational data model.

This step in the normalization process deals with this type of problem. Once this type of

problem is resolved, the data model is transformed to a data model in the Boyce–Codd

normal form (BCNF).

In other words, the condition for a Boyce–Codd normal form data model is as follows:

If a data model is in the Boyce–Codd normal form, no partial key attribute may be dependent

on another non–key attribute.

Here is what must be done to make this transformation.

FIGURE 8-6 Data model in Boyce–Codd normal form, part 1.

284 CHAPTER 8 DATA NORMALIZATION

Transformation to Boyce-Codd Normal Form (BCNF)

Remove anomalies from dependencies of key components.

Figures 8-6 and 8-7 show the resolution of the remaining dependencies. The tables

shown in both the figures together are all in the Boyce–Codd normal form.

Notice how the resolution is done. EMPLOYEE-PROJECT table is decomposed

into two additional tables CHRG-EMP and PROJ-CHRG. Notice that duplicate rows are

eliminated while forming the additional tables.

Again, notice decomposition as a basic technique for normalization. The final set of tables

in Figures 8-6 and 8-7 is free from all types of problems resulting from invalid functional

dependencies. The resulting model is a workable relational model. We may, therefore,

refer to the tables in the final set as relations; that is, tables conforming to relational rules.

HIGHER NORMAL FORMS

Once you transform an initial data model into a data model conforming to the principles of

the fundamental normal forms, most of the discrepancies get removed. For all practical

purposes, your resultant data model is a good relational data model. It will satisfy all

the primary constraints of a relational data model. The major problems with functional

dependencies get resolved.

We want to examine the resultant data model further and check whether any other types

of discrepancies are likely to be present. Occasionally, you may have to take additional

steps and go to higher normal forms. Let us consider the nature of higher normal forms

and study the remedies necessary to reach these higher normal forms.

FIGURE 8-7 Data model in Boyce–Codd normal form, part 2.

HIGHER NORMAL FORMS 285

Fourth Normal Form

Before we discuss the fourth normal form for a data model, we need to define the concept of

multivalued dependencies. Consider the following assumptions about the responsibilities

and participation of company executives:

. Each executive may have direct responsibility for several departments.

. Each executive may be a member of several management committees.

. The departments and committees related to a particular executive are independent of

each other.

Figure 8-8 contains data in the form of an initial data model to illustrate these assump-

tions. The first part of the figure shows the basic table and the second part the transformed

relation.

Note that for each value of Executive attribute, there are multiple values for Department

attribute, and multiple values for Committee attribute. Note also that the values of Depart-

ment attribute for an executive are independent of the values of Committee attribute. This

type of dependency is known as multivalued dependency. A multivalued dependency

exists in a relation consisting of at least three attributes A, B, and C, such that for each

value of A, there is a defined set of values for B, and another defined set of values for

C, and further, the set of values for B is independent of the set of values for C.

Now observe the relation shown in the second part of Figure 8-8. Because the relation

indicating the relationship between the attributes just contains the primary key, the relation

is even in the Boyce–Codd normal form. However, by going through the rows of this

relation, you can easily see that the three types of anomalies—update, deletion, and

addition—are present in the relation.

This step in the normalization process deals with this type of problem. Once this type

of problem is resolved, the data model is transformed to a data model in the fourth

normal form.

FIGURE 8-8 Multivalued dependencies.

286 CHAPTER 8 DATA NORMALIZATION

In other words, the condition for a fourth normal form data model is as follows:

If a data model is in the fourth normal form, no multivalued dependencies exist.

Here is what must be done to make this transformation.

Transformation to Fourth Normal Form (4NF)

Remove multivalued dependencies.

Figure 8-9 shows the resolution of the multivalued dependencies. The two relations are

in the fourth normal form.

When you examine the two relations in Figure 8-9, you can easily establish that these

relations are free from update, deletion, or addition anomalies.

Fifth Normal Form

When you transform a data model into second, third, and Boyce–Codd normal forms, you

are able to remove anomalies resulting from functional dependencies. After going through

the steps and arriving at a data model in the Boyce–Codd normal form, the data model is

free from functional dependencies. When you proceed further and transform the data

model into fourth normal form relations, you are able to remove anomalies resulting

from multivalued dependencies.

A further step transforming the data model into fifth normal form removes anomalies

arising from what are known as join dependencies. What is the definition of join depen-

dency? Go back and look at the figures showing the steps for the earlier normal forms.

In each transformation step, the original relation is decomposed into smaller relations.

When you inspect the smaller relations, you note that the original relation may be

reconstructed from the decomposed smaller relations. However, if a relation has join

dependencies, even if we are able to decompose the relation into smaller relations, it

will not be possible to put the decomposed relations together and re-create the original

relation. The smaller relations cannot be joined together to come up with the original

relation. The original relation is important because that relation was obtained directly

from information requirements. Therefore, in whatever ways you may decompose the orig-

inal relation to normalize it, you should be able to go back to the original relation from the

decomposed ones.

Figure 8-10 shows a relation that has join dependency. Note the columns in the relation

shown in the figure.

FIGURE 8-9 Data model in fourth normal form.

HIGHER NORMAL FORMS 287

This relation describes the materials supplied by suppliers to various buildings that are

being constructed. Building B45 gets sheet rock from supplier S67 and ceiling paint from

supplier S72. Suppose you have a constraint that suppliersmay supply only certainmaterials

to specific buildings even though a supplier may be able to supply all materials. In this

example, supplier S72 can supply sheet rock to building B45, but to this building B45,

only supplier S67 is designated to supply sheet rock. This constraint imposes a join depen-

dency on the relation. However, the way the relation is composed, it does impose the join

dependency constraint. For example, there is no restriction to adding a row (B45, Sheet

Rock, S72). Such a row would violate the join constraint and not be a true representation

of the information requirements.

This step in the normalization process deals with this type of problem. Once this type of

problem is resolved, the data model is transformed to a data model in fifth normal form.

In other words, the condition for a fifth normal form data model is as follows:

If a data model is in the fifth normal form, no join dependencies exist.

Here is what must be done to make this transformation.

Transformation to Fifth Normal Form (5NF)

Remove join dependencies.

Figure 8-11 shows the resolution of the join dependencies. The three relations are in the

fifth normal form.

Notice something important in the relations shown in the figure. If you join any two of the

three relations, the result will produce incorrect information, not the true real-world infor-

mation with the join dependency. For arriving at the correct original real-world information

with the join dependency constraint, you have to join all the three relations.

Domain-Key Normal Form

This normal form is the ultimate goal of good design of a proper relational data model. If a

data model is in the domain-key normal form (DKNF), it satisfies the conditions of all the

normal forms discussed so far. The objective of DKNF is to make one relation represent

just one subject and to have all the business rules be expressed in terms of domain

constraints and key relationships. In other words, all rules could be expressly defined by

the relational rules themselves.

Domain constraints impose rules on the values for attributes—they indicate restrictions

on the data values. In DKNF, every other rule must be expressed clearly in terms of keys

FIGURE 8-10 Relation with join dependency.

288 CHAPTER 8 DATA NORMALIZATION

and relationships without any hidden relationships. Consider the relations shown in

Figure 8-12 and also note the accompanying business rule.

How do you know if the relations are in DKNF? You cannot know this until you are

aware of the business rule. From the business rule, you understand that an employee

can have multiple skill types. Therefore, the primary key EmpId of the EMPLOYEE

relation cannot be unique. Further, trainer is related to skill type, and this is a hidden

relationship in the relation. There must also be an explicit relationship between skill

type and subject area.

Figure 8-13 resolves these discrepancies and expresses the business rule and the

relationships correctly. The resultant data model is in domain-key normal form.

FIGURE 8-11 Data model in fifth normal form.

FIGURE 8-12 Relations not in domain-key normal form.

FIGURE 8-13 Data model in domain-key normal form.

HIGHER NORMAL FORMS 289

NORMALIZATION SUMMARY

Let us go back and review the normalization approach covered so far. Compare this

approach with the method of creating a conceptual data model first and then transform-

ing the conceptual data model into a relational data model. Consider the merits and

disadvantages of either method. Also, think about the circumstances and conditions

under which one method is preferable to the other. You notice that either method

finally produces a true and correct relational data model. In the final relational data

model, every single relation or table represents just one object set or entity type. In

each relation, every attribute is functionally dependent on the full primary key, and

only on the full primary key.

As you know, the data model transformation method is a more straightforward

approach. Systematically you create partial conceptual data models applying standard

techniques. Then you integrate all the partial data models to produce the consolidated

conceptual model. After this step, you transform the consolidated conceptual model into

a final relational data model. Although straightforward, the data model transformation

method might take longer to come up with the final relational data model.

On the other hand, the normalization approach starts out with an intuitive initial data

model. If you cannot begin with an intuitive initial data model that reflects the real-world

information requirements completely, then this method will not work. That is why this

normalization approach is difficult when the real-world information requirements are

large and complex. If you are able to start with a good initial data model, then it is a

matter of rendering the initial data model into a successive series of normal forms.

Each step brings you closer to the true relational data model. Observe, however, that

each step in the normalization process is defined well. In each step, you know exactly

the type of problem you have to look for and correct. For example, to refine the data

model and make it a first normal form data model, you remove repeating groups of attri-

butes. In order to refine the data model and make it a second normal form data model, you

look for partial key dependencies and rectify this problem. This general technique con-

tinues in the normalization approach.

Review of the Steps

When we discussed the normalization steps, we grouped the steps into two major sets. The

first set of steps deals with the refinement of the data model into the fundamental normal

forms. The second set of steps relates to higher normal forms. As mentioned before, if you

complete the first set of steps, then for a vast majority of cases, your resulting data model

will be truly relational. You need not proceed to the second set of steps to produce higher

normal forms.

What exactly do you accomplish in the first set of steps refining the data model into the

fundamental normal forms? In the relational data model, for every relation, each attribute

must functionally depend only on the full primary key. There should not be any other type of

functional dependency. Update, deletion, and addition anomalies are caused by incorrect

functional dependencies within a relation. Once you complete the first set of steps to

produce the fundamental normal forms, all problems of invalid functional dependencies

are removed.

The second set of normalization steps considers other types of dependencies. Such

dependency problems are rare in practice. For that reason, the fundamental normal

forms are more important.

290 CHAPTER 8 DATA NORMALIZATION

Figure 8-14 summarizes the normalization steps. Note the two sets of steps producing

the two types of normal forms—fundamental normal forms and higher normal forms.

In each step, you tackle one type of problem and only one. The result in each step is a

progression toward the final true relational data model.

Normalization as Verification

In this whole chapter, we have considered the normalization approach as an alternative

method for creating the relational data model. When implementing a relational database,

the relational data model is the logical data model. Thus, normalization is used to produce

the logical model for the design and deployment of a relational database supported by a

relational DBMS.

Although normalization is presented as a method for creating a relational data model,

the principles of normalization have valid uses even when you adopt the model transform-

ation method detailed in Chapter 7. Let us explain what we mean.

Assume you are creating a large and complex relational database for a hugemultinational

business. The company has multiple locations in various countries with user groups spread

far and wide. Obviously, the data modeling job will be the responsibility of multiple data

modelers. Each data modeler will create partial conceptual models. These models will all

be aggregated to form the complete conceptual data model. Let us say, the project team

will be using the model transformation method. The complete and large conceptual

model will have to be transformed into a relational model (logical model). This could

turn out to be a monumental task. Anyway, assume that the final relational model is

arrived at.

FIGURE 8-14 Normalization summary.

NORMALIZATION SUMMARY 291

Considering the size and complexity of the resulting relational model, it will be prudent to

adopt some proven technique to verify the correctness of each relation in the final relational

model. This is where the principles of normalization could be very useful.

You can examine each relation and apply the principles of the normal forms. You

can verify that each relation passes the tests for fundamental and higher normal forms.

Therefore, the principles of the normalization approach may be applied to verify

created relational models.

CHAPTER SUMMARY

. In the normalization approach, you adopt an informal methodology for creating a

relational data model.

. In this methodology, intuitively you create an initial data model from information

requirements and then normalize the initial model into a relational data model.

. An initial data model created through intuition contains potential anomalies relating

to updates, deletions, and additions of data.

. The normalization methodology consists of systematically examining the initial data

model, removing the causes for anomalies, and transforming the data model into a

true relational data model. The approach consists of well-defined sequential steps.

. Each step removes one type of irregularity in the initial data model and transforms the

model into a distinct normal form.

. The first four steps transform the initial data model into fundamental normal forms.

Incorrect functional dependencies get removed. In practice, after the initial data

model goes through the fundamental normal forms, the resultant relational model

is good enough for completing the design process. No further normalization steps

are usually necessary.

. The next three steps remove irregularities resulting from other types of incorrect

dependencies in the original relations. These steps transform the model to higher

normal forms.

. The principles of normalization may also be applied to verify the correctness of a rela-

tional data model created using the other method of data model transformation. This

is especially relevant to a large and complex conceptual data model put together by

several data modelers.

REVIEW QUESTIONS

1. True or false:

A. Informal design of a relational data model begins with random tables created

intuitively.

B. Deletion anomaly prevents all deletion of data from a database.

C. Each normalization step removes only one type of irregularity.

D. When partial key dependencies are removed, a model is in the third

normal form.

292 CHAPTER 8 DATA NORMALIZATION

E. In most cases, the first four normalization steps for fundamental normal forms

are sufficient to produce a truly relational model.

F. A table has transitive dependencies when every attribute is not functionally

dependent on the full primary key.

G. A table in Boyce–Codd normal form is practically free from incorrect functional

dependencies.

H. If a data model is in fourth normal form, no multivalued dependencies exist.

I. Join dependency in a relation is the same as multivalued dependency.

J. Decomposition of a table into multiple tables is the general technique for

normalization.

2. Describe briefly the process of creating an initial data model from real-world

information requirements. Why is this initial data model potentially incorrect?

3. What is addition anomaly in a database? Give an example.

4. “An update anomaly occurs when values of attributes are updated in a database.”

Explain with an example.

5. Normalization is a systematic step-by-step methodology. Describe how it is so with

a small example.

6. When is a table not in the second normal form? Give an example. How do you

transform it into second normal form tables?

7. What are transitive dependencies in a table? How do you remove transitive

dependencies?

8. What is the Boyce–Codd normal form (BCNF)? Under what condition is a relation

in BCNF?

9. What are multivalued dependencies? Explain with an example.

10. What is your understanding of the domain-key normal form?Why do you think this

normal form is the ultimate goal of good design or a proper relational data model?

REVIEW QUESTIONS 293

9

MODELING FOR DECISION-
SUPPORT SYSTEMS

CHAPTER OBJECTIVES

. Introduce decision-support systems

. Explore data modeling methods for such systems

. Discuss data warehouse and its components

. Examine special aspects of modeling for data warehouse

. Study dimensional data modeling

. Learn about STAR and SNOWFLAKE schemas

. Review data modeling for OLAP systems

. Review modeling for data mining systems

Over the past decade, the role of computer and data systems has dramatically changed.

Organizations need data systems not just to run the day-to-day business but also to help

them in making strategic decisions. Decision-support systems have become commonplace

in today’s business environment. These systems enable the managers and executives to

analyze buying and selling patterns, review past performances, and forecast trends.

With the strategic information provided by decision-support systems, companies are

able to survive and even excel in the marketplace.

Decision-support systems come in a few flavors—data warehousing, online analytical

processing, and data mining. These systems and the databases supporting these systems

differ from those supporting the regular operations of organizations. In these systems,

the expectations are not support for routine operations such as taking an order, printing

an invoice, or making an airline reservation. Here the emphasis lies on data systems

suitable for interactive analysis and reporting. Therefore, data modeling for these

295

Data Modeling Fundamentals. By Paulraj Ponniah
Copyright # 2007 John Wiley & Sons, Inc.

decision-support systems requires techniques suitable for analysis. This chapter reviews

such techniques.

Data warehousing is revolutionizing the manner in which businesses in a wide variety

of industries perform analysis and make strategic decisions. Why are companies rushing

into data warehousing? Why has there been a tremendous surge in interest? Data ware-

housing has become a mainstream phenomenon. In every industry across the board,

from retail chains to financial institutions, from manufacturing enterprises to government

departments, and from airline companies to utility businesses, data warehousing is trans-

forming the way professionals perform business analysis and make strategic decisions.

Many companies also make use of complex analytical methods falling within the

purview of the discipline known as online analytical processing (OLAP). Several

businesses also engage in data mining—a knowledge discovery paradigm. We will con-

sider data modeling with regard to these decision-support systems.

DECISION-SUPPORT SYSTEMS

As an analyst, programmer, designer, data modeler, database administrator, or project

manager, one would have been involved in the design and implementation of computer

systems that support day-to-day business operations. Order processing, general ledger,

inventory control, inpatient billing, checking accounts, insurance claims—all of these

fall in the range of operational systems.

Operational systems run business operations. These process orders, maintain inventory,

keep the accounting books, service the customers, receive payments, process claims, and

so on. Without such computer systems, no modern enterprise could survive. Companies

started using operational systems in the 1960s and have become completely dependent

on these. Such systems gather, store, and process all the data needed to successfully

perform the daily operations. So, the data modeling techniques and approaches we have

considered so far relate to the data systems of operational applications.

In the 1990s, as businesses grew more complex, corporations spread globally, gov-

ernment deregulated industries, and competition became fiercer, business executives

became desperate for information to stay competitive and improve the bottom line.

However, the operational systems, although effective for routine operations, could not

provide the types of information needed by executives for analysis and decision

making. Executives needed different kinds of information that could be readily used

for strategic decision making. Executives wanted to know where to build the next ware-

house for storage and distribution, which product lines to expand, and which markets to

strengthen. Operational systems, important as they are, could not provide strategic infor-

mation. Business had to turn to new ways of getting strategic information. Data ware-

housing emerged as the vital, new paradigm specifically intended to provide strategic

information.

Need for Strategic Information

Who needs strategic information in an enterprise? What exactly do we mean by strategic

information? Executives and managers who are responsible for keeping the enterprise

competitive need information for making proper decisions. They need information to

formulate business strategies, establish goals, set objectives, and monitor results.

296 CHAPTER 9 MODELING FOR DECISION-SUPPORT SYSTEMS

Here are a few examples of business objectives:

. Retain the current customer base.

. Increase customer base by 20% over the next 5 years.

. Gain market share by 10% in the next 3 years.

. Improve product quality levels in the top five product groups.

. Enhance customer service level in product shipments.

. Bring three new products to market in 2 years.

. Increase sales by 15% in the southwest division.

For making decisions about these objectives, executives and managers need infor-

mation as follows: get in-depth knowledge of their company’s operations; learn about

the key business factors and how these affect one another; monitor how business factors

change over time; measure the company’s performance against the competition and

industry benchmarks. Executives and managers have to focus on customer needs and

preferences, emerging technologies, marketing results, and quality levels of products

and services. The types of information needed to make decisions in the formulation and

execution of business strategies and objectives are broad-based and encompass the

entire organization. We may combine all these types of essential information into one

group and refer to it as strategic information.

Strategic information is far more important than producing an invoice, making a ship-

ment, settling a claim, or posting a withdrawal from a bank account. Strategic information

concerns the very health and survival of a corporation. Critical business decisions depend

on the availability of proper strategic information in an enterprise.

In summary, strategic information must possess the following characteristics:

Integrated. It must have a single, enterprise-wide view.

Data Integrity. Information must be accurate and conform to business rules.

Accessible. It must be easily accessible with intuitive access paths and be responsive

for analysis.

Credible. Every business factor must have one and only one value.

Timely. Information must be available within the stipulated time frame.

History of Decision-Support Systems

For strategic decision-making, executives and managers must be able to review data from

different business viewpoints. For example, they must be able to review sales quantities by

product. You need to model and store data that will be suitable for such analysis and

review.

For nearly two decades or more, attempts have been made to provide information to key

personnel in companies for making strategic decisions. Sometimes a single computer

application may produce ad hoc reports. However, in most cases, reports would need

data from multiple systems requiring elaborate schemes to extract intermediary data

DECISION-SUPPORT SYSTEMS 297

that were required to be combined to produce useful reports. Most of these reports proved

to be inadequate. The users could not clearly define what they wanted in the first instance.

Once they saw the first set of reports, they wanted to see more data in different formats.

The chain continued. This was mainly because of the very nature of the decision-making

process. Information for strategic decision-making has to be available in an interactive

manner.

In order to appreciate the reasons for failure of earlier decision-support systems to

provide strategic information, we have to consider a brief history of the early systems.

Depending on the size and nature of the business, most companies have gone through

the following stages in their attempts at providing strategic information for decision

making:

Ad Hoc Reports. This was the earlier stage. The IT department would write special pro-

grams to produce special reports whenever user departments, especially Marketing and

Finance, sent requests.

Special Extract Programs. Somewhat anticipating the types of reports generally

needed, the IT department would write a suite of programs and run the programs period-

ically to extract data from various applications and produce reports. Special additional

programs would be written for out-of-the-ordinary requests.

Small Applications. The IT department would formalize the data extract process and

create simple applications to produce reports based on extracted files.

Information Centers. Some major corporations created separate and distinct rooms

where users could go and request ad hoc reports or see information on some special

output screens. These were predetermined reports and screens. IT personnel would be

present at information centers to assist the users.

Decision-Support Systems. In this stage, companies began to build more sophisti-

cated systems intended to provide strategic information. But these systems were supported

by data extract files as in earlier attempts.

Executive Information Systems. This was an attempt to bring strategic information

to the executive desktop. However, only preprogrammed reports and screens were avail-

able. After seeing the total countrywide sales, if the executive wanted to see the breakdown

by region, product, and sales office, it was not possible unless this level of breakdown was

already programmed.

Every attempt in the past at providing strategic information to decision makers ended in

failure and frustration. The information environment ideally suited for making strategic

decisions has to be flexible and conducive for interactive analysis. The IT department

had not been able to establish such an environment. Moreover, the fundamental reason

for the failed past attempts is that all along, the IT department was trying to provide stra-

tegic information from operational systems. Operational systems are not designed or

intended for strategic information. Only specifically designed informational systems can

provide strategic information. What are the differences between the two types of systems?

298 CHAPTER 9 MODELING FOR DECISION-SUPPORT SYSTEMS

Operational Versus Informational Systems

Operational systems and informational systems serve different purposes in an organization.

They have different scope. Operational systems support the day-to-day running of the

business—make the wheels of business turn. On the other hand, informational systems

provide strategic information—enable professionals to watch the wheels of business turn.

It will, therefore, be worthless to dip into operational systems for strategic information

as it has been done in the past. As companies face fiercer competition and businesses

become more complex, continuing past practices leads to disaster.

Making the Wheels of Business Turn. Operational systems are online transaction

processing (OLTP) systems running the routine core business operations. These are the

so-called bread-and-butter systems in a company. These systems make the wheels of

business turn. They support the basic business processes of the company. These

systems typically get data into the database and use the data to process transactions.

Each transaction processes data about a single entity such as a single order, a single

invoice, or a single customer.

Generally, the emphasis is to get the data in. Making the wheels of business turn

involves transactions such as

. Take an order

. Process a claim

. Make a shipment

. Generate an invoice

. Receive cash

. Reserve an airline seat

Watching the Wheels of Business Turn. On the other hand, specially designed and

built decision-support systems are not meant to run the core business processes. These are

used to watch how the business runs, how trends develop, and then make strategic

decisions to improve the business.

Decision-support systems are developed to get strategic information out. Watching the

wheels of business turn has features such as

. Show me the top-selling products

. Show me the problem regions

. Tell me why (drill down to districts and sales offices)

. Let me see other data (drill across to other regions)

. Display the highest margins

. Alert me when a district sells below target

System Types and Modeling Methods

You now realize that you need a new type of system environment with different features to

obtain strategic information. Let us quickly examine the desirable features and processing

requirements of this new type of environment.

DECISION-SUPPORT SYSTEMS 299

A New Type of System Environment. Desired features of the new type of system

environment include:

. Database designed for analytical tasks

. Data from multiple applications

. Easy to use and conducive for long interactive sessions by users

. Read-intensive data

. Direct interaction with the system by users without IT assistance

. Content stable with periodic updates only

. Content to include current and historical data

. Ability for users to run queries and get results online

. Ability for users to initiate reports

Most of the processing in the new environment has to be analytical. Four levels of

analytical processing need to be available:

. Run simple queries and reports against current and historical data

. Perform “what if” analysis in several ways

. Query, step back, analyze, and then continue process to any desire length

. Spot historical trends and apply these for future results

Business Intelligence. The new environment encompasses informational systems

such as data warehousing, OLAP, and data mining. These systems hold business intelli-

gence for the enterprise to make strategic decisions. Of these systems, the most prevalent

is data warehousing. Figure 9-1 shows the nature of business intelligence in the data

warehouse.

At a high level of interpretation, the data warehouse contains critical measurements of

business processes stored along business dimensions. For example, a data warehouse

might contain units of sales, by product, day, customer group, sales district, sales region,

and sales promotion.

FIGURE 9-1 Business intelligence in the data warehouse.

300 CHAPTER 9 MODELING FOR DECISION-SUPPORT SYSTEMS

From where does the data warehouse get its data? Data is derived from the operational

systems that support the basic business processes of the organization. In between the oper-

ational systems and the data warehouse storage, there is a staging area. In this area, the

operational data gets to be cleansed and transformed into a format suitable for placement

in the data warehouse storage for easy retrieval and analysis.

Data Modeling for Decision Support. You know data modeling techniques for oper-

ational systems. We have looked at the E-R modeling technique in great detail. We have

covered numerous examples of fragments of E-R data models. This technique served us

well for creating data models for systems that run the routine operations. The conceptual

data models for these systems may be transformed into logical data models and

implemented as, perhaps, relational databases. These databases are designed for trans-

action processing.

However, the databases in data warehouses, data sets for OLAP, and data structures in

data mining are primarily meant for analysis and not for transaction processing. How

should the data be modeled for these applications?Will the same data modeling techniques

be useful for decision-support systems as well?

As you will see shortly, the E-R technique as such is not adequate for modeling the

information requirements of a data warehouse. We will consider another technique

known as dimensional modeling for a data warehouse. You will appreciate how dimen-

sional modeling is well suited in a data warehouse environment. Dimensional modeling

portrays the data requirements in a data warehouse more appropriately. However, both

E-R data models and dimensional data models may be implemented as relational

databases.

DATA WAREHOUSE

In this section, let us focus on the most common of modern decision-support systems—the

data warehouse. Let us look at its features; define what it is; study its components; and see

how several technologies work together in a data warehouse environment. We will also

consider some examples of data warehousing applications. Let us also introduce the

reason for special requirements for doing a data model for the data warehouse.

Data Warehouse Defined

In the final analysis, data warehousing is a simple concept. It was born out of the need for

strategic information and was the result of the search for a new way to provide such infor-

mation. As we have seen, the methods of the past two decades using the operational com-

puting environment were unsatisfactory. This new concept is not to generate fresh data,

but to make use of the large volumes of existing data and to transform the data into

formats suitable for providing strategic information.

The data warehouse exists to answer questions users have about the business, the per-

formance of the various business operations, business trends, and about what could be

done to improve the business. The data warehouse exists to provide business users with

direct access to data, to provide a single unified version of performance indicators, to

record the past accurately, and to provide the ability to view the data from many different

perspectives. In short, the data warehouse is there to support decision-making processes.

DATA WAREHOUSE 301

This is the really simple concept behind data warehousing: take all the data you already

have in the organization, clean and transform the data, and then provide strategic

information.

An Environment, Not a Product. A data warehouse is not a single software or hard-

ware product you purchase off the shelf to provide strategic information. It is rather a com-

puting environment where users can find strategic information; an environment where

users are put directly in touch with the data they need to make better decisions. It is a user-

centric environment.

The defining characteristics of this new computing environment called the data ware-

house include:

. An ideal environment for data analysis and decision making

. Fluid, flexible, and interactive

. Almost completely user-driven

. Responsive and conducive to the ask–answer–analyze–ask-again pattern of

computing

. Ability to discover answers to complex, unpredictable questions

A Blend of Many Technologies. Let us reexamine the basic concept of data

warehousing:

. Take all the data from operational systems

. Where necessary, include relevant data from outside

. Integrate all the data from various sources

. Remove inconsistencies and transform the data

. Store the data in formats suitable for easy access and analysis

Although a simple concept, data warehousing involves different functions: data extraction,

data loading, data transformation, data storage, and provision of user interfaces. Therefore,

in a data warehousing environment, several technologies are needed to support the various

functions. Figure 9-2 shows how data warehousing is a blend of many technologies needed

for the various functions.

Although many technologies are in use, they all work together in a data warehouse. The

end result is the creation of a new computing environment for the purpose of providing the

strategic information every enterprise needs desperately.

Major Components

We have quickly reviewed the basic definition and features of a data warehouse. We have

established our position on what the term data warehouse means to us. We are now ready

to examine its components.

Architecture is the proper arrangement of the components. You build a data warehouse

with software and hardware components and arrange them in the most optimal manner. To

suit the requirements of your organization, you arrange the building blocks in a certain way

for maximum benefit. Figure 9-3 shows the basic components of a typical data warehouse.

302 CHAPTER 9 MODELING FOR DECISION-SUPPORT SYSTEMS

You see the Source Data component shown on the left. The Data Staging component

serves as the next building block. In the middle, you see the Data Storage component that

holds and manages data warehouse data. This component not only stores and manages

data, but it also keeps track of the data by means of a meta-data repository. The Infor-

mation Delivery component shown on the right consists of all the different ways of

making information from the data warehouse available to users.

FIGURE 9-2 Data warehouse: blend of technologies.

FIGURE 9-3 Data warehouse: building blocks or components.

DATA WAREHOUSE 303

Source Data Component. Source data coming into the data warehouse may be

grouped into four broad categories:

Production Data. This comes from various operational systems of the enterprise.

Depending upon the information requirements, segments of operational data get selected.

Internal Data. This is extracted from various private spreadsheets, documents, customer

profiles, and sometimes departmental databases.

Archived Data. This is historical operational data stored away from production data

bases.

External Data. This is data from external agencies such as competitors’ market share,

standard financial indicators for the industry, economic trends, and so on.

Data Staging Component. After extracting data from several disparate sources, the

data needs to be changed, converted, and made ready in a format suitable to be stored

for querying and analysis. The major functions that prepare the data take place in the

data staging area. Data staging provides a place and an area with a set of functions to

cleanse, change, combine, convert, deduplicate, and prepare source data for storage in

the data warehouse data repository.

Three major functions that get performed in the staging area are as follows:

Data Extraction. A fairly complex function to extract data from varied data sources, from

different source machines, and in diverse formats. Special data extraction software tools

are generally used.

Data Transformation. As a necessary consequence of disparate sources of data, conver-

sion and formatting becomes very important and elaborate. At the end of the transform-

ation process, you have a collection of integrated data, cleansed, standardized, and

summarized.

Data Loading. Consists of adding initial data to the data warehouse storage. Also, after

the data warehouse is in operation, data loading takes place for daily additions and changes

from operational systems.

Data Storage Component. Data storage for the data warehouse is a separate reposi-

tory. Operational systems of your enterprise support day-to-day operations. These are

online transaction processing applications. Data repositories for operational systems typi-

cally contain only current data. Also, the data repositories for operational systems contain

data structured in highly normalized formats for fast and efficient processing. In contrast,

for the data warehouse, you keep data in structures suitable for analysis, not for quick

retrieval of individual pieces of information. Data storage for the data warehouse is, there-

fore, kept separately, not as part of the operational systems.

In your database supporting operational systems, updates to data happen in real time as

transactions occur. Transactions hit the databases in a random fashion. How and when

transactions change data in the database is not completely within your control. Data in

operational databases may change from moment to moment. However, data in the data

304 CHAPTER 9 MODELING FOR DECISION-SUPPORT SYSTEMS

warehouse needs to be stable representing snapshots at specified periods. Analysts must be

able to deal with stable data and produce consistent results from queries. Therefore, data

warehouses are mostly “read-only” data repositories.

Periodically, data in the data warehouse repository gets changed. After the initial base

loading of data, data in the data warehouse gets changed periodically. Depending on par-

ticular circumstances and requirements, parts of the data warehouse may be refreshed

daily, weekly, monthly, and quarterly.

Information Delivery Component. Who are the users that need information from the

data warehouse? The range is fairly comprehensive. The novice user comes to the data

warehouse with no training and, therefore, needs prefabricated reports and preset

queries. The casual user needs information once in a while, not regularly. This type of

user also needs prepackaged information. The business analyst looks for ability to do

complex analysis. The power user wants to be able to navigate through the data warehouse,

pick up interesting information, format his or her own queries, drill through data layers,

and create custom reports and ad hoc queries.

In order to provide information to the wide community of data warehouse users, the

information delivery component includes several delivery methods. You have to include

multiple information delivery mechanisms. Most commonly, you provide for online

queries and reports. Users will enter their queries online and receive results online.

Recently, provision of information over intranets using Web technology is becoming

more and more prevalent.

Data Warehousing Applications

In the early stages, four significant factors drove companies to move into data warehousing:

fierce competition, government deregulation, a need to revamp internal processes, and an

imperative for customized marketing. Telecommunications, banking, and retail were the

first industries to adopt data warehousing. That was largely because of government dereg-

ulation in telecommunications and banking. Fiercer competition pushed retail businesses

into data warehousing. Utility companies joined the group as that sector became deregu-

lated. In the next wave, companies in financial services, health care, insurance, manufactur-

ing, pharmaceuticals, transportation, and distribution got into data warehousing.

At present, data warehouses exist in every conceivable industry. Now, companies have

the ability to capture, cleanse, maintain, and use the vast amounts of data generated by

their business transactions. Data warehouses storing several terabytes of data are not

uncommon in retail and telecommunications.

Modeling: Special Requirements

In several ways, building a data warehouse is very different from designing and imple-

menting an operational system. This difference also shows up in creating data models

for the information requirements for a data warehouse. When we consider the information

requirements, it will become clear why this is so.

Based on the data model we create for the data warehouse repository, we have to

implement the database. The model must reflect data content of the data warehouse. So,

let us explore the nature of information requirements so that we can come up with a mod-

eling technique for the data warehouse.

DATA WAREHOUSE 305

Information Usage Unpredictable. Let us say you are building an operational system

for order processing in your company. Based on the business functions that make up order

processing and the data needed to support these functions, you can create a conceptual data

model. You may use the E-R modeling technique. For an operational system such as order

processing, users are able to give you precise details of the required functions, information

content, and usage patterns.

In striking contrast, for a data warehousing system, users are generally unable to define

their requirements precisely and clearly. They are unsure how exactly they will be using

the data warehouse and cannot express how they would use the information or process it.

Of course, they know that they will use the data warehouse for analysis, but they are not

clear how exactly they would do that. The whole process of defining the information

requirements for a data warehouse is nebulous. If so, how can you create a data model

for something the users are unable to define clearly and precisely.

Dimensional Nature of Business Data. Fortunately, the situation is not as hopeless

as it seems. Even though users cannot fully describe what they want in a data warehouse,

they can provide you with some useful insights into how they think about the business.

They can tell you what measurement units are important to them. Each department can

let you know how they measure success in that department. Users can provide clues

about how they combine the various pieces of information for strategic decision making.

Managers think of the business in terms of business dimensions. Let us understand what

these business dimensions are by considering a few examples. Look at the following

examples of the kinds of questions managers are likely to ask for decision making.

Marketing Vice President. How much did my new product generate month by month, in

the southern division, by user demographic, by sales office, relative to the previous version

and compared with plan?

Marketing Manager. Give me sales statistics by products, summarized by product

categories, daily, weekly, and monthly, by sales districts, by distribution channels.

Financial Controller. Show me expenses, listing actual versus budget, by months, quar-

ters, and annual, by budget line items, by district, division, summarized for the whole

company.

The marketing vice president is interested in the revenue generated by her new product;

but she is not interested in a single number. She is interested in the revenue numbers by

month, in a certain division, by demographic, by sales office, relative to the previous

product version, and compared with plan. So, the marketing vice president wants the

revenue numbers broken down by month, division, customer demographic, sales office,

product version, and plan. These are her business dimensions along which she wants to

analyze her revenue numbers.

Similarly, for the marketing manager, his business dimensions are product, product cat-

egory, time (day, week, month), sales district, and distribution channel. For the financial

controller, the business dimensions are budget line, time (month, quarter, year), district,

and division.

If users of a data warehouse think in terms of business dimensions for decision making,

as a data modeler, you must also think of business dimensions for the modeling process.

306 CHAPTER 9 MODELING FOR DECISION-SUPPORT SYSTEMS

Although the details of actual usage of the data warehouse could be unclear, the business

dimensions used by managers are not ambiguous at all. So, as an early step in the data

modeling process, determine the business dimensions.

Examples of Business Dimensions. The concept of business dimensions is

fundamental to requirements definition and data modeling for the data warehouse. There-

fore, let us look at a few examples. Figure 9-4 displays business dimensions for four differ-

ent cases.

Let us quickly review the examples. For the supermarket chain, the measurements that

are analyzed are the sales units. These are analyzed along four business dimensions: time,

promotion, product, and store. For the insurance company, the business dimensions are

different—more appropriate to that business. Here you want to analyze claim amounts

by six business dimensions: time, agent, claim, insured party, policy, and status.

Observe the other two examples and note the business dimensions. These are different,

more appropriate for the nature of the businesses. What we find from these examples is that

the business dimensions are different and relevant to the industry and to the subject for

analysis. We also note that generally the time dimension is a common dimension in all

examples. Almost all business analyses are performed over time.

Information Package. Having understood the concept of business dimensions and how

these enable us to move forward in data modeling, let us introduce the notion of an infor-

mation package. Creation of an information package is a preliminary step for recording the

requirements and preparing for the data modeling process.

FIGURE 9-4 Examples of business dimensions.

DATA WAREHOUSE 307

An information package incorporates the basicmeasurements and the business dimensions

along which the basic measurements may be analyzed. Each information package refers to

one information subject. Figure 9-5 shows an information package for automaker sales.

Go through the figure carefully and note the following.

Business Dimensions. These are shown as column headings.

Key Business Metrics or Facts. These are the measurements that are analyzed along the

business dimensions. These are shown at the bottom in the information package diagram.

In this example, many different metrics are meant to be available for analysis.

Dimension Hierarchies/Categories. These are various levels of individual dimensions

for drilling down or up. The hierarchy for the time dimension ranges from year to actual

date. Note these hierarchy indicators in the dimension columns. These columns are also

used to indicate categories within business dimensions. For example, Single Brand Flag

is a category indicator. Here the intention is to analyze the metrics by dealers who sell

only single brands.

DIMENSIONAL MODELING

You have reviewed information package diagrams. These diagrams reflect the ways in which

managers and other professional tend to make use of the data warehouse for analysis and

FIGURE 9-5 Information package: automaker sales.

308 CHAPTER 9 MODELING FOR DECISION-SUPPORT SYSTEMS

decisionmaking. Information packages are informationmatrices showing themetrics, business

dimensions, and the hierarchies and categories within individual business dimensions.

The information package diagrams form the basis for proceeding to the data modeling

process. You can use the information contained in these packages to come up with a con-

ceptual model and, thereafter, a logical model. As you know, the logical model may be a

relational model if you are implementing your data warehouse using a relational DBMS.

The modeling process results in what is known as a dimensional data model.

Dimensional Modeling Basics

Dimensional modeling gets its name from the business dimensions we need to incorporate

into the model from the nature of business analysis. Dimensional modeling is a modeling

technique to structure business dimensions and metrics that are analyzed along these

dimensions. This modeling technique is intuitive for that purpose. In practice, a dimen-

sional data model has proved to provide high performance for queries and analysis.

The multidimensional information package diagram is the foundation for the dimen-

sional model. First, the dimensional model consists of specific data structures needed to

represent the business dimensions. These data structures also contain the metrics or facts.

Figure 9-5 shows the information package diagram for automaker sales. Go back and

review the figure. In the bottom section of the diagram, you observe the list of measure-

ments or metrics that the automaker wants to use for analysis. Next, look at the columns

headings. These are the business dimensions along which the automaker wants to analyze

the metrics. Under each column heading, you notice the dimension hierarchies and

categories within that business dimension. What you see under the column headings are

the attributes relating to that business dimension.

Reviewing the information package diagram, we note three types of data elements: (1)

measurements or metrics (called facts), (2) business dimensions, and (3) attributes for each

business dimension. So, when we put together the dimensional model to represent the

information contained in the information package, we need to come up with data structures

to represent these three types of data elements. How to do this?

Fact Entity Type. First, let us work with the measurements or metrics seen at the bottom

of the diagram. These are facts for analysis. In the automaker sales diagram, the facts are as

follows: actual sale price, MSRP sale price, options price, full price, dealer add-ons, dealer

credits, dealer invoice, amount of down payment, manufacturer proceeds, and amount

financed.

Each of these items is a measurement or fact. Actual sale price is a fact about what the

actual price is for the sale. Full price is a fact about what the full price is relating to the sale.

As we review each of these factual items, we find that we can group all of these into a

single data structure. Borrowing the terminology used in the examples of the previous

chapters, we may call the data structure as a fact entity type. For the automaker sales analy-

sis, this fact entity type would be the AUTOMAKER-SALES entity type. Therefore, each

fact item or measurement would be an attribute for this entity type.

We have determined one of the data structures to be included in the dimensional model

for automaker sales and derived the AUTOMAKER-SALES fact entity type with its attri-

butes from the information package diagram. This is shown in Figure 9-6.

Dimension Entity Type. Let us move on to the other sections of the information

package diagram, taking the business dimensions one by one. Look at the product business

DIMENSIONAL MODELING 309

dimension. This business dimension is used when we want to analyze by products. Some-

times our analysis could be a breakdown of sales by individual models. Another analysis

could be at a higher level by product lines. Yet another analysis could be at even a higher

level by product categories. The list of data items relating to the product dimension are as

follows: model name, model year, package styling, product line, product category, exterior

color, interior color, and first model year.

What can we do with all these data items in our dimensional model? All of these relate

to the product in some way. We can, therefore, group all of these data items in one data

structure and call it a dimension entity type. More specifically, this would be the

PRODUCT dimension entity type. The data items listed above would all be attributes

of the PRODUCT dimension entity type.

Look further into the information package diagram. You note the other business dimen-

sions shown as column headings. In the case of automaker sales information package,

these other business dimensions are dealer, customer demographics, payment method,

and time. Just as we formed the PRODUCT dimension entity type, we can put together

the remaining dimension entity types. The data items shown in each column would then

be the attributes for each corresponding dimension entity type.

Figure 9-7 puts all of these together. It shows how the various dimensions tables are

formed from the information package diagram. Study the figure carefully and note how

each dimension entity type is formed.

Arrangement of Entity Types. Thus far, we have formed the fact and dimension

entity types. How should these be arranged in a dimensional model? What are the relation-

ships and how should the relationships be marked?

FIGURE 9-6 Formation of AUTOMAKER-SALES fact entity type.

310 CHAPTER 9 MODELING FOR DECISION-SUPPORT SYSTEMS

Before we decide how to arrange the fact and dimension entity types in our dimensional

model and mark the relationships, let us go over what the dimensional model needs to

achieve and what its purposes are. Here are some criteria for combining the entity types

into a dimensional model.

. The model should provide the best data access.

. The whole model must be query-centric.

. It must be optimized for queries and analyses.

. The model must express that the dimension entity types are related to the fact entity

type.

. It must be structured in such a way that every dimension entity type can have an equal

chance of interacting with the fact entity type.

. The model should allow drilling down or rolling up along dimension hierarchies.

With these requirements, we find that a dimensional model with the fact entity type in

the middle and the dimension entity types arranged around the fact entity type appears to

be the ideal arrangement. In such an arrangement, each dimension entity type will have a

direct relationship with the fact entity type in the middle. This is necessary because every

dimension entity type with its attributes must have an even chance of participating in a

query to analyze the attributes in the fact entity type.

Such an arrangement in the dimensional model looks like a star formation. The fact

entity type is at the core of the star and the dimensional entity types are along the

spikes of the star. Figure 9-8 shows this star formation for automaker sales.

FIGURE 9-7 Formation of automaker dimension entity types.

DIMENSIONAL MODELING 311

STAR Schema

The STAR formation introduced in the previous subsection is known as the STAR schema.

Now that you have been introduced to the STAR schema, let us take a simple example and

examine its characteristics. Creating the STAR schema is the fundamental data modeling

task for the data warehouse storage. It is necessary to gain a good grip of this task.

Review of a Simple STAR Schema. Let us take a simple STAR schema designed for

order analysis. Assume this to be a schema for a manufacturing company and that the mar-

keting department is interested in determining how they are doing with the orders received

by the company.

Figure 9-9 shows this simple STAR schema. It consists of ORDERS fact entity type

shown in the middle of schema diagram. Surrounding the fact entity type are the four

dimension entity types of CUSTOMER, SALESPERSON, ORDER-DATE, and

PRODUCT.

Let us begin to examine this STAR schema. Look at the structure from the point of view

of the marketing department. Users in this department will analyze the orders using dollar

amounts of cost, profit margin, and sold quantity. This information is found in the fact

entity type of the structure. Users will analyze these measurements by breaking down

the numbers in combinations by customer, salesperson, date, and product. All these dimen-

sions along which users will analyze are found in the structure. Thus, the STAR schema

structure is a structure that can be easily understood by users and with which they can work

FIGURE 9-8 Star formation for automaker sales.

312 CHAPTER 9 MODELING FOR DECISION-SUPPORT SYSTEMS

comfortably. The structure mirrors how users normally view their critical measures along

their business dimensions.

When you look at the order dollars, the STAR schema structure intuitively answers

questions of what, when, by whom, and to whom. For example, users can easily visualize

answers to questions such as: For a given set of customers for a certain month, what is the

quantity sold of a specific product, enabled by salespersons in a given territory?

Inside a Dimension Entity Type. A significant component of the STAR schema is the

set of dimension entity types. These represent the business dimensions along which the

metrics are analyzed. Let us look inside a dimension entity type and study its character-

istics. See Figure 9-10 showing the contents of one of the dimension entity types and

also a set of characteristics.

Note the following comments about the dimension entity type and what is inside.

Dimension Entity Type Identifier. This is usually a surrogate identifier to uniquely

identify each instance dimension entity. Sometimes, one or more attributes can be used

as the identifier. However, a short surrogate identifier is preferred.

Entity Type Is Wide. Typically, a dimension entity type is wide in the sense it has many

attributes. It is not uncommon for some dimension entity types to have even more than 50

attributes.

FIGURE 9-9 Simple STAR schema for order analysis.

DIMENSIONAL MODELING 313

Textual Attributes. You will seldom find any numeric attributes used for calculations.

Attributes are of textual format representing textual descriptions of components within

business dimension. Users will compose their queries using these textual descriptors.

Not Normalized. The attributes in a dimension entity type are used over and over again in

queries. For efficient query performance, it is best if the query picks up the value of an

attribute from the dimension entity type and goes directly to the fact entity type and not

through intermediary entity types. If you normalize the dimension entity type, you will

be creating such intermediary entity types and that will reduce the efficiency in query

processing.

Drilling Down, Rolling Up. The attributes in a dimension entity type provide the ability to

get to the details from higher levels of aggregation to lower levels of details. For example,

the three attributes zip, city, and state form a hierarchy. You may get the total sales by

state, then drill down to total sales by city, and then by zip. Going the other way, you

may first look at totals by zip and then roll up to totals by city and then state.

Multiple Hierarchies. In the example of the CUSTOMER dimension entity type, there is

a single hierarchy going up from individual customer to zip, city, and state. But, dimension

entity types often provide for multiple hierarchies. However, dimension entity types such

as product may have dimension hierarchies such as marketing–product–category, market-

ing–product–department, finance–product–category, and finance–product–department

so that different user groups may drill down or roll up differently.

Fewer Number of Occurrences. Usually, a dimension entity type has fewer instances

than a fact entity type. A product dimension entity type for an automaker may just have

500 occurrences or less.

Inside the Fact Entity Type. Let us now get into a fact entity type and examine the

components. Remember, this is the representation of where we keep the measurements.

We may keep the details at the lowest possible level. In a department store’s fact entity

type for sales analysis, the level may be as units sold in each individual transaction at

FIGURE 9-10 Inside a dimension entity type.

314 CHAPTER 9 MODELING FOR DECISION-SUPPORT SYSTEMS

the cashier’s checkout. Some fact entity types may represent storage of summary data.

Such entity types are known as aggregate fact entity types.

Figure 9-11 shows the contents of a fact entity type and also a set of its characteristics.

Note the following characteristics of the fact entity type.

Fact Entity Type Identifier. None of the attributes qualify to be an identifier for the fact

entity type. These attributes are numeric units for measurements. We will discuss the iden-

tifier in a later subsection when studying the transition to logical model. It will be more

meaningful at that point.

Data Grain. This is an important characteristic of the fact entity type. Data grain is the

lowest level of detail for measurements or metrics. In the example of Figure 9-11, the

metrics are at the detailed or lowest level. The quantity ordered relates to the quantity

of a particular product on a certain day, for a specific customer, and procured by a specific

sales representative. If we keep the quantity ordered as the quantity of a specific product

for each month, then the data grain is different and it is at a higher level. So, when you

model a fact entity type, be careful about the level of data grain it is supposed to represent

through its attributes.

Fully Additive Measures. Let us look at the attributes OrderDollars, ExtendedCost, and

QuantityOrdered. Each of these relates to a particular product on a certain date for a

specific customer procured by an individual sales representative. In a certain query, let

us say that the user wants the totals for the particular product, not for a specific customer,

but for customers in a particular state. Then we need to find all the instances of the entity

type relating to all the customers in that state and add OrderDollars, ExtendedCost, and

QuantityOrdered to come with the totals. The values of these attributes may be summed

up by simple addition. Such measures are known as fully additive measures. Aggregation

of fully additive measures is done by simple addition. While designing a fact entity type,

you must be cognizant of fully additive measures and note them in the model.

Semiadditive Measures. Consider the MarginDollars attribute in the fact entity type.

For example, if OrderDollars has a value of 120 and ExtendedCost 100, then

FIGURE 9-11 Inside a fact entity type.

DIMENSIONAL MODELING 315

MarginPercentage is 20. This is the calculated metric derived from OrderDollars and

ExtendedCost. If you are aggregating the numbers from instances of the fact entity type

relating to all customers in a particular state, you cannot add up MarginPercentage

numbers from these instances and come up with the total. Derived attributes such as

MarginPercentage are not additive. They are known as semiadditive measures. These

are also common in fact entity types. Distinguish semiadditive measures from fully

additive measures in your data model.

Entity Type Deep, Not Wide. Typically, a fact entity type contains fewer attributes than

a dimension entity type. Usually, there are about 10 attributes or less. But the number of

instances of a fact entity type is very large in comparison. Take a very simplistic example

of 3 products, 5 customers, 30 days, and 10 sales representatives represented as instances

of the corresponding dimension entity types. Even for this example, the number of fact

entity type instances could be more than 5000, very large in comparison with the dimen-

sion entity type instances.

Sparse Data. We have said that a single instance of the fact entity type relates to a par-

ticular product, a specific calendar date, a specific customer, and an individual sales repre-

sentative. In other words, for a particular product, calendar date, customer, and sales

representative, there is a corresponding instance of the fact entity type. What happens

when the date represents a holiday and no orders are received and processed? The fact

entity type instances for such dates will not have values for the measures. Also, there

could be other combinations of dimension entity type attributes, values for which fact

entity type instances could be null measures. Do we need to keep such instances in our

database of the data warehouse? No. Therefore, it is important to realize this type of

sparse data and understand that the fact entity type instances could have gaps.

Degenerate Dimensions. Look close at the example of the fact entity type. You will

find attributes such as OrderNumber and OrderLine. These are not measures or metrics

or facts. Then why are these in the fact entity type? When you pick up attributes for the

dimension and fact entity types from operational systems, you will be left with some

data elements in operational systems that are neither facts nor strictly dimension attributes.

Examples of such attributes are reference numbers like order numbers, invoice numbers,

order line numbers, and so on. These attributes are useful in some types of analyses. For

example, you may be looking for the average number of products per order. Then you

have to group products by order number to calculate the average. Attributes such as

OrderNumber and OrderLine in the example are called degenerate dimensions and

get included as attributes of the fact entity type.

Factless Fact Entity Type. Apart from the identifier, a fact entity type contains facts or

measures. There are no other attributes describing the entity type itself. Let us say, you are

designing a fact entity type to track the attendance of students. For analyzing student

attendance, the possible dimensions are student, course, date, room, and professor. The

attendance may be related to any of these dimensions. When you want to mark the attend-

ance relating to a particular course, date, room, and professor, what is the measurement

you come up with for recording the event? In the fact entity type, the value relating to

an instance is one. Every fact entity type instance means an attendance of one. If so,

why bother to have an attribute in the fact entity type whose value will be one for

316 CHAPTER 9 MODELING FOR DECISION-SUPPORT SYSTEMS

every instance? The very presence of a corresponding instance of the fact entity type will

be sufficient to indicate the attendance. This type of situation arises when the fact entity

type represents events. Such fact entity types really do not contain facts. They are a “fact-

less” fact entity type. Figure 9-12 shows a typical factless fact entity type.

Data Granularity. By now, you know that granularity represents the level of detail in

the fact entity type. If the fact entity type is at the lowest grain, then the facts or

metrics are at the lowest possible level at which details could be captured from operational

systems. What are the advantages of keeping fact entity type at the lowest grain? What is

the trade-off?

When you keep the fact entity type at the lowest grain, users could drill down to the

lowest level of detail from the data warehouse without the need to go the operational

systems themselves. Base-level fact entity types must be at the natural lowest levels of

all corresponding dimensions.

What are the natural lowest levels of the corresponding dimensions? In the example

with the dimensions of product, date, customer, and sales representative, the natural

lowest levels are an individual product, a specific individual date, an individual customer,

and an individual sales representative, respectively. So, in this case, a single instance of the

fact entity type should represent measurements at the lowest level for an individual

product, order on a specific date, relating to an individual customer, and procured by an

individual sales representative.

Let us say we want to add a new attribute of district in the sales representative dimen-

sion. When implemented, this change will not require any changes to the fact entity type

because this is already at the lowest level by individual sales representative. This is a

“graceful” change because all the old queries will continue to run without any changes.

Similarly, assume we want to add a new dimension of promotion. Now, you will have

to recast the fact entities to include promotion dimension. Still, the fact entity type

FIGURE 9-12 Factless fact entity type.

DIMENSIONAL MODELING 317

grain will be at the lowest level. Even here, in implementation, the old queries will still run

without any changes. This is also a “graceful” change. Fact entity types at the lowest grain

enable “graceful” changes.

But, in implementation, we have to pay the price in terms of storage and maintenance

for fact entity types at the lowest grain. Lowest grain necessarily means large numbers of

fact entity instances. In practice, however, you may create aggregate fact entity types to

support queries looking for summary numbers.

Two other advantages flow from granular fact entity types. Granular fact entity types,

when implemented, serve as natural destinations for current operational data that may be

extracted frequently from operational systems. Further, the recently popular data mining

applications need details at the lowest grain. Data warehouses feed data into data

mining applications.

Snowflake Schema

“Snowflaking” is a method of normalizing the dimension entity types in a STAR schema.

Recall normalization discussed in Chapter 8. Although normalization was discussed as a

method for creating a logical data model for implementation using relational technology,

we can apply normalization principles for our discussion here.

When you completely normalize all the dimension entity types, the resultant structure

resembles a snowflake with the fact entity type in the middle. First, let us begin with

Figure 9-13, which shows a simple STAR schema for sales in a manufacturing company.

The sales fact entity type contains quantity, price, and other relevant metrics. Sales

representative, customer, product, and time are the dimension entity types. This is a

FIGURE 9-13 Sales: a simple STAR schema.

318 CHAPTER 9 MODELING FOR DECISION-SUPPORT SYSTEMS

classic STAR schema, denormalized for optimal query access involving all or most of the

dimensions. This model is not in the third normal form.

Options to Normalize. Assume there are 500,000 product dimension instances. These

products fall under 500 product brands and these product brands fall under 10 product

categories. Now suppose one of your users runs a query constraining just on product

category. If the product dimension entity type is not indexed on product category, the

query will have to search through 500,000 instances. On the other hand, even if the

product dimension is partially normalized by separating out product brand and product

category in separate entity types, the initial search for the query will have to go through

only 10 instances in the product category entity type. Figure 9-14 illustrates this reduction

in the search process.

In Figure 9-14, we have not completely normalized the product dimension. We can also

move other attributes out of the product dimension table and form normalized structures.

“Snowflaking” or normalization of the dimension entity types can be achieved in a few

different ways. When you want to “snowflake,” examine the contents and the normal

usage of each dimension entity type.

The following options indicate the different ways you may want to consider for

normalization of the dimension entity types.

. Partially normalize only a few dimension entity types, leaving the others intact

. Partially or fully normalize only a few dimension entity types, leaving the rest intact

. Partially normalize every dimension entity type

. Fully normalize every dimension entity type

FIGURE 9-14 Product dimension: partially normalized.

DIMENSIONAL MODELING 319

Figure 9-15 shows a version of the snowflake schema for sales in which every

dimension entity type is partially or fully normalized.

The original STAR schema for sales as shown in Figure 9-13 contains only five entity

types, whereas the normalized version now extends to 11 entity types. You will notice

that in the snowflake schema, the attributes with low cardinality, that is, the ones with

fewer distinct values, in each original dimension entity type are removed to form separate

entity types. These new entity types are linked back to the original dimension entity

types.

Advantages and Disadvantages. You may want to snowflake for one obvious

reason. By eliminating from the dimension entity type all the textual attributes with

long values, you may expect to save some space. For example, if you have “men’s furnish-

ings” as one of the category names, that text value will be repeated on every product

instance in that category. But, usually removing such redundancies and “snowflaking”

do not produce substantial space savings.

Here is a brief summary of the advantages and limitations of “snowflaking:”

Advantages

. Small savings in storage space

. Normalized structures, when implemented, are easier to update and maintain

FIGURE 9-15 Sales: snowflake schema.

320 CHAPTER 9 MODELING FOR DECISION-SUPPORT SYSTEMS

Disadvantages

. Schema less intuitive and end-users put off by the complexity

. Difficult to browse through the contents

. Degraded query performance when too many entity types are involved

Families of STARS

When you look at a single STAR schema with its fact entity type and the surrounding

dimension entity types, you can guess that it is not the extent of the data model for a

data warehouse repository. Almost all data warehouses contain multiple STAR schema

structures. Each STAR schema serves a specific purpose to track the measures stored in

the fact entity type. When you have a collection of related STAR schemas, you may

call that collection a family of STARS.

Families of STARS are formed for various reasons. You may form a family by just

adding aggregate fact entity types with higher levels of grain. Derived dimension entity

types will support aggregate fact entity types. Sometimes you may create a core fact

entity type containing facts interesting to most users and customized fact entity types

for specific user groups. Many factors lead to the existence of families of STARS. Look

at the generic example provided in Figure 9-16.

The fact entity types of the STARS in a family share dimension entity types. Usually,

the time dimension is shared by most of the fact entity types in the group. In the above

example, all the three fact entity types are likely to share the time dimension. Going the

other way, dimension entity types from multiple STARS may also share the fact entity

type of one STAR.

If you are in a business like banking or telephone services, it makes sense to capture

individual transactions as well as snapshots at specific time intervals. You may then use

families of STARS consisting of transaction and snapshot schemas. If you are in

FIGURE 9-16 Family of STARS.

DIMENSIONAL MODELING 321

manufacturing, your company needs to monitor the metrics along the value chain. Some

other institutions like a medical center do not add value in a chain but add value at different

stations or units of the institution. For these institutions, a family of STARS may support

the value chain or the value circle.

Transition to Logical Model

We have covered the various aspects of the dimensional model. You have looked at fact

and dimension entity types in detail. You have walked through the types of attributes nor-

mally included in these two types of entities. We have also discussed some variations of

the STAR schema.

Now we want to proceed with the logical design. The dimensional data model must be

transformed into a logical model. Let us assume that we want to implement our data

warehouse using a relational DBMS. In such a case, the relational model will be our

logical model. Therefore, the dimensional model will have to be transformed into a relational

data model. We covered the features of the relational model in elaborate detail in Chapter

7. There is no need to repeat them here. You are already very familiar with them. So, let

us take an example of a dimensional model and transform it into a relational data model.

Dimensional to Relational. Refer back to Figure 9-9, which shows a dimensional

model for orders analysis. We will consider this dimensional model and transform it

into a relational model. Remember, a relational model consists of relations or two-

dimensional tables with columns and rows. You know that each row in a relational

table represents a single entity.

Entity Types. The figure presents a fact entity type ORDERS. You see four dimension

entity types, namely, PRODUCT, CUSTOMER, ORDER-DATE, and SALESPERSON.

There are five entity types in all.

Each entity type transforms into a relational table with rows and columns. ORDERS

entity type converts into a table with the same name. The four dimension entity types

PRODUCT, CUSTOMER, ORDER-DATE, and SALESPERSON transform into four

relational tables, each with the same name as the entity type in the dimensional model.

These five tables have rows and columns.

Attributes. Consider the attributes in the fact entity type. These are measures or metrics

we want to use in analysis. These are not real characteristics of an entity type called

ORDERS; these are merely a list of metrics. That is how a fact entity type is designed.

Each attribute transforms into a column of the fact relational table. The column head-

ings or names are meaningful texts, not shortened abbreviations. Users need to understand

the meanings while performing analysis.

Review the attributes in each dimension entity type. These are generally characteristics of

the entity types. However, as you know, some attributes, although not characteristics, are

present in the dimension hierarchy. This is especially true of the attributes in ORDER-DATE

dimension entity type. All dimension attributes transform into columns in dimension rela-

tional tables. The column headings are full texts to indicate the elements used for analysis.

Figure 9-17 shows these fact and dimensional tables with rows and columns. Notice the

table names and column names. Also, review the sample data in the tables.

322 CHAPTER 9 MODELING FOR DECISION-SUPPORT SYSTEMS

Identifiers. Let us begin with the consideration of identifiers for dimension entity types.

The identifiers transform into primary keys. First, let us look at possible candidate keys

that may be derived from the corresponding operational systems. The following are can-

didate keys:

PRODUCT SKU

CUSTOMER CustNo

ORDER-DATE Date (YYYYMMDD)

SALESPERSON SocSecNo

If we choose these as the primary keys, there could be some problems. Consider the

implications. Assume that the product code in the operational system is an 8-position

code, two positions of the code indicating the code of the warehouse where the product

is normally stored, and two other positions denoting the product category. Consider

what happens when we use the operational system product code as the primary key for

the product dimension table.

The data warehouse contains historical data. Assume that the product code gets

changed in the middle of a year because the product is moved to a different warehouse.

So, we have to change the product code in the data warehouse. If the product code is

the primary key for the dimension table, then the newer data for the same product will

now be stored with a different product code. This could cause problems if we need to

aggregate the data with numbers before and after the change.

Now consider the primary key for customer dimension table. In some companies, when

customers leave the company and are dormant for a while, the companies tend to reuse

customer numbers. So, when you look at the historical data in the data warehouse,

metrics for two different customers—old and dormant as opposed to new—may be

stored with the same customer numbers.

Because of such problems encountered while using operational system keys as primary

keys for dimension tables, the practice in a data warehouse is to use surrogate keys or

FIGURE 9-17 Fact and dimensional tables.

DIMENSIONAL MODELING 323

system-generated sequence numbers. While extracting data from operational systems, you

can match up the surrogate keys with the operational system keys.

Relationships. Each dimension entity type and the fact entity type are in a one-to-many

relationship. Thus, after transformation, in the relational data model, each dimension table

is in a one-to-many relationship with the central fact table. As you know, each dimensional

table must be linked to the fact table by means of a foreign key present in the fact table.

In our example, there are four dimension tables. Therefore, you must have the primary

key of each of these four dimension tables as a foreign key in the fact table to establish the

one-to-many relationships. There will be four foreign keys in the fact table.

Let us examine the options for the primary key for the ORDERS fact table. There are

three choices:

1. A single compound primary key whose length is the total length of the keys of the

individual dimension tables. With this option, in addition to the large compound

primary key, the four foreign keys must also be kept in the fact table as additional

attributes in the fact table. This option increases the size of the fact table.

2. A concatenated primary key that is the concatenation of all the primary keys of the

dimension tables. Here, you need not keep the primary keys of the dimension tables

as additional attributes to serve as foreign keys. The individual parts of the conca-

tenated primary key themselves will serve as foreign keys.

3. A system-generated primary key independent of the keys in the dimension tables. In

addition to the generated primary key, you must keep the foreign keys as additional

attributes. This option also increases the size of the fact table.

In practice, option (2) is used in most fact tables. This option enables you to relate the fact

table rows with the dimension table rows easily.

Figure 9-18 shows all the five relational tables with attributes, primary, and

foreign keys, with some sample date. Carefully observe all the components of these

FIGURE 9-18 Data warehouse relational model.

324 CHAPTER 9 MODELING FOR DECISION-SUPPORT SYSTEMS

tables and note the rows in the dimension rows and how they relate to the rows in the

fact table.

OLAP SYSTEMS

We have mentioned online analytical processing (OLAP) in passing. You have some idea

that OLAP is used for complex and advanced analysis. The data warehouse provides the

best opportunity for analysis, and OLAP is the vehicle to do complex analysis. In today’s

data warehousing environment, with such tremendous progress in analysis tools from

various vendors, you cannot have a data warehouse without OLAP.

We will explore the nature of OLAP and why it is essential. There are two major

methods of implementing OLAP. Each method is supported by specific data repositories.

We will look at the structure of the data repositories and discuss data modeling in that

context. Many of the data repositories supporting OLAP are proprietary databases from

vendors. These specific data structures determine how data modeling has to be done for

OLAP. You may be able to adapt general data modeling principles to suit the requirements

of OLAP data structures.

Features and Functions of OLAP

A data warehouse stores data and provides simpler access and analysis of data. However,

OLAP complements the data warehouse facilities: OLAP provides complex analysis along

multiple dimensions and the ability to perform intricate calculations.

Figure 9-19 summarizes the general features of OLAP. Note the distinction between

basic and advanced features. The list includes most of the features you observe in practice

in most OLAP environments.

FIGURE 9-19 General features of OLAP.

OLAP SYSTEMS 325

Dimensional Analysis

Dimensional analysis is a strong suit in the arsenal of OLAP. Any OLAP system devoid of

multidimensional analysis is useless. Thus, let us describe the facility in OLAP systems for

dimensional analysis.

Take an example of a STAR schema with three business dimensions, namely, product,

time, and store. The fact entity type contains sales as the metrics. Figure 9-20 shows the

schema and a three-dimensional representation of the model as a cube, with products on

the X-axis, time on the Y-axis, and stores on the Z-axis. What are the values represented

along each axis? For example, in the STAR schema, time is one of the dimensions and

month is an attribute of the time dimension. Values of this attribute are represented on

the Y-axis. Similarly, values of the attributes product name and store name are represented

on the other two axes.

From the attributes of the dimension tables, pick the attribute product name from

product dimension, month from time dimension, and store name from store dimension.

Now look at the cube representing the values of these three attributes along the primary

edges of the physical cube. Go further and visualize sales for coats in the month of

January at the New York store to be at the intersection of the three lines representing

the product, coats; month, January; and store, New York.

If you are displaying the data for sales along these three dimensions on a spreadsheet,

the columns may display product names, the rows may display months, and the pages may

display sales data along the third dimension of store names. See Figure 9-21 showing a

screen display of a page of this three-dimensional data.

The page displayed on the screen shows a slice of the cube. Now look at the cube and

move the slice or plane passing through the point on the Z-axis representing Store:

New York. The intersection points on this slice or plane relate to sales along product

FIGURE 9-20 Simple STAR schema.

326 CHAPTER 9 MODELING FOR DECISION-SUPPORT SYSTEMS

and time business dimensions for Store: New York. Try to relate these sale numbers to the

slice of the cube representing Store: New York.

Now we have a way of depicting three business dimensions and a single fact on a two-

dimensional page and also on a three-dimensional cube. The numbers in each cell on the

page are sale numbers. You could run a number of queries to get sale numbers and perform

various types of three-dimensional analysis. The results of each query will be represented

in columns, rows, and pages.

In a typical multidimensional analysis session, users may issue the following sequence

of queries:

1. Display the total sales of all products for past 5 years in all stores.

2. Compare total sales for all stores, product by product, between years 2006 and 2005.

3. Show comparison of total sales for all stores, product by product, between years

2006 and 2005 only for those products with reduced sales.

4. Show comparison of sales by individual stores, product by product, between years

2006 and 2005 only for those products with reduced sales.

5. Show results of the previous query, but rotating and switching columns with rows.

6. Show results of the previous query, but rotating and switching pages with rows.

This multidimensional analysis can continue until the analyst determines how many

products showed reduced sales and which stores suffered the most.

In the above example, we had only three business dimensions and each of the dimen-

sions could, therefore, be represented along the edges of a cube or the results displayed as

columns, rows, and pages. Now add another business dimension, namely, promotion,

bringing the number of dimensions to four. When you have three business dimensions,

you are able to represent these as a physical cube with each edge of the cube denoting

one dimension. You are also able to display the data on a spreadsheet with two dimensions

showing as columns and rows and the third as pages. But, when you have four or more

dimensions, how can you represent the data? Obviously, a three-dimensional cube will

not work. Also, you will have a problem displaying the data as columns, rows, and

FIGURE 9-21 A three-dimensional display.

OLAP SYSTEMS 327

pages. Therefore, how do we deal with multidimensional analysis when there are more

than three dimensions?

Hypercubes

The necessity to perform multidimensional analysis with more than four dimensions leads

us to the discussion of hypercubes. Let us begin with the two business dimensions of

product and time. Usually, business users wish to analyze not just sales but other

metrics as well. Assume that the metrics to be analyzed are fixed cost, variable cost, indir-

ect sales, direct sales, and profit margin. These are five common metrics.

The data described here may be displayed on a spreadsheet showing metrics as

columns, time as rows, and products as pages. See Figure 9-22 showing a sample page

of the spreadsheet display. In the figure, please also note the three vertical lines, two of

which represent the two business dimensions and the third the metrics. You can indepen-

dently move up or down along the straight lines. This representation of vertical lines is

known as a multidimensional domain structure (MDS). The figure also shows a three-

dimensional cube representing data points along the edges. With three groups of data—

two groups of business dimensions and one group of metrics—we can easily visualize

the data as being along the edges of a cube.

Now add another business dimension to the model. Let us add the store dimension. That

results in three business dimensions plus the metrics data—four data groups in all. How

can you represent these four groups of data as edges of a three-dimensional physical

cube? This is where an MDS comes in handy. You need not try to perceive four-

dimensional data as along the edges of a three-dimensional cube. All you have to do is

draw four vertical lines to represent the data as an MDS. This intuitive representation is

FIGURE 9-22 An MDS with three data groups.

328 CHAPTER 9 MODELING FOR DECISION-SUPPORT SYSTEMS

a hypercube—a “cube” with any number of edges. A hypercube is a general metaphor for

representing multidimensional data. Figure 9-23 shows an MDS with four data groups.

The next question relates to display of four-dimensional data on the screen. How can you

possibly display four data groups with just rows, columns, and pages. Observe Figure 9-24 to

note how this is usually done. By combining multiple logical dimensions within the same

FIGURE 9-23 An MDS with four data groups.

FIGURE 9-24 Page display for four data groups.

OLAP SYSTEMS 329

display group, you can resolve this issue. Notice how product and metrics are combined to

display as columns. The displayed page represents sales for Store: New York.

OLAP Implementation Approaches

Before we get into the discussion of data modeling for OLAP, let us look at two major

approaches for implementing OLAP. The primary difference between the two approaches

is how you store data for OLAP. After our review of multidimensional analysis, you must

already get the notion that different types of data structures would be appropriate for

OLAP. The traditional way of perceiving data as relational tables may not be the right

approach.

In the first approach, data is stored in multidimensional databases (MDDB). It is, there-

fore, called MOLAP, or multidimensional OLAP. Typically, proprietary DBMSs by

specific vendors run these MDDBs.

In the second approach, data is stored in relational databases but used as multidimen-

sional data by the OLAP applications. This approach is known as ROLAP, or relational

OLAP. Regular, powerful relational DBMSs administer the data repository in this method.

MOLAP. In the MOLAP model, data for analysis is stored in specialized multidimen-

sional databases. Large multidimensional arrays form the storage structures. For

example, to store sales number of 500 units for product ProductA, in the month number

2006/11, in store StoreS1, under distribution channel Channel07, the sales number of

500 is stored in an array represented bv values (ProductA, 2006/11, StoreS1, Channel07).
The array values indicate the location of the cells. These cells are the intersections of

the values of the dimensional attributes. If you note how cells are formed, you will realize

that not all cells have values for the metrics. If a particular store is closed on Sundays, the

corresponding cells will contain nulls.

Figure 9-25 presents the architecture for the MOLAP model. Precalculated and prefab-

ricated multidimensional hypercubes are stored in the MDDB. The MOLAP engine in the

application layer pushes a multidimensional view of the data from the MDDB to the users.

Multidimensional database systems are proprietary software systems. These systems

provide capabilities to create hypercubes and to consolidate them where necessary

during the process that loads data into the MDDB from the main data warehouse. Users

who can use summarized data enjoy fast response times from the consolidated data.

ROLAP. In this model, data is store in relational databases. Data is perceived as rela-

tional tables with rows and columns. However, the model presents data to users in the

form of multidimensional hypercubes. In order to hide the storage structure to the user

and present data multidimensionally, a semantic layer of meta-data is created. The meta-

data layer supports the mapping of dimensions to the relational tables. Additional metadata

supports summarizations and aggregations. You may store meta-data in relational tables.

Figure 9-26 shows the architecture of the ROLAP model. You are looking at a three-tier

architecture. The analytical server in the middle-tier application layer creates multidimen-

sional views on the fly. The multidimensional system at the presentation layer provides a

multidimensional view of data to the users.

When users issue complex queries based on this multidimensional view, the queries are

transformed into complex SQL directed to the relational database. Unlike the MOLAP

model, static multidimensional hypercubes are not precreated and stored.

330 CHAPTER 9 MODELING FOR DECISION-SUPPORT SYSTEMS

FIGURE 9-25 The MOLAP model.

FIGURE 9-26 The ROLAP model.

OLAP SYSTEMS 331

Data Modeling for OLAP

In order to perform data modeling for OLAP, let us first examine some significant charac-

teristics of data in such a system. Review the following list highlighting differences

between OLAP and warehouse data:

. An OLAP system stores and uses much less data compared with a data warehouse.

. Data in an OLAP system is summarized. The lowest level of detail as in the data

warehouse is very infrequent.

. OLAP data is more flexible for processing and analysis partly because there is much

less data to work with.

. Every instance of the OLAP system is customized for the purpose that instance

serves. In other words, OLAP tends to be more departmentalized, whereas data in

the data warehouse serves corporate-wide needs.

Implementation Considerations. Before we specifically focus on modeling for

OLAP, let us go over a few implementation issues. An overriding principle is that OLAP

data is generally customized. When you build an OLAP system with system instances

serving different user groups, this is an important point. For example, one instance or specific

set of summarizations would be meant for one group of users, say the marketing department.

The following techniques apply to the preparation of OLAP data for a specific group of

users or a particular department such as marketing.

Define Subset. Select the subset of detailed data the marketing department is

interested in.

Summarize. Summarize and prepare aggregate data structures in the way the marketing

department needs for combining. For example, summarize products along product cat-

egories as defined by marketing. Sometimes, marketing and accounting departments

may categorize products in different ways.

Denormalize. Combine relational tables in exactly the same way the marketing depart-

ment needs denormalized data.

Calculate and Derive. If some calculations and derivations of the metrics are

department-specific, use the ones for marketing.

OLAP Data Types and Levels. The OLAP data structure contains several levels of

summarization and a few kinds of detailed data. You need to model these levels of summar-

ization and details. Figure 9-27 indicates the types and levels of data in an OLAP system.

The types and levels shown in the figure must be taken into consideration while per-

forming data modeling for OLAP systems. Pay attention to the different types of data in

an OLAP system. When you model the data structures for your OLAP system, you

need to provide for these types of data.

Data Modeling for MOLAP. As a prerequisite to creation and storage of hypercubes in

proprietary MDDBs, data must be in the form of multidimensional representations. You

need to consider special requirements of the selected MDDBMS for data input for creation

332 CHAPTER 9 MODELING FOR DECISION-SUPPORT SYSTEMS

of hypercubes. Essentially, data in MOLAP systems is stored in multidimensional arrays,

not relational tables. Again, the specifications of the particular MDDBMS determine how

input for the arrays must be prepared.

You are now quite familiar with multidimensional domain structures (MDSs) and how

they are able to present multidimensional representations of data. MDSs are essential tools

for the process of data modeling for MOLAP. Based on the requirements, determine the

various levels of summarizations needed. Construct the MDSs and use them to proceed

to implementation.

Figure 9-28 presents the steps in the modeling, design, and implementation for

MOLAP. Note each step carefully as shown in the figure. Remember, proper summariza-

tions is a key to better MOLAP performance.

FIGURE 9-27 OLAP data types and levels.

FIGURE 9-28 MOLAP data design and implementation.

OLAP SYSTEMS 333

Data Modeling for ROLAP. As you know, ROLAP systems do not store prefabricated

hypercubes in MDDBs; generally, relational DBMSs are used for implementation. Data

storage implementations in data warehouses also generally use relational DBMSs.

However, there is one significant difference: relational tables in a data warehouse

environment are denormalized. A typical dimension table in a STAR schema is a denor-

malized structure. Duplicate values of dimension attributes are stored to facilitate selection

during queries. In the ROLAP environment, fast access times are of paramount import-

ance. Therefore, normalized structures are preferred.

Just as in the case of MOLAP, several high levels of summarizations are established

during the modeling and design process. Although data is not stored in multidimensional

arrays, multidimensional representation of data is essential in the design process. MDSs

play a key role in multidimensional representation.

Figure 9-29 illustrates data modeling, design, and implementation for ROLAP. Note

each step carefully as shown in the figure. Remember, proper summarizations and normali-

zation are factors for better ROLAP performance.

DATA MINING SYSTEMS

Most of you know that data mining has something to do with discovering knowledge. Some

of you possibly have come across data mining applications in marketing, sales, credit analy-

sis, and fraud detection. All of you know vaguely that data mining is somehow connected to

data warehousing. Data mining is used in just about every area of business from sales and

marketing to new product development, inventory management, and human resources.

There are perhaps as many variations in the definition of data mining as there are

vendors and proponents. Some experts include a whole range of tools and techniques

from simple query mechanisms to statistical analysis in the definition. Others restrict

the definition to just knowledge discovery methods. A workable data warehouse, although

not a prerequisite, will give a practical boost to the data mining process.

Basic Concepts

Before providing some formal definitions of data mining, let us put it in the context of

decision-support systems. Like all decision-support systems, data mining delivers

FIGURE 9-29 ROLAP data design and implementation.

334 CHAPTER 9 MODELING FOR DECISION-SUPPORT SYSTEMS

information, not for running the day-to-day operations, but for strategic decision making.

So let’s place data mining in this context.

In the evolution of decision-support systems, data mining is of recent origin. Over the

years, organizations have accumulated a huge collection of computer data. But, any appli-

cation however sophisticated needed direct human involvement for analysis and use. The

task, however, has become overwhelming for users. Is there a suite of techniques that

could automatically dig or mine through the mountains of data and discover knowledge?

Data mining is a response to this need.

Evolution to Data Mining. The earliest approach to decision-support systems was

quite primitive, Next came database systems providing more useful decision-support

information. In the 1990s, data warehouses with query and analysis tools began to

appear as primary and valuable sources of decision-support information. For more sophis-

ticated and complex analysis, OLAP tools became available. Up to this point, the approach

for obtaining information was driven by users.

But the sheer volume of data renders it impossible for anyone to use analysis and query

tools personally and discern useful information. For example, in marketing analysis, it is

almost impossible to think through all the probable associations and gain insights by query-

ing and drilling down into the data warehouse. You need a technology that can learn from

past associations and transactions and predict customer behavior. You need a tool that by

itself will discover knowledge with minimum human intervention. You want a data-driven

approach, not a user-driven one. Data mining, at this point, takes over from the users.

Figure 9-30 displays the progress of decision-support systems. Note the stages and the

evolution to data mining.

FIGURE 9-30 Decision-support progresses to data mining.

DATA MINING SYSTEMS 335

OLAP Versus Data Mining. From our earlier discussion on OLAP, you have a clear

idea about the features of OLAP. With OLAP queries and analysis, users are able to

obtain results and derive interesting patterns from the data.

Data mining also enables users to uncover interesting patterns, but there is an essential

difference in the way the results are obtained. Figure 9-31 points out the essential differ-

ence between the two approaches.

Although both OLAP and data mining are complex information delivery systems, the

basic difference lies in the interaction of the users with the systems. OLAP is a user-driven

methodology; data mining is a data-driven approach. Data mining is a fairly automatic

knowledge discovery process.

Data Mining: Knowledge Discovery. The knowledge discovery in data mining tech-

nology may be broken down into the following basic steps:

. Define business objectives

. Prepare data

. Launch data mining tools

. Evaluate results

. Present knowledge discoveries

. Incorporate usage of discoveries

Figure 9-32 amplifies the knowledge discovery process and shows the relevant data

repositories.

FIGURE 9-31 OLAP and data mining.

336 CHAPTER 9 MODELING FOR DECISION-SUPPORT SYSTEMS

Data Mining/Data Warehousing. How and where does data mining fit in a data ware-

housing environment? The data warehouse is a valuable and easily available data source

for data mining operations. Data in the data warehouse is already cleansed and consoli-

dated. Data for data mining may be extracted from the data warehouse.

Figure 9-33 illustrates data mining in the data warehouse environment. Observe the

movement of data for data mining operations.

FIGURE 9-32 Knowledge discovery process.

FIGURE 9-33 Data mining in the data warehouse environment.

DATA MINING SYSTEMS 337

Data Mining Techniques

Although a discussion of major data mining techniques might be somewhat useful, our

primary concentration is on the data and how to model the data for data mining appli-

cations. Detailed study of data mining techniques and algorithms is, therefore, outside

the scope of our study. These techniques and algorithms are complex and highly technical.

However, we will just touch on major functions, application areas, and techniques.

Functions and Techniques. Refer to Figure 9-34 showing data mining functions and

techniques.

Look at the four columns in the figure and try to understand the connections. Review

the following statements.

. Data mining algorithms are part of data mining techniques.

. Data mining techniques are used to carry out data mining functions. While perform-

ing specific data mining functions, you are applying data mining processes.

. A certain data mining function is generally suitable to a given application area.

. Each application area is a major area in business where data mining is actively used.

Applications. In order to appreciate the tremendous usefulness of data mining, let us list

a few major applications of data mining in the business area.

Customer Segmentation. This is one of the most widespread applications. Businesses

use data mining to understand their customers. Cluster detection algorithms discover clus-

ters of customers sharing same buying characteristics.

FIGURE 9-34 Data mining functions and techniques.

338 CHAPTER 9 MODELING FOR DECISION-SUPPORT SYSTEMS

Market Basket Analysis. This is a very useful application for retail. Link analysis algori-

thms uncover affinities between products that are bought together. Other businesses such

as upscale auction houses use these algorithms to find customers to whom they can sell

higher-value items.

Risk Management. Insurance companies and mortgage businesses use data mining to

discover risks associated with potential customers.

Delinquency Tracking. Loan companies use the technology to track customers who are

likely to be delinquent on loan repayments.

Demand Prediction. Retail and other distribution businesses use data mining to match

demand and supply trends to forecast demand for specific products.

Data Preparation and Modeling

Data for your mining operations depend on the business objectives—what you expect to

get out of the data mining technique being adopted to work on the data. You will be

able to come up with a set of data elements whose values are required as input into the

data mining tool. For getting the values, you need to determine the data sources.

Go back and revisit Figure 9-33, which shows data preparation from the enterprise

data warehouse. You know the sources that feed the data warehouse. It is assumed that

the data warehouse contains data that has been integrated and combined from several

sources. The data warehouse is also expected to have clean data with all the impurities

removed in the data staging area. If data mining algorithms are allowed to work on incon-

sistent data, the results could be totally useless.

In this subsection, we will concentrate on a box that indicates data selected, extracted,

transformed, and prepared for data mining. We will discuss how the data selection and

preparation are done. Once the data is prepared, you need to store the prepared data suita-

bly for feeding the data mining applications. What are good methods for this data storage?

How do you prepare the data model for this data repository?

Data Preprocessing

Depending on the particular data mining application, you may find that the needed data

elements are not present in your data warehouse. Be prepared to look to other outside

and internal sources for additional data. Further, incomplete, noisy, and inconsistent

data is not infrequent in corporate databases and large data warehouses. Do not simply

assume the correctness of available data and just extract data from these sources and

feed the data mining application.

Data preprocessing generally consists of the following processes:

. Selection of data

. Preparation of data

. Transformation of data

Let us discuss these briefly. That would give us an idea of the data content that should

be reflected in the data model for the preprocessed source data for data mining.

DATA MINING SYSTEMS 339

Data Selection. Of course, what data is needed depends on the business objectives and

the nature of the data mining application. Remember, data mining algorithms work on data

at the lowest grain or level of detail. Based on a list of data elements, you need to identify

the sources. Maybe most of the data can be extracted from the data warehouse. Otherwise,

determine the secondary sources.

Data mining algorithms work on data variables. Values of selected active variables are

fed into the data mining system to perform the required operations. Active variables would

be data attributes that may be found within the fact and dimension tables of the data ware-

house repository.

Suppose your data mining application wants to perform market basket analysis, that is,

to determine what a typical customer is likely to put in a market basket and go to the check-

out counter of a supermarket. The active variables in this case would possibly be number

of visits and variables to describe each basket such as household identification (from

supermarket card), date of purchase, items purchased, basket value, quantities purchased,

and promotion code.

Active variables generally fall into following categories:

Nominal Variable. This has a limited number of values with no significance attached to

the values in terms of ranking. Example: gender (male or female).

Ordinal Variable. This has a limited number of values with values signifying ranking.

Example: customer education (high school or college or graduate school).

Continuous Measure Variable. Difference in values of the variable measurable. Con-

tinuous variations. Examples: purchase price, number of items. Values for this variable

are real numbers.

Discrete Measure Variable. Difference in values of the variable measurable. Discrete

variations. Example: number of market basket items. Values for this variable are integers.

Data Preparation. This step basically entails cleansing the selected data. First, this step

begins with a general review of the structure of the data in question and choosing a method

to measure quality. Usually, measuring data quality gets done by a combination of statisti-

cal methods and data visualization techniques.

Most common data problems appear to be the following:

Missing Values. No recorded values for many instances. Need to fill in the missing

values before using the variable. Several techniques are available to estimate and fill in

the missing values.

Noisy Data. A few instances have values completely out of line. Example: daily wages

exceeding a million dollars. Several smoothing techniques are available to deal with

noisy data.

Inconsistent Data. Synonyms and homonyms in various source systems may produce

incorrect and inconsistent data. Sources must be reviewed and inconsistencies removed.

Removal of data problems signals the end of the data preparation step. Once the

selected data is cleansed, it is ready for transformation.

340 CHAPTER 9 MODELING FOR DECISION-SUPPORT SYSTEMS

Data Transformation. The prepared data is getting ready to be used as input to the

data mining algorithm. The data transformation step converts the prepared data into a

format suitable for data mining. You may say that data transformation changes the pre-

pared data into a type of analytical model. The analytical model is simply an infor-

mation structure representing integrated and time-dependent formatting of prepared

data.

For example, if a supermarket wants to analyze customer purchases, it must first be

decided if the analysis will be done at the store level or at the level of individual purchases.

The analytical model includes the variables and the levels of detail.

Following the identification of the analytical model, detailed data transformation takes

place. The objective is to transform the data to fit the exact requirements stipulated by the

data mining algorithm. Data transformation may include a number of substeps such as:

. Data recoding

. Data format conversion

. Householding (linking of data of customers in the same household)

. Data reduction (by combining correlated variables)

. Scaling of parameter values to a range acceptable by data mining algorithms

. Discretization (conversion of quantitive variables into categorical variable groups)

. Conversion of categoric variable into a numeric representation.

Data Modeling

Data modeling for data mining applications involve representations of the pertinent data

repositories. In our discussions of data mining so far, we have been referring to the data

requirements for data mining applications. We pointed out certain advantages of data

extraction from the data warehouse. However, data warehouse is not a required source;

you may directly extract data from operational systems and other sources.

Figure 9-35 shows the data movements, the data preprocessing phase, and the data

repositories.

Study the figure carefully and note the following data repositories for which we need to

create data models as suggested below:

DM Source Repository. This is a general data store for all possible data mining appli-

cations. Periodically, data is extracted from the data warehouse and stored in this

repository.

Data Model. Normalized relational data model to represent low-level data content for

all possible active variables available from the data warehouse.

Application Analytical Repository. This is a data store for a specific data mining

application. Data is extracted from the above DM Source Repository and other sources

and stored in this repository. Only the required active variables are selected.

Data Model. Normalized relational data model is recommended to represent data

content at the desired data level for only those active variables relevant to the

specific data mining application.

DATA MINING SYSTEMS 341

Data Mining Input Extract. This data store is meant to be used as input to the data

mining algorithm. Data in the Application Analytical Repository is transformed and

moved into this data store. This data store contains transformed values for only the

required active variables.

Data Model. Flat file or normalized relational data model with two or three tables to

represent data content to be used as direct input to the data mining algorithm.

CHAPTER SUMMARY

. Data modeling for decision-support systems is not the same as modeling for oper-

ational systems.

. Decision-support systems provide information for making strategic decisions. These

are informational systems as opposed to operational systems needed to run day-to-day

operations of an organization.

. Data warehousing is the most common of the decision-support systems widely used

today. It is a blend of several technologies. Major components of a data warehouse are

source data, data staging, data storage, and information delivery.

. Decision makers view business in terms of business dimensions for analysis. There-

fore, data modeling for a data warehouse must take into account business dimensions

and the business metrics. Dimensional modeling technique is used.

. A dimensional data model, known as a STAR schema, consists of several dimension

entity types and a fact entity type in the middle. Each of the dimension entity types

FIGURE 9-35 Data mining: data movements and repositories.

342 CHAPTER 9 MODELING FOR DECISION-SUPPORT SYSTEMS

is in a one-to-many relationship with the common fact entity type. The STAR

schema is not normalized. A snowflake schema, sometimes useful, is a normalized

version. The data model for a given data warehouse usually consists of families of

STARS.

. The conceptual data model in the form of a STAR schema is transformed into a

logical model. If the data warehouse is implemented using a relational DBMS, the

logical model in this case is a relational model.

. OLAP systems provide complex dimensional analysis. Data modeling for MOLAP:

representation of multidimensional arrays suitable for the particular MDDBMS

selected. Data modeling for ROLAP: E-R model of summarized data as required.

. Data mining is a fairly automatic knowledge discovery system. Data modeling

for data mining systems consists of modeling for the data repositories: DM source

repository, application analytical repository, and DM input extract.

REVIEW QUESTIONS

1. Match the column entries:

1. Informational systems A. Uses MDDBMS

2. Data staging area B. Semiadditive

3. Dimension hierarchies C. Normalized

4. Fact entity type D. Knowledge discovery

5. Dimension table E. Decision support

6. Profit margin percentage F. For drill-down analysis

7. Snowflake schema G. Data cleansed and transformed

8. Hypercube H. Generally wide

9. MOLAP I. Metrics as attributes

10. Data mining J. Represents multiple dimensions

2. A data warehouse is a decision-support environment, not a product. Discuss.

3. What data does an information package contain? Give a simple example.

4. Explain why the E-R modeling technique is not completely suitable for the data

warehouse? How is dimensional modeling different?

5. Describe the composition of the primary keys for the dimension and fact tables.

Give simple examples.

6. Describe the nature of the columns in a dimension table transformed from the

corresponding conceptual STAR schema. Give typical examples.

7. What is your understanding of a value chain and a value circle in terms of families

of STARS? What are the implications for data modeling?

8. Describe the main features of a ROLAP system. Explain how data modeling is

done for this.

9. Distinguish between OLAP and data mining with regard to data modeling.

10. Discuss data preprocessing for data mining. What data repositories are involved

and how do you model these?

REVIEW QUESTIONS 343

IV

PRACTICAL APPROACH TO
DATA MODELING

345

10

ENSURING QUALITY IN
THE DATA MODEL

CHAPTER OBJECTIVES

. Establish the significance of quality in a data model

. Explore approaches to good data modeling

. Study instituting quality in model definitions

. Introduce quality dimensions in a data model

. Examine dimensions of accuracy, completeness, and clarity

. Highlight features and benefits of a high-quality model

. Discuss quality assurance process and the results

. Understand data model review and assessment

We are at a crucial point in our discussions of data modeling. We have traveled quite far

covering much ground. You have a strong grip on data modeling by now. You are an

expert on the components of a data model. You know how to translate the information

requirements of an organization into a suitable data model using model components.

You have studied a number of examples of data models. In short, you now possess a

thorough knowledge of what data modeling is all about. What more is left to be covered?

In this chapter, we are now ready to turn our attention to an important aspect of data

modeling—ensuring quality of the model. Having gone through the multifarious facets

of data modeling, it is just fitting to bring all that to a logical conclusion by stressing

data model quality.

In recent decades, organizational user groups and information technology professionals

have realized the overwhelming significance of data modeling. A data modeling effort pre-

cedes every database implementation. However, what we see in practice is a number of

347

Data Modeling Fundamentals. By Paulraj Ponniah
Copyright # 2007 John Wiley & Sons, Inc.

bad or inadequate models out there. Many models are totally incorrect representations of

the information requirements. It is not that a bad model lacks a few attributes here and

there or portrays a small number of relationships incorrectly. Many bad models lead to

disastrous database implementations. Some bad data models are abandoned midstream

and shelved because of improper quality control. The efforts of many weeks and

months are down the drain.

This chapter addresses the critical issues of data model quality. First, you will get to

appreciate the significance of data model quality. Next, we will move to a discussion of

quality in the definitions of various components. We will then explore the dimensions

and characteristics of high-quality models and learn how to apply the fundamental prin-

ciples of model quality. Quality assurance is a distinct process in the modeling effort;

you will cover quality assurance in sufficient detail.

SIGNIFICANCE OF QUALITY

It is obvious that high quality in anything we create is essential. That goes without having

to mention it specifically. Then is not that maxim true for data modeling as well? Why

emphasize quality in data modeling separately? There are some special reasons.

The concepts of data modeling are not that easy to comprehend. Data modeling is a

specialized effort needing special skills. A data modeler must be a business analyst, drafts-

man, documentation expert, and a database specialist—all rolled into one. It takes skill and

experience to gain a high degree of proficiency in data modeling. It is easy to overlook the

essentials and produce bad datamodels. In a large organization, piecing together the various

components into a good data model requires enormous discipline and skill. It is not difficult

to slip on model quality. We need to pay a high degree of special attention to quality.

Why Emphasize Quality?

Recall the fundamental purposes of a data model. Go back to the reasons for creating a data

model in the first place. What is the role a data model plays in the development process of

the data system for an organization?

First, a data model is meant as a communication tool for confirming the information

requirements with the user groups. Next, a data model serves as a blueprint for the design

and implementationof thedatasystemfor theorganization.Wehavecovered these two themes

in elaborate detail. Figure 10-1 summarizes these two essential purposes of a data model.

Good Communication Tool. Quality in a data model is essential because the model

has to be a good and effective means of communication with the user groups. As a data

modeler, you delve into the information requirements; you want the data content of the

ultimate database system to reflect the information requirements exactly. How do you

ensure this?

You create a data model as a true replica of the information requirements. Then you use

the datamodel as a tool for communicationwith the user groups. You have to show them that

you have captured all the information requirements properly. You need to point out the

various components of the data model to the user groups and get their confirmation. You

can do this correctly and effectively only if your data model is good and of high quality.

Good Database Blueprint. The database of an organization is built and implemented

from the data model. Every component of the data model gets transformed into one or

348 CHAPTER 10 ENSURING QUALITY IN THE DATA MODEL

more parts of the database. If the entity types in a data model are erroneous or incomplete,

the resulting database will be incorrect. If the datamodel does not establish the relationships

correctly, the database will link the data structures incorrectly.

For building and implementing the database of an organization accurately and comple-

tely, the data model should be of good quality. A good data model is a good blueprint; a

good blueprint ensures a good database—the end product.

Good and Bad Models

You have again noted the two primary purposes of a data model. Figure 10-1 presents the

two purposes again. Now, the question arises: If our goal is to produce a good data model,

can we recognize good and bad models?

In order to examine and find out if a model is good or bad, let us get back to the two

primary purposes of a data model. We will examine a data model from the view of

these purposes and note the characteristics of good and bad models. The first purpose

is the use of a data model as a communication tool for working with the user groups

and stakeholders, that is, people outside the IT community. The second purpose of a

data model is its use as a blueprint for database design and implementation.

Communication Tool. A good data model has distinct characteristics including:

. Symbols used in the model have specific and unambiguous meanings.

. Users can intuitively understand the data model diagram.

. The model diagram conveys correct semantics.

. The layout of the model diagram is clear, uncluttered, and appealing.

FIGURE 10-1 Purposes of a data model.

SIGNIFICANCE OF QUALITY 349

. Users are able to understand the representations noted in the data model.

. Users can easily relate model components to their information requirements.

. The data model reflects the business rules correctly.

. Users are able to notice problems of representations, if any, easily.

. Users are able to note any missing representations without difficulty.

. Users are able to suggest additions, deletions, and modifications easily.

. The model is free from hidden or ambiguous meanings.

. The data model is able to facilitate back-and-forth communication with user groups

effectively.

. The data model diagram and accompanying documentation complement each other

and work well together as a joint communication tool.

A bad data model does not possess the above characteristics. Further, a data model may

be dismissed as bad if, in addition to the absence of the above characteristics, the model

has specific negative features including the following:

. The data model diagram is confusing and convoluted.

. The data model is incomplete and does not represent the complete information

requirements.

. There are several components in the data model that are vague and ambiguous.

. The symbols lack clarity; meanings are not distinct and clear.

. The layout of the data model diagram is horrific.

. Users find numerous representation errors in the data model.

Blueprint for Database. A good data model from the point of view of its use as a

detailed plan for the database has distinct characteristics including:

. Component-to-component mapping between the conceptual data model and the

logical data model is easy.

. Each component in the conceptual data model has equivalent part or parts in the

logical model.

. All symbols are clear for making the transition.

. All meanings are easily transferable between the conceptual and logical data models.

. The data model is a complete blueprint.

. The data model can be broken down in cohesive parts for possible partial

implementations.

. The connections or links between model components are easily defined.

. The business rules may easily be transposed from the conceptual data model to the

logical data model.

A bad data model does not possess the above characteristics. Moreover, a data model

may be considered bad if, in addition to the absence of the above characteristics, the model

has specific negative features including the following:

. The data model contains insufficient information for all the transitions to the logical

data model to be rendered possible.

350 CHAPTER 10 ENSURING QUALITY IN THE DATA MODEL

. The links or connections between components are ambiguous.

. The data model diagram is too intricate and unnecessarily complex.

Approach to Good Modeling

Let us now turn our attention to the various aspects of quality in data models. We will look

at various factors that contribute to high-quality data models. You will learn about data

model quality dimensions and their implications. However, at the outset let us mention

a few guiding principles for creating good data models. What is the best approach for

good data modeling?

We highlight in the following a few fundamentals of good data modeling practice.

Proper Mindset. Everyone on the project team must recognize the importance of high

quality in the output of the data modeling process. The data modelers have full responsi-

bility to bear this in mind throughout the entire modeling process—from collection of

information requirements to creating the final data model.

Practice of Agile Modeling. Recently, organizations have come to realize that agile

software development principles and practice prove to be effective. Use and application

of agile datamodeling principles produce good datamodels.Wewill discuss agilemodeling

further in Chapter 11.

Continuous Ensuring of Quality. Quality assurance is not to be considered as an

ornamental add-on to the data modeling process. From beginning to end, continuous

quality assurance is essential.

Periodic Control and Assurance. In addition to the employment of quality assurance

principles by the data modelers themselves, periodic review and control by qualified pro-

fessionals takes quality assurance of data models to a higher level.

QUALITY OF DEFINITIONS

When you create a data model and draw the data model diagram, your model diagram

must be supported by an accompanying model document that contains information

and clarifications about the data model. Among other contents, the data model docu-

ment has a set of definitions. These relate to each individual component in the data

model.

If there are 15 entity types represented in your data model, the model document must

contain definitions of these entity types. If TRANSFER is an entity type in your model,

what does transfer mean and represent? You must have a clear definition of “transfer.”

In the same way, the attributes must be defined, the relationships must be defined, and

so on. The definitions are some kind of meta-data—data about data. These definitions

must themselves be of high quality.

What is quality in a definition? Let us say, you have an attribute CustomerName. You

can indicate that customer names must be textual data with a maximum length of 60 char-

acters. You can also describe and define what you mean by CustomerName. How is this

attribute understood by the user groups? Are customers also known as clients in some

QUALITY OF DEFINITIONS 351

departments of the organization? If you definition of the attribute is of a high quality, all of

these will be clearly and succinctly answered. We will explore the aspects of quality in

definitions.

Importance of Definitions

Before we get into the aspects of high-quality definitions, we need to clearly understand

what we mean by definitions. What roles do definitions play in data modeling? What

happens if the definitions are bad? What benefits accrue if the definitions are really good?

Meaning of a Definition. A definition, in simplest terms, may be thought of as a

description, in textual form, about the thing that is being defined, providing an effective

meaning of the thing. If you are defining an entity type, then the definition tells the

readers exactly what that entity type means.

A definition must

. be a word, phrase, or sentences providing the meaning of the object being defined,

. make the meaning of the object clear,

. convey the basic or fundamental character of the object, and

. provide insight into what the object stands for.

Role of Definitions. Let us say you come across an entity type called ASSOCIATE in

the data model for a retail operation. What does this entity type represent? All employees?

Only some specific type of employees? Does this connote a level in the hierarchical struc-

ture? A clear definition of the term would clarify these issues and describe what exactly is

being represented by the entity type.

It is very important that everyone involved in creating, designing, discussing, confirm-

ing, and implementing the data model must clearly understand what that entity type actu-

ally represents. What are the individual entities? The user groups must clearly know what

the data model means when it includes an entity type ASSOCIATE. The designer and

database developer must clearly understand what they are implementing.

Definitions are crucial because they provide a clear basis for understanding the data

model. Definitions allow meaningful and useful discussions about the components in

the data model. As noted earlier, frequently you come across homonyms and synonyms

while gathering information requirements and creating a data model. Definitions help

resolve issues about homonyms and synonyms.

Bad and Good Definitions. The quality of definitions indicates the quality of the data

model itself. Unfortunately, not too much attention is paid to the quality of definitions in a

data modeling project. Definitions are quickly added to the model document, sometimes,

toward the end of the project. Even more troublesome is that many of the components in a

data model are not even defined anywhere. Lack of definitions is a major problem.

We have all run into bad definitions of terms. For example, some definitions are just a

rephrasing of the name of the object itself. The definition of CustomerNumber may just be

“number of customer.” Some other definitions may be quite vague and incomprehensible.

The definition for PROPERTY-TRANSFER may be given as “transfer of property from

one place to another, provided the movement is sequential.”

352 CHAPTER 10 ENSURING QUALITY IN THE DATA MODEL

When you review a number of definitions, you will develop a gut feel for whether a

particular definition is good or bad. A good definition makes you understand what

exactly the term means, what it stands for, and what its characteristics are. A bad definition

leaves you in a state of confusion.

We will look into the aspects that make a definition good or bad. Why would some defi-

nitions be considered good and others bad? We will get deeper into individual aspects of

quality in definitions.

Aspects of Quality Definitions

So far, we have been somewhat vague about quality of definitions. We explored how defi-

nitions may be considered bad or good. We mentioned the significance of quality in defi-

nitions. Now, let us make things more concrete and definitive. Are there specific aspects of

definitions that make them good or bad? What determines whether a definition is good?

These are four major factors that contribute to high quality in definitions.

Correctness. If the definition is not accurate, the definition is completely flawed. It the

definition conveys the wrong meaning, then serious consequences follow. The definition

must be consistent with how the object is truly known in the organization. The definition

must also be thoroughly reviewed and confirmed by the appropriate authorities in the user

groups.

Completeness. The definition must have everything needed to make it complete and to

stand alone. A balance must be struck; the definition must not be too narrow and specific

on the one hand and not too broad and generic on the other. The definition, wherever

necessary, must include examples.

Clearness. Clarity is of paramount importance. The definition must not be a restatement

of what appears to be obvious. Obscure technical jargon must be avoided. There should be

only limited use of abbreviations and, that too, only widely accepted ones. Ambiguity and

dual meanings must be carefully avoided.

Format. Appropriate length is necessary for a good definition—not too long, not too

short. Poor grammar and misspellings degrade the quality of a definition.

We will now proceed to explore each of these factors of quality definitions in some detail.

Correctness

This factor is concerned with the accuracy of the definition. A definition must convey the

correct meaning of the object it defines. The definition must match exactly what the object

means in the organization and be consistent with the overall purpose and functions of the

organization. Remember, when we are discussing the definition of an attribute such as

EmployeeService, we are not validating the values that attribute might take; we are

only referring to the definition of the term “EmployeeService.”

Let us consider some aspects of ensuring correctness of a definition.

Reviewed and Confirmed. To ensure correctness of a definition, the definition must be

thoroughly reviewed and confirmed by the appropriate authority in the user groups. If there

is a data quality steward in the organization, the responsibility lies with this person.

QUALITY OF DEFINITIONS 353

The first step is to ascertain whether a particular definition has been reviewed and

approved. This may be done through the use of a checklist. If it is not yet done, then

you have to locate the proper authority qualified to do the review and authorized to

give the approval. Once the proper authority is identified, the next step is to get the

actual review under way. The review effort should be intense and thorough. The approval

of the data quality steward should meet the standards set up in the organization.

Consistent with Organizational Understanding. Once a definition is reviewed and

approved by an individual authority, you have to broaden the scope to ensure that the defi-

nition fits into the general understanding of the object in the wider organization. This

activity will ensure that the definition does not conflict with any other objects and their

definitions in the organization.

When you tried to match the object and its definition with others in the organization,

you will conclude with one of the following results. The following also indicates the

appropriate actions.

Unique. The object and its definition are unique—no match with any other in the organ-

ization. Your definition for the object will become the definition for it in the entire

organization.

Identical. There are one or more objects with the same name and almost similar

definitions. This means that this object in the data model is the same as the others.

Make sure the definition becomes a closer match with the other definitions.

Homonym. You have found another object in the organization with the same name, but

the definitions are different. In this case, probably you have used the name of an already

existing object for the object in your data model. So, change the name of your object, and

then restart the matching process.

Synonym. You have found another object with the same definition, but with a different

name. You will have to change the name for the object in your data model to the name

already in use in the organization.

Completeness

The completeness factor includes making sure that the definition is sufficiently detailed

with examples and any information about how the object could be derived. If the definition

is too generic and broad, it will not be of much use when you want to explain the specifics

to user groups or when you want to consider every part of the data model for implemen-

tation. On the other hand, if the definition is too specific and confined, the definition may

not be relevant to a wider circle of users and database practitioners. A complete definition

is self-contained.

Let us discuss some requirements to make a definition complete.

Not Too Broad. A broad or generic definition is usually made up so that the definition

may gain wider acceptance. We want our definition agreeable to all user groups. Because

of this intention, the definition is generally kept short and, therefore, incomplete. Broad

definitions usually have the following features.

354 CHAPTER 10 ENSURING QUALITY IN THE DATA MODEL

Dictionary Meanings. Tend to contain dictionary meanings of the names of the objects.

If the name of the object consists of compound words, for example, CustomerAddress,

then the definition consists of dictionary meanings of the individual words Customer

and Address. Very few can argue with exact dictionary meanings. Therefore, the definition

expects to be generally accepted.

Ambiguity. Broad definitions seek to avoid conflicts; therefore, intentionally they use

ambiguous words that can confuse everyone. Each group will try to interpret the definition

in their own terms and agree with the definition.

Excessive Abstraction. Broad definitions tend to use abstract words such as person to

mean employee in one case and again person to mean customer in another case.

Measures. Many data elements refer to measurements of quantity or currency. For

example, ProductQuantity needs to be identified whether the quantity is defined in

terms of units, pounds, or kilograms. Similarly, UnitPrice has to be stipulated in terms

of the currency such as U.S. dollars, pounds sterling, euro, and so on. Broad definitions

are likely to omit the units of measurements.

Tracking down generic definitions is not an easy task. You have to examine the defi-

nition with identifying features of generic definitions in mind. Are there merely dictionary

meanings in the definition? Is the definition intentionally kept ambiguous? Is the definition

filled with abstract terms? Does the object indicate something that involves units of

measurements?

In order to fix a broad definition, begin with the assumption that the definition is too

generic. Read and reread the definition to look for traces of ambiguity. If the definition

is ambiguous, replace it with words that can mean the same to all user groups. Continue

and look for abstract terms such as person, account, and price. Replace these with more

specific words. If there are any units of measurements to be mentioned, state them expli-

citly in the definition.

Not Too Narrow. Definitions that are too specific may mean that the definition is correct

and valid only with a limited scope. Narrow definitions reveal the following traits.

Specific to Certain Departments Only. Narrow definitions tend to limit the meaning

and reference to only certain departments—not to the entire organization.

Specific to Particular Applications Only. Again, narrow definitions refer to only certain

business applications in the organization.

Business Purpose Only. Without stating the meaning of the object, a narrow definition

mentions only the purpose of the object.

Derivations Only. Without stating the meaning of the object, a narrow definition men-

tions only how the value for the object is derived, for example, a narrow definition for

ProfitMargin.

Current Meaning Only. Narrow definitions specifically state only the meanings as

applicable today and not those that are generally applicable.

QUALITY OF DEFINITIONS 355

Examples Only. Although examples are important, narrow definitions tend to define an

object only with examples and do not include meanings.

For fixing narrow definitions, look for the traits listed above and then take appropriate

actions. If all the above characteristics are present in a definition, then the definition is too

narrow. It requires a lot of work to make it complete. If there are references only to some

departments or only to some applications, then widen the definition and amplify its scope.

Narrow definitions stating just the business purpose usually stand out. Add the meanings of

the objects to such definitions.

If an object is being defined with examples only, then add the meaning to the defi-

nition. Broaden the scope of the definition, if it includes only point-in-time meaning.

If a definition just tells you how to derive the value of the object, then use the definition

as a starting point and then add more intrinsic meaning.

Self-Contained. When you look at a data model diagram, you see the various

components and the underlying structure of how these components fit in. Sometimes,

definitions are composed in such a way that you cannot understand the meaning of the

object defined unless you view the object in its place in the structure. In other

words, the definition is not complete in the sense it is not self-contained. You need to

know the structure and perhaps the definitions of the other objects in proximity.

Dependencies of definitions that do not stand alone may be classified in two ways.

Structure Dependency. In this case, you need to know the structure of the data model

and the place of the object in the structure to understand the definition.

Relationship Dependency. For understanding a definition of this kind, you need to

know the relationship of this object with other objects in the data model.

To cure a definition that is not self-contained, first read the definition and check if you

have to refer to the data model for understanding the definition. Then, it obviously means

that the definition cannot stand alone. Examine the definition and the names of the related

objects in the definition to make it complete.

Shows Derivation. Many attributes in a data model may be derived attributes. The

values for these attributes may be derived or calculated from the values of other attributes

of the same entity type or other entity types. When you define derived attributes, the

definitions may be incomplete because of the following reasons.

Incomplete Derivation. The derivation contained in the definition is not enough for the

definition to be complete.

Missing Derivation. The definition is totally devoid of derivation where such details are

absolutely essential to complete the definition.

The first step in fixing this problem is to identify derived attributes. Examining the attri-

butes in a data model would easily reveal such attributes with problematic definitions.

Then review the definition of each derived attribute. Are there any details about the deri-

vation at all? If not, provide the missing derivation details to the definition. On the other

hand, if there are insufficient details about derivation, then expand the definition by adding

more derivation details.

356 CHAPTER 10 ENSURING QUALITY IN THE DATA MODEL

Supplemented with Examples. Examples always enhance the value of a definition.

After including the meaning of an object in the definition, if you add some examples of

the object, then you provide additional insight into the meaning. Supplementing a defi-

nition with examples adds more value to any definition, more so in the following cases:

Abstract Objects. When you define abstract objects such as Student, Employee, Client,

Shipper, and so on, add examples to your definitions.

Organizational Codes. Codes with specific values are frequently used in an organiz-

ation. State codes, marital status codes, gender codes, and credit codes are a few of the

kinds of codes used. Whenever you define a code, include some examples and possible

values in the definition.

Clearness

A clear definition leaves no room for ambiguity. As soon as you begin reading the defi-

nition, you are able to understand the meaning of the object. Every word in the definition

makes apparent sense.

We will examine a few characteristics of definitions that lack clarity. We will also

consider ways to look for such definitions and methods for remedying them.

Repeating the Obvious. Such definitions just restate what was already mentioned in

an earlier part or is easily available elsewhere. No new information is given in the defi-

nitions. Definitions of this kind are both annoying and even dangerous.

Fortunately, several indications are available for tracking down such a definition. The

text of the definition may just repeat the name of the object. Sometimes, the definition may

contain one or two words in addition to words in the name of the object itself. In other

cases, the definitions may just contain synonyms of the name of the object.

Some other cases involve misplacement of the definitions. The definition may define

the parent of the object instead of the object itself. Also, the definition may define the

child of the object instead of the object.

If the repetition in the definition is the name of the object and if the definition contains

additional new details, it may be all right to leave the repetition. If there is no new infor-

mation in the definition or it only contains a restatement of the obvious, then you need to

make the definition clearer by adding the meaning of the object. If the repetition refers to a

parent or child, remove this part from the definition.

Containing Obscure Terminology. Most industries and organizations have specific

terminology that is understood only within limited circles. When you create a model to

be used and understood only within the confines of the industry or organization, some

specific terminology may be acceptable. However, make sure the terminology is under-

stood well by all concerned. If there are any reservations about the meaning of a particular

technical term or word used in the definition, then, by all means, replace such term with a

more common term.

Sometimes, the same object name in different industries may refer to different things.

For example, LotNumber in an auction company refers to the sequential number assigned

to property lots sold in an auction. But LotNumber in a manufacturing organization is

associated with the time and location stamp for a particular product and, therefore, has

QUALITY OF DEFINITIONS 357

different purposes. If you come across any such objects, add proper clarification to the

terminology.

Using Relatively Unknown Abbreviations. Abbreviations used in organizations are

somewhat similar to industry-specific terminology. Abbreviations in definitions may not

be completely avoided. In fact, sometimes abbreviations are more commonly used than

the complete versions of the phrases indicated by the abbreviations.

Use abbreviations sparingly in definitions. Then, too, use only standard and well-

understood abbreviations.

Format

Length of a definition gives a good clue as to the robustness of a definition. A very long

definition usually includes irrelevant details, contains repetitions, and obscures the mean-

ings. On the other hand, a very brief definition lacks sufficient details and fails to describe

the meaning of the object clearly and fully.

In practice, if you notice a definition running into more than two or three paragraphs,

then you should immediately examine the need for such length. Check if each word or

phrase in the definition refers only to the object being defined and nothing else. If they

reference objects or other data elements outside the scope of the definition, remove the

extraneous details. Carefully look for repetitions of words and phrases and remove any-

thing that does not add to the effectiveness of the definition. Retain only the verbiage

directly related to the object being defined.

Right away, misspelled words in a definition, though fairly harmless, produce a nega-

tive impression in the minds of those that read and use the definition. Correct all the mis-

spelled words in every definition. There is no excuse for misspellings with modern-day

spell checks. Similarly, poor grammar in a definition raises a red flag while reading

the definition. Use correct grammatical constructions. Get your definitions edited by a

competent person before releasing the definitions for general use.

Checklists

We explored the various aspects of quality of definitions in sufficient detail. Each factor is

essential for a good definition. You have also noted how to examine a definition and detect

the deficiencies. You also reviewed some of the methods for fixing poor definitions.

A Definition Checklist is a valuable tool for the review of a definition to ensure that the

definition possesses all the characteristics of a good definition. The checklist is in the form

of a two-dimensional table or spreadsheet. The rows contain the criteria for evaluating a

definition. The column headings are usually the names of the objects for which the defi-

nitions are being evaluated. This is the general idea. You can have an amended format

of the checklist to suit your specific purposes. You may firm up your criteria and mark

them in the rows. In one sheet of the checklist, you may opt for a certain number of

objects. Also, you may decide on the components of the data model that would need defi-

nition checklists—entity types, attributes, identifiers, relationships.

Initially, when you review a definition, you will record the findings on your checklist

by indicating whether the definition passed a certain criterion or not. This is the initial

pass. Based on the initial review, the definitions will be amended suitably to meet all

the criteria. A second pass would indicate any residual problems. This iterative process

358 CHAPTER 10 ENSURING QUALITY IN THE DATA MODEL

may continue until the definitions satisfy all the criteria. Now, you will have a set of

GOOD definitions.

Figures 10-2 and 10-3 illustrate the use of checklists. You may add such checklists for

other data model components.

FIGURE 10-2 Definition checklist for entity types.

FIGURE 10-3 Definition checklist for attributes.

QUALITY OF DEFINITIONS 359

Entity Types

Refer to Figure 10-2.

Attributes

Refer to Figure 10-3.

HIGH-QUALITY DATA MODEL

Having reviewed the need for high quality in model definitions, we now turn our attention

to the data model itself. We looked at methods to recognize good and bad definitions; we

also covered remedial measures for fixing and transforming a bad definition into a good

definition.

Wewill cover quality in a datamodel in a similar fashion. First, you need to understand the

meaning of quality as it applies to a data model. You need to explore the dimensions of data

model quality. How to recognize a high-quality data model? What are its characteristics?

What benefits accrue to the user groups, the data modelers, and other database practitioners

from a good data model?

Meaning of Data Model Quality

As you know, a data model is a representation or a replica. A representation of what? In a

data model, you attempt to represent precisely and correctly the information required by

an organization to run its business. A model does not contain the actual information; it is

not the data content. But it is a replica of the data content. In a data model, you capture

all the pertinent aspects of the information requirements in a form that is readily under-

standable and at the same time useful for ultimately designing and implementing the

database.

You know that for creating a data model, you need building blocks or components

that can represent individual aspects of the information requirements. Symbols are

used for this purpose. Each symbol connotes a specific meaning; connections between

symbols indicate relationships. At this stage, you are well-versed with the symbols,

use of symbols, meanings of symbols, and the way symbols represent real-world infor-

mation requirements. You are also familiar with several modeling techniques, their

specific symbols, and the usage of the symbols. The proper use and arrangement of

the symbols to represent real-world information constitutes data modeling. A data

model is such a representative arrangement.

Combining the appropriate symbols to convey the correct meanings can be difficult.

If you do not have the right combination of the modeling symbols, your data model

cannot be used effectively to communicate with the users and to construct the ultimate

database. In other words, if your data model is of a poor quality, it cannot serve its two

major purposes.

When is a data model useless? It is so if its quality is poor. What do we mean by this?

We mean to say that the data model does not possess the necessary basic characteristics to

be useful. Thus, quality in a data model is the presence or absence of certain characteristics

that make the data model good or bad.

360 CHAPTER 10 ENSURING QUALITY IN THE DATA MODEL

When we consider a data model to be of good quality, we refer to the following

characteristics:

Accurate. The data model is a correct representation of the information requirements.

Every component, every linkage, every arrangement—the entire representation is totally

right.

Useful. The model is completely suitable for its intended uses: as a communication tool

with the users and as a database blueprint for the database.

Meets Expectations. The data model meets and even surpasses expectations by user

groups and database practitioners.

Comprehensive. User groups and all others concerned can understand the data model

very easily.

Elegant. The model diagram looks elegant, free from convoluted or haphazard arrange-

ments of symbols.

Thus,mainly, whenwe talk about the high quality of a datamodel, we refer to correctness

and completeness. The data model truly and correctly represents the selected real-world

information requirements. It is also a complete representation.

Quality Dimensions

We want to dig deeper and explore the concept of quality in a data model in greater detail.

The reason for this exercise is simple. Once you have a full understanding of data model

quality, you can then apply your comprehension to creating high-quality data models. In

order to get a handle on data model quality, let us tear a data model apart and get a glimpse

on the inside.

You have a set of symbols arranged in a certain way. The arrangement itself must

conform to accepted standards. When we mention the proper arrangement of the

symbols, we are really referring to the syntax of modeling technique. For a data model

to be of high quality, the arrangement must be correct and it must also be complete.

That is, the data model must be syntactically correct and complete.

In a data model, the symbols may be right and the arrangement may also be correct. But,

what is the purpose of the arrangement in the first place? Is it not the proper representation of

the business requirements? The purpose of the arrangement—the concept behind the

arrangement—must be right. The concept behind the arrangement is the right represen-

tation of real-world information requirements. That is, the data model must be conceptually

correct and complete.

The correctness and completeness of a data model are to be evaluated in a broader

context of the entire organization. You do not just look only at the set of components in

the data model and the arrangement. You need to place the data model in the context of

the overall organization and verify its correctness and completeness. Does the data

model represent the information requirements of the real-world domain of the entire

organization? Or, does it represent some part of the domain? If so, is it correct and com-

plete in relation to other parts of the domain? There is a contextual factor in the mix for

assessing the quality of a data model.

HIGH-QUALITY DATA MODEL 361

We can, therefore, arrive at the dimensions of quality in a data model by interleaving

the two primary aspects of correctness and completeness with the two qualifications of

syntactical and conceptual representation. The contextual factor of a data model is the

enveloping dimension of data model quality.

Figure 10-4 shows these five dimensions of data model quality. Notice how these

quality dimensions mesh together in order for a data model to be of a high quality.

Correctness. Accuracy in a data model is of great importance. If the data model does

not represent the information requirements correctly, the resultant database will be

flawed. Users will not be able to perform their functions. A data model must use the

symbols and arrangement correctly; the model must correctly represent the real-world

information.

Syntactic Correctness. The correct set of symbols is used in the data model. The

symbols are used in the data model for exactly their intended purposes. The arrangement

of the symbols does not violate any rules of the modeling technique. The linkages between

model components are expressed correctly.

Conceptual Correctness. Each symbol in the data model correctly represents the part of

real-world information it is intended to represent. The linkages between components

FIGURE 10-4 Dimension of data model quality.

362 CHAPTER 10 ENSURING QUALITY IN THE DATA MODEL

correctly and truly represent the actual relationships that exist in the real world. The

overall arrangement of symbols in the data model is a true replica of the broad information

requirements.

Completeness. Unlike correctness, completeness does not focus on individual com-

ponents of a data model. Here, the entire data model is in view. You look at the whole

model and ascertain if the representation for any part of information requirements is

missing in the model. However, correctness and completeness are like two sides of the

coin of quality in a data model.

Syntactic Completeness. This refers to the data modeling process rather than to the data

model itself. However, if the modeling process in not complete, then the model itself will

be incomplete. Depending on the selected modeling technique, the process consists of dis-

tinct steps in putting together the components. The first step may be to identify and rep-

resent the entity types. The second step may be representation of relationships among

the entity types. Next, perhaps, is the representation of attributes, and so on. Review

and refinement of the steps would also come in-between. Syntactic completeness

implies that the modeling process has been carried out completely and thoroughly to

produce a good data model.

Conceptual Completeness. When a model is conceptually complete, it represents every

aspect of the information domain it set out to do. Every business object gets represented.

No known attributes of the objects are missing in the data model. All relationships are

expressed completely. Within each relationship, relationship cardinalities are completely

shown. The data model is a complete representation of the information requirements.

Organizational Context. If correctness and completeness are like the two sides of the

coin of data model quality, then organizational context is like the rim of the coin. It envel-

ops the other quality dimensions.

Mostly, every data model is a representation of part of the information requirements of

an organization. Sometimes, the whole information domain is taken to be modeled.

Usually, modeling and implementation of a database, as an initial effort, covers a high-

return and high-visibility area of the information domain. Next, the scope is expanded

to other areas. Therefore, whenever you create a data model, you need to consider the

scope of the model in terms of the whole information domain of the organization.

If your data model is the first one in the organization for implementation of the initial

database, you need to keep it open and flexible enough for future models to be integrated

with yours. If your data model is a subsequent model, then your model must be designed in

such a way to incorporate it into the earlier models. Keeping the organizational context in

view while modeling information domains is crucial for your model to be a high-quality

model.

What Is a High-Quality Model?

So, a data model must be correct syntactically and conceptually; it must be complete

syntactically and conceptually. A data model must be created within the context of the

organization’s information domain.

HIGH-QUALITY DATA MODEL 363

Apart from these, are there any general characteristics of a good data model? Can we

examine a particular model, look at its features, and declare that it is a high-quality data

model. A high-quality data model possesses the following general characteristics.

Built by Expert Modelers. Who created a data model has a direct bearing on the

quality of the model. Data modeling requires training and developed skills.

Built with Proven Technique. For building a good data model, you need to employ a

proven technique such as the E-R modeling technique. The rules of the technique will

prevent errors from creeping in.

Follows Accepted Standards. In addition to the modeling technique itself, use of

accepted standards of the organization is important. This includes naming standards,

general documentation standards, and so on.

Involves Right User Groups. If the right domain experts and stakeholders get

involved in the entire data modeling process, the chances of the model being of a high

quality are good.

Incorporates All Business Rules. A data model is good if it embodies all the perti-

nent business rules so that these may be properly implemented in the database.

Supported by Documentation. The quality of the accompanying model documen-

tation is an indication of the quality of the data model itself. An important feature of a

good data model is its good supporting documentation.

Benefits of High-Quality Models

In a data system development project, a high-quality data model produces several benefits.

Without a data model, it is almost impossible to develop a good database system unless the

database is extremely small and simple. Even then, a somewhat crude data model would be

necessary. For developing and implementing a substantial database, a good data model is

an essential prerequisite.

We want to highlight and reiterate the usefulness and benefits of a good data model for

two purposes.

High-Quality Design. For implementing a successful database, you need to start with a

high-quality design, both logical and physical. If your conceptual data model is of high

quality, it could readily be transformed into a good logical model to complete the

logical design process.

Proper Requirements Definition. A high-quality data model, reviewed and con-

firmed by the relevant user groups, serves as the best definition of information require-

ments. Proper requirements definition is absolutely essential for successful design and

implementation phases.

364 CHAPTER 10 ENSURING QUALITY IN THE DATA MODEL

QUALITY ASSURANCE PROCESS

We had introduced the notion that quality assurance in data modeling is a continuous

process. No product may be allowed to be fully developed before subjecting it to

review and correction. This is true of data modeling as in any other creative and productive

effort. Too many errors might creep in along the way, and finally the output might just be

worthless. Just like other production efforts, data modeling is also a human enterprise;

humans are not infallible.

You must be familiar with quality assurance (QA) programs in connection with other

activities. You must be aware of peer reviews and code walkthroughs in software devel-

opment projects. You yourself must have experienced the outcome of such reviews where

a number of errors were uncovered to be fixed later. This would avoid rushing to finish a

half-baked product without pausing to check periodically.

Of course, as a data modeler you would pursue your task with utmost diligence. You

would attempt to follow the best practices. You know the dimensions of quality in data

modeling. You would conform to the proper norms and apply the most effective principles.

This is being mindful of quality during the modeling process by the modelers themselves.

But, it works out to be always better when someone else with appropriate expertise looks at

the model and verifies its correctness and completeness. This review must be methodical

and at the right intervals. A need arises for an established quality assurance program if a

data modeling project is to be successful.

Aspects of Quality Assurance

So, what is a good quality assurance program for data modeling? What is it made up of?

Let us go over some of the major aspects of a quality assurance program.

Generally, the following must be in place for a good quality assurance program.

Quality Assurance Plan. A plan for the quality assurance program must be formulated

up front. The plan emphasizes quality assurance to be an integral part of the data modeling

effort. Usually, the plan is laid out by a team consisting of the project manager, senior data

modeler, user representative, and some senior IT executive.

The plan specifies the frequency of quality assurance reviews, sets up guidelines, and

assigns responsibilities to the reviewers. A time line is sometimes suggested. Most impor-

tantly, the plan expresses how actions must follow the review process for rectifying any

errors.

Quality Assurance Coordinator. Quality assurance involves a number of administra-

tive tasks. Scheduling the reviews and making them happen in a timely fashion itself is a

major responsibility. If there are more than a few reviewers, managing their schedules and

assigning them optimally takes time and effort. Settling issues that come up in the reviews

is another major activity.

A good quality assurance coordinator is a major asset in the data modeling project. If

there is already a quality assurance group in your IT department, then someone from that

group is an ideal candidate for this responsibility. If not, the organization must look for any

available senior professional either from within or outside.

QUALITY ASSURANCE PROCESS 365

Data Model Reviewers. Of course, a quality assurance program cannot get off the

ground without good reviewers. Depending on the size and scope of the data modeling

project, you may need more than one reviewer. If a few data modeling projects are

running concurrently in the organization, a team of reviewers may rotate among the

various projects.

The qualification and skills of the reviewers are important. They must know data

modeling well enough to be able to look deeply for quality problems in a data model.

Good reviewers come out of the ranks of good, experienced data modelers.

Standards. The datamodelers and the reviewersmust have very definitive guidelines and

rules about how a datamodelmust be created in your organization. Standardsmust be devel-

oped with utmost care. The standards must encompass all aspects of data modeling.

Standards lay down the confines within which the modeling effort must be made. They

set the boundaries. They define the tolerance limits for deviations. Both data modelers and

data model reviewers need to use the standards manual in carrying out their responsibil-

ities. A good standards document serves as a good training tool for data modelers and

analysts on the project.

Review and Action Document. As soon as the initial review of a data model takes

place, the reviewer prepares a review and action document in cooperation with the data

modeler. The document incorporates information on the review process. In subsequent

reviews of the data model, this document will get updated continually. This document

will be part of the overall data model documentation.

The review and action document provides a general description of how the review was

conducted. It lists the findings of the reviewer. It includes suggested actions to rectify any

quality problems cited. It maintains a diary for follow-up.

Stages of Quality Assurance Process

The quality assurance process is based on a systematic approach of planning and

execution. Based on the quality assurance plan, every quality assurance process has defi-

nite stages of activities. The plan would indicate the frequency of the quality assurance

reviews. In a typical data modeling project of reasonable size, at least two reviews are

necessary: One at the midway point, and one when the modeling effort is nearing com-

pletion. But many organizations, depending on the availability of resources, opt for

three review sessions: One when the project has proceeded one-third of the way,

another when two-thirds of the model is done, and the final review when the modelers

have nearly completed their work.

Whatever may be the frequency of the quality assurance reviews in your organizations,

each review goes through the three stages. Each review session gets initiated with a

planned document discussed at an initiation meeting. Then the expert reviewers

perform the actual review. Finally, the review effort is deemed to be complete when

action takes place on the findings and issues raised in the review. We will quickly go

through each of these three stages.

Review Initiation. The reviewers sit down in a meeting with the data modeling team.

Appropriate user liaison persons should also be encouraged to attend the meeting. The

meeting must have a definite agenda of topics and issues to be discussed and agreed to

366 CHAPTER 10 ENSURING QUALITY IN THE DATA MODEL

at the meeting. A model review checklist is a useful tool in the entire review process.

Figure 10-5 is a sample model review checklist. You may alter the checklist to suit the

requirements of your organization and the specific data model to be reviewed.

Review initiation meeting marks the beginning of the quality assurance review session.

If quality assurance in your particular situation consists of three reviews, then each review

gets initiated with a separate initiation meeting. Of course, the review initiation for

the very first review would be more elaborate. By the second and third reviews, the

reviewers and the modeling team would have learned to work and collaborate together.

The preparation for these subsequent reviews would be less and takes less time.

The following are the main tasks of review initiation:

Model Review Checklist. The reviewers and the modeling team go over the items listed

in the checklist. Generally, the list indicates all the materials and resources necessary for

the review. The checklist is used to collect the materials through the modeling team and

the user liaison person.

Model Building Standards. The reviewers and the modeling team go over the standards

and parameters in the organization for creating data models. The modeling team informs

FIGURE 10-5 Model review checklist.

QUALITY ASSURANCE PROCESS 367

the reviewers how these standards have been applied in the efforts. This is especially

important if the reviewers are recruited from outside to conduct the reviews.

Model Status. The reviewers ascertain from the modeling team the extent of completion

of the data model. The reviewers get a sense of the general state of the data model. If this is

a second or third review, the modeling team indicates to the reviewers what new modeling

components have been added or modified subsequent to the previous review.

Specific Issues. The data modeling team informs the reviewers of any specific issues of

concern. If some areas of the model are sensitive to specific user groups, the reviewers get

to know about these. Also, the user groups relevant to important areas of the data model are

highlighted.

Next Phases. The modeling team also brings the reviewers up-to-date on the immediate

next phases of the modeling effort.

Data Model Review. This is the important phase of the reviewing process consuming

most of the time. This has to be done thoroughly. The model review checklist will be

used continually during this stage to check off review items completed. At the same

time, during the review process, the reviewers will prepare a separate document to

record their findings. Figure 10-6 is an example of a format for recording the findings

and issues.

The next subsection deals with data model review in more detail.

FIGURE 10-6 Model review: findings and issues.

368 CHAPTER 10 ENSURING QUALITY IN THE DATA MODEL

Actions on Findings. The record of findings and issues indicates who would be

responsible for the resolutions of the items. Sometimes, user representatives may be

named as those for taking particular actions. A report of actions taken on the findings

will be added as a supporting document to the findings document.

The completion of all actions for the resolution of issues and findings marks the end of

the model review at this point. If this is the first review of a data model, the reviewers have

an opportunity to give specific pointers and guidance to the project team.

Data Model Review

This subsection describes the actual data model review stage in sufficient detail. It lists the

major activities of the stage. The list given orders the activities in their logical sequence of

how these should take place.

As indicated earlier, the model review checklist is used extensively and continually in

this stage. The goal is to complete all the items listed in that checklist. However, the hand-

ling of the items on the list happens in a systematic manner.

Preliminary Model Review. This is just a quick glimpse of the data model—nothing

detailed at this point. The reviewers perform a quick walk-through of the data model

diagram with the modeling team. They also scan through the contents of accompanying

data model document.

Again, this is not an elaborate step. If the data model is quite small or moderate, this

step may also be done during the model review initiation.

Assessment of Modeling Team. During the model review initiation, the reviewers

get a chance to get acquainted with the modeling team and other user representatives.

The reviewers need to build up lasting relationships with the team in order to complete

their work.

The reviewers get to understand the level of the skills and experience of the members of

the modeling team. This will help the reviewers to match up the team’s background with

the particular data model and help them to concentrate more on specific parts of the mod-

eling effort. If the team members are not sufficiently strong on identifying relationships

among categories of relationships, then this is an area for particular attention by the

model reviewers.

Review of Model Standards and Management. The data modeling team has to

follow approved standards in the organization and manage its data modeling effort accord-

ingly. Data model reviewers have a responsibility to ensure that this had happened.

The data model reviewers study the standards and procedures of the organization care-

fully. If there is a pool of approved standard entity types and attributes, then the data mod-

eling team must draw their components from this pool as far as feasible. If the current data

model is an add-on to existing data models that had been implemented, then the model

reviewers need to know the standards for integrating data models.

Documentation Study. This is an important prerequisite for performing the data

model assessment effectively. Before launching a very detailed assessment of the data

model, the model reviewers study various documents and materials in great detail.

QUALITY ASSURANCE PROCESS 369

The following indicate the materials and documents to be studied:

. Other data models already completed and in use

. The place of the organization in the industry

. Organization’s core business

. Organization’s overall business operations

. Business plans

. Relevant policy documents

. Applicable business rules

. Notes from interviews and group sessions held by the modeling team

Data Model Assessment

So far, we have covered the preliminary activities that lead to the detailed review and

assessment of the data model itself. The outcome of the assessment would be a series

of findings of the data model reviewers. Proper actions to resolve the issues and rectify

errors pointed out as findings measure the success of the entire review and assessment

process.

Data model assessment consists of several tasks. If you have transformed your concep-

tual data model into a logical data model in the form of a relational system or any other

prevalent types, then data model assessment becomes more intricate and involved.

However, if the model to be assessed is a conceptual data model at a higher level, then

model assessment becomes comparatively easier.

In order to discuss model assessment in a more intricate form, we will take up the

assessment of a logical data model. Once you understand the principles for a logical

data model, then applying the principles of model assessment to a generic conceptual

model would be simpler.

For a relational database system, remember the logical model is the relational data

model. Data is represented as two-dimensional tables. The following gives an indication

how data model assessment proceeds and which tasks are normally performed.

Data Model Subdivision. The first task is to make the model assessment task manage-

able. Subdivide the data model into logical subsets. Then the assessment of each subset

could become easier. A few methods are available for subdividing a data model. If the

parts of the model can be clearly connected with the responsibilities of particular user

groups, then each such subset may be handled separately.

The data model reviewers will work with the modeling team in determining the proper

method for subdividing the model. Once the model is subdivided using the best approach,

then the reviewers can arrive at a sequence for assessing individual submodels.

Component Clusters. If the data model does not subject itself to subdivision by user

groups, another popular method is to subdivide the model into component clusters. You

check for clusters of entity types that are linked together by entity dependencies.

Here, we need to assume that all many-to-many relationships have been resolved into

one-to-many relationships. The structures are in the Boyce–Codd normal form. Optional

attributes have been pushed down to the subtype entities in generalization and

specialization.

370 CHAPTER 10 ENSURING QUALITY IN THE DATA MODEL

While adopting the entity-dependency method for identifying component clusters, use

the following steps:

. Review the entire data model and identify the entity types that have no children.

These will be seen as end points in the data model diagram.

. From each of the end points, trace back to the parent entity types, one step at a time.

Stop when you reach entity types that have no parents. These would typically be inde-

pendent entity types. While you trace back, all the entity types that were touched

along the way would form a family or cluster of components.

. Name each cluster of entity types and note for model assessment. Later on, in the

assessment and documentation, these names may be used for reference.

. Note andmark the attributes, identifiers, and relationships in each cluster as a complete

unit for assessment.

. Determine the ideal sequence for assessing the clusters, one at a time.

Figure 10-7 shows a partial data model diagram and notes how a cluster is identified.

Data Model Evaluation. As soon as the clusters are identified, the actual evaluation

activity ensues. The reviewer takes each cluster, object by object, and begins the evalu-

ation. All the supporting documents provide the necessary information for performing

the evaluation.

The following tasks make up data model evaluation.

Syntax Verification. Begin by reviewing and evaluating independent entity types. Evalu-

ate the attributes of each of these independent entity types. Check the relationships that

emanate from these entity types. Next, do the same tasks for dependent entity types.

FIGURE 10-7 Model assessment: identification of clusters.

QUALITY ASSURANCE PROCESS 371

Reverification. In order to confirm the verification, perform a backward pass. Trace back

the same paths starting from the end points. Evaluate the entity types that were not eval-

uated in the forward pass.

Business Rules Representation. Go through documentation of business rules govern-

ing relationships among entity types. Evaluate the data model to ensure that these are

properly represented.

Conceptual Review. Use the same set of component clusters to perform this task.

Here, the task ensures that every business concept and statement found in the requirements

definition finds an expression in the data model.

Findings and Actions. The cluster references may be used to record the findings of the

quality assurance process. The following tasks comprise the documentation of findings,

actions on findings, and termination of the quality assurance process.

Recording Findings and Issues. Reference each cluster evaluated and record full

details of results of the evaluation. If any CASE tool is available in the organization for

performing this task, take advantage of the availability.

Keeping Track of Evaluations. Use the findings documentation to keep track of all

reviews, findings, and actions.

Resolution of Issues. Arrange to provide assistance to the modeling team for resolving

issues and errors that surfaced during the evaluation process. Also, provide methods for

documenting how each issue gets resolved.

FIGURE 10-8 QA: findings and actions.

372 CHAPTER 10 ENSURING QUALITY IN THE DATA MODEL

Termination Meeting. Reviewers conduct a final meeting for each review with the

project team and any user liaison persons. They go through the findings document and

all settle on how follow-up will be done.

Figure 10-8 shows a sample findings document and notes how findings and actions are

documented.

CHAPTER SUMMARY

. Quality is important in the data model as well as in the definitions of individual

components.

. A data model must be of high quality for it to serve as an effective tool for commu-

nicating with the users and to be an efficient blueprint for database construction.

. Good definitions of data model components have the following characteristics:

correctness, completeness, clearness, and right format.

. Correct definitions imply the following: reviewed and confirmed, and consistent with

organizational understanding. Complete definitions are not too broad, not too narrow,

are self-contained, and are supplemented with examples. Clear definitions do not

repeat the obvious, contain obscure terminology, or use unknown abbreviations.

. Data model quality dimensions: correctness (syntactic and conceptual), completeness

(syntactic and conceptual), and proper organizational context.

. Stages of quality assurance process: review initiation; data model review and assess-

ment; action on findings.

. Phases of datamodel review: preliminary review; assessment ofmodeling team; study of

standards; and documentation study. Phases of data model assessment: data model sub-

division; ascertaining component clusters; data model evaluation; findings and actions.

REVIEW QUESTIONS

1. True or false:

A. Users can understand a good data model diagram intuitively.

B. A definition of a model object may be considered good if it conveys a general

overall idea about the object.

C. It is not necessary for all definitions to be reviewed and confirmed by domain

experts.

D. Good definitions must not be too broad or too narrow.

E. Data model quality implies correctness and completeness.

F. If the correct symbols are used in a data model, the model is said to be concep-

tually correct.

G. Responsibility of a quality assurance coordinator is mostly administrative.

H. Every data modeling project must have three data model review cycles.

I. Preliminary model review is usually a detailed examination of a data model by

the reviewers.

J. Broad definitions intentionally use ambiguous words in order to avoid conflicts.

REVIEW QUESTIONS 373

2. Do you agree that quality of a data model is of paramount importance? Give your

reasons and explain.

3. Describe the meaning and role of definitions of data model components. What are

the aspects of quality definitions?

4. When can you say a definition is correct and complete? List the factors.

5. Name any three characteristics of a good data model. Give examples of each.

6. Discuss the quality dimensions of a data model. Differentiate between correctness

and completeness.

7. Describe the role of the quality assurance coordinator for a data modeling project.

8. Data model quality control and assurance is a mindset. Discuss.

9. List the quality assurance phases of data model review and data model assessment.

Describe the detailed activities in any two of the phases.

10. The success of quality assurance completely depends on the data model reviewers.

Discuss this statement giving your reasons.

374 CHAPTER 10 ENSURING QUALITY IN THE DATA MODEL

11

AGILE DATA MODELING
IN PRACTICE

CHAPTER OBJECTIVES

. Introduce the agile movement

. Review the principles of agile software development

. Understand agile data modeling

. Explore basic and auxiliary principles of agile modeling

. Examine primary and additional practices of agile modeling

. Discuss agile documentation

. Learn to recognize agile data models

. Study evolutionary data modeling in detail

The adoption of agile software development methodology is a recent phenomenon. The

benefits derived from the practice of this method have propelled this new set of principles

and practices to wider acceptance. More and more organizations have begun using the new

methodology. It has now permeated every aspect of software development—analysis,

design, data modeling, generating code, and even project management.

Lately, several books have appeared on the scene, notably by Scott W. Ambler and

Sanjiv Augustine. I am indebted to these authors for the material in this chapter. Note

the reference to these publications and others in the bibliography at the end of the book.

As this methodology is likely to be unfamiliar to many readers, we will begin with an

introduction to the agile movement itself. As you will see, the methodology is not a set of

“how-to’s.” It actually consists of overarching guidelines for the practice of some funda-

mental principles. Practicing agile principles requires a certain mindset; a certain willing-

ness to be flexible and nimble in software development. Change is real and change must

375

Data Modeling Fundamentals. By Paulraj Ponniah
Copyright # 2007 John Wiley & Sons, Inc.

even be welcome—this is an underlying theme. When you develop software or create a

data model in an incremental manner, you are really adopting agile principles.

Figure 11-1 illustrates how the agile software development methodology envelopes the

development effort.

You will get a good feel for agile development by exploring its core and supplementary

principles. You will learn how agile development takes shape in practice. We will then

examine how agile development principles and practices apply to data modeling.

We will conclude with a close look at evolutionary data modeling—a direct outcome of

adopting agile development principles.

THE AGILE MOVEMENT

Although principles of agile development cover the wider aspects of software develop-

ment, our primary focus is on the data-oriented issues, and particularly on data modeling.

Software development like most human activities requires people to work together to

achieve common goals. A data modeler cannot create a data model in isolation but has

to cooperate and work with other members of the data and application groups as well

as with the users and stakeholders. The environment must be set up as shared with joint

ownerships and joint responsibilities.

However, in a development project, cooperation and collaboration appears to be difficult.

Specialists tend to have a narrow focus, just concentrating on fragments of the whole effort.

Priorities and expectations of different groups are not synchronized. Poor communication

poses serious problems. Inadequate documentation—too little or too much—defeats its

very purpose. Guidelines on application and data system development are mostly absent.

FIGURE 11-1 Agile software development.

376 CHAPTER 11 AGILE DATA MODELING IN PRACTICE

Organizations suffer far-reaching consequences. Development efforts take too long and

become too expensive. Users and stakeholders get frustrated. Finger-pointing is a common

feature of such environments. Ongoing feuds among groups in the development team

result in rampant political maneuvers. Important issues slip through the cracks.

How It Got Started

The agile movement was initiated to address the problems of traditional development

efforts. The challenges faced by developers had to be recognized and solutions found.

Organizations were not prepared to tolerate budget overruns and inordinate delays in

development projects. A radically new way of approaching development efforts was

called for.

Answering the clarion call for reformation, an initial group of 17 methodologists met in

February 2001 in the city of Snowbird, Utah, and formed the Agile Software Development

Alliance (commonly known as the Agile Alliance). This group did not consist of pro-

fessionals of exactly the same skills and background; the group spanned a panel of pro-

fessionals with different backgrounds and experience levels. They met with one primary

goal: dramatically improve the software development process.

The initial members of the Agile Alliance agreed on a bold manifesto for bringing about

a change in the software development effort. And based on the manifesto, the group com-

piled a list of core and supplementary principles to guide better software development.

Agile Alliance Manifesto. Four simple value statements defined the manifesto. It is a

way of highlighting four core values in software development and emphasizing these over

others. The manifesto enumerates preferential and underlying themes for successful soft-

ware development. These are fairly obvious values; nevertheless, grossly neglected up

till then.

The following describes these fundamental and significant values.

People and Interactions. People on a project and how they react with one another make

or break a project. People create success, not the tools and processes. Tools, techniques,

and distinct processes are important; but, more significant are the people working together

and performing the processes using the tools and techniques.

Usable Software. The goal of a software development project is usable, working soft-

ware. If you produce a wonderful piece of documentation detailing how the software

will perform without the actual working software itself, the project has failed. Documen-

tation has its place; but, more than documentation, the focus should be more on producing

working software.

User Collaboration. Free and open participation of the various user groups becomes

extremely essential for successful software development. They are the ones who can

tell you what they need. For participation, a set of roles and responsibilities may be

devised. More than a contract-type arrangement for user participation, a willing collabor-

ation is a lot more effective.

Acceptance of Change. Everyone knows that changes are inevitable in all projects.

However, people working on software development projects make little provision to

THE AGILE MOVEMENT 377

handle changes while the development effort is in progress. Focus more on accommodat-

ing changes than rigidly following the original plans and losing the game at the end.

Principles of Agile Development

Based on the core values expressed in the Agile Alliance manifesto, the group defined a set

of 12 fundamental principles for guiding software development including agile data

system development. Again, many of these principles appear to be commonsense

notions, nevertheless neglected in development projects until then. The principles con-

dition the way agile development must take place. You can derive the agile development

practices for these principles.

Listed below are the basic principles:

1. Top priority is satisfaction of the user groups by providing valuable, working software.

2. Simplicity—doing the essential and avoiding the complex—is a key to success.

3. Welcome and embrace changes even at late stages; provide mechanisms to accom-

modate changes.

4. Deliver working software at frequent intervals; early deliverables instill confidence.

5. Business professionals and developers must work in collaboration on a daily basis

throughout the project.

6. Encourage motivated individuals with proper support and conducive environment

so that projects may be successful.

7. Face-to-face interaction among team members and with user personnel is the best

form of communication.

8. Measure progress only through working software, not by size of the documentation.

9. Promote sustainable, steady pace among developers and user groups.

10. Pay continuous attention to technical excellence and good design.

11. Self-organizing teams produce the best architectures, requirement definitions, and

designs.

12. At regular intervals, the entire team must get together for status assessment, reflec-

tion on effectiveness, in-flight corrections, and fine-tuning adjustments.

Philosophies

The agile data (AD) method applies to all activities relating to data modeling and design of

the database system. The agile principles stated above act as guidelines for the agile data

method. The principles are rooted in certain underlying philosophic considerations.

Agile data philosophies include the following.

Significance of Data. An organization’s data is the centerpiece of all applications.

Mostly, applications are just concerned with the manipulation of data—storage, retrieval,

modification, and deletion of data.

Uniqueness of Every Project. Each and every project is unique with its own specific

challenges and opportunities. Data considerations are directly connected to the particular

project issues.

378 CHAPTER 11 AGILE DATA MODELING IN PRACTICE

Crucial Nature of Teamwork. Working together cannot be overemphasized. All bar-

riers to cooperation must be removed.

Need for Optimal Solutions. Without going to extremes on either side, the project

team must create solutions that work optimally and are best suited for the conditions of

the project.

Striving for Overall Fit. The project must be executed within the overall architecture

and software goals of the organization. The project must be totally enterprise-aware.

Generalizing Specialists

Development projects of modern days tend to be large and complex. A variety of skills are

called for to make the project a success. You need business analysts, systems analysts, pro-

grammers at various levels, data modelers, data administrators, database administrators,

documentation specialists, and so on. All these professionals must be well coordinated

for producing the desired results. Each person on the project becomes highly specialized

with a limited set of skills.

The problem with specialists is that their focus is usually narrow. They fail to see the

big picture and do not greatly appreciate how all efforts in a project fit together. Specialists

find it hard to work together because they fail to see clearly how the others need to function

in the project.

Agile development practitioners seek to remedy the situation by introducing the

concept of generalizing specialists. Generalizing specialists have begun to support agile

development projects. A generalizing specialist starts with one or two types of skills

and then moves on to acquire more and more different types. They seek to fulfill different

roles in a development project. A person with data modeling skills become adept at data-

base implementation and administration. A programmer acquires analysis skills. A gener-

alizing specialist understands how everything fits together in a development project. The

basic expectation is that a project composed of generalizing specialists will be more effec-

tive than one made up of specialists alone.

AGILE MODELING

So far, we have considered agile development in broad terms. We dealt with the reasons for

the emergence of agile development and noted how the agile alliance got started. We will

now turn to our main focus in this book, namely, data modeling and how agile development

principles would apply to data modeling. Let us begin our discussions of agile modeling.

Agile development has a wider connotation. The term may be applied to a collection of

values, philosophies, and practices for requirements, analysis, architecture, and design.

We will narrow these down to the data modeling effort in a development project.

Agile development practitioners say that the secret of agile modeling is not the data

modeling techniques themselves but how the techniques are applied and used. Agile mod-

eling is not prescriptive—it does not define procedures on how to put together a particular

type of model. Instead, it concentrates on how to become a good modeler by applying the

agile development principles. Perhaps, agile modeling must be thought of as an art rather

than as a science.

AGILE MODELING 379

What Is Agile Modeling?

Agile modeling (AM) recognizes the primary values promoted by the Agile Alliance as

key to success for creating effective data models. Very quickly, these values are summar-

ized as follows:

. Individuals and interactions over processes and tools

. Working software over elaborate documentation

. User collaboration over contract negotiation

. Response to change over strictly adhering to plan

Two important objectives drive agile modeling:

Effective, Lightweight Modeling. Put into practice agile development principles and

values to ease the modeling effort.

Agile Approach in Technique Application. Apply modeling techniques always in

the context of agile development principles.

Again, the general values of agile development apply to agile modeling with full force.

Simplicity. Strive for the simplest data model that truly and optimally represents the

information requirements.

Communication. Promote effective communication among data modelers and within the

overall project team.

Feedback. Receive early and frequent feedback on the modeling effort from users and

other stakeholders.

Steadfastness. Stick to your steady pace and objectives.

Humility. Have eagerness and humility to recognize shortcomings and admit input from

others.

Basic Principles

Agile development practitioners enumerate several core principles to guide agile model-

ing. These principles expand the values and philosophy of agile modeling.

Let us highlight the important principles applicable to agile modeling.

Keep It Simple. Assume that the simplest data model is the best model. Avoid complex-

ities and intricate representations.

Embrace Change. Learn to accommodate changes as the data model evolves. Incorpor-

ate changes in small increments.

Secondary Goal. After this phase of the modeling effort is complete, the model must be

flexible enough to get integrated with the next data modeling effort.

380 CHAPTER 11 AGILE DATA MODELING IN PRACTICE

Model with a Purpose. Constantly step back and review the purpose of the model.

Keep the purpose of the model in view at all times.

Maximize User Investment. A data model must provide maximum return to the users

for their investment of time and resources to the project.

Open Communication. Provide for free and honest communication among data mode-

lers and the rest of the project team.

Quality Output. Be mindful of the quality of the data model that is being created.

Rapid Feedback. Place high premium on feedback from the users and other members

on the data model at various stages.

Keep It Light. Do just enough modeling and create just enough documentation.

Auxiliary Principles

Agile development practitioners also specify a few supplementary principles for agile

modeling.

Know Your Tools. Have sufficient knowledge to choose the right techniques and use

them appropriately.

Listen to Instincts. Experienced data modelers and software developers in general

learn to pay attention to “gut feel” and input through instincts.

Local Adaptation. Adapt your methodologies and techniques to your particular

environment in the organization.

Project-Wide Learning. Encourage team members to learn from one another. This will

promote team cooperation. Everyone can learn from everyone else.

Content More Important. The content of the data model in terms of its components is

more important that how the contents are laid out.

PRACTICING AGILE MODELING

We have covered the values and principles of agile modeling. These cannot remain just as

principles. Without application, principles are of little value. You may understand the prin-

ciples. But to produce results, the principles must be put into practice.

In this subsection, we will enumerate the primary and additional practices in agile mod-

eling. Again, these are not methods or techniques. These indicate the way overall modeling

is carried out when you adopt agile modeling. These practices are underlying guidelines

for agile modeling.

Primary Practices

Primary agile modeling practices include the following.

PRACTICING AGILE MODELING 381

Use Simple Tools. CASE modeling tools are useful, but sometimes for certain situ-

ations a paper-and-pencil technique itself may be sufficient. Do not go for complex tools.

Show Model Components Simply. Keep the arrangement of model components in a

model diagram as simple and straightforward as possible.

Emphasize Simple Components. Use the simplest modeling components for the

purpose at hand.

Adopt Incremental Modeling. Create partial data models in small increments.

Share Ownership. Allow all data modelers collective ownership of the models.

Promote Collaborative Modeling. Ensure that data modelers can work together and

cooperate.

Apply the Right Modeling Artifact. Use the proper component for the specific

requirement.

Iterate to More Suitable Artifact. If a particular component does not serve the purpose

for correct representation, shift to a more suitable component. For example, use an entity

type instead of an attribute.

Strongly Encourage Active User Participation. Projects usually fail because of

lack of active user participation.

Additional Practices

A few additional practices of agile modeling also apply.

Create Model to Understand. A good model helps all concerned understand the infor-

mation requirements.

Create Model to Communicate. A good model is also an excellent means for com-

munication with user groups and among data modelers and application developers.

Adhere to Modeling Standards. Formulate standards for model development and

follow the standards rigorously.

Create and Discard Temporary Models. In the course of iterative data modeling,

intermediary and temporary models will be created. Make the best use of such temporary

models and discard them after they serve their purposes.

Formalize Contract Models Cautiously. When outside teams require the data model

that is being created for further implementation, firm up and formalize the contract models

carefully.

382 CHAPTER 11 AGILE DATA MODELING IN PRACTICE

Use and Reuse Resources. Standard models for industries and model templates are

available for use to create the particular model. Use such resources.

Role of Agile DBA

In a traditional development project, the database administrator (DBA) creates a physical

data model from the logical model and implements the model as a database using the

selected database management system (DBMS). The DBA’s role begins late in the devel-

opment project. It tends to concentrate more on the administration and maintenance func-

tions for a database.

However, as agile development promotes generalizing specialists, an agile DBA has an

expanded role. Perhaps, an agile DBA in an organization could have acquired additional

data modeling skills to create the conceptual and logical data models as well. This arrange-

ment may work well in a smaller environment where the DBA’s responsibilities may be

enlarged to include several types of activities.

An agile DBA’s functions may include the following:

. Accommodate changes and keep database schemas synchronized with changing

models.

. Develop data models in an iterative, incremental manner.

. Enforce data modeling standards and procedures.

. Mentor other project team members in data modeling methodologies.

Agile Documentation

Documentation is usually the bane of a development project. Developers have a sympto-

matic dislike for creating documentation. Nevertheless, documentation is an integral part

of every development effort.

Documentation itself may be made agile when certain principles are applied. It may

even be made palpable to developers. The following principles apply to agile

documentation.

Documents Are Just Sufficient. Avoid unnecessary details and be free from

repetitions.

Documents Are Properly Indexed. Provide indexes to find information in the docu-

ments easily and quickly.

Documents Are Accurate and Consistent. Various parts of the documents are

consistent with one another, and the documents provide correct information.

Documents Contain Critical Information. Only highly important information gets

documented.

Documents Describe Fairly Firmed Up Details. Documents do not contain fluid

information that is constantly changing.

PRACTICING AGILE MODELING 383

Documents Fulfill a Purpose. Documents fulfill a defined purpose in a cohesive

manner.

Documents Maximize User Investment. Documents provide maximum benefits to

user groups by providing essential information.

Documents Are Meant for Specific Groups. Each set of documents is compiled and

written for specific development groups such as programmers, analysts, users, and so on.

Recognizing an Agile Model

Having reviewed the principles and practices of agile modeling, we can now ask the ques-

tion: Given a data model, can you recognize that the model is agile? What are the features

of an agile data model?

Let us just summarize the hallmarks of an agile model. A data model may be said to be

agile if it is

. as simple as possible,

. clearly understandable,

. fulfilling its purpose,

. sufficiently accurate,

. sufficiently consistent,

. sufficiently detailed, and

. provides desired value.

Feasibility

Can all organizations adopt agile development? Are there any restrictions? If your organ-

ization is committed and geared toward prescriptive processes, then agile development

may not be encouraged. Government agencies and large, established financial institutions

are not likely candidates for agile development. Also, agile development may not be con-

ducive to large development teams with teams geographically dispersed. Close collabor-

ation among team members enables agile development.

Agile modeling is likely to be successful under the following circumstances.

Stakeholder and Management Support. AM, by its very nature, cannot succeed

without total management support and active involvement of the stakeholders.

Free Hand for Development Team. The project team must be given ample freedom

and proper mandate to practice AM although this may be new to your organization.

Motivated Team Members. If the project team is not completely sold on AM, it is not

likely to succeed.

Availability of Sufficient Resources. Apart from other things, AM needs people to

work together and collaborate. Resources are needed to facilitate close collaboration, such

as contiguous work spaces, meeting rooms, suitable CASE tools and other tools, and so on.

384 CHAPTER 11 AGILE DATA MODELING IN PRACTICE

Commitment to Incremental Development. Communication, feedback, action

based on feedback—essential practices of AM can thrive only when the modeling

process is performed incrementally and iteratively.

Suitability of Agile Approach. The specific modeling process must be amenable for

using agile principles and practices.

Changing and Uncertain Requirements. When volatile requirements are a norm,

agile modeling provides practices to accommodate changes and revisions.

Strong Support of AM Enthusiast. You need the complete support of an AM cham-

pion at a sufficiently high executive level, especially if agile development is new to your

organization.

EVOLUTIONARY DATA MODELING

Evolutionary data modeling is a key for the adoption of agile modeling principles and

practices. Evolutionary modeling allows for the creation of the data model in small incre-

ments with suitable reiterations.

We will begin our discussion by reviewing the traditional approach to data modeling

and the types of problems it poses. We will reason out why flexibility is critical in the mod-

eling process. We will then examine some features of evolutionary modeling and derive

the benefits possible from this methodology.

Traditional Approach

Many organizations adopt an “up-front firm design” approach to software development

and, in particular, to modeling. The data models, once created, are frozen before proceed-

ing to the remaining phases of the overall development efforts.

This traditional approach is perpetuated in several organizations. Some key reasons for

the continuance of the approach seem to be the following:

. Lack of experience with iterative and incremental development

. Entrenched organizational culture opposing change

. Traditional mindset of developers

. Commitment to prescriptive processes

. Dearth of enabling tools

Here are a few problems resulting from the data-oriented, up-front firm design approach:

. The approach does not promote close interpersonal collaboration.

. The approach tends to encourage too much specialization.

. Data and data models are important; but, implementation issues are equally import-

ant. Data models need to be kept flexible.

. It is impossible to think through and envision at the beginning. Things evolve.

. Changes are anathema to this approach.

. Every project is different, so a “one size fits all” approach does not work.

EVOLUTIONARY DATA MODELING 385

Need for Flexibility

In incremental and iterative development, the need for flexibility pervades the entire

process. You have to keep your models flexible enough to adapt to possible changes in

the requirements even in late stages. The revisions in requirements filter down to the

data models and then on to the subsequent outputs in the development effort. Flexibility

is the key in every phase.

Figure 11-2 illustrates the significance of flexibility in agile modeling and agile

development.

The need for flexibility extends to the choice of tools and techniques as well. A few

reasons for this are as follows:

. Modeling tasks vary in extent and complexity.

. External constraints may be different.

. Team strengths, skills, and experience levels vary.

. Every individual working on the project is unique.

. Different techniques are suitable for different technologies.

Nature of Evolutionary Modeling

When you perform data modeling in an evolutionary manner, a key element in the whole

process is the accommodation of feedback and change. You do modeling in small incre-

ments. You pause and look for feedback. You incorporate changes based on feedback and

reiterate. The cycle continues until the data model is right up till then.

FIGURE 11-2 Flexibility in agile development.

386 CHAPTER 11 AGILE DATA MODELING IN PRACTICE

In an evolutionary model, the evolution takes place based on stimuli from either side of

the model creation effort. What do we mean by this? Let us examine the evolution.

A data model, as you know, is the abstract representation of information requirements.

All aspects of information requirements get incorporated in the data model. As you collect

information requirements and create the data model, the model evolves in a “creation–

feedback–revision” cycle.

After the initial set of iterations, the data model is nearly complete. However, as the

data model is taken down further into the remaining development phases, feedback is

sent backward for certain revisions to the data model. Issues further down the line

reveal the necessity for certain revisions in the data model itself. The model evolves

further in “creation–feedback–revision” cycle.

Figure 11-3 shows these two aspects of datamodel evolution.Notice the reiteration cycles.

The data model is deemed to be complete when all action on the final feedback is done.

Benefits

Evolutionary data modeling produces a correct and complete model. Let us summarize the

important benefits derived from evolutionary data modeling.

. As modeling is performed in small, manageable increments, the modeling task is

simplified.

. Iterative modeling fine-tunes the model at each iteration.

. It promotes review and feedback by users at frequent and regular intervals.

. It enables changes to requirements to be incorporated in the model as the iterations

continue.

FIGURE 11-3 Evolutionary data modeling.

EVOLUTIONARY DATA MODELING 387

. It allows for changes resulting from design and implementation issues to be back-

pedaled and accommodated.

. Iterations and fine-tuning promotes correctness of the model.

. Incorporation of feedback from both sides even in late stages promotes completeness

of the model.

CHAPTER SUMMARY

. Agile software development methodology, a fairly recent phenomenon, is bringing

about a dramatic improvement in software development.

. Agile development principles and practices are extended to data modeling.

. The Agile Alliance manifesto establishes fundamental and significant values on

people interactions, usable software, user collaboration, and acceptance of change.

. Agile development rests on a number of underlying principles. It is not exactly a set of

techniques, a collection of “how-to’s,” but a new creative way of software development.

. Agile modeling emphasizes a set of core principles and practices to keep the model-

ing process simple, light, and flexible. It encompasses all aspects of data modeling.

. Features of an agile model: as simple as possible, clearly understandable, fulfilling its

purpose, sufficiently accurate, sufficiently consistent, sufficiently detailed, and pro-

viding desired value.

. Evolutionary data modeling is a key for the adoption of agile modeling principles and

practices. This is different from the traditional approach of up-front firm design. Evol-

utionary modeling produces a number of benefits.

REVIEW QUESTIONS

1. Match the column entries:

1. Agile methodology A. Measurement of progress

2. Changes B. Discard after use

3. Users and Developers C. Provides desired value

4. Working software D. Too much specialization

5. Optional solution E. Just sufficient, concise

6. Temporary models F. Inevitable in software development

7. Agile documentation G. Incremental and iterative

8. Agile model H. Collaboration essential

9. Traditional modeling I. Set of principles and practices

10. Evolutionary modeling J. No extremes, moderate

2. Agile development is a new approach to development. It is not a set of specific

techniques. Discuss.

3. What problems in software development did the agile movement seek to resolve?

Why do you think it is succeeding?

4. List any six basic principles of agile development. Describe any one of these.

388 CHAPTER 11 AGILE DATA MODELING IN PRACTICE

5. Agile development promotes optimal solutions. Explain the principle of not going

to extremes on either side.

6. Who are the generalizing specialists? How is this concept necessary and applicable

to today’s software development environment?

7. State any six principles of agile modeling. Pick out any two of these principles and

explain how these two improve the data modeling process.

8. Describe how the data modeling process will change when you adopt agile model-

ing. Give a simple example.

9. How is evolutionary data modeling different from the traditional approach?

Describe briefly.

10. List the benefits of evolutionary data modeling.

REVIEW QUESTIONS 389

12

DATA MODELING:
PRACTICAL TIPS

CHAPTER OBJECTIVES

. Specify the nature and usefulness of practical tips

. Cover tips for conceptual modeling and prior phases

. Provide tips for exploring and defining requirements

. Highlight tips on obtaining effective stakeholder participation

. List tips on iterative modeling

. Consider tips for special cases in modeling

. Enumerate tips for conceptual model layout

. Expand practical suggestions to logical modeling

As we reach the end of our study of data modeling, we would like to provide some

practical suggestions and tips. As you gain more and more experience in data modeling,

you come across special situations and out-of-the-ordinary cases. You may have to

adapt your techniques to suit the conditions. As you run into variations, you learn to

use your modeling skills more and more effectively.

In this chapter, we will consider practical tips on conceptual data modeling and require-

ments definition, its prerequisite. At the end of the chapter, we will expand the suggestions

to logical data modeling. Remember, these suggestions and tips may not apply exactly to

your particular circumstances. Nevertheless, they will provide insights into how you can

best adapt them and use them.

391

Data Modeling Fundamentals. By Paulraj Ponniah
Copyright # 2007 John Wiley & Sons, Inc.

TIPS AND SUGGESTIONS

Although several of the tips and suggestions provided have been distilled out of long

experiences and expert skills of data modeling practitioners, these are not silver bullets.

These suggestions have practical significance in that they have worked before and are

likely to work again in similar circumstances. In every data modeling project, there will

be special cases and unusual situations. When you are faced with such circumstances,

these tips will help you to address the special issues and find effective solutions.

Some of the suggestions are general tips that will be useful in most projects. Certain

others focus on single types of issues or situations. Both categories of suggestions are pro-

vided here, perhaps intermingled and connected.

Nature of Tips

The suggestions given in this chapter mostly relate to important phases of the development

effort—conceptual and logical data modeling. Even so, suggestions on physical data mod-

eling and subsequent phases of the development effort are not included here. As these are,

in a strict sense, outside the scope of our discussions, you will have to look elsewhere at

other literature for these phases.

Here are some characteristics of the suggestions provided here. These tips

. deal with application of modeling techniques in special cases,

. relate to people interactions,

. are about modeling procedures,

. touch upon documentation,

. provide insights for geographically dispersed user groups,

. focus on stakeholder involvement,

. advise on iterative modeling, and

. cover streamlining and enhancing model layouts.

How Specified

Sometimes when you are given practical suggestions, you are also provided detailed infor-

mation on the actual instances where the suggestions were applied. First you are given a

history and description of the actual circumstances. Then you are exposed to the practical

suggestions that applied to the actual cases. This approach may have some merit.

However, such an approachwill lengthen the overall narration. No two situations in differ-

ent modeling projects are exactly same. Therefore, the solutions also are likely to differ.

Therefore, we have taken the approach of just stating the suggestions as they apply to different

circumstances without detailing the history and narratives of the circumstances themselves.

The subheadings inform you of the circumstances and the special cases. Then, within

each subsection, you will find the suggestion. This is a shorter method, a simpler approach.

How to Use Them

Not every suggestion may be applicable to each individual reader or each individual

project. The conditions vary; the situations differ. Nevertheless, each suggestion may

point to a way of dealing with a similar situation even though remotely similar.

392 CHAPTER 12 DATA MODELING: PRACTICAL TIPS

Quickly go through the broad array of suggestions in this chapter. If some are of par-

ticular interest to you, revisit them. However, keep a general inventory of the range of tips.

Whenever you are faced with special situations, then go back and look up suggestions on

similar circumstances.

There are some general guidelines on specific phases in the development life cycle.

These could be of use for every data modeler irrespective of the particular modeling pro-

jects. Review such general guidelines carefully and adopt them in practice.

REQUIREMENTS DEFINITION

We begin with some suggestions on the requirements definition phase. Although

requirements definition is an iterative effort, the final definition of requirements drives

the data modeling effort. Bad requirements definition invariably results in bad data

model.

Requirements definition consists of several tasks. There are many aspects to the

requirements definition phase. We have selected a few significant aspects of the phase

and provide a few practical tips.

Interviews

Interviewing user groups to determine requirements—a traditional method—is still one

of the useful methods for requirements gathering. You organize interviews with users,

document the results of the interviews, try to understand the requirements, and then

use the results of the interviews along with other information to start your data modeling

process.

Here are few tips on user interviews:

. Always prepare for each interview. Do not conduct any interview without adequate

preparation.

. Every interview must have a published list of topics to be covered.

. Ensure that the user is also prepared and ready to discuss.

. Users have their own day-to-day responsibilities. Make sure they block the time for

the interviews without any interruptions.

. If possible, use a neutral and convenient venue.

. Interviews are generally one-on-one. Keep the size of the group of users to be

interviewed together to three or less. Otherwise, the interviews turn into large group

sessions.

. Although called interviews, requirement gathering sessions are interactive sessions—

not just you asking the questions, and they providing the answers.

. Make sure you understand the information received from the users clearly. Users

cannot always articulate their requirements clearly. When you get each piece of

information, play it back, and then get your understanding confirmed.

. Make sure you interview users at every level—executive, managerial, and oper-

ational. There is a tendency to bypass managerial and executive staff.

. Document the proceedings of every interview and get the document reviewed and

confirmed by the particular user.

REQUIREMENTS DEFINITION 393

Group Sessions

Apart from one-on-one interviews, group sessions become necessary for information gath-

ering. Group sessions happen for several reasons. After interviews with individuals in a

department, you may want a joint group session with the entire department. Sometimes

you can get the whole group together to confirm the requirements gathered piecemeal

earlier in individual interviews. Some issues may be thrashed out quickly in large group

session—individual interviews take time.

Whatever may be the reason for a group session, group sessions have specific nuances.

Here are some suggestions on group sessions:

. Treat a group session as a more formal meeting.

. Always have a published agenda distributed well in advance.

. Include action items in the agenda under each topic.

. Set a time limit for each group session.

. Ensure that the key players among the users are able to be present.

. It is difficult to organize too many group sessions; therefore, plan each of the few

possible ones very carefully.

. Choose a convenient location with amenities for presentations.

. Two popular methods for group sessions: roundtable discussion or classroom type

presentation. Choose the appropriate type according to what is desired to be achieved

in the group session.

. Establish methods for getting a consensus from the group.

. Assign responsibilities and time limits for action items.

. Nominate user representatives for follow-up.

. Document proceedings in a summary of discussion format and distribute.

Geographically Dispersed Groups

If you are data modeling for a worldwide organization, the chances are that your user

groups will be located at geographically dispersed sites in different countries. Even in

most domestic organizations, the users are dispersed at various sites within the country.

This phenomenon has become quite common in modern times. Here are a few specific sug-

gestions on requirements definition where user groups are geographically dispersed:

. First and foremost, be conscious of the local languages and cultures. If you are not

careful enough, you are likely to offend prevailing practices.

. If you dealing with multinational groups, the differences are all the more striking. A

requirements gathering effort in Germany is substantially different from the same

effort in France. One group would be more methodical and give undue consideration

for details; the other group may attend more to qualitative than quantitative

considerations.

. The methods for interviews and group sessions are the same even if the user groups

are dispersed. However, coordinating and organizing them would be difficult.

. Before face-to-face meetings, do all the preliminary work over the phone, conference

calls, and video-conferencing.

394 CHAPTER 12 DATA MODELING: PRACTICAL TIPS

. Conducting group sessions tends to be difficult, especially if you do not speak the

local language. Try to use an associate who is fluent in the local language.

. In group sessions, the participants will tend to break out into minigroups conversing

in the local language and frustrating the overall meeting. Be aware of this problem

and set acceptable rules and guidelines before the start of each session.

Documentation

Documentation of the requirements is essential. It is a means for confirming your initial

understanding of the requirements. It also forms the basis to get the modeling effort

started.

Here are some tips on requirements definition documentation:

. Remember, documentation must be just sufficient—not too much, not too meager.

Based on your particular data modeling effort, find the golden mean.

. A well-organized document is a useful document. Subdivide the document according

to departments, functions, geographical locations, or some other way suitable to your

particular project.

. Do not wait until the end of the requirements definition phase to start on the docu-

ment. Prepare it in increments.

. The supplementary document that accompanies the data model diagram finds infor-

mation from the requirements definition document. Keep this in mind while defining

requirements.

. Requirements definition documentation evolves as the definition phase continues.

Make provision for accepting changes and revisions as the documentation evolves.

. For some period of time, requirements gathering and data modeling efforts are likely

to overlap. Allow for changes to the definition document even at this stage.

. In traditional development projects, requirements definition used to be frozen at a

given point and changes were completely barred after that. This was not always feas-

ible. In an agile development effort, changes are meant to be accommodated as long

as possible without extending the project indefinitely.

Change Management

In an iterative development approach, accommodation of changes as you go along in the

development effort is a necessary factor. This is somewhat a departure from traditional

development approaches. So, accept the notion of providing for changes right from the

beginning of the project.

Here are a few suggestions on change management:

. First of all, establish a definitive change management procedure.

. Inform your users about change management and impress upon them the need to use

it judiciously.

. Discuss with users clearly how they will request for changes and how changes will be

incorporated in the model during work-in-progress.

. Document all changes—initiation, reason, incorporation of the changes, and so on.

REQUIREMENTS DEFINITION 395

. Making change management as formal as possible depends on your organizational

culture. Do not make it too rigid and turn your users off. On the other hand,

making it too informal encourages users to pay little attention at the beginning.

This will render your initial cut of the data model completely worthless.

. Set up an acceptable approval process to filter the changes.

. As you do incremental modeling, relate each version of the model to the changes

incorporated. Document the version status.

. Changes cannot go on forever. There must be cutoff points. This may be done in

several ways. You may set cutoff points for each partial model and then when all

the partial models are integrated. You may set cutoff points by iterations.

. The desire to accommodate changes can lead to making change management a project

by itself. Avoid undue effort just on change management. Change management is

important, but that is not the whole project.

Notes for Modeling

Notes for modeling—what, another piece of documentation? We looked at the require-

ments definition document, how it evolves and gets finalized. Can we not use that docu-

ment as notes for modeling? There are several reasons why separate notes are useful.

First of all, although the requirements definition document may be used for reference

all the time, the set of notes of modeling is kept by the data modelers for their specific

use. The requirements definition is a common document meant for many groups participat-

ing in the development project.

Notes for modeling are prepared by data modelers, primarily for their private use. Here

are a few tips:

. Tailor-make the notes to suit your particular preferences. There are no standards.

. The medium on which you keep your notes is also up to you.

. Make sure your notes are kept synchronized with the requirements definition docu-

ment as it evolves. Note down all the changes to the data model as and when they

are requested.

. Separate sections for entity types, attributes/identifiers, and relationships may be a

good method for dividing up the notes.

. Note down special cases in a separate section.

. Have a separate section for issues you need to get clarified by the users. Make a note

of the resolutions.

. If you are modeling for a global organization, contact information with phone

numbers proves to be very useful.

. Index your notes.

. As in every type of document, strive for an optimal level of documentation.

STAKEHOLDER PARTICIPATION

Participation and involvement of stakeholders and user groups are of such enormous

importance that we should separately consider some suggestions on this aspect of the

396 CHAPTER 12 DATA MODELING: PRACTICAL TIPS

software development effort. In this section, we will review a few different facets of the

participation and go over a few tips on how to make the participation effective.

When we mention stakeholders, we include a variety of people and groups. Anyone

outside of the information technology group who has a direct interest in the outcome of

the software development effort is necessarily included in this broad category. These

people are experts in the subject areas in which context the development takes place.

These are the ones who will be using the resulting database regularly. These are the

ones who can continually provide input on what the information requirements are.

Let us consider four distinct factors of participation: how to organize participation, how

to establish user liaison persons, how to promote continuous interaction, and what to do

when stakeholders are at multiple distant sites.

Organizing Participation

Organizing stakeholder participation includes promotion of the concept, methods for promo-

ting participation, setting up participation parameters, making participation really happen on

a day-to-day basis, and so on. Participation may be left to happen on an ad hoc basis; the

stakeholders probably would like this informal, laid-back approach. However, unless stake-

holder participation is put down as a definitive objective and emphasized enough, you will

not see enough participation. Not that the stakeholders are irresponsible, but software devel-

opment is not their main job as it is for you in the information technology department.

Here are a few tips on how to organize stakeholder participation:

. At the very beginning of the project during project initiation itself, stress the import-

ance of their participation to the stakeholders. Emphasize that their involvement is

indispensable for the success of the project. Do this orally at initial meetings and

also through written memos.

. Describe the scope of stakeholder participation to them clearly.

. From the beginning, foster a sense of joint ownership of the project with the

stakeholders.

. Go to great lengths to describe the benefits of participation and illustrate with

examples.

. Also, present the dangers of project failure if the participation falls below required

levels.

. Make each stakeholder understand his or her role in the cooperative effort.

. Endeavor to make it easy for each stakeholder to participate so that he or she will still

be able to perform his or her normal duties. As far as possible, try to work around their

routine responsibilities.

. Set up and publish timetables for the participation showing who will be involved in

what roles.

. Think of ways to encourage stakeholders with rewards for participation.

User Liaison

User liaison persons play a special role in software development. These persons are

selected from the pool of stakeholders. In most organizations, for the duration of the devel-

opment project, user liaison persons are relieved of most of their daily routine work. They

STAKEHOLDER PARTICIPATION 397

need to spend most of their time on the project itself. Those stakeholders who could be on

the project almost full-time are known as user representatives on the project.

As the term liaison implies, user liaison persons act as catalysts for collaboration

between the information technology team and the stakeholders at various levels. They

keep the interactions alive and smooth.

The following suggestions apply to user liaison persons:

. User liaison persons must have excellent interpersonal skills. They must be able to

work well with people at various levels. Recommend only such persons for this role.

. User liaison persons need not be subject area experts, but they must know the work-

ings of the departments and the overall structure and functions of the organization.

. Depending on the availability and qualifications of user liaison persons, nominate a

few to be continually on the project as user representatives.

. Attempt to have at least one user liaison person for each department.

. Spell out the responsibilities of each user liaison person clearly.

. The user liaison person will act as the conduit to the respective department or set up

other means of communication with the department.

. All important issues concerning a department will go through the user liaison person.

. Use the liaison person to coordinate interviews and group discussions.

. Let the user liaison person get the requirements definition confirmed.

. Channel all changes and feedback through the user liaison persons.

Continuous Interaction

We discussed stakeholder participation and also user liaison persons who facilitate such par-

ticipation in a development project. One aspect has to be clear about the participation of the

stakeholders. The cooperation and collaboration of the stakeholders with the information

technology team cannot be sporadic. The interaction must be continuous and ongoing.

Let us list a few suggestions on continuous interaction between the two groups.

. Dispel wrong ideas about continuous interaction from the minds of the stakeholders.

Even today, many user departments assume that initially they spell out a few require-

ments of theirs to the information technology department, whose members then go

and do the software development all by themselves.

. Explain the necessity to consult with them throughout the project.

. Describe the iterative nature of software development, especially data modeling.

. Specify each iteration and indicate what is expected of the stakeholders at each iteration.

. Explain to the stakeholders the interaction at each phase from beginning to end of the

project. Set a continuous timetable for interaction.

. Share responsibilities with users from the beginning.

. Choose suitable users for interaction at different stages.

. User groups may share the collaborative efforts so that no one group is overburdened.

. Develop long-term personal relationships with the stakeholders. Both groups are

there together for the long haul.

. In order to sustain the interaction, stipulate how completion of documents becomes a

joint responsibility.

398 CHAPTER 12 DATA MODELING: PRACTICAL TIPS

Multiple Sites

In a global organization, stakeholder participation has to be extended to multiple sites. You

will have user groups residing in various countries. Whenever a project spans stakeholders

in multiple sites, the joint effort needs special consideration.

Here are a few tips on stakeholder participation from multiple sites:

. Keep top management at each site involved in the project.

. Find a primary promoter of the project at each site.

. Appoint at least one liaison person from each site.

. Each contiguous or logical group of sites may have one user representative to be part

of the project effort on a continual basis.

. Encourage participation through group meetings. As necessary, invite users from con-

tiguous sites for group meetings at a site more or less central for that set of sites.

. From time to time, invite key personnel from the dispersed sites to meet with

members of the project team at the headquarters for the project team.

. Choose and send appropriate project team members to visit sites periodically to keep

the two-way communication going.

. Keep progress at all sites coordinated and balanced.

. Keep all sites continually informed of the overall progress.

. Encourage ownership of specific parts of the data models by individual sites if this is

feasible.

ITERATIVE MODELING

Iterative modeling and incremental modeling go hand-in-hand. You break up the modeling

effort into manageable chunks and work incrementally on one fragment at a time. As you

proceed from one fragment to the next, you integrate the previous fragment to the current

fragment being worked on.

Even when working on a single fragment, you go through an iterative process. You

create an initial cut of the model for that fragment, present the initial version to the

users, get their feedback, and refine and produce the next version. A few iterations of

the creation–feedback–refinement take place.

In this section, we will cover cycles of iteration, logical increments for modeling, inter-

action between requirements definition and modeling, and integration of all the completed

fragments. Each of these aspects is significant for iterative modeling.

Establishing Cycles

Iterative modeling consists of cycles of iterations. Each cycle contains a creation phase, a

review and feedback phase, and a phase in which the model is refined. These iterations

take place for each fragment of the data model.

The following are a few suggestions for establishing and managing iteration cycles:

. Do not overdo the iterations. Just two or three iterations are practical.

. Define the purpose of each cycle precisely.

ITERATIVE MODELING 399

. Define each phase of the iteration cycle clearly: creation/refinement–review–

feedback.

. Prepare and use a checklist of tasks for each phase.

. Establish responsibilities in each phase.

. Determine phase duration for each model fragment.

. Avoid long phases. Redo fragment sizes if necessary.

. Establish a schedule for each iteration and stick to the schedule.

. The same number of iterations may not be necessary for every model fragment.

. Define user participation clearly in each phase.

Determining Increments

Each increment of the data model builds on the previous increment. What is the ideal

increment size? What are the best practices for integrating each increment with the data

model version from the previous? We need to know how to break up the modeling

effort into manageable increments.

The following tips apply to the determination of the increments for iterative modeling:

. Smaller model fragments for iterative development are more manageable.

. Choose the size of model fragments according to experience of modelers and

users.

. Choose the best approach to incremental modeling that suits your circumstances—

component by component or fragment by fragment. In the first approach, you

create all components of one type, then move on to the next type of component,

and so on. In the second approach, you create all components for each fragment,

then move on to the next fragment, and so on.

. Fragmentation of the model by functions or user groups works well.

. Every model fragment need not be of the same size.

. If you are implementing a pilot system, choose fragments for the model necessary for

the pilot.

. If you have planned a staged delivery of the overall system, the stages determine the

nature and size of the model fragments.

. As you complete iterations for one fragment, finish integrating the fragment into the

earlier version of the data model. Then proceed to the next model fragment.

. As you progress through the model fragments, one by one, maintain continuity of

integration.

. Consider iterating the whole model if the model is sufficiently small—containing less

than 20 entity types.

Requirements: Model Interface

The data model is expected to be the true representation of the information requirements

of an organization. Therefore, while iterations takes place for refining the data model,

there must be constant interaction between requirements definition and the evolving

data model.

400 CHAPTER 12 DATA MODELING: PRACTICAL TIPS

Here are some suggestions on how this interaction needs to happen:

. At each iteration of the model fragment, check back with the corresponding part of

the requirements definition.

. Allow for reworking of the requirements definition. Until the modeling phase is com-

plete, the requirements definition could accommodate revisions.

. Constantly ensure that each iteration of the data model is kept synchronized with the

requirements definition.

. In small projects, requirements definition and modeling can be taken together for

iterative development.

. In global projects, interaction between requirements and data model may be kept at

the individual site level.

. When the overall model is nearly complete, review the model in the light of the com-

plete requirements definition.

Integration of Partial Models

As newer fragments of the data model are created and refined, they must be integrated with

the previous versions of the data model. This is a continual task—by no means simple.

The following are a few suggestions on the integration.

. If you are fragmenting the data model component type by component type, integrate

the entire model only when all component types are completed.

. If you are fragmenting the data model function by function, integrate when you com-

plete the iteration cycles for each function.

. Each integration must be complete before you proceed to the next model fragment.

. Only when the overall model is small, postpone integration until all fragments are

completed separately.

. For global projects, integration, site by site, proves to be successful.

. Sometimes, integration may be performed at different levels—integrate many partial

models into a smaller set of partial models, then into still smaller set of partial models,

and so on, until you arrive at the final model.

. If you have a pilot system, integrate the partial models for the pilot first.

. If your system has staged deliverables, integrate partials for each stage.

. Use a checklist for integration tasks.

. When the final integration is done, perform one final review, get feedback, and incor-

porate final revisions.

SPECIAL CASES

Now we turn our attention to some special cases of data modeling. During our discussions

in the previous chapters, we had considered a few special cases from time to time. Here we

want to add a few more special cases and provide suggestions to deal with these.

Each special case is described with an example. You will note why suggestions are

useful in these special cases.

SPECIAL CASES 401

Legal Entities

Consider examples of legal entities such as CLIENT, CUSTOMER, or SHAREHOLDER.

In each of these, the entity may represent a single person or an institution. A client may be

a single person or an organization. Similarly, a customer may be an individual or a

company. In the same way, a shareholder may be a single person or an institution.

In each case, information must be represented for two types of entities while preserving

the similarities and still maintaining their uniqueness. Let us specifically take the entity

type CLIENT. Clients consign property items to an auction company to be sold at

auction. Therefore, CLIENT must be shown as an entity type in the data model for the

auction company. You can have individuals as clients or art dealer companies as

clients. The data modeler faces the problem of representing CLIENT data type. Of

course, the business rules would guide the representation.

We can show the representation in three different ways. Let us look at the three ways

and note the comments of the three representations.

Figure 12-1 shows the method of representing CLIENT as a supertype of INDIVID-

UAL and DEALER.

This representation, although it may be in line with the business rules, could be cumber-

some if we have to represent complex relationships between INDIVIDUAL and DEALER.

An individual may be the contact person for a dealer company.

Another method for representation is to make CLIENT as a subtype of both INDIVID-

UAL and DEALER. See Figure 12-2.

This is perhaps a common method of representation. Although this representation pre-

serves the independence of INDIVIDUAL and DEALER, it introduces much redundancy.

Further, this representation does not clearly connote the meaning of the entity type

CLIENT.

Now look at the representation indicated by Figure 12-3 where clients are represented

by relationships.

FIGURE 12-1 CLIENT as supertype.

402 CHAPTER 12 DATA MODELING: PRACTICAL TIPS

However, this representation makes it difficult for addition of client-specific attributes.

Figure 12-4 illustrates the ideal representation. This representation preserves the inde-

pendence of INDIVIDUAL and DEALER. Also notice the lack of duplication of entity

types and attributes.

Locations and Places

Many kinds of business objects would fall under the category of location or place. A

location may be identified by three coordinates x, y, and z. In a medical center, a room

FIGURE 12-2 CLIENT as subtype.

FIGURE 12-3 CLIENT as relationships.

SPECIAL CASES 403

and bed number would constitute a location. For a customer, a street address would refer to

a location. Apartment number, PO box number, state, city, zip code, postal code—all of

these relate to locations.

How to represent locations in a data model? There seems to be a very large number of

business objects that could be included in the category of locations or places. Also, you can

combine a few of these together to signify a location.

We will examine a few standard methods for representing locations. You may adapt

these to suit your information requirements and the practices in your organization.

Simplistic Method. In this method, a location is simply described as an object with an

artificial identifier and other attributes. Apart from the selected attributes, all other possible

attributes for the location are ignored. This simplistic method assumes that every location

entity possesses only the selected attributes and no other.

Figure 12-5 illustrates this simple and straightforward method.

Locations as Subtypes. This method uses a generalization–specialization structure.

As you come across newer kinds of locations, you add each new kind to the model as a

subtype. This method is more flexible and wider in scope than the previous simplistic

method.

Figure 12-6 shows locations as subtypes. Also note how this structure may be used to

find specific locations for individual persons.

Abstraction of Location. This method presents a method for abstracting location as a

coordination object. In this case, the location entity type has no other attributes except an

identifier. Use this method only if you have several types of locations in your organizations

FIGURE 12-4 CLIENT: ideal representation.

404 CHAPTER 12 DATA MODELING: PRACTICAL TIPS

that need to be modeled. This high level of abstraction is also less amenable for the data

model to be used as a communication tool with the users.

Figure 12-7 presents the abstraction method for representing locations. Review the

figure carefully.

Time Periods

In the business world, time periods such as a calendar year, fiscal year, fiscal quarter,

evening shift, second semester, and so on are important. These must be included in the

data model for proper representation of the business.

FIGURE 12-5 LOCATION: simplistic representation.

FIGURE 12-6 Locations as subtypes.

SPECIAL CASES 405

Before attempting to define time periods in your data model, find out the specifics.

What are the requirements? Does a specific time period have start and end dates?

Should start/end times be included in addition to start/end dates? Are there any require-

ments to aggregate units such as sale units or revenue units over periods of time? Depend-

ing upon the answers to such questions, determine whether you need a separate time period

object in your data model.

FIGURE 12-7 Abstraction of location.

FIGURE 12-8 Time period: separate entity type.

406 CHAPTER 12 DATA MODELING: PRACTICAL TIPS

Figure 12-8 shows a partial data model with time period as a separate entity type. Note the

other entity types in the figure and see how they are related to the time period entity type.

However, in most data models, time periods are not shown as separate entity types. You

will adopt the method of showing time period as a separate entity type only if you need to

show the capture of time-dependent information.

See Figure 12-9 where data about time are included as attributes of other entity types.

Persons

Essentially, data modelers adopt two approaches for modeling persons and their attributes.

The adopted approach depends on whether you want the data model to represent just the

FIGURE 12-9 Time data as attributes.

FIGURE 12-10 Person entity type: current status only.

SPECIAL CASES 407

current state of the person’s attributes or whether you need the model to keep track of the

changes.

Figure 12-10 represents the simpler approach to allow representation of only the current

values of the attributes of persons.

Notice how Figure 12-11 is an improvement over the first approach. This method

allows the representation of all revisions in the attributes of persons.

FIGURE 12-11 Person entity type: all revisions.

FIGURE 12-12 Bill-of-materials: top-down representation.

408 CHAPTER 12 DATA MODELING: PRACTICAL TIPS

Bill-of-Materials

As you know, in manufacturing, a product is made up of components, a component made

up of subcomponents, a subcomponent composed of parts. This hierarchy from product to

component to part may extend to several levels depending on the manufacturing environ-

ment. The hierarchical structure is known as a bill-of materials structure.

Frequently, you will be faced with the task of modeling bill-of-materials structures.

Your model must preserve the hierarchical nature of the relationships. We now show

two methods of modeling bill-of-materials structures. The first is a straightforward

top-down representation. The second method uses recursive relationships.

Figure 12-12 shows the top-down representation. Note the hierarchical arrangement of

the data model components.

Figure 12-13 illustrates the use of recursive relationships. Note the cardinality indi-

cators of the relationships.

CONCEPTUAL MODEL LAYOUT

We now want to consider the actual layout of the data model itself in the form of a

diagram. Data models primarily consist of data model diagrams and accompanying sup-

plementary documentation. Data models integrate graphics and textual matter. These

can be fairly complex and not understood readily. We need to take special effort to

make data models readable and comprehensible.

In this subsection, let us examine the laying out of the model components in a data

model diagram. Let us look at a few tips on improving the model layout.

Readability and Usability

After you have designed the entity types and the relationships and even after you have

established all other components of the data model, your data modeling task does not

really end. Recall one of the primary purposes of a data model. You need to make it as

FIGURE 12-13 Bill-of-materials: recursive relationships.

CONCEPTUAL MODEL LAYOUT 409

best a communication tool as possible. You must ensure that the data model is readable by

user groups for whom the cryptic notations and semantics of model elements are not part

of their daily routine. They must be able to use the model continuously for review and con-

firmation of information requirements.

There are several ways by which you can enhance the data model diagram and its

layout. You can make the data model not only appealing but also as a readily usable

deliverable of the project. Suggestions to enhance a data model fall into the following

categories of tasks.

Component Arrangement. A data model consists of several model components, and

these are shown in a model diagram to represent the information requirements. If the com-

ponents are arranged in an orderly and logical manner, then the model becomes easy to

review and follow along from component to component.

Enhancement with Texts. Titles, captions, legends, version numbers, and so on

greatly add to the ease of understanding of a data model.

Visual Improvements. A data model can be perked up with the use of special graphics,

color, and font variations. Such improvements tend to lead the reviewer to the important

parts of the data model quickly and easily.

We will discuss each of these techniques for adding to the value of a data model. We

will take up each technique, one by one.

Component Arrangement

Component arrangement in a data model includes placing the various components or parts

of the data model in a logical manner so that the model is intelligible to the user groups and

stakeholders. When they review the model, they must be able to anticipate which com-

ponent would follow which other.

From the point of view of programmers and database implementers, the arrangement of

entity types that makes the most sense would be the order in which data ought to be created

and loaded in the database. However, this may not be the ideal arrangement for user groups

and stakeholders. You may find that there would be a marked difference in the two

arrangements—those for database practitioners and user groups. If so, consider arranging

the entity types in one way for the user groups in the conceptual data model. Use another

arrangement for the logical data model. The logical model is closer to the database prac-

titioners than it is for the user groups.

In this section, we will concentrate on the practical tips for the layout of the conceptual

model. We will extend these principles to the logical data model in the next section.

Layout of Entity Types. Layout of the entity types in a data model influences the

appearance of the model diagram to a great extent. Proper placement of entity types

improves readability of the data model. Also, when you arrange the entity types in an

orderly manner, you are more likely to detect any errors in the data model. Principles

of proper layout enforce a standard that can be applied to partial data models created by

several data modelers in a large project.

The model diagram usually runs into multiple pages whether you use a specialized

CASE tool or use standard diagramming and presentation software. First of all, organize

410 CHAPTER 12 DATA MODELING: PRACTICAL TIPS

these pages. Keep the natural combination of entity types on a single page. Do not crowd

each page with too many entity types.

A few other general suggestions are indicated below.

Parent and Child Entity Types. As far as it is feasible, place the child entity types below

the corresponding parent entity type. If this is not always feasible, position the child entity

types toward the center of the page. See Figure 12-14 showing these methods of

arrangement.

Supertype and Subtype Entities. Here again, place the subtypes below the supertype or

position the subtypes toward the center of the page. Figure 12-15 illustrates how thismethod

organizes the positioning compared with a chaotic representation also shown in the figure.

Hierarchical Structures. Generally, a hierarchical structure is placed in a top-down

fashion vertically or in left-to-right arrangement of entity types. See Figure 12-16

showing these two methods of arranging a hierarchical structure.

Multiple, Connected One-to-Many Relationships. Depending on the space avail-

ability, adopt one of the two methods shown in Figure 12-17. One is a top-down place-

ment; the other a toward-the-center placement.

Intersection Entity Types. Placing intersection entity types properly would show their

purpose clearly in a data model. See Figure 12-18 for suggested methods for placement

of intersection entity types.

FIGURE 12-14 Layout of parent and child entity types.

CONCEPTUAL MODEL LAYOUT 411

FIGURE 12-15 Placement of supertypes and subtypes.

FIGURE 12-16 Placement of hierarchical structure.

412 CHAPTER 12 DATA MODELING: PRACTICAL TIPS

Layout of Relationships. Laying out the relationships in a data model depends on how

the related entity types are placed in a data model. Therefore, while positioning entity

types, be cognizant that the positioning will affect the drawing of the relationship lines.

We provide just three general suggestions for showing relationships in a data model.

Note the following.

FIGURE 12-17 Placement of one-to-many relationships.

FIGURE 12-18 Placement of intersection entity type.

CONCEPTUAL MODEL LAYOUT 413

Vertical and Horizontal Relationship Lines. It is a well-accepted practice to keep the

relationships lines either vertical or horizontal—never sloping. If you cannot reach the

two related entity types with a single vertical or horizontal line, use combinations of ver-

tical and horizontal lines connected to each other. Figure 12-19 illustrates this principle.

Minimum Crossing of Relationship Lines. It is not always possible to avoid crossing of

one relationship line with another. However, review your data model, and, wherever poss-

ible, remove the crossing of relationship lines. Figure 12-20 shows how the clumsiness of

too many crossing lines is corrected.

Relationships Line Cutting Through Entity Types. A data model appears awkward

when it shows relationship lines running through entity type boxes. Avoid such running

of relationship lines. Correct this by rearranging the entity type boxes in the data

model. Figure 12-21 illustrates this problem and shows how this may be rectified.

Ordering of Attributes. As a data modeler, when you collect attributes for each entity

type, generally you tend to list them in the order in which each attribute has been made

known to you. Data modelers are more concerned about the completeness of the set of

attributes within an entity type than with sequencing and listing them appropriately.

After making a list of the attributes for an entity type, rearrange them in a logical

sequence. Based on the conditions for each entity type, there must be a certain order of

the attributes that will be easier for you as a modeler to complete your modeling task

and for the user groups to confirm that the information requirements have been correctly

captured. Try to arrange the attributes in a sequence that makes business sense. For a con-

ceptual data model, the most important criterion for the order of the attributes is whether

the order conforms to the understanding of the entity type by the user groups.

FIGURE 12-19 Relationship lines: vertical and horizontal.

414 CHAPTER 12 DATA MODELING: PRACTICAL TIPS

The following order is usually recommended for the attributes within an entity type:

. Primary identifier—list as the first attributes.

. Other attributes that may be used as the primary identifier but not chosen to be so—

list next to the primary identifier.

FIGURE 12-20 Minimal crossing of relationship lines.

FIGURE 12-21 Relationship lines through entity type boxes.

CONCEPTUAL MODEL LAYOUT 415

. System-generated attributes and other attributes not having business significance—

list them at the end placing the attribute that has the least business significance at

the very end.

. Group remaining attributes by business concepts—place attributes relating to the

business concept most relevant to the entity type to follow the alternative identifiers,

attributes relating to the business concept slightly less relevant next, and so on.

Figure 12-22 illustrates the principles for ordering attributes. Note the various groups of

attributes and their placement within the entity type.

Adding Texts

If a data model is not enhanced with appropriate texts, the model would look bald and

incomplete. Textual data that is not generally part of standard model conventions can

improve readability of the data model a great deal. This textual information, if applied

in proper measure, will enable the user groups to understand the data model even more

easily. For you, the data modeler, textual data will serve as handles to pick up different

parts of the data model and present them to the user groups and communicate with them.

The following types of textual data applied to a data model are found to be useful.

Headings. Provide headings for each page containing the data model. Subheadings may

be used whenever you want to identify parts of a data model.

FIGURE 12-22 Ordering of attributes within entity type.

416 CHAPTER 12 DATA MODELING: PRACTICAL TIPS

Titles. Titles serve as overall cryptic descriptions. Use them extensively.

Legends. These are used to translate abbreviations. Legends and meanings may be

shaded for added emphasis.

Notes. Wherever appropriate, add short notes and comments.

Version Data. Include complete data about the version of the data model.

Visual Highlights

After laying out the entity types in the best possible way, ensuring that relationships are

properly presented, ordering attributes in each entity type correctly, and adding textual

data, what more can you do to improve your data model further? You can definitely

add some visual enhancements.

Use your imagination and add visual highlights. The following visual enhancements

spruce up the data model.

Icons, Images, and Graphics. If used judiciously, these can add emphasis and mean-

ings to entity type names and attribute names. Consider using appropriate icons.

Color. If you are printing the data model using a color printer or doing computer or pro-

jector presentation of your data model, the usage of color is a great aid to visual highlights.

Consider using appropriate colors for entity type boxes, relationships, and attribute names.

Shading. In addition to highlighting with color, you may also apply different shading for

model components to enhance their appearance.

Size. Variations in size could also provide visual highlights. You may vary the size of the

entity boxes for added emphasis. You can also vary the size of the fonts to show highlights

for attribute and entity names.

Style. Variations in font styles for entity names, attribute names, and relationship names

can provide additional highlights wherever appropriate.

LOGICAL DATA MODEL

Our considerations for enhancement of a conceptual data model focused on making the

model readable and comprehensible. As you know, this was because the primary

purpose of a conceptual data model is to be used as a communication tool. We want to

dress up the conceptual data model with visual highlights so that it will become all the

more presentable.

However, a logical model serves more as a database blueprint than as a means for com-

munication with the user groups. The logical model is closer to the IT personnel on the

project team. They are already familiar with the significance of the model. Therefore, for

a logical model, the suggestions for enhancement relate more to implementation issues.

How do you make the logical model a better blueprint for database implementation?

LOGICAL DATA MODEL 417

Enhancement Motivation

The motivation for enhancement to the logical model is different from that for a conceptual

model. As your modeling tasks get closer to database implementation, your concerns for

enhancement of the model shift more toward actual implementation. You want to conserve

space; you want your database to perform well; you want to make implementation easy.

Let us briefly address these important considerations of database implementation.

Easier Database Implementation

Any enhancement you make to the logical data model that eases the implementation is

welcome. After completing the logical data model, the remaining steps include transition

to a physical model, space allocation for the various data structures, defining of the struc-

tures to the data dictionary, populating the database with initial data, deployment of the

database to user groups, maintenance, and so on. For a relational database system, you

know that the logical model is the relational model consisting of two-dimensional

tables. Thus, suggestions for enhancement would apply to the relational model.

For enhancing your relational model for smoother database implementation, consider

the following suggestions.

Arrangement of Entity Types. Arrange the tables in the logical model in the order in

which they have to be populated while loading the database with initial data. You have to

populate a parent table before you can populate its child tables.

Annotations for DD Entries. Provide annotations for tables and attributes that will

help in the coding of structure definitions for recording in the data dictionary (DD). Anno-

tations would include range values for attributes, allowing nulls as attribute values, default

values for attributes, and so on. You can be quite creative in providing annotations.

Estimates for Space Allocation. Show space allocation estimates in the data model,

such as number of initial occurrences of entities and growth percentage. Also, indicate

allocation of tables to physical files.

Notes for User Authorizations. General notes as to access authorizations and restric-

tions of entity types for user groups could be useful.

Performance Improvement

Performance improvement in a database environment implies faster retrieval of data from

the database. Although performance issues are said to fall within the scope of physical

modeling, database implementation, and subsequent fine-tuning, the logical model itself

can be made conducive to performance improvement. You can achieve this by the arrange-

ment of attributes within entity types.

Here are a few suggestions.

Primary Key. For parent tables, this is the most used attribute for retrieval. Place the

primary key as the first attribute. For a composite primary key, as the initial attribute,

418 CHAPTER 12 DATA MODELING: PRACTICAL TIPS

place the part of the key that is most used, then place the part of the key next in the level of

usage, and so on.

Foreign Keys. Place foreign keys next to the primary key. Order the foreign keys in the

order of their usage—most used first, slightly less used next, and so on.

Indexed Attributes. If there are multiple indexed attributes in a table, place the attri-

bute that is mostly used for retrieval before the one that is slightly less used, and so on.

Clustering. Clustering is a method for performance improvement. For example, if you

have ORDER and ORDER-DETAIL tables in your data model, retrieval of data usually

takes place by retrieving an order entity along with the order detail entities for that

order. It would, therefore, make sense to cluster the order entity with its order detail enti-

ties and store them close by on storage. In your logical data model, mark those entity types

that must be clustered for performance improvement.

Storage Management

Storage allocation and management rank high in importance for database implementation.

As far as possible, storage must be conserved. Wastage of storage space must be avoided.

Storage management would also include facilities to shut down certain parts of the data-

base for backup, restoration, or recovery. This means that relational tables may be frag-

mented by rows or by columns so that individual fragments may be properly assigned

separate storage spaces.

The following suggestions apply to the logical data model for helping in subsequent

storage management.

Attributes Where Nulls Are Not Allowed. For attributes defined as containing text

data (character strings) of variable length, in the table arrange the shortest attribute

before the slightly longer, then place the slightly longer attribute to be followed by the

attribute a little longer than the previous, and so on.

Attributes Where Nulls Are Allowed. In the table, place these attributes after those

where nulls are not allowed. Also, place the shortest first, followed by other attributes

in the order of increasing lengths.

Fragmentation of Relational Tables. In the logical data model, indicate the large

tables that may be fragmented so that fragments may be stored separately for ease of main-

tenance. Also, indicate the type of fragmentation—horizontally by rows or vertically by

columns.

Enhanced Representation

Let us now look at an example and note how to apply the principles of enhancement of a

logical data model. Figure 12-23 shows a partial data model where the tables are arranged

randomly and the attributes are placed haphazardly within the tables.

LOGICAL DATA MODEL 419

FIGURE 12-23 Logical data model: random representation.

FIGURE 12-24 Logical data model: enhanced representation.

420 CHAPTER 12 DATA MODELING: PRACTICAL TIPS

Apply the suggestions and enhance the logical model. Rearrange the tables and reorder

the attributes so that the logical model may aid in the subsequent database implementation.

Examine Figure 12-24 and observe how this figure shows an enhanced logical data model.

CHAPTER SUMMARY

. Practical suggestions for requirements definition cover user interviews, group ses-

sions, geographically dispersed user groups, requirements documentation, and

change management.

. During requirements definition, data modelers find it useful to compile specific notes

for their private use. You can have separate sections in your notes for different com-

ponents such as entity types, relationships, attributes, and so on.

. Stakeholder participation is crucial for the success of a modeling project. Practical

tips cover organizing participation, user liaison, continuous interaction, and multiple

sites.

. Useful suggestions on iterative modeling relate to establishing iteration cycles, deter-

mining increments for modeling, and integration of partial models.

. Review and adapt practical suggestions on special cases of data modeling: legal enti-

ties, locations, time periods, persons, and bill-of-materials.

. A conceptual data model must be readable and usable. In order to achieve these goals,

pay attention to arrangement of components, orders of attributes within entity types,

adding text, and visual highlights.

. Logical model improvements focus on storage management and performance. Adapt

and use the suggestions on logical model representation.

REVIEW QUESTIONS

1. True or false:

A. Conducting interviews is no longer useful for gathering information

requirements.

B. While dealing with multinational user groups, pay attention to local cultures

and practices.

C. Iterative development approach does not allow for changes in requirements.

D. In good data modeling projects, stakeholder participation is optional.

E. In a multisite environment, keep progress at all sites coordinated and balanced.

F. Iterative modeling consists of cycles of iteration.

G. For iterative modeling, fragmentation of the model by functions or user groups

works well.

H. If your system has staged deliverables, integrate partial models at each stage.

I. Visual highlights of a data model enhance the model greatly.

J. Practical suggestions on data modeling are meant to be adapted and used.

2. List any six suggestions on conducting interviews with users for requirements defi-

nition. Explain how these make sense.

REVIEW QUESTIONS 421

3. How do you deal with geographically dispersed groups while defining require-

ments? List some practical suggestions.

4. Consider the major aspects of stakeholder participation in a data model project.

List any eight practical suggestions.

5. Give a few practical suggestions for managing changes to requirements in a data

modeling project. Explain why they are likely to work.

6. Describe iterative modeling. What are the major activities to make modeling

iterative?

7. In iterative modeling, what do we mean by an iteration cycle? Make some sugges-

tions for establishing cycles.

8. Discuss how you can divide up a modeling effort into fragments. How does model

fragmentation make the modeling effort more efficient?

9. Do you have suggestions how to keep the data model true to the information

requirements during the entire data modeling phases? List the suggestions and

briefly describe each.

10. What is integration of partial models? Give some practical suggestions for

performing the integration tasks.

422 CHAPTER 12 DATA MODELING: PRACTICAL TIPS

BIBLIOGRAPHY

Allen, Sharon, Data Modeling for Everyone, Birmingham, UK: Curlingston, 2002.

Ambler, Scott W., Agile Modeling, Hoboken, NJ: Wiley, 2002.

Ambler, Scott W., Agile Database Techniques, Hoboken, NJ: Wiley, 2003.

Augustine, Sanjiv, Managing Agile Projects, Upper Saddle River, NJ: Prentice-Hall, 2005.

Barker, Richard, Case Method Entity Relationship Modeling, Boston, MA: Addison-Wesley,

1990.

Batini, Carlo, et al., Conceptual Database Design: An Entity Relational Approach, Boston, MA:

Addison-Wesley, 1991.

Bekke, J.H. ter, Semantic Data Modeling, Upper Saddle River, NJ: Prentice-Hall, 1992.

Carlis, John, and Joseph Maguire, Mastering Data Modeling, Boston, MA: Addison-Wesley,

2000.

Connolly, Thomas M., et al., Database Systems: A Practical Approach to Design, Implementation,

and Management, Boston, MA: Addison-Wesley, 1998.

Elmasri, Ramez, and Shamkant B. Navathe, Fundamentals of Database Systems, Boston, MA:

Addison-Wesley, 2000.

Fowler, Martin, and Scott Kendall, UML Distilled: A Brief Guide to Standard Object Modeling

Language, Boston, MA: Addison-Wesley, 2000.

Halpin, Terry, Information Modeling and Database Design: From Conceptual Analysis to Logical

Design, San Francisco, CA: Morgan Kaufman, 2001.

Hoberman, Steve, Data Modeler’s Workbench, Hoboken, NJ: Wiley, 2002.

Quatrani, Terry, Visual Modeling with Rational Rose and UML, Boston, MA: Addison-Wesley,

1998.

Ramakrishnan, Raghu, and Johannes Gehrke, Database Management Systems, New York: McGraw-

Hill, 2000.

Reingruber, Michael C., and William W. Gregory, The Data Modeling Handbook: A Best-Practice

Approach to Building Quality Data Models, Hoboken, NJ: Wiley, 1994.

Schmidt, Bob, Data Modeling for Information Professionals, Upper Saddle River, NJ: Prentice-

Hall, 1999.

Silberschatz, Abraham, et al., Database System Concepts, New York: McGraw-Hill, 1999.

423

Data Modeling Fundamentals. By Paulraj Ponniah
Copyright # 2007 John Wiley & Sons, Inc.

Silverston, Len, The Data Model Resource Book: A Library of Universal Data Models for All

Enterprises, Hoboken, NJ: Wiley, 2001.

Simsion, Graeme, and Graham Witt, Data Modeling Essentials, San Francisco, CA: Morgan

Kaufman, 2005.

Tsichritzis, Dionysios C., and Frederick H. Lochovsky, Data Models, Upper Saddle River, NJ:

Prentice-Hall, 1982.

424 BIBLIOGRAPHY

GLOSSARY

Aggregation Entity Type. Represents a three-way, four-way, or a higher degree

relationship.

Agile Modeling. Data Modeling using agile software development principles.

Agile Movement. A movement initiated in early 2001 to address the problems of

traditional software development and find a radically new methodology.

Anomalies. Inconsistencies or errors resulting from manipulating data in random tables

containing redundant data. Three types of anomalies are encountered: update, deletion,

and addition.

Attribute. An intrinsic or inherent characteristic of an entity that is of interest to an

organization.

Binary Relationship. Relationship in which two entity types participate. This is the most

common form of relationship between entity types.

Boyce-Codd Normal Form (BCNF). A relation or table is in BCNF if it is already in the

third normal form and no key attribute is functionally dependent on any non-key

attribute.

Business Intelligence. A term used to refer to information available in an enterprise for

making strategic decisions.

Business Object. A thing or an object of interest to an organization. Data about business

objects are stored in the organization’s database.

Business Rules. Specifications based on business practices of an organization that need

to be incorporated in the logical data model.

Candidate Key. A single attribute or a set of attributes that uniquely identifies an

instance of an object set or entity type and can be a candidate to be chosen as the

primary key.

Cardinality. Cardinality of the relationship between two entity types indicates how many

instances of the first entity type may be related to how many of the second.

CASE. Computer-Aided Software Engineering. CASE tools or programs that help to

develop software applications. A set of CASE tools many include code generators,

425

Data Modeling Fundamentals. By Paulraj Ponniah
Copyright # 2007 John Wiley & Sons, Inc.

data modeling tools, analysis and design tools, and tools for documenting and testing

applications.

Circular Structure. A data structure consisting of three or more entity types forming

cyclical relationships where the first is related to the second, the second to the third,

and so on, and finally the last related back to the first. In a good data model, circular

structures are resolved.

Composite Key. Primary key made up of more than one attribute.

Concatenated Key. Same as Composite Key.

Conceptual Completeness. Conceptual completeness of a data model implies that it is a

complete representation of the information requirements of the organization.

Conceptual Correctness. Conceptual correctness of a data model implies that it is a true

replica of the information requirements of the organization.

Conceptual Data Model. A generic data model capturing the true meaning of the

information requirements of an organization. Does not conform to the conventions of

any class of database systems such as hierarchical, network, relational, and so on.

Conceptual Entity Type. Set representing the type of the objects, not the physical objects

themselves.

Data Dictionary. Repository holding the definitions of the data structures in a database.

In a relational database, the data dictionary contains the definitions of all the tables,

columns, and so on.

Data Integrity. Accuracy and consistency of the data stored in the organization’s data-

base system.

Data Manipulation. Operations for altering data in the database. Data manipulation

includes retrieval, addition, update, and deletion of data.

Data Mining. Knowledge discovery process. Data mining algorithms uncover hidden

relationships and patterns from a given set of data on which they operate. Knowledge

discovery is automatic, not through deliberate search and analysis by analysts.

Data Model. Representation of the real-world information requirements that gets

implemented in a computer system. A data model provides a method and means for

describing real-world information by using specific notations and conventions.

Data Repository. Storage of the organization’s data in databases. Stores all data values

that are part of the databases.

Data View. See User View.

Data Warehouse. A specialized database having a collection of transformed and inte-

grated data, stored for the purpose of providing strategic information to the

organization.

Database. Repository where an ordered, integrated, and related collection of the

organization’s data is stored for the purpose of computer applications and information

sharing.

Database Administration. Responsibility for the technical aspects of the organization’s

database. Includes the physical design and handling of the technical details such

as database security, performance, day-to-day maintenance, backup, and recovery.

Database administration is more technical than managerial.

Database Administrator (DBA). Specially trained technical person performing the

database administration functions in an organization.

426 GLOSSARY

Database Practitioners. Includes the set of IT professionals such as analysts, data mode-

lers, designers, programmers, and database administrators who design, build, deploy,

and maintain database systems.

DBMS. Database Management System. Software system to store, access, maintain,

manage, and safeguard the data in databases.

DDLC. Database Development Life Cycle. A complete process from beginning to end,

with distinct phases for defining information requirements, creating the data model,

designing the database, implementing the database, and maintaining it thereafter.

Decomposition of Relations. Splitting of relations or tables into smaller relations for the

purpose of normalizing them.

Degree. The number of entity types or object sets that participate in a relationship. For a

binary relationship the degree is 2.

Dimension Entity Type. In a STAR schema, a dimension entity type represents a

business dimension such as customer or product along which metrics like sales are

analyzed.

DKNF. Domain Key Normal Form. This is the ultimate goal in transforming a relation

into the highest normal form. A relation is in DKNF if it represents one topic and all

of its business rules, being able to be expressed through domain constraints and key

relationships.

Domain. The set of all permissible data values and data types for an attribute of an entity

type.

DSS. Decision Support System. Application that enables users to make strategic

decisions. Decision support systems are driven by specialized databases.

End-Users. See Users.

Entity. A real-world “thing” of interest to an organization.

Entity Instance. A single occurrence of an entity type. For example, a single invoice is an

instance of the entity type called INVOICE.

Entity Integrity. A rule or constraint to ensure the correctness of an entity type or rela-

tional table.

ERD. Entity-Relationship Diagram. A graphical representation of entities and their

relationships in the Entity-Relationship data modeling technique.

Entity Set. The collection of all entity instances of a particular type of entity.

Entity Type. Refers to the type of entity occurrences in an entity set. For example, all

customers of an organization form the CUSTOMER entity type.

E-R Data Modeling. Design technique for creating an entity-relationship diagram from

the information requirements.

Evolutionary Modeling. Data modeling as promoted by the Agile Software Develop-

ment movement. This is a type of iterative modeling methodology where the model

evolves in “creation—feedback—revision” cycles.

External Data Model. Definition of the data structures in a database that are of interest to

various user groups in an organization. It is the way users view the database from

outside.

Fact Entity Type. In a STAR schema, a fact entity type represents the metrics such as

sales that are analyzed along business dimensions such as customer or product.

GLOSSARY 427

Feasibility Study. One of the earlier phases in DDLC conducting a study of the readiness

of an organization and the technological, economic, and operational feasibility of a

database system for the organization.

Fifth Normal Form (5NF). A relation that is already in the fourth normal form and

without any join dependencies.

First Normal Form (1NF). A relation that has no repeating groups of values for a set of

attributes in a single row.

Foreign Key. An attribute in a relational table used for establishing a direct relationship

with another table, known as the parent table. The values of the foreign key attribute are

drawn from the primary key values of the parent table.

Fourth Normal Form (4NF). A relation that is already in the third normal and without

any multivalued dependencies.

Functional Dependency. The value of an attribute B in a relation depending on the value

of another attribute A. For every instance of attribute A, its value uniquely determines

the value of attribute B in the relation.

Generalization. The concept that some entity types are general cases of other entity

types. The entity types in the general cases are known as super-types.

Generalizing Specialists. A trend in software developers, as promoted by the agile soft-

ware development movement, where specialists acquire more and more diverse skills

and expand their horizons. Accordingly, data modelers are no longer specialists with

just data modeling skills.

Gerund. Representation of a relationship between two entity types as an entity type itself.

Homonyms. Two or more data elements having the same name but containing different

data.

Identifier. One or more attributes whose values can uniquely identify the instances of an

entity type.

Identifying Relationship. A relationship between two entity types where one entity type

depends on another entity type for its existence. For example, the entity type ORDER-

DETAIL cannot exist without the entity type ORDER.

Inheritance. The property that sub-sets inherit the attributes and relationships of their

super-set.

Intrinsic Characteristics. Basic or inherent properties of an object or entity.

IT. Information Technology. Covers all computing and data communications in an organ-

ization. Typically, the CIO is responsible for IT operations in an organization.

Iterative Modeling. This implies that the modeling process is not strictly carried out in a

sequential manner such as modeling all entity types, modeling all relationships, model-

ing all attributes, and so on. Iterative modeling allows the data modeler to constantly go

back, verify, readjust, and ensure cohesion and completeness.

Key. One or more attributes whose values can uniquely identify the rows of a relational

table.

Logical Data Model. Also sometimes referred to as a conventional data model, consists

of the logical data structure representing the information requirements of an organiz-

ation. This data model conforms to the conventions of a class of database systems

such as hierarchical, network, relational, and so on. The logical data model for a

relational database system consists of tables or relations.

428 GLOSSARY

Logical Design. Process of designing and creating a logical data model.

Matrix. Consists of members or elements arranged in rows and columns. In the relational

data model, a table or relation may be compared to a matrix thereby making it possible

to apply matrix algebra functions to the data represented in the table.

MDDMBS. Multi-dimensional database management system. Used to create and manage

multi-dimensional databases for OLAP.

Meta-data. Data about the data of an organization.

Model Transformation. Process of mapping and transforming the components of a

conceptual data model to those of a logical or conventional data model.

MOLAP. Multidimensional Online Analytical Processing. An analytical processing

technique in which multidimensional data cubes are created and stored in separate

proprietary databases.

Normal Form. A state of a relation or table, free from incorrect dependencies among the

attributes. See also Boyce-Codd Normal Form, First Normal Form, Second Normal

Form, and Third Normal Form.

Normalization. The step-by-step method of transforming a random table into a set of

normalized relations free from incorrect dependencies and conforming to the rules of

the relational data model.

Null Value. A value of an attribute, different from zero or blank to indicate a missing,

non-applicable or unknown value.

OLAP. Online Analytical Processing. Powerful software systems providing extensive

multidimensional analysis, complex calculations, and fast response times. Usually

present in data warehousing systems.

Physical Data Model. Data model representing the information requirements of an

organization at a physical level of hardware and system software, consisting of the

actual components such as data files, blocks, records, storage allocations, indexes,

and so on.

Physical Design. Process of designing the physical data model.

Practitioners. See Database Practitioners.

Primary Key. A single attribute or a set of attributes that uniquely identifies an instance

of an object set or entity type and chosen as the primary key.

RDBMS. Relational Database Management System.

Referential Integrity. Refers to two relational tables that are directly related. Referential

integrity between related tables is established if non-null values in the foreign key

attribute of the child table are primary key values in the parent table.

Relation. In relational database systems, a relation is a two dimensional table with

columns and rows, conforming to relational rules.

Relational Data Model. A conventional or logical data model where data is perceived as

two-dimensional tables with rows and columns. Each table represents a business object;

each column represents an attribute of the object; each row represents an instance of the

object.

Relational Database. A database system built based on the relational data model.

Relationship. A relationship between two object sets or entity types represents the

associations of the instances of one object set with the instances of the other object

GLOSSARY 429

set. Unary, binary, or ternary relationships are the common ones depending on the

number of object sets participating in the relationship. A unary relationship is recur-

sive—instances of an object set associated with instances of the same object set.

Relationships may be mandatory or optional based on whether some instances may

or may not participate in the relationship.

Repeating Group. A group of attributes in a relation that has multiple sets of values for

the attributes.

ROLAP. Relational Online Analytical Processing. An online analytical processing

technique in which multidimensional data cubes are created on the fly by the relational

database engine.

Second Normal Form (2NF). A relation that is already in the first normal form and

without partial key dependencies.

Set Theory. Mathematical concept where individual members form a set. Set operations

can be used to combine or select members from sets in several ways. In a relational

data model, the rows or tuples of a table or relation may be considered as forming

a set. As such, set operations may be applied to manipulation of data represented as

tables.

Specialization. The concept that some entity types are special cases of other entity types.

The entity types in the special cases are known as sub-types.

SQL. Structured Query Language. Has become the standard language interface for

relational databases.

Stakeholders. All people in the organization who have a stake in the success of the data

system.

STAR Schema. The arrangement of the collection of fact and dimension entity types in

the dimensional data model, resembling a star formation, with the fact entity type

placed in the middle and surrounded by the dimension entity types. Each dimension

entity type is in a one-to-many relationship with the fact entity type.

Strategic Information. May refer to information in an organization used for making

strategic decisions.

Strong Entity. An entity on which a weak entity depends for its existence. See alsoWeak
Entity.

Sub-types. See Specialization.

Subset. An entity type that is a special case of another entity type known as the superset.

Super-types. See Generalization.

Superset. An entity type that is a general case of another entity type known as the subset.

Surrogate Key. A unique value generated by the computer system used as a key for a

relation. A surrogate key has no business meaning apart from the computer system.

Synonyms. Two or more data elements containing the same data but having different

names.

Syntactic Completeness. Syntactic completeness of a data model implies that the model-

ing process has been carried out completely to produce a good data model for the

organization.

Syntactic Correctness. Syntactic correctness of a data model implies that the represen-

tation using the appropriate symbols does not violate any rules of the modeling

technique.

430 GLOSSARY

Third Normal Formn (3NF). A relation that is already in the second normal form and

without any transitive dependencies—that is, the dependencies of non-key attributes

on the primary key through other non-key attributes, not directly.

Transitive Dependency. In a relation, the dependency of a non-key attribute on the

primary key through another non-key attribute, not directly.

Triad. A set of three related entity types where one of the relationships is redundant.

Triads must be resolved in a refined data model.

Tuple. A row in a relational table.

UML. Unified Modeling Language. Its forerunners constitute the wave of object-oriented

analysis and design methods of the 1980s and 1990s. UML is a unified language

because it directly unifies the leading methods of Booch, Rumbaugh, and Jacobson.

OMG (Object Management Group) has adopted UML as a standard.

User View. View of the database by a single user group. Therefore, a data view of a

particular user group includes only those parts of the database that group is concerned

with. The collection of all data views of all the user groups constitutes the total data

model.

Users. In connection with data modeling, the term users includes all people who use the

data system that is built based on the particular data model.

Weak Entity. An entity that depends for its existence on another entity known as a strong

entity. For example, the entity type ORDER DETAIL cannot exist without the entity

type ORDER. See also Strong Entity.

XML. eXtensible Markup Language. Introduced to overcome the limitations of HTML.

XML is extensible, portable, structured, and descriptive. In a very limited way, it may

be used in data modeling.

GLOSSARY 431

INDEX

Aggregation. See Relationships, special cases

of, aggregation

Agile movement, the, 376–379

generalizing specialists, 379

philosophies, 378

principles, 378

SeeData modeling, agile modeling principles

See also Modeling, agile; Modeling,

evolutionary

Assembly structures, 147–148

Attribute, checklist for validation of, 178–180

Attributes, 100, 158–178

constraints for, 169–170

null values, 170

range, 170

type, 170

value set, 169

data, as, 161

domain, definition of, 164

domains, 164–169

attribute values, for, 166

information content, 165

misrepresented, 167

split, 167

names, 163

properties or characteristics, 158

relationships of, 160

types of, 171–175

optional, 173

simple and composite, 171

single-valued and multi-valued, 171

stored and derived values, with, 172

values, 162

Business intelligence, 300

Business rules, incorporation of, 25

Case study

E-R model, 84

UML model, 87

Categorization. See Specialization/
Generalization, categorization

Circular structures,

See Relationships, design issues of,

circular structures

Class diagram, 62

See also UML

Conceptual and physical entity types,

145–147

Conceptual model

symbols and meanings, 77

Data lifecycle, 7–9

Data mining, 334–342

OLAP versus data mining, 336

techniques, 338

data modeling for, 341

Data model

communication tool, 5

components of, 18–20

database blueprint, 5

external, 13, 75

conceptual, 14–15, 75

identifying components, 77–80

review procedure, 76–77

logical, 15–17, 75, 104–107

transformation steps, 107–110

433

Data Modeling Fundamentals. By Paulraj Ponniah
Copyright # 2007 John Wiley & Sons, Inc.

Data model (Continued)

physical, 17, 76, 111–112

quality, 26–29, 348

approach to good modeling, 351

assurance process, 365–373

aspects of, 365

assessment of, 370

stages of, 366

definitions, of, 351–360

checklists, 358

dimensions, 361

good and bad models, 349

meaning of, 360

relational, 109

symbols, 19–20

Data model diagram, review of, 103–104

Data modeling

agile modeling principles, application

of, 34–35

approaches, 36–38, 44–47

data mining, for, 341

data warehouse, for the, 38–39

methods and techniques

IDEF1X, 51

Information Engineering, 50

Object Role Modeling (ORM), 55

Peter Chen (E-R) modeling, 48

Richard Barker’s, 53

XML, 57

steps of, 20–26

tips, practical, 392–421

bill-of-materials, 409

iterative modeling, 399–401

cycles, establishing, 399

increments, 400

partial models, integration of, 401

layout, conceptual model, 409–417

adding texts, 416

component arrangement, 410

visual highlights, 417

legal entities, 402

locations and places, 403

logical data model, 417–421

persons, 407

requirements definition, 393–396

stakeholder participation, 396–399

time periods, 405

Data system development life cycle.

See DDLC

Data warehouse, 301–325

data staging, 304

data storage, 304

dimensional to relational, 322

families of STARS, 321

information delivery, 305

modeling

business data, dimensional nature

of, 306

dimensional modeling, 308–312

dimension entity type, 309,313

fact entity type, 309, 314

information package, 307

snowflake schema, 318

source data, 304

STAR schema, 312–318

data granularity, 315, 317

degenerate dimensions, 316

factless fact entity type, 316

fully additive measures, 315

semi-additive measures, 315

technologies, 302

Database design

conceptual to relational, 243

informal, 272

model transformation method

attributes to columns, 250

entity types to relations, 250

identifiers to keys, 252

transformation of relationships,

252–267

mandatory and optional conditions,

261–265

transformation summary, 267

when to use, 248

traditional method, 244

Databases, post-relational, 39–40

DDLC, 29–33

design, 31

implementation, 31

phases and tasks, 32

process, starting the, 30

requirements definition, 30

roles and responsibilities, 33

Decision-support systems, 296–301

data modeling for, 301

history of, 297

Dimensional analysis. See OLAP systems,

dimensional analysis

Domains. See Attributes, domains

E-R modeling. See Data modeling, methods

and techniques; Peter Chen (E-R)

modeling

Entity, checklist for validation of, 153–155

434 INDEX

Entity integrity. See Relational model,

entity integrity

Entity types

aggregation, 129

association, 129

category of, 127

definition, comprehensive, 116

existence dependency, 132

homonyms, 125

ID dependency, 132

identifying, 120

intersection, 129

regular, 128

strong, 128

subtype, 128

supertype, 128

synonyms, 125

IDEF1X. See Data modeling, methods and

techniques, IDEF1X

Identifiers or keys, 101, 175–178

generalization hierarchy, in, 177–178

guidelines for, 176

keys, definitions of, 175

need for, 175

Informal design, 272–276

potential problems, 273–276

addition anomaly, 276

deletion anomaly, 275

update anomaly, 275

Information engineering. See Data modeling,

methods and techniques; Information

engineering

Information levels, 11–13

Integration definition for information

modeling. See Data modeling,

methods and techniques,

IDEF1X

Key. See also Identifiers or keys

composite, 176

natural, 176

primary, 176

surrogate, 176

Meta-modeling, 40

Modeling, agile, 379–385

documentation, 383

feasibility, 384

practices

additional, 383

primary, 381

principles

auxiliary, 381

basic, 380

Modeling, evolutionary, 385–387

benefits of, 387

flexibility, need for, 386

nature of, 386

Modeling time dimension, 149

Normalization methodology, 276–291

fundamental normal forms, 278–285

Boyce–Codd normal form, 284

first normal form, 278

second normal form, 279

third normal form, 281

higher normal forms, 285–288

domain-key normal form, 288

fifth normal form, 287

fourth normal form, 286

normalization as verification, 291

steps, 277, 290

OLAP systems, 325–333

data modeling for, 332

dimensional analysis, 326

features, 325

hypercubes, 328

MOLAP, 330

ROLAP, 330

Online analytical processing. See OLAP

systems

ORM. See Data modeling, methods and

techniques; Object Role Modeling

Peter Chen. See Data modeling, methods and

techniques; Peter Chen (E-R) modeling

Process modeling, 40

Quality. See Data model, quality

Recursive structures, 145

Referential integrity. See Relational model,

referential integrity

Relational model, 231–242

columns as attributes, 234

entity integrity, 240

functional dependencies, 242

mathematical foundation, 232

modeling concept, single, 232

notation for, 237

referential integrity, 240

relation or table, 233

INDEX 435

Relational model (Continued)

relational properties, basic, 239

relationships through foreign keys, 236

rows as instances, 235

strengths of, 231

Relationship, checklist for validation of,

222–225

Relationships, 98, 184–268

aggregate objects as, 265

attributes of, 189

cardinalities of, 204–209

minimum cardinality indicator

mandatory conditions—both ends, 206

optional conditions—both

ends, 208

optional condition—one end, 206

optional condition—other end, 207

degree of, 190–194

binary, 191

quaternary, 193

ternary, 193

unary, 191

dependencies, 200–201

entity existence, 200–201

dependent existence, 201

independent existence, 200

design issues of, 215–221

binary or N-ary relationship, 216

circular structures, 219

multiple relationships, 221

one-to-many relationships, 219

one-to-one relationships, 217

redundant relationships, 221

relationship or entity type, 215

ternary relationship or

aggregation, 216

double, 187

role of, 184

sets, 187

special cases of, 209–215

access pathways, 211

aggregation, 210

gerund, 209

structural constraints of, 194–200

cardinality, 195–198

one-to-many, 196

one-to-one, 195

many-to-many, 197

participation, 198–200

partial, 198

total, 199

two-sided, 186

types of, 201–204

identifying, 202

nonidentifying, 204

Requirements definition. See Data modeling,

tips, practical, requirements definition.

See also DDLC, requirements definition

Richard Barker’s. See Data modeling, methods

and techniques, Richard Barker’s

Specialization/generalization, 98, 134–144
attributes, inheritance of, 140

categorization, 150

constraints, 141–144

combinations, possible, 143

design, 143

disjoint, 143

overlapping, 143

partial, 142

total, 142

generalization hierarchy, 138

reasons for, 136

relationships, inheritance of, 140

rules summarized, 144

when to be used, 137

STAR schema. See Data warehouse, STAR

schema. See also Data warehouse,

families of STARS

Symbols. See Data model, symbols

UML

activity diagram, 68

class diagram, 62

collaboration diagram, 65

sequence diagram, 65

state diagram, 65

data modeling using, 61–63

development process, in, 64–65

use case diagram, 65

Unified modeling language. See UML

User views, 33, 90

View integration, 92

Weak entity type, 101, 128

436 INDEX

