Plenum Series in Computer Science

Introduction to
Parallel Processing

Algorithms and Architectures

Behrooz Parhami

Introduction to
Parallel Processing
Algorithms and Architectures

PLENUM SERIES IN COMPUTER SCIENCE

Series Editor: Rami G. Melhem

University of Pittsburgh
Pittsburgh, Pennsylvania

FUNDAMENTALS OF X PROGRAMMING
Graphical User Interfaces and Beyond

Theo Pavlidis

INTRODUCTION TO PARALLEL PROCESSING
Algorithms and Architectures
Behrooz Parhami

Introduction to

Parallel Processing
Algorithms and Architectures

Behrooz Parhami

University of California at Santa Barbara
Santa Barbara, California

KLUWER ACADEMIC PUBLISHERS
NEW YORK,BOSTON, DORDRECHT, LONDON, MOSCOW

eBook 1SBN 0-306-46964-2
Print ISBN 0-306-45970-1

©2002 Kluwer Academic Publishers

New Y ork, Boston, Dordrecht, London, Moscow

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Kluwer Online at: http://www.kluweronline.com
and Kluwer's eBookstore at: http://www.ebooks.kluweronline.com

To the four parallel joys in my life,

Sepideh
Sepand

Sepehr
Vida

for their love and support.

This page intentionally left blank.

Preface

THE CONTEXT OF PARALLEL PROCESSING

The field of digital computer architecture has grown explosively in the past two decades.
Through a steady stream of experimental research, tool-building efforts, and theoretical
studies, the design of an instruction-set architecture, once considered an art, has been
transformed into one of the most quantitative branches of computer technology. At the same
time, better understanding of various forms of concurrency, from standard pipelining to
massive parallelism, and invention of architectural structures to support a reasonably efficient
and user-friendly programming model for such systems, has allowed hardware performance
to continue its exponential growth. Thistrend is expected to continue in the near future.

This explosive growth, linked with the expectation that performance will continue its
exponential rise with each new generation of hardware and that (in stark contrast to software)
computer hardware will function correctly as soon as it comes off the assembly line, hasits
down side. It has led to unprecedented hardware complexity and almost intolerable devel-
opment costs. The challenge facing current and future computer designers is to institute
simplicity where we now have complexity; to use fundamental theories being developed in
this area to gain performance and ease-of-use benefits from simpler circuits; to understand
the interplay between technological capabilities and limitations, on the one hand, and design
decisions based on user and application requirements on the other.

In computer designers' quest for user-friendliness, compactness, simplicity, high per-
formance, low cost, and low power, parallel processing plays a key role. High-performance
uniprocessors are becoming increasingly complex, expensive, and power-hungry. A basic
trade-off thus exists between the use of one or a small number of such complex processors,
at one extreme, and a moderate to very large number of simpler processors, at the other.
When combined with a high-bandwidth, but logically simple, interprocessor communication
facility, the latter approach leads to significant simplification of the design process. However,
two major roadblocks have thus far prevented the widespread adoption of such moderately
to massively parallel architectures. the interprocessor communication bottleneck and the
difficulty, and thus high cost, of agorithm/software devel opment.

Vil

viii INTRODUCTION TO PARALLEL PROCESSING

The above context is changing because of several factors. First, at very high clock rates,
the link between the processor and memory becomes very critical. CPUs can no longer be
designed and verified in isolation. Rather, an integrated processor/memory design optimiza-
tion is required, which makes the development even more complex and costly. VLS
technology now allows us to put more transistors on a chip than required by even the most
advanced superscalar processor. The bulk of these transistors are now being used to provide
additional on-chip memory. However, they can just as easily be used to build multiple
processors on a single chip. Emergence of multiple-processor microchips, aong with
currently available methods for glueless combination of several chips into a larger system
and maturing standards for parallel machine models, holds the promise for making parallel
processing more practical.

This is the reason parallel processing occupies such a prominent place in computer
architecture education and research. New parallel architectures appear with amazing regu-
larity in technical publications, while older architectures are studied and analyzed in novel
and insightful ways. The wealth of published theoretical and practical results on parallel
architectures and agorithms is truly awe-inspiring. The emergence of standard programming
and communication models has removed some of the concerns with compatibility and
software design issues in parallel processing, thus resulting in new designs and products with
mass-market appeal. Given the computation-intensive nature of many application areas (such
as encryption, physical modeling, and multimedia), parallel processing will continue to
thrive for years to come.

Perhaps, as parallel processing matures further, it will start to become invisible. Packing
many processors in a computer might constitute as much a part of a future computer
architect’s toolbox as pipelining, cache memories, and multiple instruction issue do today.
In this scenario, even though the multiplicity of processors will not affect the end user or
even the professional programmer (other than of course boosting the system performance),
the number might be mentioned in sales literature to lure customers in the same way that
clock frequency and cache size are now used. The challenge will then shift from making
parallel processing work to incorporating alarger number of processors, more economically
and in atruly seamless fashion.

THE GOALS AND STRUCTURE OF THIS BOOK

The field of parallel processing has matured to the point that scores of texts and reference
books have been published. Some of these books that cover parallel processing in genera
(as opposed to some specia aspects of the field or advanced/unconventiona parallel systems)
are listed at the end of this preface. Each of these books has its unique strengths and has
contributed to the formation and fruition of the field. The current text, Introduction to Parallel
Processing: Algorithms and Architectures, is an outgrowth of lecture notes that the author
has developed and refined over many years, beginning in the mid-1980s. Here are the most
important features of this text in comparison to the listed books:

1. Division of material into lecture-size chapters. In my approach to teaching, a lecture
is a more or less self-contained module with links to past lectures and pointers to
what will transpire in the future. Each lecture must have a theme or title and must

PREFACE ix

proceed from motivation, to details, to conclusion. There must be smooth transitions
between lectures and a clear enunciation of how each lecture fits into the overall
plan. In designing the text, | have strived to divide the material into chapters, each
of which is suitable for one lecture (I-2 hours). A short lecture can cover the first
few subsections, while a longer lecture might deal with more advanced material
near the end. To make the structure hierarchical, as opposed to flat or linear, chapters
have been grouped into six parts, each composed of four closely related chapters
(see diagram on page xi).

2. Alarge number of meaningful problems. At least 13 problems have been provided
at the end of each of the 24 chapters. These are well-thought-out problems, many
of them class-tested, that complement the materia in the chapter, introduce new
viewing angles, and link the chapter material to topics in other chapters.

3. Emphasis on both the underlying theory and practical designs. The ability to cope
with complexity requires both a deep knowledge of the theoretical underpinnings
of parallel processing and examples of designs that help us understand the theory.
Such designs also provide hints/ideas for synthesis as well as reference points for
cost—performance comparisons. This viewpoint is reflected, e.g., in the coverage of
problem-driven parallel machine designs (Chapter 8) that point to the origins of the
butterfly and binary-tree architectures. Other examples are found in Chapter 16
where avariety of composite and hierarchical architectures are discussed and some
fundamental cost—performance trade-offs in network design are exposed. Fifteen
carefully chosen case studies in Chapters 21-23 provide additional insight and
motivation for the theories discussed.

4. Linking parallel computing to other subfields of computer design. Parallel comput-
ing is nourished by, and in turn feeds, other subfields of computer architecture and
technology. Examples of such links abound. In computer arithmetic, the design of
high-speed adders and multipliers contributes to, and borrows many methods from,
paralel processing. Some of the earliest parallel systems were designed by re-
searchers in the field of fault-tolerant computing in order to alow independent
multichannel computations and/or dynamic replacement of failed subsystems.
These links are pointed out throughout the book.

5. Wide coverage of important topics. The current text covers virtualy all important
architectural and algorithmic topicsin parallel processing, thus offering a balanced
and complete view of the field. Coverage of the circuit model and problem-driven
parallel machines (Chapters 7 and 8), some variants of mesh architectures (Chapter
12), composite and hierarchical systems (Chapter 16), which are becoming increas-
ingly important for overcoming VLSI layout and packaging constraints, and the
topicsin Part V (Chapters 17-20) do not all appear in other textbooks. Similarly,
other books that cover the foundations of parallel processing do not contain
discussions on practical implementation issues and case studies of the type found
in Part VI.

6. Unified and consistent notation/terminology throughout the text. | have tried very
hard to use consistent notation/terminology throughout the text. For example, n
always stands for the number of data elements (problem size) and p for the number
of processors. While other authors have done this in the basic parts of their texts,
there is a tendency to cover more advanced research topics by simply borrowing

X INTRODUCTION TO PARALLEL PROCESSING

the notation and terminology from the reference source. Such an approach has the
advantage of making the transition between reading the text and the origina
reference source easier, but it is utterly confusing to the majority of the students
who rely on the text and do not consult the original references except, perhaps, to
write a research paper.

SUMMARY OF TOPICS

The six parts of this book, each composed of four chapters, have been written with the
following goals:

e Part | sets the stage, gives a taste of what is to come, and provides the needed
perspective, taxonomy, and analysis tools for the rest of the book.

e Part Il delimits the models of parallel processing from above (the abstract PRAM
model) and from below (the concrete circuit model), preparing the reader for everything
else that fallsin the middle.

e Part Il presents the scalable, and conceptually simple, mesh model of parallel process-
ing, which has become quite important in recent years, and also covers some of its
derivatives.

e Part IV covers low-diameter parallel architectures and their algorithms, including the
hypercube, hypercube derivatives, and a host of other interesting interconnection
topologies.

e Part V includes broad (architecture-independent) topics that are relevant to a wide range
of systems and form the stepping stones to effective and reliable parallel processing.

e Part VI deals with implementation aspects and properties of various classes of parallel
processors, presenting many case studies and projecting a view of the past and future
of the field.

POINTERS ON HOW TO USE THE BOOK

For classroom use, the topics in each chapter of this text can be covered in a lecture
spanning 1-2 hours. In my own teaching, | have used the chapters primarily for 1-1/2-hour
lectures, twice aweek, in a 10-week quarter, omitting or combining some chaptersto fit the
material into 18-20 lectures. But the modular structure of the text lends itself to other lecture
formats, self-study, or review of the field by practitioners. In the latter two cases, the readers
can view each chapter as a study unit (for 1 week, say) rather than as a lecture. 1deally, al
topics in each chapter should be covered before moving to the next chapter. However, if fewer
lecture hours are available, then some of the subsections located at the end of chapters can
be omitted or introduced only in terms of motivations and key resuilts.

Problems of varying complexities, from straightforward numerical examples or exercises
to more demanding studies or miniprojects, have been supplied for each chapter. These problems
form an integral part of the book and have not been added as afterthoughts to make the book
more attractive for use as a text. A total of 358 problems are included (1316 per chapter).
Assuming that two lectures are given per week, either weekly or biweekly homework can
be assigned, with each assignment having the specific coverage of the respective half-part

PREFACE

Xi

Book Book Parts Half-Parts Chapters
Background and 1. Introduction to Parallelistn
PartI: Motivation 2. A Taste of Paralie! Algorithms
Fundamental
Concepts Complexity and 3. Panllel Algorithm Complexity
Models 4. Models of Parallel Processing
Abstract View of 5. PRAM and Basic Algorithms
PartII: Shared Memory - 6. More Shared-Memory Algorithms
Extreme
Models Circuit Model of 7. Sorting and Selection Networks
Parallel Systems 8. Other Circuit-Level Examples
g :g Data Movement 9. Sorting on & 2D Mesh or Torus
é’ X|| Paril: on 2D Armays 10. Routing on 8 2D Mesh or Torus
k Mesh-Based
Architectures Mesh Algorithms 11. Numerical 2D Mesh Algorithms
< || and Varants 12. Other Mesh-Related Architectures
The Hypercube 13. Hypercubes and Their Algorithms
PartIV: Architecture 14. Sorting and Routing on Hypercubes
Low-Diameter
% Architectures Hypercubic and 15. Other Hypercubic Architectures
|| Other Networks 16. A Sampler of Other Networks
8
Coordination and 17. Emulation and Scheduling
. Part V: Data Access 18. Data Stoeage, Input, and Output
Some Broad
g Topics Robustness and 19. Reliable Paralle] Processing
Ease of Use 20. System and Software Issucs
Control-Parallel 21. Shared-Memory MIMD Machines
Part VI: Systems 22, Mcssage-Passing MIMD Machines
Impl ation
Aspects Data Parallelism 23. Data-Paralle] SIMD Machines
and Conclusion 24. Past, Present, and Future

The structure of this book in parts, half-parts, and chapters.

(two chapters) or full part (four chapters) asits “title.” In this format, the half-parts, shown
above, provide a focus for the weekly lecture and/or homework schedule.

An instructor’s manual, with problem solutions and enlarged versions of the diagrams
and tables, suitable for reproduction as transparencies, is planned. The author’s detailed
syllabus for the course ECE 254B at UCSB is available at http://www.ece.ucsh.edu/courses/

syllabi/ece254b.html.

References to important or state-of-the-art research contributions and designs are
provided at the end of each chapter. These references provide good starting points for doing

in-depth studies or for preparing term papers/projects.

Xii INTRODUCTION TO PARALLEL PROCESSING

New ideas in the field of parallel processing appear in papers presented at several annual
conferences, known as FMPC, ICPP, IPPS, SPAA, SPDP (now merged with IPPS), and in
archival journals such as | EEE Transactions on Computers [TCom], |EEE Transactions on
Parallel and Distributed Systems [TPDS], Journal of Parallel and Distributed Computing
[JPDC], Parallel Computing [ParC], and Parallel Processing Letters [PPL]. Tutoria and
survey papers of wide scope appear in IEEE Concurrency [Conc] and, occasiondly, in IEEE
Computer [Comp]. The articles in IEEE Computer provide excellent starting points for
research projects and term papers.

ACKNOWLEDGMENTS

The current text, Introduction to Parallel Processing: Algorithms and Architectures, is
an outgrowth of lecture notes that the author has used for the graduate course “ECE 254B:
Advanced Computer Architecture: Parallel Processing” at the University of California, Santa
Barbara, and, in rudimentary forms, at several other institutions prior to 1988. The text has
benefited greatly from keen observations, curiosity, and encouragement of my many students
in these courses. A sincere thanks to all of them! Particular thanks go to Dr. Ding-Ming Kwai
who read an early version of the manuscript carefully and suggested numerous corrections
and improvements.

GENERAL REFERENCES

[AKI89] AKI, S. G., The Design and Analysis of Parallel Algorithms, Prentice-Hall, 1989.

[AKI9T7] Akl, S. G., Parallel Computation: Models and Methods, Prentice-Hall, 1997.

[Alma94] Almasi, G. S, and A. Gottlieb, Highly Parallel Computing, Benjamin/Cummings, 2nd ed., 1994.

[Bert89] Bertsekas, D. P., and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods,
Prentice-Hall, 1989.

[Code93] Codenotti, B., and M. Leoncini, Introduction to Parallel Processing, Addison-Wesley, 1993.

[Comp] IEEE Computer, journal published by IEEE Computer Society: has occasional special issues on
parallel/distributed processing (February 1982, June 1985, August 1986, June 1987, March 1988,
August 1991, February 1992, November 1994, November 1995, December 1996).

[Conc] IEEE Concurrency, formerly IEEE Parallel and Distributed Technology, magazine published by
|EEE Computer Society.

[Cric88] Crichlow, J. M., Introduction to Distributed and Parallel Computing, Prentice-Hall, 1988.

[DeCe89] DeCegama, A. L., Parallel Processing Architectures and VLS Hardware, Prentice—Hall, 1989.

[Desr87] Desrochers, G. R., Principles of Parallel and Multiprocessing, McGraw-Hill, 1987.

[Duat97] Duato, J., S. Yaamanchili, and L. Ni, Interconnection Networks: An Engineering Approach, |[EEE
Computer Society Press, 1997.

[Flyn95] Flynn, M. J., Computer Architecture: Pipelined and Parallel Processor Design, Jones and Bartlett,
1995.

[FMPC] Proc. Symp. Frontiers of Massively Parallel Computation, sponsored by IEEE Computer Society and
NASA. Held every 1 1/2-2 years since 1986. The 6th FMPC was held in Annapolis, MD, October
27-31, 1996, and the 7th is planned for February 20-25, 1999.

[Foun94] Fountain, T. J., Parallel Computing: Principles and Practice, Cambridge University Press, 1994.

[Hock81] Hockney, R. W., and C. R. Jesshope, Parallel Computers, Adam Hilger, 1981.

[Hord90] Hord, R. M., Parallel Supercomputing in SSIMD Architectures, CRC Press, 1990.

[Hord93] Hord, R. M., Parallel Supercomputing in MIMD Architectures, CRC Press, 1993.

[Hwan84] Hwang, K., and F. A. Briggs, Computer Architecture and Parallel Processing, McGraw-Hill, 1984.

[Hwan93] Hwang, K., Advanced Computer Architecture: Parallelism, Scalability, Programmability, McGraw-
Hill, 1993.

PREFACE

[Hwan98]

[ICPP]

[IPPS]

[JaJa92]
[JPDC]
[Kris89]
[Kuma94]

[Laks90]
[Leigo2]

[Lerm94]
[Lipo87]
[Mold93]
[ParC]
[PPL]
[Quin87]
[Quin94]
[Reif93]
[Sanz89]

[Shar87]
[Sieg85]
[SPAA]

[SPDP]

[Ston93]
[TCom]

[TPDS]
[Varm94]

[Zomags]

Xiii

Hwang, K., and Z. Xu, Scalable Parallel Computing: Technology, Architecture, Programming,
McGraw-Hill, 1998.

Proc. Int. Conference Parallel Processing, sponsored by The Ohio State University (and in recent
years, also by the International Association for Computers and Communications). Held annually since
1972.

Proc. Int. Parallel Processing Symp., sponsored by |[EEE Computer Society. Held annually since
1987. The 11th IPPS was held in Geneva, Switzerland, April 1-5, 1997. Beginning with the 1998
symposium in Orlando, FL, March 30-April 3, IPPS was merged with SPDP. **

JaJa, J, An Introduction to Parallel Algorithms, Addison-Wesley, 1992.

Journal of Parallel and Distributed Computing, Published by Academic Press.

Krishnamurthy, E. V., Parallel Processing: Principles and Practice, Addison-Wesley, 1989.
Kumar, V., A. Grama, A. Gupta, and G. Karypis, Introduction to Parallel Computing: Design and
Analysis of Algorithms, Benjamin/Cummings, 1994.

Lakshmivarahan, S., and S. K. Dhall, Analysis and Design of Parallel Algorithms: Arithmetic and
Matrix Problems, McGraw-Hill, 1990.

Leighton, F. T., Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes,
Morgan Kaufmann, 1992.

Lerman, G., and L. Rudolph, Parallel Evolution of Parallel Processors, Plenum, 1994.

Lipovski, G. J., and M. Malek, Parallel Computing: Theory and Comparisons, Wiley, 1987.
Moldovan, D. I., Parallel Processing: From Applications to Systems, Morgan Kaufmann, 1993.
Parallel Computing, journal published by North-Holland.

Parallel Processing Letters, journal published by World Scientific.

Quinn, M. J,, Designing Efficient Algorithms for Parallel Computers, McGraw-Hill, 1987.

Quinn, M. J,, Parallel Computing: Theory and Practice, McGraw-Hill, 1994.

Reif, J. H. (ed.), Synthesis of Parallel Algorithms, Morgan Kaufmann, 1993.

Sanz, J. L. C. (ed.), Opportunities and Constraints of Parallel Computing (IBM/NSF Workshop, San
Jose, CA, December 1988), Springer-Verlag, 1989.

Sharp, J. A., An Introduction to Distributed and Parallel Processing, Blackwell Scientific Publica-
tions, 1987.

Siegel, H. J., Interconnection Networks for Large-Scale Parallel Processing, Lexington Books, 1985.
Proc. Symp. Parallel Algorithms and Architectures, sponsored by the Association for Computing
Machinery (ACM). Held annually since 1989. The 10th SPAA was held in Puerto Valarta, Mexico,
June 28-July 2, 1998.

Proc. Int. Symp. Parallel and Distributed Systems, sponsored by |IEEE Computer Society. Held
annually since 1989, except for 1997. The 8th SPDP was held in New Orleans, LA, October 23-26,
1996. Beginning with the 1998 symposium in Orlando, FL, March 30-April 3, SPDP was merged
with IPPS,

Stone, H. S., High-Performance Computer Architecture, Addison-Wesley, 1993.

IEEE Trans. Computers, journal published by IEEE Computer Society; has occasional specia issues
on parallel and distributed processing (April 1987, December 1988, August 1989, December 1991,
April 1997, April 1998).

IEEE Trans. Parallel and Distributed Systems, journal published by IEEE Computer Society.
Varma, A., and C. S. Raghavendra, Interconnection Networks for Multiprocessors and Multicomput-
ers: Theory and Practice, IEEE Computer Society Press, 1994.

Zomaya, A. Y. (ed.), Parallel and Distributed Computing Handbook, McGraw-Hill, 1996.

*The 27th ICPP was held in Minneapolis, MN, August 10-15, 1998, and the 28th is scheduled for September
21-24, 1999, in Aizu, Japan.
**The next joint IPPS/SPDP is sceduled for April 12—16, 1999, in San Juan, Puerto Rico.

This page intentionally left blank.

Contents

Part I.

1.

Fundamental Concepts .

Introduction to Parallelism.

11
12.
13.
14.
15.
16.

Why Parallel Processing?o
A MotivatingExample oo oL
Parallel Processing Ups and Downs

Types of Parallelism:

ATaxonomy

Roadblocksto Parallel Processing
Effectiveness of Parallel Processing
Problems.
Referencesand Suggested Reading

A Taste of Parallel Algorithms

2.1
2.2.
2.3.
24.
2.5.
2.6.

Some Simple Computations
Some Simple Architectures L L.
Algorithms for aLinear Array
Algorithms for aBinary Tree o oo

Algorithms for a 2D

Mesh

Algorithms with Shared Variables
Problems
Referencesand Suggested Reading

Parallel Algorithm Complexity

3.1
3.2
33.
34.
35.
3.6.

Asymptotic Complexity
Algorithm Optimality and Efficiency.

Complexity Classes

Parallelizable TasksandtheNCClass
Parallel Programming Paradigms

Solving Recurrences

13
15
16
19
21
23

25

27
28
30
34
39
40
41
43

45

47
50
53
55
56
58

XV

XVi

INTRODUCTION TO PARALLEL PROCESSING

Problems
References and Suggested Reading

Models of Parallel Processing .

4.1. Development of Early Models
4.2. SIMD versus MIMD Architectures
4.3. Globa versus Distributed Memory
44. The PRAM Shared-Memory Model
4.5. Distributed-Memory or Graph Models
4.6. Circuit Model and Physical Redlizations

Problems
References and Suggested Reading

Part Il. Extreme Models

5.

PRAM and Basic Algorithms . .

5.1. PRAM Submodels and Assumptions

5.2. Data Broadcasting

5.3. Semigroup or Fan-In Computation

5.4. Parallel Prefix Computation

5.5. Ranking the Elements of a Linked List

5.6. Matrix Multiplication
Problems
References and Suggested Reading

More Shared-Memory Algorithms

6.1. Sequential Rank-Based Selection
6.2. A Parallel Selection Algorithm
6.3. A Selection-Based Sorting Algorithm
6.4. Alternative Sorting Algorithms
6.5. Convex Hull of a2D Point Set
6.6. Some Implementation Aspects

Problems

References and Suggested Reading

Sorting and Selection Networks

7.1. What |Is a Sorting Network .

7.2. Figures of Merit for Sorting Networks

7.3. Design of Sorting Networks
7.4. Batcher Sorting Networks

7.5. Other Classes of Sorting Networks

7.6. Selection Networks

Problems

References and Suggested Reading

61
63

65

67
69
71
74
77
80
82
85

87

89

91
93
96
98
99
102
105
108

109

111
113
114
117
118
121
125
127

129

131
133
135
136
141
142
144
147

CONTENTS

Part Ill.

9.

10.

11.

12.

Other Circuit-Level Examples . . .

8.1. Searching and Dictionary Operations - - - -« - -« . .«
8.2. A Tree-Structured Dictionary Machine - - -« - -« - -« o o oo

8.3. Pardllel Prefix Computation -
8.4. Parallel Prefix Networks - -

8.5. The Discrete Fourier Transform -« - -« -« o o o o o o oo

8.6. Parallel Architectures for FFT
Problems
References and Suggested Reading -

Mesh-Based Architectures - - - -

Sorting on a 2D Mesh or Torus .

9.1. Mesh-Connected Computers -
9.2. The Shearsort Algorithm . . .
9.3. Variants of Simple Shearsort -
9.4. Recursive Sorting Algorithms
9.5. A Nontrivial Lower Bound - -
9.6. Achieving the Lower Bound .

Problems . . - - . . oo

References and Suggested Reading -

Routing on a 2D Mesh or Torus .

10.1. Types of Data Routing Operations - - - - - - -« « o o o 0o
10.2. Useful Elementary Operations - - - - -« - o v oo oo v v

10.3. Data Routing on a 2D Array

10.4. Greedy Routing Algorithms -

10.5. Other Classes of Routing Algorithms - -«o oL

10.6. Wormhole Routing - - - -
Problems

References and Suggested Reading - - - - -« - - - oo oL .

Numerical 2D Mesh Algorithms
11.1. Matrix Multiplication - - -

11.2. Triangular System of Equations - - - - -+« - <+« o o e

11.3. Tridiagonal System of Linear

Equations - - - - - o - o

11.4. Arbitrary System of Linear Equations - - -« -« - - o oo

11.5. Graph Algorithms - - - - -

11.6. Image-Processing Algorithms - - -« « -« v v v oo

Problems - - - - -+« o o oo
References and Suggested Reading

Other Mesh-Related Architectures

12.1. Three or More Dimensions

XVii

149

151
152
156
157
161
163
165
168

169

171

173
176
179
180
183
186
187
190

191

193
195
197
199
202
204
208
210

211

213

215
218
221
225
228
231

233

235
237

XVviii INTRODUCTION TO PARALLEL PROCESSING
12.2. Stronger and Weaker Connectivities 240
12.3. Meshes Augmented with Nonlocal Links 242
12.4. Meshes with Dynamic Links......................... 245
12.5. Pyramid and Multigrid Systems 246
12.6. Meshes Of Treesc..uuuiiiiiiiiiiiiiaaann, 248
Problems. ... 253
References and Suggested Reading 256

Part IV. Low-Diameter Architectures 257

13. Hypercubes and Their Algorithms 259
13.1. Definition and Main Properties 261
13.2. Embeddings and Their Usefulness 263
13.3. Embedding of Arrays and Trees 264
13.4. A Few Simple Algorithms 269
13.5. Matrix Multiplication....................... 272
13.6. Inverting a Lower Triangular Matrix 274
Problems 275
References and Suggested Reading 278

14. Sorting and Routing on Hypercubes 279
14.1. Defining the Sorting Problem 281
14.2. Bitonic Sorting on a Hypercube 284
14.3. Routing Problems on a Hypercube 285
14.4. Dimension-Order Routing 288
14.5. Broadcasting on a Hypercube 292
14.6. Adaptive and Fault-Tolerant Routing 294
Problems 295
References and Suggested Reading 298

15. Other Hypercubic Architectures 301
15.1. Modified and Generalized Hypercubes 303
15.2. Butterfly and Permutation Networks 305
15.3. Plus-or-Minus-2'Network 309
15.4. The Cube-Connected Cycles Network 310
15.5. Shuffleand Shuffle-Exchange Networks 313
15.6. That’'s Not All, Folks! 316
Problems 317
References and Suggested Reading 320

16. A Sampler of Other Networks 321
16.1. Performance Parameters for Networks 323
16.2. Star and Pancake Networks 326

16.3. Ring-Based Networks 329

CONTENTS

16.4. Composite or Hybrid Networks
16.5. Hierarchical (Multilevel) Networks
16.6. Multistage Interconnection Networks
Problems
Referencesand Suggested Reading

Part V. Some Broad Topics

17.

18.

19.

20.

Emulation and Scheduling

17.1. Emulations among Architectures
17.2. Didtributed Shared Memory
17.3. The Task Scheduling Problem
17.4. A Class of Scheduling Algorithms
17.5. Some Useful Bounds for Scheduling
17.6. Load Balancing and Dataflow Systems
Problems

Data Storage, Input, and Qutput

18.1. Data Access Problems and Caching
18.2. CacheCoherenceProtocols
18.3. Multithreading and Latency Hiding
18.4. Perdlel 1/O Technology
18.5. Redundant Disk Arrays,
186. Interfacesand Standards
Problems
Referencesand Suggested Reading

Reliable Parallel Processing

19.1. Defects, Faults, . . ., Failures
19.2. Defect-Level Methods
19.3. Fault-Level Methods
19.4. Error-Level Methods
19.5. Mdfunction-Level Methods
19.6. Degradation-Level Methods
Problems
Referencesand Suggested Reading

System and Software ISSUeSot

20.1. Coordination and Synchronization
20.2. Parallel Programming
20.3. Software Portability and Standards
20.4. Pardlel Operating Systems
20.5. Parellel File Systems L

XiX

335
337
338
340
343

345

347

349
351
355
357
360
362
364
367

369

371
374
377
379
382
384
386
388

391

393
396
399
402
404
407
410
413

415

417
421
425
427
430

XX INTRODUCTION TO PARALLEL PROCESSING

20.6. Hardware/Software Interaction 431
Problems. 433
References and Suggested Reading 435
Part VI. Implementation Aspects 437
21.Shared-Memory MIMD Machines 439
21.1. Variations in Shared Memory 441
21.2. MIN-Based BBN Butterfly 444
21.3. Vector-Pardllel Cray Y-MP 445
21.4. Latency-Tolerant Tera MTA o .. 448
21.5. CC-NUMA Stanford DASH 450
21.6. SCl-Based Sequent NUMA-Q 452
Problems 455
References and Suggested Reading 457
22.Message-Passing MIMD Machines 459
22.1. Mechanisms for Message Passing 461
22.2. Reliable Bus-Based Tandem Nonstop . . - . - 464
22.3. Hypercube-Based nCUBE3 466
22.4. Fat-Tree-Based Connection Machine 5 469
22.5. Omega-Network-Based IBM SP2 471
22.6. Commodity-Driven Berkeley NOW 473
Problems 475
References and Suggested Reading 477
23. Data-Parallel SIMD Machines 479
23.1. Where Have All the SIMDs Gone? 481
23.2. The First Supercomputer: ILLIAC IV 484
23.3. Massively Parallel Goodyear MPP 485
23.4. Distributed Array Processor (DAP) 488
23.5. Hypercubic Connection Machine 2 490
23.6. Multiconnected MasPar MP-2 492
Problems 495
References and Suggested Reading 497
24. Past, Present, and Future e 499
24.1. Milestones in Paralel Processing 501
24.2. Current Status, Issues, and Debates 503
24.3. TFLOPS, PFLOPS, and Beyond 506
24.4. Processor and Memory Technologies 508

24.5. Interconnection Technologies 510

CONTENTS

24.6. The Future of Parallel Processing - - - - - - - - - - - 0 v v e
Problems
Referencesand Suggested Reading -+« « « «+ « « v o oo e

Index

513

515
517

519

XXi

This page intentionally left blank.

Introduction to

Parallel Processing
Algorithms and Architectures

This page intentionally left blank.

Fundamental
Concepts

The field of parallel processing is concerned with architectural and algorithmic
methods for enhancing the performance or other attributes (e.g., cost-effective-
ness, reliability) of digital computers through various forms of concurrency. Even
though concurrent computation has been around since the early days of digital
computers, only recently has it been applied in a manner, and on a scale, that
leads to better performance, or greater cost-effectiveness, compared with vector
supercomputers. Like any other field of science/technology, the study of parallel
architectures and algorithms requires motivation, a big picture showing the
relationships between problems and the various approaches to solving them,
and models for comparing, connecting, and evaluating new ideas. This part,
which motivates us to study parallel processing, paints the big picture, and
provides some needed background, is composed of four chapters:

e Chapter 1: Introduction to Parallelism

e Chapter 2: A Taste of Parallel Algorithms
» Chapter 3: Parallel Algorithm Complexity
« Chapter 4: Models of Parallel Processing

This page intentionally left blank.

Introduction to
Parallelism

This chapter sets the context in which the material in the rest of the book will
be presented and reviews some of the challenges facing the designers and users
of parallel computers. The chapter ends with the introduction of useful metrics
for evaluating the effectiveness of parallel systems. Chapter topics are

e 1.1. Why parallel processing?

e 1.2. A motivating example

e 1.3. Parallel processing ups and downs
o 1.4. Types of parallelism: A taxonomy
« 1.5. Roadblocks to parallel processing
o 1.6. Effectiveness of parallel processing

This page intentionally left blank.

INTRODUCTION TO PARALLELISM 5

1.1. WHY PARALLEL PROCESSING?

The quest for higher-performance digital computers seems unending. In the past two
decades, the performance of microprocessors has enjoyed an exponential growth. The growth
of microprocessor speed/performance by a factor of 2 every 18 months (or about 60% per
year) isknown as Moore' s law. This growth is the result of a combination of two factors:

1. Increasein complexity (related both to higher device density and to larger size) of
VLS| chips, projected to rise to around 10 M transistors per chip for microproces-
sors, and 1B for dynamic random-access memories (DRAMS), by the year 2000
[SIA94]

2. Introduction of, and improvements in, architectural features such as on-chip cache
memories, large instruction buffers, multiple instruction issue per cycle, multi-
threading, deep pipelines, out-of-order instruction execution, and branch prediction

Moore'slaw was originally formulated in 1965 in terms of the doubling of chip complexity
every year (later revised to every 18 months) based only on a small number of data points
[Scha97]. Moore's revised prediction matches almost perfectly the actual increases in the
number of transistors in DRAM and microprocessor chips.

Moore's law seems to hold regardless of how one measures processor performance:
counting the number of executed instructions per second (IPS), counting the number of
floating-point operations per second (FLOPS), or using sophisticated benchmark suites
that attempt to measure the processor's performance on real applications. This is because
all of these measures, though numerically different, tend to rise at roughly the same rate.
Figure 1.1 shows that the performance of actual processors has in fact followed Moore's
law quite closely since 1980 and is on the verge of reaching the GIPS (giga IPS = 10°
IPS) milestone.

Even though it is expected that Moore's law will continue to hold for the near future,
there is alimit that will eventually be reached. That some previous predictions about when
the limit will be reached have proven wrong does not alter the fact that a limit, dictated by
physical laws, does exist. The most easily understood physical limit is that imposed by the
finite speed of signal propagation along a wire. This is sometimes referred to as the
speed-of-light argument (or limit), explained as follows.

The Speed-of-Light Argument. The speed of light is about 30 cm/ns. Signals travel
on awire at a fraction of the speed of light. If the chip diameter is 3 cm, say, any computation
that involves signa transmission from one end of the chip to another cannot be executed
faster than 10'° times per second. Reducing distances by a factor of 10 or even 100 will only
increase the limit by these factors; we still cannot go beyond 10" computations per second.
To relate the above limit to the instruction execution rate (MIPS or FLOPS), we need to
estimate the distance that signals must travel within an instruction cycle. Thisis not easy to
do, given the extensive use of pipelining and memory-latency-hiding techniques in modern
high-performance processors. Despite this difficulty, it should be clear that we are in fact not
very far from limits imposed by the speed of signal propagation and several other physical
laws.

6 INTRODUCTION TO PARALLEL PROCESSING

1980 1990 2000
Calendar Year

Figure 1.1. The exponential growth of microprocessor performance, known as Moore’s law,
shown over the past two decades.

The speed-of-light argument suggests that once the above limit has been reached, the
only path to improved performance is the use of multiple processors. Of course, the same
argument can be invoked to conclude that any parallel processor will also be limited by the
speed at which the various processors can communicate with each other. However, because
such communication does not have to occur for every low-level computation, the limit is less
serious here. In fact, for many applications, a large number of computation steps can be
performed between two successive communication steps, thus amortizing the communica-
tion overhead.

Here is another way to show the need for parallel processing. Figure 1.2 depicts the
improvement in performance for the most advanced high-end supercomputers in the same
20-year period covered by Fig. 1.1. Two classes of computers have been included: (1)
Cray-type pipelined vector supercomputers, represented by the lower straight line, and (2)
massively parallel processors (MPPs) corresponding to the shorter upper lines [Bell92].

We see from Fig. 1.2 that the first class will reach the TFLOPS performance benchmark
around the turn of the century. Even assuming that the performance of such machines will
continue to improve at this rate beyond the year 2000, the next milestone, i.e., PFLOPS (peta
FLOPS = 10" FLOPS) performance, will not be reached until the year 2015. With massively
parallel computers, TFLOPS performance is already at hand, albeit at arelatively high cost.
PFLOPS performance within this class should be achievable in the 2000-2005 time frame,
again assuming continuation of the current trends. In fact, we already know of one serious
roadblock to continued progress at this rate: Research in the area of massively parallel
computing is not being funded at the levelsit enjoyed in the 1980s.

But who needs supercomputers with TFLOPS or PFL OPS performance? Applications
of state-of-the-art high-performance computers in military, space research, and climate
modeling are conventional wisdom. Lesser known are applications in auto crash or engine
combustion simulation, design of pharmaceuticals, design and evaluation of complex ICs,
scientific visualization, and multimedia. In addition to these areas, whose current computa-
tional needs are met by existing supercomputers, there are unmet computational needs in

INTRODUCTION TO PARALLELISM 7

PFLOPS

..

Supercomputer Performance

...

1880 1990 2000
Calendar Year

Figure 1.2. The exponential growth in supercomputer performance over the past two decades
[Bell9z2].

aerodynamic simulation of an entire aircraft, modeling of global climate over decades, and
investigating the atomic structures of advanced materials.

Let us consider a few specific applications, in the area of numerical simulation for
validating scientific hypotheses or for developing behavioral models, where TFLOPS
performanceis required and PFL OPS performance would be highly desirable [Quin94].

To learn how the southern oceans transport heat to the South Pole, the following model
has been developed at Oregon State University. The ocean is divided into 4096 regions E-W,
1024 regions N—S, and 12 layersin depth (50 M 3D cells). A single iteration of the model
simulates ocean circulation for 10 minutes and involves about 30B floating-point operations.
To carry out the ssmulation for 1 year, about 50,000 iterations are required. Simulation for
6 years would involve 10 floating-point operations.

In the field of fluid dynamics, the volume under study may be modeled by a 103 x 103
x 10° lattice, with about 103 floating-point operations needed per point over 10*time steps.
This too translates to 10 floating-point operations.

Asafina example, in Monte Carlo simulation of anuclear reactor, about 10 particles
must be tracked, as about 1 in 10° particles escape from a nuclear reactor and, for accuracy,
we need at least 10° escapes in the simulation. With 10% floating-point operations needed per
particle tracked, the total computation constitutes about 10° floating-point operations.

From the above, we see that 10"°~10 floating-point operations are required for many
applications. If we consider 102 —10* seconds a reasonable running time for such computa-

8 INTRODUCTION TO PARALLEL PROCESSING

tions, the need for TFLOPS performance is evident. In fact, researchers have aready begun
working toward the next milestone of PFLOPS performance, which would be needed to run
the above models with higher accuracy (e.g., 10 times finer subdivisions in each of three
dimensions) or for longer durations (more steps).

The motivations for parallel processing can be summarized as follows:

1. Higher speed, or solving problems faster. This is important when applications have
“hard” or “soft” deadlines. For example, we have at most a few hours of computation
time to do 24-hour wesather forecasting or to produce timely tornado warnings.

2. Higher throughput, or solving more instances of given problems. Thisisimportant
when many similar tasks must be performed. For example, banks and airlines,
among others, use transaction processing systems that handle large volumes of data.

3. Higher computational power, or solving larger problems. This would alow us to
use very detailed, and thus more accurate, models or to carry out simulation runs
for longer periods of time (e.g., 5-day, as opposed to 24-hour, weather forecasting).

All three aspects above are captured by a figure-of-merit often used in connection with
paralel processors: the computation speed-up factor with respect to a uniprocessor. The
ultimate efficiency in parallel systemsisto achieve a computation speed-up factor of p with
p processors. Although in many cases this ideal cannot be achieved, some speed-up is
generaly possible. The actual gain in speed depends on the architecture used for the system
and the algorithm run on it. Of course, for atask that is (virtually) impossible to perform on
a single processor in view of its excessive running time, the computation speed-up factor can
rightly be taken to be larger than p or even infinite. This situation, which is the analogue of
several men moving a heavy piece of machinery or furniture in afew minutes, whereas one
of them could not moveit at al, is sometimes referred to as parallel synergy.

This book focuses on the interplay of architectural and algorithmic speed-up tech-
niques. More specifically, the problem of algorithm design for general-purpose paralel
systems and its “converse,” the incorporation of architectural features to help improve
algorithm efficiency and, in the extreme, the design of algorithm-based special-purpose
paralel architectures, are considered.

1.2. A MOTIVATING EXAMPLE

A major issue in devising a parallel algorithm for a given problem is the way in which
the computational load is divided between the multiple processors. The most efficient scheme
often depends both on the problem and on the parallel machine's architecture. This section
exposes some of the key issuesin parallel processing through a simple example [Quin94].

Consider the problem of constructing the list of al prime numbers in the interval [1, n]
for a given integer n > 0. A simple agorithm that can be used for this computation is the
sieve of Eratosthenes. Start with the list of numbers 1, 2, 3, 4, .. ., nrepresented as a “mark”
bit-vector initialized to 1000 . . . 00. In each step, the next unmarked number m (associated
with a 0 in element m of the mark bit-vector) is a prime. Find this element m and mark all
multiples of m beginning with m2. When m? > n, the computation stops and all unmarked
elements are prime numbers. The computation steps for n = 30 are shown in Fig. 1.3.

2 3 4 5 6 7 8

m=2
2 3 5 7 9 11
m=3
2 3 5 7 11
m=5
2 3 5 7 11

Figure 1.3. The sieve of Eratosthenes yielding a list of 10 primes for n

distinguished by erasure from the list.

13

13

13

15

17

17

17

19

19

19

21

23

23

23

30. Marked elements have been

25

25

27

9 10 11 12 13 14 1S 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

29

29

29

ANSIT3TIVYVd OL NOILONAOYHLNI

10 INTRODUCTION TO PARALLEL PROCESSING

.
.
s
by
.
.
y
.
.
.
.
.
.
.
.
.
v
.
.
.
»
)
.
.
»
Iy
.
Iy
\
.
IS
IS
.
Y
I3
.
.
.
Y
s
3
.
.
Iy
.
.
.
v
.
Iy
.
.
1y
s

I

-

bY
13
1S

Current Prime Index

v
I
.
v
N
.
[y
.
.
.
.
.
N
.
.
v
.
.
Y
)
by
.
by
.
.
bY
.
.
.
by
.
.
by
.
.
Y
Iy
.
.
.
.
.
.
Iy
.
Y
.
.
.
Iy
.
.
»
s
by
.
.
Y
(Y

Figure 1.4. Schematic representation of single-processor solution for the sieve of Eratosthenes.

Figure 1.4 shows a single-processor implementation of the algorithm. The variable
“current prime” isinitialized to 2 and, in later stages, holds the latest prime number found.
For each prime found, “index” is initialized to the sguare of this prime and is then
incremented by the current prime in order to mark all of its multiples.

Figure 1.5 shows our first parallel solution using p processors. Thelist of numbers and
the current prime are stored in a shared memory that is accessible to all processors. Anidle
processor simply refers to the shared memory, updates the current prime, and uses its private
index to step through the list and mark the multiples of that prime. Division of work isthus
self-regulated. Figure 1.6 shows the activities of the processors (the prime they are working
on at any given instant) and the termination time for n = 1000 and 1 < p < 3. Note that using
more than three processors would not reduce the computation time in this control-parallel
scheme.

We next examine a data-parallel approach in which the bit-vector representing the n
integers is divided into p equal-length segments, with each segment stored in the private
memory of one processor (Fig. 1.7). Assume that p < Vn, so that al of the primes whose
multiples have to be marked reside in Processor 1, which acts as a coordinator: It finds the
next prime and broadcasts it to all other processors, which then proceed to mark the numbers
in their sublists. The overall solution time now consists of two components: the time spent
on transmitting the selected primes to all processors (communication time) and the time spent
by individual processors marking their sublists (computation time). Typically, communica-
tion time grows with the number of processors, though not necessarily in alinear fashion.
Figure 1.8 shows that because of the abovementioned communication overhead, adding more
processors beyond a certain optimal number does not lead to any improvement in the total
solution time or in attainable speed-up.

i Index i Index | i Index ,
Py i P2 T Fee iPe [F
R L A S ;

...

g

2
o
g
<

..

Figure 1.5. Schematic representation of a control-parallel solution for the sieve of Eratosthenes.

Time
100 200 300 400 500 600 700 800 900G 1000 1100 1200 1300 3400 1500
2 1 3 5 T 7 | 11 fi3jiq JH]]
p=1, t=1411 19,2%
23 29 31
2 7 1t
3 | S { 11 J13]
p=2 t= 706 19
2 |
3 11 ||]19 29 31
5 {7 13]17]] 23
p=3 t= 499

Figure 1.6. Control-parallel realization or the sieve of Eratosthenes with n = 1000 and 1< p<3.

WSIT3TIVEVd OL NOILONAOYHLNI

17

12 INTRODUCTION TO PARALLEL PROCESSING

P T P Y L T T P N P L P R R L
H

Cutrent Prime Index

—/ /3

Ssssanssetsasaana

...

--
H .

Figure 1.7. Data-parallel realization of the sieve of Eratosthenes.

Finally, consider the data-parallel solution, but with data 1/0 time aso included in the
total solution time. Assuming for simplicity that the 1/O time is constant and ignoring
communication time, the 1/O time will constitute a larger fraction of the overall solution time
as the computation part is speeded up by adding more and more processors. If 1/0 takes 100
seconds, say, then there is little difference between doing the computation part in 1 second
or in 0.01 second. We will later see that such “sequentia” or “unparallelizable” portions of
computations severely limit the speed-up that can be achieved with parallel processing.
Figure 1.9 shows the effect of 1/0 on the total solution time and the attainabl e speed-up.

Computation 8 -+ I
time N
6 4 "
\ 44 —
m'n.,h Solution time
Com- LY 2l
munication e
uf},s—-nrn-“--.w«ul” R . ' l l .
0 4 8 12 16 o
Processors P s

Figure 1.8. Trade-off between communication time and computation time in the data-parallel
realization of the sieve of Eratosthenes.

INTRODUCTION TO PARALLELISM 13

Idesl
Computation 8 ,
ime Computation
64 speedup
\ 4 Real
K""m Solution time
M"““""‘“wm 21
1Otime .
L 1] ¥ |) 1 i]
0 4_ 8 12 16 0 4_ 8 12 16
Processors Processors

Figure 1.9. Effect of a constant I/O time on the data-parallel realization of the sieve of
Eratosthenes.

1.3. PARALLEL PROCESSING UPS AND DOWNS

L. F. Richardson, a British meteorologist, was the first person to attempt to forecast the
weather using numerical computations. He started to formulate his method during the First
World War while serving in the army ambulance corps. He estimated that predicting the
weather for a 24-hour period would require 64,000 slow “computers’ (humans + mechanical
calculators) and even then, the forecast would take 12 hours to complete. He had the
following idea or dream:

Imagine alarge hall like atheater. . . . The walls of this chamber are painted to form a
map of the globe. . . . A myriad of computers are at work upon the weather on the part
of the map where each sits, but each computer attends to only one equation or part of an
equation. The work of each region is coordinated by an officia of higher rank. Numerous
little ‘night signs’ display the instantaneous values so that neighbouring computers can
read them. . . . One of [the conductor’s] duties is to maintain a uniform speed of progress
indl parts of theglobe. . . . But instead of waving a baton, he turns a beam of rosy light
upon any region that is running ahead of the rest, and a beam of blue light upon those
that are behindhand. [See Fig. 1.10.]

Parallel processing, in the literal sense of the term, is used in virtually every modern
computer. For example, overlapping I/O with computation is aform of parallel processing,
as is the overlap between instruction preparation and execution in a pipelined processor.
Other forms of parallelism or concurrency that are widely used include the use of multiple
functional units (e.g., separate integer and floating-point ALUs or two floating-point multi-
pliers in one ALU) and multitasking (which allows overlap between computation and
memory load necessitated by a page fault). Horizontal microprogramming, and its higher-
level incarnation in very-long-instruction-word (VLIW) computers, also alows some paral-
Ielism. However, in this book, the term parallel processing is used in arestricted sense of
having multiple (usually identical) processors for the main computation and not for the I/O
or other peripheral activities.

The history of parallel processing has had its ups and downs (read company formations
and bankruptcies!) with what appears to be a 20-year cycle. Serious interest in parallel
processing started in the 1960s. ILLIAC 1V, designed at the University of Illinois and later

14 INTRODUCTION TO PARALLEL PROCESSING

Figure 1.10. Richardson’s circular theater for weather forecasting calculations.

built and operated by Burroughs Corporation, was the first large-scale parallel computer
implemented; its 2D-mesh architecture with a common control unit for all processors was
based on theories developed in the late 1950s. It was to scale to 256 processors (four
quadrants of 64 processors each). Only one 64-processor quadrant was eventually built, but
it clearly demonstrated the feasibility of highly parallel computers and also revealed some
of the difficultiesin their use.

Commercid interest in parallel processing resurfaced in the 1980s. Driven primarily by
contracts from the defense establishment and other federal agencies in the United States,
numerous companies were formed to develop parallel systems. Established computer ven-
dors also initiated or expanded their parallel processing divisions. However, three factors led
to another recess:

1. Government funding in the United States and other countries dried up, in part related
to the end of the cold war between the NATO allies and the Soviet bloc.

2. Commercia usersin banking and other data-intensive industries were either satu-
rated or disappointed by application difficulties.

3. Microprocessors developed so fast in terms of performance/cost ratio that custom-
designed parallel machines always lagged in cost-effectiveness.

Many of the newly formed companies went bankrupt or shifted their focus to developing
software for distributed (workstation cluster) applications.

Driven by the Internet revolution and its associated “information providers,” a third
resurgence of parallel architectures is imminent. Centralized, high-performance machines
may be needed to satisfy the information processing/access needs of some of these providers.

INTRODUCTION TO PARALLELISM 15

1.4. TYPES OF PARALLELISM: A TAXONOMY

Parallel computers can be divided into two main categories of control flow and data
flow. Control-flow parallel computers are essentially based on the same principles as the
sequential or von Neumann computer, except that multiple instructions can be executed at
any given time. Data-flow parallel computers, sometimes referred to as “non-von Neumann,”
are completely different in that they have no pointer to active instruction(s) or a locus of
control. The control is totally distributed, with the availability of operands triggering the
activation of instructions. In what follows, we will focus exclusively on control-flow parallel
computers.

In 1966, M. J. Flynn proposed a four-way classification of computer systems based on
the notions of instruction streams and data streams. Flynn's classification has become
standard and is widely used. Flynn coined the abbreviations SISD, SIMD, MISD, and MIMD
(pronounced “sis-dee,” “sim-dee,” and so forth) for the four classes of computers shown in
Fig. 1.11, based on the number of instruction streams (single or multiple) and data streams
(single or multiple) [Flyn96]. The SISD class represents ordinary “uniprocessor” machines.
Computersin the SIMD class, with several processors directed by instructions issued from
a central control unit, are sometimes characterized as “array processors.” Machinesin the
MISD category have not found widespread application, but one can view them as generalized
pipelines in which each stage performs a relatively complex operation (as opposed to
ordinary pipelines found in modern processors where each stage does a very simple
instruction-level operation).

The MIMD category includes a wide class of computers. For this reason, in 1988, E. E.
Johnson proposed a further classification of such machines based on their memory structure
(global or distributed) and the mechanism used for communication/synchronization (shared
variables or message passing). Again, one of the four categories (GMMP) is not widely used.
The GMSV class is what is loosely referred to as (shared-memory) multiprocessors. At the

Data Stream(s)
Single Multiple

SISD SIMD
"Uniprocessors” "Array Processors”

Single

GMSV GMMP
“Shared- g
mmnpmoumri:
MISD MIMD
DMSV DMMP
"Distrib. Shared | "Distrib.-memory
memory” multicomputers”
Shared Varisbles Message Passing
Communication/Synchronization

ultiple

Instruction Stream(s)

M

Memory

Distribeted

Figure 1.11. The Flynn—Johnson classification of computer systems.

16 INTRODUCTION TO PARALLEL PROCESSING

other extreme, the DMMP class is known as (distributed-memory) multicomputers. Finaly,
the DMSV class, which is becoming popular in view of combining the implementation ease
of distributed memory with the programming ease of the shared-variable scheme, is some-
times called distributed shared memory. When all processors in a MIMD-type machine
execute the same program, the result is sometimes referred to as single-program multiple-
data [SPMD (spim-deg)].

Although Fig. 1.11 lumps al SIMD machines together, there are in fact variations
similar to those suggested above for MIMD machines. At least conceptualy, there can be
shared-memory and distributed-memory SIMD machines in which the processors commu-
nicate by means of shared variables or explicit message passing.

Anecdote. The Flynn-Johnson classification of Fig. 1.11 contains eight four-letter
abbreviations. There are many other such abbreviations and acronyms in parallel processing,
examples being CISC, NUMA, PRAM, RISC, and VLIW. Even our journals (JPDC, TPDS)
and conferences (ICPP, IPPS, SPDP, SPAA) have not escaped this fascination with four-letter
abbreviations. The author has a theory that an individual cannot be considered a successful
computer architect until she or he has coined at |least one, and preferably a group of two or
four, such abbreviations! Toward this end, the author coined the acronyms SINC and FINC
(Scant/Full Interaction Network Cell) as the communication network counterparts to the
popular RISC/CISC dichotomy [Parh95]. Alas, the use of these acronyms is not yet as
widespread as that of RISC/CISC. In fact, they are not used at al.

1.5. ROADBLOCKS TO PARALLEL PROCESSING

Over the years, the enthusiasm of parallel computer designers and researchers has been
counteracted by many objections and cautionary statements. The most important of these are
listed in this section [Quin87]. The list begins with the less serious, or obsolete, objections
and ends with Amdahl’s law, which perhaps constitutes the most important challenge facing
paralel computer designers and users.

1. Grosch's law (economy of scale applies, or computing power is proportional to the
square of cost). If thislaw did in fact hold, investing money in p processors would
be foolish as a single computer with the same total cost could offer p? times the
performance of one such processor. Grosch’s law was formulated in the days of
giant mainframes and actually did hold for those machines. In the early days of
paralel processing, it was offered as an argument against the cost-effectiveness of
paralel machines. However, we can now safely retire thislaw, as we can buy more
MFLOPS computing power per dollar by spending on micros rather than on supers.
Note that even if this law did hold, one could counter that there is only one “fastest”
single-processor computer and it has a certain price; you cannot get a more powerful
one by spending more.

2. Minsky's conjecture (speed-up is proportional to the logarithm of the number p of
processors). This conjecture has its roots in an analysis of data access conflicts
assuming random distribution of addresses. These conflicts will slow everything
down to the point that quadrupling the number of processors only doubles the
performance. However, data access patterns in rea applications are far from

INTRODUCTION TO PARALLELISM 17

random. Most applications have a pleasant amount of data access regularity and
locality that help improve the performance. One might say that the log p speed-up
rule is one side of the coin that has the perfect speed-up p on the flip side. Depending
on the application, real speed-up can range from log pto p (p/log p being a
reasonable middle ground).

3. The tyranny of IC technology (because hardware becomes about 10 times faster
every 5 years, by the time a parallel machine with 10-fold performance is designed
and implemented, uniprocessors will be just as fast). This objection might be valid
for some special-purpose systems that must be built from scratch with “old”
technology. Recent experience in parallel machine design has shown that off-the-
shelf components can be used in synthesizing massively parallel computers. If the
design of the parallel processor is such that faster microprocessors can simply be
plugged in as they become available, they too benefit from advancements in IC
technology. Besides, why restrict our attention to parallel systems that are designed
to be only 10 times faster rather than 100 or 1000 times?

4. The tyranny of vector supercomputers (vector supercomputers, built by Cray,
Fujitsu, and other companies, are rapidly improving in performance and addition-
ally offer afamiliar programming model and excellent vectorizing compilers; why
bother with parallel processors?). Figure 1.2 contains a possible answer to this
objection. Besides, not al computationally intensive applications deal with vectors
or matrices; some are in fact quite irregular. Note, also, that vector and parallel
processing are complementary approaches. Most current vector supercomputers do
in fact comein multiprocessor configurations for increased performance.

5. The software inertia (billions of dollars worth of existing software makes it hard to
switch to parallel systems; the cost of converting the “dusty decks’ to parallel
programs and retraining the programmersis prohibitive). This objection isvalid in
the short term; however, not all programs needed in the future have already been
written. New applications will be developed and many new problems will become
solvable with increased performance. Students are aready being trained to think
paralel. Additionaly, tools are being developed to transform sequential code into
paralel code automatically. In fact, it has been argued that it might be prudent to
develop programs in parallel languages even if they are to be run on sequential
computers. The added information about concurrency and data dependencies would
allow the sequential computer to improve its performance by instruction prefetch-
ing, data caching, and so forth.

6. Amdahl’'s law (speed-up < 1/[f+ (1 - f)ip] = p/[1 + f(p— 1)]; asmall fraction f of
inherently sequential or unparallelizable computation severely limits the speed-up
that can be achieved with p processors). This is by far the most important of the six
objections/warnings. A unit-time task, for which the fraction f is unparallelizable
(so it takes the same time f on both sequential and parallel machines) and the
remaining 1 — f isfully paralelizable [so it runsin time (1 — f)/p on a p-processor
maching], has a running time of f + (1 — f)/p on the paralel machine, hence
Amdahl’s speed-up formula.

Figure 1.12 plots the speed-up as a function of the number of processors for different values
of the inherently sequential fraction f. The speed-up can never exceed /f, no matter how

INTRODUCTION TO PARALLEL PROCESSING

18
30
Ideal
f=0
20 feeerrerrersnnianidaniiicingiiiniiciig
B
=2
L]
8 f=0.05
o
w
10 Jereereninneeniinnd, R ARSI LI I
H : {=0.1
0 H
0 10 20 30
Number of Processors

Figure 1.12. The limit on speed-up according to Amdahl’s law.

Figure 1.13. Task graph exhibiting limited inherent parallelism

INTRODUCTION TO PARALLELISM 19

many processors are used. Thus, for f = 0.1, speed-up has an upper bound of 10. Fortunately,

there exist applications for which the sequential overhead is very small. Furthermore, the
sequential overhead need not be a constant fraction of the job independent of problem size.
In fact, the existence of applications for which the sequential overhead, as a fraction of the
overall computational work, diminishes has been demonstrated.

Closely related to Amdahl’s law is the observation that some applications lack inherent
parallelism, thus limiting the speed-up that is achievable when multiple processors are used.
Figure 1.13 depicts a task graph characterizing a computation. Each of the numbered nodes
in the graph is a unit-time computation and the arrows represent data dependencies or the
prerequisite structure of the graph. A single processor can execute the 13-node task graph
shown in Fig. 1.13 in 13 time units. Because the critical path from input node 1 to output
node 13 goes through 8 nodes, a parallel processor cannot do much better, as it needs at least
8 time units to execute the task graph. So, the speed-up associated with this particular task
graph can never exceed 1.625, no matter how many processors are used.

1.6. EFFECTIVENESS OF PARALLEL PROCESSING

Throughout the book, we will be using certain measures to compare the effectiveness
of various parallel algorithms or architectures for solving desired problems. The following
definitions and notations are applicable [Lee80]:

p Number of processors
W(p) Total number of unit operations performed by the p processors; this is often
referred to as computational work or energy
T(p) Execution time with p processors; clearly, T(1) = W(1) and T(p) < W(p)

T(1)
Sp) Speed-up 1)

E(p) Efficiency:%
R(p) Redundancy = XV“%%
U(p) Utilization :pl"’%
Q(p) Quality :ﬁ%

The significance of each measure is self-evident from its name and defining equation given
above. It is not difficult to establish the following relationships between these parameters.
The proof isleft as an exercise.

1<8(p)<p
U(p) = R(P)E(p)

20 INTRODUCTION TO PARALLEL PROCESSING

Figure 1.14. Computation graph for finding the sum of 16 numbers.

E(p)=57(”)

S@)
R(p)

%SE(p)SU(p)sl

QW) = E(p)

1
1SRp)s—<
») () p

QPysSp)<p

Example. Finding the sum of 16 numbers can be represented by the binary-tree
computation graph of Fig. 1.14 with T(1) = W(1) = 15. Assume unit-time additions and ignore
al ese. With p = 8 processors, we have

W) = 15 T(@®) =4 E(8) = 15/(8 x 4) = 47%
S(8) = 15/4 = 3.75 R@®)=15/15=1 Q(8) =176

Essentially, the 8 processors perform all of the additions at the same tree level in each time
unit, beginning with the leaf nodes and ending at the root. The relatively low efficiency is
the result of limited parallelism near the root of the tree.

Now, assuming that addition operations that are vertically aligned in Fig. 1.14 are to be
performed by the same processor and that each interprocessor transfer, represented by an
oblique arrow, also requires one unit of work (time), the results for p = 8 processors become

INTRODUCTION TO PARALLELISM 21

W(8) = 22 T(®) =7 E(8) = 15/(8 x 7) = 27%
S@® =157=214 R(®)=2215=147 Q(8)=0.39

The efficiency in this latter case is even lower, primarily because the interprocessor transfers
consgtitute overhead rather than useful operations.

PROBLEMS

11. Ocean heat transport modeling
Assume continuation of the trendsin Figs. 1.1 and 1.2:

a. When will a single microprocessor be capable of simulating 10 years of globa ocean
circulation, as described in Section 1.1, overnight (5:00 Pm to 8:00 Am the following day),
assuming a doubling of the number of divisionsin each of the three dimensions? Y ou can
assume that a microprocessor’'s FLOPS rating is roughly half of its MIPS rating.

b. When will avector supercomputer be capable of the computation defined in part (8)?

c. When will a$240M massively parallel computer be capable of the computation of part (2)?

d. When will a$30M massively parallel computer be capable of the computation of part (a)?

12. Micros versus supers
Draw the performance trend line for microprocessors on Fig. 1.2, assuming that a microproc-
essor's FLOPS rating is roughly half of its MIPS rating. Compare and discuss the observed
trends.

13. Sieve of Eratosthenes
Figure 1.6 shows that in the control-parallel implementation of the sieve of Eratosthenes
algorithm, a single processor is aways responsible for sieving the multiples of 2. For n= 1000,
this is roughly 35% of the total work performed. By Amdahl’s law, the maximum possible
speed-up for p=2and f =0.35is1.48. Yet, for p = 2, we note a speed-up of about 2 in Fig.
1.6. What is wrong with the above reasoning?

14. Sieve of Eratosthenes
Consider the data-parallel implementation of the sieve of Eratosthenes agorithm for n = 108
Assume that marking of each cell takes 1 time unit and broadcasting a value to al processors
takes b time units.

a. Plot three speed-up curves similar to Fig. 1.8 for b =1, 10, and 100 and discuss the results.
b. Repeat part (a), thistime assuming that the broadcast timeis alinear function of the number
of processors: b=ap+ B, with (a, B) = (5, 1), (5, 10), (5, 100).

15. Sieve of Eratosthenes
Consider the data-parallel implementation of the sieve of Eratosthenes algorithm for n = 108,
Assume that marking of each cell takes 1 time unit and broadcasting m numbersto all processors
takes b + cmtime units, where b and ¢ are constants. For each of the values 1, 10, and 100 for
the parameter b, determine the range of values for ¢ where it would be more cost-effective for
Processor 1 to send the list of al primes that it is holding to all other processors in a single
message before the actual markings begin.

22

1.6.

17.

18

19.

1.10.

111

INTRODUCTION TO PARALLEL PROCESSING

Sieve of Eratosthenes

a. Noting that 2 is the only even prime, propose a modification to the sieve of Eratosthenes
algorithm that requires less storage.

b. Draw adiagram, similar to Fig. 1.6, for the control-parallel implementation of the improved
agorithm. Derive the speed-ups for two and three processors.

c. Compute the speed-up of the data-parallel implementation of the improved agorithm over
the sequential version.

d. Compare the speed-ups of parts (b) and (c) with those obtained for the original agorithm.

Amdahl’s law

Amdahl’s law can be applied in contexts other than parallel processing. Suppose that a
numerical application consists of 20% floating-point and 80% integer/control operations (these
are based on operation counts rather than their execution times). The execution time of a
floating-point operation is three times as long as other operations. We are considering a redesign
of the floating-point unit in a microprocessor to make it faster.

a. Formulate a more general version of Amdahl’s law in terms of selective speed-up of a
portion of a computation rather than in terms of parallel processing.

b. How much faster should the new floating-point unit be for 25% overall speed improve-
ment?

c. What is the maximum speed-up that we can hope to achieve by only modifying the
floating-point unit?

Amdahl’s law

a. Represent Amdahl’s law in terms of atask or computation graph similar to that in Fig. 1.13.
Hint: Use an input and an output node, each with computation time f/2, where f is the
inherently sequentia fraction.

b. Approximate the task/computation graph of part (a) with one having only unit-time nodes.

Parallel processing effectiveness

Consider two versions of the task graph in Fig. 1.13. Version U corresponds to each node
requiring unit computation time. Version E/O corresponds to each odd-numbered node being
unit-time and each even-numbered node taking twice as long.

Convert the E/O version to an equivalent V version where each node is unit-time.

Find the maximum attainable speed-up for each of the U and V versions.

What is the minimum number of processors needed to achieve the speed-ups of part (b)?
What is the maximum attainable speed-up in each case with three processors?

Which of the U and V versions of the task graph would you say is “more parallel” and
why?

PoepoTe

Parallel processing effectiveness
Prove the relationships between the parameters in Section 1.6.

Parallel processing effectiveness

An image processing application problem is characterized by 12 unit-time tasks: (1) an input
task that must be completed before any other task can start and consumes the entire bandwidth
of the single-input device available, (2) 10 completely independent computational tasks, and
(3) an output task that must follow the completion of all other tasks and consumes the entire
bandwidth of the single-output device available. Assume the availability of one input and one
output device throughout.

INTRODUCTION TO PARALLELISM 23

112,

113.

a. Draw thetask graph for this image processing application problem.

b. What is the maximum speed-up that can be achieved for this application with two
processors?

c. What is an upper bound on the speed-up with parallel processing?

d. How many processors are sufficient to achieve the maximum speed-up derived in part (c)?

e. What is the maximum speed-up in solving five independent instances of the problem on
two processors?

f. What isan upper bound on the speed-up in parallel solution of 100 independent instances
of the problem?

g. How many processors are sufficient to achieve the maximum speed-up derived in part (f)?

h. What is an upper bound on the speed-up, given a steady stream of independent problem
instances?

Parallelism in everyday life
Discuss the various forms of parallelism used to speed up the following processes:

a Student registration at a university.
b. Shopping at a supermarket.
c. Taking an elevator in a high-rise building.

Parallelism for fame or fortune

In 1997, Andrew Bedle, a Dallas banker and amateur mathematician, put up a gradualy
increasing prize of up to U.S. $50,000 for proving or disproving his conjecture that if a9+ b’
= cS (whereall termsareintegersand g, r, s > 2), then a, b, and ¢ have acommon factor. Bea€e's
conjecture is, in effect, a general form of Fermat’s Last Theorem, which asserts that ah+ b" =
c" has no integer solution for n > 2. Discuss how parallel processing can be used to claim the
prize.

REFERENCES AND SUGGESTED READING

[Bell9Z]

[Flyn9g]

Bell, G., “Ultracomputers: A Teraflop Before Its Time,” Communications of the ACM, Vol. 35, No.
8, pp. 27-47, August 1992.

Flynn, M. J,, and K. W. Rudd, “Parallel Architectures,” ACM Computing Surveys, Vol. 28, No. 1, pp.
67-70, March 1996.

[John88] Johnson, E. E., “Completing an MIMD Multiprocessor Taxonomy,” Computer Architecture News,

[Lees0]

[Parho5]

Vol. 16, No. 3, pp. 44-47, June 1988.

Lee, R. B.-L., “Empirical Results on the Speed, Efficiency, Redundancy, and Quality of Parallel
Computations,” Proc. Int. Conf. Parallel Processing, 1980, pp. 91-96.

Parhami, B., “The Right Acronym at the Right Time” (The Open Channel), IEEE Computer, Vol. 28,
No. 6, p. 120, June 1995.

[Quing7] Quinn, M. J., Designing Efficient Algorithm for Parallel Computers, McGraw-Hill, 1987.
[Quin94] Quinn, M. J,, Parallel Computing: Theory and Practice, McGraw-Hill, 1994.
[Schag7] Schaller, R. R., “Moore's Law: Past, Present, and Future,” IEEE Spectrum, Vol. 34, No. 6, pp. 52-59,

[SIA%4]

June 1997.
Semiconductor Industry Association, The National Roadmap for Semiconductors, 1994.

This page intentionally left blank.

A Taste of Parallel
Algorithms

In this chapter, we examine five simple building-block parallel operations
(defined in Section 2.1) and look at the corresponding algorithms on four simple
parallel architectures: linear array, binary tree, 2D mesh, and a simple shared-
variable computer (see Section 2.2). This exercise will introduce us to the nature
of parallel computations, the interplay between algorithm and architecture, and
the complexity of parallel computations (analyses and bounds). Also, the build-
ing-block computations are important in their own right and will be used
throughout the book. We will study some of these architectures and algorithms
in more depth in subsequent chapters. Chapter topics are

* 2.1. Some simple computations

* 2.2. Some simple architectures

¢ 2.3. Algorithms for a linear array

* 2.4. Algorithms for a binary tree

* 2.5. Algorithms for a 2D mesh

® 2.6. Algorithms with shared variables

25

This page intentionally left blank.

A TASTE OF PARALLEL ALGORITHMS 27

2.1. SOME SIMPLE COMPUTATIONS
In this section, we define five fundamental building-block computations:

Semigroup (reduction, fan-in) computation

Parallel prefix computation

Packet routing

Broadcasting, and its more general version, multicasting
Sorting records in ascending/descending order of their keys

ok owdE

Semigroup Computation. Let J be an associative binary operator; i.e, (x O y) O z
=x0 (yO z)fordl x,y,z0O S A semigroup is simply a pair (S, O), where Sis a set of
elements on which [is defined. Semigroup (also known as reduction or fan-in) computation
is defined as: Given alist of nvaluesxy, X, , . . ., X,_4, compute X, 0 x, O ... O x,_, . Common
examples for the operator O include +, x, 00, O, d, n, O, max, min. The operator 0 may or
may not be commutative, i.e., it may or may not satisfy x 0 y=y 0O x (all of the above
examples are, but the carry computation, e.g., isnot). Thislast point isimportant; while the
parallel agorithm can compute chunks of the expression using any partitioning scheme, the
chunks must eventually be combined in left-to-right order. Figure 2.1 depicts a semigroup
computation on a uniprocessor.

Parallel Prefix Computation. With the same assumptions as in the preceding para-
graph, a parallel prefix computation is defined as simultaneously evaluating al of the prefixes
of the expression xg 0 Xy ... 0 X35 i.€, X Xo O X, % O % O X%, ..., X0 x, 0. ..
0 X,4. Note that the ith prefix expressionis § = %y 0 x, 00 . . . 0 x;. The comment about
commutativity, or lack thereof, of the binary operator O applies here as well. The graph
representing the prefix computation on a uniprocessor is similar to Fig. 2.1, but with the
intermediate values also output.

Packet Routing. A packet of information resides at Processor i and must be sent to
Processor j. The problem is to route the packet through intermediate processors, if needed,

*o
identity
1 Xj i t=0
clement . @
@ L R R TR R T P PP TP P TR PP PRI TI PP t=1
@ t=2
...................................... t=3

Figure 2.1. Semigroup computation on a uniprocessor.

28 INTRODUCTION TO PARALLEL PROCESSING

such that it gets to the destination as quickly as possible. The problem becomes more
challenging when multiple packets reside at different processors, each with its own destina-
tion. In this case, the packet routes may interfere with one another as they go through common
intermediate processors. When each processor has at most one packet to send and one packet
to receive, the packet routing problem is called one-to-one communication or 1-1 routing.

Broadcasting. Given avalue a known at a certain processor i, disseminate it to all p
processors as quickly as possible, so that at the end, every processor has access to, or
“knows,” the value. This is sometimes referred to as one-to-all communication. The more
general case of this operation, i.e., one-to-many communication, is known as multicasting.
From a programming viewpoint, we make the assignments x: =afor 1 < j < p (broadcasting)
or for j O G (multicasting), where G is the multicast group and x; is a local variable in
processor j.

Sorting. Rather than sorting a set of records, each with a key and data elements, we
focus on sorting a set of keys for simplicity. Our sorting problem is thus defined as: Given
alist of nkeys X, X, . .., X, ahd atotal order < on key values, rearrange the n keys as
Xi, X, ..., % ,suchthat x; <x; <...<x; .We consider only sorting the keys in
néndéscending drder. Any algorithni for sortifig values in nondescending order can be
converted, in a straightforward manner, to one for sorting the keys in nonascending order or
for sorting records.

2.2. SOME SIMPLE ARCHITECTURES

In this section, we define four smple parallel architectures:

Linear array of processors

Binary tree of processors
Two-dimensional mesh of processors
Multiple processors with shared variables

Moo

Linear Array. Figure 2.2 shows alinear array of nine processors, numbered 0 to 8. The
diameter of a p-processor linear array, defined as the longest of the shortest distances between
pairs of processors, is D = p — 1. The (maximum) node degree, defined as the largest number
of links or communication channels associated with a processor, is d = 2. The ring variant,
also shown in Fig. 2.2, has the same node degree of 2 but a smaller diameter of D = [p/20]

Binary Tree. Figure 2.3 shows a binary tree of nine processors. This binary tree is
balanced in that the leaf levels differ by at most 1. If all leaf levels are identical and every
nonleaf processor has two children, the binary treeis said to be complete. The diameter of a

Figure 2.2. A linear array of nine processors and its ring variant.

A TASTE OF PARALLEL ALGORITHMS 29

Figure 2.3. A balanced (but incomplete) binary tree of nine processors.

p-processor complete binary tree is 2 logx(p + 1) — 2. More generally, the diameter of a
p-processor balanced binary tree architecture is 200og, pClor 20og, p0d— 1, depending on the
placement of leaf nodes at the last level. Unlike linear array, several different p-processor
binary tree architectures may exist. Thisis usualy not a problem as we ailmost always deal
with complete binary trees. The (maximum) node degree in abinary treeis d = 3.

2D Mesh. Figure 2.4 shows a square 2D mesh of nine processors. The diameter of a
p-processor square mesh is2Vp — 2. More generally, the mesh does not have to be square.
The diameter of a p-processor r x (p/r) meshisD =r + p/r —2. Again, multiple 2D meshes
may exist for the same number p of processors, e.g., 2 x 8 or 4 x 4. Square meshes are usualy
preferred because they minimize the diameter. The torus variant, also shown in Fig. 2.4, has
end-around or wraparound links for rows and columns. The node degree for both meshes
and tori isd = 4. But a p-processor r x (p/r) torus has a smaller diameter of D = [/2[+
p/(2r)d

Shared Memory. A shared-memory multiprocessor can be modeled as a complete
graph, in which every node is connected to every other node, as shown in Fig. 2.5 for p=9.
In the 2D mesh of Fig. 2.4, Processor 0 can send/receive data directly to/from P; and P5.
However, it has to go through an intermediary to send/receive data to/from P,, say. In a
shared-memory multiprocessor, every piece of data is directly accessible to every processor
(we assume that each processor can simultaneously send/receive data over all of its p—1
links). The diameter D = 1 of a complete graph is an indicator of this direct access. The node

T

s
£
=k

Figure 2.4. A 2D mesh of nine processors and its torus variant.

30 INTRODUCTION TO PARALLEL PROCESSING

Figure 2.5. A shared-variable architecture modeled as a complete graph.

degree d = p— 1, on the other hand, indicates that such an architecture would be quite costly
to implement if no restriction is placed on data accesses.

2.3. ALGORITHMS FOR A LINEAR ARRAY

Semigroup Computation. Let us consider first a special case of semigroup compu-
tation, namely, that of maximum finding. Each of the p processors holds a value initially and
our goal is for every processor to know the largest of these values. A local variable,
max-thus-far, can be initialized to the processor’'s own data value. In each step, a processor
sends its max-thus-far value to its two neighbors. Each processor, on receiving values from
its left and right neighbors, sets its max-thus-far value to the largest of the three values, i.e.,
max(left, own, right). Figure 2.6 depicts the execution of this agorithm for p = 9 processors.
The dotted lines in Fig. 2.6 show how the maximum value propagates from P, to al other
processors. Had there been two maximum values, say in P, and Py, the propagation would
have been faster. In the worst case, p— 1 communication steps (each involving sending a
processor’ s value to both neighbors), and the same number of three-way comparison steps,
are needed. Thisisthe best one can hope for, given that the diameter of a p-processor linear
array isD = p — 1 (diameter-based lower bound).

5
5 8 gt 9 9 9' e, 4 velues

8 LB 9 9 9 9 9

8 B 9 9 9 9 9 9

8 LB 9 9] 9 9 9 9

ﬁ.-"'. 9 9 9 9 9 9 9 9 Mam'mum
9 9 9 9 9 9 9 9 9 M~ jdentified

Figure 2.6. Maximum-finding on a linear array of nine processors.

A TASTE OF PARALLEL ALGORITHMS 31

For a general semigroup computation, the processor at the left end of the array (the one
with no left neighbor) becomes active and sends its data value to the right (initialy, al
processors are dormant or inactive). On receiving a vaue from its left neighbor, a processor
becomes active, applies the semigroup operation 0 to the value received from the left and
its own data value, sends the result to the right, and becomes inactive again. This wave of
activity propagates to the right, until the rightmost processor obtains the desired result. The
computation result is then propagated leftward to all processors. In al, 2p — 2 communication
steps are needed.

Parallel Prefix Computation. Let us assume that we want the ith prefix result to be
obtained at the ith processor, 0 <i < p— 1. The general semigroup algorithm described in
the preceding paragraph in fact performs a semigroup computation first and then does a
broadcast of the final value to all processors. Thus, we aready have an algorithm for parallel
prefix computation that takes p — 1 communication/combining steps. A variant of the parallel
prefix computation, in which Processor i ends up with the prefix result up to the (i — 1)th
value, is sometimes useful. This diminished prefix computation can be performed just as
easily if each processor holds onto the value received from the left rather than the one it sends
to the right. The diminished prefix sum results for the example of Fig. 2.7 would be 0, 5, 7,
15, 21, 24, 31, 40, 41.

Thus far, we have assumed that each processor holds a single data item. Extension of
the semigroup and parallel prefix agorithms to the case where each processor initially holds
severa data items is straightforward. Figure 2.8 shows a parallel prefix sum computation
with each processor initially holding two data items. The algorithm consists of each processor
doing a prefix computation on its own data set of size n/p (this takes n/p — 1 combining
steps), then doing adiminished parallel prefix computation on the linear array as above (p
— 1 communication/combining steps), and finally combining the local prefix result from this
last computation with the locally computed prefixes (n/p combining steps). In dl, 2n/p + p
—2 combining steps and p — 1 communication steps are required.

Packet Routing. To send a packet of information from Processor i to Processor j on
alinear array, we simply attach arouting tag with the valuej —i to it. The sign of arouting
tag determines the direction in which it should move (+ = right, — = left) while its magnitude
indicates the action to be performed (0 = remove the packet, nonzero = forward the packet).
With each forwarding, the magnitude of the routing tag is decremented by 1. Multiple packets

570, 2, 8 6 3 9 1 . %m
5 7 8 6 3 7 9 1 4
5 T 1587 3 3 7 9 1 4
L1 715 2173 7 9 1 L]
5 7 15 21 2471 9 1 4
5 7 15 21 24 31", 9, 1 4
5 7015 21 24 31 40w, L 4
5 715 21 24 31 40 417ty A, Final
5 7 15 21 24 31 40 41 45" e Lo

Figure 2.7. Computing prefix sums on a linear array of nine processors.

32 INTRODUCTION TO PARALLEL PROCESSING

3 7 9 1 4 _.. Initial
5

1 6 3 2 5 3 6 7 values
5 2 8 3 7 9 1 LI Y Local
6 8 11 8 10 15] 9 prefixes
+ Lincar-array
0 6 14 a3 a1 51 66 74 diminished
prefix sums
5 8 22 3 48 60 671 78, Final
6 14 25 a1 51 66 74 83 results

Figure 2.8. Computing prefix sums on a linear array with two items per processor.

originating at different processors can flow rightward and leftward in lockstep, without ever
interfering with each other.

Broadcasting. If Processor i wants to broadcast a value ato all processors, it sends an
rbcast(a) (read r-broadcast) message to its right neighbor and an Ibcast(a) message to its left
neighbor. Any processor receiving an rbcast(a) message, simply copies the value a and
forwards the message to its right neighbor (if any). Similarly, receiving an Ibcast(a) message
causes a to be copied locally and the message forwarded to the left neighbor. The worst-case
number of communication steps for broadcasting isp — 1.

Sorting. We consider two versions of sorting on alinear array: with and without I/0O.
Figure 2.9 depicts a linear-array sorting algorithm when p keys are input, one a a time, from
the left end. Each processor, on receiving a key value from the left, compares the received
value with the value stored in its local register (initially, al local registers hold the value + o).
The smaller of the two values is kept in the local register and larger value is passed on to the
right. Once al p inputs have been received, we must alow p — 1 additional communication
cycles for the key values that are in transit to settle into their respective positions in the linear
array. If the sorted list is to be output from the left, the output phase can start immediately
after the last key value has been received. In this case, an array half the size of the input list
would be adequate and we effectively have zero-time sorting, i.e., the total sorting time is
equal to the /O time.

If the key values are already in place, one per processor, then an algorithm known as
odd—even transposition can be used for sorting. A total of p steps are required. In an
odd-numbered step, odd-numbered processors compare values with their even-numbered
right neighbors. The two processors exchange their values if they are out of order. Similarly,
in an even-numbered step, even-numbered processors compare—exchange values with their
right neighbors (see Fig. 2.10). In the worst case, the largest key value resides in Processor
0 and must move al the way to the other end of the array. This needs p — 1 right moves. One
step must be added because no movement occurs in the first step. Of course one could use
even—odd transposition, but this will not affect the worst-case time complexity of the
algorithm for our nine-processor linear array.

Note that the odd—even transposition agorithm uses p processors to sort p keysin p
compare—exchange steps. How good is this agorithm? Let us evaluate the odd—even

A TASTE OF PARALLEL ALGORITHMS

5286637914

528637

52863

5286

528

52

9

7

3

-

-
]
-3
-
~2
o

o
> -]
w w
w ~
L--]
~

N
[~
-]
[~
-~J

]
wn
-
©

~3
L3

(&]
~3
w

- =] 1]
n
-3
]

-] o

-3

@

L]

n
(M)
@
-,

-~
0

u

Figure 2.9. Sorting on a linear array with the keys input sequentially from the left.

In odd steps, P2 T
1,3,5,etc, 4Pp-2 <4
odd-numbered /_ 2 SePp
<4p-3
3

exchange N——2

their right
neighbors

i

TS ¢ T
t’3 24}7 :4§1 :
46 4P 1 S P-4
6 iqp! 4 9

v

PP B PP PP 7]
3

5 cqpl iy

Al b b epi s
EPT NG TG P TR g P

Figure 2.10. Odd—even transposition sort on a linear array.

33

34 INTRODUCTION TO PARALLEL PROCESSING

transposition algorithm with respect to the various measures introduced in Section 1.6. The
best sequential sorting algorithms take on the order of p log p compare—exchange steps to
sort alist of sizep. Let us assume, for simplicity, that they take exactly p log, p steps. Then,
we have T(1) =W(1) =plog, p, T (p) = p, W(p)=p?/2, S(p) = log, p (Minsky’s conjecture?),
E(p) = (logz p)/p, R(p) = p/(210g, p), U(p) = 12, and Q(p) = 2(log, p)*/ p? .

In most practical situations, the number n of keysto be sorted (the problem size) is greater
than the number p of processors (the machine size). The odd—even transposition sort
algorithm with n/p keys per processor is as follows. First, each processor sortsits|list of size
n/p using any efficient sequential sorting algorithm. Let us say this takes (n/p)log,(n/p)
compare-exchange steps. Next, the odd—even transposition sort is performed as before,
except that each compare—exchange step is replaced by a merge—split step in which the two
communicating processors merge their sublists of size n/p into a single sorted list of size
2n/p and then split the list down the middle, one processor keeping the smaller half and the
other, the larger half. For example, if Py is holding (1, 3, 7, 8) and P, has (2, 4, 5, 9), a
merge-split step will turn thelistsinto (1, 2, 3, 4) and (5, 7, 8, 9), respectively. Because the
sublists are sorted, the merge—split step requires n/p compare—exchange steps. Thus, the total
time of the algorithm is (n/p)log, (n/p) + n. Note that the first term (local sorting) will be
dominant if p<log, n, while the second term (array merging) is dominant for p >log,n . For
p = log, n, the time complexity of the algorithm is linear in n; hence, the algorithm is more
efficient than the one-key-per-processor version.

One final observation about sorting: Sorting is important in its own right, but occasion-
aly it also helps usin data routing. Suppose data values being held by the p processors of a
linear array are to be routed to other processors, such that the destination of each valueis
different from all others. Thisis known as a permutation routing problem. Because the p
distinct destinations must be 0, 1, 2, . . ., p— 1, forming records with the destination address
as the key and sorting these records will cause each record to end up at its correct destination.
Consequently, permutation routing on a linear array requires p compare-exchange steps. So,
effectively, p packets are routed in the same amount of time that is required for routing a
single packet in the worst case.

2.4. ALGORITHMS FOR A BINARY TREE

In agorithms for abinary tree of processors, we will assume that the data elements are
initially held by the leaf processors only. The nonleaf (inner) processors participate in the
computation, but do not hold data elements of their own. This simplifying assumption, which
can be easily relaxed, leads to simpler algorithms. Asroughly half of the tree nodes are | eaf
nodes, the inefficiency resulting from this assumption is not very great.

Semigroup Computation. A binary-tree architecture is ideally suited for this compu-
tation (for this reason, semigroup computation is sometimes referred to as tree computation).
Each inner node receives two values from its children (if each of them has already computed
avaue or is aleaf node), applies the operator to them, and passes the result upward to its
parent. After [og, pOsteps, the root processor will have the computation result. All processors
can then be notified of the result through a broadcasting operation from the root. Tota time:
2[Jog, pOsteps.

A TASTE OF PARALLEL ALGORITHMS 35

Parallel Prefix Computation. Again, thisis quite smple and can be done optimally
in20og2 p O steps (recall that the diameter of a binary tree is 2og, pOor 2og,p0-1). The
algorithm consists of an upward propagation phase followed by downward data movement.
Asshown in Fig. 2.11, the upward propagation phase isidentical to the upward movement
of datain semigroup computation. At the end of this phase, each node will have the semigroup
computation result for its subtree. The downward phase is as follows. Each processor
remembers the value it received from its left child. On receiving a value from the parent, a
node passes the value received from above to its left child and the combination of this value
and the one that came from the left child to its right child. The root is viewed as receiving
the identity element from above and thus initiates the downward phase by sending the identity
element to the left and the value received from its left child to the right. At the end of the
downward phase, the leaf processors compute their respective results.

It isinstructive to look at some applications of the parallel prefix computation at this
point. Given alist of Os and 1s, the rank of each 1 inthelist (its relative position among the
1s) can be determined by a prefix sum computation:

- XQ8% | ®X28X 3@ X, A
Upward
Propagation
Downward
Propagation
X0®x 1 @x28% 3 - Result:

X0 X8] Xp@x 18Xy Xxp@X 1®X8X3®X,

Figure 2.11. Parallel prefix computation on a binary tree of processors.

36 INTRODUCTION TO PARALLEL PROCESSING

Data O 0 1 0 1 0 0 1 1 1 0
Prefix sums: 0 0 1 1 2 2 2 3 4 5 5
Ranks of 1s: 1 2 3 4 5

A priority circuit has alist of Os and 1s as its inputs and picks the first (highest-priority) 1
in the list. The function of a priority circuit can be defined as

Data: 0

Diminished prefix logical ORs: 0
Complement: 1

AND with data: 0

© R» OO
el =

© O Rh O
O O p
© O Rh» O
O O R O
© O p b
O Ok
O O p
O O R O

As afina example, the carry computation in the design of adders can be formulated as a
parallel prefix computation in the following way. Let “g,” “p”, and “& denote the event that
a particular digit position in the adder generates, propagates, or annihilates a carry. For a
decimal adder, e.g., these correspond to the digit sums being greater than 9, equal to 9, and
less than 9, respectively. Therefore, the input data for the carry circuit consists of a vector of

three-valued €l ements such as

p g a g & Db p p g a C(i;} a
N direction of indexing &

Final carries into the various positions can be determined by a parallel prefix computation
using the carry operator “ ¢ " defined as follows (view x O {g, p, a as the incoming carry
into a position):

p ¢ x=x X propagates over p
a ¢ x=a xisannihilated or absorbed by a
g¢ x=g xisimmateria because a carry is generated

In fact, if each node in the two trees of Fig. 2.11 is replaced by a logic circuit corresponding
to the carry operator, afive-digit carry-lookahead circuit would result.

Packet Routing. The algorithm for routing a packet of information from Processor i
to Processor j on a binary tree of processors depends on the processor humbering scheme
used. The processor numbering scheme shown in Fig. 2.3 is not the best one for this purpose
but it will be used here to develop a routing algorithm. The indexing scheme of Fig. 2.3 is
known as “preorder” indexing and has the following recursive definition: Nodes in a subtree
are numbered by first numbering the root node, then its left subtree, and finally the right
subtree. So the index of each node is less than the indices of all of its descendants. We assume
that each node, in addition to being aware of its own index (self) in the tree, which is the
smallest in its subtree, knows the largest node index in its left (maxl) and right (maxr)
subtrees. A packet on its way from node i to node dest, and currently residing in node self,
is routed according to the following algorithm.

A TASTE OF PARALLEL ALGORITHMS 37

if dest = self
then remove the packet {done}
elseif dest < self or dest > maxr
then route upward
eseif dest < maxl
then route leftward
else route rightward
endif
endif
endif

This algorithm does not make any assumption about the tree except that it is a binary tree.
In particular, the tree need not be complete or even balanced.

Broadcasting. Processor i sends the desired data upwards to the root processor,
which then broadcasts the data downwards to all processors.

Sorting. We can use an algorithm similar to bubblesort that allows the smaller
elements in the leaves to “bubble up” to the root processor first, thus allowing the root to
“seg” all of the data elements in nondescending order. The root then sends the elements to
leaf nodes in the proper order. Before describing the part of the algorithm dealing with the
upward bubbling of data, let us dea with the simpler downward movement. This downward
movement is easily coordinated if each node knows the number of leaf nodes in its left
subtree. If the rank order of the element received from above (kept in alocal counter) does
not exceed the number of leaf nodes to the | eft, then the dataitem is sent to the left. Otherwise,
it is sent to the right. Note that the above discussion implicitly assumes that data are to be
sorted from l€eft to right in the leaves.

The upward movement of datain the above sorting algorithm can be accomplished as
follows, where the processor action is described from its own viewpoint. Initially, each |eaf
has a single dataitem and all other nodes are empty. Each inner node has storage space for
two values, migrating upward from its left and right subtrees.

if you have 2 items

then do nothing

elseif you have 1 item that came from the left (right)
then get the smaller item from the right (left) child
else get the smaller item from each child
endif

endif

Figure 2.12 shows the first few steps of the upward data movement (up to the point when
the smallest element is in the root node, ready to begin its downward movement). The above
sorting algorithm takes linear time in the number of elements to be sorted. We might be
interested to know if a more efficient sorting algorithm can be developed, given that the
diameter of the tree architecture is logarithmic (i.e., in the worst case, a data item has to move
20og 2 p Osteps to get to its position in sorted order). The answer, unfortunately, is that we
cannot do fundamentally better than the above.

38 INTRODUCTION TO PARALLEL PROCESSING

Figure 2.12. The first few steps of the sorting algorithm on a binary tree.

The reasoning is based on a lower bound argument that is quite useful in many contexts.
All we need to do to partition a tree architecture into two equal or aimost equal halves
(composed of [p/20and [p/200processors) is to cut a single link next to the root processor
(Fig. 2.13). We say that the bisection width of the binary tree architectureis 1. Now, in the
worst case, theinitial data arrangement may be such that all valuesin the left (right) half of
the tree must move to the right (left) half to assume their sorted positions. Hence, all data
elements must pass through the single link. No matter how we organize the data movements,

Bisection Width = 1

s

S
1
:
‘

Figure 2.13. The bisection width of a binary tree architecture.

A TASTE OF PARALLEL ALGORITHMS 39

it takes linear time for al of the data elements to pass through this bottleneck. Thisis an
example of a bisection-based lower bound.

2.5. ALGORITHMS FOR A 2D MESH

In al of the 2D mesh agorithms presented in this section, we use the linear-array
algorithms of Section 2.3 as building blocks. This leads to simple algorithms, but not
necessarily the most efficient ones. Mesh-based architectures and their algorithms will be
discussed in great detail in Part [11 (Chapters 9-12).

Semigroup Computation. To perform a semigroup computation on a 2D mesh, do
the semigroup computation in each row and then in each column. For example, in finding
the maximum of a set of p values, stored one per processor, the row maximums are computed
first and made available to every processor in the row. Then column maximums are identified.
This takes 4Vp — 4 steps on a p-processor square mesh, per the resultsin Section 2.3. The
same process can be used for computing the sum of p numbers. Note that for a general
semigroup computation with a noncommutative operation, the p numbers must be stored in
row-major order for this algorithm to work correctly.

Parallel Prefix Computation. Again, this is quite simple and can be done in three
phases, assuming that the processors (and their stored values) are indexed in row-major order:
(1) do a parallel prefix computation on each row, (2) do a diminished parallel prefix
computation in the rightmost column, and (3) broadcast the resultsin the rightmost column
to all of the elements in the respective rows and combine with the initially computed row
prefix value. For example, in doing prefix sums, first-row prefix sums are computed from
left to right. At this point, the processors in the rightmost column hold the row sums. A
diminished prefix computation in this last column yields the sum of all of the preceding rows
in each processor. Combining the sum of al of the preceding rows with the row prefix sums
yields the overall prefix sums.

Packet Routing. To route a data packet from the processor in Row r, Column c, to the
processor in Row r', Column c', we first route it within Row r to Column ¢'. Then, we route
itin Column c' from Row r to Row r'. This algorithm is known as row-first routing. Clearly,
we could do column-first routing, or use a combination of horizontal and vertical steps to
get to the destination node along a shortest path. If the mesh nodes are indexed asin Fig. 2.4,
rather than in terms of row and column numbers, then we simply determine the index of the
intermediate Processor | where the row-first path has to turn. The problem is then decom-
posed into two problems: route horizontally from i tol, then route vertically from [toj.
When multiple packets must be routed between different source and destination nodes,
the above algorithm can be applied to each packet independently of others. However,
multiple packets might then compete for the same outgoing link on their paths to their
respective destinations. The processors must have sufficient buffer space to store the
packets that must wait at their turning points before being forwarded along the column.
Details will be discussed in Chapter 10.

Broadcasting. Broadcasting is done in two phases: (1) broadcast the packet to every
processor in the source node's row and (2) broadcast in all columns. This takes at most
2\p — 2 steps. If multiple values are to be broadcast by a processor, then the required data

40 INTRODUCTION TO PARALLEL PROCESSING

Initial values Snake-like Top-to-bottom Snakelike Top-to-bottom Left-to-right
\ Tow sort column sort row sort column sort row sort

v 4
Phase 1 Phase 2 Phase 3

Figure 2.14. The shearsort algorithm on a 3 x 3 mesh.

movements can be pipelined, such that each additional broadcast requires only one additional
step.

Sorting. We describe, without proof, the simple version of a sorting algorithm known
as shearsort. Complete proof and more efficient variants will be provided in Chapter 9. The
algorithm consists of Oog,r [+ 1 phasesin a 2D mesh with r rows. In each phase, except for
the last one, all rows are independently sorted in a snakelike order: even-numbered rows 0,
2, ... from left to right, odd-numbered rows 1, 3, . . . from right to left. Then, al columns
are independently sorted from top to bottom. For example, in a 3 x 3 mesh, two such phases
are needed, as shown in Fig. 2.14. In the final phase, rows are independently sorted from left
to right. As we aready know that row-sort and column-sort on a p-processor square mesh
take Vp : compare-exchange steps, the shearsort algorithm needs (2flogzp_|+ 1)Vp compare-
exchange steps for sorting in row-major order.

2.6. ALGORITHMS WITH SHARED VARIABLES

Again, in this section, we focus on developing simple algorithms that are not necessarily
very efficient. Shared-memory architectures and their algorithms will be discussed in more
detail in Chapters 5 and 6.

Semigroup Computation. Each processor obtains the data items from al other
processors and performs the semigroup computation independently. Obviously, all proces-
sors will end up with the same result. This approach is quite wasteful of the complex
architecture of Fig. 2.5 because the linear time complexity of the algorithm is essentially
comparable to that of the semigroup computation algorithm for the much simpler linear-array
architecture and worse than the algorithm for the 2D mesh.

Parallel Prefix Computation. Similar to the semigroup computation, except that each
processor only obtains data items from processors with smaller indices.

Packet Routing. Trivia in view of the direct communication path between any pair
of processors.

Broadcasting. Trivial, as each processor can send a data item to all processors directly.
In fact, because of this direct access, broadcasting is not needed; each processor already has
access to any dataitem when needed.

Sorting. The algorithm to be described for sorting with shared variables consists of
two phases: ranking and data permutation. ranking consists of determining the relative order
of each key in the final sorted list. If each processor holds one key, then once the ranks are

A TASTE OF PARALLEL ALGORITHMS 41

determined, the jth-ranked key can be sent to Processor j in the data permutation phase,
requiring a single parallel communication step. Processor i is responsible for ranking its own
key x. Thisisdone by comparing x; to al other keys and counting the number of keys that
are smaller than x. In the case of equal key values, processor indices are used to establish
the relative order. For example, if Processors 3 and 9 both hold the key value 23, the key
associated with Processor 3 is deemed smaller for ranking purposes. It should be clear that
each key will end up with aunique rank in the range 0 (no key issmaller) to p—1 (al other
p — 1 keysare smaller).

Again, despite the greater complexity of the shared-variable architecture compared with
the linear-array or binary-tree architectures, the linear time required by the above sorting
algorithm is comparable to the algorithms for these simpler architectures. We will see in
Chapter 6 that logarithmic-time sorting algorithms can in fact be developed for the shared-
variable architecture, leading to linear speed-up over sequential algorithms that need on the
order of nlog n compare—exchange steps to sort n items.

PROBLEMS

2.1. Lower bounds based on bisection width
For each of the following problem/architecture pairs, find alower bound based on the bisection
width. State if the derived bound is useful.

a Semigroup computation on linear array.

b. Parallel prefix computation on linear array.
c. Semigroup computation on 2D mesh.

d. Sorting on shared-variable architecture.

2.2. Semigroup or parallel prefix computation on alinear array

a. Semigroup computation can be performed on alinear array in a recursive fashion. Assume
that p is a power of 2. First, semigroup computation is performed on the left and right
halves of the array independently. Then the results are combined through two half-broad-
cast operations, i.e., broadcasting from each of the middle two processors to the other side
of the array. Supply the details of the algorithm and analyze its complexity. Compare the
result with that of the algorithm described in Section 2.3.

b. Can an agorithm similar to that in part (a) be devised for parallel prefix computation? If
so, how does its performance compare with the algorithm described in Section 2.3?

2.3. Peardld prefix computation on alinear array
Given n data items, determine the optimal number p of processorsin alinear array such that if
the n data items are distributed to the processors with each holding approximately n/p elements,
the time to perform the parallel prefix computation is minimized.

2.4. Multicasting on alinear array
Suppose processors in a linear array compose messages of the form mcast(x, a, b) with the
meaning that the data value x must be sent (multicast) to all processors with indices in the
interval [a, b]. Packet routing and broadcasting correspond to the special cases mcast(X j ,)
and mcast(x, 0, p— 1) of this more general mechanism. Develop the agorithm for handling
such a multicast message by a processor.

42

2.5.

2.6.

2.7.

2.8.

2.9.

2.10.

2.11.

2.12.

INTRODUCTION TO PARALLEL PROCESSING

Sorting on alinear array
Determine the speed-up, efficiency, and other effectiveness measures defined in Section 1.6
for linear-array sorting with more than one data item per processor.

Parallel prefix computation

a. In determining the ranks of 1s in a list of Os and 1s (Section 2.4), what happens if a
diminished parallel prefix sum computation is performed rather than the regular one?

b. What is the identity element for the carry operator “¢” defined in Section 2.4?

c. Find another example of parallel prefix computation (besides carry computation) involving
a noncommutative binary operation.

Algorithms for alinear array

In Section 2.3, we assumed that the communication links between the processors in the linear
array are full-duplex, meaning that they can carry data in both directions simultaneously (in
one step). How should the algorithms given in Section 2.3 be modified if the communication
links are half-duplex (they can carry data in either directions, but not in the same step)?

Algorithms for aring of processors
Develop efficient algorithms for the five computations discussed in this chapter on a p-proc-
€ssor ring, assuming:

a. Bidirectional, full-duplex links between processors.
b. Bidirectional, haf-duplex links between processors.
c. Unidirectiona links between processors.

Measures of parallel processing effectiveness

Compute the effectiveness measures introduced in Section 1.6 for the parallel prefix compu-
tation algorithm on a linear array, binary tree, 2D mesh, and shared-variable architecture.
Compare and discuss the results.

Parallel prefix computation on a binary tree
Develop an agorithm for parallel prefix computation on a binary tree where the inner tree
nodes also hold dates elements.

Routing on a binary tree of processors

a. Modify the binary tree routing algorithm in Section 2.4 so that the variables maxl and maxr
are not required, assuming that we are dealing with a complete binary tree.

b. Each processor in atree can be given a name or label based on the path that would take us
from the root to that node viaright (R) or left (L) moves. For example, in Fig. 2.3, the root
will be labeled A (the empty string), P; would be labeled LR (left, then right), and P, would
be labeled RRL. Develop a packet routing agorithm from Node A to Node B if node labels
are specified as above.

Sorting on a binary tree of processors

a. Develop a new binary-tree sorting algorithm based on all-to-all broadcasting. Each |eaf
node broadcasts its key to all other leafs, which compare the incoming keys with their own
and determine the rank of their keys. A final parallel routing phase concludes the agorithm.
Compare this new algorithm with the one described in Section 2.4 and discuss.

b. Modify the binary tree sorting algorithm in Section 2.4 so that it works with multiple keys
initially stored in each leaf node.

A TASTE OF PARALLEL ALGORITHMS 43

2.13. Algorithms on 2D processor arrays
Briefly discuss how the semigroup computation, parallel prefix computation, packet routing,
and broadcasting algorithms can be performed on the following variants of the 2D mesh
architecture.

a.

b.

A 2D torus with wraparound links asin Fig. 2.4 (ssmply ignoring the wraparound links is
not allowed!).

A Manhattan street network, so hamed because the row and column links are unidirectional
and, like the one-way streets of Manhattan, go in opposite directions in adjacent rows or
columns. Unlike the streets, though, each row/column has a wraparound link. Assume that
both dimensions of the processor array are even, with links in even-numbered rows
(columns) going from left to right (bottom to top).

A honeycomb mesh, which is a 2D mesh in which al of the row links are left intact but
every other column link has been removed. Two different drawings of this architecture are
shown below.

2.14. Shearsort on 2D mesh of processors

a

Write down the number of compare-exchange steps required to perform shearsort on
general (possibly nonsquare) 2D mesh with r rows and p/r columns.

Compuite the effectiveness measures introduced in Section 1.6 for the shearsort algorithm
based on the results of part (a).

Discuss the best aspect ratio for ap-processor mesh in order to minimize the sorting time.
How would shearsort work if each processor initially holds more than one key?

REFERENCES AND SUGGESTED READING

[AkI85]
[AKI97]
[Corm90]
[JaJag6]
[Knut73]
[Laks94]

[Leigo2]

Akl, S. G, Parallel Sorting Algorithms, Academic Press, 1985.

Akl, S. G., Parallel Computation: Models and Methods, Prentice-Hall, 1997.

Cormen, T. H., C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, McGraw-Hill, 1990.

JaJa, J. F., “Fundamentals of Parallel Algorithms,” Chapter 12 in Parallel and Distributed Computing
Handbook, Edited by A. Y. Zomaya, McGraw-Hill, 1996, pp. 333-354.

Knuth, D. E., The Art of Computer Programming: Vol. 3—Sorting and Searching, Addison-Wesley,
1973.

Lakshmivarahan, S., and S. K. Dhall, Parallel Computing Using the Prefix Problem, Oxford
University Press, 1994.

Leighton, F. T., Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes,
Morgan Kaufmann, 1992.

This page intentionally left blank.

Parallel Algorithm
Complexity

Having seen several examples of parallel algorithms in Chapter 2, we are ready
to embark on a general discussion of parallel algorithm complexity. This chapter
deals with basic notions of complexity as well as time and time-cost optimality
of parallel algorithms. The ideas and methods covered here lead to tools for
comparing various algorithms or for making given parallel algorithms faster
and/or more efficient. Chapter topics are

e 3.1. Asymptotic complexity

e 3.2. Algorithm optimality and efficiency
e 3.3. Complexity classes

e 3.4. Parallelizable tasks and the NC class
e 3.5. Parallel programming paradigms

e 3.6. Solving recurrences

45

This page intentionally left blank.

PARALLEL ALGORITHM COMPLEXITY 47

3.1. ASYMPTOTIC COMPLEXITY

Algorithms can be analyzed in two ways: precise and approximate. In precise analysis,
we typically count the number of operations of various types (e.g., arithmetic, memory
access, data transfer) performed in the worst or average case and use these counts as
indicators of algorithm complexity. If each of these operations takes a constant amount of
time, then aweighted sum of these counts will constitute a numerical measure of algorithm
complexity that can be compared with other algorithms for the same task.

Such a precise analysis is quite tedious and at times impossible to perform. We thus
resort to various approximate analysis methods to compare agorithms, aways keeping in
mind the error margin of the method applied. For example, if such an approximate analysis
indicates that Algorithm A is 1.2 times slower than Algorithm B, we may not be able to
conclude with certainty that Algorithm B is better for the task at hand.

A useful form of approximate analysis, which we will use extensively throughout this
book, is asymptotic analysis. Suppose that a parallel sorting algorithm requires (log, n) 2
compare-exchange steps, another one (log, n)% 2 + 2 log,, n steps, and a third one 500 log,
n steps (assume these are the results of exact analyses). Ignoring lower-order terms and
multiplicative constants, we may say that the first two algorithms take on the order of log?
n steps while the third one takes on the order of log n steps. The logic behind ignoring these
details is that when n becomes very large, eventualy log n will exceed any constant value.
Thus, for such large values of n, an agorithm with running time clog nis asymptotically
better than an algorithm with running time c¢' log? n for any values of the constants cand c'.

Of course, n must indeed be very large for log n to overshadow the constant 500 in the
above example. Thus, in practice, we do not totally ignore the constant factors but rather take
a two-step approach. First, through asymptotic analysis, we determine which algorithm is
likely to be better for large problem sizes: An algorithm of order log nis usually, but not
always, better than an algorithm of order log? n. If we have reason to doubt this conclusion,
then we resort to an exact analysis to determine the constant factors involved.

We will see later that there are practical situations when we use an algorithm of order
log? n even though the existence of algorithms of order log n has been demonstrated (albeit
with very large constant factors that make the algorithm worse for any problem size of
practical interest). However, and this is a key observation, once an asymptotically better
algorithm has been found that happens to have a large constant factor as above, it is often
possible to modify or fine-tune the algorithm to reduce its constant factor; if not in all cases,
at least for some specia cases of common interest.

To make our discussions of asymptotic analysis more precise, we introduce some
notations that are commonly used in the study of computational complexity. Given two
functionsf(n) and g(n) of an independent variable n (usually, the problem size), we define
the relationships “O” (big-oh), “Q” (big-omega), and “©” (theta) between them as follows:

f(n) = O(g(n)) if e, n such that Vn > ny we have f(n) < c g(n)
f(n) = Q(g(m)) if e, ny such that Vr > ny we have f(n) > c g(n)

J(n) =6(g(n)) if Ac, ¢’, ny such that Va > n, we have ¢ g(n) < f(n) < ¢’ g(n)
Thus,

48 INTRODUCTION TO PARALLEL PROCESSING

f(n) = © (g(n) iff f(n) = O (g(m) and f(n) = Q (g(n))

These notations essentially allow us to compare the growth rates of different functions.
For example, f(n) = O(g(n)) means that f(n) grows no faster than g(n), so that for n
sufficiently large (i.e., n>ng) and a suitably chosen constant ¢, f(n) aways remains
below cg(n). This relationship is represented graphicaly in the left panel of Fig. 3.1.
Similarly, f(n) = Q(g(n)) means that f(n) grows at least as fast as g(n), so that eventually
f(n) will exceed c g(n) for al n beyond ny (middle panel of Fig. 3.1).
Finaly, f(n) = ©(g(n)) meansthat f(n) and g(n) grow at about the same rate so that the
value of f(n) is always bounded by ¢ g(n) and ¢’ g(n) for n> n, (right panel of Fig. 3.1).
Loosely speaking, the above notations, and two new ones introduced below, define
ordering relationships between the growth rates of functions. In other words, in the statement

“The rate of growth of f(n) is__ that of g(n).”

we can fill in the blank with the relational symbol (<, < , =, 2, >) to the left of the defined
relations shown below:

f(n) = o(g(n)) lim, _,, f(n)/g(n) = 0 {read little-oh of g(n)}
< f(n) = O(g(n)) {big-oh}
= f(n) = ©(g(n)) or 8(g(n)) { theta}
2 f(n) = Q(g(n)) { big-omega}
> f(n) = w(g(n)) lim, _, f(n)/g(n) = o {little-omega}

Of the above, the big-oh notation will be used most extensively, because it can express an
upper bound on an agorithm’s time or computational complexity and thus helps us establish
whether or not a given algorithm is feasible for a given architecture.

For example, an algorithm with running time O(n log n) or O(n?) might be feasible
today; one that takes O(n3) time might be just beyond the limit of practicality on today’s
hardware and quite practical in 5-10 years, say, when processor speeds have improved by

7
< gn) A A ¢’ g(n)
fn) ‘(’llN
g(n) 1(n) (a)
¢ gln) ¢ g(n)
no >ll no = no =
f(n) = O(g(n)) f(n) = Q(g(n)) f(n) = @(g(n))

Figure 3.1. Graphical representation of the notions of asymptotic complexity.

PARALLEL ALGORITHM COMPLEXITY 49

Table 3.1. Comparing the Growth Rates of Sublinear and Superlinear Functions (K = 1000,
M = 1,000,000)

Sublinear Linear Superlinear

log? n Yn n nlog? n n3?

9 3 10 90 30
36 10 100 36K 1K
81 31 1K 81K 31K
169 100 10K 1.7M M
256 316 100K 26M 31M
361 1K 1M 361 M 1000 M

one or two orders of magnitude; an algorithm with O(2") running time will likely remain
impractical.

At avery coarse level, we sometimes talk about algorithms with sublinear, linear, and
superlinear running times or complexities. These coarse categories can be further subdivided
or refined as illustrated by the following examples:

Sublinear 0o(1) constant-time
O(loglogn) double logarithmic
O(log n) logarithmic
O(logk n) polylogarithmic; k is a constant
0(n?) a< lisaconstant; e.g., O(‘fr_fj) fora=1/2

O(n/ logkn) kisaconstant
Linear o(n)

Superlinear O(nlogk n)

O(n%) polynomial; ¢ > 1 isaconstant; e.g., O(nVn) for ¢ = 3/2
o(2") exponential
0(2?") double exponential

Table 3.2. Effect of Constants on the Growth Rates of Selected Functions
Involving Constant Factors (K = 1000, M = 1,000,000)

% log? n

n nlog? n 100Vn n?
10 22 90 300 30
100 900 36K 1K 1K

1K 20K 81K 31K 31K
10K 423K 17M 10K iM
100K 6M 26 M 32K 32M

M 90M 361 M 100K 1000M

50 INTRODUCTION TO PARALLEL PROCESSING

Table 3.3. Effect of Constants on the Growth Rates of Selected Functions Using
Larger Time Units and Round Figures

n g-logz n nlog2 n 100Va m?
10 20s 2min .5min 30s
100 15min 1hr 15 min 15min
1K 6hr 1day 1lhr Shr
10K 5 days 20 days 3hr 10 days
100K 2mo 1lyr 1lyr 1yr
M 3yr 1yr 3yr 32yr

Table 3.1 helps you get an idea of the growth rates for two sublinear and two superlinear
functions, as the problem size n increases. Table 3.2 shows the growth rates of a few functions,
including constant multiplicative factors, to give you a fedl for the contribution of such
constants. Table 3.3 presents the same information using larger time units and rounded
figures which make the differences easier to grasp (assuming that the original numbers of
Table 3.2 showed the running time of an algorithm in seconds).

3.2. ALGORITHM OPTIMALITY AND EFFICIENCY

One way in which we use the big-oh and big-omega notations, introduced in Section
3.1, is as follows. Suppose that we have constructed a valid agorithm to solve a given
problem of size nin g(n) time, where g(n) is a known function such as nlog,n or n?, obtained
through exact or asymptotic analysis. A question of interest is whether or not the algorithm
at hand is the best algorithm for solving the problem. Of course, algorithm quality can be
judged in many different ways, with running time, resource requirements, simplicity (which
affects the cost of development, debugging, and maintenance), and portability being some
of the factors in this evaluation. Let us focus on running time for now. The question then
becomes

What is the running timef(n) of the fastest algorithm for solving this problem?

If we areinterested in asymptotic comparison, then because an agorithm with running time
g(n) is already known, f(n) = O(g(n)); i.e., for large n, the running time of the best
algorithm is upper bounded by cg(n) for some constant c. If, subsequently, someone
develops an asymptotically faster algorithm for solving the same problem, say in time
h(n), we conclude that f(n) = O(h(n)). The process of constructing and improving
agorithms thus contributes to the establishment of tighter upper bounds for the com-
plexity of the best algorithm (Fig. 3.2).

Concurrently with the establishment of upper bounds as discussed above, we might work
on determining lower bounds on a problem'’s time complexity. A lower bound is useful as it
tells us how much room for improvement there might be in existing algorithms. Lower
bounds can be established by a variety of methods. Examplesinclude

PARALLEL ALGORITHM COMPLEXITY 51

1. Showing that, in the worst case, solution of the problem requires data to travel
a certain distance or that a certain volume of data must pass through a limited-
bandwidth interface. An example of the first method is the observation that any
sorting algorithm on a p-processor square mesh needs at least 2Vp —2 commu-
nication steps in the worst case (diameter-based lower bound). The second method
is exemplified by the worst-case linear time required by any sorting algorithm on a
binary tree architecture (bisection-based lower bound).

2. Showing that, in the worst case, solution of the problem requires that a certain
number of elementary operations be performed. This is the method used for
establishing the Q(n log n) lower bound for comparison-based sequential sorting
algorithms. Consider n distinct (unequal) keys. These n keys can be arranged in n!
different ways. The goal of sorting is to identify the one permutation (among n!)
that corresponds to the sorted order. Each comparison has only two possible
outcomes, and thus narrows down our choice by at most a factor of 2. Thus, log2(n!)
=0©(n log n) comparisons are needed in the worst case.

3. Showing that any instance of a previously analyzed problem can be converted to an
instance of the problem under study, so that an algorithm for solving our problem
can also be used, with simple pre- and postprocessing steps, to solve the previous
problem. Any lower bound for the previous problem then becomes alower bound
for our new problem. For example, we saw in Section 2.4 that the carry computation
problem can be converted to a parallel prefix computation. Thus, any lower bound
established for carry computation is also alower bound for general parallel prefix
computation. Also, trivially, any upper bound for the prefix computation problem
is an upper bound for the carry problem.

As shown in Fig. 3.2, a known lower bound can be viewed as a barrier against
algorithmic speed improvements. When a wide gap exists between the best known lower and
upper bounds, further efforts in raising the lower bound, or lowering the upper bound, might
be warranted. The lower bound can be raised by applying the methods in the above list in
novel ways. The upper bound can be lowered by designing new algorithms and showing
them to be faster than the best previously known algorithms.

If and when the known upper bound and lower bound for a given problem converge, we
say that we have an optimal algorithm. At this point, no asymptotic improvement is possible
and the focus changes to improving the constant factors involved (e.g., reducing the
algorithm’s running time from 3vn to 2vn).

—-Lower Bounds—§m -t} Shifting Upper Bounds ————
1988 1994 113996 (13191 §988 1982

2 ana's in's ert's Annc's

R(logn) Oflogn) Optimal Algor. Algor, Algor. Algor.

Algorithm?
1 [l [l |k i >
logn log?n n/k')g n on n log'log n o0 l'og n n?
Typical Complexity Classes

Figure 3.2. Upper and lower bounds may tighten over time.

52 INTRODUTION TO PARALLEL PROCESSING

Now, let us broaden our attention and consider the cost of the machine on which the
agorithm runs in addition to the running time. Unfortunately, a smple, accurate, and
time-invariant cost model for paralel machines does not exist. So, in the interest of
tractability, we often take the number p of processors used for a given algorithm as a very
rough indicator of cost. If we are allowed to vary the number of processors used (either by
choosing/designing our own parallel machine or else by limiting the algorithm's execution
to a subset of processors (a partition) of a larger parallel machine, then the running time will
be afunction of both the problem size n and the number p of processors used.

Now, because of the additional cost factor introduced, different notions of optimality
can be entertained. Let T(n, p) be our algorithm’s running time when solving a problem of
size n on amachine with p processors. The algorithm is said to be

* Timeoptima if T(n, p) = g(n, p), where g(n, p) is an established time lower bound.
* Cost-time optimal (cost-optimal for short) iff p T(n, p) = T(n, 1).

Redundancy = Utilization = 1
* Cost-time efficient (efficient for short) iff p T(n, p) = ©(T(n, 1)).

Redundancy = Utilization = O(1)

Onefinal observationisin order. Just as we took asimplified view of cost by equating
it with the number p of processors, we can simplify our view of time by counting computation
and/or communication steps instead of measuring real time. So, rather than saying that a
parallel matrix multiplication algorithm terminates in so many seconds, we may say that it
executes so many floating-point operations and transmits so many messages between the
processors. With this simplified view, one must be careful in comparing agorithm complexi-
ties across different machines. A speed-up of 5 in terms of step counts may correspond to a
speed-up of 2 or 3, say, when real time is considered (Fig. 3.3).

Solution

Figure 3.3. Five times fewer steps does not necessarily mean five times faster.

PARALLEL ALGORITHM COMPLEXITY 53

3.3. COMPLEXITY CLASSES

Complexity theory is a branch of computer science that deals with the ease or difficulty
of solving various computational problems of interest. In complexity theory, problems are
divided into severa complexity classes according to their running times on a single-processor
system (or a deterministic Turing machine, to be more exact). Problems whose running times
are upper bounded by polynomialsin n are said to belong to the P class and are generally
considered to be tractable. Even if the polynomial is of a high degree, such that a large
problem requires years of computation on the fastest available supercomputer, there is still
hope that with improvements in the algorithm or in computer performance, a reasonable
running time may be obtained.

On the other hand, problems for which the best known deterministic algorithm runsin
exponential time are intractable. For example, if solving a problem of size n requires the
execution of 2" machine instructions, the running time for n = 100 on a GIPS (giga |PS)
processor will be around 400 hillion centuries! A problem of this kind for which, when given
a solution, the correctness of the solution can be verified in polynomial time, is said to belong
to the NP (nondeterministic polynomial) class.

An example of an NP problem is the subset-sum problem: Given a set of n integers and
atarget sum s, determine if a subset of the integersin the given set add up to s This problem
looks deceptively simple, yet no one knows how to solve it other than by trying practically
all of the 2" subsets of the given set. Even if each of these trias takes only 1 ps, the problem
is virtually unsolvable for n = 100. This does not mean that we cannot solve specific instances
of the subset-sum problem, or even most instances of practical interest, efficiently. What it
impliesisthat an efficient general agorithm for solving this problem is not known. Neither
has anyone been able to prove that an efficient (polynomial-time) algorithm for the subset-
sum problem does not exist.

In fact, the P =? NP question is an open problem of complexity theory. A positive answer
to this question would mean that the subset-sum and a host of other “hard” problems can be
solved efficiently even if we do not yet know how to do it. A negative answer, on the other
hand, would imply that there exist problems for which efficient algorithms can never be
found. Despite alack of proof in either direction, researchers in complexity theory believe
that in fact P # NP. Furthermore, they have defined the class of NP-complete problems,
meaning that any problem in NP can be transformed, by a computationally efficient process,
to any one of these problems. The subset-sum problem is known to be NP-complete. Thus,
if one ever finds an efficient solution to the subset-sum problem, this is tantamount to proving
P = NP. On the other hand, if one can prove that the subset-sum problem is not in P, then
neither is any other NP-complete problem (leading to the conclusion P # NP).

Figure 3.4 depicts the relationships of these classes as we currently understand them.
The details and subclasses shown inside the class P will be explained in Section 3.4. The
class NP-hard is explained below.

Given the large class of problems of practical interest that are in NP and the vast amount
of time and other resources spent over the yearsin trying to find efficient solutions to these
problems, proving that a computational problem is NP-complete virtually removes any hope
of ever finding an efficient algorithm for that problem. Thus, in a sense, NP-complete
problems are the “hardest” problems in the NP class. Besides the subset-sum problem

54

INTRODUCTION TO PARALLEL PROCESSING

NP-hard
(Intractable?)

NP-complete
(e.g. the subset sum problem)

NP
Nondeterministic
Polynomial

P N

Polynomial
(Tractable) ?
P-complete Ll

NC
Nick's Class
"efficiently”

parallelizable

Figure 3.4. A conceptual view of complexity classes and their relationships.

mentioned above, the following problems of practical interest (and many others) are known
to be NP-complete:

1

Determining if there exists an assignment of truth values to the variables in a
Boolean expression, written as the AND of several OR clauses, such that the
resulting value of the expression is"true" (the satisfiability problem). This problem
isin NP even if each OR clause is restricted to have exactly 3 literals (true or
complemented variables).

Determining if there exists an assignment of Os and 1s to the inputs of alogic circuit
that makes the output 1 (the circuit satisfiability problem).

Deciding if a graph contains a cycle or loop with al of the nodes in it (the
Hamiltonian cycle problem).

Finding a lowest-cost or shortest-distance tour of a number of cities, given the travel
cost or distance between all pairs of cities (the traveling salesman problem).

One final bit of terminology: As difficult as NP problems may seem, there exist problems
that are not even in NP, meaning that even verifying that a claimed solution to such a problem
is correct is currently intractable. An NP-hard problem is one that we do not know to bein
NP but do know that any NP problem can be reduced to it by a polynomial-time agorithm.
The name of this class implies that such problems are at least as hard as any NP problem.

Typically, the proof that a problem of interest is NP-compl ete consists of two parts: (1)
proving that it isin NP by showing that a given solution for it can be verified in polynomial
time and (2) proving that it is NP-hard by showing that some NP-complete (and thus any

PARALLEL ALGORITHM COMPLEXITY 55

NP) problem can be reduced to it. For the latter part of the proof, we have awide array of
NP-complete problems to choose from. But how was this process bootstrapped; i.e.,
where did the first NP-complete problem come from? The first seed was the satisfiability
problem that was established to be NP-complete by Cook in 1971 [Cook71] using a rather
tedious proof.

3.4. PARALLELIZABLE TASKS AND THE NC CLASS

Based on the discussion in Section 3.3, parallel processing is generaly of no avail for
solving NP problems. A problem that takes 400 billion centuries to solve on a uniprocessor,
would still take 400 centuries even if it can be perfectly parallelized over 1 billion processors.
Again, this statement does not refer to specific instances of the problem but to a general
solution for al instances. Thus, paralel processing is primarily useful for speeding up
the execution time of the problems in P. Here, even a factor of 1000 speed-up can mean
the difference between practicality and impracticality (running time of several hours
versus 1 year).

In 1979, Niclaus Pippenger [Pipp79] suggested that efficiently parallelizable problems
in P might be defined as those problems that can be solved in atime period that is at most
polylogarithmic in the problem size n, i.e,, T(p) = O(Iogk n) for some constant k, using no
more than a polynomial number p = O(n') of processors. This class of problems was later
named Nick's Class (NC) in his honor. The class NC has been extensively studied and forms
afoundation for parallel complexity theory.

Pippenger used a parallel machine model known as parallel random-access machine
(PRAM) in formulating his complexity results. We will define PRAM in Chapter 5, but
knowledge of the PRAM model is not essential for understanding the NC class, as the NC
classis closed under virtually al transformations of practical interest.

A weaker form of NC, known as the parallel computation thesis is stated as follows:

Anything that can be computed on a Turing machine using polynomially (polylogarith-
mically) bounded space in unlimited time can be computed on a paralel machine in
polynomial (polylogarithmic) time using an unlimited number of processors, and vice
versa.

The problem with this thesis is that it places no bound on computational resources other than
time. The significance of NC, and its popularity, stems from its establishing simultaneous
bounds on time and hardware resources, while at the same time being relatively insensitive
to architectural and technologica variations in parallel machine implementations.

At present, the question NC = ?P is an open problem of parallel complexity theory. Just
as was the case for the P = 2NP question, no one knows the answer to this question, but there
is strong suspicion that NC # P. The reason behind this suspicion is aso quite similar to that
for P # NP. A P-complete problem in P is a problem such that any other problem in P can be
transformed to it in polylogarithmic time using a polynomial number of processors. So, if a
polylogarithmic-time algorithm with a polynomial number of processors is ever found for
any P-complete problem, then al problems in P are efficiently parallelizable and NC = P.
Some of these problems have been around for years and studied extensively by numerous

56 INTRODUCTION TO PARALLEL PROCESSING

researchers. Thus, the lack of efficient algorithms for these problems strongly supports the
conclusion that NC # P.

Sorting is a good example of an NC problem. In Chapter 7, we will see that several
techniques are available for building an n-input sorting network from O(n Iog2 n) two-input
compare—exchange circuit blocks, with the critical path across the network going through
O(log?n) comparison—exchange levels. Hence, polylogarithmic time is achieved for sorting
using a number of circuit blocks (processors) that is upper bounded by O(n'*¢) for any € > 0.

An example of a P-complete problem is the circuit-value problem: Given a logic circuit
with known inputs, determine its output. The fact that the circuit-value problem isin P should
be obvious. It is a simple problem that we routinely solve in logic simulation packages. Y et
no general agorithm exists for the efficient parallel evaluation of a circuit’s output. This
rather surprising fact limits the speed-ups that can be achieved in parallel logic simulation.

3.5. PARALLEL PROGRAMMING PARADIGMS

Several methods are used extensively in devising efficient parallel agorithms for solving
problems of interest. A brief review of these methods (divide and conquer, randomization,
approximation) is appropriate at this point as they are important to complexity anaysis
efforts.

Divide and Conquer. Some problems in P can be solved in parallel as follows.
Decompose the problem of size ninto two or more “smaller” subproblems. Suppose that the
required decomposition, when done in parallel, takes Ty(n) time. Solve the subproblems
independently and obtain the corresponding results. As the subproblems are smaller than the
origina one, the time T to solve them will likely be less than T(n). Finally, combine the
results of the subproblems to compute the answer to the original problem. If the combining
phase can be done in time T.(n), the tota computation time is given by
T(n)=Ty(n)+ To+ Te(n).

For example, in the case of sorting alist of n keys, we can decompose the list into two
halves, sort the two sublists independently in parallel, and merge the two sorted sublists into
asingle sorted list. If we can perform each of the decomposition and merging operationsin
log., n steps on some parallel computer, and if the solution of the two sorting problems of
size n/2 can be completely overlapped in time, then the running time of the parallel agorithm
is characterized by the recurrence T(n) = T(/2) + 2log, n. We will discuss the solution of
such recurrences in Section 3.6. The divide-and-conquer paradigm is perhaps the most
important tool for devising parallel agorithms and is used extensively in the rest of this book.

Randomization. Often it isimpossible, or computationally difficult, to decompose a
large problem into smaller problems in such a way that the solution times of the subproblems
areroughly equal. Large decomposition and combining overheads, or wide variationsin the
solution times of the subproblems, may reduce the effective speed-up achievable by the
divide-and-conquer method. In these cases, it might be possible to use random decisions that
lead to good results with very high probability. The field of randomized parallel algorithms
has grown significantly over the past few years and has led to the solution of many otherwise
unsolvable problems.

Again, sorting provides a good example. Suppose that each of p processors beginswith
a sublist of size n/p. First each processor selects a random sample of size k from its local

PARALLEL ALGORITHM COMPLEXITY 57

sublist. The kp samples from all processors form a smaller list that can be readily sorted,
perhaps on a single processor or using a parallel algorithm that is known to be efficient for
small lists. If this sorted list of samples is now divided into p equal segments and the
beginning values in the p segments used as thresholds to divide the original list of n keys
into p sublists, the lengths of these latter sublists will be approximately balanced with high
probability. The n-input sorting problem has thus been transformed into an initial random
sampling, a small sorting problem for the kp samples, broadcasting of the p threshold values
to all processors, permutation of the elements among the processors according to the p
threshold values, and p independent sorting problems of approximate size n/p. The average
case running time of such an agorithm can be quite good. However, there is no useful
worst-case guarantee on its running time.

Besides the random sampling method used in the above example, randomization can be
applied in severa other ways [Gupt94]. Input randomization is used to avoid bad data
patterns for which a particular algorithm, known to be efficient on the average, might have
close to worst-case performance. For example, if a routing algorithm is known to have good
performance when the source/destination nodes are randomly distributed but suffers from
excessive resource contentions, and thus degraded performance, for certain regular data
movement patterns, it might be possible to handle the problematic routing patterns by using
arandomly selected intermediate node for each source—destination pair.

To complete the picture, we briefly review the three other classes of randomization
methods that have been found useful in practice:

1. Random search. When alarge space must be searched for an element with certain
desired properties, and it is known that such elements are abundant, random search
can lead to very good average-case performance. A deterministic linear search, on
the other hand, can lead to poor performance if al of the desired elements are
clustered together.

2. Control randomization. To avoid consistently experiencing close to worst-case
performance with one agorithm, related to some unfortunate distribution of inputs,
the algorithm to be applied for solving a problem, or an algorithm parameter, can
be chosen at random.

3. Symmetry breaking. Interacting deterministic processes may exhibit a cyclic behav-
ior that leads to deadlock (akin to two people colliding when they try to exit aroom
through a narrow door, backing up, and then colliding again). Randomization can
be used to break the symmetry and thus the deadl ock.

Approximation. Iterative numerical methods often use approximation to arrive at the
solution(s). For example, to solve a system of n linear equations, one can begin with some
rough estimates for the answers and then successively refine these estimates using parallel
numerical calculations. Jacobi relaxation, to be covered in Section 11.4, is an example of
such approximation methods. Under proper conditions, the iterations converge to the correct
solutions; the larger the number of iterations, the more accurate the solutions.

The strength of such approximation methods lies in the fact that fairly precise results
can be obtained rather quickly, with additional iterations used to increase the precision if
desired. Provided that the required computations for each iteration can be easily parallelized
over any number p of processors, we have at our disposal a powerful method for time/cost/ac-

58 INTRODUCTION TO PARALLEL PROCESSING

curacy trade-offs. If time and hardware resources are limited by deadlines or concurrent
running of more urgent tasks, the computation can still be performed, albeit at lower
precision. The analysis of complexity is somewhat more difficult here as the number of
iterations required often cannot be expressed as a simple function of the desired accuracy
and/or the problem size. Typically, an upper bound on the number of iterations is established
and used in determining the algorithm’s worst-case running time.

3.6. SOLVING RECURRENCES

In our discussion of the divide-and-conquer method in Section 3.5, we presented the
recurrence T(n) = T(n/2) + 2 log, n as an example of what might transpire in analyzing
algorithm complexity. Because such recurrences arise quite frequently in the analysis of
(parallel) algorithms, it is instructive to discuss methods for their solution. As no general
method exists for solving recurrences, we will review several methods along with examples.

The simplest method for solving recurrences is through unrolling. The method is best
illustrated through a sequence of examples. In al examples below, f(1) = O is assumed.

1. fW=fn-1+n {rewritef(n-Nasf((n-1)~-1)+n-1}
=f(n-2)+n-1t+n
=fn-3)+n-2+n~1+n

=f()+2+3++n-14+n

=nn+1)y2-1
=0(n?)

2. f(my=fm/2)+1 {rewrite f(n/2) as f((n/2)/2) + 1}
=f(n/4)+1+1

=f(n8)+1+1+1

=f(ny+1+1+1+-+1
--- log, n times ---
=log, n
= O(log n)
3. f(m)y=2f(n/))+1
=4f(nldy+2+1
=8f(n/8)+4+2+1

=nf(n/n)+nf2++4+2+1
=n-1
=0(n)

4. f(n)=f(n2)+n
=f(n/4) +n/2 +n
=f(n/8)+n/4+n/2 +n

=f(n/n)+2+4+ - +n/4+n2+n
=2n-2
=0(n)

PARALLEL ALGORITHM COMPLEXITY 59

5. f(n) =2f(W2)+n
=4f(nfdy+n+n
=8f(n/8)Y+n+n+n

=nf(n/ny+n+n+n+ - +n
--- log, n times ---
=nlog,n
=0B(nlog n)
Alternate solution for the recurrence f(N)=2f (n/2) + n:
Rewrite the recurrence as

finy _fwr2)
T/

and denote f(n)/n by h(n) to get
h(n) = h(n/2) + 1

Thisisthe same as Example 2 above and leads to

h(n)y=log,n=sf(n)=nlog, n

6. f(n) =f(nl2)+log, n
=f(n/4) + log,(n/2) + log, n
= f(n/8) + log,(n/4) + log,(n/2) + log, n

=f(n/n) + log, 2 + log, 4 + -+ + log,(n/2) + log, n
=14+2+3+ - +log,n

=log, n (log, n + 1)/2

= B8(log? n)

Another method that we will find useful, particularly for recurrences that cannot be
easily unrolled, is guessing the answer to the recurrence and then verifying the guess by
substitution. In fact, the method of substitution can be used to determine the constant
multiplicative factors and lower-order terms once the asymptotic complexity has been
established by other methods.

Asan example, let us say that we know that the solution to Example 1 aboveis f (n) =
O(n?). We write f(n) = an? + g (n), where g(n) = o(n?) represents the lower-order terms.
Substituting in the recurrence equation, we get

an® +g(n)=a@n - 1)? +gn-1D+n
This equation simplifiesto
gn)=gn-H+(1-2ay+a

Choose a = 1/2 in order to make g(n) = o(n?) possible. Then, the solution to the recurrence
g(n)=g(n-1) + Y2is g(n) =n/2 — 1, assuming g(1) = 0. The solution to the original
recurrence then becomes f(n) =n%2+n/2 — 1, which matches our earlier result based
on unrolling.

60 INTRODUCTION TO PARALLEL PROCESSING

Unrolling recurrences can be tedious and error-prone in some cases. The following
general theorem helps us establish the order of the solution to some recurrences without
unrolling [Bent80].

THEOREM 3.1 (basic theorem for recurrences). Given the recurrence f(n) =af (n/b) +
h(n), where a and b are constants and h is an arbitrary function, the asymptotic solution to
therecurrenceis

f(n) = ©(n%) if h(n) = O(n'°%°~®) for some € > 0
f(n) =©n'8°logn) if h(n) = B(n'°8*)

f(n) = Oh(n)) if h(n) = Q(n'°%4*2) for some € >0

The recurrence given in the statement of Theorem 3.1 arises, for example, if we decompose
a given problem of size ninto b problems of size n/b, with these smaller problems solved in
a batches (e.g., because the available resources, typically processors, are inadequate for
solving all subproblems concurrently).

The function h(n) represents the time needed to decompose the problem and for
obtaining the overall solution from the solutions to the subproblems. Therefore, a=1
typically means that we have enough processors to solve al b subproblems concurrently,
a = b means we have just one processor, so the subproblems are solved sequentially, and
1 < a < b means we can solve some of the problems concurrently but that the number of
processors is inadequate to deal with all of them concurrently. An example of this last
situation might be when the number of processors required is sublinear in problem size
(problems with 1/b = 1/4 the size require half as many processors, say, when p = size thus
dictating a = 2 passes for solving the four subproblems).

Note that the first and third cases in the statement of Theorem 3.1 are separated from
the middle case by ¢ in the exponent of n. Let us consider the middle case first. Unrolling
the recurrence in this case will be done log,, n times before getting to f (1). As4'%%* = a, each
of the logy, n terms resulting from the unrolling is on the order of @(h()) = 6(n‘°3a“); SO, one
can say that the decomposition/merging overhead is more or less constant across the recursive
iterations. In the third case, the overhead decreases geometrically, so the first term in the
unrolling, i.e., h(n), dictates the complexity. Finally, in the first case, the unrolled terms form
an increasing geometric progression, making the last term in the unrolling dominant. This
last term can be obtained as follows:

f(n) =af(n/b)+ h(n)

=af(nlb?) + ...
=d%" f(1)+ ... Uselog, n=log,n/log, b
=gl lor by 4 Use g = 21°8°

= 2logzalogzn/log2bf(1) +. .. Use 2103211 =n

PARALLEL ALGORITHM COMPLEXITY 61

— nlogzu/log2 bf(l) +...

- e(nlogba)

Theorem 3.1 only provides an asymptotic solution in cases where the theorem’ s conditions
are met. However, as noted earlier, once the order of the solution is known, substitution in
the recurrence can be used to determine the constant factors and lower-order terms if desired.

PROBLEMS

3.1.

3.2

3.3.

3.4.

3.5.

Asymptotic complexity
For each of the following pairs of functions f (n) and g(n), determine which of the relationships
f(n)=o(g(n)), f(n) = O(g(n)), f(n) = O(g(n)), f(n) = Qg(n)), or f{n} = w(g(n)), if any, holds.
Explain your reasoning.

a. f(n)=10n2, g(n) = n®+ 100.
b, finy=n"2 gn) = o2,

. f(n) =n, g(n) = 20een /3,
d. f(n)=25Isinnl", g(n) =n.
e. f(n)=nlsinnl, gn) = n/100.
£ f(n)=20080""2 oty =,

(g}

Asymptotic complexity

Order the following functions with respect to their growth rates, from the slowest growing to
the fastest growing. Explain your reasoning.

2‘Jlogn

n

(V2)os"

(logn)*?

log logn

(log log n)log logn

™e Qe o

Computational complexity

Assume that the pairs of functions f (n) and g(n) of Problem 3.1 correspond to the running times
of two different algorithms A and B, respectively, for solving a given problem when the input
sizeisn (do not worry about the fact that some of the instances do not represent real problems).
Determine, for each pair of functions, the problem sizes for which Algorithm A is better than
Algorithm B.

Computational complexity

With reference to the datain Table 3.2, suppose that arunning time of 3 hours or lessistolerable
in a given application context. Assuming that Moore's law holds (see Section 1.1), for each of
the five functions shown in Table 3.2, determine the factor by which the problem size can
increase in 10 years.

Comparing agorithms
Suppose two different parallel agorithms for solving a given problem lead to the following
recurrences for the computation time. Which agorithm is asymptotically faster and why?

a. T(n)=2T(n/2) +n.
b. T(r)=T(n/2) +n2.

62

3.6.

3.7.

3.8.

3.9.

3.10.

311

3.12.

3.13.

3.14.

INTRODUCTION TO PARALLEL PROCESSING

Solving recurrences

a. Derive an exact solution to the recurrence T(n) = T(n/2) + cn assuming that n is a power
of 2, cisaconstant, and T (1) =0.

b. More generally, the problem size (initidly or in intermediate steps) is not necessarily even.
Consider the recurrence T(n) = T(n/27) + cn and useit to derive an upper bound for T(n) .
Hint: The worst case occurs when nis 1 more than a power of 2.

c. Repeat part (b) for the more general recurrenceT(n) = aT(n/b) + cn.

System of two recurrences

a. Find exact solutions for A(n) and B(n) if A(n) = B(n/2) + gn and B(n) = A(n/2) + hn, assuming
n to be a power of 2, g and h known constants, and A(1) = B(1) = 0.
b. Repeat part (8) with A(n) = 2B(n/2) + gnand B(n) = A(n/2) + hn.
Repeat part (8) with A(n) = 2B(n/2) + gn and B(n) = 2A(n/2) + hn.
. Formulate a general theorem for the asymptotic solution of system of two recurrences of
the form A(n) = cB(n/a) + gn and B(n) = dA(n/b) + hn, wherea, b, ¢, and d are constants.

o 0O

Solving recurrences
Apply the method of Theorem 3.1 to the solution of Examples 1 through 6 that precede it,
where applicable.

Solving recurrences

Apply the method of Theorem 3.1 to the solution of the recurrence f (n) = 2f(n/4) + cn, where
cis aknown constant. Then, find the constant factor and the order of residua terms through
substitution.

Basic theorem for recurrences
In the proof of the first case of Theorem 3.1, we implicitly assumed that f(1) is a nonzero
constant. Would the proof fall apart if (1) = 0?

Solving recurrences
Solve the recurrence f(n) = f(3n/4) + f(nl—b) + cn?, where b and c are constants and 0 < b < 1.

Asymptotic complexity

A rough set Sis characterized by alower bound set S;,) consisting of elements that are certain
to be members of Sand an upper bound set S, which aso contains a boundary region consisting
of possible elements of S(the possibility is not quantified) [Paw197]. Define the basic set
operations on rough sets and determine if they are asymptotically more complex than ordinary
set operations in sequential and parallel implementations.

Computational complexity

Consider the following results from number theory [Stew97]: (a) xis not prime iff some number
in [2,L\x] dividesit. (b) xis primeiff it divides (x— 1) ! + 1. (c) If xis prime, then it divides
2X — 2 (the converse is not true). A large number x, with hundreds of digits, is given and we
would like to prove that it is not a prime. We do not need the factors; just a confirmation that
it is not a prime. Which of the above three methods would lead to a more efficient parallel
implementation and why? Note that in computing a large number whose divisibility by xisto
be tested, we can do all of the calculations modulo x.

NP-completeness
In our discussion of NP-completeness, we stated that the satisfiability problem for OR-AND

PARALLEL ALGORITHM COMPLEXITY 63

Boolean expressions is NP-complete and that even the special case where each of the ORed
terms consists of exactly 3 literals (known as the 3-satisfiability problem) is not any easier.

a. Show that the AND-OR version of the satisfiability problem, i.e,, when the Boolean
expression in question consists of the OR of AND terms, isin P.

b. Show that 2-satisfiability is in P. Hint: Use the equivalence of x OR y with (NOT x)
IMPLIES y to reduce the 2-satisfiability problem to a problem on a directed graph.

3.15. NP-completeness
Consider a set Sof integers. The set partition problem is that of determining if the set Scan be
partitioned into two disjoint subsets such that the sum of the integers in each subset is the same.
Show that the set partition problem is NP-complete.

REFERENCES AND SUGGESTED READING

[Cook71] Cook, S., “The Complexity of Theorem Proving Procedures,” Proc. 3rd ACM Symp. Theory of
Computing, 1971, pp. 151-158.

[Corm90] Cormen, T. H., C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, McGraw-Hill, 1990,
Chapter 36, pp. 916-963.

[Gupt94] Gupta, R., S. A. Smolka, and S. Bhaskar, “On Randomization in Sequential and Distributed
Algorithms,” ACM Computing Surveys, Vol. 26, pp. 7-86, March 1994.

[Kris96] Krishnamurthy, E. V., “Complexity Issues in Parallel and Distributed Computing,” Chapter 4 in
Parallel and Distributed Computing Handbook, edited by A. Y. Zomaya, McGraw-Hill, 1996, pp.
89-126.

[Parb87] Parberry, 1., Parallel Complexity Theory, Pitman, 1987.

[Pawl97] Pawlak, Z., J. Grzymala-Busse, R. Slowinski, and W. Ziarko, “Rough Sets,” Communications of the
ACM, Vol. 38, No. 11, pp. 89-95, November 1995.

[Pipp79] Pippenger, N., “On Simultaneous Resource Bounds,” Proc. 20th Symp. Foundations of Computer
Science, 1979, pp. 307-311.

[Stew97] Stewart, I., “Mathematical Recreations: Big Game Hunting in Primeland,” Scientific American, Vol.
276, No. 5, pp. 108-111, May 1997,

This page intentionally left blank.

Models of Parallel
Processing

Parallel processors come in many different varieties. It would not be possible to
discuss all of these varieties, including their distinguishing features, strong points
within application contexts, and drawbacks, in a single book. Thus, we often
deal with abstract models of real machines. The benefits of using abstract models
include technology-independent theories and algorithmic techniques that are
applicable to a large number of existing and future machines. Disadvantages
include the inability to predict the actual performance accurately and a tendency
to simplify the models too much, so that they no longer represent any real
machine. However, even oversimplified models do offer some benefits. The
conceptual simplicity of such models makes the development of algorithms and
the analysis of various trade-offs more manageable. If automatic translation of
these abstract algorithms into efficient programs for real machines is possible
through the use of intelligent or optimizing compilers, then these models can
indeed be enormously helpful. Chapter topics are

e 4.1. Development of early models

e 4.2. SIMD versus MIMD architectures

¢ 4.3. Global versus distributed memory

e 4.4. The PRAM shared-memory model

e 4.5, Distributed-memory or graph models
® 4.6. Circuit model and physical realizations

65

This page intentionally left blank.

MODELS OF PARALLEL PROCESSING 67

4.1. DEVELOPMENT OF EARLY MODELS

Associative processing (AP) was perhaps the earliest form of parallel processing.
Associative or content-addressable memories (AMs, CAMs), which alow memory cellsto
be accessed based on contents rather than their physical locations within the memory array,
came into the forefront in the 1950s when advances in magnetic and cryogenic memory
technologies allowed the construction of, and experimentation with, reasonably sized
prototypes. However, the origins of research on AM/AP technology and applications actualy
go back to the 1943 sketch of a relay-based associative memory by Konrad Zuse and the
1945 visionary assessment of the need for associative access to information by Vannevar
Bush (see Table 4.1).

AM/AP architectures are essentially based on incorporating simple processing logic into
the memory array so as to remove the need for transferring large volumes of data through
the limited-bandwidth interface between the memory and the processor (the von Neumann
bottleneck). Early associative memories provided two basic capabilities: (1) masked search,
or looking for a particular bit pattern in selected fields of all memory words and marking
those for which a match is indicated, and (2) parallel write, or storing a given bit pattern into
selected fields of all memory words that have been previously marked. These two basic
capabilities, along with simple logical operations on mark vectors (e.g., ORing them
together) suffice for the programming of sophisticated searches or even parallel arithmetic
operations [Parh97].

Over the past half-century, the AM/AP model has evolved through the incorporation of
additional capabilities, so that it isin essence converging with SIMD-type array processors.
Early examples of APsincluded the Goodyear STARAN processor, arelatively successful
commercial product of the 1970s, whose design was motivated by the computation-intensive
problem of aircraft conflict detection; O(n?) pairwise checks are required to avoid collisions
and near misses for n aircraft in the vicinity of a busy airport. Modern incarnations of this
model are seen in processor-in-memory (PIM) chips, which are basically standard DRAM
chips with alarge number of very simple processors added on their data access paths, and
intelligent RAM (IRAM) architectures, which have been shown to have advantages in both
performance and power consumption [From97].

Another early model, introduced in the 1950s, dealt with parallel processing for image
understanding applications. In those days, interest in artificial intelligence, and particularly
its subfield of computer vision, was quite high. The development of perceptrons (a neuronlike
device in charge of processing a single pixel in a digital image) was based on the pioneering

Table 4.1. Entering the Second Half-Century of Associative Processing

Decade Events and advances Technology Performance
1940s Formulation of need & concept Relays

1950s Emergence of cell technologies Magnetic, cryogenic Mega-bit-OPS
1960s Introduction of basic architectures Transistors

1970s Commercidization & applications ICs Giga-bit-OPS
1980s Focus on system/software issues VLS| Tera-hit-OPS

1990s Scalable & flexible architectures ULSI, WS Peta-bit-OPS?

68 INTRODUCTION TO PARALLEL PROCESSING

work of McCulloch and Pittsin the 1940s. The perceptron convergence theorem of Rosen-
blatt, along with Minsky’s work on the limitations of such devices in the 1960s, created a
flurry of research activities that laid the foundation for the modern field of neural networks.
Hopfield's energy approach and the introduction of the back propagation learning algorithm
put neural networks on the fast track so that today they are used for the solution of complex
decision problems in awide class of applications [Jain96].

The 1960s saw the introduction of a model of fundamental importance. Cellular
automata formed natural extensions of the types of abstract machines that were studied as
theoretical models of von Neumann-type sequential computers. Cellular automata machines
are typically viewed as a collection of identical finite-state automata that are interconnected,
through their input—output links, in a regular fashion, with the state transitions of each
automaton controlled by its own state, the states of the neighbors to which it is connected,
and its primary inputs, if any [Garz95]. Systolic arrays, which form the basis of
high-performance VLSI-based designs in some application areas, can be viewed as
cellular automata. In recent years, we have witnessed a resurgence of interest in cellular
automata as theoretical models of massively parallel systems and as tools for modeling
physical phenomena[PPCA].

In the subsequent sections of this chapter, we will review some of the commonly used
models in the field of parallel processing. Before doing so, it is instructive to revisit the
Flynn-Johnson classification of computer systems. Figure 4.1 depicts the classification
along with the two major dichotomies that we will consider in the next two sections.

The SISD class encompasses standard uniprocessor systems, including those that
employ pipelining, out-of-order execution, multiple instruction issue, and severa functional
units to achieve higher performance. Because the SIMD and MIMD classes will be examined
in detail in the remainder of this book, here we say a few words about the class of MISD
paralel architectures for completeness. As mentioned in Section 1.4, the MISD (miss-
dee) class has not found widespread application. One reason is that most application

Data Stream(s)
Single Multiple
Of - SISD SIMD
S ig "Uniprocessors” "Annmecuaan"\ S
A versus
MIMD

E OMsv G
£ 4 ooy 5 clotal
E 5 [2 1versus
% a3 MISD MIMDl E distributed
2 2 ‘ DMSV DMMP g $

i . memory

Distrib. Shared { "Distrib.-memory

memory"” multicomputens” |

Shazed Variables Messsge Passing
Communication/Synchronization

Figure 4.1. The Flynn—Johnson classification of computer systems.

MODELS OF PARALLEL PROCESSING 69

Iz

I3 14

Figure 4.2. Multiple instruction streams operating on a single data stream (MISD).

problems do not map easily onto a MISD architecture, making it impossible to design a
general-purpose architecture of this type. However, one can quite properly envisage
MISD-type parallel processors for specific applications.

Figure 4.2 shows an example parallel processor with the MISD architecture. A single
data stream enters the machine consisting of five processors. Various transformations are
performed on each data item before it is passed on to the next processor(s). Successive data
items can go through different transformations, either because of data-dependent conditional
statements in the instruction streams (control-driven) or because of specia control tags
carried along with the data (data-driven). The MISD organization can thus be viewed as a
flexible or high-level pipeline with multiple paths and programmable stages.

Even though we often view conventional pipelines as linear structures, pipelines with
multiple paths and the capability to selectively bypass various stages are in fact used in
high-performance CPU design. For example, the block diagram of a floating-point arithmetic
pipeline may resemble Fig. 4.2, where the entry block is used for unpacking of the inputs
and detection of specia operands, the three paralel branches perform various floating-point
arithmetic operations (say add, multiply, and divide), and the exit block normalizes and packs
the results into the standard format. The key difference between the above pipeline and a
MISD architecture is that the floating-point pipeline stages are not programmable.

4.2. SIMD VERSUS MIMD ARCHITECTURES

Most early parallel machines had SIMD designs. The ILLIAC IV computer, briefly
mentioned in Section 1.3, and described in more detail in Section 23.2, is a well-known
example of such early parallel machines. SIMD implies that a central unit fetches and
interprets the instructions and then broadcasts appropriate control signals to a number of
processors operating in lockstep. This initia interest in SIMD resulted both from charac-
teristics of early parallel applications and from economic necessity. Some of the earliest
applications, such as air traffic control and linear-algebra computations, are pleasantly
paralel (at times researchers have characterized these as “embarrassingly parallel,” referring
to the extreme ease with which they can be parallelized). From the user’s perspective, such
applications tend to be much easier to program in SIMD languages and lead to more
cost-effective SIMD hardware. On the economics front, full-fledged processors with reason-

70 INTRODUCTION TO PARALLEL PROCESSING

able speed were quite expensive in those days, thus limiting any highly parallel system to
the SIMD variety.
Within the SIMD category, two fundamental design choices exist:

1. Synchronous versus asynchronous SMD. In a SIMD machine, each processor can
execute or ignore the instruction being broadcast based on its local state or
data-dependent conditions. However, this leads to some inefficiency in executing
conditional computations. For example, an “if-then-else” statement is executed by
first enabling the processors for which the condition is satisfied and then flipping
the “enable” bit before getting into the “else” part. On the average, half of the
processors will be idle for each branch. The situation is even worse for “case”
statements involving multiway branches. A possible cure is to use the asynchronous
version of SIMD, known as SPMD (spim-dee or single-program, multiple data),
where each processor runs its own copy of the common program. The advantage of
SPMD is that in an “if-then-else” computation, each processor will only spend time
on the relevant branch. The disadvantages include the need for occasional synchro-
nization and the higher complexity of each processor, which must now have a
program memory and instruction fetch/decode logic.

2. Custom- versus commodity-chip SSMD. A SIMD machine can be designed based
on commodity (off-the-shelf) components or with custom chips. In the first ap-
proach, components tend to be inexpensive because of mass production. However,
such general-purpose components will likely contain elements that may not be
needed for a particular design. These extra components may complicate the design,
manufacture, and testing of the SIMD machine and may introduce speed penalties
as well. Custom components (including ASICs = application-specific 1Cs, multichip
modules, or WSI = wafer-scale integrated circuits) generally offer better perform-
ance but lead to much higher cost in view of their development costs being borne
by arelatively small number of parallel machine users (as opposed to commodity
microprocessors that are produced in millions). As integrating multiple processors
along with ample memory on a single VLSI chip becomes feasible, a type of
convergence between the two approaches appears imminent.

Judging by what commercial vendors have introduced in the 1990s, the MIMD paradigm
has become more popular recently. The reasons frequently cited for this shift of focus are
the higher flexibility of the MIMD architectures and their ability to take advantage of
commodity microprocessors, thus avoiding lengthy development cycles and getting a free
ride on the speed improvement curve for such microprocessors (see Fig. 1.1). MIMD
machines are most effective for medium- to coarse-grain parallel applications, where the
computation is divided into relatively large subcomputations or tasks whose executions are
assigned to the various processors. Advantages of MIMD machines include flexibility in
exploiting various forms of parallelism, relative ease of partitioning into smaller independent
parallel processors in a multiuser environment (this property also has important implications
for fault tolerance), and less difficult expansion (scalability). Disadvantages include consid-
erable interprocessor communication overhead and more difficult programming.

Within the MIMD class, three fundamental issues or design choices are subjects of
ongoing debates in the research community.

MODELS OF PARALLEL PROCESSING 71

1. MPP—massively or moderately parallel processor. Is it more cost-effective to build
a paralel processor out of arelatively small number of powerful processors or a
massive number of very simple processors (the “herd of elephants’ or the “army of
ants’ approach)? Referring to Amdahl’s law, the first choice does better on the
inherently sequentia part of a computation while the second approach might allow
a higher speed-up for the parallelizable part. A general answer cannot be given to
this question, as the best choice is both application- and technol ogy-dependent. In
the 1980s, several massively parallel computers were built and marketed (massive
paralelism is generally taken to include 1000 or more processors). In the 1990s,
however, we have witnessed a general shift from massive to moderate parallelism
(tens to hundreds of processors), but the notion of massive parallelism has not been
altogether abandoned, particularly at the highest level of performance required for
Grand Challenge problems.

2. Tightly versus loosely coupled MIMD. Which is a better approach to high-
performance computing, that of using specially designed multiprocessors/
multicomputers or a collection of ordinary workstations that are intercon-
nected by commodity networks (such as Ethernet or ATM) and whose interactions
are coordinated by special system software and distributed file systems? The latter
choice, sometimes referred to as network of workstations (NOW) or cluster com-
puting, has been gaining popularity in recent years. However, many open problems
exist for taking full advantage of such network-based loosely coupled architectures.
The hardware, system software, and applications aspects of NOWSs are being
investigated by numerous research groups. We will cover some aspects of such
systemsin Chapter 22. An intermediate approach isto link tightly coupled clusters
of processors via commodity networks. Thisis essentially a hierarchical approach
that works best when thereis agreat deal of data access|ocality.

3. Explicit message passing versus virtual shared memory. Which scheme is better,
that of forcing the users to explicitly specify al messages that must be sent between
processors or to allow them to program in an abstract higher-level model, with the
required messages automatically generated by the system software? This ques-
tion is essentially very similar to the one asked in the early days of high-level
languages and virtual memory. At some point in the past, programming in
assembly languages and doing explicit transfers between secondary and primary
memories could lead to higher efficiency. However, nowadays, software is so
complex and compilers and operating systems so advanced (not to mention
processing power so cheap) that it no longer makes sense to hand-optimize
the programs, except in limited time-critical instances. However, we are not
yet at that point in parallel processing, and hiding the explicit communication
structure of a parallel machine from the programmer has nontrivia conse-
guences for performance.

4.3. GLOBAL VERSUS DISTRIBUTED MEMORY

Within the MIMD class of parallel processors, memory can be global or distributed.

72 INTRODUCTION TO PARALLEL PROCESSING

. Memory
Processors Modules
geeneen E—_ —E
ito- Processor- -—-m
{Proc. | 10-Memory
iNet- & Network
jwork |

Figure 4.3. A parallel processor with global memory.

Parallel /O

Global memory may be visualized as being in a central location where all processors
can access it with equal ease (or with equal difficulty, if you are a half-empty-glass type of
person). Figure 4.3 shows a possible hardware organization for a global-memory parallel
processor. Processors can access memory through a special processor-to-memory network.
As access to memory is quite frequent, the interconnection network must have very low
latency (quite a difficult design challenge for more than a few processors) or €lse memory-
latency-hiding techniques must be employed. An example of such methods is the use of
multithreading in the processors so that they continue with useful processing functions while
they wait for pending memory access requests to be serviced. In either case, very high
network bandwidth isamust. An optional processor-to-processor network may be used for
coordination and synchronization purposes.

A global-memory multiprocessor is characterized by the type and number p of proces-
sors, the capacity and number m of memory modules, and the network architecture. Even
though p and m are independent parameters, achieving high performance typically requires
that they be comparable in magnitude (e.g., too few memory modules will cause contention
among the processors and too many would complicate the network design).

Examples for both the processor-to-memory and processor-to-processor networks in-
clude

1. Crosshar switch; O(pm) complexity, and thus quite costly for highly parallel systems

Single or multiple buses (the latter with complete or partial connectivity)

3. Multistage interconnection network (MIN); cheaper than Example 1, more band-
width than Example 2

o

The type of interconnection network used affects the way in which efficient algorithms are
developed. In order to free the programmers from such tedious considerations, an abstract
model of global-memory computers, known as PRAM, has been defined (see Section 4.4).

One approach to reducing the amount of data that must pass through the processor-to-
memory interconnection network is to use a private cache memory of reasonable size within
each processor (Fig. 4.4). The reason that using cache memories reduces the traffic through

MODELS OF PARALLEL PROCESSING 73

Processors Caches Memory
Modules

A1 T

o] processr. L]
¢ Proc. & to-Memory
i Net- § Network
twork
Parallel YO

Figure 4.4. A parallel processor with global memory and processor caches.

the network is the same here as for conventional processors:. locality of data access, repeated
access to the same data, and the greater efficiency of block, as opposed to word-at-a-time,
data transfers. However, the use of multiple caches gives rise to the cache coherence problem:
Multiple copies of data in the main memory and in various caches may become inconsistent.
With a single cache, the write-through policy can keep the two data copies consistent. Here,
we need a more sophisticated approach, examples of which include

1. Do not cache shared data at all or allow only a single cache copy. If the volume of
shared datais small and access to it infrequent, these policies work quite well.

2. Do not cache “writeable” shared data or alow only a single cache copy. Read-only
shared data can be placed in multiple caches with no complication.

3. Use acache coherence protocol. This approach may introduce a nontrivial consis-
tency enforcement overhead, depending on the coherence protocol used, but re-
moves the above restrictions. Examples include snoopy caches for bus-based
systems (each cache monitors all data transfers on the bus to see if the validity of
the data it is holding will be affected) and directory-based schemes (where writeable
shared data are “owned” by a single processor or cache at any given time, with a
directory used to determine physical data locations). See Sections 18.1 and 18.2 for
more detail.

Distributed-memory architectures can be conceptually viewed asin Fig. 4.5. A collec-
tion of p processors, each with its own private memory, communicates through an intercon-
nection network. Here, the latency of the interconnection network may be less critical, as
each processor is likely to access its own local memory most of the time. However, the
communication bandwidth of the network may or may not be critical, depending on the type
of parallel applications and the extent of task interdependencies. Note that each processor is
usually connected to the network through multiple links or channels (thisis the norm here,
although it can also be the case for shared-memory parallel processors).

In addition to the types of interconnection networks enumerated for shared-memory
paralel processors, distributed-memory MIMD architectures can also be interconnected by

74 INTRODUCTION TO PARALLEL PROCESSING

Memorics Processors

Parallel :
Input/
Output

Intercon-
nection
Network

Figure 4.5. A parallel processor with distributed memory.

avariety of direct networks, so called because the processor channels are directly connected
to their counterparts in other processors according to some interconnection pattern or
topology. Examples of direct networks will be introduced in Section 4.5.

Because access to data stored in remote memory modul es (those associated with other
processors) involves considerably more latency than access to the processor’s local memory,
distributed-memory MIMD machines are sometimes described as nonuniform memory
access (NUMA) architectures. Contrast this with the uniform memory access (UMA)
property of global-memory machines. In a UMA architecture, distribution of data in memory
isrelevant only to the extent that it affects the ability to access the required data in paralldl,
whereas in NUMA architectures, inattention to data and task partitioning among the
processors may have dire consequences. When coarse-grained tasks are alocated to the
various processors, load-balancing (in the initial assignment or dynamically as the compu-
tations unfold) is also of some importance.

Itispossible to view Fig. 4.5 as a special case of Fig. 4.4 in which the global-memory
modules have been removed altogether; the fact that processors and (cache) memories appear
in different ordersisimmaterial. This has led to the name all-cache or cache-only memory
architecture (COMA) for such machines.

4.4. THE PRAM SHARED-MEMORY MODEL

The theoretical model used for conventional or sequential computers (SISD class) is
known as the random-access machine (RAM) (not to be confused with random-access
memory, which has the same acronym). The parallel version of RAM [PRAM (pea-ram)],
congtitutes an abstract model of the class of global-memory parallel processors. The
abstraction consists of ignoring the details of the processor-to-memory interconnection
network and taking the view that each processor can access any memory location in each
machine cycle, independent of what other processors are doing.

Thus, for example, PRAM algorithms might involve statements like “for 0 <i <p,
Processor i adds the contents of memory location 2i + 1 to the memory location 2i” (different

MODELS OF PARALLEL PROCESSING 75

Processors Shared Memory
0 0
1
2
1 3
p-1 A m-1

Figure 4.6. Conceptual view of a parallel random-access machine (PRAM).

locations accessed by the various processors) or “each processor loads the contents of
memory location x into its Register 2" (the same location accessed by all processors).
Obvioudly, the problem of multiple processors attempting to write into a common memory
location must be resolved in some way. A detailed discussion of thisissue is postponed to
Chapter 5. Suffice it to say at this point that various inhibition, priority, or combining schemes
can be employed when concurrent write operations to a common location are attempted.

In the formal PRAM model, a single processor is assumed to be active initialy. In each
computation step, each active processor can read from and write into the shared memory and
can also activate another processor. Using a recursive doubling scheme, og, plisteps are
necessary and sufficient to activate all p processors. In our discussions, the set of active
processors is usually implied. We do not explicitly activate the processors.

Even though the global-memory architecture was introduced as a subclass of the MIMD
class, the abstract PRAM model depicted in Fig. 4.6 can be SIMD or MIMD. In the SIMD
variant, all processors obey the same instruction in each machine cycle; however, because
of indexed and indirect (register-based) addressing, they often execute the operation that is
broadcast to them on different data. In fact, the shared-memory algorithms that we will study
in Chapters 5 and 6 are primarily of the SIMD variety, as such agorithms are conceptually
much simpler to develop, describe, and analyze.

In view of the direct and independent access to every memory location allowed for each
processor, the PRAM model depicted in Fig. 4.6 is highly theoretical. If one were to build a
physical PRAM, the processor-to-memory connectivity would have to be realized by an
interconnection network. Because memory locations are too numerous to be assigned
individual ports on an interconnection network, blocks of memory locations (or modules)
would have to share a single network port. Let us ignore this practical consideration for now
in order to make a fundamental point. Suppose we do in fact design a network connecting
the processors to individual memory locations, as shown in Fig. 4.7. If this network is built
from elements with constant fan-in and fan-out, then the depth of the network, and thus its
latency, will be at least logarithmic in mp. This implies that each instruction cycle would
have to consume Q(log p) real time.

The above point is important when we try to compare PRAM algorithms with those for
distributed-memory models. An O(log p)-step PRAM agorithm may not be faster than an

76 INTRODUCTION TO PARALLEL PROCESSING

Control

Memory Access
Network &
Processors Controller Shared Memory
o 0
1
Proces- 2
o H U} 3

.._ m-1

Figure 4.7. PRAM with some hardware details shown.

O(log?p)-step algorithm for a hypercube architecture, say. We should always have Fig. 3.3
in mind when making such comparisons.

It isinteresting to note that the above logarithmic latency is of no consequence in most
theoretical studies of parallel agorithms. Recal that the class NC of efficiently parallelizable
problems was defined as those that would require polylogarithmic running times. The formal
definition of NC isin fact in terms of PRAM steps rather than real time. However, if an
algorithm is executed in a polylogarithmic number of PRAM steps and if each step is realized
in logarithmic real time, the actual running time is still polylogarithmic.

There is away in which the log-factor slowdown implied by the above discussion can
be hidden, leading to higher algorithm efficiency. Suppose that the memory access latency
isexactly log, p clock cycles. A p-processor physical machine of the type shown in Fig. 4.7
can be used to emulate a (p log, p)-processor “logical PRAM.” A PRAM instruction cycle
begins by issuing amemory access request, followed by some computation in the processor
(e.g., an arithmetic operation), and ends by storing the result in memory. Suppose that the
physical Processor O, emulating logical Processors O through log, p—1,issuesthelog, p
memory access requests in turn, one per clock cycle, with these requests pipelined through
the network. When the last access request has been issued, the data for the first request arrive
at the processor, followed, in consecutive clock cycles, by those for the other requests. In
this way, the processor will be busy at al times and the log, p memory latency does not slow
it down, provided that the memory access network possesses the aggregate bandwidth
required by all of the plog, p in-transit memory requests.

Recall the graph representation of a shared-variable architecture introduced in Fig. 2.5,
where each node of the p-node complete graph K, contains one of the p processors plus m/p
of the m memory locations. This would be an accurate model of the abstract PRAM if each
node can honor p simultaneous memory access requests (one from the local processor and
p— 1 coming from the node’'s communication ports), with multiple requests potentially
addressing the same memory location. If only one or a small constant number of memory
access requests can be processed in each cycle, then PRAM is not accurately represented.
However, with additional effort, it is sometimes possible to structure a PRAM algorithm
such that simultaneous accesses to the same block of memory locations are never
attempted.

MODELS OF PARALLEL PROCESSING 77

4.5. DISTRIBUTED-MEMORY OR GRAPH MODELS

Given the internal processor and memory structures in each node, a distributed-memory
architecture is characterized primarily by the network used to interconnect the nodes (Fig. 4.5).
This network is usually represented as a graph, with vertices corresponding to processor—memory
nodes and edges corresponding to communication links. If communication links are unidirec-
tional, then directed edges are used. Undirected edges imply bidirectional communication,
although not necessarily in both directions at once. Important parameters of an interconnec-
tion network include

1. Network diameter: the longest of the shortest paths between various pairs of nodes,
which should be relatively small if network latency isto be minimized. The network
diameter is more important with store-and-forward routing (when a message is
stored in its entirety and retransmitted by intermediate nodes) than with wormhole
routing (when amessage is quickly relayed through anode in small pieces).

2. Bisection (band)width: the smallest number (total capacity) of links that need to be
cut in order to divide the network into two subnetworks of haf the size. Thisis
important when nodes communicate with each other in arandom fashion. A small
bisection (band)width limits the rate of data transfer between the two halves of the
network, thus affecting the performance of communication-intensive algorithms.

3. Vertex or node degree: the number of communication ports required of each node,
which should be a constant independent of network size if the architecture isto be
readily scalable to larger sizes. The node degree has a direct effect on the cost of
each node, with the effect being more significant for parallel ports containing several
wires or when the node is required to communicate over all of its ports at once.

Table 4.2 lists these three parameters for some of the commonly used interconnection
networks. Do not worry if you know little about the networks listed in Table 4.2. They are
there to give you an idea of the variability of these parameters across different networks
(examples for some of these networks appear in Fig. 4.8).

Thelist in Table 4.2 is by no means exhaustive. In fact, the multitude of interconnection
networks, and claims with regard to their advantages over competing ones, have become
quite confusing. The situation can be likened to a sea (Fig. 4.8). Once in a while (almost
monthly over the past few years), a new network is dropped into the sea. Most of these make
small waves and sink. Some produce bigger waves that tend to make people seasick! Hence,
there have been suggestions that we should stop introducing new networks and instead focus
on analyzing and better understanding the existing ones. A few have remained afloat and
have been studied/analyzed to death (e.g., the hypercube).

Even though the distributed-memory architecture was introduced as a subclass of the
MIMD class, machines based on networks of the type shown in Fig. 4.8 can be SIMD- or
MIMD-type. In the SIMD variant, al processors obey the same instruction in each machine
cycle, executing the operation that is broadcast to them on local data. For example, all
processorsin a 2D SIMD mesh might be directed to send data to their right neighbors and
receive data from the left. In fact, the distributed-memory agorithms that we will study in
Chapters 9-14 are primarily of the SIMD variety, as such algorithms are conceptually much
simpler to develop, describe, and analyze.

78 INTRODUCTION TO PARALLEL PROCESSING

Table 4.2. Topological Parameters of Selected Interconnection Networks

Network

Network name(s) No. of nodes diameter Bisection width Nodedegree Local links?
1D mesh (linear array) k k-1 1 2 Yes
1D tours (ring, loop) k k/2 2 2 Yes
2D mesh K? 2k-2 k 4 Yes
2D torus (k-ary 2-cube) K k 2k 4 Yes'
3D mesh K 3k- 3 K 6 Yes
3D torus (k-ary 3-cube) K 3K2 2K 6 Yes'
Pyramid (4 — 13 2log, k 2k 9 No
Binary tree 2 -1 2 -2 1 3 No
4-ary hypertree 2@) 2l s 6 No
Butterfly 2(+1) 2| 2' 4 No
Hypercube 2 I 2t I No
Cube-connected cycles 21 2l 2t 3 No
Shuffle—exchange 2 20—1 >2"11 4 unidir. No
De Bruijn 2 I 21 4 unidir. No

1with folded layout.

The development of efficient paralel algorithms suffers from the proliferation of
available interconnection networks, for algorithm design must be done virtually from scratch
for each new architecture. It would be nice if we could abstract away the effects of the
interconnection topology (just as we did with PRAM for global-memory machines) in order
to free the algorithm designer from a lot of machine-specific details. Even though this is not

Figure 4.8. The sea of interconnection networks.

MODELS OF PARALLEL PROCESSING 79

completely possible, models that replace the topological information reflected in the inter-
connection graph with a small number of parameters do exist and have been shown to capture
the effect of interconnection topology fairly accurately.

Asan example of such abstract models, we briefly review the LogP model [Cull96]. In
LogP, the communication architecture of a parallel computer is captured in four parameters:

L Latency upper bound when a small message (of afew words) is sent from
an arbitrary source node to an arbitrary destination node

0 Theoverhead, defined as the length of time when a processor is dedicated
to the transmission or reception of a message, thus not being able to do any
other computation

g Thegap, defined as the minimum time that must elapse between consecu-
tive message transmissions or receptions by a single processor (1/gis the
available per-processor communication bandwidth)

P Processor multiplicity (pin our notation)

If LogP isin fact an accurate model for capturing the effects of communication in parallel
processors, then the details of interconnection network do not matter. All that is required,
when each new network is developed or proposed, is to determine its four LogP parameters.
Software simulation can then be used to predict the performance of an actual machine that
is based on the new architecture for a given application. On most early, and some currently
used, parallel machines, the system software overhead (0) for message initiation or reception
isso large that it dwarfs the hop-to-hop and transmission latencies by comparison. For such
machines, not only the topology, but also the parameters L and g of the LogP model may be
irrelevant to accurate performance prediction.

Even simpler is the bulk-synchronous parallel (BSP) model which attempts to hide the
communication latency altogether through a specific paralel programming style, thus
making the network topology irrelevant [Vali90]. Synchronization of processors occurs once
every L time steps, where L is a periodicity parameter. A parallel computation consists of a
seguence of supersteps. In a given superstep, each processor performs a task consisting of
local computation steps, message transmissions, and message receptions from other proces-
sors. Data received in messages will not be used in the current superstep but rather beginning
with the next superstep. After each period of L time units, a global check is made to see if
the current superstep has been completed. If so, then the processors move on to executing
the next superstep. Otherwise, the next period of L time unitsis allocated to the unfinished
superstep.

A final observation: Whereas direct interconnection networks of the types shown in
Table 4.2 or Fig. 4.8 have led to many important classes of parallel processors, bus-based
architectures still dominate the small-scale-parallel machines. Because a single bus can
quickly become a performance bottleneck as the number of processors increases, a variety
of multiple-bus architectures and hierarchical schemes (Fig. 4.9) are available for reducing
bus traffic by taking advantage of the locality of communication within small clusters of
processors.

80 INTRODUCTION TO PARALLEL PROCESSING

dobogs

Bus switch
(Gateway)

s

Figure 4.9. Example of a hierarchical interconnection architecture.

Low-level
cluster

4.6. CIRCUIT MODEL AND PHYSICAL REALIZATIONS

In a sense, the only sure way to predict the performance of a parallel architecture on a
given set of problemsisto actually build the machine and run the programs on it. Because
this is often impossible or very costly, the next best thing is to model the machine at the
circuit level, so that all computational and signal propagation delays can be taken into
account. Unfortunately, thisis also impossible for a complex supercomputer, both because
generating and debugging detailed circuit specifications are not much easier than a full-
blown implementation and because a circuit simulator would take eons to run the simulation.

Despite the above observations, we can produce and evaluate circuit-level designs for
specific applications. The example of sorting networks will be covered in Chapter 7, where
we take the number of two-input compare—exchange circuits as a measure of cost and the
depth of the circuit as being indicative of delay. Additional examples, covering the fast
Fourier transform, parallel prefix computations, and dictionary operations, will be provided
in Chapter 8 where similar cost and delay criteria are used.

1.5 /
2104 Hypercube
1
Eosd
S 0.5

2-D Ton!
2-D Mesh
00 } Il
0 2 4 6
Wire Length (mm)

Figure 4.10. Intrachip wire delay as a function of wire length.

MODELS OF PARALLEL PROCESSING 81

A more precise model, particularly if the circuit is to be implemented on adense VLSI
chip, would include the effect of wires, in terms of both the chip area they consume (cost)
and the signal propagation delay between and within the interconnected blocks (time). In
fact, in modern VLSI design, wire delays and area are beginning to overshadow switching
or gate delays and the area occupied by devices, respectively.

The rightmost column in Table 4.2 indicates which network topologies have local or
short links, thus being less likely to suffer from long interprocessor signal propagation delays.
Figure 4.10 depicts the expected wire delays on a 1B-transistor chip of the future as a function
of wire length, assuming the use of copper wires that are less resistive, and thus faster, than
today’s aluminum wires [Parh98]. The circles designate the estimated wire lengths, and thus
interprocessor propagation delays, for a 256-processor chip with three different architec-
tures. It is seen that for the hypercube architecture, which has nonlocal links, the interproc-
essor wire delays can dominate the intraprocessor delays, thus making the communication
step time much larger than that of the mesh- and torus-based architectures.

Determining the area requirements and maximum wire lengths for various interconnec-
tion topologies has been a very active research area in the past two decades. At times, we
can determine bounds on area and wire-length parameters based on network properties,
without having to resort to detailed specification and layout with VLS design tools. For
example, in 2D VLS| implementation, the bisection width of a network yields a lower bound
on its layout area in an asymptotic sense. If the bisection width is B, the smallest dimension
of the chip should be at least Bw, where w is the minimum wire width (including the
mandatory interwire spacing). The area of the chip isthus Q(B?). If the bisection width is
O(\/;T), as in 2D meshes, then the area lower bound will be linear in the number p of
processors. Such an architecture is said to be scalable in the VLSI layout sense. On the other
hand, if the bisection width is ©(p), as in the hypercube, then the area required is a quadratic
function of p and the architecture is not scalable.

The following analogy is intended to reinforce the importance of the above discussion
of physical realizations and scalability [Hart86]. You have all read science-fiction stories, or
seen sci-fi movies, in which scaled up ants or other beasts destroy entire towns (top panel of
Fig. 4.11). Let us say that a 0.5-cm ant has been scaled up by a factor of 10*so that its new
length is 50 m. Assuming linear scaling, so that the enlarged ant looks exactly like an ordinary
ant, the ants leg has thickened by the same factor (say from 0.01 cm to 1 m). The weight of
the ant, meanwhile, has increased by a factor of 107, say from 1 gto 1 M tons! Assuming
that the original ant legs were just strong enough to bear its weight, the leg thickness must
in fact increase by a factor of V10™2 = 106, from 0.01 cm to 100 m, if the ant is not to collapse
under its own weight. Now, a 50-m-long ant with legs that are 100 m thick looks nothing
like the original ant!

Power consumption of digital circuits is another limiting factor. Power dissipation in
modern microprocessors grows amost linearly with the product of die area and clock
frequency (both steadily rising) and today stands at afew tens of wattsin high-performance
designs. Even if modern low-power design methods succeed in reducing this power by an
order of magnitude, disposing of the heat generated by 1 M such processors is indeed a great
challenge.

82 INTRODUCTION TO PARALLEL PROCESSING

Scaled up ant on the rampage!
‘What is wrong with this picture?

)

oooooaaa
0000000

Oooooaan

ooooooaoa

25

Scaled up ant collapses under own weight.

Figure 4.11. Pitfalls of scaling up.

PROBLEMS

4.1. Associative processing

A bit-seria associative memory is capable of searching, in one memory access cycle, a single
bit dlice of all active memory words for 0 or 1 and provides the number of responding words
in the form of an unsigned integer. For example, the instruction Search(0, i) will yield the
number of active memory words that store the value 0 in bit position i. It also has instructions
for activating or deactivating memory words based on the results of the latest search (i.e., keep
only the responders active or deactivate the responders). Suppose that initialy, al words are
active and the memory stores munsigned integers.

a. Devise an AM agorithm to find the largest number stored in the memory.

b. Devisean AM agorithm for finding the kth largest unsigned integer among the m stored
values.

c. Extend the agorithm of part (b) to deal with signed integers in signed-magnitude format.

d. Extend the algorithm of part (b) to dea with signed integers in 2’'s-complement format.
Hint: In a 2's-complement number, the sign bit carries a negative weight so that 1010
represents -8 + 2 = —6.

MODELS OF PARALLEL PROCESSING 83

4.2.

4.3.

4.4,

4.5.

4.6.

Associative processing
With the same assumptions as in Problem 4.1:

a. Devisean AM agorithm to find the exclusive-OR (checksum) of the values in al memory
words.

b. Devise an AM agorithm for finding the arithmetic sum of the values stored in all memory
words. Assume unsigned or 2's-complement numbers, with all results representable in a
single word.

c. Repeat part (b), this time assuming that some results may not be representable in asingle
word.

Cellular automata synchronization

Cellular automata form abstract models of homogeneous massively parallel computers. Con-
sider the special case of alinear array of finite automata viewed as modeling a firing squad.
All cellsareidentical and the length of the linear array is unknown and unbounded. We would
like to synchronize this firing squad so that all cells enter the special “fire” state at exactly the
same time. The synchronization process begins with a special input to the leftmost cell of the
array (the general). Cells (soldiers) can only communicate with their left and right neighbor in
a synchronous fashion and the only global signal is the clock signal, which is distributed to all
cells. Hint: Try to identify the middie cell, or the middle two cells, of the array, thus dividing
the problem into two smaller problems of exactly the same size.

Image-processing computer

Two types of operations are commonly used in image processing. Assume that an image is
represented by a 2D matrix of Os and 1s corresponding to dark and light pixels, respectively.
Noise removal has the goal of removing isolated Os and 1s (say those that have at most one
pixel of the same type among their eight horizontally, vertically, or diagonally adjacent
neighbors). Smoothing is done by replacing each pixel value with the median of nine values
consisting of the pixel itself and its eight neighbors.

a . Discussthe design of a 2D array of simple cells capable of noise remova or smoothing.

b . Propose suitable generalizations for noise removal and smoothing if each pixel valueisa
binary integer (say 4 bits wide) representing a gray level.

c . Sketch the modifications required to the cells of part (a) if part (b) isto be implemented.

MISD architecture

In the MISD architecture depicted in Fig. 4.2, the rate of data flow or throughput in a
synchronous mode of operation is dictated by the execution time of the slowest of the five
blocks. Suppose that the execution times for the five blocks are not fixed but rather have uniform
distributions in the interval from a lower bound I; to an upper bound u;, 1 <i <5, where|; and
u; are known constants. Discuss methods for improving the throughput beyond the throughput
1/max (y) of a synchronous design.

Cache coherence protocols
Study the snooping and directory-based cache coherence protocols (see, e.g., [Patt96], pp.
655-666 and 679-685). Then pick one example of each and do the following exercises:

a. Present one advantage for each protocol over the other.

b . Discuss an application, or a class of applications, for which the chosen snooping cache
coherence protocol would perform very poorly.

c . Repeat part (b) for the chosen directory-based protocol.

84

4.7.

4.8.

4.9.

4.10.

4.11.

INTRODUCTION TO PARALLEL PROCESSING

Topological parameters of interconnection networks
Add entries corresponding to the following topologies to Table 4.2.

a. An X-tree; acomplete binary tree with nodes on the same level connected as a linear array.

b. A hierarchical bus architecture with a maximum branching factor b (b =4 in Fig. 4.9).

c. A degree-4 chordal ring with skip distance s; i.e., ap-node ring in which Processor i isaso
connected to Processorsi = smod p, in addition to Processorsi + 1 mod p.

Hierarchical-bus architectures

Consider the hierarchical multilevel bus architecture shown in Fig. 4.9, except that each of the
low-level clusters consists of four processors. Suppose that we want to emulatea4 x 6or 6 x 4
mesh architecture on this bus-based system. Consider the shearsort algorithm described in
Section 2.5 and assume that each transfer over a shared bus to another processor or to a switch
node takes unit time. Ignore computation time as well as any control overhead, focusing only
on communication steps.

a. How long does this system take to emulate shearsort on a4 x 6 mesh if each processor holds
asingle data item and each cluster emulates a column of the mesh?

b. How long does this system take to emulate shearsort on a6 x 4 mesh (cluster = row)?

c. Devise amethod for performing a parallel prefix computation on this architecture.

The LogP model

Using the LogP model, write an equation in terms of the four parameters of the model for the
total time needed to do a “complete exchange,” defined as each processor sending p-— 1 distinct
messages, one to each of the other p — 1 processors.

The BSP and LogP models

A k\f; xk\fp_ array holds the initial data for an iterative computation. One iteration involves
computing a new value for each array element based on its current value and the current values
of its eight horizontally, vertically, and diagonally adjacent array elements. Each of the p
processors storesak x k block of the array at the center of a(k + 2) x (k+ 2) local matrix, where
the top/bottom rows and leftmost/rightmost columns represent data acquired from neighboring
blocks and available at the beginning of an iteration. Processors dealing with blocks at the edge
of the large array simply copy values from edge rows/columnsin lieu of receiving them from
a neighboring block.

a. Formulate the above as a BSP computation.

b. If you could choose the BSP parameter L at will, how would you go about the selection
process for the above computation?

c. Estimate the running time for miterations, assuming the BSP model.

d. Repeat Part (c) for the LogP model.

Physica redlizations
Consider the column labeled “Local Links?’ in Table 4.2. It is obvious how a 2D mesh can be
laid out so that al links are local or short.

a. Describea?2D layout for a 2D torus that has short local links. Hint: Use folding.

b. The 3D mesh and torus networks have also been characterized as having short local links.
However, thisisonly true if a 3D realization is possible. Show that a 3D mesh (and thus
torus) cannot be laid out with short local links in two dimensions.

c. Show that any network whose diameter is alogarithmic function of the number of nodes
cannot be laid out in two or three dimensions using only short local links.

MODELS OF PARALLEL PROCESSING 85

412. Physicd redizations
a Describe the network diameter, bisection width, and node degree of each of the networks

listed in Table 4.2 as an asymptotic function of the number p of nodes (e.g., the 1D mesh
has diameter, bisection, and degree of ©(p), ©(1), and ©(1), respectively).

Using the results of part (&), compare the architectures listed in terms of the composite
figure of merit “degree x diameter,” in an asymptotic way.

Obtain an asymptotic lower bound for the VLSI layout area of each architecture based on
its bisection width.

The area—time product is sometimes regarded as a good composite figure of merit because
it incorporates both cost and performance factors. Assuming that delay is proportional to
network diameter, compute the asymptotic area-time figure of merit for each of the
architectures, assuming that the area lower bounds of part (c) are in fact achievable.

4.13. Physical redlizations
The average internode distance of an interconnection network is perhaps a more appropriate
indicator of its communication latency than its diameter. For example, if the network nodes are
message routers, some of which are randomly connected to processors or memory modulesin
a distributed shared-memory architecture, then the average internode distance is a good
indicator of memory access latency.

a Compute the average internode distance d 44 for as many of the interconnection networks

b.

listed in Table 4.2 as you can.

If a processor issues a memory access request in every clock cycle, there is no routing or
memory access conflict, and the memory access time isty, cycles, then, on the average,
each processor will have Zda\,g +tna outstanding memory access requests at any given time.
Discuss the implications of the above on the scalability of the architecturesin part (a).

REFERENCES AND SUGGESTED READING

[Cull96]
[From97]
[Garz95]

[Hartss]

[Jaing6]

[Parhgs]

[Parh97]

[Parhog]

[Patt96]

Culler, D. E., et a., “A Practical Model of Parallel Computation,” Communications of the ACM, Voal.
39, No. 11, pp. 78-85, November 1996.

Fromm, R., et a., “The Energy Efficiency of IRAM Architectures,” Proc. Int. Conf. Computer
Architecture, 1997, pp. 327-337.

Garzon, M., Models of Massive Parallelism: Analysis of Cellular Automata and Neural Networks,
Springer, 1995.

Hartmann, A. C., and J. D. Ullman, “Model Categories for Theories of Parallel Systems,” Microelec-
tronics and Computer Corporation, Technical Report PP-341-86; reprinted in Parallel Computing:
Theory and Comparisons, by G. J. Lipovski and M. Malek, Wiley, 1987, pp. 367-381.

Jain, A. K., J. Mao, and K. M. Mohiuddin, “Artificial Neural Networks: A Tutorial,” IEEE Computer,
Voal. 29, No. 3, pp. 3144, March 1996.

Parhami, B., “Panel Assesses SIMD’s Future,” IEEE Computer, Vol. 28, No. 6, pp. 89-91 June 1995.
For an unabridged version of this report, entitled “SIMD Machines: Do They Have a Significant
Future?,” see IEEE Computer Society Technical Committee on Computer Architecture Newsletter,
pp. 23-26, August 1995, or ACM Computer Architecture News, Vol. 23, No. 4, pp. 19-22, September
1995.

Parhami, B., “Search and Data Selection Algorithms for Associative Processors,” in Associative
Processing and Processors, edited by A. Krikelis and C. Weems, IEEE Computer Society Press, 1997,
pp. 10-25.

Parhami, B., and D.-M. Kwai, “Issues in Designing Parallel Architectures Using Multiprocessor and
Massively Parallel Microchips,” in preparation.

Patterson, D. A., and J. L. Hennessy, Computer Architecture: A Quantitative Approach, 2nd ed.,
Morgan Kaufmann, 1996.

86 INTRODUCTION TO PARALLEL PROCESSING

[PPCA] Proc. Int. Workshop on Parallel Processing by Cellular Automata and Arrays, 3rd, Berlin, 1986; 6th,
Potsdam, Germany (Parcella 94).

[Valioo] Vdiant, L. G., “A Bridging Model for Parallel Computation,” Communications of the ACM, Val. 33,
No. 8, pp. 103-111, August 1990.

Extreme Models

The models of parallel computation range from very abstract to very concrete,
with real parallel machine implementations and user models falling somewhere
between these two extremes. At one extreme lies the abstract shared-memory
PRAM model, briefly introduced in Section 4.4, which offers a simple and
familiar programming model but is quite removed from what transpires at the
hardware level as a parallel computation unfolds. At the other extreme is the
circuit model of parallel processing where a computational task is considered
in terms of what happens to individual bits, in order to gain an appreciation for
actual hardware complexities (e.g., circuit depth or VLSI chip layout area). After
covering the two extremes of very abstract (the PRAM model) and very concrete
(the circuit model), we proceed to explore various intermediate models in the
rest of the book. This part consists of the following four chapters:

® Chapter 5: PRAM and Basic Algorithms

® Chapter 6: More Shared-Memory Algorithms
® Chapter 7: Sorting and Selection Networks
e Chapter 8: Other Circuit-Level Examples

87

This page intentionally left blank.

PRAM and Basic
Algorithms

In this chapter, following basic definitions and a brief discussion of the relative
computational powers of several PRAM submodels, we deal with five key
building-block algorithms that lay the foundations for solving various computa-
tional problems on the abstract PRAM model of shared-memory parallel proc-
essors. We will continue with more algorithms and implementation
considerations in Chapter 6. The example algorithms provided should be
sufficient to convince the reader that the PRAM’s programming model is a natural
extension of the familiar sequential computer (RAM) and that it facilitates the
development of efficient parallel algorithms using a variety of programming
paradigms. Chapter topics are

5.1. PRAM submodels and assumptions
5.2. Data broadcasting

5.3. Semigroup or fan-in computation
5.4. Parallel prefix computation

5.5. Ranking the elements of a linked list
5.6. Matrix multiplication

89

This page intentionally left blank.

PRAM AND BASIC ALGORITHMS 91

5.1. PRAM SUBMODELS AND ASSUMPTIONS

As mentioned in Section 4.4, the PRAM model prescribes the concurrent operation of
p processors (in SIMD or MIMD mode) on data that are accessible to al of them in an m-word
shared memory. In the synchronous SIMD or SPMD version of PRAM, which is of primary
interest in our subsequent discussions, Processor i can do the following in the three phases
of onecycle:

1. Fetch an operand from the source address s in the shared memory
2. Perform some computations on the data held in local registers
3. Storeavalueinto the destination address d in the shared memory

Not all three phases need to be present in every cycle; a particular cycle may require no new
data from memory, or no computation (just copying from s tod;, say), or no storing in
memory (partial computation result held in alocal register, say).

Because the addresses s; and d; are determined by Processor i, independently of all other
processors, it is possible that several processors may want to read data from the same memory
location or write their values into a common location. Hence, four submodels of the PRAM
model have been defined based on whether concurrent reads (writes) from (to) the same
location are allowed. The four possible combinations, depicted in Fig. 5.1, are

e EREW: Exclusive-read, exclusive-write

e ERCW: Exclusive-read, concurrent-write
e CREW: Concurrent-read, exclusive-write
e CRCW: Concurrent-read, concurrent-write

The classification in Fig. 5.1 is reminiscent of Flynn’s classification (Fig. 1.11 or 4.1) and
offers yet another example of the quest to invent four-letter abbreviations/acronyms in
computer architecture! Note that here, too, one of the categoriesis not very useful, because
if concurrent writes are allowed, there is no logica reason for excluding the less problematic
concurrent reads.

EREW PRAM isthe most realistic of the four submodels (to the extent that thousands
of processors concurrently accessing thousands of memory locations within a shared-
memory address space of millions or even billions of locations can be considered realistic!).
CRCW PRAM s the least restrictive submodel, but has the disadvantage of requiring a
conflict resolution mechanism to define the effect of concurrent writes (more on this below).
The default submodel, which is assumed when nothing is said about the submodel, is CREW
PRAM. For most computations, it is fairly easy to organize the algorithm steps so that
concurrent writes to the same location are never attempted.

CRCW PRAM s further classified according to how concurrent writes are handled.
Here are a few example submodels based on the semantics of concurrent writesin CRCW
PRAM:

* Undefined: In case of multiple writes, the value written is undefined (CRCW-U).
* Detecting: A specia code representing “detected collision” is written (CRCW-D).

92 INTRODUCTION TO PARALLEL PROCESSING

Reads from Same Location

Exclusive Concurrent
£ _—
g z Least "Powerful” CREW
[*] We| .
- Most "Realistic® Default
E R
g &
g 3 ot M G:ocwrfux
= < 3 ost "Powe! "o
;‘ 5 Not Useful Further Subdivided

Figure 5.1. Submodels of the PRAM model.

¢ Common: Multiple writes alowed only if al store the same value (CRCW-C). This
is sometimes called the consistent-write submodel.

* Random: The value written is randomly chosen from among those offered (CRCW-
R). Thisis sometimes called the arbitrary-write submodel.

¢ Priority: The processor with the lowest index succeeds in writing its value (CRCW-P).

* Max/Min: The largest/smallest of the multiple values is written (CRCW-M).

* Reduction: The arithmetic sum (CRCW-S), logical AND (CRCW-A), logical XOR
(CRCW:-X), or some other combination of the multiple valuesis written.

These submodels are al different from each other and from EREW and CREW. One way to
order these submodelsis by their computational power. Two PRAM submodels are equally
powerful if each can emulate the other with a constant-factor slowdown. A PRAM submodel
is (strictly) less powerful than another submodel (denoted by the “<” symbol) if there exist
problems for which the former requires significantly more computational steps than the latter.
For example, the CRCW-D PRAM submodel is less powerful than the one that writes the
maximum value, as the latter can find the largest number in avector Aof sizepinasingle
step (Processor i reads A[i] and writes it to an agreed-upon location x, which will then hold
the maximum value for all processors to see), whereas the former needs at least Q(log n)
steps. The “less powerful or equal” relationship “<” between submodels can be similarly
defined.

The following relationships have been established between some of the PRAM sub-
models:

EREW < CREW < CRCW-D < CRCW-C < CRCW-R < CRCW-P

Even though all CRCW submodels are strictly more powerful than the EREW submodel,
the latter can simulate the most powerful CRCW submodel listed above with at most
logarithmic slowdown.

PRAM AND BASIC ALGORITHMS 93

THEOREM 5.1. A p-processor CRCW-P (priority) PRAM can be simulated by a
p-processor EREW PRAM with a slowdown factor of ©(log p).

The proof of Theorem 5.1 is based on the ability of the EREW PRAM to sort or find
the smallest of p valuesin ©(log p) time, as we shall see later. To avoid concurrent writes,
each processor writes an |D-address-value triple into its corresponding element of a scratch
list of size p, with the p processors then cooperating to sort the list by the destination
addresses, partition the list into segments corresponding to common addresses (which are
now adjacent in the sorted list), do a reduction operation within each segment to remove al
writes to the same location except the one with the smallest processor ID, and finally write
the surviving address-value pairs into memory. This final write operation will clearly be of
the exclusive variety.

5.2. DATA BROADCASTING

Because data broadcasting is a fundamental building-block computation in parallel
processing, we devote this section to discussing how it can be accomplished on the various
PRAM submodels. Semigroup computation, parallel prefix computation, list ranking, and
matrix multiplication, four other useful building-block computations, will be discussed in
the next four sections.

Simple, or one-to-all, broadcasting is used when one processor needs to send a data
value to all other processors. In the CREW or CRCW submodels, broadcasting is trivia, as
the sending processor can write the data value into a memory location, with all processors
reading that data value in the following machine cycle. Thus, simple broadcasting is done in
O(1) steps. Multicasting within groups is equally simple if each processor knows its group
membership(s) and only members of each group read the multicast data for that group.
All-to-all broadcasting, where each of the p processors needs to send a data value to all other
processors, can be done through p separate broadcast operations in ©(p) steps, which is
optimal.

The above scheme is clearly inapplicable to broadcasting in the EREW model. The
simplest scheme for EREW broadcasting is to make p copies of the data value, say in a
broadcast vector B of length p, and then let each processor read its own copy by accessing
B[j]. Thus, initially, Processor i writes its data value into B[0]. Next, a method known as
recursive doubling is used to copy B[0] into al elements of B in [og, pOsteps. Finaly,
Processor j, 0<j <p, reads B[j] to get the data value broadcast by Processor i. The recursive
doubling algorithm for copying B[0Q] into all elements of the broadcast vector B is given
below.

Making p copies of B[0] by recursive doubling

for k=0to Oog,p 1 Processor j, 0<j <p, do
Copy BJj] into B[j + 2|
endfor

In the above algorithm, it isimplied that copying will not occur if the destination address
is outside the list (Fig. 5.2). Alternatively, the list B might be assumed to extend beyond

94 INTRODUCTION TO PARALLEL PROCESSING

¥

A

S~ O WEONOONDBWN =O

—_ -

Figure 5.2. Data broadcasting in EREW PRAM via recursive doubling.

B[p — 1] with dummy elements that are written into but never read. However, it is perhaps
more efficient to explicitly “turn off” the processors that do not perform useful work in a
given step. This approach might allow us to use the idle processors for performing other tasks
in order to speed up algorithm execution, or at the very least, reduce the memory access
traffic through the processor-to-memory interconnection network when the algorithm is
ported to a physical shared-memor&/ machine. Note that in Step k of the above recursive
doubling process, only the first 2" processors need to be active. The complete EREW
broadcast algorithm with this provision is given below.

EREW PRAM algorithm for broadcasting by Processor i

Processor i write the data value into B[0]

s:=1

whiles< p Processor j,0<j <min(s, p—s), do
Copy BJ[j] into B[j + 9]
s:=2s

endwhile

Processor j, 0<j < p, read the datavalue in B[j]

The parameter s can be interpreted as the “span” of elements already modified or the “ step”
for the copying operation (Fig. 5.3).

The following argument shows that the above ©(log p)-step broadcasting agorithm is
optimal for EREW PRAM. Because initialy a single copy of the data value exists, at most
one other processor can get to know the value through a memory accessin the first step. In
the second step, two more processors can become aware of the data value. Continuing in this
manner, at least og, p Oread—write cycles are necessary for p-way broadcasting.

To perform all-to-all broadcasting, so that each processor broadcasts a value that it holds
to each of the other p— 1 processors, we let Processor j write its value into B[j], rather than
into B[0]. Thus, in one memory access step, al of the vaues to be broadcast are written into
the broadcast vector B. Each processor then reads the other p— 1 valuesin p— 1 memory
accesses. To ensure that all reads are exclusive, Processor j begins reading the values starting
with B[j + 1], wrapping around to B[0] after reading B[p — 1].

PRAM AND BASIC ALGORITHMS 95

or]

1
i

~OoOWLNOINMBLWN —=-O

-

Figure 5.3. EREW PRAM data broadcasting without redundant copying.

EREW PRAM algorithm for all-to-all broadcasting

Processor j, 0 < j < p, write own data value into B[j]
fork=1top—1Processor j,0<j<p,do

Read the datavalue in B[(j + k) mod p]
endfor

Again the above all-to-all broadcasting algorithm is optimal as the shared memory is
the only mechanism for interprocessor communication and each processor can read but one
value from the shared memory in each machine cycle.

Given adata vector Sof length p, a naive sorting algorithm can be designed based on
the above all-to-all broadcasting scheme. We simply let Processor j compute the rank R[j]
of the data element §j] and then store §j] into R[j]]. The rank R[j] of S[j], loosely defined
as the total number of data elements that are smaller than S[j], is computed by each processor
examining al other data elements and counting the number of elements SI] that are smaller
than §Jj]. Because each data element must be given a unique rank, ties are broken by using
the processor ID. In other words, if Processorsi andj (i < j) hold equal data values, the value
in Processor i is deemed smaller for ranking purposes. Following is the complete sorting
algorithm.

Naive EREW PRAM sorting algorithm using all-to-all broadcasting

Processor j, 0<j < p, write 0 into R[j]
fork=1top—1Processor j,0<j<p,do
I:=(j +K) mod p
if §l] < §fj] or §l] = §j] and | <
thenR[j] :=R[j] +1
endif
endfor
Processor j, 0 <j < p, write S[j] into S[R[j]]

Unlike the broadcasting algorithms discussed earlier, the above sorting algorithm is not
optimal in that the O(p?) computational work involved in it is significantly greater than the

96 INTRODUCTION TO PARALLEL PROCESSING

O(p log p) work required for sorting p elements on a single processor. The analysis of this
algorithm with regard to speed-up, efficiency, and so forth isleft as an exercise. Faster and
more efficient PRAM sorting algorithms will be presented in Chapter 6.

5.3. SEMIGROUP OR FAN-IN COMPUTATION

Semigroup computation was defined in Section 2.1 based on associative binary operator
0. This computation is trivial for a CRCW PRAM of the “reduction” variety if the reduction
operator happens to be 0. For example, computing the arithmetic sum (logical AND, logica
XOR) of p values, one per processor, is trivia for the CRCW-S (CRCW-A, CRCW-X)
PRAM; it can be done in a single cycle by each processor writing its corresponding value
into a common location that will then hold the arithmetic sum (logical AND, logical XOR)
of all of the values.

Here too the recursive doubling scheme can be used to do the computation on an EREW
PRAM (much of the computation is in fact the same for all PRAM submodels, with the only
difference appearing in the final broadcasting step). Interestingly, the computation scheme
isvirtually identical to that of Fig. 5.2, with the copying operation replaced by a combining
(O) operation. Figure 5.4 illustrates the process, where the pair of integers u:v shown in each
memory location represents the combination (e.g., sum) of al input values from X[u] to X[v].
Initially, §i] holds the ith input X[i], or i:i according to our notation. After the first parallel
combining step involving adjacent elements, each element Si], except S[0], holds (i — 1):i.
The next step leads to the computation of the sums of 4 adjacent elements, then 8, and
eventually all 10. The final result, which is available in §p — 1], can then be broadcast to
every processor.

EREW PRAM semigroup computation algorithm

Processor j,0< j < p, copy X]j] into §j]
s:=1
while s< p Processor j,0<j<p—s,do
§j +s]:=9j] 0 §[j +]
S:=2s

S
0 __* 0:0 1 0:0 00 0:0 0:0
1 * 11 0:1 0:1 0 ['H
2y 22 !;." 12 0:2 02 02
3 33 2:3 0:3 0:3 03
4 *. 44] (Rl 04 04
5| T g 85 L Y45 1125 05 05
6 * 6:6 56 3:6 06 08
7 7.7 8:7 4:7 0:7 0:7
8 L—'. 88 78 8] (YL s 08
9 9:9 8:9 6:9 2:9 0:

Figure 5.4. Semigroup computation in EREW PRAM.

PRAM AND BASIC ALGORITHMS 97

endwhile
Broadcast S[p — 1] to all processors

The ©(log p) computation time of the above algorithm is optimal, given that in each machine
cycle, a processor can combine only two values and the semigroup computation requires that
we combine p values to get the result.

When each of the p processors is in charge of n/p elements, rather than just one element,
the semigroup computation is performed by each processor first combining its n/p elements
in n/p steps to get a single value. Then, the algorithm just discussed is used, with the first
step replaced by copying the result of the aboveinto §j].

It isinstructive to evaluate the speed-up and efficiency of the above agorithm for an
n-input semigroup computation using p processors. Because the final broadcasting takes
log, p steps, the algorithm requires n/p + 2 log, p EREW PRAM steps in all, leading to
a speed-up of n/(n/p +2log,p) over the sequential version. If the number of processors
isp = ©(n), asublinear speed-up of @(n/log n) is obtained. The efficiency in this case is
O(n/log n)/6(n) = ©(L/log n). On the other hand, if we limit the number of processors to
p = O(n/log n), we will have

Speed-up(n, p) = n/O(log n) = Q(n/log n) = Q(p)

Hence, linear or ©(p) speed-up and ©(1) efficiency can be achieved by using an appropriately
smaller number p of processors compared with the number n of elements.

The above can be intuitively explained as follows. The semigroup computation is
representable in the form of a binary tree, as shown in Fig. 5.5. When the number of
processors is comparable to the number of leaves in this binary tree, only the first few
computation levels possess enough parallelism to utilize the processors efficiently, with most
of the processors sitting idle, or else doing redundant computations, in all subsequent levels.
On the other hand, when p << n, we achieve perfect speed-up/efficiency near the leaves,
where the bulk of the computation occurs. The inefficiency near the root is not enough to
significantly affect the overall efficiency. The use of parallel dack, i.e.,, having more
processors than items to be processed, is a recurring theme in parallel processing and is often
aprerequisite for efficient parallel computation.

Lowerd
of parallelism
near the root

Higher de
of pamllchgs;e
near the leaves

Figure 5.5. Intuitive justification of why parallel slack helps improve the efficiency.

98 INTRODUCTION TO PARALLEL PROCESSING

5.4. PARALLEL PREFIX COMPUTATION

Just as was the case for a linear array (Section 2.3), parallel prefix computation consists
of the first phase of the semigroup computation. We see in Fig. 5.4 that as we find the
semigroup computation result in S[p — 1], all partial prefixes are also obtained in the previous
elementsof S Figure 5.6 isidentical to Fig. 5.4, except that it includes shading to show that
the number of correct prefix results doublesin each step.

The above algorithm is quite efficient, but there are other ways of performing parallel
prefix computation on the PRAM. In particular, the divide-and-conquer paradigm leads to
two other solutions to this problem. In the following, we deal only with the case of a p-input
problem, where p (the number of inputs or processors) is a power of 2. Asin Section 5.3, the
pair of integers u:v represents the combination (e.g., sum) of all input values from x, tox, .

Figure 5.7 depicts our first divide-and-conquer algorithm. We view the problem as
composed of two subproblems: computing the odd-indexed results s, s;, Sg, . . . and
computing the even-indexed results sy, S, S,

The first subproblem is solved as follows. Pairs of consecutive elements in the input list
(%o and x4, X, and X, X, and X;, and so on) are combined to obtain a list of half the size.
Performing parallel prefix computation on thislist yields correct values for al odd-indexed
results. The even-indexed results are then found in a single PRAM step by combining each
even-indexed input with the immediately preceding odd-indexed result. Because the initial
combining of pairs and the final computation of the even-indexed results each takes one step,
the total computation time is given by the recurrence

T(p) = T(p/2) +2

whose solution is T(p) = 2 log,, p.

Figure 5.8 depicts a second divide-and-conquer algorithm. We view the input list as
composed of two sublists: the even-indexed inputs X, X,, X,,, . . . and the odd-indexed inputs
X, X3, Xs, Pardlel prefix computation is performed separately on each sublist, leading
to partial results as shown in Fig. 5.8 (a sequence of digits indicates the combination of
elements with those indices). The fina results are obtained by pairwise combination of
adjacent partia resultsin a single PRAM step. The total computation time is given by the
recurrence

T(p) =T(P/2)+1

V59454,

)

et ol B B bl e R BN
Glos |]s e [d]=
S

s
I

CONOUNHEWN =-O

Figure 5.6. Parallel prefix computation in EREW PRAM via recursive doubling.

PRAM AND BASIC ALGORITHMS 99

The p inputs .
14 5;5 6:6 7:7 . . . p-3:p-3 p-2:p~-2 p-l:p-1
"“‘--..J "‘“-\J \J kj
4:5 6:7 p-4:p-3 p-2:p-1
Paralle! prefix computation of size p/2 >
] 0:5 J 0:7 0:p—3\J 0:p-1
'."M.“'
4 076 0:p~2

Figure 5.7. Parallel prefix computation using a divide-and-conquer scheme.

whose solution is T(p) = log, p.
Even though this latter algorithm is more efficient than the first divide-and-conquer
scheme, it is applicable only if the operator [is commutative (why?).

5.5. RANKING THE ELEMENTS OF A LINKED LIST

Our next example computation is important not only because it is a very useful building
block in many applications, but also in view of the fact that it demonstrates how a problem
that seems hopelessly sequential can be efficiently parallelized.

The problem will be presented in terms of a linear linked list of size p, but in practice it
often arises in the context of graphs of the types found in image processing and computer
vision applications. Many graph-theoretic problems deal with (directed) paths between
various pairs of nodes. Such a path essentially consists of a sequence of nodes, each
“pointing” to the next node on the path; thus, a directed path can be viewed as a linear linked
list.

The problem of list ranking can be defined as follows: Given alinear linked list of the
type shown in Fig. 5.9, rank the list elementsin terms of the distance from each to the terminal

p/2 even-indexed inpuis

0 2 4 6 ... p-2 o
Parallc! prefix computation of size p/2 >
(] 02 024 0246 02 (p-2)

\ /2 odd-indexed inputs

\
1 3 S 7 A p—l
\ \ Parallel prefix compumuon of size \
1 13 35 357 . Ap-3) (P-l)
WO

0:0 O0:1 0:2 0:3 0:4 0:5 0:6 0:7 0:(p-3) O0:(p-2) 0:(p-1)

Figure 5.8. Another divide-and-conquer scheme for parallel prefix computation.

100 INTRODUCTION TO PARALLEL PROCESSING

head info next Terminal element
*FI*HFI*I-’IAI*I*IEH*IBL%’IDI °-l::1
?;ﬁmwfmmme)
Distance from head:
1 2 3 4 5 6

Figure 5.9. Example linked list and the ranks of its elements.

element. The terminal element is thus ranked 0, the one pointing to it 1, and so forth. In a
list of length p, each element’ s rank will be a unique integer between 0 and p — 1.

A sequentia algorithm for list ranking requires ©(p) time. Basicaly, the list must be
traversed once to determine the distance of each element from the head, storing the results
in the linked list itself or in a separate integer vector. This first pass can aso yield the length
of thelist (six in the example of Fig. 5.9). A second pass, through the list, or the vector of p
intermediate results, then suffices to compute all of the ranks.

The list ranking problem for the example linked list of Fig. 5.9 may be approached with
the PRAM input and output data structures depicted in Fig. 5.10. The info and next vectors
are given, asisthe head pointer (in our example, head = 2). The rank vector must be filled
with the unique element ranks at the termination of the algorithm.

The parallel solution method for this problem is known as pointer jumping: Repeatedly
make each element point to the successor of its successor (i.e., make the pointer jump over
the current successor) until all elements end up pointing to the terminal node, keeping track
of the number of list elements that have been skipped over. If the original list is not to be
modified, a copy can be made in the PRAM’s shared memory in constant time before the
algorithm is applied.

Processor j, 0<j <p, will be responsible for computing rank(j]. The invariant of the list
ranking algorithm given below isthat initially and after each iteration, the partial computed
rank of each element is the difference between its rank and the rank of its successor. With
the difference between the rank of alist element and the rank of its successor available, the
rank of an element can be determined as soon as the rank of its successor becomes known.
Again, a doubling process takes place. Initialy, only the rank of the terminal element (the
only node that pointsto itself) is known. In successive iterations of the algorithm, the ranks

info next rank
0f =a 4.l
1 B 3 A
Mg 2| © 5
S
4 E 1 ¥ ——
5t F 0 [

Figure 5.10. PRAM data structures representing a linked list and the ranking results.

PRAM AND BASIC ALGORITHMS 101

of two elements, then four elements, then eight elements, and so forth become known until
the ranks of all elements have been determined.

PRAM list ranking algorithm (via pointer jumping)

Processor j, 0 <j <p, do {initialize the partia ranks}

if next[j]=]
then rank[j] := 0
eserank[j] :=1
endif

while rank[next[head]] # O Processor j, 0<j <p, do
rank[j] := rank][j] + rank[next[j]]
next[j] := next[next[j]]

endwhile

Figure 5.11 shows the intermediate values in the vectors rank (numbers within boxes)
and next (arrows) as the above list ranking algorithm is applied to the example list of Fig.
5.9. Because the number of elements that are skipped doubles with each iteration, the number
of iterations, and thus the running time of the algorithm, islogarithmicin p.

List-ranking appears to be hopelessly sequential, as no access to list elements is possible
without traversing all previous elements. However, the list ranking algorithm presented
above shows that we can in fact use a recursive doubling scheme to determine the rank of
each element in optimal time. The problems at the end of the chapter contain other examples
of computations on lists that can be performed just as efficiently. Thisiswhy intuition can
be misleading when it comes to determining which computations are or are not efficiently
parallelizable (formally, whether a computation is or isnot in NC).

SR
ni g

1]

=
% T %

s L] e
| !

Figure 5.11. Element ranks initially and after each of the three iterations.

102 INTRODUCTION TO PARALLEL PROCESSING

5.6. MATRIX MULTIPLICATION

In this section, we discuss PRAM matrix multiplication algorithms as representative
examples of the class of numerical problems. Matrix multiplication is quite important in its
own right and is also used as a building block in many other parallel algorithms. For example,
we will seein Section 11.5 that matrix multiplication is useful in solving graph problems
when the graphs are represented by their adjacency or weight matrices.

Given m x mmatrices A and B, with elements a; jand bj;, their product C is defined as

m-1

€= 2 reo ayby
The following O(m?)-step sequential algorithm can be used for multiplying m x m matrices:

Sequential matrix multiplication algorithm

fori=0tom-1do
forj=0tom-1do
t:=0
fork=0tom-1do
t=t+a,by
endfor
Cj=t
endfor
endfor

If the PRAM has p = m3 processors, then matrix multiplication can be donein ©(log m) time
by using one processor to compute each product af,; and then allowing groups of m
processors to perform m-input summations (semigroup computation) in @(log m) time.
Because we are usually not interested in parallel processing for matrix multiplication unless
misfairly large, thisisnot a practical solution.

Now assume that the PRAM has p = m2 processors. In this case, matrix multiplication
can be done in ©(m) time by using one processor to compute each element ¢; ;of the product
matrix C. The processor responsible for computing G; reads the elements of Row i in A and
the elements of Column j in B, multiplies their corresponding kth elements, and adds each
of the products thus obtained to a running total t. This amounts to parallelizing the i and j
loops in the sequential agorithm (Fig. 5.12). For simplicity, we label the m2 processors with

s

@

[riizriiziig

ARRRRNR TR e

Figure 5.12. PRAM matrix multiplication by using p = m? processors.

PRAM AND BASIC ALGORITHMS 103

two indices (i, j), each ranging from 0 to m— 1, rather than with a single index ranging from
Otom?—-1.

PRAM matrix multiplication algorithm using m? processors

Processor (i, j),0<1i,j<m,do
begin

t:=0

fork=0tom-1do

t::t+aikbkj

endfor

G=t
end

Because multiple processors will be reading the same row of A or the same column of B, the
above naive implementation of the algorithm would require the CREW submodel. For
example, in agiven iteration of the kloop, all processors (i, y), 0 <y < m, access the same
element & of Aand all processors (x, j) access the same element b, of B. However, it is
possible to convert the algorithm to an EREW PRAM algorithm by skewing the memory
accesses (how?).

Next, assume that the PRAM has p = m processors. In this case, matrix multiplication
can be done in ©(nM?) time by using Processor i to compute the m elements in Row i of the
product matrix Cin turn. Thus, Processor i will read the elements of Row i in A and the
elements of all columnsin B, multiply their corresponding kth elements, and add each of the
products thus obtained to a running total t. This amounts to parallelizing the i loop in the
sequentia agorithm.

PRAM matrix multiplication algorithm using m processors

forj=0tom-—21Processor i,0<i<m,do
t:=0
fork=0tom-1do
t=t+a,by
endfor
Gj=t
endfor

Because each processor reads a different row of the matrix A, no concurrent reads from A
are ever attempted. For matrix B, however, all m processors access the same element qq. at
the same time. Again, one can skew the memory accesses for B in such a way that the EREW
submodel is applicable. Note that for both p = m2 and p = m processors, we have efficient
algorithms with linear speed-ups.

In many practical situations, the number of processorsis even lessthan m. So we need
to develop an agorithm for this case as well. We can let Processor i compute a set of nv/p
rows in the result matrix C; say Rows i, i +p,i +2p, ...,i+ (mp—-1)p. Again, we are
parallelizing the i loop as this is preferable to parallelizing the k loop (which has data
dependencies) or the j loop (which would imply m synchronizations of the processors, once

104 INTRODUCTION TO PARALLEL PROCESSING

at the end of each i iteration, assuming the SPMD model). On a lightly loaded Sequent
Symmetry shared-memory multiprocessor, this last algorithm exhibits almost linear speed-
up, with the speed-up of about 22 observed for 24 processors when multiplying two 256 x
256 floating-point matrices [Quin94]. This is typical of what can be achieved on UMA
multiprocessors with our simple parallel agorithm. Recall that the UMA (uniform memory
access) property implies that any memory location is accessible with the same amount of
delay.

The drawback of the above algorithm for NUMA (nonuniform memory access) shared-
memory multiprocessors is that each element of B is fetched m/p times, with only two
arithmetic operations (one multiplication and one addition) performed for each such element.
Block matrix multiplication, discussed next, increases the computation to memory access
ratio, thus improving the performance for NUMA multiprocessors.

Let us divide the m x m matrices A, B, and C into p blocks of size g x g, as shown in
Fig. 5.13, whereq = m/Np. We can then multiply the m x m matrices by usi ng\/E x \/p— “matrix
multiplication with(Np)Y =p processors, where the terms in the algorithm statement t :=t +
aikbkj are now g x q matrices and Processor (i, j) computes Block (i, j) of the result matrix
C. Thus, the algorithm is similar to our second algorithm above, with the statement t :=t +
a; by replaced by a sequential q x g matrix multiplication algorithm.

Each multiply—add computation on g x q blocks needs 2g2= 2m?/p memory accesses
to read the blocks and 23 arithmetic operations. So q arithmetic operations are performed
for each memory access and better performance will be achieved as a result of improved
locality. The assumption here is that Processor (i, j) has sufficient local memory to hold Block
(i, j) of the result matrix C (g? elements) and one block-row of the matrix B; say the g elements
in Row kq + c of Block (k, j) of B. Elements of A can be brought in one at atime. For example,
aselement in Row iq + a of Column kg + cin Block (i, k) of Ais brought in, it is multiplied
in turn by the locally stored g elements of B, and the results added to the appropriate q
elements of C (Fig. 5.14).

1 2 b
1
=mAp One processor
k computes these
2 Ll elements of C
q that it holds in
local memory

¥

Figure 5.13. Partitioning the matrices for block matrix multiplication.

PRAM AND BASIC ALGORITHMS 105

Element of
Block (i, k)
in Matrix A

oyt re . rdr—- Elcmenis of
3 LAY A S Q T N

1 2 A H k) % LAY k) h Y AyA) RYAYRY XY 2%

FTe £ T o 2 u+a ".-{,"::-,‘ _-."L.':: 3 RS VR R A M Block (i, j)

in Matrix C

igrg-1 igrg-1

Figure 5.14. How Processor (i, j) operates on an element of A and one block-row of Bto update
one block-row of C.

On the Cm* NUMA-type shared-memory multiprocessor, a research prototype machine
built at Carnegie-Mellon University in the 1980s, this block matrix multiplication agorithm
exhibited good, but sublinear, speed-up. With 16 processors, the speed-up was only 5 in
multiplying 24 x 24 matrices. However, the speed-up improved to about 9 (11) when larger
36 x 36 (48 x 48) matrices were multiplied [Quin94].

It is interesting to note that improved locality of the block matrix multiplication
algorithm can also improve the running time on a uniprocessor, or distributed shared-memory
multiprocessor with caches, in view of higher cache hit rates.

PROBLEMS

5.1. Ordering of CRCW PRAM submodels
Complete the ordering relationships between the various CRCW PRAM submodels briefly
discussed in Section 5.1, i.e., place the remaining submodels in the linear order. If you cannot
provide formal proofs, try to guess where the missing submodels belong and describe the
intuition behind your guess.

5.2. The power of various PRAM submodels
State and prove a result similar to Theorem 5.1 for the CRCW-M (max/min) and CRCW-S
(summation) PRAM submodels (and more generally for the reduction submodel, where the
reduction operation is a semigroup computation).

106

5.3.

5.4.

55.

5.6.

5.7.

5.8.

INTRODUCTION TO PARALLEL PROCESSING

Broadcasting on a PRAM

a. Find the speed-up, efficiency, and the various other measures defined in Section 1.6 for
each of the PRAM broadcasting algorithms presented in Section 5.2.

b. Show how two separate broadcasts, by Processorsip and i1, can be completed in only one
or two extra EREW PRAM steps compared with a single broadcast.

c. Canyou do p-way broadcasting through a broadcast vector B of length p/2?

d. Modify the broadcasting algorithms such that a processor that obtains the value broadcast
by Processor i keeps it in a register and does not have to read it from the memory each
time.

Naive sorting on a PRAM

a. Find the speed-up, efficiency, and the various other measures defined in Section 1.6 for the
naive PRAM sorting algorithm presented in Section 5.2.

b. Present a more efficient sorting algorithm when the elements of the list to be sorted are
two-valued (e.g., eachisO or 1).

c. Generalize the method proposed in part (b) to the case when the inputs are d-valued and
indicate when the resulting algorithm would be faster than the naive algorithm.

Semigroup computation on a PRAM

In order to avoid the final broadcasting phase, which essentially doubles the execution time of
the semigroup computation algorithm in the EREW PRAM, it has been suggested that we
replace theindicesi + sin the algorithm with i + smod p (i.e., allow the computations to wrap
around). Under what conditions would this method yield correct results in all processors?

Parallel prefix computation on a PRAM
For each of the PRAM parallel prefix algorithms presented in Section 5.4:

a. Determine the speed-up, efficiency, and the various other measures defined in Section 1.6.
b. Extend the algorithm to the case of n inputs, wheren > p.
c. Repeat part (a) for the extended algorithms of part (b).

Parallel prefix on a PRAM
Show that a p-processor PRAM needs at least 2n/(p + 1) steps for an n-input parallel prefix
computation, wheren=mp(p + 1)/2 + 1 and m= 1 [Wang96].

Parallel prefix computation on a PRAM

a Modify the agorithms given in Section 5.4 so that they perform the diminished parallel
prefix computation; the ith element of the result is obtained from combining all elements
up to i-1.

b. Develop aPRAM algorithm for an incomplete parallel prefix computation involving p or
fewer elements in the input vector X[0:p — 1]. In this variant, some elements of X may be
marked as being invalid and the ith prefix result is defined as the combination of all valid
elements up to the ith entry.

c. Develop a PRAM agorithm for a partitioned parallel prefix computation defined as
follows. The input X consists of p elements. A partition vector Y is also given whose
elements are Boolean values, with Y[i] = 1 indicating that the X[i] is the first element of a
new partition. Parallel prefix computation must be performed independently in each
partition, so that the kth result in a partition is obtained by combining the first k elements
in that partition. Hint: Convert the problem to an ordinary parallel prefix computation by
defining a binary operator for which each operand isapair of valuesfrom X and Y.

PRAM AND BASIC ALGORITHMS 107

59.

5.10.

5.11.

5.12.

5.13.

5.14.

5.15.

d. Extend the agorithm of part (c) so that itsinput sizeis n rather than p (n > p).

List-ranking on a PRAM

Modify the list ranking algorithm of Section 5.5 so that it works with a circular list. The head
pointer points to an arbitrary list element and the rank of an element is defined as the distance
from head to that element (so the head element itself has arank of 1, its successor has a rank
of 2, and so on).

List-ranking on a PRAM

a. Show that the CREW submodel isimplicit in the list ranking algorithm of Section 5.5.

b. Modify the algorithm so that it uses the EREW PRAM submodel.

c. Extendthealgorithm so that it ranksalist of sizen, withn > p.

d. Suppose that the info part of alinked list (see Fig. 5.10) is avalue from a set Son which
an associative binary operator [has been defined. Develop an algorithm for parallel prefix
computation that fills a value vector with the prefix computation result on all elements of
the list from the head element up to the current element.

M aximum-sum-subsequence problem
Given a vector composed of n signed numbers, we would like to identify the indices u and v
such that the sum of all vector elements from element u to element v is the largest possible.

a. Develop asequential agorithm for this problem that has linear running time.
b. Develop an efficient EREW PRAM algorithm for this problem.

Matrix multiplication

Our first parallel matrix multiplication algorithm in Section 5.6 used p = m3 processors and
achieved © (log m) running time. Show how the same asymptotic running time can be obtained
with afactor of log m fewer processors.

Vector operations on a PRAM
Devise PRAM agorithms for the following operations on m-vectorsusing p (p < m) processors:

a Inner product of two vectors.
b. Convolution of two vectors.

Matrix multiplication
Based on what you learned about matrix—matrix multiplication in Section 5.6, devise efficient
PRAM algorithms for the following:

a. Matrix—vector multiplication.
b. Multiplication of large nonsquare matrices.
¢. Raising asquare matrix to agiven integer power.

The all-pairs-shortest-path problem on a PRAM

An n-node weighted directed graph can be represented by an nx n matrix W, with W[i, j]
denoting the weight associated with the edge connecting Node i to Node j. The matrix element
will be « if no such edge exists. Elements of W can be interpreted as the length of the shortest
path between Nodes i and j, where the number of edges in the path isrestricted to be < 1.

a Show that W2 represents the length of the shortest path with <2 edges, if “matrix

multiplication” is done by using “min” instead of addition and “+” instead of multiplica-
tion.

108 INTRODUCTION TO PARALLEL PROCESSING

b. Using the result of part (a), develop an efficient PRAM agorithm for finding the lengths
of the shortest paths between al node pairs in the graph. Hint: What do wh, w8
represent?

5.16. Maximum-finding on CRCW PRAM

Consider the problem of finding the maximum of p numbers on a p-processor CRCW PRAM.
Show that this can be done in sublogarithmic time using the following scheme. Divide the p
numbers and processors into p'3 groups of size 3. Select the maximum number in each group
in constant time, thus reducing the problem to that of determining the maximum of p/3 numbers
using p processors. Next, use groups of 21 processors to determine the maximum values in
groups of 7 numbers in constant time. Show how the process continues, what rule is used by
a processor to determine the numbers it will process in a given phase, how many phases are
needed, and which CRCW submodel(s) must be assumed.

REFERENCES AND SUGGESTED READING

[Ak197] Akl, S. G., Paralledl Computation: Models and Methods, Prentice—Hall, 1997.

[Fort78] Fortune, S., and J. Wyllie, “Parallelism in Random Access Machines,” Proc. 10th Annual ACM Symp.
Theory of Computing, 1978, pp. 114-118.

[JaJao2] JaJa, J., An Introduction to Parallel Algorithms, Addison-Wesley, 1992.

[Kron9g] Krongjo, L. I., “PRAM Models,” Chapter 6 in Parallel and Distributed Computing Handbook, edited
by A. Y. Zomaya, McGraw-Hill, 1996, pp. 163-191.

[Quin94] Quinn, M. J., Parallel Computing: Theory and Practice, McGraw-Hill, 1994.

[Reid93] Reid-Miller, M., G. L. Miller, and F. Modugno, “List Ranking and Parallel Tree Contraction,” Chapter
3in Synthesis of Parallel Algorithms, edited by J. H. Reif, Morgan Kaufmann, 1993, pp. 115-194.

[Wang96] Wang, H., A. Nicolau, and K.-Y. S. Siu, “The Strict Time Lower Bound and Optimal Schedules for
Parallel Prefix with Resource Constraints,” |EEE Trans. Computers, Vol. 45, No. 11, pp. 1257- 1271,
November 1996.

More
Shared-Memory
Algorithms

In this chapter, following the same notation and basic methods introduced in
Chapter 5, we develop PRAM algorithms for several additional problems. These
problems are somewhat more complex than the building-block computations of
Chapter 5, to the extent that the reader may not know efficient sequential
algorithms for the problems that would allow one to obtain the PRAM version
by simply parallelizing the sequential algorithm or to deduce the speed-up
achieved by the parallel version. For this reason, some background material is
provided in each case and a separate section (Section 6.1) is devoted to the
sequential version of the first algorithm, complete with its analysis. Chapter
topics are

* 6.1. Sequential rank-based selection

* 6.2. A parallel selection algorithm

* 6.3. A selection-based sorting algorithm
* 6.4. Alternative sorting algorithms

* 6.5. Convex hull of a 2D point set

e 6.6. Some implementation aspects

109

This page intentionally left blank.

MORE SHARED-MEMORY ALGORITHMS 111

6.1. SEQUENTIAL RANK-BASED SELECTION

Rank-based selection is the problem of finding a (the) kth smallest element in a sequence
S=Xg, X1, - - -, Xn-1 Whose elements belong to a linear order. Median, maximum, and
minimum finding are special cases of this general problem. Clearly the (rank-based) selection
problem can be solved through sorting: Sort the sequence in nondescending order and output
the kth element (with index k— 1, if O-origin indexing is used) of the sorted list. However,
thisiswasteful in view of the fact that any sorting algorithm requires Q(n log n) time, whereas
O(n)-time selection algorithms are available. The following is an example of a recursive
linear-time selection algorithm.

Sequential rank-based selection agorithm select(S, k)

1 if|S|<Q {gisasmall constant}
then sort Sand return the kth smallest element of S
else divide Sinto |S|/q subseguences of sizeq
Sort each subsequence and find its median
Let the [§/g medians form the sequence T
endif
2. m=sdect(T, |T J/2){find the median m of the |S|/q medians}
3. Create 3 subsequences
L: Elementsof Sthat are<m
E: Elementsof Sthat are=m
G: Elementsof Sthat are>m
4. if|L| =k
then return select(L, k)
dseif |L| + |E| = k
then return m
else return select(G, k — |L| — |E|)
endif

An analysis of the above selection algorithm follows. If Sis small, then its median is
found through sorting in Step 1 (the size threshold constant g will be defined later). This
requires constant time, say c,. Otherwise, we divide the list into a number of subsequences
of length g, sort each subsequence to find its median, and put the medians together into a list
T. These operations require linear time in |3, say ¢, |9 time. Step 2 of the algorithm that finds
the median of the medians constitutes a smaller, |S|/g-input, selection problem. Given the
median m of the medians, Step 3 of the algorithm takes linear timein |S|, say c; |9, as it
involves scanning the entire list, comparing each element to m, and putting it in one of three
output lists according to the comparison result. Finally, Step 4 is another smaller selection
problem. We will show that the size of this selection problem is 3|S|/4 in the worst case.
Assuming that this claim is true, the running time of the above selection agorithm is
characterized by the recurrence

T(n) = T(n/q) + T(3n/4) + cn

112 INTRODUCTION TO PARALLEL PROCESSING

where the term cn represents an amalgamation of all linear-order terms discussed above. This
recurrence has a linear solution for any g > 4. For example, let the linear solution be T(n) =
dn for q = 5. Plugging into the recurrence, we get

dn =dn/5 + 3dn/4 + cn

The above leads to d = 20c and T(n) = 20cn. Choosing a larger value for the threshold
g leads to a multiplicative factor that is smaller than 20 but at the same time increases the
value of ¢, so an optimal choice may exist for g.

All that is left to complete our analysis of the selection algorithm is to justify the term
T(3n/4) in the above recurrence. The reason that the selection problem in Step 4 of the
agorithm involves no more than 3n/4 inputs is as follows. The median m of the n/q medians
isno smaller (no larger) than at least haf, or (n/g)/2, of the medians, each of which isin turn
no smaller (no larger) than g/2 elements of the original input list S. Thus, mis guaranteed to
be no smaler (no larger) than at least ((n/q)/2) x g/2 = n/4 elements of the input list S.

The following example shows the application of the above sequential selection algo-
rithm to an input list of sizen=25using q = 5.

DU n/q sublists of QEleMENtS vuicemiicie e ie e e mae >
S 6 4 56 7 153 8 2 1 03 465 6 2171 4 5 4 9 5
6 3 3 2 5
m 3
1210211 3 3 6 456 758 45674542975
L E G
IL|=7 |E|=2 |G|=16

To find the 5th smallest element in S, select the 5th smallest element in L (|L| > 5) as follows

S 1 2 1 0 2 1 1

T 1 1

m 1
0 1 1 1 1 2 2
L E G

leading to the answer 1, because in the second iteration, |L| < 5 and |L| + |E| = 5. The 9th
smallest element of Sis3 (L] + |E| = 9). Finaly, the 13th smallest element of Sisfound by
selecting the 4th smallest element in G (4= 13— |L | — [E]):

s 6 4 5 6 7 5 8 4 5 6 7 4 5 4 9 5
T 6 5 5 5
m 5
4 4 4 4 5 5 5 5 5 6 6 7 8 6 7 9
L E G

The preceding leads to the answer 4.

MORE SHARED-MEMORY ALGORITHMS 113

6.2. A PARALLEL SELECTION ALGORITHM

If a parallel computation model supports fast sorting, then the n-input parallel selection
problem can be solved through sorting. This is the case, e.g., for the CRCW PRAM-S or
“summation” submodel with p = n2 processors as shown below. We will see in Chapter 9
that the more realistic 2D mesh model also supports fast sorting relative to its diameter-based
lower bound.

In the CRCW PRAM-S model, let us number each of the p = n2 processors by an index
pair (i, j), with0 =1, j <n. Processor (i, j) comparesinputs §i] and §Jj] and writesa 1 into
the memory location rank[j] if §[i] < §j] or if §i] = §j] and i <j. Because of the summation
feature on concurrent writes, after this single-cycle operation, rank[j] will hold the rank or
index of g]j] in the sorted list. In the second cycle, Processor (0, j), 0 < j < n, reads §]j] and
writes it into S[rank[j]]. The selection process is completed in a third cycle when all
processors read Sk — 1], the kth smallest element in S

It is difficult to imagine a faster selection algorithm. Unfortunately, however, this fast
three-step algorithm is quite impractical: It uses both a large number of processors and a very
strong PRAM submodel. One might say that this algorithm holds the record for the most
impractical parallel algorithm described in this book!

Now, coming down to earth, the selection algorithm described in Section 6.1 can be
parallelized to obtain a p-processor PRAMselect algorithm for selecting the kth smallest value
inalist Sof sizen. List T of size nisused as working storage, in additionto L, E, and G, as
discussed for the sequential selection algorithm in Section 6.1.

Parallel rank-based selection algorithm PRAMselect(S k, p)

1. if|S|<4
then sort Sand return the kth smallest element of S
else broadcast |S| to al p processors
divide Sinto p subsequences St) of size [S|/p
Processor j, 0 < j < p, compute the median T; : = select(SV), [S1)}/2)
endif
2. m=PRAMselect (T, |T|/2, p) {find the median of the medians in parallel}
3. Broadcast mto all processors and create 3 subsegquences
L: Elementsof Sthat are<m
E: Elementsof Sthatare=m
G: Elementsof Sthat are>m
4. if|lL|=k
then return PRAMselect (L, k, p)
ese if|L|+|E|=k
then return m
else return PRAMselect (G, k — |L | — |E|, p)
endif

Note that the parallel algorithm PRAMselect is quite similar in appearance, and underlying
concepts, to the sequential algorithm select presented in Section 6.1. This familiarity of the
shared-memory programming model is one of its key advantages. Figuring out the reason
behind the choice of the constant 4 in Step 1 of PRAMselect is | eft as an exercise.

114 INTRODUCTION TO PARALLEL PROCESSING

To analyze the PRAMselect algorithm, we assume that the number p of processors is
sublinear in the number n of elements in the input list; namely, p=n~%, where xis a parameter
that is known a priori. For example, x = 1/2 correspondsto p = Y processors being applied
to the solution of an n-input problem.

Step 1 of the algorithm involves broadcasting, which needs O(log p) = O(log n) time,
dividing into sublists, which is done in constant time by each processor independently
computing the beginning and end of its associated sublist based on | and x, and sequential
selection on each sublist of length n/p, which needs O(n/p) = O(n*) time. Step 3 can be done
as follows. First, each processor counts the number of elements that it should place in each
of the lists L, E, and G in O(n/p) = O(nx) time. Then, three diminished parallel prefix
computations are performed to determine the number of elements to be placed on each list
by all processors with indices that are smaller than i. Finaly, the actua placement takes O(n*)
time, with each processor independently writing into the lists L, E, and G using the
diminished prefix computation result as the starting address. Noting that |ogarithmic terms
are negligible compared with O(nx) terms and using the knowledge that the parallel selection
agorithm in Step 4 will have no more than 3n/4 inputs, the running time of PRAMselect
algorithm for p=n1* can be characterized by the following recurrence, which is easily
verified to have the solution T(n, p) = O(n*);

T(n, p) = T(N*™>, p) + T(3n/4, p) + cn*
The PRAMselect agorithm is quite efficient:

Speed-up (n, p) = O (N)/O(n*) = Q(n**) = Q(p)
Efficiency = Speed-up / p=Q(1

Work (n, p) =pT(n, p) = ©(n* *)O(n*) = O(n)

The above asymptotic anadysisisvalid for any x> 0. What if x=0, i.e., we use p = n processors
for an n-input selection problem? Does the above analysis imply that in this case, we have
a constant-time selection algorithm? The answer is negative. Recall that in the asymptotic
analysis, we ignored several O(log n) terms in comparison with O(nX) terms. If O(n*) = O(1),
then the logarithmic terms dominate and the recurrence would have an O(log n) solution.

One positive property of PRAMselect is that it is adaptable to any number of processors
and yields linear speed-up in each case, provided that p < n. Thisis a desirable property in
a paralel algorithm, as we do not have to adjust the algorithm for running it on different
hardware configurations. It is self-adjusting. Even if the number of processorsin the target
machine is known a priori, it is still the case that the number available to the algorithm may
vary, either because the algorithm must share the machine with other running programs (a
machine partition is assigned to it) or because of dynamic variations caused by processor
failures.

6.3. A SELECTION-BASED SORTING ALGORITHM

Here is one way to sort alist of size n via divide and conquer. First identify the k— 1
elements that would occupy positions n/k, 2n/k, 3n/k, . . ., (k—1)n/kin the sorted list, for
asuitably chosen small constant k. Call the values of these elementsmy, m,, ms, ..., My,

MORE SHARED-MEMORY ALGORITHMS 115

Iy 2 g ——py

inad m m) m3 e -1 doe

Figure 6.1. Partitioning of the sorted list for selection-based sorting.

and define mp = —c0 @and my = +oo for convenience (see Fig. 6.1). Now, if the above k—1
elements are put in their proper places in the sorted list and all other elements are moved so
that any element that is physically located between mi and mj.; inthelist hasavaluein the
interval [mj , m+1], the sorting task can be completed by independently sorting each of the k
sublists of size n/k.

The assumptions here are quite similar to those for the parallel selection algorithm in
Section 6.2. We have p < n processors for sorting alist of sizen, with p = n* ™. Because x is
known a priori, we can choose k = 21 /¥ as our partitioning constant. The algorithm thus begins
by finding m;, the (in/k)th smallest element in the sorted list, O < i <k, and proceeds as
discussed above.

Parallel selection-based sorting algorithm PRAMselectionsort(S, p)

1. if |§ <kthen return quicksort (S)
2. fori=1ltok—1do
mi := PRAMselect(S i [S/k, p)
{for notational convenience, let m, := —o; My :=+oo}
endfor
3. fori=0tok—1do
make the sublist T® from elements of Sthat are between m; and m;,;
endfor
4. for i = 1to k/2 doin paralel
PRAMselectionsort (T ®, 2p/k)
{pl(k/2) processors are used for each of the k/2 subproblems}
endfor
5. fori=k/2+1tokdoin paralel
PRAMselectionsort(T (), 2p/k)
endfor

The analysis of complexity for the PRAMselectionsort algorithm is as follows. Step 1
takes constant time. Step 2 consists of k separate and sequentially solved parallel selection
problems with n inputs using n 1-* processors. From the analysis of Section 6.2, because kis
aconstant, the total timefor Step 2isO(n*). In Step 3, each processor compares its nx values
with the k — 1 threshold values and counts how many elements it will contribute to each of
the k partitions. Then, k diminished parallel prefix computations, each taking O(log p) =
O(log n) time, are performed to obtain the starting index for each processor to store the
elements that it contributes to each partition. The last part of Step 3 involves a processor
writingitsnx elements to the various partitions. Thus, Step 3 takes atotal of O(n*) time.

116 INTRODUCTION TO PARALLEL PROCESSING

In Steps 4 and 5, the PRAMselectionsort algorithm is recursively called. The running
time of the algorithm is thus characterized by the recurrence

T(n, p) = 2T(n/k, 2p/k) + cn*

which has the solution T(n, p) = O(n* log n). The above recurrence aso gives us a clue as to
why all of the k subproblems cannot be handled in Step 4 at once: Our agorithm assumes
the availability of p=n1-x processorsfor ninputs. Thus, to solve each of the subproblems
with n/k = n/21 inputs, the number of processors needed is

(number of inputs)l—* = (nf21 %) 1 % = X211 = p/(k/2)

Thus, the number p of processors is adequate for solving k/2 of the subproblems concurrently,
giving rise to the need for two recursive stepsto solve al k subproblems.

It is straightforward to establish the asymptotic optimality of PRAMselectionsort among
comparison-based sorting algorithms, keeping in mind that any sequential sorting algorithm
requires Q(nlog n) comparisons:

Speed-up(n, p) =Q(nlogn) / O(n* log n) = Q(nt*)=Q(p)
Efficiency = Speed-up / p=Q(1)

Work(n, p) =pT(n, p) = ©(n1*) O(n* logn)=0O(nlogn)

Asin the case of our PRAMselect algorithm in Section 6.2, the above asymptotic analysisis
valid for any x> 0 but not for x= 0, i.e., PRAMselectionsort does not allow us to sort p keys
using p processors in optimal O(log p) time. Furthermore, even in the case of p <n, the time
complexity may involve large constant multiplicative factors. In most cases, the agorithms
discussed in Section 6.4 might prove more practical.

Consider the following example of how PRAMselectionsort works on an input list with
|S| = 25 elements, using p = 5 processors (thus, x= 1/2 and k=2 1/* = 4),

S:6456715382103456217045495

The threshold values needed for partitioning the list into k = 4 sublists are determined as
follows:

My = —o0
nk=25/4=6 my = PRAMsdlect (S 6, 5) = 2
2n/k = 50/4= 13 m, = PRAMselect(S, 13, 5) = 4
3n/k = 75/4=19 m; = PRAMsdlect(S, 19, 5) = 6
my = +oo

After these elements are placed in their respective positions, the working list T looks as
follows, with the partition boundaries also shown for clarity:

MORE SHARED-MEMORY ALGORITHMS 117

Once al other 22 elements are placed in their respective partitions and the four partitions
independently sorted, the sorted list T results:

T:0011122334444555556/667789

Note that for elements that are equal to one of the comparison thresholds, the proper place
may be to the left or right of that value. The algorithm as described above, may not work
properly if the input list contains repeated values. It is possible to modify the algorithm so
that such repeated values are handled properly, but this would lead to higher algorithm
complexity.

6.4. ALTERNATIVE SORTING ALGORITHMS

Much of the complexity of the parallel sorting algorithm described in Section 6.3 is
related to our insistence that the k subproblems resulting at the end be exactly of the same
size, thus allowing us to establish an optimal upper bound on the worst-case running time.
There exist many useful algorithms that are quite efficient on the average but that exhibit
poor worst-case behavior. Sequential quicksort is a prime example that runs in order nlog n
time in most cases but can take on the order of n2 time for worst-case input patterns.

In the case of our selection-based sorting agorithm, if the comparison thresholds are
picked such that their ranks in the sorted list are approximately, rather than exactly, equal to
in/k, the same process can be applied for the rest of the algorithm, the only difference being
that the resulting k subproblems will be of roughly the same size (in a probabilistic sense).

Given alargelist Sof inputs, arandom sample of the elements can be used to establish
the k comparison thresholds. In fact, it would be easier if we pick k= p, so that each of the
resulting subproblems is handled by a single processor. Recall that this sorting algorithm
was used as an example in our discussion of randomization methods in Section 3.5. Below
is the resulting algorithm assuming p << Vn.

Parallel randomized sorting algorithm PRAMrandomsort(S, p)

1. Processorj, 0<j<p, pick 0SlI/p? random samples of its [5/p elements
and store them in its corresponding section of alist T of length 0S/p

2. Processor O sort thelist T
{the comparison threshold m, is the (i1S/p?)th element of T}

3. Pr(gcr j,0<j <p, store its elements that are between m and m, ,, into the sublist
T

4, Processor j,0<j <p, sort the sublist T

The analysis of complexity for the above algorithm (in the average case) is left as an exercise.

The next sorting algorithm that we will discussis parallel radixsort. In the binary version
of radixsort, we examine every bit of the k-bit keys in turn, starting from the least-significant
bit (LSB). In Step i, biti isexamined, 0 <i <k. All records with keys having a0 in bit position
i are shifted toward the beginning and keys with 1 toward the end of the list, keeping the
relative order of records with the same bit value in the current position unchanged (thisis
sometimes referred to as stable sorting). Here is an example of how radixsort works (key
values are followed by their binary representations in parentheses):

118 INTRODUCTION TO PARALLEL PROCESSING

Input list Sort by LSB Sort by middle bit ~ Sort by MSB
5 (101) 4 (100) 4 (100) 1(001)
7 (112) 2 (010) 5 (101) 2 (010)
3 (011) 2 (010 1 (001 2 (010)
1 (001) 5(101) 2 (010) 3(011)
4 (100) 7 (111) 2 (010) 4(100)
2 (010) 3(011) 7 (111) 5 (101)
7 (111) 1 (o01) 3 (011) 7(111)
2 (010) 7 (111) 7 (111) 7(111)

It remains to be shown that the required data movements (upward and downward shifting)
in each of the k steps can be done efficiently in parallel. Let us focus on the data movements
associated with Bit 0. The new position of each record in the shifted list can be established
by two prefix sum computations: a diminished prefix sum computation on the complement
of Bit O to establish the new locations of records with O in bit position 0 and a normal prefix
sum computation on Bit O to determine the location for each record with 1 in bit position 0
relative to the last record of the first category (2 in the following example).

Diminished Prefix sums

Input list Compl't of Bit0 prefixsums Bit 0 plus 2 Shifted list
5 (101) 0 — 1 1+2=3 4 (100)
7 (111) 0 — 1 2+2=4 2 (010)
3 (011) 0 - 1 3+2=5 2 (010)
1 (001) 0 - 1 4+2=6 5 (101)

4 (100) 1 0 0 — 7 (111)
2 (010) 1 1 0 — 3 (011)
7 (112) 0 - 1 5+2=7 1 (001)
2 (010) 1 2 0 — 7 (111)

Thus, the running time of the parallel radixsort agorithm consists mainly of the time needed
to perform 2k parallel prefix computations, where kis the key length in bits. For k a constant,
the running time is asymptotically O(log p) for sorting alist of size p using p processors.

6.5. CONVEX HULL OF A 2D POINT SET

The 2D convex hull algorithm presented in this section is a representative example of
geometric problems that are encountered in image processing and computer vision applica-
tions. It is aso an excellent case study of multiway divide and conquer. The convex hull
problem for a 2D point set is defined as follows: Given apoint set Q of size n on the Euclidean
plane, with the points specified by their (x, y) coordinates, find the smallest convex polygon
that encloses al n points. The inputs can be assumed to be in the form of two n-vectors X
and Y. The desired output is a list of points belonging to the convex hall starting from an
arbitrary point and proceeding, say, in clockwise order. The output list has a size of at most
n. As an example, for the point set shown in Fig. 6.2, the convex hull may be represented by
thelist O, 1, 7, 11, 15, 14, 8, 2.

MORE SHARED-MEMORY ALGORITHMS

119
7
y 1 |] 1 Point y 1 U CH(Q)
. s e SaQ !
L 12
D. ‘. & ® 0
3 10 » §
H 13
(] [
L
14 14
2@ @ 2
X X

Figure 6.2. Defining the convex hull problem.

The following properties of the convex hull allow us to construct an efficient PRAM
parallel agorithm ([Ak193], p. 28):

Property 1. Let g j and g; be consecutive points of CH(Q). View g as the origin of
coordinates. The line from ¢ to g; forms a smaller angle with the positive (or negative) x axis
than the line from gj to any other g, in the point set Q. Figure 6.3 illustrates this property.

Property 2. A segment (q; qj) is an edge of CH(Q) iff all of the remaining n— 2 points
fall to the same side of it. Again, Fig. 6.3 illustrates this property.

The following agorithm finds the convex hull CH(Q) of a 2D point set of size pon a
p-processor CRCW PRAM.

Parallel convex hull algorithm PRAMconvexhull(S, p)

Sort the point set by the x coordinates

Divide the sorted list into Vp subsets Q) of sizeVp,0<i<p

Find the convex hull of each subset Q¥ by assigning Vp processors to it
Merge theVp convex hulls CH(Q(')) into the overall hull CH(Q)

ER SR o

Figure 6.4 shows an example with a 16-element sorted point set (p = 16), the four subsets,
and the four partial convex hulls. Step 4 is the heart of the algorithm and is described next.

Note that the convex hull of Q can be divided into the upper hull, which goes from the
point with the smallest x coordinate to the one with the largest x coordinate, and the lower

y

1L k::’& Angle x'
e .

e 0 ° L] s
Allpoints fallon ® L
this side of line

Fig. 6.3. lllustrating the properties of the convex hull.

120 INTRODUCTION TO PARALLEL PROCESSING

y ° y

®)

®
[° ¢
L
®

[®le

[] P []

| | cHQ® x

Figure 6.4. Multiway divide and conquer for the convex hull problem.

hull, which returns from the latter to the former. We will only show how the upper hull of Q
is derived (the part from qoto\/g‘L5 in the example of Fig. 6.2).

Each point subset of sizevp . is assignedV¥p processors to determine the upper tangent
line between its hull and each of the other ¥p — 1 hulls. One processor finds each tangent in
O(log p) steps using an algorithm of Overmars and van Leeuwen [Over81]. The algorithm
resembles binary search. To determine the upper tangent from CH(Q“)) to CH (Q(k’), the
midpoint of the upper part of CH(Q™®) is taken and the slopes for its adjacent points compared
with its own slope. If the slope is minimum, then we have found the tangent point. Otherwise,
the search isrestricted to one or the other half. Because multiple processors associated with
various partia convex hulls read data from all hulls, the CREW model must be assumed.

Once all of the upper tangents from each hull to all other hulls are known, a pair of
candidates are selected by finding the min/max slopes. Finally, depending on the angle
between the two candidates being less than or greater than 180 degrees (Fig. 6.5), no point
or a subset of points from CH(Q") belongs to CH(Q).

-~n~m- T Li o
angent Lines ..
wmmmmmmm“ S e
i CHIO®
o “N‘““‘w

CH(@D) No point of cRigii))
is on CH(Q)

cHQY) p—

points of CH(Q!L)) between
a and b are on CH{Q)

Figure 6.5. Finding points in a partial hull that belong to the combined hull.

MORE SHARED-MEMORY ALGORITHMS 121

The final step is to renumber the points in proper order for CH(Q). A parallel prefix
computation on the list containing the number of points from each CH(Q“)) that have been
identified as belonging to the combined hull yields the rank or index of each node on CH(Q) .

The complexity of the above parallel convex hull algorithm (excluding the initial sorting
of the point set) is characterized by the following recurrence:

T(p, p) = T(p'%, p') + c log p

which has the solution T(p, p) = 2c log p. Given that sorting a list of size p can be performed
in O(log p) time as well, the overall time complexity is O(log p) .

Because the best sequential algorithm for a p-point convex hull problem requires Q(p
log p) computation steps, the above parallel convex hull agorithm is asymptotically optimal.

6.6. SOME IMPLEMENTATION ASPECTS

In this section, we discuss a number of practical considerations that are important in
transforming a PRAM algorithm into an efficient program for an actual shared-memory
paralel computer. The most important of these relates to data layout in the shared memory.
To discuss these issues, we need to look at hardware implementation aspects of shared
memory.

In any physical implementation of shared memory, the m memory locations will bein
B memory banks (modules), each bank holding m/B addresses. Typically, a memory bank
can provide access to a single memory word in a given memory cycle. Even though memory
units can be, and have been, designed to allow access to a few independently addressed words
in asingle cycle, such multiport memories tend to be quite expensive. Besides, if the number
of memory ports is less than m/B (which is certainly the case in practice), these multiport
memories still do not allow us the same type of access that is permitted even in the weakest
PRAM submodel.

So, even if the PRAM algorithm assumes the EREW submodel where no two processors
access the same memory location in the same cycle, memory bank conflicts may still arise.
Depending on how such conflicts are resolved, moderate to serious loss of performance may
result. An obvious solution is to try to lay out the data in the shared memory and organize
the computational steps of the algorithm so that a memory bank is accessed at most oncein
each cycle. Thisis quite a challenging problem that has received significant attention from
the research community and parallel computer designers.

The main ideas relating to data layout methods are best explained in connection with
the matrix multiplication problem of Section 5.6. Let us take the m x mmatrix multiplication
algorithm in which p = m2 processors are used. We identify each processor by an index pair
(i,1). Then, Processor P;; will be responsible for computing the element g ; of the result matrix
C. The m processors P, ,, 0 <y <m, would need to read Row i of the matrix A for their
computation. In order to avoid multiple accesses to the same matrix element, we skew the
accesses so that Ry, reads the elements of Row i beginning with Ay In this way, the entire
Row i of Aisread out in every cycle, albeit with the elements distributed differently to the
processors in each cycle.

To ensure that conflict-free parallel accessto all elements of each row of Ais possible
in every memory cycle, the data layout must assign different columns of Ato different

122 INTRODUCTION TO PARALLEL PROCESSING

Column 2

0,010,1{0,2/]0,3}0,4)0,5

1,0 1,1 . 2]{1,301,4]1.5]] Row 1

2,012,11]R,2{12,312,4]2,5
3,0]3,1|B,2§13,313,4}3,5

4,0 14,1 [4,2]14,3}4,414,5

5,015,1]5.2115,3}15,415,5
Module [¢] 1 2 3 4 S

Figure 6.6. Matrix storage in column-major order to allow concurrent accesses to rows.

memory banks. Thisis possible if we have at |east m memory banks and corresponds to the
data storage in column-major order, as shown in Fig. 6.6, where the matrix element (, j) is
found in location i of memory bank j. If fewer than m memory modules are available, then
the matrix element (i, j) can be stored in location i + my/BOof memory bank j mod B. This
would ensure that the row elements can be read out with maximum parallelism.

However, also note that Processors Pyj, 0 < x <m, all access the jth column of B.
Therefore, the column-major storage scheme of Fig. 6.6 will lead to memory bank conflicts
for all such accesses to the columns of B. We can store B in row-major order to avoid such
conflicts. However, if Bis later to be used in a different matrix multiplication, say Bx D,
then either the layout of B must be changed by physically rearranging it in memory or the
algorithm must be modified, neither of which is desirable.

. N
0,0]0,9.0,2 ~Q\3 0,4 0,5
S,

1,5]1,0}1,11.2 \3 1,4)] Row 1

N
2,4]2,5]2,0 2\1<\<

3,43,5[3,0]3,1\a,2
\/>Column2

q€4,2 \QQ,! 4,5]14,0 14,1

As,}»s,a 5,4]5,5]s.0

Module 0 1 2 3 4 S

Figure 6.7. Skewed matrix storage for conflict-free accesses to rows and columns.

MORE SHARED-MEMORY ALGORITHMS 123

Fortunately, a matrix can be laid out in memory in such away that both columns and
rows are accessible in parallel without memory bank conflicts. Figure 6.7 shows a well-
known skewed storage scheme that allows conflict-free access to both rows and columns of
amatrix. In this scheme, the matrix element (i ,j) is found in location i of module (i + j) mod
B. It is clear from this formulation that &l elements (i, y), 0<y<m, will be found in different
modules, as are all elements (X, j), 0 < x<m, provided that B> m. It is also clear that if all
of the m diagonal elements (X, x) of the matrix were to be accessed in parallel, conflicts could
arise, unlessB = 2mor else B is an odd number in the range m<B<2m.

To generalize the above discussion and lay a foundation for a theoretical treatment of
the memory layout problem for conflict-free parallel access, it is more convenient to dea
with vectors rather than matrices. The 6 x 6 matrix of Figs. 6.6 and 6.7 can be viewed as a
36-element vector, as shown in Fig. 6.8, that may have to be accessed in some or al of the
following ways:

Column; k,k+1, k+2 k+3, k+4,k+5 Stride of 1
Row: k,k+m,k+2m,k+3m,k+4m, k+5m Stride of m
Diagonal: Kk, ktm +1, k+2(m+ 1), k+ 3(m+ 1), k+ 4(m+ 1), k+5(m+ 1) Stride of m+1
Antidiagonal: k,k+m-1,k+2(m-1), k+3(m-1),k+4(m-1), k+5(m-1) Stride of m—1

where index calculations are assumed to be modulo m2 (or, more generally, modulo the length
| of the vector at hand). In this context, it does not matter whether we number the matrix
elements in column-major or row-major order, as the latter will only interchange the first
two strides.

Thus, the memory data layout problem is reduced to the following: Given a vector of
length |, store it in B memory banks in such a way that accesses with strides g,, s, . . . ,
Sy, are conflict-free (ideal) or involve the minimum possible amount of conflict.

A linear skewing scheme is one that stores the kth vector element in the bank a + kb mod
B. The address within the bank is irrelevant to conflict-free parallel access, though it does
affect the ease with which memory addresses are computed by the processors. In fact, the
constant a above is also irrelevant and can be safely ignored. Thus, we can limit our attention
to linear skewing schemes that assign Vj to memory module My, .4 -

With alinear skewing scheme, the vector elements k, k+s,k+2s, ..., k+ (B—1)swill
be assigned to different memory modules iff sbis relatively prime with respect to the number
B of memory banks. A simple way to guarantee conflict-free paralel access for all strides is
to choose B to be a prime number, in which case b = 1 can be used for simplicity. But having

Vector 10 |6 [12|18]24]30] Ax is
ndices 1117 1319125131 Gidveq
*2 8 [14]20126{32] as vector
319 (15[21[27{33] element
4 hohsl2ohslzel 1+im
S5 11117{23]29135

Figure 6.8. A 6 x 6 matrix viewed, in column-major order, as a 36-element vector.

124 INTRODUCTION TO PARALLEL PROCESSING

a prime number of banks may be inconvenient for other reasons. Thus, many alternative
methods have been proposed.

Now, even assuming conflict-free access to memory banks, it is still the case that the
multiple memory access reguests must be directed from the processors to the associated
memory banks. With alarge number of processors and memory banks, thisis a nontrivial
problem. Ideally, the memory access network should be a permutation network that can
connect each processor to any memory bank as long as the connection is a permutation.
However, permutation networks are quite expensive to implement and difficult to control
(set up). Thus, we usualy settle for networks that do not possess full permutation capability.

Figure 6.9 shows a multistage interconnection network as an example of a compromise
solution. This is a butterfly network that we will encounter again in Chapter 8 where we
devise a circuit for computing the fast Fourier transform (FFT) and again in Chapter 15,
where it is shown to be related to the hypercube architecture. For our discussion here, we
only note that memory accesses can be self-routed through this network by letting the ith bit
of the memory bank address determine the switch setting in Column i —1 (1 <i < 3), with
0 indicating the upper path and 1 the lower path. For example, independent of the source
processor, any request going to memory bank 3 (0011) will be routed to the “lower,” “upper,”
“upper,” “lower” output line by the switches that forward it in Columns 0-3. A self-routing
interconnection network is highly desirable as the ease of routing trandates directly into
simpler hardware, lower delay, and higher throughput.

The switches in the memory access network of Fig. 6.9 can be designed to dea with
access conflicts by smply dropping duplicate requests (in which case the processors must
rely on a positive acknowledgment from memory to ensure that their requests have been
honored), buffering one of the two conflicting requests (which introduces hondeterminacy
in the memory access time), or combining access requests to the same memory location.

When buffers are used to hold duplicate requests, determining the size of the buffers
needed is a challenging problem. Large buffers increase the probability that no request has
to be dropped because of buffer overflow, but lead to complex switches with attendant cost
and speed penalties. Experience has shown that conflicts can usually be resolved in afew

Figure 6.9. Example of a multistage memory access network.

MORE SHARED-MEMORY ALGORITHMS 125

rounds or handled with relatively small buffers. In other words, the worst case does not
usualy occur.

However, there are occasionally “hot spots’ in memory that many processors may try
to access simultaneously. If the hot spots are related to control mechanisms, such as locks
and semaphores, that are typically accessed by many processors, then the use of switches
with combining capability may help. For example, multiple read requests from the same
location may be buffered in the switch, with only one forwarded to the next level. When the
read result for such duplicate requests comes back to the switch from its memory side, the
datawill be broadcast to both processor-side ports. With combining switches, the powerful
PRAM CRCW reduction submodels (e.g., maximum or summation) can be implemented
with little additional cost in the memory access network relative to the EREW, provided that
multiple accesses to a given memory bank are guaranteed to be to the same memory location.

PROBLEMS

6.1. Peralel sorting on CRCW-S PRAM
For the impractical sorting algorithm discussed at the beginning of Section 6.2, compute the
speed-up, efficiency, and the other figures of merit introduced in Section 1.6.

6.2. Pearallel rank-based selection
Develop aparallel selection algorithm by applying the ideas used in the radixsort algorithm of
Section 6.4. Compare the performance of your algorithm to that of parallel radixsort and to the
parallel selection algorithm of Section 6.2 and discuss.

6.3. Parallel rank-based selection
In the parallel selection algorithm of Section 6.2:

a. Why isthe constant 4 used on thefirst line of the algorithm (e.g., why not “if [S| < 3"?)?
b. How would the algorithm complexity be affected if the constant 4 is increased to 6, say?
c. What if instead of a constant we use avalue such as p/log, p or n/log, n?

6.4. Parallel selection-based sorting
In the selection-based sorting algorithm of Section 6.3, the decomposition parameter k was
chosen to be 21/% in order to allow us to solve the k subproblems in two passes (Steps 4 and 5
of the algorithm).

a. Justify the solution given for the recurrence characterizing the running time of the algorithm
with the above choice for k.

b. What isthe appropriate choice for kif the k subproblems are to be solved in no more than
I passes?

c. How istherunning time of the algorithm affected if r = 4 in part (b)?

6.5. Parallel selection-based sorting
At the end of Section 6.3, it was mentioned that rank-based selection algorithm becomes more
complex if the input list contains repeated elements. Make the required modifications in the
algorithm for this case.

6.6. Parallel randomized sorting
Analyze the average-case complexity of the parallel randomized sorting algorithm presented

126

6.7.

6.8.

6.9.

6.10.

6.11.

INTRODUCTION TO PARALLEL PROCESSING

in Section 6.4. Using your andlysis, justify the choice of [S|/p? random samples in the first
agorithm step.

Parallel radixsort agorithm

a. Extend the parallel radixsort algorithm given in Section 6.4 to the case where the number
n of elements to be sorted is larger than the number p of processors.

b. Radixsort can be done in higher radices (e.g., radix 4 rather than 2). Describe a parallel
radixsort algorithm using the radix of 4 and compare its running time with the radix-2
version.

c. Based on theresults of part (b), would it be advantageous to use even higher radices?

Parallel convex hull agorithm

a. On Fig. 6.4, show how the next level of recursion would subdivide the four smaller
problems.

b. In general, when does the recursion stop?

c. Expressthe number of recursion levelsin terms of the problem size p.

d. Extend the agorithm to the general case of n data points and p processors, with n > p.

Other geometric problems on point sets

The convex hull problem is only one example of a rich collection of practical problems that
involve point sets in the Cartesian coordinates. Propose algorithms for solving each of the
following problems on point sets.

a. Determining the center of gravity of a 2D set of points, each having a positive weight.

b. Determining the subset of points that are not dominated by any other point, where a point
(X1 ,y2) dominates another point (X, o) iff x1= xpand y; 2 y,. As an example, the answer
in the case of the point set in Fig. 6.2 should be 7, 11, 12, 15.

c. Dynamically updating the convex hull of a 2D point set as each point is added to, or removed
from, the set.

d. Determining the largest circle centered at each point that does not have any other point
inside it.

e. Determining the diameter of a 2D point set, defined as the diameter of the smallest circle
that can enclose al of the points.

f. Determining a pair of points that are closest to, or farthest from, each other.

Geometric problems on sets of line segments
Given a set of straight line segments on a plane, each specified by the coordinates of its two
endpoints, propose agorithms for solving each of the following problems.

a. Yesor no answer to the question of whether any pair of line segments intersect.

b. Determining all intersection points between pairs of line segments.

c. Detecting the existence of parallel line segments.

d. Determining which portion of each line segment would be visible to an observer located
at the point (x y) = (0,), where line segments are assumed to obstruct the visibility of
line segments that are “behind” them.

Polynomial interpolation

We are given n points (x;, ¥;), 0<i <n, and asked to find an (h—1)th-degree polynomial y = f (x)
such that f(xj) =y; for the given n data points. By Newton's interpolation method, the
polynomial can be written asf(x) = cg + ¢1(x — xp) + c2(x — x0)(x — x1) + c3(x — x)(x — x)(x —

x2) + o+ oplx — xg)x — x1) . L {x ~ xp9).

MORE SHARED-MEMORY ALGORITHMS 127

6.12.

6.13.

6.14.

6.15.

a. Show that c; can be computed as the sum of i + 1 terms, the jth of which (0 <j <i) constitutes
afraction with y; in the numerator and a prefix product of length i in the denominator.

b. Based on the result of part (a), devise a PRAM algorithm that computes the coefficients
cjusing n parallel prefix computations and additional arithmetic operations as needed.

c. Devise a PRAM agorithm to compute f(x), given x and the coefficientsc, 0<i<n.

Numerical integration

To compute the integral of f(x)dx over theinterval [a, b] using the trapezoidal rule, the interval
[a, b] isdivided into n subintervals of equa length h = (b —a)/n. The definite integral is then
approximated by h(f(a)/2 + f(a + h) + f(a + 2h) + - + f(b - h) + f(5)/2).

a. Develop a PRAM agorithm implementing the trapezoidal rule.

b. To minimize the number of function evaluations, the following adaptive version of the
trapezoidal rule, known as adaptive quadrature, can be used. Given a desired accuracy ¢,
the definite integral is evaluated using the trapezoidal rule with n=1 and n= 2. Call the
results I and I,. If I;— |1 <€, then | »is taken to be the desired result. Otherwise, the same
method is applied to each of the subintervals [a, (a + b)/2] and [(a + b)/2, b] with the
accuracy €/2. Discuss the parallel implementation of adaptive quadrature.

Linear skewing schemes for matrices
Consider the linear skewing scheme s(i, j) = ai + bj mod B that yields the index of the memory
bank where the element (i, j) of an m x m matrix is stored. Prove each of the following results.

a. Inorder to have conflict-free parallel accessto rows, columns, diagonals, and antidiagonals,
it is sufficient to choose B to be the smallest prime number that is no less than max(m, 5).

b. Inorder to have conflict-free parallel access to rows, columns, diagonals, and antidiagonals,
the smallest number of memory banks required ismif gcd(m, 2) =gcd(m, 3) =1, m+ 1 if
misevenand m=0mod 3 or 1 mod 3, m+ 2 if misodd and amultiple of 3, and m + 3 if
misevenand m=2mod 3.

c. If it is possible to have conflict-free paralel access to rows, columns, diagonas, and
antidiagonals using a linear skewing scheme, then it is possible to achieve this using the
scheme s(i,j) =i+ 2j mod B.

Memory access networks
For the butterfly memory access network depicted in Fig. 6.9:

a. Show that there exist permutations that are not realizable.
b. Show that the shift permutation, where Processor i accesses memory bank i + k mod p, for
some constant k, is realizable.

PRAM sorting by merging

Develop a parallel algorithm for sorting on the PRAM model of parallel computation that is
based on merging the sublists held by the various processors into successively larger sublists
until a sorted list containing all itemsis formed. Analyze your algorithm and compare its time
complexity with those of the algorithms presented in this chapter.

REFERENCES AND SUGGESTED READING

[AKI93]
[AKI97]

Akl, S, and K. A. Lyons, Parallel Computational Geometry, Prentice—Hall, 1993.
Akl, S. G., Parallel Computation: Models and Methods, Prentice-Hall, 1997.

[Kron96] Krongjo, L. I., “PRAM Models,” Chapter 6 in Parallel and Distributed Computing Handbook, edited

by A. Y. Zomaya, McGraw-Hill, 1996, pp. 163-191.

128 INTRODUCTION TO PARALLEL PROCESSING

[Mace87] Mace, M. E., Memory Sorage Patterns in Parallel Processing, Kluwer, 1987.

[Over81] Overmars, M. H., and J. van Leeuwen, “Maintenance of Configurationsin the Plane,” J. Computer
and System Sciences, Vol. 23, pp. 166-204, 1981.

[Prep8s] Preparata, F. P., and M. |. Shamos, Computational Geometry: An Introduction, Springer-Verlag, 1985.

[Wijs89] Wijshoff, H. A. G., Data Organization in Parallel Computers, Kluwer, 1989.

Sorting and
Selection Networks

Circuit-level designs for parallel processing are necessarily problem-specific or
special-purpose. This arises in part from the relatively inflexible structure of a
circuit (as compared with a stored program that can be easily modified or
adapted to varying numbers of inputs) and in part from our limited ability to deal
with complexity, making it virtually impossible to develop a complete circuit-
level design individually and in a reasonable amount of time unless the problem
at hand is simple and well-defined. The problem of sorting, which is the focus
of this chapter, is an ideal example. Discussion of sorting networks or circuits
touches on many of the important design methods and speed-cost trade-offs that
are recurring themes in the field of parallel processing. A sampler of other
interesting problems will be covered in Chapter 8. Chapter topics are

7.1. What is a sorting network?

7.2. Figures of merit for sorting networks
7.3. Design of sorting networks

7.4. Batcher sorting networks

7.5. Other classes of sorting networks
7.6. Selection networks

129

This page intentionally left blank.

SORTING AND SELECTION NETWORKS 131

7.1. WHAT IS A SORTING NETWORK

A sorting network is a circuit that receives ninputs, xg, x;, x,, . . , X,_;, and permutes
them to produce n outputs, Yo, ¥, ¥ - - .+ Y,, SUch that the outputs satisfy yg<y; <
Y, <. ..Yn. For brevity, we often refer to such an n-input n-output sorting network as an
n-sorter (Fig. 7.1). Just as many sorting algorithms are based on comparing and exchanging
pairs of keys, we can build an n-sorter out of 2-sorter building blocks. A 2-sorter compares
its two inputs (call them input, and input,) and orders them at the output, by switching their
order if needed, putting the smaller value, min(input,, input,), before the larger value,
max(input,, input,).

Figure 7.2 shows the block diagram of a 2-sorter that always directs the smaller of the
two input values to the top output. It also depicts simpler representations of the 2-sorter,
where the rectangular box is replaced by a vertical line segment and the input-to-output
direction is implied to be from left to right. Because, in some situations, we may want to
place the smaller of the two inputs on the bottom, rather than top, output, we can replace the
vertical line segment representing the 2-sorter by an arrow pointing in the direction of the
larger output value. These schematic representations make it quite easy to draw large sorting
networks. In particular, note that the heavy dots representing the 1/0 connections of a 2-sorter
can be removed when there is no ambiguity. The schematic representations can be easily
extended to larger building blocks. For example, a 3-sorter can be represented by a vertical
line segment (or arrow) with three connecting dots.

The hardware redlization of a 2-sorter is quite straightforward. If we view the inputs as
unsigned integers that are supplied to the 2-sorter in bit-parallel form, then the 2-sorter can
be implemented using a comparator and two 2-to-1 multiplexers, as shown in Fig. 7.3 (left
panel). When the keys are long, or when we need to implement a sorting network with many
inputs on a single VLSI chip, bit-parallel input becomes impractical in view of pin limita-
tions. Figure 7.3 (right panel) also depicts a bit-serial hardware realization of the 2-sorter
using two state flip-flops. The flip-flops are reset to O at the outset. This state represents the
two inputs being equal thus far. The other two states are 01 (the upper input isless) and 10
(the lower input is less). While the 2-sorter isin state 00 or 01, the inputs are passed to the
outputs straight through. When the state changes to 10, the inputs are interchanged, with the
top input routed to the lower output and vice versa.

Figure 7.4 depicts a 4-sorter built of 2-sorter building blocks. For thisinitial example,
we have shown both the block diagram and the schematic representation. In subsequent

Xo —> —’Yo
Xy —P < Y1 The outputs are a
__’ '_’ permutation of the
X2 y2 inputs satisfyin
, n-sorter . P ying
oS %S ... S¥p
. (nondescending)
Xp 1—> — Vo1

Figure 7.1. An n-input sorting network or an n-sorter.

132 INTRODUCTION TO PARALLEL PROCESSING

input, min I out
2-sorter
—P I I out
input, max
Block Diagram Alternate Representations

Figure 7.2. Block diagram and four different schematic representations for a 2-sorter.

examples, we will use only schematic diagrams. The schematic representation of the 4-sorter
in Fig. 7.4 shows the data values carried on al lines when the input sequence 3, 2, 5, 1 is
applied.

How do we verify that the circuit shown in Fig. 7.4 isin fact avalid 4-sorter? The answer
iseasy in this case. After the first two circuit levels, the top line carries the smallest and the
bottom line the largest of the four input values. The final 2-sorter orders the middle two
values. More generally, we need to verify the correctness of an n-sorter through tedious
formal proofs or by time-consuming exhaustive testing. Neither approach is attractive.
Fortunately, the zero—one principle allows us to do this with much less work.

The Zero—One Principle. Ann-sorter is valid if it correctly sorts al 0/1 sequences

of length n.
Proof. Clearly any n-sorter must also sort Os and 1s correctly (necessity). Suppose that
an n-sorter does not sort the input sequence x;, X,, . . ., %, properly, i.e., there exist outputs

y; andy; . Withy; > y;,,. We show that there is a 0/1 sequence that is not sorted properly also.
Replace al inputs that are strictly less than y; with Os and al other inputs with 1s. The relative
positions of the input values will not change at the output. Therefore, at the output we will
havey,= 1 and y;,, = 0.

k ux
- 0 k
input, 1 eyl
a min
Com- | b<a?
pare
k b > X
inputy 1 Pyl
Mux | max
reset

Figure 7.3. Parallel and bit-serial hardware realizations of a 2-sorter.

SORTING AND SELECTION NETWORKS 133

3 2 1 1
X4 Yo r

2 3 3 2
Xy yi

5, 1 2 l 3
Xz Y2

1 l 3 5 5
X3 | - Y3

Figure 7.4. Block diagram and schematic representation of a 4-sorter.

Using the zero—one principle, the correctness of the 4-sorter in Fig. 7.4 can be verified
by testing it for the 16 possible 0/1 sequences of length 4. The network clearly sorts 0000
and 1111. It sorts all sequences with a single 0 because the 0 “bubbles up” to the top line.
Similarly, asingle 1 would “sink down” to the bottom line. The remaining part of the proof
deals with the sequences 0011, 0101, 0110, 1001, 1010, 1100, all of which lead to the correct
output 0011.

7.2. FIGURES OF MERIT FOR SORTING NETWORKS

Is the sorting network shown in Fig. 7.4 the best possible 4-sorter? To answer this
question, we need to specify what we mean by “the best n-sorter.” Two figures of merit
immediately suggest themselves:

¢ Cost: thetotal number of 2-sorter blocks used in the design
* Delay: the number of 2-sorters on the critical path from input to output

Of course, for VLS| implementation of an n-sorter, the wiring pattern between the 2-sorters
is also important because it determines the layout area, which has an impact on cost.
However, for simplicity, we will ignore this aspect of cost/complexity and use the number
of 2-sorters as an approximate cost indicator. Each 2-sorter will thus be assumed to have unit
cost, independent of itslocation in the network or its connectivity.

Similar observations apply to the delay of a sorting network. We will again assume that
a 2-sorter has unit delay independent of its location or connectivity. In VLSI circuits, signal
propagation delay on wires is becoming increasingly important. Longer wires, going from
one chip to another or even from one side to the other side of the same chip, contribute
nonnegligible delays, to the extent that signal propagation delays sometimes overshadow the
device switching or computation delays. Therefore, our delay measure is also approximate.

We can aso use composite figures of merit involving both cost and delay. For example,
if we expect linear speed-up from more investment in the circuit, then minimizing cost x
delay would be appropriate. According to the cost x delay measure, if we can redesign a
sorting network so that it is 10% faster but only 5% more complex, the redesign is deemed
to be cost-effective and the resulting circuit is said to be time-cost-efficient (or at least more
so than the original one).

Figure 7.5 shows examples of low-cost sorting networks ([Knut73], p. 228) that have
been discovered over the years by different researchers. Unfortunately, lowest-cost designs

134

A1
1 1
| IR I
L1 1
— 1
Jri_1
LI 1

1

n =9, 25 modules, 9 levels

INTRODUCTION TO PARALLEL PROCESSING

et

1

1

n = 10, 29 modules, 9 levels

1
s 1
T 1
I T
11 o 1
11 11 I 1
1T 0 I 1 I |
11T 1TT
11 1 1 T
T | 1T I 1
1 I 1 |
11 T 1
1 1 | 1
11T 11 |
T T
n= 12, 39 modules, 9 levels n = 16, 60 modules, 10 levels

Figure 7.5. Some low-cost sorting networks.

are known only for small n and as yet there is no general method for systematically deriving

low-cost designs.

Figure 7.6 depicts examples of fast sorting networks ([Knut73], p. 231). The fastest
possible designs are also known only for small n.
Time-cost-efficient sorting networks are even harder to come by. For the 10-input
examplesin Figs. 7.5 and 7.6, the cost x delay products are

oA |
1 T . |
1 | 1
117 | T
1 1 T | I | i 11 1 1
1 I T 1 1 I
| T 1 1 1 11
T 1 1 1T 1
1 I 11
n =6, 12 modules, 5 levels n =9, 25 modules, § levels n= 10, 31 modules, 7 levels
T
il 1
T T
1l 1
| S | 1
i 1T I
L1 | 11 1
- 1T I
T 1 I IT T
L 1 1 1T |
11 I 1 I
1 - 1T I
1.1 | S A1 1
11 1 1T 1
1 1
n = 12, 40 modules, 8 levels n = 16, 61 modules, 9 levels

Fig. 7.6. Some fast sorting networks.

SORTING AND SELECTION NETWORKS 135

29 modules, 9 delay units cost x delay = 261

31 modules, 7 delay units cost x delay = 217

Thus, the 10-sorter in Fig. 7.6 has higher time-cost efficiency than its counterpart in Fig. 7.5.
However, in general, the most time-cost-efficient design may be neither the fastest nor the
least complex n-sorter.

7.3. DESIGN OF SORTING NETWORKS

There are many ways to design sorting networks, leading to different results with respect
to the figures of merit defined in Section 7.2. For example, Fig. 7.7 shows a 6-sorter whose
design is based on the odd—even transposition sorting algorithm discussed in connection
with sorting on alinear array of processorsin Section 2.3 (rotate Fig. 7.7 clockwise by 90
degrees and compare the result with the compare-exchange pattern of Fig. 2.10). This “brick
wall” design offers advantages in terms of wiring ease (because wires are short and do not
cross over). However, it is quite inefficient as it uses nCh/20modules and has n units of delay.
Its cost x delay product is ©(n3). So, anatural question is how one might design more efficient
sorting networks.

Let ustry acouple of other ideas. One way to sort n inputsisto sort the first n— 1 inputs,
say, and then insert the last input in its proper place. This recursive solution based on insertion
sort is depicted in the top left panel of Fig. 7.8. Another way is to select the largest value
among the n inputs, output it on the bottom line, and then sort the remaining n— 1 values.
Thisaso is arecursive solution, as shown in the top right panel of Fig. 7.8. Both solutions
are characterized by the following recurrences for delay and cost. In fact, both lead to the
same design, whichisin effect based on the parallel version of bubblesort.

Cm)=Cn-D+n-l=(n-D+n-2D+-+2+1=n(n-1)2
Din)=D(n-1D)+2=242++241=2n-2)+1=2n-3
Cost x Delay = n(n — 1)(2n - 3)/2 = 8(n°)

All three designs presented thus far in this section are quite inefficient. Lower bounds
on the cost and delay of an n-sorter are Q(n log n) and Q (log n), respectively. These are
established by the fan-in argument and the minimum number of comparisons needed for

Figure 7.7. Brick-wall 6-sorter based on odd—even transposition.

136 INTRODUCTION TO PARALLEL PROCESSING

X0] Yo X0 Yo
Xy = Y2 X3 Y2

(n~1)-sorter (n—1)-sorter

Xp-2 _I'J'— Yn2 Xn- — Yo-2

X Xp-
-l Insertion sort Yo-l -l Selection sort Yot

Parallel insertion sort = Paralle! selection sort = Parallel bubble sort!

[[T 1 |
I

Figure 7.8. Sorting network based on insertion sort or selection sort.

sorting n values. Can we achieve these lower bounds? Note that even if both bounds are
achieved simultaneously, the resulting cost x delay product will be ©(n log? n) which is more
than the sequential lower bound on work, but thisis the best we can hope for.

In 1983, Ajtai, Komlos, and Szemeredi [Ajta83] showed how O(n log n)-cost, O(log
n)-delay sorting networks can be constructed. Their proposed design, which uses a sorting-
by-splitting approach based on the notion of expander graphs, is known asthe AKS sorting
network. However, the AKS design is of theoretical interest only, as the asymptotic notation
hides huge four-digit constants! The constants remain large despite further improvements
and refinements by other researchers since 1983. A good exposition of the asymptotically
optimal AK'S sorting circuit was given by Akl ([Ak197], pp. 125-137).

Even though researchers have not given up hope on the prospects of practical, O(n log
n)-cost, O(log n)-delay, sorting networks, work has diversified on several other fronts. One
isthe design of more efficient sorting networks with specia inputs or outputs; for example,
when inputs are only Os and 1s, or they are already partially sorted, or we require only
partially sorted outputs. Another is the design of networks that sort the input sequence with
high probability but do not guarantee sorted order for all possible inputs [Leig97].

Practical sorting networks are based on designs by Batcher and others that have O(n
log? n) cost and O(log? n) delay. These designs are a factor of log n away from being
asymptotically optimal in cost or delay, but because log, n is only 20 when n is as large as
1 million, such networks are more practical than the asymptotically optimal designs men-
tioned above. Some of these designswill be discussed in Sections 7.4 and 7.5.

7.4. BATCHER SORTING NETWORKS

Batcher’s ingenious constructions date back to the early 1960s (published a few years
later) and constitute some of the earliest examples of parallel algorithms. It is remarkable

SORTING AND SELECTION NETWORKS 137

that in more than three decades, only small improvements to his constructions have been
made.

One type of sorting network proposed by Batcher is based on the idea of an (m,
m')-merger and uses a technique known as even—odd merge or odd-even merge. An (m,
m')-merger is a circuit that merges two sorted sequences of lengths mand m' into a single
sorted sequence of length m+ m'. Let the two sorted sequences be

XpSx ... 8%,

YoS¥S.. .Sy
If m=0or m =0, then nothing needs to be done. For m=m' = 1, a single comparator can
do the merging. Thus, we assume mm' > 1 in what follows. The odd—even merge is done by
merging the even- and odd-indexed elements of the two lists separately:

Xop X0+« o0 Xl 22 and

Yor Y2 - - + 2 Yafp /212 &€ Merged to get

Vor Vo oo o Vim/214Tm 7211

Xy Xgs - - 2 Xl pyyy|y AN
Yo Y3+ o o s Yalmesa)—1 A€ Merged to get

Wor Wis - s W2 el /21

If we now compare-exchange the pairs of elementswy:v,, w,iv,, wyivs, . . ., the resulting
sequencevy wy vy wy v, w, ... Will be completely sorted. Note that v, which is known to be
the smallest element overal, is excluded from the final compare—-exchange operations.

An example circuit for merging two sorted lists of sizes 4 and 7 using the odd—even
merge technique is shown in Fig. 7.9. The three circuit segments, separated by vertical dotted
lines, correspond to a (2, 4)-merger for even-indexed inputs, a (2, 3)-merger for odd-indexed
inputs, and the final parallel compare—exchange operations prescribed above. Each of the
smaller mergers can be designed recursively in the same way. For example, a (2, 4)-merger
consists of two (1, 2)-mergers for even- and odd-indexed inputs, followed by two parallel
compare-exchange operations. A (1, 2)-merger isin turn built from a (1, 1)-merger, or a
single comparator, for the even-indexed inputs, followed by a single compare-exchange
operation. The final (4, 7)-merger in Fig. 7.9 uses 16 modules and has a delay of 4 units.

It would have been quite difficult to prove the correctness of Batcher's even—odd merger
were it not for the zero—one principle that allows us to limit the proof of correctness to only
0 and 1 inputs. Suppose that the sorted x sequence has k Os and m—k 1s. Similarly, let there
be k' Osand m' — K 1sin the sorted y sequence. When we merge the even-indexed terms, the
v sequence will have kg, = R/ 2 T+ Ok'/ 200s. Likewise, the w sequence resulting from the
merging of odd-indexed terms will have k, = [k/2[H [k /2000s. Only three cases are
possible:

Case a Kegyen = Kogg The sequencevy wy v, w; v, w, . . . is dready sorted

Case b: Keyen = Kogq + 1 The sequencev, wy vy wy v, w, . . .is already sorted

138 INTRODUCTION TO PARALLEL PROCESSING

(Xp Yo
First l Xy wo |
sorted x v
sequence X 2 1
\ X3 w1 1
&7 V2
Y1 w2 l
Second Y2 V3
sorted
sequencey J Y3 w3 r
Y4 A
¥s Wy l
Yo s
(2, 4)-merger (2, 3)-merger

Figure 7.9. Batcher's even—odd merging network for 4 + 7 inputs.

CaseC: Kgyen = Kogg T 2

In the last case, the sequencev, w, v, w; v, W, .. . hasonly apair of elements that are not in
sorted order, as shown in the example below (the out-of-order pair is underlined).

Vo Vi V2 V3 V4 Vs Vg V7 Vg Vg Vig Yy
000O0O0O0OO0OCQT1 11 1

00000011111
Wo W) WaW3 WyWs We Wy Wg Wy Wig

The problem will be fixed by the compare—exchange operations between w and Vv, ;.
Batcher's (m, m) even—odd merger, when mis a power of 2, is characterized by the
following delay and cost recurrences:

C(m) =2Cm/2) +m—1=(m— 1) +2(m/2 ~ 1) + 4(ml4 - 1) + - =mlog, m+ 1
D(m) =D(m/2) + 1 =log,m + 1

Cost X Delay = O(m log2 m)

Armed with an efficient merging circuit, we can design an n-sorter recursively from two
n/2-sorters and an (n/2, n/2)-merger, as shown in Fig. 7.10. The 4-sorter of Fig. 7.4 isan
instance of this design: It consists of two 2-sorters followed by a (2, 2)-merger in turn built
from two (1, 1)-mergers and a single compare-exchange step. A larger example, correspond-
ing to an 8-sorter, is depicted in Fig. 7.11. Here, 4-sorters are used to sort the first and second
halves of the inputs separately, with the sorted lists then merged by a (4, 4)-merger composed
of an even (2, 2)-merger, an odd (2, 2)-merger, and a final stage of three comparators.

Batcher sorting networks based on the even—odd merge technique are characterized by
the following delay and cost recurrences:

C(n) = 2C(n/2) + (n/2)(log,(n/2)) + 1 = n(log, n)2/ 2

SORTING AND SELECTION NETWORKS 139

—» - Bt
—» > -
e [P =g

> (2, n/2)- >
- g merger =
—» > >
—? n/2-sorter _’ +
> > >

Figure 7.10. The recursive structure of Batcher's even—odd merge sorting network.

D(n) = D(n/2) + log,y(n/2) + 1 = D(n/2) + log, n = log, n (log, n + 1)/2
Cost x Delay = © (n log* n)

A second type of sorting network proposed by Batcher is based on the notion of bitonic
sequences. A bitonic sequence is defined as one that “rises then falls’ (xy < x; €. . . <x, 2
X 2 X 2. .. 2x,), “fdlsthenrises’ (xg=x, 2...2x<x,,<x,,S...Sx,),00is
obtained from the first two categories through cyclic shifts or rotations. Examples include

133466622100 Risesthen fals
877666546889 Fals then rises
898776665468 The previous sequence, right-rotated by 2

Batcher observed that if we sort the first half and second half of a sequence in opposite
directions, as indicated by the vertical arrows in Fig. 7.12, the resulting sequence will be
bitonic and can thus be sorted by a specia bitonic-sequence sorter. It turns out that a

rvvererrrrcrrrrre gevervvrvvers pevecveeeces

(22)-merger (2,2)-merger

Figure 7.11. Batcher's even—odd merge sorting network for eight inputs.

140 INTRODUCTION TO PARALLEL PROCESSING

. I — .
- gg-——b
I lEIE HE
S INHINES LIS
-] g
- 4 ﬁg-—-»
—"n/?rmlu t Eg'—_’
> LIS

Bitonic n-input bitonic-
sequence sequence sorter

Figure 7.12. The recursive structure of Batcher's bitonic sorting network.

bitonic-sequence sorter with ninputs has the same delay and cost as an even—odd (n/2,
n/2)-merger. Therefore, sorters based on the notion of bitonic sequences (bitonic sorters)
have the same delay and cost as those based on even—odd merging.

A bitonic-segquence sorter can be designed based on the assertion that if in a bitonic
sequence, we compare—exchange the elementsin the first half with those in the second half,
asindicated by the dotted comparatorsin Fig. 7.12, each half of the resulting sequence will
be a bitonic sequence and each element in the first half will be no larger than any element in
the second half. Thus, the two halves can be independently sorted by smaller bitonic-se-
quence sorters to complete the sorting process. Note that we can reverse the direction of
sorting in the lower n-sorter if we suitably adjust the connections of the dotted comparators
inFig. 7.12. A complete eight-input bitonic sorting network is shown in Fig. 7.13.

While asymptotically suboptimal, Batcher sorting networks are quite efficient. Attempts
at designing faster or less complex networks for specific values of n have yielded only
margina improvements over Batcher’'s construction when nis large.

2-input 4-input bitonic- §-input bitonic-
sorters sequence sorters sequence sorter

Figure 7.13. Batcher's bitonic sorting network for eight inputs.

SORTING AND SELECTION NETWORKS 141

7.5. OTHER CLASSES OF SORTING NETWORKS

A class of sorting networks that possess the same asymptotic ©(log? n) delay and ©(n
log? n) cost as Batcher sorting networks, but that offer some advantages, are the periodic
balanced sorting networks [Dowd89]. An n-sorter of this type consists of log, n identical
stages, each of which is a (log, n)-stage n-input bitonic-sequence sorter. Thus, the delay and
cost of an n-sorter of this type are (log, n)? and n(log, n)%/2, respectively. Figure 7.14 shows
an eight-input example. The 8-sorter of Fig. 7.14 has alarger delay (9 versus 6) and higher
cost (36 versus 19) compared with a Batcher 8-sorter but offers the following advantages:

1. Thestructureisregular and modular (easier VLSI layout).

2. Slower, but more economical, implementations are possible by reusing the blocks.

In the extreme, log, n passes through a single block can be used for cost-efficient

sorting.

Using an extrablock provides tolerance to some faults (missed exchanges).

4. Using two extra blocks provides tolerance to any single fault (a missed or incorrect
exchange).

5. Multiple passes through a faulty network can lead to correct sorting (graceful
degradation).

6. Single-block design can be made fault-tolerant by adding an extra stage to the block.

w

Just as we were able to obtain a sorting network based on odd—even transposition sort on a
linear array, we can base a sorting network on a sorting algorithm for a 2D array. For example,
the two 8-sorters shown in Figs. 7.15 and 7.16 are based on shearsort (defined in Section
2.5) with snakelike order on 2 x 4 and 4 x 2 arrays, respectively. Compared with Batcher
8-sorters, these are again slower (7 or 9 versus 6 levels) and more complex (24 or 32 versus
19 modules). However, they offer some of the same advantages enumerated for periodic
balanced sorting networks.

In general, an rc-sorter can be designed based on shearsort on an r x ¢ mesh. It will have
log, r identical blocks, each consisting of r parallel c-sorters followed by c parallel r-sorters,
followed at the end by a special block composed of r parallel c-sorters. However, such
networks are usually not competitive when r islarge.

Figure 7.14. Periodic balanced sorting network for eight inputs.

142 INTRODUCTION TO PARALLEL PROCESSING

0 ;

1 L ;

g L 011213

4 poni,] 71615 |4
ndin

5 l 2-D mesh 8

6

7

Snake-like Column Snake-like
TOW SOrts SOrts row 501t

Figure 7.15. Design of an 8-sorter based on shearsort on 2 x 4 mesh.

ol 1 [
! T 1
il | [01
3 | i 312
M | T [
g H l l 716
(| - NI — I, ey
Left Right Left Right
T column column I column column
sort sort sort sort
-Snake-like row sort -Snake-like row sort

Figure 7.16. Design of an 8-sorter based on shearsort on 4 x 2 mesh.

7.6. SELECTION NETWORKS

If we need the kth smallest value among n inputs, then using a sorting network would
be an overkill in that an n-sorter does more than what is required to solve our (n, k) selection
problem. For example, the 8-sorter of Fig. 7.15 can still give us the third or fourth smallest
element among its eight inputs if we remove the five comparators constituting the lower-right
4-sorter. A natural question is whether we can design selection networks that are significantly
simpler than sorting networks. This is an interesting problem and we deal only with some
aspects of it in this section.

Let us broaden our view a bit and define three selection problems [Knut73]:

I. Select the k smallest values and present them on k outputs in sorted order.
1. Select the kth smallest value and present it on one of the outputs.
1. Select the k smallest values and present them on k outputs in any order.

SORTING AND SELECTION NETWORKS 143

The above are listed in decreasing order of circuit and time complexity, i.e., (1) is the hardest
and (I11) the easiest. For example, the 8-sorter of Fig. 7.15 solves the first problem after
removing the five comparators constituting the lower-right 4-sorter. If, additionally, we
replace the upper-right 4-sorter in Fig. 7.15 with three comparators to choose the maximum
value on the upper four lines, atype Il (8, 4)-selector would result. Finaly, if we remove the
upper-right 4-sorter altogether, we obtain atype 11 (8, 4)-selector.

It can be proven ([Knut73], pp. 234-235) that the number of comparators needed for
solving the third selection problem (and hence the second one) satisfies the following lower
bound which istight for k=1 and k= 2:

Cy(m, k) 2 (n — k) [ogy(k + 1)]

Figure 7.17 depicts atype Il (8, 4)-selector. The pairs of integers shown on each line
in Fig. 7.17 denote the minimum and maximum rank that is possible for the value carried by
that line. Initially, each input value can have any rank in [0, 7]. When two inputs are
compared, and possibly exchanged, the upper one will have arank in [0, 6] and the lower
onein[1, 7]. Itiseasily proven that if the two inputs of acomparator have ranksin [1;, u]
and [I;, u], then the output rank intervals [4) and (7],)] sansfy I{ =min(l, 1) and
l 2 l;+ 1. Similar results can be proven for the upper boundsu, and ;. The correctness of
the type III (8, 4)-selector in Fig. 7.17 is evident from the output rank intervals.

Classifiers constitute a class of selection networks that can divide a set of n valuesinto
n/2 largest and n/2 smallest values, with possible overlap in case of repeated values at the
input. The selection network of Fig. 7.17 isin fact an 8-input classifier. Generalizing the
construction of Fig. 7.17, an n-input classifier can be built from two (v2)-sorters followed
by n/2 comparators. Using Batcher's designs for the (n/2)-sorters leads to a depth of O(log?
n) and size of O(nlog? n) for an n-input classifier. Of course, O(log n)-depth, O(n log n)-cost
classifiers can be derived from AKS sorting networks, but the resulting designs are not
practical. It has been shown that classifiers of depth O(log n) and size Cn log, n + O(n),
where C is any number exceeding 3/log, 3 = 1.8927, can be constructed [Jimb96].

0.n 10.61 [0.4] (0.4} {0.3)
.71 l [L7 (1,6) 11.5] [1.31
(0.7} {0.61 [1,6] l (2,61 1.3 %
©.7]] L7 3.7 13.7) [0.3]
(0.7 [0,6) {0.4] (0.4} I (471
.71 J _un [1,6] 1.5 [4,6]
0,7 [0.6} [1,6] l 12,61 [4,6]
[0,71 [1,7] (3,71 3.7 47

Figure 7.17. A type Il (8, 4)-selector.

144

INTRODUCTION TO PARALLEL PROCESSING

PROBLEMS

7.1.

7.2.

7.3.

7.4.

7.5.

7.6.

7.7.

Design of 2-sorter and 3-sorter building blocks

a. How should the 2-sorter designs shown in Fig. 7.3 be modified if they are to deal with
signed, rather than unsigned, integer inputs?

b. Design a 3-sorter building block with unsigned bit-seria inputs. Try to make the 3-sorter
as fast as possible, e.g., do not use three 2-sorters inside the module.

The zero—one principle

Using the zero—one principle, prove the validity of each of the following sorting networks.
Hint: Noting that the designs begin with a set of smaller sorters reduces the amount of work
needed for your proof.

a. The6-sorter in Fig. 7.6.
b. The 9-sorter in Fig. 7.5.
c. The9-sorter in Fig. 7.6.
d. The 12-sorter in Fig. 7.5.

Programmabl e sorters

Consider the design of a sorting network that can sort in ascending or descending order, as
dictated by asingle control signal. Compare the following two design methods with respect to
cost and delay.

a. Sort in ascending order, then reverse the sequence if descending order is desired.
b. Modify the building blocks of Fig. 7.3 so that the output order is switched by the control
signal.

Bitonic-sequence sorters

Show how an n-input bitonic-sequence sorter can be used to merge two sorted sequences with
unequal lengths that add up to at most n; one sequence is of length mand the other is no longer
than n—m.

Figures of merit for sorting networks
Calculate the speed-up, efficiency, and other figures of merit introduced in Section 1.6 for each
of the following sorting network designs.

Sorting networks based on insertion or selection sort.
Batcher sorting networks.

Periodic balanced sorting networks.

Sorting network based on shearsort on a2 x (n/2) mesh.
Sorting network based on shearsort on an (n/2) x 2 mesh.

®caose

Pruning of sorting networks

a. Show that removing the top or bottom line, aong with all of the comparators connected to
it, converts an n-sorter to avalid (n — 1)-sorter.

b. Experiment with the transformation given in part (a) to derive new sorting networks from
the n-sorters in Figs. 7.5 and 7.6. For example, derive 6-sorters from the given 9-sorters
and compare the results to the 6-sorters given.

c. Show that the statement of part (a) isin general not valid for other linesin a sorting network.

Sorting networks
a. Use the zero—one principle to prove that the following circuit is not a valid 6-sorter.

SORTING AND SELECTION NETWORKS 145

=co

Tehhalf ¢ Righthalf

b. Based on the observationsin part (a), show how a single comparator can be added to the

circuit to turn it into avalid 6-sorter.

c. UseBatcher's odd—even merge method to redesign the right half of the sorter of part (b).
d. Compare the designs of parts (b) and (c) with respect to cost and delay.

7.8. Periodic balanced sorting networks

7.9.

7.10.

7.11.

a. Give an example of an input sequence that is sorted after passing through the first two

stages of the 8-sorter in Fig. 7.14 but that is still unsorted at the output of the first stage.

b. Givean example of an input sequence whose sorting requires all three stages of the 8-sorter

inFig. 7.14 (i.e,, it is still unsorted at the output of the second stage).

c. Provethe correctness of the periodic balanced 8-sorter in Fig. 7.14.
d. Using the zero—one principle, prove the correctness of periodic balanced n-sorters in

general.

Merging networks
Consider the merging of asingle input value x with asorted list of nvaluesy(i),0<i<n-1.

X—?— X
¥{0, y(0) _]
y(1 y(
n2-1)
¥(e
- y(n/2+1)
y(nv2+2)
y(n-1) y{n-1)

Let such a (1, n)-merger be depicted as in the left diagram above.

a. Provethat the diagram on the right above represents avalid way to construct a (1, n)-merger.
b. Find the delay and cost of a (1, n)-merger recursively constructed asin part (a).
c. Provethat the (1, n)-merger resulting from the construction suggested in Part (a) is optimal.

Sorting networks based on shearsort
Design 16-sorters based on shearsort on 2 x 8, 4 x 4, and 8 x 2 meshes and compare the resulting
designs with respect to various figures of merit.

a. Design each smaller sorter that is needed by using the same shearsort-based approach.
b. Feel freeto use the best 4-sorter and 8-sorter designs that you can get as building blocks.

Vdlidity of sorting networks
Show that the following circuit built of 4-sortersisavalid 16-sorter.

146

7.12.

7.13.

7.14.

7.15.

INTRODUCTION TO PARALLEL PROCESSING

i

Sco

|
1

L 2 w4

28

Synthesis of sorting networks

Define a pairwise 2n-sorter as follows. There are 2n inputs and 2n outputs yo to yon-1. The
outputs form n pairs o ¥1)s 720 ¥3)s + « « s (Y22 Y2n~1)- The pairwise 2n-sorter guarantees that
maX Y2k Y2k+1) S Min(yape2, Yars3) for al k. Prove or disprove the following assertion: The
pairwise 2n-sorter defined above is aways a 2n-sorter.

Merging networks

a. Prove or disprove: One can construct a (2m, m) merging network from two (m, m)-mergers
and no other component.

b. How many (m, m)-mergers are needed to build a (3m, m)-merger and why?

c. How many (m, m)-mergers are needed to build a (2m, 2m)-merger and why?

Synthesis of sorting networks

An n-sorter design can be converted to a kn-sorter design by replacing each line with k lines,
replacing each 2-sorter by a (k, k)-merger, and preceding al of the above with n parallel
k-sorters. The above procedure can be used, e.g., to construct a 3n-sorter, given the design for
an n-sorter. A 3n-sorter can aso be designed from three n-sorters, one (n, n)-merger, and one
(n, 2n)-merger in the obvious way.

a Design a6-sorter, a 9-sorter, and a 12-sorter based on the first approach.

b. Repeat part (a) for the second approach.

c. Compare the results in parts (a) and (b) with each other and with the sorter designs
appearing in this chapter and discuss.

d. For k=n, the first construction above yields an n?-sorter based on a Batcher n-sorter. How
does the resulting design compare with an n2-sorter built directly based on Batcher's
method?

Selection networks

a Justify the labels assigned to various lines in Fig. 7.17.

b. A typelll (n,n/2)-selector can be converted to an n-sorter by attaching two (n/2)-sorters
to its upper-half and lower-half outputs. For example, applying this method to the
(8,4)-selector of Fig. 7.17 yields the 8-sorter of Fig. 7.15. Using the information provided
by the line labels in Fig. 7.17, show that the two additional 4-sorters can be somewhat
smplified.

c. Prove the bound Cpy(n, k) 2 (n - k) l'logz(k +1)]given in Section 7.6 for the cost of a type
Il selection network. Hint: Label the lines in the selection network as follows. Label al
inputs with 0. The upper output of each comparator is labeled by the smaller of its two

SORTING AND SELECTION NETWORKS 147

d.

input labels and the lower output by the larger input label plus 1. Show that the sum of the

labels at the outputs of the selection network equals the total number of comparators in the
network and that n — k of the outputs have labels that are greater than or equal to Oogak
+1)0.

Show that the bound of part (a) istight for k=1 and k= 2.

7.16. Classifier networks

a

Prove that an n-input classifier (defined at the end of Section 7.6) hasadelay of Q (log n)
and a cost of Q (nlog n). Hint: A classifier isatype Il selection network.

Show how an n-sorter can be synthesized using classifier networks of various sizes as the
only building blocks.

Find the asymptotic delay and cost of the sorting networks derived in part (b) and compare
the results with those of Batcher sorting networks.

Show how an (n, k)-selector, where k is an arbitrary given number, can be synthesized using
classifier networks of various sizes as the only building blocks.

Determine the worst-case asymptotic delay and cost of the (n,k)-selector derived in part
(d).

REFERENCES AND SUGGESTED READING

[Ajta83]

[Ak197]
[Batcss]

[Dowdgg]
[Jimb6]
[Knut73]
[Leiga7]

[Pipp91]
[Sun94]

Ajtai, M., J. Komlos, and E. Szemeredi, “Sorting in c log n Parallel Steps,” Combinatorica, Vol. 3,
pp. 1-19, 1983.

Akl, S G., Parallel Computation: Models and Methods, Prentice-Hall, 1997.

Batcher, K., “Sorting Networks and Their Applications,” Proc. AFIPS Spring Joint Computer Conf.,
Vol. 32, pp. 307-314, 1968.

Dowd, M., Y. Perl, L. Rudolph, and M. Saks, “The Periodic Balanced Sorting Network,” J. ACM,
Val. 36, No. 4, pp. 738-757, October 1989.

Jimbo, S. and A. Maruoka, “A Method of Constructing Selection Networks with O(log n) Depth,”
SAM J. Computing, Vol. 25, No. 4, pp. 709-739, August 1996.

Knuth, D.E., The Art of Computer Programming: Vol. 3—Sorting and Searching, Addison-Wesley,
1973.

Leighton, T., Y. Ma, and T. Suel, “On Probabilistic Networks for Selection, Merging, and Sorting,”
Theory of Computing Systems, Vol. 30, pp. 559-582, 1997.

Pippenger, N., “Selection Networks,” SAIM J. Computing, Vol. 20, pp. 878-887, 1991.

Sun, J., E. Cerny, and J. Gecsel, “Fault Tolerance in a Class of Sorting Networks,” 1EEE Trans.
Computers, Vol. 43, No. 7, pp. 827-837, July 1994.

This page intentionally left blank.

Other Circuit-Level
Examples

In this chapter, we study three application areas along with parallel architectures
that were developed to address their specific needs. The application areas are
dictionary operations, parallel prefix computation, and fast Fourier transform.
The resulting hardware structures (tree machine, parallel prefix networks, and
butterfly network) are highly specialized to the application at hand and might
be inappropriate for dealing with other problems. The common thread through
this chapter is that, like sorting networks in Chapter 7, the architectures are fully
specified at the circuit level; i.e., the internal structure of each processor can be
drawn as a digital circuit, given the simplicity of its control functions and data
manipulations. Similarly, the interprocessor links are fully defined and easily
realizable with modest area overhead and delay. Chapter topics are

e 8.1. Searching and dictionary operations
e 8.2. A tree-structured dictionary machine
8.3. Parallel prefix computation

e 8.4. Parallel prefix networks

8.5. The discrete Fourier transform

e 8.6. Parallel architectures for FFT

149

This page intentionally left blank.

OTHER CIRCUIT-LEVEL EXAMPLES 151

8.1. SEARCHING AND DICTIONARY OPERATIONS

Searching is one of the most important operations on digital computers and consumes
agreat deal of resources. A primary reason for sorting, an activity that has been estimated to
use up more than one-fourth of the running time on most computers, is to facilitate searching.
Thus, it is safe to say that searching consumes at least 25% of the running time on most
computers, directly or indirectly. Obvioudly, it would be desirable to speed up this operation
through the application of parallelism.

Let us first see how searching for yin alist of n keys can be speeded up on a p-processor
PRAM. Assume that the input list X is sorted in ascending order. Recall that a single processor
uses the binary search algorithm to search a sorted list efficiently in log, (n+1) Ccomparison
steps. The given key y is compared with the key X, - at or near the middle of the list. If
Y =Xgy 20 then the search is over. Two other outcomes are possible:

Y < X/ 20 Restrict the search to xgthrough X /o0

Y> X2 Restrict the search to X, /2.4 through x,,_;

In either case above, the problem size isreduced to n/2, leading to a logarithmic number of
steps. The extension of the binary search algorithm to (p + 1)-ary search on a p-processor
PRAM is straightforward and leads to a running time of k= Cog,(n+ 1)/log,(p + 1) Osteps.
The proof is by induction. Let n= (p + 1)¥ —1 for some k; otherwise find the smallest k such
that n< (p+ 1)~ 1. The claimed running time can clearly be achieved for k= 1 (p processors
search a p-element list in one step). Assume that k — 1 steps are sufficient for any list of size
not exceeding (p+ 1)* — 1. In Step 1, Processor i compares y with the i(p + 1)¥"'th element
in x. Either one of the processors finds y or the search is restricted to a segment of the list of
asizeno larger than (p + 1) k1 _ 1. Hence, k steps are needed overall.

The above algorithm is optimal in that no comparison-based searching algorithm can
be faster. We use induction on k to show that after k parallel comparisons, there must be one
or more contiguous unexamined segments of the list x containing at least (n + 1)/(p + 1)k -1
keys. Equating this expression with 0 yields alower bound on the number k of steps. The
speed-up achieved by the above parallel search algorithmis

Oog(n + 1) L) Dog, (N + 1) /log,(p +)= log o(p + 1)

which is quite disappointing, given the optimality of the algorithm.

Even though single searches in a sorted list of keys cannot be significantly speeded up
by parallel processing, all hope is not lost and parallel searching is still important. First, in
applications where the list of keys changes quite frequently, the requirement of a sorted list
is unrealistic and leads to significant overhead that must be accounted for in analyzing the
overall application. Associative memories and processors can be quite efficient in searching
unsorted lists and usualy offer linear speed-up in this context (see Section 4.1). Second, and
thisis our primary focus here, when m different searches are to be performed in the same
list of n keys, parallel searching might be quite efficient and can lead to much better speed-up.
This problem, which is exemplified by a word processor’s spelling checker having to verify
that alist of document words appear in a standard dictionary, isknown as batch searching.

152 INTRODUCTION TO PARALLEL PROCESSING

To put the need for searching in a realistic application context, we define a set of
dictionary operations on a given list of n records with keys xo, X1, . . . , X,,;. Wewant to be
able to perform the following three basic operations efficiently. In most of what follows, “the
record” can be replaced with “arecord” or “all records’ if multiple records with the same
key value can exist among the stored records.

search(y) Find the record with key y and return its associated data.
insert(y,2 Augment the list with arecord having the key y and the data part z
delete(y) Remove the record with key y [and, optionally, return the associated data).

The operation delete(y) is said to be redundant if no record with the key value yisfound. In
such a case, the operation can be simply ignored or it might signal an exception. Similarly,
the operation insert(y, z) is said to be redundant if a record with the key value y is already
stored and the list of recordsiis restricted to hold only one record with agiven key value. In
this case, we often take “insert” to mean “update or change the data part of the record with
the key valuey to z,” athough ignoring the redundant insertion is also an option.
Additionally, some or al of the following operations might be of interest:

findmin Find the record with the smallest key value and return its associated data.
findmax Find the record with the largest key value and return its associated data.
findmed Find the record with the median key value and return its associated data.
findbest (y) Find the record with the best or nearest match to the key valuey.
findnext (y) Find the record whose key is the successor of the key valuey.
findprev(y) Find the record whose key is the predecessor of the key value'y.
extractmin Remove the record(s) with the smallest key value [return the record data).
extractmax Remove the record(s) with the largest key value [return the record data).
extractmed Remove the record(s) with the median key value [return the record data].

The findmin and extractmin (or findmax and extractmax) operations are sometimes referred
to as priority queue operations. For example, the minimum key value might correspond to
the highest-priority task in a queue of tasks that are ready for execution. Finding the priority
level of the highest-priority task in the queue might be of interest when we want to decide
if a currently running task can continue or must be preempted. Extracting the highest-priority
task from the priority queue is required when we want to schedule the task to run on aniidle
processor.

8.2. A TREE-STRUCTURED DICTIONARY MACHINE

In dealing with circuit-level designs, we essentially proceed in a direction that is the
reverse of what is done in the rest of the book: Rather than defining a “general -purpose”
parallel architecture (e.g., PRAM, 2D mesh, hypercube) and developing agorithms for
solving various problems of interest on it, we take a problem and deal with one or more
circuit realizations or architectures that can solve it efficiently in parallel.

Tree-structured dictionary machines, an example of which is described in this section,
were proposed by Bentley and Kung [Bent79], among others, and later expanded and refined

OTHER CIRCUIT-LEVEL EXAMPLES 153

by many other researchers. Others have proposed dictionary machines based on meshes,
hypercubes, and so forth (see, e.g., [Parh90] and [Nara96] for references and latest develop-
ments in dictionary machines).

The tree machine consists of two back-to-back complete binary trees whose leaves have
been merged (Fig. 8.1). The “circle” tree is responsible for broadcasting the dictionary
operations that enter viathe “input root” to all of the leaf nodes that hold the records. The
“triangle” tree combines the results of individual operations by the leaf nodes into an overall
result that emerges from the “output root.” In an actual hardware implementation, the double
tree might be folded, with circular and triangular nodes merged just like the leaf nodes.
However, even with folding, two separate functions of broadcasting and combining will have
to be performed, making the representation of Fig. 8.1 more appropriate than a simple binary
tree.

Searches can be easily pipelined through the levels of the two treesin Fig. 8.1. Asthe
first instruction, search(y o), is passed from the input root to its two children, the next one,
search(y1), can be accepted. The two instructions are pipelined in lockstep, eventually
reaching the leaf nodes in successive cycles. Each leaf processor then responds to the search
instruction, with the search response (e.g., yes/no, leaf node ID, key value, data, or a
match-degree indicator in the case of best-match search) combined, in the same pipelined
fashion, in the lower tree.

The combining function of the triangular nodes depends on the search type. In the
following operations, it is possible to pass aleaf node ID (indicating the location of the |eaf
node where a match was found), along with the control information and data, as part of the
search result.

"Circle”
Tree

xQ b3} X2 X3 X4 Xs X6 x7

“Triangle"
Tree

Output Root

Figure 8.1. A tree-structured dictionary machine.

154 INTRODUCTION TO PARALLEL PROCESSING

search(y) Passthelogical OR of the “yes’ signas, aong with data from the “yes’
side, or from one of the two sides if both indicate “yes’ (the choice being
arbitrary or by priority).
findmin Passthe smaller of the two key values and its associated data.
findmax Similar to findmin.
findmed The median-finding operation is not supported by this particular design.
findbest (y) Passthelarger of the two match-degree indicators along with the record.
findnext(y) Leaf nodes generate a“larger” bit; findmin is done among the larger values.
findprev(y) Similar to findnext.

If there are n leaf nodes, a search instruction reaches the leaves in [log,n] steps after it enters
the input root node and its result will emerge from the output root node after [log ,]
additional steps. The total latency is thus 2[log , n]+1 steps, with one search result emerging
in each subsequent cycle. Thus, the throughput can approach one search per cycle with a
suitably large batch of searches. If searches were the only operations of interest and the list
of records were stetic, the speed-up relative to sequential binary search would not be
impressive. We are in effect using 3n — 2 nodes or simple processors (circles, squares, and
triangles) to reduce the running time per search from log, nto 1.

There are two redeeming factors, however. First, because the list of records does not
have to be sorted, both insertion and deletion (extraction) are almost as simple as searching,
as we shall see shortly. Second, each of our nodes is much simpler, and thus significantly
faster, than a sequential processor with the need to calculate the address of the next
comparison location, read data from memory, and then set new search-boundary addresses
for every comparison.

Deleting arecord is straightforward when there are no duplicate keys or the deletion is
intended to remove all records with the given key y. The delete(y) instruction is broadcast to
all leaf nodes, with those leaf nodes whose key values are equal to y marking their records
as “deleted.” Reclaiming the space occupied by such records will be discussed along with
insertion. New searches can enter the tree immediately following a delete instruction,
because by the time these search instructions reach the leaf nodes, the deletion will have
already taken place.

Both extractmin and extractmax must be performed in two phases. First, the location of
the leaf node holding the minimum or maximum key value is identified. Once this result has
emerged from the output root node, an instruction is inserted for extracting the record. Thus,
the latency of these instructionsis twice as large. Furthermore, no search instruction should
be allowed to enter the tree before the second phase has begun.

Insertion of arecord is aso straightforward. If duplicate keys are not allowed and we
are not certain that arecord with the key value y does not already exist, we may precede the
insert(y, 2) instruction with a delete(y) instruction. The main difference between the insert
instruction and the previous ones is that the instruction is not broadcast to all leaf nodes, as
we do not want every empty leaf node to insert the new record. Rather, a mechanism is needed
to selectively route an insert instruction to one, and only one, empty leaf node.

A simple mechanism for routing an insert instruction is as follows. Suppose that each
nonleaf node maintains two counters indicating the number of empty leaf nodes in its | eft
and right subtrees, respectively. When an insert instruction is received by a nonleaf node, it
is sent to one of the subtrees with a nonzero free-space count (perhaps to the one with the

OTHER CIRCUIT-LEVEL EXAMPLES 155

larger count if both are nonzero or always to the left subtree if possible). The corresponding
subtree counter is then decremented by 1. Figure 8.2 shows an example eight-leaf tree
machine with three empty leaves and the free-space counter values associated with each
circular node. We see in Fig. 8.2 that as the insert instruction is passed to the left child of the
root node, the left counter of the root node is decremented from 1 to 0.

The only remaining problem is to show how the counter values are updated on deleting
arecord. When a delete instruction is being sent down the upper tree, it is not yet known
which leaf node will perform the deletion and, thus, which counters must be incremented.
However, if we require that the deleting leaf’s ID be provided to us at the output root, a
second instruction can be inserted into the machine for the sole purpose of updating the
free-space counters. The dlight delay between a record being deleted and its space becoming
usable again is not a serious problem unless the tree machine is amost full. Even in this latter
case, the speed penalty is not paid unless an insertion is required shortly after a delete
instruction.

An interesting variant of the tree machine for dictionary operations uses a systolic
binary-tree data structure in which the root of each subtree contains the smallest, median
value, and largest of the key values in that subtree (Fig. 8.3). When a subtree holds an odd
number of keys, its root contains three values and its two subtrees contain the same number
of keys. Otherwise, by convention, the left subtree contains one fewer key. This information
is held in the root in the form of a single-bit flag, so that the next element inserted will be
forwarded to the left subtree and the it is flipped to indicate complete balance. With this
data structure, the smallest, largest, and median of the stored values is readily accessiblein
one clock cycle via the root node. Specifying the details of the algorithms is left as an
exercise.

inseri(y.z)

QOutput Root

Figure 8.2. Tree machine storing five records and containing three free slots.

156 INTRODUCTION TO PARALLEL PROCESSING

Figure 8.3. Systolic data structure for minimum, maximum, and median finding.

8.3. PARALLEL PREFIX COMPUTATION

Parallel prefix computation was defined in Section 2.1, with several algorithms provided
subsequently in Sections 2.3 (linear array), 2.4 (binary tree), 2.5 (2D mesh), and 5.4 (PRAM).
Here, we use an alternative formulation in terms of linear recurrences. Let 0 be an associative
binary operator over S i.e, (xOy) O z=x 0 (yOz)foralxy,zU S Given asequence of
ninput values x4, X,, . . ., X, solve the linear recurrence

5i=5_,®x;

where sy istheidentity element of the operator O (e.g., O for addition, 1 for multiplication).
Note that the ith output value is s; =% O xo0 - O X;.

The linear recurrence formulation of the prefix computation immediately suggests a
sequential circuit implementation shown in Fig. 8.4 (left). Oneinput is provided to the circuit,
and one output is produced, in every clock cycle. Obviously, the clock period must be long
enough to accommodate the worst-case signal propagation delay in the circuit computing O
plus the latch hold and setup times. Figure 2.1 represents a computation dependence graph
or asignal flow graph for this scheme, if we take the clock period as a unit of time.

L> ‘ — s, - 3

x; —» x; —P>

o

Lau!hu Laxches

Figure 8.4. Prefix computation using a latched or pipelined function unit.

OTHER CIRCUIT-LEVEL EXAMPLES 157

X6 @ X7

Xi-1

Delays 512
—

iy

X8 ®X; 9 ® X 10 ® X5 5y
tmcdo:iln ung

com

P X4 ®X;5

Figure 8.5. High-throughput prefix computation using a pipelined function unit.

A g-stege pipelined function unit does not help in speeding up the prefix computation,
for even though the clock period is now much shorter, one input can be supplied after every
g clock ticks. In fact, because of the added overhead for latching of the intermediate results,
the pipelined function unit shown in Fig. 8.4 (right) actually slows the computation down.

Figure 8.5 shows how parallelism can be applied to improve the throughput to one input
or result per clock tick. It is easy to generalize this scheme to use a pipelined function unit
with more stages, leading to a correspondingly higher throughput with a greater investment
in hardware. However, there is alimit beyond which throughput cannot be improved using
this scheme. Namely, if the latching overhead per pipeline stage is c, then the throughput can
never exceed 1/c no matter how many pipelined units are used or how they are arranged.

In Section 8.4, we will review some of the methods for designing faster prefix compu-
tation circuits. The prefix computation is quite important. We discussed some of its applica-
tions in Section 2.4. Many other interesting applications are reviewed by Lakshmivarahan
and Dhall ([Laks94], pp. 5-35).

8.4. PARALLEL PREFIX NETWORKS

For the sake of brevity and concreteness, we will discuss the design of circuits for
computing parallel prefix sums with unsigned integer inputs, i.e., the operator [istaken to
be unsigned integer addition. The resulting circuits, which are built of two-input adders, will
be referred to as (parallel) prefix sum networks. Replacing the two-input adders in these
networks with blocks that compute the operator [0 will yield a general parallel prefix
network.

There are many similarities between prefix sum networks and sorting networks that we
discussed in Chapter 7. A two-input binary adder is roughly of the same complexity as a
two-input comparator. Like comparators, these adders can be implemented with parallel
inputs or with bit-serial inputs. In the latter case, the input order should be LSB-first, as
opposed to MSB-first for two-input comparators. Note that if parallel inputs are used, the
adders need not be of the fast variety (e.g., carry-lookahead). In most cases, a simple
ripple-carry adder will do, because the rippling delays in a set of cascaded adders do not add

158 INTRODUCTION TO PARALLEL PROCESSING

up; the rippling in the next adder downstream can begin as soon as the LSB of the sum from
the previous adder becomes available.

Several strategies can be used to synthesize a prefix sum network. The two divide-and-
conguer methods discussed in connection with PRAM in Section 5.4, and depicted in Figs.
5.7 and 5.8, can form the basis for hardware prefix sum networks. Figures 8.6 and 8.7 depict
the resulting networks. The analyses of Section 5.4 can be used to deduce the delays of
T(n)=2log,n-1 and T(n) = log, n for these circuits, where the unit of time is the delay of
a two-input adder. The cost recurrences for the networks of Figs. 8.6 and 8.7 areC (n) =
C(n/2)+n—1=2n-2-log,nand C(n) =2C(n/2) + n /2= (n /2) log, n, respectively.

The two designsin Figs. 8.6 and 8.7 offer a clear speed—cost trade-off. The second design
is faster (log, n as opposed to 2 log, n— 1 levels) but also much more expensive [(n/2) log,
n adders as opposed to 2n -2 —log, n adder blocks]. Another problem with the second design
is that it leads to large fan-out requirements if implemented directly. We will see shortly that
intermediate designs, with costs and delays that fall between the above two extremes, are
also possible.

The design shown in Fig. 8.6 is known as the Brent—Kung parallel prefix graph. The
16-input instance of this graph is depicted in Fig. 8.8. Note that even though the graph of
Fig. 8.8 appears to have seven levels, levels 4 and 5 from the top have no data dependency
and thus imply a single level of signal delay. In general, an n-input Brent—-Kung parallel
prefix graph has adelay of 21og, n — 2 levels and acost of 2n—2 —log, n blocks.

Figure 8.9 depicts a Kogge-Stone parallel prefix graph that has the same delay as the
design shown in Fig. 8.7 but avoids its fan-out problem by distributing the required
computations. An n-input Kogge-Stone parallel prefix graph has a delay of log, n levels and
acost of nlog,n—n+ 1 blocks. The Kogge-Stone parallel prefix graph represents the fastest
possible implementation of a parallel prefix computation if only two-input blocks are
allowed. However, its cost can be prohibitive for large n, in terms of both blocks and the
dense wiring between blocks.

Other parallel prefix network designs are also possible. For example, it has been
suggested that the Brent—Kung and Kogge-Stone approaches of Figs. 8.8 and 8.9 can be
combined to form hybrid designs [Sugl90]. Figure 8.10 shows an example where the middle

Xp1 Xp-2 e X3 X9 X3 Xp

&

Prefix Sum n/2

?/

8pnt Sp2 83 82 81 8

Figure 8.6.Prefix sum network built of one n/2-input network and n— 1 adders.

OTHER CIRCUIT-LEVEL EXAMPLES 159

Xp-1 Xo2 Xnpat X

L. |

Prefix Sum n/2 Prefix Sum n/2

Sn1 San2

Figure 8.7. Prefix sum network built of two n/2-input networks and n/2 adders.

four of the six levelsin the design of Fig. 8.8 (essentially doing an eight-input parallel prefix
computation) have been replaced by an eight-input Kogge-Stone network. The resulting
design has five levels and 32 blocks, placing it between the pure Brent-Kung (6, 26) and
pure Kogge-Stone (4, 49) designs.

More generally, if asingle Brent—Kung level is used along with an n/2-input Kogge—
Stone design, the delay and cost of the hybrid network become log, n+ 1 and (n/2)log, n,
respectively. The resulting design is close to the minimum in terms of delay (only one more
than Kogge-Stone) but costs roughly half as much.

The theory of parallel prefix graphs is quite well developed. There exist numerous
theoretical bounds and actual designs with different restrictions on fan-in/fan-out and with

s XXy X X Ko B X X X5 X X X X X

\

D1
1511 | &

AN
AN

815 514513 512 8y 51989 S3 S; S Sg 8, 8, 8, 8 &

Figure 8.8. Brent-Kung parallel prefix graph for 16 inputs.

160 INTRODUCTION TO PARALLEL PROCESSING

S15 514513 512.81) 81039 Sg 8, S S5 8, 8, S, S, 8

Figure 8.9. Kogge-Stone parallel prefix graph for 16 inputs.

s Ka X X2 Xy X% X X XK X XK KX X

S15 514513 $12 811 1089 S5 87 Sg S5 8, 83 8, 8; 5

Figure 8.10. A hybrid Brent-Kung/Kogge—Stone parallel prefix graph for 16 inputs.

OTHER CIRCUIT-LEVEL EXAMPLES 161

various optimality criteriain terms of network cost and delay. For a more detailed discussion,
see Lakshmivarahan and Dhall ([Laks94], pp. 133-211).

8.5. THE DISCRETE FOURIER TRANSFORM

The discrete Fourier transform (DFT) is defined as follows. Given the sequence
Xgo Xy, - -+ 4 X,_1, COMpUte the sequence yg, ¥y, - - . » ¥,y according to

n-1
= [}
y; = z wyx;

The DFT is expressed in matrix form as y = F X, which is shorthand for

1 1 1 o1
Yo %o
will o o ..

y';-l -1 2n-1 | [

1 of! 0 el

In the above expressions, w, is the nth primitive root of unity, i.e., @} = 1and m{, #1For 1
< j < n. For example, @, = -1/2+i¥372and o, = i, where i = v=1. The following are easily
derived:

— g2ni/n
W, =¢e

ol = W'/ = cos(2mj/n) + isin(27j/n)

The inverse DFT can be used to recover the x sequence, given the y sequence. It can be shown
that the inverse DFT is essentially the same computation as the DFT. That is,

1 n-1 i
i=q Z,-.,om” Y

Note that n processors can compute the DFT in O(n) time steps, without any communication,
if the jth processor computes y;. Also, given the matrix formulation of the DFT, any
matrix—vector multiplication a gorithm can be used to compute DFTs. However, the special
structure of F, can be exploited to devise a much faster algorithm based on the divide-and-
conguer paradigm. The resulting algorithm, described below, is known as the fast Fourier
transform (FFT) agorithm.

Let us partition the DFT summation into odd- and even-indexed terms:

n-1
" ' i
y‘.=2. whx; = Z (o,{xj + Z olx;
70 jeven{(2r) Jodd (2r+1)

n/2-1 ; n/2-1

— ir r

- 2 W, /2%, T @, Z O /7%2m1
r=0 r=0

162 INTRODUCTION TO PARALLEL PROCESSING

where we have used the identity w,;, = w? in rewriting the two summation terms. The two
termsin the last expression are n/2-point DFTs that can be written as

Xo *y
u=F, ., x;2 v=F,, ng
Xp-2 Xp-1
Then:
u+ oly, 0<i<n/2
Nn= Uy + O, p B/2SE<R O Yy n =t + 00"y,

Hence, the n-point FFT algorithm consists of performing two independent n/2-point FFTs
and then combining their results using n multiply—add operations. The sequential time
complexity of FFT is thus characterized by the recurrence

T(n) = 2T(n/2) + n=nlog, n

If the two n/2-point subproblems can be solved in parallel and the nmultiply—add operations
are aso concurrent, with their required inputs transferred to the computing nodes instantly,
then the recurrence for parallel time complexity becomes

T(n)=T(n/2) + 1=log, n

In both cases, the unit of timeis the delay of performing one multiply—add operation.

Before discussing hardware circuits to implement the FFT algorithm, it isinstructive to
examine some applications of DFT to polynomia arithmetic. First, note that the DFT can
be viewed as polynomial evaluation:

Giventhe polynomia f(x)=c, X" +... +cx+c,

Compute @9, f@), ..., fler™
In matrix form,
F@?) ¢
f (C.O,ll) -F, C:l
sy Lo
In asimilar way, the inverse DFT can be used for polynomial interpolation:
& F@)
e rt] TOD L it i = 2 0 = L (i
-t F@

The problem of multiplying two polynomials f and g to obtain their product h, where

OTHER CIRCUIT-LEVEL EXAMPLES 163

gx) = an,_lf"_' + e agx +ag
R(x) = b, X"+ + bix + by

f)=gx)xhx)=c,_ @'+~ +eox+c, with n=n"+n"-1

that is, computing the gs given the gsand bys, can be converted to three n-point DFTs and
n=n"'+n" -1 complex multiplications as follows:

1. Evaluate g(x) and h(x) at the n nth roots of unity (two n-point DFTSs).

2. Evauatef(w!) = g(w’) x h(w!) for al j (n complex multiplications).

3. Interpolate to find the gs(an n-point inverse DFT).

Thus, Tpoly- mut = 3Tper T 1. If we use an O(log n)-time FFT algorithm, the overall time for
polynomial multiplication will be O(log n).

Convolution of two n'-element sequences a and b, defined as computing the n-element
sequence CWith ¢; = ab, + a; b, + - + agb;, for 0<j<2n’ -2, is identical to polynomial
multiplication.

Finally, integer multiplication is intimately related to polynomia multiplication, and
thus to DFT. Straightforward k-bit integer multiplication circuits require O(log k) delay and
O(k3) cost (k2 bit multipliers or AND gates, followed by a carry-save adder tree and a
logarithmic-time fast adder). An O(log k)-time integer multiplication algorithm for k-bit
numbers, using O(k log? k log log k) bit-level processors, is presented by Leighton ([Leig92],
pp. 722—729). The resulting multiplication circuit can be used to multiply O(log k) pairs of
k-bit integersin O(log k) time through pipelining, thus leading to O(k log k log log k) cost
per multiplication, which is nearly optimal.

8.6. PARALLEL ARCHITECTURES FOR FFT

Figure 8.11 (left) shows an eight-point FFT network that is derived directly from the
divide-and-conquer computation scheme of Section 8.5. Each circular node performs a
multiply—add computation. An inductive proof that this network does indeed compute the
FFT can be easily constructed. Assume that the y; and v; values, the results of n/2-point FFTs
with even- and odd-indexed inputs, are obtained in the upper and lower parts of the circuit,
asshowninFig. 8.11. Then, it is easy to see that the last stage of the circuit hasjust the right
connectivity to finish the computation by performing the required n multiply—adds.

By rearranging the nodes of our FFT circuit, which is known as the butterfly network,
we obtain an equivalent representation, as shown in Fig. 8.11 (right). This representation is
known as the shuffle—exchange network. This network, and the reason for its name, will be
discussed in Section 15.5. For now, we view it as simply an equivalent representation of the
FFT network that offers the advantage of identical connectivities between the various stages
of nodes. In the original FFT network, the inputs are separated into even- and odd-indexed
and provided to the top and bottom half of the circuit, respectively, with the outputs obtained
in ascending index order. In the equivalent shuffle-exchange version, the inputs are in
ascending index order from top to bottom, with the outputs obtained in bit-reversal order.

164 INTRODUCTION TO PARALLEL PROCESSING

Figure 8.11. Butterfly network for computing an eight-point FFT.

This means that the order of the indices of the output elements is sorted by the reverse of
their binary representations. For example, the binary representation of 4 is 100, with its
reverse being 001. Thus, y, is the second output from the top.

More efficient FFT networks are possible. For example, Yeh and Parhami [Y eh96]
present a class of FFT networks that are more modular than those in Fig. 8.11 and thus less
costly in VLS| implementation. The shuffle-exchange circuit of Fig. 8.11 (right) can be
somewhat simplified by removing half of the links, as shown in Fig. 8.12 (l&ft). The arrows
in Fig. 8.12 show the path of data movements (through an intermediate node) in lieu of the
missing links.

The butterfly network, and its variants discussed above, can become quite complex for
large n. In this case, more economical implementations may be sought. One way is to project
the circuit of Fig. 8.12 (left) in the horizontal direction, so that a single multiply—add node

Figure 8.12. FFT network variant and its shared-hardware realization.

OTHER CIRCUIT-LEVEL EXAMPLES 165

Figure 8.13. Linear array of logz n cells for n-point FFT computation.

performs, in successive time steps, the function of all of the nodes located in one row. The
resulting circuit is shown in Fig. 8.12 (right). Here, the single column of multiply—add nodes
alternately acts as the various columns of nodes in the diagram on the |eft, with the partial
computation results that would be passed from one column to the next saved in registers or
latches for use in the following time step. This approach reduces the cost of the network from
O(n log n) to O(n), without significantly increasing its delay.

An even more economical implementation results if the diagram is projected vertically
instead of horizontally. Figure 8.13 shows the resulting linear-array circuit, with feedback
shift registers inserted to maintain the proper timing of the various node inputs [Kwai96].
Discovering the details of how this design worksis |eft as an exercise.

PROBLEMS

8.1. Pardlel searching
In Section 8.1, a lower bound for parallel searching of a sorted input list using comparison
operations was obtained and an algorithm was given that matched the lower bound.

a. Obtain alower bound for parallel searching of an unsorted input list.

b. Provide aparallel search agorithm that matches the lower bound of part (a).

c. Canoneimprove the lower bound of part (a) or the algorithm of part (b) if theinput listis
known to be partially sorted in the sense that no element is more than mlocations away
from its correct position in a sorted input list, where m< < n?

8.2. Tree machine
This problem relates to the tree-structured dictionary machine of Section 8.2.

a. We noted that both extractmin and extractmax must be performed in two phases, with no
search instruction allowed to enter the tree before the second phase has begun. Can any
instruction be entered immediately after the above instructions? Why (not)?

b. Design bit-serial processors for a tree machine that performs only the three basic dictionary
operations of search, insert, and delete.

8.3. Modified tree machine
Consider avariant of the tree-structured dictionary machine of Section 8.2 in which the leaves

166

8.4.

8.5.

8.6.

8.7.

8.8.

INTRODUCTION TO PARALLEL PROCESSING

are interconnected as a linear array. Records are stored at the left end of the array; empty slots
are at the right.

a. Discuss how this change affects the operation of the leaf nodes and the execution of the
insert instruction.

b. Suppose that in the modified tree machine, the leaves are to hold the records in ascending
order of the key values from left to right. Propose a method for executing the insert
instruction that maintains the sorted order. Does the sorted order lead to any advantage?

Systolic priority queue

The systolic binary tree data structure, described at the end of Section 8.2 and depicted in Fig.
8.3, can perform insert, extractmin, extractmax, and extractmed operations at the rate of one
per clock cycle.

a. Describe the insertion agorithm in detail.

b. Describe algorithms for the three extract operations in detail. Make sure that extractmin
and extractmax lead to equal elements being output in FIFO order.

c. Describe asimplified version of the data structure, and its associated a gorithms, if we only
need to extract the smallest or largest value (median extraction is not needed).

d. A simple priority queue only needs the insert and extractmin operations. Can we further
simplify the data structure and agorithms of part (c) in this case?

Solving linear recurrences

Show that alinear recurrence of the form y; = a;1y;-1 + @i2yi—3 + ** + @jYi—m + X; Can be solved
by a parallel prefix computation involving vectors and matrices. Hint: Look ahead to the end
of Section 11.3 where it is shown that the solution of atridiagonal system of linear equations
can be converted to a parallel prefix computation.

Pipelined prefix computation
Consider the prefix computation scheme of Fig. 8.4 (right) and its parallel version in Fig.
8.5.

a. Ignoring pipelining overhead and start-up time, the latter is 4 times faster than the former.
Is this inconsistent with the assertion that we cannot achieve a speed-up of more than 3
with three processors?

b. Draw asimilar diagram assuming a function unit pipeline that has eight stages.

Repeat part (b) for a three-stage pipeline.

d. Present ageneral method of implementation for any ¢rstage pipeline.

o

Parallel prefix networks

a. Determine the depth and cost of a 64-input hybrid parallel prefix network with two levels
of the Brent—Kung scheme at each end and the rest built by the K ogge-Stone construction.

b. Compare the design of part (a) with pure Brent—-Kung and Kogge-Stone schemes and
discuss.

Parallel prefix networks

a. Obtain delay and cost formulas for a hybrid paralel prefix network that has | levels of
Brent—Kung design at the top and bottom and an n/2'-input Kogge-Stone network in the
middle.

b. Use the delay—cost product figure of merit to find the best combination of the two
approaches for the number n of inputs ranging from 8 to 64 (powers of 2 only).

OTHER CIRCUIT-LEVEL EXAMPLES 167

8.9.

8.10.

8.11.

8.12.

8.13.

8.14.

8.15.

Parallel prefix networks

a. Find delay and cost formulas for the Brent-Kung and Kogge-Stone parallel prefix
networks when the number n of inputsis not a power of 2.

b. Draw Brent—Kung, Kogge-Stone, and hybrid parallel prefix graphs for 24 inputs.

c. Using theresults of part (b), plot the cost, delay, and cost—delay product for the three types
of networks for n = 16, 24, 32 inputs and discuss,

Parallel prefix networks
The large fan-out of s, /2-1 in Fig. 8.7 can be replaced by a tree of constant fan-out logic
elements. Show how this might be done to minimize the speed penalty.

Discrete Fourier transform

a. Write down the Fourier and inverse Fourier matrices, Fsand F3?! , in terms of a = wg.

b. Use DFT to multiply the polynomials g(x) = x® + 2x2 —3x + 1 and h(x) = —xa + 5% — x +
4.

c. Describe the computation of part (b) as convolution of two sequences.

d. Canthe computation of part (b) be interpreted as multiplying two integers ? If so, what are
the operands and what is the number representation base?

Butterfly FFT network
Consider the butterfly FFT computation network.

a. Write down the complete expression for the partial result evaluated at each node in both
versions of the network shownin Fig. 8.11.

b. Consider the butterfly network in reverse order, i.e., with inputs entering at the rightmost
column and outputs produced at the left Show the ordering of the inputs and outputs in
both versions of the network shown in Fig. 8.11.

Butterfly FFT network
Consider the butterfly FIT computation network of Fig. 8.11.

a Draw both versions of the network for n = 16 inputs.
b. Repeat part (a) for n= 12 inputs.

Shuffle-exchange FFT network
Consider the FFT network variant depicted in Fig. 8.12. Each pair of circular nodes intercon-
nected in the same column constitute a butterfly processor.

a. Redraw the left diagram in Fig. 8.12, showing the three columns of butterfly processors,
the eight inputs, and the eight outputs.

b. Redraw the right diagram in Fig, 8.12, including the registers in the butterfly processors.

c. Present the complete design of a butterfly processor,

FFT on a line array
This problem relates to the linear array of log, n cells for computing the n-point FFT (Fig.
8.13).

a. Explain how the three-cell linear array computes the eight-point FFT. Hint; In cycles 0-3,
the inputs X, X, X, , and X5 are simply placed in the four-element feedback shift register
and are subsequently combined with X4, X5, X6, and X in cycles 4-7.

b. How much time is needed to compute an n-point FFT on the (log2 n)-cell linear array*?

c. Discuss the control scheme for setting the cell multiplexers in the proper state as required
by your explanation for part (a).

168

INTRODUCTION TO PARALLEL PROCESSING

d. Show that the control settings of part (c) can be implemented by attaching a control tag to

each input [Kwai96].

REFERENCES AND SUGGESTED READING

[Bent79]
[Kwai96]
[Laks94]
[Leig92]
[Narag6]
[Parh90]
[Sugl90]

[Yehos]

Bentley, J. L., and H. T. Kung, “A Tree Machine for Searching Problems,” Proc. Int. Conf. Parallel
Processing, pp. 257-266, 1979.

Kwai, D.-M., and B. Parhami, “FFT Computation with Linear Processor Arrays Using a Data-Driven
Control Scheme,” J. VLS Sgnal Processing, Vol. 13, pp. 57-66, 1996.

Lakshmivarahan, S., and S.K. Dhall, Parallel Computing Using the Prefix Problem, Oxford Univer-
sity Press, 1994.

Leighton, F. T., Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes,
Morgan Kaufmann, 1992.

Narayanan, T. S, “A Class of Semi-X Tree-Based Dictionary Machines,” The Computer J., Vol. 39,
No. 1, pp. 45-51,1996.

Parhami, B., “Massively Parallel Search Processors. History and Modern Trends,” Proc. 4th Int.
Parallel Processing Symp., pp. 91-104,1990.

Sugla, B., and D. A. carlson, “Extreme Area-Time Tradeoffs in VLSI,” IEEE Trans. Computers, Vol.
39, No. 2, pp. 251-257, February 1990.

Yeh, C.-H., and B. Parhami, “A Class of Parallel Architectures for Fast Fourier Transform,” Proc.
39th Midwest Symp. Circuits and Systems, 1996, pp. 856-859.

Mesh-Based
Architectures

The bulk of this part is devoted to the study of 2D meshes and tori, a class of
parallel architectures that can be built quite easily in VLSI and that are readily
scalable to very large configurations. One might say that 2D meshes and tori
occupy one end of the spectrum that has the physically unrealistic PRAM model
at the other end. If the processors in a 2D mesh have simple circuit-level
realizations and are driven by an external control unit in SIMD mode, then the
mesh can be viewed as just another circuit-level model of parallel processing
with the additional benefits of localized connectivity and regularity; properties
that can lead to compact layout and high performance. However, we do not
view meshes or tori in this way. Rather, we use more complex processors, or
processing elements, to make our mesh-based parallel processors flexible and
easier to use for a variety of computational problems. Sorting on 2D meshes is
covered first, followed by data routing and numerical algorithms. We conclude
with variations and extensions of the simple 2D mesh or torus, as well as certain
related architectures. This part consists of the following four chapters:

e Chapter 9: Sorting on 2D Mesh or Torus

¢ Chapter 10: Routing on 2D Mesh or Torus

e Chapter 11: Numerical 2D Mesh Algorithms

e Chapter 12: Other Mesh-Related Architectures

169

This page intentionally left blank.

Sorting on a 2D
Mesh or Torus

There are good reasons for beginning our discussion of 2D mesh and torus
architectures through algorithms for the seemingly difficult sorting problem. First,
sorting on the 2D mesh is nothing like its counterpart on the PRAM,; it is easy to
build fairly efficient sorting algorithms for the 2D mesh and the process of refining
these algorithms into more efficient ones is also quite intuitive. Second, the
discussion of sorting networks in Chapter 7 has given us all the background that
we need for building, verifying, and evaluating mesh sorting algorithms. So we
can delve right into the algorithms, and the fascinating methods and observations
used in their designs, following a short introductory discussion of the machine
model(s) assumed. Third, sorting is an ideal vehicle for exposing the strengths
and weaknesses of mesh-based architectures in communication-intensive appli-
cations. Chapter topics are

* 9.1. Mesh-connected computers
* 9.2. The shearsort algorithm

* 9.3. Variants of simple shearsort

* 9.4. Recursive sorting algorithms
¢ 9.5. A nontrivial lower bound

* 9.6. Achieving the lower bound

171

This page intentionally left blank.

SORTING ON A 2D MESH OR TORUS 173

9.1. MESH-CONNECTED COMPUTERS

A 2D mesh of processors was defined in Section 2.2 and some simple algorithms for it
were presented in Section 2.5. This section covers a complete definition for the simple 2D
mesh, including variations in control, interprocessor communication, input/output, and
processor indexing. Extensions such as higher dimensions, stronger and wesaker connectivi-
ties, inclusion of buses, addition of express channels, triangular or hexagonal shapes,
variations in the wraparound links, and reconfigurable connectivity will be covered in
Chapter 12.

Figure 9.1 shows the basic 2D mesh architecture. Each processor, other than the ones
located on the boundary, has degree 4. The free links of the boundary processors can be used
for input/output or to establish row and column wraparound connections to form a 2D torus.
Variations in the wraparound links (such as connecting to the next row/column, rather than
to the same row/column) will not be discussed here. A kx k mesh has diameter 2k — 2 and
bisection width k or k+ 1. A k x k torus has diameter k or k— 1 and bisection width 2k or
2k + 2.

A k x ktorus is sometimes referred to as a k-ary 2-cube (or 2D “cube” of sizek). The
genera form of this architecture is known as k-ary g-cube (g-D cube of size k). In particular,
for k= 2, we get the class of 2-ary (or binary) g-cubes, aso known as (binary) hypercubes.
Thus, 2D torus and binary hypercube represent the two extremes of the k-ary g-cube
architecture; fixing g at 2 gives us the 2D torus architecture with fixed node degree and
©(Vp) diameter, while fixing k at 2 gives us the binary hypercube with logarithmic node
degree and ©(log p) diameter.

A 2D mesh can be laid out on aVVLSI chip in an area that increases linearly with the
number of processors. Because of the short, local connections between processors, the area
consumed by the wires is negligible and it would be quite realistic and fair to equate the
complexity or implementation cost of a 2D mesh computer with the number p of processors
that it contains. Furthermore, the signal propagation delay between adjacent processors is
quite small, making it possible to perform communications at very high speed. A 2D torus,
on the other hand, has long wraparound links that can slow down interprocessor communi-
cation. However, it is possible to lay out a 2D torus in such a way that it too uses only short,
local links. Figure 9.2 depicts the method of folding that can be used for this purpose.

S
s

et
I
LHLH

Row wrap-around link for

Colume wrap-sround fink for wocus

S
ally

GEEeE

O
0
=

3

Figure 9.1. Two-dimensional mesh-connected computer.

174 INTRODUCTION TO PARALLEL PROCESSING

Figure 9.2. A 5x5 torus folded along its columns. Folding this diagram along the rows will
produce a layout with only short links.

Unless otherwise stated, the links between processors in 2D meshes and tori are assumed
to be bidirectional and capable of carrying data in both directions at the same time (full
duplex). The four neighbors of a node are sometimes referred to as north, east, west, and
south, leading to the name NEWS mesh. Alternatively, the neighbors may be identified as
“top/up/above,” “right,” “left,” and “bottom/down/below.” For example, a communication
action may be specified for a processor as “send xto north/south neighbor,” “send x
up/down,” “receive x from south/north neighbor,” or “receive x from below/above.”

Various control schemes are possible. In a MIMD mesh, the processors run independent
programs and communicate asynchronously with their four neighbors. A SPMD mesh is
similar, except that the node programs are identical. In a SIMD mesh, all processor actions
are dictated by a shared central control unit. SIMD mesh is the default model assumed in
this book.

Various submodels of the SIMD mesh can be defined with respect to interprocessor
communication. In the weakest submodel, all processors must communicate with a neighbor
in the same direction, e.g., all send datato their “north” neighbor or “upward.” In this weak
SIMD submodel, there is never contention for the use of a link; thus, even half-duplex links
will do. Next in terms of power is a mesh in which each processor can send a message
to only one neighbor in each step, but the neighbor is determined locally based on
data-dependent conditions. Of course, in this case, a processor must be able to receive data
from all neighbors at once. The most powerful submodel alows transmission and reception
to/from al neighbors at once, leading to what is known as the all-port communication model.

Processorsin a2D mesh can be indexed (numbered) in avariety of ways. The simplest
and most natural isto identify or label each processor by its row and column indices, using
either 0-origin or I-origin indexing (we use O-origin throughout this book). Thus, Processor
(0, 0) is at the upper left corner, Processor (0, Vp — 1) is at the upper right corner, and
Processor(¥p — 1, Vp - 1) is at the lower right corner of a p-processor square mesh.

It is at times more convenient to number the processors from O to p — 1. This puts the
processors into a linear order that can be used to assign priorities or to define the order of
data elements in processors when we sort them. Figure 9.3 shows some of the possible
indexing schemes. You are aready familiar with the row-major and snakelike row-major
orders. Column-major and snakelike column-major orders can be defined similarly. The
shuffled row-major order is a recursive indexing scheme where the mesh is divided into four
quadrants and the quadrants are indexed in row-major order; numbering within each quadrant

SORTING ON A 2D MESH OR TORUS 175

Row-Major Snakelike Row-Major
0 1 2 3 0 1 2 3
S0.LIlE B N
A3 Sy -t 54
8 9 10 1 8 9 10 1

15, 14 13 12
4'_................................

Shuffled Row-Major Proximity Order

o11] 4 s Lo | 5ot
e o 1 T
8 9012 13 15 12411 8
10 11 114 15 1913 1l0—---L

Figure 9.3. Some linear indexing schemes for the processors in a 2D mesh.

is done using the same scheme recursively. Finaly, proximity order is also recursive but has
the additional property that processors whose indices differ by 1 are neighbors.

A few words about interprocessor communication in a 2D mesh are in order. Each
processor can communicate with its NEWS neighbors. The actual data transfer mechanism
will be different depending on the communication style. We will take the simple view
depicted in Fig. 9.4 where one or more registersin each processor are viewed as part of the
register space of each of its NEWS neighbors. Hence, access to any of the Registers R,
through R, in aprocessor is viewed as reading an element from a neighbor’ s register. Even
this simple scheme can be implemented in a variety of ways. The left diagram in Fig. 9.4
depicts a scheme in which asingle value placed in Register R of a processor is made available
to its NEWS neighbors. The right diagram in Fig. 9.4 allows more flexibility in that different
values can be sent to the four neighbors. Thisis particularly helpful in routing of multiple
independent messages through a node. To forward a message eastward, for example, a
processor simply copies its Register R; into R5.

Figure 9.4. Reading data from NEWS neighbors via virtual local registers.

176 INTRODUCTION TO PARALLEL PROCESSING

9.2. THE SHEARSORT ALGORITHM

The shearsort algorithm was described without proof, in Section 2.5. Here, we look at
the algorithm in more detail and provide a proof of its convergence and correctness. As an
agorithm, shearsort is not very efficient and we will see more efficient 2D mesh sorting
agorithms later. However, shearsort is very easy to describe, prove, and analyze. Further-
more, it can be used as a building block in the synthesis of more efficient sorting algorithms.
Thus, shearsort isimportant, both as a pedagogical tool and as a practical one.

We begin by assuming that each processor holds a single data item (key) and that the
data should be arranged in nondescending order according to row-major or snakelike
row-major order. Thus, there are p data items and p processors that form an r x(p/r) mesh
(with r rows and p/r columns). In its simplest form, the shearsort algorithm consists of rlog2
r 1+ 1phases (Fig. 9.5). In each phase, except for the last one, all rows are independently
sorted in snakelike order: even-numbered rows 0, 2, . . . from left to right, odd-numbered
rows 1, 3, ... from right to left. Then, al columns are independently sorted from top to
bottom. In the final phase, rows are independently sorted in snakelike order, or from left to
right, depending on the final sorted order desired.

The time complexity of shearsort is easily derived by noting that each row (column) sort
takes p/r (r) compare—exchange steps, because rows (columns) are linear arrays for which
the odd—even transposition sort is applicable (see Section 2.3):

T enrsont = [_log2 r_kp/r +r)+plr

On a squarevp xVp mesh, the time complexity of simple shearsort becomes (approximately)
\p(iog, p + 1).

To prove the convergence and correctness of shearsort, it suffices to show that any 0/1
pattern is properly sorted by the algorithm (the zero—one principle). Consider an arbitrary
pattern of Os and 1s and focus on the first column sort following the initial snakelike row
sort. The end result of this column sort will not change if we precede it with a redundant

repeat(log 11 dmes

__’
- then
Sort the > sort the

z::’a:(c- 4_— columns

: (top-to-
like) . p'm)
endre
Sort the rows
— =
. .

Snakelike or Row-Major
(depending on the desired final sorted order)

Figure 9.5. Description of the shearsort algorithm on an r-row 2D mesh.

SORTING ON A 2D MESH OR TORUS 177

compare—exchange between each even-indexed element and the odd-indexed element di-
rectly below it (0&1, 2& 3, 4&5, . . .). A pair of rows affected by such exchanges can bein
one of three classes:

a They contain more Os than 1s.
b. They contain more 1s than Os.
c. They contain the same number of Os and 1s.

In each case, the redundant exchange creates at least one “clean” row (containing only Os or
only 1s) and no more than one “dirty” row (containing both Os and 1s), as shown in Fig. 9.6.
In sorting the columns, such clean rows “bubble up” or “sink down” and lead to a total of at
least Lr/2] rows of the array being in their final sorted order. This reduction of the number
of dirty rows by afactor of 2, fromr to [727t0 11727727 and soon (Fig. 9.7), continues
until, after ﬁog2 r| iterations, we have & most one dirty row remaining. This last dirty row
will be put in its proper sorted order by the final phase of the algorithm.

Figure 9.8 shows a complete example for the application of shearsort to sorting 16 keys
on a4 x 4 mesh. The initial data distribution is given at the top. Then we have two iterations
of snakelike row sorts followed by column sorts. Finally, we end with row-major or snakelike
row sorts, depending on the desired sorted order. Note, in particular, that with arbitrary keys,
“clean” and “dirty” rows do not exist and thus the notions of clean and dirty rows cannot be
used to measure the progress toward the eventual sorted order. In fact, we see in the example
of Fig. 9.8 that none of the rows assumes its final sorted state until the very last step in the
algorithm.

Note that sorting the rows in snakelike order is the key to being able to sort the array by
independent row and column sorts. Take the example of a4 x 4 mesh with each of its four
rows initially containing the bit pattern 0111. Clearly, no amount of row/column sorting,
with row-mgjor order for row sorts, will sort this array.

Row 2i 000 —p 11 Bubbles up in the
Row2i+1 |11 1 «4—— 00 next column sort
Case (a): 00000011 || o-0-0-0le—o-0-0
More Os 11100000 11100011
Case (b): 00111111 00111000
More 1s 11111000 =l 11111111
Case(;): 00011111 |[_] 00000000
Equal 11100000 L dep R
Os & 13

Sinks down in the
next column sort

Figure 9.6. A pair of dirty rows create at least one clean row in each shearsort iteration.

178 INTRODUCTION TO PARALLEL PROCESSING

0 = 0
Dirty ;:zw Dinty ::;:::Eﬂ]
1 1

Figure 9.7. The number of dirty rows halves with each shearsort iteration.

1 12 21 4
15 20 13 2
Keys
5 9 18 7
22 3 14 17
1 4 12 21 1 4 9 2
Row] 20 15 13 2 Corumn| 8 7 12 3
sort | 5 7 9 18 sort |20 15 13 18
22 17 14 3 22 17 14 21
1 2 4 9 1 2 4 3
12 7 3 12 71 5
Row 5 Column 2 S
t
%ort 113 15 18 20 sort {313 15 17 14
22 21 17 14 22 21 18 20
1 2 3 4 1 2 3 4
Finaltl12 9 17 s 5 7 9 12
row Snake- Row-
sort |13 14 15 17 |like 13 14 15 17 |majer
22 21 20 18 18 20 21 22

Figure 9.8. Example of shearsort on a 4 x 4 mesh.

SORTING ON A 2D MESH OR TORUS 179

9.3. VARIANTS OF SIMPLE SHEARSORT

Shearsort can be terminated earlier in some cases because sorting is complete when no
exchange occurs during arow sort or a column sort. In practice, one cannot take advantage
of this early termination feature unless some form of fast global combine operation is
implemented in hardware.

It is, however, possible to speed up shearsort by a constant factor by taking advantage
of the reduction of the number of dirty rows in each iteration. Note that in sorting a sequence
of Osand 1son alinear array, the number of odd—even transposition steps can be limited to
the number of dirty elements that are not already in their proper places (O s at the left/top,1s
at the right/bottom). For example, sorting the sequence 000001011111 requires no more than
two odd—even transposition steps. Therefore, we can replace the complete column sorts
within the shearsort algorithm with successively fewer odd—even transposition steps; r in the
initial step, [1/20in the next step, and so forth. The time complexity of this optimized
shearsort then becomes

Topuseasson = /D) logy r b D+ e T2 b [T2 V214 o 2

When r is a power of 2, the above simplifies to (p/r)(log,r + 1) + 2r — 2. For a square
Vp x v¥p mesh, time complexity of the optimized version of shearsort is approximately
Vp(Qlog,p +3) - 2.

16 1%6 2%5 ‘10
15 20 13 2 x Two keys held
Y | by one processor
xeys| 31 32 16 30 y one p
5 9 18 7
11 19 27 8
22 3 14 17
28 23 29 24
1 6 12 25 1 6 11 2
4 10 21 26 4 B8 12 3
31 20 15 2 5 9 15 13
Row | 32 30 16 13 Column 7 10 16 14
sort| 5 g 11 19 sort }28 20 17 19
7 9 18 27 29 23 18 25
28 23 17 3 31 24 21 26
29 24 22 ia 32 30 22 27
1 3 6 11 1 3 6 5
2 4 8 12 2 4 8 7
15 13 9 5 15 13 9 11
Row | 16 14 10 7 Column | 16 14 10 12
sort|17 19 23 28 sort 17 19 23 21
18 20 25 29 18 20 24 22
31 27 24 21 31 27 25 28
32 30 26 22 32 30 26 29

The final row sort (snakelike or row-major) is not shown.

Figure 9.9. Example of shearsort on a 4 x 4 mesh with two keys stored per processor.

180 INTRODUCTION TO PARALLEL PROCESSING

Simple shearsort can be easily extended to the case where multiple keys are stored in
each processor. The algorithm begins by presorting the sublists of size n/p within the
processors, using any sequential sorting algorithm. It then proceeds with row and column
sorts as in simple (p-input) shearsort, except that each compare-exchange step of the latter
is replaced by a “merge—split” step involving lists of size n/p. For example, if n/p =4 and
the two processors doing the compare—exchange step in simple shearsort now hold the
sublists {1, 5, 8, 8} and {2, 3, 5, 7}, the merge—split step will result in the two processors
holding, in the sorting order, the sublists {1, 2, 3, 5} and {5, 7, 8, 8}. Performing a merge-split
operation on two sorted lists of length n/p requires n/p compare—exchange steps in the worst
case.

Figure 9.9 shows an exampl e of shearsort with two keys stored per processor. Thetime
complexity of the shearsort algorithm with n/p keys per processors is easily obtained from
the © ((n/p) log (n/p)) complexity of the presort phase and the ©(n/p) complexity of each
merge-split operation.

9.4. RECURSIVE SORTING ALGORITHMS

A recursive algorithm for sorting on a square vp x¥p mesh, based on four-way divide-
and-conquer strategy, is shown in Fig. 9.10. The agorithm consists of four phases.

First recursive sorting algorithm on a 2D mesh

1. Sort each of the four quadrantsin snakelike order.
2. Sort the rows independently, in snakelike order.

=8 =
==

1. Sort quadrants 2. Sortrows
3. Sort columns 4. Apply 4Vp steps of odd-even
trangposition along the snake

Figure 9.10. Graphical depiction of the first recursive algorithm for sorting on a 2D mesh based
on four-way divide and conquer.

SORTING ON A 2D MESH OR TORUS 181

3. Sort the columns independently, from top to bottom.
4. Apply 4vp steps of odd-even transposition along the overall snake.

In the last phase, the mesh is viewed as a snakelike p-processor linear array for the application
of the 4vp steps of odd—even transposition.

If the above algorithm is in fact correct, as we will show shortly, its running time is
characterized by the following recurrence:

Tp) =T(Np/2) +55Vp = L 1INp

where 5.5Vp isthe sum of 0.5vp for row sort (with each half being already sorted, Vp/2 steps
of odd—even transposition suffice for row sort), ¥p for column sort, and aVp for the last
phase.

As usual, we prove the algorithm correct by using the zero—one principle. Figure 9.11
(Ieft side) shows the state of the array after sorting the four quadrants in Phase 1, with various
numbers of clean 0 and 1 rows as indicated. The snakelike row sort in Phase 2 will spread
the elements of these clean rows roughly evenly in the left and right halves of the array. After
Phase 3, we end up with x clean 0 rows on the top and x' clean 1 rows at the bottom. Because
at most one dirty row remainsin each quadrant after sorting it, each of thesums a+ a', b +
b, c+c, ord+d is either Vp/2 or \[;,_/2 _1.Leta>bandc<d, asshownin Fig. 9.11
(other cases are similar). Then, the row sorts of Phase 2 produce b + ¢ clean 0 rows outright
and |(a - b)2) +(d - c)/2] clean 0 rows as aresult of the extra 0 half-rows being divided
equally among the left and right halves of the array by the snakelike row sorts. Thus, the
number of clean O rows at the end of Phase 3 of the algorithm satisfies

x2b+c+i(a-m)+l@d-orl
A similar inequality for X' leads to
x+¥2bte+ la-blsld-—onlra +ad+ Ly -av2 1+ L - a)2)

2htc+d +d+@-HR+(d-2+ B -a W2 +(-d)2-4x1/2

' 0 | 0 X tows
1 ,
¥ 1 b Dirty Vp-x-x
rows

1 x' Tows
¢ 1
1 d
1__ Numbers of clean rows in M’ State of the array
cach of the four quadrants after Phase 3

Figure 9.11. The proof of the first recursive sorting algorithm for 2D meshes.

182 INTRODUCTION TO PARALLEL PROCESSING

=@+d)2+@G+V2+(c+ V2 +(d+d)2 -2
2Vp -4

Hence, the number Vp — x — x* of dirty rows after Phase 3 is at most 4. Now, viewing the
aray as a p-processor snakelike linear array and applying 4Vp steps of odd—even transpo-
sition will put the 4vp potentially out-of-position elements in their proper places.

A second, somewhat more efficient, recursive algorithm for sorting on a square Vp x
Vp mesh is again based on four-way divide-and-conquer strategy. The algorithm consists of
four phases.

Second recursive sorting algorithm on a 2D mesh

1. Sort each of the four quadrants in snakelike order.

2. Shuffle the columns, i.e., interlace the left- and right-half elementsin each row.
3. Sort pairsof columns, 0& 1,2 & 3, etc., in snakelike row-major order.

4. Apply 2Vp steps of odd-even transposition along the overall snake.

Figure 9.12 shows the four algorithm phases graphically. In the last phase, the mesh is viewed
as a snakelike p-processor linear array for the application of thezxfE steps of odd—even
transposition.

Again, assuming that the algorithm is in fact correct, its running time is characterized
by the following recurrence:

Distribute
these p2
columns

==
e = = ™

1. Sort quadrants 2. Shuffle row elements

0123

3. Sort double columns 4. Apply 2Vp steps of
in snakelike order odd-even trangposition
along the overall snake

Figure 9.12. Graphical depiction of the second recursive algorithm for sorting on a 2D mesh
based on four-way divide and conquer.

SORTING ON A 2D MESH OR TORUS 183

0 b
T o pEE pE
| j o
1
1
o SR BT PR 2 S0 o o
1 —1 | .
! 1
| Numbers of clean 0 rows _‘_wj Numbers of 0s in two different
in the four quadrants double-columns differ by <2
010 0
A [W clements

wi
Mt

Figure 9.13. The proof of the second recursive sorting algorithm for 2D meshes.

T(Np)=T(Np/2) + 4.5Vp = op

where the term 4.5Vp isthe sum of 0.5vp for row shuffling (this is the maximum distance
that an element needs to move to the right or to the left), 2\,(17 for double-column sorts, and
2Vp for the last phase.

By now you can probably guess that we need to use the zero—one principle in order to
prove the above agorithm correct. The structure of the proof is depicted in Fig. 9.13. Asin
Fig. 9.11, representing the proof of the first recursive sorting algorithm, the numbers of clean
0 rows in the four quadrants have been indicated in Fig. 9.13. Filling in the remaining details
of the correctness proof is left as an exercise.

9.5. A NONTRIVIAL LOWER BOUND

Because the diameter of asquareVp x Vp mesh is2vVp —2,a ©(vp)-time agorithm is
the best that we can hope for. However, our best ©(¥p)-time algorithm thus far is about 4.5
times slower that the diameter-based lower bound. Two natural questions at this point are

1. Canweraisethe 2vp — 2 lower bound?
2. Canwe design asorting algorithm with alower execution time than Hp ?

184 INTRODUCTION TO PARALLEL PROCESSING

2

Shortest path from
the upper left miangle

to gpposite comer is
2~’§p - 2%;— 2 hops
&

x[t]: the value
held in this comer

after t steps
-

Figure 9.14. The proof of the 3¥p — o(Np} lower bound for sorting in snakelike row-major order.

In this section, we show that for sorting in snakelike row-major order, the lower bound can
be raised to 3Vp — o(Vp). Then, in Section 9.6, we present an agorithm that matches this
lower bound asymptotically in that its execution time is 3Vp + o(Np).

Consider the square Vp x Vp mesh depicted in Fig. 9.14. The shaded triangular region
at the upper left corner of this mesh contains 2vp processors and keys. Let the keys held by
the p—2+vp processors in the unshaded region be the numbers 1 through p—2Vp . Each of
the keys in the shaded part is 0 or p—2Jp + 1 (i.e., all are smaller or larger than those in the
unshaded region), with the number of Os being z, 0< z < 2vp . We denote by X[t] the key held
by the processor at the lower right corner of the mesh at time step t, as the sorting algorithm
is executed.

We now take an arbitrary sorting algorithm and show that it needs at least 3\/;7 - o(\fp_)
steps to sort the above keys in snakelike row-major order. Consider the state of the mesh
after the algorithm has run for 2vp - 2 ¥p — 3 steps and, in particular, the value X[{2vp —
23 - 3] held by the processor at the lower right corner of the mesh. Because the shortest
path from any processor in the shaded region to the corner processor contains at least
2p - (&7 — 2 hops, this corner value can in no way depend on the number z of Osin the
shaded region. If we vary zfrom O to its maximum of 2\p, the correct final position of the
vauex[2vp -2 5/;-3] in the sorted order can be made to be in any of the columns, and in
particular in Column 0. Thus, in the worst case, the algorithm needs at least Vp — 1 additional
steps to complete the sorting. The total running time of the algorithm is thus lower bounded

by
T 22¥p -2 3p -3 +\p - 1=3vp - ©(p)

Consider, for example, a 9 x 9 square mesh (p = 81). By the above construction, each of the
18 processors in the shaded region holds a key value 0 or 64, while the remaining processors
hold the key values 1 through 63. If z= 18, theinitia state and final sorted order are as shown
on the left side of Fig. 9.15. The other extreme of z= 0 is depicted on the right side of Fig.
9.15. It is clear from this example that as zgradually changes from 0 to 18, the final location
of each of the key values 1-63 shifts through every column in the mesh.

SORTING ON A 2D MESH OR TORUS 185

Figure 9.15. lllustrating the effect of fewer or more Os in the shaded area.

If we run any given sorting algorithm for 10 steps, the key value that appears at the lower
right corner will be independent of z If after these 10 steps, the lower right valueis 55, say,
then choosing any of thevalues 0, 9, or 18 for zwill force the algorithm to work for at least
8 more steps just to shift the key value 55 to column 0 where it belongs. So, the algorithm
needs at least 10 + 8 = 18 steps for this particular example (it will likely need more).

Note that the above proof only applies to the snakelike final order and is based on the
implicit assumption that each processor holds one key initially and at each step of the
agorithm. Nigam and Sahni [Niga95] have shown that by “folding” the keys into half of the
columns, so that each processor in the central half of the mesh holds two keys, the above
lower bound can be overcome and sorting done in roughly 2.5+, communication steps. More

186 INTRODUCTION TO PARALLEL PROCESSING

generaly, folding the keys intovp /k columns reduces the sorting time even further for k>
2. A different approach to obtaining a sorting agorithm that requires 2.5vp + o(¥p)
communication steps on a p-processor sguare 2D mesh is provided by Kunde [Kund91].

9.6. ACHIEVING THE LOWER BOUND

In this section, we describe a sorting algorithm, reported by Schnorr and Shamir
[Schn86], that comes very close to the 3Vp lower bound of Section 9.5 in terms of its running
time. However, the mesh has to be quite large for the algorithm to be significantly faster than
the ssimpler algorithms presented earlier in this chapter. Thisis so because in the anaysis of
the algorithm, several terms on the order of p*®or p¥8log, p are ignored in comparison with
pY2. For p=2% or approximately 4 billion processors, we have p38log, p= 2'2x32 = 128K
compared with p%2 = 21® = 64K .. Once the algorithm is described, the reader will see that the
lower-order terms ignored in the analysis in fact constitute a significant portion of the running
time even when the number of processorsisin the billions. Hence, presently, this algorithm
cannot be considered practical.

Figure 9.16 depicts the divide-and-conquer strategy, and some relevant notation, for
presenting this asymptotically optimal sorting a gorithm.

The eight-phase Schnorr—Shamir agorithm for snakelike sorting on a 2D mesh is based
on dividing the pY2 x p¥2 mesh into smaller p¥® x p¥8submeshes (blocks), sorting the blocks
independently in Phase 1, and then merging the results through various data movement and
sorting operations in the remaining seven phases.

The Schnorr—Shamir algorithm for snakelike sorting on a 2D mesh

1. Sort al of the blocks in snakelike order, independently and in parallel.

O3 XX
A .,..\)'\\,._,A_’.'

2]
DAY - RY e
L\.'.-:’ 7 ;. I 3 .L.-':\:;“‘.:.','{ .-:-:.
pllz N NINANRONL SR
.
Proc's : . Hprimmal
. o . slice
.

L Vertical slice

Figure 9.16. Notation for the asymptotically optimal sorting algorithm.

SORTING ON A 2D MESH OR TORUS 187

2. Permute the columns such that the columns of each vertical slice are evenly
distributed among al vertical dlices.

3. Sort each block in snakelike order.

4. Sort the columns independently from top to bottom.

5. Sort Blocks 0&1, 2&3, . . . of all vertical dlices together in snakelike order, i.e., sort
within 2p¥® x p38 submeshes.

6. Sort Blocks 1&2, 3&4, . . . of all vertical slices together in snakelike order again
sorting is done within 2p¥8 x p¥8 submeshes,

7. Sort the rows independently in snakelike order.

8. Apply 2p*® steps of odd-even transposition to the overall snake.

The proof of correctness for this algorithm is somewhat involved and is thus not presented
here (like all other proofsin this chapter, it is based on the zero—one principle).

Each of Phases 1, 3, 5, and 6 of the algorithm can be executed in O(p*Clog p)
compare—exchange steps, say by using the shearsort algorithm. Each of Phases 2, 4, and 7
requires at most pY/2 steps. Phase 8 obviously needs 2p® steps. The total running time is thus
upper bounded by 3pY? + o(p"?), where the second term can be replaced by ©(p*®log p).

PROBLEMS

9.1. Topologica properties of meshes and tori

a Write an expression for the diameter of anr ™ (p/r) mesh and show that it is minimized
when the mesh is square.

b. Repeat part (a) foranr ” (p/r) torus.

c. Write an expression for the bisection width of an r “ (p/r) mesh and show that it is
maximized when the mesh is square.

d. Repeat part (c) foranr " (p/r) torus.

9.2. Topological properties of meshes and tori

9.3.

Diameter or worst-case distance is not the only indicator of communication delay. Average or
expected distance is often of greater importance.

a. What isthe average distance from a given node to arandom destination node in a p-node

linear array?

Repesat part (a) for ap-node ring.

What is the average distance between two randomly selected nodesin ap-node linear array?

Repeat part (c) for a p-node ring.

Using the result of part (&), find the average distance from a given node to a random

destination nodeinanr ”~ (p/r) mesh.

f. Repeat part (€) foranr” (p/r) torus, using the result of part (b).

g. Using the result of part (c), find the average distance between two randomly selected nodes
inanr” (p/r) mesh.

h. Repeat part (g) for anr” (p/r) torus, using the result of part (d).

© 20 T

VLSI layout of a2D mesh or torus

Consider the problem of laying out a mesh or torus on a grid with unit distance between
horizontal and vertical lines. Nodes or processors occupy no area (they are shown as dots) and
wires are restricted to be nonoverlapping and routed on grid lines (intersecting wires are

188

9.4.

9.5.

9.6

9.7.

9.8.

9.9

9.10.

INTRODUCTION TO PARALLEL PROCESSING

acceptable). Let the number p of processors be an even power of 2. Clearly, a p-processor 2D
mesh can be laid out in p units of area.

a What isthe area needed for laying out a p-processor 2D torus with long wraparound links?
b. What isthe area needed for laying out a p-processor torusif it isfolded aong the rows and
columns to make al interprocessor connections short?

Interprocessor communication
Using the communication convention shown in the left side of Fig. 9.4 and assuming that each
processor knows the number r of rows in the mesh, the total number p of processors, and its
own row/columnindices(i, j), write a complete program at the level of an assembly language
to sort the elements of each row in snakelike order; i.e., even rows sorted from left to right, odd
rows from right to left.

Row and column sorts

a Show that if we sort the rows of amatrix from left to right and then sort the columns from
top to bottom, the rows will remain in sorted order.

b. Show that sorted rows and columns are necessary but not sufficient for a matrix being
sorted in row-major order, while the condition is necessary and sufficient with snakelike
ordering.

The shearsort algorithm
Provethat if an array of integer keysis sorted by applying the shearsort algorithm, the state of
the array just before the final row sort is such that if we pick an arbitrary threshold value t,
replacing all keysthat are lessthant with 0 and al those that are greater than or equal tot with
1, theresulting array of Os and 1s will have at most one dirty row.

Optimized shearsort on a 2D mesh

a. Considering the analysis of optimized shearsort, find a closed-form tight bound on the
complexity when r is not a power of 2. Hint: The worst case occurs for r = 22 + 1.

b. Prove that your bound is tight by providing one example when the bound is actualy
reached.

c. Can optimized shearsort be extended to the case when n/p keys are stored per processor?
If it can, provide algorithm details and its time complexity. If not, state why.

Recursive sorting on a 2D mesh

Show that in the first recursive sorting algorithm presented in Section 9.4, replacing Phase 4
(the one saying “apply 4Vp steps of odd—even transposition along the overall snake”) by row
sorts and partial column sorts, as in optimized shearsort, would lead to a more efficient
agorithm. Provide complexity analysis for the improved version of the algorithm.

The shearsort algorithm
Show that on an r x 2 mesh, shearsort requires only 3r/2 + 3 steps. Then use this result to
improve the performance of the second recursive sorting agorithm described in Section 9.4,
providing the complexity analysis for the improved version.

The columnsort algorithm
Consider a seven-phase algorithm that sorts the p elementsin an r x (p/r) matrix in column-
major order. During Phases 1, 3, and 7, the columns are independently sorted from top to
bottom. During Phase 5, the columns are sorted in snakelike column-major order. During Phase
2, we “transpose” the matrix by picking up the items in column-major order and setting them

SORTING ON A 2D MESH OR TORUS 189

9.11.

9.12.

down in row-major order, while preserving the r x (p/r) shape of the matrix. During Phase 4,
we reverse the permutation applied in Phase 2, picking up items in row-major order and setting
them down in column-major order. During Phase 6, we apply two odd—even transposition steps
to each row.

a Show that the above algorithm, known as columnsort, sorts the matrix into column-major
order provided that r3=> p2.
Find the time complexity of columnsort when performed on an r x (p/r) mesh.
Find the time complexity of columnsort when the r x (p/r) matrix is mapped onto avp x
p mesh, with each matrix column occupying r/¥p (an integer) consecutive mesh columns.

Sorting on aring of processors

Using a method similar to that used in Section 9.5, prove that a p-processor ring requires at
least 3p/4 — O(1) stepsto sort p items if each processor is restricted to holding exactly one key
in each step. The sorted order is defined as Processor 0 holding the smallest key and the keys
appearing in nondescending order in clockwise direction. Hint: Consider the p/2 processors
that are farthest away from Processor 0 and assume that the key values held by these processors
are smaller or larger than the keys held by the other p/2 processors.

Optimal snakelike sorting algorithm
Using the zero—one principle, prove the correctness of the (3p™ < + o(p™ 7))-step Schnorr—
Shamir sorting algorithm described in Section 9.6 (see [Schn86] or [Leig92], pp. 148-151).

1/2 1/2,

9.13. Bounds for sorting

9.14.

9.15.

9.16.

The bisection bound on sorting on a square 2D mesh isVp /2 steps.

a Show that if interprocessor communication is restricted to be in one direction in each step,
then a corresponding multisection lower bound of \p applies [Kund9l].

b. Derivesimilar bound for k—k sorting, where each processor begins and ends with k records.

¢. Modify the above lower bounds for a p-processor 2D square torus.

Mesh sorting by interleaved row/column sorts

Consider a 2D mesh sorting algorithm based on row sorts and columns sorts, except that the
row sorting and column sorting steps are interleaved (i.e., we perform one odd—even transpo-
sition step along the rows, then one along the columns, again one aong the rows, and so on).
Asin shearsort, the row sort steps are done in opposite directions for adjacent rows. Analyze
this algorithm and derive its worst-case performance.

Average-case performance of sorting algorithms

Our analyses of sorting agorithms in this chapter focused on worst-case performance. Mesh
sorting algorithms that are asymptotically optimal in terms of their worst-case performance are
clearly also optimal in terms of their average-case performance when applied to randomly
ordered key values. Show that the average-case performance of shearsort is also asymptotically
the same as its worst-case performance. Hint: Consider what happens to the k smallest keys as
shearsort runs on ak x k mesh.

The revsort sorting algorithm
Consider ak x k torus sorting algorithm that is based on aternately sorting rows and columns.
Theith row iscyclically sorted from left to right beginning at Processor rev(i), where rev(i) is
the integer whose binary representation is the reverse of i; e.g., in an 8 x 8 torus, rev(l) =
rev((001) y,0) = (100, = 4.

two

190

INTRODUCTION TO PARALLEL PROCESSING

Prove that all numbers are close to their final row positions after O(log log k) iterations of
arow sort followed by a column sort.

Show that the time complexity of the revsort algorithmis O(k log log k) .

Show that the wraparound links of the torus are not needed and that a 2D mesh can achieve
the same time complexity asin part (b).

REFERENCES AND SUGGESTED READING

[Chleg0]
[Kundo1]
[Leig8s]
[Leig92]
[Nigags]
[Sches6]

[Schngg]

Chlebus, B. S., and M. Kukawka, “A Guide to Sorting on the Mesh-Connected Processor Array,”
Computers and Artificial Intelligence, Vol. 9, pp. 599-610, 1990.

Kunde, M., “Concentrated Regular Data Streams on Grids: Sorting and Routing Near to the Bisection
Bound,” Proc. Symp. Foundations of Computer Science, 1991, pp. 141-150.

Leighton, T., “Tight Bounds on the Complexity of Parallel Sorting,” IEEE Trans. Computers, Vol.
34, No. 4, pp. 344-354, April 1985.

Leighton, F. T., Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes,
Morgan—Kaufmann, 1992.

Nigam, M., and S. Sahni, “Sorting n2 Numberson n x n Meshes,” |EEE Trans. Parallel and Distributed
Systems, Vol. 6, No. 12, pp. 1221-1225, December 1995.

Scherson, I., S. Sen, and A. Shamir, “ Shear-sort: A True Two-Dimensional Sorting Technique for
VLS Networks,” Proc. Int. Conf. Parallel Processing, 1986, pp. 903-908.

Schnorr, C. P. and A. Shamir, “ An Optimal Sorting Algorithm for Mesh Connected Computers,” Proc.
Symp. Theory of Computing, 1986, pp. 255-263.

Routing on a 2D
Mesh or Torus

Data routing is needed to make a data item present or computed in one processor
available to other processors. In PRAM, all memory words are directly accessible
to all processors, so the data routing problem is nonexistent. In the circuit model
(e.g., sorting networks), one directly connects the producer of each data word
to all of its consumers, so data routing is hardwired into the design. For meshes
and other network-based architectures, access to a nonlocal data item requires
explicit routing of the access request to the processor where the data item resides
and, in the case of reading, explicit routing of the accessed value back to the
requesting processor. In this chapter we review methods for data routing on 2D
meshes and analyze these methods with regard to their routing delays and
resource requirements. Chapter topics are:

e 10.1. Types of data routing operations

e 10.2. Useful elementary operations

e 10.3. Data routing on a 2D array

e 10.4. Greedy routing algorithms

e 10.5. Other classes of routing algorithms
e 10.6. Wormhole routing

191

This page intentionally left blank.

ROUTING ON A 2D MESH OR TORUS 193

10.1. TYPES OF DATA ROUTING OPERATIONS

Most of our discussion will focus on packet data routing or packet switching where a
packet is an atomic unit of data transfer. A packet may be a complete message, containing
one or more data values, or a part of alonger message. In the latter case, the packet will have
a sequence number indicating that it is the ith packet (out of j packets). Because we often
deal with data transfers involving a single data element, we use packet and message
interchangeably. A packet or message typically has a header that holds the destination
address, plus possibly some routing information supplied by its sender, and a message body
(sometimes called payload) that carries the actual data. Depending on the routing algorithm
used, the routing information in the header may be modified by intermediate nodes. A
message may also have various other control and error detection or correction information,
which we will ignore for simplicity.

Depending on the multiplicity of data sources and destinations, data routing or commu-
nication can be divided into two classes. one-to-one (one source, one destination) and
collective (multiple sources and/or multiple destinations).

A processor sending a message to another processor, independent of all other processors,
constitutes a one-to-one data routing operation. Such a data routing operation may be
physically accomplished by composing and sending a point-to-point message. Typically,
multiple independent point-to-point messages coexist in a paralel machine and compete for
the use of communication resources. Thus, we are often interested in the amount of time
required for completing the routing operation for up to p such messages, each being sent by
adifferent processor. We refer to a batch of up to p independent point-to-point messages,
residing one per processor, as a data routing problem instance. If exactly p messages are sent
by the p processors and al of the destinations are distinct, we have a permutation routing
problem.

Collective data routing, as defined in the Message Passing Interface (MPI) Standard
[MPIF94], may be of three types:

1. Oneto many. When a processor sends the same message to many destinations, we
call the operation multicasting. Multicasting to all processors (oneto all) is called
broadcasting. When different messages are sent from one source to many destina-
tions, a scatter operation is performed. The multiple destination nodes may be
dynamically determined by problem- and data-dependent conditions or be a
topologically defined subset of the processors (e.g., arow of a2D mesh).

2. Many to one. When multiple messages can be merged as they meet at intermediate
nodes on their way to their final common destination, we have a combine or fan-in
operation (e.g., finding the sum of, or the maximum among, a set of values).
Combining values from all processors (all to one) is called global combine. If the
messages reach the destination intact and in their original forms, we have a gather
operation. Combining saves communication bandwidth but is lossy in the sense that,
in general, the original messages cannot be recovered from the combined version.

3. Many to many. When the same message is sent by each of several processors to
many destinations, we call the operation many-to-many multicasting. If al proces-
sors are involved as senders and receivers, we have all-to-all broadcasting. When

194

INTRODUCTION TO PARALLEL PROCESSING

different messages are sent from each source to many (all) nodes, the operation
performed is (all-to-all) scatter-gather (sometimes referred to as gossiping).

For 2D meshes and tori, we are particularly interested in the following three data routing
operations:

1

Data compaction or packing. Many problems are solved by starting with a set of
elements, as the parameters on which the final computation results depend, and
successively removing some of the elements that are no longer useful or relevant.
Rather than leave these elements in their original locations and pay the worst-case
Q(Vp) communication delay in all subsequent computations, we may want to
compact or pack the useful or relevant data into the smallest possible submesh in
order to speed up the rest of the process. Figure 10.1 shows an example where eight

remaining element in a4 x 4 mesh are compacted or packed into 3 x 3 submesh.

Randomaccess write (RAW). This operation can be viewed as emulating one
memory write step of a PRAM having p processors and m memory locations on a
distributed-memory machine that has p processors and m/p memory locations per
processor. Each processor may have an address (consisting of destination processor
ID and memory location within the processor) into which it wants to write its value.

Thus, up to p write operations may be required that must be performed viarouting
of the destination/address/value messages to their destinations. Once there, the
address/value part of the message is used for performing the write operation. Unique
destination/address pairs correspond to the EREW submodel. Unique destinations
correspond to afurther restriction of EREW to a single access per memory block,

as discussed in Section 6.6.

Random-access read (RAR). This operation is similar to RAW and all of the
considerations discussed above apply to it. A RAR operation can be decomposed
into two RAW operations as follows. In the first RAW operation, the requesting
processors write their read access requests, including their own IDS, into the target
processors. In the second RAW operation, which is somewhat more complex than
the simple version discussed in the preceding paragraph if concurrent reads from
the same location/module are to be allowed, the target processors write the results
of the read requestsinto the requesting processors.

We will discuss the implementation of these operations in Section 10.3 after dealing with
some useful elementary or building-block computationsin Section 10.2.

alb alb|c
¢ : dle|f
dleif glh
g h

Figure 10.1. Example of data compaction or packing in a 2D mesh.

ROUTING ON A 2D MESH OR TORUS 195

Processor addresses (also known as node labels or node IDs) can be specified by
row—column numbers or according to their rank in a specified linear order such as those
shown in Fig. 9.3. Such addresses are easily convertible to one another with a small, constant
amount of computation. For example, a processor’s rank kin row-major order can be obtained
from its row number i and column number j based on the equation k= iVp + j. Conversely,
the row and column numbers can be obtained from the processor’s rank kin row-major order
using i = CkWp Dand j = k mod Jp .Other ordering schemes are similar. For these reasons,
in the remainder of our discussion of 2D mesh routing and various other algorithms, we
switch freely between different addressing schemes, using each where it is most convenient.

10.2. USEFUL ELEMENTARY OPERATIONS

In performing data routing and many other operations on a 2D mesh, certain elementary
operations arise quite frequently. It is convenient to review these operations before discussing
routing algorithms.

Row or Column Rotation (all-to-all broadcast within rows or columns). In
\/; —1 steps, datain one mesh row or column can be rotated once, such that each processor
“sees’ every data item. If each processor can send/receive data only to/from one neighbor at
atime, 2Vp — 2 steps are needed, as right-moving and |eft-moving messages will be forced
to alternate.

Sorting Records by a Key Field. We presented and analyzed several sorting algo-
rithms for 2D meshes in Chapter 9. In a permutation routing problem, routing the packets is
equivaent to sorting them by the destination node address. In other situations, sorting is often
used as one of several stepsin designing the required routing algorithm.

Semigroup Computation. A semigroup computation, such as summation or maxi-
mum finding, can be accomplished in 2\1?; — 2 steps (optimal time) by using row rotations
followed by column rotations with bidirectional communication. The time complexity
increasesto 4 Np—4 if communication is restricted to one direction at a time. This simple
algorithm was presented in Section 2.5. A recursive agorithm can be used that is particularly
efficient in the second case above, but that requires commutativity as well as associativity.
The mesh is divided into four quadrants and each quadrant recursively performs the
semigroup computation in such a way that every processor in the quadrant knows the
quadrant result. The quadrants then combine their results horizontally (Fig. 10.2); each
processor in the center two columns exchanges values with its neighbor in the horizontally

< > T

———p
Horizoptal combining Vertcal combining
~p/2 steps ~Np/2 steps

Figure 10.2. Recursive semigroup computation in a 2D mesh.

196 INTRODUCTION TO PARALLEL PROCESSING

adjacent quadrant in one or two steps and then initiates a half-row broadcast. This phase thus
requires \/; /2 0rv§/2 + 1 steps. Verticadl combining in the next phase needs the same
amount of time, leading to the recurrence T(\p) = T(VF/Z) + \/p— +2¢, where gis0or 1. The
solution to the above recurrence isT(Np) = 2¥p - 1 + elog, p.

Parallel Prefix Computation. A (3Vp —3)-step algorithm was given in Section 2.5.
It was based on computing row prefixes, then doing a diminished prefix computation in the
last column, and finally, broadcasting the results obtained in the last column within rows for
final combining. As for semigroup computation, a more efficient recursive algorithm can be
obtained if the binary operation is commutative. Quadrant prefixes are computed in
row-mgjor order, but in opposite directions in the left and right quadrants (Fig. 10.3). Vertica
and horizontal combining take ¥p + O(1)steps if the required data broadcasts, shown in the
middle and right panels of Fig. 10.3, are pipelined. Supplying the details of the algorithm is
left as an exercise.

Routing within a Row or Column. Consider the problem of routing multiple pack-
etson alinear array corresponding to arow or column of our square mesh. If the routing
problem is a permutation, we simply apply ¥p steps of odd—even transposition, using the
destination addresses as the keys. Otherwise, we can proceed as follows (see Section 2.3).
Each packet has an information part and a destination address part. It is more convenient to
convert the destination addresses into a signed relative offset, with positive sign indicating
movement to the right and negative sign corresponding to leftward movement. A processor’s
agorithm for dealing with a received packet is as follows. Figure 10.4 shows an example
where right- and | eft-moving packets alternate.

Datarouting on alinear array

if offset=0

then remove the packet

elseif offset >0
then offset := offset— 1; send to right neighbor
else offset := offset + 1; send to left neighbor
endif

endif

I

Horizontal Combinin
(includes reversal)

Figure 10.3. Recursive parallel prefix computation in a 2D mesh.

ROUTING ON A 2D MESH OR TORUS

0 1 2 3 4 5 Processor number
d2) 0b.5) (2,0 (c,4) (c,1) | (dat, destination)
(a,-2) (c,-4) Left-moving
(d,+2) (b +4) (e, +1) Right-moving
(a,-2) (c,—4)
(d,+1) (b, +3) Right
(a,-1) {c,=-3) Laft
{d, +1) (b, +3)
{a,-1) (c,-3)
(e, -2) Left
(b, +2)
{c,-2)
(b, +1) Right
(c,-1) Left
{b, +1)
Right
e

Figure 10.4. Example of routing multiple packets on a linear array.

197

In fact, the sign of the offset can be removed because each intermediate processor can
recognize the direction in which the packet is moving from the port over which it was

received. For example, in Fig. 9.4, a right-moving packet will enter through the R 3 port.

10.3 DATA ROUTING ON A 2D ARRAY

In this section, we discuss the three routing problems of data compaction (packing),
random-access write (RAW), and random-access read (RAR) introduced in Section 10.1.

To pack a set of avalues residing in active processors into the smallest possible square
submesh in the upper left corner of the original mesh, we proceed as follows. First, each
processor is assumed to hold a binary activity flag: 1 for active, O for inactive. A diminished
parallel prefix sum on these activity flags yields the rank r of each active processor that is
an integer in [0, a— 1]. This computation can be arranged such that, at the end, each active
processor also knows the value of a. The dimension of the smallest square mesh that can
hold a elementsis [Va |. Thus, if the active processor holding the element with rank r sends
it to the processor located in row Lr/[a 1J, columnr mod [Va 1, the compaction or packing

will be complete.

198 INTRODUCTION TO PARALLEL PROCESSING

Considering the example shown in Fig. 10.1, the active processors holding the values
“d" through “h” are ranked O through 7 as a result of the diminished paralel prefix
computation (in row-major order), with a = 8 also becoming known to each active processor.
The destination processor for the rank-r element is then determined to be in row [/30,
column r mod 3. The last step of the compaction or packing agorithm, which sends each
element to its new location, isa RAW routing problem that we will describe next.

For RAW, we first consider the simple case where al destination processors are distinct,
so that at most one write request will end up in each processor. If, in addition to the above
constraint, every processor is required to participate, the routing problem is a permutation
and we can easily solve it by simply sorting the packets by their destination addresses. For
an incomplete, but exclusive RAW, where some processors do not have a write request, the
following three-phase agorithm can be used.

Exclusive random-access write on a 2D mesh: MeshRAW

1. Sort the packets in column-major order by their destination column numbers, using
the destination row numbersto break theties.

2. Shift the packets to the right, so that each item isin the correct column. There will
be no conflict because at most one element in each row is headed for a given column.

3. Route the packets within each column.

Figure 10.5 presents an example. At the left, we see the initial packet positions, with the
destination row and column numbers given. In the second diagram from the left, the packets
have been sorted in column-major order by their destination column numbers, packets
headed for Column 0 appear first, followed by those headed for Column 1, and so forth.
Next, the packets have been shifted to the right, if needed, so that each isin its destination
column. Finaly, the rightmost diagram in Fig. 10.5 depicts the state of the messages after
the completion of routing within the columns.

Note that with the above algorithm, the packets do not necessarily take the shortest paths
to their destinations. For example, in Fig. 10.5, the packet headed to Processor (3, 1) begins
at Processor (2, 2), moves to Processor (0, 1) because of sorting, remains there in the row
routing phase, and finally, moves down to its final location. This packet is forwarded at |least
six times (we cannot say for sure, as the sorting algorithm used is unspecified) to get to a
destination that is only two hops away via a shortest path.

The above observation may lead to the concern that our RAW agorithm is inefficient.
However, this is not the case. After the sorting phase, at most p*2 — 1 row routing steps and

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
0102 [1,6 3,200 0(0,0]3,1]3.2 010,013,132 0100 0.2
1 2313 t|rof0.2)13 1{10f lozfiaf 13tofnthalis
213,001,131 2130]1,2]23 2130 1.21231 2 22|23
3 12§22 31122 3 11122 313031132
Initia stats Aftsr column-major-order After row routing Afe colwrn routing

sorting by destn column

Figure 10.5. Example of random-access write on a 2D mesh.

ROUTING ON A 2D MESH OR TORUS 199

pY2 — 1 column routing steps are required. Row routing is always from left to right, so its
time complexity does not change even if we alow only unidirectional communication. In
the latter case, the time for the column routing phase may double to 2 p¥?— 2. Assuming the
use of the (3p*? + o(p”z))-step snakelike sorting algorithm of Section 9.6, suitably modified
to do the sorting in column-major order and then reversing the order of odd-numbered
columns, the total running time of the RAW algorithm is 6pY? + o(pY?). With unidirectional
communication, the constant 6 in the above expression will increase to 11 (why?).

In the following sections of this chapter, we will study some methods for, and the
implication of, improving the running time of RAW in order to bring it closer to the absolute
2p¥Y2 - 2 lower bound imposed by the diameter. Before that, however, we need to consider
the problem of concurrent writes into the same processor.

If multiple write requests to the same processor are alowed, then routing can no longer
be assumed to be conflict-free. In the worst case, all p write requests are addressed to the
same processor. As, independent of the routing algorithm used, a processor cannot receive
more than four packets in any one step, the worst-case running time is lower-bounded by p/4
(p, if only one communication is allowed per cycle). Because of this large speed penalty for
concurrent RAWS, hot spots should be avoided to the extent possible. On the positive side,
the processor to which multiple write requests are directed can use any priority or combining
scheme to decide on the value to be written into a given memory location. So, even very
complex selection or combining rules do not slow down the processor further.

An exclusive RAR operation, with each processor reading from a unique processor, can
be implemented as two RAW operations. Concurrent reads can be handled with a slightly
more complicated algorithm, as follows. If Processor i wants to read from Processor |, it
constructs arecord < i, j >. These records are sorted according to the key j. At this point, all
read requests addressed to Processor j will reside in consecutive processors (say, k, k+l, . . .,
k+1—1). One of these processors (say k) will do the reading from j and broadcasts the value
to the others. Finally, each read result is routed back to the requesting processor (i).

10.4. GREEDY ROUTING ALGORITHMS

A greedy routing algorithm is one that tries to reduce the distance of a packet from its
destination with every routing step. The term greedy refers to the fact that such an algorithm
only considers local short-term gains as opposed to the global or long-term effects of each
routing decision. The simplest greedy algorithm is dimension-ordered routing or e-cube
routing. The row-first version of the dimension-ordered routing agorithm is as follows.

Greedy row-first routing on a 2D mesh

if the packet is not in the destination column

then route it along the row toward the destination column
{processors have buffers to hold the incoming messages.}

else route it aong the column toward the destination node
{of the messages that need to use an upward or downward link,
the one that needs to go farthest along the column goes first.}

endif

200 INTRODUCTION TO PARALLEL PROCESSING

If the buffer space in each processor is unlimited, the greedy row-first algorithm is
optimal and terminates in no more than 2p*? — 2 steps for exclusive RAW. Clearly, the row
routing phase needs at most p”z — 1 steps, provided that the processors can accept incoming
messages from left and right simultaneously. If two messages destined for Column j arrive
into the same processor, they can leave in the next step if they need to travel in different
directions along the column. However, if both messages want to go in the same direction
along the column, or if higher-priority messages exist among those waiting in the node’s
buffers, then one or both messages will be delayed for at least an extra cycle. Giving priority
to messages that need to go farther along the column ensures that this phase takes no more
than pY2 —1 steps in all; this is easy to prove by noting that a message delayed by & cycles
does not need to move more than p¥2 — 1 — 3 steps.

Figure 10.6 depicts the use of row-first algorithm for an exclusive RAW operation. In
theinitial state, all packets, except the onein Row 2, Column 0, have to move to a different
column. Thus, they are routed horizontally toward their destination columns. The packet
destined for Processor (0, 0) starts its column routing phase right away, moving to Row 1,
Column 0, in the first step. Similarly, other packets begin their column routing phases as
soon as each arrives into its destination column. In this particular example, no routing conflict
is encountered and each packet gets to its destination in the shortest possible time. The
maximum number of packets residing at any one node at a given time istwo. This situation
(dearth of conflicts and small buffer space requirements) is typical for random routing
problems.

In the worst case, however, greedy routing suffers from degraded performance. Even
assuming distinct destinations, the required node buffer sizeis O(p 1/2) in the worst case. For
example, in Fig. 10.7, Node (i, j) receives two messages per cycle that are headed to nodes
below it in the same column. Because only one message can be sent downward in each cycle,
the node requires up to p¥2 /2 message buffers to keep the rest. In fact, once the messages
arriving from above are also taken into account, the situation becomes worse and the buffer
requirement increases to 2p 2 /3. However, with randomly distributed destinations, both the
buffer requirements and the added delay related to conflicts will be O(1) with high prob-
ability.

Based on our discussions of routing methods for a 2D mesh thus far, we are faced with
atrade-off; i.e., a choice between the fast (2p Y2 —2)-step greedy routing scheme presented
above, which requires fairly expensive buffers in each node to guarantee that buffer overflow
will not occur, or the slower 6p Y2 -step algorithm of Section 10.3, which avoids conflicts
altogether and thus requires a single buffer per node. Ideally, we would like to have the

0 1 2 3 0 12 3 0 1 2 3 0 1 2 3
021 |20l 0120 H 010.011,1 0100 Jo,1
1 22 |10 1{0,0}1,0(22 1 %:(OT &1 tholia
2 10,0 0,1 2 0.1 2 2,2 2120021 2.2
3 3 3 3
Initial state Afier 1 step After 2 steps Alter 3 sieps

Figure 10.6. Example of greedy row-first routing on a 2D mesh.

ROUTING ON A 2D MESH OR TORUS 201

Column |

ode (1))

Row i

Figure 10.7. Demonstrating the worst-case buffer requirement with row-first routing.

highest speed with a constant buffer space per node. This, while possible, leads to a very
complicated algorithm with fairly large buffers. So, from a practical standpoint, it makes
sense to look for intermediate solutions with running times between 2p Y2 and 6pY2 and buffer
requirements between 0 and O(p*/?).

The following algorithm is one such intermediate solution that needs (2 + 4/ q) p¥2 +
o(pY2 /g) routing steps with 2q — 1 buffers per node. For g = 1, this algorithm degenerates
into the one described in Section 10.3, while for very large q, it yields near-optimal speed.
As an example of speed—cost trade-offs, the algorithm turns into a 3p ¥2 -step algorithm
requiring seven message buffers per node if we pick q=4.

The intermediate exclusive RAW routing algorithm is as follows. We view the p-proc-
essor mesh as g2 sguare blocks of size pY/2/q (Fig. 10.8). We sort the packetsin each block
in column-major order according to their destination columns and then use the greedy routing
algorithm discussed above to complete the routing. Using the optimal snakelike sorting
algorithm of Section 9.6 and then reversing the order of elements in aternate columns allows
us to complete the sorting phase in 4p Y2 /q + o(pY2 /q) steps. The greedy routing phase takes
2pY2 -2 steps. So, the correctness of the claimed running time is established. It only remains
to be shown that 2q— 1 message buffers are adequate.

Consider Row i and call the blocks containing it B o, B1, By, ..., Bq_1 . Let r be the number
of packetsin By (0 < k< q) that are headed for Column j. Clearly, ZZ;I,rk <p'”%, because at
most p¥2 packets go to Column j; given the assumption of distinct destinations (exclusive
RAW). After sorting the blocks in column-major order, the packets in each block that are
headed for Column j will be evenly divided between the p”2 /q rows. Thus, the total humber
of packetsin Row i that are headed to Column j will be upper bounded by

q—lf Iy _I g-1
2k=0 p/q <2k—0

v - e
1+ Sqg+(g/pt’? r<2
L g /QJ g+(g/p ZM <29

Note that in the above derivation, we have made use of the strict inequality (X O< 1+ xto
show that the number of message buffers needed is strictly less than 2q or at most 2q — 1.

202 INTRODUCTION TO PARALLEL PROCESSING

Colml'nn j

Row i

:
e

Figure 10.8. lllustrating the structure of the intermediate routing algorithm.

The design of a (2pY2 + o(pY2))-step routing algorithm with constant queue size per
node has been addressed by many researchers. Initial solutions [Leig89] involved large
constant-size queues (i.e., independent of p). Even though subsequent refinements have
reduced the queue size, these algorithms are still not quite practical. For example, the work
of Gu and Gu [Gu95] has reduced the number of buffers to the constant 28 fora (2 p¥2 +
O(1))-step agorithm and to 12t¢/s for an optimal (2p¥2 — 2)-step algorithm, where ts is the
sorting time on an s x smesh. The design of an asymptotically optimal (2p vz o(p¥2))-step
routing algorithm with a small number of buffers (say 3 or 4) per node is still an open
problem.

10.5. OTHER CLASSES OF ROUTING ALGORITHMS

Our inability to design fast deterministic routing algorithms with small buffers has led
to an interest in randomized or probabilistic algorithms. One can prove that if the destination
nodes are randomly distributed in the 2D array, the probability that a given packet is delayed
by A additional steps because of conflictsin the row-first greedy algorithm is O(e ™). In
view of the exponentialy decreasing probabilities for larger delays, the expected delay
related to conflictsis O(1) and any packet needing to travel d hopsreachesits destinationin
d + O(log p) steps with probability 1 — O(1/p). Furthermore, with a probability very close
to 1, no more than four packets ever wait for transmission over the same link. Proofs of the
above claims and related results have been given by Leighton ([Leig92], pp. 163-173).

In view of the very good average-case performance of the row-first greedy routing
algorithm (on a randomized instance of the routing problem), it may be beneficial to convert
an arbitrary (nonrandom) routing problem into two randomized instances by selecting a
random intermediate destination for each packet and then doing the routing in two phases:
from the source nodes to the randomly selected intermediate nodes and from these nodes to
the desired destinations.

ROUTING ON A 2D MESH OR TORUS 203

Independent of the routing algorithm used, concurrent writes can degrade the time
complexity to ©(p). However, it might be possible to reduce this time complexity to O(p¥/2)
by alowing intermediate nodes to combine multiple write requests that are headed to the
same destination node. Combining means applying the concurrent write rules to multiple
writes destined for the same processor. This is possible if each processor has but one memory
location (or a single location that may be accessed concurrently by multiple processors).
Figure 10.9 shows an example where five write requests headed to the same destination node
are combined into two requests by intermediate nodes.

The routing algorithms discussed thus far belong to the class of oblivious routing
algorithms. A routing algorithm is oblivious if the path selected for the message going from
Processor i to Processor j is dependent only on i and j and is in no way affected by other
messages that may exist in the system. A nonoblivious or adaptive routing agorithm, on the
other hand, allows the path to change as a result of link/processor congestion or failure.

Consider, for example, an algorithm that allows a packet to interlace horizontal and
vertical movements, without any restriction, until it gets to the destination row or column,
at which point it is restricted to move only aong the row or column on its way to the
destination node. Such a packet will still travel along a shortest path, but can avoid congested
paths by taking alternate routes. A packet on its way from node (0O, 0) to node (3, 2), on
entering node (0, 1), can exit vertically to node (1, 1) if the vertical link is available but the
horizontal link to node (0,2) is not. Of course, there is no guarantee that the packet will get
to its destination faster via this aternate path, as it may encounter congestion or faulty
links/nodes farther ahead. But probabilistically, the availability of alternate paths helps
reduce the routing time and provides some degree of resilience to permanent and/or transient
node/link malfunctions.

As a second example of adaptive algorithms, consider the class of algorithms that
provide one buffer per port in each processor and always send out the received messages (up
to four) to neighboring processors if they are not addressed to the local processor. This class
of algorithms is sometimes referred to as hot-potato routing because each processor imme-
diately gets rid of any incoming message. As messages may be deflected away from the
shortest path to their destinations, a control mechanism is needed to ensure that they do not
wander about in the mesh without ever reaching their destinations. For example, a priority
scheme based on the message age (time steps since its origination) may be used to choose
which of several messages contending for the same outgoing edge should be allowed to use

Figure 10.9. Combining of write requests headed for the same destination.

204 INTRODUCTION TO PARALLEL PROCESSING

it and which are to be deflected to other nodes that may not be on their respective shortest
paths.

Methods to introduce adaptivity into routing algorithms via proper organization of the
information available about the network and the state of packet traffic as well as heuristics
for making the “right” path selection with high probability constitute active areas of research
in parallel processing.

Let us now say a few words about collective communication on 2D meshes using packet
routing. Broadcasting can be simply achieved in two phases: row broadcast followed by
column broadcast, or vice versa. All-to-all broadcasting can be performed in optimal O(p)
time using row and column rotations. Multicasting is very similar to broadcasting, except
that each packet must contain information about its destinations. If the set of destinationsis
a submesh, or one of a previously agreed upon groups of processors, this information can be
encoded compactly within the message. For many-to-many communication, routing can be
performed in rounds. For example, if we have k—k routing where each processor sends exactly
k messages and receives exactly k messages, the problem can be decomposed into k 1-1
routing problems that are then solved one at atime. Of course, all-to-all scatter-gather isa
p—p routing problem that can be solved in p rounds, or O(pVp) steps. This is asymptotically
optimal because of the pZ/4 messages that have to pass through thevp bisection of the 2D
mesh.

Thusfar, we have focused on routing problemsin which all of the packetsto be routed
to their respective destinations initially reside in the mesh. These are known as static routing
problems. In dynamic routing problems, messages are created by the various processors at
regular intervals or at random (perhaps with a known distribution). The performance of
routing algorithms for such dynamically created messages can be analyzed using methods
from queuing theory, via simulation on a software model of the mesh architecture, or through
actual programming and observation of a real machine. Analytical evaluation of routing
algorithms often requires simplifying assumptions that may or may not hold in practice.
Thus, even in such cases, experimental verification of the results maybe required.

As an example of theoretical results for dynamic routing, consider the case of a
synchronous array where, in any given cycle, anew packet is introduced at each node with
a constant probability A, where A < 4/ J; . The reason for restricting A as above is that for
A24/p, the expected number of packets crossing the bisection would be
AMp/2(1/2)y 2 \’; , which can result in unbounded delays. One can prove that with greedy
row-first routing, the probability that any particular packet is delayed by A steps beyond the
length of the shortest path is an exponentially decreasing function of A, provided that the
arriva rate of the packets is below (say at 99% of) the network capacity. Also, in any window
of w steps, the maximum delay incurred by one packet is O(log w + log p) and the maximum
observed queue sizeis O(1 + log w/log p). Thus, simple greedy routing can be expected to
perform reasonably well under dynamic routing with the above conditions. Details have been
given by Leighton ([Leig92], pp. 173-178).

10.6. WORMHOLE ROUTING

We have thus far discussed routing schemes in which a packet moves from node to node
in its entirety. Because each packet is stored in an intermediate node before being forwarded

ROUTING ON A 2D MESH OR TORUS 205

to the next node on its path to the destination, this method is referred to as store-and-forward
routing or packet switching. At the other extreme, we can use circuit switching where a
dedicated path is established between the source and destination nodes (e.g., through link
and node reservations) before the message is actually sent. This may be advantageous for
very long messages, which would otherwise experience significant delays because of
multiple storage and forwarding times and conflict-induced waits. However, the path setup
and teardown times nullify some of this gain. Wormhole switching or routing is an interme-
diate solution that has become quite popular.

In wormhole routing, each packet is viewed as consisting of a sequence of flits
(flow-control digits, typically 1-2 bytes). Flits, rather than compl ete packets, are forwarded
between nodes, with all flits of a packet following its head flit like aworm (Fig. 10.10). At
any given time, the flits of a packet occupy a set of nodes on the selected path from the source
to the destination. However, links become available for use by other worms as soon as the
tail of a worm has passed through. Therefore, links are used more efficiently compared with
circuit switching. The down side of not reserving the entire path before transmitting a
message is that deadlocks may arise when multiple worms block each other in a circular
fashion (Fig. 10.10).

Theoretically speaking, any routing algorithm can be used to select the path of a worm.
However, a simple algorithm is preferable as it can minimize the decision time, and thus the
node-to-node delay, alowing the worm to travel faster. If we choose the row-first greedy
algorithm, a possible format for the worm is as follows. The first flit indicates relative
movement in the row direction (0 to 255 with 1 byte, e.g.). Sign or direction of movement
is not needed as it is implicit in the incoming channel. The second flit indicates relative
movement in the column direction (sign is needed here). The worm starts in the horizontal
direction. Each intermediate processor decrements the head flit and forwards the head in the
same direction as received. When the head flit becomes 0, the processor discards it and turns
the worm in the vertical direction. A worm received in the vertical direction with its head flit
containing O is at its destination.

Figure 10.11 shows some of the ways of handling conflicts in wormhole routing. One
option isto buffer or store the worm until its needed outgoing channel becomes available.
This option, which is intermediate between circuit switching and store-and-forward routing,
is sometimes referred to as virtual cut-through routing. Its disadvantage is that it leads to
excessive node complexity if buffer space is to be provided for the worst case. This
complexity adversely affects the cost of the node as well as its speed.

Packet 2
Deadlock!

Figure 10.10. The notions of worms and deadlock in wormhole routing.

206 INTRODUCTION TO PARALLEL PROCESSING

Buffer Block
S 2=

Figure 10.11. Various ways of dealing with conflicts in wormhole routing.

A second option is to block al but one of the conflicting worms, allowing a selected
worm (based on some priority scheme) to advance toward its destination. The blocked worms
will eventually start advancing, provided there is no deadlock.

A third optionisto ssmply discard all but one of the conflicting worms, again based on
some sort of priority. This scheme assumes the use of an acknowledgment mechanism
between the receiver and the sender. For example, if the worms carry memory read requests,
the acknowledgment takes the form of the returned memory value. The requesting processor
can send a duplicate request if it has not received a reply to the original one within a
reasonable amount of time. With this method, the nodes become quite simple because they
do not need to store anything. However, message delay and network load increase as a result
of the retransmissions. Under heavy load, the bulk of network capacity will be taken up by
retransmissions, leading to poor efficiency and excessive delay.

Finally, some of the conflicting worms can be deflected to nodes other than the ones on
the designated path (hot-potato routing). This may take the worm farther away from its
destination but has the advantage of requiring no intermediate storage for the worms and no
dropped worms. Of course, care must be taken to prevent a worm from going in circles, thus
wasting communication bandwidth and never reaching its destination.

Various deadlock avoidance strategies are available. To determine if deadlock is possi-
ble, draw a graph with one node for each link in the original graph and an edge from Node
i to if the routing algorithm allows the use of j immediately after i. A sufficient condition
for deadlock-freedom is that this dependence graph be cycle-free. Thisisin fact too strong a
condition in that there exist routing agorithms that are free from deadlock but that their
corresponding dependence graphs have cycles. Much research has dealt with determining the
minimum restrictions needed for the routing algorithm to guarantee freedom from deadl ock.

An example is shown in Fig. 10.12. A 3 x 3 mesh, with its associated edge labels, is
shown at the top. With unrestricted or adaptive shortest-path routing, the dependence graph
is as shown at the bottom left. In this case, after routing along Edge 7, any of Edges 11, 14,
or 17 can be used. This directed graph has many cycles, thus the corresponding algorithm
can lead to deadlocks. The row-first greedy algorithm, characterized by the dependence
graph on the lower right, has no cycles, leading us to the conclusion that it must be
deadlock-free.

ROUTING ON A 2D MESH OR TORUS 207

Unrestricted routing E-cube routing
(following shortest path) (row-first)

Figure 10.12. Use of dependence graph to check for the possibility of deadlock.

One way to avoid deadlocks is through the use of virtual channels; i.e., sharing a physical
link by multiple virtual channels, each with its own flit buffer and a chance to be used
according to around-robin schedule. For example, Fig. 10.13 shows the use of two virtual
channels on a northbound link, one each for westward-moving and eastward-moving worms.
Deadlocks can always be avoided through the use of a sufficient number of virtual channels.

We have discussed wormhole routing only in connection with point-to-point messages.
Collective communication can aso be done through wormhole routing. A rich theory for
such data communication problems has emerged in recent years [McKi95].

S | I N
—

L

Tl

Westbound ﬂ k Eastbound
messages messages

Figure 10.13. Use of virtual channels for avoiding deadlocks.

208

INTRODUCTION TO PARALLEL PROCESSING

PROBLEMS

10.1.

10.2.

10.3.

10.4.

10.5.

10.6.

10.7.

10.8.

Recursive parallel prefix computation
Specify the details of the parallel prefix computation agorithm given in Fig. 10.3. Present an
analysis of your algorithm and determine an exact value for the O(1) term in its performance.

Datarouting on alinear array

a. Show that any k-to-l routing problem can be solved in p + k— 1 steps on a p-processor
linear array, provided that each processor starts with at most one packet.

b. How does the time complexity of the k-to-1 routing problem change if each processor can
start with up to k packets and there are at most p packets overall?

Sorting-based routing on a 2D mesh
Consider the routing algorithm for 2D meshesin Section 10.3 with the added assumption that
up to k packets can have the same destination.

a Determine the worst-case running time of the algorithm with unlimited node buffers.
b. Determine the worst-case buffer space requirement per node.

Greedy row-first routing on a2D mesh

a Show that 2vp /3 message buffers per node are adequate to ensure that the greedy row-first
algorithm can run at full speed on a p-processor square mesh.
b. Show that the row-first greedy routing algorithm takes ©(p) steps in the worst case if each
node is constrained to have a constant number of message buffers (say 4).

Greedy routing on a2D mesh

If data are to be routed on a nonsquare r x (p/r) mesh, which of the two greedy routing
algorithms, row-first or column-first, would minimize the required buffer space per node? First
assume distinct destinations, then relax this assumption.

Data compaction or packing

a. Analyze the data compaction or packing problem, described in Section 10.3, with regard
to conflicts and buffer requirements when an adaptive packet routing agorithm is used.
b. Repeat part (a) for wormhole routing, focusing on the possibility of deadlock.

Greedy row-first routing on a2D mesh

a For a4 x 4 mesh, determine the relative message load of each of the 24 links if row-first
greedy routing is used and each node sends the same number of messages to every other
node on the average.

b. How will the distribution change if messages sent by the same processor aternate between
row-first and column-first routing?

c. Repeat part (a) for a4 x 4 torus.

d. Repeat part (b) for a4 x 4 torus.

Greedy row-first routing on a2D mesh

Consider ascenario wherenode (i, j) in asquare 2D mesh beginswith x; packets to be routed,
where the xjj are independent Poisson random variables with mean A, that s,
prob[x;j = k] = ke K. Prove the following results.

a The greedy row-first algorithm routes each packet with constant expected delay iff A < 1.
b. The expected maximum queue size is constant iff A < 2.

ROUTING ON A 2D MESH OR TORUS 209

10.9.

10.10.

10.11.

10.12.

10.13.

10.14.

c. The condition of part (a) becomes “iff A < 2" if the mesh is replaced with a torus.
d. The condition of part (b) becomes “iff A < 4" if the mesh is replaced with atorus.

Greedy routing on a 2D mesh

Analyze the behavior of greedy row-first routing on a2D mesh if it is known that no packet is
more than d hops away from its intended destination, where d is a known constant independent
of p.

Greedy routing on a complete binary tree

Analyze the behavior of a greedy routing algorithm on a complete binary tree with respect to
running time and maximum number of message buffers per node. Specify your protocol for
conflict resolution.

Wormhole routing

Analyze the following a gorithm for broadcasting on a 2D mesh using point-to-point wormhole
routing. The source node sends four messages to the four processors located at the lower left
corner of each of the four quadrants of the mesh. Each of these four processors then uses the
same method to broadcast the message within its own quadrant.

Wormbhole routing
Consider wormhole routing with very short messages consisting of one header flit (holding the
destination row and column offsets) and a single information flit.

a. Doeswormhole routing still have advantages over packet routing in this case?

b. Isdeadlock possible with such short messages?

C. Suppose that the single information flit holds the ID number of the sending processor. Can
a message that carries only the destination and source addresses serve any useful purpose?

d. Going astep further, does it make sense for a message to hold only the destination address?

The turn model for adaptive wormhole routing

When routing on a 2D mesh, eight types of turns (four clockwise and four counterclockwise)
are possible in switching from row/column movement to column/row movement. Show how
by disallowing two of these turns, one from each set, an adaptive deadlock-free routing
agorithm can be constructed that uses the remaining six turns without any restriction and does
not need virtual channels [Glas92).

Interval routing

Interval routing is a routing scheme in which one or more intervals of nodes are associated with
each outgoing link of a node, with a message sent out over alink if the destination node number
is contained in one of the intervals associated with that link. In the simplest case, exemplified
by the seven-node X-tree architecture shown below, a single interval is associated with each
link and the intervals for different outgoing links do not overlap, leading to unique paths.

3. 6] (2.2] Q) (4.6} (03] &) [6.6] [3.5]

210

INTRODUCTION TO PARALLEL PROCESSING

For the seven-node X-tree architecture shown above, determine the relative message load
on each link if, on the average, each node sends the same number of messages to every
other node.

Draw a link dependence graph and prove that deadlock is impossible with wormhole
routing.

Replacing each bidirectional link with two unidirectional ones, divide the network into two
subnetworks: the down/right subnetwork consisting of links that point downward or to the
right, and the up/left subnetwork with upward and leftward links. Show that any assignment
of intervals (or any routing scheme, for that matter) that causes a path to begin in the first
subnetwork and either end in the same subnetwork or move to the second subnetwork after
0 or more hops and stay there until getting to the destination, is guaranteed to be
deadlock-free.

Devise an interval routing scheme for a 4 x 4 mesh, with one interval attached to each link,
that divides the load as equally as possible between the 24 links and is also deadlock-free.
Y ou are free to choose the node indexing scheme. Hint: The result of part (c) may help.

REFERENCES AND SUGGESTED READING

[Felpo6]
[Glaso?]
[Guos]

[Leig89]

[Leigo?]
[McKig5]
[MPIF94]

[Pink97]

Felperin, S., P. Raghavan, and E. Upfal, “A Theory of Wormhole Routing in Parallel Computers,”
IEEE Trans. Computers, Vol. 45, No. 6, pp. 704-713, June 1996.

Glass, C. J. and L. M. Ni, “The Turn Model for Adaptive Routing,” Proc. 19th Int. Symp. Computer
Architecture, 1992, pp. 278-287.

Gu, Q.-P., and J. Gu, “Two Packet Routing Algorithms on a Mesh-Connected Computer,” |EEE Trans.
Parallel Distributed Systems, Vol. 6, No. 4, pp. 436440, April 1995.

Leighton, T., F. Makedon, and I. G. Tollis, “A 2n-2 Step Algorithm for Routing in an n x n Array
with Constant Size Queues,” Proc. 1st ACM Symp. Parallel Algorithms and Architectures, 1989, pp.
328-335.

Leighton, F. T., Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes,
Morgan Kaufmann, 1992.

McKinley, P. K., Y.-J. Tsai, and D. F. Robinson, “Collective Communication in Wormhole-Routed
Massively Parallel Computers,” IEEE Computer, Vol. 28, No. 12, pp. 39-50, December 1995.
Message-Passing Interface Forum, “MPI: A Message-Passing Interface Standard,” Version 1.0,
University of Tennessee, Knoxville, 1994.

Pinkston, T. M., and S. Warnakulasuriya, “On Deadlocks in Interconnection Networks,” Proc. Int.
Symp. Computer Architecture, 1997, pp. 38-49.

11

Numerical 2D Mesh
Algorithms

In Chapters 9 and 10, we discussed 2D-mesh sorting and routing algorithms that
are important in themselves and also form useful tools for synthesizing other
parallel algorithms of interest. In this chapter, we cover a sample of numerical
and seminumerical algorithms for 2D meshes. Even though the problems
covered here do not exhaust all interesting or practically important algorithms,
they do expose us to a variety of techniques and problems in parallel algorithm
design for 2D mesh-connected computers. We should then be able to handle
other applications with the knowledge gained from this chapter and the previous
two. Chapter topics are

11.1. Matrix multiplication

11.2. Triangular system of equations

11.3. Tridiagonal system of linear equations
11.4. Arbitrary system of linear equations
11.5. Graph algorithms

11.6. Image-processing algorithms

211

This page intentionally left blank.

NUMERICAL 2D MESH ALGORITHMS 213

11 .1. MATRIX MULTIPLICATION

The matrix multiplication problem was defined in Section 5.6, where severa PRAM
algorithms were developed for solving the problem. To facilitate the development of a 2D
mesh algorithm for matrix multiplication, we first consider matrix—vector multiplication on
alinear array. Let Abe an mx mmatrix and x an m-vector. The product y = Ax is an m-vector
such that

Jj=0

Figure 11 .1 shows how the computation for m = 4 (including the presentation of the inputs
A and x and the extraction of the output y) can be organized on a four-processor linear array.
In the first computation step, aypand X, are presented to Processor P, which computes their
product agyXg, keeping the result in an internal register. P, then adds the products a,,X;, ag, X,
and a3, to its running sum in the next three computation cycles, obtaining its final result
Y, é the end of the fourth computation cycle. Similarly, P, computes and adds the terms
ayXy, g1 X, @10X,, and ay3X%s, beginning with the second computation cycle and finishing in
the fifth cycle. The x inputs are shifted from left to right after one cycle of delay in each
processor. The last result, y,, becomes available at the end of the seventh cycle.

With inputs of dimension mand p = m processors, the computation takes 2m—-1=2p -1
cycles, each cycle corresponding to a processor performing a multiplication and an addition.

Because multiplying two m x m matrices can be viewed as m separate matrix—vector
multiplications, the computation structure of Fig. 11.1 can be readily extended to an m x m
processor array multiplying two m x mmatrices (Fig. 11.2). The first row of processorsis
essentially identical to Fig. 11.1, receiving matrix A from above and Column 0 of matrix B
from the left and computing Column 0 of the result matrix C. In general, Row j of the array
will compute Column j of the result matrix, using al elements of A and only Column j of B,
according to the equation

Row 0 of a33
Matrix A : a a
D oaa a3 232 car oo
: 13 222 231 .. Matrix A
203 412 3z .23y
202 211 .820

201,210

X3 X2 *1 Xp

Figure 11 .1. Matrix—vector multiplication on a linear array.

214 INTRODUCTION TO PARALLEL PROCESSING

Row 0 ofcociienens . a3z
Matrix A a3 a3 Col 0 of
813 22 431 .. Matrix A

ag3 812 a1 .3ay

a a = -
Col 0 of agg” woC
Matrix B -
TR b3g b2o big boo —P
b3y bpy byy bgy - P
b3z bpp b1z bop - - —pe|0]

b33 bz3 b1z bgz - - -

Figure 11.2. Matrix—matrix multiplication on a 2D mesh.

m-1
Cy= le ayby

Because elements of A are delayed by one cycle for each row of processors, columns of B
must be similarly delayed at input in order for relative timings to be preserved in each row.
The total computation time is 3m — 2 = 3Vp — 2 steps (there are p = m? processors).

Adding awraparound link to Fig. 11.1 converts the architecture into a ring and allows
us to rotate the elements of x, initially stored as shown in the example of Fig. 11.3, among
the processors. Elements of A can be input from above or stored in the local memories of the
processors, with P, holding Row j of A. Figure 11.3 shows a snapshot of the computation
when P, isreading or receiving x, from P, and a,, from above (or reading it from its local
memory). This corresponds exactly to P,’s status in Fig. 11.1. However, whereas all other
processors are idle in the snapshot shown in Fig. 11.1, no idle cycle is ever encountered here.
Elimination of idle processor cycles reduces the computation time to the optimal m = p steps
(p? multiply—add operations done by p processorsin p cycles).

Row 0 of Col 0 of

Matrix A Lot TMatrix A
ag2 a1y A0 833 i
ap1,,..210 a23 aszz

800 213 azz a3y

P

a a a a
x033 xlzz s)(300
T I

Y ¥V v Y

Yo Y3 Yz Y3

Figure 11.3. Matrix—vector multiplication on a ring.

NUMERICAL 2D MESH ALGORITHMS 215

M
]

&£
w
2

o
a5

21 11230|]
b10[M*ag L1
——
11|l320){233
[41||b01||b31
I

1
2g1{itd10 1323+ a3j
D1 2192 [fiP32 f[1P22

2o0f] 121311222 {231
boajt | ba3)|[P13

LS,
O N

ol
N
o

[1

1

(]

Figure 11.4. Matrix—matrix multiplication on a torus.

Adding wraparound links to Fig. 11.2 converts the architecture into a torus. Elements
of Aand B can now be stored into the processors as shown in Fig. 11.4. Elements of A are
rotated vertically in the columns, while those of B undergo horizontal rotation in the rows.
In the snapshot shown in Fig. 11.4, Processor P, is reading or receiving a,, from P, and
bgo from Py;. This corresponds exactly to P,,’s status in Fig. 11.2. Again, no processor is ever
idle. The computation time is reduced from 3Vp — 2 steps to the optimal ¥p steps (p*/2
multiply—add operations done by p processors in p¥? cycles).

The arrangement shown in Fig. 11.4 is easily extended to the practical situation when
large m x m matrices must be multiplied on a small p-processor mesh (p << m?). In this case,
the elements &;;and b; ; shown in the figure actually represent (m/pY2) x (m/p*?) blocks of
the two matrices, with regular multiplication/addition operations replaced by matrix multi-
plication/addition. Despite the fact that large matrix blocks cannot be passed between
processors in a single cycle, arrangements can be made such that data transfers and
computations overlap. As a processor works on multiplying its current blocks, the next A
and B blocks needed will be loaded into its memory. In multiplying matrix blocks, the
processor performs (m/p¥?)2 multiply—add operations on 2(m/p¥?)2 data elements. Thus,
there will be ample time for performing the required data transfers when m/p'2 is fairly large.

11.2. TRIANGULAR SYSTEM OF EQUATIONS

A (lower/upper) triangular square matrix is one in which all elements above the main
diagonal or all elements below it are Os, respectively (Fig. 11.5). If, additionaly, all of the
elements on the main diagonal are also Os, the triangular matrix is called strictly lower/upper
triangular. The determinant of an mx mtriangular matrix AisTI7;! a,. We will deal with
lower triangular matrices only, but the techniques discussed can be applied to upper triangular
matrices as well.

A triangular system of linear equations, written in matrix form as Ax = b, isone in which
the matrix Ais (lower) triangular. The Ax = b matrix form is shorthand for

Ayt =b,

g% + anty =b,

216 INTRODUCTION TO PARALLEL PROCESSING

0
0
Lower triangular Upper trangular
(if ay =0, then itis (itay =0, thenitis
strictly lower tiangular) strictly upper triangular)

Figure 11.5. Lower/upper triangular square matrix.

[

Anp¥y + Ay x| + Ay =bh

am—l,Oxo + am—l,lxl .o F am—l,m—lxm—l = bmfl

Such a triangular system of linear equations can be easily solved by back substitution.
Compute x, from the top equation, substitute into the next equation to find %, and so forth.
In the ith step, when Equation i is being dealt with, we need i multiplications to compute the
terms containing the aready known variables, i subtractions to compute the new right-hand
side, and one division by &; ;to compute the value of x. Thus, the total number of arithmetic
operations is

m~1

3 Qi+ 1)=m?

i=0
For comparison purposes, and to demonstrate that the algorithm contains a significant

amount of parallelism, we first implement the back substitution agorithm on PRAM
with p = m processors:

Back substitution on an m-processor PRAM

Processor i, 0<i<m,dot;:=b
forj=0tom-1do
Processor j compute x; : = t;/a; ;
Processor j broadcast x; to all other processors
Processor i, j<i<m,dot; : =t, -3 %
endfor

On a CREW PRAM, the broadcasting step is simply a concurrent memory access operation.
Thus, each iteration of the algorithm involves three arithmetic operations, yielding a total
running time of 3p steps and a speed-up of p/3.

Performing back substitution for m lower-triangular equations on a linear array of m
processors is straightforward. As shown in Fig. 11.6, the lower triangular matrix Aisinput
to the array from above and the b vector from the right (this represents the t vector being
initialized to b). If the computation begins from the initial state depicted in Fig. 11.6, with
ty= by being available to the leftmost processor, then 2m— 1 steps are needed (the first output

NUMERICAL 2D MESH ALGORITHMS 217

a33
N 432 Column 0 of
a2 - a
< a1 311‘ ‘!30 Matrix A
a5y - .20 -
= a1 i -
-89 = - -

- by - bj

3T X T X
~— "4
N
Place-holders for the
values to ba computed -

Figure 11.6. Solving a triangular system of linear equations on a linear array.

appears immediately, with one output emerging every two cycles afterwards). If the time for
shifting in of bis also included, the time required will be 3m — 2.

Figure 11.7 shows how the problem of inverting an m x mlower triangular matrix A can
be viewed as minstances of solving a system of mlower triangular linear equations. This
method of inverting a lower triangular matrix can be easily mapped onto an m x m mesh
(Fig. 11.8), where each row of the mesh computes one column of A and outputs it from
the right. Because multiplication is usually faster than division, the top left processor in the
mesh can be made to compute 1/a; ;and pass the result downward so that each of the other
processors in Column 0 needs to perform one multiplication.

Inverting an m x mlower triangular matrix using the computation scheme depicted in
Fig. 11.8, with p = m2 processors, takes 3m — 2 steps. If a second m x m lower triangular

] I 1
0 1 ; 0
iné,) X X = 1 N
3 0
1
1
- A - - AT I
0 ;
A x = Solve m such triangular
i | 1] A
12] . systems to invert
A Column i Column {
of X = Al of I

Figure 11.7. Inverting a triangular matrix by solving triangular systems of linear equations.

218 INTRODUCTION TO PARALLEL PROCESSING

233
- a
2 Column 0 of
a22 - 31 e Matrix A
R 5 RO 1)
a1 = e 30 -
Place-holders for the - a1 - -
elements of the inverse a0y - - Identity Matrix

/\
- t29 - t39

matrix to be computed
d N N

30 T %0 TR0 T %

t11 - t21 - t31
*31 T %1 T M T oy T
- t12 - t22 - t32
X32 T %22 T 12 T %oz T
03 - t13 - t23 - t33
¥33 7 %3 T X3 T X3 T

Figure 11.8. Inverting a lower triangular matrix on a 2D mesh.

matrix A’ is supplied to the array in the alternate cycles where no element of A or X is present,
both matrices can be inverted in 3m— 1 steps.

11.3. TRIDIAGONAL SYSTEM OF LINEAR EQUATIONS

A tridiagonal square matrix is one in which all elements, except possibly those on the
main diagonal, and the ones just above or below it, are Os (Fig. 11.9). Instead of the usual
notation a;; for the element in Row i, Column j, of A, we use d; to represent the main diagonal
element a;;, u; for the upper diagona element a;;,,, and |; for the lower diagonal element
& ;_- For the sake of uniformity, we definely=u,, ;= 0.

With the notation defined above, a tridiagonal system of linear equations can be written
asfollows, where x_; = X = 0 are dummy variables that are introduced for uniformity:

19 d up n %0 7 Do |
L, dq 9w 0 X1 by
1 d w X2 b2
13 ' X =
0 o w2
- In-1 dm-1 jom-1 [*m—ll | P

Figure 11.9. A tridiagonal system of linear equations.

NUMERICAL 2D MESH ALGORITHMS 219

Ly x)+ dyxy + 1y x, =b,
Lixg+d x +ux, =b,
Lixy+dyx, +uyxg =b,
Im—l Kot drrwl Fn-1 + Wy oy = bm—l

One method to solve the above tridiagonal system of linear equations is to use odd—even
reduction. Observe that the ith equation can be rewritten as

x; = (l/d,) (b, - 1[YT 'ti+l)

Taking the above equation for each odd i and substituting into the even-numbered equations
(the ones with even indices for |, d, u, and b), we obtain for each eveni (0 < i <m) an equation
of the form

R TV A b, 4.

i+ i-1

lialy (Ly "i1i+1] Miltiyg bbiy wby,

X, ,+|d - -
N
i1 body dy, diyy

In this way, the m equations are reduced to [im/2[0tridiagona linear equations in the
even-indexed variables. Applying the same method recursively, leads to m/4 equations, then
m/8 equations, and, eventually, asingle equation in x,. Solving this last equation to obtain
the value of x,, and substituting backwards, allows us to compute the value of each of the m
variables. Figure 11 .10 shows the structure of the odd—even reduction method.

Forming each new equation requires six multiplications, six divisions, and four addi-
tions, but these can al be done in parallel using p = m/2 processors. Assuming unit-time
arithmetic operations, we obtain the recurrence T(m) = T(m/2) + 8 = 8 log,m for the total
number of computational steps. The six division operations can be replaced with one
reciprocation per new equation, to find 1/d. for each odd j, plus six multiplications.
Obviously, the above odd—even reduction method is applicable only if none of the dj values
obtained in the course of the computation is 0.

In the above analysis, interprocessor communication time was not taken into account.
The andlysis is thus valid only for the PRAM or for an architecture whose topology matches
the communication structure shown in Fig. 11.10. Figure 11.11 shows a binary X-tree
architecture whose communication structure closely matches the needs of the above com-
putation.

Comparing Figs. 11.10 and 11 .11, we note that each of the required data transfers can
be performed in no more than two steps on the X-tree. In fact, if we remove al of the dotted
“left child” linksin Fig. 11.11, leading to what is known as a 1D multigrid architecture, we
can still perform odd—even reduction quite efficiently.

To perform odd—even reduction on alinear array of p = m processors, we can assume
that each processor initially holds one of the m equations. Direct one-step communication
between neighboring processors leads to the even-numbered processors obtaining the
reduced set of m/2 equations with afew arithmetic operations as discussed above. The next
reduction phase requires two-step communication, then four-step, and eventually (m/2)-step,

220 INTRODUCTION TO PARALLEL PROCESSING

X0
* Find x; in terms of xg and x3 from Eqn. 1;
substitute in Eqns. 0 and 2.
Xg X9

Xo

X1y X12

AOSOBOHOSOBOBODO

X5 Xqy4 X33 X312 X33 X309 X9 Xg X9 Xg Xg Xy X3 Xp; X3 X

Figure 11.10. The structure of odd—even reduction for solving a tridiagonal system of linear
equations.

leading to linear running time (of the same order as sequential time). On an m-processor 2D
mesh, odd—even reduction can be easily organized to require ©(¥p) time. Specifying the
detailsis|eft as an exercise.

It is worth noting that solving a tridiagona system of linear equations can be converted
to aparallel prefix problem as follows. Definethe 3 x 3 matrix G, as

~di/u; —L/u; b/,
G;= 1 0 0
0 0 1

Then, the ith equation can be written in matrix form as

My —d;/u; —l,/u; b/u; X

Vit B
x i=| 1 0 0 (x| % |=G,xG_x- xGyx| 0
0o 0 1 1 1

In particular, we have

xm X

X =G X G, X X Gy X 0
1 1_|
L

NUMERICAL 2D MESH ALGORITHMS 221

Xis K14 X93 X35 X33 X9 Xg Xg X7 Xg X5 X4 X3 X; Xy, Xg

Figure 11 .11. Binary X-tree (with dotted links) and multigrid architectures.

Solving this last set of three equations provides the value of », which can then be used to
determine the values of al other variables, given the prefix results G x G;_; x - x G for
oddi.

11.4. ARBITRARY SYSTEM OF LINEAR EQUATIONS

Given a set of mlinear equations Ax = b, Gaussian elimination consists of applying a
sequence of row transformation to A and b (multiplying arow by a constant, interchanging
rows, adding a multiple of one row to another). For a nonsingular matrix A, this is done until
Aturnsinto the identity matrix. At that point, x=b. If Ais singular, it is turned into an upper
triangular matrix U (we will not consider this case here). Because the same row transforma-
tions are applied to both Aand b, it is convenient to construct an extended matrix A' that has
Ainitsfirst m columns and b in the last column. The row transformations that convert the
first m columns into the identity matrix will yield the solution in the last column. In fact, k
systems of equations with the same A matrix and different b vectors can be solved
simultaneously by simply appending each of the b vectors as a column of A'.

To illustrate the method, we apply it to the solution of two systems of three linear
equations (sharing the same 3 x 3 matrix of coefficients) as follows:

2xp +dx; - Tx,=3 g+ 4dx, — Tx,=7
3xy + 6x; - 10x, =4 3x,+ 6x; — [0x; =8

—xo+ 3%, - 4x,=6 —xp + 3x; — dx, = -1

222 INTRODUCTION TO PARALLEL PROCESSING

The extended A" matrix for these two sets of equations has m + k=5 columns:

2 4 -7 37
A= 3 6-104 8

L - -
L13 4 6 -1

Divide Row 0 by 2; then, add —3 times Row 0 to Row 1 and add 1 times Row 0 to Row 2 to
get

£ 2 =7/2 372 172
AO=00 32 -1/72 572
05 -15/2 15/2 5/2J

Now exchange Rows 1 and 2 to make the next diagonal element nonzero:

12 =772 372 172
A" =105 -15/2 1572 572
00 1/2 =172 -5/2

Divide Row 1 by 5; then, add —2 times Row 1 to Row 0 and 0 times Row 1 to Row 2 to get

10-1/2 =372 5/2
AW=\0 1 -3/2 3/2 12
00 1/2 -1/2 -5/2

Finally, divide Row 2 by 1/2; then, add 1/2 times Row 2 to Row 0 and 3/2 times Row 2 to
Row 1to get

100-20
A¥=l010 0 -7
001 -1-5

The solutions to the two sets of equations are thus x, = -2, X, = 0, x,= =1, and X, = 0, X, =
—7,x,=-5, which are directly read out from the last two columns of A'?),

A linear array with p = m + k processors can easily perform one phase of Gaussian
elimination. Take the first phase, e.g., that leads from A' to A' ©, The transformation involves
dividing Row 0 by a,, and then subtracting a, , times the new Row O from every Row i for i
> 1. Asdepicted in Fig. 11.12, this can be done by computing the reciprocal of gy, in the
circular node, passing this value to the right so that it can be multiplied by each of the other
elements of Row 0 and the results stored in the corresponding sguare nodes (node variable
2).

In subsequent steps, the circular node simply passes the values it receives from above
to the right with no change. Denoting the left and top inputs to a square node by x and vy,
respectively, a cell must compute and output y —xz = ajj- g, O(aoj la,,) as each subsequent
row passes over it. Elements of A'(© emerge from the bottom of the linear array in the same
staggered format as the inputs coming from above, with Rows 1 through m— 1 appearing in

NUMERICAL 2D MESH ALGORITHMS 223

Termination

symbal ”‘] * b Row 0 of
* azp bl Extended
* as] 512, UO Matrix A’
820 61%,,.-502 -
2109...801 - -
a0 - - - y
X X
y-x2

Figure 11 .12. A linear array performing the first phase of Gaussian elimination.

order, followed by Row 0 which is output when the specia termination symbol * is received
as input.

Figure 11.13 shows a 2D architecture for Gaussian elimination. Circular nodes, on
receiving the first nonzero value from above, reciprocate it (i.e., compute 1/a;;) and pass the
reciprocal value to the right. Processorsin Row i are responsible for computing and storing
theith row of A'", producing at their outputs the rows of A'() in order from i + 1tom—1,
followed by Rows 0 through i. The total computation timeis4m — 1: 2m steps for b,,_; to
arrive into the top row of the array, m— 1 steps for it to move to the bottom row, and m steps
for output.

* b, Row 0 of

* a2 bs ,,. Extended

* azy 512' ”””” bb Matrix A’
a0 211,.202 -~
ajg,.agi - -
,. 200 - - -

Qutputs

Figure 11 .13. Implementation of Gaussian elimination on a 2D array.

224 INTRODUCTION TO PARALLEL PROCESSING

Note that, because the inversion of an m x mmatrix A is equivalent to solving m systems
of linear equations with the same A matrix (one for each column of the unknown inverse
matrix), the scheme of Fig. 11.13 can be easily extended to perform matrix inversion using
Gaussian elimination. Figure 11.14 shows the resulting arrangement where the m x 2m
extended matrix A', with the identity matrix in itslast m columns, isinput at the top and the
inverse matrix X emerges from the bottom of the array.

An alternative to Gaussian elimination for solving systems of linear equations is the use
of Jacobi relaxation. Assuming that each a, ;is nonzero, the ith equation can be solved for
X, yielding m equations from which new better approximations to the answers can be
obtained from already available approximations >§‘) :

D = (17a)[b, - > ap;x® isaninitial approximation for x
JE

On an m-processor linear array, each iteration of Jacobi relaxation takes O(m) steps, because
essentialy the values held by the m processors need to be rotated to allow each processor to
compute its next approximation. The number of iterations needed is O(log m) in most cases,
leading to the overall time complexity O(m log m).

A variant of the above, known as Jacobi overrelaxation, uses the iterative formula

2 = (1= 4 (aplb, - Ty ayx)

* 1 Row 0 of
* 0 0 e Extended
* 0 1 e Matrix A*
. * aszo 0 . o’ -
az1 212,01 - -
a20 213...202 - -
al,Q--'adl - - - -
w20 - - - -
- - Koo Output
- %21 *12
X20 X11 *02
*10 *01

*00

Figure 11.14. Matrix inversion by Gaussian elimination.

NUMERICAL 2D MESH ALGORITHMS 225

Here, y (0 <y <1) isaparameter of the method. For y = 1, the method is the same as Jacobi
relaxation. For smaller values of y, the overrelaxation method may lead to better performance
because it tends to keep the new values closer to the old values.

11.5. GRAPH ALGORITHMS

An n-node graph can be represented by an n-by-n adjacency matrix A. Nodes are
numbered from 0 to n —1 with & ;= 1if there is an edge from Node i to Node j and 0 otherwise.
This matrix representation is quite suitable for use on a mesh-connected computer, as each
matrix entry can be assigned to a processor on an n-by-n mesh. If there are fewer than n2
processors for dealing with an n-node graph, then blocks of A can be assigned to processors.

In some applications, weights are associated with the edges (representing, e.g., travel
times on roads, road tolls, or pipeline capacities). In these cases, a weight matrix can be used
in lieu of the adjacency matrix. Lack of an edge from Node i to Node j is represented by
assigning a suitable value to the corresponding ij element in the weight matrix. For example,
if minimum-weight paths are to be found, assigning the value “ »” to missing edges ensures
proper selection. Note that weights can be negative in the general case.

To obtain the transitive closure of a graph, defined as a graph with the same number of
nodes but with an edge between two nodes if there is a path of any length between them in
the original graph, we begin with the adjacency matrix A and define

Ad=| Paths of length 0 (the identity matrix)
A=A Paths of length 1

and compute higher “powers’ of A using matrix multiplication, except that in our matrix
multiplication algorithm, AND is used instead of multiplication and OR in lieu of addition.

A2=Ax A Paths of length 2

A3=A2x A Paths of length 3

A"= A%+ AL+ A2+, . (A= 1iff Node j is reachable from Node i)

The matrix A* is the transitive closure of A.

To compute A*, we need only proceed up to the term A", because if there is a path from
i to j, there must be a path of length less than n. Rather than base the derivation of A"on
computing the various powers of the Boolean matrix A, we can use the following simpler
algorithm.

Transitive closure algorithm

Phase 0: Insert the edge (i,]) into the graph if (i, 0) and (0, j) arein the graph.
Phase 1: Insert the edge (i, j) intothegraphif (i, 1) and (1, j) arein the graph.

Phase k: Insert the edge (i, j) into the graph if (i, k) and (k, j) arein the graph.
The graph A at the end of Phase k has an edge (i, j) iff there is a path

226 INTRODUCTION TO PARALLEL PROCESSING

000100

000011
A-|010000
=loo0000¢0
0106000

00000COC

Figure 11.15. Matrix representation of directed graphs.
from i toj that goes only through nodes{1,2, . . ., k} asintermediate hops.

Phase n—1: The graph A(™Y s the required answer A".

A key question is how to proceed so that each phase takes O(1) time for an overall O(n) time
on an n x n mesh. The O(n) running time would be optimal in view of the O(n3) sequential
complexity of the transitive closure problem. Assume for now that each processor located
on the main diagonal can broadcast a value to all processors in its row. Then the input, output,
and computation can be arranged as shown in Fig. 11.16.

Phase 0 of the algorithm is carried out as Rows 1, 2, . .., n—1 of A pass over Row 0 of
Awhich is stored in the Oth row of the mesh. As Row i passes over Row 0, Processor (0,0)
broadcasts the value of a;,to all of the processors in the Oth row. Because the jth processor
has already saved the value of 3, it can set the value of ay that is passing through to 1 if
8, =ay;= 1. By thetime the kth row of A reaches Row k of the mesh, it has been updated to

Row 2
¢ Row 1 Row 2
Row 0 Row 1 Row 2
Row 0 Row 0/1 Row 072 Row 0
Row 1 Row 1/2
Initially

Row 1/0 Row 1

Row 2 Row 20 Row 2/1 Row 2
Row 0 Row 1 Row 2
Row 0 Row 1 ¢
Row 0

Figure 11.16. Transitive closure algorithm on a 2D mesh.

NUMERICAL 2D MESH ALGORITHMS 227

become the kth row of A1 i.e., it has passed through the first k — 1 phases. Thus, the total
number of steps for computing the transitive closure of an n-node graph, represented by an
n x n adjacency matrix, is 3n steps.

The need for broadcasting can be eliminated through a technique known as systolic
retiming, defined as inserting delays on some of the edges (and perhaps removing delays
from some others) in such a way that each node still receives its input data in the same
order/combination as before. Figure 11.17 shows the application of systolic retiming to the
above transitive closure algorithm. The algorithm before retiming is shown on the left side
of Fig. 11.17, where the 0-delay row edges represent the broadcasting of a, foral k>1, by
Processor P .

In systolic retiming, we can multiply al edge delays by a constant factor (slowing down
the computation by that factor) or add the same delay to the edges in a cut in which dl edges
go in the same direction. Also, for any node, we can add/subtract & to/from each input edge
delay and subtract/add 6 from/to each output edge delay, as delaying/advancing all inputs
by & while advancing/delaying all outputs by & cancel each other out as far as interactions
with other nodes are concerned. Our goal hereis to eliminate the broadcasting (making all
edge delays nonzero).

In the case of Fig. 11.17, we can add 6 (more generally, 2 n — 2) units of delay to all
edges crossing Cut 1. Thisis allowed because all of the edges involved cross the cut in the
same direction. Now, we subtract 6 units of delay from the input to Node (0, 0) and add 6
units to each of its two outputs. Node (0,1) now has its top and side inputs with 7 and 6 units
of delay, respectively. In the next step, we reduce these by 5 (to 2 and 1) and increase the
output delays by 5 (to 6 and 5). Continuing in this manner, we get the retimed version shown

Broad-
casling
nodes

Figure 11.17. Systolic retiming to eliminate broadcasting.

228 INTRODUCTION TO PARALLEL PROCESSING

on the right side of Fig. 11.17, which contains only nonzero edge delays. The retiming
increases the total delay to 5n— 2 steps, which is still asymptotically optimal.

The transitive closure agorithm is useful, e.g., for finding the connected components
of agraph defined as a partitioning of the nodes such that each pair of nodes in a partition
are connected. Clearly, once the transitive closure A" of the adjacency matrix A is found,
information about the graph’s connected components can be easily read out from the rows
of A", Assigning a unique component 1D to each node is straightforward. One can use, e.g.,
the label of the node with the smallest ID to label al nodes in the same component.

Let us now consider briefly another example of graph problems. The all-pairs shortest
path problem is defined as the problem of determining, simultaneously for all node pairs,
the length of the shortest path between them. Taking the weight matrix W shown in Fig. 11.15
as input, the algorithm is quite similar to that for finding the transitive closure of an adjacency
matrix A. There are n phases. In Phase 0, we replace the edge from i to j with the length of
the shortest path that is allowed to pass only through Node 0 as an intermediate node. To do
this, we compare w; ;withw,, +w, and choose the smaller of the two. This leads to wW(0),
Continuing in this way, WX will contain the length of the shortest path from i to j that passes
only through nodes{1, 2, . ., k} asintermediate nodes. With some additional work, we can
also keep track of the shortest path, rather than just itslength, if desired.

11.6. IMAGE-PROCESSING ALGORITHMS

In this section, we deal with example algorithms used in image analysis and computa-
tional geometry applications. Let an image be represented as an array of binary (black/white)
pixels. By labeling the (connected) components of such a binary image (or component
labeling for short), we mean grouping the 1 elements that can be reached from each other
viahorizontal, vertical, or diagonal stepsinto components. Figure 11.18 shows an example
binary image that contains four connected components. Here, row-major indexing of the

Figure 11.18. Connected components in an 8 x 8 binary image.

NUMERICAL 2D MESH ALGORITHMS 229

Figure 11.19. Finding the connected components via divide and conquer.

elements is assumed and each component is given the index of its lowest pixel asitsunique
identifying number.

Assuming that each pixel of the p-pixel image is assigned to one processor on a
Vn xVn mesh with p = n processors, the following naive algorithm immediately suggests
itself. Initially, the component ID of each processor holding a 1 is set to the processor’s own
ID. So, we designate each pixel as a separate component at the outset and then try to merge
the components that are connected. Each processor holding a 1 reads the pixel values and
component IDs of its eight neighbors (the diagonally adjacent values are read in two steps).
Now, each processor holding a 1 adjusts its component 1D to the lowest ID among the
neighbors holding 1sif any of those IDsis smaller. The problem with this algorithm is that,
in the worst case, it requires @ (n) running time, e.g., when there is a single snakelike
component that winds through even-numbered rows.

A recursive O(¥n) -step algorithm is described next.

Recursive component-labeling algorithm on a 2D mesh

Phase 1: Label the componentsin each quadrant.
Phase 2: Merge components horizontally in the upper and lower halves.
Phase 3: Merge component vertically.

01 11 0 is changed to 1
1fo] o] if N=w=1

0 1 is changed to O
0

0
if N= W= NW=0

Figure 11.20. Transformation or rewriting rules for Lavialdi's algorithm (no other pixel value
changes).

230 INTRODUCTION TO PARALLEL PROCESSING

o O
o o
o O
o O
o o
o o
o O
o O

000000090
0 0000O0O0GCO
000000O0O0

00000CGOO
0o000O0COO0GC
00000000O0

000

o C O o0 O
QO O O O O
o OO0 O o
o O o0 o o0
S O O O o
QO o o & O
o O O © o
o O O O O

00000O0C0CO

o000 0%

000
000

00000000
00000000
00000000
000600000
000060000

000090

00000O0COOC
000000O0COC
00000CO0O0O

o
(=]
o

Figure 11.21. Example of the shrinkage phase of Lavialdi’s algorithm.

0000O0O0O0O
00000000

00 oo oo
Initial image

NUMERICAL 2D MESH ALGORITHMS 231

If each of the two merge phases can be done in O(Vr)steps, then the running time of the
algorithm will be T(n) = T(n/4) + O(¥n) = O(Nn). Take the horizontal merge phase in the
upper half of the mesh. There are at most Vr. /2 components that need to be merged (¥n / 4
on each side). Adjacency information for these components is readily available at the vertical
boundary. A column rotate at this boundary will yield the new label for each merged
component. Because there are no more than i /2 such components, information on their
new labels can be broadcast to all processorsin the quadrant in O(\/E) steps using pipelined
communication.

Lavialdi’s algorithm for component labeling is somewhat more efficient. Using the
locally applied rules depicted in Fig. 11.20, components are shrunk to single pixels in
2\n — 1 steps (this shrinkage phase does not disconnect components or merge them). Then,
in a (2Vn— 1)-step expansion phase, the process is reversed and the label of the single
remaining pixel of each component becomes the component label for al of its pixels.

To see why components will not merge in the shrinkage phase, consider a 0 that is about
to become 1 in the pattern

X 1y
10
y yz

If any of the y pixels is 1, then the associated component is aready connected to this
component and no new connection will be created. If al of the y pixels are 0s, then even if
the zpixel is 1, it will be converted to 0, again avoiding any new connection. Figure 11.21
shows 9 steps of Laviadi's algorithm applied to an 8 x 8 binary image containing two
components. In this example, complete shrinkage of components to single pixels occursin
10 steps (the worst case would be 15 steps).

PROBLEMS

11.1. Multiplication of nonsguare matrices

a. Explain the effect of a nonsquare matrix on Figs. 11.1 and 11.3.

b. Modify Figs. 11.2 and 11.4 for multiplying an m' x m matrix A by an mx m" matrix B.

c. How isthe block matrix multiplication scheme described at the end of Section 11.1 affected
if the matrices are nonsquare but the mesh is square?

11.2. Matrix multiplication
Figures 11.2 and 11.4 correspond to matrix multiplication with both inputs supplied from
outside the array and both inputs prestored in the array. Show a suitable data organization on
a p-processor array (p = m?) to multiply a fixed prestored matrix A by several B matrices
supplied as inputs.

11.3. Matrix multiplication
Consider the vector—matrix and matrix—matrix multiplication schemes depicted in Figs. 11.3
and 11.4 but assume that the architecture is a linear array or mesh (without the wraparound
links).
a. Discussthe effects of removing the wraparound links on algorithm execution and running
timein Fig. 11.3.
b. Repeat part (a) for the matrix—matrix multiplication algorithm of Fig. 11.4.

232

11.4.

11.5.

11.6.

11.7.

11.8.

11.9.

11.10.

INTRODUCTION TO PARALLEL PROCESSING

¢ . Would it be helpful if we could store four elements (matrix blocks) in each processor rather
than just two in the course of executing the algorithm?

Back substitution
In the back substitution scheme depicted in Fig. 11.6, half of the processors are idle at any
given time.

a. Show how we can take advantage of the idle processors to overlap the solution of two
separate triangular systems of linear equations.

b. Show how we can merge pairs of adjacent processors into single processors, each less than
twice as complex as the existing processors, without affecting the running time.

¢ . Can similar techniques be applied to the inversion of atriangular matrix (Fig. 11.8)?

Bidiagonal systems of linear equations

Any algorithm for solving tridiagonal systems of linear equations can obviously be applied to
solving a bidiagonal system of linear equations where all of the nonzero elements of A are on
the main and lower (upper) diagonals. Devise a more efficient algorithm for this special case.

Gaussian elimination

For one of the systems of three linear equations at the beginning of Section 11.4, show all of
the intermediate computation steps, including values held by or passed between processors, on
the diagram of Fig. 11.13.

Jacobi relaxation

a. Solve one of the systems of three linear equations given near the beginning of Section 11.4
using Jacobi relaxation, beginning with the initial value of 0 for each variable.

b. Show the computation steps, including values held by or passed between processors, as
the solution of Part () is obtained by a linear array of three processors.

¢ . Repeat part (a) using Jacobi overrelaxation with y = 1/2 and discuss the results.

Systalic retiming

a. InFig. 11.17, what happensif we make the delays associated with all edges leading to the
output host in the retimed version of the graph equal to 1? Discuss the practical implications
of this change.

b. Retime amodified form of Fig. 11.17 (left) in which broadcasting by each diagonal node
proceeds to its right and then wraps around to cover the nodes to the lft.

Transitive closure algorithm

Define the single-node-fault version A*(1) of the transitive closure of A as having q*j(l) = 1iff
Nodesi and j are connected and remain connected if we remove any single node in the graph.
Propose an algorithm for efficiently computing A" . Hint: In each phase of the algorithm, you
need to figure out if a pair of nodes are connected with or without a worst-case single node
fault.

All-pairs shortest path problem

Describe the complete algorithm for the all-pairs shortest path problem (end of Section 11.5)
that provides the shortest paths rather than only their lengths. Hint: When w;, +w,; is less than
W ;, anew shortest path between Nodes i and j has been identified. This path isthe concatenation
of two previously stored paths, one from i to k and the other from kto j.

NUMERICAL 2D MESH ALGORITHMS 233

11.11. Component labeling on a 2D mesh
Analyze the recursive component-labeling agorithm of Section 11.6 in more detail to find its
exact worst-case step count and compare the result with Lavialdi’s algorithm.

11.12. Component labeling on a 2D mesh
Devise a component labeling algorithm that also yields the number of pixelsin (area of) each
component.

11.13. Laviadi’s component-labeling algorithm

a

Specify the operations that need to be performed in the expansion phase of Laviadi's
algorithm.

Complete the steps of the example depicted in Fig. 11.21 al of the way to the end of
labeling.

How many steps does Lavialdi’s agorithm need to label the componentsin Fig. 11.18?
Construct an 88 binary image such that the shrinkage phase of Lavialdi’s agorithm
requires the worst-case 2Vn — 1 = 17 steps.

REFERENCES AND SUGGESTED READING

[Bertsg]

[Kung88]
[Laks90]

[Lavi72]
[LeigoZ]
[Leis83]

[Millgs]

Bertsekas, D. P., and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods,
Prentice—Hall, 1989.

Kung, S. Y., VLS Array Processors, Prentice-Hall, 1988.

Lakshmivarahan, S., and S. K. Dhall, Analysis and Design of Parallel Algorithms: Arithmetic and
Matrix Problems, McGraw-Hill, 1990.

Lavialdi, S., “On Shrinking Binary Picture Patterns,” Communications of the ACM, Voal. 15, No. 1,
pp. 7-10, January 1972.

Leighton, F. T., Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes,
Morgan Kaufmann, 1992.

Leiserson, C., and J. Saxe, “ Optimizing Synchronous Systems,” J. VLS & Computer Systems, Vol.
1, No. 1, pp. 41-67, Spring 1983.

Miller, R., and Q. Stout, “Geometric Algorithms for Digitized Pictures on a Mesh-Connected
Computer,” |EEE Trans. Pattern Analysis and Machine Intelligence, Vol. 7, No. 2, pp. 216-228,
March 1985.

This page intentionally left blank.

12

Other Mesh-Related
Architectures

In this chapter, we consider variations in mesh architectures that can lead to
higher performance or greater cost-effectiveness in certain applications. The
variations include higher dimensions, stronger and weaker connectivities, inclu-
sion of buses, introduction of express channels, triangular or hexagonal shapes,
different types of wraparound links, and reconfigurable connectivity. Also,
extensions to pyramid networks, meshes of trees, and certain 2D product
networks will be discussed. Chapter topics are

- 12.1. Three or more dimensions

- 12.2. Stronger and weaker connectivities

- 12.3. Meshes augmented with nonlocal links
- 12.4. Meshes with dynamic links

- 12.5. Pyramid and multigrid systems

- 12.6. Meshes of trees

235

This page intentionally left blank.

OTHER MESH-RELATED ARCHITECTURES 237

12.1. THREE OR MORE DIMENSIONS

Our discussions of agorithms in Chapters 9-11 (as well asin Sections 2.3 and 2.5) have
been in terms of 1D and 2D processor arrays. These are the most practical in terms of physical
realization in view of the 2D nature of implementation technologies such as VLS chips and
printed-circuit boards. Recently, 3D mesh and torus architectures have become viable
alternatives for parallel machine design (we will see why shortly), but higher-dimensional
meshes are currently only of theoretical interest. In this section, we briefly review g-D
meshes, focusing on their differences with 1D and 2D arrays in terms of hardware realization
and a gorithm design.

Theoreticaly, it should be possible to implement a 3D mesh or torus in the 3D physical
space. The processors can be visualized as occupying grid points on a3D grid (Fig. 12.1),
with al six communication ports of each processor connected to neighboring processors by
short local wires. Even though such 3D structures have been and are being considered by
parallel processing researchers, numerous practical hurdles must be overcome before large-
scal e implementations become cost-effective or even feasible.

The prevailing hardware implementation technology for digital systems that do not fit
on asingle printed-circuit (PC) board is to mount multiple PC boards on a backplane that
supports the boards mechanically and also provides the needed electrical connectivity
between them (Fig. 12.1). This alows the boards to be easily replaced for repair or upgrade
and the system to be expanded by inserting extra boards, up to the maximum capacity offered
by the backplane. This method can be viewed as a 2.5D arrangement, with full 2D
connectivity on the circuit boards and limited connectivity along the third dimension via the
backplane.

Consider the example of implementing an 8 x 8 x 8 mesh on eight boards, each holding
an 8 x 8 mesh. Implementing an 8 x 8 2D mesh on a PC board is straightforward and can be
done with only short local links. However, at least some of the 64 links that need to go from
one PC board to the next involve long wires (from one processor to the backplane, a short
distance on the backplane, and from the backplane to the other processor on the next board).
With multiple lines per communication channel, a significant area on each PC board must
be devoted to routing these interboard links. This nullifies some of the advantages of a mesh
in terms of regularity and locality of connections. What we gain in return for the higher
complexity/cost are a smaller network diameter (3p”®— 3 instead of 2p”? — 2) and wider

g\
NR

Figure 12.1. 3D and 2.5D physical realizations of a 3D mesh.

238 INTRODUCTION TO PARALLEL PROCESSING

bisection (p2’3 rather than pY?). Our example mesh above has a diameter of 21 and bisection
width of 64. A comparably sized 22 x 23 2D mesh has adiameter of 43 and bisection width
of 23.

You can now imagine how much harder the implementation of a 4D or 5D mesh would
be with current technology. There is some speculation that using optical communication links
may solve these problems for 3D, and perhaps even higher-dimensional, meshes. However,
optical interconnections are not yet cost-effective, because of both technological factors and
the added delay/cost of electronic/optical conversions.

Regardless of how 3D and higher-dimensional meshes are physically realized, their
algorithms are quite similar to, or easily derivable from, those for 2D meshes discussed in
the preceding chapters. The following paragraphs contain brief discussions of 3D mesh
algorithms, with hints on how a 3D torus architecture, or higher-dimensional meshes/tori,
can be handled. A g-D mesh with m processors along each of its g dimensions (p =m% has
anode degree of d = 2q, adiameter of D =q(m-1) = q(pl fa_ 1), and a bisection width of
p'~19 when p'9is even. A g-D torus with m processors along each of its q dimensions is
sometimes referred to as an m-ary g-cube.

Sorting. One may guessthat just as it was possible to sort a 2D array using aternating
row and column sorts (shearsort), it might be possible to sort a 3D array by suitably
aternating between sorts along the various dimensions. Such a generalized form of shearsort
for three and higher dimensions is indeed feasible [Corb92]. However, the following
algorithm for sorting a 3D array is both faster and simpler (a rarity in algorithm design!);
the algorithm is even simpler to describe than its 2D counterparts. Let Processor (i, j, k) in
an m x m x m mesh be in Row i (xdimension), Column j (y dimension), and Layer k (z
dimension). Define the sorted order to correspond to the lexicographic ordering of reversed
node indices: (0,0,0), (1,0,0), ..., (m-1,0,0), (0,1,0), (1,1,0), .. ., (m-1,1,0), (0,2,0), and so
on. In this zyx order, the smallest m? elements end up on Layer 0 in column-major order, the
next smallest m2 elements on Layer 1, and so on (the yx order on a dice is the same as
column-major order and the xy order corresponds to row-major order). The following
five-phase a gorithm sorts the elements of the 3D array into the zyx order [Kund86].

Sorting on a 3D mesh

Phase 1: Sort the elements on each zx plane into zx order.

Phase 2: Sort the elements on each yz planeinto zy order.

Phase 3: Sort the elements on each xy layer into yx order (odd layers in reverse order).
Phase 4: Apply two steps of odd—even transposition along the z direction.

Phase 5: Sort the elements on each xy layer into yx order.

In Phase 4 of the algorithm, the m® processors are viewed as m? Linear arrays of length m,
aligned along the zdirection, and two steps of odd—even transposition are applied to each of
these arrays. The 2D sorts can be performed using any 2D sorting agorithm. If the 2D sorting
agorithm needs T(m x m) time, the time for our 3D agorithm will be T(m x m x m) =
4T(m x m) + 2. In particular, any O(m)-time 2D sorting algorithm will lead to a running time
of O(m) = O(pY3) for the 3D algorithm. As usual, the proof is done using the zero—one
principle.

OTHER MESH-RELATED ARCHITECTURES 239

Data Routing. A greedy zyx (layer-first) routing algorithm would route the packets
along the z dimension until they are in the destination layers and then use a greedy yx
(row-first) algorithm in each xy layer. Considerations with regard to buffer space in interme-
diate nodes and the delays introduced by conflicts are quite similar to those of 2D mesh
algorithms. To reduce the node storage requirement to a single message buffer, a sorting-
based routing algorithm can be used.

Datarouting on a 3D mesh

Phase 1: Sort the packets by their destination addressesinto zyx order.
Phase 2: Route each packet along the z dimension to the correct xy layer.
Phase 3: Route each packet along the y dimension to the correct column.
Phase 4: Route each packet along the x dimension to the correct row.

Each of the Phases 24 takes m— 1 routing steps, with no conflict ever arising ([Leig92],
pp. 232-233). Thus, given that sorting in Phase 1 also takes O('m) compare—exchange steps,
the overall running time is O(m). Adaptive and wormhole routing schemes can similarly be
generalized to 3D and higher-dimensional meshes.

Matrix Multiplication. In Section 11.1, we saw that two m x m matrices can be
multiplied on an m x mtorusin m multiply—add steps. A 2D mesh requires longer, but still
O(my, running time, which is optimal. To devise a faster matrix multiplication algorithm
on a 3D mesh, we divide each m x mmatrix into an m¥*x m¥*array of m¥*x m¥*blocks.
A total of (mY*)® = m3 block multiplications are needed. Let us assume that the
algorithm is to be performed on an m** x m¥*x m?* mesh with p = m¥* processors. Then
each m¥*x m3* |ayer of the mesh can be assigned to one of the m¥*x m¥* matrix
multiplications, performing its computation in n* multiply—add steps. Finally, the addition
of m¥ blocks to form each block of the product matrix can be accomplished in m¥* addition
steps with proper distribution of elements to processors. The total running time is thus
o(m*¥% = O(p*®) steps, which is optimal from the point of view of both the computational
work and network diameter. A more detailed description of the algorithm and its required
data distribution is given by Leighton ([Leig92], pp. 226-228).

Physical Systems. Intuitively, a 3D mesh seems to be the ideal architecture for
performing simulations of 3D physical systems. The ocean modeling and similar applica-
tions described in Section 1.1, e.g., map nicely onto a 3D mesh, with each processor holding
a 3D block of the large model. Because in each update stage only adjacent data points interact,
the 3D mesh is well equipped to perform the required interprocessor transfers rapidly and
efficiently. In image processing, a 3D mesh can dedl with 3D images in much the same way
that a 2D mesh accommodates 2D digital images.

Low-versus High-Dimensional Meshes. A low-dimensional mesh, which can be
implemented at much lower cost compared with a high-dimensional mesh with the same
number of processors, can simulate the latter quite efficiently ([Leig92], pp. 234-236). Itis
thus natural to ask the following question: Is it more cost-effective, e.g., to have four-port
processors in a 2D mesh architecture or six-port processors in a 3D mesh, given the fact that
for the four-port processors, the economy in number of ports and ease of layout allows us to
make each channel wider? This and similar questions have been studied by several re-

240 INTRODUCTION TO PARALLEL PROCESSING

searchers ([Agar91], [Ande97], [Dalloq]). Despite a lack of consensus, there are indications
that lower-dimensional arrays may be more cost-effective.

12.2. STRONGER AND WEAKER CONNECTIVITIES

One problem with a 2D mesh is its relatively large diameter. Higher-dimensional
meshes, on the other hand, present difficult implementation problems. These considerations
have resulted in a wide variety of architectures that are obtained by considering different
(nonrectangular) grids or by inserting/removing links into/from an ordinary mesh. These and
other variations are discussed in this section.

Figure 12.2 shows eight-neighbor and hexagonal meshes as examples of 2D meshes
with stronger connectivities than standard 2D meshes. The eight-neighbor mesh allows direct
communication between diagonally adjacent processors, which may be helpful for some
image-processing applications (e.g., see Section 11.6). An eight-neighbor mesh has smaller
diameter and wider bisection than an ordinary 2D mesh. However, these advantages are offset
by its higher implementation cost. The node degree of 6 in a hex mesh is intermediate
between those of ordinary 2D meshes/tori and the eight-neighbor mesh. However, the
nonrectangular shape of a hex mesh makes it difficult to implement applications involving
regular data structures such as matrices. Both eight-neighbor and hex meshes can have
wraparound links. Such links can be defined in a variety of ways, some of which will be
explored in the end-of-chapter problems.

Removing links from meshes and tori can result in simpler networks with correspond-
ingly lower performance, offering interesting design trade-offs. For example, if an interproc-
essor link in a 2D torusis viewed as two unidirectional links, with links going in one direction
removed in aternating rows/columns, a Manhattan street network results (the unidirectional
links going in opposite directions in odd- and even-numbered rows/columns resemble the
one-way streets of Manhattan in New York). Figure 12.3 shows a 4 x 4 example. Manhattan
street networks offer the advantages of low diameter and simple node structure. Each node
only has two input and two output ports. The down side is that routing and other a gorithms
become more complicated.

Figure 12.2. Eight-neighbor and hexagonal (hex) meshes.

241

OTHER MESH-RELATED ARCHITECTURES

Figure 12.3. A 4 x 4 Manhattan street network.

<)
&Sy <SS

=

h/EINN

.\. 9
%4 4) SULN

oSS ——0] \ \ .

ra
L bS] 3

Figure 12.4. A pruned 4 x 4 x 4 torus with nodes of degree 4 [Kwai97].

242 INTRODUCTION TO PARALLEL PROCESSING

&
SES

Figure 12.5. Eight-neighbor mesh with shared links and example data paths.

Another strategy that allows us to combine the advantages of low diameter and simple
nodes isto prune a high-dimensional mesh/torus by selectively removing some of its links.
Figure 12.4 shows a pruned 3D torusin which al of the zlinks have been kept, while the x
or y links areremoved in aternate layers [Kwai97].

Y et another way to reduce the node degree of a mesh is to share the links that are
never/seldom used at the same time. Many mesh algorithms utilize communications along
the same direction in each step (weak SIMD model) or can be easily modified to honor this
constraint without a significant performance penalty. Algorithms of this type allow us to use
the 2D mesh depicted in Fig. 12.5, which combines the advantages of the eight-neighbor
mesh with the low node degree of a standard mesh. Using the natural designations NE, NW,
SE, and SW for the four ports of each processor, the instruction “send to NE, receive from
SE” corresponds to northward data movement as shown on the right side of Fig. 12.5.
Similarly, “send to NE, receive from SW” would implement a diagonal data transfer
operation.

12.3. MESHES AUGMENTED WITH NONLOCAL LINKS

Because one of the mgjor drawbacks of low-dimensional meshes and tori is their rapidly
increasing diameters when the number of processors becomes large, it has been suggested
that mechanisms be provided in order to speed up long-distance communications among
nodes. One example is the provision of bypass links or express channels, as shown in Fig.
12.6 for one row of a 2D mesh. In the top example, the worst-case distance along the
nine-processor row has been reduced from 8 to 4. Such bypass links destroy the locality and
regularity of connections, leading to both algorithmic complexity and hardware implemen-
tation problems. For example, routing becomes more difficult, particularly if a deadlock-free
wormhole routing algorithm is to be devised that takes advantage of the shorter graph-
theoretic distances for faster data transfers. However, they may prove worthwhile in some
applications.

A wide variety of mesh architectures have been proposed in which the local links have
been augmented with one or more shared buses to facilitate occasional long-distance

OTHER MESH-RELATED ARCHITECTURES 243

A A H]
[H O]

S e L S L N S

Figure 12.6. Three examples of bypass links along the rows of a 2D mesh.

communications. Figure 12.7 shows a 2D mesh augmented with a single globa bus to which
all processors are connected. For a large number p of processors, this organization is of
theoretical interest only because buses cannot connect thousands of processors. Adding the
global bus increases the node degree from 4 to 5 but has a significant effect on the speed of
some computations. The bus does not help much in computations (such as sorting) that
involve a large amount of data movements as it only increases the bisection width of the
network by 1. However, in other applications, with sparse long-distance communications,
the performance effect of the global bus might become significant.

Consider a semigroup computation such as max-finding, with one item per processor
in asquarevp x Y¥p mesh. With asingle global bus, this computation can be performed in
O(p*®) rather than O(p'’?) steps as follows. We assume that the semigroup operation [is
commutétive.

Semigroup computation on 2D mesh with aglobal bus

Phase 1: Find the partial results in p*®xp"® submeshes in O(p“®) steps, with the
results stored in the upper left corner processor of each submesh (Fig. 12.7).

Figure 12.7. Mesh with a global bus and semigroup computation on it.

244 INTRODUCTION TO PARALLEL PROCESSING

Phase 2. Combinethe pY/3 partial resultsin O(p ¥3) steps, using a sequential algorithm
in one processor and the globa bus for data transfers.
Phase 3: Broadcast the final result to all processorsin one step.

In part because of the impracticality of connecting a large number of processors to asingle
global bus and partly to allow alarger number of long-distance data transfers to take place
concurrently, meshes with row and column buses have been proposed. As shown in Fig. 12.8,
each row/column has a separate bus that allows single-step data transfers from any processor
to another processor in the same row/column (but only one such transfer per row or column
in a given cycle). Any processor can be reached from any other in a most two steps. Again,
algorithms like sorting are not significantly affected by the added buses as the bisection width
has only doubled. However, semigroup computation now becomes much faster, requiring
O(pY®) steps.

Semigroup computation on 2D mesh with row and column buses

Phase 1: Find the partial resultsin pl/¢xpl/6 submeshes in O(pX/6) steps, with the
results stored in the upper left corner of each submesh (Fig. 12.8).

Phase 2: Distributethe p*/3 values left on some of the rows among the pY6 rows in
the same slice so that each row only has pY® values (p® steps).

Phase 3: Use the row buses to combine row valuesin pY® steps; at this stage, there
are p2 values in Column O that must be combined.

Phase 4: Distribute the p1/2 values in Column 0 among pt/2 columns such that each
column has p/6 values; constant time, using the row buses.

Phase 5: Use the column buses to combine column values in pl/6 steps; at this stage,
there are p/3 valuesin Row 0 that must be combined.

Phase 6: Distribute the p*’® values on Row 0 among the pY/® rowsin Row SliceQin
constant time, using the column buses.

Column
i sice
156
p
Row
slice {
Ad# pln ap-

Figure 12.8. Mesh with row/column buses and semigroup computation on it.

OTHER MESH-RELATED ARCHITECTURES 245

Phase 7. Combinetherow valuesin p¥/6 steps using the row buses.
Phase 8: Broadcast the final result to all processorsin two steps.

Note that when row/column buses are added to a 2D mesh, a square mesh is no longer the
best topology from the viewpoint of the above agorithm. It is relatively easy to show that if
ap”®x p3/ 8 mesh is augmented with row/column buses, the above agorithm can be modified
to run in O(pY®) steps, compared with O(p ¥ in the square mesh. Supplying the details is

left as an exercise.

12.4. MESHES WITH DYNAMIC LINKS

There are various ways of designing meshes so that node connectivities can change
dynamically. For example, if buses are segmented through the insertion of switches that can
be opened and closed under the control of a nearby processor, a powerful architecture results.
When all switches on such a separable bus are closed, it becomes a single bus (e.g., row or
column bus). At the other extreme, when all switches are open, multiple data transfers can
be accommodated by using each bus segment independently. Figure 12.9 shows how a
separable bus can be connected to, and its switches controlled by, the processorsin alinear
array.

A semigroup or fan-in computation can be performed on a p-processor linear array with
a separable bus by first combining pairs of elements in even-numbered and the following
odd-numbered processors and then successively dividing the bus into p/4, p/8, . . ., 2, 1
segments and allowing the processors connected to each segment to exchange their partia
results in two bus transfer steps. This leads to an O(log p)-step algorithm. The 2D mesh
version of the algorithm is similar, with row combining and column combining done using
row and column segmented buses as above.

Meshes with separable row/column buses have been studied in depth (see, e.g., [Serr93]
and the references therein). One problem with such meshes is that the switches add to the
datatransmission delay over the bus, so that the bus cycle will become longer than that of a
simple row/column bus. An advantage is that the buses provide a convenient mechanism for
bypassing faulty processors so that certain fault tolerance schemes can be implemented with
little effort (see, e.g., [Parh93]).

The additional power and flexibility provided by separable buses may allow us to use
fewer buses for the same or higher performance. For example, if one separable row/column
bus is provided for every p/6 rows or columns in a square mesh (say those whose row/column
indices are multiples of p ¥6), then the semigroup computation of Fig. 12.8 can still be
performed in O(p ¥6) steps. Once the submesh results are obtained, they can be combined in
logarithmic time using the separable row buses to yield pY3 values in Column 0. A

Pgt I Fag!

T . T

ERREERE RN

Figure 12.9. Linear array with a separable bus using reconfiguration switches.

246 INTRODUCTION TO PARALLEL PROCESSING

@ P9

(NHE)(W}{S} {NSJ{EW) (NEWS)
(NE){Ws) (NES} (W) {NE}{W}{S]

Figure 12.10. Some processor states in a reconfigurable mesh.

logarithmic time combining phase in Column 0 then yields the final result. In fact, we can
do better than this by using more (but still fewer than 2p 12) row and column buses or by
utilizing an optimal nonsquare topology [Serr93].

It is also possible to provide reconfiguration capability within the processors as opposed
to putting switches on the buses. One popular scheme, which has been investigated in great
depth, is known as the reconfigurable mesh architecture. The processors have four ports and
are connected to the ports of their four nearest neighbors as in a conventional mesh. However,
internally each processor can tie together a subset of its ports to alow data to go through it
and get from one neighbor to one or more other neighbors (Fig. 12.10). By proper setting of
processor states, buses can be established: from a global bus linking all processors to a variety
of complex patterns of connectivity. Row and column buses can also be formed as a special
case if desired. The switch delay is still a problem in such architectures, particularly if a
signal hasto propagate through many switches.

12.5. PYRAMID AND MULTIGRID SYSTEMS

The pyramid architecture combines 2D mesh and tree connectivities in order to gain
advantages from both schemes. Topologically, the pyramid inherits low logarithmic diameter
from the tree and relatively wide bisection from the mesh. Algorithmically, features of each
network can be utilized when convenient (e.g., fast semigroup or prefix computation on the
tree and efficient sorting or data permutation on the mesh).

A pyramid network can be defined recursively. A single node is a one-level pyramid.
The single node doubles as the pyramid's apex and its 1 x1 base. An |-level pyramid consists
of a 2'"tx 2 base mesh, with groups of four nodes, forming 2x 2 submeshes on the base,
connected to each node of the base of an (I-1)-level pyramid (Fig. 12.11). The number of
processors in an I-level pyramid is p = (22' - 1)/3. From this expression, it is evident that
roughly three-fourths of the processors belong to the base. It is thus not very wasteful of
processors if we assume that only the base processors contain data and other processors are
only used for data routing and various combining operations. Thisis similar to our assump-
tion in Section 2.4 that only leaf nodes of a tree architecture hold data elements. The diameter
of an I-level pyramid is 21-2 and its maximum node degree is 9 for | > 4.

OTHER MESH-RELATED ARCHITECTURES 247

W\
N

Figure 12.11 Pyramid with three levels and 4x 4 base along with its 2D layout.

A pyramid can perform a semigroup computation in O(log p) steps when each processor
on the base holds a single data item and the items are indexed in shuffled row-major order
(see Fig. 9.3). Each processor combines the values from its four children until the final result
is found at the apex. Then, the result is broadcast to al nodes. Parallel prefix computation is
similarly quite simple with the same assumptions. Semigroup computation under other
indexing schemes on the base is no different, provided that the semigroup operation O i s
commutative. Semigroup computation algorithm with other indexing schemes and a non-
commutative operator becomes more complex, as does parallel prefix computation under
similar conditions.

Sorting on a pyramid cannot be significantly faster than on a 2D mesh. The 2' -link
bisection width of an |-level pyramid (I > 1) establishes an Q(J;",) lower bound on the
worst-case running time of any sorting algorithm. Data routing, on the other hand, can be
speeded up by the added links compared with a 2D mesh. To route from any node to any
other node on the base mesh, one can simply route upward to the apex and then downward
to the destination node. This algorithm works fine as long as the number of messagesis small.
Otherwise, congestion at and near the apex increases the routing delays and buffer require-
ments. The bisection-width argument can again be invoked to show that an arbitrary
O(p)-packet routing problem would take at least Q (‘/;7) steps to solve on a p-processor
pyramid.

The 2D multigrid architecture can be derived from the pyramid by removing all but one
of the downward links of each processor (Fig. 12.12). This reduces the maximum node degree
(from 9 to 6) and thus the processor complexity, but otherwise preserves most of the
properties of the pyramid, including its bisection width and logarithmic diameter. It is easy
to see that the diameter of the I-level 2D multigrid architecture satisfies the recurrence D(1)
< D(I-1) + 6, with D(2) = 2. Actually the diameter of the two-level 2D multigrid is 3, but
for | 2 3, we can take it to be 2 as far as the recurrence is concerned.

The 2D multigrid is to the pyramid what the 1D multigrid is to the binary X-tree (Fig.
11.11). Infact, each of the side views of the pyramid (2D multigrid) isabinary X-tree (1D
multigrid).

Both the pyramid and 2D muiltigrid architectures are suitable for image-processing
applications where the base holds the image data (one pixel or block of pixels per processor)

248 INTRODUCTION TO PARALLEL PROCESSING

Figure 12.12. The relationship between pyramid and 2D multigrid architectures.

and performs low-level image operations that involve communication between nearby pixels.
Processors in the upper layers of the pyramid or multigrid deal with higher-level features
and processes involving successively larger parts of the image.

12.6. MESHES OF TREES

The mesh of trees architecture represents another attempt at combining the advantages
of tree and mesh structures. Like the pyramid, an |-level mesh of trees architecture has a
2'"1 x 2! base whose processors are the leaves of 2!-1 row trees and 2'~* column trees. The
number of processorsin an I-level mesh of treesis p = 2' (3x 222 — 1). From this expression,
it is evident that roughly one-third of the processors belong to the base. The diameter of an
|-level mesh of treesis 4l — 4, its bisection width is 2! '1, and its maximum node degree is 3.

Several variations to the basic mesh of trees architecture of Fig. 12.13 are possible. If
the base processors are connected as a 2D mesh, the maximum node degree increases to 6.
Theith row and ith column root nodes may be merged into a single node (increasing the
node degree to 4) or interconnected by an extralink (preserving the maximum node degree
of 3). Either modification increases the efficiency of some algorithms, One can also construct
treesdiagonally, in lieu of or in addition to row and/or column trees.

The mesh of trees architecture has a recursive structure in the sense that removing the
row and column root nodes, along with their associated links, yields four smaller mesh of
trees networks. This property is useful in the design of recursive agorithms. A mesh of trees
network with an m x m base can be viewed as a switching network between m processors
located at the row roots and m memory modules at the column roots (right side of Fig. 12.14).
Note that P; and M; are connected to one and only one of the switches in the midadle column.
Hence, there is a unique path from each B to each M; and the paths are node-digjoint. Thus,
effectively acrossbar switch with full permutation capability and O(log m) switching delay
is implemented. If row and column root nodes are merged, then a processor-to-processor
interconnection network is obtained.

Semigroup and parallel prefix computations can be performed in 41 — 4 and 61 — 6 steps,
respectively, on an |-level mesh of trees using row/column combining and prefix computa-
tions on the respective trees. The latter can be reduced to 41 —3 steps by doing row semigroup

OTHER MESH-RELATED ARCHITECTURES 249

Row Treo
(one per row)
Column Tree

{one per
column)
Y < I = M« B e
' -
G O (@]
O (@])
o o =]
m-by-m Base

Figure 12.13. Mesh of trees architecture with three levels and a 4x4 base.

computations concurrently with row prefix computations (pipelining the two will add only
one time step to the running time of one of them).

To route n? packets stored one per processor on themxm base, one can use a variant
of the row-first routing algorithm. Row trees are used to send each packet to its destination
column. Then, column trees are utilized to route the packets to their destination rows.
However, because the m2 packets must all go through the 2m root nodes, the worst-case
running time of this algorithmis €x(m) = (V). If we take the view shown in Fig. 12.14,
with only m packets to be routed from one side of the network to the other, only 2 log, m
routing steps are required, provided that the destination nodes are all distinct.

2D layout for mesh of trees network
with a 4-by-4 base (root nodes are in
the middle row and column)

Figure 12.14. Alternate views of the mesh of trees architecture with a 4x4 base.

250 INTRODUCTION TO PARALLEL PROCESSING

To sort m? keys, stored one per processor on the mxm base, one can devise an agorithm
based on shearsort, where row and column sorts are done on the respective trees rather than
on linear arrays. Supplying the details of the algorithm is left as an exercise. Because an
m-node binary tree can sort mitems in O(m) time, the running time of this algorithm is
asymptotically the same as that of shearsort on a 2D mesh. If we take the view shown in Fig.
12.14, with only m keys to be sorted, then the following algorithm can be used (we assume
that the row and column root nodes have been merged and each holds one of the keys).

Sorting m keys on a mesh of trees with an mxm base

Phase 1. Broadcast the keys to the leaves within both trees (Leaf i, j getsxi and x;)
Phase 2: At a base processor: if ¥ >Xx; or x; =x andj>ithenflag:= 1elseflag:=0
Phase 3: Add the flag values in column trees (Root i obtains the rank of x)

Phase 4: Route % from Root i to Root rank[i]

Matrix—vector multiplication Ax =y can be done quite efficiently if the matrix Ais stored
on the base and the vector x in the column roots, say. Then, the result vector yis obtained in
the row roots as follows.

Multiplying an mxm matrix by an m-vector on a mesh of trees

Phase 1: Broadcast x; through the ith column tree (Leaf i, j hasa;; and ;)
Phase 2: At each base processor compute ajj X;
Phase 3: Sum over row trees (Row root i obtains Z7%¢' a;;x; =)

One can use pipelining to multiply r matrix—vector pairsin 21 — 2 + r steps.

The convolution of two vectors can be easily computed if the mesh of treeswith an m
%(2m— 1) base contains m diagona treesin addition to the row and column trees, as shown
in Fig. 12.15. Assume that the ith element of the vector x isin ith row root and that the jth
element of the vector yisinthe (m—1—j)th diagonal root. The following agorithm yields
the kth element of the convolution z, defined as z, = ayby + a,_; by + ... + ag by, inthekth
column root.

Convolution of two m-vectors on a mesh of trees with an mx(2m-1) base

Phase 1. Broadcast x; from theith row root to all row nodes on the base

Phase 2: Broadcast Y,_; — j from the (m— 1 —j)th diagonal root to the base diagonal
Phase 3: Leaf i, J, which has Xj and Yom_2_j_j, multipliesthem to get Xi Yom_o_i-j

Phase 4: Sum over columnsto get z,,,_, ;= ot X;Yom-2-i~y 1N cOlumN root j

Note that Phases 1 and 2 of this algorithm can be overlapped to speed up the computation.
The final algorithm described in this section deals with the construction of a minimal-
weight spanning tree for an undirected graph with edge weights. A spanning tree of a
connected graph is a subset of its edges that preserves the connectivity of all nodes in the
graph but does not contain any cycle. A minimal-weight spanning tree (MWST) is a subset
of edges that has the minimum total weight among all spanning trees. Thisis a very important
problem. For example, if the graph under consideration represents a communication (trans-

OTHER MESH-RELATED ARCHITECTURES 251

Figure 12.15. Mesh of trees variant with row, column, and diagonal trees.

portation) network, an MWST tree might correspond to the best way to broadcast a message
to al nodes (deliver products to the branches of a chain store from a central warehouse).

The MWST problem can be solved by a simple greedy algorithm. Assume for simplicity
that all edge weights are unique so that there is always a single minimum-weight edge among
any subset of edges. At each step, we have a set of connected components or “ supernodes”
(initially n single-node components). We connect each component to its “nearest” neighbor,
i.e., we find the minimum-weight edge that connects the component to another component.
Any such minimum-weight outgoing edge from a component must be in the MWST. Assume
that it is not; thus, the component is connected to the rest of the MWST by means of one or
more other edges with larger weights. Remove any of these edges and replace it with the
minimum-weight edge. This yields a spanning tree with smaller total weight than the MWST;
clearly a contradiction.

An example is shown in Fig. 12.16. We begin with nine components and identify the
minimal-weight outgoing edge from each. These are shown as heavy lines in the upper right
diagram. Inclusion of these edgesin the MWST reduces the problem to that of identifying
the MWST of the four-node graph shown at the lower |eft, where each node corresponds to
a subset of two or three nodes in the original nine-node graph. Again, the minimal-weight
outgoing edge from each node is identified (heavy lines) and included in the MWST. This
leaves us with two supernodes and their minimal-weight connecting edge with weight 25
completes the MWST as shown in the lower right diagram.

The proof of convergence for the greedy algorithm is simple. The spanning tree has
n— 1 edges. The first phase of the greedy algorithm selects at least n/2 edges of the tree.
Each subsequent phase cuts in half the number of unidentified edges. Thus, there will be log,
n phases. If the graph’s weight matrix W (see Fig. 11.15) is stored in the leaves of a mesh of
trees architecture, each phase requires O(log? n) steps with a simple algorithm (to be shown)
and O(log n) steps with a more sophisticated algorithm. The total running time is thus O(log?
n) or O(log? n). For comparison purposes, sequential algorithms for this problem have the
following complexities, where n is the number of nodes and e the number of edgesin the

graph:

252 INTRODUCTION TO PARALLEL PROCESSING

Figure 12.16. Example for the minimal-weight spanning tree algorithm.

Kruskal’s algorithm: O(e log €) steps [0 O(n? log n) for dense
graphs with e = O(n?)

Prim’s agorithm with binary heap: O((e + n)logn) O O(n2log n)

Prim’s algorithm with Fibonacci heap: O(e + nlog n) O O(n?)
Thus, our best parallel solution offers a speed-up of O(n%/log? n) which is sublinear in the
number p = O(n?) of processors used.

The key part of the simple parallel version of the greedy algorithm is showing that each
phase can be done in O(log? n) steps. Because weights are assumed to be unique, they can
double as edge IDs. Edge weights are stored in leaves, with Leaf (i, j) holding the weight
w(i, j) of Edge (i, j). The roots of Row i and Column i are merged into a single degree-4 node
representing Node i of the graph. A label L(i) associated with each node i gives its supernode
identity. L(i) isinitialized to 1, i.e., there are n supernodes initialy. If L(i) =i, Node i is the
supernode leader. At the start of each of thelog, n phases, Leaf (i, j) knowsif Edge (i, j) is
in the spanning tree and, if so, to which supernode it belongs. The a gorithm for each phase
consists of two subphases:

a. Find the minimum-weight edge incident to each supernode.
b. Merge the supernodes for the next phase.

OTHER MESH-RELATED ARCHITECTURES 253

Leader of the Example pointer
new supemode afier one jump

/

AQLB
Swpemole A 7

/7
Remove and make
Node 2 point to itself

Figure 12.17. Finding the new supernode ID when several supernodes merge.

Subphase (a) can be donein 4 log, n steps in the following way. Each member node of a
supernode finds its minimum-weight outgoing edge in 2 log, n steps (the minimum value in
Columni). Then, the minimum among these minimums is found in 2 log» n steps. Subphase
(b) can be done in O(log? n) stepsin the following way. Each supernode leader knows the
“closest” supernode with which it must merge. The only remaining problem are to determine
the identity of the new supernode and to disperse this identity to all nodes within the
supernode. If Supernode A is merging with Supernode B, which isin turn merging with
Supernode C, and so forth, a chain reaction occurs that might slow down the identification
process. If we view the merging information in each Supernode X as a pointer to another
supernode Y (Fig. 12.17), then there will always be a pair of supernodes that point to each
other. Of these two nodes, the one with the smaller supernode ID can be designated as the
new leader. Nodes can become aware of the new leader’s ID by a pointer-jumping process
(see Section 5.5) in log, niterations, each requiring O(log n) steps. For details and
improvements, consult Leighton ([Leig92], pp. 325-338).

PROBLEMS

12.1. Sorting on g-dimensional mesh and torus networks

a Justify the bisection-based lower bound p* /2 for sorting on a g-D mesh.

b. Show that if interprocessor communication is restricted to be in one direction in each step,
then a corresponding multisection lower bound of qpll 472 applies.

c. How arethelower bounds of parts (a) and (b) affected in k—k sorting, where each processor
begins and ends up with k records?

d. Derive lower bounds similar to those of parts (a)—(c) in the case of a g-D torus.

12.2. g-dimensional torus networks
This problem deals with m-ary g-cubes, i.e., g-dimensional torus networks with sides of length
m.

a Show that an m-ary g-cube is node-symmetric in the sense that the network looks exactly
the same when viewed from any of its nodes.

b. Show that the sum of distances from any node of a 2D torusto all other nodesis m(m?—1)/2
if mis odd and m3/2 if mis even. These lead to simple closed-form expressions for the
average internode distance in the two cases.

¢. Show that the generalized forms for the expressions of part (b) in the case of an m-ary
g-cubeareq(m?— 1)m’~ /4 and qma*+1/4, respectively.

254 INTRODUCTION TO PARALLEL PROCESSING

12.3. Hexagonal mesh
The node indexing scheme in the hexagonal mesh of Fig. 12.2 is such that each Node i is
connected to Nodesi +1,i+ 7, and i + 8 (mod 19). Even though wraparound links are not
shown in Fig. 12.2, assume that the same rules apply to them as well.

a Determine the number of nodes in a hex mesh with each outside edge having m processors.
b. Generalize the above node indexing scheme for a hex mesh with sides of length m.

c. Draw the hex mesh of Fig. 12.2, with the connectivity rules given above, as a chordal ring.
d. Show that the general hex mesh, as defined in part (b), consists of three edge-disjoint rings.

12.4. Manhattan street networks
Consider a Manhattan street network with an even number r of rows and an even number p/r
of columns.

a Find the exact network diameter in terms of p and r and for the special case of r =\p.

b. Devisean efficient routing algorithm for the network and analyzeits delay and buffer needs.

c. Analyze the complexity of the shearsort agorithm on this network. Hint: Let pairs of rows
and columns cooperate on row and column sorts.

d. Describe a matrix multiplication algorithm with its associated data layout for this net work.

12.5. Honeycomb mesh
Extend the hex mesh of Fig. 12.2 by adding two layers of nodes around its periphery. Then
remove the nodes currently numbered 0, 2, 3, 5, 14, 16, 17, and so on (the resulting network
resembles a honeycomb). Show that a honeycomb mesh with a rectangular boundary isin fact
apruned 2D mesh. Use this knowledge to derive its diameter and bisection width.

12.6. Pruned 3D torus
Consider a pruned 3D torus network, similar to that in Fig. 12.4, with an even number | of
layers, r rows, and p/(Ir) columns.

a Find the exact network diameter in terms of p, I, and r and for the special case of
|=r= D.
. Devise an efficient routing algorithm for the network and analyze its delay and buffer needs.
c. Analyze the complexity of the 3D mesh sorting algorithm (Section 12.1) for this network.
Hint: Let pairs of layers cooperate on the 2D sorts.
d. How would you partition an 8 x 8 x 8 pruned torus for implementation on eight circuit
boards each holding 64 processors (see Fig. 12.1)?

12.7. Mesh with row/column buses

a Show that the optimal aspect ratio (number of rows divided by number of columns) in a
mesh with row/column buses is p ¥4 for the semigroup computation; i.e., the optimal mesh
isp5/8x p3/8 Hint: The running time of the algorithm becomes O(p2/8).

b. Show that if multiple items can be stored in each processor, then a mesh with row/column
buses can perform a semigroup computation in O(n/9) stepsusing p = n8/9processors in
ann®9xn39 mesh.

12.8. Mesh with separable row/column buses

a InFig. 12.9, why isabus switch provided after every four processors rather than after every
two?

b. Can we remove the local interprocessor links and use the separable buses for all data
transfers, thereby reducing the node degree to 2? Would thisinvolve a speed penalty?

OTHER MESH-RELATED ARCHITECTURES 255

12.9. Mesh with fixed segmented row/column buses

Suppose that an r x (p/r) mesh is equipped with fixed segmented buses. In each column (row),
groupsof x (y) processors are connected to the same bus segment, with r/x(p/(ry)) bus segments
in a column (row).

a. Determine the optimal number of bus segments in each row and column, x°Pt and y °Pt, in
order to maximize the speed of semigroup computation.

b. Determine the optimal aspect ratio r/(p/r) for a p-processor mesh performing semigroup
computation.

12.10. Linear array with a separable bus

12.11.

12.12.

Consider alinear array having asingle bus that spans the entire array, with a bus switch inserted
after every g processors. Assume that each switch isimmediately before, and controlled by, a
processor whose index is a multiple of g. Figure 12.9 shows an example with p=16and g =
4.

a. Develop agorithms for semigroup and parallel prefix computation on this architecture.
b. Show how this architecture can efficiently execute the odd—even reduction of Section 11.3 .

Pyramid architecture

a Derive and prove aformula for the bisection width of an I-level pyramid.

b. Supply the details of parallel prefix computation on a pyramid and find its exact running
time.

c. Each row on the base of a pyramid can be viewed as forming the leaves of a complete
binary tree rooted at the apex. Can we use this observation to develop afast semigroup or
parallel prefix computation agorithm for data elements stored on the base with row-major
indexing?

Pyramid architecture
Can a pyramid with an mx m base efficiently simulate:

A larger pyramid witha2m x 2m base?

A mesh of trees architecture with an m x m base?
An mx m mesh with asingle global bus?

An m x mmesh with row and column buses?

oo oo

12.13. 2D multigrid architecture

12.14.

a Derive and prove aformulafor the bisection width of an I-level 2D multigrid architecture.

b. Show that the recurrence D(1) = D(I —1) + 6 with D(2) = 2 provides atight bound for the
diameter of a 2D multigrid architecture when | is sufficiently large.

¢. How large does | need to be for the result of part (b) to hold? Find the exact value of the
diameter for al smaller values of I.

d. Describe and analyze a semigroup computation algorithm on a 2D multigrid.

e. Describe and analyze a parallel prefix computation algorithm on a 2D multigrid.

Mesh of trees architecture

a Show that routing g packets between processors on the base of a mesh of trees networks
requires Q (g routing stepsin the worst case, even if no two destinations are the same.

b. Show how to find the minimum of m numbers, each mbits wide, in O(log? m) steps on an
m x m mesh of trees network.

256

INTRODUCTION TO PARALLEL PROCESSING

12.15. kD meshes

Show that a kD p-processor mesh with equal sides along each of the k dimensions has a bisection
width no smaller than p 1-1/K Notethat it is not adequate to observe that slicing thekD mesh
down the middle along one of the dimensions will cut exactly p1—1/K links pV/K is even and
slightly moreif p 1 /kis odd; this only establishes an upper bound on the bisection width. Hint:
Show how to connect every pair of nodes in the array by a pair of directed paths, onein each
direction, such that no edge of the array is contained in morethan p 1 *1/K/2 such paths, thereby
establishing a correspondence between the kD mesh and a p-node directed complete graph
whose bisection width is known.

REFERENCES AND SUGGESTED READING

[Agar9l]
[Ande97]
[Corbg2]
[Dall9o]
[Kunds]
[Kund91]
[Kwai97]
[Leigo2]
[Parho3]
[Rejag6]

[Serr93]

Agarwal, A., “Limits on Interconnection Network Performance,” IEEE Trans. Parallel and Distrib-
uted Systems, Val. 2, No. 4, pp. 398412, October 1991.

Anderson, J. R, and S. Abraham, “Multidimensional Network Performance with Unidirectional
Links,” Proc. Int. Conf. Parallel Processing, 1997, pp. 26-33.

Corbett, P. F., and I. D. Scherson, “Sorting in Mesh-Connected Multiprocessors,” |[EEE Trans.
Parallel and Distributed Systems, Vol. 3, No. 5, pp. 626-632, September 1992.

Daly, W. J, “Performance Analysis of k-ary n-cube Interconnection Networks,” IEEE Trans.
Computers, Vol. 39, No. 6, pp. 775-785, 1990.

Kunde, M., “A General Approach to Sorting on 3-Dimensionally Mesh-Connected Arrays,” Proc.
CONPAR, 1986, pp. 329-337.

Kunde, M., “Concentrated Regular Data Streams on Grids: Sorting and Routing Near to the Bisection
Bound,” Proc. Symp. Foundations of Computer Science, 1991, pp. 141-150.

Kwai, D.-M., and B. Parhami, “A Class of Fixed-Degree Cayley-Graph Interconnection Networks
Derived by Pruning k-ary n-cubes,” Proc. Int. Conf. Parallel Processing, 1997, pp. 92-95.
Leighton, F. T., Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes,
Morgan Kaufmann, 1992.

Parhami, B., “Fault Tolerance Properties of Mesh-Connected Parallel Computers with Separable
Row/Column Buses’ Proc. 36th Midwest Symp. Circuits and Systems, August 1993, pp. 1128-1131.
Rajasekaran, S., “Mesh Connected Computers with Fixed and Reconfigurable Buses: Packet Routing
and Sorting,” |IEEE Trans. Computers, Vol. 45, No. 5, pp. 529-539, May 1996.

Serrano, M. J., and B. Parhami, “Optimal Architectures and Algorithms for Mesh-Connected Parallel
Computers with Separable Row/Column Buses,” |EEE Trans. Parallel and Distributed Systems, Vol.
4, No. 10, pp. 1073-1080, October 1993.

Low-Diameter
Architectures

The bulk of this part deals with the (binary) hypercube architecture and its many
derivatives and variants, collectively referred to as hypercubic networks. How-
ever, we will also consider a variety of other interconnection structures that offer
advantages over hypercubic networks under certain valuation criteria, work
loads, or technological constraints. A common property that links all of these
architectures is that their diameters are (or can be, with proper choice of their
structural parameters) much lower than those of meshes and tori. Specifically,
whereas a g-D p-node mesh or torus has a diameter of © (p/9) with a node
degree of ©(q), these networks offer logarithmic or sublogarithmic diameters
with maximum node degrees ranging from 3 to log ,p. By the end of this part,
which is composed of the following four chapters, we will have a more or less
complete picture of the sea of interconnection networks partially visible in Fig.
4.8.

¢ Chapter 13: Hypercubes and Their Algorithms

* Chapter 14: Sorting and Routing on Hypercubes
* Chapter 15: Other Hypercubic Architectures

* Chapter 16: A Sampler of Other Networks

257

This page intentionally left blank.

Hypercubes and
Their Algorithms

The hypercube architecture has played an important role in the development of
parallel processing and is still quite popular and influential. The logarithmic
diameter, linear bisection, and highly symmetric recursive structure of the
hypercube support a variety of elegant and efficient parallel algorithms that often
serve as starting points for developing, or benchmarks for evaluating, algorithms
on other architectures. The hypercube's symmetry and recursive structure also
lead to rich theoretical underpinnings that bring forth a wide array of theoretical
results about its performance, layout in physical space, and robustness. In this
chapter, we introduce the hypercube, study its topological and embedding
properties, and present a number of simple algorithms. Sorting and routing
algorithms will be covered in Chapter 14. Chapter topics are

e 13.1. Definition and main properties

e 13.2. Embeddings and their usefulness
» 13.3. Embedding of arrays and trees

o 13.4. A few simple algorithms

e 13.5. Matrix multiplication

e 13.6. Inverting a lower triangular matrix

259

This page intentionally left blank.

HYPERCUBES AND THEIR ALGORITHMS 261

13.1. DEFINITION AND MAIN PROPERTIES

The origins of the hypercube architecture can be traced back to the early 1960s [Squi63].
Subsequently, both the direct (single-stage) version, discussed in this chapter, and the indirect
or multistage version, to be covered in Sections 14.4 and 15.2, were proposed as intercon-
nection networks for parallel processing [Peas77], [Sull77]. None of these early proposals
led to a hardware implementation, primarily because of high hardware cost [Haye89]. The
development of routing algorithms and application programs for the Cosmic Cube, a
64-processor hypercube system built at the California Institute of Technology in the early
1980s [Seit85], was instrumental in the introduction of several hypercube-based commercial
parallel computersin the late 1980s. One example of such machinesis discussed in Section
22.3.

As special cases of m-ary g-cubes, hypercubes are also called binary g-cubes, or simply
g-cubes, where q indicates the number of dimensions. We will use the term hypercube to
refer to a generic architecture of this type and g-cube (particularly, 3-cube, 4-cube, and so
forth) when the number of dimensionsis relevant to the discussion.

A g-dimensional binary hypercube (g-cube) is defined recursively as follows:

e A 1-cube consists of two nodes, labeled 0 and 1, with alink connecting them.

e A g-cube consists of two (g—1)-cubes, with the nodes labeled by preceding the origina
node |abels of the two subcubes with 0 and 1, respectively, and connecting each node
with the label Ox to the node with the label 1x. The two (q—1)-cubes forming the g-cube
are known as its 0 and 1 subcubes.

Figure 13.1 shows the recursive construction of q-cubes for g =1, 2, 3, and 4. The same
processis used to construct g-cubes for larger values of g, although it becomes increasingly
difficult to represent the resulting structuresin 2D drawings.

Because a 1-cube has two nodes and each recursive step in the above definition doubles
the number of nodes, ag-cube has p = 29 nodes or processors. Similarly, because a 1-cube
has nodes of degree 1 and each recursive step increases the node degree by 1, a ¢-cube consists
of nodes with degree d = q = log, p. The node structure of a hypercube (number of its
interprocessor communication ports) changes as the system expands in size; thus, a hyper-
cube architecture is not scalable.

If the label of anode x (its binary ID) isx; 1%, . . . XX1Xo, then its g neighbors are

X1 X2 - - X% Xo neighbor along Dimension O; denoted by No(X)

Xg_1 Xg-2 - - - XX % neighbor along Dimension 1 or Ny(X)

XgXp2 - - X%%1%0 neighbor along Dimension -1 or N, 4(X)

In other words, the labels of any two neighboring nodes differ in exactly 1 bit. Two nodes
whose labels differ in k bits (have a Hamming distance of k) are connected by a shortest path
of length k. For example, in the 4-cube of Fig. 13.1, a shortest path from Node x = 0010 to
y = 1001 goes through the intermediate nodes N3 (0010) = 1010 and N,(1010) = 1000, and

262 INTRODUCTION TO PARALLEL PROCESSING

Bi{mry l-cube 0 Binary 2cube
built of two 1 built of two

binary O-cubes O """""" O binary 1-cubes
labeled 0 and 1 iabeled O and 1

Three representations of a binary 3-cube

Two representations of a binary 4-cube

0100 " 010~ e 1001101

Figure 13.1. The recursive structure of binary hypercubes.

thus has a length of 3, which is equal to the Hamming distance between x and y. Consequently,
it is easy to see that the diameter of a g-cube is D = q = log, p. The bisection width of a
g-cube is B = p/2 = 291, The logarithmic diameter and the linear bisection width of a
hypercube are two reasons for its ability to perform many computations at high speed.

Hypercubes are both node- and edge-symmetric, meaning that the roles of any two nodes
(edges) can be interchanged with proper relabeling of the nodes. Swapping the leftmost 2
bitsin every node label of a g-cube interchanges the roles of dimensions g— 1 and q—2. As
a result, 0 and 1 subcubes can be defined for each of the g dimensions of a g-cube.
Complementing a particular bit position in al node labels results in a relabeling of the nodes
that switches the roles of the 0 and 1 subcubes associated with that dimension A node label
X can be transformed to a different node label y with k such complementation steps, where
k is the Hamming distance between x and y. Similarly, swapping bit positionsi andj in al
node labels interchanges the roles of Dimension-i and Dimension-j links. Thus, the desig-
nations “Dimension 0,” “Dimension 1,” and so forth are arbitrary and no inherent order exists
among the various dimensions.

Hypercubes have many interesting topological properties, some of which will be
explored in the remainder of this chapter and the end-of-chapter problems. The recursive
structure of hypercubes makes them ideal for running recursive or divide-and-conquer type
algorithms. The results of subproblems solved on the two (q—1)-dimensional subcubes of a

HYPERCUBES AND THEIR ALGORITHMS 263

g-cube can often be merged quickly in view of the one-to-one connectivity (matching)
between the two subcubes. Multiple node-digoint and edge-dioint paths exist between
many pairs of nodes in a hypercube, making it relatively easy to develop routing and other
parallel algorithms that are tolerant of node or edge failures. A large MIMD-type hypercube
machine can be shared by multiple applications, each of which uses a suitably sized subcube
or partition.

13.2. EMBEDDINGS AND THEIR USEFULNESS
Given the architectures A and A" we embed A into A" by specifying

¢ A node mapping (indicating that Node v of A is mapped onto Node V' of A"); the node
mapping can be many-to-one.

e An edge mapping (indicating that Edge uv of A is mapped onto a path from Node u' to
nodeV' in A', where u' and V' are given by the node mapping).

Example embeddings of a seven-node complete binary tree into 3 x 3, 2 x 4, or 2 x 2 meshes
are shown in Fig. 13.2. For the 3 x 3 and 2 x 4 meshes, each tree node is mapped onto a
different mesh node, whereas for the 2 x 2 mesh, pairs of tree nodes are mapped onto all but
one of the mesh nodes. Generally, edges of the tree are mapped onto single-edge paths in the
meshes, the only exceptions being in the 2 x 4 mesh, where Edge d of the tree has been
mapped onto the path between Nodes 1 and 4 that goes through Node 3, and inthe 2 x 2
mesh, where Edges a and e of the tree have been mapped onto paths of length O (from a node
toitself).

Embeddings are useful because they allow us to use an agorithm developed for an
existing architecture on a new or different one by simply letting the new/different architecture
follow the same steps as in the old architecture (we say that the new architecture emulates
the old one). Hence, e.g., the embeddings shown in Fig. 13.2 allow each of the meshes to
run tree-based agorithms, abeit with some slowdown in general. However, algorithms

Figure 13.2. Embedding a seven-node binary tree into 2D meshes of various sizes.

264 INTRODUCTION TO PARALLEL PROCESSING

developed directly for a given architecture tend to be more efficient as they take advantage
of unique features or strengths of that architecture.

In order to gauge the effectiveness of an embedding with regard to algorithm perform-
ance, various measures or parameters have been defined. The most important ones are listed
below. For these measures, the numerical values of the parameters for the three example
embeddings of Fig. 13.2 are aso provided as examples.

Examplesof Fig. 13.2 - 3x3 2x4 2% 2
Dilation Longest path onto which any given edge is mapped 1 2 1
Congestion ~ Maximum number of edges mapped onto one edge 1 2 2
Load factor ~ Maximum number of nodes mapped onto one node 1 1 2
Expansion Ratio of the number of nodes in the two graphs 97 8/7 47

The dilation of an embedding is an indicator of the slowdown in the new architecture
as aresult of indirect data communications. In other words, if congestion is 1, a dilation of
2, e.g., means that one communication step in the old architecture may require two time steps
in the emulating one in the worst case.

The congestion of an embedding represents potential slowdown when certain edgesin
the old architecture must carry messages at the same time. “Potential” is used because we
may be able to schedule the communication steps on the emulating architecture to reduce,
or even totally eliminate, this slowdown. For example, if Node 1 of the tree were to send
messages to Nodes 3 and 4 at the same time over links ¢ and d, the 4 x 2 mesh emulating
these communications can avoid any slowdown related to congestion by pipelining the two
messages between Nodes 1 and 3, with the message going to Node 4 sent first. In view of
the above, one might say that the congestion of the embedding associated with the 2 x 4 mesh
in Fig. 13.2 is 1.5 rather than 2, as there are two different paths of length 2 that can be used
for routing messages between Nodes 1 and 4.

The load factor of an embedding is an indicator of the potential slowdown in the new
architecture as result of one processor having to perform the job of several processors.
Again, the actual slowdown may be smaller if computation and communication are over-
lapped, because a processor may have extra cycles to complete its computations as it waits
for dilated or congested communications to take place.

The expansion of an embedding is related to the other parametersin that, e.g., one can
reduce the expansion by increasing the load factor. Occasionaly, we are interested in
embeddings that keep the dilation and/or congestion and/or load factor at 1, or some other
small constant, in an effort to have an efficient emulation. In such cases, the expansion of
the embedding is an indicator of the cost of achieving the desired efficiency. Often an
expansion factor that is greater than 1 results from the fact that many architectures comein
specific sizes (e.g., perfect square for a square 2D mesh and power of 2 for a binary
hypercube).

13.3. EMBEDDING OF ARRAYS AND TREES

In this section, we show how meshes, tori, and binary trees can be embedded into
hypercubes in such a way as to alow a hypercube to run mesh, torus, and tree algorithms
efficiently, i.e., with very small dilation and congestion. We will see later in this chapter, and

HYPERCUBES AND THEIR ALGORITHMS 265

in Chapter 14, that there exist severa hypercube algorithms that are significantly faster than
their counterparts on meshes/tori and binary trees. These observations together establish the
hypercube architecture as “more powerful” than mesh, torus, or tree architecture.

We begin by showing an embedding of a 29-node ring in a g-cube for g > 1. Any p-node
graph that can embed a p-node ring with dilation and load factor of 1 is said to be
Hamiltonian. Such an embedding defines a ring subgraph containing all of the nodes of the
graph, or a Hamiltonian cycle of the graph. Not al graphs have Hamiltonian cycles. For
example, a3 x 3 mesh is not a Hamiltonian graph, nor is a binary tree (or, more generally, an
acyclic graph) of any size. Possession of a Hamiltonian cycle allows an architecture to
emulate aring or linear-array algorithm efficiently and is viewed as a desirable property.

We now prove that any g-cube is Hamiltonian for q = 2. The proof is by induction,
starting with the basis that a 2-cube is Hamiltonian and proceeding with the induction step
that if the (g—1)-cube is Hamiltonian, then so is the g-cube.

Consider the g-cube as two (q—1)-cubes obtained by removing all Dimension q— 1 links.
Take an arbitrary Hamiltonian path in the 0-subcube. Consider the edge linking a Node x
with its Dimension-k neighbor N, (x) on this path, where 0 < k< q— 2. Now consider a
Hamiltonian path in the 1-subcube that contains the edge linking Nq_l(x) with N q_l(N (X))
= Ni(N4_4(X)). Because of edge symmetry, such a Hamiltonian path must exist. Now an
embedded ring results if the two edges linking x with N,(x) and qul(x) with N (N cH(x))
(dotted lines in Fig. 13.3) are removed from the two rings and instead the two Dimension-
(q—l);jdgeslinking X with qul(x) and N, (x) with Nq_l(Nk(x)) (heavy linesin Fig. 13.3) are
inserted.

Another way to prove that the g-cube is Hamiltonian is to show that a g-bit Gray code
(asequence of g-bit codewords such that any two consecutive codewords, including the last
and the first one, differ in a single bit position) can be constructed. Because of the unit
Hamming distance between the binary labels of neighboring nodes in a g-cube, the g-bit
Gray code defines a Hamiltonian cycle in the g-cube.

A g-bit Gray code can be built by induction. Clearly {0, 1} is a 1-bit Gray code, Given
a(gq-1)-hit Gray code that begins with 0% and ends with 1092 , where the superscripts denote
the number of times that a symbol is repeated, a g-bit Gray code can be constructed as
follows:

Assumed Gray code Assumed Gray code in reverse
(g-1)-bit codes ot 0721 . 1072 1092 . 092 o
g-bit Gray code o? ! e 01072 110%? o 10974 107"
Prefix with 0 Prefix with 1

We next prove a more general result that a2™ x 2™ x ... x 2"h1 h-D mesh/torus is a subgraph
of the g-cube, whereq= my+ m, + ... + m,_,; thisis equivalent to the former being embedded
in the latter with dilation 1, congestion 1, load factor 1, and expansion 1.

The proof is based on the notion of cross-product graphs, which we first define. Given
kgraphs G; = (V;, E), 1<i <Kk, their (cross-) product graph G =G, x G, x ... x G is defined as
the graph G = (V, E), where

266 INTRODUCTION TO PARALLEL PROCESSING

................................

(q-1)cube O {(q~1)cube 1

Figure 13.3. Hamiltonian cycle in the g-cube.

V={(v,vy . ..,vplv,e V,1<isk}
E={[(u),uy .o o), vy, oo vl [for some J, (uy, v) € Ejand fori #, u; = v;)

In other words, the nodes of the (cross-)product graph G are labeled with k-tuples, where the
ith element of the k-tuple is chosen from the node set of the ith component graph. The edges
of the product graph connect pairs of nodes whose labels are identical in all but the jth
elements, say, and the two nodes corresponding to the jth elements in the jth component
graph are connected by an edge. Figure 13.4 depicts three examples of product graphs. Note
that the product graph G = G, x G, can be viewed as being constructed from V| copies of
G, or |V,| copies of G,. It is easy to see that a 2D mesh is the product of two linear arrays
and that atorusis the product of two rings.

fFG=G,; xG,x..xG, and G =G, xG, x..x G, where G, is a subgraph of
G; (1<i<k), then Gisclearly asubgraph of G'. The proof that a2™ x 2™ x ... x 2™-1h-D
mesh/torus is a subgraph of the (my+m, + ... + m,_,)-cube now becomes easy:

1. The 2™ x2M x ... x2M..1 torus is the product of hrings of sizes (2™, 2™ ,...,
2mn4)

3-by-2
torus

1b

0N -
Al i
.

> W

Figure 13.4. Examples of product graphs.

HYPERCUBES AND THEIR ALGORITHMS 267

2. The(my+m,+...+m _,)-cubeisthe product of an my-cube, an my-cube, . . ., an
m,,_,-cube.
3. The 2M-node ring is a subgraph of the m-cube.

Part (2) above, which is the only part not yet proven, becomes obvious if we note that the
g-cube is the product of q linear arrays of size 2 (see, eg., the middle examplein Fig. 13.4).

It isinteresting to note that a 4-cube can be reduced to a 4 x 4 mesh by removing half of
the Dimension-1 and Dimension-2 links (Fig. 13.5). Note that the links whose removal
converts the 4-cube into a4 x 4 mesh are exactly those that turnthe 4 x 4 meshinto a4 x 4
torus. Thus, the 16-node hypercube (2-ary 4-cube) is isomorphic to the 4 x 4 torus (4-ary
2-cube).

Note that for a mesh to be a subgraph of the hypercube, its sides must be powers of 2.
The 3 x 5 mesh, e.g., is not a subgraph of the 16-node hypercube. However, because the 3 x 5
mesh is a subgraph of the 4 x 8 mesh/torus, it is a subgraph of the 5-cube.

We next examine the possibility of embedding the (2-1)-node complete binary tree in
the g-cube. A simple argument shows that straight one-to-one embedding is impossible.
Divide the hypercube nodes into those with odd and even weights, where the weight of a
node is the number of 1sinits binary label. Exactly half of the nodes, i.e., 24 nodes, fall
into each category. If the node onto which the root of the binary tree is mapped has odd (even)
weight, then the children of the root must be mapped onto even-weight (odd-weight) nodes.
Proceeding in this manner, we see that about three-fourths of the nodes of the binary tree
must be mapped onto hypercube nodes with odd or even weight. This is impossible because
only half of the nodes have each type of weight.

The above negative result can be turned into a positive one by a slight modification in
the graph to be embedded into the g-cube. The 2%-node double-rooted complete binary tree,
which is obtained from the (2%-1)-node complete binary tree by inserting a node between
the root and its right/left child, isin fact a subgraph of the g-cube (Fig. 13.6). Proving this
result is equivalent to showing that the (29-1)-node complete binary tree can be embedded
into a g-cube with dilation 2, congestion 1, load factor 1, and expansion 29/(2% —1).

Column 3
ow 0
Column 2
Column 1
Column 0

Figure 13.5. The 4 x 4 mesh/torus is a subgraph of the 4-cube.

268 INTRODUCTION TO PARALLEL PROCESSING

2%-node double-rooted Double-rooted tree Double-rooted tree
complete binary tree in the (g-1)-cube O in the (g—1)-cube 1

Figure 13.6. The 2%node double-rooted complete binary tree is a subgraph of the g-cube.

The proof is by induction. The 2-node double-rooted complete binary tree (with empty
left and right subtrees) is a subgraph of the 1-cube. This forms our basis. Let the Z+-1-node
double-rooted complete binary tree be a subgraph of the (q—1)-cube. Figure 13.6 shows how
the embedding in the g-cube can be obtained by taking two embedded treesin the 0 and 1
subcubes along Dimension ¢, removing one link from each (dotted lines in Fig. 13.6), and
inserting two new links instead (heavy lines). Note that the roles of the a and b dimensions
are interchanged in the embedded double-rooted complete binary tree within the (g—1)-cube
1 compared with that in the (q—1)-cube 0. But we know that this can be done in view of the
complete symmetry of the hypercube with respect to its dimensions.

Embeddings do not have to be 1-to-1 to be efficient or useful. For example, an
embedding of the 2%leaf, or (29"1-1)-node, complete binary tree in the g-cube is shown in
Fig. 13.7. Here, each node and all of its left descendants (those that can be reached by only
moving leftward) are mapped onto the same hypercube node. This embedding has dilation
1, congestion g, load factor g + 1, and expansion of about 1/2. Even though large congestions
and load factors are generally undesirable, this particular embedding is quite efficient if the
hypercube isto emulate atree algorithm in which only nodes at asingle level of thetree are
active at any given time.

Dimension-2
Link

& .
& Dimension-1
& Links
IS
N ¥

Dimension-0
Links

Figure 13.7. Embedding a 15-node complete binary tree into the 3-cube.

HYPERCUBES AND THEIR ALGORITHMS 269

In Section 2.4, we saw examples of tree algorithms in which activity shifts from one
tree level to the one above or below it. The embedding of Fig. 13.7 isideally suited for
emulating such tree algorithms on a hypercube.

In the semigroup computation algorithm for the binary tree, presented in Section 2.4,
only the leaves were assumed to hold data elements. The nonleaf nodes served to combine
data elements, send the partial results upward, and eventually direct the final result of the
semigroup computation toward the leaves if needed. A hypercube emulating this algorithm
with the embedding shown in Fig. 13.7 will have one node per tree leaf and thus one data
element per node. As activity shifts from the leaves toward the root, successively fewer
hypercube nodes will be doing useful work; the active nodes constitute a smaller and smaller
subcube. In the broadcasting phase of the algorithm, activity shifts back from the root node
toward the leaves, with more and more nodes (larger subcubes) becoming active in each
successive step.

Similarly, for the parallel prefix computation, the activity shifts toward the root and from
there, back toward the leaves. Again, the embedding of Fig. 13.7 leads to efficient emulation
of the algorithm on a hypercube with roughly half as many nodes as the original binary tree.

13.4. A FEW SIMPLE ALGORITHMS

In this section, we present hypercube algorithms for semigroup computation, parallel
prefix computation, and sequence reversal.

The following is an optimal algorithm involving g communication steps for semigroup
computation on the g-cube, assuming that each Processor x holds one value v[x]. Recall that
Ny (X) denotes the neighbor of Node x along Dimension k; i.e., the node whose binary |abel
differs from that of x only in bit position k.

Semigroup computation on the g-cube

Processor x, 0 < x < pdo t[x] := v[x] {initialize subcube “total” to own value}
for k=0to q—1 Processor x, 0 < x<p, do

gety :=t[N (x)]

settix]:=tx] Oy
endfor

The communication steps of the above semigroup computation algorithm for a 3-cube are
depicted in Fig. 13.8. In the first step, pairs of elements are combined across Dimension O,
yielding partial results such as v[0] O v[1] and v[2] O v[3] (these are denoted by 0-1, 2-3,
and so on in Fig. 13.8). Then, pairs of partial results are combined across Dimension 1 to
yield v[0] O v[1] O v[2] O v[3] and v[4] O v[5] O v[6] O v[7]. In general, this doubling of
the scope of the partial results continues until the single final result is simultaneously
obtained in al of the nodes.

The above agorithm is an instance of an ascend algorithm. Each node successively
communicates with its neighbors in dimension order from 0 to g—1. Thus communication
takes place between nodesthat are 1, 2, 4, . . ., 297 apart in terms of numerical node labels.
A descend algorithm is similar, except that the dimension order is g—1 to 0. The structure of

270 INTRODUCTION TO PARALLEL PROCESSING

i s

67 67
Figure 13.8. Semigroup computation on a 3-cube.

o—0

2-3 2-3

4-5 4.5 4 4.7 0-7 0-7
o5 po] o
47 i 47

03 03

the hypercube is ideally suited to this type of ascend/descend algorithms that double the
scope or coverage of the result with each step.
Parallel prefix computation is similar. Each node x performs the following steps.

Parallel prefix computation on the g-cube

Processor x,0< x<p, dot[x] :=u[X] := V[X]

{initialize subcube “total” and partial prefix to own value}
for k=0to q—1 Processor X, 0 < x<p, do

get y := t{IN(X)]

stt[x]:=tx] Oy

if x>N,(x) thenu[x] :=u[x] Oy
endfor

The above parallel prefix computation is also an ascend agorithm. Each node deals with two
variables: asubcube “total” t that corresponds to the result of semigroup computation in the
current subcube and a subcube partial prefix result u that gives the result of parallel prefix
computation in the same subcube. Eventually, t becomes the semigroup computation result
and u the required prefix within the entire g-cube. Figure 13.9 depicts the communication
steps, and the partial results obtained, in a 3-cube. Again i-j stands for the partial combining
result v[i] O v[i + 1] O ... O Vv[j].

Figure 13.10 depicts another algorithm for parallel prefix computation on the hypercube
using a recursive formulation. The hypercube is divided into two halves consisting of the
even- and odd-numbered nodes (across the Oth dimension). Parallel prefix computation is
performed recursively in each half, with the odd subcube doing a diminished version of the
prefix computation in which the processor’s own value is excluded. Then, the results are
combined across Dimension-O links. All that is left to do after this step is for the
odd-numbered nodes to combine their own values with the results thus obtained. The running

HYPERCUBES AND THEIR ALGORITHMS 271

Legend {

t: Subcube "total”
u: Subcube prefix

‘Lf 4.5 All “totals” 0-7
B8 ” cf) o/o
7 &1 1 &

0 03 :

%3 6 %_3 [
0-3

2 2-3

Figure 13.9. Parallel prefix computation on a 3-cube.

time of this algorithm on a g-cube is characterized by the recurrence T(q) = T(q— 1) + 2 =

2q=2log, p.
Our final simple algorithm deals with reversing a sequence, stored one element per
processor. By reversing a sequence v[0], v[1], . . . we mean that the element originaly in

Processor x must end up in Processor p— 1 — x; v[0] in Processor p—1, v[1] in Processor
p —2, and so forth.

Reversing a sequence on the g-cube

for k=0to g—1 Processor x,0< x<p, do

Parallel prefixes in even and odd 2 3

subcubes; own value excluded in N Odd procemons combine
the odd subcube computation Exchange values and combine their gwn valucs
0+2+4 1+3 0-4 04 oC_4) 05
0 Tdentit % % 6 ol
L 2
19345 0-6 0-6 O -7
X - 0-3
042 0-2 0-2 0-2

Figure 13.10. A second algorithm for parallel prefix computation on a 3-cube.

272 INTRODUCTION TO PARALLEL PROCESSING

6 7

5 4

o R A—
7 6 3 2
o——=0
1 0 3 2 7 6
o—-=0 e

7: 6: 5 4 / 0
,O—O i 0 5; 4
Figure 13.11. Sequence reversal on a 3-cube.

get y := [Nk (X)]
setv[x] =y
endfor

Figure 13.11 shows the steps of the sequence reversal algorithm on a 3-cube. Sequence
reversal isyet another example of an ascend-type algorithm.

13.5. MATRIX MULTIPLICATION

Consider now the problem of multiplying mxm matrices A and B on a q-cube to obtain
the product matrix C, where m= 293 and p=m3 = 2% processors are used. Note that the
number g of dimensions in the hypercube is assumed to be a multiple of 3. Each processor
has three registers Ra, Rg, and Rc. For the sake of algorithm description, it is convenient to
label the hypercube processors by three indices i, j, k, where each index is a (g /3)-bit binary
number. Initialy, Processor (0, j, k) holds Ajx and B ik initsRa and Rpregisters, respectively.
All other processor registers are initialized to 0. At the end of the computation, Register R ¢
of Processor (0, J, k) will hold element C;,, of the product matrix C.

The agorithm performs al m3 multiplications needed for multiplying two mx m
matrices concurrently, one in each of the m3 processors. The remainder of the processisto
ensure that each processor holds the two elements of A and B that it multiplies and to add
the requisite terms that form each element C;,. of the result matrix.

Multiplying mxm matrices on a g-cube, with g = 3 log,m

for I = /3 -1 downto O Processor x =ijk, 0<1i, j, k<m, do
if bitlof iis1
thengety:= RA[Nqum(-‘f)] andz:= RB[N[+24/3(X)]
setRa[X] :=y; Rg[X] =2
endif

HYPERCUBES AND THEIR ALGORITHMS 273

endfor
for | = /3 —1 downto 0 Processor x=ijk, 0<i, j, k<m, do
if bit| of i and k are different
then get y : = Ra [N, (x)]
tRa[X] 1=y
endif
endfor
for | =q/3 -1 downto 0 Processor x=ijk, 0<i, j, k<m, do
if bitl of i and j are different
thengety:= RB[N1+q/3(x)]
st Rg[X]: =y
endif
endfor
Processors x, 0< x<p, do Rc:=RaxRg
p = m3=29 parale multiplications in one step}
for I=0to g/3—1 Processor x=ijk, 0<1i, j, k<m, do
if bitlofiisO
thengety:= RAN,,;, ()]
R [x] 1=Rc[X] +y
endif
endfor

The above matrix multiplication algorithm appears complicated. However, the ideas
behind it are quite simple. The first three “for” loops copy the elements of A and Binto al
other processors that need them to perform the m3 parallel multiplications. Because m = 293
copies of each element must be made, a recursive doubling scheme is used to make the
required copies in O(g) communication steps. The final “for” loop, after the multiplications,
computes the sum of the mterms that form each of the elements of C, again using recursive
doubling within (g/3)-dimensional subcubes of the origina g-cube. It should be clear that
the total running time of this matrix multiplication agorithm is O(q) = O(log p).

An example for multiplying two 2x 2 matrices on a 3-cube is shown in Fig. 13.12. For
this simple example, g/3 = 1, so each of the “for” loops degenerates into a single communi-
cation step. In the first “for” loop, processors with 1 in bit position 2 of their node labels (i.e.,
Processors 4, 5, 6, and 7) receive and store Ry and Rg values from their Dimension-2
neighbors, as shown in the middle top diagram of Fig. 13.12. In the second “for” loop,
Processors 1, 3, 4, and 6, i.e., those with different i and k components in their node labels,
receive and store Ra values from their Dimension-0 neighbors. The third “for” loop updates
the Rg values in those processors whose node labels have different i and j components (i.e.,
Processors 2, 3, 4, and 5). At this point, shown in the bottom left diagram of Fig. 13.12, data
distribution is complete. The eight processors then independently multiply their Ry and Rg
vaues, storing the resultsin R . Thefina “for” loop adds pairs of values across Dimension
2 in order to obtain elements of the result matrix Cin Processors 0, 1, 2, and 3 (bottom right
of Fig. 13.12).

The above algorithm, requiring m3 processors to multiply nx m matrices, is obviously
impractical for large matrices, which are the primary candidates for the application of parallel
processing. However, the standard block matrix multiplication scheme can be used to reduce

274 INTRODUCTION TO PARALLEL PROCESSING

1 2
%Og/p O/p R 10«0
2 1
HOSY \ iO—>‘ GO‘
f f O4—O
3
] ' O—80O
Rci RAXR p
Ry : ot O O‘p ‘,o
1 L 5 6
Q169 O lp . v O
7 p O O ‘Q
; y o O @ Q%

Figure 13.12. Multiplying two 2 x 2 matrices on a 3-cube.

w

the number of processors required. With the block scheme, one can multiply m x m matrices
on a p-processor hypercube by simply viewing each data movement or multiplication in the
above algorithm as being applied to (m/pt/3)x(m/p!/3) matrix blocks rather than to single
matrix elements. When p/3is not an integer or does not divide m, the algorithm becomes
slightly more complex.

An analysis of the above algorithm in the case of block matrix multiplication follows.
Let the m x m matrices be partitioned into p®/3xp2/3 blocks, each of size (m/p >)x(m/p-/3).
Then, each data communication step involves transferring the m2/p?2 elements of a block
and each multiplication corresponds to 2m?3/p arithmetic operations required to multiply two
such blocks. Assuming unit-time data transfers and arithmetic operations, the total running
time becomes

T u(m, py= m2/p*? x O(log p) + 2m*/p

For m= 0O (p¥3 log p) or p = © (m3/log® m), communication and computation times are
asymptotically of the same order and Ty, (M, p) becomes O(log® p) or O(log® m). For smaller
values of m, the communication time m?/p23x O(log p) is dominant. On the other hand,
when very large matrices are multiplied on arelatively small number of processors, the 2ms3/p
term dominates the running time and linear speed-up is obtained.

13.6. INVERTING A LOWER TRIANGULAR MATRIX

A lower triangular matrix Ais a square mx mmatrix in which every element above the
main diagonal is O (see Section 11.2, particularly Fig. 11.5). The inverse of A, denoted by
A1, isanother square mx mmatrix suchthat Ax A™ = A x A=1_ wherel, isthemxm
identity matrix having 1 for each diagonal element and O elsewhere. Inversion of lower
triangular matrices is of practical importance in itself and also forms a building block for
inverting arbitrary matrices.

HYPERCUBES AND THEIR ALGORITHMS 275

A recursive agorithm for inverting m x mlower triangular matrices on a g-cube with 2
= m?3 processors can be developed based on the following result from linear algebra:

BO B! 0
if A :[C D:l then A = 4
-Dlcp! D

where Cisan (m/2) x (m/2) matrix and B and D are (m/2) x (m/2) lower triangular matrices.
This statement can be easily verified through multiplication, noting the simplification
CB™'-DD"'CB-1=CB-1,,, CB™1=0.

BO Bil 0 1m/2 0

D x —DiICB—l Dil :‘: 0 1m/2:‘:]’"
Thus, if B and D can beinverted in parallel within independent subcubes, the running time
of the algorithm is characterized by the recurrence

(m)=T,,,(m/2)+ 2T, (m/2)

mul

T

where the last term represents the time of two matrix multiplications for computing
-D~1 cB ™. Because, using the algorithm of Section 13.5, matrix multiplication can be
performed in logarithmic time, the running time of this matrix inversion agorithm is O(log?
m). The only remaining problem is to show that the two (m/2) x (m/2) matrices B and D can
in fact be inverted in parallel, with each using no more than half of the available processors.
Specifying the detailsis left as an exercise.

PROBLEMS

13.1. Properties of the hypercube
The bisection width of a g-cube is 2° 1= O(p). Let uscall thisthe link bisection width of the
g-cube to distinguish it from the node bisection width defined as the least number of nodes
whose removal would bisect the network. Show that the node bisection width of a g-cube is
much smaller and consists of 8(p/Vlog p) nodes. Hint: Consider every hypercube node whose
weight, or the number of 1sinitshinary label, is [g/20or [§/200

13.2. Embedding meshesinto hypercubes

a Show that the 3 x 3 mesh is a subgraph of the 4-cube.

Show that the 3 x 3 torusis not a subgraph of the 4- cube.

Show that the 3 x 5 mesh, and thus the 3 x 5 torus, is not a subgraph of the 4-cube.
Generalize the result of part (b) to any h-D torus with at least one odd side.

Prove or disprove: Any mg X mq x ... X my,_4 torus, with al of its sides even, is a subgraph
of the g-cube, whereq = =ig] [tog,m,].

Poo T

13.3. Embedding meshesinto hypercubes
Show an embedding of the 8 x 8 x 8 torus into the 9-cube. Identify explicitly the hypercube
node onto which the node (i, j, k) of the torus is mapped.

13.4. Embedding meshes into hypercubes
a Show that any p-node 2D mesh is a subgraph of the([log, p] +1)-cube.

276

135.

13.6.

13.7.

13.8.

13.9.

13.10.

INTRODUCTION TO PARALLEL PROCESSING

b. Extend the result of part (a) by showing that any p-node h-D mesh is a subgraph of the
(fog, pCH h—1)-cube.

c. Show that the result of part (b) isin general the best possible by providing an example of
ap-node h-D mesh that is not a subgraph of the (iog , pI+h-2)-cube.

Embedding trees into hypercubes

a We have seen that the (29-)-node complete binary tree is not a subgraph of the g-cube.
Show that it is a subgraph of the (q+1)-cube.

b. Show that the (3 x 291-2)-node back-to-back complete binary tree, composed of two
(2%-1)-node complete binary trees whose leaves have been merged, is a subgraph of the
(gH)-cube.

Embedding trees into hypercubes

Show that the “in-order” labeling of the nodes of a (2q —1)-node complete binary tree corre-
sponds to a dilation-2 embedding in the g-cube. The in-order labeling of a binary tree requires
that each node be Labeled after all of itsleft descendants and before any of its right descendants,
with node |abels beginning from 0 and ending with 29— 2,

Embedding trees into hypercubes
Using the embedding of the eight-leaf complete binary tree into the 3-cube depicted in Fig.
13.7

a. Draw a sequence of snapshots showing how the hypercube would emulate the tree
algorithm for semigroup computation with data items stored at the leaves (see Section 2.4).

b. Compare the emulation of part (a) with the direct hypercube algorithm given in Section
13.4.

c. Repeat part (a) for the parallel prefix computation.

d. Repeat part (b) for the parallel prefix computation.

Simple algorithms on hypercubes

a Extend the semigroup computation algorithm given in Section 13.4 and its analysis to the
case where each of the p processors holds n/p data items.

b. Repeat part (a) for the parallel prefix computation.

c. Repeat part (a) for the sequence reversal agorithm.

Unidirectional hypercubes

In Section 12.2, Manhattan street networks were introduced as unidirectional mesh networks.
Show how to construct a undirectional g-cube (g even) with node in-degree and out degree of
g/2 and adiameter of g. Provide the connectivity rule for each Node x.

Pruned hypercubes

Consider a g-cube, with g even, in which each link is replaced by two unidirectional links going
in opposite directions and then outgoing links along odd (even) dimensions have been removed
for nodes with odd (even) weights. This leads to aunidirectional network with node in-degree
and out-degree of g/2.

a Find the diameter of such a pruned g-cube.

b. Find the bisection width of such apruned g-cube.

c. Devise an embedding of the complete g-cube into the pruned g-cube such that the dilation
and congestion of the embedding are as small as possible.

HYPERCUBES AND THEIR ALGORITHMS 277

13.11.

13.12.

13.13.

13.14.

13.15.

Embedding large hypercubes into smaller ones

a Deviseadilation-1 embedding for a (g+c)-cube into a gq-cube, where ¢ > 0.

b. What are the congestion and load factor of the embedding proposed in part (a)?

c. Isthe proposed embedding useful in performing semigroup computation, parallel prefix
computation, or sequence reversal with n data elements (n > p) through the emulation of
an n-node hypercube on a p-node hypercube?

Matrix multiplication on a hypercube

a. Modify the matrix multiplication algorithm of Section 13.5 such that 2
are multiplied on ag-cube (q even).

b. Analyze the complexity of the algorithm proposed in part (a).

C. Modify the matrix multiplication algorithm of Section 13.5 such that 2% x 2% matrices are
multiplied on a g-cube.

d. Analyze the complexity of the algorithm proposed in part (c).

2 2
q/xq/

2 matrices

Solving numerical problems on a hypercube
Develop hypercube algorithms for the following problems:

a Solving atriangular system of linear equations via back substitution (see Section 11.2).
Solving atridiagonal system of linear equations (see Section 11.3).

Solving an arbitrary system of linear equations by Gaussian elimination (see Section 11.4).
Solving an arbitrary system of linear equations by Jacobi relaxation (see Section 11.4).
Finding the transitive closure of a graph, given its adjacency matrix (see Section 11.5).
Labeling the connected components of a binary image (see Section 11.6).

~o o0 T

Mystery hypercube algorithm

Consider the following hypercube algorithm that deals with an m x m matrix A. Each of thep
= 2q = m? processors has aRegister R 5 that holds some element of A at any giventimeand a
Register Ry used for temporary storage. Initially, a, i is stored in the processor whose ID ismi
+j,i.e, inrow-magjor order.

Mystery algorithm operating on an m x m matrix A on aq-cube, withgq=2log, m

forI=g—1 down to q/2 Processor X, 0 < x< p,do
if X =X . g2 { Comparebits| and| — g/2 of the processor’s binary node label}
then get y:= RA[N, ()] { Get neighbor’s A value}
set Ry [X]:=y {and storeit in the B register}
endif
if X| #X1-gq/2 {Compare bits | and | — g/2 of the processor’s binary node label}
then get y:= RN, /2(0)] { Get neighbor’s B value}
set Ry[X]:=y (and storeit in the A register}
endif
endfor

a what does the above algorithm accomplish?
b. what is the algorithm’s running time?

Pruned hypercubes

Consider ag-cube that is thinned by removing a fraction 1-f of the 2 91 }inks between the two
(g-1)-cubes, say one-half or three-fourths of them. This s recursively applied from the highest
dimension down to some Dimension ¢ (we cannot do this al the way down to Dimension O,

278

INTRODUCTION TO PARALLEL PROCESSING

because the network will become disconnected). The total number of links, and thus the
network cost, isabout f times that of the original g-cube. Suggest arule for removing haf of
the links such that the resulting network possesses desirable properties [Hsu96].

REFERENCES AND SUGGESTED READING

[AK197]
[Hayes9]

[Hsu96]
[Peas77]
[Seit85]
[Squi63]

[sull77]

AKkl, S. G., Parallel Computation: Models and Methods, Prentice-Hall, 1997.

Hayes, J. P., and T. Mudge, “Hypercube Supercomputers,” Proceedings of the IEEE, Vol. 77, No. 12,
pp. 1829-1841, December 1989.

Hsu, W. -J,, M. J. Chung, and Z. Hu, "Gaussian Networks for Scalable Distributed Systems,” The
Computer Journal, Vol. 39, No. 5, pp. 417-426, 1996.

Pease, M. C., Ill, “The Indirect Binary n-cube Microprocessor Array,” |EEE Trans. Computers, Vol.
C-26, No. 5, pp. 458-473, May 1977.

Seitz, C. L., “The Cosmic Cube,” Communications of the ACM, Vol. 28, No. 1, pp. 22-33, January
1985.

Squire, J. S., and S. M. Palais, “Programming and Design Considerations for a Highly Parallel

Computer,” Proc. Spring Joint Computer Conf., 1963, pp. 395-400.

Sullivan, H., T. R. Bashkow, and K. Klappholz, “A Large-Scale Homogeneous, Fully Distributed
Parallel Machine,” Proc. 4th Symp. Computer Architecture, March 1977, pp. 105-124.

14

Sorting and Routing
on Hypercubes

In Chapters 9 and 10, we discussed the importance of sorting and data routing
problems in parallel processing and presented several algorithms of varying
complexities and efficiencies to solve these problems on 2D meshes and tori.
This chapter is devoted to solving the same problems on the hypercube archi-
tecture. A single chapter is adequate here as we are already familiar with the
fundamental notions and tools used in developing efficient sorting and routing
algorithms. We will see that the smaller diameter and wider bisection of the
hypercube allow us to develop more efficient algorithms, while the recursive
structure of the hypercube makes the solutions easier to develop, describe, and
understand. Chapter topics are

e 14.1. Defining the sorting problem

¢ 14.2. Bitonic sorting on a hypercube

e 14.3. Routing problems on a hypercube
e 14.4. Dimension-order routing

e 14.5. Broadcasting on a hypercube

e 14.6. Adaptive and fault-tolerant routing

279

This page intentionally left blank.

SORTING AND ROUTING ON HYPERCUBES 281

14.1. DEFINING THE SORTING PROBLEM

The general problem of sorting on a hypercube is as follows: Given n records distributed
evenly among the p = 29 processors of a g-cube (with each processor holding n/p records),
rearrange the records so that the key values are in the same order as the processor node labels.
Ideally, the product of the number p of processors used and the running time T of the sorting
algorithm will be pT = ©(nlog n), which is optimal. This implies a running time of T=0O((n
log n)/p) and linear speed-up. Currently we cannot achieve this optimal running time for al
values of nand p.

For the special case of n=p, i.e,, each processor holding a single record before and after
sorting, the most practical hypercube sorting algorithms are based on Batcher’s odd—even
merge or bitonic sort, which we will study in the following sections. Batcher’s sorting
algorithms (see Section 7.4) achieve asymptotically suboptimal O(log? n) = O(log? p)
running time. An O(log n)-time deterministic sorting a gorithm, which would be optimal in
view of both the O(n log n) sequential-time lower bound and the O(log p) diameter of the
hypercube, is not currently known. However, slightly relaxing the assumption n = p or the
reguirement for determinism or worst-case bound, makes the problem manageable.

If we have fewer than p records to sort (n < p/4), then a hypercube sorting algorithm
exists that allows us to do the job in O(log p log n/log(p/n)) time [Nass82]. When n = p*¢,
for some € > 0, the above agorithm runsin optimal logarithmic time, asin this case

1—¢

log p log n/log(p/n) = logp= é log n
If we have many more than p records to sort (n >> p), then hypercube algorithms exist that
allow us to do the job in O(n log n/p) time, i.e., with linear speed-up [Plax89].

The best known deterministic sorting algorithm for the case p = n was published in 1990
and requires O(log plog log p) or O(log p (log log p)?) running time in the worst case,
depending on assumptions [Cyph90].

From a practical standpoint, randomized agorithms that sort p records in O(log p) time
on the average, but may have higher complexities in the worst case, are quite satisfactory.
Since the late 1980s, several randomized sorting agorithms have been proposed [Reif87].
The proof of the O(log p) = O(log n) average time complexity of such agorithms is based
on demonstrating that for all but a minute fraction of possible input permutations, sorted
order prevailsin logarithmic time.

In Section 14.2, we will study a sorting algorithm for the hypercube that is based on
Batcher's bitonic sorting method. For this reason, we review the definition of bitonic
sequences and Batcher’ s bitonic sorting method in the remainder of this section.

A bitonic sequenceisonethat “risesthenfals’ (xy<x, < ... <x2x, 25,2 . .2
x,), ‘falsthenrises’(x;2 x> ... 2 x,<x,, <x,,<...<x,_), Orisobtained from the
above two types of sequences through cyclic shifts or rotations (see the discussion of
Batcher's bitonic sorting network at the end of Section 7.4). Figure 14.1 depicts four
examples of bitonic sequences. The examples on the left are of the “rise-then-fall” and
“fall-then-rise” types. Such sequences “change direction” a most once; contrast this to
monotonic sequences that do not change direction. The examples on the right are obtained

282 INTRODUCTION TO PARALLEL PROCESSING

AN
<

(n) Cyclic shift of (a)

ad
N

()] Cyclic shift of (b)

Figure 14.1. Examples of bitonic sequences.

by cutting a portion of the corresponding sequence and attaching it to the right/left of the
remaining portion. This amounts to left/right rotation or cyclic shift of the sequence.
A bitonic sequence, stored one element per processor on a p-processor linear array, can

be sorted in the following way (see Fig. 14.2). The right half of the sequence is shifted left
by p/2 steps. Then, each processor in the left half of the array compares the two values that

Shifted right half Bitonic saquence

shift right half of
data to left half

Keep smaller value of
each palr and ship the
larger value to right

~—
Each half is a bitonic
sequence that can be

sorted independently

Figure 14.2. Sorting a bitonic sequence on a linear array.

SORTING AND ROUTING ON HYPERCUBES 283

it holds, keeps the smaller value, and sends the larger value to the right by p/2 steps. Each
half of the array now holds a bitonic sequence. Furthermore, each element in the right half
of the array is no smaller than any element in the left half. Thus, the bitonic sequence sorting
problem has been reduced to solving two smaller problems of the same type independently
on the two halves of the array. Because the shifting of the right half to the left half and shifting
back of the larger values to the right half take a total of p steps, the running time of the above
sorting agorithm for bitonic sequencesis characterized by the recurrence B(p) = B(p/2) + p
=2p -2, given that B(1) = 0.

An arbitrary input sequence on a p-processor linear array can be sorted recursively as
follows. First sort the two halves of the array in the opposite directions so that the resulting
sequence is bitonic (say, rising then falling). Then sort the bitonic sequence using the method
presented above. The running time of this bitonic sorting algorithm is characterized by the
recurrence

T(p) =T(p/2) + B(p)
=T(p2) +2p-2
=4p—-4-2log,p

What actually happens as this bitonic sorting algorithm is executed can be seen in the example
of Fig. 14.3. First, subsequences of length 2 are sorted in opposite directions inB(2) steps.
Then, pairs of such sequences, which form bitonic sequences of length 4, are sorted (merged)
in B(4) steps, and so on. Thus, the following is an alternate formulation for the running time
of the algorithm, proceeding in a bottom-to-top order:

T(p)=B(2) +B(4) + -+ B(p)

=2+6+14+- +(2p -2)
=4p -4-2log,p

5 9 10 15 3 7 14 12 8 1 4 13 16 11 6 2

——m=> Kmmmm mmmo> Kemm= mmem> Kmme=m mmme> Kmeme

3 5 7 9 10 12 14 15 16 13 11 8 6 4 2 1

Figure 14.3. Sorting an arbitrary sequence on a linear array through recursive application of
bitonic sorting.

284 INTRODUCTION TO PARALLEL PROCESSING

For alinear array of processors, the bitonic sorting algorithm is clearly inferior to the simpler
odd—even transposition sort, which requires only p compare-exchange steps or 2p unidirec-
tional communication steps. However, the situation is quite different for a hypercube.

14.2. BITONIC SORTING ON A HYPERCUBE

If we sort the records in the lower (X, = 0) and upper (X4 = 1) subcubes in opposite
directions, the resulting sequence in the entire cube will be bitonic. Now the shifting of the
upper half of the sequence to the lower half and shifting back of the larger values to the upper
half can each be done in a single unidirectional communication step. These two routing steps,
along with the comparison performed between them, constitute a parallel compare-exchange
step. The complexity of the algorithm in terms of the number of compare—exchange stepsis
thus characterized by the recurrence T(q) = T(q — 1) + B(q), where B(q) is the time needed
for sorting a bitonic sequence. B(q) in turn satisfiesB(q) = B(q—1) + 1 = g, leading to

T(q)=T(a-1)+q=q(q+1)/2=log,p (log, p+ 1)/2

Here is the complete algorithm for sorting a bitonic sequence, stored one element per
processor in a g-cube, with the element in Processor x denoted by \[X].

Sorting a bitonic sequence of size n on the g-cube, where g = log, n

for | = q— 1 downto O Processor x, 0 < x< p, do
ifx=0
then get y := v[N,(X)]; keep min(v(X), y); send max(v(X), ¥) to N;(x)
endif

endfor

The above algorithm is yet another instance of the ascend class of algorithms. An example
for the algorithm is depicted in Fig. 14.4. The bitonic sequence 1, 3, 5, 8, 9, 6, 3, 2 isinitialy
stored in the eight nodes of the 3-cube. After the compare—exchange step along Dimension
2, we have two size-4 bitonic sequences:. 1, 3, 3, 2 in the lower cube and 9, 6, 5, 8 in the
upper cube. Another compare—exchange step along Dimension 1 gives us four bitonic
sequences of size 2, which are then sorted by the final compare—exchange step along
Dimension 0.

Batcher's odd—even merge sort is similar to bitonic sort and takes the same amount of
time (see Section 7.4). Details of its implementation are thus left as an exercise.

Batcher's O(log? p)-time bitonic and odd—even merge sorting algorithms for ordering
p elements on a p-processor hypercube are presently the fastest practical deterministic sorting
algorithms available. The more complicated O(log p log log p)-time a gorithms (see, eg.,
[Leig92], pp. 642-657) are not competitive for p < 220, Randomized algorithms, on the other
hand, usually sort in O(log p) steps, so they are quite efficient on the average. However, they
do not provide guaranteed speed-up. This is usually not a problem in practice in the same
sense that the worst-case O(n?) running time of sequential quicksort for sorting a sequence
of length niis not problematic.

SORTING AND ROUTING ON HYPERCUBES 285

Node#s 4 S

Data ordering
in upper cube

I

5
2
8 9
3 3

Dimension 2 Dimension 1 Dimension 0

¢ o o—O
IO}D 30/0 | I2 i 1
3 3
Figure 14.4. Sorting a bitonic sequence of size 8 on the 3-cube.

14.3. ROUTING PROBLEMS ON A HYPERCUBE

Intuitively, hypercubes should perform better in dealing with routing problems than 2D
meshes, because their larger node degree trandates to the availability of more aternate
(shortest) paths between processors, its logarithmic diameter leads to shorter routes, and its
large bisection width allows many concurrent data transfers to take place between distant
nodes. We will see shortly that thisis usualy the case. The improved performance is achieved
for certain classes of routing problems unconditionally and for others on the average; the
worst-case performance for a general one-to-one routing problem, however, is not much
improved compared with 2D meshes. We will use an interesting lower-bound method to
prove this latter result.

The types of routing problems that we will discuss in this and the following sections are
essentially the same as those introduced in Section 10.1 in connection with 2D meshes and
tori. In particular, we deal with one-to-one and one-to-many routing problems, which include
packing and broadcasting as specia cases, respectively. The simplicity of path selection
strategies in most hypercube routing agorithms makes them suitable for both packet and
wormhole routing. As usual, if the routing problem is a permutation, with each of the p
processors having a packet to send and each node being the destination of exactly one packet,
sorting the packets by their destination node address will solve the routing problem.

Recall, a'so, that routing algorithms can be divided into the two classes of oblivious,
with the routing path uniquely determined by source and destination node addresses, and
nonoblivious or adaptive, where the path taken by a message may also depend on other
messages in the network. Finally, based on how the computations needed to determine the
path of a message are performed, we have the following dichotomy.

286 INTRODUCTION TO PARALLEL PROCESSING

* On-line routing algorithms make the routing decisions on the fly in the course of
routing: Route selections are made by a parallel/distributed algorithm that runs on the
same system for which routing is being performed.

¢ Off-line routing algorithms are applied to routing problems that are known a priori:
Route selections are precomputed for each problem of interest and stored, usually in
the form of routing tables, within the nodes.

An on-line routing algorithm is often preferred, not only because routing problems may
develop dynamically and in unpredictable data-dependent ways, but also in view of the
preprocessing overhead and storage requirements of an off-line algorithm.

Frequently, we restrict our routing algorithm to send each message along a shortest (or
close to shortest) path. Because most pairs of nodes in a hypercube are connected via multiple
shortest paths, a shortest-path routing algorithm can maintain a high degree of adaptivity
and flexibility despite the restriction.

Though not an absolute requirement, on-line routing algorithms are often oblivious, or
only locally adaptive, while off-line algorithms take advantage of available information to
find routes that are (close to) globally optimal. Oblivious on-line routing algorithms may
suffer from inefficiencies that lead to poor performance, particularly in the worst case.
Routing decisions in on-line algorithms are necessarily local, potentially leading to heavy
data traffic in some areas of the network, while available aternative paths are being
underutilized.

Consider, for example, the following positive result: Any routing problem with p or
fewer packets, having distinct sources and destinations, can be solved on a p-processor
hypercube in O(log p) steps, using an off-line algorithm to precompute the paths. The off-line
algorithm chooses the routes in such a way that the route taken by one message does not
significantly overlap or conflict with those of other messages, leading to optimal time.

In the remainder of this section, we discuss some negative or lower-bound results whose
scopes extend beyond the hypercube architecture. An oblivious routing algorithm can be
characterized by its dilation, defined as the length of the longest path between a pair of nodes
(which may be larger than the network diameter for some agorithms), and congestion,
defined as the maximum number of paths going through the same link for the worst-case
routing problem when that algorithm is used. It is obvious that such a routing algorithm
requires Q(dilation + congestion) routing steps in the worst case. Randomized routing
algorithms can be devised that asymptotically match the above lower bound in terms of
performance [Leig94].

The effect of signal propagation delays on long wires can be taken into account in the
above lower bound by defining generalized dilation as the sum of edge delays on the longest
path and generalized congestion as the maximum over all edges of the number of packets
that traverse that edge multiplied by the delay of the edge. In this case, efficient randomized
routing algorithms can still be constructed [Gree95], though the performance of such
algorithms does not quite match the above lower bound.

With unit-time edge delays, the network diameter can be used as a lower bound for
maximum dilation. The maximum congestion, however, is harder to characterize. The
following theorem allows us to establish alower bound for maximum congestion, and thus
for worst-case delay, of any oblivious routing algorithm on an arbitrary network. Hence, the
theorem provides insight into the nature and intrinsic limitations of oblivious routing. When

SORTING AND ROUTING ON HYPERCUBES 287

applied to the p-node hypercube, this genera result implies that any oblivious routing
algorithm requires Q(vp /log p) time in the worst case. Thus, the worst-case performance of
an oblivious routing algorithm for the hypercube is only slightly better than they(\p) time
required on a much simpler square mesh. However, in most instances, the actual routing
performance is much closer to the logarithmic-time best case than to the above worst case.

THEOREM 14.1. Let G = (V, E) represent a p-node, degree-d network. Any oblivious
routing algorithm for routing p packets in G needs Q(Vp /d) time in the worst case.

PROOF. Thereare p(p — 1) paths P, for routing among all node pairs. These paths are
predetermined and independent of other traffic within the network. Our strategy will be to
find k pairs of Nodes u;, v; (1<i<k) suchthat u # ujand v, #v; fori # j, and Py v, al pass
through the same Edge e. Because at most two packets can go through a bidirectional link
in each step, Q(k) steps will be needed for some 1-1 routing problem. The main part of the
proof consists of showing that k can be as large asVp /d. Consider the p — 1 different paths
P, ending in some Node v and let E(v, k) denote the set of edges such that at least k of these
paths pass through them. Let V(v, k) be the set of nodes that are incident to the edges in

E(v, k). Clearly,

IV(v, k)l < 21E(v, k)l

If k< (p—1)/d, then v O V(v, k), as no more than d edges enter v and at least one of them
should be on (p — 1)/d or more of thep — 1 paths. Let k < (p — 1)/d and consider the [V —
V(v, K)O nodes that are not in V(v, k). Because v [0 V(v, k), a path leading from such a node to
v must, at some point, enter a node in V(v, k). Let (w, w') be the edge leading the path under
consideration to anodein V(v, k); i.e, w O V(v, K), w O V(v, k). Given that w 0 V(v, k), at
most k — 1 such paths can enter V(v, k) via the Edge (w, w'). Additionally, because the degree
of w' isat most d, no more than d — 1 choices for w exist. Thus,

IV~ V(v, I < (k — 1)(d - DIV, k)
In other words, for any k satisfying k< (p — 1)/d, we have
p=IV-Va, b+ 1V, bl
<[+ (k- D(d - D)V, k)
<21+ (k- 1)(d - DJE(, k)
< 2kdE(v, k)l
In particular, for k = p /d, wehave DE(v, k(= p/(2kd). Summing over all nodesv, we get
oy EOv, k)l 2 p?/(2kd) = pNp /2

Because there are no more than pd/2 edgesin G, there must be an Edge e such that e 0 V(v, k)
for at least k = (p\/17/2)/(pd/2) = \/;T/d different choices of v. Selecteand vy, v,, . . ., v
such that e JE(v; , k) for 1 <i<k. It iseasy to see that one can select the knodes u; , uz, . . .,
Uy, such that Fl)"\’vi passes through efor 1 < i < k. Node u; is picked from among the previously

288 INTRODUCTION TO PARALLEL PROCESSING

unselected members of E(v , k); because each such set has k or more members, one can always
find an as yet unselected member. This compl etes the proof of Theorem 14.1. a

14.4. DIMENSION-ORDER ROUTING

Dimension-order routing on the hypercube is essentially a generalized version of the
greedy row-first routing on the 2D mesh. In row-first routing, we “adjust” the column number
or Dimension 1 of the message until it is aigned with the column number of the destination
node. Then we adjust the row number or Dimension 0.

In a hypercube, we can do the adjustment of the g dimensions in any order. However,
adjusting in ascending (descending) order of the dimensions is usualy chosen in view of its
correspondence with ascend (descend) class of algorithms. Hereis an example:

Source node |abel 01011011
Destination node |abel 11010110
Dimensions that differ T

Route 01011011
11011011
11010011
11010111
11010110

Discussion and analysis of routing algorithms on hypercube architecturesis facilitated
if we consider a derivative network that is obtained by “unfolding” the hypercube. An
unfolded g-cube consists of 29(q + 1) nodes arranged into 29 rows, numbered 0 through
29 —1,and g + 1 columns, labeled 0 through g. Nodes in Columns i and i + 1 are connected
by straight or horizontal links aswell as*“cross’ linksthat correspond to Dimension-i links
of the hypercube. The network obtained in this way (Fig. 14.5) is known as an unfolded
hypercube, indirect cube, or butterfly network. Squeezing the network horizontally until all
columns overlap will result in the hypercube network shown on the right side of Pig. 14.5.

Dimension-order routing between Nodes i and j in a hypercube can be viewed as routing
from Node i in Column 0 (qg) to Node j in Column q (0) of the butterfly network. This makes
it easy to derive routing algorithms, visualize message paths, and analyze the delays resulting
from link or node congestion.

Consider, for example, routing a message from Node 3 to Node 6 of a 3-cube. The heavy
linesin Fig. 14.6 show that the message can be routed via a path of length 2 that goes through
the intermediate node 2. The unique path of the message from Node i to Node j can be easily
determined on the fly (on-line routing) if we XOR the labels of the source and destination
nodes and append the result to the head of the message as a routing tag (L SB-first for ascend,
MSB-first for descend). Then, in Column 0O of the butterfly network, the Oth bit of the routing
tag isused to decide if the straight link (tag = 0) or the cross Link (tag = 1) should be taken,
in Column 1 the 1st bit is used, and in Column 2 the 2nd bit controls the path selection.

In the example of routing from Node 3 to Node 6, the routing tag is011 [0 110 = 101.
This indicates the “cross—straight—cross’ path consisting of the heavy solid lines in Fig. 14.6.

SORTING AND ROUTING ON HYPERCUBES 289

0
1
2
3
29Rows
4
5
6
Unfold 7
-
—_ Hypercube

Fold

Figure 14.5. Unfolded 3-cube or the 32-node butterfly network.

A second example path is represented by the heavy dotted lines in Fig. 14.6. This path goes
from Node 6 to Node 1 and corresponds to the routing tag 110 [0 001 = 111. This represents
a “cross—cross—cross’ path, which is a diametral path in the original hypercube. It should
be clear that the number of cross links taken, or the number of 1sin the routing tag, equals
the length of path between the source and destination nodes.

The node using a particular bit of the routing tag to make its routing decision can either
discard the bit or cyclically shift the tag by 1 bit. In the former case, the message arrives at
its destination with the routing tag completely removed. With the latter option, the routing

Figure 14.6. Example dimension-order routing paths.

290 INTRODUCTION TO PARALLEL PROCESSING

tag returns to its original form by the time the message arrives at its destination and thus can
be used by the receiving node to identify the sender.

The two messages shown in Fig. 14.6 are routed via digoint nodes and links. Thus, they
do not give rise to delays related to queuing or congestion. We can add still other paths, say
from Node 4 to Node 7, without increasing the routing delay. Multiple messages that use
distinct intermediate nodes and links can be routed simultaneously in g steps on the g-cube.
On the other hand, message paths that “meet” in a particular node of the butterfly, or go
through the same edge, may cause additional delays.

The question, now, is to determine the extent of these additional delays when dimen-
sion-order routing is used in the hypercube. First, observe that the butterfly network cannot
route all permutations without node or edge conflicts. For example, any permutation
involving the routes (1, 7) and (0, 3) leads to a conflict in the dimension-1 edge going from
Row 1 to Row 3. Therefore, the extent of conflicts depends on the particular routing problem.
There exist “good” routing problems for which conflicts are nonexistent or rare. There are
also “bad” routing problems that lead to maximum conflicts and thus the worst-case running
time predicted by Theorem 14.1.

The packing problem is an example of a good routing problem. Here, a subset of k nodes
(k < p) in Column 0 of the butterfly network have messages or values and we want to “pack”
these values into consecutive processors in Column g, beginning with Row 0. The hypercube
counterpart of this problem is to pack a set of values, held by a subset of processors, into the
smallest possible subcube that contains Processor 0. Figure 14.7 shows an instance of this
problem with k= 4 values (A, B, C, D) routed to Rows 0-3 in Column 3. The destination
node address for each value is easily obtained by a diminished parallel prefix computation
yielding the rank of each value (a number between 0 and k — 1). It isfairly easy to show that
such a packing problem always leads to node-disjoint and edge-disjoint paths and, thus, O(q)
routing time, regardless of the number k of the input packets.

dim 0~ dim1 ~ dim2

0 Ao
.on OB 1
2 “ 02
4 CQ 4
5 5
ov.‘ &
7 7

Figure 14.7. Packing is a "good" routing problem on the hypercube.

SORTING AND ROUTING ON HYPERCUBES 291

The bit-reversal permutation is an example of a bad routing problem for dimension-order
routing. Bit-reversal permutation routing is when each Node X = X 4 4 X4 5. - - X% heeds to
send a value to the node whose binary label is the reverse of that for x, i.e, to Node
X0 X+ - X3 oxq1 It is easy to show that this routing problem requires ©(Np) time in the worst
case. Thisis even worse than what is predicted by Theorem 14.1.

Let g=2a+ 1 and consider the source-destination pairs000 ...00X;. .. X, X,and
Xa X3 ---% 000...00(i.e, source/destination nodes whose labels begin/end witha + 1
zeros, with the rest of the bits being identical but in reverse order). All such packets must go
through node00 0. .. 0 0 when routed in dimension order. The number of packets of this
type is2® = 2(°87"D/2 = /2 This example shows us that there exist permutation routing
problems of practical interest for which &(¥p) routing steps and roughly the same number
of message buffers (per node) are needed.

Figure 14.8 depicts an example of the above worst-case routing problem for a= 1. Our
aim isto route 2%= 2 packets from Node 00x, to Node x,00, X, 0{0, 1}. We see that halfway
through their routes, the two packets converge into Node 000 and then diverge on separate
paths to their respective destinations. In this small example, we have p = 8 and thus only
Vp/2 =2 packets converge into Node 0. However, the problem would be much worse on a
larger hypercube, as suggested by the above analysis.

The final item of concern here is to deal with the message buffer requirements of the
dimension-order routing algorithm. One may think that if we limit each node to a small,
constant number of message buffers, then the above bound still holds, except that messages
will be queued at several levels before reaching Node 0, i.e., a message is not alowed to
advance to the next column of the butterfly until the next node is ready to accept it. However,
gueuing the messages at multiple intermediate nodes may introduce additional delays that
we have not accounted for, so that even thee(\/; } running time can no longer be guaranteed.
In fact, one can prove that if each node of the hypercube is limited to O(1) message buffers,

Y 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7

Figure 14.8. Bit-reversal permutation is a "bad" routing problem on the hypercube.

292 INTRODUCTION TO PARALLEL PROCESSING

there exist permutation routing problems that require O(p) time, i.e., as bad as on a linear
array!

Despite the poor performance of dimension-order routing in some cases, one should not
be unduly alarmed by the above negative results. First, the performance is usually much
better, i.e., log, p + o(logp) for most permutations. Hence, the average running time of the
dimension-order routing algorithm is very close to its best case and its message buffer
requirements are quite modest.

Second, if we anticipate any (near) worst-case routing pattern to occur in a given
application, two options are available to us. In the first option, the routing paths for these
worst-case patterns are precomputed, using an off-line routing algorithm, and stored within
the nodes. With the second option, the algorithm is made to behave close to its average case
by doing randomized routing: Each packet is first sent to a randomly chosen intermediate
destination and from there to its final destination. In this way, any worst-case routing problem
is converted to two average-case routing problems. The probabilistic analyses required to
show the good average-case performance of dimension-order routing are quite complicated.

For wormhole routing, some of the above results are directly applicable. Obviously, any
good routing problem, yielding node- and edge-disjoint paths, will remain good for worm-
hole routing. As an example, in Fig. 14.7, the four worms corresponding to the messages A,
B, C, D will move in the network with no conflict among them. Each message is thus
delivered to its destination in the shortest possible time, regardless of the length of the worms.
For bad routing problems, on the other hand, wormhole routing aggravates the difficulties,
as each message can now tie up a number of nodes and links.

In the case of wormhole routing, one also needs to be concerned with deadlocks resulting
from circular waiting of messages for one another. Fortunately, dimension-order routing is
guaranteed to be deadlock-free. With hot-potato or deflection routing, which is attractive for
reducing the message buffering requirements within nodes, dimension orders are occasion-
ally modified or more than one routing step along some dimensions may be allowed.
Deadlock considerations in this case are similar to those of other adaptive routing schemes
discussed in Section 14.6.

14.5. BROADCASTING ON A HYPERCUBE

A simple “flooding” scheme can be used for broadcasting a message from one node to
al nodesin ag-cube in g steps, provided that each node can send a message simultaneously
to al q neighbors (the all-port communication model). The source node sends the broadcast
message to all of its neighbors. Each node, on receiving a broadcast message for the first
time, relaysit to al of its neighbors, except the one from which the message was received.
Thus, in a 5-cube, the knowledge about the broadcast message spreads in the following
pattern:

00000 Source node

00001, 00010, 00100, 01000, 10000 Neighbors of source

00011, 00101, 01001, 10001, 00110, 01010, 10010, 01100, 10100, 11000
Distance-2 nodes

SORTING AND ROUTING ON HYPERCUBES 293

00111, 01011, 10011, 01101, 10101, 11001, 01110, 10110, 11010, 11100
Distance-3 nodes

01111, 10111, 11011, 11101, 11110 Distance-4 nodes

11111 Distance-5 node

The single-port communication model is more reasonable and is the one usually
implemented in practice. In this model, each processor (or actually the router associated with
it) can send or receive only one message in each communication cycle. A simple recursive
agorithm allows us to broadcast a message in the same g steps with this more restricted
model. Suppose that in the first communication cycle, the source node sends the broadcast
message to its Dimension-(g—) neighbor. The source node x and its Dimension-(g-I)
neighbor Ng-1(X) now independently broadcast the message in their respective subcubes.
Broadcasting time is characterized by the recurrence T(q) = 1 + T(q— 1) = g. Figure 14.9
shows the resulting broadcast pattern which is known as abinomial tree.

For long messages consisting of multiple smaller packets, or in wormhole routing,
transmission of packets or flits can be pipelined. The top set of diagrams in Fig. 14.10 show
amessage composed of four parts A, B, C, D being broadcast in the 4-cube using the binomial
tree scheme of Fig. 14.9. The message is sent in its entirety to a neighbor of the source node
before being forwarded to other nodes on the path to various destinations.

The pipelined version of the binomial-tree routing algorithm is depicted in the middle
set of diagrams in Fig. 14.10. Here the flit or packet A is forwarded by the neighbor as soon
as it is received from the source node. Of course, we are assuming that each node can
send/receive messages over al of its ports simultaneously. For example, in the rightmost
snapshot shown for the pipelined binomial-tree scheme in Fig. 14.10, the node that is
receiving D from the source node also has its other three ports active.

The last broadcasting scheme shown in Fig. 14.10, known as Johnsson and Ho’s method
[John89], is faster than the pipelined binomial-tree scheme but involves out-of-sequence
transmission of the messages. For example, the neighbor to the right of the source node in
Fig. 14.10 receives the C part of the message first, followed in turn by B, A, and finally D.
This property creates additional storage and transmission overheads because of the need for
supplying a sequence number on each part of the message.

When used with wormhole routing, all tree-based broadcasting schemes have the
undesirable property that a path blockage in any branch propagates toward the source (root)
node and eventually blocks the entire tree. No further progress can be made until the blocked

Figure 14.9. The binomial broadcast tree for a 5-cube.

294 INTRODUCTION TO PARALLEL PROCESSING

Johnsson & Ho's method

Figure 14.10. Three hypercube broadcasting schemes as performed on a 4-cube.

branch is freed; however, blockage may again occur by some other branch becoming
congested. In the worst case, this may result in indefinite blockage or deadlock.

A variety of path-based broadcasting or multicasting schemes have been proposed to
alleviate the above problems. In path-based multicasting, the destination nodes of a multicast
message are divided into subsets, with the ith subset forming alist or path that begins at the
source node and ends at a destination node D; within the subset. Multicasting is then
accomplished by sending a separate message from the source node to each D, along the
designated path. The message headed for D; is picked up (copied) by al of the intermediate
destination nodes along the path. A detailed discussion of path-based multicasting is given
by Duato et a. ([Duat97], pp. 199-219).

14.6. ADAPTIVE AND FAULT-TOLERANT ROUTING

Because there are up to g node-digjoint and edge-dijoint shortest paths between any
node pairs in a g-cube, it is possible to route messages around congested nodes/links or in
spite of node and/or link faults. Such adaptive routing algorithm have been extensively
studied for hypercube networks and the following discussion should be viewed only as an

SORTING AND ROUTING ON HYPERCUBES 295

Subnetwork 0 Subnetwork 1

Figure 14.11. Partitioning a 3-cube into subnetworks for deadlock-free routing.

introduction to the issues and methods involved in designing such algorithms. Published
research papers in this area consider one-to-one and collective communications for both
packet and wormhole routing schemes.

A useful notion for designing adaptive wormhole routing algorithms is that of virtual
communication networks. For example, if in a hypercube we replace each bidirectional link
with two unidirectional ones going in opposite directions, we can divide the hypercube’s
communication links into two subsets, defining two subnetworks or virtual networks. Let
Subnetwork 0 (1) consist of al of the links that connect a node to another node with larger
(smaller) node label. Figure 14.11 depicts these subnetworks for a 3-cube.

Because each of the two subnetworks shown in Fig. 14.11 is acyclic, any routing scheme
that begins by using the links in Subnetwork 0, at some point switches the routing path to
Subnetwork 1, and from then on uses the links in Subnetwork 1 exclusively, is guaranteed
to be deadlock-free. Such a routing scheme first adjusts all of the dimensions that need to be
changed from 0to 1, in Phase 0, before dealing with the dimensions that must change from
1to 0, in Phase 1. Within each phase, the dimensions can be handled in any order, thus
providing added flexibility in case a node/link becomes congested or fails.

The above scheme solves the problem of deadlock in adaptive wormhole routing for
hypercubes but it has some drawbacks. A message from Node x to Node y isfirst sent from
x tothenodewhose ID isx O y (logical OR of x and y) and from there to y. Because of this,
some nodes/links may become more congested than others, leading to performance degra-
dation. Such problems can be avoided by more complicated schemes for partitioning the
hypercube network into virtual networks. The methods used may involve dividing each
unidirectional physical channel into multiple virtual channels that time-share the physical link

Fault-tolerant routing on hypercubes and other networks constitutes a fascinating and
active research areain parallel processing. We will revisit this problem in Chapter 19. For
now, it suffices to note that the fault diameter of a hypercube (the diameter of the surviving
part when faulty nodes/links are removed) grows slowly with an increase in the number of
faulty elements. For example, the fault diameter of a g-cube is upper bounded by g + 1 with
at most q— 1 faultsand by g + 2 with 2q— 3 or fewer faults [Lati93].

PROBLEMS

14.1. Bitonic sorting on alinear array
Unfold the four phases of the sorting example depicted in Fig. 14.3, showing al shifting and
compare—exchange steps and verifying that the total number of stepsis T(16) = 4 x 16 — 4 —
21og,16 =52.

296

14.2.

143.

14.4.

14.5.

14.6.

14.7.

14.8.

14.9.

INTRODUCTION TO PARALLEL PROCESSING

Bitonic sorting on aring
Does changing the linear array into a ring speed up the bitonic sorting algorithm? How or why
not?

Batcher’s odd—even merge sort

a Describe Batcher's odd—even merge sort (presented in Section 14.2) in the form of an
algorithm for the g-cube.

b. Draw aset of diagrams, similar to thosein Fig. 14.4, that show how the algorithm works.

¢. Analyze the complexity of the algorithm and show that it requires O@@?) running time.

Batcher’s bitonic sorting algorithm

a Analyze the complexity of Batcher’s bitonic sorting algorithm when it is adapted to run
with n/p elementsin each of the p = 29 processors on a g-cube.

b. Using the bitonic sorting algorithm (as depicted in the example of Fig. 14.4), show that
any shift permutation, where the packet in each Node i needs to go to Node i + kmod 29,
can be routed on ag-cube in g steps, i.e., with no conflict.

Sorting by multiway merging

Suppose that you are given an agorithm to merge JE sorted lists, each of size J; ,ona
p-processor hypercube in O(log p log log? p) time. Show how the p-processor hypercube can
sort alist of sizepin O(log p log log?2 p) time.

Alternative sorting algorithms
Show how the sorting algorithms discussed in Section 6.4 in connection with the PRAM
abstract shared-memory model can be implemented on the hypercube.

Lower bounds for routing
Justify Q(generalized dilation + generalized congestion) as alower bound for oblivious routing
on an arbitrary network.

Generalized packing

The generaized packing problem on ag-cube is defined as that of sending k packets, stored
one per processor (k < p), to asequence of k consecutive nodes, beginning with a given Node
b. The packing problem exemplified by Fig. 14.7 corresponds to the special case of b=0in
this generalized version.

a Show that the generalized packing problem is a good problem for dimension-order routing.

b. Using the result of part (a), show that any shift routing problem, where a packet initially
residing in Node i needs to go to Node i + k mod 29, can be routed on a g-cube in g steps
with no conflict.

c. Can the order of traversing the q dimensions be reversed for packing or generalized
packing?

Matrix transposition

The elements of an m x m matrix are stored, in row-major order, on the p = 24 = m2 processors
of ag-cube. The matrix transposition routing problem is defined as rearranging the elements
into column-major order. Thisrequiresthe element in Row i, Column j to move to the processor
currently holding the element in Row j, Column i.

a Show the paths needed to transpose a4 x 4 matrix on a 16 x 5 butterfly network.
b. Ismatrix transposition a good or bad problem for dimension-order routing on a g-cube?
c. Develop an efficient hypercube algorithm for matrix transposition as defined above.

SORTING AND ROUTING ON HYPERCUBES 297

14.10. Hypercube with diametral links
Itis possible to augment the hypercube architecture by adding a link between each node and
its dimetrically opposite node. Thisincreases the node degree from qto g + 1. In the augmented
architecture, two nodes are connected iff the Hamming distance between their binary labelsis
either 1 or q.

a What isthe effect of this change on the diameter of the hypercube?
b. HOW does the change affect the bisection width of the hypercube?
c. Devise adimension-order routing algorithm for the g-cube augmented with diametral links.

14.11. Broadcasting on a hypercube
Consider the g-cube broadcasting schemes of Fig. 14.10.

a Anayze the communication time of the algorithms assuming long messages of length L
(so that the message transfer time dominates message startup time).

b. What isthe average number of communication links in use during the algorithm?

¢. Experimental measurements on a particular hypercube multicomputer reveal a message
latency of 50 ps and a transfer rate of 100 MBY/s. Plot the estimated time needed for the
three algorithms to broadcast k bytes (103< k < 10%) on a 1024-processor system. Use a
log- og scale for your graph. Assume all-port communication where needed.

14.12. Broadcasting on a hypercube
The binomial-tree broadcasting algorithm was derived recursively: send to one node in the
other half-cube, then broadcast in parallel in each half-cube. Discuss the algorithm obtained
by reversing the order of the two steps: broadcast in the 0 half-cube, then send the message
from each node in the 0 half-cube to its neighbor in the 1 half-cube.

14.13. Adaptive routing algorithms
Consider the routing scheme represented by Fig. 14.11 and assume uniform message traffic
between al node pairs.

a. Which hypercube node will be least congested and why?
b. Which hypercube node will be most congested and why?

14.14. Architecture-independent routing models

The hypercube architecture has rich connectivity, short diameter, and wide bisection. In many
hypercube paralel systems utilizing message passing, the message transmission delay is
dominated by the operating system overhead for the initiation or reception of a message, so
that the actual source and destination addresses and the effects of possible congestion on the
routing paths can be ignored for al practical purposes. An abstract model of the above situation
consists of each node being able to send k messages and receive k messages in unit time, where
kisalimit that is imposed by the system’s aggregate communication bandwidth. Suppose that
one processor needsto broadcast m different messagestoall other 29 — 1 processors in a g-cube.
Determine the minimum time needed to perform this task in each of the following cases:

am=1, k=I.
b. Arbitrary m, with k=1.
c.m=1k=2

14.15. The postal communication model
The postal communication model is a topology-independent model that associates an integer
number A of cycles of delay with each message transmission, independent of the source and
destination node addresses. Each node can transmit one message per cycle, but the message

298

14.16.

INTRODUCTION TO PARALLEL PROCESSING

transmitted in cyclei will not be received at the destination node until cyclei+A. The name
of this model derives from the following analogy. Suppose you are allowed to write one letter
per day and that it takes the letter 2 days to reach its destination. Then the right-hand diagram
below shows that you can broadcast a message to eight people in 5 days whereas the
binomial-tree broadcasting algorithm on the left requires 6 days to complete the task. The
numbers on multiple edges leaving a node correspond to the cycle number (day) in which the
message is sent.

a Show that the number of nodes that have received a broadcast message after t cyclessatisfies
the recurrence Na(f) = Ny (t—1) + Ny (t— A) for 1 2 A; for t <), we clearly have N, () = 1, as
none of the messages has reached its destination yet.

b. Discuss the solution to the above recurrence for A = 2.

Many-to-many routing on a hypercube

Consider arouting problem in which each node of a g-cube has up to k messages to send and
no more than k of the messages in the entire g-cube are addressed to the same node. Let us call
this a k—k routing problem. Show that any k—k routing problem can be decomposed into k1-1
routing problems by an off-line algorithm. Given the above decomposition, how much time
does the routing require with the all-port communication model ?

REFERENCES AND SUGGESTED READING

[Batc68] Batcher, K., “Sorting Networks and Their Applications,” Proc. AFIPS Spring Joint Computer Conf.,

1968, Vol. 32, pp. 307-314.

[CyphaQ] Cypher, R., and G. Plaxton, “Deterministic Sorting in Nearly Logarithmic Time on the Hypecube

and Related Computers,” Proc. 22ndACM Symp. Theory of Computing, 1990, pp. 193-203.

[Duat97] Duato, J., S. Yalamanchili, and L. Ni, Interconnection Networks: An Engineering Approach, |EEE

[Ferr96]

Computer Society Press, 1997.

Ferreira, A., “Paralel and Communication Algorithms on Hypercube Multiprocessors,” Chapter 19
in Parallel and Distributed Computing Handbook, edited by A.Y. Zomaya, McGraw-Hill, 1996, pp.
568-589.

[Greeds) Greenberg, R. 1., and H.-C. Oh, “Packet Routing in Networks with Long Wires,” J. Parallel and

Distributed Computing, Vol. 31, pp. 153-158,1995.

[John89] Johnsson, S. L., and C. -T. Ho, “Optimum Broadcasting and Personalized Communication in

[Latio3]

Hypercubes,” |IEEE Trans. Computers, Vol. 38, No. 9, pp. 1249-1268, September 1989.
Latifi, S., “Combinatorial Analysis of the Fault Diameter of the n-Cube,” |EEE Trans. Computers,
Voal. 42, No. 1, pp. 27-33, January 1993.

[Leig92] Leighton, F. T., Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes,

Morgan Kaufmann, 1992.

[Leigo4] Leighton, F. T., B. M. Maggs, and S. B. Rao, “Packet Routing and Job-Shop Scheduling in

O(Congestion + Dilation) Steps,” Combinatorica , Vol. 14, No. 2, pp. 167-180,1994.

[McKi95] McKinley, P. K., Y. -J. Tsai, and D. F. Robinson, “Collective Communication in Wormhole-Routed

Maasively Parallel Computers,” |EEE Computer, Vol. 28, No. 12, pp. 39-50, December 1995.

SORTING AND ROUTING ON HYPERCUBES 299

[Nass82] Nassimi, D., and S. Sahni, “Parallel Permutation and Sorting Algorithms and a New Generalized
Connection Network,” J. ACM, Vol. 29, No. 3, pp. 642-667, July 1982.

[Plax89] Plaxton, G., “Load Balancing, Selection and Sorting on the Hypercube,” Proc. ACM Symp. Parallel
Algorithms and Architectures, 1989, pp. 64-73.

[Reif87] Reif, J, and L. Valiant, “A Logarithmic Time Sort for Linear Size Networks,” J. ACM, Val. 34, No.
1, pp. 60-76, January 1987.

This page intentionally left blank.

15

Other Hypercubic
Architectures

In this chapter, we discuss a number of modified and generalized hypercube-
based architectures that can provide certain benefits over standard hypercubes.
More importantly, we study several constant-degree parallel architectures that
are derivable from, or intimately related to, the logarithmic-degree hypercube.
These constant-degree derivatives share many properties of the hypercube and
can emulate it quite efficiently, but are both realizable at lower cost and more
readily scalable. Hence, one can use the rich structure of the hypercube, and
the wide array of algorithms and theoretical results available for it, to develop
efficient algorithms and then resort to the emulation results presented here to
implement those algorithms or prove desired results for practically realizable
parallel systems. Chapter topics are

e 15.1. Modified and generalized hypercubes
e 15.2. Butterfly and permutation networks

e 15.3. Plus-or-minus-2’ network

e 15.4. The cube-connected cycles network

e 15.5. Shuffle and shuffle—exchange networks
e 15.6. That's not all, folks!

301

This page intentionally left blank.

OTHER HYPERCUBIC ARCHITECTURES 303

15.1. MODIFIED AND GENERALIZED HYPERCUBES

The versatility and rich algorithmic and theoretical properties of the hypercube have led
researchers define modified, augmented, generalized, or hierarchical versions of the
network. We postpone a discussion of hierarchical hypercubic networks to Section 16.5
where a general framework for multilevel or hierarchical interconnection networks is
presented and severa example networks are studied. In this section, we study a few variants
of the standard binary hypercube that are obtained by redirecting some of the links, adding
links/nodes, and changing the basis or “seed” network.

An example of the first category (i.e., redirecting some links) is the twisted hypercube
obtained by redirecting two edges in any 4-cycle, as shown in Fig. 15.1. In general, any
4-cycle uvxy can be chosen in the g-cube, its uv and xy edges removed, and new edges ux,
vy inserted to obtain a twisted g-cube. Let the edges in the 4-cycle be along Dimensions k
and |. Then, each of the Nodes u, v, x, and y of the original 4-cycle will have a neighbor Ny
in the twisted version of the network whose node label differs fromitin both bitskand . It
is easy to show that the diameter of atwisted g-cube is g — 1, i.e,, one less than that of the
g-cube. Additionally, rings of any odd length and the (29—1)-node complete binary tree are
subgraphs of a twisted g-cube; properties that are not possessed by the ordinary g-cube
[Esfa9l].

An example of the second category (i.e., adding some links) is the folded hypercube,
which is obtained from the hypercube by linking all pairs of diametrically opposite nodes.
For example, in the 3-cube depicted in Fig. 15.2, Nodes 0 and 7 are diametrically opposite,
as are three other node pairs (1, 6), (2, 5), and (3, 4). Thus, adding the four links shown in
bold in the right-hand diagram of Fig. 15.2 yields afolded 3-cube. It is easy to see that the
diameter of a folded hypercube is about half that of a regular hypercube. Let us designate
the added diametral links as Dimension-q links. Then, a dimension-order routing algorithm
can be devised that routes each message in [g/200steps. Details of this algorithm, as well as
deriving other topological properties of folded hypercubes are left as an exercise.

An important property of folded hypercubes is their improved robustness or fault
tolerance. If one or several Dimension-i links fail, where 0 < i < g, Dimension- g links can
be used in their stead. Figure 15.3 depicts an example where all Dimension-0 links are
removed from a 3-cube and an intact 3-cube is recovered by conceptually rotating the right
subcube, consisting of Nodes 1, 3, 5, and 7, counterclockwise until Nodes 3 and 5 (also, 1
and 7) switch places. In this way, an intact g-cube can be obtained by simply renaming half

Jcube and a dcyclein it Twisted 3cube

Figure 15.1. Deriving a twisted 3-cube by redirecting two links in a 4-cycle

304 INTRODUCTION TO PARALLEL PROCESSING

A dismetral path in the 3-cube Folded 3-cube

Figure 15.2. Deriving a folded 3-cube by adding four diametral links.

of the nodes. For other interesting properties of folded hypercubes, see EI-Amawy and Latifi:
[EIAmM91].

A hypercube, as defined and analyzed in the previous two chapters, is the gth power of
a two-node linear array. Thus, a hypercube can be viewed as a power network or homogene-
ous product network (a product network formed by “multiplying” identical component
networks).

If we view the two-node linear array as a complete graph of size 2, a generalization of
the hypercube immediately suggests itself. The r-node complete graph, K., is a graph in
which every pair of nodes is directly connected by an edge. The gth power of K, is a
generalized hypercube. Node labels in a generalized hypercube can be viewed as gdigit
radix r numbers, with each node connected to al of the q(r — 1) nodes whose labels differ
from it in a single digit. Actually, as defined by Bhuyan and Agrawal [Bhuy84], a generalized
hypercube is the product of complete graphs which may be of different sizes. The node labels
in this more general case can be viewed as mixed-radix numbers, with each node connected
to Z;’:(;(ri ~ 1) other nodes, wherer; isthe radix in digit positioni.

Another generalization of the hypercube results from using aring of size m (instead of
2) as the basis or “seed” network. The qth power of the m-node ring is known as the m-ary
g-cube interconnection network, which is the same as g-D torus of equal dimensions m. The
hypercube is then a 2-ary (or binary) g-cube according to this terminology. Again multiplying
rings of different sizes yields a more general structure. Note that hypercubes and 2D tori
represent the two extreme of m-ary g-cubes. Fix g at 2 and you get 2D tori with ©(Vp)
diameter; fix mat 2 and you get the hypercube with logarithmic diameter.

4 5
Rotate
0 180
degress
276 3 7
Folded 3-cube with Aﬂcr n:nlming., dla.me(ml
Dim-0 links removed links replace dim-0 links

Figure 15.3. Folded 3-cube viewed as 3-cube with a redundant dimension.

OTHER HYPERCUBIC ARCHITECTURES 305

15.2. BUTTERFLY AND PERMUTATION NETWORKS

In Section 14.4, we defined the butterfly network with 29 nodes and g + 1 columns as
an unfolded g-cube in order to facilitate the discussion, visualization, and analysis of
hypercube routing agorithms. However, a butterfly network can be viewed as a paralel
processing architecture in its own right. A butterfly architecture (Fig. 15.4, left) has p =
29%q+ 1) processors of maximum degree d = 4, adiameter of 2q = ©(log p), and a bisection
width of (V2 — 1)29*1+ 0(29% = ©(p/log p) [Born 98]. A wrapped butterfly architecture is
obtained if we superimpose or merge the nodes in Columns 0 and q of an ordinary butterfly.
The resulting network has p = 29%q processors, a uniform node degree of 4, a diameter of
roughly 1.5q, and a bisection width of 29.

Each node in a (wrapped) butterfly can be identified by its row and column numbers (x ,
y), where 0<x<29—1and 0<y<q(q- 1 for wrapped butterfly). Node (x, y) of a butterfly
is connected to the four nodes (x, y—1), (X, y + 1), (Ny_1(x), y—1), and (Ny (), y + 1), if they
exist. In the case of wrapped butterfly, the expressions y + 1 for the column numbers are
evaluated modulo g.

If you shift the columns of a butterfly network cyclicaly, or permute them in any way,
you can redraw the figure (by exchanging rows) such that it looks exactly the same as before.
Figure 15.5 shows an example in which the connection pattern between Columns 0 and 1
has been interchanged with that between Columns 1 and 2. It is easily seen that if we redraw
the network by interchanging the places of Rows 1 and 2 as well as Rows 5 and 6, the resulting
diagram will ook exactly like the left-hand diagram in Fig. 15.4.

The butterfly network is quite versatile. Many other independently developed networks
are in fact butterfly network in disguise. Take a fat tree, for example. Recall that a major
disadvantage of abinary tree architecture isits small bisection width, making the root node
a bottleneck when alarge number of long-distance communications must be performed. A

Figure 15.4. Butterfly and wrapped butterfly networks.

306 INTRODUCTION TO PARALLEL PROCESSING

Switching these
two row pairs
converts this

to the original
butterfly netwock.
Changing the
order of stages AA
in a butterfly

is thus equivalent .v vd. V‘Y
10 a relabeling of P TAA
the rows {in this O
example, Tow xyz
becomes row xzy).

Figure 15.5. Butterfly network with permuted dimensions.

fat treeis a treelike network specifically designed to remedy this problem. In afat tree, the
link multiplicity or capacity increases as we approach the root node (Fig. 15.6). Of course,
taking advantage of the added links or link capacities would require that the nodes near the
root be different (have higher communication performance). To avoid this heterogeneity, one
might divide each such node into a number of simpler, lower-performance nodes. The
resulting architecture, shown in Fig. 15.7, is a butterfly network. We see that even if each of
the eight leaf nodes wants to send a message to another leaf node, the messages can be routed
through the eight root nodes with little or no conflict.

Anecdote. It has been suggested that because trees in nature are thicker near the root
and thinner near the leaves, we should call the networks shown in Fig. 15.6 trees and refer
to regular binary trees as skinny trees.

The structure of the fat tree, as drawn in Fig. 15.7, is such that the communication
bandwidth between Level-i and Level-(i+1) nodes is the same for all i (16 wires or channels
in our example). This is based on the worst-Case assumption that all messages entering a
node from below must be directed to its parent. Real communication patterns are more local
so that only afraction of the messages entering a node from below must be routed up to the

Figure 15.6. Two representations of a fat tree.

OTHER HYPERCUBIC ARCHITECTURES 307

Figure 15.7. Butterfly network redrawn as a fat tree.

parent; most are addressed to nodes within the same subtree. This locality property alows
us to put the fat tree on a diet, making it skinnier near the root. Such a“plump tree” is the
interconnection network used in the CM-5 parallel computer built by Thinking Machines
Corporation (see Section 22.4).

There are many variations of the butterfly network. First, the butterfly network may be
viewed as a multilevel interconnection network connecting processors on one side to memory
modules on the other side. In this type of usage, a 29 x (g+1) butterfly network built of 2 x 2
routing switches can interconnect 29" modules on each side, when the nodes in Columns 0
and q are provided with two input and two output links, respectively (see Fig. 6.9). Replacing
the memory modules by processors would yield an interprocessor interconnection network.
Alternatively, a29 x 29 interconnection network results if all modules are connected to one
side of the butterfly network, as shownin Fig. 15.8.

If we unfold Fig. 15.8, so that the processors remain on the left but the memory modules
move to the right, and then merge the middle four nodes in each row which perform no useful

log; p + | Columns of 2-by-2 Switches

000 9 A A 2
001

010 A A.

o WAV

100

RIZa\V/
AN

b D 009,
g >N
E o O IAN
= o >N\

Figure 15.8. Butterfly network used to connect modules that are on the same side.

308 INTRODUCTION TO PARALLEL PROCESSING

Processors 2 logyp - 1 Columns of 2-by-2 Switches Memory Banks
000 g A 2 3 A 000
001 001
010 010

101
110

Figure 15.9. Bene$ network formed from two back-to-back butterflies.

routing function, a Bene§ network results. Figure 15.9 shows the resulting network for
connecting eight processors to eight memory modules. In general, the g-dimensional Bene$
network is obtained from two back-to-back g-dimensiona butterflies, with the Column q of
one superimposed on the Column O of the second one. Thus, a g-dimensional Bene3 network
has 29 rows and 2q + 1 columns.

An important property of a Benes network isthat it can route any permutation with no
conflict. Thisisin part related to the availability of multiple edge-disoint paths between any
pair of input and output nodes. For example, in Fig. 15.10, we see Processors 0, 1, 2, 3, 5,
6, and 9 connected to Banks 6, 14, 0, 15, 11, 4, and 3, respectively. With the connections
aready established, Processor 4 can be connected to Bank 7 or 10 but not to other currently
unused memory banks. However, if Processor 4 were to be connected to Bank 8, say, it is
possible to re-route or rearrange the other connections such that the new connection can also
be accommodated. For this reason, the Benes network is caled rearrangeable, meaning that
it can route any permutation if rearranging previously established connectionsis allowed.

©ONONEWN=—-O

5
29*! Inputs 29Rows, 2q+ 1 Columns 2%*! Outputs

Figure 15.10. Another example of a Bene§ network.

OTHER HYPERCUBIC ARCHITECTURES 309

Finally, we note that a butterfly network can be generalized to a high-radix butterfly (or
m-ary butterfly) composed of nodes with degree 2m (or m x m switches). There are md rows
and g + 1 columnsinan m-ary butterfly network.

15.3. PLUS-OR-MINUS-2/ NETWORK

Figure 15.11 shows a plus-or-minus-2' (PM2l) network with eight nodes (p = 29 nodes
in general) in which each Node x is connected to every node whose label is x + 2' mod p for
somei. It is easy to see that the PM 2l network is a supergraph of the hypercube. The heavy
lines in Fig. 15.11 show the hypercube subgraph of the eight-node PM2l network.

Just as an unfolded hypercube is isomorphic to the butterfly network, an unfolded PM2I
network yields auseful (multistage) interconnection network known as an augmented data
manipulator (ADM) network. Here, augmented means that the network is derived from a
data manipulator network which, as originally defined, restricted all switches in the same
column to be in identical states (provide exactly the same connectivity pattern between their
inputs and outputs). The data manipulator network was proposed as a multistage intercon-
nection network and the common state for switches in the same column was needed to
simplify its control structure.

The dangling lines at the top and bottom of Fig. 15.12 represent wraparound links in
view of the 2! mod 29 connectivity rule. So, for example, the lines labeled “a’ and “b” at
the top are connected to the lines with the same designations at the bottom.

Paths from one side to the other side of an ADM network are nonunique. For example,
there are two paths between Node 2 in Column 0 and Node 4 in Column 3 (heavy linesin
Fig. 15.12). Each link selected corresponds to adding or subtracting a power of 2. The paths
highlighted in Fig. 15.12 correspond to obtaining 4 from 2 by adding 2 to it or by subtracting
2 from it and then adding 4. Routing in ADM network corresponds to decomposing the
difference y — x mod 2% of source and destination rows into powers of 2. A binary routing
tag can be used to achieve self-routing, with the ith bit of the tag used to select the straight
output (0) or the lower output (1) in Column i. If the routing tag is represented as a binary
signed-digit number, with digit valuesin {-1, 0, 1 }, then a digit —1 would correspond to
taking the upper output channel. For example, the routing tags corresponding to the two paths
highlighted in Fig. 15.12 are 0 1 0 and 1°1 O, where "1 represents the signed digit or tag
value -1.

O O—=o0O O

CO————Q-O +4
OO0

Figure 15.11. Two representations of the eight-node pIus-or-minus-Z’network.

310 INTRODUCTION TO PARALLEL PROCESSING

N~ N N YVVY

SSRENEE
BN

S XA

2%Rows

4O O 4
v‘v v'l’v’v’\
P ST A VA S\VAVAY) S

8§ (ALY v’l’vv &

7 .A‘.‘Q".\AA’). -
S SN

a
q + 1 Columns

Figure 15.12. Augmented data manipulator network.

Having multiple paths is desirable both for improved performance (network bandwidth)
and for fault tolerance. Thus, the ADM network is more resilient to node and link failure
than a butterfly network of the same size. The hardware cost paid for this added resilience
is alarger node degree and denser interconnections. The software cost is a more complex
routing algorithm that is capable of distributing the traffic evenly among the multiple paths
that are available.

15.4. THE CUBE-CONNECTED CYCLES NETWORK

The cube-connected cycles (CCC) network can be derived from a wrapped butterfly as
follows. Remove the pair of cross links that connect a pair of nodes in Column i — 1 to the
same two nodes in Column i and instead connect the two nodes in Column i (Fig. 15.13).
The resulting network has node degree of 3 but is otherwise quite similar to the butterfly
network. In particular, CCC can emulate any algorithm for a butterfly of the same size with
only a constant factor slowdown.

The original definition of CCC was based on a g-cube in which each node has been
replaced with a cycle of length g, with the aim of reducing the node degree without
significantly affecting the diameter. Figure 15.14 shows how a 3-cube is converted to a
24-node CCC. Each node is replaced with a 3-cycle, with the original hypercube links
distributed one per node in the cycle. Each node also has two cycle edges. The three edges
of anodein CCC can be denoted as

OTHER HYPERCUBIC ARCHITECTURES 311

0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
0 1 2
q Columns q Columns/Dimensions

Figure 15.13. A wrapped butterfly (left) converted into cube-connected cycles.

F Forward link in the cycle
B Backward link inthe cycle
C Intercycle or cubelink

Each node can be identified by apair (X, y) of integers, where x is the cycle number (the node
number in the original hypercube) and y is the node number within the cycle. This same
numbering scheme is applicable to the representation of Fig. 15.13 where x and y correspond
to row and column numbers. Two nodes (x;, Yo) and (X, , y,) are adjacent iff

Xo =Xy andy, =y, 1oryy =Y, and x, differsfrom x, in bit position y,

The number of processorsin a CCC derived from a g-cubeis p = 29,
A simple argument can be used to establish the following bound on the diameter of
CCcC:

Figure 15.14. Alternate derivation of CCC from a hypercube.

312 INTRODUCTION TO PARALLEL PROCESSING

D <25q =0O(log p)

The argument goes as follows. Simple dimension-order routing leads to a message taking
up to g/2 stepsin the source ring to gain access to a Dimension-(g-1) link, 2q — 1 steps in
intermediate rings (cube edge, ring edge, cube edge, ring edge, . . . , ring edge, cube edge),
and finally up to /2 steps in the destination ring. These add up to 3q — 1 steps. If we route
the dimensionsin arbitrary order, the first g/2 steps can be eliminated; we simply begin the
routing path with whatever dimension that is accessible from the source node.

The CCC network can be somewhat generalized if the number of nodes in each cycle
is specified to be at least q rather than exactly q. If there are k nodes in each cycle, with k>
g, then the first g nodes will have cube links as before and the remaining k — g nodes will
have only F and B linksin the cycle. This allows us, e.g., to make the number of nodesin a
cycle a power of 2 (four nodes per cycle in the example of Fig. 15.14), leading to simpler
and cleaner algorithms. In addition, increasing the parameter k provides a performance—cost
trade-off mechanism in the sense that with larger values of k, the network diameter grows
and its bisection width is reduced. In return, the network becomes less complex (e.g., easier
tolay out in VLS).

The exact diameter of CCC with 2%cycles of size k = g is as follows [Meli93]:

6 ifk=g=3
2q+lgnl-2 ifk=g>3
2q+Lki2]-1 ifg<k<2g-1

q+k ifk>2g~1

CCC can emulate any hypercube algorithm with O(q) = O(log p) slowdown. However, for
a class of hypercube agorithms known as normal algorithms, the slowdown is only a
consgtant. Thus, for this class of agorithms, which includes the ascend/descend class of
algorithms as specia cases, CCC performs amost as well as the hypercube while having a
much lower implementation cost. Recall that in ascend (descend) class of hypercube
agorithms, each node communicates along all possible dimensions in order, beginning with
0 (g~1) and ending with g— 1 (0). More generally, when each communication activity is along
a dimension that differs from the previous one by +| mod g, the hypercube algorithm is
caled normal.

Assume, for clarity, that g = 2™. The number of processorsin our CCC network isthen
p=29q=22"2"=22"" The hypercube to be simulated has2™ + m dimensions. Communi-
cation along the first m dimensions is carried out by data rotation within cycles. The
remaining 2™ dimensions are handled as follows. Suppose communication along Dimension
j hasjust taken place between the values in Nodes (x, j) and (N; (x),j) (see Fig. 15.15). The
next communication is along Dimension j — 1 or j + 1. Assume that it isto be along Dimension
j + 1. Rotating the data values in the nodes in the direction of the arrows will align the values
for Dimension-(j+1) communication, as the value in Node (X, j) goes to Node (X, j+1).
Similarly, rotating in the opposite direction will allow communication along Dimension j—1
to take place. As the data originally in Node (x, j) perform their Dimension-(j+1) communi-

OTHER HYPERCUBIC ARCHITECTURES 313

[CydelD=x [ProctD=y |

2™ bits m bits

Figure 15.15. CCC emulating a normal hypercube algorithm.

cation through Node (X, j+1), the data originally in Node (x, j—1) are properly aigned for
Dimension-j communication through Node (X, j).

15.5. SHUFFLE AND SHUFFLE-EXCHANGE NETWORKS

A perfect shuffle, or simply shuffle, connectivity is one that interlaces the nodes in a way
that is similar to a perfect shuffle of a deck of cards. That is, Node 0 is connected to 0, Node
1to2, Node2to4, ..., Node29-1 —1t029-2, Node29-1to1,...,Node29-1t029 -1,
as depicted in the leftmost diagram of Fig. 15.16. The reverse connectivity is sometimes
referred to as unshuffle. The “exchange” connectivity, which links each even-numbered node
with the next odd-numbered node, is also shown in Fig. 15.16.

Combining the shuffle and exchange connectivities, we get the connectivity of a
shuffle-exchange network. By combining the two, we either mean that both “shuffle”
connection as well as “shuffle-then-exchange” connections are provided or that both shuffle
and exchange connections are provided as separate links. This latter interpretation corre-
sponds to the rightmost diagram in Fig. 15.16 (throughout this figure, two copies of each
node are drawn to show the connectivity rules more clearly). Figure 15.17 shows the
eight-node shuffle-exchange interconnection network in the standard undirected graph
form.

In a 2%-node shuffle network, Node x = Xq-1Xg2 - - - X2Xq %o IS cOnnected to Xq 5. . .
XX XoXg 1 Ji.e., to the node whose label isthe cyclicaly left-shifted version of X, The unshuffle
connection is just the opposite and corresponds to a right cyclic shift in the node label. With
undirected links, both the shuffle and unshuffle connectivities are obviously present, but the
unidirectional version of such networks may have only shuffle or only unshuffle links. In

314 INTRODUCTION TO PARALLEL PROCESSING
000 0O——O0 0 0o 0 0 O]
001 1 1 12><g1 1 1 Ag
010 2 2 2 2 2 2
011 3 3 3 %3 3 3
100 4 4 4 4 4 4
101 5 5 5 % 5 5 5
110 6 6 8 6 8 6
m 70——07 7 % 7 7 7

Shutll Exchange Shutiie-Exchange Alermnate
Unahuftie Structure

Figure 15.16. Shuffle, exchange, and shuffle—exchange connectivities.

the shuffle-exchange network, Node x is additionally connected to X, ,... x,xx, Xq-1, Where
X -1 IS the complement of xq_;.

Routing in a shuffle-exchange network is quite simple. A shuffle, and possibly an
exchange, is needed for “adjusting” each address bit. This corresponds to one or two routing
steps per address bit, depending on which of the two right-hand networks in Fig. 15.16 is
implemented.

As an example, consider routing a message from the source node x = 01011011 to the
destination node y =11010110. The routing is done as follows:

Source 01011011
Destination 11010110
Positions that differ Tt
Route

011011 Shuffle to 10110110 Exchange to 10110111
10110111 Shuffle to 01101111

Figure 15.17. Alternate views of an eight-node shuffle—exchange network.

OTHER HYPERCUBIC ARCHITECTURES 315

¥ _o—9-&

Exchange Shuffle
{dotted) (solid)

~

AV,
‘200 .%o,
NS
&0‘0‘ ’0\‘0’ I\
PRIK

O—g 2— B
1 1
2 2
3 — —3
4 — —4
A
5 — —5 5 — —5
6 — —6 8 —g6
7 - —7 7 —7
0 1 2 0 1 2
q Columns q Columns

Figure 15.19. Multistage shuffle—exchange network (omega network) is the same as butterfly
network.

316 INTRODUCTION TO PARALLEL PROCESSING

01101111 Shuffleto 11011110
11011110 Shuffleto 10111101
10111101 Shuffleto 01111011 Exchange to 01111010
01111010 Shuffle to 11110100 Exchange to 11110101
11110101 Shuffleto 11101011
11101011 shuffleto 11010111 Exchange to 11010110

Based on the routing algorithm implicitly defined in the above example, it should be obvious
that the diameter of a 29-node shuffle—exchange network is g =log, p (the node degree is
4). With shuffle and exchange links provided separately, as shown in Fig. 15.18, the diameter
increases to 2q — 1 and node degree reduces to 3.

Cascading the two shuffle—exchange structures shown on the right side of Fig. 15.16
results in a multistage interconnection network, as shown on the left side of Fig. 15.19. By
repositioning or renaming the nodes, these omega networks can be redrawn to look like
butterfly networks (right side of Fig. 15.18). Note, for example, the repositioning of the node
labeled “A” in each diagram. Drawing a butterfly network as a multistage shuffle-exchange
network reveals a hardware saving scheme: Only one stage of a shuffle—exchange network
might be implemented and routing done by multiple “ passes’ through this hardware; thisis
similar to periodic sorting networks that allowed us to sort by multiple passes through
hardware corresponding to asingle period (see Section 7.5).

15.6. THAT'S NOT ALL, FOLKS!

Thus far in this chapter, we have examined various interconnection architectures that
are derived by changing, generalizing, or unfolding the hypercube. Other modifications and
extensions are also possible. We cannot possibly examine al of them here, but offer only
two examples of the wide array of possibilities.

We note that when q is a power of 2, the 29 g-node cube-connected cycles network
derived from the g-cube, by replacing each of its nodes with a g-cycle, is a subgraph of the
(q+ log, q)-cube. Thus, CCC can be viewed as a pruned hypercube. The hypercube itself is
a pruned PM2l network in which roughly half of the links have been removed. Other pruning
strategies are possible, leading to interesting performance—cost trade-offs.

For example, if the number q of dimensionsin a g-cubeis odd, the following pruning
strategy can be applied to the g-cube to reduce its node degree from qto (q + 1)/2. All

Even-dimension 4 ()5 Odd-dimension
links are kept in links are kept in
the left subcube O the right subcube

P

All dimension-0 links are kept

Figure 15.20. Example of a pruned hypercube.

OTHER HYPERCUBIC ARCHITECTURES 317

0-Mobius cube 1-Mobius cube

Figure 15.21. Two 8-node Mobius cubes.

Dimension-0 links remain intact, but within the subcube composed of nodes whose labels
end in 0 (1), only even- (odd-) dimension links are kept and the rest are removed. The
resulting pruned hypercube is much simpler than the unpruned version, yet it has a diameter
that is only one unit more. Figure 15.20 shows a pruned 3-cube, with Dimension-0 links
connecting the left and right 2-cubes each having only half of its origina links.

Mobius cubes [Cull95] are similar to hypercubes, except that the Dimension-i neighbor

of Node X=Xq_1 Xq 2 - .- %41 Xj ... X1 Xg iSXq-1 Xg—2 ... 0X; ... XX if %1 =0(i.e, asinthe
hypercube, x; is complemented to obtain the neighbor’s node label) and xq-1 Xq— -
IXi. . . X1 Xoif Xis1 =1 (i.e., x; and @l of the bits to its right are complemented to obtain the
neighbor’s node label). For Dimension g — 1, because thereisno x4, the neighbor can be
defined in two ways, leading to 0-Mbius cubes (assume Xq = 0) and 1-Mobius cubes (assume
Xg=1). Figure 15.21 shows the 0- and 1-M&bius cubes for g = 3. For q = 3, M6bius cubes
are identical to twisted cubes defined in Section 15.1. However, the two are different for
larger values of g. For this reason, M6bius cubes have also been called generalized twisted
cubes. A Mdbius cube has a diameter of about one-half and an average internode distance
of about two-thirds of that of a hypercube.

PROBLEMS

15.1. Twisted hypercubes

a. Provethat the diameter of atwisted g-cube, defined in Section 15.1, is q — 1.

b. Devisearouting algorithm for a canonically twisted g-cube, in which the twisted 4-cycle
consists of Nodes 0, 1, 2, and 3, with links 01 and 23 replaced by 03 and 12.

What is the bisection width of a twisted g-cube?

Prove that a cycle of any length, up to 29, is a subgraph of a twisted g-cube.

Prove that the 29-node double-rooted complete binary tree is a subgraph of atwisted g-cube.
Prove that the (29-1)-node complete binary tree is a subgraph of a twisted g-cube. Hint:
Begin by assuming that a 29-1-node double-rooted complete binary tree has been embed-
ded in each half-cube.

"o a0

15.2. Folded hypercubes

a Provethat the diameter of afolded g-cube, defined in Section 15.1, is [¢)/2[]
b. Devisearouting agorithm for afolded g-cube.

c. What is the bisection width of afolded g-cube?

d. What isthe fault diameter of afolded g-cube? (See Section 14.6.)

318

15.3.

15.4.

15.5.

15.6.

15.7.

15.8.

15.9.

INTRODUCTION TO PARALLEL PROCESSING

The flip network

The flip network, which was used in some early parallel machines, is a multistage intercon-
nection network with 2% rows and g + 1 columns of 2 x 2 switches (nodes). Nodes (r, c), in

Row r and Column c, and (r', c + 1) are connected by an edge iff r' is obtainable by a 1-bit
right cyclic shift of r or if r' isformed by inverting the LSB of r and then taking the right cyclic

shift of the result. Show that the flip network is isomorphic to the butterfly network.

The baseline network

The baseline network is a multistage interconnection network with 29 rows and g + 1 columns
of 2 x 2 switches (nodes). Node (r, ¢), in Row r and Column ¢, is connected to Node (', € +
1) iff r' is obtainable by cyclicaly shifting the g—c LSBsof r or if r' isformed by inverting the
LSB of r and then cyclically shifting the g—c LSBs of the result. Show that the baseline network
isisomorphic to the butterfly.

Butterfly network with an extra stage

Study the implications of adding an extra column of nodes at the right end of the 2% x (q + 1)
butterfly network in the following two ways:

a Columnsgandq+ 1arelinked exactly as Columns 0 and 1.
b. Connections between Columns g and g + 1 correspond to the diametral (Dimension-q)
linksin afolded hypercube, as defined in Section 15.1.

PM2I network

a Determine the node degree and the diameter of a 29-node PM2! network.

b. What is the diameter of a data manipulator (unfolded PM2l) network if each node
represents a processor rather than a switch?

c. Describe an efficient routing algorithm for the network of part (b).

Cube-connected cycles

a. Complete the labeling of the CCC nodesin Fig. 15.14.

b. Modify the CCC in Fig. 15.14 such that each cycle has four nodes (i.e., show the placement
of Node 3 in each cycle).

c. Show that the diameter of the CCCin Fig. 15.14is 6.

Cube-connected cycles
Consider the 2%9g-node CCC derived from the g-cube, where q is a power of 2.

a Show that such a CCC is a subgraph of the (q + log, q)-cube.

b. Show that the diameter of such a CCC is D = 2.5q — 2. How does this diameter compare
with that of a hypercube of the same size?

C. Find the bisection width of the above CCC and compare it with that of a hypercube of the
same size.

Layout for cube-connected cycles

L ower-degree networks generally have more efficient VLSI layouts than higher-degree ones.
For example, the cube-connected cycles networks can be laid out in a much smaller area than
a hypercube of the same size. Because the bisection width of a p-node hypercube is p, its
required areais Q (p?).

a Ignoring the area required for nodes and focusing only on the wires that must be routed on
the lines of auniform 2D grid, show that a p-node CCC can be laid out in O(p? /log? p)
area. Hint: By separating the nodes in Columns 1 and 2 of the CCC shown in Fig. 15.13

OTHER HYPERCUBIC ARCHITECTURES 319

into two and four columns, respectively, so that al column connections can be established
using straight vertical lines, the 24-node CCC can belaid out in 16(1 + 2 + 4) = 112 units
of space.

b. Show that the areaderived in part (a) is asymptotically optimal, given the bisection width
of the p-node CCC.

c. It has been shown that any VLSI circuit that can compute the product of two k-bit integers

in T time steps must have a layout area A satisfying A7? = Q(k?) and AT = Q(k"). Based
on the above, what is alower bound on the time required to multiply two p-bit integers,
stored 1 bit per processor, on a p-node CCC?

15.10. VLS layout of various networks

Ignoring the area required for nodes and focusing only on the wires that must be routed on the
lines of auniform 2D grid, asin the previous problem:

a Produce alayout for the p-node butterfly network and express its area as a function of p.
b. Repeat part (a) for the p-nodeplus-or-minus-2i network.

C. Repeat part (a) for the p-node shuffle-exchange network.

15.11. de Bruijn network

15.12.

15.13.

15.14.

The de Bruijn network is defined as follows. There are 2¢ nodes and 2°** directed edges. Each
node x=x,.1x,_ ... X;xy iSconnected, viadirected edges, to thetwo nodes x> . .. x4xo0 and
Ye2 .. xpxl. The edges leading to the first (second) node are referred to as type O (type 1)
edges.

a What isthe diameter of the de Bruijn graph?

b. What isthe bisection width of the de Bruijn graph?

¢. Propose an efficient routing algorithm for the de Bruijn graph.

d. Show that the 27-node de Bruijn graph is a subgraph of the graph obtained from the
29+ -node shuffle-exchange graph, with separate shuffle and exchange links (Fig. 15.18),
if we merge the nodes xgx,-; ... xj0andxgxg ... x1.

Pruned hypercubes
Consider a pruned g-cube, with g odd, as exemplified by Fig. 15.20.

a Show that the diameter of such apruned g-cube isq + 1.

b. What is the bisection width of such a pruned g-cube?

c. Describe an efficient routing agorithm for such pruned hypercubes.

d. Show how to emulate a complete g-cube on a pruned one with constant slowdown, trying
to make the constant as small as possible.

Pruned hypercubes

Consider apruned g-cube, with q odd, as exemplified by Fig. 15.20. Show that such a hypercube
essentially consists of 2(a+)72 clusters, each of which is a2'~"'?-node hypercube. If we view
each of these clusters as a supernode, we can divide the supernodes into two egual subsets of
size2(@-1)'2 that are interconnected as a complete bipartite graph.

Pruned folded hypercubes
Consider afolded g-cube with g even. Retain all diametral links and remove half of the other
links, say those corresponding to Dimensions g/2 through g-1.

a What isthe diameter of such a pruned folded g-cube?
b. What isits bisection width?
c. Describe a shortest-path routing algorithm for this architecture.

320

d.
e

INTRODUCTION TO PARALLEL PROCESSING

Devise an efficient scheme for emulating a complete g-cube on this architecture.
How do the above change if a fraction h/q (0 < h < g/2), rather than 1/2, of the other links
are pruned?

15.15. Mobius cubes

a

Find the exact diameter of a g-dimensional M&bius cube, as defined in Section 15.6. Is the
diameter different for O- and 1-M&bius cubes?

Define a Mdbius-cube-connected cycles architecture in a manner similar to CCC. Does
this architecture offer any advantage over CCC?

REFERENCES AND SUGGESTED READING

[Bhuys4]
[Bornog]
[Cullgs]
[EIAM91]
[Esfag1]
[Kwai96]
[Kwai97]
[Leigo2]

[Melio3]

[Ohrigs]

Bhuyan, L., and D. P. Agrawal, “Generalized Hypercube and Hyperbus Structures for a Computer
Network,” IEEE Trans. Computers, Vol. 33, No. 4, pp. 323-333, April 1984.

Bornstein, C. et a., “On the Bisection Width and Expansion of Butterfly Networks,” Proc. Joint Int.
Conf. Parallel Processing & Symp. Parallel Distributed Systems, 1998, pp. 144-150.

Cull, P., and S. M. Larson, “The M6bius Cubes,” IEEE Trans. Computers, Vol. 44, No. 5, pp. 647-659,
May 1995.

El-Amawy, A., and S. Latifi, “Properties and Performance of Folded Hypercubes,” IEEE Trans.
Parallel Distributed Systems, Val. 2, No. 1, pp. 3142, January 1991.

Esfahanian, A. -H., L. M. Ni, and B. E. Sagan, “The Twisted N-Cube with Application to Multiproc-
essing,” |EEE Trans. Computers, Vol. 40, No. 1, pp. 88-93, January 1991.

Kwai, D. -M., and B. Parhami, “A Generalization of Hypercubic Networks Based on Their Chordal
Ring Structures,” Information Processing Letters, Vol. 6, No. 4, pp. 469-477, 1996.

Kwai, D. -M., and B. Parhami, “A Class of Fixed-Degree Cayley-Graph Interconnection Networks
Derived by Pruning k-ary n-cubes,” Proc. Int. Conf. Parallel Processing, 1997, pp. 92-95.
Leighton, F. T., Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes,
Morgan Kaufmann, 1992.

Meliksetian, D. S., and C. Y. R. Chen, “Optimal Routing Algorithm and the Diameter of the
Cube-Connected Cycles,” |EEE Trans. Parallel Distributed Systems, Vol. 4, No. 10, pp. 1172-1178,
October 1993.

Ohring, S. R., M. Ibel, S. K. Das, and M. J. Kumar, “On Generalized Fat Trees,” Proc. 9th Int. Parallel
Processing Symp., 1995, pp. 37-44.

16

A Sampler of Other
Networks

In this chapter, we study several other classes of interconnection architectures,
focusing in particular on hybrid or hierarchical schemes that combine features
from two or more different architectures or are based on multilevel application
of the same connectivity. The interconnection networks listed in this chapter by
no means exhaust the space of possibilities. As this chapter is being written, new
types of networks continue to appear in technical journals and conference
proceedings at an astonishing rate. The novelty, usefulness, and impact of these
interconnection architectures are often not immediately discernible but rather
need time to be recognized or disputed. Chapter topics are

e 16.1. Performance parameters for networks
e 16.2. Star and pancake networks

* 16.3. Ring-based networks

* 16.4. Composite or hybrid networks

e 16.5. Hierarchical (multilevel) networks

e 16.6. Multistage interconnection networks

321

This page intentionally left blank.

A SAMPLER OF OTHER NETWORKS 323

16.1. PERFORMANCE PARAMETERS FOR NETWORKS

In our discussions of various architectures thus far, we have taken the network diameter
as an indicator of its communication latency. However, network diameter, though important,
does not always provide an accurate measure of communication performance. Under light
loads (so that congestion and the resulting queuing delays can be ignored) and with
shortest-path routing, network diameter might be considered an accurate indicator of
communication delay. However, even in such cases, the average internode distance is a better
measure. In other contexts, such as with wormhole routing or when the network operates
close to saturation, the diameter or average internode distance have at best secondary roles.

The bisection width of a network, or more generally its bisection bandwidth, which
incorporates link capacities as well as their number, provides a rough measure of its
capability in handling random message traffic. But bisection (band)width, like network
diameter, isincomplete in itself.

The main reason for the introduction of so many different interconnection networksis
that no single network provides optimal performance under all conditions. Each network has
its advantages and drawbacks in terms of cogt, latency, and bandwidth. We thus need to
understand the interplay of these parameters in order to select a suitable interconnection
architecture or to evaluate the relative merits of two or more networks (or parallel architec-
tures). In the rest of this section, we introduce some concepts that are important in this regard.

Let us begin by examining the interplay between the node degree d and the network
diameter D. Given a certain number p of processors with very simple computational
capabilities, the node degree might be viewed as an indicator of system cost. For a first-order
approximation of cost, we can assume that node cost grows linearly with its degree. In other
words, the cost of a network with uniform degree-d nodes is proportional to the total number
pd/2 of links. Given p nodes of known degree d, we can interconnect them in different ways,
leading to networks of varying diameters. An age-old question in graph theory is determining
the best way to interconnect p nodes of degree din order to minimize the diameter of the
resulting graph. This question is obviously important for parallel processing as well, although
from our viewpoint, the interconnection complexity, as measured, e.g., by the arearequired
for VLS layout, is also important.

Let u signore the interconnection complexity and focus only on minimizing the diameter
for now. The problem of constructing a network of minimal diameter, given p nodes of degree
d, or aternatively, building a network with the largest possible number of nodes for a given
node degree d and diameter D, is quite difficult and no general method is available for its
solution. However, some useful bounds can be established that can serve as benchmarks for
determining how close a given network comes to being the absolute best in terms of diameter.

A diameter-D regular digraph (directed graph having the same in-degree and out-degree
dfor all nodes) can have no morethan 1 + d +d? + ... + dP nodes, whered' is the maximum
number of new nodes that can be placed at distance i from a given node. This yields a lower
bound on the diameter of a p-node digraph of degree d, which is known as Moore's bound:

D+l_l

p<l+d+d*+-+dP =
d-1

D2log [pd-1)+1]-1

324 INTRODUCTION TO PARALLEL PROCESSING

A Moore digraph isadigraph for which D is equal to the above bound. It is known that the
only possible Moore digraphs are rings (d = 1, D = p—1) and complete graphs (d = p — 1,
D = 1); but there are near-optimal graphs that come close to Moore's bound and are good
enough in practice.

A similar bound can be derived for undirected graphs. The largest possible undirected
graph of diameter D and node degreed hasno morethan 1 +d+d(d—1) +d(d—1)2+ ... +
d(d-1)>* nodes. This expression is obtained by noting that any given node can have d
neighbors, each of which can in turn have d — 1 other neighbors, and so on. This leads to
Moore's bound on the diameter of a p-node undirected graph of degree d:

—1P -
pSl+dl+(d-1)+d- 1+ +(d- 1)”*1]=1+d————(d dl)z :

Dzlog, {(3%1@_2) + 1}
For d = 2, the number p of nodes satisfiesp <1 + 2D or D = (p— 1)/2. This diameter lower
bound is achieved by the ring network with an odd number of nodes.

For d = 3, we have D = log,[(p + 2)/3] or p <3 x 2P —2. A diameter of D = 1 allows
us to have 4 nodes and leads to the complete graph K,. The first interesting or nontrivial case
isfor D = 2, which alows at most p = 10 nodes. The 10-node Petersen graph, depicted in
Fig. 16.1, matches this lower bound with its diameter of D = 2. Again, even though for larger
networks, Moore's bound cannot be matched, there exist networks whose diameters come
very close to this bound. For example, both the shuffle-exchange and CCC networks,
composed of degree-3 nodes, have asymptotically optimal diameters within constant factors.

For d = 4, Moore's diameter lower bound is log,[(p + 1)/2]. Thus, mesh and torus
networks are far from optimal in terms of their diameters, whereas the butterfly network is
asymptotically optimal within a constant factor.

Finally, for ag-cube with p =29 and d = g, Moore's lower bound yields D = Q(g/log q).
The diameter D = q of a g-cube is thus asymptotically a factor of log q worse than the optimal.

To summarize, for a given node degree, Moore' s bound establishes the lowest possible
diameter that we can hope to achieve. Coming within a constant factor of this lower bound
is usually good enough in practice; the smaller the constant factor, the better.

Figure 16.1. The 10-node Petersen graph.

A SAMPLER OF OTHER NETWORKS 325

As stated earlier, the average internode distance, A, defined as the average of the path
lengths between all of the p(p — 1) possible source-destination pairs, is perhaps more
important than the diameter D. The distance between two nodes can be defined in different
ways, leading to various definitions for A (e.g., shortest distance, shortest distance in the
presence of certain faults, distance according to some routing algorithm). Even though it is
possible to construct graphs for which A and D are quite different, for most networks of
practical interest, A and D areintimately related, e.g., A isaconstant factor smaller than D.
In these cases, using the diameter D in lieu of the average distance A for comparing various
networks would not be problematic.

Another important parameter for an interconnection network is its bisection width,
which is a measure of the available network bandwidth for communication-intensive
applications with random data exchange patterns. For example, in sorting, it is possible to
initially arrange the data such that all data items must cross the bisection in order to appear
in sorted order. Hence, the bisection width of a network establishes alower bound on how
fast sorting can be done in the worst case.

Unlike network diameter, which is related to the number of nodes and node degree
through Moore bounds, the number of nodes or links in a network has no relation to its
bisection width. It is fairly easy to construct large, dense networks with very small bisections.

Thus, determining the bisection width of a network is not always a simple matter.
Consider, for example, the chordal ring network in Fig. 16.2 in which each Node i is
connected to Nodesi + 1 and i + 11 (mod 32). At first glance, it appears that the bisection
produced by drawing a straight line leads to the fewest number of links being cut. The heavy
dotted line, shown in Fig. 16.2, is one such bisection that cuts through 24 links. Hence, it is
tempting to conclude that the bisection width of this network is 24. However, one can bisect
this particular network by cutting only 8 links. Supplying the details is left as an exercise.
Showing that a network can be bisected by cutting through | links only establishes an upper
bound on, rather than the exact value of, the bisection width. Finding the exact bisection
width may require much more work.

The VLSI layout area required by an interconnection network is intimately related to its
bisection width B. If B wires must cross the bisection in a 2D layout and wire separation is
to be 1 unit, then the smallest dimension of the VLSI chip will be at least B units. The chip
area will therefore be Q (B?) units. Networks with larger bisections are thus more likely to
consume greater chip area in their VLSI realizations. Hence, whereas p-node 2D mesh or
torus networks can be laid out in linear space in terms of p, the best layout of a p-node
hypercube requires quadratic space.

As suggested earlier, the total number pd/2 of links (edges) is avery crude measure of
interconnection network cost. With this measure, constant-degree networks have linear or
O(p) cost and the p-node hypercube has O(p log p) cost. For VLS| implementation, the
hardware cost depends not just on the number of links but also on their lengths when the
architectureislaid out in two dimensions. In general, there is no simple way to predict the
VLSI areacost of an interconnection network short of devising an optimal layout for it.

The longest wire required in VLS| layout also affects the performance of the network
in terms of speed. For example, it can be shown that any 2D layout of a p-node hypercube
requires wires of length Q(\p/log p). Because the length of the longest wire grows with the
system size, the per-node performance is bound to degrade for larger systems. Thisimplies
that speed-up will be sublinear as we scale to larger systems.

326 INTRODUCTION TO PARALLEL PROCESSING

Figure 16.2. A network whose bisection width is not as large at it appears.

Composite figures of merit can be used to compare different interconnection networks.
For example, it has been suggested that dD, the product of node degree and network diameter,
is agood measure for comparing networks of the same size, asit isarough indicator of the
cost of unit performance (d is proportional to cost, 1/D represents performance). This
measure has its limitations, particularly when applied to bus-based systems. If the p
processors in a parallel system are interconnected by a shared bus, then d=D =A =1, leading
to the best possible value for dD. However, such a system is clearly not the best under all
conditions.

Other network parameters can be defined with regard to robustness or fault tolerance,
which is particularly desirable for large networks in view of the inevitability of faults in some
network components. For example, if there are at least k node-disjoint (edge-disjoint) paths
between any pair of nodes, then k— 1 node (edge) failures can be tolerated. Such a system
is called k-fault-tolerant. The fault diameter of a network, defined as its diameter in the
presence of certain types of faults, is also a useful indicator of its resilience.

16.2. STAR AND PANCAKE NETWORKS

A hypercube has logarithmic diameter, which is suboptimal, given its logarithmic node
degree. Buitterfly, CCC, and other hypercubic networks, discussed in the previous chapter,

A SAMPLER OF OTHER NETWORKS 327

have optimal diameters (to within a constant factor), given their fixed node degrees. However,
the latter networks do not have large bisections and, thus, may have a poorer performance
than the hypercube in applications where very high network bandwidth is required. A
possible compromise is to construct a network with sublogarithmic, but nonconstant, node
degree. Such constructions may lead to a network whose node degree does not grow as fast
asthat of ahypercube, while still providing good network bandwidth.

Sar networks provide a good example. In a g-dimensional star network, or g-star, there

are p = q' (qfactorial) nodes. Each node is labeled with a string x; %, . . . Xq, Where
(Xq, Xp, . .. 1 Xg) is a permutation of {1,2, ...,q}. Node XX, ... ¥ ... X is connected to
X Xz ... X% .. Xq for each i (note thatx; and x; areinterchanged). For example, in the 4-star
depicted in Fig. 16.3, Node 1234 is connected to Nodes 2134, 3214, and 4231. Because there
are q— 1 possible choicesfor i, the node degree of a g-star with ! nodesis g — 1. When the
ith symbol is switched with x;, the corresponding link is referred to as a Dimension-i link.
So the g — 1 dimensions of a g-star are labeled 2 through g, as indicated on some of the links
inFig. 16.3.

The diameter of a g-star can be easily upper bounded through the following routing
agorithm. The routing algorithm resembles dimension-order routing on the hypercube in
that the various symbols in the node label are adjusted in dimension order. Consider, for
example, routing a message from the source node 154362 to the destination node 346215 in
a 6-dtar:

154 3 6 2 Source node
Dimension-2linkto 51 4 3 62
Dimension-6linkto 21 4 3 6 5 Last symbol now adjusted
Dimension-2linkto 124 365
Dimension-5linkto 6 2 4 3 1 5 Last two symbols now adjusted
Dimension-2linkto 26 4 315
Dimension-4 linkto 36 4 2 1 5 Last three symbols now adjusted

1234 4 4231

3142 2143

Figure 16.3. The four-dimensional star graph.

328 INTRODUCTION TO PARALLEL PROCESSING

Dimension-2linkto 6 342 15
Dimension-3linkto 4 3 6 2 1 5 Last four symbols now adjusted
Dimension-2 linkto 3 4 6 2 1 5 Destination node

Based on the above routing algorithm, it isobviousthat D < 2q — 3: We need two steps to
adjust each of the last g — 2 symbols, plus possibly one final exchange of symbols 1 and 2.
It is easily shown that the diameter isin fact exactly equal to 2q — 3, making the above simple
routing algorithm optimal with respect to the worst-case distance. Note, however, that the
algorithm does not always route a message via a shortest path.

By Stirling's approximation, a g-star containsp=q! = ¢4 qq\@{; processors. Thus,

Inp=—q+(q+2/2) Ing+In2m)/2 = O(qlog q)

From the above, we find g = ©(log p/log log p). Thus, both the node degree and the diameter
of the star graph are sublogarithmic in the number p of processors. In fact, the star graph is
asymptotically optimal to within a constant factor with regard to Moore's diameter lower
bound.

Routing on star graphsis ssmple and reasonably efficient. However, virtually all other
algorithms are (much) more complex than the corresponding algorithms on a hypercube.
Thisisin part related to the size and structure of a star graph. The number ¢! of nodes is
never a power of 2. The g-star does have a recursive structure in that it is composed of g
copies of a (q-1)-star (the four 3-star subgraphs of the 4-star in Fig. 16.3 are easily identified).
However, such a nonuniform recursion makes the development of recursive or divide-and-
conquer algorithms somewhat more difficult.

Because the node degree of a star network grows with its size, making it nonscalable, a
degree-3 version of it, known as star-connected cycles (SCC), has been proposed [Lati93].
Figure 16.4 depicts a four-dimensional SCC network where each node is labeled by a pair
(X, y) denoting the cycle number x and the dimension number y (2 <y < q). Of course, in this
particular example, the node degree is not reduced relative to the original star graph, but this

Figure 16.4. The four-dimensional star-connected cycles network.

A SAMPLER OF OTHER NETWORKS 329

is the largest example that one can draw without clutter rendering the diagram incomprehen-
sible. The diameter of SCC is about the same as a comparably sized cube-connected cycles
network [Lati93]. However, the routing algorithm for SCC is somewhat more complex. Also,
whereas a CCC for which the cycle size is a power of 2 alows one-to-one node mapping in
the emulation of a hypercube, the number q!(q—1) of nodes in an SCC alows no such direct
correspondence to a star graph.

Like the star graph, the pancake network also has p = q! nodes that are labeled by the
various permutations of the symbols {1, 2, . . ., q}. In the g-pancake, Node
X%y ox e, oxg IS connected to NodeS vy, . xpxyg, . x foreachi (o, L x
is flipped, like a pancake). Routing in pancake networks is very similar to routing in star
graphs. Denoting the connection that results from flipping the first i symbols (2<i<q) as
the dimension-i link, we have for example

154 36 2 Sourcenode
Dimension-2linkto 514 36 2
Dimension-6 linkto 2 6 3 4 1 5 Last two symbols now adjusted
Dimension-4 linkto 4 3 6 2 1 5 Last four symbols now adjusted
Dimension-2 linkto 3 4 6 2 1 5 Destination node

In the above example, we were lucky in that multiple symbols could be adjusted with some
flips. Generaly, however, we need two flips per symbol; one flip to bring the symbol to the
front from its current position i, and another one to send it to its desired position j. Thus, like
the star graph, the diameter of the g-pancakeis 2q - 3.

One can obviously define the connectivities of the g! nodes labeled by the permutations
of {1, 2, . . ., q} in other ways. In a rotator graph [Corb92], [Ponn94], Node
XXy XXy X is connected to x, . .. xxx;,, ... x, (Obtained by aleft rotation of the
first i symbols) for each iintherange2 < i < g. The node degree of a q-rotatorisq — 1, as
in star and pancake graphs, but its diameter and average internode distance are smaller.

Except for SCC, all of the networks introduced in this section represent special cases
of aclass of networks known as Cayley graphs. A Cayley graph is characterized by a set
N of node labelsand aset I of generators, each defining one neighbor of aNode x. Theith
generator y, can be viewed as a rule for permuting the node label to get the label of its
“Dimension-i” neighbor. For example, the star graph has q — 1 generators that correspond
to interchanging the first and ith symbolsin the node label. Cayley graphs are node-symmetric,
a property that is important for developing smple and efficient parallel algorithms. Index-
permutation graphs, a generalization of Cayley graphs in which the node labels are not
restricted to consist of distinct symbols [Yeh98], can lead to other interesting and useful
interconnection networks.

16.3. RING-BASED NETWORKS

The ring interconnection scheme has proven quite effective in certain distributed and
small-scale paralel architectures [Berm95] in view of its low node degree and simple routing
agorithm. However, the diameter of a simple ring would become too large for effective
utilization in alarge paralel system. As aresult, multilevel and hybrid architectures, utilizing

330 INTRODUCTION TO PARALLEL PROCESSING

Figure 16.5. A 64-node ring-of-rings architecture composed of eight 8-node local rings and one
second- level ring.

rings at various levels of a hierarchically structured network or as a basis for synthesizing
richer interconnection schemes, have been proposed.

The multilevel ring structure of KSR1's (Kendall Square Research) interconnection
network [Kend92] and the QuickRing Network of Apple Computer [Vale94] are good
examples of the hierarchical approach. As shown in the two-level ring structure of Fig. 16.5,
each node is a member of alocal ring and communicates with remote rings via a second-level
ring. Of course, there is no reason to limit the second-level ring to just one; in the extreme
case of the ith node in each local ring being interconnected by a second-level ring, the
architecture becomes a 2D torus. Similarly, the number of levels can be increased beyond 2.
With 8-node rings connected into athree-level structure, e.g., we get an architecture with 83
=512 nodes and adiameter of 4 + 4+ 4 =12,

The chordal ring architecture, in which each node is connected to its ring neighbors as
well as to one or more distant nodes through skip links or chords (see, e.g., thereferencesin
[Mans94]), and optical multichannel ring networks with variable skip capability in connec-
tion with wormhole routing [Reic93] provide examples of the second approach. Such skip
links, chords, or “express channels’ reduce the network diameter at the expense of increased
node degree. Because the basic ring structure is preserved, many nice features of a simple
ring, including ease of routing and deadlock avoidance, carry over to these enhanced ring
architectures.

Figure 16.6 shows a simple eight-node unidirectional ring as well as two eight-node
chordal rings with chords, or forward skip links, of length 3 at the top right and of lengths 2
and 4 at the bottom left, added to each node. More generally, the node in- and out-degrees
inachordal ring may be g + 1, with g skip links of lengths s, s,, . .., 54 (satisfying 1 <'s, <
S,<. .. <sy<p) originating from each of the p nodes. For our subsequent discussion, it is
convenient to view 1 and p as the Oth and (g-+!)th skip distances. Thus, s, corresponds to the
ring edges and Sy 0@ node being connected to itself. We thus have atotal of g+2 skips
satisfying

l=50<s1<s2<,..<sg<sgﬂ:p

A SAMPLER OF OTHER NETWORKS 331

Figure 16.6. Unidirectional ring, two chordal rings, and node connectivity in general.

which connect a Node xto Nodes x+s mod p, 0<i <g+ 1. Because all node index
expressions are evaluated modulo p, we will omit the mod-p designation in the following.

A simple greedy routing algorithm is applicable to chordal rings. A message going from
Node x to Node y, which has to travel y—x mod p nodes forward, takes the longest skip that
will not lead past the destination node. To implement this scheme, the routing tagy —x mod
p is attached to the message by the source node. Each node then sends the message over the
longest skip link that is smaller than the routing tag and decrements the routing tag by the
length of that skip.

Based on the above greedy routing algorithm, an upper bound for the diameter of a
chordal ring is easily obtained. Note that the skip s; will be taken at most I's,,, /s, 1— 1 times
because of the greedy strategy of the routing algorithm. Thus, the diameter of a chordal ring
satisfies

DIl /s1- 1) < T s, /s

For example, in the case of the two chordal rings shown in Fig. 16.6, the above diameter
upper bound yields

D<l83]-1+[3/1]1-1=4

D<lsdl-1+M42] —1+T21]-1=3

The diameter of either chordal ring isin fact 3.

Determining the exact diameter of chordal rings, or selecting skip distances in such a
way that the diameter is minimized, are challenging combinatorial problems. Thus, we base
the following analysis on the assumption that the diameter is the same as the upper bound

332 INTRODUCTION TO PARALLEL PROCESSING

&8 5i41 /5, Differentiating the upper-bound formula with respect to each skip distance s
and equating the resulting expressions with zero leads to the optimal skip distances

dD/ds; = —s,, | /s?+ 1/s,_ =0 = s} =55, = 5, = p/&D
For example, with p =8 nodes and g = 1 skip link per node, the above analysis suggests that
the optimal skip distance is 8Y2= 3. With p = 8 and 2 skip links per node, the optimal distances
are 8% = 2. and 82° = 4. Of course, such an analysis is at best approximate. It works nicely
in some cases and gives optimal results. In other cases, the “optimal” results obtained as
above are not even close to the best possible. This is related to the combinatorial nature of
the problem and the restriction of the parameter values to whole numbers.

Note that the greedy routing algorithm presented above, though reasonable and near-
optimal in many cases, does not route messages via shortest paths. In fact, the route sel ected
by the algorithm may be far from the shortest one available. Take the skips =1, s; =10,
and s, = 12 as an example. To route from Node x to Node x + 20, the greedy algorithm will
choose a skip of 12 followed by 8 steps on the ring edges, while the shortest path has a length
of just 2.

Chordal rings are node symmetric. The optimal chordal rings derived as above are very
similar, though not isomorphic, to (g-+l)-dimensional torus networks. Figure 16.7 shows the
top eight-node chordal ring of Fig. 16.6, as well as a nine-node chordal ring with a skip of
s, = 3, astoruslike structures. The toruslike network on the right side of Fig. 16.7, in which
the row wraparound links are connected to the following row as opposed to the same row,
are known as twisted torus networks. The ILLIAC IV computer, one of the earliest parallel
machines built, used the 8 x 8 bidirectional version of this network.

The node-symmetric chorda ring architecture is wasteful in that it includes long-
distance, medium-distance, and short-distance links for every node. In a manner similar to
deriving the cube-connected cycles architecture from the hypercube, one can distribute the
various skips among a sequence of nodes, each having only one skip link.

Assume that the p ring nodes are split into p/g groups of g consecutive nodes, where g
divides p. The jth node in each group, 0 < j < g -1, hasthe skip link s¢; in addition to the
ring link 5. We assume that each skip distance § , except for 5, isamultiple of g. This will
ensure that the network is regular with respect to the nodes’ in-degrees as well as their
out-degrees. Figure 16.8 shows the structure of the resulting network, called periodically

Figure 16.7. Chordal rings redrawn to show their similarity to torus networks.

A SAMPLER OF OTHER NETWORKS 333

Group p/g—1 oy e ..., Group 0
P .,"',,.-' " - o,
"'"N;des Nodes 0
to p-1 to g-1

e
A skip link leads to the .|
aame};elative posi- " Nodes

tion within the " 1028~
destination
goup
Nodes 2g
y’/ to 3g-1
Nodes ig
to(i+I)g-1 e
, .‘.“.\"-..‘ e - ,.4""
Croup?‘""w..,m:, e

Figure 16.8. Periodically regular chordal ring.

regular chordal ring [Parh95], as well as an example with g = 2 and skip distances s; = 2
ands,= 4.

A variant of the greedy routing agorithm, in which we first route a packet to the head
(first node) of a group via the ring edges, and then continue in a pure greedy fashion, works
nicely for PRC rings and yields good results on the average. Routing from Node 1 to Node
7 in the example PRC ring of Fig. 16.8 would take the packet to Node 2 (the head node of
Group 1), then to Node 6, and finally to Node 7. As another example, a packet sent from
Node 1 to Node 5 goes through Nodes 2 and 3. The first example path above is a shortest
path, while the second one is nonminimal.

Interesting optimality results have been obtained for PRC rings. For example, it is known
that optimal logarithmic diameter is obtained for g = ©(log p).

SRR O
17101 ?}'QF,}_
s ordl
(10T HOTSL
1(> O A - Q O q C -]

AN d Fa d N, hd W, .
%&¢A PTOR O P ot
% YIALYIALY. Yr\YAYI\{P“ | To
RIS

Figure 16.9. VLSI layout for a 64-node periodically regular chordal ring.

334 INTRODUCTION TO PARALLEL PROCESSING

Area-efficient VLS! layouts are known for PRC rings, as exemplified by Fig. 16.9. Note
that most of the wraparound links in the layout have been deleted to avoid clutter. These long
links can be replaced by shorter ones through standard folding of the layout if desired.

Both chordal rings and PRC rings have bidirectional variants with similar properties to
the unidirectional versions discussed in this section. As an example of bidirectional PRC
rings, consider the 32-node PRC ring depicted in Fig. 16.10. Here, the group size or period
isg =4, withthe skipss, =nil, s, =2,s;=4, and s, = 8. In this example, the nil or nonexistent
skips are necessitated by our desire to choose al skips to be powers of 2 and the fact that
there are only three powers of 2 that are less than 32 and multiples of g = 4.

More generally, providing nil skips for some of the nodes in each group constitutes an
important mechanism for performance—cost trade-offs that are identical in nature to those

Dim 1 (s,)
. 0‘
{

......
«««««««««

........

coemet sttt

..........
............
........

arereess
P
ppover
.........
..........

p/g rows, g columns
d

Figure 16.10. A PRC ring redrawn as a butterfly- or ADM-like network.

A SAMPLER OF OTHER NETWORKS 335

offered by the g-DCCC architecture when rings have more than q nodes. Note, for example,
that removing the longest skips from the layout of Fig. 16.9 reduces its area requirement
substantially, at the cost of increased network diameter.

Figure 16.10 has been drawn in such away as to highlight the similarity of PRC rings
built with power-of-2 skip distances to butterfly and augmented data manipulator networks.
This similarity can be exploited for developing efficient algorithms for the practically
important subclass of PRC ring networks with power-of-2 size, group length, and skip
distances. For example, an ascend- or descend-type hypercube agorithm can be efficiently
emulated on such a PRC ring. In the network of Fig. 16.10, nodes whose labels differ in
either of the least-significant 2 bits communicate via ring edges, while those that are distance
4, 8, or 16 away communicate via skip links, either directly or through intermediate nodes.
Details of the emulation method are very similar to those of the CCC emulating the hypercube
(Section 15.4).

16.4. COMPOSITE OR HYBRID NETWORKS

Most of the networks that we have considered thus far can be classified as “pure”
networks, meaning that a single set of connectivity rules governs the entire network.
Composite or hybrid networks, on the other hand, combine the connectivity rules from two
(or more) pure networks in order to achieve some advantages from each structure, derive
network sizes that are unavailable with either pure architecture, or realize any number of
performance/cost benefits.

Two or more networks can be combined in many different ways. In this section, we
consider only network composition by Cartesian product operation, in view of its many
interesting properties. The (Cartesian) product of networks or graphs was defined in Section
13.3, where it was used as a tool to prove that the hypercube network contains meshes and
tori as subgraphs. Let us focus, for concreteness, on the product G = (/, E) of two
graphs/networks G' = (V', E') and G" = (V", E"), with its node and edge sets defined as

V={vVv'|v OV,v' OV"}, wherevV'isshorthand for (v, v")
E={(uu", vVV')|uvV OE andu"=v'oru"v' JE"and u' =Vv'}

From the above definition, we see that there are two classes of edgesin G, which we call G'
edges (u'v' O E' and u" =v") and G" edges (u"v' O E" and u' =v'). Examples of product
graphs were provided in Fig. 13.4. The product graph G defined as above has p nodes, where

p=IVI=VIx V" =pp"

The product operation on graphs is associative and commutative. Thus, the structure of a
product graph is uniquely specified by specifying the component graphs. When the compo-
nent graphs of a product graph are all identical, a homogeneous product network or a power
network results.

Topologica properties and many algorithms for product graphs are derivable from those
of its component graphs. For example, the node degree, diameter, and average internode
distance of G are the sums of the respective parametersfor G'and G" (d=d +d", D =D’
+D",A = A"+A"). Asaresult of the above, if both G' and G" have node degrees or diameters

336 INTRODUCTION TO PARALLEL PROCESSING

that are (sub)logarithmic in terms of their sizes p' and p', the product graph G will aso have
a (sub)logarithmic node degree or diameter in terms of its size p.

Given optimal or efficient routing algorithms for G' and G", the following two-phase
routing algorithm will be optimal or efficient for routing from u'u" to v'v" in the product

graph G:

Phase 1. Route from u'u" to v'u" viaG' edges using the routing algorithm for G'
Phase 2. Route from v'u" to V'V' viaG" edges using the routing algorithm for G"

The above agorithm, which may be called the G'-first routing algorithm, is a generalized
version of row-first routing in 2D meshes. If the routing algorithms for the component graphs
are deadlock-free, so is the above two-phase routing algorithm for G.

Similarly, broadcasting from a node v'v' to al nodes in G can be done by first
broadcasting to al nodes xv', x 00 V', using a broadcasting algorithm for G' and then
broadcasting from each node xv"' to all nodes xy, y 00 V", using a broadcasting algorithm for
G".

Semigroup and parallel prefix computations can be similarly performed by using the
respective algorithms for the component networks. If the component graphs are Hamiltonian,
then the p' x p" torus will be a subgraph of G. This allows us to use any torus algorithm to
perform computations such as matrix multiplication, sorting, and the like. In the case of
sorting, it is possible to emulate, e.g., the shearsort algorithm for a p' x p" mesh on the product
network. The row and column sorts required in shearsort can be performed by using any
available sorting algorithm for the component graphs G' and G".

Note that product graphs allow us to synthesize networks of virtually any desired size.
For example, the product of a 3-cube (8 nodes) and a 4-star (24 nodes) will have 192 nodes,
whereas no pure hypercube or star network can match this size exactly or even approximately.

As an example of a product network that we have not examined previously, consider the
product of two binary trees, yielding a network known as mesh-connected trees [Efe96].
Note that this network is different from, and higher-performing than, the mesh of trees
network studied in Section 12.6. Examples of the two networks are shown side by side in
Fig. 16.11. It is clear from Fig. 16.11 that a mesh of trees network with an m x m base (3m2

Figure 16.11. Mesh of trees compared with mesh-connected trees.

A SAMPLER OF OTHER NETWORKS 337

— 2m processors) is a subgraph of the mesh-connected trees network with (2n — 1)2
processors; for large m, the latter network has roughly 4/3 as many processors as the former.

If instead of binary trees, we use X-trees as the component networks, the resulting
product graph will contain the square torus of the same size as a subgraph. This is easily
proven by showing that a complete X-tree network is Hamiltonian. Thus, the mesh of X-trees
network can run any torus agorithm with no slowdown.

A layered network is one in which the nodes can be partitioned into numbered layers,
with links connecting only nodes that belong to adjacent layers. Binary trees, butterfly
networks, and mesh of trees networks are examples of layered networks. The layered cross
product of two |-layer networks G' and G" is another | -layer network G whose nodes in Layer
i are labeled (U}, u'), where U’ and u! are Layer-i nodesin G' and G", respectively. A Layer-i
node (uj, u') isconnected to aLayer-(i +I) node (u,, ,u',,)inGiff u; is connected to Uy in
G'and u;" isconnected to uy', in G". As an example, the butterfly network can be shown to
be the layered cross product of two binary trees. The notion of layered cross product is
helpful, among other things, for producing rectilinear planar layouts for interconnection
networks [Even97].

16.5. HIERARCHICAL (MULTILEVEL) NETWORKS

Hierarchical or multilevel interconnection networks can be defined in a variety of ways.
In this section, we consider hierarchical composition of networks through recursive substi-
tution, i.e., replacing each node of a network with another network. Figure 16.12 shows an
example, where a top-level 3x3 mesh network is expanded by replacing each of its nine
nodes with a 3x3 mesh. In this particular example, the top- and bottom-level networks
happen to be identical, but this does not have to be the case in general. The CCC network is
an example of this more genera type where the top-level network is a gcube and the
bottom-level network isaq-ring.

To fully characterize a hierarchical interconnection network derived by recursive
substitution, we need to know the network size and topology at various levels of the hierarchy
as well as the rules by which Level-i links are to be assigned to the nodes of Level-(i —1)
networks. In the example of Fig. 16.12, the Level-2 network is a 3x3 mesh, with each node

Figure 16.12. The mesh of meshes network exhibits greater modularity than a mesh.

338 INTRODUCTION TO PARALLEL PROCESSING

- 55113 5¢¢
LS T5ETEES

Figure 16.13. Hierarchical or multilevel bus network.

having two to four links. The assignment of the NEWS links of this Level-2 network to the
nodes of the 3 x 3 Level-1 network is shown in the upper left corner of Fig. 16.12. If the size
of the Level-(i—1) network is greater than the node degree of the Level-i network, then
increase in node degree can be limited to only 1 for each recursion level. This results in
modular networks with fairly small node degrees.

Motivations for designing hierarchical interconnection networks include obtaining
greater modularity, lower cost, finer scalability, and better fault tolerance. The particular
hierarchical composition scheme an component networks used depend on the types of
communications that are expected from target applications. For example, the hierarchical
bus scheme, exemplified by Fig. 16.13, might be quite efficient when the bulk of interproc-
essor communications are within the same low-level cluster, with occasional remote com-
munications to distant clusters through higher-level buses which introduce higher delays and
have lower aggregate bandwidth. The same network, however, becomes hopelessly con-
gested under heavy random traffic.

Numerous hierarchical combinations of known interconnection networks have been
proposed over the past decade. Unifying theories that allow us to investigate such networks
in classes, rather than as one-of-a-kind structures, are emerging [Y eh98].

16.6. MULTISTAGE INTERCONNECTION NETWORKS

Most of the networks that we have studied thus far belong to the class of direct networks,
meaning that processors are directly connected to other processors via their communication
links. Multistage interconnection networks (MINSs), by contrast, connect the processors
indirectly via multiple layers of intermediate nodes or switches. We have aready seen severd
examples of multistage interconnection networks. In Section 6.6, we introduced the butterfly
network as a mechanism for interconnecting processors and memory modules. Subsequently,
in Chapter 15, we looked at butterfly and related networks in some depth. The butterfly, or
the equivalent shuffle—exchange or omega network, is known as the indirect cube (cubic)
network because it provides the hypercube connectivities between its input and output ports
indirectly.

Benes networks, composed of back-to-back butterflies, were introduced as examples of
rearrangeabl e permutation networks near the end of Section 15.2. Even though any desired
permutation can be routed through a Bene$ network without any conflict, the required switch
setups for each permutation must be computed off-line. In practice, we would like to be able
to route messages using an on-line algorithm. A MIN that can determine the path of a message

A SAMPLER OF OTHER NETWORKS 339

on the fly, using simple computational steps within the switches, is known as a self-routing
MIN. The butterfly network is a self-routing MIN, but it is not a permutation network. The
Bene¥ network can redlize any permutation, but is not self-routing.

A natural question is whether there exist self-routing permutation networks. The answer
to this question is positive. In what follows, we focus on realizing full permutations, meaning
that every input port must be connected to a distinct output port.

A full permutation can be realized via sorting of the destination addresses. Thus, any
p-sorter of the type discussed in Chapter 7, when suitably augmented to carry along the
message bodies with the key headers, can be viewed as a self-routing MIN that is capable of
routing any p x p permutation. For example, we saw that a Batcher p-sorter consists of ©(p
log? p) comparators, arranged in ©(log? p) levels. Because the line labels in a p-sorter are
(log , p)-bit binary numbers, a bit-level complexity analysisis needed for complete fairness.
At the bit level, these networks have ©(p log® p) cost and ©(log® p) delay, assuming that the
(log, p)-bit destination addresses are supplied in parallel to each cell, where they are
compared by a simple ripple-type comparator having ©(log p) cost and © (log p) delay. When
the inputs are supplied bit-serially, the cost and delay drop to ©(p log? p) and ©(log? p),
respectively.

These results have been improved by Batcher himself and others. For example, Al-Ha-
jery and Batcher [AIHa93] have presented bitonic sorting networks that have ©(p log p)
bit-level cost and ©(log?p) bit-level delay. Sorting by such networks requires that the items
being sorted pass through a (log, p)-stage hit-level network log, p times. Because each key
is log, p hits long, successive passes are easily pipelined with no interference. Cheng and
Chen [Chen96] have presented a design based on binary radix sort that uses log, p stages of
single-bit sorters that require a delay of log, p levelsand cost of p log, p (bit-parallel) or p
(bit-serial). For parallel inputs, this design leads to O(p log? p) bit-level cost and O(log?p)
bit-level delay. With serial inputs, the cost and delay become O(plog p) and O(log? p),
respectively (Fig. 16.14).

Below isapartia listing of some of the important types of multistage interconnection
networks, and associated terminology, for ready reference:

« Augmented data manipulator (ADM): Also known as unfolded PM2I (Fig. 15.12).
- Banyan: Any MIN with a unique path between any input and any output (e.g., butterfly).

Sort by Sort by the Sort by
MSB 9 Middle bit 9 LSB
7 (111) ot | 1 I I 0 (000)
0 Y 1 (001
(000) r". 3 3 g Seiidlaled (}
4 (100)4. i o 2 (010)
", 2 2 ol
6 (110)—"'{:(‘ - . : 3 (011)
1 (001) ——f' W'y e {34 (100)
5 (101) o {)'n,: i ':“‘a.‘"_, "7’ b — 5 (101)
2N LAl
3 (011) AN < it . frosm 6 (110)
2 (010) : 2 : - 7 (111)

Figure 16.14. Example of sorting on a binary radix sort network.

340

INTRODUCTION TO PARALLEL PROCESSING

Baseline: Butterfly network with nodes |abeled differently; see, e.g., [Leig92], p, 735.
Benes: Back-to-back butterfly networks, sharing one column (Figs. 15.9 and 15.10).
Bidelta: A MIN that is adelta network in either direction.

Butterfly: Also known as unfolded hypercube (Figs. 6.9, 15.4, and 15.5).

Data manipulator: Same as ADM, but with switches in a column restricted to same
state.

Delta: Any MIN for which the outputs of each switch have distinct labels (say 0 and 1
for 2 x 2 switches) and the path label, composed of concatenating the switch output
labels, leading from an arbitrary input to a given output depends only on the output.
Flip: Reverse of the omega network (i.e., roles of inputs and outputs interchanged).
Indirect cube: Same as butterfly or omega.

Omega: Multistage shuffle—exchange network; isomorphic to butterfly (Fig. 15.19).
Permutation: Any network that can realize all possible permutations (e.g., Benes).
Rearrangeable: Same as permutation network.

Reverse baseline: Baseline network, with the roles of inputs and outputs interchanged.

PROBLEMS

16.1. Petersen graph

a. Find the average internode distance in the 10-node Petersen graph of Fig. 16.1.

b. Find the bisection width of the 10-node Petersen graph.

c. Express the connectivity rules of the 10-node Petersen graph in terms of the 5-bit node IDs
giveninFig. 16.1.

16.2. Swapped networks

a. Consider a 100-node graph composed of 10 copies of the 10-node Petersen graph (clusters)
in which each node has a two-digit decimal label xy (0 < x, y < 9), with Node xy, i.e., Node
y of Cluster x, connected to Node yx by an additional link; thus, the node degree becomes
4. Node xx does not have an intercluster link. Determine the diameter of this network and
compare it with Moore' s bound.

b. Compare the cost and performance of the network of part (a) to the product of two Petersen
networks.

c. We can generdize the construction of part (a) to any p-node graph to obtain a p2-node
graph. Devise semigroup computation, parallel prefix computation, and broadcasting
algorithms for the resulting p-node network, given the corresponding algorithms for the
origina graph.

16.3. Topological parameters of a network

Consider the chordal ring network of Fig. 16.2.

a. Determine the diameter of the network.

b. Suggest a shortest-path routing algorithm for the network.

€. Find the average internode distance for the network. Hint: The network is node-symmetric.

d. By renumbering Nodei of the network as Node 3i mod 32 and redrawing the network as
aring in order of the new node numbers, show that the bisection width of the network is
at most 8.

e. Derivethe exact bisection width of the network.

A SAMPLER OF OTHER NETWORKS 341

16.4.

16.5.

16.6.

16.7.

16.8.

Odd networks

A g-dimensional odd graph/network is one in which each node is identified by a (2g-1)-bit
binary number with exactly q 1sand gq— 1 Os. Thus, there are (qu_l) nodes. Each Node xis
connected to g neighbors whose labels are obtained by keeping one of the 1 bits unchanged
and complementing the other 2q bits.

a. Show that the 10-node Petersen graph of Fig. 16.1 isin fact the 3D odd graph.

b. Derivethesizesof q-D odd graphs for 4 < g < 10 and compare with those of the g-cube.
c. Devisean efficient routing algorithm for the g-D odd network.

d. Determine the diameter of the g-D odd graph and compare it with Moore's lower bound.

Star and pancake networks

a. Compare the sizes of g-D star graphs with those of odd graphs (define in Problem 16.4)
and hypercubes with the same node degrees.

b. Doesthe routing example from Node 154362 to Node 346215 for the star graph givenin
Section 16.2 correspond to a shortest path? If not, what is the shortest path?

c. Repeat part (b) for the routing example for the pancake network given in Section 16.2.

d. Givean example of adiametral path for the 4D star graph of Fig. 16.3. Is the diameter of
this particular g-star equal to 2q — 3?

e. Repeat part (d) for the 4D pancake network.

Unfolded star, pancake, and rotator networks
Unfolded star, pancake, and rotator networks can be defined in the same way as unfolded
hypercubes.

a. Draw the unfolded 4-star, 4-pancake, and 4-rotator networks.

b. Determine the diameters of unfolded 4-star, 4-pancake, and 4-rotator networks.

c. Compare the diameters obtained in part (b) with Moore's lower bound.

d. Determine the bisection widths of unfolded 4-star, 4-pancake, and 4-rotator networks.

Ring of rings networks

a. Find the optimal number of nodes in each local ring if the diameter of a p-processor ring
of rings network exemplified by Fig. 16.5 isto be minimized.

b. Find the optimal configuration of an h-level, p-processor ring of rings with respect to its
diameter.

c. Determine the maximum number of nodes that can be incorporated in a multilevel ring of
rings network using nodes of degree 4 for various desired diametersintherange2<D <
5.

d. Devise an algorithm for multiplying mxm matrices on an m2-processor ring of rings
network with m processors in each local ring.

Ring of rings networks
Consider athree-level ring of rings network with 6 nodes in each ring. Each of the 216 nodes
in this network can be identified by athree-digit radix-6 integer.

a. Devise a node indexing scheme that makes it easy to identify which nodes belong to rings
at various levels.

b. Describe a shortest-path routing algorithm based on the indexing scheme of part (a).

c. ldentify al of the diametral endpoints in the network (nodes that can be at the end of a
diametral path).

d. How will the diameter of the network change if we connect the diametral endpoints
identified in part (c) into aring using their unused ports?

342

16.9.

16.10.

16.11.

16.12.

16.13.

16.14.

INTRODUCTION TO PARALLEL PROCESSING

Product networks

a. Provethat the diameter and average internode distance in a product network is the sum of
the respective parameters for the two component networks. Hint: First prove that given a
shortest path of length I' between u' and v' in G' and a shortest path of length I between
u" and V' in G", the length of the shortest path between u'u" and Vv' in Gisl =1" +1".

b. Extend the result of part (a) to the product of k graphs.

c. Find aformulafor the number of edges in a product graph in terms of the parameters of
its k component networks.

d. Prove or disprove: The bisection width of a product graph G = G' x G" is lower bounded
by min(p'B", p"B'), where p' and p" are the numbers of nodes, and B' and B" are the
bisection widths of G' and G", respectively.

Layered networks

a. Show that a g-D meshisaLayered network.

b. What can you say about the layered cross product of an |-layer graph G and the |-node
linear array?

c. A one-sided binary tree is a binary tree in which the left (right) child of every node is a
leaf. What isthe layered cross product of two one-sided binary trees of the same kind? Of
opposite kinds?

Layered cross-product networks
Prove the following results:

a Thebutterfly network is the layered cross product of two binary trees. Hint: Oneisinverted.
b. The mesh of trees network is the layered cross product of two binary trees with “paths’
(linear array of nodes) “hanging from” their leaves, as shown in the following diagram.

Mesh-connected trees

a. Show that a mesh-connected trees network (Fig. 16.11) has four copies of the next smaller
mesh-connected trees network as its subgraphs.

b. Show that the largest complete binary tree whose size does not exceed that of a
mesh-connected trees network is a subgraph of the latter.

Waksman's permutation network

A p x p Waksman permutation network [Waks68] is recursively constructed using 2 x 2
switches. First, p/2 switches are used to switch theinputsOand 1,2and 3, ..., p—1and p.
The upper and lower outputs of the above switches are separately permuted using p/2-permut-
ers. Finally, p/2 — 1 switches are used to switch the corresponding outputs of the p/2-permuters,
except for their lowermost outputs.

a. Show that Waksman's permutation network can in fact route all permutations.
b. Determine the cost and delay of Waksman's permutation network in terms of p.

ADM and gamma networks
The augmented data manipulator network (Fig. 15.12), as originally defined, was a unidirec-
tional multistage interconnection network with inputs on the right and outputs at the left. The

A SAMPLER OF OTHER NETWORKS 343

gamma network (also called inverse ADM or IADM) is an ADM in which the input and output
sides have been switched.

a.

b.

Show that ADM and gamma networks are essentially the same network (they are isomor-
phic).

Show that, more generally, any permutation of the intercolumn connectivities of an ADM
network leads to an isomorphic network.

Use the result of part (b) to determine the diameter of a wrapped ADM network with
bidirectional links if the nodes are processors rather than switches.

16.15. Hierarchical hypercube networks
A hierarchical (q+1)-dimensiona hypercube consists of 29 copies a q -cube (2%clusters) with
Node xin Cluster y connected to Node y in Cluster x via a Dimension-q link. Node x in Cluster
x has no intercluster link.

a
b.

Find the diameter of the hierarchical (gq+1)D hypercube.

Compare the diameter obtained in part (a) with that of a 2g-cube and with Moore's lower
bound.

Devise an efficient routing algorithm for the hierarchical (q+1) hypercube.

Show that an ascend- or descend-type algorithm for the 2g-cube can be efficiently emulated
by the hierarchical (q+1)D hypercube.

REFERENCES AND SUGGESTED READING

[AlHa93]
[Arde8i]
[Bermgs]
[Cheng6]
[Corb92]
[Day94]
[Day97]
[Efe96]
[Even97]

[Kend92]
[Kwai96]

[Kwai97]
[Latio93]
[Leig92]

[Mans94]

Al-Hajery, M. Z., and K. E. Batcher, “On the Bit-Level Complexity of Bitonic Sorting Networks,”
Proc. Int. Parallel Processing Conf., 1993, Voal. Ill. pp. 209-213.

Arden, B. W., and H. Lee, “Analysis of Chordal Ring Networks,” IEEE Trans. Computers, Vol. 30,
No. 4, pp. 291-295, April 1981.

Bermond, J.-C., F. Comellas, and D. F. Du, “Distributed Loop Computer Networks: A Survey,” J.
Parallel Distributed Computing, Vol. 24, No. 1, pp. 2-10, January 1995.

Cheng, W.-J.,, and W.-T. Chen, “A New Self-Routing Permutation Network,” |EEE Trans. Computers,
Vol. 45, No. 5, pp. 630-636, May 1996.

Corbett, P. F., “Rotator Graphs: An Efficient Topology for Point-to-Point Multiprocessor Networks,”
|EEE Trans. Parallel Distributed Systems, Vol. 3, No. 5, pp. 622626, September 1992.

Day, K., and A. Tripathi, “ A Comparative Study of Toplogical Properties of Hypercubes and Star
Graphs,” |EEE Trans. Parallel Distributed Systems, Vol. 5, No. 1, pp. 31-38, January 1994.

Day, K., and A.-E. Al-Ayyoub, “The Cross Product of Interconnection Networks,” |EEE Trans.
Parallel Distributed Systems, Vol. 8, No. 2, pp. 109-118, February 1997.

Efe, K., and A. Fernandez, “Mesh-Connected Trees: A Bridge Between Grids and Meshes of Trees,”
|EEE Trans. Parallel Distributed Systems, Vol. 7, No. 12, pp. 1281-1291, December 1996.

Even, G., and S. Even, “Embedding Interconnection Networks in Grids via the Layered Cross
Product,” Proc. 3rd Italian Conf. Algorithms and Complexity, Rome, March 1997, pp. 3-12.
Kendall Square Research, “KSR1 Technology Background,” 1992.

Kwai, D.-M., and B. Parhami, “A Generalization of Hypercubic Networks Based on Their Chordal
Ring Structures,” Information Processing Letters, Vol. 6, No. 4, pp. 469-477, 1996.

Kwai, D.-M., and B. Parhami, “A Class of Fixed-Degree Cayley-Graph Interconnection Networks
Derived by Pruning k-ary n-cubes,” Proc. Int. Conf. Parallel Processing, 1997, pp. 92-95.

Latifi, S., M. M. de Azevedo, and N. Bagherzadeh, “The Star Connected Cycles: A Fixed-Degree
Network for Parallel Processing,” in Proc. Int. Parallel Processing Conf., 1993, Vol. I, pp. 91-95.
Leighton, F. T., Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes,
Morgan Kaufmann, 1992.

Mans, B., and N. Santoro, “Optimal Fault-Tolerant Leader Election in Chordal Rings,” Proc. 24th
Int. Symp. Fault-Tolerant Computing, June 1994, pp. 392—401.

344

[Parhos]

[Ponn94]
[Reic93]
[Sche94]
[Valegd]

[Waks58]
[Yehos]

[Y ous95]

INTRODUCTION TO PARALLEL PROCESSING

Parhami, B., “Periodically Regular Chordal Ring Networks for Massively Parallel Architectures,”
Proc. 5th Symp. Frontiers Massively Parallel Computation, February 1995, pp. 315-322. [Extended
version to appear in |[EEE Trans. Parallel Distributed Systems.]

Ponnuswamy, S., and V. Chaudhary, “A Comparative Study of Star Graphs and Rotator Graphs,” in
Proc. Int. Parallel Processing Conf., 1994, Val. I, pp. 46-50.

Reichmeyer, F., S. Hariri, and K. Jabbour, “Wormhole Routing on Multichannel Ring Networks,”
Proc. 36th Midwest Symp. Circuits and Systems, August 1993, pp. 625-628.

Scherson, I. D., and A. S. Youssef, Interconnection Networks for High-Performance Parallel Com-
puters, IEEE Computer Society Press, 1994.

Valerio, M., L. E. Moser, P. M. Mélliar-Smith, and P. Sweazey, “The QuickRing Network,” Proc.
ACM Computer Science Conf., 1994.

Waksman, A., “A Permutation Network,” J. ACM, Vol. 15, No. 1, pp. 159-163, January 1968.

Yeh, C.-H., and B. Parhami, “A New Representation of Graphs and Its Applications to Parallel
Processing,” Proc. Int. Conf. Parallel and Distributed Systems, 1998, to appear.

Youssef, A., “Design and Analysis of Product Networks,” Proc. 5th Symp. Frontiers Massively
Parallel Computation, February 1995, pp. 521-528.

Some Broad Topics

In this part, we consider several topics that influence the acceptance, efficiency,
and quality of parallel computers. For example, coordination and resource
management schemes for computations and data accesses have a direct bearing
on the effectiveness of parallel computers. Likewise, to ensure a balanced design
with no obvious performance bottleneck, any parallel system must be equipped
with high-bandwidth input/output devices capable of supplying data to proces-
sors, and removing the computation results, at appropriate rates. The 1/O
capabilities of parallel computers are particularly important in data-intensive
applications found in corporate database and network server environments.
From another angle, the high component count of parallel systems makes them
susceptible to hardware faults, thus necessitating fault tolerance provisions in
their designs. Finally, coordination, programming, user views/interfaces, and
system software are important for all types of parallel systems. The above broad
topics are treated in this part, which consists of the following four chapters:

e Chapter 17: Emulation and Scheduling

¢ Chapter 18: Data Storage, Input, and Output
¢ Chapter 19: Reliable Parallel Processing

¢ Chapter 20: System and Software Issues

345

This page intentionally left blank.

Emulation and
Scheduling

We have previously used the notion of one parallel machine emulating another
one in the development and evaluation of certain algorithms. We now take a
closer look at emulation and, in particular, demonstrate how it is applicable to
the provision of a shared-memory view in a distributed-memory environment.
In a coarse-grained MIMD-type parallel computer, the multiple processors often
work independently on different subproblems or subtasks of a large problem.
The processing nodes may be homogeneous or heterogeneous and the subtasks
often have varying complexities and data interdependencies. Once a parallel
algorithm for solving a particular problem has been developed, its subtasks and
their interdependencies must be specified and then assigned to the available
computation and communication resources. Because subtask execution times
can vary as a result of data-dependent conditions, dynamic scheduling or load
balancing might be required to achieve good efficiency. Chapter topics are

e 17.1. Emulations among architectures

e 17.2. Distributed shared memory

e 17.3. The task scheduling problem

» 17.4. A class of scheduling algorithms

» 17.5. Some useful bounds for scheduling

» 17.6. Load balancing and dataflow systems

347

This page intentionally left blank.

EMULATION AND SCHEDULING 349

17.1. EMULATIONS AMONG ARCHITECTURES

Emulations are sometimes necessitated by our desire to quickly develop agorithms for
a new architecture without expending the significant resources that would be required for
native agorithm development. Another reason for our interest in emulations among parallel
architectures is that they allow us to develop algorithms for architectures that are easier to
program (e.g., shared-memory or PRAM) and then have them run on machines that are
realizable, easily accessible, or affordable. The developed agorithm then serves as a “source
code” that can be quickly “compiled” to run on any given architecture via emulation.

Emulation results are sometimes used for purposes other than practical porting of
software. For example, we know that the hypercube is a powerful architecture and can
execute many algorithms efficiently. Thus, one way to show that a new architecture is useful
or efficient, without a need for developing a large set of algorithms for it, is to show that it
can emulate the hypercube efficiently. We used this method, e.g., to prove the versatility of
the cube-connected cycles architecture in Section 15.4. The results were that CCC can
emulate a p-node hypercube with O(log p) slowdown and that in the specia case of normal
hypercube algorithms, which includes many of the algorithms of practical interest in the
ascend/descend class, emulation is done with ©(1) slowdown.

Results similar to the above between the hypercube and CCC have been obtained for
many other pairs of parallel architectures. Interestingly, a form of transitivity can be used to
derive new emulation results from existing ones. If architecture A emulates architecture B
with O(f(p)) slowdown and B in turn emulates C with O(g(p)) slowdown (assuming, for
simplicity, that they all contain p processors), then A can emulate C with O(f (p) x g(p))
slowdown. In this way, if an architecture is shown to emulate CCC with ©(1) slowdown,
then based on the results of CCC emulating the hypercube, we can deduce that the new
architecture can emulate normal hypercube agorithms with ©(1) slowdown.

The above are examples of emulation results that are specific to a target (emulated)
architecture and a host (emulating) architecture. In the rest of this section, we introduce three
fairly general emulation results involving classes of, rather than specific, architectures. We
will follow these with afourth, very important, emulation result in Section 17.2.

Ouir first result is based on embedding of an architecture or graph into ancther one. As
discussed in Section 13.2, a graph embedding consists of a node mapping and an edge
mapping. The cost of an embedding isreflected in

Expansion Ratio of the number of nodes in the two graphs
whereas its performance characteristics are captured by
Dilation Longest path onto which any given edge is mapped
Congestion ~ Maximum number of edges mapped onto the same edge

Load factor ~ Maximum number of nodes mapped onto the same node

Assuming communication is performed by packet routing, such a graph embedding can be
the basis of an emulation with a slowdown factor that is upper bounded by

slowdown < dilation x congestion x load factor

350 INTRODUCTION TO PARALLEL PROCESSING

Asaspecial case, any embedding with constant dilation, congestion, and load factor defines
an emulation with constant-factor slowdown. The above bound is tight in the sense that
slowdown may equal the right-hand side in some cases. As an example, embedding the
p-node complete graph K, into the two-node graph K > involves dilation of 1, congestion of
p2/4, load factor of p/2, and a worst-case slowdown of p2/8. Despite the above worst-case
example, it is often possible to schedule the communications over dilated and congested
paths in such away that the resulting slowdown is significantly less than the upper bound.

Our second general emulation result is that the PRAM can emulate any degree- d network
with O(d) slowdown, where slowdown is measured in terms of computation steps rather than
rea time; i.e., each PRAM computation step, involving memory access by every processor,
counts as one step. The proof is fairly simple. Each processor of the PRAM host emulates
one degree-d node in the target architecture. In one computation step, the emulated node can
send/receive up to d messages to/from its neighbors. In the PRAM emulation, each link buffer
(there are two buffers per bidirectional link) corresponds to a location in shared memory.
The sending of up to d messages by each node can be done in d steps, with the ith step being
devoted to writing a message from the ith send buffer to theith link buffer (assume that the
neighbors of each node have been ordered). Similarly, the receiving part, which involves
reading up to d messages from known locations in the shared memory, can be donein O(d)
steps.

Because each link buffer is associated with a unique receiving node, the EREW PRAM
submodel is adequate for this emulation. As a specia case of the above general result, the
PRAM can emulate any bounded-degree network with constant slowdown. Hence, the
PRAM can be said to be more powerful than any bounded-degree network. As another special
case, any network with logarithmic or sublogarithmic node degree can be emulated with at
most logarithmic slowdown. With the CREW PRAM submodel, we can emulate a hyper-
graph-based architecture (i.e., one including buses and multipoint links) with O(d) slow-
down.

Our third and final generd result, that the (wrapped) butterfly network can emulate any
p-node degree-d network with O(d log p) slowdown, is somewhat more difficult to prove.
Here is a proof sketch. The cornerstone of the proof is a result that shows the ability of a
p-node (wrapped) butterfly network to route any permutation in O(log p) steps (see [Leig92],
p. 457). Thus, if a communication step of an arbitrary p-node degree-d network can be
trandated into d permutation routing problems, the desired conclusion will be immediate.
This latter property is adirect consequence of the following result from graph theory:

Consider a 2p-node bipartite graph G with node set U [0 V, such that U and V each
contain p nodes and every edge connects anodein U to anodein V. If al nodesin G have
the same degree d, then G contains a perfect matching, i.e., a set of p edges that connect
every node in U to every node in V.

If we remove the p edges corresponding to a perfect matching, which define a p-permu-
tation, the remaining graph will have uniform node degree d — 1 and will again contain a
perfect matching by the same result. Removal of this second perfect matching (p -permuta-
tion) leaves us with a bipartite graph with node degree d — 2. Continuing in this manner, we
will eventually get a bipartite graph with node degree 1 that defines the dth and final
permutation.

Consider, for example, the five-node graph, with maximum node degree 3, depicted in
Fig. 17.1. We augment this graph with alink from Node 1 to Node 3, in order to make the

EMULATION AND SCHEDULING 351

Figure 17.1. Converting a routing step in a degree-3 network to three permutations or perfect
matchings.

node degree uniformly equal to 3, and represent the augmented graph by the bipartite graph,
shown in the middle, which has Nodes u; and v; in its two parts corresponding to Node i in
the original graph. We next identify a perfect matching in this bipartite graph, say, the heavy
dotted edges on the right. This perfect matching, with its edges carrying the label 0 in the
right-hand diagram of Fig. 17.1, defines the permutation Py ={ 1, 0, 3, 2} of the node set {0,
1, 2, 3}. Removing these edges, we arrive at a bipartite graph having the uniform node degree
2 and the perfect matching defined by the light dotted edges labeled with 1. This time, we
have identified the permutation P, = {2, 3, 1, 0}. Finally, the remaining edges, marked with
thelabel 2 in Fig. 17.1, define the last perfect matching or permutation P, ={3, 2, 0, 1}.

A conseguence of the above emulation result is that if a problem is efficiently paral-
lelizable on any bounded-degree architecture, then it is efficiently parallelizable on the
butterfly network, because emulating the bounded-degree network on the butterfly increases
the running time by at most a factor of O(log p). In this sense, the butterfly network is a
universal, or universally efficient, bounded-degree parallel architecture.

A fourth general emulation result, that of emulating the abstract PRAM architecture on
feasible bounded-degree networks, is important enough to warrant separate discussion (next
section).

17.2. DISTRIBUTED SHARED MEMORY

We mentioned, in the introduction to Chapter 5, that the shared-memory model of
parallel computation, and PRAM in particular, facilitates the development of parallel
algorithms using a variety of programming paradigms. This ease of algorithm development
is practically useful only if the underlying model can be built directly in hardware, or at least
lends itself to efficient emulation by feasible (bounded-degree) networks. In this section, we
show that the butterfly network can indeed emulate the PRAM rather efficiently. Such an
emulation, by butterfly or other networks, provides the illusion of shared memory to the
users or programmers of a parallel system that in fact uses message passing for interprocessor
communication. This illusion, or programming view, is sometimes referred to as distributed
(or virtual) shared memory.

We discuss two types of PRAM emulations on the butterfly: (1) randomized or
probabilistic emulation, which alows us to make statements about the average-case or
expected slowdown, but provides no performance guarantee in the worst case, and (2)

352 INTRODUCTION TO PARALLEL PROCESSING

deterministic emulation, which involves greater overhead, and may thus be slower on the
average, but in return guarantees good worst-case performance. The randomized emulation
is good enough for most practical purposes. We thus treat deterministic PRAM emulation as
atopic of theoretical interest.

Let us now discuss a randomized emulation of the p-processor PRAM on a butterfly
distributed-memory machine. Assume, for simplicity, that p=29 (q + 1) for some g. Thus, a
p-node butterfly exists that can emulate the PRAM processors on a one-to-one basis (Fig.
17.2). The PRAM processors are arbitrarily mapped onto the butterfly processors. Each of
the m PRAM memory locations is assigned to one of the processors using a hash function h
(afunction that maps a set of keys onto a set of integers such that roughly the same number
of keys are mapped to each integer). Thus, a processor needing access to memory location
x will evaluate h(x) to determine which processor holds that particular memory location and
then sends a message to that processor to read from or write into x. Because the hash function
h is arandom function, emulating one EREW PRAM step involves arandomized (average-
case) routing problem that can be completed on the butterfly in O(log p) steps with high
probability. One can use, e.g., the simple routing algorithm that sends each packet to Column
0 in the source row, then to Column g in the destination row, and finally to the destination
node within the destination row.

Note that in the EREW PRAM, the processors are constrained to access different
memory locations in each step. When we apply the hash function h in the above emulation
scheme, the p different memory locations accessed by the PRAM processors may not bein
distinct memory modules. However, at most O(log p) of the memory locations accessed will
be in the same butterfly row with high probability. Thus, the O(log p) average slowdown
factor of the emulation can be maintained by suitably pipelining these accesses. The same
result holds for emulating the CRCW PRAM, provided that multiple accesses to the same
memory location are combined.

| Y-~ Memory module

SO UL SN B8 gk

processors 0 i i im Y memory locations
1 .A.VA‘ \me node =

Router +

P
2 O Memory
30
2 %Rows
4 QO
N
5 04\
XD

1 2
q + 1 Columns

Figure 17.2. Butterfly distributed-memory machine emulating the PRAM.

EMULATION AND SCHEDULING 353

Figure 17.3 depicts an aternative emulation of the p-processor PRAM using a butterfly
MIN connecting p = 29 processors and memory modules on its two sides. Thus, nodes in the
intermediate columns are not connected to processor or memory modules but merely act as
switching nodes for routing messages back and forth between processors and memory
modules. If we convert the butterfly network into a wrapped butterfly, the processors and
memory modules can be merged to form a distributed-memory machine. The slowdown
factor in this emulation is still O(log p).

The PRAM emulation scheme depicted in Fig. 17.3 is quite inefficient because it leads
to roughly the same slowdown factor as that of Fig. 17.2, which uses a smaller butterfly.
However, this inefficient scheme can become quite efficient if we use it to emulate a
29 g-processor PRAM rather than one with 29 processors. Each processor on the left now
emulates g of the p PRAM processors instead of just one. Each memory module on the right
holds m/29 = ®(mlog p/p) memory locations. The emulating processor simply cycles through
the emulated processors in a round-robin fashion, issuing their respective memory read
requests (which are pipelined through the butterfly network), then receiving the returned data
from memory, then performing the corresponding computation steps, and finally issuing
write requests for storing the results in shared memory. With pipelining of the read and write
accesses through the network, the entire process of emulating one computation step of the g
processors takes O(q) steps with high probability. Thus, the emulation has &1) efficiency
on the average.

Deterministic emulation is both more difficult and less efficient [Harr94]. Because
conflicts in the routing of memory access requests may delay the completion of such requests,
the main ideais to store multiple copies of each memory data word so that if access to one
copy is delayed by routing conflicts, we can access another copy. The cost penalty is
obviously the need for more memory locations. By storing k=1og, m copies of each of the
m data items, we can successfully access any p itemsin O(log mlog p log log p) time in a

1 2
g+ 1 Columns

Figure 17.3. Distributed-memory machine, with a butterfly multistage interconnection network,
emulating the PRAM.

354 INTRODUCTION TO PARALLEL PROCESSING

p-node butterfly, provided that accesses belonging to a particular PRAM cycle are time-
stamped with the cycle number.

Intuitively, the improved worst-case performance of the above method results from the
fact that for each access, only [k + 1)/2of the k copies need to be read/updated. This ensures
the condition

| read set n update set | > 1

which in turn leads to any read set being guaranteed to have one up-to-date value with the
latest time stamp. Requests are issued for reading/updating all k copies of the required data
item but the request is considered satisfied once [k + 1)/2[0copies have been returned or
updated. Thus, congestion on some of the access paths will not lead to significant slowdown.
The detailed mechanism that allows groups of processors to cooperate in satisfying each
round of memory access requestsis fairly complicated [Upfa87].

In one sense, the replication factor log m of the preceding emulation is very close to the
best possible; the lower bound on the replication factor to guarantee fast access to at least
one up-to-date copy is Q (log m/log log m). However, thislower bound applies only if data
items must be stored as atomic or indivisible objects. Using Rabin’s information dispersal
scheme [Rabi89], one can encode each dataitem zin k=log m piecesz; z,. . . z,, with each
z; of size = 3|z|/k, in such away that any k/3 pieces can be used to reconstruct z (Fig. 17.4).
Then, in each read or write access, we deal with 2k/3 pieces, as this will guarantee that at
least k/3 of the 2k/3 pieces accessed will have the latest time stamp. If accessing each piece
is O(k) times faster than accessing the entire data item (which is k times larger), then we need
only O(log mlog plog log p/k) = O(log p log log p) time with the above constant-factor
redundancy scheme.

Thus far, our discussion of distributed shared memory has been in terms of emulating
a synchronous PRAM. Because, in such an emulation, one set of memory accesses is
completed before another set begins, the semantics of memory accesses is quite clear and

[T s

R

Possible read set

of size 2k/3 of size 2k/3

k/3 encoded picces

Figure 17.4. lllustrating the information dispersal approach to PRAM emulation with lower data
redundancy.

EMULATION AND SCHEDULING 355

corresponds to the emulated PRAM model. More generally, however, shared memory may
be accessed by multiple asynchronous processes running on different processors (asynchro-
nous PRAM). In such cases, a shared-memory consistency model [Adve96] must be defined
in order to alow efficient and correct parallel programming. The actual shared-memory view
can be provided to the programmer by software or hardware means [Prot96].

17.3. THE TASK SCHEDULING PROBLEM

Virtualy al parale algorithms that we developed in the previous chapters were such
that the allocation of computations to processors was explicit in the algorithm. In other words,
the algorithms explicitly specified what each processor should do in any given computation
step. With coarse-grain parallel computations, it is possible to decouple the algorithm’s
specification from the assignment of tasks to processors. This is in fact required if the
computation is to be executed on a variable number of processors to be determined at compile
time or even run time. It is aso necessary for dynamic load balancing (see Section 17.6).

The task scheduling problem is defined as follows: Given atask system characterizing
a parallel computation, determine how the tasks can be assigned to processing resources
(scheduled on them) to satisfy certain optimality criteria. The task system is usually defined
in the form of a directed graph, with nodes specifying computational tasks and links
corresponding to data dependencies or communications. Optimality criteria may include
minimizing execution time, maximizing resource utilization, minimizing interprocessor
communication, meeting deadlines, or a combination of these factors.

Associated with each task is a set of parameters, including one or more of the following:

1. Execution or running time. We may be given the worst case, average case, or the
probability distribution of a task’s execution time.

2. Creation. We may be faced with a fixed set of tasks, known at compile time, or a
probability distribution for the task creation times.

3. Relationship with other tasks. This type of information may include criticality,
priority order, and/or data dependencies.

4. Sart or end time. A task’s release time is the time before which the task should not
be executed. Also, a hard or soft deadline may be associated with each task. A hard
deadline is specified when the results of atask become practically worthlessif not
obtained by a certain time. A soft deadline may penalize late results but does not
render them totally worthless.

Resources or processors on which tasks are to be scheduled are typically characterized by
their ability to execute certain classes of tasks and by their performance or speed. Often
uniform capabilities are assumed for all processors, either to make the scheduling problem
tractable or because parallel systems of interest do in fact consist of identical processors. In
this latter case, any task can be scheduled on any processor.

The scheduling algorithm or schemeisitself characterized by

1. Preemption. With nonpreemptive scheduling, a task must run to completion once
started, whereas with preemptive scheduling, execution of a task may be suspended
to accommodate a more critical or higher-priority task. In practice, preemption
involves some overhead for storing the state of the partially completed task and for

356 INTRODUCTION TO PARALLEL PROCESSING

continually checking the task queue for the arrival of higher-priority tasks. However,
this overhead isignored in most scheduling algorithms for reasons of tractability.

2. Granularity. Fine-grain, medium-grain, or coarse-grain scheduling problems deal
with tasks of various complexities, from simple multiply—add calculations to large,
complex program segments, perhaps consisting of thousands of instructions. Fine-
grain scheduling is often incorporated into the algorithm, as otherwise the overhead
would be prohibitive. Medium- and coarse-grain scheduling are not fundamentally
different, except that with alarger number of medium-grain tasks to be scheduled,
the computational complexity of the scheduling algorithm can become an issue,
especially with on-line or run-time scheduling.

Unfortunately, most interesting task scheduling problems, some with as few as two proces-
sors, are NP-complete. This fundamental difficulty has given rise to research results on many
specia cases that lend themselves to analytical solutions and to a great many heuristic
procedures that work fine under appropriate circumstances or with tuning of their decision
parameters. Stankovic et al. [Stan95] present a good overview of basic scheduling results
and the boundary between easy and hard problems. El-Rewini et al. [EIRe95] provide an
overview of task scheduling in multiprocessors.

In what follows, we briefly review task scheduling problems of avery restricted type.
A task system is represented by a directed acyclic graph G = (V, E), where V is the set of
vertices representing unit-time tasks or computations v;, v, . . ., vy and E is the set of edges
representing precedence constraints: '

E={(v;,v)) | v;,v; OV and Task v; feeds datato Task v;}

An example task system is depicted in Fig. 17.5.

Each task must be scheduled on one of pidentical processors. There are no other resource
constraints, such as 1/0 or memory requirements, and no timing restrictions, such as release
times or deadlines. With these conditions, a schedule Sisaset of triples(v;, t;, P,) assigning
aTask v; to a Processor Py for aparticular time step t;, and satisfying

a xy0eS=W,y, e SforX =x
b. (x,xYe E,(x,v,2)€ S, (X, V.2)eS=Y >y

Condition (a) simply means that one processor can execute only one task at each time step,
whereas Condition (b) requires that precedence relationships be honored.

An analogy might be helpful. Tasks can be likened to courses, each with a set of
prerequisites. There are, say, T quarters or semesters over which courses needed to satisfy a
degree requirement must be scheduled such that the number of courses in each academic
term does not exceed the maximum allowed course load and the prerequisites for each course
are dl taken before the course. Here, the maximum course load corresponds to the number
of processors available and the number T of terms is the analogue of the total execution time
on the parallel machine. Of course, for constructing a study plan, we aso have timing
constraints in that not all courses are offered in every term. This analogy should be sufficient
to convince any college student that the task scheduling problem is NP-hard!

EMULATION AND SCHEDULING 357

Polynomial time optimal scheduling algorithms exist only for very limited classes of
scheduling problems. Examples include scheduling tree-structured task graphs with any
number of processors and scheduling arbitrary graphs of unit-time tasks on two processors
[EIRe95]. Most practical scheduling problems are solved by applying heuristic algorithms.
An important class of heuristic scheduling agorithms, known as list scheduling, is discussed
next.

17.4. A CLASS OF SCHEDULING ALGORITHMS

In list scheduling, a priority level is assigned to each task. A task list is then constructed
in which the tasks appear in priority order, with some tasks tagged as being ready for
execution (initially, only tasks having no prerequisite are tagged). With each processor that
becomes available for executing tasks, the highest-priority tagged task isremoved from the
list and assigned to the processor. If g processors become available simultaneously, then up
to g tasks can be scheduled at once. As tasks complete their executions, thus satisfying the
prerequisites of other tasks, such tasks are tagged and become ready for execution. When al
processors are identical, the schedulers in this class differ only in their priority assignment
schemes.

In the case of unit-time tasks, tagging of new tasks can be done right after scheduling
is completed for the current step. With different, but deterministic, running times, tagging
can be done by attaching a time stamp, rather than a binary indicator, with each task that will
become ready in a known future time. In what follows, we will consider the simple case of
unit-time tasks. Additionally, we will ignore scheduling and communication overheads.
Thus, once a task is run to completion and its processor becomes available, the communica-
tion of results to subsequent tasks and the scheduling of a new task on the released processor
are instantaneous.

Here is apossible priority assignment scheme for list scheduling. First the depth T, of
the task graph, which is an indicator of its minimum possible execution time, is determined.
The depth of the graph is designated as T., because it corresponds to the execution time of
the task graph with an unlimited number of processors. As an example, the depth of the task
graph in Fig. 17.5 is 8. We then take T, as our goal for the total running time T, with p
processors and determine the latest possible time step in which each task can be scheduled
if our goal isto be met. Thisis done by “layering” the nodes beginning with the output node.
For the example in Fig. 17.5, the output node v, is assigned with T, = 8 asiits latest possible
time. The prerequisites of v;3, namely, vy, vy, and v,,, are assigned a latest time of 7, their
prerequisites get 6, and so forth. If we have not made a mistake, some input node will be
assigned 1 asits latest possible time. The results of layering for the task graph of Fig. 17.5
are as follows:

1 2 3 4 5 6 7 8 9 10 11 12 13 Tasksin numerical order
1 2 3 4 6 5 6 6 6 7 7 7 8 Latest possibletimes (layers)

The priority of tasksis then assigned in the order of the latest possible times. Ties can be
broken in various ways. Let us give priority to a task with a larger number of descendants in
case of equal values of the latest possible times. For our example, this secondary criterion is

358 INTRODUCTION TO PARALLEL PROCESSING

Tp Latency with p processors
T1 Number of nodes (here 13)
Te Depth of the graph (here 8)

Vertex v, represents
Task or Computation §

Figure 17.5. Example task system showing communications or dependencies.

of no help, but generally, if a task with more descendants is executed first, the running time
will likely be improved.

1 2 3 4 6 5 7 8 9 10 11 12 13 Tasksin priority order
1 2 3 4 5 6 6 6 6 7 7 7 8 Latest possible times
2 1 3 3 2 1 1 1 1 1 1 1 0 Number of descendants

Now, to schedule our example task graph on p = 2 processors, we scan the constructed list
from left to right, to select up to two tagged tasks for execution in each time step. Selection
of each task in atime step may result in other tasks being tagged as ready for the next step.

Tasks listed in priority order

* 2 3 4 6 5 7 8 9 10 11 12 13 t=I v, scheduled

2* 3 4 6 5 7 8 9 10 11 12 13 t=2 v, scheduled

¥ 4 6 5 7 8 9 10 11 12 13 t=3 v, scheduled

4 6 5 7 g 9 10 11 12 13 t=4 v, v, scheduled

6~ 7+ & 9 10 11 12 13 t=5 Vg,V scheduled

g 9* 10+ 11 12 13 t=6 VgV, scheduled
100 11+ 12 13 t=7 vi, vy Scheduled
12* 13 t=8 vy, scheduled
13* t=9 vy3 scheduled (done)

EMULATION AND SCHEDULING 359

R e [[(ol []]

1]2 3]

Time Step

Figure 17.6. Schedules with p=1, 2, 3 processors for an example task graph with unit-time
tasks.

With p = 3 processors, the scheduling of our example task graph goes as follows:

Tasks listed in priority order

»x 2 3 4 6 5 7 8 9 10 11 12 13 = v, scheduled
2* 3 4 6 5 7 8 9 10 11 12 13 = v, scheduled
3F 4 6 5 7 8 9 10 11 12 13 = V5 scheduled
4 6 5 7 V4, Vs, Vg Scheduled

6 7+ 9 10 11* 12 13
9¢ 10+ 12 13
12* 13

13*

Vg, V1o Scheduled
V12 scheduled

t
t
t
g 9 10 11 12 13 t=
t
t
t
t V13 scheduled (done)

I
2
3
4
=5 Vg,Vy,Vy scheduled
6
7
8

Figure 17.7. Example task system with task running times of 1, 2, or 3 units.

360 INTRODUCTION TO PARALLEL PROCESSING

n o [2 [s [ef s Je]
P 1 3 |4 s 6
5/

P

3 l 5 6
: 177
Py /4V/// //1

—_ 3 i . 1 1 bl
F T 1 L I ¥ L]

N
%H

—
~
w
-
w
()Y
-
@
©
-
(=)
ra
[

Time Step

Figure 17.8. Schedules with p=1, 2, 3 processors for an example task graph with nonuniform
running times.

The schedules derived above for p =2 and p = 3 processors are depicted in Fig. 17.6, along
with a single-processor schedule for reference. Both schedules happen to be optimal, though
list scheduling does not guarantee this outcome in al cases.

Figures 17.7 and 17.8 show atask graph with nonuniform running times and the resulting
schedules for one, two, or three processors. Derivation of the schedules is left as an exercise.

More general versions of list scheduling, as well as other sophisticated scheduling
agorithms may take communication delays, deadlines, release times, resource requirements,
processor capabilities, and other factors into account. Because most scheduling algorithms
do not guarantee optimal running times anyway, a balance must be struck between the
complexity of the scheduler and its performance in terms of the total schedule length
achieved. The simplicity of the scheduler is particularly important with on-line or run-time
scheduling, where the scheduling algorithm must run on the parallel system itself, thus using
time and other resources like the tasks being scheduled. With off-line or compile-time
scheduling, the running time of the scheduler isless of anissue.

If timing parameters, such as task deadlines and release times, are considered in making
scheduling decisions, we have a real-time scheduling problem or scheduler. Example
scheduling strategies for real-time tasks include “nearest-deadline first” or “least-laxity
first,” where the laxity of a task with deadline d and execution time e at current time tis
defined as d —t — e. When the possibility of failure for processors and other resources is
considered in task assignment or reassignment, we have fault-tolerant scheduling.

17.5. SOME USEFUL BOUNDS FOR SCHEDULING

Section 17.4 reported the bad news that task scheduling is a difficult problem and that
optimal scheduling algorithms are either nonexistent or hard to come by for most cases of
practical interest. Now, it's time for some good news!

Let T, be the execution time of a task graph, with unit-time nodes, when using p
processors and a particular scheduling algorithm. T, is the number of nodes in the task graph

EMULATION AND SCHEDULING 361

and T, is its depth. The following inequalities are easily derived, where cis an arbitrary
integer constant, | is the number of input nodes, and f is the maximum node in-degree or
fan-in:

logfIS T < Tp <T,
T,7 < cTCxp

Less obvious is the following result, known as Brent's scheduling theorem:
T,<T,+T/p

The proof of thisresult is based on constructing a p-processor schedule whose running time
is strictly less than T, + T;/pin the worst case. First assume the availability of an unlimited
number of processors and schedule each node at the earliest possible time. Let there be ny
nodes scheduled at time t. Clearly, >, n=T;. With only p processors, the tasks scheduled for
time step t can be executed in Ijht/ pUsteps by running them p at atime. Thus,

T,< E;r:"l rnl/[ﬂ < Er;l (n/p+1)

Expanding the summation on the right-hand side above yields
n<(VmEgnﬁJ;=T/p+ﬂa

Note that Brent’ s scheduling theorem offers the following upper bound for the speed-up:

T, _ P
T.+T,/p 1+pT /T,

Speed-up < =

This can be viewed as a generalized form of Amdahl’s law. A large value for T, /T, isan
indication that the task has a great deal of sequential dependencies, which limits the speed-up
to at most T, /T, with any number of processors. A small value for T.,/T; allows us to approach
the ideal speed-up of p with p processors.

The promised good news are derived as corollaries to Brent's scheduling theorem. The
first “good-news’ corollary is obtained by observing that for p = T,/T,,, wehave T./p <T.,.
This inequality, along with T, < Tpand T, <T,/p+T,,, leadsto

T.<T,<2T, forp2T/T,

What the above inequalities suggest is that we can come within a factor of 2 of the best
running time possible, even with a very simple scheduling algorithm, provided that a suitably
large number of processors is available.

From Figs. 17.6 and 17.8, we observe that using too many processors to execute a task
system that exhibits limited parallelism iswasteful in that processing resources may remain
idle for extended periods. The second “good-news’ corollary to Brent's scheduling theorem
is obtained by observing that for p< T, /T,,, we have T, < T,/p, leading to

T)/p< Tp <2T\/p for p < T,/T,,

362 INTRODUCTION TO PARALLEL PROCESSING

Here, the interpretation is that we can come within a factor of 2 of the ideal speed-up if we
do not use too many processors.

Combining the above two pieces of good news, we can achieve linear or ©(p) speed-up,
along with near-minimal ©(T,,) running time and optimal ©(1) efficiency, by using roughly
T,/T,, processors to execute a task system of depth T, composed of T, unit-time tasks. Thus,
as long as we can control the number of processors that are applied to a given parallel task
system, we can obtain near-optimal results. The architectural implication of the above
observations is that the user must be allowed to choose the number of processors that would
run his or her application most efficiently; hence, the need for partitionable parallel comput-
ersthat can run several tasks on different subsets of processors (e.g., subcubes, submeshes,
subtrees).

17.6. LOAD BALANCING AND DATAFLOW SYSTEMS

One approach to scheduling a task graph is to initially distribute the tasks among the
available processors, based on some criteria, and then let each processor do its own internal
scheduling (ordering the execution of its set of tasks) according to interdependencies of tasks
and the results received from other processors. The advantage of this approach is that most
scheduling decisions are performed in a distributed manner. A possible drawback is that the
results may be far from optimal. However, if such a scheme is combined with a method for
redistributing the tasks when theinitial distribution proves to be inappropriate, good results
may be achieved.

Suppose the tasks are distributed to processors in such a way that the total expected
running times of the tasks assigned to each processor are roughly the same. Because task
running times are not constants, a processor may run out of things to do before other
processors complete their assigned tasks. Also, some processors may remain idle for long
periods of time as they wait for prerequisite tasks on other processors to be executed. In these
cases, aload balancing policy may be applied in an attempt to make the load distribution
more uniform. As we learn about the actual execution times and interdependencies of the
tasks at run time, we may switch as yet unexecuted tasks from an overloaded processor to a
less loaded one. Load balancing can be initiated by an idle or lightly loaded processor
(receiver-initiated) or by an overburdened processor (sender-initiated).

Unfortunately, load balancing may involve a great deal of overhead that reduces the
potential gains. If moving a task from one processor to another means copying a large
program with huge amounts of data and then updating various status tables to indicate the
new location of the task (for the benefit of other processors that may need the results of the
moved task), then communication overhead is significant and load balancing may not be
worth its cost. At the other extreme, if the tasks belong to a standard set of tasks, each of
which is invoked with a small set of parameters (data) and with copies already available
locally to every processor, then moving the tasks may involve only a small broadcast message
to pass the parameters and update the system status tables. In this case, the load balancing
overhead will be minimal.

In circuit-switched networks that use wormhole routing, the load balancing problem can
be formulated as a network flow problem and thus solved using available methods and
agorithms for the latter problem [Bokh93]. The excess (deficiency) of work load at some

EMULATION AND SCHEDULING 363

nodes may be viewed as flow sources (sinks) and the requirement is to allow the excess work
load to “flow” from sources to sinks via paths that are, to the extent possible, disjoint and
thus free from conflicts.

The ultimate in automatic load-balancing is a self-scheduling system that tries to keep
all processing resources running at maximum efficiency. There may be a central location or
authority to which processors refer for work and where they return their results. Anidle
processor requests that it be assigned new work by sending a message to this central
supervisor and in return receives one or more tasks to perform. This works nicely for tasks
with small contexts and/or relatively long running times. If the central location is consulted
too often, or if it has to send (receive) large volumes of data to (from) processors, it can
become a bottleneck.

A hardware-level implementation of such a self- scheduling scheme, known as dataflow
computing, has a long history. A dataflow computation is characterized by a dataflow graph,
which isvery similar to the task graphs of Section 17.4, but may contain decision elements
and loops. We will limit our discussion to decision-free and loop-free dataflow graphs. Figure
17.9 depicts an example that is very similar to the task graph of Fig. 17.7. Tokens, shown in
the form of heavy dots, are used to keep track of the availability of data. Initially only the
primary inputs carry tokens (data values). Once tokens appear on all inputs of a node, the
node is enabled or “fired,” resulting in tokens to be removed from its inputs and placed on
each of its outputs. If an edge is restricted to carry no more than one token, we have a static
dataflow system. If multiple tagged tokens can appear on the edges and are “consumed” after
matching their tags, we have a dynamic dataflow system that allows computations to be
pipelined but implies greater overhead as a result of the requirement for matching of the
token tags.

¥y Output Y1 Output

Figure 17.9. Example dataflow graph with token distribution at the outset (left) and after two
time units (right).

364

INTRODUCTION TO PARALLEL PROCESSING

Hardware implementation of dataflow systems with fine-grain computations (one or a
few machine instructions per node), though feasible, has proven impractical [Lee94].
However, when each node or task is a computation thread consisting of longer sequences of
machine instructions, then the activation overhead is less serious and the concept becomes
quite practical. We will discuss the notion of multithreading, and its implications for
tolerating or hiding the memory access latency in parallel computers, in Section 18.3.

PROBLEMS

17.1.

17.2.

17.3.

17.4.

17.5.

Emulation through graph embedding

In Section 17.1, we saw an example of embedding that led to emulation with the maximum
slowdown of dilation x congestion x load factor. This example is extreme in that it involves an
unrealistic parallel architecture being emulated by avery small (two-node) system.

a Show that the bound can be equaled or approached in more realistic examples as well.

b. Consider embeddings of target systems into host systems with dilation 1. Under what
conditions can the slowdown for the corresponding emulation become the larger of
congestion and load factor rather than their product?

c. Provide acomplete example that exhibits the slowdown of part (b).

Emulation through graph embedding

Suppose that an n;-node, e;-edge, degree-d+ target graph, with diameter D and bisection
width By, isto be embedded into a host graph with corresponding parameters ny, ey, dy, Dy,
By. Can you derive bounds on the dilation, congestion, and load factor of the embedding, given
only the above information?

Regular graphs

Prove or disprove: If Gisaregular degree-d, p-node undirected graph with no self-loop (edge
from one node to itself), then either p or d must be even. What happens to the above result if
Gisaregular directed graph with in-degree and out-degree of d?

Graph embedding
Which of the following embeddings is possible? Why (not)?

a Dilation-1 embedding of the hex-mesh of Fig. 12.2 into a hypercube of at most twice its
size.

b. Congestion-2 embedding of the eight-neighbor mesh (Fig. 12.2) into a mesh of the same
size.

c. Dilation-1 embedding of the 29-node shuffle-exchange network (Fig. 15.18) into the
g-cube.

d. Congestion-1 embedding of a 29-node Mdbius cube (Fig. 15.21) into theq-cube.

e. Dilation-1 embedding of astar graph (Fig. 16.3) into a hypercube of at most twice its size.

f. Constant-dilation embedding of the mesh-connected trees into the mesh of trees (Fig.
16.11).

Graph embedding

Scheduling of atask graph, with unit-time tasks, on a parallel system (specified in terms of a
directed graph) can aso be viewed as a graph embedding problem. Describe the significance
of dilation, congestion, and load factor in this context.

EMULATION AND SCHEDULING 365

17.6. PRAM emulation of a degree-d network

a

b.

The emulation of a degree-d network by PRAM suggested in Section 17.1 requires pd
buffers in shared memory (two per bidirectional link). Can the perfect-matching result of
Section 17.1 be used to reduce the number of buffersto p?

A degree-d architecture is restricted to single-port communication, i.e., a processor can
send/receive a message to/from at most one neighbor in each step. Can the PRAM
emulation of this architecture be speeded up to require O(1) rather than O(d) slowdown?
Suppose that we want to emulate a hypergraph with maximum node degree d (in a
hypergraph, an edge can connect more than two nodes). What is the worst-case slowdown
factor if the emulation is done by the EREW PRAM?

Either prove, by constructing a worst-case example, that the upper bound of part (c) istight

or try to improve your bound.

17.7. Butterfly emulation of a degree-d network

a

b.

Prove the existence of a perfect matching in any p x p bipartite graph with uniform node
degreed (Section 17.1).

State and prove a more general result relating to the emulation of an architecture charac-
terized by a directed graph with maximum node in- and out-degrees of d;, and dout,
respectively, on a butterfly network.

17.8. Distributed shared memory
Show that in each of the following two cases, the butterfly network can emulate the PRAM
with worst-case O(log p) slowdown and no data replication.

17.9.

17.10.

a

b.

The number m of shared-memory locations and the number p of processors satisfy m=
O(p).
The mmemory locations are divided into O(p) banks. Shared data structures and memory
accesses are organized so that no two processors ever need to access the same memory
bank.

Optimal scheduling

a

b.

Show that thelist scheduling algorithm of Section 17.4 yieldsan optimal schedulefor p=1.
It was mentioned in Section 17.3 that a task graph with unit-time tasks can be optimally
scheduled on two processors using a deterministic polynomial-time algorithm. Show that
the list scheduling algorithm discussed in Section 17.4 is such an algorithm.

Provide an example to show that the list scheduling algorithm of Section 17.4 is not optimal
for three processors.

Provide an example to show that the list scheduling algorithm of Section 17.4 is not optimal
for two processors if task execution times are one or two units.

It has been argued that replacing a task with running time of k units with a chain of k
unit-time tasks converts the scheduling problem of part (d) to one with unit-time tasks that
can be optimally solved by alist scheduler per the result of part (b). What is wrong with
this argument?

List scheduling

Let us call the task graph of Fig. 17.5 with unit-time tasks “version U” of the task graph. We
saw that the list scheduling algorithm introduced in Section 17.4 is optimal for this version U.
Define version E/O of the task graph as one in which all odd-numbered tasks are unit-time but
even-numbered tasks take twice as long.

366

17.11

17.12.

17.13.

17.14.

17.15.

17.16.

INTRODUCTION TO PARALLEL PROCESSING

a. Isthelist scheduling agorithm of Section 17.4 optimal for version E/O with p = 2?
b. Repesat part () withp =3.

List scheduling

Modify the list scheduling algorithm of Section 17.4 so that the slack of each task, i.e., the
difference between its latest possible execution time (to meet the minimum T., running time)
and its earliest possible execution time in view of task interdependencies, is used for assigning
priorities. Apply the modified algorithm to both examples of Section 17.4 and discuss.

Amdahl’s law

Consider atask graph that begins with one input node of running time f/2, then branches out
into a very large number m of parallel nodes of running time (1 — f)/meach, and finaly
converges into a single output node of running time f/2. Assume that m>> p.

a Show that Brent’s scheduling theorem applied to thistask graph yields Amdahl’s law.
b. Formulate the “good-news’ corollaries, discussed near the end of Section 17.5, for this
case.

Brent’s scheduling theorem

a. Show that the scheduling agorithm implicitly defined in the proof of Brent’'s scheduling
theorem does not yield an optimal schedule for the task graph of Fig. 17.5 with p=2.

b. Construct a T;-node task graph, with unit-time tasks, that can be scheduled in [T,/2time
steps with p = 2 but that leads to a (BT, /403step schedule using the algorithm of part (a).
Hint: The graph must contain many nodes that can be scheduled at virtually any time before
the final node is to be executed but that are scheduled very early by the above agorithm.

Readl-time scheduling

Real-time scheduling was very briefly discussed at the end of Section 17.4, where the
“nearest-deadline first” (NDF) and “least-laxity first” (LLF) scheduling policies were intro-
duced.

a. Show that with unit-time tasks, the NDF scheduling policy is optimal in that if the task
graph can be scheduled to meet all deadlines, it can be scheduled using the NDF policy.

b. Show that the NDF scheduling policy is not optimal with non-unit-time tasks.

c. Show that the LLF scheduling policy is optimal with unit-time or non-unit-time tasks.

Load balancing by data redistribution

Load balancing may sometimes be required as a result of processor failures rather than
unpredictable execution times. Study the implications of various data redistribution schemes
in iterative matrix computations in which matrix elements are recomputed based on the values
in asmall neighborhood around them [Uyar88].

Dataflow computation

a. Draw adataflow graph for computing the roots of the quadratic equation ax2 + bx + ¢ = 0.

b. Derive schedules for executing this computation with one, two, or three arithmetic units,
assuming that each arithmetic operation is a unit-time task. Ignore the control overhead.

c. Repeat pat (b), this time assuming that addition, multiplication/squaring, and divi-
sion/square-rooting take one, three, and seven time units, respectively.

d. Modify your dataflow graph to yield minimal execution time with the assumptions of part
().

EMULATION AND SCHEDULING 367

REFERENCES AND SUGGESTED READING

[Advege]
[Bert8g]
[Bokha3]
[EIRe95]
[Harro4]
[Leedq]
[Leigo2]
[Protoe]
[Rabigg]
[Stan9s]
[Upfad7]

[Uyar88]

Adve, S. V., and K. Gharachorloo, “Shared Memory Consistency Models: A Tutoria,” IEEE
Computer, Vol. 29, No. 12, pp. 6676, December 1996.

Bertsekas, D. P., and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods,
Prentice-Hall, 1989.

Bokhari, S. H., “A Network Flow Model for Load Balancing in Circuit-Switched Multicomputers,”
|IEEE Trans. Parallel Distributed Systems, Vol. 4, No. 6, pp. 649-657, June 1993.

El-Rewini, H., H. H. Ali, and T. Lewis, “Task Scheduling in Multiprocessing Systems,” |EEE
Computer, Vol. 28, No. 12, pp. 27-37, December 1995.

Harris, T. J., “A Survey of PRAM Simulation Techniques,” ACM Computing Surveys, Vol. 26, No.
2, pp. 187-206, June 1994.

Lee, B., and A. R. Hurson, “Dataflow Architectures and Multithreading,” IEEE Computer, Vol. 27,
No. 8, pp. 27-39, August 1994.

Leighton, F. T., Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes,
Morgan Kaufmann, 1992.

Protic, J., M. Tomacevic, and V. Milutinovic, “Distributed Shared Memory: Concepts and Systems,”
|EEE Parallel & Distributed Technology, Vol. 4, No. 2, pp. 63-79, Summer 1996.

Rabin, M., “Efficient Dispersal of Information for Security, Load Balancing, and Fault Tolerance,”
J. ACM, Val. 36, No. 2, pp. 335-348, April 1989.

Stankovic, J. A., M. Spuri, M. Di Natale, and G. C. Buttazzo, “Implications of Classical Scheduling
Resultsfor Real-Time Systems,” IEEE Computer, Vol. 28, No. 6, pp. 16-25, June 1995.

Upfal, E., and A. Wigderson, “How to Share Memory in a Distributed System,” J. ACM, Vol. 34, No.
1, pp. 116-127, January 1987.

Uyar, M. U., and A. P. Reeves, “Dynamic Fault Reconfiguration in a Mesh-Connected MIMD
Environment,” IEEE Trans. Computers, Vol. 37, pp. 1191-1205, October 1988.

This page intentionally left blank.

18

Data Storage, Input,
and Output

When discussing the implementation aspects of shared-memory machines in
Section 6.6, we learned of the importance of proper data distribution within
memory banks to allow conflict-free parallel access to required data elements
by multiple processors. In this chapter, we elaborate further on the problem of
data distribution in parallel systems, particularly of the distributed-memory
variety. In particular, we study two complementary approaches to the memory
latency problem: latency tolerance/hiding and data caching. Additionally, we
deal with data input and output explicitly. Thus far, we have conveniently
ignored the 1/0 problem, assuming, in effect, that the needed data fit in the local
memories of participating processors or that the right data are recognized
magically and made memory-resident before they are first accessed. Chapter
topics are:

18.1. Data access problems and caching
18.2. Cache coherence protocols

18.3. Multithreading and latency hiding
18.4. Parallel 1/O technology

18.5. Redundant disk arrays

18.6. Interfaces and standards

369

This page intentionally left blank.

DATA STORAGE, INPUT, AND OUTPUT 371

18.1. DATA ACCESS PROBLEMS AND CACHING

Memory access latency is a major performance hindrance in parallel systems. Even in
sequential processors, the gap between processor and memory speeds has created difficult
design issues for computer architects, necessitating pipelined memory access and multiple
levels of cache memories to bridge the gap. In vector processors, the mismatch between
processor and memory speeds is made tolerable through the provision of vector registers
(that can be loaded/stored as computations continue with data in other registers) and pipeline
chaining, allowing intermediate results to be forwarded between function units without first
being stored in memory or even in registers.

Parallel processing aggravates this speed gap. In a shared-memory system, the memory
access mechanism is much more complicated, and thus slower, than in uniprocessors. In
distributed-memory machines, severe speed penalties are associated with access to nonlocal
data. In both cases, three complementary approaches are available to mediate the problem:

1. Distributing the data so that each item is located where it is needed most. This
involves an initial assignment and periodic redistribution as conditions change.

2. Automatically bringing the most useful, and thus most frequently accessed, data
into local memory whenever possible. Thisis known as data caching.

3. Making the processors computational throughput relatively insensitive to the
memory access latency. Thisisreferred to as latency tolerance or latency hiding.

These methods may be used in combination to achieve the best results. For example, with
caching, we may still need latency tolerance in cases where the required data are not found
in the cache. Option 1, or judicious distribution of data, is possible in applications where the
data sets and their scopes of relevance are static or change rather slowly. Some of the issues
discussed in Section 6.6 are relevant here. We will discuss Option 3, or latency tolerance/hid-
ing methods, in Section 18.3. In the remainder of this section, we introduce some notions
relating to Option 2 to facilitate our discussion of cache coherence protocols in Section 18.2.
This review is by necessity brief. Interested readers can consult Patterson and Hennessy
[Patt96], pp. 375427, for an in-depth discussion.

A cache is any fast memory that is used to store useful or frequently used data. A
processor cache, e.g., isavery fast (usually static RAM) memory unit holding the instruc-
tions and data that were recently accessed by the processor or that are likely to be needed in
the near future. A Level-2 cache is somewhat slower than a processor cache, but still faster
than the high-capacity dynamic RAM main memory. A disk cache or file cacheisusudly a
portion of main memory that is set aside to hold blocks of data from the secondary memory.
This allows multiple records or pages to be read and/or updated with a single disk access,
which is extremely slow compared with processor or even main memory speeds.

To access a required data word, the cache is consulted first. Finding the required data in
the cache is referred to as a cache hit; not finding it is a cache miss. An important parameter
in evaluating the effectiveness of cache memories of any typeisthe hit rate, defined as the
fraction of data accesses that can be satisfied from the cache as opposed to the slower memory
that sits beyond it. A hit rate of 95%, e.g., meansthat only 1 in 20 accesses, on the average,
will not find the required data in the cache. With a hit rate r, cache access cycle of C;_, and
slower memory access cycle of Cy,,, the effective memory cycletimeis

372 INTRODUCTION TO PARALLEL PROCESSING

Cei= G

¢ a8t

+(1-nC

slow

This equation is derived with the assumption that when data are not found in the cache, they
must first be brought into the cache (in Cgq,, time) and then accessed from the cache (in Cq
time). Simultaneous forwarding of data from the slow memory to both the processor and the
cache reduces the effective delay somewhat, but the above simple formula is adequate for
our purposes. We see that when r is close to 1, an effective memory cycle close to C; is
achieved. Therefore, the cache provides the illusion that the entire memory space consists
of fast memory.

In typical microprocessors, accessing the cache memory is part of the instruction
execution cycle. Aslong as the required data are in the cache, instruction execution continues
at full speed. When a cache miss occurs and the slower memory must be accessed, instruction
execution isinterrupted. The cache miss penalty is usually specified in terms of the number
of clock cycles that will be wasted because the processor has to stall until the data become
available. In a microprocessor that executes an average of one instruction per clock cycle
when there is no cache miss, a cache miss penalty of four cycles means that four cycles of
delay will be added to the instruction execution time. Given a hit rate of 95%, the effective
instruction execution delay will be 1 + 0.05 x 4 = 1.2 cycles per instruction (CP1).

A cache memory is characterized by several design parameters that influence its
implementation cost and performance (hit rate). In the following description, we limit our
attention to a processor cache that is located between the central processor and main memory,
i.e., we assume that there is no Level-2 cache. Similar considerations apply to other types of
caches. The most important cache parameters are

1. Cache size in bytes or words. A larger cache can hold more of the program’s useful
data but is more costly and likely to be slower.

2. Block or cache-line size, defined as the unit of data transfer between the cache and
main memory. With alarger cache line, more data are brought into the cache with
each miss. This can improve the hit rate but also tends to tie up parts of the cache
with data of lesser value.

3. Placement policy determining where an incoming cache line can be stored. More
flexible policies imply higher hardware cost and may or may not have performance
benefits in view of their more complex, and thus slower, process for locating the
required data in the cache.

4. Replacement policy determining which of severa existing cache blocks (into which
a new cache line can be mapped) should be overwritten. Typical policies include
choosing a random block or the least recently used block.

5. Write policy determining if updates to cache words are immediately forwarded to
the main memory (write-through policy) or modified cache blocks are copied back
to main memory in their entirety if and when they must be replaced in the cache
(write-back or copy-back policy).

The most commonly used placement policy for processor cachesisthe set-associative
method, which, at the extreme of single-block sets, degenerates into a direct-mapped cache.
The read operation from a set-associative cache with a set size of s= 2 is depicted in Fig.
18.1. The memory address supplied by the processor is composed of tag and index parts.

DATA STORAGE INPUT AND OUTPUT 373

Address in Placement Option 0 Placement Option 1

|'Da.g |1nd:x| State bits State bits
Tag | -—Onccachoblock — |Tag | —- One cache block —

Block

——P ‘_j-.-{-:,‘/j\\{ | |
Word :
offset

The two candidate words
and their tags aro read out

Cachemiss Dataout

Figure 18.1. Data Storage and access in a two-way set-associative cache.

The index part, itself consisting of a block address and word offset within the block, identifies
a set of scache words that can potentially hold the required data, while the tag specifies one
of the many cache lines in the address space that map into the same set of s cache blocks by
the set-associative placement policy. For each memory access, al s candidate words, along
with the tags associated with their respective blocks, are read out. The stags are then
simultaneously compared with the desired tag, resulting in two possible outcomes:

1. None of the stored tags matches the desired tag. The data parts are ignored and a
cache miss signal is asserted in order to initiate a block transfer from main memory.

2. Theith stored tag, which corresponds to the placement option i (0 <i <'s), matches
the desired tag. The word read out from the block corresponding to the ith placement
option is chosen as the data outpuit.

As apractical matter, each cache block may have a valid bit that indicates whether or
not it holds valid data. This valid bit is aso read out along with the tag and is ANDed with
the comparison result to indicate a match with valid data. A block of a write-back cache may
also have a dirty bit that is set to 1 with every write update to the block and is used at the
time of block replacement to decide if a block to be overwritten needs to be copied back into
main memory.

374 INTRODUCTION TO PARALLEL PROCESSING

18.2. CACHE COHERENCE PROTOCOLS

As briefly discussed in Section 4.3, placement of shared data into the cache memories
of multiple processors creates the possibility of the multiple copies becoming inconsistent.
If caching of shared modifiable data is to be allowed, hardware provisions for enforcing
cache coherence are needed. There exist many cache coherence protocols that share some
fundamental properties but that differ in implementation details. The differences typically
result from attempts to optimize the protocols for particular hardware platforms and/or
application environments. In what follows, we will review two representative examples, one
from the class of snoopy protocols and another from the class of directory-based schemes.

Figure 18.2 shows four data blocks w, X, y, and zin the shared memory of a parallel
processor along with some copies in the processor caches. The primed values y' and Z
represent modified or updated versions of blocks y and z, respectively. The state of a data
block being cached can be one of the following:

o Multiple-consistent. Several caches contain copies of w; the cache copies are consistent
with each other and with the copy of win the main memory.

o Sngle-consistent. Only one cache contains a copy of x and that copy is consistent with
the copy in the main memory.

o Sngle-inconsistent. Only one cache contains a copy of ywhich has been modified and
is thus different from the copy in main memory.

o Invalid. A cache contains an invalid copy of z the reason for thisinvalidity is that zhas
been modified in adifferent cache which is now holding a single consistent copy.

Clearly, we want to avoid having multiple inconsistent cache copies. For this reason, when
there are multiple cache copies and one of the copies is updated, we must either invalidate
all other cache copies (write-invalidate policy) or else modify all of these copies as well
(write-update policy).

Snoopy cache coherence protocols are so named because they require that al caches
“snoop” on the activities of other caches, typically by monitoring the transactions on a bus,

Processors Caches Memory
Modules
"""" idp ¥ w | w Muldple consistent
oy X x Single consistent
; Proc. :
R P, ‘;{ l——{ Processor- —E y' Single inconsistent
iProc. | t0-Memory
Net Network
work
i Pp—-l : z z Invalid
Parallel /O

Figure 18.2 Various types of cached data blocks in a parallel processor with global memory
and processor caches.

DATA STORAGE, INPUT, AND OUTPUT 375

to determine if the data that they hold will be affected. Several implementations of snoopy
protocols can be found in bus-based shared-memory multiprocessors, including machines
in the Sequent Symmetry series which use two-way set-associative caches.

A bus-based write-invalidate write-back snoopy cache coherence protocol can be
implemented by a simple finite-state control mechanism within each participating cache (Fig.
18.3). For simplicity, we do not distinguish between the single-consistent and multiple-con-
sistent states discussed above and collectively refer to them as the shared state (top right of
Fig. 18.3) where the processors can freely read data from the block but have to change the
block’s state to exclusive before they can write into it (top left of Fig. 18.3). The shared and
exclusive states might have been called valid clean and valid dirty, respectively.

The state transitions in Fig. 18.3 are explained next. Each transition is labeled with the
event that triggers it, followed by the action(s) that must be taken (if any). Possible events
are CPU read/write requests, a cache hit or miss, and read/write miss notifications from other
caches as observed on the bus. Possible actions are putting aread or write miss notification
on the bus and writing back the block into main memory.

1. CPU read hit. A shared block remains shared; an exclusive block remains exclusive.

2. CPU read miss. A block is selected for replacement; if the block to be overwritten
isinvalid or shared, then “read miss’ is put on the bus; if it is exclusive, it will have
to be written back into main memory. In all cases, the new state of the block is
“shared.”

3. CPU write hit. An exclusive block remains exclusive; a shared block becomes
exclusive and a“write miss’ is put on the bus so that other copies of the block are
invalidated.

4. CPU write miss. A block is selected for replacement; if the block to be overwritten
isinvalid or shared, then “write miss’ is put on the bus; if it is exclusive, it will have
to be written back into main memory. In all cases, the new state of the block is
“exclusive.”

5. Busread miss. Thisisonly relevant if the block is exclusive, in which case the block
must be written back to main memory. The two copies of the block will then be

CPU read hit, CPU write hit CPU read hit

CPU read miss: Write back the block, put read miss on bu:

Bus read miss for this block; Write back the block

write miss: CPU write hit/miss: Put write miss on bus

Bus write miss for this block: CPU read miss:
Write back the block Put read miss on bus

CPU write miss: Put write miss on bus Bus write miss for this block

Figure 18.3. Finite-state control mechanism for a bus-based snoopy cache coherence protocol.

376 INTRODUCTION TO PARALLEL PROCESSING

consistent with each other and with the copy in main memory; hence the new state
will be “shared.”

6. Buswrite miss. If the block is exclusive, it must be written back into main memory;
in any case, the new state of the block becomes “invalid.”

In a directory-based coherence protocol, a centralized or distributed directory is used to
maintain data on the whereabouts of the various cache line copies and on the relationship of
those copies. There are two finite-state control mechanisms, one for the individual cache
blocks and one for directory entry representing al of the copies of the cache block. The
finite-state control for individual cache blocks is quite similar to that shown in Fig. 18.3,
except that interaction with other caches is accomplished through messages sent to, and
received from, the directory rather than by monitoring the bus. We leave the required
modifications to the state diagram of Fig. 18.3 to make it correspond to a directory-based
scheme as an exercise for the reader.

The directory entry corresponding to a cache block contains information on the current
state of the block and its cache copies, as described below. The directory receives messages
from various cache units regarding particular blocks and in response, updates the block’s
state and, if required by the protocol, sends messages to other caches that may hold copies
of that block. Figure 18.4 depicts the state transition diagram for a directory entry. The three
states of a data block, from the viewpoint of the directory, are uncached (no cache holds a
copy), shared (read-only), and exclusive (read/write). When in the exclusive state, a data
block isviewed as being “owned” by the single cache that holds a copy of the block. In this
state, the main memory copy of the block is not up-to-date. Thus, to overwrite the block, the
owner must perform a write-back operation.

The state transitions in Fig. 18.4 are explained next. Each transition is labeled with the
type of message that triggersit, followed by the action(s) taken. Possible messages arriving
at a directory are read miss, write miss, and data write-back. Possible actions are sending
data to a requesting cache, fetching data from another cache, requesting invalidation in
another cache, and updating the sharing set (list of caches that hold a copy of the block).

Write miss: Feich data value, request invalidation, Read miss: Return data value,
return data value, sharing set = (c} sharing set = sharing set + (c)

Read miss: Fetch, return data value, sharing set = (c}

Exclusive

(read/write) (read-only)

Write miss: Invalidate, sharing set = {c},
requmn data value

Data write-back:
Sharing set= {]

@ Read miss: Return data vdua.

sharing set = {c}

Write miss: Return data value,
sharing set = (c)

Figure 18.4. States and transitions for a directory entry in a directory-based coherence protocol
(c denotes the cache sending the message).

DATA STORAGE, INPUT, AND OUTPUT 377

1. Red miss. For a shared block, its data value is sent to the requesting cache unit,
and the new cache is added to the sharing set. For an exclusive block, afetch message
is sent to the owner cache unit, the data are returned to the requesting cache, and
the new cacheisincluded in the sharing set. For an uncached block, the data value
is returned to the requesting cache, which now forms the singleton sharing set. The
block remains or becomes “shared.”

2. Write miss. For a shared block, an invalidate message is sent to member caches of
the sharing set, a new singleton sharing set consisting of the requesting cache is
built, and the data value is returned to the requesting cache unit. For an exclusive
block, a message is sent to the old owner to fetch the data and to invalidate the
existing copy. The requesting cache becomes the new owner and thus the only
member of the sharing set. For an uncached block, the data value is returned to the
requesting cache which is now the block’s owner. The block remains or becomes
“exclusive.”

3. Data write-back. This can only occur for an exclusive block. The sharing set is
emptied and the block becomes “uncached.”

The sharing set can be implemented in different ways. In the full-map approach, a
bit-vector, containing 1 bit for each cache unit, indicates the cache that owns the block or ll
of the caches that hold read-only copies. Thisis quite efficient when the number of caches
issmall and fixed. A more flexible approach, typically used in distributed directories, isto
use asingly or doubly linked list, with each directory holding a pointer to the next/previous
directory that has a copy of the block. Notifications are then done by a chain of messages
forwarded along the list from each directory to the next in sequence.

18.3. MULTITHREADING AND LATENCY HIDING

The emulation of a 29g-processor PRAM on a 29-processor distributed-memory system,
with its processors interconnected via a butterfly network (Section 17.2), is an example of
methods for hiding the remote memory access latency in a NUMA parallel processor. The
general idea of latency hiding methodsis to provide each processor with some useful work
to do as it waits for remote memory access requests to be satisfied. In the ideal extreme,
latency hiding allows communications to be completely overlapped with computation,
leading to high efficiency and hardware utilization.

Multithreading is a practical mechanism for latency hiding (Fig. 18.5). A multithreaded
computation typically starts with a sequential thread, followed by some supervisory overhead
to set up (schedule) various independent threads, followed by computation and communica-
tion (remote accesses) for individual threads, and concluded by a synchronization step to
terminate the threads prior to starting the next unit of parallel work. Thread computations
and remote accesses are separated in Fig. 18.5 for clarity, but they can be interleaved.

When in between the two shaded boxes in Fig. 18.5, a processor is working on a thread
and the thread requires a remote memory access before it can continue, the processor places
the thread in a wait queue and switches to a different thread. This switching of context in the
processor involves some overhead which must be considerably less than the remote access
latency for the scheme to be efficient. A processor for multithreaded computation is thus

378 INTRODUCTION TO PARALLEL PROCESSING

" 8
.] Thread Remote g
g §§ Computations Accesses 2
3 443

Figure 18.5. The concept of multithreaded parallel computation.

likely to have multiple register sets, one per active thread, in order to minimize the context
switching overhead. The higher the remote memory access delay, the larger is the number
of threads required to successfully hide the latency. At some point in its computation, the
newly activated thread may reguire a remote memory access. Thus, another context switch
occurs, and so on.

The access requests of the threads that are in the wait state may be completed out of
order because, e.g., they involve accesses to memory modules at different network distances
or are routed through paths with varying congestions. It is thus common to tag each access
request with a unique thread identifier so that when the result is returned, the processor knows
which of the waiting threads should be activated. Thread identifiers are sometimes called
continuations. The Tera MTA parallel computer system (see Section 21.4) has hardware
support for 10-bit continuations, thus allowing up to 1024 threads awaiting remote memory
accesses.

Note that application of multithreading is not restricted to a parallel processing environ-
ment but offers advantages even on a uniprocessor. A uniprocessor that is provided with
multiple independent threads to execute, can switch among them on each cache miss, on
every load, after each instruction, or after each fixed-size block of instructions, for improved
performance. The processor may need multiple register sets (to reduce the context switching
overhead) and alarger cache memory (to hold recently referenced data for several threads),
but the benefits can outweigh the costs. Hirata et al. [Hira92] report speed-ups of 2.0, 3.7,
and 5.8 in a processor that has nine functional units and executes two, four, and eight
independent threads, respectively.

It isinteresting to note that a form of (redundant) parallel processing has been suggested,
and shown to be beneficial, in closing the gap between computation speed and off-chip
memory access latency. In data-scalar computation [Burg97], which is in a sense the opposite
of data-parallel or SIMD-type parallel processing, multiple copies of the same program are
run on severa nodes, each of which holds a fraction of the program’s address space. Each
write is performed locally by one of the processors and thus involves no off-chip communi-
cation. When a processor needs to read data from a nonlocal memory address, it simply idles
until the required data word arrives. When read access to local memory is performed, the
data that are read out are also broadcast to al other processors that have already encountered
the same access, or will do so shortly. The elimination of off-chip writes, as well as read

DATA STORAGE, INPUT, AND OUTPUT 379

requests, can lead to speed gains of up to 50% with two processors and up to 100% with four
processors [Burg97].

18.4. PARALLEL I/O TECHNOLOGY

An important requirement for highly parallel systems is the provision of high-bandwidth
1/O capability. For some data-intensive applications, the high processing power of a mas-
sively parallel system is not of much value unless the 1/0 subsystem can keep up with the
processors. A problem that illustrates the need for high-speed 1/0 is that of detecting faint
radio pulsars whose solution involves an FFT computation of 8 to 64 hillion points. Solving
this problem requires an 1/0 throughput of at least 1 billion bytes per second (1 GB/s)
[Thak9e6].

Some architectures can be easily augmented to incorporate 1/0 capabilities. For exam-
ple, the unused links at the boundary of a 2D or 3D mesh can be assigned for 1/O functions.
In our treatment of 2D mesh agorithms (Chapters 9-12), we specified 1/O explicitly in some
cases, while for others, we assumed implicit I/O by identifying which data are to be held by
each processor as the algorithm is executed. In a hypercube, each node may be provided with
an extra port for 1/0, with these ports connected directly, via a smaller number of 1/0 buses,
or through a more complex switching mechanism, to several high-speed /O controllers. In
addition to providing access paths to 1/0O, one needs high-bandwidth devices that can supply
the parallel machine with huge amounts of data at the required rate. Over the years, various
solutions to the parallel 1/0 problem have been proposed and studied.

Before discussing paralel 1/0O, it is instructive to review modern magnetic disk technol-
ogy, which forms the cornerstone of fast /0O on most computers. Figure 18.6 shows a
multiple-platter high-capacity magnetic disk. Each platter has two recording surfaces and a
read/write head mounted on an arm. The access arms are attached to an actuator that can
move the heads radially in order to align them with adesired cylinder (i.e., a set of tracks,
one per recording surface). A sector or disk block is part of atrack that forms the unit of data
transfer to/from the disk. Access to a block of data on disk typically consists of three phases:

1. Cylinder seek: moving the headsto the desired cylinder (seek time)
Sector alignment: waiting until the desired sector is under the head (rotational
latency)

3. Datatransfer: reading the bytes out asthey pass under the head (transfer time)

Of course, when accessing consecutive or nearby blocks because of data locality, the
overhead of arandom seek and average rotational latency of one-half disk revolution (each
being on the order of several milliseconds) is not paid for each block.

Here are the density data for a vintage 1994 disk drive [Chen94]:

2627 x 21 x 99 x 512 = 2.8GB
Cylinders Tracks/cylinder Sectorg/track Bytes/sector
The above disk uses 5.25-inch platters, with full rotation time of 11.1 ms, minimum
(single-cylinder) seek time of 1.7 ms, maximum (full-stroke) seek time of 22.5 ms, and
average (random cylinder-to-cylinder) seek time of 11.0 ms. It can transfer data at arate of

380 INTRODUCTION TO PARALLEL PROCESSING

.l

3ot

o orrssmeaersasttl il
MYV LoD

creisron poove2y PEE OV
ceervvesvasses PRSP

ssue T s

Track 177077

e
rvld
P ooP YIS ovVEs
srerert e’
P
Cecsssamecre T -

g
Iy I T I
seceresvosasrs eI,
PEE050608009 21T

Figure 18.6. Moving-head magnetic disk elements.

4.6 MB/s. Even ignoring seek time and rotational latency, such a data transfer rate is
inadequate for many parallel processing applications.

One of the earliest attempts at achieving high-throughput parallel 1/0 was the use of
head-per-track disks (Fig. 18.7), with their multiple read/write heads capable of being
activated at the same time. The seek (radia head movement) time of a disk can be
approximately modeled by the equation

Seek time=a+bve -1

where cis the seek distance in cylinders. Typical values for the constants a and b are 2 and
0.4 ms, respectively. Head-per-track or fixed-head disks, as originally developed, were meant
to eliminate seek time and were therefore designed to use a single head at any given time,
with the active head selected electronically. Thus, they had to be modified and specially

..
s
k2
drecelaee

» *eq
: K
AR 3
P ;
Py
[P J
P Track

Figure 18.7. Head-per-track disk concept.

DATA STORAGE, INPUT, AND OUTPUT 381

outfitted to allow high-bandwidth I/O using all heads concurrently, which made them even
more expensive.

In fact, it was recognized early on that by adding a little extra logic to the already
complex read—write electronics of a head-per-track disk, a massively parallel processor can
be developed that searches the disk data on the fly. Such a device eliminates the need for
reading massive amounts of data from the disk into a parallel processor, in effect allowing
us to replace the parallel processor and its fast 1/0 system with an intelligent 1/0O filter and
a high-performance sequential host computer [Parh72]. However, this only works for certain
types of database and text-storage/retrieval applications.

A similar idea was the concurrent use of multiple heads provided on the same track in
order to reduce the average rotational latency. If, for example, two diametrically opposite
heads are provided to reduce the average rotational latency from one-haf to one-fourth
revolution (Fig. 18.7), then the heads, when activated simultaneously, can be used to read
out or write two sectors on each track. This scheme is beneficial for both fixed- and
moving-head disks, but again requires specia disk units to be developed for parallel systems.

In the mid-1980s, with the personal computer market flourishing and the prices of hard
disks for use with such PCs dropping at an astonishing rate, parallel machine designers
realized that any long-term solution to parallel 1/0 must take advantage of such commaodity
products. Developing one-of-a-kind 1/0 subsystems, with their attendant design, mainte-
nance, reliability, scalability, and obsolescence problems, no longer made economic sense.
Thus, the use of disk arrays became dominant. Disk storage technology and price/perform-
ance continue to improve. Early disk drives cost in excess of U.S. $1000 per megabyte of
capacity. Today the cost per megabyte is about 10* time lower, representing an average
improvement factor of 10 per decade. With new techniques allowing the recording of several
gigabytes of dataon 1 cm? of disk surface, this downward trend shows no sign of slowing.

Provision of many disks that can be accessed concurrently is only part of the solution
to the 1/O problem in parallel systems. Development of suitable file structures and access
strategies in order to reduce the I/O overhead is perhaps more important. A common
technique of file organization in parallel systemsis declustering or striping of the filesin
order to alow parallel access to different parts of a single file. A striping unit is a collection
of data items stored contiguously on a disk, with round-robin placement of the units forming
a file on multiple disks. Such a unit can range from a single bit to a complete file block
depending on the application. However, if multiple processors independently read from or
write into small portions of the file, the 1/O access overhead might become excessive. The
mechanical movement of disks and their read/write heads is extremely slow compared with
processor speeds; thus, even reading an entire row or column of a matrix at once may not be
enough to reduce the overhead to an acceptable level.

In general, knowledge of the collective I/O patterns for all processors is required to allow
global optimization for higher I/O performance. In particular, it may be possible to devise a
globally optimal 1/0 strategy in which processors access more data than they need, forward-
ing some of the data to other processors that may need them, and discarding the rest. This
strategy allows us to replace many small 1/0 requests with fewer large I/0 accesses, taking
advantage of the relatively faster interprocessor transfers to route to where they are
needed [Thak96].

The problem of parallel 1/O has received considerable attention in recent years. Proces-
sor speeds have improved by severa orders of magnitude since parallel 1/0 became an issue,

382 INTRODUCTION TO PARALLEL PROCESSING

while disk speeds have remained virtually stagnant. The use of large disk caches, afforded
by higher capacity and cheaper semiconductor memories, does not solve the entire I/O
problem, just as ordinary caches only partially compensate for slow main memories. Various
technologies for paralel 1/0O, adong with tools and standardization issues, are under extensive
scrutiny within the framework of annual workshops [IOPD].

18.5. REDUNDANT DISK ARRAYS

Compared with the large, expensive disks that were being developed for the high-
performance computer market, PC-type hard disks are small, slow, and unreliable. Capacity
is the least serious of these problems in view of steady improvements in disk technology
(multi-gigabyte units are now commonplace and terabyte units will be available shortly) and
the possibility of simply using more disks. Conceptualy, both performance and reliability
can be improved through redundancy: Storing multiple copies of afile, e.g., allows us to read
the copy that is most readily accessible and to tolerate the |oss of one or more copies related
to disk crashes and other hardware problems. For these reasons, disk array technology began
with the notion of redundancy built in. The acronym “RAID,” for redundant array of
inexpensive disks, reflects this view [Gang94]. Of course, nowadays, there is no such thing
as an expensive disk; the “1” in RAID has thus been redesignated as “independent.”

The reference point for RAID architectures is Level 0, or RAIDO for short, which
involves the use of multiple disks for 1/0O performance improvement without any redundancy
for fault tolerance. For example, if afileis declustered or striped across disks 0 and 1, then
file data can be accessed at twice the speed, once they have been located on the two disks.
The performance gain is signifacant only for large files, as otherwise the disk access delay
dwarfs the readout or write time. In fact, striping degrades the performance for small files,
unless the multiple disks are synchronized. This is because the data access time is now
dictated by the larger of the two disk head movements and rotational latencies. Synchroni-
zation of multiple disks is again undesirable because it involves costly modifications to
commercial off-the-shelf components.

RAID1 takes the above concept and introduces fault tolerance via mirrored disks (Fig.
18.8). For each data disk, there is a backup that holds exactly the same data. If the disks are
truly inexpensive, then this doubling of size should not be a problem. However, there isa
performance overhead to be paid whether or not striping is used. Each update operation on
afile must also update the backup copy. If updating of the backup is done right away, then
the larger of the two disk head movements will dictate the delay. If backup updates are queued
and performed when convenient, then the probability of data loss from a disk crash increases.

An obvious way of reducing the factor-of-2 redundancy of mirrored disk arraysisto
encode, rather than duplicate, the data. RAID2 used a single-error-correcting Hamming code,
combined with striping, to allow for single-disk fault tolerance. Thisidea proved somewhat
impractical because striping files across several disk in order to reduce the redundancy level
leads to severe performance problems.

In RAID3, data are striped across multiple disks, with parity or checksum information
stored on a separate redundant disk. For example, with parity, the file may be four-way striped
at the bit or byte level and the XOR of 4 bits or bytes stored on afifth disk. If a data disk
fails, its data can be reconstructed as the XOR of the other three data disks and the parity

DATA STORAGE, INPUT, AND OUTPUT 383

(RAID 0 used multiple ditks for
L 2 (3 3 higher data mee; no redundancy)
0 1 Mirrored disks
0 Copy 1 Copy RAID1
—— __J ~—— {RAID 2 used Hanming code
{or error correction)
Y A 43 3
Bit- or byte-level striping
0 1 2 3 Pacity with parity or checksum
RAID3
| e L’-) S
))
) 2 3 Py | Parity or checkrum applied
9 — 10 sectors; parity disk sill
4 5 [7 Py a performance bottleneck
P]
HRE 0 1 RAID4
- R -
1 2 3 Distributed perity
0 f—1 - m (only "small” writes
4 5 6 u 7 suffer sn overhead)
i
RAIDS
) (o] G) U

Figure 18.8. Alternative data organizations on redundant disk arrays.

disk. The reconstructed data may then be stored on a spare disk that is normally unused.
Unfortunately, this scheme too has its performance problems. Using multiple parity groups
helps as it allows multiple accesses to occur concurrently. However, the full benefits of
multiple independent disks are not realized.

Because disk data are usually accessed in units of sectors rather than bits or bytes,
RAIDA4 applies the parity or checksum to disk sectors. In this case, striping does not affect
small files that fit entirely on one sector. However, even in these cases, multiple files cannot
be modified simultaneoudly in view of the need to access the parity disk at the same time.
When writing any new sector, the parity disk must be accessed to get the old parity for
computing the new parity:

New parity = New sector data [0 Old sector data [Old parity

The new parity must then be written onto the parity disk. Accesses to the parity disk thus
constitutes a serious performance bottleneck.

In RAIDD5, the above problem is solved by distributing the parity data on multiple disks
instead of putting them on a dedicated disk. As seen in the example depicted in Fig. 18.8,
the parity data for sector O through 3 are stored on the rightmost disk, whereas sectors 4
through 7 have their parity data on a different disk. This scheme distributes the parity accesses
and thus eases the performance bottleneck resulting from parity updates.

Note that in al RAID variants, reading from the disks can be performed independently,
with no parity access conflict, assuming that the data are adequately protected by standard
error-detecting coding schemes.

384 INTRODUCTION TO PARALLEL PROCESSING

A new variant of RAID, sometimes referred to as RAID Level 6, combines the above
ideas with a log-structured file system. In alog-structured file, sectors are not modified in
place but rather afresh copy is made, in adifferent location, with each update. This method
requires special support for data mapping but allows the system to write data to whichever
disk that is available. As an added benefit, data compression methods can be applied because
file expansion creates no special problem. For example, in Storage Tek’s 9200 | ceberg disk
array system, 13 data disks, 2 parity disks, and a spare disk are used. Updates are held in
nonvolatile cache memory (battery-backed) until there are enough data to fill an array
cylinder. The data are then written onto an empty cylinder in compressed form. Contents of
nearly empty cylinders are relocated by a background garbage collection mechanism to free
up complete cylinders.

Other commercial RAID productsinclude IBM’s Ramac disk array, Hewlett-Packard’ s
XLR1200 disk array, and Data General’s Clariion disk array. IBM’s product is a Level-5
system, while the latter two products offer some flexibility to the user in reconfiguring the
data organization based on application needs.

Although disk arrays have gained acceptance as high-performance |/O subsystems,
research is actively continuing into various problems and performance issues:

1. Data distribution patterns and their effects on performance under different work
loads (e.g., on-line transaction processing, scientific benchmarks). Aspects of
performance include read time, write time, and rebuild time, with the latter being
less critical for systems composed of highly reliable components.

2. Combination of data organization with data caching schemes to improve efficiency.

3. Redundancy schemes to provide greater robustness (e.g., tolerance to double disk
failures).

4. Coding schemesthat imply lower storage overhead and/or simpler rebuilding.

5. Architectural designs that increase the available bandwidth.

In the past few decades, the demise of magnetic storage media, and their replacement by
faster solid-state memories, has been predicted more than once. It appears, however, that
with the continuing improvement in technology, magnetic disks and disk arrays may be here
to stay.

18.6. INTERFACES AND STANDARDS

Data in parallel systems come from a variety of sources, including local/remote memory
modules, secondary storage devices, and network interfaces. As is the case for uniprocessors,
it is desirable that certain aspects of the mechanisms required to gain access to data be
standardized to allow flexible and easily expandable designs. Adherence to standards could
alow various parts of a parallel system to be modified or upgraded without affecting the rest
of the design. Additionally, use of standard interfaces facilitates the integration of compo-
nents and subsystems from different suppliersinto efficient and usable parallel systems. In
the remainder of this section, we present brief overviews of two such standards: the Scalable
Coherent Interface and High-Performance Parallel Interface.

DATA STORAGE, INPUT, AND OUTPUT 385

Processor 0 Processor 1 Processor 2 Processor 3
0 G0l —2
Cache 0 Cache 1 Cache 2 Cache 3
Head

pointer
EI D\
.. Non-coherent
Coherent ___ | .. data blocks
data block F,/

Figure 18.9. Two categories of data blocks and the structure of the sharing set in the Scalable
Coherent Interface.

The Scalable Coherent Interface (SCI) standard was devel oped to facilitate the imple-
mentation of large-scale cache-coherent parallel systems using existing or future intercon-
nection technologies. The interface, which is synchronously clocked, can interconnect a large
number of nodes (each with a processor, attached memory, and possibly even 1/0O devices)
using aring or crossbar structure. A directory-based cache coherence protocol is part of the
SCI standard. A doubly-linked list of shared data is maintained in each participating cache
and forms a part of a shared, and concurrently accessible, data structure. This shared structure
has no size limit, making the system totally scalable in theory. However, the overhead of
maintaining and updating a large shared structure puts a practical limit on the system size.

The directory scheme of SCI is depicted in Fig. 18.9. Data blocks can be noncoherent
or coherent. Noncoherent blocks essentially contain private data. Processors have the option
of bypassing the coherence protocol when requesting data from main memory. Cache ¢ can
request a coherent copy of a data block from main memory as a result of a read miss, a write
miss, or a write hit. We only describe the required actions in the case of a read miss; the
reader should be able to supply the details for the other two cases. If the block is noncached,
then the memory returns the data, changes the block’s state to “cached,” and sets the head
pointer to point to c. For a cached block, the old head pointer is also sent to the requesting
cache so that it can set its forward pointer accordingly. Also, the previous head block must
set its backward pointer to point to c. In either case, the backward pointer of the block in
Cache cis set to point to the data block in main memory.

The High-Performance Parellel Interface (HiPPI) is a point-to-point connection scheme
between two devices (typically a supercomputer and a peripheral) at either 0.8 or 1.6 Gb/s
over a (copper) cable that is no longer than 25 m. Packets in HiPPI are sent as a sequence of
bursts, where each burst is a group of 1 to 256 words of 32 (0.8 Gh/s) or 64 bits (1.6 Gb/s).
The HiPPI cables are very wide, so a clock rate of only 25 MHz is needed on the cable.
Packet length can range from 2 B to 4 GB. In addition to data, each HiPPI packet contains
ahigher layer protocol identifier and up to 1016 B of control information.

HiPPI, which is an ANSI standard, includes electrical, signaling, and connector speci-
fications as well as the definition of a connectionlike packet framing protocol. To send data,

386 INTRODUCTION TO PARALLEL PROCESSING

a device requests that it be connected to the destination device. If a connection cannot be
established, because the destination is already connected to another system, HiPPI alows
the requesting device to either wait for the destination to become available or be notified that
a conflict exists so it can try again later. HiPPl does not alow multiple simultaneous
connections to be multiplexed over aline. When a device is done sending, it asks that the
connection be terminated.

When sending variable length packets through a switch, the usual procedure is to
establish and tear down the connection after every packet, to allow maximum multiplexing
of the switch. As aresult, part of the packet overhead is the time required to get a connection
request to the switch and get the answer back and for the sending device to handle the
connection setup and teardown. The connection setup and teardown times depend on the
length of the HiPPI cable.

PROBLEMS

18.1. Cache memories
A computer system has a 32-KB processor cache and a 256-KB Level-2 cache. The miss penalty
in the processor cache is 3 cycles if the required data are found in the Level-2 cache and 10
cycles if the data have to be fetched from main memory. Without misses, the machine executes
one instruction per clock cycle.

a Determine the instruction execution rate as a function of the hit ratesry and r, for the two
caches.

b. Forr,=0.9, what isthe least value of r, if oneinstruction is to be executed per 1.5 cycles
on the average?

18.2. Cache memories
A computer system has 4 GB of byte-addressable main memory and a 64 KB cache memory
with 32B blocks.

a Draw adiagram showing each of the components of the main memory address (i.e., how
many bits for tag, set index, and byte offset within ablock) for a four-way set-associative
cache.

b. Draw adiagram similar to Fig. 18.1 to show how data are stored and accessed in the cache.

c. The performance of the computer system with four-way set-associative cache turns out to
be unsatisfactory. The designers are considering two redesign options, each implying
roughly the same additional cost. Option A isto increase the size of the cache to 128 KB.
Option B is to increase the associativity of the 64-KB cache to 16-way. Which option do
you think is more likely to result in higher overall system performance and why?

18.3. Separate instruction and data caches
Discuss the advantages and disadvantages of providing separate instruction and data caches.
Which of these two caches must be larger and why? Which one would you make faster if you
had to choose?

18.4. Direct-mapped versus set-associative caches
Sketch the structure of a program and its associated data such that it produces an intolerable
amount of cache block swaps in a direct-mapped cache, performs quite well with a two-way
set-associative cache, and experiences only minor improvement if the associativity isincreased

DATA

18.5.

18.6.

18.7.

18.8.

18.9.

18.10.

18.11.

STORAGE, INPUT, AND OUTPUT 387

to four-way. Hint: Consider amatrix of such asize that all elementsin one row or one column
map onto the same cache block when direct mapping is used.

Cache coherence
Show how Fig. 18.2 should be modified after each of the following events that occur in
sequence.

a. Processor 0 generates aread miss for x.

b. Processor 0 overwritesy' with anew block u.
c. Processor 1 changesZ to Z'.

d. Processor p— 1 generates awrite miss for w.

Write-through snoopy caches

In a small-scale bus-based multiprocessor, implementation of a write-through snoopy cache
protocol offers the advantage of simpler coherence enforcement. Modify the snoopy protocol
depicted in Fig. 18.3 to correspond to a write-through scheme.

Snoopy caches

In Fig. 18.3, one can split the shared state into two states called shared clean and private clean
and rename the “exclusive’” state private dirty. Draw the new stare diagram and explain if it
offers any advantage over the original one.

Directory-based cache coherence

Draw a state diagram similar to Fig. 18.3 for cache blocks in a directory-based cache coherence
protocol.

Multitasking or multithreading

Consider a master computation task that spawns a new subordinate task (subtask) after every
time unit. The computation ends after five subtasks have been created and run to completion.
Each subtask runs on a different processor.

a What is the total running time of this computation if each subtask terminates in six time
units?

b. Repeat part (a) with the running time of each subtask uniformly distributed in [2, 10].
Repeat part (a) for the case where each subtask has two time units of computation and two
remote memory accesses, each taking one to three time units; assume uniform distribution
in[1, 3].

Magnetic disks

For the example moving-head disk system whose parameters were given in Section 18.4, derive
the rotation speed, approximate track density, recording density, and full disk copying time
(e.g., for backup). Also, show that the data transfer rate can be derived from the other parameters
given.

Magnetic disks

Consider the example moving-head disk system whose parameters were given in Section 18.4.

a. Derive the parameters a and b of the seek-time formula.

b. It has been suggested that for disks with alarge number of cylinders, a better formula for
seek time isa +bVc -1 + fi(c - 1). Derive the parameters a, b, and B if the average
(random) seek time given isfor one third of afull stroke.

¢. Canyou provide an intuitive justification for the added linear term in the formula of part
(b)?

388

18.12.

18.13.

18.14.

18.15.

INTRODUCTION TO PARALLEL PROCESSING

Head-per-track and multiple-arm disks

A 3.5-inch disk platter contains 256 tracks on each side and rotates at 3600 rpm. Data on the
outermost track are recorded at a density of 50,000 b/inch and are read out from or written onto
the disk in 512B sectors. Radial head movement takes 1 ms per 10 cylinders or fraction thereof
(e.g., 3 msfor 27 cylinders).

a. With the head positioned on arandom track, what is the average head movement in terms
of tracks and the expected seek time (for moving the head to a randomly chosen track)?

b. With single sectors read out or written in each disk access, what is the expected improve-
ment in disk access speed if we use a head-per-track disk?

c. What about the improvement resulting from using four equally spaced moving-head arms?

Disk arrays

Consider the example RAID4 and RAID5 data organizations in Fig. 18.8 for 12 data sectors
and their associated three parity sectors, with P, being the parity sector for data sectors 4i, 4i
+1,4i+2,and 4i + 3.

a If each disk read access involves a single sector, which organization will lead to higher data
bandwidth? Quantify the difference assuming random distribution of read addresses.

b. Repest part (a) for write accesses.

c. Suppose that one of the disks fails and its data must be reconstructed on a spare disk. Which
organization offers better performance for read requests during the reconstruction process?

d. Repeat part (c) for write requests.

Scalable Coherent Interface

Supply the missing details for the cache coherence protocol used in connection with the
Scalable Coherent Interface discussed in Section 18.6. In particular, indicate the sequence of
events on awrite miss, write hit, and block overwrite in a cache.

Scalable Coherent Interface
Show how Fig. 18.9 should be modified after each of the following events that occur in
sequence.

a Processor 0 generates awrite hit in the shared block shown.
b. Processor 1 generates aread miss for data in the shared block shown.
c. Processor 2 overwrites the shared block with a different shared block.
d. Processor 1 generates awrite hit in the shared block shown.

REFERENCES AND SUGGESTED READING

[Burg97] Burger, D., S. Kaxiras, and J. R. Goodman, “Data Scalar Architectures,” Proc. Int'l. Symp. Computer

Architecture, June 1997, pp. 338-349.

[Chen94] Chen, P. M., E. K. Leg, G. A. Gibson, R. H. Katz, and D.A. Patterson, “RAID: High-Performance,

Reliable Secondary Storage,” ACM Computing Surveys, Vol. 26, No. 2, pp. 145-185, June 1994.

[Chen9g] Chen, S, and D. Towsley, “A Performance Evaluation of RAID Architectures,” IEEE Trans.

[Frie96)

Computers, Voal. 45, No. 10, pp. 1116-1130, October 1996.
Friedman, M. B., “RAID Keeps Going and Going and . . . ,” IEEE Spectrum, Vol. 33, No. 4, pp.
73-79, April 1996.

[Gang94] Ganger, G. R., B. R. Worthington, R. Y. Hou, and Y. N. Patt, “Disk Arrays: High-Performance,

[Hirag2]

High-Reliability Storage Subsystems,” |EEE Computer, Vol. 27, No. 3, pp. 30-36, March 1994.
Hirata, H., et a., “An Elementary Processor Architecture with Simultaneous Instruction Issuing from
Multiple Threads,” Proc. 19th Int. Symp. Computer Architecture, pp. 136145, May 1992.

DATA STORAGE, INPUT, AND OUTPUT 389

[1OPD]
[Parh72]
[Patt96]

[SCI62]
[Thaka6]

[Tolm94]

1/0 in Paralel and Distributed Systems, Annual Workshops. The 5th workshop in this series was held
during November 1997 in San Jose, CA.

Parhami, B., “A Highly Parallel Computing System for Information Retrieval,” AFIPS Conf. Proc.,
Vol. 41 (1972 Fal Joint Computer Conf.), AFIPS Press, pp. 681-690.

Patterson, D. A., and J. L. Hennessy, Computer Architecture: A Quantitative Approach, Morgan
Kaufmann, 1996.

The Scalable Coherent Interface Standard, |EEE Computer Society, 1992.

Thakur, R., A. Choudhary, R. Bordawekar, S. More, and S. Kuditipudi, ‘Passion: Optimized 1/0O for
Parallel Applications,” IEEE Computer, Vol. 29, pp. 70-78, June 1996.

Tolmie, D., “High Performance Parallel Interface (HIPPI),” in High Performance Networks—
Technology and Protocols, edited by A. Tantawy, Kluwer, 1994, pp. 131-156.

This page intentionally left blank.

Reliable Parallel
Processing

Modern digital components and subsystems are remarkably robust, but when
one puts a large number of them together to build a parallel computer with data
being passed back and forth between them at extremely high rates, things can
and do go wrong. In data communication, a bit error probability of 107° s
considered quite good. However, at gigabyte per second data transmission or
processing rate, such an error probability translates roughly into one bit-error
per second. While coding methods can be used to protect against errors in data
transmission or storage, the same cannot be said about data manipulations
performed in a CPU. In this chapter, we examine some techniques that can be
used to improve the robustness and reliability of parallel systems. Chapter topics
are

o 19.1. Defects, faults, . . ., failures
e 19.2. Defect-level methods

o 19.3. Fault-level methods

e 19.4. Error-level methods

« 19.5. Malfunction-level methods
» 19.6. Degradation-level methods

391

This page intentionally left blank.

RELIABLE PARALLEL PROCESSING 393

19.1. DEFECTS, FAULTS, . .., FAILURES

So far, we have assumed that the many components of a parallel machine dways behave
as expected: A processor instruction always yields the expected result, arouter consistently
makes the correct routing decision, and a wire remains permanently connected. Even though
modern integrated circuits and electronic assemblies are extremely reliable, errors or
malfunctions do occur in the course of lengthy computations, especially in systemsthat are
highly complex, operate under harsh environmental conditions, deal with extreme/unpre-
dictable loads, or are used during long missions where maintenance is impractical. The output
of an AND gate in a processor or router may become permanently “stuck on 1,” yielding an
incorrect output when at least one input is 0. Or the AND gate may suffer a “transient fault”
where its output becomes incorrect for only a few clock cycles as a result of cross talk or
interference. A table entry may be corrupted by manufacturing imperfections in the memory
cellsor logic faults in the read/write circuitry. Wires may break, or short-circuit, because of
overheating, VLSl manufacturing defects, or a combination of both.

Parallel processors are quite complex. A system with hundreds or thousands of compo-
nents (processors, memory modules, routers, links, switches) is more likely to contain faulty
or malfunctioning elements than a conventional uniprocessor. Thus, there is a need to
explicitly address the testing, fault diagnosis, and reliability issues in parallel processors.
The inherent redundancy of paralel systemsis, in principle, good for fault tolerance; after
al, a 1024-processor system remains highly parallel even after losing a dozen or so
processors. However, numerous problems must be dealt with in order to take advantage of
this built-in redundancy.

To see the difficulties, consider a Vp xVp mesh-connected parallel computer. While it
is true that the failure of one processor still leaves us p — 1 processors to work with, the
structure of the faulty system is no longer a complete 2D mesh. Thus, any algorithm for
routing, sorting, matrix multiplication, and the like, whose proper functioning depends on
the complete 2D mesh structure, will no longer be valid for the surviving (p — 1)-processor
configuration. Even if our algorithms are such that they can run on meshes of various sizes,
a single worst-case processor or link failure can leave us with a nonsquare mesh of about
one-haf the original size or a square mesh of one-fourth the size. The same problem exists
for ag-cube, where a single processor or link failure may leave us with a much smaller (q —
1)-cube.

To dispel any thought that the above difficulty is related to the rigid structure of a 2D
mesh or a hypercube and will go away with amore flexible parallel architecture, consider p
processors that are interconnected via b shared buses. For maximum flexibility and redun-
dancy, assume that each processor is connected to every bus. Again, theoreticaly, the system
should be able to continue functioning, albeit with degraded performance, despite processor
or bus failures. However, this is only true with certain strong assumptions about the failures
and their effects. For example, if processors fail in fail-stop mode, meaning that they simply
quit al computation and communication, then the healthy processors will remain unaffected.
However, an arbitrary or Byzantine failure may lead to a single faulty processor disabling
the b buses by continually broadcasting bogus messages or by simply grounding all of them.
While researchers have developed methods for ensuring that processors do in fact fail in
fail-stop mode or that any maliciously faulty processor is quickly isolated from common

394 INTRODUCTION TO PARALLEL PROCESSING

resources, the design methods required, and their cost/performance overheads, are far from
trivial.

Ensuring correct functioning of digital systems in the presence of (permanent and
transient) faults is the subject of a discipline known as fault-tolerant (or dependable)
computing. In this chapter, we review some ideas in the field of fault-tolerant computing that
are particularly relevant to ensuring the reliable functioning of parallel systems.

For the sake of precision, we distinguish among various undesirable conditions, or
impairments, that lead to unréliability in any digital system. The six views of impairments
introduced below, along with the ideal system state, define a seven-level model for the study
of dependable computing, depicted in Fig. 19.1 [Parh94]. In the literature, you may find all
of the six italicized concepts below imprecisely referred to as “faults’ or “failures’:

» Defect level or component level, dealing with deviant atomic parts

» Fault level or logic level, dealing with deviant signal values or decisions

e Error level or information level, dealing with deviant data or internal states
» Malfunction level or system level, dealing with deviant functional behavior
« Degradation level or service level, dealing with deviant performance
 Failurelevel or result level, dealing with deviant outputs or actions

Note that a system can begin its life in any of the seven states depicted in Fig. 19.1
(sideways arrows), though we certainly hope that our testing and validation efforts will move
the starting state to the highest possible of these levels. Briefly, a hardware or software
component may be defective (hardware may aso become defective by wear and aging).
Certain system states will expose the defect, resulting in the development of faults defined
as incorrect signal values or decisions within the system. If a fault is actually exercised, it
may contaminate the data flowing within the system, causing errors. Erroneous information
or states may or may not cause the affected subsystem to malfunction, depending on the
subsystem’s design and error tolerance. A subsystem malfunction does not necessarily have
a catastrophic, unsafe, or even perceivable service-level effect. Finally, degradation of service
could eventually lead to system failure (producing results or actions that are incorrect,
incomplete, or too late to be useful).

The goal of this chapter is to review some of the methods that allow us to prevent a
system from ever entering the failed state. For each of the five states between ideal and failed
in Fig. 19.1, the complementary approaches of prevention (avoidance or removal) and
tolerance can be used to inhibit a downward transition or to facilitate an upward transition.
These methods are discussed in the following five sections of this chapter.

Figure 19.2 provides an interesting analogy for clarifying the states and state transitions
in our model, using a system of six concentric water reservoirs. Pouring water from above
corresponds to defects, faults, and other impairments, depending on the layer(s) being
affected. These impairments can be avoided by controlling the flow of water through valves
or tolerated by the provision of drains of acceptable capacities for the reservoirs. The system
fails if water ever gets to the outermost reservoir. This may happen, for example, by a broken
valve at some layer combined with inadequate drainage at the same and all outer layers. Wall
heights between adjacent reservoirs represent the natural interlevel latencies in our model.
Water overflowing from the outermost reservoir into the surrounding area corresponds to a
computer failure adversely affecting the larger physical, corporate, or societal system.

RELIABLE PARALLEL PROCESSING 395

—(IDEAL)
] L
——(DEFECTIVE 3
! 1
—{ FAULTY)
~—»{ Eemroneous)
_—(IIALFUNCTIONI;G)
_‘C DEGRADED j

! [
—{ FAILED)

Figure 19.1. System states and state transitions in our multilevel model.

It is worth noting that even though we discuss each method in only one section,
according to the abstraction level for which it is most suitable, or where it has been most
successfully applied, many of these techniques are applicable to more than one level. For
example, reconfiguration of processor arrays, introduced in Section 19.2 as a means for
defect tolerance, can be applied to fault, or even malfunction, tolerance with the following
additional provisions:

Wall heights represent inlet valves represent
inter-level latencles avoldance techniquas

Concentric reservolrs are
anslogues of the six mode! Drain valves represent
leveis (defect is innermost) tolerance techniques

Figure 19.2. An analogy for the multilevel model of dependable computing.

396 INTRODUCTION TO PARALLEL PROCESSING

¢ On-line fault or malfunction detection
e More flexible reconfiguration switching
o Data backup and recovery mechanisms

As a second example, circuit-level redundancy/replication methods, introduced for fault
tolerance in Section 19.3, can be applied to malfunction or even degradation tolerance, albeit
with some challenging problemsin

e Synchronizing higher-level modules
e Sophisticated comparison or voting schemes
o Performance/reliability trade-off mechanisms

19.2. DEFECT-LEVEL METHODS

Defects are accepted occurrences in the process of integrated-circuit manufacturing and
in software development; their complete avoidance or removal, where not technically
impossible, tends to be cost-ineffective. Defects are caused in two ways, corresponding to
the sideways and downward transitions into the defective state in Fig. 19.1: (1) physical
design dlips leading to defective system components, by improper design or inadequate
screening, and (2) development of defects as a result of component wear and aging or
operating conditions that are harsher than those originally envisaged. A defect may be
dormant or ineffective long after its occurrence. During this dormancy period, external
detection of the defect is impossible or, at the very least, extremely difficult. If, despite efforts
to avoid or remove them, defects are nevertheless present in a product, nothing is normally
done about them until they develop into faults. Replacement of sensitive components, as part
of scheduled periodic maintenance, is one way of removing defects before they develop into
faults. Similarly, burn-in of hardware components tends to remove most dormant defects.
Component modifications and improvements, motivated by the analyses of degraded or
failed systems, are other major ways of hardware and software defect removal.

Parallel systems are ideally suited to the application of defect tolerance methods, both
as away of improving the manufacturing yield [Cici95], and thus making the systems more
cost-effective, and as a way for dynamically reconfiguring the system during its operation.
As an example, consider the development of a VLSl or WSl (wafer-scale integration)
component that houses a square mesh to be used as a building block for synthesizing larger
mesh-connected computers. A large VLSI chip or awafer islikely to have one or more defects
that could affect the processors or links within the chip. Because a complete square mesh is
needed, even asmall defect will render the mesh unusable, thus lowering the manufacturing
yield and increasing the component price.

Before reviewing some of the proposed methods for improving the manufacturing yield
in the above context, let us consider the simpler case of alinear array. Figure 19.3 shows a
four-processor linear array built by including a spare processor and a switching mechanism
that allows any four of the five on-chip processors to be configured into alinear array of the
desired size. Of course a single defective switch would still make the chip unusable. However,
if one views each switch as a pair of multiplexers under common control, it is easy to deduce
how redundancy can be incorporated in the switches to make them tolerant to defects that

RELIABLE PARALLEL PROCESSING 397

Test Bypatsed Test
8] Spue or 10
Po Py yefective P2 Ps

Figure 19.3. A linear array with a spare processor and reconfiguration switches.

affect one multiplexer. Alternatively, the multiplexers can be distributed to the processors,
with each processor independently selecting its right/left neighbor from among two possi-
bilities (Fig. 19.4).

Extension of the above ideas to 2D arrays is straightforward. Figure 19.5 shows two of
the many schemes that are possible for reconfiguring 2D processor arrays in order to bypass
defective elements. The scheme shown on the left is very similar to that of Fig. 19.3, except
that it uses three-state switches (two “bent” states and one “crossed” state). We see, for
example, that by putting two switches in the NW-SE bent state, Processor P, becomes the
south neighbor of Processor Py, thus allowing a defective P, to be bypassed. The scheme
shown on the right side of Fig. 19.5 isthe 2D analogue of Fig. 19.4 in that it integrates the
multiplexers with the input ports of the processors. In this way, Processor P, can pick any of
the three processors above, to its upper left, or to its upper right asits logical north neighbor.
The available choices can be extended to five or more processors for greater flexibility and
defect tolerance level.

With the schemes shown in Fig. 19.5, if we have one row and one column of spare
processors in the array, many defect patterns can be tolerated. Figure 19.6 shows a 6x6
processor array with defective components from which a 5 x 5 working mesh has been
salvaged. The reconfiguration switching capability assumed here is slightly more complex
than that shown in Fig. 19.5 (left) in that defective, or otherwise unused, processors (circular
nodes) can be bypassed.

Clearly, reconfiguration switches are themselves subject to defects. Thus, a good
reconfiguration switching scheme should alow the tolerance of switch, as well as processor
and link, defects. The effectiveness of a reconfiguration switching scheme is measured by
the extent of defect tolerance (e.g., random single/double defects, or a cluster of defective
elements of acertain size). Ease of reconfiguration, which includes the determination of the
new working configuration and its associated switch settings, is also an issue, particularly if
reconfiguration is to be dynamic rather than just as a yield enhancement method at manu-
facturing time.

Consider, as an example, the reconfiguration switching scheme implicit in Fig. 19.6;
i.e., provision of a single track of switches between rows and columns of processorsin a

oeee? -l"" -J | Spare or |~ L seoseld T M

Po Py Defectiv P2 P3

Figure 19.4. A linear array with a spare processor and embedded switching.

398 INTRODUCTION TO PARALLEL PROCESSING

|]

1
— r.

N
ﬁ_r

— Po
T

— —i Py Py —
T .

I
Py
N
o o
P4
!

— —{ Pe P4 L

I |

————

Figure 19.5. Two types of reconfiguration switching for 2D arrays.

manner similar to Fig. 19.5 (left), with processor bypass capability included, along with a
spare row and spare column of processing nodes in the array. It is relatively easy to show
that a particular pattern of defective processors can be tolerated (bypassed) using this scheme
if one can draw straight nonintersecting compensation paths from the spare row or spare
column to every defective processor [Kung88]. Figure 19.7 shows seven defective processors
and a set of nonintersecting compensation paths for them. The derivation of switch statesto
bypass the seven defective processors is quite easy if we note the rightward/downward
shifting of the horizontal/vertical connections along the compensation paths.

Based on the above, it is easy to see that the reconfiguration scheme of Figs. 19.6 and
19.7 is capable of tolerating any two defective processors. Most, but not all, triple defects
are aso tolerated; if a node and both of its east and south neighbors are defective, we cannot
find three nonintersecting compensation paths for them.

A system makes the transition from the defective state to the faulty state when a dormant
defect is awakened and gives rise to a fault. Designers try to impede this transition by
providing adequate safety margins for the components and/or by using defect tolerance
methods. Ironically, one may occasionaly try to facilitate this transition for the purpose of

Figure 19.6. A 5 x 5 working array salvaged from a 6 x 6 redundant mesh through reconfiguration
switching.

RELIABLE PARALLEL PROCESSING 399

ﬁ_l_?_lﬁ_‘

i

Figure 19.7. Seven faulty processors and their associated compensation paths.

exposing defects, as faults are more readily observable than defects. To do this, the
components are usually subjected to loads and stresses that are much higher than those
encounted during normal operation. This burning in or torture testing of components
results in the development of faults in margina components, which are then identified by
fault testing methods. To be able to deduce the underlying defect from an observed fault, we
need to establish a correspondence between various defect and fault classes. Thisis referred
to as fault modeling.

19.3. FAULT-LEVEL METHODS

A hardware fault may be defined as any anomalous behavior of logic structures or
substructures that can compromise the correct signal values within a logic circuit. The
reference behavior is provided by some form of specification. If the anomalous behavior
results from implementing the logic function g rather than the intended function f, then the
fault isrelated to alogical design or implementation slip. The aternative cause of faultsis
the implementation of the correct logic functions with defective components. Defect-based
faults can be classified according to duration (permanent, intermittent/recurring, or tran-
sient), extent (local or distributed/catastrophic), and effect (dormant or active). Only active
faults produce incorrect logic signals. An example of a dormant fault is a line stuck on
logic-value 1 that happensto carry a 1. If incorrect signals are produced as output or stored
in memory elements, they cause errors in the system state.

One way to protect the computations against fault-induced errors is to use duplication
with comparison of the two results (for single fault detection) or triplication with two-out-
of-three voting on the three results (for single fault masking or tolerance). Figure 19.8 shows
possible ways to implement these schemes.

In the top circuit of Fig. 19.8, the decoding logic is duplicated along with the computa-
tion part to ensure that asingle fault in the decoder does not go undetected. The encoder, on
the other hand, remains a critical element whose faulty behavior will lead to undetected

400 INTRODUCTION TO PARALLEL PROCESSING

i 13
Inputs MT‘ Compute Encod outpul

Decode} ..] Compute

2 2

‘ Compars
Non-codeword Mismatch
detecied derecred

NP Dacnde Compute
1 1

I 1 Compute @ Encode outputs
2

2

1
Decode Compute
3 3

!

Figure 19.8. Fault detection or tolerance with replication.

errors. However, because the output of the encoder is redundant (coded), it is possible to
design the encoding circuitry in such away as to ensure the production of a non-codeword
at its output if anything goes wrong. Such a design, referred to as self-checking, leads to error
detection by the checker associated with the memory subsystem or |ater when the erroneous
stored value is used as an input to some other computation. Thus, the duplicated design in
Fig. 19.1 can detect any fault that is totally confined to one of the blocks shown. This includes
a faulty “compare” block which may produce a “false alarm.” An undetected mismatch
would require at least two faultsin separate blocks.

The design with triplicated computation in Fig. 19.8 is similar. Here, the voter is a critical
element and must be designed with care. Self-checking design cannot be applied to the voter
(as used in the diagram) because its output is nonredundant. However, by combining the
voting and encoding functions, one may be able to design an efficient self-checking
voter-encoder. This three-channel computation strategy can be generalized to m channelsin
order to tolerate more faults. However, the cost overhead of a higher degree of replication
becomes prohibitive.

The above replication schemes are quite general and can be applied to any part of a
parallel system for any type of fault. However, the cost of full replication is difficult to justify
for most applications. Note that for faults in the two or three channels to be truly independent,
the various channels must be packaged separately and be fed from independent power
supplies in order to avoid catastrophic single-point faults. This aggravates the cost and
complexity problems.

Researchers have thus devised various fault tolerance schemes for specific parallel
systems or under restricted fault classes (fault models), For example, in Section 7.5, we noted
that the periodic balanced sorting network can be made tolerant to certain types of faults by
adding one (missed exchanges) or two (missed/incorrect exchanges) extra blocks to it. A
1024-input sorting network with 10 blocks thus requires a redundancy of 10 or 20%. We aso

RELIABLE PARALLEL PROCESSING 401

noted that in the single-block version with multiple passes, an extra stage of comparators
can provide tolerance to single faults; this again implies a redundancy of 10% for n=1024
inputs.

A second interesting example is the design of fault-tolerant multistage interconnection
networks. Consider the 8 x 8 butterfly network of Fig. 19.9 (left) and its extra-stage version
(right). Because of the extra stage, there exist two paths between any input and any output.
Thus, any single switch fault can be tolerated by using one of the two aternate paths. The
circular nodes are multiplexers and demultiplexers that are required for the tolerance of faults
in the leftmost and rightmost columns, respectively. On the extra-stage butterfly network of
Fig. 19.9, two node- and edge-disjoint paths are shown from Input 4 to Output 3. Thus, any
fault in asingle switch, multiplexer, or demultiplexer can be tolerated.

Like the original butterfly network, the extra-stage butterfly network of Fig. 19.9 is
self-routing. To see this, note that the connections between Columns g — 1 and q are identical
to those between Columns 0 and 1. Thus, the two paths essentially correspond to taking the
Dimension-0 link first (as in the regular butterfly) and bypassing Column g, or bypassing
Column 0 and taking the Dimension-0 link last. Hence, a processor that is aware of the fault
status of the network switches can append a suitable routing tag to the message and insert it
into the network through one of its two available access ports. From that point onward, the
message finds its way through the network and automatically avoids the faulty element(s).
Of course, if more than one element is faulty, existence of apath is not guaranteed.

Transition from faulty to erroneous state occurs when a fault affects the state of some
storage element or output. Designers try to impede this transition by using fault tolerance
methods. Another approach is to control this transition so that it leads to an incorrect but safe
state. An example is the provision of internal fault detection mechanisms (e.g., comparators,
activity monitors, or consistency checkers) that can disable a given module or system,
assuming of course that the disabled state is safe. Ironically, one may aso try to facilitate
this transition for the purpose of exposing system faults, as errors are more readily observable
than faults. This is precisely the objective of al fault testing schemes. With off-line test
application methods, special input patterns are applied to the circuit or system under test,

0 — —0
1 —1
2 —2
3 —3
4 — 4
5 — 5
6 —6
7 - __—7
0 q Colsmns : ° <11+1 Coumcfs ’

Figure 19.9. Regular butterfly and extra-stage butterfly networks.

402 INTRODUCTION TO PARALLEL PROCESSING

while observing possible errors in its outputs or internal state. To deduce underlying faults
from observed errors, we need to establish a correspondence between various fault and error
classes. This is referred to as error modeling. With on-line or concurrent testing, faults must
be exposed during normal system operation and without disrupting its operation. Such a
self-checked mode of operation relies heavily on informational coding and deals with faults
through detecting the errors that they produce.

19.4. ERROR-LEVEL METHODS

An error is any deviation of a system's state from the reference state as defined by its
specification. Errors are either built into a system by improper initiaization (e.g., incorrect
ROM contents) or develop as a result of fault-induced deviations. Assuming that the system’s
state is encoded as a binary vector, an error consists of a set of 0 - 1 (read O-to-1) and/or
1- Oinversions. With this view, errors can be classified according to the multiplicity of
inversions (single versus multiple), their directions (symmetric if both 0 -1 and 1-0
inversions are considered at the same time, asymmetric if for example the inversions can only
be of the 1 - 0 type, and unidirectional if multiple inversions are of the same type), and their
dispersion (random versus correlated). There are finer subdivisions in each category. For
example, byte errors and bursts confined to a number of adjacent bit positions are important
special cases of correlated multiple errors.

Methods of detecting or correcting data errors have their origins in the field of
communications. Early communications channels were highly unreliable and extremely
noisy. So signals sent from one end were often distorted or changed by the time they reached
the receiving end. The remedy, thought up by communications engineers, was to encode the
data in redundant formats known as codes. Examples of coding methods include adding a
parity bit (an example of a single-error-detecting or SED code), checksums, and Hamming
single-error-correcting double-error-detecting (SEC/DED) code. Today, error-detecting and
error-correcting codes are still used extensively in communications, for even though the
reliability of these systems and noise reduction/shielding methods have improved enor-
mously, so have the data rates and data transmission volumes, making the error probability
nonnegligible.

Codes originally developed for communications can be used to protect against storage
errors. When the early integrated-circuit memories proved to be less reliable than the then
common magnetic-core technology, IC designers were quick to incorporate SEC/DED codes
into their designs. The data processing cycle in a system whose storage and memory-to-proc-
essor data transfers are protected by an error code can be represented as in Fig. 19.10. In this
scheme, which is routinely used in modern digital systems, the data manipulation part is
unprotected. Decoding/encoding is necessary because common codes are not closed under
arithmetic and other operations of interest. For example, the sum of two even-parity numbers
does not necessarily have even parity. As another example, when we change an element
within alist that is protected by a checksum, we must recompute the checksum.

The above problem can be solved in two ways. One is the use of codes that are closed
under data manipulation operations of interest. For example, product codes are closed under
addition and subtraction. A product code with check modulus 15, say, represents the integers
xandy as 15x and 15y, respectively. Adding/subtracting the two values directly yields the

RELIABLE PARALLEL PROCESSING 403

Figure 19.10. A common way of applying information coding techniques.

correct encoded form 15(x £ y) of the sum/difference x + y. While product codes are not
closed under multiplication, division, and square-rocting, it is possible to devise arithmetic
algorithms for these operations that deal directly with the coded operands [Parh99].

A second approach, algorithm-based error tolerance, is based on the application of
coding methods at the data-structure level as opposed to at the level of atomic data elements.
The coding methods used, and the required modifications in the algorithms, are highly
application-dependent. However, where applicable, this method yields good error coverage
with a moderate amount of redundancy in data representation and computational steps.

As an example of this approach, consider the multiplication of matrices X and Y yielding
the result matrix Z. The checksum of a list of numbers (a vector) is simply the algebraic sum
of all of the numbers modulo some check constant A. For any k x | matrix M, we define the
row-checksum matrix M, as akx (I+1) matrix that isidentical toM in its Columns O through
| — 1 and has as its Ith column the respective row checksums. Similarly, the column-checksum
matrix M, isa(k+1) x| matrix that is identical to M in its Rows O through k— 1 and has as
its kth row the respective column checksums. The full-checksum matrix M; is defined as the
(k+1)x(1+1) matrix (M,),, i.e., the column-checksum matrix of the row-checksum matrix of
M. For example, using modulo- A checksums with A = 8, we might have

2716 216 1 216 2161
534 5344

M=|534 Mr=5344 Mc=327 Mf=3274
327 3274 261 2611

If X, Y, and Z are matrices satisfying Z=X x Y, we can prove that Z; =X _x Y, [Huan84]. Based
on this result, we can perform standard matrix multiplication on the encoded matrices X, and

404 INTRODUCTION TO PARALLEL PROCESSING

Y,, and then compare the values in the last column and row of the product matrix with
checksums that are computed based on the remaining elements to detect any error that may
have occurred. If the matrix elements are floating-point numbers, then the equalities will
hold approximately, leading to diffiulties in selecting a suitable threshold for considering
values equal. Some methods to resolve this problem are given by Dutt and Assaad [Dutt96].

One can easily prove that in the full-checksum matrix, any single erroneous element can
be corrected and any three erroneous elements can be detected [Huan84]. Consider, for
example, the matrix multiplication algorithm on a 2D mesh, where each processor is in
charge of computing one element of the result matrix Z (Fig. 11.2). According to the above
result, any fault-induced error in one processor leads to an erroneous, but correctable, result
matrix Z. The error correction procedure can be incorporated as part of the error-tolerant
matrix multiplication algorithm. In the arrangement of Fig. 11.2, processors are aso involved
in relaying data elements to other processors. Thus, we cannot say that the algorithm is
completely tolerant to single-processor malfunctions. Alternatively, up to three erroneous
elements in the result matrix can be detected. In this case, we might rely on redoing the
computation right away (in the hope that the errors were related to transient faults) or after
the system has been tested and reconfigured or repaired to remove faulty/malfunctioning
elements.

The full-checksum matrix M; is an example of arobust data structure with certain error
detection/correction properties. Designing such robust data structures with given error
detection or correction capabilities, such that they also lend themselves to direct manipula-
tion by suitably modified algorithms, is still an art. However, steady progress is being made
in this area.

A system moves from erroneous to malfunctioning state when an error affects the
functional behavior of some component subsystem. This transition can be avoided by using
error tolerance techniques. An aternativeisto control the transition so that it leads to a safe
malfunction. This latter technique has been extensively applied to the design of malfunction-
safe (fail-safe) sequentia circuits. The idea is to encode the states of the sequential circuit
in some error code, specify the transitions between valid states (represented by codewords)
in the normal way, and define the transitions for erroneou states in such a way that they
never lead to a valid state. Thus, an invalid state persists and is eventually detected by an
external observer or monitor. In the meantime, the output logic produces safe values when
the circuit isin an invalid state. One may also try to facilitate this transition for the purpose
of exposing latent system errors. For example, amemory unit containing incorrect dataisin
the erroneous state. It will operate correctly as long as the erroneous words are not read out.
Systematic testing of memory can result in a memory malfunction that exposes the errors.

19.5. MALFUNCTION-LEVEL METHODS

A mafunction is any deviation of a system's operation from its expected behavior
according to the design specifications. For example, an arithmetic/logic unit computing 2 +
2 =5 can be said to be malfunctioning, asis a processor executing an unconditional branch
instead of a conditional one. Malfunctions (like defects, faults, and errors) may have no
external symptoms, but they can be made externally observable with moderate effort. In fact,
malfunction detection (complemented by a recovery mechanism) constitutes the main

RELIABLE PARALLEL PROCESSING 405

strategy in the design of today’ s dependable computer systems. Even though such systems
are called fault-tolerant in the prevailing terminology, we will use the adjective malfunction-
tolerant for consistency. Many such systems are built from standard off-the-shelf building
blocks with little or no fault and error handling capabilities and use higher-level hardware
and software techniques to achieve malfunction tolerance at the module or subsystem level.

In a parallel computer, multiple processing resources can be used for malfunction
detection and diagnosis. Thisis sometimes referred to as system-level fault diagnosisin the
literature. Consider the following strategy for malfunction diagnosis. Each processor is tested
by one or more of its neighbors that send it test computations and in return receive the
computation results for comparison with expected results. If the results match, then the tested
processor is considered healthy; otherwise, it is considered to be malfunctioning. The test
routine may be an internal program that exercises most parts of the processor’s hardware.
The testing processor simply supplies a seed value (one data word, say) that affects the final
computation result(s). This seed value is needed to protect against a condition where a
malfunctioning processor accidentally gets a correct result for its internally stored test
program.

In a p-processor system, the diagnosis results can be viewed asap x p matrix D, with
three-valued elements: D;; = 1 meansthat P, thinks P, is healthy; D;; = 0 means that Pi thinks
P; is malfunctioning; an “x” entry means that P, has not tested P}, perhaps because of the fact
that the two are not neighbors. Even though self-test routines usually do not provide complete
coverage, let us assume, for simplicity, that a healthy processor always correctly diagnoses
a malfunctioning one. Of course, a malfunctioning processor provides an unreliable diagno-
sis. Figure 19.11 shows an undirected-graph representation of the testing relationships
among five processors and the resulting diagnosis matrix D.

Identifying the malfunctioning processors from the diagnosis matrix D is a challenging
problem. Intuitively, the reason for the difficulty is that the trustworthy diagnoses from
healthy processors are intermixed with unreliable diagnoses offered by malfunctioning
processors. If we insist that all malfunctioning processors be directly identifiable from D,
then correct diagnosis is possible only if we place an upper bound on the number of
malfunctions. In the example of Fig. 19.11, the diagnosis matrix D is consistent with P, being
the only malfunctioning unit. It is also consistent with P, being the only healthy unit. Thus,
if we know that there is at most one malfunctioning processor, correct diagnosis is achieved.
The upper bound on the number of malfunctions that are fully diagnosable depends on the
testing graph.

We may be able to do somewhat better by relaxing the strong requirement for full
diagnosis. The weakest diagnosis condition is to be able to correctly identify at least one

xx 101
xx10«x
@ @ D={ 11 x0 x
000x20
Q lxx0

Figure 19.11. A testing graph and the resulting diagnosis matrix.

406 INTRODUCTION TO PARALLEL PROCESSING

malfunctioning unit. After such an identification, the known malfunctioning node can be
repaired, replaced, or bypassed and another round of diagnosis conducted with fewer
malfunctioning units. Also, it might be acceptable to identify a superset of the malfunctioning
nodes, because the replacement of such a superset with healthy nodes will remove all
malfunctioning units. Of course, for this method to be useful, the identified superset must
berelatively small (clearly, the set of al p processorsisaways avalid, but useless, superset
of the set of faulty nodes).

Once a malfunction has been diagnosed, the system must be reconfigured with all, or a
subset of, the healthy units. This is relatively simple in a bus-based system; the malfunction-
ing processor, memory module, or 1/0O controller is smply isolated from the bus and
subsequently removed for inspection and repair. In more rigid parallel architectures, the
problem is more difficult. Reconfiguration methods similar to those discussed for defect
tolerance in Section 19.2 can be used to reconfigure the system around faulty units. However,
because each unit is fairly complex at this level, it is desirable to use lower-redundancy
methods if possible.

As an example, consider a reconfigurable 2D mesh that utilizes only one spare processor,
as shown in Fig. 19.12 [Bruc93]. Each processor still has a degree of 4; however, the normally
unused links of the boundary processors are used to accommodate a spare processor in such
away that any single malfunctioning processor can be removed and the mesh reconfigured
into its original topology by simply renaming the nodes. Of course, a full restart would be
reguired to initialize the processors with their new node labels and data. In the example of
Fig. 19.12, the processor originally numbered 5 has been removed and the remaining
processors (including the spare) renumbered to form a complete 4 x 4 mesh. Similar methods
can be used for meshes of higher dimensions, without increasing the node degree.

Similar low-redundancy schemes have been developed for other networks, such as tori
and hypercubes, but they generally involve an increase in node degree and the provision of
additional interconnection switches. A method that works for tolerating a single processor
malfunction in any p-processor architecture involves the use of an extra port per processor.
The p extralinks, which are unused during normal operation, are interconnected viaa p x d
crossbar switch to a degree-d spare node, where d is the maximum node degree in the original
network. When a processor malfunctions, the spare can be made to take its place by setting
up the crossbar switch so that the p neighbors of the malfunctioning processor are linked to
the spare processor. To avoid an excessively complex crossbar switch, various subsets of

Figure 19.12. Reconfigurable 4 x 4 mesh with one spare.

RELIABLE PARALLEL PROCESSING 407

processors can be provided with their own crossbar switch, all linked to the same spare
processor or to different spares.

If a spare is not available, or after all spares have been used up, the malfunctioning unit
can be isolated from the rest of the system. This reduces the amount of hardware resources
(e.g., memory, processing power, 1/0 bandwidth) available, thus leading to a corresponding
performance degradation. In fact, in the absence of special monitoring facilities, a degraded
performance (e.g., delayed response) may be the first indication of the underlying impair-
ments. Provision of backup resources can postpone this transition, as can the ability to replace
or repair the malfunctioning modules without having to shut down or otherwise disturb the
system. Whereas overall system performance may be degraded, individual users or processes
need not experience the same level of service degradation (e.g., because of reassessment of
priorities). In fact, when degradation is severe, only critical computations may be allowed
to run.

19.6. DEGRADATION-LEVEL METHODS

A dependable computer system is often defined as one producing trustworthy and timely
results. Actualy, neither trustworthiness nor timeliness is a binary (all or none) attribute. The
obtained results may be incomplete or inaccurate rather than totally missing or completely
wrong and they may be tardy enough to cause some inconvenience, without being totally
useless or obsolete. Thus, various levels of inaccuracy, incompleteness, and tardiness can be
distinguished and those that fall below particular thresholds might be viewed as degradations
rather than failures. A computer system that is organized such that module malfunctions
usualy lead to degradations rather than to failures is gracefully degrading or fail-soft and is
usually a multiprocessor system.

Figure 19.13 depicts the performance variations in three types of parallel systems:

S1. Afail-hard system with performance P, up to the failuretimet; as well
as after completion of off-line repair at timet; .

So: A fail-soft system with gradually degrading performance level and off-line
repair at timet, .

Ss: A fail-soft system with on-line repair which, from the viewpoint of an
application that requires a performance level of at least Piin, postpones its
faluretimetots.

The traditional notion of reliability is clearly inadequate for systems such as S,and S,. Such
systems must be characterized by their performability, a measure that encompasses perform-
ance and reliability and that constitutes a proper generalization of both.

Malfunction detection/diagnosis and system reconfiguration are starting stages of
graceful degradation but they are not adequate as they form only the system components of
degradation tolerance. Equally important are the application components. Applications may
be designed such that they tolerate temporary or permanent reductions in system resources
or performance. Two fundamental notions that allow an application to be degradation-toler-
ant are those of scalable and robust algorithms.

408 INTRODUCTION TO PARALLEL PROCESSING

Performance
S s
p p 1 1
b3 Iy N
max 3 R \
N S? 8, Sy N } o
L SR TTRN LR ‘&; ------------------- - N :
N ? 3 s.! I
N 4 N
N } N 23
3 xs N N
N H ~ N 4
N L Py {
3 H ; N by -;
N H N \
N H SZ 1 N ?
A O S S N TERNS SN AR i N N
N SO S
P N : N
min[" Perlormance Threshold N N N
N N N
N . N
N N N
\ N N
\ ~ \
\ N >Y
\ N €
A N \
) ~)
N N N
WaV NN n L \ \ 'y
N
%Ot une-rrepar—p N L . Twm
errere —t
1y ty b fp Iy B Iy

Figure 19.13. Performance variations in three example parallel computers.

A scalable algorithmis one that can be executed at various levels of resource availability,
from the full p-processor parallel system down to a certain minimal configuration (ideally,
all the way down to a single processor). Examples include the shared-memory parallel sorting
algorithm described in Section 6.3 or any algorithm that is characterized by a task graph and
run with the tasks dynamically scheduled on the available processors. In order to avoid the
need for restarting an unfinished application program with each configuration change, a
checkpointing scheme may be applied (Fig. 19.14). Saving of partial computation resultsin
stable storage allows usto roll back the program to the last checkpoint instead of restarting
it from the beginning. Checkpointing frequency is determined by cost—performance trade-
offsin order to balance the overhead against the performance gain in the event of malfunc-
tions.

Parallel systems offer special challengesfor correct checkpointing and rollback. Figure
19.14 depicts a set of three communicating tasks, along with examples of consistent and
inconsistent checkpoints. An arrow indicates a message, with the arrow’ s tail at the sending
time and its head at the receiving time. The inconsistent checkpoint is so because if weroll
back the three tasks to the points indicated, Task 0 would have received a message that is not
yet sent by Task 2.

Like scalable agorithms, a robust algorithm is one that can be executed at various levels
of resource availability. The difference is that with a robust algorithm, no assumption is made
about the original architecture being preserved. The 2D mesh architecture provides a good
example. A scalable algorithm for 2D mesh can run on various mesh sizes. A single
malfunctioning processor can reduce the size of the available mesh to one-half, if a nonsquare
mesh is acceptable, or to one-fourth, if the algorithm can only work on a square mesh. A
robust algorithm, however, can run on an incomplete mesh that does not have al processors
working [Parh98]. Aslong as it is known which processors are unavailable, the algorithm
can work its way around them.

RELIABLE PARALLEL PROCESSING 409

L] Long-nmning computation

L [I I T T Divided into 6 segments

L ' || |1 N Checkpoints added
kpomling ovc;anad Cﬂﬂgﬂm Completion

w/o checkpoints with checkpoints

- X
Task 2 /(‘ 7\L

Consistent checkpoints Incoasistent checkpoints

Figure 19.14. Checkpointing, its overhead, and pitfalls.

It is not difficult to envisage a routing algorithm that works on an incomplete mesh or
hypercube. Other robust algorithms are harder to grasp, so let us provide an example for
sorting on an incomplete mesh. If the mesh is designed in such a way that malfunctioning
processors can be bypassed in their respective rows and columns (Fig. 19.15, left), then one
can still use shearsort in an r-row, p-processor mesh. The only difference is that, after log, r
iterations, there may be more than one dirty row, with the exact number being a function of
the number of bypassed processors and their distribution in the various columns. If the
maximum number of bypassed nodes in odd or even rows of any given column is b, then the
number of dirty rows at the termination of the iterative part of robust shearsort is upper
bounded by 4b + 1 [Parh95]. Thus, if the final row-sort is replaced by the application of (4 b
+ 1)p/r steps of odd—even transposition along the overall snake, the sorted order will be
achieved. The nice thing about the resulting robust algorithm is that with no malfunctioning
processor, it sorts just as fast as standard shearsort, its performance degrades only sightly
with scattered malfunctions (up to one per column, say), and it still works with even alarge
number of malfunctions, albeit at degraded performance.

Another robust sorting algorithm, which also works on an incomplete mesh with no
node bypass capability and is thus more general, is based on identifying a submesh that has
a significant number of complete rows and complete columns. In the example of Fig. 19.5
(right), the entire mesh has two complete rows and two complete columns, the submesh
enclosed in the dotted box has three and two, and the submesh consisting of Processors 7-9
and 11-13 has two and three, respectively. The processors located at the intersections of
these complete submesh rows and columns can be used to emulate any 2D mesh sorting
algorithm. Thus, the sorting algorithm consists of three phases: (1) sending dataitems from
all processorsto the designated processors, (2) performing the emulation, and (3) redistrib-
uting the data to the original sources [Yeh97].

For example, taking Processors 1,3,7,9,11, and 13 as the processors designated to do
the emulation in Fig. 19.15 (right), we first send all data elements to these processors, with
each getting up to three elements. Then, we perform sorting on the 3 x 2 mesh with each
processor holding three items, and finally we redistribute the three elements in each processor

410 INTRODUCTION TO PARALLEL PROCESSING

Figure 19.15. Two types of incomplete meshes, with and without bypass links.

to the original source processors. The sorting phase itself can be done using any mesh sorting
algorithm.

A system fails when its degradation tolerance capacity is exhausted and, as aresult, its
performance falls below an acceptable threshold. As degradations are themselves conse-
quences of malfunctions, it is interesting to skip a level and relate system failures directly to
malfunctions. It has been noted that failures in a gracefully degrading system can be
attributed to

Isolated malfunction of a critical subsystem.

Occurrence of catastrophic (multiple space-domain) malfunctions.

Accumulation of (multiple time-domain) malfunctions beyond detectability/tolerance.
Resource exhaustion causing inadequate performance or total shutdown.

I o

Analysis of the PRIME gracefully degrading time-sharing system (developed at Berkeley in
the early 1970s) showed that the first two items, i.e., intolerable malfunctions, are the most
common causes of system failures; this conclusion has since been reinforced by other studies.
In this context, a degradation is amost good news in that the mere fact of its occurrence
means that the highest danger of failure has passed! Minimizing the number and size of
critical subsystems (the hard core) and providing strong protection against catastrophic
common-cause malfunctions are important requirements for recovery and continued opera-
tion in a degraded mode.

PROBLEMS

19.1. Defects, faults, . . ., failures

a Consider the floating-point division flaw in early Pentium processors. Place this flaw and
its consequences and remedies in the context of the seven-level model presented in Section
19.1.

b. Repeat part (a) for the Millennium bug, aka the Y 2K (year-2000) problem, which will cause
some programs using dates with two-digit year fields to fail when the year turns from 1999
to 2000.

RELIABLE PARALLEL PROCESSING 411

19.2. Defects, faults, . . . , failures

Relate the following situations to the analogy of Fig. 19.2.

a. A padlel system is designed to tolerate up to two malfunctioning processors. When a
malfunction is diagnosed, the IC card that holds the malfunctioning processor is isolated,
removed, and replaced with agood one, all in about 15 minutes.

b. When the Pentium division flaw was uncovered, a software package was modified through
“patches’ to avoid operand values for which the flaw would lead to errors. On replacing
the Pentium chip with a redesigned chip (without the flaw), the patched software was not
modified.

19.3. Defect tolerance in alinear array

19.4.

19.5.

19.6.

19.7.

Consider the linear-array reconfiguration scheme depicted in Fig. 19.3, with switch defects
being of atype that leaves them forever stuck in the cross or bent state.

a. Show that the reconfiguration scheme in Fig. 19.3 is till single-defect-tolerant.

b. Insert extra switches in the reconfiguration logic to make the scheme tolerant to single-
switch plussingle-processor defects. Hint: Data might pass through two switches in getting
from one processor to the next, with the effect of one switch being stuck offset through
proper setting of the other one.

c. What can you say about the scheme in Fig. 19.4 in these regards?

Defect tolerance in 2D meshes

a. Inthe scheme of Figs. 19.6 and 19.7, what fraction of triple processor defects are tolerable?

b. How should the switching schemes of Fig. 19.5 be modified to accommodate the processor
bypass capability assumed by the compensation path method?

c. Generalize the compensation path method for defect tolerance to the case where a spare
row/column is provided on each edge of the array (two spare rows, two spare columns).

d. What is the smallest number of defective processors that can disable the scheme of part

(c)?

Fault-tolerant MINs

The fault-tolerant extra-stage butterfly network of Fig. 19.9 essentially provides connectivity
between 16 inputs and 16 outputs. Can a 16-input butterfly network provide the same function?
How or why not?

Approximate voting

Suppose the three-input voter shown in Fig. 19.8 is to interpret its 32-bit unsigned inputs as
fractional values that may contain small computational errors (possibly a different amount for
each input).

a. Provide a suitable definition of majority agreement in this case.

b. Isabit-seria voter, producing its output on the fly, feasible per the definition of part (a)?

c. Design a bit-seriad “median voter” that outputs the middle value among its three inexact
inputs.

d. Under what conditions is the output of a median voter the same as that of a mgjority voter?

Design of comparators
For the two-channel redundant scheme of Fig. 19.8, discuss the design of bit-serial comparators

for integer (exact) and fractional (approximate) results in a manner similar to the voters of
Problem 19.6.

412

19.8.

19.9.

19.10.

19.11.

19.12.

19.13.

19.14.

INTRODUCTION TO PARALLEL PROCESSING

Mean and median voting
One way to reconcile inexact values obtained from multiple computation channels is to take
the mean of the values as the “correct” output.

a What are the advantages and drawbacks of mean voting?

b. Consider afive-channel computation. Show that if the smallest and the largest of the five
values are discarded and the mean of the remaining three values is taken as the “ correct”
output, better fault tolerance is obtained.

c. Compare the voting scheme of part (b) to median voting, which chooses the middle value
among the five results, with regard to advantages and disadvantages.

Algorithm-based error tolerance

a Verify that the product of the matrices M, and M, given in Section 19.4 yields the full
checksum matrix (M2); if the additions are performed modulo 8.
b. Provetheresultin general.

Algorithm-based error tolerance

a Devise an agorithm-based error tolerance scheme for matrix—vector multiplication.

b. Apply the scheme of part (a) to DFT computation (see Section 8.5).

c. Given the specid structure of the Fourier matrix, can you find a simplified error tolerance
scheme for the DFT computation?

Malfunction diagnosis

a Isthe matrix D in Fig. 19.11 consistent with some malfunctioning set of two or three
processors?

b. Prove or disprove: If the node degree of the testing graph is d and if there are at most d —
1 malfunctioning nodes, then at least one mafunctioning node can be identified with
certainty.

Robust shearsort

Show that if there are x dirty rows when doing shearsort on an incomplete mesh with bypassed
faulty processors, then one iteration (snakelike row sort followed by column sort) reduces the
number of dirty rowsto x/2 + 2b, where b is as defined in Section 19.6. Use this result to prove
the (4b + 1)p/r upper bound on the number of odd—even transposition steps needed at the end.

Malfunction-tolerant routing in hypercubes

A hypercube node is said to be k-capable if every nonfaulty node at distance k from it is
reachable through a shortest path. Show that in an g-cube, the g-bit capability vectors of all
nodes can be computed recursively through a simple algorithm and devise a fault-tolerant
routing algorithm whereby each node makes its routing decisions solely on the basis of its own
and its neighbors’ capability vectors [Chiu97].

Fault diameter of g-D meshes and tori
The fault diameter of anetwork is defined as the diameter of its surviving part after faults have
occurred.

a. What isthe fault diameter of a 2D mesh with a single faulty link? What about with a faulty
node?
b. Repeat part (a) for a 2D torus with two faults (node—node, link-ink, link—node).

RELIABLE PARALLEL PROCESSING 413

19.15. Reliahility evaluation
Assume that nodes are perfectly reliable but that a Link hasreliability r. The terminal reliability
of an interconnection network is defined as the minimal probability (over al node pairs) that
apair of nodes remain connected. Compute the termina reliability of the following networks.

aooo

p-node linear array.
p-node ring.
g-cube.

q-star.

REFERENCES AND SUGGESTED READING

[Adam87]
[Bruc93]
[Chiug7]
[Cicios]

[Dutt96]

[Huan84]

[Kung88]
[Parh94]

[Parhgs]

[Parhog]

[Parh99]

[Prado6]

[Yeng?]

[Zivo8]

Adams, G. B., Ill, D. P. Agrawal, and H. J. Siegel, “Fault-Tolerant Multistage Interconnection
Networks,” |IEEE Computer, Vol. 20, No. 6, pp. 14-27, June 1987.

Bruck, J., R. Cypher, and C.-T. Ho, “Fault-Tolerant Meshes and Hypercubes with Minimal Numbers
of Spares,” |IEEE Trans. Computers, Vol. 42, No. 9, pp. 1089-1104, September 1993.

Chiu, G.-M., and K.-S. Chen, “Use of Routing Capbility for Fault-Tolerant Routing in Hypercube
Multicomputers,” IEEE Trans. Computers, Vol. 46, No. 8, pp. 953-958, August 1997.

Ciciani, B., Manufacturing Yield Evaluation of VLS/WS Systems, |EEE Computer Society Press,
1995.

Dutt, S., and F. T. Assaad, “Mantissa-Preserving Operations and Robust Algorithm-Based Fault
Tolerance for Matrix Computations,” |EEE Trans. Computers, Vol. 45, No. 4, pp. 408424, April
1996.

Huang, K. H., and J. A. Abraham, “Algorithm-Based Fault Tolerance for Matrix Operations,” |EEE
Trans. Computers, Vol. 33, No. 6, pp. 518-528, June 1984.

Kung, S. Y., VLS Array Processors, Prentice-Hall, 1988.

Parhami, B., “A Multi-Level View of Dependable Computing,” Computers & Electrical Engineering,
Vol. 20, No. 4, pp. 347-368,1994.

Parhami, B., and C. Y. Hung, “Robust Shearsort on Incomplete Bypass Meshes,” Proc. 9th Int.
Parallel Processing Symp., April 1995, pp. 304-311.

Parhami, B., and C.-H. Yeh, “The Robust-Algorithm Approach to Fault Tolerancc on Processor
Arrays. Fault Models, Fault Diameter, and Basic Algorithms,” Proc. Joint 12th Int. Parallel Process-
ing Symp. and 9th Symp. Parallel and Distributed Processing, 1998, pp. 742-746.

Parhami, B., Computer Arithmetic: Algorithms and Architectures, to be published by Oxford
University Press.

Pradhan, D. K., and P. Banerjee, “Fault-Tolerant Multiprocessor and Distributed Systems: Princi-
ples,” Chapter 3 in Fault-Tolerant Computer System Design, Prentice-Hall, 1996, pp. 135-235.
Yeh, C.-H., and B. Parhami, “Optimal Sorting Algorithms on Incomplete Meshes with Arbitrary Fault
Patterns,” Proc. Int. Conf. Parallel Processing, August 1997, pp. 4-11.

Ziv, A., and J. Bruck, “Checkpointing in Parallel and Distributed Systems,” Chapter 10 in Parallel
and Distributed Computing Handbook, edited by A. Y. Zomaya, McGraw-Hill, 1996, pp. 274-302.

This page intentionally left blank.

20

System and Software
Issues

This book is about algorithms and architectures for parallel processing. There-
fore, | have chosen not to deal with questions such as how to build real parallel
programs, what specification language or execution environment to use, how
parallel system resources are managed, and how hardware and software interact
from economic and application standpoints. So that there is not a complete void
in these practically important areas, some system, software, and application
aspects of parallel processing are reviewed in this chapter, with the goal of
providing a broad picture and pointing the reader to key references for further
study. Chapter topics are

¢ 20.1. Coordination and synchronization
* 20.2. Parallel programming

* 20.3. Software portability and standards
* 20.4. Parallel operating systems

* 20.5. Parallel file systems

* 20.6. Hardware/software interaction

415

This page intentionally left blank.

SYSTEM AND SOFTWARE ISSUES 417

20.1. COORDINATION AND SYNCHRONIZATION

Multiple processors working on pieces of a common problem require some form of
coordination in order to ensure that they obtain meaningful and consistent results. The
mechanism used for coordination may take various forms that involve the exchange of
application data, state indicators, and timing information among the processors. Such
activities are collectively referred to as synchronization, a term that is used even when the
processors operate asynchronously.

In message-passing systems, synchronization is automatic. A task or process requiring
data from another one typically executes a “receive’ operation which either retrieves the data
immediately from communication buffers or else will make the requesting process wait until
the data source has executed a matching “send” operation. Figure 20.1 shows an example.
At the top, the dependence of Task B on Task Ais depicted by an arrow going from Ato B.
We used this notation, e.g., in the task graphs of Chapter 17. Thisis a coarse representation
of the data dependence in that it does not specify where in the course of running A the required
data are produced or where in B they are first needed. In a message-passing system, A and
B are viewed as concurrent processes that can be initiated independently. Once B getsto the
point where it needs the data from A (timet,), it may have to wait until A prepares and sends
the data (timet,) and the communication network forwards the datafrom Ato B (timet 3).
Because the rate of progress in computations is in genera load- and data-dependent,
matching sends and receives can be encountered in either order in time. The semantics of
send and receive automatically imposes the required waits, ensuring correct execution with
no extra effort on our part.

In shared-memory systems, synchronization can be accomplished by accessing spe-
cialy designated shared control variables. A popular way is through an atomic fetch-and-add

Schematic

representation ° °
of data

dependence

Details of Process A: Process B:
dependence _— —

B
Commu- t9 4 waits
nication {
latency t34
T’lmc' - -

Figure 20.1. Automatic synchronization in message-passing systems.

418 INTRODUCTION TO PARALLEL PROCESSING

instruction. The fetch-and-add instruction has two parameters: a shared variable x and an
increment a. Suppose that the current value of X isc. On executing fetch-and-add(x, a) by a
process, cis returned to the process and the new value ¢ + a replaces the old value of xin
memory. A second process executing fetch-and-add(x, b) would then get the now current
value c + a and cause the value of x to be modifiedtoc+a+ b.

Based on the above description, multiple processes executing fetch-and-add with
positive increments will always get different valuesin return. The actual values returned to
the processes will depend on the particular order in which the memory “sees’ the multiple
fetch-and-add instructions. In this regard, the atomicity requirement is important to guarantee
correct execution of concurrent or near-concurrent fetch-and-add instructions issued by
severa processes. As an example, consider the following timing of events if each of two
processes were to execute fetch-and-add by reading the value of x from memory into an
accumulator register, adding its increment to the accumulator, and storing the sum back into
X. The three steps of fetch-and-add for the two processes may be interleaved in time as
follows:

Process A Process B Comments
Time step 1 read x A’s accumulator holds ¢
Time step 2 read X B's accumulator holds ¢
Time step 3 add a A’s accumulator holds ¢ +a
Time step 4 add b B’s accumulator holds c+b
Time step 5 store X x holdsc +a
Time step 6 store X x holdsc+b

This leads to incorrect semantics, as both processes will receive the same value cin return
and the final value of xin memory will be c + b rather thanc + a + b.

Fetch-and-add is a powerful primitive that is useful in many different contexts. For
example, if iterations of aloop with loop index i ranging from min to max are to be assigned
to different processors for execution, the processors can execute fetch-and-add(x,1) in order
to get a value of the loop index to work on, where x is initiaized to min. As another example,
to verify that all of the h subtasks of a task have been completed, one can use a fetch-and-
add (x, 1) at the end of each subtask. Assuming an initial value of O for x, all subtasks have
been completed when the value of x becomes h.

Besides fetch-and-add, other atomic operations have been used for the purpose of
coordination or synchronization. One example is “test-and-set,” which causes a Boolean
value to be read from location x and location x be set to 1 in one indivisible operation. One
application isin implementing a lock that allows a single process to enter a critical section
but stops al subsequent processes attempting to enter until the first process releases the lock
by resetting the variable xto 0. Another example is “compare-and-swap” where a value
provided by the process is compared against the value stored in the shared variable x and the
values are swapped in one indivisible operation.

One problem with using fetch-and-add, test-and-set, compare-and-swap, or similar
mechanisms for synchronization is that the shared memory locations corresponding to the
control variables will be accessed by many processors, creating a condition known as
hot-spot contention. When a multistage interconnection network is used for routing access
reguests from processors to memory banks (see, e.g., Fig. 6.9), special combining switches

SYSTEM AND SOFTWARE ISSUES 419

ferch-and-add(x, a)

<_.___
¢ Combining fetch-and-add(x, a+b)
—

Switch
fetch-and-add(x, b) (——
< » | Save [a]

cta

Figure 20.2. Combining of two fetch-and-add requests.

can be used to mediate the memory access conflicts. Figure 20.2 shows how combining of
memory access requests can be used to reduce two memory access requests to just one.

A particularly useful synchronization schemeis barrier synchronization where a proc-
essor, in a designated set, must wait at a barrier until each of the other processors has arrived
at the corresponding point in its respective computation. Basically, in MIMD computations,
we prefer to et each processor proceed at its own speed for maximum efficiency. Wetry to
keep synchronizations to a minimum, not only because synchronization itself has an
overhead but also in view of the fact that some of the processors must remain idle until all
other processors, which may have been slowed down by data-dependent conditions (e.g.,
more difficult subproblems, higher cache miss rates), have caught up. Figure 20.3 accentuates
the performance benefit of less frequent synchronizations among a set of four processors.

Synchronous parallel computations are easier to visualize, and thus to develop and
debug. Asynchronous computations are more efficient because they allow each processor to
do its share of the work at full speed. Note that synchronization is required only when two
or more processors must interact; no synchronization is needed during periods that are devoid
of interprocessor communication. We can deal with the synchronization problem in two
complementary ways. On the one hand, we can make synchronizations faster by providing
hardware support. On the other hand, we can reduce the need for synchronization through
suitable programming paradigms. Each of these alternatives will be briefly discussed in the
following paragraphs. As usual, there is a trade-off in practice, with hybrid solutions that

P, P, P, Py

Z7Z

T

Synchro-

&0

e
A
Wy

5
T

Tie ¥

Figure 20.3. The performance benefit of less frequent synchronization.

420 INTRODUCTION TO PARALLEL PROCESSING

borrow elements from each approach being the most cost-effective in a given application
context.

A simpleminded approach to barrier synchronization is the use of an AND tree. Suppose
that, on reaching a barrier, a processor raises a “barrier flag” and then checks to see if the
AND tree output is 1. If it is, then the processor lowers its flag and proceeds past the barrier,
because all other processors have reached the barrier. However, if it is possible for a processor
to be randomly delayed between raising its flag and checking the AND tree output, then it
is possible for some processors to go past the barrier and lower their flags before others have
had a chance to examine the AND tree output.

Using two AND trees that are connected to the set and reset inputs of a flip-flop can
solve the above problem [Hoar96]. Assume that the synchronization barriers are numbered
consecutively. For each odd-indexed barrier, a processor sends a 1 into the set AND tree and
a0 into thereset AND tree (Fig. 20.4). Thus, when all processors have reached the barrier,
the flip-flop will be set and checking for a1 output from the flip-flop allows the processors
to proceed past the odd-indexed barrier. For even-indexed barriers, the roles of the two trees
are reversed, with each processor sending a 0 into the set AND tree and a 1 into the reset
AND tree and checking for 0. Because the flip-flop will not be reset (set) until all of the
processors have reached the next barrier, even a processor that has been significantly slowed
down will detect the correct barrier signal and no processor ever goes into an infinite wait
state.

Once we provide a mechanism like Fig. 20.4 to facilitate barrier synchronization, it is
only asmall step to generalize it to a more versatile “global combine” (semigroup compu-
tation) facility. Note that the AND tree essentially implements a semigroup computation
using the binary AND operator. The generalization might involve the ability to do OR and
XOR logical reductions as well.

An example for the second strategy, i.e., that of reducing the need for synchronizations,
is the bulk-synchronous parallel (BSP) mode of paralel computation [vali90], briefly
discussed near the end of Section 4.5. In the BSP mode, synchronization of processors occurs
once every L time steps, where L is a periodicity parameter. A parallel computation consists
of a sequence of supersteps. In a given superstep, each processor performs a task consisting
of local computation steps, message transmissions, and message receptions from other
processors. Data received in messages will not be used in the current superstep but rather
beginning with the next superstep. After each period of L time units, a globa check is made
to see if the current superstep has been completed. If so, then the processors move on to

00 = s
foé — AND
tree .
: | Barrier
fop 1 — S Fip-9 T Signal

f‘O o R flop
fey —— Reset
fea —1 AND
|l tree
fe p-1—

Figure 20.4. Example of hardware aid for fast barrier synchronization [Hoar96].

SYSTEM AND SOFTWARE ISSUES 421

executing the next superstep. Otherwise, the next period of L time unitsis alocated to the
unfinished superstep.

BSP is essentially a mechanism for ensuring overlap between computation and commu-
nication. If sufficient parallel slack is available (i.e.,, matrix multiplication, with each
processor being responsible for computing a sizable block of the result matrix), then the
processors will have more than enough local computations to perform in between data
arrivals. We thus gain the benefits of synchronous communication (simple to visualize, easy
to prove correct) and asynchronous computation (efficient use of processing resources).

Recall that in the LogP model of communication, also discussed near the end of Section
4.5, the aim was to characterize the communication performance of a parallel architecture
in terms of a small number of parameters in order to facilitate the development of efficient
parallel agorithms without a need for taking a great deal of machine-specific details into
account. In BSP, we go a step further by squeezing all machine-dependent considerations
into the periodicity parameter L. Note that the periodicity parameter L of BSP is different
from the network latency parameter L of LogP. However, the two are not unrelated, as given
a network with sufficient bandwidth, the periodicity in BSP can be chosen to be equal to, or
asmall multiple of, the latency in LogP.

20.2. PARALLEL PROGRAMMING

The preparation of programs for parallel execution is of immense practical importance.
We have seen that the design of parallel processing hardware, particularly the interconnection
architecture, and of parallel algorithms are full of challenging problems. As difficult as these
problems are, the single most important reason for the lack of acceptance and limited
application of parallel processing is neither hardware nor algorithms but rather obscure and
cumbersome programming models. Since the early 1970s, we have witnessed moderate
successes with parallelizing compilers, which automatically extract parallelism from essen-
tially sequential specifications, and with array languages such as High-Performance Fortran.
However, the goa of simple, efficient machine-independent paralel programming has
remained elusive.

In this section, we briefly review five approaches to the development of parallel
programs:

e Paralelizing compilers

o Dataparallel programming
e Shared-variable programming
e Communicating processes

* Functional programming

In the first approach, the pardlelism is implicit in the program and is automatically extracted
by the parallelizing compiler, while with the other four approaches, parallelism is explicitly
specified by the programmer using appropriate constructs in a parallel programming
language. There are two strategies for designing a paralel programming language: extending
an existing popular language with capabilities for dealing with parallel constructs and

422 INTRODUCTION TO PARALLEL PROCESSING

building a new language from scratch. The former approach is easier and more likely to lead
to adoption of the language.

A paralleliziing compiler is one that takes a standard sequential program (written in
Fortran, C, or other language) as input and produces a parallel program as output. Vectorizing
compilers are similar and have been in use for many years in connection with pipelined vector
processors. The idea in both cases is to deduce, through automatic dependence analysis,
which computations lack interdependencies and can thus be executed concurrently.

The motivation behind the use of a parallelizing compiler is twofold. First, a paralelizing
compiler allows us to utilize existing programs without the need to rewrite them for execution
on each new parallel machine. Second, there is a great deal of expertise in most large
organizations for writing and debugging sequential programs in standard languages, whereas
the development of explicitly parallel programs requires retraining of programmers not only
in the use of new parallel programming languages, but also in working with software aids
for parallel program development and debugging.

As an example, consider the two nested “for” loops in the following program fragment:

fori=2tokdo
forj=2tokdo
aji=(@j-1+aj+1)2
endfor
endfor

In this example, each iteration of the i loop can be scheduled for execution on a different
processor with complete asynchrony, because successive iterations are totally independent.
Techniques similar to those used in vectorizing compilers, including reversal of nesting order,
loop unrolling (or unfolding), and conversion of conditionals to reduction operations, are
useful for deriving more efficient parallelized versions from a given sequential program.

It may seem ironic that forcing a naturally parallel computation into a sequential mold,
and then applying the powers of an intelligent compiler to determine which of these
artificially sequentialized computations can be performed concurrently, is a viable approach
to parallel processing. But this is just one example of cultural inertia and economics dictating
an approach that defies common sense.

Data-parallel programming is an approach with a long history. The APL programming
language, with its array and reduction operations, was an early example of an explicit
data-parallel programming scheme. For example, in APL, C — A + B meant that the matrix
Cis to be computed by the componentwise addition of the matrices Aand B, X ~ +/V
specified that x is the sum of all elements of the vector V, and U — +/V x W represented the
inner product of V and W (sum of all elements in the componentwise product of the two
vectors). The “+/" operation, called sum reduction, was an instance of a generic reduction
operation that could be used with any arithmetic, logic, selection, or comparison operator.

Although APL was devised primarily for making the specification of numerical com-
putations mathematically elegant and more concise, its implications for data-parallel pro-
gramming were aso exploited in some parallel systems. The conciseness of APL
specifications was at times a drawback because the ability of programmers to specify highly
complex computations in one or two lines of code made the deciphering or understanding

SYSTEM AND SOFTWARE ISSUES 423

of the specifications, and thus their debugging and maintenance, very difficult, to the extent
that APL was only half-jokingly referred to as awrite-only language.

A much simpler version of the APL ideas are incorporated into an extension of the
Fortran language known as High Performance Fortran (HPF), which was developed in 1992
to improve the performance and usability of Fortran-90 [Love93]. Fortran, though often
criticized for itsinelegance and lack of support for modular and structured programming, is
extensively used in scientific computations, the primary application area for early parallel
and vector supercomputers. Thus, prior to Fortran-90 and HPF, many Fortran extensions had
been proposed for, and used on, various parallel machines. Examples include CFD Fortran
of ILLIAC IV (an early 2D mesh parallel computer) and CFT or Vector Fortran developed
for the Cray line of supercomputers. The introduction of HPF by a forum of researchers and
industry representatives has been amajor step for imposing uniformity and compatibility in
the area of scientific parallel applications. HPF compilers are currently offered by severa
parallel computer vendors.

Fortran-90, a superset of Fortran-77, is an 1SO and ANSI standard language, with
extensions that include facilities for array operations. In Fortran-90, a statement such as

A = SQRT(A) + B ** 2

squares every element of array B, extracts the square root of every element of array A, and
adds the corresponding elements of the two arrays, storing the resultsin array A. As a second
example,

WHERE (B/=0)A=A/B

performs a masked array assignment, resulting in each element of A being divided by the
corresponding element of B, except in those cases where the B element is 0.

The semantics of Fortran-90 is independent of the underlying machine model. It simply
provides a global name space and a single thread of control. However, array operations of
the type presented above alow Fortran-90 programs to be efficiently executed on parallel
machines. When run on a distributed-memory machine, some Fortran-90 constructs imply
interprocessor communication. Assignment of a scalar value to an array

A=82

may imply multicasting or broadcasting (one-to-many communication). Use of “array
section” notation or index vectors

A(I:J) =B(J1:-1) {asection of array B is assigned, in reverse order, to array A}
A(P)=B {Pisaninteger index vector; means A(P(I)) = B(l) for dl 1}

may require data permutation (many-to-many communication). Finaly, reduction opera-
tions, such as summing all elements of an array

S = SUM(B)

may require a gather operation (many-to-one communication).

HPF extends Fortran-90 by adding new directives and language constructs. It aso
imposes some restrictions for efficiency reasons. HPF includes a number of compiler
directives that assist the compiler in data distribution. These directives, which do not alter

424 INTRODUCTION TO PARALLEL PROCESSING

the semantics of the program, are presented as Fortran-90 comments (begin with the
comment symbol “!"). Thus, if an HPF program is presented to a Fortran-90 compiler, it will
be compiled, and subsequently executed, correctly. As an example, the HPF statement

IHPF ALIGN A(l) WITH B(l + 2)

is a hint to the compiler that it should distribute the elements of arrays A and B among
processors or memory banks such that A(l) and B(l + 2) are stored together. If this statement
isignored, the program will still execute correctly, but perhaps less efficiently.

Data-parallel extensions have also been implemented for other popular programming
languages. For example, the C* language was introduced in 1987 by Thinking Machines
Corporation for use with its Connection Machine parallel computers. A key element in C*
is the notion of “shape,” which is defined, given a name, and then associated with the
variables that are to have that particular shape (e.g., 20-element vector, 128 x 128 matrix).
Parallel operations are specified using constructs such as the “with” statement, for compo-
nentwise or array reduction operations, and the “where” statement for conditional parallel
operations such as

with (students) {
where (credits > 0.0) {
gpa= points/ credits
}
}

Like “if” statements, “where” statementsin C* can have “else” clauses or be nested.

Another example of a data-parallel language is pC++, which is based on the popular
sequential language C++ [Malo94]. A key notion in pC++ is that of “distributed collection,”
which is a structured set of objects distributed across multiple processors in a manner similar
to what is done in HPF. The user can easily build collections from some base element class
and also has accessto alibrary of standard collection classes (e.g., vectors, arrays, matrices,
grids, and trees). Profiling and performance analysis tools that are built into pC++ allow the
user to establish the need for, and the resulting benefits of, various optimizations.

Shared-variable programming is exemplified by Concurrent Pascal and Modula-2.
Concurrent Pascal is an extension of Pascal, with the addition of processes, monitors, and
classes, along with three new statements (init, delay, continue) and a new data type (queue).
Monitors can be viewed as mechanisms that allow us to put walls around a collection of
shared resources in order to regulate multiple accesses to them. Concurrent Pascal also
provides facilities for initiating, delaying, and continuing the execution of processes and a
way of scheduling the various calls made by outside procedures in FIFO order. A class defines
a data structure and its associated operations that can be performed by a single process or
monitor (mutual exclusion). Modula-2 contains only primitive concurrency features that
allow processes to interact through shared variables or via (synchronizing) signals.

In the Sequent C shared-variable programming language, developed for use with
Sequent’s shared-memory multiprocessors, the keyword shared placed before a global
variable declaration forces all processors to share a single instance of that variable, whereas
an ordinary declaration implies that each processor will have a private copy of that variable.
A program begins execution as a single process, which may then fork into a number of

SYSTEM AND SOFTWARE ISSUES 425

paralel processes. Program execution alternates between sequential and parallel segments,
with the transition from a parallel to a sequential segment delimited by a barrier synchroni-
zation. Even though Sequent C has no built-in support for monitors, they can be easily
implemented by using its shared lock declaration and associated “lock” and “unlock”
statements.

Communicating processes form the basis of several concurrent programming languages
such as Ada and Occam. This approach, which involves passing of messages among
concurrently executing processes, has four basic features: (1) process/task naming, (2)
synchronization, (3) messaging scheme, and (4) failure handling. Process naming can be
direct (explicit) or indirect (the sender names an intermediate object such as a channel,
mailbox, or pipe). Synchronization can be nonexistent, complete (sender proceeds only after
ensuring that its message has been delivered), or partial (e.g., remote procedure calls and use
of acknowledgments). The messaging scheme can be quite flexible and general, asin Ada,
or rigidly linked to an assumed hardware structure (such as channels in Occam). Finaly,
failure handling is needed for undesirable situations such as deadlocks (complete system
lockup) or starvation (a particular process's messages not getting through).

Instead of building interprocess communication facilities into a programming language,
it is possible to provide users with language-independent libraries. This approach, as
embodied in the MPI standard, is now the dominant approach for programming distributed-
memory machines (see Section 20.3). Though not as elegant as the above-mentioned
languages, the use of librariesis practically much simpler. Compilers for powerful parallel
languages are notoriously difficult and costly to develop. These factors, along with the
limited acceptance of each such language by the user community, render the approach
economically unviable. Libraries, on the other hand, are easier to develop and can be used
in conjunction with the user’s favorite language.

Functional programming is based on reduction and evaluation of expressions. There is
no concept of storage, assignment, or branching in afunctional program. Rather, results are
obtained by applying functions to arguments, incorporating the results as arguments of still
other functions, and so forth, until the final results are obtained. Alternatively, we can view
a functional programming language as alowing only one assignment of value to each
variable, with the assigned value maintained throughout the course of the computation. Thus,
computations have the property of referential transparency or freedom from side effects,
which makes their final results independent of the history of how, and in what order, various
partial results were obtained. These appear to be ideal properties for parallel processing.
However, because of the inefficiencies inherent in the single-assignment approach, the
practical application of functional programming has thus far been limited to Lisp-based
systems (e.g., MIT’s Multilisp) and data-flow architectures (e.g., Manchester University's
SISAL).

20.3. SOFTWARE PORTABILITY AND STANDARDS

During much of the history of parallel processing, parallel applications have been
developed as machine-specific, and thus nonportable (often one-of-a-kind), programs. This
has made parallel applications quite costly to develop, debug, and maintain. The reasons for
this undesirable state of affairs are

426 INTRODUCTION TO PARALLEL PROCESSING

» Proliferation of parallel architectures and lack of agreement on a common model
 Infeasibility of commercia software development based on the limited customer base
» Desirefor efficient hardware utilization, given the high cost of parallel processors

Changes are afoot in al of these areas, making the prospects of truly portable parallel
software brighter than ever. Ideally, a portable parallel program should run on a variety of
hardware platforms with no modification whatsoever. In practice, minor modifications that
do not involve program redesign or significant investments of time and effort are tolerated.

Program portability requires strict adherence to design and specification standards that
provide machine-independent views or logical models. Programs are developed according
to these logical models and are then adapted to specific hardware architectures by automatic
tools (e.g., compilers). HPF is an example of a standard language that, if implemented
correctly, should allow programs to be easily ported across platforms. In what follows, we
briefly review two other logical models, or user-level views, that have been developed for
paralel systems. MPlI and PVYM. These descriptions are necessarily oversimplified and
incomplete. They are meant only as an annotated list of user-level implementation options
and issues in parallel computing. The cited references should be consulted for details.

The message-passing interface (MPI) standard specifies a library of functions that
implement the message-passing model of parallel computation [MPIF94] [Snir96]. MPl was
developed by the MPI Forum, a consortium of parallel computer vendors and software
development specidists. As a standard, MPI provides a common high-level view of a
message-passing environment that can be mapped to various physical systems. Software
implemented using MPI functions can be easily ported among machines that support the
MPI model. MPI includes functions for

 Point-to-point communication (blocking and nonblocking send/receive, . . .)
 Collective communication (broadcast, gather, scatter, total exchange, . . .)

» Aggregate computation (barrier, reduction, and scan or parallel prefix)

» Group management (group construction, destruction, inquiry, . . .)

» Communicator specification (inter-/intracommunicator construction, destruction, . . .)
* Virtual topology specification (various topology definitions, . . .)

Most of the above functions are self-explanatory (refer to Section 10.1 for definitions of
point-to-point and collective communications and to Section 20.1 for barrier synchroniza-
tion).

Both blocking and nonblocking sends can start independent of whether or not a matching
receive has been posted. A blocking send completes when the send buffer can be reused,
whereas nonblocking send returns before the message has been copied out from the buffer.
Thus, nonblocking send alows computation and communication to be overlapped, but
requires a separate check for completion. Blocking receive and nonblocking receive are
similarly related. A communicator is a process group (ordered set of processes) plus a context.
Each communicator has a distinct context; a message sent in one context must be received
in the same context. This feature allows multiple communications to coexist in the parallel
system without interfering with one another. The virtual topology specification allows for
hardware-independent program development. If a 2D-mesh virtual topology is specified, the
implementation of MPI on any given machine maps the virtual topology to the target

SYSTEM AND SOFTWARE ISSUES 427

machine’s real topology (e.g., 2D mesh, 3D torus, hypercube) in such away that efficient
communications can be performed.

MPI assumes the use of areliable user-level transmission protocol with nonovertaking
messages. Because message-passing programs often exhibit a great deal of tempora locality,
in the sense that a process sending a message to another one is likely to send another message
to the same process in the near future, MPI includes features for persistent communication
that allow some of the overhead of sending and receiving messages to be shared across
multiple transmissions.

Parallel virtual machine (PVM) is a software platform for developing and running
parallel applications on a collection of independent, heterogeneous, computers that are
interconnected in a variety of ways [Geis95]. PVM defines a suite of user-interface primitives
that support both the shared-memory and the message-passing parallel programming para-
digms. These primitives provide functions similar to those listed above for MPI and are
embedded within a procedura host language (usually Fortran or C). A PVM support process
or daemon (PVMD) runs independently on each host, performing message routing and
control functions. PVMDs perform the following functions:

» Exchange network configuration information
¢ Allocate memory to packets that arein transit between distributed tasks
» Coordinate the execution of tasks on their associated hosts

The available pool of processors may change dynamically. Names can be associated with
groups or processes. Group membership can change dynamically and one process can belong
to many groups. Group-oriented functions, such as broadcast and barrier synchronization,
take group names as their arguments.

20.4. PARALLEL OPERATING SYSTEMS

A parallel computer, like a sequential machine, needs system programs that manage its
resources, provide various services to user processes, and enforce the required protection,
performance monitoring, and accounting functions. From the viewpoint of how the available
computational, storage, and communication resources are managed, we distinguish two
classes of parallel processors: back-end/front-end and stand-alone.

In the back-end system subclass, the parallel processor is viewed as a resource that is
attached to a conventional (seguential) host computer. The host computer has a standard
operating system, like Unix, and manages the parallel processor essentially like a coprocessor
or 1/O device. Required data are provided to the parallel processor, and the computation
results received from it, in much the same way as I/O data transfers. The host computer is
also responsible for program compilation, diagnostic testing, access control, and interface
with the users. The main advantage of this approach, which is particularly suited to
computation-intensive applications where a great deal of manipulation is performed on a
limited set of data, is that it avoids the high cost of developing and maintaining special system
software. The front-end system subclass is similar, except that the parallel processor handles
its own data (e.g., an array processor doing radar signal processing) and relies on the host

428 INTRODUCTION TO PARALLEL PROCESSING

computer for certain postprocessing functions, diagnostic testing, and interface with the
USers.

In the stand-alone system class, a special operating system is included that can run on
one, several, or all of the processors in a floating or distributed (master—slave or symmetric)
fashion. Because of the popularity of Unix, most parallel operating systemsin use today are
extensions of Unix (Unix-based) or have very similar structures to that of Unix (Unix-like).
Note that a parallel operating system is not fundamentally different from a standard operating
system such as Unix. Modern operating systems are al concurrent programs that deal with
multiple hardware resources (e.g., processors, 1/O channels), multiple asynchronous events
(e.g., interrupts), and interdependent tasks or computation threads.

Parallel operating systems have a long history. In 1960, Burroughs introduced its AOSP
(Automatic Operating and Scheduling Program) for a 4-processor shared-memory computer.
Progress in small-scale shared-memory operating systems continued in the 1970s with
TOPS-10 for the PDP-10 by Digital Equipment Corporation and OS/VS2 for the IBM
System 370 Models 158 MP and 168 MP. The advent of low-cost minicomputers in the 1970s
allowed experimentation with larger-scale parallel systems. Notable examples were the
Hydra operating system for Carnegie-Mellon University’s 16-processor C.mmp and the
Medusa and StarOS systems for CMU’ s 50-processor Cm* system.

Beginning with the introduction of the MUNIX system for a dual PDP-11 configuration
in the mid-1970s, numerous Unix-based and Unix-like parallel operating systems have been
designed. Recent examples include the Dynix operating system for the Sequent Balance
shared-memory MIMD computer with up to 30 processors, the OSF/1 operating system
introduced by the nonprofit Open Software Foundation (now the Open Group) that runs the
Intel Paragon, and IBM’s AlX for its SP-2 line of parallel systems. The advent of parallel
environments based on clusters of workstations has made the Unix-based approach even
more attractive.

The Mach operating system developed at Carnegie-Mellon University is sometimes
classified as a Unix-based system in view of its ability to run serial Unix applications as
single-threaded tasks. Mach's capability-based object-oriented design supports multiple
tasks and threads that can communicate with each other via messages or memory objects.
Tasks and threads are conceptually the same in that they specify concurrently executable
code segments. However, context switching between two threads executing the same task is
much faster than that between two arbitrary threads. This is why threads are sometimes called
lightweight processes, where lightness refers to the limited state information associated with
aprocess or thread.

Figure 20.5 depicts the structure of the Mach operating system. The Mach kernel runs
in the supervisor mode, performing functions relating to virtual memory management, port
and message management, and task or thread scheduling. Everything else runs in the user
mode. To make a compact, modular kernel possible, Mach designers have opted to define a
small set of basic abstractions:

« Task: a“container” for resources like virtual address space and communication ports
» Thread: an executing program with little context; a task may contain many threads
» Port: acommunication channel along with certain access rights

* Message: abasic unit of information exchange

» Memory object: a“handl€’ to part of atask’s virtual memory

SYSTEM AND SOFTWARE ISSUES 429

s O O 0 O O

Dlstr Servers
Netwo
6 ®E@

User Mode Unix Compatibility

Supervisor Mode

Mach Kernel: Virtual Memory Management,
Port/Message Management, and Scheduling

Figure 20.5. Functions of the supervisor and user modes in the Mach operating system.

Unlike Unix whose memory consists of contiguous areas, the virtual address space in Mach
is composed of individual pages with separate protection and inheritance. This makes it
possible to efficiently handle programs with large and/or sparse address spaces. Inheritance
refersto what isin the page: shared, private, or invalid (absent) data.

Messages in Mach are communicated via ports. The messages are typed to indicate the
data type they carry and can be communicated over a port only if the sending/receiving thread
has the appropriate access rights. For efficiency purposes, messages that involve a large
amount of data do not actually carry the data; instead a pointer to the actual data pagesis
transmitted. Copying of the data to the receiver's pages does not occur until the receiver
accesses the data. So, even though a message may refer to an extensive data set, only the
segments actually referenced by the receiver will ever be copied.

The Mach scheduler has some interesting features. Each thread is assigned a time
quantum on starting its execution. When the time quantum expires, a context switch is made
to athread with highest priority, if such athread is awaiting execution. To avoid starvation
of low-priority threads, priorities are reduced based on “age’; the more CPU time a thread
uses, the lower its priority becomes. This policy not only prevents starvation, but also tends
to favor interactive tasks over computation-intensive ones.

A number of user-mode servers, some of which are shown in Fig. 20.5, perform
user-defined functions or extend the kernel's capabilities. For example, interprocess com-
munication over the network is not supported by the Mach kernel. Instead, messages are sent
to a network server, which represents tasks running on remote nodes. The network server
converts process names to physical addresses and sends the messages over the network.
Similarly, at the destination, a network server receives the message, derives a loca
destination port from the information contained in the message, and forwards the
message to its final destination. The various steps outlined above can be made transparent
to the user who sends messages using process names rather than physical port numbers.
In a similar vein, shared-memory accesses to remote pages are handled by a distributed
shared-memory server.

430 INTRODUCTION TO PARALLEL PROCESSING

20.5. PARALLEL FILE SYSTEMS

Considerations for 1/O devices to support the high bandwidth requirements of parallel
processors were discussed in Sections 18.4 and 18.5. Raw /O bandwidth, however, is not
sufficient to balance the 1/0O performance with the processing power. A parallel file system,
which efficiently maps data access requests by processors to high-bandwidth data transfers
between primary and secondary memory devices, is another important piece. In fact, as the
focus of parallel processing applications shifts from number crunching to databases and data
mining, parallel file systems cannot help but grow in importance.

If the paralldl file system is not to become a performance bottleneck, it must itself be

written as a highly parallel and scalable program that can efficiently deal with many access
scenarios:

e Concurrent access to files by multiple independent processes
» Shared accessto files by groups of cooperating processes
* Accessto large amounts of data by a single process

Figure 20.6 shows some of the complexities involved in the third case above. A read request
issued by a user processis sent to a dispatcher process which creates a server task or thread
to effect the required transfer. The actual data needed may come in part from cache copies
of various disk pages and in part satisfied by initiating disk read accesses. To achieve its goal,
the READ server process might spawn multiple COPY RD threads, one for each fixed-size
block of datato be transferred. These threads must be distributed throughout the system, not
just to allow them to be executed in parallel but also to balance the memory load and network
traffic resulting from the transfers. Hopefully, the file block alocation mechanism has
declustered the data on the disk in such a way that the disk accesses required will also be
performed in parallel.

User Process

User Space in
(Disaibuted)
Shared Memory

High-Bandwidth
Data Transfer

File System File Syltz‘,h’ml
Dispatcher Worker
Process Thread

Figure 20.6. Handling of a large read request by a parallel file system [Hell93].

SYSTEM AND SOFTWARE ISSUES 431

Examples of existing file systems for parallel machines include Sun’s network file
system, Intel’s concurrent file system [Pier89], and nCUBE's 1/O system software [DeBe92].

20.6. HARDWARE/SOFTWARE INTERACTION

Parallel processing has been and is being done on many different platforms. At one
extreme lie homogeneous tightly coupled parallel processors, with custom, highly optimized
interconnection structures. These machines are least flexible in terms of system scalability,
program portability, and run-time performance fine tuning. At the other extreme lie hetero-
geneous loosely coupled distributed systems, usually composed of commodity processing
and communication resources. The built-in management of heterogeneity and asynchrony
in such systems often makes them more readily adaptable, scalable, and portable. Many
parallel processing systems, particularly those with standard or hierarchical buses, fall
between these two extremes. Parallel applications are often not portable between these
various classes of parallel systems (sometimes not even between different machines in the
same genera class).

Given the programming models and user-level views discussed in the preceding sections
of this chapter, it is possible, and highly desirable, to completely decouple the two issues of
hardware configuration and algorithm or program development for paralel systems. A
parallel application program should be executable, with little or no modification, on a variety
of parallel hardware platforms that differ in architecture and scale. This is necessary from
an economic standpoint, as very few users can afford the cost of developing paralel
applications from scratch with each new generation of hardware or, worse, with each
increment in system size. For example, it is fairly common for an organization to begin with
a small (say 8-processor) parallel system and then upgrade to larger systems as its needs
warrant. The changeover from the 8-processor to the 16-processor configuration, say, should
not require modification in the system or application programs; ideally, the upgrade should
be done by simply plugging in the new processors with associated interconnects and
rebooting the system.

From the above viewpoints, workstation clusters are ideal platforms for parallel com-
putation, as they are readily scalable both in time and in space. They are scalable in time,
because the introduction of faster workstations and interconnects leads to a corresponding
increase in system performance with little or no redesign. They are scalable in space, because
their computational power can be increased by simply plugging in more processors. While
it is true that increasing the number of processors may lead to an imbalance between the
available computational power and communication bandwidth, compilers and operating
systems can partially compensate for this imbalance by adjusting the task granularity and
their partitioning, scheduling, and load-balancing strategies. Also, computation can be traded
off for communication by using data compression methods or context-dependent messaging
schemes.

Obvioudly, it is desirable to provide the same type of scalability enjoyed by loosely
coupled workstation clusters for tightly coupled multiprocessors. Many of the commercially
available parallel processors are in fact scalable in space within specific ranges (say 4-256
processors). Scalability intimeis difficult at present but may be made possible in the future

432 INTRODUCTION TO PARALLEL PROCESSING

through the adoption of implementation and interfacing standards of the same types that have
made persona computer modules compatible and readily interchangeable.

Besides hardware scalability, users are interested in software or application scalability.
The notion of algorithm scalability (being able to run an algorithm at various levels of
resource availability) was defined in Section 19.6. Algorithm or application scalability is
useful not only for achieving degradation tolerance but also for portability. In the remainder
of this section, we quantify the above notion and define the related measures of scaled
speed-up and isoefficiency.

Recall the definition T(1)/T(p) of speed-up introduced in Section 1.6 for a given
(fixed-size) problem. As noted near the end of Section 1. 1, we use paralléel processing not
just to speed up the solution of fixed problems but also to make the solution of larger problems
feasible with realistic turnaround times. The equation for speed-up, with the problem size n
explicitly included, is

T(n, 1)
I(n, p)

The cumulative time pT(n, p) spent by the processors can be divided into computation time
C(n,p) and overhead time H(n,p) = pT(n, p) — C(n,p), where the latter incorporates
everything besides computation, including communication time and processor idle time.
Assuming for simplicity that we have no redundancy, C(n, p) = T(n, 1) and we get H(n, p)
=pT(n,p)—T(n, 1) and

S(n.p) =

p

S(n, py = ———"——
(. p) 1+H(n, py/T(n, 1)
Efficiency, defined as E(n, p) = S(n, p)/p, isthen simply

1
L+ H(n, p)/T(n, 1)

E(n. p) =

If the overhead per processor, H(n, p)/p, is afixed fraction f of T(n, 1), then speed-up and
efficiency will become

P
S(n, p) = ——
(n, p) T
E(n,p)=
(n, p) T

The speed-up formula above is essentially an alternate form of Amdahl’s law that establishes
an upper bound of 1/f on speed-up.

In what follows, we assume that efficiency is to be kept above one-half, but the
arguments apply to any fixed efficiency target. Based on the above formula, to have
E(n, p) > 1/2,weneed pf <1or

p<lf

SYSTEM AND SOFTWARE ISSUES 433

implying that, for a fixed problem size and under the assumption of the per-processor
overhead being afixed fraction of the single-processor running time, there is an upper limit
to the number of processors that can be applied cost-effectively.

Going back to our initial efficiency equation, we note that keeping En, p) above
one-half requires

T(n, 1)> H(n, p)

Generally, the cumulative overhead H(n, p) is an increasing function of both nand p, whereas
T(n, 1) only depends on n. Recall that we are proceeding with the assumption C(n,p) =
T(n, 1), meaning that T(n, 1) represents the amount of useful computation performed by the
p processors. As we scale the machine size (increase p) with afixed problem size, H(n, p)

grows but T(n, 1) remains constant, thus leading to lower speedup and efficiency.

For many problems, good efficiency can be achieved provided that we sufficiently scale
up the problem size. The amount of growth in problem size that can counteract the increase
in machine size in order to achieve afixed efficiency is referred to as the isoefficiency function
n(p), which can be obtained from the equation

T(n, 1) = H(n, p)

With the above provisions, a scaled speed-up of p/2 or more is achievable for problems of
suitably large size. Note, however, that the parallel execution time

T(n, 1) + H(n. p)

P
grows as we scale up the problem size to obtain good efficiency. Thus, there is a limit to the
usefulness of scaled speed-up. In particular, when there is a fixed computation time available

because of deadlines (asin daily or weekly weather forecasting), the ability to achieve very
good scaled speed-up may beirrelevant.

T(n,p)=

PROBLEMS

20.1. Data dependence
Consider the data dependence diagram of Fig. 20.1 to which an arrow going from B to A has
been added. If the resulting circular dependence does not make sense, say why; otherwise
provide a detailed example.

20.2. Fetch-and-add versus test-and-set

a. Show how an atomic fetch- and-add capability can do the job of test-and- set.

b. Can test-and-set be used to provide an atomic fetch-and-add capability?

c. Fetch-and-op is a generaization of fetch-and-add with an arbitrary operator. Which
operators besides “add” might be useful in this context?

20.3. Mutual exclusion
Several concurrent processes are to read and update the shared variables x y, and z. The nature
of the application is such that in each use, all three variables are read out but only oneis updated.

a. How can access to these variables be restricted to one process at atime using a shared lock
variable?

434

INTRODUCTION TO PARALLEL PROCESSING

b. Isthere any advantage to using three shared variables lockx, locky, and lockz to regulate
the accesses? What about drawbacks?

20.4. Mutual exclusion and deadlock

20.5.

20.6.

20.7.

20.8.

20.9.

When resources are to be shared by multiple processes, a permission and rel ease (lock/unlock)
mechanism can be employed. A process obtains alock to use a shared resource; when done, it
returns the lock.

a Show that deadlock is possible with as few as two shared resources, even if processes never
fail to return alock when they are done using a resource (i.e., processes are correct and
never hang up).

b. Show that if shared resources are numbered and each process is restricted to request
resources in ascending numerical order, then deadlock cannot occur.

Fetch-and-add operation
Draw a diagram similar to Fig. 20.2 to show how six concurrent fetch-and-adds might be
combined in the switches of a multistage interconnection network.

Processor synchronization

Consider the Jacobi relaxation method, presented near the end of Section 11.4, for solving a
linear system of equations. There are n equations and p processors, so that in each iteration, a
processor must determine the new value for n/p variables based on the old values of al n
variables.

a. Assume that barrier synchronization is used so that processors move from one iteration to
the next in lockstep. Discuss the running time of the algorithm in view of the synchroni-
zation overhead.

b. Suppose that we use the asynchronous version of the algorithm by allowing each processor
to proceed at its own speed, with no synchronization. Processors may drift apart, causing
values from different iterations to be intermixed. Discuss the effects of this strategy on the
convergence and running time of the algorithm ([Bert89], pp. 434-437).

Processor synchronization
A generalized synchronization network may consist of a parallel counter that receives p
single-bit inputs and produces their dog,(p + [)3bit sum at the output.

a. Show how such a generalized network can be used for barrier synchronization.
b. Give examples where the above network is more useful than the AND-tree of Fig. 20.4.
c. Using the above network, devise an algorithm that implements a global sum operation.

Parallelizing “for” loops
Consider a“for” loop with itsindex i ascending from 1 to k

a Theloopissaid to have forward dependence if it contains statements such as & :=a;,q +
b. Explain why such a forward dependence does not prevent parallelization.

b. Anexample loop with backward dependence contains the statement & := b; + ¢; followed
by b1 := sqrt(d;). Show how this particular loop can be parallelized.

. Can you parallelize the loop containing the single statement a,,,:= a; + b;?

d. Can you parallelize the loop containing the conditional statement if & <0 then s:=s+ a;
X b|’)

HPF Fortran
Answer the following questions for High-Performance Fortran, where A, B, C arereal vectors
and P, Q are integer index vectors (permutations of the integersin [1, NJ).

SYSTEM AND SOFTWARE ISSUES 435

20.10.

20.11.

20.12.

20.13.

20.14.

20.15.

20.16.

Does the assignment A(P) = B(P) make sense? What about Q = N + 1 — P followed by A(P)
=B(Q)?

Describe the effect of the assignment statement A = B(P) + C(N:1:-1).

Arethe directives ALIGN A(l) with B(l + 2) and ALIGN B(l) WITH C(l — 2) conflicting
or compatible?

Parallel programming

Sketch the designs of parallel programs corresponding to the sieve of Eratosthenes (see Section
1.2) intwo parallel programming languages of your choice. Outline the differences in the two
implementations and the application characteristics that led to them.

Functional programming

Study the functional programming approach to parallel program development, highlighting
some of the key reasons for its lack of popularity despite clean semantics and freedom from
side effects.

MPI and PVYM
Study the Message-Passing Interface and Parallel Virtual Machine standards. Enumerate their
similarities and differences and contrast their domains of applicability.

Paralel systems software

Study the Unix-based operating systems, and their associated file systems, for two real parallel
machines of your choice. Explain the differences between the two in terms of interprocess
communication, protection mechanisms, task/thread scheduling, synchronization support, and
compatibility with Unix.

Isoefficiency and scaled speed-up

It can be shown that the cumulative overhead H(n, p) for n-point FFT computation on a
p-processor hypercube and 2D meshisO(nlogp + plog p) and O(log p + n/Np), respectively.
The work required for an n-point FFT is T(n, 1) = O(n log n). Find the isoefficiency function
and comment on the application scalability and speedup in each of the two cases.

Parallel computation speed-up and efficiency
Relate the discussion of scaled speed-up and isoefficiency in Section 20.6 to the “good-news’
corollaries to Brent’s scheduling theorem in Section 17.5.

Digital libraries

Briefly discuss how the material in each of the six sections in this chapter is relevant to the use
of ahighly parallel processor as a high-performance server for a digital library [CACM95].

REFERENCES AND SUGGESTED READING

[Bertsq]

[Blel9s]

Bertsekas, D. P., and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods,
Prentice—Hall, 1989.

Blelloch, G. E., “Programming Parallel Algorithms,” Communications of the ACM, Voal. 39, No. 3,
pp. 85-97, March 1996.

[CACM95] Communications of the ACM, special issue on digital libraries, Vol. 38, No. 4, April 1995.
[DeBed2) DeBenedictis, E., and J. M. del Rosario, “nCUBE Parallel I/O Software,” Proc. 11th IEEE Int.

[Geis95]

Phoenix Conf. on Computers and Communications, 1992, pp. 117-124.
Geigt, A., et d., PVM, Parallel Virtual Machine, A User’s Guide and Tutorial for Networked Parallel
Computing, MIT Press, 1995.

436

[Gram93]

[Hell93]

[Hoarge]
[Loved3]
[Mal094]
[MPIF94]
[Perr9g]
[Piergq]

[Snirge]
[Valioo]

INTRODUCTION TO PARALLEL PROCESSING

Grama, A. Y., A. Gupta, and V. Kumar, “Isoefficiency: Measuring the Scalability of Parallel
Algorithms and Architectures,” IEEE Parallel & Distributed Technology, Vol. 1, No. 3, pp. 12-21,
August 1993.

Hellwagner, H., “Design Considerations for Scalable Parallel File Systems,” The Computer Journal,
Voal. 36, No. 8, pp. 741755, 1993.

Hoare, R., H. Dietz, T. Mattox, and S. Kim, “Bitwise Aggregate Networks,” Proc. 8th IEEE Symp.
Parallel & Distributed Processing, October, 1996, pp. 306-313.

Loveman, D. B., “High Performance Fortran,” |IEEE Parallel & Distributed Technology, Val. 1, No.
1, pp. 2542, February 1993.

Malony, A., et a., “Performance Analysis of pC++: A Portable Data-Parallel Programming System
for Scalable Parallel Computers,” Proc. 8th Int, Parallel Processing Symp., April 1994, pp. 75-84.

MPI Forum, “MPI: A Message-Passing Interface Standard,” Int. J. Supercomputer Applications, Vol.
8, Nos. 3/4, pp. 169414, 1994.

Perrott, R. H., “Parallel Languages,” Chapter 29 in Parallel and Distributed Computing Handbook,
edited by A. Y. Zomaya, McGraw-Hill, 1996, pp. 843-864.

Pierce, P., “A Concurrent File System for a Highly Parallel Mass Storage Subsystem,” Proc. 4th Conf.
on Hypercube Concurrent Computers and Applications, 1989, pp. 155-160.

Snir, M., et a., MPI: The Complete Reference, MIT Press, 1996.

Valiant, L. G., “A Bridging Model for Parallel Computation,” Communications of the ACM, Vol. 33,
No. 8, pp. 103-111, August 1990.

Implementation
Aspects

To learn how the theories and techniques covered in the previous chapters are
applied to the design of real machines, in this part we review the architectures
and other characteristics of several production and prototype parallel computers.
The case studies have been chosen to represent the various architectural classes
and to illustrate how implementation methods are used in the context of overall
design goals, technological constraints, and application requirements. Within
each class, we review key concepts related to the user view and then study a
cross section of real designs that include historically significant computers,
machines that have influenced the parallel processing industry, those that have
contributed significantly to a better understanding of the field, and, of course,
modern production machines that are still in use. In the final chapter, we present
a roadmap of the past and current trends and review some of the promising and
exciting research areas that are likely to shape the field of parallel processing in
the next decade. This part consists of four chapters:

Chapter 21: Shared-Memory MIMD Machines
Chapter 22: Message-Passing MIMD Machines
Chapter 23: Data-Parallel SIMD Machines
Chapter 24: Past, Present, and Future

437

This page intentionally left blank.

Shared-Memory
MIMD Machines

The shared-memory view can be provided in different ways. In this chapter,
following a survey of topics pertaining to the practical implementation and
performance of shared memory, we review several parallel computer systems
that use global or distributed shared memory. Two of the machines chosen are
products of groundbreaking research (BBN Butterfly and Stanford DASH), one
was developed in the private sector with extensive support from the U.S.
government (Tera MTA), and two are production machines from different gen-
erations: Cray Y-MP, which is a cluster of several vector supercomputers, and
Sequent NUMA-Q, which is a modern machine based on the SCI standard.
Chapter topics are

e 21.1. Variations in shared memory
¢ 21.2. MIN-based BBN Bultterfly

e 21.3. Vector-parallel Cray Y-MP

e 21.4. Latency-tolerant Tera MTA

* 21.5. CC-NUMA Stanford DASH

¢ 21.6. SCl-based Sequent NUMA-Q

439

This page intentionally left blank.

SHARED-MEMORY MIMD MACHINES 441

21.1. VARIATIONS IN SHARED MEMORY

Shared-memory implementations vary greatly in the hardware architecture that they use
and in the programming model (logical user view) that they support. In this section we review
the most common hardware architectures for shared memory, and also discuss the various
logical user views and their performance implications, to set the stage for the case studies
that follow in Sections 21.2 through 21.6. Ideas and terminology introduced in Section 4.3
are relevant to our discussion here, asis the discussion of cache coherence in Section 18.2.

With respect to hardware architecture, shared-memory implementations can be classi-
fied according to the placement of the main memory modules within the system (central or
distributed) and whether or not multiple copies of modifiable data are alowed to coexist
(single- or multiple-copy). The resulting four-way classification is depicted in Fig. 21.1.

With a central main memory, access to al memory addresses takes the same amount of
time, leading to the designation uniform memory access (UMA). In such machines, data
distribution among the main memory modules is important only to the extent that it leads to
more efficient conflict-free parallel access to data items that are likely to be needed in
succession (see Section 6.6). If multiple copies of modifiable data are to be maintained within
processor caches in a UMA system, then cache coherence becomes an issue and we have the
class of CC-UMA systems. Simple UMA has been used more widely in practice. An early,
and highly influential, system of this type was Carnegie-Mellon University’s C.mmp system
that was built of 16 PDP-11 minicomputers in the mid-1970s (Fig. 21.2). It had both a
crossbar and a bus for interprocessor communication via shared variables or message
passing. Here, we will study two example systems from this class: the pioneering BBN
Butterfly in Section 21.2 and the vector-parallel Cray Y-MP in Section 21.3.

When memory is distributed among processing nodes, access to locations in the global
address space will involve different delays depending on the current location of the data. The
access delay may range from tens of nanoseconds for locally available data, somewhat higher
for datain nearby nodes, and perhaps approaching several microseconds for datalocated in
distant nodes. This variance of access delay has led to the designation nonuniform memory
access (NUMA). One approach to softening the impact of slow remote accesses is through

Single Copy of Multiple Copies of
Modifiable Data ~ Modifiable Data

&M,"jnm oA CC-UMA
Memory | BBN Butterfly ’
Cray Y-MP
COMA
Distributed NUMA 2
M Tera MTA tan
Sequent NUMA-Q

Figure 21.1. Classification of shared-memory hardware architectures and example systems that
will be studied in this chapter.

442 INTRODUCTION TO PARALLEL PROCESSING

Bus Interface

——Ithe|§l P’g" m[-_—-
EEaD
e

16x16
Crossbar

il
Hal

Bus
I~ {Controll

?

Mem
is Cache|

Figure 21.2. Organization of the C.mmp multiprocessor.

latency hiding or latency tolerance methods (see Section 18.3). In Section 21.4, we will study
the TeraMTA as an example of machinesin this class.

Another approach for dealing with slow remote accesses is to cache the needed data
within individual processors (cache-coherent NUMA or CC-NUMA). We will study two
examples of this most widely used approach: the Stanford DASH in Section 21.5 and the
Sequent NUMA-Q in Section 21.6. Alternatively, one can allow data replication in multiple
processors that have but one level of memory. This single level could be called the main
memory (no cache) or it may be viewed as the cache. The second interpretation, leading to
the designation cache-only memory architecture (COMA), is more suitable because the
multiple copies must be kept consistent and thinking of the memories as caches highlights
the connection with cache coherence protocols.

UMA machines typically use a high-performance crossbar or multistage interconnec-
tion network to alow many processors to access the central main memory simultaneously.
In many data-parallel applications, it is possible to lay out the data in main memory in a way
that access conflicts are minimized. Additionally, memory access requests can be pipelined
through the interconnection network so that processor speed depends on the network’s
throughput rather than its end-to-end latency. In this case, the effect of the interconnection
network is akin to a lengthening of the memory access pipeline. Computation can be
overlapped with memory accesses by providing large register files (e.g., the vector registers
of Cray Y-MP) that are loaded from, or stored into, main memory concurrently with
processing functions on other registers.

Similar latency hiding techniques are applicable to NUMA machines lacking processor
caches. Additionally, multithreading has been found to be quite effective for this purpose. In
a multithreaded architecture capable of switching between threads with little overhead, the
processor can be kept busy by executing portions of several other threads while waiting for
aremote access request of one thread to be satisfied via the interconnection network. Again,
it is the aggregate bandwidth of the interconnection network, rather than its end-to-end delay,
that is most important. The only effect of lower network latency is to allow the processors
to hide the memory access delay wish fewer threads. This reduces the processor complexity

SHARED-MEMORY MIMD MACHINES 443

in terms of control and needed register space (for highly parallel applications that have many
threads readily available) and also leads to better performance in the processing of tasks with
limited parallelism.

CC-NUMA machines typically enforce cache coherence via a directory-based scheme.
The address placed on the memory bus of a processing node is locally translated into the
identity of the home directory for the requested data. The node's local cache hierarchy holds
copies of data from the local memory as well as from the memory of remote nodes. The
penalty for accessing remote memory is paid only if the requested data are not found in the
local node or if the enforcement of the coherence protocol (i.e., for writing to shared data)
reguires coordination with other nodes.

The local memory of a COMA machine must be outfitted with additional hardware,
including tag and state storage for the coherence protocol (typically a directory-based
write-invalidate scheme). The augmented memory unit is sometimes called attraction
memory. The main advantage of COMA isits adaptivity, as data items are not permanently
tied to specific homes. Another advantage is its natural support for reliable system design
using backward error recovery (checkpointing). A simple extension of the coherence
protocol used for COMA allows recovery data to be stored in other caches just like replicated
data, except that recovery data cannot be used once their new versions have been modified
[Mori96]. The main disadvantages are in more complex procedures for locating the required
data and for enforcing the coherence of multiple data copies. As an example, note that the
replacement of data in attraction memories must be done with care to ensure that the only
copy of adataitem is not permanently lost.

We next discuss the various logical views of shared memory and their design and
performance implications. These are known as shared-memory consistency models.

1. Sequential consistency is the strictest, and most intuitive, shared-memory consis-
tency model. It mandates that the interleaving of read and write operations be the
same from the viewpoint of all processors. In effect, sequential consistency provides
the illusion of a single-port memory system that services the read and write requests
on afirst-come first-served basis. Thus, memory access requests of one processor
are always satisfied in program order and the accesses of multiple processors are
serialized arbitrarily, but in the same way as judged by severa observing processors.

2. Processor consistency is less strict because it only mandates that write operations
be observed in the same order by multiple processors. This allows read operations
to overtake write operations in memory service queues, providing better perform-
ance as aresult of optimizations afforded by out-of-order executions.

3. Weak consistency separates ordinary memory accesses from synchronization ac-
cesses and only mandates that memory become consistent on synchronization
accesses. Thus, a synchronization access must wait for the completion of all
previous accesses, while ordinary read and write accesses can proceed as long as
there is no pending synchronization access.

4. Release consistency is similar to weak consistency but recognizes two synchroni-
zation accesses, called acquire and release, with protected shared accesses sand-
wiched between them. In this model, ordinary read and write accesses can proceed
only when there is no pending acquire access from the same processor and a release

444 INTRODUCTION TO PARALLEL PROCESSING

access must wait for al reads and writes to be completed. Further relaxation of
release consistency to improve the performance has also been suggested [Prot96].

The particular consistency model chosen affects the design and performance of the cache
coherence protocol required to enforce it. Even though most distributed shared-memory
systems are built with extensive hardware support for enforcing the chosen consistency
model, this is not an absolute necessity. Software-based, operating-system-based, and
language-based implementations have also been attempted [Prot96].

21.2. MIN-BASED BBN BUTTERFLY

The Butterfly parallel processor of Bolt, Beranek, and Newman became available in
1983. It is a genera-purpose paralel computer that is particularly suitable for signal
processing applications. The BBN Butterfly was built of 2-256 nodes (boards), each holding
an MC68000 processor with up to 4 MB of memory, interconnected by a 4-ary wrapped
butterfly network. Typical memory referencing instructions took 2 ps to execute when they
accessed local memory, while remote accesses required 6 ps. The relatively small difference
between the latencies of local and remote memory accesses leads us to classify the BBN
Butterfly as a UMA machine.

The structure of each node is shown in Fig. 21.3. A microcoded processor node controller
(PNC) is responsible for initiating all messages sent over the switch and for receiving
messages from it. It also handles all memory access requests, using the memory management
unit for trandlating virtual addresses to physical addresses. PNC also augments the function-
aity of the main processor in performing operations needed for parallel processing (such as
test-and-set, queuing, and scheduling), easily enforcing the atomicity requirementsin view
of its sole control of memory.

MC 68000
Processor

il
Processor Node
Controller

Memory Manager

Switch
EPROM Intert

1 MB To /O

| v

! Daughter Board Connection
for Memory Expansion (3 MB) |

Figure 21.3. Structure of a processing node in the BBN Bultterfly.

SHARED-MEMORY MIMD MACHINES 445

Processing Node 0

4x4 4x4
jamnsam —

4x4 4x4
—T14x4 4x4 T—=

4x4 %& 4x4

Processing Node 15

Figure 21.4. A small 16-node version of the multistage interconnection network of the BBN
Butterfly.

[l

The wrapped 4-ary butterfly network of the BBN Butterfly required four stages of 4x4
bit-serial switches, implemented as custom VLS| chips, to accommodate the largest 256-
processor configuration. A small, 16-node version of the network is depicted in Fig. 21.4.
Routing through the network was done by attaching the binary destination address as a
routing tag to the head of a packet, with each switch using and discarding 2 bits of this tag.
For example, to send a message to Node 9 = (1001),,,, in Fig. 21.4, the least-significant 2
bits would be used to select the second output of the switch at the first level and the
most-significant 2 bits would indicate the choice of the third output in the second-level
switch. In typical applications, message collision did not present any problem and the latency
for remote memory accesses was dominated by the bit-serial transmission time through the
network.

Because the probability of some switch failing increases with the network size, BBN
Butterfly systems with more than 16 processing nodes were configured, through the
inclusion of extra switches, to have redundant paths. Besides improving the reliability, these
redundant paths also offered performance benefits by reducing message collisions.

Much of the programming for the BBN Butterfly was done in the C language, although
Lisp and Fortran were also available. Applications were run under a specially developed
operating system and a Unix-based front end computer was used for program compilation
and loading.

A related machine, New York University’s Ultracomputer [Gott83], built around the
same time as the BBN Butterfly and using the butterfly network, merits a mention here. It
used specia switches for combining fetch-and-add operations. Several versions of the NYU
Ultracomputer were built, with the largest having 16 processors.

21.3. VECTOR-PARALLEL CRAY Y-MP

The Cray Y-MP series of vector-parallel computers were introduced in the late 1980s,
following several previous Cray vector supercomputers including Cray-1, Cray-2, and Cray
X-MP. Subsequently, the Cray C-90 series of machines were introduced as enhanced and
scaled-up versions of the Y-MP.

446 INTRODUCTION TO PARALLEL PROCESSING

The Cray Y-MP consisted of arelatively small number (up to eight) of very powerful
vector processors. A vector processor essentially executes one instruction on a large humber
of data items with a great deal of overlap. Such vector processors can thus be viewed as
time-multiplexed implementations of SIMD parallel processing. With this view, the Cray
Y-MP, and more generaly vector-paralel machines, should be classified as hybrid
SIMD/MIMD machines.

Figure 21.5 shows the Cray Y-MP processor and its links to the central memory and
interprocessor communication network. Each processor has four ports to access central
memory, with each port capable of delivering 128 bits per clock cycle (4 ns). Thus, a CPU
can fetch two operands (a vector element and a scalar), store one value, and perform 1/0
simultaneously. The computation section of the CPU is divided into four subsystems as
follows:

1. Vector integer operations are performed by separate function units for add/subtract,
shift, logic, and bit-counting (e.g., determining the weight or parity of aword).

-
Inter- fooaeaese ettt st et caen ey
Processor : Vector
Commun. ; Registers v f‘-
+ f‘
; 2 z
L o 3]
Lo 1 ;
P2 :
P> 3
vo |
- —
Central __jL_ :
Memory : L :
' 62 :
;63
T Registors ¢
- (8 64-bit) S Registers
> (8 64-bit)
CPU ters/uni
InpuyOutput el s

Figure 21.5. Key elements of the Cray Y-MP processor. Address registers, address function units,
instruction buffers, and control not shown.

SHARED-MEMORY MIMD MACHINES 447

2. Vector floating-point operations are performed by separate function units for
add/subtract, multiply, and reciprocal approximation. The latter function unit is used
in the first step of adivision operation x/y. The approximation to 1/y that is provided
by thisunit isrefined in afew iterations to derive an accurate value for 1/y, which
ismultiplied by x in the final step to complete the division operation.

3. Scalar integer operations are performed by separate integer function units for
addition/subtraction, shift, logic, and bit-counting.

4. The add/subtract and multiply operations needed in address computations are
performed by separate function units within an address subsystem that also has two
sets of eight address registers (these 32-bit address registers and their associated
function units are not shown in Fig. 21.5).

The eight vector registers, each holding a vector of length 64 or a segment of a longer vector,
allow computation and memory accesses to be overlapped. As new data are being loaded
into two registers and emptied from athird one, other vector registers can supply the operands
and receive the results of vector instructions. Vector function units can be chained to allow
the next data-dependent vector computation to begin before the current one has stored al of
itsresultsin avector register. For example, avector multiply—add operation can be done by
chaining of the floating-point multiply and add units. This will cause the add unit to begin
its vector operation as soon as the multiply unit has deposited its first result in a vector
register.

A key component of Cray Y-MP isits processor-to-memory interconnection network
depicted in Fig. 21.6 for an eight-processor configuration. This is a multistage crossbar
network built of 4 x 4 and 8 x 8 crossbar switches and 1 x 8 demultiplexers. The network

Sections Sutr:%iom Memory Banks

0,4,8,..,28
Py 4 x4 32,36,40,...,92
8x 8
Pl 4x4
P, Ax4 1,5,9,...,29
8x 8
P3 4x4
2,6,10,..,30
P, 4x4
8x8
P5 4x4
3,7,11,..,31
Pg 4x4 ’
8x8
P., 4x4
227,231, ...,255

Figure 21.6. The processor-to-memory interconnection network of Cray Y-MP.

448 INTRODUCTION TO PARALLEL PROCESSING

uses circuit switching and ensures that multiple access requests from the same port are
satisfied in presentation order.

The enhanced Cray C-90 version of the Y-MP architecture increased the maximum
number of processorsto 16. In each cycle, up to four vector results can be produced by the
C-90 processor’s function units, leading to the peak performance of 1 GFLOPS per processor.
The Cray C-90 has a peak 1/0 bandwidth of 13.6 GB/s and works under UNICOX, an
extended Unix operating system. Vectorizing compilers for common scientific languages,
such as Fortran and C, are available. Multiple Cray C-90s can be linked through gigabyte
per second channels to a multigigabyte solid-state storage device (SSD) that acts as
secondary main memory. By sharing access to the SSD, the multiple C-90s can be used to
solve large-scale computational problems.

21.4. LATENCY-TOLERANT TERA MTA

The TeraMTA multithreaded parallel computer is unique in several ways [Tera97]. It
uses a pruned 3D torus interconnection scheme for its routing nodes (see Fig. 12.4), along
with extensive pipelining and multithreading to hide the memory access latency. It is
designed to be truly general-purpose, with near-peak performance for a wide array of
numerical and nonnumerical applications. Its clock period is 3 ns.

Initsfull configuration, TeraMTA has 4096 routing nodes interconnected as a 16x16x16
pruned torus. Each routing node has a degree of 4 or 5, depending on the lack or presence
of aresource connected to that node. Up to 256 processors, 512 memory modules, 256 1/0
cache units, and 256 1/O processors are connected to a subset of the routing nodes. The
network diameter is 24 and its average internode distance is about 12. The ratio of 16 between
the numbers of routing nodes and processors (64 between routing-node ports and processors)
allows each processor to have many memory access requests in transit without creating a
communication bottleneck.

Each routing node can handle a 164-bit packet consisting of source and destination
addresses, an operation, and 64 data bitsin both directions on each link on every clock tick.
Because the bisection width of the 16x16x16 pruned torus is 256, and each link can
transport two 8-byte data words per 3-ns clock period, the effective bisection bandwidth of
the fully configured network is an impressive 1.4 TB/s. A packet spends two clock cyclesin
the routing node’s logic and one cycle on the wire going to the next node. Routing nodes do
not buffer messages other than in their pipeline registers. Each message is immediately routed
to an output port, which may lead to derouting under heavy loads. However, because
messages are assigned random priorities at each node, each message will eventually reach
its destination.

Asthe MTA system is scaled up, it is envisaged that the number of routing nodes in the
3D pruned torus network grow in proportion to p3/2, in contrast to p in other multicomputers
with direct network or p log p in machines with multistage networks. This is justified by
the fact that the average routing distance of O(p*2) requires O(p*2) in-transit memory access
messages from each of the p processors in order to hide the memory access latency. Because
the degree of each routing node is a constant, O(p¥?2) such nodes are needed to route all of
the in-transit messages without significant delays (ideally no delay at all). The above can

SHARED-MEMORY MIMD MACHINES 449

also bejustified from the viewpoint of the network's bisection bandwidth. An O(p*?)-node
3D torus has a bisection of O(p) that scales linearly with the number p of processors.

Processors of the Tera MTA are multithreaded. Each processor can have as many as 128
program counters active at once. On every clock tick, athread that is ready for execution is
selected and its next instruction placed into the execution pipeline. On the next clock tick, a
different thread may execute. If a single instruction is issued from each thread, then roughly
70 threads would be required to completely hide the expected latency (processor pipeline,
interconnection network, internal memory pipeline). However, because threads in general
allow multiple independent instructions to be issued at once, fewer threads may suffice. The
state of each thread, which consists of a 32-bit program counter, various mode/mask/condi-
tion bits, 8 branch target registers, and 32 general-purpose registers (all 64 bits wide), is held
in dedicated hardware of which a processor has 128 copies.

As shown in Fig. 21.7, the three pipelines M (memory access operation), A (arithmetic
operation), and C (control or simple arithmetic operation) can be used simultaneously. A
64-bit instruction can contain one operation of each type. With multithreaded execution, a
processor can support over 1 hillion operations per second, even though each thread may run
at only 1/10 of this rate. Every processor has a clock register that is synchronized exactly
with its counterparts in the other processors and counts up once per cycle. In addition, the
processor counts the total number of unused instruction issue slots (degree of underutilization
of the processor) and the time integral of the number of instruction streams ready to issue
(degrees of overutilization of the processor). All three counters are user-readable in a single
unprivileged operation.

g KhsucPool] Instr. Fetch]\
p— v

M A C

et

£

#
a

£

(),
! e
n :
Interconnection Network
e —
[1 1|

Memory Internal Pipeline

Figure 21.7. The instruction execution pipelines of Tera MTA.

450 INTRODUCTION TO PARALLEL PROCESSING

The memory system of a p-processor Tera MTA consists of 2p or 4p memory modules
distributed around the network. Each 0.5-GB module is 64-way interleaved and memory
data references by the processors are randomly scattered among all banks of all memory
modules. Memory accesses to fetch instructions are directed to two nearby memory modules.
The peak performance of the TeraMTA is 1 GFLOPS per processor, yielding a maximum
of about 0.25 TFLOPS in the full 256-processor configuration.

Input/output is carried out primarily via disk arrays that are connected to some routing
nodes. One disk array (360 GB, 130 MB/s) for every 16 processors is the recommended
minimum requirement. Data read out from disks are placed in 1/O cache memories that are
then directly mapped into the user’s address space. Concurrent 1/O arising from parallel loops
or elsewhere is automatically parallelized by Tera's Fortran, C, and C++ compilers and
libraries by letting each thread access the buffers for data.

The Tera MTA operating system is a distributed parallel version of Unix. Instruction
streams are dynamically created or destroyed using a single instruction. Large and small
tasks are run concurrently without a need for system partitioning or manual intervention. A
two-tier scheduler is incorporated into the Tera microkernel; it provides better resource
allocation to large tasks (those currently running on more than a single processor) via a
bin-packing scheme, and schedul es the smaller tasks using a traditional Unix approach.

21.5. CC-NUMA STANFORD DASH

Stanford University’s directory architecture for shared memory (DASH) project of the
early 1990s had the goal of building an experimental cache-coherent multiprocessor. The
64-processor prototype resulting from this project, aong with the associated theoretical
developments and performance evaluations, contributed insight and specific techniques to
the design of scalable distributed shared-memory machines. According to the terminology
introduced in Section 4.3, DASH can be classified as a cache-coherent NUMA (CC-NUMA)
architecture.

DASH has a two-level processor-to-memory interconnection structure and a corre-
sponding two-level cache coherence scheme (Fig. 21.8). Within a cluster of 4-16 processors,
access to main memory occurs via a shared bus. Each processor in a cluster has a private
instruction cache, a separate data cache, and a Level-2 cache. The instruction and data caches
use the write-through policy, whereas write-back is the update policy of the Level-2 cache.
The clusters are interconnected by a pair of wormhole-routed 2D mesh networks: a request
mesh, which carries remote memory access requests, and a reply mesh, which routes data
and acknowledgments back to the requesting cluster. Normally, a processor can access its
own cache in one clock cycle, the caches of processors in the same cluster in a few tens of
clock cycles, and remote data in hundreds of clock cycles. Thus, data access locality, which
is the norm in most applications, leads to better performance.

Inside a cluster, cache coherence is enforced by a snoopy protocol, while across clusters,
coherence is maintained by a write-invalidate directory protocol built on the release consis-
tency model for improved efficiency. The unit of data sharing is ablock or cache line. The
directory entry for a block in the home cluster holds its state (uncached, shared, or dirty) and
includes a bit-vector indicating the presence or absence of the cache line in each cache.
Remote memory accesses, as well as exchanges required to maintain data coherence, are

SHARED-MEMORY MIMD MACHINES 451

Processor Processor

Cluster
R L
| Mpgi

Level-2 cache Directory

& network
I-cache|D-cache imerface

Processor
Cluster

Figure 21.8. The architecture of Stanford DASH.

orchestrated via point-to-point wormhole-routed messages that are sent between cluster
directories over 16-bit-wide channels.

When the required data are not found in the local cluster, an access request is sent to the
cluster holding the home directory, which then initiates appropriate actions based on the type
of request and the state of the requested data. In the case of a read request, the following will

happen:
1

2.

For a shared or uncached block, the data are sent to the requester from the home
cluster and the directory entry is updated to include the new (only) sharer.

For a dirty block, a message is sent to the cluster holding the single up-to-date copy.
This remote cluster then sends a shared copy of the block to the requesting cluster
and also performs a sharing write-back to the home cluster.

A write (read-exclusive) request will trigger the following actions by the home directory,
with the end result of supplying the requester with an exclusive copy of the block and
invalidating al other copies, if any:

3.

For a shared or uncached block, the data are sent to the requester and the directory
entry is updated to indicate that the block is now dirty. Additionally, for a shared
block, invalidation messages are sent to all caches that hold copies of the block,
with the expectation that they will acknowledge the invalidation to the requester
(new owner).

For adirty block, the request is forwarded to the appropriate cluster. The latter then
sends an exclusive copy of the block to the requesting cluster and also performs a
sharing write-back to the home cluster.

Each of the 16 clusters in the DASH prototype is a four-processor Silicon Graphics
4D/340 Powerstation symmetric multiprocessor based on the MIPS R3000 chip. The 4D/340

452 INTRODUCTION TO PARALLEL PROCESSING

clusters are modified in minor ways and augmented with two special boards that hold the
directory and network interface subsystems. The processor board modifications consist of
the addition of a bus retry signal and provision of masking capability for the bus arbiter. The
retry signal is used when a request involves service from a remote node. The masking
capability allows the directory to hold off a processor’s retry (via the bus arbiter) until the
requested remote access has been completed. Thus, effectively, a split-transaction bus
protocol is used for performing remote accesses. The added boards contain memory for the
directory entries, buffers, and a piece of the global interconnection network.

A follow-on project to DASH at Stanford aimsto build flexible architectures for shared
memory (FLASH) that also supports message passing [Kusk94]. One goal of FLASH isto
integrate the SMP cache-coherent shared-memory model and the MPP software-based
cache-coherent message-passing model into one architecture. To achieve the desired flexi-
bility, the hard-wired controller has been replaced with a programmable engine and the
directory data are placed in a portion of main memory rather than in a separate memory.

21.6. SCI-BASED SEQUENT NUMA-Q

NUMA-Q is the name given by Sequent to a series of CC-NUMA parallel computers
that originated in 1992. These machines are aimed at the on-line transaction processing and
database markets and have specia provisions for improved availability, including redundant
power supplies that can be inserted on-line, enhanced shielding, and a specially designed
management and diagnostic processor (MDP). The SCI protocol has been slightly modified
in some respects as a result of performance fine tuning.

The following description is based on the NUMA-Q 2000 model that can have up to
252 processors, in 63 clusters of 4 processors (quads), and was first shipped in 1996. The
NUMA-Q 2000 cluster or quad is a modified Intel SHV server board containing 0.5-4 GB
of memory along with four Intel Pentium Pro (P6) chips, each with 0.5 MB of on-chip
Level-2 cache. A key element in the quad is a proprietary interquad (IQ) link that follows
the SCI standard, holds and controls a Level-3 or “remote” cache, and is the glue that connects
multiple quads into a large system. The 64-MB Level-3 cache uses 64-byte lines and is
four-way set-associative in order to minimize conflict misses. It holds copies of cache lines
from remote quads and, given its large size, can satisfy many of the remote access requests
without any interquad communication.

The architecture of Sequent NUMA-Q 2000 is depicted in Fig. 21.10. The IQ-Link unit
takes advantage of a“hook” provided by Intel to take control of the quad's local busthat is
64 bits wide and operates at 66 MHz. Other quad subsystems include two Intel Orion PCI
bridges, a PCI fiber channel interface, a PCI loca-area-network interface, and a management
and diagnostic processor that is linked to a console via a private Ethernet. Quads are
interconnected either by an optional 1Q-Plus box, as shown in Fig. 21.10, or by simply
connecting the IQ-Links into aring using copper cables. The console is a PC running under
the Windows NT operating system.

One of the goals of the design was to take advantage of commodity off-the-shelf (COTS)
components to the extent possible. To this end, only a few of the components, including
portions of 1Q-Link and Bridge (between LAN and fiber channel), were custom designed
by Sequent.

SHARED-MEMORY MIMD MACHINES 453

1Q-Link

Figure 21.9. The physical placement of Sequent's quad components on a rackmount baseboard
(not to scale).

Figure 21.11 depicts the internal organization of 1Q-Link. The bus interface controller
provides the needed interface to the P6 bus, manages the bus side of the directory, and
provides the bus snooping logic. The bus controller and its associated snooping tags allow
access to data held within the remote cache to be satisfied with alatency comparable to that
of accesses to the local main memory. Within the directory controller, which manages the
network-side tags, local memory blocks are represented by a 2-bit state field and a 6-bit

Quad 533 MB/s local bus

GB/ inter-quad SCI tink
E\’ (64 biw, 66 MHz) [1Q-Link 1| 16Bamag

100 MB/s Fiber channel
Public LAN
IQ-Plus
T (SCI
ring)
Quad
Quad
Private
Ethermet

I Console H

Figure 21.10. The architecture of Sequent NUMA-Q 2000.

454 INTRODUCTION TO PARALLEL PROCESSING

Bus-side Network-side
snooping tags tags
P6 Local | Remote Local | Remowe

bus directory | tags directory{ tags

C U &

<P Bus interface Directory Interconnect
conwoller conmoller controller
Remaote 32MB
cache data SClout

Figure 21.11. Block diagram of the 1Q-Link board.

sharing list head pointer (the 6 bits are reduced from SCI’s 16 bits for the sake of efficiency).
For each block in the remote cache, the directory maintains a 7-bit state field, a 6-bit forward
pointer, a 6-bit backward pointer, and a 13-bit address tag. An important part of the directory
controller is aprotocol engine that isimplemented as programmable pipelined processor for
flexibility and ease of fine tuning.

Details of the key interconnect controller component, which handles the SCI input and
output within 1Q-Link, is shown in Fig. 21.12. This component, which is in charge of the
link- and packet-level protocol for SCI, isa GaAs chip developed by Vitesse Semiconductor
Corporation. The elastic buffer can insert or delete idle symbols between packets to
compensate for small frequency variations between the sender and the receiver. The stripper
recognizes and removes any packet whose destination node label matches that of the local
node, sending an echo packet on the output link in its place. The bypass FIFO is needed to
accommodate packets that arrive while the local node is inserting a packet on the output link.
If the local (destination) node does not have buffer space to accept a packet, it sends a negative
echo, thus forcing a retransmission according to SCI’s retry protocol. The chip operates at
500 MHz, handling 2 bytes of data and 2 control bits (a flag and a clock) in each cycle. It

Assemble [Stripper Elaytic

Request Response ;

receive Q | | receive Q

o g
3

Request Response
send Q send Q

I | SClout

Figure 21.12. Block diagram of I1Q-Link's interconnect controller.

SHARED-MEMORY MIMD MACHINES 455

needs eight clock cycles to route the first 18-bit symbol of a packet to the assemble block or
bypass FIFO and a single clock cycle for each subsequent symbol.

PROBLEMS

21.1. Carnegie-Mellon University’s C.mmp

a Study the C.mmp multiprocessor system mentioned in Section 21.1 and prepare a descrip-
tion of its shared-memory architecture in a way that could form a section in this chapter.

b. Contrast C.mmp to the BBN Buitterfly described in Section 21.2.

¢. Contrast C.mmp to Stanford DASH described in Section 21.5.

21.2. CC-UMA parallel processors
Identify an example of a CC-UMA parallel processor (see Fig. 21.1) and prepare a description
of its architecture in away that could form a section in this chapter.

21.3. Routing in the BBN Butterfly

a Given the description of the routing algorithm on the butterfly network of Fig. 21.4, derive
the assumed ordering of the processor labels from top to bottom.

b. How should we modify the routing algorithm if the processors are to be labeled 0, 1, 2, . . .,
15, in order from top to bottom?

c. Draw the interconnection network for a 64-processor BBN Butterfly.

d. Repeat part (a) for the network of part (c).

e. Repeat part (b) for the network of part (c).

21.4. Robust BBN Butterfly network
Study the structure of the redundant network used in the BBN Butterfly to provide the capability
of routing around failed switches. In particular, state the effect of redundancy on the routing
algorithm. Relate your answers to the discussions of Chapter 19 on reliable parallel processing.

21.5. BBN Buitterfly and NYU Ultracomputer
Compare BBN Buitterfly with NYU Ultracomputer. Outline their similarities and differences
inatable.

21.6. Cray X-MP vector processor

The Cray X-MP vector processor [Robb89], a predecessor of Cray Y-MP, had floating-point
add and multiply function units, implemented as six- and seven-stage pipelines, respectively.
Vector computations needed three clock cycles for their setup, which included preparing the
appropriate function units and establishing paths from/to source and destination registers. At
the end of avector computation, three more clock cycles were needed for shutdown before the
results in the destination vector register could be used in other operations. This six-cycle
pipelining overhead became insignificant when dealing with long vectors. The output of an
s-stage pipelined unit became available for chaining after s+ 5 clock cycles. Such a unit needed
| + s+ 5 cyclesto operate on an |-element vector. A polynomial f(x) of degree m— 1 (m real
coefficients, stored in a vector register) is to be evaluated for m different values of x (available
in a second vector register) using Homer’'s rule. The mresults are to be deposited in a third
vector register.

a. Estimate the number of cycles needed for this computation with no vector chaining.
b. Repeat part (a) with vector chaining.

456

C.

INTRODUCTION TO PARALLEL PROCESSING

Derive the MFLOPS rating of the machine for the computations of parts (a) and (b)
assuming a clock cycle of 9.5 ns.

21.7. Cray Y-MP's interconnection network
Assuming an interleaved memory organization, in which the memory bank number corre-
sponds to the least significant byte of the memory address, describe the motivation behind the

numbering scheme for memory banks used in Fig. 21.6.

21.8. Cray Y-MP's interconnection network

a.

C.

Describe an algorithm for routing a memory access request from Processor i to Bank j of
memory in Cray Y-MP's processor-to-memory interconnection network (Fig. 21.6). Note
the numbering scheme used for the memory banks.

How would you build the interconnection network of a 16-processor Cray Y-MP with 256
banks?

Describe a routing agorithm for the network proposed in part (b).

21.9. TeraMTA'’ s pruned torus network

a

b.

Find the exact diameter and average internode distance in the 16 x 16 x 16 pruned torus
network of Tera MTA computer.

Suppose that we use a 2D, rather than a 3D, routing network. Perform a scalability analysis
on this 2D routing scheme and determine the number of processors that can be supported
by an m x m network (or alternatively, the size of the network needed to support p
processors). Is latency hiding more or less difficult with the 2D network?

c. Repeat part (b) with the assumption that processors and memory modules are only

d.

connected to the boundary processors of the 2D mesh. Does this restriction lead to any
advantage?
Repeat part (b) for a 4D mesh network; focus on special problems related to higher
dimension.

21. 10. Tera MTA's latency hiding methods

a

b.

Why do you think that a p-processor TeraMTA computer uses 2p or 4p memory modules?
What are the advantages of using the same interconnection network for memory access
and input/output? What are possible drawbacks?

Is the multithreading method used in the Tera MTA applicable to uniprocessor systems?
What additions or changes to the TeraMTA latency hiding mechanisms would be needed
if the processor technology improves to the point when the 3-ns clock cycle is reduced to
1ns?

21.11. Two-level cache coherence protocol
The Sanford DASH multiprocessor uses a two-level cache coherence protocol: a snoopy
scheme within clusters and a directory-based scheme between clusters. Why do you think this
two-level scheme was chosen over a pure directory-based protocol ?

21.12. Directory protocol in DASH
Study the directory-based cache coherence protocol of the Stanford DASH multiprocessor.
Describe in detail the various states of a cache line, types and causes of state transitions, and
the scheme used for enforcing release consistency.

21.13. Stanford DASH muiltiprocessor
Discuss the reasons for the following design choices in the Stanford DASH multiprocessor:

SHARED-MEMORY MIMD MACHINES 457

a Including separate request and reply meshes, as opposed to one mesh with higher-band-
width links.

b. Using the mesh architecture, as opposed to hypercube or another network with richer
connectivity and lower diameter.

c. Using mesh, rather than torus, networks for intercluster request and reply networks.

21.14. Sequent NUMA-Q parallel computer

The quad nodes of Sequent NUMA-Q are interconnected by aring network. In what senseis
the use of the term scalable justifiable for this architecture (or for SCI for that matter)?

21.15. Comparing UMA and CC-NUMA

21.16.

Pick one of the UMA (Sections 21.2 and 21.3) and one of the CC-NUMA (Sections 21.5 and
21.6) machines discussed in this chapter and present a detailed comparison of the two with
regard to performance, scalability (in time and space), cost-effectiveness, and ease of applica
tion development.

Further developments

By the time you see this book in print, changes may have occurred in the architecture,
commercia availability status, or key design/performance parameters of some of the systems
discussed in this chapter. Pick one of the machines for which you can find information on recent
developments or follow-on systems and prepare areport on your findings.

REFERENCES AND SUGGESTED READING

[Advedg] Adve, S. V., and K. Gharachorloo “Shared Memory Consistency Models: A Tutorial,” IEEE

Computer, Vol. 29, No. 12, pp. 66-76, December 1996.

[Gott83] Gottlieb, A., et a., “The NYU Ultracomputer—Designing an MIMD Shared Memory Parallel

Computer,” 1EEE Trans. Computers, Vol. 32, No. 2, pp. 175-189, February 1983.

[Harr94] Harris, T. J., “A Survey of PRAM Simulation Techniques,” ACM Computing Surveys, Vol. 26, No.

2, pp. 187-206, June 1994.

[Hord93] Hord, R. M., Parallel Supercomputing in MIMD Architectures, CRC Press, 1993.
[Hwan98g] Hwang, K., and Z. Xu, Scalable Parallel Computing: Technology, Architecture, Programming,

McGraw-Hill, 1998.

[Kusk94] Kuskin, J., et a., “The Stanford FLASH Multiprocessor,” Proc. 21st Int. Symp. Computer Architec-

ture, pp. 302-313, April 1994, pp. 302-313.

[Leno92] Lenoski, D., et a., “The Stanford Dash Multiprocessor,” |EEE Computer, Vol. 25, No. 3, pp. 63-79,

March 1992.

[Love96] Lovett, T., and R. Clapp, “STING: A CC-NUMA Computer System for the Commercial Market-

place,” Proc. 23rd Int. Symp. Computer Architecture, 1996, pp. 308-317.

[Moriog] Morin, C., A. Gefflaut, M. Banatre, and A.-M. Kermarrec, “COMA: An Opportunity for Building

Fault-Tolerant Scalable Shared Memory Multiprocessors’ Proc. 23rd Int. Symp. Computer Archi-
tecture, 1996, pp. 56-65.

[Mori97] Morin, C., and I. Puaut, “A Survey of Recoverable Distributed Shared Virtual Memory Systems,”

[Prot96]

|EEE Trans. Parallel and Distributed Systems, Vol. 8, No. 9, pp. 959-969, September 1997.
Protic, J., M. Tomacevic, and V. Milutinovic, “Distributed Shared Memory: Concepts and System,”
|EEE Parallel & Distributed Technology, Vol. 4, No. 2, pp. 6379, Summer 1996.

[Robb89] Robbins, K. A., and S. Robbins, The Cray X-MP/Model 24: A Case Sudy in Pipelined Architecture

and Vector Processing, Springer-Verlag, 1989.

This page intentionally left blank.

Message-Passing
MIMD Machines

Like shared-memory parallel computers, message-passing systems can be based
on different interconnection topologies and provide various logical user views.
In this chapter, following a survey of topics pertaining to the implementation and
performance of communication structures for message routing, we review
several parallel computer systems that use explicit message passing. One of the
systems chosen is a product of university research (Berkeley NOW), two were
built by companies that were pioneers in the fields of transaction and multimedia
processing (Tandem NonStop and nCUBE3, respectively), and two utilize high-
performance scalable switching networks (Thinking Machines Corporation CM-
5 and IBM SP2). Chapter topics are

22.1.
22.2.
22.3.
22.4.
22.5.
e 22.6.

Mechanisms for message passing
Reliable bus-based Tandem NonStop
Hypercube-based nCUBE3
Fat-tree-based Connection Machine 5
Omega-network-based IBM SP2
Commodity-driven Berkeley NOW

459

This page intentionally left blank.

MESSAGE-PASSING MIMD MACHINES 461

22.1. MECHANISMS FOR MESSAGE PASSING

Message passing is becoming the dominant paradigm in modern large-scale parallel
systems. Like shared-memory implementations, message-passing parallel computers vary
greatly in the hardware architecture that they use and in the programming model (logical
user view) that they support. In this section we review the most common hardware architec-
tures for message passing, and also discuss the various logical user views and their
performance implications, to set the stage for the case studies that follow in Sections 22.2
through 22.6. 1deas and terminology introduced in Section 4.5 are relevant to our discussion
here, as are the data routing topics covered in parts of Chapters 10 and 14.

The trend in building parallel computers in recent years has been to use commercia
off-the-shelf (COTS), rather than custom-designed, components. High-performance proces-
sors are readily available from several manufacturers. Various types of interconnection and
routing hardware have also emerged as COTS components. The use of COTS components
reduces the hardware development cost of parallel machines and alows for relatively simple
updating of the resulting designs as faster processors and interconnections become available.
An additional benefit is that software becomes more portable and less expensive for
COTS-based systems in view of the development cost being borne by a larger user base. The
loose coupling of message-passing architectures makes them ideal candidates for implemen-
tation with COTS components, as we will seein the rest of this chapter.

Message-passing parallel computers are built of processing nodes and interconnection
elements. Processing nodes are typically complete computers with storage for programs and
data, instruction execution logic, and input/output. Depending on the complexity of proc-
ng nodes, three categories of message-passing MIMD computers can be distinguished:

1. Coarse-grain parallelism. Processing nodes are complete (perhaps large, multi-
board) computers that work on sizable subproblems, such as complete programs or
tasks, and communicate or synchronize with each other rather infrequently.

2. Medium-grain parallelism. Processing nodes might be based on standard micros
that execute smaller chunks of the application program (e.g., subtasks, processes,
threads) and that communicate or synchronize with greater frequency.

3. Fine-grain parallelism. Processing nodes might be standard micros or custom-built
processing elements (perhaps with multiple PEs fitting on one chip) that execute
small pieces of the application and need constant communication or synchroniza-
tion.

Like any other classification that is based on the imprecise notions of “large,” “medium,”
and “small” (e.g., for clothes or automobiles), the above categories have fuzzy boundaries
and one can easily identify systems that could fit in two classes. Most existing message-
passing systems fall into the medium-grain category. In spite of not being very discriminative,
the classification is still useful in providing perspective and pedagogica help. Perhaps
categories such as “medium-coarse” and “medium-fing” (analogues of cooking levels for
steaks) or “medium-medium-fine” and the like (analogues of direction specifications for
wind or sailing) should be envisaged!

Note that we have defined granularity (or grain size) by considering both the processing
node complexity and the complexity of subcomputations performed by processing nodes in

462 INTRODUCTION TO PARALLEL PROCESSING

Routing/Arbiration
Input Queue Output Queue
g [0 -

} :
e upa
) H
(o] g Channes
Q

Figure 22.1. The structure of a generic router.

between communications or synchronizations. In theory, it is possible to run coarse-grain
computations on fine-grain hardware, and vice versa, but neither is advisable from the
standpoint of efficient hardware utilization as measured, eg., by the FLOPS performance
per unit cost.

The interconnection network architecture needed to support message passing is strongly
dependent on granularity as discussed above. For coarse-grain parallelism, neither network
latency nor bandwidth is critical in view of the light communication load. Early message-
passing architectures, such as the pioneering C.mmp (Fig. 21.2), were of this type. We will
examine one example of such architecturesin Section 22.2 (Tandem NonStop, using a bus
system for message transmissions). For fine-grain parallelism, the heavy communication
load placed on the network makes its aggregate bandwidth a critical performance parameter.
The network latency is also quite important in this case, unless latency hiding or tolerance
methods are used. Y ou do not have to be a genius to guess that the communication loads, and
thus the network performance requirements, for medium-grain parallelism fall between the
above two extremes. All of our remaining case studies in Sections 22.3 through 22.6
(hypercube-based NnCUBES, fat-tree-based Connection Machine 5, omega-network-based
IBM SP2, and local-network-based Berkeley NOW) fall into this class.

Interconnection networks for message passing are of three basic types [Duat97]:

1. Shared-medium networks. Only one of the units linked to a shared-medium network
is allowed to use it at any given time. Nodes connected to the network typically have
request, drive, and receive circuits. Given the single-user requirement, an arbitration
mechanism is needed to decide which one of the requesting nodes can use the shared
network. The two most commonly used shared-medium networks are backplane
buses and local area networks (LANS). The bus arbitration mechanism is different
for synchronous and asynchronous buses. In bus transactions that involve a request
and a response, a split-transaction protocol is often used so that other nodes can use
the bus while the request of one node is being processed at the other end. To ease
the congestion on a shared bus, multiple buses or hierarchical bus networks may be
used. For LANS, the most commonly used arbitration protocol is based in conten-

MESSAGE-PASSING MIMD MACHINES 463

Crosspoint Switch
L -9
> > —>><->
Through Crossed
Inputs (Stnaight) (Exchange)
—» - > >
> > >
Lower Upper
Outputs Brosdcast Broadcast

Figure 22.2. Example 4x4 and 2x2 switches used as building blocks for larger networks.

tion: The nodes can detect the idle/busy state of the shared medium, transmitting
when they observe the idle state, and considering the transmission as having failed
when they detect a “collision.” Token-based protocols, which implement some form
of rotating priority, are also used.

2. Router-based networks. Such networks, also known as direct networks, are based
on each node (with one or more processors) having a dedicated router that is linked
directly to one or more other routers. A generic router is shown in Fig. 22.1. The
local node(s) connected to the router inject messages into the network through the
injection channel and remove incoming messages through the gjection channel.
Locally injected messages compete with messages that are passing through the
router for the use of output channels. The link controllers handle interfacing
considerations of the physical channels. The queues hold messages that cannot be
forwarded because of contention for the output links. Various switching strategies
(e.g., packet or wormhole) and routing algorithms (e.g., tag-based or use of routing
tables) can be implemented in the router. The router shown in Fig. 22.1 has in- and
out-degree of 5; 1 for the local node’' s messages and 4 for in-transit messages. By
interconnecting a number of such routers, one can form a 2D mesh or torus network,
a 4-cube, or any other network with node degree of at most 4. Example routers
include the Cray T3E router (3D torus, 14-bit data in each direction, 375 MHz, 600
MB/s per link) and the Chaos router (2D torus, bidirectional 8-bit links, 180 MHz,
360 MBY/s in each direction).

3. Switch-based networks. Such networks, also known as indirect networks, are based
on crossbars or regularly interconnected (multistage) networks of simpler switches.
Typically, the communication path between any two nodes goes through one or
more switches. The path to be taken by a message is either predetermined at the
source node and included as part of the message header or else it is computed on
the fly at intermediate nodes based on the source and destination addresses. Figure
22.2 shows a 4x4 crossbar and a 2x2 switch that is capable of broadcasting as well
as smple forwarding. Such switches can be used for synthesizing networks of
arbitrary size. However, the number of switches on the message path, and thus the
network latency, will grow with its size. Switch-based networks can be classified

464 INTRODUCTION TO PARALLEL PROCESSING

Shared-Medium Router-Based Switch-Based

Network Network Network

Coarse-
Grain Tandem NonStop

(Bus)
Medium{
Grain Berkeley NOW ZCUBE3 TMC CM-§

(LAN) IBM SP2
Fine-
Grain

Figure 22.3. Classification of message-passing hardware architectures and example systems that
will be studied in this chapter.

as unidirectional or bidirectional. In unidirectional networks, each switch port is
either input or output, whereas in bidirectional networks, ports can be used for either
input or output. By superimposing two unidirectional networks, one can build a
full-duplex bidirectional network that can route massages in both directions simul-
taneously. A bidirectional switch can be used in forward mode, in backward mode,
or in turnaround mode, where in the latter mode, connections are made between
terminals on the same side of the switch. Example switches include the Myricom
Myrinet (8x8 crossbar, 9-bit full duplex channels, 640 MB/s per link) and IBM
SP2 (crossbars for building omega networks, 16-bit bidirectional channels, 150
MHz, 300 MB/sin each direction).

Routers and switches are becoming increasingly similar and in fact there are products on the
market now that can be used to form both direct and indirect networks. An example is the
SGI Spider that supports both multistage interconnection networks and irregular topologies.

Combining the two classification schemes discussed above, we get nine categories of
message-passing parallel computers, as shown in Fig. 22.3.

22.2. RELIABLE BUS-BASED TANDEM NONSTOP

The first Tandem Nonstop, a MIMD distributed-memory bus-based multiprocessor, was
announced in 1976 for database and transaction processing applications requiring high
reliability and data integrity. Since then, several versions have appeared. The Tandem
Nonstop Cyclone, described in this section [Prad96], was first introduced in 1989. A main
objective of Cyclone's design was to prevent any single hardware or software malfunction
from disabling the system. This objective was achieved by hardware and informational
redundancy as well as procedural safeguards, backup processes, consistency checks, and
recovery schemes.

MESSAGE-PASSING MIMD MACHINES 465

1 || Dynabus | |
Processor Processor Processor Processor
and and and and
Memory Memory Memory Memory

o

—@
Figure 22.4. One section of the Tandem NonStop Cyclone system.

A fully configured cyclone system consists of 16 processors that are organized into
sections of 4 processors. Processors in each section are interconnected by a pair of 20 MB/s
buses (Dynabus) and can each support two 1/0 subsystems capable of burst transfer rates of
5 MBJ/s (Fig. 22.4). An |/O subsystem consists of two /O channels, each supporting up to
32 1/O controllers. Multiple independent paths are provided to each 1/0 device via redundant
1/0 subsystems, channels, and controllers. Up to four sections can be linked via unidirec-
tional fiber optics Dynabus* that allows multiple sections to be nonadjacent within a room
or even housed in separate rooms (Fig. 22.5). By isolating Dynabus” from Dynabus,
full-bandwidth communications can occur independently in each 4-processor section. Other
features of the NonStop Cyclone are briefly reviewed below.

Processors. Cyclone's 32-bit processors have advanced superscalar CISC designs.
They use dual eight-stage pipelines, an instruction pairing technique for instruction-level
parallel processing, sophisticated branch predication algorithms for minimizing pipeline
“bubbles,” and separate 64-KB instruction and data caches. Up to 128 MB of main memory
can be provided for each cyclone processor. The main memory is protected against errors
through the application of a SEC/DED (single-error-correcting, double-error-detecting)
code. Data transfers between memory and 1/O channels are performed via DMA and thus
do not interfere with continued instruction processing.

System Performance. Performance estimates published in 1990 indicate that, after
accounting for cache misses and other overhead, the custom-designed Cyclone processor
can execute each instruction in an average of 1.5-2 clock cycles. Thus, with a clock period
of 10 ns, the peak performance of a fully configured Nonstop Cyclone system is about 1000
MIPS. Because each of the two 1/0 subsystems connected to a processor can transmit data
at aburst rate of 5 MB/s, a peak aggregate |/O bandwidth of 160 MB/sis available.

Hardware Reliability. Use of multiple processors, buses, power supplies, I/O paths,
and mirrored disks are among the methods used to ensure continuous operation despite
hardware malfunctions. A “fail-fast” strategy is employed to reduce the possibility of error

466 INTRODUCTION TO PARALLEL PROCESSING

Figure 22.5. Four four-processor sections interconnected by Dynabus®.

propagation and data contamination. Packaging and cooling technologies have also been
selected to minimize the probability of failure and to allow components, such as circuit
boards, fans, and power supplies, to be “hot-pluggable” without a need to interrupt system
operation. When a malfunctioning processor is detected via built-in hardware self-checking
logic, itsload is transparently distributed to other processors by the operating system.

Software Reliability. The GUARDIAN 90 operating system is a key to Cyclone's
high performance and reliability. Every second, each processor is required to send an “1I'm
alive” message to every other processor over al buses. Every 2 seconds, each processor
checksto seeif it has received a message from every other processor. If a message has not
been received from a particular processor, it is assumed to be malfunctioning. Other software
mechanisms for malfunction detection include data consistency checks and kernel-level
assertions. Malfunctions in buses, I/0 paths, and memory are tolerated by avoiding the
malfunctioning unit or path. Processor malfunctions lead to deactivation of the processor.
For critical applications, GUARDIAN 90 maintains duplicate backup processes on digjoint
processors. To reduce overhead, the backup process is normaly inactive but is kept consistent
with the primary process via periodic checkpointing messages. On malfunction detection,
the backup process is started from the last checkpoint, perhaps using mirror copies of the
data

Related Systems. In addition to NonStop Cyclone, and the more recent RISC-based
Himalaya servers, Tandem offers the Unix-based Integrity S2 uniprocessor system that
tolerates malfunctions via triplication with voting. It uses R4000 RISC processors and offers
both application and hardware-level compatibility with other Unix-based systems. Commer-
cial reliable multiprocessors are also offered by Stratus (XA/R Series 300, using a compari-
son- and replacement-based hardware redundancy scheme known as pair-and-spare) and
Sequoia (Series 400, using self-checking modules with duplication). Both of the latter
systems are tightly coupled shared-memory multiprocessors.

22.3. HYPERCUBE-BASED nCUBE3

The approach to parallel processi ng taken by nCUBE is to devel op a custom high-per-
formance processor with built-in communication capabilities. Processor chips for

MESSAGE-PASSING MIMD MACHINES 467

NCUBEL/2 were introduced in 1985 and 1989, respectively. The more recent 2.7M-transistor
nCUBE3 includes 16 DMA channels and 18 bit-serial interprocessor or 1/O links, thus
theoretically allowing an 18-dimensional, or 256K -processor, hypercube to be configured.
Alternatively, a smaler hypercube, with multiple or folded interprocessor links as well as
1/0 links, can be constructed. At present, NCUBE's parallel computers are targeted toward
multimedia server applications. For example, the MediaCUBE 3000 system, which is
comprised of server modules of varying types (media server, Ethernet server, native SCSI,
interconnect, and media control) can be scaled to handle from 90 to over 20,000 concurrent
1.5 Mb/s MPEG video streams.

The nCUBES3 processor is a custom single-chip computer, designed for a message-pass-
ing MIMD system architecture. It couples directly to banks of synchronous DRAMs
(SDRAMS) and interconnects to other nodes in a hypercube network via bidirectional links.
It integrates onto one chip an instruction and data pipeline, a 64-bit integer unit, a double-
precision floating point unit, a 64-bit virtual memory management unit, instruction and data
caches (8 KB each), an SDRAM controller, an adaptive message router with 18 communi-
cations ports, and 16 DMA channels. The nCUBES3 processor connects to the SDRAM via
a 72-bit datainterface (64 bits data + 8 bits error-correcting code) and a 14-bit multiplexed
address interface, along with control signals and clocks. Up to 1 GB of physical memory is
addressable by a single processor.

The communications unit of the NCUBE3 processor serves to directly connect a large
number of NCUBE3 processors together in a hypercube topology (Fig. 22.6). Within each
processor, bidirectional ports, at least one for each dimension of the hypercube and at least
one for 1/0 transmissions, transmit and receive data packets (flits) that make up messages
directed through this node from one node in the network to another. Eight “send” and eight
“receive’ DMA channels move message data from memory to an output port, or from an
input port to memory. Routing logic selects the next internode segment of a message’ s path
and obtains a cut-through path from a send channel or an input port to the selected output
port or, if the message has arrived at the destination node, from an input port to an appropriate
“receive’” DMA channel. Several fault detection and recovery, as well as diagnostic, feature
are implemented, including parity, message flushing, port disabling, and a “node reset”
message.

m/7 /\w
65— :“é“/@—ﬁ
Nl
— w/ w/ —
Tt =10

Figure 22.6. An eight-node nCUBE architecture.

468 INTRODUCTION TO PARALLEL PROCESSING

The DMA channels are buffered for both control and data, so that software overhead
can be overlapped with data transmission in order to maximize that memory bandwidth.
Scatter-gather capabilities are also implemented at both “send” and “receive’ channels.
DMA operations snoop the data cache to ensure cache-memory consistency.

The 18 input/output ports can be used to connect the processor to its hypercube
neighbors and/or to system /O channels. Any number of ports can be configured as |/O
channels, and hypercube connections can be duplicated on otherwise unused ports to create
a partially or fully “folded” hypercube, thus making full use of the available network
connectivity and bandwidth.

The nCUBE3 communications architecture also provides an end-to-end reporting
mechanism that ensures reliable messaging, whereby both the sender and receiver of a
message can know quickly whether that message was delivered reliably, and the receiver
may deliver status information back to the sender before the established path is broken.
End-to-end messaging is accomplished via an end-to-end reporting network, which pairs a
“back-track” path with the corresponding paralel transmission path. The message transmis-
sion network and the back-track network are implemented as virtual networks sharing the
same physical communications network of internode links. The end-to-end hardware mecha
nisms have the advantage of providing reliable messaging without additional message
transmissions and the corresponding CPU and software overhead. In addition, these end-to-
end mechanisms provide the back-track network on which an adaptive routing protocol can
be built.

The previous generation of hypercubes, including the nCUBE2 family, implemented
wormhole routing, using an oblivious, deterministic routing scheme that avoids deadlocks.
In addition to the oblivious wormhole routing of the nCUBE2 architecture, the nCUBES3
architecture provides an adaptive routing mechanism as well, called the maze router. This
router routes messages around blocked or malfunctioning nodes and hot spots in the
hypercube network, by implementing an adaptive routing algorithm that makes use of the
end-to-end back-track network. Simulations show this algorithm to perform substantially
better than the oblivious wormhole router in both latency and network bandwidth usage.

An nCUBE3 message can be routed using any of seven methods. These routing methods
are specified according to three characteristics. oblivious or adaptive route selection;
progressive message transmission or otherwise; and minimal-path routing or alowing
misrouting. The two main routing methods are oblivious wormhol e routing (like NCUBE2)
and adaptive maze routing. The other five are derivatives or combinations of these two, in
conjunction with a couple of misrouting techniques. The derivatives include the “helix,”
“hydra,” “misrouting maze,” and “oblivious hydra.”

Maze routing is an adaptive routing scheme devised for the nCUBE3 architecture. For
a message from Node A to Node B, al minimal-length paths between the two nodes are
searched one at atime (actualy, paths in which the first leg is nonminimal may optionally
be tried also) by a single-packet scout (or “circuit probe”), starting with the lowest uphill
path and doing a preorder traversal of the minimal-path graph until a free path to the
destination is found. The successful arrival of a scout packet at the destination establishes
the path. Then, once a “path acknowledge” packet is delivered back to the sender, this
reserved path is used to transmit the message. If no free path is found, however, an interrupt
is generated at the source node, whereupon the software may retry the path search after an

MESSAGE-PASSING MIMD MACHINES 469

appropriate delay (and/or using a different set of first-leg paths). This scheme is deadlock-
free.

nCUBE is now part of Oracle, a database company. In fact, applications in data
warehousing, data mining, decision support systems, and multimedia (e.g., of the type
associated with the film and entertainment industries) are projected to be important market
drivers for future high-performance and parallel processing systems.

22.4. FAT-TREE-BASED CONNECTION MACHINE 5

The Connection Machine 5 (CM-5) paralel computer was introduced by Thinking
Machines Corporation in 1991. CM-5 represented a significant departure from TMC's
previous machines in virtually every respect: It constituted TMC's first MIMD machine, was
built of commodity RISC microprocessor chips, contained built-in floating-point pipelines,
and worked under a Unix-like operating system. The largest CM-5 shipped by TMC, before
it filed for Chapter-11 bankruptcy protection in the United States in 1994, had 1024
processing nodes.

As shown in Fig. 22.7, CM-5" s components include three types of nodes (processor,
control, and 1/0O) that are interconnected via three separate networks (data, control, and
diagnostic).

The control processors are standard computers with CPU, memory, 1/O, LAN connec-
tion, and interfaces to the data and control networks. Each control processor isin charge of
a partition of processing nodes, the size and membership of which are set at system startup
time. This allows multiple user programs to run within digjoint partitions on CM-5; however,
communication between such partitionsis not prohibited. The control processor broadcasts
blocks of instructions to the processing nodes. The nodes execute instructions independently
(e.g., they may take different control paths within the code block) and synchronize when
required.

Each processing node is composed of a SPARC CPU, four vector units with attached
memories, and interface to the data and control networks (Fig. 22.8). The vector units execute
instructions that are issued to them individually, or to groups of two or four, by the SPARC

Processing Nodes Control Processors

HIPPl or VME
Intecface

i

Figure 22.7. The overall structure of CM-5.

470 INTRODUCTION TO PARALLEL PROCESSING

3 i ¢ Vector Unit T
: P P : 64X 64
: : : : : : Pipelined .
; N P ; Register
P i : ALU j File l
¢ Vector | Vector i Vector |
i Unit @ ¢ Unit : : Unit ! Memory
: A P ; Instr. Decode Control

i i i ,,,,, —
: :

SPARC Network

Processor Interface
Data Control
Network Network

Figure 22.8. The components of a processing node in CM-5.

microprocessor. The four vector units together provide 128 MFLOPS peak performance and
0.5 GB/s memory bandwidth.

The register file within the vector unit can be viewed as consisting of 64 long-word
(64-bit) or 128 short-word (32-bit) registers. Scalar instructions are executed on the vector
unit by setting the vector length parameter to 1. A register operand for a vector instruction
is specified by a starting register number (7 bits) and a stride (7 bits). Usually, a default stride
of 1 (for 32-bit operands) or 2 (for 64-bit operands) is used. Some instructions allow the
specification of arbitrary strides, including negative strides that are encoded as large positive
strides. Every vector unit instruction includes four register addresses: two for source
operands, one for destination, and one for an independent, concurrently executed, memory
operation.

CM-5'scontrol network allows all processors to communicate efficiently in performing
broadcasting, global reduction, parallel prefix, synchronization, and error signaling func-
tions. The diagnostic network isitself an easily testable tree that has the machine entities to
be tested at its |eaves and one or more diagnostic processors at its root.

The data network, which provides high throughput for point-to-point messages, has a
fat-tree or hypertree architecture depicted in Fig. 22.9 for a 64-node configuration. This
network is optimized for data-parallel applications and may not perform as well in an
asynchronous MIMD environment. A message is routed to its destination by routing it up
the tree to the node representing the least common ancestor of the source and destination
nodes and from there down to the final destination. Multiple paths are available for both the

MESSAGE-PASSING MIMD MACHINES 471

Data Routers
(4x2 Switches)

and [/O Nodes

Figure 22.9. The fat-tree (hypertree) data network of CM-5.

upward and the downward movement phases. Random routing decisions are used to
distribute the data traffic evenly and to reduce congestion. The data network’s high bandwidth
allows each processor to sustain a data transfer rate of 5-20 MB/s, depending on the degree
of locality in message destinations. The small factor of 4 difference between best- and
worst-case communication performance is one of key characteristics of CM-5's data net-
work.

When a message is delivered through the data network, the receiver finds out about it
by polling a flag within the network interface module. With proper setting of the message
tag, the arrival of a message can also be optionally signaled by an interrupt. In the latter case,
theinterrupt handler notifies the user process by way of asignal.

22.5. OMEGA-NETWORK-BASED IBM SP2

IBM launched its scalable POWERparallel (SP) project in 1991. The first machine
resulting from this project, the IBM SP1, was delivered in 1993, with the SP2 emerging a
year later. An interesting fact about this series of parallel machines s that they formed the
processing power behind IBM’s Deep Blue chess program when it beat the world chess
champion Garry Kasparov in a series of matchesin 1997 [Hami97].

The architecture of the IBM SP series is shown in Fig. 22.10. Each compute node
consists of a processor (66.7-MHz POWER2 microprocessor, with a 32-KB instruction cache
and a 256-K B data cache), up to 2 GB of main memory, a network interface controller that
links the node to the high-performance switch, an Ethernet adapter, a micro channel

472 INTRODUCTION TO PARALLEL PROCESSING

Ethemnet J l @:}

Compute
Micro Channel Nodes

|] To Other

I I Systems

High-Performance Switch Gatewnys

e R N

Input/Output Nodes Host Nodes

Figure 22.10. The architecture of IBM SP series of systems.

controller (80 MBY/s, 8 dots), and alocal disk. The Ethernet link is used for system control
functions and program development in addition to being a backup for the high-performance
switch. A copy of AIX (IBM’sUnix) residesin each node. The detailed characteristics of a
node differ according to which of the three available node types is chosen for configuring
the machine. Our description here relates to “wide” nodes, which are more powerful than
“thin” nodes or intermediate nodes code-named “thin2.”

41\4-;;1:{ Micro Channel I.ntl:rfaocJ

=

) | [[
DMA Processor DRAM

e 1 v

FIFO

Buffers 160 MB/s i860 Bus T ¢
Memocy and Switch Input Output
Management Unit F&:uo F[%

High-Performance Switch

Figure 22.11. The network interface controller of IBM SP2.

MESSAGE-PASSING MIMD MACHINES 473

UO Q000U UMN

4 % 4 Crossbars

Only 14 of links at
this level are shown

0na... €3

Figure 22.12. A section of the high-performance switch network of IBM SP2.

The POWER2 microprocessor is superscalar with a 128-bit instruction bus that can
specify six instructions per 15-ns clock cycle: two |oad/store operations, two floating-point
multiply—add operations, an index increment, and a conditional branch. The two floating-
point units, along with the ability of the four-way set-associative data cache to supply them
with four 64-bit operands per cycle, give each node a peak performance in excess of 0.25
GFLOPS.

The network interface controller within a node has a special memory and switch
management chip, with input and output FIFOs that sit between the unit’s internal bus and
8-bit unidirectional links to the high-performance switch. The unit has its own 40-MHz 1860
processor, an 8-MB memory for meeting the buffering requirements of various protocols, a
4-KB FIFO (2 KB in each direction) between the internal i860 bus and the micro channel
interface, and two DMA engines that transfer data between the FIFO buffers and node’s
memory via the micro channel and between the FIFO buffers and input/output buffers via
the unit bus.

The high-performance switch of IBM SP2, partially depicted in Fig. 22.12 for a
64-processor configuration, is a multistage bidirectional omega network that uses buffered
wormhole routing and is driven by a 40-MHz clock, providing a per-port bandwidth of 40
MBY/s. In the absence of contention, an 8-hit flit is routed through each stage in five clock
cycles or 125 ns, implying that, under light communication load, the network latency can be
below 1 ps for the largest SP systems. Of course, because of the software overhead for
message initiation and reception, the latency seen by application processes is much higher
(on the order of tens of microseconds).

22.6. COMMODITY-DRIVEN BERKELEY NOW

The “network of workstations’ (NOW) project a the University of California, Berkeley,
aims at building a distributed supercomputer from commercial workstations that are linked
together via switch-based and high-bandwidth networks [Ande95]. With the use of commod-
ity hardware and operating systems, NOW should be able to efficiently support sequential,

474 INTRODUCTION TO PARALLEL PROCESSING

paralel, and interactive jobs. Thus far, the NOW project has laid claim to the world's fastest
Web search engine and disk-to-disk sorting routine and its working prototype is rated among
the world’s most powerful supercomputers based on benchmark results.

As part of the NOW project, research is being conducted in the following areas:

* Network interface hardware. NOW represents an emerging trend to use system-area
network (SAN) interconnection, a middle ground between LANS, which typically have
higher latencies, and specidized interconnections used in massively parallel computers.
The networking hardware itself is relegated mostly to commercial developers of gigabit
networks. The core of Berkeley NOW includes 100 Sun Ultrasparc workstations and
40 Sun Sparcstations (running under Solaris), 35 Intel personal computers, and up to
1000 disks, all connected by a Myrinet switched network. A large number of other
workstations may aso be integrated into Berkeley NOW in the future.

e Fast communication protocols. Many aspects of communication protocols and their
performance implications are being studied. Berkeley NOW offers competitive values
for the parameters in the LogP model (see Section 4.5) when compared with tightly
integrated routing or switching networks in massively parallel computers. For example,
theL, o, and g parameters of NOW (in ps) are around 5, 3, and 6 compared with 6, 2,
and 8 for the Intel Paragon and 7, 2, and 14 for the Meiko CS-2 [Mart97]. Researchis
also being pursued on active messages that carry, as part of their headers, control
information that point to, and invoke, user-level subroutines. These message handlers
extract the message data from the network and integrate them into ongoing computa-
tions.

» Distributed file systems. A key component of the NOW project is the xFS server-less
network file system. Data files are distributed among the nodes and there is no central
data warehouse or arbitration authority. In such an environment, a number of coopera-
tive file caching strategies, which require each node to allocate a portion of its memory
as afile cache and to participate in data accessing and forwarding of file pages when
needed, might be implemented. The implementation aspects and performance implica-
tions of various aternatives are being actively investigated. The xFS file system isin
effect a software-implemented RAID (see Section 18.5).

e Global resource management. The NOW project is experimenting with GLUnix
(global-layer Unix) that is built on the philosophy of atwo-layer operating system for
clusters. The lower layer is akernel-level commercial operating system and the upper
layer is a user-level operating system that provides al of the additional features needed
by the cluster. A prototype implementation of GLUnix provides parallel program
coscheduling, idle resource detection, process migration, load balancing, fast user-level
communication, remote paging, and support for availability.

Several projects at other universities and research organizations are experimenting with this
approach and have comparable agendas. Hereis a partial listing:

* Argonne Globus: metacomputing platform formed by ATM-connected sites

* NSCP metacomputing: local clusters linked through the Internet

* Princeton SHRIMP: various types of interconnections via specia network interfaces
* Rice TreadMarks: software-based distributed shared memory on workstation clusters

MESSAGE-PASSING MIMD MACHINES 475

e Syracuse WWVM: worldwide virtual machine using commodity technologies
* VirginiaLegion: metacomputing software for a national virtual computer facility
» Wisconsin Wind Tunnel: distributed shared memory on workstation clusters

Although some of the above projects aim at providing a shared-memory view to the user,
they al have an underlying message-passing mechanism based on modern communication
technologies.

Anecdote. Both NOW and SHRIMP violate the four-letter acronym/abbreviation rule
stated at the end of Section 1.4. What has caused the deviation is unknown at present (David
Patterson of Berkeley gave us both RISC and RAID). Cluster of workstations (COW), used
as a generic name for such systems, represents another nontraditional term. | propose the
generic name cluster of loosely assembled workstations (CLAW) as a contribution toward
correcting this unwelcome trend.

PROBLEMS

22.1. Router-based networks

a. Under what conditions can we eliminate the input queues from the router depicted in Fig.
22.1?
b. Repeat part (a) for the output queues.

22.2. Switch-based networks

a. Inthe 4x4 crossbar switch of Fig. 22.2, can one remove some of the crosspoints without
compromising its capability to route any permutation? How or why not?

b. For the 2x2 switch of Fig. 22.2, assign 2-bit codes to the four possible states shown in
such away that the switch can be implemented using only two multiplexers.

22.3. Classification of message-passing systems

a. Which of the five blank boxes or categories in Fig. 2.3 would you say is least likely to
represent an actual parallel system and why?

b. Choose one of the blank boxesin Fig. 2.3 and fill it in with the name of a parallel machine.
Briefly discuss the main features of the selected parallel machine.

22.4. Fine-grain message passing systems
Identify an example of a fine-grain message-passing system (see Section 22.1) and prepare a
description of its architecture in away that could form a section in this chapter.

22.5. Carnegie-Méllon University’s C.mmp

a. Study the C.mmp multiprocessor system mentioned in Section 21.1 and prepare a descrip-
tion of its message-passing architecture in away that could form a section in this chapter.

b. Contrast C.mmp to Tandem NonStop described in Section 22.2.

c. Contrast C.mmpto IBM SP2 described in Section 22.5.

22.6. Machines with multistage interconnection networks

a. Compare the multistage interconnection networks shown in Figs. 22.9 and 22.12 with
respect to implementation cost and communication bandwidth.

476

22.1.

22.8.

22.9.

22.10.

22.11.

22.12.

INTRODUCTION TO PARALLEL PROCESSING

b. Find the numbers of nodes and links for the next larger configuration for each of the two
networks in Figs. 22.9 and 22.12.
c. Study the IBM SP2 and Meiko CS-2 networks and discuss their differences.

Reliable bus-based multiprocessors
Consider the particular Tandem NonStop Cyclone system configuration depicted in Fig. 22.4.

a. Of the components shown in the diagram, which appear to be the most critical for the
continued system operation and why?

b. What types of processor malfunctions are most easily tolerated by this system? What types
are likely to create the most difficulties?

c. Relate the handling of disk storage in this system to redundant disk arrays of Section 18.5.

Hypercube machines
The Intel iPSC (persona supercomputer) hypercube-based parallel system was quite popular
in the 1980s. Study the iPSC and contrast it to the nCUBES3 architecture of Section 22.3.

Hypercube machines
Consider the eight-node nCUBES3 architecture in Fig. 22.6.

a. Describe possible reasons for including two host computers in the configuration.

b. Explain possible reasons for the way in which 1/0O nodes are configured.

C. Suppose we have to double the size of the system in order to be able to use more advanced
algorithms on the incoming MPEG video streams. The volume of the data being processed
does not change. What would the new configuration look like? Justify your answer.

d. Repeat part (c), this time assuming that quadrupling of the processing power is needed.

Processing nodes in CM-5

In CM-5, the SPARC microprocessor fetches vector instructions and issues them to the vector
units while also fetching and executing its own instructions. Estimate what fraction of SPARC'’s
time is spent servicing the vector units. Where you cannot find needed data, proceed with
reasonable assumptions.

CM-5' sdata network

The CM-5'sdata network performance is 20 MB/s per processor if al source—destination pairs
are within the same 4-node group. This corresponds to an intragroup bandwidth of 80 MB/s.
Between different 4-node groups belonging to the same 16-node group, an aggregate band-
width of 40 MB/s into or out of each group is available. Thus, all 4 processors of a 4-node
group can communicate at 10 MB/s or only 2 at 20 MB/s. The bandwidth into or out of a
16-node group is 80 MB/s, alowing each of the 16 processors to communicate at 5 MB/s, 8 at
10 MBY/s, or only 4 at the maximum 20 MB/s. Show how to map an 8x8 mesh onto the
processing node of a 64-processor CM-5 so that nearest-neighbor communication in one
direction for all processors can be performed at the maximum rate of 20 MB/s.

IBM SP2
Study the IBM SP2 interconnection network architecture. Prepare a short report that outlines
its main properties and answers the following specific questions:

a. What is the interna structure and performance of the switching modules used in its
implementation?

b. How are the top-level switches configured, given that the processing nodes are al at the
bottom?

MESSAGE-PASSING MIMD MACHINES 477

22.13.

22.14.

22.15.

22.16.

c. What is the routing algorithm used and how much of it is implemented in hardware or
software?

TMC CM-5and IBM SP2

a. Compare the interconnection network architectures of TMC CM-5 and IBM SP2, described
in Sections 22.4 and 22.5, respectively, with regard to complexity and performance.

b. Consider the scenario described in Problem 22.11 for a 64-processor IBM SP2. Derive an
efficient mapping for the nodes of the 8~ 8 mesh.

c. If you have solved Problem 22. 11, compare the results obtained in part (b) with those of
TMC CM-5 and discuss.

Networks of workstations

A network of workstations consists of workstations in a number of adjacent offices linked
together by 10-m optical cablesin which light travels at two-thirds of the free-space speed of
light. If each workstation executes instructions at the rate of 100 MIPS, how many instructions
will be executed during the signal travel time? What type of limit does the above observation
impose on the granularity of parallel computation on such a network of workstations?

Other router-based architectures

In this chapter, we have studied two switch-based parallel computers (TMC CM-5 and IBM
SP2) and one router-based system (NCUBE3). To baance the coverage, study one of the
following machines and prepare a description of its architecture in a way that could form a
section in this chapter.

a. Intel Paragon system, which uses routers configured into a 2D mesh.
b. Cray T3E parallel computer, which uses routers configured into a 3D torus.

Further developments

By the time you see this book in print, changes may have occurred in the architecture,
commercia availability status, or key design/performance parameters of some of the systems
discussed in this chapter. Pick one of the machines for which you can find information on recent
developments or follow-on system and prepare a report on your findings.

REFERENCES AND SUGGESTED READING

[Anded5] Anderson, T. E., D. E. Culler, and D. Patterson, “A Case for NOW (Networks of Workstations),”

IEEE Micro, Vol. 15, No. 1, pp. 54-64, February 1995.

[Atha88] Athas, W. C., and C. L. Seitz, “Multicomputers. Message-Passing Concurrent Computers,” 1EEE

Computer, Vol. 21, No. 8, pp. 9-24, August 1988.

[Bokh9g] Bokhari, S. H., “Multiphase Complete Exchange on Paragon, SP2, and CS-2,” |EEE Parallel &

Distributed Technology, Vol. 4, No. 3, pp. 45-59, Fall 1996.

[Bonn9s] Bonniger, T., R. Esser, and D. Krekel, “CM-5E, KSR2, Paragon XP/S: A Comparative Description

of Massively Parallel Computers,” Parallel Computing, Vol. 21, pp. 199-232, 1995.

[Dong96] Dongarra, J. J,, S. W. Otto, M. Snir, and D. Walker, “A Message Passing Standard for MPP and

Workstations,” Communications of the ACM, Vol. 39, No. 7, pp. 84-90, July 1996.

[Duat97] Duato, J., S. Yaamanchili, and L. Ni, Interconnection Networks: An Engineering Approach, |[EEE

Computer Society Press, 1997.

[Duze92] Duzett, B., and R. Buck, “An Overview of the nCUBE 3 Supercomputer,” Proc. Symp. Frontiers of

Massively Parallel Computation, October 1992, pp. 458-464.

[Hami97] Hamilton, S, and L. Gerber, “Deep Blue's Hardware-Software Synergy,” 1EEE Computer, Vol. 30,

No. 10, pp. 29-35, October 1997.

478

[Hillo3]

[Hord93]
[Hwan98]

[Mart97]

[Praco6]

INTRODUCTION TO PARALLEL PROCESSING

Hillis, W. D., and L. W. Tucker, “The CM-5 Connection Machine: A Scalable Supercomputer,”
Communications of the ACM, Vol. 36, No. 11, pp. 31-40, November 1993.

Hord, R. M., Parallel Supercomputing in MIMD Architectures, CRC Press, 1993.

Hwang, K., and Z. Xu, Scalable Parallel Computing: Technology, Architecture, Programming,
McGraw-Hill, 1998.

Martin, R. P., A. M. Vahdat, D. E. Culler, and T. E. Anderson, “Effects of Communication Latency,
Overhead, and Bandwidth in a Cluster Architecture,” Proc. 24th Int. Symp. Computer Architecture,
1997, pp. 85-97.

Pradhan, D. K., “Case Studies in Fault-Tolerant Multiprocessor and Distributed Systems,” Chapter
4in Fault-Tolerant Computer System Design, Prentice—Hall, 1996, pp. 236-281.

23

Data-Parallel SIMD
Machines

Data-parallel SIMD machines occupy a special place in the history of parallel
processing. The first supercomputer ever built was a SIMD machine. Some of
the most cost-effective parallel computers in existence are of the SIMD variety.
You can now buy a SIMD array processor attachment for your personal computer
that gives you supercomputer-level performance on some problems for a work-
station price. However, because SIMD machines are often built from custom
components, they have suffered a few setbacks in recent years. In this chapter,
after reviewing some of the reasons for these setbacks and evaluating SIMD
prospects in the future, we review several example SIMD machines, from the
pioneering ILLIAC IV, through early massively parallel processors (Goodyear
MPP and DAP), to more recent general-purpose machines (TMC CM-2 and
MasPar MP-2). Chapter topics are

« 3.1. Where have all the SIMDs gone?

* 23.2. The first supercomputer: ILLIAC IV
e 23.3. Massively parallel Goodyear MPP
+ 23.4. Distributed Array Processor (DAP)
e 23.5. Hypercubic Connection Machine 2
* 23.6. Multiconnected MasPar MP-2

479

This page intentionally left blank.

DATA-PARALLEL SIMD MACHINES 481

23.1. WHERE HAVE ALL THE SIMDs GONE?

In Section 4.2, we briefly reviewed the main properties of SIMD and MIMD parallel
architectures, justified the inclination to use the SIMD paradigm in early parallel machines,
and hinted at the economic factors that have led to the trend toward building and marketing
more flexible MIMD systems since the early 1990s. A natura question thus is: Is SIMD
spending its final days on life support or will we see future parallel architectures of this type?
In this section, after discussing the origins and types of SIMD processing, we review the
designs of five SIMD machines that are representative of the various generations of, and
approaches to, SIMD processing.

As argued in Section 4.1, associative processing is the earliest form of parallel process-
ing. Associative memories (AMs), conceived in the 1940s, were offering processing powers
at the level of million bit-operations per second (mega-bit-OPS) in the 1950s. This was well
before any reference to “parallel processing” in the technical literature. It may seem strange
that we talk about the processing power of amemory, so let usjustify this briefly.

Figure 23.1 depicts the functiona view of an associative memory. There are m memory
cells that store data words, each of which has one or more tag bits for use as markers. The
control unit broadcasts data and commands to all cells. A typica search instruction has a
comparand and a mask word as its parameters. The mask specifies which bits or fields within
the cells are to be searched and the comparand provides the bit values of interest. Each cell
has comparison logic built in and stores the result of its comparison in the response or tag
store. The tag bits can be included in the search criteria, thus allowing composite searches
to be programmed (e.g., searching only among the cells that responded or failed to respond
to a previous search instruction). Such searches, along with the capability to read, write,
multiwrite (write a value into all cells that have a particular tag bit set), or perform global
tag operations (e.g., detecting the presence or absence of responders or their multiplicity),
allow search operations such as the following to be effectively programmed [Parh97]:

* Exact-match search: locating data based on partial knowledge of contents

* Inexact-match searches: finding numerically or logically proximate values

* Membership searches: identifying all members of a particular set

* Relational searches. determining values that are less than, less or equal, and so forth
* Interval searches: marking items that are between limits or not between limits
 Extrema searches: min- or max-finding, next higher, next lower

» Rank-based selection: selecting kth or k largest/smallest elements

* Ordered retrieval: repeated max- or min-finding with elimination (sorting)

Additionally, arithmetic operations, such as computing the global sum or adding two fields
in asubset of AM cdlls, can be effectively programmed using bit-serial algorithms.

Associative processors (APs) are AMs that have been augmented with more flexible
processing logic. From an architectural standpoint, APs can be divided into four classes
[Parh73]:

1. Fully parallel (word-paralel, bit-parallel) APs have comparison logic associated
with each bit of stored data. In simple exact-match searches, the logic associated
with each bit generates a local match or mismatch signal. These local signals are

482

INTRODUCTION TO PARALLEL PROCESSING

Control | Global Operations Control & Response
Unit
o R Ll
Mask Stre J
t———P Cell0
——— Cell!
I Global Tag
—— Cell2 Opﬁ‘%““
ni
I
Data and - . .
mmands .
Broadcast ® .
. . .
|
@ Cell m-1 to

Figure 23.1. Functional view of an associative memory/processor.

then combined to produce the cell match or mismatch result. In more complicated
searches, the bit logic typically receives partial search results from a neighboring
bit position and generates partia results to be passed on to the next bit position.
Bit-serial (word-parallel, bit-serial) systems process an entire bit-slice of data,
containing 1 bit of every word, simultaneously, but go through multiple bits of the
search field sequentially. Bit-serial systems have been dominant in practice because
they allow the most cost-effective implementations using low-cost, high-density,
off-the-shelf RAM chips.

Word-serial (word-serial, bit parallel) APs based on electronic circulating memories
represent the hardware counterparts of programmed linear search. Even though
severa such systems were built in the 1960s, they do not appear to be cost-effective
with today’s technology.

Block-oriented (block-parallel, word-serial, bit/byte-serial) systems represent a
compromise between bit-serial and word-seria systemsin an effort to make large
systems practically realizable. Some block-oriented AP systems are based on
augmenting the read/write logic associated with each head of a head-per-track disk
so that it can search the track contents as they pass underneath. Such a mechanism
can act as a filter between the database and a fast sequential computer or as a
special-purpose database search engine.

These four basic architectures, aong with intermediate or hybrid schemes, provide AP
designers with a vast design space and speed—cost trade-offs. Examples of the available
cost—performance trade-offs in the design of a class of VL SI-based search processors have
been reported by the author [Parh91].

DATA-PARALLEL SIMD MACHINES 483

The next major idea after the development of AMS/APs was the notion of array
processing. A key paper in this areaintroduced the Solomon computer [Slot62] that served
as amodel for the University of 1llinois'sILLIAC IV (see Section 23.2). Various architectural
advances, coupled with dramatic improvements in technology, produced a steady stream of
SIMD designs. These designs vary in the processing node structure and complexity, the
amount of memory per node, interprocessor communication facilities, and the instruction
set implemented in hardware. Sections 23.3 through 23.6 contain descriptions of some of
the key SIMD machines built over the years. Goodyear MPP and Distributed Array Processor
(DAP) represent direct descendants of the AM/AP approach, while Thinking Machines
Corporation’s CM-2 and MasPar's MP-2 can be viewed as more modern router-based
implementations.

It is worth mentioning at this point that mixed-mode SIMD/MIMD parallelism has aso
been considered. A well-known example is the partitionable SIMD/MIMD (PASM) system
designed and implemented at Purdue University for image processing applications. Figure
23.2 depicts the architecture of Purdue PASM [Sieg96]. Midlevel controllers allow PASM
to be partitioned into multiple SIMD (M-SIMD) machines working on independent tasks.
The interconnection network is an omega (multistage cube) network. A prototype with p =
16 processors has been built and is used for research and education.

So, where have al the SIMDs gone? One answer is that they are quietly executing
parallel applications at numerous installations [Parh95]. Vector SIMD using time-shared as
opposed to, or in addition to, parallel hardware is alive and well in Cray, Fujitsu, and Hitachi
vector computers. As for parallel SIMD, even though current technology and implementation
considerations seem to have shifted the balance in favor of MIMD, it is till true that parallel
SIMD machines provide more performance per unit cost for avast collection of pleasantly

Memory
—l Managoment System Controt Unit @
Sysiem

Mid-Level Controllers Parallel
Computation
Unit

Inter-

Ipmcl IPmc.l IProc‘ Proc.
0 1
connection

Network
AlB AlB Als .« .. "‘B)::l:l’

- L.

Memory Storage Systc;/)

Figure 23.2. The architecture of Purdue PASM.

484 INTRODUCTION TO PARALLEL PROCESSING

paralel problems that are of considerable interest to the scientific computation, embedded
control, and database communities. SIMD architectures also offer advantages in ease of
programming, hardware testing, reliability, and speed/precision trade-offs. These advantages
may well lead to greater prevalence of SIMD architectures, if not in the form of full-blown
paralel computers, at least as array-processor attachments to workstations or even personal
computers.

23.2. THE FIRST SUPERCOMPUTER: ILLIAC IV

ILLIAC IV, widely recognized as the first supercomputer, was conceived at University
of Illinois as a research vehicle for advancing the state of the art in digital system technology,
architecture, and performance. Prior to ILLIAC IV, research at Illinois had led to several
innovative computer systems, including ILLIAC I11, which embodied significant advances
in computer arithmetic algorithms and implementation methods. Besides producing the
world's first supercomputer, the ILLIAC IV project led to many advances in compo-
nent/manufacturing technologies, parallel architectures, and computation-intensive applica
tions. Hord has written fascinating histories of the ILLIAC IV project, its difficulties, and
many triumphs ([Hord82] or [Hord90], pp. 17-30).

As an experimental SIMD computer system, ILLIAC IV was envisaged to have 256
processors, organized in four quadrants, each consisting of an 8 x 8 twisted torus. Each of
the quadrants was to have a separate control unit, allowing the machine to be partitioned into
four smaller array processors for applications that did not require the computational power
of the entire system. Eventually, only one quadrant was built, becoming operational in 1975.
Its 64 processors were comparable to the fastest CPUs at the time (80-ns clock cycle) and
operated on 64-bit words. Each processor had six registers and 2K words of local memory.
The Burroughs 6700 host computer was responsible for input/output, network connection,
and a number of supervisory functions (Fig. 23.3).

In ILLIAC 1V, sequencing and control instructions were executed by the control unit,
concurrently with data manipulation functions in the array. Three data paths were available
for interprocessor communication. First, the control unit, which had access to all processor
memories, could move data between them. This word-at-a-time route was simple and
flexible, but relatively slow. Second, the control unit could broadcast one word of data to all
processors. This second approach was quite effective for performing arithmetic operations
between scalar and vector operands. Third, the processors could communicate via a ROUTE
instruction that allowed data in one processor’s register to be sent to another processor’s
register. Because Processor i was connected to Processorsi + 1 and i + 8, routing to Processor
i +5, say, was done by the software figuring out that the best way would be through one step
of +8, followed by three steps of —1.

ILLIAC IV processors could be individually enabled or disabled via commands from
the control unit or based on loca data-dependent conditions. Only enabled processors
executed normal instructions that were broadcast by the control unit. A disabled processor
ignored all instructions, except for the ones that could change its mode. The mode link in
Fig. 23.3 allowed the control unit to examine a status bit in each of the 64 processors and to
perform conditional operations based on the values received.

DATA-PARALLEL SIMD MACHINES 485

Control Unit [—{ Hoxt a—

" e
v v

[Fed ta or
instructions

e.

To Proc. 63 . e . | Proc. To Proc. 0
63
. e e Mem.,
63
Synchronized
Disks
(Main Memory)

Band 0 Band 1 Band 2 Band 51

Figure 23.3. The ILLIAC IV computer (the interprocessor routing network is only partially
shown).

Besides 8 Mb of memory associated with the 64 processors (2K 64-bit words per
processor), ILLIAC IV had a main memory of 16M words. This 1-Gb memory was
implemented using 13 fixed-head magnetic disks in synchronized rotation. The disk storage
space was organized as 52 bands, each holding 300 pages of 1024 words. The half-rotation
time of the disks was 20 ms, some 10° times longer than the access time of the memory
within processors. However, the data transfer rate of 0.5 Gb/s allowed large blocks of data
to be read out or stored fairly efficiently.

A conventional Digital Equipment Corporation PDP-10 computer controlled the main
memory, directed the /O peripherals, and performed all other system management functions.
A Burroughs B6700 computer compiled submitted programs into machine language.

23.3. MASSIVELY PARALLEL GOODYEAR MPP

The MPP system, built by Goodyear Aerospace Corporation and delivered to NASA's
Goddard Space might Center in 1982, was one of the earliest massively parallel processors.

486 INTRODUCTION TO PARALLEL PROCESSING

It contained 16K bit-serial processors and was aimed for applications involving the process-
ing of satellite imagery. Prior to MPP, in the early 1970s, Goodyear had built the STARAN
associative processor, which contained up to 8K processors and was promoted for applica-
tionsin air traffic control and radar signal processing.

Figure 23.4 shows the architecture of Goodyear MPP. The array unit consisted of a
128x128 mesh of single-bit processors under three levels of control: the array control unit,
program and data management unit (PDMU), and a VAX 11/780 host computer. PDMU, a
key component of MPP, consisted of a PDP-11 minicomputer running the RSX-11M
realtime operating system. It was used for program development, machine diagnostics, and
controlling the flow of data into and out of the array. Array input and output was performed
viaspecial /0O interfaces or links to the staging memory, each 128 bits wide. The opposite
edges of the array could be connected together to form a horizontal cylinder, a vertical
cylinder, or atorus. A tree of OR gates, to which every processor was connected, provided
information on the global state of the array to the control unit.

The staging memory had some interesting features. Besides buffering the array input
and output data, it could provide various data rearrangement functions needed to convert
byte- or word-oriented data into the bit-slice form for processing by the array. In addition,
it allowed multi-dimensional access to data, i.e., reading out array data with various ordering
of dimensions (row-major, column-major, and so on).

(YAX 11/780)
Program and Data Management Unit
Staging Array Control Staging
Memory Memory
Control Status
>
Switches .. Array Unit
Tl 128x12
128-bit 8x128 Processors 128-bit
Input ———9»1 ——& Output
Interface Inserface

Figure 23.4. The architecture of Goodyear MPP.

DATA-PARALLEL SIMD MACHINES 487

The bit-serial MPP processors contained six single-bit registers plus a full adder, a
comparator, alogic unit capable of forming any two-variable Boolean function, a variable-
length shift register, and 1K bits of memory (Fig. 23.5). Registers A, B, and C, along with
the shift register, were used in arithmetic operations. Register P was interconnected to the
NEWS neighbors of the processor, received the results of logical operations from the attached
logic unit, and supplied one input of the full adder. The G register determined if the processor
should execute or ignore the broadcast instruction. The S register was used primarily for
shifting datainto and out of the 2D array through its row links, with the leftmost and rightmost
columns of processors serving as input and output points, respectively. This shifting of data
into and out of the array could be done concurrently with other array operations, thus
allowing computation and 1/0 to be fully overlapped.

A 2-row by 4-column section of the MPP processor array was placed on one chip, with
the processor memories occupying another chip. Thus, the MPP array needed a 64x32
matrix of processor and memory chips. In fact, 33 columns of chips (132 columns of
processors) were used to allow processor malfunctions to be tolerated through bypassing of
the chip column holding the malfunctioning processor. Of course, if the malfunction was
detected during M PP operation, the computation was restarted or was rolled back to the last
checkpoint.

With a cycle time of 100 ns, MPP could perform 8-bit integer array additions at 6.6
GOPS and multiplication (yielding 16-bit products) at 1.9 GOPS. Addition of floating-point
arrays (32-bit format) was done at 0.4 GFLOPS and multiplication at 0.2 GFLOPS. Finaly,
the peak performance for the multiplication of a scalar by an array was 2.3 GOPS for 8-bit

From left To right
Processor processor
Mask
¢ Comparator
T
To global oftrom A

<— . neighbors
OR tres NEWS

Figure 23.5. The single-bit processor of MPP.

488 INTRODUCTION TO PARALLEL PROCESSING

integers (yielding 16-bit results) and 0.4 GFLOPS for 32-bit floating-point numbers. All in
al, thiswas quite impressive for the early 1980s.

23.4. DISTRIBUTED ARRAY PROCESSOR (DAP)

The SIMD Distributed Array Processor (DAP) was originaly developed in 1976 by
International Computers Limited in England and was initially known as ICL DAP. Later,
Cambridge Parallel Processing, with branches in England and the United States, was formed
to build and market DAP-based systems. Recent products in this series have included 1K-
and 4K-processor systems configured as 32x32 and 64x64 meshes, with each processor
having up to 16 and 64 MB of memory, respectively. The smaller model fits under a desk
and the larger one is housed in astandard EIA rack cabinet. Both DAP models are typically
hosted by a Sun workstation.

DAP's processors are bit-serial and can thus perform variable-length arithmetic with
software support. Processors operate in lockstep and have nearest-neighbor mesh connec-
tions as well as row/column data highways to alow efficient global fetches and broadcasts.
More expensive models of DAP come with an 8-bit coprocessor per PE to speed up
floating-point and integer operations. Code and data stores are separate, and the processors
have access to a high-speed data channel. The control structure consists of a Master Control
Unit (MCU) that reads instructions from a program memory and issues them to the
processors. The MCU also acts as a high-speed scalar processor. An application consists of
two parts. one running on the front end and a separately compiled part running on the DAP
itself.

DAP's architecture is similar to that of ILLIAC IV, with major differences being
bit-serial processors, row/column highways, much larger memory per processor, and high
1/O capability. Figure 23.6 shows the structure of each bit-serial processor. The interconnec-
tion is to the four nearest neighbors in a 2D grid, together with an additional bus system
connecting processors by rows and columns. Each processor has its own part of the array
memory. Processors access data of neighboring processors by carrying out hardware-imple-
mented shift operations. Array memory can aso be addressed conventionally by the MCU.
A fast channel is provided to allow data to be fed into one edge of the square torus of
processors.

The five single-bit registers in each processor serve for activity control (A), carry storage
(C), accumulation (Q), data input/output (D), and storage data buffering (S). Register S does
not appear in the programmer’s view. The remaining registers are viewed as four planes as
shown in Fig. 23.7. Once data are loaded into the D plane, they can be clocked out
asynchronously without interrupting the processing functions. 1/0 node processors can
return data to the broadcast processor along fast data highways for collation and return to
the front end. In addition, a fast bus along one edge of the processor array can drive disk
units or a high-resolution graphical device.

The variable-length arithmetic capabilities of DAP make it well suited to both nonnu-
merical and numerical applications involving large volumes of data. Major application areas
include scientific and engineering computing, image processing, signal processing, defense
information processing, and data storage and retrieval functionsin large databases (particu-

DATA-PARALLEL SIMD MACHINES

To neighboring To rowfcal
W E n:;ponm
| A e S
From N
neighboring { E C |
Processors] Full | Gy
W ——— Mux i
From R Mux [~4—P Memary
control [Row g—|
unit Col
D
|y
From south neighbor l To north neighbor
Figure 23.6. The bit-serial processor of DAP.
HEl"N Column j
. -~
Wttt fiti B “
Program ‘Hﬁ}z‘ ! f,.f'?
memory N Processors " Fast /O
-
| Rowi 2O Piane X7 S
Master A Plane A7
c;‘}ﬁd ¢ ’ /A Plane Pavg
| A;lanc ﬁ Regisier Q‘in
w processor ij
Host ”
. A
interface
unit
| ——1..... Onc plane
of memory
Host _L
workstation) LA
Array Memory
(at least
32K planes) Local memory
for processor ij

Figure 23.7. The high-level architecture of DAP system.

489

490 INTRODUCTION TO PARALLEL PROCESSING

larly searching of text databases). A standard operating system, typicaly Unix, is run on the
host computer. The internal DAP operating system, which interfaces the control unit and the
processor array, is not normally visible to the user. A parallel version of Fortran (Fortan-
Plus), which issimilar to Fortran 90, is used for application program devel opment.

So far, at least four generations of DAP systems have been built. The latest models
available are DAP Model 510 (32x32) and 610 (64x64). The bit-serial processors of these
models have been augmented with 8-bit coprocessors in Models 510c and 610c. This
significantly speeds up integer and floating-point arithmetic computations. DAP 510c has a
peak performance of 140 MFLOPS, while that of DAP 610c is 560 MFLOPS. Per 1992
performance data, DAP 610 can achieve 40 GIPS for Boolean operations.

23.5. HYPERCUBIC CONNECTION MACHINE 2

Thinking Machines Corporation was founded in 1983. The company’s first product, the
1-GIPS Connection Machine 1 (CM-1), was based on the MIT doctoral thesis of W. Daniel
Hillis, one of the founders of TMC. Less than ayear after the first commercial installation
of a 16K-processor CM-1 system in 1986, the 2.5-GFL OPS CM-2 was introduced, which
had 64 Kb of memory per processor (instead of 4 Kb), afaster clock, and hardware-imple-
mented floating-point arithmetic capability. The design philosophy of both CM- 1 and CM-2
was that using alarge number of slow, inexpensive processorsis a cost-effective alternative
to asmall number of very fast, expensive processors. This is sometimes referred to as the
army of ants approach to high-performance computing. Each bit-serial processor of CM-2
was so simple that 16 processors, plus a number of other components, fit on a single
integrated-circuit chip. The processors were bit-serial because otherwise their parallel
input/output and memory access requirements could not be satisfied within the pin limita-
tions of asingle chip.

Figure 23.8 depicts the overall structure of a 64K-process or CM-2. Up to four front-end
computers are connected to the array sequencers via the 4x4 programmable bidirectional
Nexus switch whose setting determines the machine configuration. With a single front-end
computer connected to all array sequencers, the operation mode is simple SIMD. On the
other hand, if each front-end computer is connected to a different array sequencer, CM-2
operates as four independent 16K-processor SIMD machines (M-SIMD mode). Other
configurations are also possible. Programs execute on one or more front-end computers that
issue instructions to the parallel processing part as needed. These instructions, which include
integer and floating-point arithmetic, interprocessor communication, sorting, and matrix
multiplication, constitute CM-2's Paris machine language. Paris instructions are not directly
handled by the processors, but rather by the sequencers, which break them down into streams
of processor instructions.

The array part of CM-2 is built of four chip types: a chip that holds 16 ALUs, along with
their associated flags (4-bit register) and router/grid connections, commercial RAM chips
for memory, a floating-point interface chip, and a floating-point execution chip. The
floating-point chips are shared by 32 processors (two processor chips). Each processor has
64 Kb of bit-addressable local memory and a bit-serial arithmetic unit. With all of the
processors performing 32-bit integer additions in parallel, CM-2 operates at about 2.5 GIPS.
Using the floating-point unit associated with every 32 processors, a peak performance of 3.5

DATA-PARALLEL SIMD MACHINES 491

Nexus
- Gored
Data Vault
]
Sequencer 0 @ w
16K 1
Processors N 10 Greoti
| System Display

Figure 23.8. The architecture of CM-2.

GFLOPS (single-precision) or 2.5 GFLOPS (double-precision) is available. Because the
memory of each processor can be accessed at the rate of 5 Mb/s, the aggregate memory
bandwidth is about 300 Gb/s.

CM-2 offers two mechanisms for interprocessor communication. One is a programma-
ble NEWS grid that allows the 64K-processor CM-2 to be viewed as a 256x256, 1024 x64,
16x16x16x16, or other grids of various sizes and dimensions. The other mechanism is
through the routers that have been provided for the processor chips. The 4096 routers of a
64K -processor CM-2 are interconnected as a 12-cube via bit-serial channels. Messages
destined for the same processor can be combined in hardware using sum, OR, overwrite,
max, or min rule.

The ALU of a CM-2 processor essentialy consists of two 8-to-I multiplexers, each
implementing an arbitrary logic function of three single-bit inputs (Fig. 23.9). Two of the
input bit streams of the ALU, say a and b, came from the processor’s 64-Kb memory and
are read out in consecutive clock cycles. The third input, ¢, comes from the processor’s 4-bit
flags register. Thus, 16 + 16 + 2 bits are required to specify the addresses of these operands.
The f output is stored as a flag bit (2-bit address) and the g output replaces the memory
operand ain athird clock cycle. Another flag bit can be specified to conditionaize the
operation, thus allowing some processors to selectively ignore the common instruction
broadcast to all processors.

To perform integer addition in the ALU shown in Fig. 23.9, we proceed as follows. The
a and b operands are bits of the addends, which are stored in memory, and cis aflag bit that
is used to hold the carry from one bit position into the next. The f function op-code is
“00010111” (majority) and the g function op-codeis“01010101” (three-input XOR). Note
that the op-codes are in effect the truth tables for the three-variable functions f and g. A k-bit
integer addition requires 3k clock cycles and is thus quite slow. But up to 64K additions can

492 INTRODUCTION TO PARALLEL PROCESSING

From a

Memory b c
0
P 10
2
f op- 3 \] f(a, b, ¢) Flags
code 4
5
6
7
g Op-
code

Figure 23.9. The bit-serial ALU of CM-2.

be performed in parallel. Floating-point arithmetic can be implemented similarly and thisis
the way it was donein CM-1. In CM-2, the hardware floating-point units lead to significant
acceleration for both single- and double-precision ANSI/IEEE standard floating-point
numbers.

23.6. MULTICONNECTED MASPAR MP-2

The design philosophy for MasPar MP-1 and MP-2 was to use a high level of parallelism
with simple processors, implemented in nonaggressive (and thus inexpensive) CMOS VLSI
technology, to achieve good performance/cost ratio. MasPar MP-2 can have from 1K to 16K
processors, with the largest configuration achieving a peak performance of 68 GIPS, 6.3
GFLOPS for single-precision floating-point numbers, and 2.4 GFL OPS with double preci-
sion.

The architecture of MP-2 is depicted in Fig. 23.10. The array control unit, which
occupies one printed-circuit board, is a 12.5-MIPS RISC-type processor with demand-paged

Ethernet 4——-’| Front End I

3 b
y y Digk Amay

| Armay Control Unit e
1

VO Channel

Controller |-

Processor Array emon
(X-net connected) &M

e

Figure 23.10. The architecture of MasPar MP-2.

DATA-PARALLEL SIMD MACHINES 493

instruction memory. It fetches and decodes MP-2 instructions, computes addresses, operates
on scalar data (usually requiring one 80-ns clock cycle per instruction), issues control signals
to the processor array, and monitors the array status.

The processor array (Fig. 23.11) consists of one printed-circuit board for 1K processors
and their associated external memory units. There are 64 clusters of 16 processors on each
board. Processors in a cluster are interconnected by the X-net (eight-neighbor mesh)
topology, with X-net links provided between neighboring clusters. Processor chips are
custom-designed, with each chip containing 32 processors (two clusters). The 14-mm by
14-mm die uses 1-um CMOS technology and contains just under 1M transistors.

The processor has no instruction storage, fetch, or decode logic but rather receives
decoded instructions from the array control unit (Fig. 23.12). Each processor has 52 bit- and
byte-addressable registers (32 bits wide) of which 40 are available to the programmer and
12 are used internally to implement the MP-2 instruction set.

In addition to the register file, which accounts for roughly half of the transistors on each
chip, the processor has a 16-bit exponent unit, a 64-bit significand unit, a 32-bit barrel shifter,
a 32-bit ALU, a 1-bit logic unit, and a flags unit. Both 32-and 64-hit floating-point operations
can be performed, as well as 8-, 16-,32-, and 64-bit integer arithmetic. The processor overlaps
memory access (load/store) with computation. Up to 32 load/store instructions can be queued
and executed while computation proceeds. A hardware interlock mechanism is used to ensure
that registers are not read before they have been loaded and not modified before they have
been stored. Optimizing compilers move loads to earlier points in the program and delay the
use of registers that receive operation results.

The X-net connectivity is provided by using only four wires per processor. All processors
have the same direction controls so that, e.g., they al send an operand to the northeast
neighbor and receive from the southwest neighbor. The processor chip has two 4x4 processor

[

=

I
[

a:::gig:::g §S”fg° TR

Processor Cluster

]

NN

LSRN
A

Figure 23.11. The physical packaging of processor clusters and the three-stage global router in
MasPar MP-2.

494 INTRODUCTION TO PARALLEL PROCESSING
X[:m Comm. Comm. XOU":"
Input Output
4—P < —
To Router To Router
Stage 3 Stage 1
Y _ vYvvy I
Exponent Significand Barrel .
Unit Unit | shier [P AW Logic
‘Word Bus
N I T R WY Y
Bit Bus * * + #
Memory Memory .
Address Data/ECC Register
Unit Unit File
v Yy [om
Reduction
External Memory *
Instruction Broadcast

Figure 23.12. Processor architecture in MasPar MP-2.

clusters and 24 pins for their bit-serial X-net connections. The aggregate bandwidth of the
X-net in a 64K-processor MP-2 system is 20 GB/s.

In addition to the X-net, a three-stage 1024 x1024 crossbar network (Fig. 23.11)
connects every processor cluster to every other cluster and also forms the basis of the 1/0
system. The crossbar is built of 64 x64 crossbar chips, 3 of which are placed on each
processor board. When a processor wants to send a message to another processor, it transmits
it through the router’'s Stage-1 port. From there, the appropriate connection to the next stage
is chosen based on the target processor number. Once a connection is established, data can
be exchanged between the two processors in both directions. The target processor returns an
acknowledgment once the connection is closed. Because each cluster of 16 processors has
one router port, an arbitrary permutation requires 16 routing cycles to complete. A 16K-proc-
essor MP-2 has an aggregate router communication bandwidth of 1.3 GB/s.

DATA-PARALLEL SIMD MACHINES 495

PROBLEMS

23.1.

23.2.

23.3.

23.4.

23.5.

23.6.

23.7.

Membership search in associative memories

a. Wewould like to identify all associative memory cells that contain one of the bit patterns
0101, 0110, 0111, 1101, 1110, or 1111 in a particular 4-bit field. What is the minimum
number of search instructions that are needed for a fully parallel associative memory?

b. Formulate a general procedure for doing membership searches of the type given in part (a)
with the minimum number of instructions.

c. Show how the membership search of part (a) might be programmed on a bit-serial system.

Systolic associative memories

It has been argued that the requirements for broadcasting instructions to all cells and combining
the tags in a global operations unit have a negative impact on the scalability of associative
memories [Parh92]. Show how small AMs can be combined into a pipelined configuration to
achieve good performance when multiple searches are performed in the same data set (batch
searching). What are the implications of such an architecture for other types of searches? In
particular, what can you say about max-finding or membership searches of the type defined in
Problem 23.1.

Goodyear STARAN processor

The Goodyear STARAN associative processor was perhaps the first massively parallel com-

puter ever built. It had severa interesting features that were subsequently copied in other

designs.

a Study the Goodyear STARAN and prepare a description of its architecture and applications
in away that could form a section in this chapter.

b. Compare STARAN with both MPP and DAP, identifying their similarities and differences.

The twisted torus network of ILLIAC IV
Draw a diagram showing the 8x8 twisted torus network of ILLIAC IV. How should the matrix
multiplication algorithm for atorus (Fig. 11.4) be adapted to runon ILLIAC IV?

The twisted torus network of ILLIAC IV

Determine the diameter, average internode distance, and bisection width of the twisted torus
network in the 8x8 ILLIAC IV configuration. What is the bisection bandwidth of this
configuration?

The main memory of ILLIAC IV

From the information given in Section 23.2 about the synchronized disks that form the main
memory of IILIAC IV, derive as much information about the physical characteristics of the
disk units used as possible. When two or more parameters are interrelated but there is not
enough information to determine their values, take reasonable guesses for some and determine
the other ones.

Goodyear MPP
The variable-length shift register in the processor of MPP (Fig. 23.5) could be configured to
have alength of 2,6, 10, 14, 18, 22, 26, or 30 bits.

a. Try tofind out why these lengths were chosen.
b. How can such a variable-length shift register be implemented?

496

238.

23.9.

23.10.

23.11.

23.12.

23.13.

23.14.

INTRODUCTION TO PARALLEL PROCESSING

Comparison of MPP and DAP

Present a detailed comparison of MPP and DAP. In particular, discuss the relative efficiency
of the two architectures in performing integer and floating-point arithmetic. Assume a DAP
model with no arithmetic coprocessor.

Connection Machine 2
Discuss how 2's-complement addition can be performed on CM-2 in such a way that a flag bit
is set on overflow. Hint: The next-to-the-last carry is needed.

Arithmetic on DAP and CM-2
Compare the speed of standard 32-bit integer arithmetic operations of addition, multiplication,
and division on DAP and CM-2 bit-serial processors, assuming the same clock rate for both.

Image smoothing on MP-2

Consider a 1024x1024 gray-scale image for which the brightness of each pixel is represented
by an 8-bit unsigned integer. In image smoothing, we replace the value of each pixel with the
average of its own value and those of its eight nearest neighbors. The edge pixels do not have
eight neighbors and are thus not modified.

a. Show how the smoothing agorithm for the above image should be mapped onto a
4K -processor MP-2 in order to minimize interprocessor communications.

b. How many interprocessor communication steps on the X-net are needed for this problem?

c. Develop an efficient computation scheme for image smoothing. Hint: Dividing by 9 can
be done efficiently if one notesthat 9 = (23(1+27%))1 »2-3(1-2-3)(1 + 2°5).

Hybrid SIMD/MIMD architectures

The M-SIMD (multiple SIMD) class of parallel architectures is defined as one in which subsets
of processors can operate in SIMD or SPMD mode within the subsets and in MIMD mode
between different subsets. Study the PASM project [Sieg96] as a representative example of
machines in this class, focusing on specia implementation problems and performance advan-
tages over pure SIMD or MIMD. Prepare a description of PASM in a way that could form a
section in this chapter.

Geometric Arithmetic Parallel Processor (GAPP)
GAPP was developed in the early 1980s at Martin Marietta for image processing applications.

a. Study GAPP and prepare a description for it in a way that could form a section in this
chapter.
b. Compare GAPP with MPP, DAP, and CM-2.

Conway’s game of life

In the Game of Life, conceived by John Conway, the world of microorganismsis modeled by
aBoolean matrix. A 1 represents the presence and a 0 the absence of aliving organism. Discrete
timeis assumed and the new state of each matrix cell a timet + 1 is determined by three rules
based on the number of living organisms in the eight neighbors of the cell at timet: (1) Any
living organism with two or three neighbors survives. (2) Any living organism with four or
more neighbors dies of overcrowding. (3) Any living organism with zero or one neighbor dies
of solitude. (4) An organism is born in any empty cell with exactly three neighbors. Compare
the SIMD machines described in this chapter with regard to their ability to simulate the Game
of Life on a256x256 matrix for thousands of time steps (generations).

DATA-PARALLEL SIMD MACHINES 497

23.15.

The editor’s parallel processor

The editor of ascientific journal on parallel processing has decided that he must practice what
he preaches. He has, therefore, developed the following parallel processing scheme for paper
evaluation and selection. He asks each of five referees to rank a paper on a scale of 0-100 and
attach to their reviews confidence levels in the same range (both 7-bit numbers). The five
referees of each paper always return their evaluations promptly (remember, this is just a
textbook problem) and an aide enters the 14 bits of information from each referee into the
memory of the editor’s parallel computer. At the end of each month, the editor processes the
data by running his paper selection program. The program computes a 16-bit composite score
for each paper by multiplying each referee’s ranking and confidence levels and adding the
results. Each composite score is compared with a randomly chosen acceptance threshold
(determined in a drawing each month). Which of the architectures described in this chapter
would you say best matches the requirements of this application and why? Assume that millions
of papers must be evaluated each month.

REFERENCES AND SUGGESTED READING

[Batcs0]

Batcher, K. E., “Design of a Massively Parallel Processor,” IEEE Trans. Computers, Vol. 29, No. 9,
pp. 836-844, September 1980.

[Cypho4] Cypher, R., and J. L. C. Sanz, The SMD Model of Parallel Computation, Springer-Verlag, 1994.

[Hillgs]

Hillis, W. D., The Connection Machine, MIT Press, 1985.

[Hords2] Hord, R. M., The ILLIAC IV: The First Supercomputer, Springer-Verlag, 1982.
[Hord90] Hord, R. M., Parallel Supercomputing in SSMD Architectures, CRC Press, 1990.

[Jurcoe]

Jurczyk, M., and T. Schwederski, “SIMD Processing Concepts and Systems,” Chapter 22 in Parallel
and Distributed Computing Handbook, edited by A. Y. Zomaya, MaGraw—Hill, 1996, pp. 649-679.

[MasP92] MasPar Computer Corporation, “The Design of the MasPar MP-2: A Cost Effective Massively

[Parh73]
[Parh91]
[Parhg2]

[Parhos]

[Parhg7]

[Sieg96]

[Slot62]

[Tuckss]

Parallel Computer,” November 1992.

Parhami, B., “Associative Memories and Processors: An Overview and Selected Bibliography,”
Proceedings of the IEEE, Vol. 61, No. 6, pp. 722-730, June 1973.

Parhami, B., “The Mixed Serial/Parallel Approach to VLS| Search Processors,” Proc. Hawaii Int.
Conf. System Sciences, January 1991, Vol. |, pp. 202-211.

Parhami, B., “Architectural Tradeoffs in the Design of VLSI-Based Associative Memories,” Micro-
processing and Microprogramming, Vol. 36, No. 1, pp. 27—41, November 1992,

Parhami, B., “Panel Assesses SIMD’s Future,” IEEE Computer, Vol. 28, No. 6, pp. 89-91, June 1995.
Unabridged version of this report under the title “SIMD Machines: Do They Have a Significant
Future?’ appeared in |IEEE Computer Society Technical Committee on Computer Architecture
Newsl etter, pp. 23-26, August 1995, and in ACM Computer Architecture News, Vol. 23, No. 4, pp.
19-22, September 1995.

Parhami, B., “Search and Data Selection Algorithms for Associative Processors,” in Associative
Processing and Processors, edited by A. Krikelis and C. Weems, IEEE Computer Society Press, 1997,
pp. 10-25.

Siegel, H. J, et al. “The Design and Prototyping of the PASM Reconfigurable Parallel Processing
System,” in Parallel Computing: Paradigms and Applications, Edited by A. Y. Zomaya, Thomson,
1996, pp. 78-14.

Slotnick, D. L., W. C. Borck, and R. C, McReynolds, “The Solomon Computer,” Proc. AFIPSFall
Joint Computer Conf., 1962, pp. 97-107.

Tucker, L. W. and G. G. Robertson, “Architecture and Applications of the Connection Machine,”
IEEE Computer, Vol. 21, No. 8, pp. 26-38, August 1988.

This page intentionally left blank.

Past, Present, and
Future

In this final chapter, we present a brief overview of the history of parallel
processing, discuss the current trends in system architecture, and look at some
promising technologies and research areas that are likely to shape the future of
this field in the coming decade. Chapter topics are

e 24.1.
o 242
* 243.
° 244,
* 245.
* 246.

Milestones in parallel processing
Current status, issues, and debates
TFLOPS, PFLOPS, and beyond
Processor and memory technologies
Interconnection technologies

The future of parallel processing

499

This page intentionally left blank.

PAST, PRESENT, AND FUTURE 501

24.1. MILESTONES IN PARALLEL PROCESSING

Many interesting parallel computers have been built or proposed. It would be impossible
to devote even a single paragraph to each interesting parallel machine that has been built or
proposed since the early 1960s. Lerman and Rudolph [Lerm94] survey some 200 parallel
computers built by universities, industrial research laboratories, and commercial vendors
from around 1960 to 1992. An appendix in their volume provides a brief listing of the
architectural features for each of the machines surveyed. More detailed descriptions for a
smaller number of parallel computers can be found in two books by Hord, respectively
devoted to SIMD [Hord90] and MIMD [Hord93] machines. In the remainder of this section,
wereview afew key ideas and developmentsin the history of parallel processing.

The desirability of computing multiple Values at the same time in order to speed up
repetitive computations, such as those needed for the formation of numerical tables, was
noted as early as 1842 in connection with Babbage's Analytical Engine ([Hock81], p. 7). In
1952, von Neumann showed that a 2D array of processors with 29 states could simulate the
behavior of a Turing machine and thus could be considered universal. A few years later,
Holland [Holl59] described what can be viewed as the forerunner of modern MIMD-type
parallel computers: an array machine in which the instructions of multiple subprograms were
distributed in space, with data and control transferred among the processors as required by
the subprograms’ control flow. The history of SIMD-type parallel processing can be traced
back to the SOLOMON (simultaneous operation linked ordinal modular network), which
was itself based on Unger’s 1958 computer design for spatial problems, and later led to the
design of 8 x 8 mesh-connected ILLIAC IV (see Section 23.2).

In asense, the ILLIAC IV project was afailure in that it cost several times as much as
planned and delivered a small fraction of the expected performance. However, these reflected
in part the ambitious goals of the project and a mismatch between its technological
requirements and what was available in the 1960s. The project provided valuable lessonsin
computer design and led to many advances in software and algorithm development. The
ILLIAC IV legacy has continued with a host of SIMD-type parallel processors. The number
of processors gradually increased from a few tens in ILLIAC 1V, to hundreds in PEPE
(developed by Burroughs for the U.S. Army), and to thousands in STARAN (Goodyear’s
associative processor), DAP (see Section 23.4), MPP (Section 23.3), TMC CM-1/2 (Section
23.5), and MasPar MP-1/2 (Section 23.6) computers. The increase in the number of
processors was not only related to advances in 1C technology but also to a trend toward using
simpler processors compared with those in ILLIAC IV.

Concurrent with the development of SIMD architectures, progress was being made on
two other fronts. One was the design of vector supercomputers, which can be viewed as
implementations of SIMD-type parallelism with shared (pipelined) hardware. Cray super-
computers and later, machines by Fujitsu, Hitachi, and others fall into this category.
Subsequently, multiprocessor versions of these machines were offered for even higher
performance. The second type of intraprocessor concurrency was pursued by Control Data,
Amdahl, and IBM, among others, and consisted of providing multiple independent func-
tiona units within a CPU. Severa functiona units could be made concurrently active by
multiple instruction issue, instruction lookahead, and out-of-order execution. With the steady
increase in the number of transistors that can be put on a single microchip, these pipelining

502 INTRODUCTION TO PARALLEL PROCESSING

and instruction-level parallelism techniques were gradually incorporated into the designs of
advanced microprocessors and, eventually, in ordinary micros.

On the MIMD front, we can trace the development of two classes of machines. Early
bus-based multiprocessors, which were introduced primarily to increase the throughput of a
computer installation in running many independent jobs and for sharing of expensive
peripheral and network resources, were the forerunners of the class of bus-based MIMD
multiprocessors that cooperate in running parts of a single large application. A MIMD
machine of this type was the five-processor prototype PRIME time-sharing system devel-
oped at the University of California, Berkeley, in the early 1970s. PRIME was developed as
a fail-soft, highly available system and thus incorporated information coding, error detection,
and reconfiguration logic in addition to multiple buses that could be used for interprocessor
communication.

Many bus-based MIMD machines have since been developed. Examples include the
Carnegie-Méellon Cm* multiprocessor, MIT Concert, Encore Multimax, Sequent Balance
and Symmetry, Sun SPARCserver, Alliant FX, HP Apollo, Sequoia Series 400, Intel iAPX
432, Synapse N+1, and Tandem NonStop (see Section 22.2). The second MIMD class, based
on specialized (point-to-point or multistage) interconnection networks, has more variety. A
large number of different interconnection topologies have been proposed and implemented
in such systems. An early, and highly influential, system of this type was the Carnegie-Mellon
C.mmp multiprocessor, which was built of 16 PDP-11 minicomputers in the mid-1970s (see
Fig. 21.2). It has both a crossbar and a bus for interprocessor communication via shared
variables or message passing.

In view of the limitations of crossbars and their poor scalability, research intensified on
other interconnection schemes for larger numbers of processors. Caltech’s Cosmic Cube was
the first hypercube multicomputer ever built (see the introductory paragraph in Section 13.1
for prior history). It was built in 1983 and had 64 processors that were interconnected as a
6-cube. Subsequently, commercial hypercube multicomputers were offered by Intel (iPSC
introduced in 1985, with 16-128 nodes composed of an 80x86 processor and 0.5-4 MB of
memory) and by nCUBE (see Section 22.3).

Again, scalability concerns were raised and using constant-degree networks was deemed
as the only feasible way of scaling beyond the few thousand processors afforded by
hypercube-type networks with their logarithmic node degrees. New York University’s
Ultracomputer (scalable to 4096 processors) was the first general-purpose computer to be
based on the butterfly (omega) network. Thinking Machines Corporation’s CM-5 computer
used a fat-tree (hypertree) interconnection network to connect up to 256K processors (see
Section 22.4), but the largest configuration ever built had 1K processors. The KSR-1
computer by Kendall Square Research used up to 34 rings of 32 processors in aring of rings
architecture. Neither of the latter two machines, both introduced in 1992, became successful,
in part because of an economic downturn in the United States and in part to renewed interest
in mesh architectures, as discussed below. IBM’s SP series and Meiko’'s CS-2 belong to this
class of scalable machines and use small custom crossbar switches to synthesize the
interprocessor interconnection network (see Section 22.5).

The widespread use of wormhole routing made mesh topol ogies more attractive. With
wormhole routing, network diameter was no longer as important as with store-and-forward
routing, which induces significant per-node delay for storing the entire message in interme-
diate nodes en route to the final destination. The adoption of, and improvements in, wormhole

PAST, PRESENT, AND FUTURE 503

routing led to reasonable routing performance, at least at the scales of up to several thousands
of processors. Many 2D and 3D MIMD mesh architectures have been designed and built
(even several systolic linear array architectures, such as Intel’s iWARP, were built).

Examples of mesh-connected parallel architectures include Ametek Series 2010 (an-
nounced in 1988,4-1024processors), Stanford DASH (Section 21.5), MIT J Machine (1992,
up to 64K processors, 3D mesh with virtual channels and deterministic e-cube routing), Intel
Paragon (known as Touchstone Delta in its research stage, 1991, up to 4K processors), Cray
T3D (32—2048 processors interconnected as a 3D torus) and its successor Cray T3E, and
Tera MTA multithreaded paralel system (see Section 21.4).

After several major MPP vendors went out of business in the mid-1990s in view of
market saturation and severe budget cuts in organizations using high-performance machines
(the in joke was that in computer architecture texts, parallel processing should be covered in
Chapter 11), emphasis was shifted to building highly parallel machines from commodity
processing and network products in order to minimize research and development costs.
Examples of systems and projects in this area include Berkeley NOW (see Section 22.6) and
Digital’s Alpha Farm. Virtually all major computer vendors now offer parallel processing
products in this cluster-of-workstations (COW) class.

24.2. CURRENT STATUS, ISSUES, AND DEBATES

The state of parallel processing today is aptly summarized by David Kuck ([Kuck96],
p. 41) in his highly perceptive treatment of high-performance computing problems and
trends:

Today the parallel computing field isin a state of turmoail as various computing architec-
tures struggle for market share and users are presented with a wide range of programming
models, new languages, and compilers. In the midst of this, system designers must be
constantly aware that the ultimate competition is not with some other parallel architecture
or new parallel language; the competition iswith sequential computing as it has evolved
since the mid- 1940s. Inexpensive personal computers that can be used without program-
ming for a wide range of applications, make sequential computing a formidable com-
petitor for emerging parallel systems, as do other systems, ranging from workstations to
vector supercomputers, which offer usersrelatively friendly and powerful environments
for problem-solving.

The cost—performance edge of workstations and personal computersis related both to
the mass market and to intense competition. This is best understood by examining a pricing
model for products in these categories ([Patt96], pp. 14-17). Taking the list price as a basis,
atypical product in these categories has a component cost of 25-30%, direct production and
marketing costs of around 10%, a gross margin of 15-35% (this is what covers the personnel,
research and development, taxes, and, of course, profits), and is sold at 35-45% below the
list price (volume discount, incentives, seller’s cut, and so forth). For parallel processors, on
the other hand, the high R&D costs must be recovered from a relatively small number of
sales, making the component cost a very small fraction of the final price. This explains the
disparity in MIPS or MFLOPS per unit cost.

504 INTRODUCTION TO PARALLEL PROCESSING

But even the fastest personal computers can only do so much in 1 second or 1 hour.
Operating systems, compilers, and application programs are growing fatter to incorporate
more functionality, appeal to a wider group of users (mass-market economics), maintain
backward compatibility, provide more appealing user interfaces (the bells and whistles), and
survive al sorts of abuses (be fool- or villain-proof). The clock rates and performance of
microprocessors continue their dramatic improvements (see Section 24.4), but the perceived
need for performance seems to be always one step ahead. It is inconceivable that this chase
will end some day, with contended users saying “OK, we have al the performance that we
need.” On the contrary, the quest for higher performance appears to be accelerating.

Of course, the processor clock rate and performance are not the only determining factors
in the design of parallel processors. Memory access latency and bandwidth, interprocessor
communication, and input/output are also important. While the access speeds for both main
and secondary memories continue to improve, the rate of improvement is not as dramatic as
for processors (see Section 24.4). This worsening of the performance gap between processors
and memories has brought about the need for advanced data caching and concurrency
techniques, with the attendant increases in complexity, development costs, and power
consumption.

And it isnot just amatter of architecture and technology; progressis slowing down on
the algorithmic front as well. Discovery of an algorithm (quential or parallel) that leads to
substantial speed improvementsis now quiterare. Thisis especialy true in the general-pur-
pose domain where the algorithms have to deal with data sets of greatly varying, and
unpredictable, characteristics, as well as a multitude of hardware platforms. Algorithm
designers and researchers are now talking about percentage-points, as opposed to orders-of-
magnitude, improvements in performance. However, the potentials of special pairings of
algorithms and architectures have not yet been exhausted, and this forms a compelling
argument for designing special-purpose systems,

Despite the recent dwindling of interest in building massively parallel processors, the
future of parallel processing now looks brighter than ever. On the design side, the accumu-
lated know-how about interprocessor communication structures, data routing schemes,
performance—cost trade-offs, parallel algorithms, data layout in parallel memories, and
high-performance 1/0O makes the implementation of efficient paralel systems relatively
straightforward. On the technology side, increasing integration levels (billion-transistor
chips are on the horizon), combined with emerging building blocks such as smart memories
with internal processing power, single-chip multiprocessors, and gigabit per second commu-
nication channels, will make the synthesis of parallel machines from commodity products
feasible and painless. Finally, on the application side, expanded focus on data- and compu-
tation-intensive applications such as modeling, digital libraries, and multimedia will neces-
sitate parallel processing even at the level of workstations and, perhaps, personal computers.

In-depth comparisons of the myriad of design alternativesin parallel processing, based
on the vast collection of published work as well as hands-on experience with commercial
and one-of-a-kind parallel systems, have only just begun. Ongoing debates in the following
areas of parallel machine design will no doubt continue within the parallel processing
research community:

Architecture General- or special-purpose systems? SIMD, MIMD, or hybrid?
Processing Custom or commodity processors? Coarse- or fine-grain?

PAST, PRESENT, AND FUTURE 505

Interconnection Shared-medium, direct, or multistage? Custom or commodity?

Routing ~ Oblivious or adaptive? Wormhole, packet, or virtua cut-
through?

Programming Shared memory or message passing? New languages or libraries?

There are strong opinions on each side of these issues and a dearth of empirical evidence as
to which schemes work and why.

With regard to architecture, general-purpose MIMD systems appear to have the upper
hand now, but SIMD has maintained a niche market within the domain of special-purpose
real-time systems (see Sections 4.2 and 23.1). Today, the development of one-of-a-kind
circuits is extremely expensive and is likely to lead to noncompetitive products. Building
special-purpose systems from commodity components, on the other hand, appears to be
getting easier and presents itself as a valid way to achieve higher performance for time-
critical applications.

The raw processing power of commodity processors is hard to beat. Thus, the use of
custom processors is becoming harder to justify on the basis of performance. However, size,
environmental requirements, and power consumption are still valid reasons for pursuing
custom designs. Thisis, to some extent, being addressed by commercial vendors who offer
different versions of their chips, which are based on the same overall architecture, to satisfy
specialized needs. Coarse-grain processing nodes in parallel systems essentially correspond
to the capabilities of the current top-of-the-line microprocessors. These processors al contain
more or less the same functionalities and leave little for us to argue about. On the other hand,
whereas we can now easily put 4-16 simpler processors on a chip [Kogg94], difficulties
arise as soon as we begin to discuss which features of a full-blown microprocessor are
candidates for removal or simplification. Thus, at least for now, fine-grain is synonymous
with custom.

The communication revolution, fueled in part by the exploding use of the Internet, has
led to significant advances in the performance of commodity interconnection technology.
This technology is now driving the parallel processing industry. As with processors, custom
interconnection components are very expensive to develop and at best offer limited perform-
ance benefits. All three alternatives of shared-medium links, router-based direct topologies,
and switch-based multistage networks offer data transfer rates in excess of 1 Gb/s (see
Section 22.1), making them natural candidates for usein parallel processors. The asynchro-
nous transfer mode (ATM) communication technology has the potentia to merge the data
transfer needs of both parallel and geographically distributed computing systems (see
Section 24.5).

Data routing has been one of the most contentious points of argument in recent years
among the designers and researchers in parallel processing. For example, it is often taken as
a fact that the advent of wormhole routing has made packet routing obsolete. Y et, many
current and planned high-performance machines are based on packet routing [Magg96].
While raw communication bandwidth is no longer viewed as a limiting factor in the
development of massively parallel processors, efficient use of communication resources and
adapting their use to data traffic patternsis still an important area of study. A fundamental
point is the choice between the simplicity of oblivious routing, leading to smaller/faster
switches and lower end-to-end latency when there is no conflict or malfunction, and the

506 INTRODUCTION TO PARALLEL PROCESSING

flexibility of adaptive routing that often goes hand in hand with more complex protocols to
enable routing decisions and to avoid resource deadl ocks.

Parallel machines have traditionally been hard to program and remain so even today
[Kuck96]. There are two basic reasons for this state of affairs: economics and need. The
relatively small number of parallel systems of any one kind makes it unattractive for
commercial software vendors to invest in developing software for them. Also, users of
parallel machines have usually been large companies and government entities with substan-
tial in-house programming expertise, and, given the high prices of the machines they were
buying, they could easily afford to keep a competent programming staff on their rolls.
However, this strategy has resulted in a host of one-of-a-kind, inefficient, nonportable, and
unmaintainable software systems. The endless debates about which parallel programming
language is better mirrored those in the early days of digital computers about the relative
merits of the available options. Fortran, Cobol, and Algol. With the prospects of the language
debate being settled quite dim, the use of portable libraries emerged as the paradigm of choice
for parallel programming. Software and program development tools for parallel computers
might start showing greater improvements now that parallel system designers have been
relieved from worrying about hardware development and circuit design.

24.3. TFLOPS, PFLOPS, AND BEYOND

We all seek simplicity and like the idea of putting things in order. We rank-order sports
teams, record albums, movies, popular books, and many other things; so, why except
computers and parallel processors? Just as the high ranking of a book or movie according to
total sales volume is no guarantee that you will like it, the peak performance of a parallel
processor in GFLOPS or TFLOPS might be a poor indicator of how it would fare if applied
to your computational problems. Ranking machines based on their performance on bench-
marks is somewhat better, but still not free of pitfalls. For one thing, benchmarks may not
be completely representative of some applications. For another, parallel machine vendors
have been known to tune their systems to do well on certain popular benchmarks, sometimes
to the detriment of performance, or even correct operation, in other areas; see Patterson and
Hennessy ([Patt96], pp. 44-50) for an informative discussion on the fallacies and pitfalls of
performance comparisons and benchmarks.

The above disclaimer nonwithstanding, there is a certain usefulness to numerical
performance indicators, for even though they may be misleading in micro-level comparisons,
they do provide fairly accurate macro-level views of technological advances and trends. For
example, the very fact that today we are talking rather casually about TFLOPS performance,
and looking ahead to the PFLOPS level, is quite significant in itself. Looking back at Fig.
1.2, we note that the upward trend will be marginally affected by small adjustments in the
data points. Thus, using GFLOPS or TFLOPS for monitoring performance trends over time
is much less dangerous than using them for performance comparisons in space.

In order to push the development of TFLOPS supercomputers for both military and
civilian applications, the U.S. Department of Energy launched the Accelerated Strategic
Computing Initiative (ASCI) in 1994 with a budget of U.S. $ 1 billion spread over 10 years.
Figure 24.1 shows the goals and milestones of the ASCI program. ASCI started when
TFLOPS peak performance was within reach, but still rather expensive and, thus, not

PAST, PRESENT, AND FUTURE 507

implemented. The first step of the program was thus to achieve a performance in excess of
1 TFLOPS in a machine with 500 GB of main memory; this goal was achieved in 1997 when
Intel installed and tested its 1.34 TFLOPS Option Red machine at the Sandia National
Laboratoriesin New Mexico. The Intel/Sandia Option Red parallel computer, which uses a
38 x 32 x 2 mesh topology for interconnecting two-processor nodes, is comprised of 9200
Pentium Pro processors with a clock frequency of 200 MHz, 573 GB of system memory,

and 2.25 TB of disk memory. Most of the nodes are compute nodes, but there are also 32

service, 24 1/0, 2 system, and severa spare nodes. The components of this parallel machine
are housed in 86 cabinets occupying 160 m? of space (including aisles and access walkways),

consume a peak power of 850 KW, weigh 44 tons, and require 300 tons of air conditioning

equipment.

Two parallel projects are under way to realize the next ASCI milestone of 3 TFLOPS
by the end of 1998 (Option Blue in Fig. 24.1). Silicon Graphics is developing the Blue
Mountain, a CC-NUMA machine with 3000+ MIPS processors. IBM is in charge of Blue
Pacific, a cluster architecture using 4K POWERS3 processors. Cray T3E Model 1200,
announced in November 1997, has aready laid claim to a peak performance of 2.5 TFLOPS
with 2K 600-MHz processors.

Looking at the microprocessor performance trends (Fig. 1.1), it appears that ASCI’s
various performance milestones will be attainable by using no more than several thousand
processors. Speed and bandwidth requirements of the communication network are also well
within the range of current technology, when projected performance improvements are
factored in. Dealing with power dissipation may turn out to be the hardest technical obstacle
to overcome. Current processors consume of the order on 50-100 W/GFLOPS. So, a
100-TFL OPS machine might need 5-10 MW of power just for the processors.

[Plan
g 8°V=1°P 100+ TFLOPS 20 TB
oo | ™™ Use T T -
@ OPS ,10TB
O I ITTITIT IR © weeeeee
v
-
= .
g T IR 1 .
S Bl . i TS
Option Bluc
& 1+ TFLOPS 0.5 TB
1 [“
Option Red

1995 2000 2005
Calendar Year

Figure 24.1. Performance goals of the ASCI program.

508 INTRODUCTION TO PARALLEL PROCESSING

The pursuit of higher performance most likely will not stop at the current level of
TFLOPS, being promoted by the ASCI program, or the next milestone of PFLOPS now being
discussed. Much work remains to be done not just to achieve PFLOPS performance for
advanced applications but also to make GFLOPS and TFLOPS performance more affordable
for everyday use. Given the past performance trends and projections for the future, it is
virtually guaranteed that some day we will look back at the Intel/DOE Option Red machine
in the same way that we now view the ENIAC, wondering exactly why a machine that is less
powerful than our battery-operated |aptop computers needed so much space and power.

24.4. PROCESSOR AND MEMORY TECHNOLOGIES

Commodity microprocessors are improving in performance at an astonishing rate (see
Fig. 1.1). Over the past two decades, microprocessor clock rates have improved by a factor
of 100, from a few megahertz to hundreds of megahertz. Gigahertz processors are not far
off. In the same time frame, memory chip capacity has gone up by afactor of 10*, from 16
Kb to 256 Mb. Gigahit memory chips are now beginning to appear.

Along with speed, the functionality of microprocessors has also improved drastically.
Thisisadirect result of the larger number of transistors that can be accommodated on one
chip. In the past 20 years, the number of transistors on a microprocessor chip has grown by
afactor of 103; from tens of thousands (Intel 8086) to a few tens of millions (Intel Pentium
Pro). Older microprocessors contained an ALU for integer arithmetic within the basic CPU
chip and a floating-point coprocessor on a separate chip, but increasing VLS! circuit density
has led to the trend of integrating both units on a single microchip, while still leaving enough
room for large on-chip memories (typically used for an instruction cache, a data cache, and
alLevel-2 cache).

As an example of modern microprocessors, we briefly describe a member of Intel’s
Pentium family of microprocessors: the Intel Pentium Pro, also known as Intel P6 (Fig. 24.2).
The primary design goal for the Intel P6 was to achieve the highest possible performance,
while keeping the external appearances compatible with the Pentium and using the same
mass production technology.

The Intel P6 has a 32-bit architecture, internally using a 64-bit data bus, 36-bit addresses,
and an 86-bit floating-point format. In the terminology of modern microprocessors, P6 is
superscalar and superpipelined: superscalar because it can execute multiple independent
instructions concurrently in its many functional units; superpipelined because itsinstruction
execution pipeline with 14+ stages is very deep. The Intel P6 is capable of glueless
multiprocessing with up to four processors, operates at 150-200 MHz, and has 21M
transistors, roughly one-fourth of which are for the CPU and the rest for the on-chip cache
memory. Because high performance in the Intel P6 is gained by out-of-order and speculative
instruction execution, a key component in the design is a reservation station that is essentially
a hardware-level scheduler of micro-operations. Each instruction is converted to one or more
micro-operations which are then executed in arbitrary order whenever their required oper-
ands are available.

The result of a micro-operation is sent to both the reservation station and a special unit
called the reorder buffer. The latter unit is responsible for making sure that program execution
remains consistent by committing the results of micro-operations to the machine's “retire-

PAST, PRESENT, AND FUTURE 509

Dedicated o <@-9»{ Port 2

MENory access
(address <49 Port 3
generation

units, etc) @9 Port 4 Port 0

Reservadon
Station
Reorder
Buffer and
Retirernent Port 1
Register
File

Figure 24.2. Key parts of the CPU in the Intel Pentium Pro microprocessor.

ment” registers only after all pieces of an instruction have terminated and the instruction’s
“turn” to execute has arrived within the sequential program flow. Thus, if an interrupt occurs,
all operations that are in progress can be discarded without causing inconsistency in the
machine's state. There isafull crossbar between all five ports of the reservation station so
that any returning result can be forwarded directly to any other unit for the next clock cycle.

Fetching, decoding, and setting up the components of an instruction in the reservation
station takes eight clock cycles and is performed as an eight-stage pipelined operation. The
retirement process, mentioned above, takes three clock cycles and is aso pipelined. Sand-
wiched between the above two pipelinesis a variable-length pipeline for instruction execu-
tion. For this middle part of instruction execution, the reservation station needs two cycles
to ascertain that the operands are available and to schedule the micro-operation on an
appropriate unit. The operation itself takes one cycle for register-to-register integer add and
longer for more complex functions. The multiplicity of functional units with different
latenciesis why out-of-order and specul ative execution (e.g., branch prediction) are crucial
to high performance.

With a great deal of functionality plus on-chip memory aready available, a natural
question relates to the way in which additional transistors might be utilized. One alternative
is to build multiple processors on the same chip. Custom microchips housing several simple
processors have long been used in the design of (massively) parallel computers. Commer-
cialy available SIMD parallel systems of the late 1980s already contained tens of bit-serial
processors on each chip and more recent products offer hundreds of such processors per chip
(thousands on one PC board). Microchips containing multiple general-purpose processors
and associated memory constitute a plausible way of utilizing the higher densities that are
becoming available to us. From past experience with parallel computers requiring custom
chips, it appears that custom chip development for one or afew parallel computers will not
be economically viable. Instead, off-the-shelf components will likely become available as
standard building blocks for parallel systems.

510 INTRODUCTION TO PARALLEL PROCESSING

No matter how many processors we can put on one chip, the demand for greater
performance, created by novel applications or larger-scale versions of existing ones, will
sustain the need for integrating multiple chips into systems with even higher levels of
parallelism. With tens to tens of thousands of processors afforded by billion-transistor chips,
small-scale paralel systems utilizing powerful general-purpose processors, as well as
multi-million-processor massively parallel systems, will become not only realizable but also
quite cost-effective. Fortunately, the issues involved in the design of single-chip multiproc-
essors and massively parallel systems, as well as their use in synthesizing larger parallel
systems, are no different from the current problems facing parallel computer designers.
Given that interconnects have already become the limiting factor (see Section 24.5),
regardless of the number of processors on a chip, we need to rely on multilevel hierarchical
or recursive architectures.

Whereas main memory capacity is growing at an impressive rate, memory access times
are reaching fundamental limits that cannot be easily overcome. In the same 20-year period
when we have seen factors of 10*, 103, and 102 improvements in memory capacity,
microprocessor transistor count, and clock rate, memory access speed has improved by a
factor of less than 10. Use of more, and larger, caches helps to some extent, as do architectural
fixes such as wider data paths and multithreading. Nevertheless, the main memory access
speed may be the ultimate limiting factor for sustained performance improvements.

Unlike main memory technology whose slower performance improvement compared
with microprocessors is a cause for concern, secondary storage devices do not appear to be
limiting factors in building even higher-performance supercomputers, despite the fact that
data transfer rates from disks are also experiencing slow growth (see Section 18.4). One
reason is the disk array technology that allows us to get higher data rates from a large number
of inexpensive disks. The other, more important, reason is that with larger main memories,
extensive disk caching and the use of log-structured files have become possible.

24.5. INTERCONNECTION TECHNOLOGIES

Various forms of interconnections are needed in a parallel processor. At the lowest level,
there are wires that connect components inside a chip. Then we have interchip connections
on a printed-circuit board, interboard connections via a backplane, interchassis connections
via cables, and intersystem connections via various types of network links.

On-chip interconnects comprise local and global wires that link circuit elements and
distribute power supply and clock inputs. Downward scaling of VLS| technologies continu-
ously improves device switching (computation) times. The effect of this scaling on intercon-
nect performance, however, is just the opposite, given the increased current density, chip
size, and noise margin, along with reduced width and spacing [Parh98]. To stress the
influence of interconnect delay on performance, we consider Fig. 24.3, which depicts the
ratio of wire delay to device switching time as a function of the minimum feature size,
extrapolated to the point of alowing 1B transistors on a chip (dotted portion). Two scenarios
are shown: continued use of Al/SiO,(top curve) or changeover to less resistive copper wires
and an insulator with lower dielectric constant, in order to reduce wiring resistance and
capacitance (bottom curve). In the latter case, downward scaling appears to improve the wire

PAST, PRESENT, AND FUTURE 511

7 Continued use
of AVOxids

Changeover to lower-resistivity
wires & low-dielectric-constant
insulator; .. CwPolyimide

Ratio of Wire Delay to Switching Time
[o3]
1

T T) I
0.5 0.35 0.25 0.18 0.13
Featura Size (um)

Figure 24.3. Changes in the ratio of a 1-cm wire delay to device switching time as the feature
size is reduced.

delay problem, but this may not be the case once other factors such as the transmission line
effect (which is largely unknown at present) are factored in.

At the physical level, the dominance of wire delay will necessitate changes in wiring
material and circuit design styles [Mein96]. At the architectural level, designs with local data
and control flows will become increasingly more attractive. As on-chip wire delays increase,
the difference between on- and off-chip transmissions, which is now a determining factor in
paralel computer implementations, will diminish. However, these changes only affect the
numerical values of the technology-related parameters used in trading off performance for
lower cost and realizability. The basic model, based on pin and channel capacity limitations
at various packaging levels, remains the same. The effect of architecture on the chip
interconnect delay was discussed in Section 4.6.

Beyond the chip boundary, various interconnection technologies are available that offer
trade-offs in bandwidth and end-to-end latency. As shown in Fig. 24.4, options range from
multi-gigabit-per-second backplane buses offering submicrosecond latencies to much slower
wide-area networks with latencies of 1 second or more. Note, however, that with the
development of higher-bandwidth geographically distributed networks and the use of
common underlying technologies, like ATM, for several of these classes, boundaries between
the interconnection classes depicted in Fig. 24.4 are becoming increasingly blurred.

Given a particular on-chip connectivity, two issues must be considered for building
larger paralel systems. The first of these, the provision of off-chip links, is really within the
realm of the chip designer. However, one must ook at the potential overall architecturesin
order to decide on suitable off-chip connectivity. Perhaps the most general and flexible option
is to provide one (or a few) off-chip port(s) per processor. A variety of hierarchica
architectures can be built when every processor on the chip is directly accessible from outside
[Yeh9ag]. All routers will be identical, thus leading to manufacturing simplicity (e.g., fault
tolerance for yield enhancement) and algorithmic uniformity. In most existing hierarchical
architectures, the performance advantage is obtained through the replacement of off-module
communications with (a larger number of) on-module transfers. Thus, the communication

512 INTRODUCTION TO PARALLEL PROCESSING

1012 -
Geog;'nphicaﬂy
Distributed

107 1078 107 1 102
Latency (s)

Fig. 24.4. Various types of intermodule and intersystem connections.

performance of the low-level modules (chips) is a determining factor in the overall perform-
ance. This points to the importance of research on hierarchical architectures, based on large
building blocks, whose performance is less sensitive to the low-level connectivity.

Above the chip and board levels, the physical media commonly used for computer and
network interconnections are of three basic types (Fig. 24.5):

1. Twisted pair of copper wires. Two insulated copper wires, each about 1 mm thick,
are twisted together to reduce electrical interference. Thisis because a twisted pair
of wires does not form an antenna, whereas two parallel lines do. A twisted pair can
handle data transmission rates on the order of 1 Mb/s over 1-2 Km. Higher
bandwidths over shorter distances can be accommodated, as long as the product of
bandwidth and distance is kept the same. Thus, it is feasible to use a twisted pair
for a20 Mb/s LAN in one building.

2. Coaxial cable. This type of connector was developed for the cable television
industry in view of their requirements for high bandwidth and good noise immunity.
Coaxial cable is both more expensive and more difficult to connect than twisted
pairs. Common connection methods involve the use of a T junction (the cable is cut

TSSOSO Twisted Pair

Plastic Outer conducior
(C:écj— Coaxial Cable
Copper
Insulator O
Light Reflection Silica

W v Qptical Fiber

Figure 24.5. The three commonly used media for computer and network connections.

PAST, PRESENT, AND FUTURE 513

and reconnected via the T junction, which has a third link for connection to the
computer) or a vampire tap (a hole is drilled to the copper core and a specia
connector is screwed in). The second option is less expensive and is thus often
preferred. Coaxial cables offer a bandwidth of around 10 Mb/s over a distance of 1
Km.

3. Optical fiber. Data are transmitted via light traveling in the fiber. The light is
produced by a light source (LED or laser diode) at one end and detected by a
photodiode at the other. There are various optical fiber types that differ in the light
source used, feasible transmission distances, and ease of connection. Transmission
rates around or in excess of 1 Gb/s are currently possible. The main drawback of
optical fibersisin the need for optical-electrical converters at each interface to an
electronic device. Note that because optical fibers are unidirectional, establishing a
full-duplex connection requires two fibers.

Given the transfer-rate limitations for communication media, bandwidth can be in-
creased by providing more channels between the sender and the receiver. Various standards
have been devel oped for gigabit networks with the aim of reducing the burden of computer
manufacturers in supporting a variety of channels. For example, the fiber channel standard
has been developed to integrate data transfer methods between computers, storage units, and
other devicesinto a set of channel and network standards.

24.6. THE FUTURE OF PARALLEL PROCESSING

We have witnessed many innovations since the development of early parallel machines.
Numerous ideas have been tried and a variety of resolved and unresolved debates have
transpired. A few years ago, it was unclear whether the TFLOPS performance milestone
would be reached with a thousand or so GFLOPS processors or a million simpler MFLOPS
nodes. Just as we found out the answer to this question, the question resurfaced, but with the
prefixes changed to P, T, and G, respectively. Either answer to this last question would likely
require that the equivalent of one of the current ASCI computers be implemented on a handful
of chips. Whilethisis not inconceivable, given the record of past progress, it should not be
taken for granted. Microprocessors with clock rates of 1 GHz are expected to arrive around
the year 2000. Beyond that, however, there is some agreement in the computer architecture
community that subnanosecond clocks might present insurmountable challenges. The use
of massively parallel processing appears to be the only reasonable option to overcome this
flattening of the performance curve.

In fact, highly parallel processing is not just useful for reaching new milestones in
performance but is also critical to lower power consumption. One reason is that power
consumption in the currently dominant CMOS technology is proportional to the sgquare of
the supply voltage. It is now quite feasible to lower the supply voltage by a factor of 2 or
more (say from the present 3.5V to 1.5 V), thus reducing the power consumption signifi-
cantly. The problem with this approach to power conservation is that lower-voltage circuits
tend to be slower. Thus, to recover the lost performance, we might make the pipelines deeper
or use alarger number of parallel units. While this increases the power consumption again,
the amount of power increase to recover a performance comparable to that of the original

514 INTRODUCTION TO PARALLEL PROCESSING

higher-voltage design is much smaller than the factor of 4-5 gained from lowering the supply
voltage. The same argument might be made for cost, which, at the leading edge of technology,
isasuperlinear function of speed.

Two major driving forces in the future of parallel processing are the VLS| and commu-
nication technologies. Advances in VLS| design and manufacturing will provide us with
more powerful and adaptable building blocks for use in parallel systems (see Section 24.4).
The computing components of the twenty-first century will likely contain many built-in
capabilities and hooks that facilitate their integration into larger systems. The communication
technology (see Section 24.5) appears to be similarly moving in the direction of highly
functional and flexible building blocks that can be used at many different levels within a
system.

Concurrent with technological developments, changing application characteristics will
dictate a shift of focus in paralel processing from high-speed or high-throughput designs in
top-of-the-line supercomputers to low-cost and low-power designs for personal, embedded,
and mobile applications. These will ensure continued interest in bit-serial and digit-serial
processing as mechanisms to reduce the VLS| area (cost) and to improve adaptability,
packageability, and testability. High-performance designs, with lookahead and speculative
execution, are expensive and often at odds with the goal of reducing power consumption to
extend the battery life and/or to facilitate heat dissipation.

Many challenging research problems are being addressed in the above areas and
numerous technological and architectural innovations are being evaluated for use in (mas-
sively) parallel processors of the future. The following list is intended only as a sample of
the many exciting research topics and is by no means exhaustive.

1. Asynchronous design. The higher speeds and packaging densities of modern digital
circuits are stretching the limits of our ability to distribute a clock signal to all of
the required points. Use of aglobal clock signal throughout a system simplifies the
design and verification processes and avoids the overhead of handshaking in
asynchronous designs. However, as signal propagation delays over long wires force
the designers to modularize the systems, an overhead that is comparable to that of
handshaking for asynchronous operation is being introduced in synchronous sys-
tems. Novel design paradigms and improved tools for synthesis and analysis of
asynchronous systems may change the balance in favor of the latter.

2. Intelligent memories. One way to overcome the limitations imposed by the mem-
ory-to-processor bandwidth is to merge processing and storage functions into a
single chip. Current memory chips have extremely high bandwidths internally, as
they read out a row of bits from the memory matrix. However, they then select a
portion of this row for output through the limited number of pins available in the
memory package. Providing processing logic on the memory chip would allow for
al of the row bits to be manipulated at once, leading to extremely high peak
performance. The task of trandlating this peak performance to useful processing
power is of course nontrivial. The above concept is being pursued by several
research teams using descriptors such as logic-in-memory, processor-in-memory,
and intelligent RAM.

3. Reconfigurable systems. The ability to reconfigure a computer system in order to
match its structure to the needs of the computation at hand, or to adapt to changes

PAST,

PRESENT, AND FUTURE 515

in the availability of resources, is highly desirable. Such reconfigurable systems can
be produced in large quantities and then customized for various applications through
“programming” of their cells and connections in much the same way that program-
mable logic devices are now used to implement varied logical functions with
standard building blocks. When used with suitable design tools, such programmable
“raw” machines facilitate the development of high-performance specia-purpose
systems and allow the tuning of the machine architecture to computational needs
in general-purpose systems.

Network computing. Inspired by the widespread popularity of the World-Wide Web,
new paradigms for computing on a collection of independent heterogeneous net-
worked computers are emerging. Using appropriate software on each computer, the
user of a networked machine can view the collection of computers to which she has
been granted access as the components of a single powerful computer. This
approach was used on an experimental basis recently when a group of volunteers
pooled their computational resources to crack an enciphered message. More work
remains to be done before the approach becomes more generally applicable.

The emergence of new technologies and the unwavering quest for higher performance are
bound to create new challenges in the coming years besides the ones discussed above.
Fundamentally new technologies and hardware/software design paradigms (e.g., optical
computing, digital neural networks, biological computers) may ater the way in which we
view or design parallel systems.

PROBLEMS

24.1.

24.2.

24.3.

24.4.

The Holland machine

The Holland machine [Holl59], a forerunner of modern MIMD-type parallel computers, was
briefly described in Section 24.1. Study this machine and prepare a description of its architec-
ture and programming model. Did the Holland machine correspond to the shared-memory or
message-passing paradigm?

The SOLOMON computer

The SOLOMON computer [Slot62], a forerunner of SIMD-type parallel computers, was
mentioned in Section 24.1. Study this machine and prepare a description of its architecture and
programming model. How was the SOLOMON computer similar to, or different from, ILLIAC
1vV?

Which came first, SIMD or MIMD?

From the papers cited in Problems 24.1 and 24.2, their references, and additional research,
trace the history of SIMD and MIMD parallel computing paradigms, going as far back as
possible. For example, note the reference to Babbage's work in Section 24.1. Based on your
studies, answer the question: “Which came first, SSMD or MIMD?’

The great debates in parallel processing
In Section 24.2, the ongoing debates concerning architecture, processing, interconnection,
routing, and programming within the field of parallel processing were outlined.

a. Choose one of these debates, take a side, and write an essay that justifies your position.

516

245.

24.6.

24.7.

24.8.

24.9.

24.10.

24.11.

INTRODUCTION TO PARALLEL PROCESSING

b . Which of these areas of disagreement do you think will be of greatest relevance in the
pursuit of PFLOPS performance and why?

COTS-based parallel systems

The availability of small bus-based multiprocessors as off-the-shelf components, with hooks
in place for building larger systems, has made it easier to design and build scalable parallel
processors. Using analogies with other areas of engineering and technology, discuss if this
trend will lead to more cost-effective products or will stall progress by inhibiting innovation.

Parallel computer performance

The peak MIPS rating of a machine is often specified by using the execution time of a 32-bit
integer add instruction. Similarly, the peak FLOPS rating can be obtained by considering
floating-point addition. With benchmarks, the issue is trickier, as various floating-point
operations take different amounts of time and library routines for functions such as sin and log
are really more complex than individual operations. Study how various operations are weighted
in determining the MFLOPS rating of a machine from its running time of a benchmark with a
known mix of operations.

Higher than peak performance

In bit-serial machines, an interesting phenomenon is possible. The peak FLOPS performance
of the machine is obtained by considering the time needed for floating-point addition. However,
when multiple operations involving the same operands are needed (such as an add and a
subtract), it is possible to share some of the computation steps, thus exceeding the machine's
peak performance. Present an example to show how thisis possible.

Performance versus the number of processors

Obtain data about the number of processors and performance of at least 100 parallel processors
(e.g., from the “top 500 supercomputer sites’ page on the Internet). Produce scatter-plots for
the number of processors versus performance, number of processors versus year of introduc-
tion, and performance versus year of introduction. Use different marker symbols for parallel
vector processors, large-scale parallel machinesthat are still in production, and past large-scale
machines. Discuss the observed trends.

DEC Alpha microprocessor
Digital Equipment Corporation’s Alpha microprocessor is among the fastest processors avail-
able today. Study the architecture of Alphaand compare it with that of Intel Pentium Pro.

Machines based on crosshars

It is well known that crossbar switches are not readily scalable. An 8x8 crossbar requires
16x40 = 640 input/output pins, assuming 32 bits of data and 8 bits of control per port. This
is already beyond the 1/0 capacity of asingle VLSI chip.

a. What are the problems of implementing a large crossbar switch through bit-dlicing (i.e.,
implementing 1 bit or afew bits of the data path on each chip)?

b. What are the problems of implementing a large crossbar switch through hierarchica
composition (i.e., building a large crossbar from a set of smaller ones)?

c. Compare the approaches of parts (a) and (b) for synthesizing a 64x64 crossbar switch.

Parallel processing in your automobile

Most automobiles manufactured after 1995 have an on-board computer to monitor various
subsystem, adjust engine parameters in real time to improve efficiency, and perform on-line
as well as off-line diagnostic functions. Discuss future applications for the automobile's

PAST,

PRESENT, AND FUTURE 517

on-board computer that might necessitate parallel processing. Then, estimate the total MIPS
or MFLOPS of al automobile on-board computers with and without the parallel processing
additions in the year 2010.

24.12. The n-body problem

24.13.

A very important problem is physics is the time evolution of a system of n bodies interacting
by gravitationa attraction or some other symmetrical force. For gravitational interaction,
exemplified by our solar system, the force between Bodiesi and j, with masses m; and m; and
located at Points xj and xj, is fij = gmym; (i —xj)/| X; —xj . The total force on Body iis
F;= Z,";d fij- Time is then advanced to t + 1 and the new velocities and locations of the n
bodies are recal culated from Fj = m; dx; /dt2. In these equations, g, m;, and m; are scalar values,
whilex;, x;, fjj, and F; are 3-vectors. The computation continues indefinitely, with the states of
the n bodies recorded on disk for future reference after every r time steps. Discuss the suitability
and efficiency of each of the parallel architecture classes reviewed in this book for solving the
n-body problem.

Parallel synergy

Consider the problem of moving a heavy piece of furniture from one point in the room to
another. The piece is too heavy for one person to lift, push, or drag. Thus, the only option
available to asingle mover is to disassemble the item, move the pieces separately, and finally
reassemble the pieces at the new location. The whole process takes about 1 hour, say. Four
movers, on the other hand, can simply lift and move theitem to its new location in less than 1
minute. This type of superlinear speed-up is sometimes referred to as parallel synergy. Based
on what you have learned about parallel processing, propose a computational problem for
which superlinear speed-up of thistypeis observed.

REFERENCES AND SUGGESTED READING

[Baldo6]
[Bell92]
[Burg96]
[Gokhos]

[Hock81]
[Holl59]

[Hord90]
[Hord93]
[Kogg94]
[Kuck96]
[Kwai97]

[Lerm94]
[Magg96]

Baldi, L., “Industry Roadmaps: The Challenge of Complexity,” Microelectronic Engineering, Vol.
34, No. 1, pp. 9-26, December 1996.

Bell, G., “Ultracomputers: A Teraflop Before Its Time,” Communications of the ACM, Val. 35, No.
8, pp. 2747, August 1992.

Burger, D., J. R. Goodman, and A. Kagi, “ Quantifying Memory Bandwidth Limitations of Current
and Future Microprocessors," Proc. 23rd Int. Symp. Computer Architecture, May 1996, pp. 78-89.
Gokhale, M., B. Holmes, and K. lobst, “Processing in Memory: The Terasys Massively Parallel PIM
Array,” |EEE Computer, Vol. 28, pp. 23-31, April 1995.

Hockney, R. W., and C. R. Jesshope, Parallel Computers, Adam Hilger, 1981.

Holland, J. H., “A Universa Computer Capable of Executing an Arbitrary Number of Sub-Programs
Simultaneously,” Proc. Eastern Joint Computer Conf., 1959, pp. 108-13.

Hord, R. M., Parallel Superconducting in SIMD Architectures, CRC Press, 1990.

Hord, R. M., Paralel Superconducting in MIMD Architectures, CRC Press, 1993.

Kogge, P. M., “EXECUBE—A New Architecture for Scalable MPPs,” Proc. Int. Conf. Parallel
Processing, Vol. I, pp. 77-84.

Kuck, D. J., High-Performance Computing: Challenges for Future System, Oxford University Press,
1996.

Kwai, D. M., “Pruning Strategies for Deriving Cost-Effective and Scalable Parallel Processor
Interconnection Networks,” Ph.D. Dissertation, Dept. Electrical Computer Engineering, University
of Cdifornia, Santa Barbara, December 1997.

Lerman, G., and L. Rudolph, Parallel Evolution of Parallel Processors, Plenum, 1994.

Maggs, B. M., “A Critical Look at Three of Parallel Computing’s Maxims,” Proc. Int. Symp. Parallel
Architectures, Algorithms and Networks, Beijing, June 1996, pp. 1-7.

518

[Mein96]
[Parhog]
[Patt96]

[SaiHo5]

[SIA94]
[Slot62]

[Wood96]

[Yehog]

INTRODUCTION TO PARALLEL PROCESSING

Meindl, J. D., “Gigascale Integration: Is the Sky the Limit?" IEEE Circuits and Devices, Vol. 12, No.
6, pp. 19-23 & 32, November 1996.

Parhami, B., and D.-M. Kwai, “Issues in Designing Parallel Architectures Using Multiprocessor and
Massively Parallel Microchips,” unpublished manuscript.

Patterson, D. A. and J. L. Hennessy, Computer Architecture: A Quantitative Approach, 2nd ed.,
Morgan Kaufmann, 1996.

Sai-Halasz, G. A., “Performance Trends in High-End Processors,” Proceedings of the IEEE, Vol. 83,
No. 1, pp. 18-36, January 1995.

Semiconductor Industry Association, The National Roadmap for Semiconductors, 1994.

Slotnick, D. L., W. C. Borck, and R. C. McReynolds, “The Solomon Computer,” Proc. AFIPSFall
Joint Computer Conf., 1962, pp. 97-107.

Woodward, P. R., “Perspectives on Supercomputing; Three Decades of Change,” |EEE Computer,
Vol. 29, No. 10, pp. 99-111, October 1996.

Yeh, C.-H., “Efficient Low-Degree Interconnection Networks for Parallel Processing: Topologies,
Algorithms, and Fault Tolerance,” Ph.D. dissertation, Dept. Electricll Computer Engineering,
University of California, Santa Barbara, March 1998.

Index

4-ary butterfly, 445
Access arm, 379
Acquire, 443
Active messages, 474
Actuator, 379
Ada language, 425
Adaptive quadrature, 127
Adaptive routing, 203, 285, 294, 468
Adjacency matrix, 225
ADM network, 309, 339
Aggregate bandwidth, 462
Aggregate computation, 426
Air traffic control, 486
AIX (IBM Unix), 428, 472
AKS sorting network, 143
Algorithm

ascend, 269

complexity, 45

convex hull, 118

descend, 269

efficiency, 50

normal, 312

optimality, 50

scalability, 432

sorting: see Sorting
Algorithm-based error tolerance, 403
ALIGN directive, 424
All-cache architecture, 74, 442
All-pairs shortest path, 107, 228
All-port communication, 174, 292
All-to-all broadcasting, 95, 193
All-to-one communication, 193
Amdahl’s

law, 17, 22, 361, 366, 432

speed-up formula, 17
Analysis of complexity, 47
Analytical Engine, 501
Apex, 246

APL language, 422
Approximate voting, 411
Approximation, 57
Arbitration, 462
Argonne Globus, 474
Arithmetic, 487, 489, 491, 496
Array

operation, 423

proccessor, 15

section, 423
Ascend algorithm, 269
ASCI program, 506
Associative memory, 67, 481
Associative processing, 67, 82, 481
Asymptotic analysis, 47
Asymptotic complexity, 47
Asynchronous design, 514
Asynchronous PRAM, 355
Asynchronous transfer mode (ATM), 505
Atomicity, 418
Attraction memory, 443
Augmented data manipulator network, 303,

339

Automatic load balancing, 363
Automatic synchronization, 417
Average internode distance, 323, 325

Back-end system, 427
Backplane, 237

bus, 462
Back substitution, 216
Backward dependence, 434
Balanced binary tree, 28
Bandwidth, 77, 462, 512
Banyan network, 339
Barrier

flag, 420

synchronization, 419

519

520

Base, 246, 248
Baseline network, 318, 340
Batcher
sorting algorithm, 284
sorting network, 136, 339
Batch searching, 151
BBN Butterfly, 443, 455
Benes network, 308, 338
Berkeley NOW, 471
Bidelta network, 340
Bidiagona system of equations, 232
Big-oh, 47
Big-omega, 47
Binary hypercube: see Hypercube
Binary g-cube: see Hypercube
Binary radixsort network, 339
Binary search, 151
Binary tree
balanced, 28
complete, 28, 267, 303
double-rooted, 267
of processors, 28
Binary X-tree, 219, 337
Binomial broadcast tree, 293
Bipartite graph, 350

Bisection (band)width, 38, 77, 81, 275, 323, 325

Bisection-based lower bound, 39
Bit-level complexity analysis, 339
Bitonic sequence, 139, 281
Bitonic sorting, 140, 284, 339
Bit-reversa
order, 163
permutation, 291
Bit-serial, 487, 489, 491
Blocking receive/send, 426
Block matrix multiplication, 104, 215, 274
Block-oriented, 482
Bounds for scheduling, 360
Brent-Kung parallel prefix graph, 158
Brent’s scheduling theorem, 361, 366
Brick-wall sorter, 135
Broadcasting, 28, 32, 37, 39, 93, 193, 292
al-to-all, 95, 193
binomial tree, 293
path-based, 294
tree-based, 293
BSP model, 79, 84, 421
Bubblesort, 37, 136
Buffer requirements, 201

Bulk-synchronous parallel (BSP), 79, 84, 421

Burn-in of hardware, 399
Bus, 462
arbitration, 462
backplane, 462
hierarchical, 80, 338, 462

Butterfly network, 124, 163, 288, 305, 338, 350

4-ary, 445

Butterfly network (cont.)
BBN, 444, 455
emulation by, 350
extra-stage, 318, 401
high-radix, 309
m-ary, 309

Bypass link, 242

Byzantine, 393

Cache, 371
coherence, 73, 83, 374
hit, 371
line size, 372
miss, 371
size, 372
Cache-coherent NUMA, 442, 450
Cache-only memory architecture, 74, 442
Caltech’s Cosmic Cube, 261, 502
Cambridge Parallel Processing, 487
Carnegie-Mellon University, 453, 474
Carry
computation, 36
operator, 36
Cartesian product, 335
Cayley graph, 329
CCC network, 310, 349
CC-NUMA, 442, 450
CC-UMA, 441, 455
Cellular automata, 68, 83
Chaining, 447
Checkpointing, 408, 443
Checksum, 382
matrix, 403
Chord, 330
Chordal ring, 330
Circuit
model, 80
probe, 468
satisfiability problem, 54
switching, 205
Circuit-value problem, 56
C* language, 424
Class, 424
Classifier, 143
Cluster
computing, 71
of workstations (COW), 475, 503
CM-2, 490
CM-5, 469
C.mmp multiprocessor, 428, 441, 502
Cm* multiprocessor, 105, 428, 502
Coarse-grain paralelism, 461
Coarse-grain scheduling, 356
Coaxial cable, 512
Code, 402
error-correcting, 402
error-detecting, 402

INDEX

INDEX 521

Code (cont.) Contention, 462
Gray, 265 Context switching, 377, 428
Hamming, 382 Continuation, 378
Collective communication, 193, 426 Control
Collision, 463 flow, 15
Column-checksum matrix, 403 randomization, 57
Columnsort algorithm, 188 variable, 417
COMA architecture, 74, 442 Control-parallel solution, 10
Combining switch, 125, 419 Convex hull agorithm, 118
Communicating processes, 425 Convolution, 163, 250
Communication, 28, 193 Coordination, 417
al-port, 174, 292 Copper wire, 385
collective, 193, 426 twisted pair, 512
interprocessor, 175 Copy-back policy, 372
point-to-point, 193, 426 Cosmic Cube, 261, 502
single-port, 293 Cost-optimal, 51
time, 10 Cost-time optimality or efficiency, 52
Compaction or packing, 194 COTS, 461
Comparand, 481 COW, 475, 503
Compare-and-swap, 418 Cray machines, 445, 455
Compensation path, 398 CRCW, 91
Compiler directive, 423 CREW, 91
Complete binary tree, 28, 267, 303 Critical section, 418
double-rooted, 267 Crossbar switch, 72, 463, 516
Complete graph, 304, 324 Cross-product graph, 265
Complexity layered, 337, 342
analysis, 47 Cube-connected cycles, 310, 349
asymptotic, 47 Cumulative overhead, 431
bit-level, 339 Cut-through routing, 205
classes, 53 Cycle-freedom, 206
theory, 53 Cycles per instruction (CPI), 372
Component, 396 Cylinder, 379
graph, 266 seek, 379
labeling, 228
Composite or hybrid network, 335
Computation DASH, 450
dependence graph, 156 Data
graph, 20 access problems, 371
speed-up, 8, 19 caching, 371
thread, 364, 377 compaction, 194
time, 10 compression, 384
Computational geometry, 228 manipulator network, 309, 340
Computational power, 8 mining, 430, 469
Computational work or energy, 19 routing, 193, 239
Concurrent Pascal language, 424 stream, 15
Concurrent-read concurrent-write, 91 structure, 155
Concurrent-read exclusive-write, 91 transfer, 379
Concurrent writes, 91, 199 warehousing, 469
Conflict-free parallel access, 122 Dataflow system, 362, 425
Conflict resolution, 92, 206 Data General Clariion disk array, 384
Congestion, 286, 349 Data-parallel language, 424
of an embedding, 264 Data-parallel programming, 422
generalized, 286 Data-parallel solution, 10
Connected components, 228 Data-scalar computation, 378
Connection Machine 2, 490 Deadline, 355
Connection Machine 5, 469 Deadlock, 205, 292, 425

Content-addressable memory, 67 Debates in parallel processing, 503, 515

522

De Bruijn network, 319
DEC Alpha microprocessor, 516
Decision support system, 469
Declustering, 381
Deep Blue chess program, 471
Defect-based fault, 399
Defect-level methods, 396
Defect tolerance, 396
Deflection routing, 203, 448
Degradation-level methods, 407
Degradation tolerance, 407
Degree, 77
Delete, 152
Delta network, 340
Dependence, 434

analysis, 422

graph, 206
Derouting, 203, 448
Descend algorithm, 269
Design or implementation slip, 399
Deterministic emulation, 353
Deterministic sorting, 281
Device switching time, 510
Diagnosis matrix, 405
Diameter, 28, 77, 323

fault, 295, 326, 412
Diameter-based lower bound, 30
Diametral link, 297, 303
Diametrically opposite, 303
Dictionary

machine, 152

operations, 151
Digital library, 435
Digraph, 226, 323, 356
Dilation, 264, 286, 349

generalized, 286
Dimension, 261
Dimension-order routing, 199, 288
Diminished prefix computation, 31, 270
Directed graph, 226, 323, 356
Direct-mapped cache, 372
Direct network, 74, 338, 463
Directory-based coherence protocol, 73,

374

Directory entry, 376
Dirty bit, 373
Discrete Fourier transform, 161
Disk

array, 381, 450

block, 379

cache, 371

fixed-head, 380

head-per-track, 380

mirrored, 382

moving-head, 380

technology, 379
Disk-to-disk sorting, 474

Distance
average internode, 323, 325
Hamming, 261

Distributed Array Processor (DAP), 488

Distributed collection, 424

Distributed file system, 474

Distributed-memory multicomputer, 15

Distributed shared memory, 16, 351
server, 429

Divide and conquer, 56, 99, 229

DMA channel, 467

DMMP, 15, 68

DMSV, 15, 68

Dormant fault, 399

Double-rooted complete binary tree, 267

Doubly linked list, 385

Duplication, 399

Dynamic dataflow system, 363

Dynamic routing problem, 204

E-cube routing, 199
Edge mapping, 263
Effectiveness of parallel processing, 19
Efficiency, 19, 362, 432
Efficiently paralelizable, 55
Ejection channel, 463
Electronic circulating memory, 482
Elementary operation, 195
Embarrassingly parallel, 69
Embedding, 263, 275, 364
Emulated (target) architecture, 349
Emulating (host) architecture, 349
Emulation, 349

by butterfly network, 350, 352

deterministic, 353

of PRAM, 352

randomized, 352
ERCW, 91
EREW, 91
Error

code, 402

modeling, 402

tolerance, 403
Error-correcting code, 402
Error-detecting code, 402
Error-level methods, 402
Even-odd merge, 137
Exact-match search, 481
Exchange, 313
Exclusive-read concurrent-write, 91
Exclusive-read exclusive-write, 91
Expansion (of an embedding), 264, 349
Express channel, 242, 330
Extended matrix, 221
Extra-stage butterfly network, 318, 401
Extrema search, 481

INDEX 523

Fail-fast system, 465 Game of life, 496
Fail-hard system, 407 Gamma network, 342
Fail-soft system, 407 Gap, 79
Fail-stop system, 393 Gather operation, 193
False alarm, 400 Gaussian elimination, 221
Fan-in Generalized congestion, 286
computation, 96 Generalized dilation, 286
operation, 193 Generalized hypercube, 304
Fast Fourier transform, 161 Generalized packing, 296
Fat tree, 306, 469 Generalized twisted cube, 317
Fault Generator, 329
defect-based, 399 Geometric Arithmetic Parallel Processor (GAPP),
detection, 401 496
diagnosis, 405 Geometric problems, 123
diameter, 295, 326, 412 GIPS, 5
model, 399 Global combine, 193, 420
testing, 399 Global-layer Unix (GLUnix), 474
Fault-level methods, 399 Global reduction, 470
Fault-tolerant computing, 294, 394 Global sum, 481
Fault-tolerant MIN, 401, 411 Global tag operation, 481
Fault-tolerant routing, 294 GMMP, 15, 68
Fault-tolerant scheduling, 360 GMSV, 15, 68
Fetch-and-add, 418, 445 Good-news corollaries, 361
Fetch-and-op, 433 Goodyear
FFT network, 163 MPP, 485
Fiber STARAN, 67, 486, 495
channel, 452, 513 Gossiping, 194
optical, 513 Gracefully degrading, 407
FIFO, 454 Granularity, 356, 461
File Graph, see also Specific graphs such as Star, Pan-
cache, 371 cake, . ..
organization, 381 bipartite, 350
system, 384, 474 Cayley, 329
Filter, 381, 482 complete, 304, 324
Fine-grain parallelism, 461, 505 cross-product, 265, 337, 342
Fine-grain scheduling, 356 dependence, 206
Fixed-head disk, 380 directed, 226, 323, 356
Fixed problem size, 432 embedding, 263, 364
FLASH, 452 Hamiltonian, 265, 336
Flip network, 318, 340 index-permutation, 329
Flit (flow-control digit), 205 models, 77
Floating-point operations per second (FLOPS), 5, 506 Gray code, 265
Flooding, 292 Greedy routing algorithm, 199, 331
FLOPS, 5, 506 Grosch's law, 16
Flow-control digit (flit), 205 Growth rate of functions, 49
Flynn-Johnson classification, 15, 68
Folded hypercube, 303, 317 Half duplex, 174
Folding, 173 Hamiltonian cycle, 54, 265
“For” loop, 422, 434 Hamiltonian graph, 265, 336
Fortran-90, 423 Hamming
Forward dependence, 434 code, 382
Front-end system, 427 distance, 261
Full-checksum matrix, 403 Handshaking, 514
Full duplex, 174, 464 Hard core, 410
Full-map approach, 377 Hard deadline, 355
Full-stroke seek, 379 Hardware reliability, 465

Functional programming, 425 Hardware/software interaction, 431

524

Hash function, 352
Header, 193
Head-per-track disk, 380
Heuristic scheduling algorithm, 357
Hewlett-Packard XLR1200 disk array, 384
Hexagonal (hex) mesh, 240
Hierarchical architecture, 337, 512
Hierarchical bus network, 80, 338, 462
Hierarchical hypercube, 343
Hierarchical interconnection network, 337
High Performance Fortran (HPF), 423
High-Performance Parallel Interface (HiPPI), 385
High-performance switch, 473
High-radix butterfly, 309
HiPPI standard, 385
Hit rate, 371
Holland machine, 501, 515
Homogeneous product network, 304, 335
Honeycomb mesh, 43, 254
Host
architecture (emulator), 349
computer, 427
Hot-potato routing, 203
Hot spot, 125, 418
HPF, 423
Hybrid network, 335
Hypercube, 173, 255, 261, 466, 490
folded, 303, 317
generalized, 304
hierarchical, 343
m ary, 261, 304
pruned, 276
twisted, 303
unfolded, 288, 340
unidirectional, 276
Hypergraph, 347
Hypertree, 471

I1BM
AIX operating system, 428, 472
Ramac disk array, 384
SP2, 471
I1C technology, 17
ILLIAC 1V, 332, 484, 495, 501
Image
processing, 83, 228, 488
smoothing, 496
Implementation aspects, 121, 437
Incomplete mesh, 409
Inconsistent checkpoint, 408
In-degree (of anode), 330, 361
Index-permutation graph, 329
Index vector, 423
Indirect cube (cubic) network, 288, 338
Indirect network, 463
Indivisible operation, 418

INDEX

Inexact-match search, 481
Information dispersal, 354
Inheritance, 429
Injection channel, 463
In-order labeling, 276
Input/output

filter, 381

technology, 379

throughput, 379
Input randomization, 57
Insert, 152
Insertion sort, 136
Instruction

pipeline, 449

stream, 15
Instructions per second (IPS), 5
Integer multiplication, 163
Intel/DOE Option Red, 507
Intelligent 1/O filter, 381
Intelligent memory, 514
Intel Pentium Pro, 452, 508
Interconnect delay, 510
Interconnection

network, 78; see also Network

technologies, 510
Interface, 384
Intermittent or recurring, 399
Interpolation, 126, 162
Interprocessor communication, 175
Interval

routing, 209

search, 481
Invalidation message, 451
Inverse DFT, 161
Inversion,

of amatrix, 217, 224, 275

O-to- 1, 402

1-to-0, 402
110

throughput, 379

time, 12
1Q-Link, 452
Isoefficiency function, 433
iWARP, 503

Jacobi
over-relaxation, 224
relaxation, 224
Johnsson-Ho broadcasting scheme, 293

k-ary g-cube, 173

Kendall Square Research, 502
k-fault-tolerant, 326

k-k routing, 204, 298

Kogge-Stone parallel prefix graph, 158
KSR-1, 502

INDEX

Labeling, 228, 276
Language, 422; see also Specific languages such as
Ada, Fortran, ...
data-parallel, 424
HPF, 423
Language-independent library, 425
Latency, 79, 421
hiding, 72, 371, 377
network, 462
tolerance, 371
Lavialdi’s component labeling algorithm, 231
Laxity, 360
Layered cross product, 337, 342
Layered network, 337, 342
Layering, 357
Least common ancestor, 470
Least-laxity first, 360
Level-2 cache, 371
Lightweight process, 428
Linear array of processors, 28
Linear recurrence, 166
Linear running time, 49
Linear skewing scheme, 123
Link bisection width, 275
Linked list, 385
Lisp-based system, 425
List
doubly linked, 385
linked, 100, 385
ranking, 99, 107
scheduling, 357, 365
Little-oh, 48
Little-omega, 48
Load
balancing, 362
factor, 264, 349
Local-area network, (LAN), 462
Lock, 425
Logical user view, 441, 461
Logic-in-memory, 514
LogP model, 79, 84, 421
Log-structured file system, 384
Loosely-coupled, 71, 431
Lower bound, 51
bisection-based, 39
diameter-based, 30
nontrivial, 183
Lower hull, 119
Lower-triangular matrix, 215, 274
Low-redundancy scheme, 406

3D mesh, 237

2D mesh or torus, 29, 173, 304, 450
1D multigrid, 219

2D multigrid, 247

Machine size, 34

Mach operating system, 428

525

Magnetic disk technology, 379
Mailbox, 425
Maintenance, 396
Malfunction
diagnosis, 405
tolerance, 405
Malfunction-level methods, 404
Malfunction-safe, 404
Manhattan street network, 43, 240
Many-to-many multicasting, 193
Many-to-one communication, 193
Mark bit-vector, 8
m-ary butterfly, 309
m-ary g-cube, 261, 304
Mask, 481
MasPar MP-2, 492
Massively parallel processor, 6, 485
Matching, 263, 350
Matrix
adjacency, 225
checksum, 403
diagnosis, 405
extended, 221
inversion, 217, 224, 275
multiplication, 102, 107, 213, 231, 239, 250, 272
transposition routing, 296
weight, 225
Matrix-vector multiplication, 213, 250
Maximum-finding, 30, 481
Maximum-sum subsequence problem, 107
Maze router, 468
Mean and median voting, 412
Medium-grain parallelism, 461
Medium-grain scheduling, 356
Membership search, 481
Memory
access, 378
associative, 67, 481
bank conflicts, 122
content-addressable, 67
intelligent, 514
latency hiding, 72
object, 428
technology, 508
Merge-split step, 34
Merging, 119
even-odd, 137, 284
Mesh
2D, 29, 173, 304, 450
3D, 237
with aglobal bus, 243
hexagonal (hex), 240
honeycomb, 43, 254
incomplete, 409
neatest-neighbor, 488; see also NEWS mesh
8-neighbor, 240, 493
reconfigurable, 246

526

Mesh (cont.)

with row/column buses, 244

SIMD, 174

with a spare processor, 406

of trees, 248, 336
Mesh-connected computer, 173
Mesh-connected trees, 336
Message, 193, 428

active, 474

body, 193

handler, 474

passing, 71, 461

Message Passing Interface (MPI), 193, 426

Metacomputing, 474
MFLOPS per unit cost, 503
Microprocessor

DEC Alpha, 516

Intel Pentium Pro, 452, 508

performance, 6

Milestones in parallel processing, 501

MIMD, 15, 69, 91
MIN, 338

Minimal-weight spanning tree, 250

Minsky’s conjecture, 16
MIPS, 5
Mirrored disks, 382
MISD architecture, 15, 68
Misrouting maze, 468
Mixed-mode SIMD/MIMD, 483
Mobius cube, 317
Modula-2 language, 424
Monitor, 424
Monte Carlo simulation, 7
Moore digraph, 324
Moore's

bound, 323

law, 5
Moving-head disk, 380
MP-2, 492
MPEG video streams, 467
MPI standard, 193, 426
MPP, 6, 71
M-SIMD, 483, 490
Multicasting, 28, 193, 294
Multicomputer, 15
Multidimensional access, 486
Multigrid, 24, 219

Multilevel interconnection network, 338

Multilevel model, 394
Multilevel ring, 330
Multilisp language, 425
Multiplication

integer, 163

matrix: see Matrix

polynomial, 162
Multiply-add operation, 162
Multiport memory, 121

INDEX

Multiprocessor, 15, 105, 428, 441, 502

Multistage crossbar, 447

Multistage cube, 483

Multistage interconnection network, 72, 124, 338, 445
fault-tolerant, 401, 411

Multithreading, 364, 377, 448

Multiway divide and conquer, 118

Multiwrite, 481

Mutual exclusion, 433

8-neighbor mesh, 240, 493
n-body problem, 517
NC (Nick’s Class), 55
nCUBES3, 466
Nearest-deadline first, 360
Nearest-neighbor mesh, 488
Network, see also Specific networks such as Butter-
fly,Ring, ...

computing, 515

diameter, 28, 77, 323

direct, 74, 338, 463

flow, 362

hybrid, 335

indirect, 463

interface controller, 473

latency, 462

permutation, 124, 340

rearrengeable, 308, 340

self-routing, 124, 339, 401

server, 429

of workstations, 71, 471, 503
Neural network, 68
NEWS mesh, 174, 488, 491
Node

bisection width, 275

degree, 28, 77

in-degree, 330, 361

mapping, 263
Noise immunity, 512
Nonblocking receive/send, 426
Nonoblivious routing, 203, 285
Nonpreemptive scheduling, 355
NonStop Cyclone, 464
Nonuniform memory access, 74, 441
Nonvolatile cache, 384
Non-von Neumann, 15
Normal algorithm, 312
NOW, 471, 503
NP class, 53
NP-complete problem, 53, 63, 356
NP-hard problem, 54, 356
n-sorter, 131
NUMA, 74, 104, 441

cache-coherent, 442
NUMA-Q, 452
Numerical integration, 127
NYU Ultracomputer, 445

INDEX

Oblivious routing, 203, 285
Occam language, 425
Ocean heat transport modeling, 7, 21
Odd-even

merge, 137, 284

reduction, 219

transposition, 32
Odd network, 341
Off-chip memory access, 378
Off-line repair, 407
Off-line routing algorithm, 286
Off-line scheduling, 360
Off-line test application, 401
Omega network, 316, 338, 464, 471
On-chip interconnects, 510
One-to-all communication, 28, 193
One-to-many communication, 28, 193
One-to-one communication, 28, 193
On-line repair, 407
On-line routing agorithm, 286
On-line scheduling, 356, 360
On-line testing, 402
On-line transaction processing, 452
Open Group, 428
Open Software Foundation, 428
Optical fiber, 513
Optimal agorithm, 51
Optimized shearsort, 179
Option Red supercomputer, 507
Ordered retrieval, 481
Out-degree (of a node), 330
Out-of-order execution, 443
Overhead, 79, 432

Packet routing or switching, 27, 31, 36, 39, 193, 205

Packing, 197, 290

generalized, 296
Pair-and-spare, 466
Pancake network, 329
Parallel access, 122
Parallel computation thesis, 55
Parallel counter, 434
Parallel file system, 430
Parallel 1/0 technology, 379
Parallelism

coarse-grain, 461

fine-grain, 461, 505

need for, 8

taxonomy, 15
Parallelizable task, 55
Parallelizing compiler, 422
Parallelizing “for” loops, 422, 434
Parallel logic simulation, 56
Parallel operating system, 427

Parallel prefix, 27, 31, 35, 98, 156, 196, 220, 270,

336
graph, 188

Parallel prefix (cont.)
network, 157, 166
sum, 157
Parallel processing
current status, 503
debates, 503, 515
effectiveness, 19
future, 513
history, 13, 501
milestones, 501
roadblocks, 16
ups and downs, 13
Parallel programming, 421
paradigms, 56
Parale radixsort, 117
Parallel searching, 151, 481
Parallel selection, 113
Parallel slack, 97, 421
Parallel synergy, 8, 517
Perallel Virtual Machine (PVM), 427
Parity, 383
PASM, 483
Path-based broadcasting, 294
Path-based multicasting, 294
Payload, 193
pC++ language, 424
P class, 53
P-complete problem, 55
Peak performance, 6, 506
PEPE, 501
Perceptron, 67
Perfect matching, 350
Perfect shuffle, 313
Performability, 407
Performance
milestones, 507
parameters, 323

Periodically regular chordal (PRC) ring, 333

Periodic balanced sorting network, 141
Periodicity parameter, 421
Periodic maintenance, 396
Permutation 339

bit-reversal, 291

network, 124, 340

routing, 34, 193
Persistent communication, 427
Petersen graph, 324
PFLOPS, 6, 506
Physical realization, 80, 121
Physical system simulation, 239
Pipe, 425
Pipeline chaining, 447
Placement policy, 372
Planar layout, 337
Platter, 379
Pleasantly parallel problem, 69, 483
Plump tree, 307

527

528

Plus-or-minus-2' (PM2l) network, 309, 339
PM2I network, 309, 339
Pointer jumping, 100, 253
Point-to-point communication, 193, 426
Polynomial
evaluation, 162
interpolation, 162
multiplication, 162
Port, 428
Postal communication model, 297
Power
consumption, 513
network, 304, 335
PRAM, 55, 74, 350
asynchronous, 355
emulation by, 350
implementation, 121
submodels, 91
Preemption, 355
Preemptive scheduling, 355
Prefix computation, 27, 31, 35, 98, 156, 196, 220,
270, 336
Preorder indexing, 36
Prevention, 394
Pricing model, 503
Prime numbers, 8
PRIME time-sharing system, 410, 502
Princeton SHRIMP, 474
Printed circuit board, 237
Priority
assignment, 357
circuit, 36
queue, 152
Problem size, 432
Process group, 426
Processor
cache, 371
consistency, 443
idle time, 432
technology, 508
Processor-in-memory, 514
Product
Cartesian, 335
code, 402
graph, 265
network, 304, 335
Programmable NEWS grid, 491
Programming
data-parallel, 424
functional, 425
model, 421
parallel, 421
Protocol engine, 454
Proximity order, 175
Pruned 3-D torus, 241, 448
Pruned hypercube, 276, 316
Purdue PASM, 483

INDEX

PVM platform, 427
Pyramid architecture, 246

g-cube, 261; see also Hypercube
g-pancake 329

g-rotator graph, 329

g-star, 327

Quality, 19

Radar signal processing, 486
Radixsort, 117, 339
RAID, 382, 474
Random

sampling, 57

search, 57
Random-access machine, 74
Random-access read/write, 194, 198
Randomization, 56, 117
Randomized emulation, 352
Randomized parallel agorithm, 56
Randomized routing, 202
Randomized sorting, 117, 281
Rank-based selection, 111, 481
Raw machine, 515
Read/write head, 379
Real-time scheduling, 360
Rearrangeable network, 308, 340
Receive, 417, 426
Receiver-initiated load balancing, 362
Reconfigurable mesh, 246
Reconfigurable system, 514
Reconfiguration switching, 397
Recording surface, 377
Recurrence, 58

basic theorem, 60
Recursive architecture, 509
Recursive doubling, 93, 273
Recursive sorting algorithm, 180
Recursive substitution, 337
Reduction

odd-even, 219

operation, 420
Redundancy, 19
Redundant disk array, 382
Referential transparency, 425
Regular digraph, 323
Regular graph, 364
Relational search, 481
Release, 443

consistency, 443

time, 355
Reliability

evaluation, 413

hardware, 465
Reliable parallel processing, 391
Reorder buffer, 508
Replacement policy, 372

INDEX

Replication, 400
Reservation station, 509
Retiming, 227
Retry signal, 452
Reverse baseline network, 340
Reversing a sequence, 271
Revsort algorithm, 189
Rice TreadMarks, 474
Richardson's dream, 13
Ring, 329

chordal, 330

PRC, 333

of rings, 330, 341
Ring-based network, 329
Robust algorithm, 408
Robust data structure, 404
Robust shearsort, 409
Robust sorting, 409
Rollback, 408
Rotating priority, 463
Rotational latency, 379
Rotator graph, 329
ROUTE instruction, 484
Router-based network, 463
1-1 routing, 28
Routing

1-1,28

adaptive, 203, 285, 294, 468

algorithm, 193, 327, 329, 336

cut-through, 205

dimension-order, 199, 288

dynamic, 204

e-cube, 199

fault-tolerant, 294

greedy, 199, 331

hot-potato, 203

k-k, 204, 298

oblivious, 203, 285, 468

off-line, 286

on-line, 286

packet, 27, 31, 193, 205

problem instance, 193

row-first, 200

static, 204

table, 463

tag, 31, 288

virtual cut-through, 205

wormhole, 204
Row-checksum matrix, 403
Row/column bus, 244
Row/column rotation, 195
Row-first routing, 39, 200, 249
Row-major order, 175
Run-time scheduling, 356

2-sorter block, 132
Safe malfunction, 404

Sampling, 57, 117
Satisfiability problem, 54
Scalability, 431

Scalable algorithm, 408, 432

529

Scalable Coherent Interface (SCI), 385, 388, 454

Scaled speed-up, 432
Scaling pitfalls, 82
Scatteer-gather, 194
Scatter operation, 193
Scheduling
bounds, 360
Brent's theorem, 361, 366
coarse-grain, 356
fault-tolerant, 360
fine-grain, 356
on-line, 356, 360
list, 357, 365
off-line, 360

Schnorr-Shamir sorting algorithm, 186

SCI standard, 385, 454
Scout packet, 468
Searching, 151, 481
Search processor, 482
SEC/DED code, 402, 465
Sector, 379
Seed network, 303
Seek time, 379
Segmented bus, 355
Selection, 111, 125, 481
network, 142
sort, 136
Selection-based sorting, 115
Self-checking, 400

Self-routing network, 124, 339, 401

Self-scheduling, 363

Semigroup computation, 27, 30, 34, 39, 96, 195,

245, 269, 336
Send, 417, 426

Sender-initiated load balancing, 362

Separable bus, 245

Sequential consistency, 443
Sequent NUMA-Q, 452
Set-associative cache, 372
Set partition problem, 63
Shape, 424

Shared-medium network, 462
Shared memory, 16, 351, 441

Shared-memory consistency model, 355, 443
Shared-memory multiprocessor, 15
Shared-variable programming, 424

Shared variables, 40
Shearsort algorithm, 40, 176, 336
Shortest path

al-pairs, 107, 228

routing algorithm, 286
Shuffle, 313
Shuffled row-major order, 175

530

Shuffle-exchange network, 163, 314, 338
Side effects, 425
Sieve of Eratosthenes, 8, 21
Signa
flow graph, 156
processing, 486, 488
SIMD, 15, 69, 91, 446, 481
mesh, 174
versus MIMD, 69
SIMD/MIMD, 446, 483
Simulation, 93
Single-assignment approach, 425
Single-port communication, 293
Single track of switches, 397
SISAL language, 425
SISD, 15, 68
Skewed storage, 122
Skewing scheme, 123
Skinny tree, 306
Skip link, 330
Slowdown factor, 349
Smoothing, 496
Snakelike row-major order, 175
Snooping tag, 453
Snoopy protocol, 73, 374, 450
Soft deadline, 355
Software
inertia, 17
portability, 425
reliability, 466
Software-implemented RAID, 474
SOLOMON computer, 483, 501, 515
Sorting, 28, 32, 37, 40, 56, 95, 114, 117, 125, 136,
238, 250, 281, 284
bitonic, 140, 284, 339
deterministic, 281
disk-to-disk, 474
by merging, 127
network, 131
selection-based, 115
SP2, 471
Spanning tree, 250
Spare disk, 383
Speculative instruction execution, 508
Speed, 8
Speed-of-light argument (or limit), 5
Speed-up, 8, 12, 19, 97, 361
Amdahl’s formula, 17
Scaled, 432
Split-transaction bus, 452, 462
SPMD, 16, 70, 91
Stable sorting, 117
Staging memory, 486
Stand-alone system, 428
Stanford
DASH, 448
FLASH, 452

STARAN associative processor, 486, 501
Star-connected cycles, 328
Star network, 327
Starvation, 425, 429
Static dataflow system, 363
Static routing problem, 204
Stirling’'s approximation, 328
Store-and-forward routing, 205
Stride, 123
Striping, 381
Subcube, 261
Sublinear, 49
Submodels of the PRAM, 91
Subnanosecond clock, 513
Subnetwork, 295
Subset-sum problem, 53
Sum reduction, 422
Supercomputer performance, 6
Superlinear, 49
Supernode, 251
Superpipelined, 508
Superscalar, 508
Superstep, 79, 420
Swapped network, 340
Switch

2-by-2, 463

combining, 125, 419

crossbar, 72, 463, 516
Switch-based network, 463
Switching time, 510
Symmetry breaking, 57
Synchronization, 417

access, 443

automatic, 417

barrier, 419
Synchronous PRAM, 354
Syracuse WWVM, 475
System-level fault diagnosis, 405
System of linear equations

arbitrary, 221

bidiagonal, 232

triangular, 215

tridiagonal, 218
Systolic array, 68
Systolic associative memory, 495
Systolic data structure, 155
Systolic priority queue, 166
Systolic retiming, 227

Tag store, 481
Tandem NonStop, 464
Target (emulated) architecture, 349
Task
graph, 18, 357
scheduling, 355
system, 355, 358
Taxonomy of parallelism, 15

INDEX

INDEX 531

TeraMTA, 378, 448 Unfolded hypercube, 288, 340
Test-and-set, 418 Unfolded pancake network, 341
Testing graph, 405 Unfolded PM2I network, 339
Text database, 490 Unfolded rotator network, 341
TFLOPS, 6, 506, 513 Unfolded star network, 341
Theta, 47 Unidirectional g-cube, 276
Thinking Machines Corporation, 469, 490 Uniform memory access, 441, 455
Thread, 428 Uniprocessor, 15
identifier, 378 Universaly efficient, 351
Three-channel computation, 400 Universal network, 351
Throughput, 8 University of California at Berkeley, 473,
input/output, 379 502
Tightly-coupled, 71, 431 Unix-based, 428
Tight upper bound, 50 Unix-like, 428
Time-cost-efficient, 133 Unlock, 425
Time-optimal algorithm, 52 Unrolling, 58
Time quantum, 429 Unshuffle, 313
T junction, 512 Upper bound, 51
Token-based protocol, 463 Upper hull, 119
Tolerance, 394 Upper triangular matrix, 215
Topological parameters, 78, 84, 187, 340 Utilization, 19
Topology, 74
Torture testing, 399 o
Torus, 173, 237, 304 x:;d ikr’:‘t373513
Track, 379 pire 12p,
. . Vector
Transaction processing, 452, 464
- Fortran language, 423
Transfer time, 379)
: register, 447
Transient, 399
Transitive closure, 225 supercomputer, 6, 17, 445
o ' Vectorizing compiler, 422
Transposition
- Vector-parallel computer, 445
matrix, 296 Vertex degree, 77
odd-even, 32 egree,

VirginiaLegion, 475

Virtual channel, 207

Virtual communication network, 295
Virtual cut-through routing, 205
Virtual memory, 428

Virtual shared memory, 71, 351

Trapezoida rule, 127
Traveling salesman problem, 54
Tree
binary, 28, 267, 303
computation, 34

fat, 3.06’ 469 Virtual topology, 426
machine, 153
VLSI layout area, 325, 334
plump, 307
. von Neumann

skinny, 306 bottleneck, 67
Tree-based broadcasting, 293 cgm:nuter ’15
Tree-structured dictionary machine, 152 Voting, 400

Tree-structured task graph, 357
Triangular square matrix, 215, 274
Triangular system of equations, 215
Tridiagonal square matrix, 218

approximate, 411
mean/median, 412

Tridiagonal system of equations, 218 Waksman's permutation network, 342
Triplication, 400 Weak consistency, 443
Turing machine, 501 Wesk SIMD model, 174, 242
Turn model, 209 Weather forecasting, 13
Twisted hypercube, 303 Web search engine, 474
Twisted pair of copper wires, 512 Weight matrix, 225
Twisted torus, 332, 495 WHERE statement, 424
Wire
Ultracomputer, 445 delay, 80, 511

UMA, 74, 441 length, 325

532

Wisconsin Wind Tunnel, 475
Word-parallel bit-parallel, 481
Word-parallel bit-serial, 482
Word-seria, bit parallel, 482
Workstation, 71, 471, 503

Wormhole routing, 204, 468, 502
Wrapped butterfly, 305, 311, 350, 445
Write-back, 372

Write-invalidate policy, 374

Write policy, 372

Write-through policy, 372
Write-update policy, 374

X-net, 493
X-tree architecture, 219, 337

Yield enhancement, 396
Y-MP, 445

Zero-one principle, 132, 176, 181

INDEX

