

PRACTICAL MATLAB®

BASICS FOR ENGINEERS

CRC_47744_FM.indd iCRC_47744_FM.indd i 7/10/2008 1:17:55 PM7/10/2008 1:17:55 PM

Handbook of Practical MATLAB® for Engineers

Practical MATLAB® Basics for Engineers

Practical MATLAB® Applications for Engineers

CRC_47744_FM.indd iiCRC_47744_FM.indd ii 7/10/2008 1:17:56 PM7/10/2008 1:17:56 PM

PRACTICAL MATLAB® FOR ENGINEERS

PRACTICAL MATLAB®

BASICS FOR ENGINEERS

Misza Kalechman
Professor of Electrical and Telecommunication Engineering Technology

 New York City College of Technology

 City University of New York (CUNY)

CRC_47744_FM.indd iiiCRC_47744_FM.indd iii 7/10/2008 1:17:56 PM7/10/2008 1:17:56 PM

MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant the
accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB® software or related products
does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular
use of the MATLAB® software.

This book was previously published by Pearson Education, Inc.

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2009 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number-13: 978-1-4200-4774-5 (Softcover)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-
ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For orga-
nizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Kalechman, Misza.
Practical MATLAB basics for engineers / Misza Kalechman.

p. cm.
Includes bibliographical references and index.
ISBN 978-1-4200-4774-5 (alk. paper)
1. Electric engineering--Mathematics. 2. MATLAB. I. Title.

TK153.K18 2007
620.001’51--dc22 2008000268

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

CRC_47744_FM.indd ivCRC_47744_FM.indd iv 7/10/2008 1:17:57 PM7/10/2008 1:17:57 PM

v

Contents

Preface .. vii
Author ... ix

1 Trends, the Industry, and MATLAB® ..1
1.1 Introduction ...1
1.2 The Job Market ..4
1.3 Market and Labor Trends ..4
1.4 Technical Know-How: Trends and Facts ...7
1.5 What Constitutes Essential Knowledge...9
1.6 Technological Trends .. 11
1.7 Objective of This Book ... 14
1.8 Organization .. 14
1.9 What Is a Computer? What Constitutes Hardware?

What Constitutes Software? .. 17
1.10 What Is MATLAB®? ..22
1.11 Conventions Used in This Book ..23
1.12 MATLAB® Windows ..23
1.13 A Word about Restrictions on the User’s Software .. 26
1.14 Help ... 26
1.15 The Problem ...30
1.16 Problem-Solving Techniques (Heuristics) ...34
1.17 Proofs and Simulations ..35
1.18 Computer Solutions ..36
1.19 The Flowchart .. 37

2 Getting Started ... 41
2.1 Introduction ... 41
2.2 Objectives ...42
2.3 Background ..42
2.4 Examples .. 52
2.5 Further Analysis.. 57
2.6 Application Problems ... 59

3 Matrices, Arrays, Vectors, and Sets .. 67
3.1 Introduction ... 67
3.2 Objectives ...68
3.3 Background .. 69
3.4 Examples .. 151
3.5 Further Analysis.. 175
3.6 Application Problems ... 178

4 Trigonometric, Exponential, Logarithmic, and Special Functions 191
4.1 Introduction ... 191
4.2 Objectives ... 195

CRC_47744_FM.indd vCRC_47744_FM.indd v 7/10/2008 1:17:57 PM7/10/2008 1:17:57 PM

vi Contents

4.3 Background .. 196
4.4 Examples .. 215
4.5 Further Analysis..229
4.6 Application Problems ... 232

5 Printing and Plotting ... 237
5.1 Introduction ... 237
5.2 Objectives ...238
5.3 Background .. 239
5.4 Examples ..304
5.5 Further Analysis.. 339
5.6 Application Problems ...343

6 Complex Numbers .. 349
6.1 Introduction ...349

6.1.1 A Brief History ...353
6.2 Objectives ...354
6.3 Background ..355
6.4 Examples .. 377
6.5 Further Analysis..400
6.6 Application Problems ...403

7 Polynomials and Calculus, a Numerical and Symbolic Approach 411
7.1 Introduction ... 411
7.2 Objectives ... 413
7.3 Background .. 414
7.4 Examples ..485
7.5 Further Analysis.. 510
7.6 Application Problems ... 513

8 Decisions and Relations .. 523
8.1 Introduction ... 523
8.2 Objectives ... 523
8.3 Background .. 524
8.4 Examples .. 555
8.5 Further Analysis.. 589
8.6 Application Problems ... 591

9 Files, Statistics, and Performance Analysis .. 597
9.1 Introduction ... 597
9.2 Objectives ... 599
9.3 Background ..600
9.4. Examples .. 626
9.5 Further Analysis.. 670
9.6 Application Problems ... 672

Bibliography ...677

Index ..681

CRC_47744_FM.indd viCRC_47744_FM.indd vi 7/10/2008 1:17:57 PM7/10/2008 1:17:57 PM

vii

Preface

Practical MATLAB® Basics for Engineers is a simple, easy-to-read, introductory book of the
basic mathematical concepts and principles, using the MATLAB® language to illustrate
and evaluate numerical expressions and data visualization of large classes of functions
and problems, written for beginners with no previous knowledge of MATLAB. MATLAB
is a registered trademark of The MathWorks, Inc. For product information, please contact

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508 647 7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

Once the mathematical concepts are introduced and understood by the reader, MAT-
LAB is then used in Practical MATLAB® Applications for Engineers in the analysis and syn-
thesis of engineering and technology problems, for the case of continuous and discrete
time systems.

MATLAB is a powerful, comprehensive, user-friendly, and interactive software pack-
age that is gaining acceptance as the ideal computational choice for scientists and engi-
neers and is becoming an industrial standard, used to solve a wide range of problems in
other diverse areas such as economics, business, technology, engineering, science, and
education.

The reason that MATLAB has replaced other technical computational languages is that
MATLAB is based on simple and easy-to-use programming tools, graphic facilities, built-
in functions, and an extensive number of toolboxes.

Each chapter of this book is self-contained, in the sense that a serious attempt was made
to provide the reader with all the theoretical concepts required to fully understand each
chapter’s material using simple numerical examples as well as direct language.

The idea is that with a relatively smaller set of functions, the reader can begin to write
programs. Each chapter contains in addition a number of worked-out examples, systemati-
cally solved and chosen to illustrate general types of solutions to classes of problems often
encountered in industry and academia.

The only thing that this book requires from the reader is an open and logical mind, basic
skills, common sense, and academic maturity equivalent to those in the fi rst year of college
in science, technology, engineering, or a senior at a technical high school.

In summary, an effort has been made to accomplish the following goals and objectives:

To provide reasonable profi ciency in a relatively short time
To be practical
To introduce concepts in a compact, simple, and direct way
To teach core skills that will aid the reader in the classroom and careers
To be easy to read and understand, friendly, and interesting
To provide many numerical and worked-out examples
To be self-contained with little or no outside assistance

•
•
•
•
•
•
•

CRC_47744_FM.indd viiCRC_47744_FM.indd vii 7/10/2008 1:17:57 PM7/10/2008 1:17:57 PM

viii Preface

To be organized by topics and complexity
To be a valuable resource to

The engineering and technology student
The professional engineering student (preparing for the PE license)
The technical consultant
The practicing engineer

•
•

•
•
•
•

CRC_47744_FM.indd viiiCRC_47744_FM.indd viii 7/10/2008 1:17:57 PM7/10/2008 1:17:57 PM

ix

Author

Misza Kalechman is a professor of electrical and telecommunication engineering technol-
ogy at New York City College of Technology, part of the City University of New York.

Mr. Kalechman graduated from the Academy of Aeronautics (New York), Polytechnic
University (BSEE), Columbia University (MSEE), and Universidad Central de Venezuela
(UCV; electrical engineering).

Mr. Kalechman was associated with a number of South American universities where he
taught undergraduate and graduate courses in electrical, industrial, telecommunication, and
computer engineering; and was involved with applied research projects, designs of labo-
ratories for diverse systems, and installations of equipment.

He is one of the founders of the Polytechnic of Caracas (Ministry of Higher Education,
Venezuela), where he taught and served as its fi rst chair of the Department of System
Engineering. He also taught at New York Institute of Technology (NYIT); Escofa (offi cers
telecommunication school of the Venezuelan armed forces); and at the following South
American universities: Universidad Central de Venezuela, Universidad Metropolitana,
Universidad Catolica Andres Bello, Universidad the Los Andes, and Colegio Universitario
de Cabimas.

He has also worked as a full-time senior project engineer (telecom/computers) at the
research oil laboratories at Petroleos de Venezuela (PDVSA) Intevep and various refi neries
for many years, where he was involved in major projects. He also served as a consultant
and project engineer for a number of private industries and government agencies.

Mr. Kalechman is a licensed professional engineer of the State of New York and has
written Practical MATLAB for Beginners (Pearson), Laboratorio de Ingenieria Electrica (Alpi-
Rad-Tronics), and a number of other publications.

CRC_47744_FM.indd ixCRC_47744_FM.indd ix 7/10/2008 1:17:58 PM7/10/2008 1:17:58 PM

CRC_47744_FM.indd xCRC_47744_FM.indd x 7/10/2008 1:17:58 PM7/10/2008 1:17:58 PM

1

1
Trends, the Industry, and MATLAB®

Unless you try to do something beyond what you have already mastered, you will never
grow.*

Ralph Waldo Emerson

1.1 Introduction

In this chapter, a general look is taken at the computer, fi eld of computing, skills associ-
ated with computer programming and computer languages, problem solving and algo-
rithms, as well as economic shifts produced by the changes in technology that are having
an impact on the world around us, job market, and of course our lives.

Obviously everyone has their own opinion about the world around them. This opinion
is shaped by background, education, values, and above all by experiences.

We don’t see things as they are, we see them as we are.*

Anais Nin

The main objective of this book is to attempt to see things as they are. Some see technol-
ogy as a “graying industry,” but others see it as opportunities especially when computing
technology focuses less on the tools of technology and more on how technology is used
in the search for scientifi c breakthroughs, the development of new products and services,
or the way work is done.

Presently, it is universally accepted that computers are an essential tool of the educa-
tional process in the technologies, humanities, sciences and engineering, as well as indus-
tries and business. The computer has changed our lives: the way we study, work, and do
business.

Bill Gates, the cofounder and chairman of Microsoft, summarized his view of the com-
puting fi eld by saying

We are on the threshold of extraordinary advances in computing that will affect not
only the sciences but also how we work and our culture.

We need to get the brightest people working on those opportunities.

The meaning of computing has also changed over the last decades. Let us analyze some of
the changes and trends.

* O’Brien, M.J. and Lary, S., Profi t from Experience, Bard & Stephen, Austin, TX, 1995.

CRC_47744_Ch001.indd 1CRC_47744_Ch001.indd 1 7/10/2008 1:21:03 PM7/10/2008 1:21:03 PM

2 Practical MATLAB® Basics for Engineers

There was a time, not long ago, when the word computer was a job description associated
with special people, with strong analytical minds, who performed tedious mathematical
calculations for huge military and engineering projects.

With the passing of time, computers evolved and became more associated with machine
languages, compilers, and tables of numbers.

Computers today are known as machines that perform symbolic computations, anima-
tion, graphics, interactive calculations, and act as an intelligent communication device,
replacing in many instances the plain old telephone (pot).

The modern computer is based on the original model developed by John von Neumann
back in 1952. He recognized that the real power of the computer is based on simple logi-
cal operations, binary in nature, which executed one instruction at a time in strict serial
order at fantastic speeds. Today’s computers can perform multiprocessing or parallel
computations, and information can be received from a number of sources such as other
computers or communication devices or systems through the Internet, or the World
Wide Web.

A few words about the Web. The Web is a medium that has the potential to provide uni-
versal access to information for almost everyone, independent of boundaries, cultures, and
locations. The Web is the most important part of the Internet. The Internet is a worldwide
network of computers, owned and supervised by no particular entity or agency or more
directly stated by no one. The Internet was originally developed by the U.S. Department of
Defense, in 1969, under the project name of Advanced Research Project Agency Network
(Arpanet) whose main research objective was to keep the U.S. military sides communi-
cated in the event of a nuclear war. Its fi rst test and practical application was to serve
as a communication medium among nuclear physicists located in dispersed and distant
geographic locations, employing a variety of communication systems and devices. This
fi rst test was performed by the European Particle Laboratory, part of a larger organization
known as European Organization for Nuclear Research (CERN). From the early days, in
March 1989 (led by Tim Berners-Lee, an Oxford graduate student) engineers recognized
the importance of fi nding a simple and effi cient solution to the communication problem of
large, geographically extended organizations.

The same needs exist in private and government organizations, such as banks, hospitals,
insurance and investment corporations, airline and oil companies, as well as government
agencies such as law enforcement, military, education, and health.

The communication and information revolution of the last decades of the twentieth
 century was centered on the computer and the Internet. This revolution started in the
early 1950s with the development of the solid-state transistor and will probably continue
well into the twenty-fi rst century.

As the devices and technologies improved over the last half-century (1960–2008), so did
productivity, quality of life, and industrial competitiveness, creating new jobs and eco-
nomic opportunities.

Understanding today’s technologies is the basis for learning tomorrow’s technologies,
applications, and business opportunities. Computing is almost an infi nitely malleable and
universal tool. Software can be programmed to do all manner of tasks and is continuously
being improved. So, computing is more like biology; it evolves unlike traditional industrial
technologies such as steam, electricity, and the internal combustion engine. For example,
deoxyribonucleic acid (DNA) codes that contain the secrets of life and evolution can be
explored and simulated using computer codes.

Disciplines as diverse as weather forecasting, oil exploration, drug research and market-
ing, drug side effects, and chemical analysis rely heavily on computers and computer sim-
ulation. Even the entertainment industry (sound and video) and modern automobiles are

CRC_47744_Ch001.indd 2CRC_47744_Ch001.indd 2 7/10/2008 1:21:05 PM7/10/2008 1:21:05 PM

Trends, the Industry, and MATLAB® 3

largely controlled and monitored by a network of microprocessors and software. Today’s
automobile is commonly referred to as a computer on wheels.

The computer and the network it is connected to is as powerful as the software it uses.
This book deals with one such software package named MATLAB that is gaining accep-
tance in the scientifi c and business communities.

The Matrix Laboratory package referred to as MATLAB was originally designed to serve
as the interactive link to the numerical computation libraries LINPACK and EISPACK that
were used by engineers and scientists when they were dealing with sets of equations.

Today, MATLAB is a computer language designed for technical computing, mathematical
analysis, and system simulation. It is interactive in nature and is specifi cally designed to
solve problems in the engineering fi elds, sciences, and business applications, and appears to
be evolving as the preferred tool in the processes of engineering analysis and synthesis.

The MATLAB software was originally developed at the University of New Mexico
and Stanford University in the late 1970s. By 1984, a company was established named
as Matwork by Jack Little and Cleve Moler with the clear objective of commercializing
 MATLAB. Over a million engineers and scientists use MATLAB today in well over 3000
universities worldwide and it is considered a standard tool in education, business, and
industry.

The basic element in MATLAB is the matrix, and unlike other computer languages it
does not have to be dimensioned or declared.

MATLAB’s original objective was to be the tool to solve mathematical problems in linear
algebra, numerical analysis, and optimization; but it quickly evolved as the preferred tool
for data analysis, statistics, signal processing, control systems, economics, weather fore-
cast, and many other applications. Over the years, MATLAB evolved creating an extended
library of specialized built-in functions that are used to generate among other things
two-dimensional (2-D) and 3-D graphics and animation and offers numerous supplemen-
tal packages called toolboxes that provide additional software power in special areas of
 interest such as

Curve fi tting
Optimization
Signal processing
Image processing
Filter design
Neural network design
Control systems
Statistics

Why is MATLAB becoming the standard in industry, education, and business? The answer
is that the MATLAB environment is user-friendly and the objective of the software is to
spend time in learning the physical and mathematical principles of a problem and not
about the software. The term friendly is used in the following sense: the MATLAB soft-
ware executes one instruction at a time. By analyzing the partial results and based on
these results, new instructions can be executed that interact with the existing information
already stored in the computer memory, without the formal compiling required by other
competing high-level computer languages.

This interactive environment between the machine and the user is particularly impor-
tant in the solution of problems in which the information at one point of the process may

•
•
•
•
•
•
•
•

CRC_47744_Ch001.indd 3CRC_47744_Ch001.indd 3 7/10/2008 1:21:06 PM7/10/2008 1:21:06 PM

4 Practical MATLAB® Basics for Engineers

be the guide to the next step in the solution of a particular problem. This computation
 environment is probably the one that a new engineer, technologist, or technician is most
likely to encounter in tomorrow’s industries.

1.2 The Job Market

Today, the key to economic growth and economic survival of regions and nations is to have
an adequate number of well-trained engineers, technologists, and technicians to support
the society’s industrial and commercial infrastructure.

To identify technical areas of growth that may impact the job market, some of the present
global economic conditions and trends are identifi ed and discussed fi rst.

In 2004, the total U.S. job market exceeded 131 million, with a huge service sector,
which now employs more than 80% of America’s workers. The U.S. economy needs to add
2–3 million jobs annually, just to keep unemployment at a reasonable healthy level.

An estimated 35–40% of the new jobs are in the electronic-telecommunication-computer
area, and nearly 3.5 million are employed as information technology professionals (2004).
The U.S. government is a big employer and can add large numbers of jobs to the market
depending on political (security, terrorism, etc.) and global conditions (agreements, wars,
intervention, confl icts, disasters, etc.).

In 2003, the (U.S.) federal government employed 1.9 million civilian workers, 1.5 million
in the military, and 800,000 in the postal service, which brought the total number employed
by the federal government to 4.2 million, equal to 3% of the total (U.S.) job market.
Government policies such as taxes, interest rates, trade agreements, economic indexes
(such as consumer and confi dence), and foreign competition may also have an effect on
the economy and of course the job market.

1.3 Market and Labor Trends

Some market and labor trends are summarized below:

 a. The general economic and job conditions, according to the U.S. Department of
Labor, is that more than 1 million jobs of the 1.2 million jobs created in the period
1999–2004 are part-time or temporary (The New York Times, October 10, 2004).

It can be safely stated that job trends are driven by part-time and temporary
employment. The main reason for this is probably the cost of labor benefi ts usually
paid to full-time employees.

In 2003, there were 25 million part-time workers in the United States and from
this fi gure, only 4.8 million had some kind of benefi ts.

The trends indicate that part-time jobs would represent approximately 20% of
the overall job market in the United States.

 b. Today’s market trends can be summarized by a simple sentence—do more with less,
which means that the use of technology (computerized and intelligent systems)
will increase, whereas union jobs and job security in general will be on the
decline.

CRC_47744_Ch001.indd 4CRC_47744_Ch001.indd 4 7/10/2008 1:21:06 PM7/10/2008 1:21:06 PM

Trends, the Industry, and MATLAB® 5

 c. The Fortune 500 American companies have been downsizing and outsourcing for
the past 30 years. Meanwhile, small and midsize fi rms have been growing much
more rapidly. The result is that the labor force must be much more fl exible and able
to adjust to rapid changes.

 d. Clearly, the U.S. economy is moving the job market away from industries that
export or compete with imports, especially manufacturing, to industries that are
insulated from foreign competition, such as housing and health. Since 2000, almost
3 million jobs in the manufacturing areas were lost, whereas membership in the
National Association of Realtors has risen 50%.

 e. In the technologies, for example, the leap from copper to optical fi ber (from 1998
to 2003) eliminated 15.5% of the cable jobs. But the new fi ber jobs paid 26% more
than those in the cable industry and employment grew at 22.6%, according to the
Economic Policy Institute (a Washington-based research center), whereas the total
number of telecommunication workers represented by unions has fallen 23% since
2000 (Bureau of Labor Statistics).

 f. After years of encouraging workers to take early retirement as a way to cut jobs, a
growing number of American companies are hunting for older workers because
they have lower turnover rate and in many cases better job performance.

Some statistics may illustrate this point—in the 65–69 age group, about one-
third of men and almost one-fourth of women were working in 2004.

In activities like nursing where statistics are available, the following occurred:
In 2002–2003, hospitals raised pay scales and hired 130,000 nurses over the age of
50, which makes up more than 70% of the 185,000 hired in these years.

 g. The only way that labor can squeeze out more effi ciency is by evolving, which
means that people have to learn more than one job in their career even if they stay
with the same company.

 h. Statistical data supports the economic expert’s fi nding that a new worker (a recent
graduate) should expect not just four or fi ve job changes over a lifetime, but four
or fi ve different careers over a lifetime.

 i. The job market trend indicates increases in
Self-employment
Home offi ce and online jobs
Contract work
Temporary or contingent work
Consulting

 j. Job market trends also indicate decreases in services and technology, in the form
we are accustomed to. The reasons for the decline are partially due to shifts in the
technologies and trade, which is addressed later in this section. Clearly, the job
market rewards people that possess individual talent. Higher education pays off
because it provides technical knowledge and fi lters out people who have organi-
zational skills, discipline, self-motivation, and social adeptness.

 k. Furthermore, trade and technology are rapidly transforming the service econ-
omy, as we traditionally know it. The United States as well as the global economy
is in a transition period and it will surely adjust over time to the new realities,
creating new sources of work that will employ new workers with new skills and
talents.

•
•
•
•
•

CRC_47744_Ch001.indd 5CRC_47744_Ch001.indd 5 7/10/2008 1:21:06 PM7/10/2008 1:21:06 PM

6 Practical MATLAB® Basics for Engineers

 l. Statistical data and economic studies indicate that foreign competition and
 outsourcing (from China, India, etc.) are having a growing impact on the U.S.
global economy and will surely affect the job markets in the coming decades.

 m. According to the Kaiser Foundation “globalization of manufacturing means that
more manufacturing and service related industries are outsourced.” Obviously,
the reason for outsourcing and moving abroad is not just to fi nd lower wages and
keep operating costs down, but also to get smart, dedicated workers and in many
cases better infrastructure.

The overseas worker is generally well educated and trained, focused and effi -
cient, and receives generally a lower salary and little or no benefi ts.

Why should any employer, anywhere in the world, hire American workers if
other people, just as well educated, are available for half the wages or less?

 n. No one knows with precision how many jobs are leaving the United States.
Government estimates are

 i. 102,000 in 2003
 ii. 143,000 in 2004

Unless someone abolishes the Internet and global economic integration, it will
be hard to stop and reverse this trend.

 o. A few words about foreign competition using India as an example. India’s service
industry posted $12.3 billion in export revenues in the year ending 2004, a 30%
rise over the previous year. India’s outsourcing industry employed over 800,000
employees and its growth is estimated to be 30–40% per year. General Electric
and City Group are some of the American corporations that use India’s outsourc-
ing industry. The leading outsourcing companies in India earned as much as
two-thirds of their revenues from U.S. customers (The New York Times, November 4,
2004). Of course, India is not an isolated case. Identical problems are faced by the
U.S. economy from competing countries in all fi ve continents.

 p. According to the Bureau of Labor Statistics, outsourcing is responsible for 1.9% of
layoffs in the United States. Economic experts predict that the effi ciencies due to
outsourcing will create more jobs at better wages than the ones destroyed (Brooks,
2007; Lohr, 2007). Over the years, the H-1 visa that allows a person to work in
the United States for 3 years and be renewed for an additional 3 years has been
used by U.S. companies to recruit the brightest workers from around the world.
The current visa cap (2007) is 65,000, which poses a serious challenge to the U.S.
job market. Meanwhile, the outsourcing market is estimated to be in the order
of $386 billion in 2007 and growing with high-quality talents from eastern and
central Europe like Poland, Hungary, the Czech Republic, and Slovakia with an
estimated outsourcing business of $2 billion in 2007 and an expected growth rate
of 30% by 2010, compared with 25% for the global market (Tagliabue, 2007).

 q. The old line of U.S. companies, the last bastion of fully paid employee benefi ts are
struggling in the global market, and few can afford to pay 100% of worker’s health
insurance premiums. The number of individual premiums plummeted from 29%
in 2000 to 17% in 2004, and family health coverage premiums paid by private com-
panies dropped from 11% in 2000 to 6% in 2004.

 r. Some fi gures about costs of health benefi ts are provided as follows to give some
insight to the magnitude of the problem facing the American manufacturing
and service industries. For example, General Motors (GM), the largest private

CRC_47744_Ch001.indd 6CRC_47744_Ch001.indd 6 7/10/2008 1:21:06 PM7/10/2008 1:21:06 PM

Trends, the Industry, and MATLAB® 7

 purchaser of health services, spent an estimated $4.8 billion a year with earnings
of only $1.2 billion to provide health coverage to all employees (active and 400,000
retirees and dependents). At GM, each U.S. worker has to support 2.5 retirees,
 adding an average of $2200 to the price of each vehicle ($1625 on health care and
$675 on pension), whereas its market share has declined steadily since 1996.

 Toyota, with profi ts of $10.2 billion, which is more than double the combined
profi t of the big three (GM, Ford, and Daimler-Chrysler), reported that the health
care obligations are not large enough to affect in any signifi cant way its profi ts
(The New York Times, October 25, 2004).

 s. GM, which does set aside money for future retiree benefi ts, has reported (The New
York Times, July 25, 2005) that the sum of its health care promised to retirees was
$77.47 billion in 2004, which is $9.93 billion up from 2003.

 t. GM is not an isolated case. Boeing, which estimated its retiree health and other
nonpension obligations at $8.14 billion at the end of 2004, has assets of less than
$100 million to cover them.

 u. Because of the soaring cost of health care coverage, an estimated 40% of compa-
nies with more than 5000 employees no longer offer retiree health benefi ts.

 v. In the 3-year period of 2002–2005, profi ts at the seven largest companies in the
 Silicon Valley area, the nation’s high technology heartland, increased by an aver-
age of 500%, whereas employment has declined.

The increase in profi ts is dramatic. These actions are driven in part by the auto-
mation that Silicon Valley has largely made possible, allowing companies to create
more value with fewer workers, keeping a brain trust of creative people, managers,
and engineers in the United States, and hiring workers for lower level tasks else-
where (The New York Times, July 3, 2005).

 w. An analysis published in the San Jose Mercury News found that the top 100 public
companies in the Silicon Valley (Stross, 2006)* region had revenues of $336 billion
in 2004, an increase of 14% from the previous year, clearly indicating a high pro-
ductivity (profi ts and sales) jobless trend.

1.4 Technical Know-How: Trends and Facts

Some facts and trends about technical knowledge are summarized as follows:

Human knowledge is doubling every 10 years.
In the past decade (1995–2005), more scientifi c knowledge was created than in all
human history.
Computational power based on powerful microprocessors is doubling every 18–24
months.
A weekend edition of The New York Times contains more information than the aver-
age person was likely to come across in a lifetime during the seventeenth century
in England.

* One-third of all venture investment deals went to the San Francisco Bay area. This number has not changed
for the past 10 years. The New England region is far behind at 10%.

•
•

•

•

CRC_47744_Ch001.indd 7CRC_47744_Ch001.indd 7 7/10/2008 1:21:06 PM7/10/2008 1:21:06 PM

8 Practical MATLAB® Basics for Engineers

According to Daniel Reed, director of the Renaissance Computing Institute (a col-
laboration of researchers from the University of North Carolina, Duke University,
and North Carolina State University), computing has become the third pillar of
science, along with theory and experimentation.
The present educational system was designed in the 1900s for people to do routine
work. The present market requires people who can imagine things that have never
been thought before (Friedman, 2006).
More and more routine work can be digitized and automated, including white-
collar work.
Some useful global statistics—59 and 66% of all undergraduates receive degrees in
science, technology, and engineering in China and Japan, respectively, whereas it
is only 32% in the United States.
In the present job market, 85% of the jobs in the United States require advanced
training or education (Caputo, 2006). Studies show that as much as 85% of mea-
sured growth in U.S. per capita income is due to technological changes driven by
highly educated well-trained people applying their talents, expertise, and skills in
science and technology (Exxon Mobil, 2006).
U.S. industry is presently spending more on lawsuits than on research and devel-
opment (R&D). R&D represents the most important source of value creation and
investments for a company that is likely to pay dividends in the future. Few other
investments can pay off the way R&D can.
The United States is the world’s biggest investor in R&D (34% of the total), but the
data are troubling. R&D spending grew for decades until 2002 when it dropped for
the fi rst time in 50 years. According to the fi gures from the National Science Foun-
dation, R&D climbed slightly in 2003, to $281.9 billion, and is estimated to increase
to $312.1 billion by 2004 (Bernasek, 2006).
It seems that the federal government will continue to spend more on developing
weapon systems and spacecraft and less on basic and applied research, which is
the foundation of the innovative competitive industrial capacity.
Basic research is the foundation of innovation because it advances scientifi c
knowledge and generates ideas, which the industry can then use to develop
products and services. But, basic research is a risky investment in the sense that
there is no guarantee that the knowledge gained from research may pay off
commercially.
U.S. companies over the years have developed research sites overseas, raising con-
cerns about how the research benefi ts will fi lter back to the United States. Approxi-
mately 40% of the American high-tech industry already has an R&D presence in
Asia and plans are on to increase this share.
Federal investment in research as a share of the total economic output is estimated
to drop to 0.4% in 2007 from 0.5% in 2006 and may drop even further as large
unfunded commitments like Social Security and Medicare come due.
Estimates indicate that China and India will account for 31% of the world’s R&D
personnel by the year 2007, up from 19% in 2004.
It seems that R&D investments have been a declining priority for the last U.S.
administrations. In the 1960s, the government accounted for 67% of the total U.S.
R&D spending. Presently, the share is approximately 30%, whereas corporate
America makes up most of the remaining.

•

•

•

•

•

•

•

•

•

•

•

•

•

CRC_47744_Ch001.indd 8CRC_47744_Ch001.indd 8 7/10/2008 1:21:07 PM7/10/2008 1:21:07 PM

Trends, the Industry, and MATLAB® 9

According to the U.S. Bureau of Labor Statistics, the labor market will experi-
ence a shift from hard hats to pencil and paper pushers. Employment in industries is
expected to grow at 6.7% from 2002 to 2012, yet the number of installers and repair-
ers is expected to grow just by 2%. The number of computer-related jobs will jump
by 14.5%, whereas sales and retail jobs are expected to increase by 16.5%.
Rising Above The Storm is a report written by some of the best minds in the country
recruited from the Academy of Science, National Academy of Engineering, and
Institute of Medicine (October 2005) and organized by two U.S. senators, Lamar
Alexander and Jeff Bingaman. The explicit objective of the report is to come up
with recommendations of how to enhance America’s technological base. The report
states that, because of globalization, the U.S. worker in virtually every sector must
now face competitors who live just a mouse-click away. The report also indicates
that the U.S. economic leadership is eroding at a time when many other nations
are gathering strength.
Technology has changed very rapidly in the past 20 years. Economists, educators,
and industrial experts predict that technology is expected to change 500 times
faster in the next 20 years.
Three recommendations for success for the coming decades from different schools
of thoughts are summarized as follows:

We need to get back to basic blocking and tackling, educating more Americans in the
skills needed for the 21st century jobs.

Charles Vest
Former president of Massachusetts Institute of Technology (MIT)

Across many nations, the market increasingly rewards people with high social customer-
service skills.

Lawrence Katz
Harvard University

The most important community for an individual will not necessarily be a company, but
a looser community of people with similar skills and social connections. Continually
building up those skills and connections is what a career is today.

Robert B. Reich
Professor of economic and social policy

Brandeis University
Former Secretary of Labor

Clinton administration

1.5 What Constitutes Essential Knowledge

Let us explore what constitutes the essential attributes for survival and growth in the pres-
ent competitive and technological driven economy. It is widely recognized that essential
knowledgeable skills are

Reading
Writing
Problem solving

•

•

•

•

•
•
•

CRC_47744_Ch001.indd 9CRC_47744_Ch001.indd 9 7/10/2008 1:21:07 PM7/10/2008 1:21:07 PM

10 Practical MATLAB® Basics for Engineers

which are the basic communication, organization, and technical–logical–mathematical
skills required in the modern workplace and for further growth.

The marketable skills in addition to the preceding essentials are

Information processing
Management and administration

It is widely recognized by educators, economists, experts, and industrial leaders that the
process of learning is more important than the product, which merely entails a collection
of facts that happen to be current at a particular time.

Certainly, facts are important in science, engineering, and technology, but far more
important is to

Navigate and access information
Analyze the information
Use the information in a creative and meaningful way
Work and act in a team as a team

It is far more important to fi nd, analyze, and process information and see the big picture
than to acquire a skill with a particular technology, the usual defi nition of computer
literacy.

It is far more important to learn methodology than facts.
It is far more important to learn how to learn, which means learning where and how to

get information and even more important is to

Know how to manage information and its complexities
Master modeling and abstraction
Think analytically in terms of algorithms
Implement systematically, step-by-step, any algorithm

The key to employment success will be the ability to process information into useful, prac-
tical, and marketable knowledge. Workers will get jobs only if they or their fi rm offer a
unique innovative product or service, which demands a skilled and creative labor force
able to conceive, design, manufacture, and market (Friedman, 2006).

Most experts agree that the marketable skills required for the high echelon jobs are

Problem solving
Developing algorithms
Recognizing patterns
Using simulation and programming
Being a team worker

In the simplest technical terms,

Computing is more important than number.

R.W. Hamming

•
•

•
•
•
•

•
•
•
•

•
•
•
•
•

CRC_47744_Ch001.indd 10CRC_47744_Ch001.indd 10 7/10/2008 1:21:07 PM7/10/2008 1:21:07 PM

Trends, the Industry, and MATLAB® 11

It is widely recognized and accepted by educators, labor experts, economists, and educa-
tional leaders that in the coming decades, the biggest employment gains will be in occupa-
tions that rely on

Unique or specialized skills
Intelligence
Imagination
Creativity

The following quote well defi nes the knowledge and skills of the successful employee.

If you have only technical knowledge you are vulnerable. But if you can combine busi-
ness or scientifi c knowledge with technical savvy, there are a lot of opportunities; and
it’s a lot harder to move that kind of work offshore.

Professor Thomas W. Malone
Sloan School of Management at the MIT

Author of “The Future of Work” (Harvard Business School Press, 2004)
(The New York Times, August 23, 2005)

1.6 Technological Trends

There are good reasons to believe that the electronic-telecommunication-computer indus-
try will remain an industry with opportunities in the coming decades (U.S. Department
of Labor).

This industry, an industry of industries, central to any modern society indicates strong
growth potential. A way that new technology can move ahead is by increasing its focus
on the use of technology in specifi c fi elds instead of being narrowly fascinated with the
tools. This will afford technology with high growth potential in a wider world, beyond the
engineers from Silicon Valley.

A summary of current and future technologies and their applications that will impact
and may revolutionize the economy and job market in the coming decades are summa-
rized is given as follows:

Radio tagging technologies (International Business Machines and Hewlett Pack-
ard [IBM/HP]) are heavily involved in radio frequency ID (RFID) are predicted to
be used in the coming decade by such corporations like Procter & Gamble, Gillette,
Boeing, Airbus, and drug and pharmaceuticals companies, as well as libraries and
government agencies.
Smart phone systems with new powerful operating systems (OSs) will provide
a number of services besides the old services (television, pictures, sports, games,
etc.). In 2005, of the 180 million cell phone subscribers in the United States, the
majority of users were teenagers that were practically living on the phones.

As of 2005, an estimated 76% of teenagers, aged 15–19, and 90% of the people
in their early 20s regularly use their phones for text messages, purchasing ring
tones and wallpaper for their handsets, playing games, and other personalization
 services with an estimated contribution of $2.6 billion just to the U.S. economy.

•
•
•
•

•

•

CRC_47744_Ch001.indd 11CRC_47744_Ch001.indd 11 7/10/2008 1:21:07 PM7/10/2008 1:21:07 PM

12 Practical MATLAB® Basics for Engineers

Nanotechnology is expected to touch every part of the economy in the same way
as computers have. The National Science Foundation predicted in 2001 that nano-
technology would contribute $1 trillion to the U.S. economy by 2015. Some U.S.
experts even predict that this fi gure might be low.
Special-purpose computers and control systems such as robots will affect every
sector of the economy. It is estimated that 4.1 million electronic robots are in ser-
vice by 2008, the time of this publication.
IBM, Sony, and Toshiba are working on the latest microprocessor chip known as
the “Cell.” The Cell architecture consists of a network of eight processors, a 5.6 GHz
clock that could have a theoretical peak performance of 256 billion mathematical
operations per second, which places this chip according to its processing power
among the top 500 supercomputers (Markoff, 2005).
Intel and HP over the last decade (1998–2008) had invested millions of dollars on
the Itanium chip that may have an impact on the huge video gaming and digital
home entertainment industries.
The Intel corporation, the world’s largest chip maker and the University of California
are working on an indium phosphate microprocessor that can switch on and off
billions of times a second and transmit data at 100 times the speed of laser-based
communication and use laser light rather than wires. Japanese scientists, in a related
effort, are pursuing an equivalent result with a different material, the chemical ele-
ment erbium (Markoff, 2006, 2007). Intel is also developing an 80-processor engine
described as the Terafl op chip with computing power that matches the perfor-
mance speed of the world’s fastest supercomputer of just a decade ago. This chip
will be available within 5 years (by 2012) and will be used in standard desktops,
laptops, and server computers.
There is no one in the government or medical fi eld who does not consider it crucial
and overdue to have electronic records in doctor’s offi ces and hospitals. Health care
specialists agree that information technology, if properly used, could help reduce
medical errors and costs. Fewer than 10% of American hospitals have computer-
ized clinical systems with electronic patient records and software for tracking their
status, treatments, prescriptions, and progress. Only 20–25% of the nation’s 650,000
licensed doctors outside the military and the Department of Veterans Affairs are
using electronic patient records (The New York Times, July 21, 2005).
A mere 25% of physicians in the United States use ePOCRATeS®, a software pack-
age which provides updated information on diseases, diagnostics, drugs, billing
references, and insurance plans. This package saves an average of 11–30 minutes a
day of the doctor’s time, typically valued at $250 an hour, at a cost of only $30–$150
a year. The fees are small compared with the physician’s time, since a major por-
tion of the services costs are paid by the pharmaceutical companies.
Silicon Valley’s dot com era may be giving way to the watt com era. The new mis-
sion of many Silicon Valley companies is to develop alternative energy, such as
wind- and solar power, solar panels, ethanol plants, and hydrogen power cars in a
$1 trillion domestic market. For many in Silicon Valley, high tech has given way to
clean tech (Richtel, 2007).
The rise in oil prices (over $108 barrel on March 10, 2008) combine with the ris-
ing concern about the environment such as greenhouse gases from oil and coal

•

•

•

•

•

•

•

•

•

CRC_47744_Ch001.indd 12CRC_47744_Ch001.indd 12 7/10/2008 1:21:08 PM7/10/2008 1:21:08 PM

Trends, the Industry, and MATLAB® 13

burning are turning policy makers, environmentalists, scientists, engineers, and
economists to alternate cheaper and cleaner energies such as geothermal, solar-
and wind power.
The U.S. Geothermal Energy Associates (GEO) released a report (2007) assessing
the progress in the generation of geothermal energy in which the United States, the
leader in online geothermal capacity, is expected to double its output in the period
2007–2015 as a result of inacting a federal tax incentive in 2005 by the U.S. congress
(Gawell, 2007).

 The solar energy market for silicone-based photovoltaic panels is growing
by 42% annually for the last 5 years, and since 2004, the market value of the
world solar companies has grown from 1 billion to 71 billion, a 7000% increase
(Hodge, 2007).

 Wind power already supplies 1% of America’s domestic electrical needs,
providing power to 4.5 million homes, with over 1 million homes or 3% of the
electrical needs in Texas, the wind capital. A recent study by Emerging Energy
Research, a consulting fi rm in Cambridge, MA, estimates investments of 65 bil-
lion in the next 7 years (2008–2015). In European countries such as Denmark, 20%
of the electrical power is derived from wind, a goal that the United States want to
emulate (Krauss, 2008).
Propelled by mounting soaring oil costs, climate change and global warming, bio-
fuels in the form of ethanol is becoming the leading alternative of the green tech
revolution as an alternative source of renewable energy. From 1998–2008 the U.S.
quintupled its production of ethanol, and the U.S. Congress is working on incen-
tives for another fi ve-fold increase in the next decade (2008–2018). Overall world
wide investments in biofuels increased from $5 billion in 1995 to $38 billion in
2005, and estimates predict $100 billion by 2010 (Grunwald, 2008).
Medicare, which claims that the lack of electronic records is the biggest impedi-
ment to improve health care, is providing the medical doctors, free of charge, a
software package called Vista (and its new version Vista-Offi ce) to computerize
their medical practices beginning in August 2005. Vista has been used for over two
decades by the Department of Veterans Affairs in 1300 inpatient and outpatient
facilities and contains over 10 million records and treats more than 5 million vet-
erans a year.

Vista presents many problems, the most important one is that it is diffi cult to
install, maintain, and operate.
The military spends about $12 billion a year in basic- and applied research and
advanced technology development in the following areas:

Electronic sensors
Robotics
Artifi cial intelligence
Biotechnology
Brain and cognitive science
Large-scale modeling and simulation

These activities are creating a signifi cant number of jobs in private as well as
government sectors and have a multiplying effect on the economy.

•

•

•

•

•
•
•
•
•
•

CRC_47744_Ch001.indd 13CRC_47744_Ch001.indd 13 7/10/2008 1:21:08 PM7/10/2008 1:21:08 PM

14 Practical MATLAB® Basics for Engineers

The global positioning satellite system (GPS), for example, fi rst developed for
precision-guided munitions, is essential for cell sites to serve the cell phone
industry and has the potential to revolutionize the civil air traffi c control system.
American companies not only draw heavily on the Pentagon’s work, but they have
also come to depend on it. America’s ability to translate the Pentagon’s technology
based on commercial achievements is the model of the world.

1.7 Objective of This Book

The objective of this book is to address in a meaningful and practical way, some of the
technical issues of the present changing economy, and be a means of providing the reader
with some of the skills and knowledge necessary to get a well-paying technical job by
 mastering an essential tool such as MATLAB and, more important, a number of broad
essential technical skills. Hopefully, it allows the reader to hit the ground running.

This book is written specifi cally to support the independent learner, serve as a textbook
in an introductory course in MATLAB (high school or college), or a companion or reference
(handbook) in a number of standard college courses.

1.8 Organization

The book Practical MATLAB® Basics for Engineers consists of nine chapters intended to be
used as a textbook in an undergraduate freshmen or sophomore course that introduces
programming and the use of an engineering language, and the book Practical MATLAB®
Applications for Engineers consists of six chapters dedicated to principles, exercises, and
applications geared to the electrical, electronics, computer, telecommunication engineer-
ing technologies, or technology in general.

The emphasis of the applications is in using MATLAB to solve types of engineering
problems from basic circuit analysis (direct current [DC] and alternating current [AC]) to
signal analysis, Laplace, Fourier, Z-transforms, fi lters (analog and digital), etc.

Each chapter of this book and the book titled Practical MATLAB® Applications for Engineers
is structured as follows:

Introduction
Objectives
Background
Examples
Further analysis
Application problem

Chapters 2 through 9 of this book are dedicated to

Basic math concepts such as functions, algebra, geometry, arrays, vectors, matrices,
trigonometry, precalculus, and calculus
The MATLAB language syntax rules, notation, operations, and computational
programming

•
•
•
•
•
•

•

•

CRC_47744_Ch001.indd 14CRC_47744_Ch001.indd 14 7/10/2008 1:21:08 PM7/10/2008 1:21:08 PM

Trends, the Industry, and MATLAB® 15

The knowledge gained in these eight chapters is then applied in the chapters of Practical
MATLAB® Applications for Engineers, where the section titled Questions is omitted, since
the assumption is that the reader is more mature and disciplined at this point in the learn-
ing process and drill questions are no longer appropriate.

The contents of the chapter’s sections are summarized as follows.
Introduction. Each chapter starts with a brief description of the main topics and in

some cases a compressed history of the events relevant to the chapter’s material
is included.

Objectives. Each chapter has a set of objectives that clearly establish the chapter’s
goals.

Background. Each chapter introduces all the concepts required to fully understand the
discussion of the chapter’s material in the form of rules. The notation used is R.c.n,
where R stands for rule, c for the chapter, and n for the rule, concept, or defi nition
number.

 Theorems are stated, and theoretical results are quoted omitting formal proofs.
 Concepts are introduced using simple and direct language with explanations and
examples that are easy to understand and visualize and in many cases can be
worked out by hand.

 In some cases, MATLAB is also employed in verifying mathematical or physical
relations. In this way, the reader can quickly learn, review, and refresh the theory
and start using the concepts in the form of MATLAB instructions fi rst and pro-
grams later.

 Hopefully, with a relatively smaller set of instructions and simple examples, the
reader can quickly begin to write programs. The programs presented in this book
have been tested under different versions of MATLAB. The view in this matter is
best summarized by the following quote:

It is profoundly erroneous truism, repeated by all copy books and by eminent people,
when they are making speeches, that we should cultivate the habit of thinking of what
we are doing.

The precise opposite is the case.
Civilization advances by extending the number of important operations which we

can perform without thinking about them.

Alfred North Whitehead

Examples. Each chapter has a number of worked-out problems with both analyti-
cal and MATLAB solutions, when appropriate or possible. The emphasis of each
example’s solutions is on the development of an approach leading to an algorithm
and a corresponding program. The examples are chosen to illustrate general
types of solutions to classes of practical problems often encountered in industry
or academia.

The programs presented are not necessarily the fastest or shortest, since the
primary purpose is to illustrate the logical and systematic approaches to solving
broad classes of problems as well as to provide maximum clarity by choosing the
most frequently encountered instructions.

Further analysis. Each chapter presents questions about the example problems to drill,
review, and stimulate creative thinking. The reader is encouraged to follow the
examples by executing the commands as they occur. This book is designed to
be used by the reader while working on the computer. A lot of effort has been

CRC_47744_Ch001.indd 15CRC_47744_Ch001.indd 15 7/10/2008 1:21:08 PM7/10/2008 1:21:08 PM

16 Practical MATLAB® Basics for Engineers

invested to make this book as easy as possible for the reader to work through
without any assistance.

The best way to learn programming is by doing. In working out the example
problems, the reader can systematically gain experience and incorporate funda-
mental concepts and practices into practical applications.

Application problems. At the end of each chapter a number of problems are presented.
Some of the problems are encouraged to be solved by hand, others are drill prob-
lems that may include numerical manipulations, whereas still others are applica-
tion problems in which the command window as well as M-fi les (editor window)
are used.

M-fi les are encouraged as solutions for classes of problems where different sets
of data can be tested. The M-fi le concept is presented in Chapter 9, in some depth,
but simple fi le structures are introduced and employed as early as Chapter 2.

It should be emphasized that an attempt was made to provide the reader with all the theo-
retical concepts required in each chapter. The section titled Background of each chapter
provides the reader with most of the fundamental concepts necessary to understand and
follow the example problems, as well as to solve the application problems.

Both books are self-contained, and coverage of the fundamental theory and applications
is suffi ciently broad to make it an ideal companion to a number of college and technical
high school level courses.

A serious effort has been made to make both books readable user friendly and the learn-
ing process climate a pleasant and less intimidating experience.

It should also be pointed out that these books (Practical MATLAB® Basics for Engineers
and Practical MATLAB® Applications for Engineers) are also for the beginners as well as for
the more seasoned or mature engineering reader. The material in the fi rst fi ve chapters
of Practical MATLAB® Basics for Engineers assumes that the reader has no experience in
programming and no mathematical background, except algebra and trigonometry. This
makes it ideal for some high schools.

The only thing that these books require from the reader in general is an open and logi-
cal mind, basic skills, common sense, and academic maturity equivalent to the fi rst year of
college in science, technology, or engineering or being a senior at a secondary school.

The examples in the form of programs are presented with comments, when fi rst intro-
duced, so that the reader can follow the logic steps in the solution of a problem, with
emphasis on new or important points.

The material in these books is presented and organized in a way that they can be used in
a formal educational environment, but could also be for the self- or independent learner and
graduate student who needs to review and refresh MATLAB and its many applications.

Many engineering and technical schools now require a course in MATLAB early in the
curriculum. In many schools, MATLAB has replaced the traditional Formula Translator
(Fortran), Beginners All-purpose Symbolic Instruction Code (Basic), or Programming Lan-
guage One (PL/1) programming courses. In some specialized fi elds such as digital signal
processing and linear and control systems, MATLAB is becoming the accepted standard
software.

Although designed to serve engineering and technology courses, these books are also
appropriate for students in the natural sciences, economics, business, social sciences disci-
plines, and in general disciplines in which numerical or quantitative methods are used.

The novice would probably run into diffi culties when trying to learn MATLAB using
the standard available textbooks. Most of the available MATLAB textbooks are either
for programmers and assume that the reader is familiar with computers, models, and

CRC_47744_Ch001.indd 16CRC_47744_Ch001.indd 16 7/10/2008 1:21:09 PM7/10/2008 1:21:09 PM

Trends, the Industry, and MATLAB® 17

mathematical algorithms or are designed to be used in advanced engineering applica-
tions such as fi lter design, linear systems, digital signal processing, control systems, and
communication.

Practical MATLAB® Basics for Engineers is different; it is written for the true beginner
with no background, experience, or training in engineering or science.

In summary, an effort has been made to accomplish the following goals and objectives:

To allow reasonable profi ciency in a relatively short time
To be practical
To introduce concepts in a compact, simple, and direct way
To be easy to read and understand
To contain many numerical and worked out examples
To be self-contained with little or no assistance
To be organized by topics and complexity
To be a valuable resource to

The engineering and technology student
The professional engineering student (preparing for the professional engineer
[PE] license)
The technical consultant
The practicing engineer

1.9 What Is a Computer? What Constitutes Hardware?
What Constitutes Software?

It is widely accepted that a good programmer should have a basic knowledge of the hard-
ware and software components of a computer system.

A computer is a machine capable of executing a set of instructions called a program,
which constitutes a coded version of the solution of a particular problem.

Computers are made up of hardware and software.
The term “computer hardware” refers to anything that can be seen, touched, or felt;

usually, the computer itself is represented by three building blocks as shown in Figure 1.1.
Typically, the hardware is specifi ed by the manufacturer’s model of the central process-
ing unit (CPU) (8, 16, 32, or 64 bits processor; the higher the number, the faster and more
powerful it is), memory size, intern clock that represents the speed of operation, and con-
necting busses.

•
•
•
•
•
•
•
•

•
•

•
•

FIGURE 1.1
Simplifi ed diagram of a computer.

CPU

Memory

Control
unit

(CPU)
ALU

Input and Output
devices

CRC_47744_Ch001.indd 17CRC_47744_Ch001.indd 17 7/10/2008 1:21:09 PM7/10/2008 1:21:09 PM

18 Practical MATLAB® Basics for Engineers

A bus is a group of wires that link the building blocks of the computer and are used as
the means to deliver or receive information (instructions or data) to and from the compo-
nents, inside and outside the computer (peripherals). Most computers have three busses—the
address-, data-, and control bus. Each one of the busses defi nes the type of information it
is capable of carrying. The bus sizes may affect the memory size, speed of the computer, as
well as its complexity and performance.

The execution of the instructions that make up a computer program is done by the CPU
in conjunction with the system software stored in read only memory (ROM) (defi ned later
in this section).

The CPU is the engine that controls the execution of the program’s instructions and
interrupts. An interrupt is a request from a device, which consists of an electrical signal
sent to the CPU to stop and defer what it is doing and take care of the requests and then
resumes the original task. Some CPUs can work on the solution of multiple tasks, a char-
acteristic commonly referred to as multitasking. The CPU consists of an arithmetic logic
unit (ALU), a control unit, a clock, and a central memory. The control unit is responsible
to fetch, decode, and execute the program’s instructions stored in the memory. The ALU is
responsible for all the arithmetic and logic operations in the program.

Computer memories can be classifi ed as central and external. The central memory
is the main memory and is semiconductor-based. Semiconductor memories are desig-
nated as

ROM
Random access memory (read and write) (RAM)
Erasable programmable read only memory (E-PROM)

The ROM is where the resident programs are stored. The ROM is installed by the man-
ufacturer and cannot be erased or changed. The programs in ROM are converted from
 program instructions to machine language commands. Machine language consists of
binary characters (on or off) and is the only (characters) language the CPU understands.
The CPU with the help of the software stored in ROM converts machine language to other
higher-order languages. The ROM’s software is permanently stored in a memory chip and
remains unchanged even when the computer is turned off.

The RAM is the primary memory in a computer and is used to store data and low-level
programming instructions. All the information stored in RAM can be erased at will and
new information can be stored in the same (memory) location. The RAM information is
destroyed when the computer is turned off.

The E-PROM is a programmable ROM, but the information can be erased by exposure
to ultraviolet light.

Solid-state memory is often referred to as volatile and nonvolatile depending on whether
the information stored is lost when the power is turned off or if the information is retained
in the absence of power.

External memory refers to hard- and fl oppy disks. These elements are also known as
magnetic disks and are random access storage devices. Disks are mechanical devices that
turn at a constant speed in the 2000–4000 rpm range and are accessed by the read and
write heads of a movable arm.

Floppy disks or diskettes are removable storage devices. Floppy disks have diameters of
3 1 __ 2 in. or 5 1 __ 4 in. (and the old 8 in.) and are usually referred by their physical dimension and
are becoming progressively absolute. The 3 1 __ 2 in. disk has a capacity of either 720 kB double
density (DD), or 1.44 MB high density (HD). The 5 1 __ 4 in. disk has a capacity of either 360 kB
(DD), or 1.2 MB (HD).

•
•
•

CRC_47744_Ch001.indd 18CRC_47744_Ch001.indd 18 7/10/2008 1:21:09 PM7/10/2008 1:21:09 PM

Trends, the Industry, and MATLAB® 19

The input and output devices (peripherals) are devices by which information is fed to
or received from the computer. The typical input devices are the keyboard and the mouse,
whereas the typical output devices are the monitor and the printer.

Computer software refers to information and as such cannot be seen, touched, or felt. It
is what makes the computer possible to operate and make decisions. It is the brain and soul
of the machine. It is divided into

System software
Application software

The system software consists basically of the OS. The OS is a computer program or a
series of programs that supervise the execution of all the other programs and in addition
provides the interface between the user’s programs and the available hardware. The OS
is also responsible for controlling and managing the computer software in an effi cient,
effective, and user-friendly environment. Two of the most popular OSs are Unix and Win-
dows. Fortunately, they are similar in their design and functionality. In summary, the OS
is responsible for

Managing the work or programs to be executed by the CPU
Being the machine and user interface (controls also the peripherals)
Organizing and keeping track of the execution of the user’s programs

Application software consists of specialized packages designed to be used for solving
 specifi c classes of problems. Application software is brought into the system via the disk
drive (RAM). When using application software, the programmer operates the software
under the supervision of the OS.

MATLAB is an application software that can run on many computer platforms, using a
number of different OSs. Some of the systems are

Macintosh PC (68020, 68030, 68840, 68882, and up)
Unix workstations from Sun Microsystems
HP 9000 series
IBM (Intel 486+ coprocessor, Pentium, Pentium Pro)
IRS series 4D
Digital Equipment Corporation (DEC) RISC
DEC Alpha
Virtual Address eXtension (VAX)
Cray super computers

The programmable software languages are divided into three types.

Machine language
Assembly language
High-level language

Machine language (Silverman and Tukiew, 1988) uses binary digits (ones and zeros) to
defi ne operations as well as operands. It is the only language that the CPU understands.

•
•

•
•
•

•
•
•
•
•
•
•
•
•

•
•
•

CRC_47744_Ch001.indd 19CRC_47744_Ch001.indd 19 7/10/2008 1:21:09 PM7/10/2008 1:21:09 PM

20 Practical MATLAB® Basics for Engineers

Any instruction, data, or command can always be represented by a string of ones and
zeros (on or off) no matter how complex the operation may be, provided that the CPU is
designed to execute such an operation.

Assembly language is one step above machine language. Mnemonic codes (memory
aids) are used to specify the operations and operands performed by the CPU by convert-
ing the long binary sequences representing machine operations into compact hexadecimal
codes.

Examples of typical assembly instructions are the addition of the contents of a memory
location with the contents of a register or the transfer of information from a memory loca-
tion to a register. Assembly- and machine languages are referred to as hardware-based
languages, and a translator is required to convert machine codes into assembly language
codes. This translation is done by a program called the translator or the assembler. Assem-
bly language has a one-to-one relation to machine language and is used mainly when data
is input or output directly from electronic devices, processed at the electrical level (bits
and bytes), or when data and operations have to be performed at the microprocessor speed
set by its internal clock.

A high-level language is several steps higher in sophistication than assembly language.
The instructions are more like or resemble English. They closely follow standard
 mathematical relations. High-level languages must be either compiled or interpreted
into machine language for execution. The difference between compiling and inter-
pretation is that an interpreter converts each instruction into machine code and then
checks for syntax errors, whereas a compiler performs the conversion and error checking
simultaneously.

The programs written by programmers are usually known as source programs. Source
codes are translated into object codes or machine executable instructions with absolute
memory addresses. A source program therefore may result in the generation of multiple
machine language instructions. The most frequently used high-level languages are sum-
marized as follows (Linderburg, 1982):

Fortran. This language was introduced by IBM in 1957 and is one of the fi rst lan-
guages widely adopted and used by the scientifi c community. The main objective
was to solve complex mathematical problems. This language is relatively easy to
learn, but involves formatting (input as well as output).
Formula calculator (FOCAL). This language consists of simple instructions and was
designed to serve the scientifi c community. It requires little input or output for-
matting, but the language is harder to learn.
Algorithmic language (ALGOL). This language was developed mainly by John Backus
and introduced in 1958 as a universal, multipurpose language.
Common business oriented language (COBOL). This language was introduced in 1958
to basically serve the business community in areas such as accounting and inven-
tories. It is an excellent fi le handler and uses English-like words and sentences.
PL/1. This language was introduced in 1966 by IBM as a multipurpose language
designed for both the scientifi c and business communities (good for processing
both numbers as well as strings).
BASIC. This language was developed at Dartmouth College in the late 1970s and
early 1980s and introduced in 1976. The instructions and algebraic equations are
English-like and similar to Fortran. It was a popular computer language developed
to be used as a teaching tool in colleges and universities. In the 1990s, the language
evolved into Visual Basic.

•

•

•

•

•

•

CRC_47744_Ch001.indd 20CRC_47744_Ch001.indd 20 7/10/2008 1:21:10 PM7/10/2008 1:21:10 PM

Trends, the Industry, and MATLAB® 21

Lisp. This language is a symbolic, tree-structure language used for searches, quali-
tative decision making, and artifi cial intelligence applications.
A programming language (APL). This language was developed by Iverson at the IBM
Corporation. The main feature is that it consists of operators that can carry out
functions requiring dozens of statements in other languages. It is an extremely
powerful language that is particularly good for handling vectors and scalars.
Pascal (and Modula-2). This language was developed in 1968, pioneered by Niklaus
Wirth, and named after the eighteenth century French mathematician Blaise
 Pascal. It is a language that is essentially machine-independent and is particularly
useful to build data structures.
Forth. This language was designed basically for process control applications by
Charles Moore in the late 1960s.
Ada. This language was developed in the early 1980s for the U.S. Department of
Defense. It is a modular language. The National Aeronautics and Space Adminis-
tration (NASA) is one of the main users. Its space shuttle employs over 1 million
lines of Ada’s programming code.
C, C++. This language was developed by Dennis Richie at the Bell Telephone
 Laboratories in the early 1970s. The original language combined the properties and
features of high- and low-level programming languages. It is a modular language
and its main application is in the control of the computer hardware.
Simula, comprehensive school mathematics program (CSMP), general purpose simulation
system (GPSS), electronics workbench, MicroSim PSpice, laboratory virtual instrumenta-
tion engineering workbench (LabVIEW), SIMSCRIPT, graph algorithm and software pack-
age (GASP) are very specialized simulation and control computer languages.
Mathematica. This language was developed by Wolfram Research Inc. and is
 primarily used by engineers and scientists. Its main applications include numeri-
cal, graphical, and art schematic computations.
Programmation en logique (Prolog). This language is based on formal logic and is con-
sidered by engineers and scientists as the fi fth generation computer language.
Mathcad. This language was developed by MathSoft Inc., Massachusetts, and
designed for engineering and scientifi c computation.
RPG (report program generator) is a language that was developed to generate
reports.
Java. This language was developed by Sun Microsystems and introduced dur-
ing the SunWorld’95 Conference in May 1995. This language is based on an old
 language and compiling system technique known as University of California, San
Diego (UCSD) Pascal. The P-code was developed by Kenneth Bowles in the late
1970s. Java is a network-oriented programming language used to facilitate effi cient
communications among many diverse electronic terminal devices in a home or
business environment. The main purpose of Java is to be the medium employed in
sharing information and have a centralized control.
Standard generalized markup language (SGML). This language is used to describe
other languages, which in turn is used to describe documents.
Hypertext markup language (HTML). This is a universal, simple language for format-
ting, embedding of images and graphics, and hypertextual linking, also called
hyperlinks of documents. This language is used in Web pages. HTML is defi ned
by SGML and is a language that is independent of the terminal devices.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

CRC_47744_Ch001.indd 21CRC_47744_Ch001.indd 21 7/10/2008 1:21:10 PM7/10/2008 1:21:10 PM

22 Practical MATLAB® Basics for Engineers

As the reader can appreciate, there are different types of languages, but fortunately only one
language is required to use a computer and every computer knows at least one language.

A brief mention of the economic relation involved between the hardware and software
components can be made. This relation changed drastically during the past 30 years. In the
1970s, software developments consumed approximately 20% of the total cost of a project,
whereas the cost of hardware was estimated to be approximately 80%.

Currently, the cost of hardware and software are reversed. Eighty percent of the cost of a
project is used in software development, upgrading, and maintenance, whereas 20% is used
in hardware. During the recent years, hardware costs decreased dramatically, whereas
software costs soared. The main reasons are better, cheaper, and faster microprocessors
and communication devices that are mass-produced. The software component is currently
focused on solving complex and diffi cult problems by very specialized programs in almost
all disciplines, from engineering, biology, medicine, climate forecasting, and mining to
business applications. The variety of specialized software applications and the economic
impact in man-hours exceed the hardware platform, which in most cases is standard.

1.10 What Is MATLAB®?

MATLAB is an effi cient, user-friendly, interactive software package, which is very effective
for solving engineering, mathematical, and system problems. Two versions of MATLAB are
commercially available—the professional and student. The professional version includes
only the standard tool box, and any other tool boxes must be purchased separately. The
size of the matrices is limited by the memory constrains and is expensive. The student ver-
sion of MATLAB includes the basic tool box, Simulink, and symbolic tool box functions.
The size of the matrices is large, but limited and inexpensive.

This book uses features of MATLAB from old as well as new versions and professional
as well as student versions. Some of the main features are

Full support of all languages, graphics, and external interfacing.
In the older versions, the maximum matrix size was limited to 16,384 elements,
which was large enough to process 128 × 128 matrices. In the newer versions, this
limit will most likely increase.
The toolboxes that are included in the standard student packages are signal
 processing, control systems, and symbolic math.
No other toolbox can be used with the standard student edition, but it is likely that
this requirement may change in newer versions.
Programs can be externally interfaced to C and Fortran fi les (called MEX fi les).
A math coprocessor is strongly recommended to improve effi ciency.
For any problems encountered when using MATLAB commands, the software
online help facility should be used by typing help at the MATLAB prompt (>>)
(discussed in Section 1.12).

As an additional advice, it is recommended that the reader who purchases MATLAB soft-
ware should complete and return the registration card as a user, since this will entitle
him/her to replace defective compact discs (CDs) at no charge and qualify for discount
upgrades.

•
•

•

•

•
•
•

CRC_47744_Ch001.indd 22CRC_47744_Ch001.indd 22 7/10/2008 1:21:10 PM7/10/2008 1:21:10 PM

Trends, the Industry, and MATLAB® 23

For any additional information regarding MATLAB and any of its products (toolboxes),
contact

MATLAB Work Inc.
24 Prime Park Way, Natick, MA 01760-1500
Phone (508) 647-7000 e-mail: info@mathworks.com

1.11 Conventions Used in This Book

The following table describes the notations used in this book.

Convention Defi nition

Times New Roman font Used to represent MATLAB instructions or data entered by the user, such
as the program code

Bold font (Times New Roman) Used to indicate MATLAB responses usually displayed in the command
window

Italic font (Times New Roman) Used to defi ne MATLAB instructions, commands, functions, ranges,
domains, limits, relations, and key words

Angle brackets (< >) Used to denote a key on the keyboard or an order pair. For example,
<enter>, <xo,yo>

The following example indicates the input–output relation of a MATLAB command and
its response (on the command window) using the preceding defi ned convention.

>> A=3*2 <enter> input by user

 A = output by MATLAB, stored in
6 the computer memory

1.12 MATLAB® Windows

The assumption here is that the reader is sitting in front of an active computer and
 MATLAB is installed. To begin MATLAB, click the MATLAB icon on the computer’s desk-
top or select MATLAB from the Start or Program menu. The prompt >> or EDU>> is the
program prompt indicating that you are in the MATLAB environment (see Figure 1.2).

Each instruction line in the command window begins with a prompt (>> or EDU>>),
which is automatically inserted by MATLAB. An instruction is executed after pressing the
enter or return key. The designation <enter> means that the enter key was pressed. This
action is implicit after a command. The result of the execution of a command appears on
the next line. The result can be

An error message (when an error is committed)
A MATLAB prompt, meaning that the instruction was executed and MATLAB is
waiting for the next command
A MATLAB output

•
•

•

CRC_47744_Ch001.indd 23CRC_47744_Ch001.indd 23 7/10/2008 1:21:10 PM7/10/2008 1:21:10 PM

24 Practical MATLAB® Basics for Engineers

FIGURE 1.2
Command window.

This activity of entering and executing commands is carried out in the main window
(called the command window) and is used to enter single line commands only. Besides
the main window (command window), there are two more windows of interest that are
defi ned as follows:

The fi gure window, which is used to display graphs and plots executed by a
 program entered at the command window (see Figure 1.3).
The editor or debugger window is the place where programs are created and mod-
ifi ed. These programs can be saved in the form of fi les (discussed in Chapter 9).

When the user fi rst enters MATLAB, the main program window or command window
is active (see Figure 1.2). The edit window (see Figure 1.4) is used only when a program
is created or modifi ed and then stored in a fi le. The graphic or fi gure window is created
when plots are generated as a result of executing a set of instructions, as illustrated
in Figure 1.5, where the right window is the command window showing a short, four
MATLAB instructions program that creates the plot of sin(x) versus x, shown at the left,
in the command window.

There is another window that may be of interest to the user—the history window. It
allows the user to see all the previous instructions executed in the command window.

By clicking the mouse at the appropriate (fi gure) prompt, MATLAB switches from the
command window to the graphic window.

To exit MATLAB, click quit or exit in the File menu or type at the MATLAB prompt (>>)
exit followed by <enter>. Finally, to abort or terminate a program, press the Ctrl and C keys
simultaneously at the command window.

•

•

CRC_47744_Ch001.indd 24CRC_47744_Ch001.indd 24 7/10/2008 1:21:11 PM7/10/2008 1:21:11 PM

Trends, the Industry, and MATLAB® 25

FIGURE 1.3
Graphic window.

FIGURE 1.4
Edit window.

CRC_47744_Ch001.indd 25CRC_47744_Ch001.indd 25 7/10/2008 1:21:11 PM7/10/2008 1:21:11 PM

26 Practical MATLAB® Basics for Engineers

FIGURE 1.5
Figure- and command window.

1.13 A Word about Restrictions on the User’s Software

The software that the reader has purchased or using is copyright protected. Copyright
means that the author of a package or program has legal exclusive rights to copy, distrib-
ute, sell, or modify the software. If you are not the owner of the copyright, it is then illegal
to copy, sell, or distribute that software. When copyrighted software is purchased, the user
owns only one copy, which can be used by one user, in one workstation.

Software packages can also be licensed, that is, an agreement between the publisher and
user(s). Licensed software means that the user is not buying a package, but rather is pay-
ing for permission to use a package. Licensed software can be for single users, multiple
users (network), concurrent users (more than one copy of the software), and site users
(used by any user in a location or organization). If the software is not copyrighted, it is
public with no restrictions, that is, it can be copied, distributed, sold, and changed. The
only restriction of public domain software is that no one can apply for a copyright on it.

1.14 Help

MATLAB offers a number of help instructions that can be accessed from the command
window. A list of the most important help commands is as follows:

help

lookfor

whatsnew

•

•

•

CRC_47744_Ch001.indd 26CRC_47744_Ch001.indd 26 7/10/2008 1:21:12 PM7/10/2008 1:21:12 PM

Trends, the Industry, and MATLAB® 27

info

helpwin

helpdesk

In addition to the help commands, MATLAB has a demo program. Type demo followed by
<enter> and MATLAB activates a program that shows many of its features and capabilities
and can serve as an introduction to MATLAB or a short tutorial as follows (see Figures 1.6
and 1.7).

EDU>> demo

•

•

•

FIGURE 1.6
Command window showing the activation of demo.

FIGURE 1.7
Demo window.

CRC_47744_Ch001.indd 27CRC_47744_Ch001.indd 27 7/10/2008 1:21:12 PM7/10/2008 1:21:12 PM

28 Practical MATLAB® Basics for Engineers

FIGURE 1.8
The help log command.

To use the help command, type help after the system prompt >> followed by the topic, fol-
lowed by <enter>. For example, help demos <enter> can be used to fi nd out more about the
available demos in the system (depends on the MATLAB version). Some of the demos may
be particularly useful for the beginner in a particular area. For example, in matrix algebra,
the following demos may be of interest to the reader:

matdemo, where matrix computation is introduced.
rrefmovie, where the reduced row echelon form is introduced.

Additional examples on the use of the help command are illustrated as follows:

EDU>> help log <enter>

MATLAB returns the information about the natural logarithm, as shown in Figure 1.8.
If the topic is not known, by typing help MATLAB followed by <enter>, MATLAB returns

a list of topics (see Figure 1.9), or a complete list of elementary MATLAB functions is dis-
played by typing help elfun.

To use the lookfor command, type lookfor followed by the topic followed by <enter>, and
MATLAB returns a list of MATLAB help topics that contain key words that best describe
a fi le. For example, the lookfor command for the case of the sqrt function is shown in Fig-
ure 1.10. If the instruction lookfor is followed by a specifi c topic, the search for key words is
done through all the function fi les.

The command whatsnew displays the information about changes, innovations, and the
latest improvements in MATLAB. It can be used with or without arguments, as shown in
Figure 1.11. The command info is used in the same way as the whatsnew command.

•

•

CRC_47744_Ch001.indd 28CRC_47744_Ch001.indd 28 7/10/2008 1:21:13 PM7/10/2008 1:21:13 PM

Trends, the Industry, and MATLAB® 29

FIGURE 1.9
The help command.

FIGURE 1.10
The lookfor sqrt command.

CRC_47744_Ch001.indd 29CRC_47744_Ch001.indd 29 7/10/2008 1:21:13 PM7/10/2008 1:21:13 PM

30 Practical MATLAB® Basics for Engineers

FIGURE 1.11
The whatsnew command.

The helpwin command is shown in Figure 1.12 and when executed, the user will then be
taken for a ride in order to see the many help facilities available online.

Finally, the command helpdesk executed at the MATLAB system prompt opens MATLAB’s
helpdesk in a separate browser.

1.15 The Problem

Science, engineering, and technology students are trained to solve problems, with or with-
out the help of computers.

Let us defi ne what constitutes a problem.
The word problem is derived from the Greek word problema, which translates as “some-

thing thrown forward.” The modern concept of the word problem can be equated to a
question mark (?) that requires an answer often in the form of a solution.

The accepted defi nition of problem is as follows:

a question raised for inquiry, consideration, or solution

A question becomes a problem when the question is of interest and presents some challenge
with no obvious or immediate solution. Problem solving can be described as the process of
arriving at solutions to a problem, question, or situation, which involves the use of math-
ematical, physical, or logical reasoning.

Not all questions constitute problems. A question becomes a problem when, besides pos-
ing a challenge, with no apparent answer, understanding, reason, strategies, knowledge,

CRC_47744_Ch001.indd 30CRC_47744_Ch001.indd 30 7/10/2008 1:21:14 PM7/10/2008 1:21:14 PM

Trends, the Industry, and MATLAB® 31

skills, and abilities play a role in fi nding at least one solution. Problems do not always have
straightforward solutions. Problems can be classifi ed according to their type of solution as
algorithmic* or heuristic.

* An algorithm is nothing more than a set of rules for solving a problem in a fi nite number of steps. The word
algorithm is derived from the Latin translation of the greatest Muslim mathematician of the eighth century
Al-Khowarazmi. He developed algebra (Arabic Al-gabr), which means equations or restorations.

FIGURE 1.12
The helpwin command.

CRC_47744_Ch001.indd 31CRC_47744_Ch001.indd 31 7/10/2008 1:21:15 PM7/10/2008 1:21:15 PM

32 Practical MATLAB® Basics for Engineers

Algorithmic solutions are solutions that follow an algorithm, and an algorithm is a step-
by-step approach leading to the solution of a problem. Computers are ideal machines to
implement algorithmic solutions, since computers solve problems by executing sequences
of instructions, which in many cases involve a repetitive sequence of actions. This sequen-
tial form of an algorithm implementation is convenient when a computer language is used.
Algorithmic problems are usually quantitative in nature and require numerical computa-
tions to reach a solution. All computer languages when used to solve problems essen-
tially employ algorithms, which are generally very long processes when done by hand by
ordinary people, but highly appropriate for machine implementation. Some examples of
algorithmic solutions are

Instructions to get to the nearest bus stop
Instructions in assembling a barbecue grill
Instructions to make a phone call
Instructions to fi ll a bank deposit form
Instructions to install computer software

A heuristic solution, however, is a solution that does not follow a step-by-step approach
and is mainly based on reasoning built on practice, knowledge, and experience and in
many cases the method is trial and error. Heuristic solutions are qualitative in nature,
based on human judgment, values, principles, and experience. Some examples of heuristic
solutions are

Buying a car
Choosing a cell phone provider
Choosing an investment
Choosing a college

The following example clearly illustrates two distinct solutions to basically the same
problem—the algorithmic- and heuristic approach.

Example 1.1

Assume that a capital of $1000 is available to be invested during a period of 3 years,
with the sole objective of obtaining the highest possible return.

Two different investment choices (strategies) are presented and discussed as
follows:

Choice number 1 (algorithmic solution)

Choice number 2 (heuristic solution)

Choice Number 1

The $1000 is deposited in a fi x certifi cate of deposit (CD) at a local bank that earns a fi xed
interest of 6% per annum. The net profi t or gain after 3 years would then be $191.02.

Table 1.1 traces the growth of the $1000 during the 3-year period.
During the fi rst year, the principal is $1000 and the interest earned by the end

of the year is $(1000) * (0.06) = $60. At the end of the fi rst year, the interest is com-
pounded, increasing the principal to (1000 + 60)$ = $1060, and the interest would be

•
•
•
•
•

•
•
•
•

•

•

CRC_47744_Ch001.indd 32CRC_47744_Ch001.indd 32 7/10/2008 1:21:15 PM7/10/2008 1:21:15 PM

Trends, the Industry, and MATLAB® 33

$1060 * (0.06) = $63.60 by the end of the second year. Continuing with this line of thought
in a repetitive way, the total amount accumulated after 3 years, interest plus principal
would be $1191.02.

Let us build a mathematical algorithm to solve this problem. Let the principal and
interest be denoted by the variable P and I, respectively. Then in terms of P and I, the
amount at the end of the fi rst year would be given by

P + P * I = P * (1 + I)

At the end of the second year, the total amount accumulated in the savings account
would then be

P * (1 + I) + P * (1 + I) * I = P * (1 + I) * (1 + I) = P * (1 + I)2

And at the end of the third year, the total amount in the savings account would be

P * (1 + I)2 + P(1 + I)2 * I = P * (1 + I)2 * (1 + I) = P * (1 + I)3

In general, the principal P, after n years at an annual fi xed interest rate I, would then
grow to (Kurtz, 1985)

P * (1 + I)n

It is obvious that this type of solution is algorithmic, deterministic, based on a repet-
itive approach, and modeled with equations that show the precise steps involved in
reaching a unique numerical solution.

Choice Number 2

The capital of $1000 is now invested in stocks. In order to make a profi c stock invest-
ments involve research and knowledge about the particular stock (company) picked,
such as past performance, market trends, economic indicators (such as consumer confi -
dence, employment, infl ation), as well as experience and intuition.

With all the research done and using all the available data as well as professional
advice and life experience, there is no guarantee that the stock chosen will outperform
during the same 3 years (the time allocated), the solution indicated in choice number 1.
This type of solution is called heuristic. It is uncertain, unpredictable, and for the pres-
ent case impossible to estimate with precision the value of the investment after 3 years.

It is obvious that strategies as well as the ability to recognize, formulate, and solve
classes of problems can be taught and learned. Either solution, algorithmic or heuristic,
involves strategies, knowledge, understanding, abilities, and skills that can be grouped
together and are also called heuristics.

Heuristics are general rules or guidelines that help in planning the actions and strat-
egies involved in the problem-solving process. This methodology is generally hard to
teach and discuss and is often neglected in the classroom, but it has been practiced by
the engineering profession for many years and is commonly referred as the engineering
method.

TABLE 1.1

Growth of $1000 Placed at 6% Annually during 3 Years

Year Principal at Beginning Interest Earned Principal at Year’s End

1 $1000 $60 $1060
2 $1060 $63.60 $1123.60
3 $1123.60 $67.42 $1191.02

CRC_47744_Ch001.indd 33CRC_47744_Ch001.indd 33 7/10/2008 1:21:15 PM7/10/2008 1:21:15 PM

34 Practical MATLAB® Basics for Engineers

1.16 Problem-Solving Techniques (Heuristics)

Problem-solving techniques are also referred to as heuristics* and are a set of steps or
actions followed in the problem-solving process. Basically, these steps are designed to pro-
vide answers to the following questions:

How do we start the process of analyzing a given problem?
How do we start solving a problem?
What abilities are required?
What strategies are followed?

In a sense, heuristics are general guidelines, problem-solving procedures, or rules that
may help in the solution of a problem. In particular, the more complex a problem is, the
more we need a systematic approach to reach a solution. These rules are as follows:

Read carefully and clearly identify the purpose and goal of the problem.
Understand the problem; restate the problem to eliminate ambiguities and clarify
its objectives.
Identify the known information and look for hidden assumptions and consider
extreme cases to gain insight into a situation.
Identify the unknown- and wanted information.
Restate and simplify the problem in terms of known and unknown information
and state any additional assumptions and approximations. Human communica-
tion tends to be imprecise and by restating the problem, more than one interpreta-
tion may emerge.
Break the problem, if possible, into smaller, simpler, easy to manage problems.
Select appropriate notation to identify the known and unknown information, and
if benefi cial, defi ne intermediate variables.
Make a graph, fi gure, or drawing to help visualize the abstract elements of a prob-
lem (include a fl owchart when appropriate).
Construct a table. In some cases, a table may indicate a pattern that may lead to a
solution or a better understanding of the problem.
Replace the variables defi ned in the mathematical relations by their units and
check for consistency.
Construct a physical model when possible.
Determine which principles, equations, or models best describe the relation that
transforms the known information (called inputs) into the unknown (wanted)
variables (called outputs).
Guess a solution and check if indeed the guessed solution makes sense. Use trial
and error method.
State general solutions and systematically list other approaches, exhausting all
possibilities, eliminating the impossible but not the improbable.

* Do not be confused with heuristic solution.

•
•
•
•

•
•

•

•
•

•
•

•

•

•

•
•

•

•

CRC_47744_Ch001.indd 34CRC_47744_Ch001.indd 34 7/10/2008 1:21:16 PM7/10/2008 1:21:16 PM

Trends, the Industry, and MATLAB® 35

Select from all possible solutions the best one. The term “best” should be defi ned
by the problem solver. Best could mean different things to different people—it
could mean the shortest, clearest, easiest, simplest, or cheapest solution.
Once a solution is known, it is appropriate to work backwards. Verify if it is valid and
correct. Analyze and test the solution with simple data to see if indeed the solution
satisfi es the requirements of the problem. Estimate the results and analyze the impli-
cations, such as does the solution make mathematical, logical, or physical sense?
Test the solution using extreme and special cases and search for patterns or
symmetries.

Find alternate solutions and compare them.

1.17 Proofs and Simulations

Proving or verifying relations, equations, equalities, and theorems may also constitute
a problem, and a particular methodology is usually followed in the form of hypothesis,
proof (synthetic or analytic), and conclusion.

Hypothesis refers to the statements that are suffi cient to arrive to a conclusion. Synthetic
proof is a proof based on hypothesis as well as other known information such as axioms,
hard fact defi nitions, and other proven or accepted theorems. Analytic proof is a backward
proof that starts by exploring a conclusion and analyzing the conditions that satisfy the
conclusion.

The formal mathematical proofs are avoided in this chapter, and MATLAB is used as an
exhaustive tool to verify relations. The following example illustrates the technique.

Verify the following equality sinh(x) = (e x – e–x)/2 over the range 0 ≤ x ≤ 2π.

MATLAB Solution
>> x = linspace(0,2*pi,10);
>> y1 = sinh(x);
>> y2 = (exp(x)-exp(-x))./2;
>> disp(‘ ********R E S U L T S ************’)
>> disp(‘ x sinh(x) [exp(x)-exp(-x)]/2 ’);
>> disp(‘ ********************************’);
>> disp(‘ ’);
>> [x’ y1’ y2’]
>> disp(‘ ********************************’);

************R E S U L T S ***************
 x sinh(x) [exp(x)-exp(-x)]/2

ans =
 0 0 0
 0.6981 0.7562 0.7562
 1.3963 1.8963 1.8963
 2.0944 3.9987 3.9987
 2.7925 8.1305 8.1305
 3.4907 16.3885 16.3885
 4.1888 32.9639 32.9639
 4.8869 66.2687 66.2687
 5.5851 133.2054 133.2054
 6.2832 267.7449 267.7449

•

•

•

•

CRC_47744_Ch001.indd 35CRC_47744_Ch001.indd 35 7/10/2008 1:21:16 PM7/10/2008 1:21:16 PM

36 Practical MATLAB® Basics for Engineers

The preceding program generates three columns. They are

 1. The fi rst column represents x
 2. The second column represents y1 = sinh(x)

 3. The third column represents y2 = (ex − e−x)/2

By inspection it is easy to observe that y1 = y2, for any (arbitrary) value of x.
Simulation can also be very useful in analyzing a given problem and fi nding a solution

using the power of the computer. Simulation means that variables that represent a given
(usually physical) system can be created and analyzed under certain conditions over an
interval or range of interest, usually time, and quantitative or qualitative relationships
among variables can be observed.

1.18 Computer Solutions

A computer does not understand human language, has no feeling, preferences, and intel-
ligence. The only thing a computer is capable of doing is executing instructions extremely
fast, without making mistakes or getting tired. For a computer to execute instructions,
it is necessary to have an effective communication channel between the user and the
machine—a task that is accomplished by means of a computer language. A computer lan-
guage is similar to the human language in the sense that it follows a set of well-defi ned
syntax and semantic rules with the specifi c goal of being able to communicate an idea. The
syntax rules govern the grammar, format, and punctuation, whereas the semantic rules
provide the meaning.

Every computer understands at least one language, which then becomes the user or
machine interface. In this book, the interface language is MATLAB.

Problems can be solved using an algorithm or a simulation by means of a computer pro-
gram. A computer program is a set of instructions written in a computer language that has
to be input into a computer following strict and well-defi ned syntax rules (in general by
using a keyboard or mouse). Syntax rules are strict grammar rules and the correct spelling
of key words are essential. Any variation of the rules causes errors.

The instructions must follow the strict syntax rules so that the source code can be trans-
lated into machine code. If an instruction is incorrect, the computer will give an error
message or a wrong answer. An error is called a bug. Errors must be found and corrected,
a process called debugging. The instructions must be properly sequenced and all syntax
errors must be corrected before a program can produce the desirable result. The instruc-
tions or programs when accepted by the computer are fi rst stored in the computer memory
and then executed in a sequential order.

All calculations are done by the ALU. The results or partial results are stored in memory,
whereas the control unit manages the fl ow of instructions.

Information is usually stored in the computer memory as a variable.
What is a variable?
A variable is a name that can represent data, numbers, or strings that may change dur-

ing the execution of a program. MATLAB requires that all variables’ names be assigned a
value before they are used, except when defi ned as symbols (see Chapter 7).

CRC_47744_Ch001.indd 36CRC_47744_Ch001.indd 36 7/10/2008 1:21:16 PM7/10/2008 1:21:16 PM

Trends, the Industry, and MATLAB® 37

For example, the instruction A = 1.0 followed by pressing <enter> means that the
variable name A is assigned the value 1.0, and the value of 1.0 is stored in memory loca-
tion A.

If the next instruction of the program is A = A + 2 followed by <enter>, then the variable
A is assigned a new value of A = 1 + 2 and the new value for A becomes 3, and 3 is then
stored in the same memory location A. Note that the previous value of 1 in A is lost and
cannot be recovered.

The symbol “=” in most computer languages does not mean the algebraic sign equal to
but means “is assigned.” A constant, on the other hand, takes a specifi c value during the
execution of a program and does not change. An example of a constant is π = 3.1415….

It is a good programming practice to name variables and constants according to what
they represent. For example, β can be used as an argument of an angle, R1 as a resis-
tance, I1 as a current, w for angular velocity, and t for time. Variables and constants
are connected by operators to implement or model expressions, algorithms, or equa-
tions. These expressions are then processed by the computer software following a given
hierarchy.

The computer operators or connectors can be

 1. Arithmetic {+, –, *, /, }̂
 2. Relational {= =, >=, <=}
 3. Logical {~, &, |}

These operators tell the computer what, how, and when decisions are made, and what
type of processing needs to be done. The instructions that make up a program must fol-
low a correct sequence to lead to the correct result, but there may be more than one correct
sequence. The shortest correct sequence leading to the correct result constitutes the best or
the most effi cient program.

Finally, most computer languages have libraries of functions. Functions are instructions
that are frequently used in the solution of problems. They are defi ned by key words by
the computer software and perform specifi c computations such as sin(x), abs(x), log(x), and
max(x).

Variables, constants, operators, functions, expressions, and equations are used in the
solution of problems, and by applying the heuristics presented in Section 1.9 will hope-
fully lead the reader to the systematic solution of wide classes of problems.

1.19 The Flowchart

Probably the most important step in the process of problem solving by using a computer is
the construction of a fl owchart {heuristic (G)}, also called fl ow diagram.

The fl owchart is a graphical or pictorial representation of an algorithm showing the
steps involved as well as the interrelations of these steps in the solution of a problem.
A fl owchart also defi nes the problem in terms of the known and unknown variables, selec-
tion of appropriate notation in defi ning the variables and constants, and clearly indicates

CRC_47744_Ch001.indd 37CRC_47744_Ch001.indd 37 7/10/2008 1:21:16 PM7/10/2008 1:21:16 PM

38 Practical MATLAB® Basics for Engineers

the sequence of steps and decisions, program operations, principles, and equations used.
Each step in the algorithm process is defi ned by a box with a specifi c shape where the
shape identifi es the action or process. Loops represent repeating sequences of instructions
controlled by conditions imposed by the algorithm. Once a fl owchart is created, the writ-
ing of a corresponding computer program is an easy translation.

This book uses fi ve symbols in the construction of fl owchart. They are shown and
defi ned in Table 1.2.

Simple problems may not require the construction of fl owcharts, but for complicated
programs, fl owcharts are useful to organize the sequential steps involved in the logic
implementation of an algorithm solution.

Two examples are presented as follows, shown in Figures 1.13 and 1.14, which illustrate
the construction of fl owcharts for the case of algorithmic, recursive solutions.

Example 1.2

The fl owchart presented in Figure 1.13 illustrates the solution of the problem analyzed
in Table 1.1 and Section 1.8.

TABLE 1.2

Flowchart Symbols

Symbol Meaning

Indicates the beginning and end of a program

Process or instruction box, use for data manipulation,
computation, or movement of data

Flow line indicates the direction or sequence in which
data fl ows or the instructions are executed

Connectors are used to show continuation of logic fl ow

Decision or branching box represents a point in the
program where the logic fl ow will follow one of
two paths, depending on the situation (yes or no,
or true or false)

CRC_47744_Ch001.indd 38CRC_47744_Ch001.indd 38 7/10/2008 1:21:17 PM7/10/2008 1:21:17 PM

Trends, the Industry, and MATLAB® 39

FIGURE 1.13
Flowchart of Example 1.1.

Start

P = 1000
n = 1
I = 0.06

P = P + P ∗ I

n = n + 1

Output P

Stop

Is
n = 3?

Yes No

FIGURE 1.14
Flowchart of Example 1.2.

Start

Sum = 0
Prod = 1
n = 1

Sum = sum + n
Prod = prod ∗ n
n = n + 1

Outputs:
sum, prod

End

Is
n = 100?

YesNo

Example 1.3

Construct a fl owchart that computes the product and addition of all the integers from 1
to 99. The solution is a recursive algorithm, as illustrated in the fl owchart of Figure 1.14.

CRC_47744_Ch001.indd 39CRC_47744_Ch001.indd 39 7/10/2008 1:21:17 PM7/10/2008 1:21:17 PM

CRC_47744_Ch001.indd 40CRC_47744_Ch001.indd 40 7/10/2008 1:21:18 PM7/10/2008 1:21:18 PM

41

2
Getting Started

In a time of drastic change, the learners inherit the future. The learned usually fi nd
themselves equipped to live in a world that no longer exists.

Eric Hoffer

2.1 Introduction

Once MATLAB® is installed, it is time to start using it. MATLAB is best understood by
entering the instructions in your computer one at a time and by observing and studying the
responses. Learning by doing is probably the most effective way to maximize retention.

I hear and I forget

I see and I remember

I do and I understand

Confucius

In this chapter, MATLAB will be used as a simple calculator, and simple programming
techniques are introduced. MATLAB can be used as a powerful calculator that is capable
of representing information and performing basic calculations such as addition, subtrac-
tion, multiplication, and division. It can also handle trigonometric, logarithmic, and com-
plex numbers. Along with performing basic calculations, MATLAB can also be used to
plot and display data in a graphic format, which are topics and subjects of later chapters.
To get started, the reader needs to have information about the computer that he/she will
be using, such as

 1. How to switch on the computer
 2. How to access MATLAB* (assuming that MATLAB was installed in the reader’s

computer earlier)
 3. How to quit MATLAB and log off†

 4. How to access the command window of MATLAB to carry out the fi rst
examples

* To access MATLAB, click the MATLAB icon with your mouse, or access it by clicking the sequence: Start,
Programs, and MATLAB (windows environment). Once you see the MATLAB prompt, given by either
 character: >> or EDU >>, you are in the command window of MATLAB and you can start entering and
executing instructions.

† To exit MATLAB, type quit or exit at the prompt at the command window.

CRC_47744_Ch002.indd 41CRC_47744_Ch002.indd 41 6/13/2008 12:19:31 PM6/13/2008 12:19:31 PM

42 Practical MATLAB® Basics for Engineers

The assumption in this chapter, as well as in the remaining chapters of this book, is that
the reader is seated in front of a computer with access to an active MATLAB command
window.

2.2 Objectives

On reading this chapter, the reader should be able to

Launch MATLAB
Use MATLAB to perform simple arithmetic operations
Express constants
Defi ne, use, and assign values to variables
Use MATLAB as a calculator
Express small and large numbers in scientifi c notation
Write and execute simple MATLAB commands and functions
Manage the workspace
Understand the meaning of punctuation and comments
Control and manage the output screen
Interrupt and quit MATLAB
Use the Edit/Debugger window
Write simple fi les

2.3 Background

R.2.1 Constants are real numbers such as 18, 25, or 87 that represent information.*
R.2.2 Numbers can be expressed as positive or negative quantities such as +18, 18,

or −18. The plus sign is optional for positive quantities.
R.2.3 Decimal numbers are expressed in the conventional way such as 18.37, +18.37,

or −18.37.
R.2.4 Numbers such as 300,000 (= 3*105) can be expressed in MATLAB using scientifi c

notation as 3e05, or the number −0.003 (−3*10−3) can be expressed as −3e−3,
whereas 63,000,000 can be expressed as 6.3e7.

R.2.5 MATLAB does not care about spacing (except when working with complex
 numbers). For example, 4 + 2 = 4 + 2. Algebraic calculations do not require the
symbol “=”, if the result is not saved.

* Recall that real numbers can be rational or irrational. Rational numbers are integers or fractions that can
be represented as a decimal number with a fi nite number of characters, or can be periodic. Irrational
numbers cannot be expressed as a fraction, and can only be represented in decimal form by an infi nite
number of characters. π and √

__
 2 are examples of irrational numbers.

•
•
•
•
•
•
•
•
•
•
•
•
•

CRC_47744_Ch002.indd 42CRC_47744_Ch002.indd 42 6/13/2008 12:19:35 PM6/13/2008 12:19:35 PM

Getting Started 43

R.2.6 Commands are entered after the prompt (EDU >> or >>), and followed by a car-
riage return or by pressing the <enter> key.

R.2.7 If a mistake is made in entering an instruction, causing an error message, then the
whole instruction must be retyped or reentered. No characters can be modifi ed
in the command window after the <enter> key is pressed. The retyping can be
avoided by pressing the ↑ or ↓ keys. That action repeats the last instructions and
the error can then be corrected without the need of retyping.

The error-free instruction can then be executed by pressing the <enter> key.
R.2.8 Recall that MATLAB allows using one or several characters to defi ne or assign a

variable name. For example, A, AA, ABC, and a5.
A variable represents data stored in the (RAM) memory of the computer in use.

R.2.9 Variables may represent a scalar, a vector, an array, or a matrix (Chapter 3 deals
with arrays, vectors, and matrices).

R.2.10 MATLAB variable names are case sensitive and in general, Aa ≠ aA ≠ AA ≠ aa.
In some versions of MATLAB, sensitivity can be controlled by using the command

casesen on or casesen off.
R.2.11 Variable names can contain a large number of characters depending on the ver-

sion, but the characters beyond, let us say the fi rst 31 (character), are ignored.
Again, the length of a variable name is likely to change in future MATLAB
versions.

R.2.12 MATLAB variable names must start with a letter, followed by any other letter,
number, or underscore such as total_resistance and current_1.

R.2.13 MATLAB’s command’s structure follows the format

 variable_name = expression

 where the expression refers to a numerical, mathematical, or logical relation, which
is evaluated and the value is then assigned to variable_name on the left-hand side of
the equal.

R.2.14 MATLAB reserves special variable names to represent a function or a particular
constant. The most common reserve variables are listed in Table 2.1. The reader
should not create variables using these names.

R.2.15 MATLAB performs calculations based on the last value assigned to a variable.
R.2.16 The command clear deletes all the variables defi ned or used earlier.
R.2.17 The clear command can be made selective such as clear A, Aa, deleting only the

indicated variables: A and Aa; although clear A* deletes all variable names that start
with the character A.

R.2.18 The command clc clears the command window, but does not delete the variables
defi ned earlier.

R.2.19 The command clf clears the fi gure window.
R.2.20 The standard MATLAB algebraic symbols and some simple functions are defi ned

in Table 2.2.
R.2.21 Standard mathematical operations are evaluated from left to right, keeping in mind

the following rules:
a. The inside of the innermost set of parentheses in an expression is always

 evaluated fi rst.

CRC_47744_Ch002.indd 43CRC_47744_Ch002.indd 43 6/13/2008 12:19:35 PM6/13/2008 12:19:35 PM

44 Practical MATLAB® Basics for Engineers

TABLE 2.1

List of Reserved Variable Names

Variable Description

ans Temporary variable that stores the most recent answer.
computer Returns the computer type.
version MATLAB version.
ver Returns the information about the license and version of the MATLAB package

installed in your computer.
license License information.
pi The number π = 3.14159….
exp(1) The value of e = 2.71….
eps Represents the accuracy of fl oating point, the smallest possible positive number

with a magnitude of the order of 10−10.
realmin The smallest real positive number.
realmax The largest real positive number.
bitmax The largest positive integer, magnitude of 253 − 1.
fl ops Counts of the fl oating-point operations. fl op(0) starts the count of all algebraic

operations such as +, −, *, /.
inf Represents infi nity, (1/0).
nan Not a number, undefi ned (0/0).
i or j The value of √

 –1 . Denotes the imaginary part of a complex number.

input Accepts information via keyboard.
date Represents the current date as a string. For example, 25-Jul-00.
clock Represents the current date and time as YYMMDDHHMMSS.
beep Executes a beep sound.
etime (Tf , TI) Calculates elapse time in seconds between TI (initial) and Tf (fi nal). TI and Tf are

in vector form consistins of six elements (year month day hour minute second).
tic, toc Measures the time between the tic and the toc. The tic starts the stopwatch,

and the toc stops the stopwatch and outputs the elapsed time.
cputime Total time of MATLAB used in seconds.
Pause Stops executing a program momentarily.
Pause(n) Stops executing a program during n seconds.

TABLE 2.2

Matlab Operations

Symbol Operation Example Answer

+ Addition z = 4 + 2 z = 6
− Subtraction z = 4 − 2 z = 2
/ Right division z = 4/2 z = 2
\ Left division z = 2\4 z = 2
* Multiplication z = 4 * 2 z = 8
⋀ Exponentiation z = 4 ⋀ 2 z = 16
Functions such as:
sqrt, log

 square root log2 z = sqrt(4)
z = log2(4)

z = 2
z = 2

b. Then the hierarchy of operations is as follows:
 i. Functions such as sqrt(x), log(x), and exp(x)

 ii. Exponentiation (̂)
 iii. Products and division (*, /)
 iv. Addition and subtraction (+, −)

R.2.22 For example, evaluate the following mathematical expressions by transforming
them into MATLAB (notation) and estimate the values of x and y, respectively, by

CRC_47744_Ch002.indd 44CRC_47744_Ch002.indd 44 6/13/2008 12:19:35 PM6/13/2008 12:19:35 PM

Getting Started 45

hand using the operational hierarchy, then use MATLAB, and verify the results
obtained by hand.

a. x 4 2 4 7 2 1 4 13 2 2 2 *� � � � � �/()

b. y � � � �1 3 4 2 9 5 * 22 2 4 3(()) / �()
ANALYTICAL Solution

 Part (a)

 x = 4+23- √

 42-7 /(22-1) * 42-1 is converted to MATLAB notation as
 x = 4+2^3-sqrt(4^2-7)/(2 2̂-1) * 4 2̂-1 applying the hierarchy rules yields
 x = 4+2 3̂ - sqrt(16-7)/(4-1) * 4 2̂-1
 x = 4+2 3̂-sqrt(9)/3 * 4 2̂-1
 x = 4+2 3̂-3/3 * 4 2̂-1
 x = 4+8-3/3 * 16-1
 x = 4+8-16-1
 x = −5

 Part (b)

 y = 1+(32-4)2 / (√

 (24+9) +5) * 23 is converted to MATLAB notation as
 y = 1+(3^2-4)^2 / (sqrt(2^4+9)+5) * 2^3 applying the hierarchy rules yields
 y = 1+(9-4)^2 / (sqrt(16+9)+5) * 2^3
 y = 1+5^2 / (sqrt(25)+5) * 2^3
 y = 1+5^2 / (5+5) * 2^3
 y = 1+5^2 / 10 * 2^3
 y = 1+25 / 10 * 8
 y = 1+25 / 10 * 8
 y = 1+20
 y = 21

 MATLAB Solution
 .>> % part(a)
 >> x = 4+2^3-sqrt(4^2-7)/(2^2-1)*4^2-1

 x =
 −5

 MATLAB Solution
 >> % part(b)
 >> y = 1+(3^2-4)̂ 2/(sqrt(2 4̂+9)+5)*2^3

 y =
 21

R.2.23 The command who lists the variables currently used in the workspace.
R.2.24 The command whos lists the variables used with their respective sizes, where the

size is the number of elements that make up the variable (Chapter 3 deals with
arrays, vectors, and matrices, as well as their sizes).

R.2.25 A comment statement starting with the percentage symbol (%) does not affect any
executable MATLAB instruction, and cannot be continued on the next line.

R.2.26 Multiple statements can be placed on one line when they are separated by a comma
(,) or semicolon (;).

CRC_47744_Ch002.indd 45CRC_47744_Ch002.indd 45 6/13/2008 12:19:35 PM6/13/2008 12:19:35 PM

46 Practical MATLAB® Basics for Engineers

R.2.27 A semicolon (;) at the end of an instruction suppresses the echo, whereas a comma
does not.

R.2.28 An instruction statement that is long may be continued on the next line if the
 preceding line ends with an ellipsis, that is, three consecutive dots (…).

R.2.29 MATLAB can be interrupted at any time by pressing the Ctrl and C keys simultane-
ously (this action aborts a running MATLAB program).

R.2.30 MATLAB is, in general, case sensitive (mentioned in R.2.10 for the case of variable
names), and MATLAB commands and functions always use lowercase characters.

R.2.31 The fl ow of information can be controlled when many screens of information are
available by typing the command more at the MATLAB prompt. The output on the
screen is then controlled, and one output screen is displayed at a time.

R.2.32 The default data used by MATLAB is of double precision, but the format of the
display is defi ned by setting the format type indicated in Table 2.3.

Table 2.3 uses the display of the value of “e” as an illustration (expressed in
 MATLAB notation as exp(1)).

The formats long and short use fi xed-point notation, whereas all the other formats use
fl oating-point notation, conforming to the Institute of Electrical and Electronics Engi-
neers (IEEE) standard for double-precision arithmetic, discussed later in this section.

R.2.33 The fi xed-point representation is used to represent integers, where its magnitude is
stored in one place, but the point position is not stored with the number and must
be remembered by the programmer. Integers are expressed without the decimal
point and are not subject to round-off errors.

R.2.34 The fl oating-point notation represents an arbitrary decimal number (with a decimal
point) that may be stored with or without an exponent, usually a number times 10
raised to a power, emulating scientifi c notation.

MATLAB represents all the numbers using the fl oating-point format.
R.2.35 The MATLAB command isieee returns a message indicating if the software used

by the reader conforms to the IEEE standard. For example, NaN (not a number) is
the IEEE fl oating-point standard message for an undefi ned result such as a number
divided by zero.

R.2.36 MATLAB accepts two types of data fi les: MATLAB and ASCII * fi les (see Chapter 9
for additional information).

* ASCII stands for the American Standard Code Information Interchange, defi ned in Chapter 3.

TABLE 2.3

Precision Formats

MATLAB Instruction Display Numerical Output exp(1)

format short 4 decimal digits (default) 2.7183
format long 16 decimal digits 2.71828182845905
format short e 4 decimal digits plus exponent 2.7183e+000
format long e 15 decimal digits plus exponent 2.71828182845904e+000
format bank 2 decimal digits 2.72
format + +, −, 0 (positive, negative, and zero) +
format hex Hexadecimal 4005bf0a8b14576a
format rat Rational approximation 1457/536
format compact Suppress extra line-feeds 2.7183
format loose Puts the extra line-feeds back in 2.7183

CRC_47744_Ch002.indd 46CRC_47744_Ch002.indd 46 6/13/2008 12:19:36 PM6/13/2008 12:19:36 PM

Getting Started 47

R.2.37 MATLAB fi les are stored in memory in an effi cient binary format and can be read
and used in any MATLAB environment.

R.2.38 ASCII fi les are useful if the information stored consists of numbers that may be
used in a non-MATLAB environment.

R.2.39 To save data using the ASCII format on a fl oppy disk, type a:\myfi le.dat variables –
ASCII, where a:\ is the path to the fl oppy, myfi le the fi le name, dat the extension, and
variables the variable names to be saved.

For any additional information, refer to Chapter 9 that deals with fi les and fi le-
related commands.

R.2.40 To read myfi le.dat, stored in a fl oppy or in the hard drive (of your computer) into the
workspace (command window), type load myfi le.

R.2.41 To save the content of the workspace in a MATLAB fi le, type save mywork, or click
File, followed by: Save Workspace as: mywork.

R.2.42 The command load mywork reads the fi le: mywork into the command window.
R.2.43 MATLAB fi les with extension m are referred to as Mfi les.
R.2.44 MATLAB uses two types of M-fi les: script and function fi les. Script and function fi les

should be saved in the current folder (default), which is available when working in
the MATLAB domain. Script and function fi les are revisited in Chapter 9, and the
concept of accessing a fi le is redefi ned as being in the path fi le search.

R.2.45 The content of a script fi le may be a program, data, or just a set of instructions that
are created using the Edit/Debugger built into MATLAB. The edit window can be
accessed in the MS Windows environment by the following sequence of actions;
once in the command window: File→New→M-File.

A program can then be typed using the MATLAB word-processor software
and keyboard. When typing is completed, select (from the fi le menu) File→Save
as→and replace in the dialog box the file name of your choice (starting with a
letter) and then (click) save. The Editor/Debugger automatically provides the
extension m, and the variables defined in the script file once called become
global or part of the workspace. The file can be called (executed) by typing,
while in the command window, the script file’s name (with no extension).

R.2.46 Script fi les are used to process a sequence of commands that are stored in
the computer memory by typing just one word—the fi le’s name. The fi le is
then executed without any display at the command window; unless the echo com-
mand is activated, or a command ends with a comma, or a required output is
programmed.

R.2.47 A function fi le is created following the same sequence of steps outlined for the script
fi les, but the fi rst line follows the syntax

 function [output_variables] = function_name(input_variables)

 where the input_variables are local, which means that their values can be used only
within the function fi le.

R.2.48 A function fi le can be called by typing the following at the command window:

 [output_variables] = function_name(input_variables)

Function fi les evaluate and return the output_variables given the input_variables.

CRC_47744_Ch002.indd 47CRC_47744_Ch002.indd 47 6/13/2008 12:19:36 PM6/13/2008 12:19:36 PM

48 Practical MATLAB® Basics for Engineers

R.2.49 The following example illustrates a script fi le that is used to solve for the roots of
the quadratic equation of the form, ax2 + bx + c = 0:

MATLAB Solution
% Script file: rootsquad
% Return the roots of the equation of the form ax^2+bx+c=0
disp(‘***’) % display
 messages
disp(‘ This script file solves for the roots of the ’);
disp(‘quadratic equation of the form: ax^2+bx+c=0’);
disp(‘***’)
a = input(‘*** Enter the coefficient a :’);
b = input(‘*** Enter the coefficient b :’); % the inputs a assigned

to a, b and c
c = input(‘*** Enter the coefficient c :’);
disp(‘***’)
disp(‘The roots of the quadratic equation’)
disp(‘of the form: ax^2+bx+c=0, are :’)
root1 = (-b+sqrt(b^2-4*a*c))/(2*a) % display the
 roots
root2 = (-b-sqrt(b^2-4*a*c))/(2*a)
disp(‘***’)

This fi le is Save As … rootsquad (use the fi le menu) automatically in the current
MATLAB folder.

R.2.50 The preceding script fi le, rootsquad of R.2.49 is tested below for the following
 quadratic equations:
a. 2x2 + 3x + 7 = 0

b. πx2 + 2πx + 3π = 0

c. log10(32.3)x2 + sqrt(33 + 1.333.3)x + tan(1.112) = 0

Recall that while at the command window, the script fi le is called and executed
by typing rootsquad. The resulting process is shown below:

MATLAB Solution
>> rootsquad

**
This script file solves for the roots of the
quadratic equation of the form: ax^2+bx+c=0
**
*** Enter the coefficient a :2
*** Enter the coefficient b :3
*** Enter the coefficient c :7
**
The roots of the quadratic equation
of the form: ax^2+bx+c=0, are :
 root1 =
 −0.7500 + 1.7139i

CRC_47744_Ch002.indd 48CRC_47744_Ch002.indd 48 6/13/2008 12:19:36 PM6/13/2008 12:19:36 PM

Getting Started 49

 root2 =
 −0.7500 - 1.7139i
**

>> rootsquad

**
This script file solves for the roots of the
quadratic equation of the form: ax^2+bx+c=0
**
*** Enter the coefficient a : pi
*** Enter the coefficient b : 2*pi
*** Enter the coefficient c : 3*pi
**
The roots of the quadratic equation
of the form: ax^2+bx+c=0, are :
 root1 =
 −1.0000 + 1.4142i
 root2 =
 −1.0000 - 1.4142i
**

>> rootsquad

**
This script file solves for the roots of the
quadratic equation of the form: ax^2+ bx+c=0
**
*** Enter the coefficient a :log10(32.3)
*** Enter the coefficient b :sqrt(3^3+1.33^3.3)
*** Enter the coefficient c :tan(1.112)
**
The roots of the quadratic equation
of the form: ax^2+bx+c=0, are :
 root1 =
 −0.4217
 root2 =
 −3.1810
**

R.2.51 Using MATLAB, let us verify the results obtained in the examples of R.2.50 by
executing the following instructions:

MATLAB Solution
>> % part(a), verify if root1 and root2 (below) satisfy the equation:
 2x2 + 3x + 7 = 0
>> root1 = −0.7500+1.7139i;
>> root2 = −0.7500−1.7139i;
>> check _ eq _ a _ root1 = 2*root1.̂ 2+3*root1+7

 check _ eq _ a _ root1 =
 9.3580e-005

>> check _ eq _ a _ root2 = 2*root2.̂ 2+3*root2+7

CRC_47744_Ch002.indd 49CRC_47744_Ch002.indd 49 6/13/2008 12:19:36 PM6/13/2008 12:19:36 PM

50 Practical MATLAB® Basics for Engineers

 check _ eq _ a _ root2 =
 9.3580e-005

>>% part (b),verify if root1 and root2 (below) satisfy the equation:
 πx2+2πx+3π=0
>> root1 = -1.0000+1.4142i;
>> root2 = -1.0000-1.4142i;
>> check _ eq _ b _ root1 = pi*root1.̂ 2+2*pi*root1+3*pi

 check _ eq _ b _ root1 =
 1.2051e-004

>> check _ eq _ b _ root2 = pi*root2. ^2 + 2*pi*root2 + 3*pi

 check _ eq _ b _ root2 =
 1.2051e-004

>> % part (c) , verify if root1 and root2 (below)
>> % satisfy the equation: log10(32.3)x2+sqrt(33+1.333.3) x + tan(1.112)=0
>> root1 = -0.4217;
>> root2 = -3.1810;
>> check _ eq _ 3 _ root1=log10(32.3)*root1.̂ 2+sqrt(3^3+1.33^3.3)*root1+
 tan(1.112)

 check _ eq _ c _ root1 =
 2.4166e-005

>> check _ eq _ c _ root2=log10(32.3)*root2.̂ 2+sqrt(3^3+1.33^3.3)*root2+
 tan(1.112)

 check _ eq _ c _ root2 =
 1.2869e-004

Note that the results obtained by the check_eq_ … is not exactly zero, but very
close to zero, due to the round-off errors and approximations.

R.2.52 Let us now illustrate the use of a function fi le to solve the same quadratic equation
defi ned in R.2.49 (of the form ax2 + bx + c = 0).

MATLAB Solution
function [root1,root2] = func _ quad _ sol(a,b,c)
% function file : func _ quad _ sol
% Returns the roots of the equation: ax^2 + bx + c = 0
% The outputs are: roots1 and root 2
% The inputs are the coefficients: a, b, and c
disp(‘***’);
disp(‘ This function file solves for the roots of the ’); % display message
disp(‘quadratic equation of the form: ax^2+bx+c=0’);); % display message
disp(‘given the coefficients a, b, and c as inputs’);); % display message
root1 = (-b+sqrt(b^2-4*a*c))/(2*a); % the roots are
 evaluated
root2 = (-b-sqrt(b^2-4*a*c))/(2*a);
disp(‘*************The roots are:*******************’); % display message
root1 % returns roots
root2
disp(‘***’); %display message

 This fi le is Save As… func_quad_sol in the default current MATLAB folder.

CRC_47744_Ch002.indd 50CRC_47744_Ch002.indd 50 6/13/2008 12:19:37 PM6/13/2008 12:19:37 PM

Getting Started 51

R.2.53 The preceding function fi le, func_quad_sol, is tested for the same quadratic equations
used for the script fi le: rootsquad, indicated below:
a. 2x2 + 3x + 7 = 0

b. πx2 + 2πx + 3π = 0

c. log10(32.3)x2 + sqrt(3^3 + 1.33^3.3)x + tan(1.112) = 0

Recall that while at the command window, the function fi le is called by typing
func_quad_sol(a,b,c), and the results are shown as follows.

MATLAB Solution
>> func _ quad _ sol(2,3,7)

This function file solves for the roots of the
quadratic equation of the form: ax^2+bx+c=0
given the coefficients a, b, and c as inputs
*************The roots are:*********************************
 root1 =
 −0.7500 + 1.7139i
 root2 =
 −0.7500 − 1.7139i

>> func _ quad _ sol(pi,2*pi,3*pi)

This function file solves for the roots of the
quadratic equation of the form: ax^2+bx+c=0
given the coefficients a, b, and c as inputs
*************The roots are:*********************************
 root1 =
 −1.0000 + 1.4142i
 root2 =
 −1.0000 - 1.4142i

>> func _ quad _ sol(log10(32.3), sqrt(3^3+1.33^3.3),tan(1.112))

This function file solves for the roots of the
quadratic equation of the form: ax^2+bx+c=0
given the coefficients a, b, and c as inputs
*************The roots are:*********************************
 root1 =
 −0.4217
 root2 =
 −3.1810

R.2.54 Observe that script or function fi les can be useful in the solution of any problem,
specially if the same type of problem is repeatedly encountered. The solution then
consists of calling the M-fi le name. Also observe that script fi les are profoundly
different from function fi les. Function fi les take the input variables and return the
output variables that must be defi ned in the fi rst line of the command, and the vari-
ables become local. Script fi les may ask for input variables during the execution of
the fi le and all the variables once defi ned become global.

CRC_47744_Ch002.indd 51CRC_47744_Ch002.indd 51 6/13/2008 12:19:37 PM6/13/2008 12:19:37 PM

52 Practical MATLAB® Basics for Engineers

R.2.55 It is important that a fi le or program be written in a way that can be easily under-
stood by any user or reader. A good program is one that is logical in the sequence of
instructions, and every instruction has a well-defi ned and clear objective. Clarity
is greatly improved by the appropriate choice of variable names and the use of
 comments. Comments are nonexecutable statements (R.2.25) that are generally
used with the sole objective of improving clarity and readability of the instruc-
tions, which make up a program.

R.2.56 Files (script and function), fi le creation, modifi cation and saving, fi le commands,
fi le structure and organization, fi le addresses and search path, and fi le compiling
(parsing) are revisited with details in Chapter 9.

2.4 Examples

Example 2.1

Write a MATLAB program that evaluates the hypotenuse of a right triangle with sides
A = 4 and B = 3, shown in Figure 2.1.

ANALYTICAL Solution

Applying the Pythagorean theorem to the triangle of Figure 2.1, the hypotenuse C is
given by

 C = √

 A2 + B2 = √

 32 + 42 = 5

MATLAB Solution
>> % enter the following sequence of instructions:
>>A = 3; % length of one side of the right triangle
>>B = 4; % length of second side of the right triangle
>>C = sqrt(A^2+B^2); % length of hypotenuse is evaluated
>> Hypotenuse = C; % displays the result or solution
>> Hypotenuse

 Hypotenuse =
 5

Observe that only the command window is used in this example, and the (display) solu-
tion is given by the variable Hypotenuse.

C A = 4

B = 3

FIGURE 2.1
Right triangle of Example 2.1.

CRC_47744_Ch002.indd 52CRC_47744_Ch002.indd 52 6/13/2008 12:19:37 PM6/13/2008 12:19:37 PM

Getting Started 53

Example 2.2

Write a program that returns the average value giving three arbitrary numbers repre-
sented by the variables A, B, and C. Test the program for A = 35, B = 21, and C = 13.

MATLAB Solution
Enter the following instructions:*
>> A = input (‘Enter the value of the first number: A = ’);

 Enter the value of the first number: A = 35

>> % note that 35 is assigned to A
>> B = input (‘Enter the value of the second number: B = ’);

 Enter the value of the second number: B = 21

>> % 21 is assigned B
>> C = input (‘Enter the value of the third number: C = ’);

 Enter the value of the third number: C = 13

>> % 13 is assigned C
>> format compact % suppress extra line-feed
>> The _ average _ is = (A+B+C)/3 % returns the average

 The _ average _ is =
 23

 Note that this program can easily be converted into a script or function fi le.

Example 2.3

Write a program that returns the balance of a bank account, after a period of n = 5 years,
where the present value is denoted by the variable P and the interest by I, for the case of
P = $7300, and I = 2.7%.†

MATLAB Solution
 (in the command window)
>>P =7300;
>>I =2.7;
>>n =5;
>>format bank % uses two decimal digits
>>Total _ amount = P*(1+I/100)̂ n % total amount, capital +

interest
 Total _ amount =
 8340.17

Example 2.4

Enter and evaluate the following expressions using MATLAB:

 1. a = e

 2. b = e3

* The input command is defi ned in Chapter 3, Section 3.3, R.3.2, and also in Table 2.1. Its use was explained in
Example 2.1.

† See Chapter 1, Section 1.8, for the equations that relate P, I, and n.

CRC_47744_Ch002.indd 53CRC_47744_Ch002.indd 53 6/13/2008 12:19:37 PM6/13/2008 12:19:37 PM

54 Practical MATLAB® Basics for Engineers

 3. c = ln(e) + ln(e3)(*)

 4. d = log(e) + log(e3)(†)

 5. e = π
 6. f = cos(π/4)

 7. g = e (3 √

 131) ‡

 8. h = log(5) + loge(5) + log2(5)§

(Exponential and trigonometric functions are revisited in Chapter 4.) At this point,
let us gain some experience just by entering the above commands and observing their
respective responses.

MATLAB Solution
>> % use only the command window
>> format short
>> a = exp(1)

 a =
 2.7183

>> b = exp(3)

 b =
 20.0855

>> c = log(exp(1))+log(exp(3))

 c =
 4

>> d = log10(exp(1))+log10(exp(3))

 d =
 1.7372

>> e = pi

 e =
 3.1416

>> f = cos(pi/4)

 f =
 0.7071

>> g = exp(3*sqrt(131))

 g =
 8.1693e+014

>> h = log10(5)+log(5)+log2(5)

 h =
 4.6303

* ln(x) is the natural logarithm of x expressed in MATLAB as log(x).
† log(x) is the logarithm base 10 of x expressed in MATLAB notation as log10(x). For additional information

about logarithms see Chapter 4.
‡ ex is expressed in MATLAB as exp(x).
§ log2(x) is expressed in MATLAB as log2(x).

CRC_47744_Ch002.indd 54CRC_47744_Ch002.indd 54 6/13/2008 12:19:37 PM6/13/2008 12:19:37 PM

Getting Started 55

Example 2.5

The main objective of this example is to gain experience by just observing the MAT-
LAB responses to some frequently used commands involving constants, and functions
defi ned in this chapter, as well as performing simple numerical calculations, defi ned by
the (%) comments.

>> format long % define in Table 2.3
>> a = pi

 a = 3.14159265358979

>> b = eps % Matlab’s smallest number

 b =
 2.220446049250313e-016

>> flops (0) % starts the count of algebraic operations
>> c = a+b % the smallest number that can be added to pi

 c =
 3.14159265358979

>> d = realmax % Matlab’s largest positive real number

 d =
 1.797693134862316e+308

>> e = realmin % the smallest positive real number

 e =
 2.225073858507201e-308

>> f = bitmax % exact representation of the largest integer

 f =
 9.007199254740991e+015

>> flops % counts the number of floating-point operations

 ans =
 2

>> date % returns the current date

 ans =
 29-Apr-2001

>> format short
>> clock % returns the current date and time

 ans =
 1.0e+003*
 2.0010 0.0040 0.0290 0.0080 0.0470 0.0551

>> cputime % returns the time

 ans =
 1.0866e+003

>> computer % Matlab returns the computer type used

 ans =
 PCWIN

CRC_47744_Ch002.indd 55CRC_47744_Ch002.indd 55 6/13/2008 12:19:38 PM6/13/2008 12:19:38 PM

56 Practical MATLAB® Basics for Engineers

>> ver % Matlab’s version

<Student Edition>MATLAB Version 5.3.0.62a (R11) PCWIN
License Number:0
MATLAB Toolbox Version 5.3 (R11) 15 January-1999
Symbolic Math Toolbox Version 2.1 (R11) 11 Septemb-1998
Signal Processing Toolbox Version 4.2 (R11) 10 July-1998

 Control System Toolbox Version 4.2 (R11) 15 July-1998
 **
 >> beep % executes a sound beep, if sound card was (on)
 installed
 >> license

 ans =
 0

Example 2.6

Draw a fl ow chart and write a program that evaluates (see Figure 2.2)

 1. The circumference of a circle
 2. The area of a circle
 3. The volume of a sphere with the following radii: r1 = 1.5 and r2 = 2.5

ANALYTICAL Solution

FIGURE 2.2
Flowchart of Example 2.6.

 Start
Format compact

r1=1.5

Convert to strings
the variables:
Circumf_r1

Area_r1
Vol_r1

Circumf_r2
Area_r2
Vol r2

End

Print the values of:
Circumf_r1

Area_r1
Vol_r1

Circumf_r2
Area_r2
Vol_r2

Circumf_r1=2∗pi∗r1
Area_r1=r1∗r1∗pi

Vol_r1=4∗pi∗r1^3/3
r2=2.5

Circumf_r2=2∗r2∗pi
Area_r2=r2∗r2∗pi

Vol_r2=4∗pi∗r2^3/3

CRC_47744_Ch002.indd 56CRC_47744_Ch002.indd 56 6/13/2008 12:19:38 PM6/13/2008 12:19:38 PM

Getting Started 57

MATLAB Solution
>> format compact
>> r1 = 1.5;
>> % evaluate circumf, area and volumes for r1=1.5
>> circumf _ r1 = 2*pi*r1;
>> area _ r1= r1*r1*pi;
>> vol _ r1= 4*pi*r1̂ 3/3;
>> % evaluate circumf, area and volumes for r2=2.5
>> r2 = 2.5;
>> circumf _ r2 = 2*pi*r2;
>> area _ r2 = r2*r2*pi;
>> vol _ r2 = 4*r2*area _ r2/3;
>> % convert numbers to strings
>> cirr1= num2str(circumf _ r1); % see footnote (*)
>> arear1= num2str(area _ r1);
>> volr1= num2str(vol _ r1);
>> cirr2= num2str(circumf _ r2);
>> arear2 = num2str(area _ r2);
>> volr2 = num2str(vol _ r2);
>> % returns the results
>> disp(‘******** results ********’)
>> disp(‘For the circle with radius 1.5’)
>> disp([‘The circumference is’,cirr1])
>> disp([‘The area is’,arear1])
>> disp([‘The volume is’,volr1])
>> disp(‘******************’)
>> disp(‘For the circle with radius 2.5’)
>> disp([‘The circumference is’,cirr2])
>> disp([‘The area is’, arear2])
>> disp([‘The volume is ’,volr2])
>> disp(‘******************’)

******** results ********
For the circle with radius 1.5
The circumference is 9.4248
The area is 7.0686
The volume is 14.1372

For the circle with radius 2.5
The circumference is 15.708
The area is 19.635
The volume is 65.4498

2.5 Further Analysis

Q.2.1 Load and run the program of Example 2.1.
Q.2.2 Run Example 2.1 without the semicolons (;). Comment on your result.

* num2str converts a number into a sequence of characters (string).

CRC_47744_Ch002.indd 57CRC_47744_Ch002.indd 57 6/13/2008 12:19:38 PM6/13/2008 12:19:38 PM

58 Practical MATLAB® Basics for Engineers

Q.2.3 Modify and rerun Example 2.1 by using the minimum number of lines (not
instructions).

Q.2.4 Rerun Example 2.1 with A = 1/3 and B = π.
Q.2.5 Enter and execute the command that returns the variables used in Example 2.1.
Q.2.6 Rerun Q.2.4 by using the commands format short, format long, format e, and format

long e. Compare your results and comment on them.
Q.2.7 Enter, execute and defi ne the command clear A.
Q.2.8 Enter and execute the command that returns the variable names and their sizes

that are currently in the workplace.
Q.2.9 Enter clear B. Comment.
Q.2.10 Repeat Q.2.8. Comment.
Q.2.11 Press Ctrl and the C keys simultaneously. Explain its action.
Q.2.12 Convert, save, and run the program of Example 2.1 as a script fi le. Call this new fi le

Example_2.1.
Q.2.13 Convert, save, and run Example 2.1 as a function fi le. Defi ne its input and output

variables.
Q.2.14 Load and run the program of Example 2.2.
Q.2.15 Modify Example 2.2 such that variables A, B, and C are defi ned in one line.
Q.2.16 Modify Example 2.2 for the case of fi ve numbers. Use A, B, C, D, and E to defi ne the

variables involved.
Q.2.17 Load and run the program of Example 2.3.
Q.2.18 Rerun Example 2.3 for the following cases: P = $1000, I = 6%, and n = 1, 2, and

5 years.
Q.2.19 Calculate Q.2.18 by hand and compare the results.
Q.2.20 Load and run the instructions of Example 2.4.
Q.2.21 Using a calculator, evaluate each of the expressions of Example 2.4 and compare

them with the answers obtained for Q.2.20.
Q.2.22 Enter and execute the instruction who, and record and describe the display.
Q.2.23 Enter and execute the instruction whos, and record the display.
Q.2.24 Compare the outputs of Q.2.22 with Q.2.23.
Q.2.25 Enter clear.
Q.2.26 Repeat Q.2.22 and record and describe the display.
Q.2.27 Enter clc and observe and comment on the results.
Q.2.28 Load and run the program of Example 2.5.
Q.2.29 Use the tic, tac commands to measure the execution time employed to run Example 2.5.
Q.2.30 Load and run the program of Example 2.6.
Q.2.31 How many variables are used in Example 2.6? What are the variable types?
Q.2.32 Defi ne the objective of the instruction format compact.

Q.2.33 Use the tic, tac commands to measure the execution time of Example 2.6.
Q.2.34 Check if the fl op command is defi ned by your software. If it is, use it to count the num-

ber of operations executed in Example 2.6.
Q.2.35 Defi ne what is a MATLAB function fi le.

CRC_47744_Ch002.indd 58CRC_47744_Ch002.indd 58 6/13/2008 12:19:38 PM6/13/2008 12:19:38 PM

Getting Started 59

Q.2.36 Defi ne what is a MATLAB script fi le.
Q.2.37 Discuss what is meant by an M-fi le.
Q.2.38 What is the syntax of a MATLAB function?
Q.2.39 Give at least three examples of MATLAB functions.

2.6 Application Problems

P.2.1 A $314 coat has a discount of 30%. What is the price of the coat?
P.2.2 What percentage of 60 is 53?
P.2.3 Evaluate the following expressions using the MATLAB arithmetic hierarchy

expressed with a minimum number of parenthesis.
a. 25/(26 − 1)
b. e4

c. ln(e4)
d. log10(e4)
e. e π √

 121

 f. cos(π/4) + sin2(π/3)
g. loge(e3) + log10(e)
h. area = π * (π/3)2

P.2.4 Solve for x for each of the equations given below.
a. 2x = 7
b. ln(x) = 3
c. ex = 10

d. √

 3 1/3 ⋅ 9 1/3 = (1 __ 3)
x

e. √
__

 2 ___
63 = 3x

P.2.5 A student gets 9 questions right on a 20-question test.
a. Write a MATLAB program that returns the percentage of correct answers.
b. What should the student’s grade be if all the questions have the same value?
c. What should the student’s grade be if three questions are worth 5%, two are

worth 6%, and the remaining four are worth 7%?
Table 2.4 indicates the grades as a percentage of correct responses.

TABLE 2.4

Grades as a % of Academic Performance

Percentage Grade

90–100 A
80–89 B
70–79 C
65–69 D
Less than 65 E

CRC_47744_Ch002.indd 59CRC_47744_Ch002.indd 59 6/13/2008 12:19:38 PM6/13/2008 12:19:38 PM

60 Practical MATLAB® Basics for Engineers

P.2.6 Evaluate the following algebraic expressions by hand (with the help of a calculator)
and by using MATLAB. Employ the minimum number of parentheses when using
MATLAB, where A = 1, B = 1.5, C = 2, D = 2.5, and E = 3.

a. Y = (A + B)D + [D * E ______
 A + B] 2

b. X =
((A + B) * C)2

D * (E + A)2

c. Z = √

 B c + (E D * (B + D)) 2

d. V = B * [C4
 ______ E − D]

e. W = 4 * π * √
__

 D

f. R = 4 D ______
1 − E B

P.2.7 Evaluate

 Y = (1 + 1 __ N + 1 ___
 N 2

) N for N = 10,000 and 1000

P.2.8 Repeat problem P.2.5 part(a) for the cases of 7, 11, and 15 questions right from the
same total of 20, assuming that all the questions are equally important.

P.2.9 A room size is 13.5 by 8 1/6 feet. The cost of a square foot of a carpet including
installation is $17.15. How much will it cost to carpet the entire room?

P.2.10 Ann earns $8.50/h and she is paid an additional 50% for any time exceeding the fi rst
35 hours weekly. Draw a fl ow chart and write a program of how much she would
earn if she worked 43 and 58 h/week.

P.2.11 Seven cans of soda cost $3.50. How much would a dozen cost?
P.2.12 An investor buys a product for $5635. If the investor wants to make a profi t of

18.50%, what should the selling price be?
P.2.13 A product is sold at $730 and its cost is $583. Determine the profi t as a percentage

of the cost.
P.2.14 A house and its corresponding plot of land were bought for $250,000. The plot costs

2/3 of the price of the house. What is the price of the house?
P.2.15 Using MATLAB, evaluate the following quantities:

a. 5% of 20
b. 5% of 5
c. 100% of 3
d. 150% of 17
e. 10% of 5/8

P.2.16 Write a MATLAB program and draw a clear fl owchart that divides $26,500 into
four partners A, B, C, and D. The division is made on the following: A receives 3/5
of the amount of B, C receives 1/4 of the amount of A, and D receives 2/3 of the
amount assigned to C.

P.2.17 In a given organization, four out of seven workers are men. How many women
work for the organization if it employs 580 men?

CRC_47744_Ch002.indd 60CRC_47744_Ch002.indd 60 6/13/2008 12:19:39 PM6/13/2008 12:19:39 PM

Getting Started 61

P.2.18 A student wants to get an average of 91 on his English course. What should be the
score on the sixth quiz if he/she has scored 91, 98, 82, 88, and 93 on the earlier fi ve
quizzes?

P.2.19 The estimated transmission of a telex costs $0.15 per word. Write a program and
draw a fl owchart that accepts as inputs the number of words of a message and
returns the total cost.

P.2.20 Write a program that returns the perimeter, area of a circle, and the volume of a
sphere with a radius of π/4, with a precision of 16 decimal digits.

P.2.21 Mr. X has agreed to buy a car for $13,800. Registration is $45 and NYC taxes are
8.65%. The car dealer is offering three options:
a. Pay in full with a rebate of $1200.
b. Pay 70% of the amount and the remaining balance at an interest rate of 3.5% for

5 years.
c. Full fi nancing with an interest rate of 4.75% during 3 years with a rebate of $750

at the end.
 Which is the best option, if the cost of money is 3.6% a year?

P.2.22 A college has a population of 8000 students, of which 30% are women. The admin-
istration wishes to increase enrollment until half the student body are women.
How many more women should be enrolled?

P.2.23 A student takes four exams. The exams are worth 10, 20, 30, and 40%, respectively,
of the fi nal grade. All exams are graded on the basis of 100. Write a program to
determine the student’s fi nal grade (use Table 2.4).

P.2.24 A triangle with side lengths a, b, and c is given. The area A is given by Hero’s
(Balador, 2000) formula as A = √

 s(s − a)(s − b)(s − c), where s = (a + b + c)/2. Write

a MATLAB program that returns the area for the following triangles with side
lengths:
a. 5, 7, and 9
b. 15, 20, and 32

P.2.25 Three points given in terms of the Cartesian coordinates system defi ne a triangle.
Write a program to compute the area of the triangle if the vertex points are given
by the following points:

 P1(1, 1), P2(2, 4), and P3(3,2).

 Note that the distance between two points, P1(X1, Y1) and P2(X2, Y2), in terms of
its coordinates is given by

 Distance = √

 (X1 − X2) 2 + (Y1 − Y2) 2

P.2.26 Two Cartesian coordinates points are given by P0(X0, Y0) and P1(X1, Y1), then the
slope of the line passing through these points is given by

Slope =
Y1 − Y0 ________
X1 − X0

 The distance between points P0 and P1 is given in P.2.25.

CRC_47744_Ch002.indd 61CRC_47744_Ch002.indd 61 6/13/2008 12:19:39 PM6/13/2008 12:19:39 PM

62 Practical MATLAB® Basics for Engineers

Using MATLAB, compute the slope and distance for the following sets of points:
a. P0(5, −1); P1(3, 2)
b. P0(8, 1); P1(9, 0)
c. P0(5, 3); P1(−1, 7)

P.2.27 Write a MATLAB program that returns the number of seconds in a day, a month,
and a year.

P.2.28 Write a program that converts a six-digit time array from hh/mm/ss to minutes.
P.2.29 Write a program that converts the following:

a. 23°F to °C
b. 132° to rad
c. 15 gal to L
d. 13.5 miles to meters
e. 13 ft to meters
f. 3.42 inches to meters
g. 5.5 ft3 to gal
h. 6.32 miles to inches
i. 12.3 qt to ft
 The following relations may be of help:
 1 gal = 3.785 L
 1°F = (9/5) * °C + 32
 1 mi = 1609.3 m
 1 ft3 = 23.3168 L
 1 qt = 0.9464 L
 1 ft = 0.3048 m
 1 in. = 0.0254 m
 1 rad = 360° ____ (2π)

 P.2.30 Three scales: Celsius, Fahrenheit, and kelvin are used by engineers to measure
temperature. The conversion formulas are given in Table 2.5.

 Write a MATLAB program that converts
a. 132.3°C to °F
b. 273 K to °C
c. 32 K to °F
d. The temperature of boiling water expressed in degree Fahrenheit

TABLE 2.5

Temperature Conversion Formulas

Conversion Formula

°C to °F °F = 9°C ____ 5 + 32 = 1.8°C + 32

°F to °C °C = (°F − 32) ⋅ 5 __ 9 = °F − 32 _______ 1.8

K to °C °C = K − 273.15

°C to K K = °C + 273.15

CRC_47744_Ch002.indd 62CRC_47744_Ch002.indd 62 6/13/2008 12:19:39 PM6/13/2008 12:19:39 PM

Getting Started 63

e. The normal body temperature expressed in degree Fahrenheit and Kelvin
f. The temperature when water freezes expressed in degree Fahrenheit and Kelvin
g. The absolute zero expressed in degree Fahrenheit and degree Celsius*

P.2.31 Information units are usually expressed in bits and bytes, where

 8 bits = 1 (one) character = 1 byte

 Estimate the number of characters that can be placed in
a. One sheet of paper
b. One quire
c. One ream
d. Three bundles
e. Five cases
f. Three bales

 where one sheet of paper can store 4000 characters (50 lines per sheet * 80 charac-
ters per line)
 1 quire = 24 sheets
 1 ream = 20 quires
 1 bundle = 2 reams
 1 case = 4 bundles
 1 bale = 10 reams

P.2.32 Use Table 2.6 (Foreign Exchange, The New York Times, September 8, 2000) to convert
the following foreign currencies to U.S. dollars.
a. 132 Danish kroner
b. 128 French francs
c. 2800 Italian liras
d. 205 Jordanian dinars
e. 8521 Venezuelan bolivars

P.2.33 Determine which choice will provide the biggest return in absolute value for an
initial investment of $1500, placed.
a. at an annual interest of 5% during 4 years
b. at an annual interest of 4% during 5 years
c. at an annual interest of 4% for the fi rst and second year, 5% for the third year,

and 5.5% for the fourth year
P.2.34 The following formula can be used to calculate the monthly payments to repay bor-

rowed money at an annual interest I

M =
A ⋅ (I/12)(1 − (I/12))

 (1 + I/12) n − 1

 where M is the monthly payments, A the amount borrowed, I the annual interest
rate, and n the number of months of the loan.

 Determine the monthly payments, if the amount borrowed is $132,500, at an
annual interest rate of 7.25% payable in 120, 180, and 240 months.

* The absolute zero is defi ned as 0 K.

CRC_47744_Ch002.indd 63CRC_47744_Ch002.indd 63 6/13/2008 12:19:39 PM6/13/2008 12:19:39 PM

64 Practical MATLAB® Basics for Engineers

TABLE 2.6

Foreign Currencies (9/8/2000)

In Dollars In Foreign Currency

Currency Fri. Thu. Fri. Thu.

North America/Caribbean
Canada (Dollar) 0.8770 0.8770 1.4770 1.4771
Dominican Rep (Peso) 0.0548 0.548 18.24 18.24
Mexico (Peso) 0.107550 0.107543 9.2900 9.2900

South America
Argentina (Peso) 1.0002 1.0002 0.9998 0.9998
Bolivia (Boliviano) — — — —
Brazil (Real) 0.6485 0.5495 1.8230 1.8200
Chile (Peso) — — — —
Colombia (Peso) 0.000454 0.000462 2204.50 2210.50
Paraguay (Guarani) — — — —
Peru (New Sol) 0.2879 0.2880 3.473 3.472
Uruguay (New Peso) 0.0804 0.0804 12.4360 12.4450
Venezuela (Bolivar) 0.0015 0.0015 689.2000 689.25

Asia/Pacifi c
Australia (Dollar) 0.5865 0.5685 1.7869 1.7806
China (Yuan) 0.1208 0.1208 6.2790 6.2794
Hong Kong (Dollar) 0.1282 0.1282 7.7984 7.7991
India (Rupee) 0.0219 0.0219 45.600 45.520
Indonesia (Rupiah) 0.000119 0.000119 8395.00 8376.00
Japan (Yen) 0.009415 0.009520 106.21 106.04
Malaysia (Ringgit) 0.2832 0.2832 3.7998 3.7998
New Zealand (Dollar) 0.4183 0.4167 2.3008 2.3998
Pakistan (Rupee) 0.0183 0.0183 54.55 54.56
Philippines (Peso) 0.0219 0.0219 45.58 46.56
Singapore (Dollar) 0.5759 0.5773 1.7386 1.7322
So. Korea (Won) 0.000902 0.000901 1108.50 1110.40
Taiwan (Dollar) 0.0322 0.0322 31.09 31.08
Thailand (Baht) 0.02214 0.02416 41.42 41.39
Vietnam (Dong) — — — —

Europe
Britain (Pound) 1.4194 1.4378 0.7045 0.8955
Czech Rep (Koruna) 0.0247 0.0247 40.50 40.50
Denmark (Krone) 0.1170 0.1165 8.5442 8.5850
France (Franc) 0.1324 0.1332 7.5515 7.5073
Italy (Lira) 0.000449 0.000451 2220.08 2216.04
Europe (Euro) 0.06880 0.07390 1.1510 1.1443
Hungary (Forint) 0.0033 0.0039 300.44 300.83
Norway (Krone) 0.1085 0.1084 9.2080 9.2220
Poland (Zloty) 0.2282 0.2283 4.42 4.36
Russia (Ruble) 0.0359 0.0359 27.3800 27.3400
Slovak Rep (Koruna) 0.0204 0.0204 48.91 48.99
Sweden (Krona) 0.1039 0.1046 9.6285 9.5668
Switzerland (Franc) 0.5615 0.5644 1.7809 1.7718
Turkey (Lira) 0.000002 0.000002 681390 669580

Middle East/Africa
Bahrain (Dinar) — — — —
Egypt (Pound) 0.2843 0.2843 3.5175 3.5175
Iran (Rial) — — — —
Israel (Shekel) 0.2480 0.2481 4.0320 4.0300
Jordan (Dinar) 1.4085 1.4085 0.71098 0.70998
Kenya (Shilling) — — — —

Source: The New York Times, Foreign Currency, September 8, 2000.

CRC_47744_Ch002.indd 64CRC_47744_Ch002.indd 64 6/13/2008 12:19:39 PM6/13/2008 12:19:39 PM

Getting Started 65

P.2.35 The New York Times reported in an article published in April 21, 1990 that Benjamin
Franklin bequeathed $270,000 to the cities of Boston and Philadelphia with the con-
dition that the money could be spent after 200 years of his death. In 1990, Franklin’s
moneys became available.

 Calculate the total amount, in dollars, if the initial capital was invested at the
 following interest rates:
a. 4% compounded quarterly
b. 4% compounded annually
c. 4% for the fi rst 100 years compounded annually, and 5% for the remaining

100 years compounded quarterly
P.2.36 The present population in the United States is estimated at 289,000,000. Estimate

the population in 25 years, if the estimated growth is 2.6% annually (use equation
of the population growth provided in P.2.37).

P.2.37 The population in the United States after 1980 can be approximated by the follow-
ing equation:

 P(n) = 227e0.007n

 where n represents the number of years after 1980. Estimate the population in the
United States in
a. 2010
b. 2020
c. 2050

P.2.38 Table 2.7 lists the odds of particular events. Determine the odds of
a. Dying in a plane crash wearing glasses
b. Reaching 80 years, without wearing glasses and without a divorce
c. Having high blood pressure or high cholesterol level
d. Dying in a plane or train crash

P.2.39 Write a MATLAB program that estimates your electric bill, if the appliances with
the kilowatt consumption are shown in the Table 2.8 and the cost per kilowatt-hour
of usage charge by the power provider is $0.13.

 Kilowatt hours used (during a month) * cost (per kilowatt hour) = total cost in
 dollars ($) per month

TABLE 2.7

Statistical Odds

Event Odds

Dying in a train accident 1 in 106

Dying in a plane crash 1 in 107

Wearing glasses at some point in life 1 in 2
Having a marriage end in divorce 1 in 2
Someday having a high cholesterol level 1 in 4
Reaching 80 years 1 in 3
Being hurt in a car accident 1 in 75
Someday having a high blood pressure 2 in 5

TABLE 2.8

Electrical Power Consumption

Appliance Kilowatt

Refrigerator 0.5
Microwave oven 1.0
TV 0.2
Washing machine 0.5
Dryer 4.5
Dishwasher 1.5
Iron 1.25
Toaster 1.3
Air conditioner 1.5

CRC_47744_Ch002.indd 65CRC_47744_Ch002.indd 65 6/13/2008 12:19:39 PM6/13/2008 12:19:39 PM

66 Practical MATLAB® Basics for Engineers

P.2.40 A tourist plans to visit a number of European countries by automobile, and drives
the distances indicated in Table 2.9 (prices as of 2000), using a car that yields 22
miles to the gallon. The cost of gasoline is also indicated for each of the countries as
well as the taxes paid. How much would the traveler spend on
a. Gasoline.
b. Local taxes.
c. Tax as a percentage of the total.
d. Tax and total price if he/she would travel the same distances in the United

States.
e. The prices in 2008 are twice as those provided in Table 2.9. Repeat parts a, b, c,

and d, if the same distances are traveled in 2008.
 f. Estimate the gasoline prices by 2010 and 2020 for each country in Table 2.9,

assuming the same increments as given over the period 2000/2008.

TABLE 2.9

Gasoline Prices and Taxes

Country Miles
Price per

Gallon ($) Tax ($)
Total
Price

Tax Percentage
of Total

United Kingdom 165 1.04 3.25 4.29 76
France 260 1.15 2.51 3.66 69
Germany 520 1.13 2.29 3.42 67
Sweden 122 1.33 2.53 3.86 66
Netherlands 133 1.44 2.52 3.96 64
Belgium 82 1.31 2.27 3.58 63
Italy 383 1.34 2.30 3.64 63
Ireland 232 1.27 1.77 3.04 58
United States 1.35 0.39 1.74 22

Note: Estimated prices for the year 2000.

CRC_47744_Ch002.indd 66CRC_47744_Ch002.indd 66 6/13/2008 12:19:39 PM6/13/2008 12:19:39 PM

67

3
Matrices, Arrays, Vectors, and Sets

God made the integers; all else is the work of man.

Leopold Kronecker

3.1 Introduction

The basic element in MATLAB® is the matrix. The name MATLAB stands for Matrix
 Laboratory, and the language syntax and commands are based on matrix operations and
their extensions. Therefore to fully understand the MATLAB language, a summary of
basic matrix concepts, defi nitions, operations, and applications are introduced and dis-
cussed in this chapter.

Let us start this discussion by defi ning what is a matrix. In its simplest form a matrix is a
set of numbers or elements arranged in a rectangular grid of horizontal rows and vertical
columns. Every row or column in a matrix is also called a vector. An array with m rows
and n columns is referred as an m times n matrix, denoted by m × n indicating the size or
the matrix dimension, consisting of a total number of m * n elements. The elements of a
matrix are indexed. The purpose of indexing is to make easier the identifi cation process of
each element of a matrix by using one or more subscripts.

A constant or scalar can be considered a special matrix consisting of 1 row by 1 column,
or a 1 × 1 matrix. Similarly, a vector may be viewed as a one-dimensional (1-D) array,
where one of the indexes is 1, which is usually omitted. A 2-D array is the typical matrix
structure encountered in most applications, and requires two indexes: the fi rst identifi es
the row followed by a comma and the second identifi es the column.

Matrices and vectors are frequently enclosed in brackets when used in MATLAB. The
 elements of a matrix or vector can be real or complex numbers, strings, symbolic expres-
sions (see Chapter 7), or in general any MATLAB function or expression. A vector con-
sisting of only one row or column is commonly referred as a row or column vector (and
requires one index for obvious reasons). When m = n (the number of rows is equal to the
number of columns), the matrix is referred to as an n-square or simply square matrix.
These matrices are frequently used to model physical systems represented by sets of n
simultaneous equations, with n unknown variables.

Matrices and vector notation, properties, manipulations, and algebra are introduced and
discussed in this chapter, as well as a number of often used special matrices such as

the identity (eye), empty, zeros, ones, magic, rand, randn, diagonal, triangular, symmetric, magic,
Hilbert, Hermitian, and Pascal.

CRC_47744_Ch003.indd 67CRC_47744_Ch003.indd 67 6/12/2008 5:50:33 PM6/12/2008 5:50:33 PM

68 Practical MATLAB® Basics for Engineers

In MATLAB, all the matrices must be either called or created by the user, but there are
 different ways of creating a matrix. The simplest way is by typing (entering) each one
of the elements of the matrix manually or by calling a built-in function that returns the
 complete or portion of a desired matrix.

MATLAB is an ideal environment to study and experiment with matrix, and array alge-
bra and manipulations, where relations, properties, and results can easily be verifi ed.
What is the reason to study matrices and arrays, and why are matrix concepts impor-
tant? The simplest answer is that data are frequently supplied and organized in tables or
arrays, where the elements can easily be identifi ed by either one or more subscripts, mak-
ing matrix a natural way to organize, present, or represent data, events, or relations.

Systems of simultaneous linear equations can be expressed using matrix notation and
matrix algebra can be used in its solution, a fact that makes possible for ordinary people to
easily juggle hundreds of equations simultaneously.

3.2 Objectives

After reading this chapter, the reader should be able to

Understand the concept of a matrix and array
Create manually an array, matrix, sequence, or vector
Create or call special built-in vectors and matrices
Perform array, vector, and matrix algebra
Understand matrix manipulation and notation
Append a row or column vector to a matrix
Append a matrix to another matrix
Identify an array or matrix element
Determine the matrix size, length, and dimension
Understand the concepts of norm or length, distance, and angle between vectors
Understand the concepts of inner or dot product
Understand the concept of cross product
Understand the concept of orthogonality when applied to vectors and matrices
Understand the Cauchy–Schwarz inequality
Solve a set of linear equations using matrix algebra
Solve a matrix system for its characteristic equation
Solve a matrix system for its characteristic polynomial
Solve a matrix system for its eigenvalues and eigenvectors
Understand the concept of a sparse matrix
Create sparse matrices
Explore and create patterns by using the spy function
Use MATLAB commands and techniques to solve a number of matrix, array, and
vector problems

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

CRC_47744_Ch003.indd 68CRC_47744_Ch003.indd 68 6/12/2008 5:50:35 PM6/12/2008 5:50:35 PM

Matrices, Arrays, Vectors, and Sets 69

3.3 Background

R.3.1 An array organized in terms of m rows and n columns is called a matrix.
R.3.2 In its simplest form a matrix can be created using MATLAB, by typing each ele-

ment of a row, row by row, with a space or a comma separating the consecutive
elements in a row, and semicolons to separate consecutive rows of a matrix.

R.3.3 The elements of a matrix are generally entered in MATLAB within brackets, and
the elements may be real or complex numbers, functions or expressions. For sim-
plicity, matrices with elements consisting of numerical-real numbers or character
strings are considered fi rst in this chapter.
 The input statement can be used to create a matrix, such as

 X = input (‘Enter the value for the matrix X in brackets’)

 When the input instruction is executed, the text ‘Enter the value for the matrix X
in brackets’ will be displayed on the screen. The user can then enter the element
values (in brackets), row by row. All those values will be assigned to the matrix X.

R.3.4 For example, use MATLAB to create the row vector X and column vector Y,
defi ned as

X � �[1 2 3 4] and Y

5

6

7

8























MATLAB Solution
>> format compact
>> X=input (‘Enter the elements of X in brackets separated by spaces’)

Enter the elements of X in brackets separated by spaces [1 2 3 4]

 X =
 1 2 3 4

>> Y= input (‘Enter the elements of Y in brackets separated by
semicolons ’)

Enter the elements of Y in brackets separated by semicolons [5;6;7;8]

Y =
 5
 6
 7
 8

R.3.5 The command A = input(‘expression’) evaluates the expression (in quotes) and the
result is assigned to A. If the return key is pressed without entering a character,

CRC_47744_Ch003.indd 69CRC_47744_Ch003.indd 69 6/12/2008 5:50:35 PM6/12/2008 5:50:35 PM

70 Practical MATLAB® Basics for Engineers

then A becomes an empty matrix. The empty matrix can be defi ned as a matrix
with no elements.

R.3.6 The input statement can also be used to enter a string such as

 B = input(‘Enter a string’, ‘s’)

 This instruction will display Enter a string (whatever is in quotes) and MATLAB
will wait for the user to enter a string. That string will be assigned to B. A string
can be defi ned as a sequence of characters.

R.3.7 For example, let us gain some MATLAB experience by performing the following:
a. Assign to A the value sqrt(pi)

b. Assign to My_name_is your name (with the argument s present)
c. Assign to My_name_is the empty matrix
d. Assign to My_name_is your name (in quotes)
e. Assign to My_name_is your name (no quotes)

MATLAB Solution
>> A= input (‘Enter the MATLAB expression’)

Enter the MATLAB expression sqrt(pi)
 A =
 1.7725

>> My _ name _ is = input (‘Enter your name’,’s’)

 Enter your name John Smith
 My _ name _ is =

John Smith

>> My _ name _ is = input (‘Enter your name’)

 Enter your name % press the enter key
 My _ name _ is =
 [] % observe that the empty matrix is assigned

to My _ name _ is

>> My _ name _ is = input (‘Enter your name’)

 Enter your name John Smith
 ??? John Smith
 |
 Error: Missing operator, comma, or semicolon.

>> My _ name _ is = input (‘Enter your name’)

 Enter your name ‘John Smith’
 My _ name _ is =
 John Smith

 Note the importance of the quotes and ‘s’, and how they are used when dealing
with a string.

CRC_47744_Ch003.indd 70CRC_47744_Ch003.indd 70 6/12/2008 5:50:35 PM6/12/2008 5:50:35 PM

Matrices, Arrays, Vectors, and Sets 71

R.3.8 The input statement C = input(‘string’) assigns to the variable C the text ‘string’. The
text string may contain one or more ‘\n’ that must be placed in quotes. The sequence
‘\n’ performs the following action: skips to the beginning of the next line.

R.3.9 When a matrix or vector is input, the value of the matrix is displayed on the screen
unless it is suppressed by placing a semicolon (;) at the end of the instruction.

For example,

>> format compact
>> A = [1 2; 3 4] % displays matrix A

 A =
 1 2
 3 4

>> A = [1 2; 3 4]; % suppresses the display of A

R.3.10 Matrices are usually assigned a variable name. For example,

A = [1 2 3]

R.3.11 Recall that the command who returns a list of the variable names used and the
 command whos returns a list of the variable names used as well as their sizes (R.2.21
and R.2.22).

R.3.12 The command length(A) returns the number of elements of A, if A is a vector, or the
largest value of either n or m, if it is an n × m matrix.

R.3.13 The MATLAB command size(A) returns the size of the matrix A (number of rows by
the number of column), and the command [row, col] = size(A) returns the number of
rows assigned to the variable row and the number of columns of A assigned to the
variable col. For example,

>> A = [1 2;3 4;5 6];
>> size(A)

 ans =
 3 2

 >>[row,col] = size(A)

 row =
 3
 col =
 2

 >>length (A)

 ans =
 3

R.3.14 In its simplest form, a vector is a vertical or horizontal sequence of numbers sepa-
rated by commas (or spaces) or semicolons. When the sequence is vertical it is called
a column vector, or a row vector when it is horizontal. For example, use MATLAB to
represent A = [1 2 3] and B = [1; 2; 3] as a row and column vector, respectively.

CRC_47744_Ch003.indd 71CRC_47744_Ch003.indd 71 6/12/2008 5:50:35 PM6/12/2008 5:50:35 PM

72 Practical MATLAB® Basics for Engineers

 MATLAB Solution
 >> A = [1 2 3]

 A =
 1 2 3

 >> B = [1;2;3]

 B =
 1
 2
 3

R.3.15 The notation A(n, m) is used to identify the element that is located in the intersec-
tion of the n rows and m columns of A. For example, let

A �

1 4 7
2 5 8
3 6 9

















 then A(1, 2) = 4, A(2, 2) = 5, and A(2, 3) = 8. (R.3.16 through R.3.18 use matrix A as
an example.)

R.3.16 Colons when used as an argument identify a range over a row or a column depend-
ing on its location.

 For example,

B A(1:2, 2:3)

4 7

5 8
� �











 Note that matrix B is defi ned by the intersection of the rows 1 and 2 and the col-
umns 2 and 3 of matrix A. Therefore, B is a 2 × 2 matrix.

R.3.17 When dealing with rows and columns one can specify the last element (row or col-
umn) by using the keyword end, and the second element next to the last by end -1,
and so on.

 Therefore, an alternate way to specify B is by using the following command:

 A(1:end-1, 2:end)

 Any element of matrix A can be specifi ed in terms of the keyword end.
 For example, A(end-2, end-1) = A(1, 2) = 4.
R.3.18 When a matrix index is replaced by a colon, the colon represents depending on its

location, either all the rows or all the columns. For example,

A(:, 2:3)

4 7

5 8

6 9

A(1:2, :)
1 4 7

2 5 8
� �



























CRC_47744_Ch003.indd 72CRC_47744_Ch003.indd 72 6/12/2008 5:50:36 PM6/12/2008 5:50:36 PM

Matrices, Arrays, Vectors, and Sets 73

R.3.19 Colons can also be used to generate a sequence. For example, n = 1:5 returns the
vector n, consisting of the sequence of elements from 1 to 5 in ascending order, with
unit increments. Then n becomes a 1 × 5 (row) vector indicated as follows:

 n = [1 2 3 4 5]

R.3.20 When a command has two colons that separate three numerical arguments, follow-
ing the format:

 n = [initial: increment: fi nal]

 then the command returns the vector n, with elements that follow the sequence:
start with the initial value all the way to the fi nal value, with successive increments
defi ned by increment, illustrated as follows:

 n = [1:0.1:2], returns the following sequence

 n = [1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0]

 The preceding sequence can also be generated without the brackets or by replacing
the brackets with parenthesis. For example,

 n = 1:0.1:2 is equivalent to n = [1:0.1:2] and n = (1:0.1:2)

Note that the increment variable when negative is used to generate a decreasing
sequence, illustrated as follows:

>> n = 2:-0.1:1

 n =
 Columns 1 through 7
 2.0000 1.9000 1.8000 1.7000 1.6000 1.5000 1.4000
 Columns 8 through 11
 1.3000 1.2000 1.1000 1.0000

R.3.21 A multiple line command that starts in one line is continued on the next line by
placing three consecutive periods (…) called ellipsis at the end of the fi rst line.
 Continuation across several lines can be accomplished by using ellipsis repeatedly
at the end of each line, but no instruction should exceed 4096 characters.

R.3.22 The elements of different vectors or matrices can be concatenated to form new
extended vectors or matrices. The extended matrix is defi ned in terms of other
 vectors or matrices. For example, let u = [0 1] and v = [2 3].

 Execute and evaluate the responses of the following MATLAB commands:
a. s = [u v]
b. ss = [u; v]

c. sss = [ss, ss; ss, ss]

CRC_47744_Ch003.indd 73CRC_47744_Ch003.indd 73 6/12/2008 5:50:36 PM6/12/2008 5:50:36 PM

74 Practical MATLAB® Basics for Engineers

MATLAB Solution
>> u = [0 1];
>> v = [2 3];
>> s = [u v]

 s =
 0 1 2 3

>> ss = [u;v]

 ss =
 0 1
 2 3

>> sss = [ss,ss;ss,ss]

 sss =
 0 1 0 1
 2 3 2 3
 0 1 0 1
 2 3 2 3

(R.3.23 through R.3.27 use the vector s = [0 1 2 3] as example.)

R.3.23 The elements of a vector are identifi ed by a single index. For example,

 s(3) = 2 or s(end-1) = 2

R.3.24 Any element can be changed by redefi ning it with a new value.
 For example,

 let s(4) = −1 (is entered), then vector s becomes

 s = [0 1 2 −1]

R.3.25 Defi ning an element outside its range can be used to expand the range or length
of a matrix or vector. For example, by defi ning s(6) = −2, s becomes a six-element
vector, illustrated as follows:

 s = [0 1 2 −1 0 −2]

R.3.26 The elements not specifi cally defi ned in a vector or matrix are assigned the default
value of zero. Observe that in R.3.25, s(5) = 0.

R.3.27 A set of rows or columns can be deleted by using the null vector ([]). For the
 vector s defi ned in R.3.25, the instruction s(2:4) = [] would delete elements 2, 3, and
4, and s would be s = [0 0 −2]. Another way to generate the same sequence is by
executing the following command:

 s = [s(1) s(5) s(6)]

R.3.28 An alternate way to generate a sequence n that is a row vector is by using the com-
mand: linspace (initial, fi nal, m_points), where initial and fi nal correspond to the start
and end of the sequence, respectively, defi ned by m points, equally spaced over the
range initial/fi nal.

CRC_47744_Ch003.indd 74CRC_47744_Ch003.indd 74 6/12/2008 5:50:36 PM6/12/2008 5:50:36 PM

Matrices, Arrays, Vectors, and Sets 75

 For example, n = linspace (1, 2, 11) returns the sequence

 n = [1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0]

 Note that the above expression was also defi ned as n = [1:0.1:2] in R.3.20.
R.3.29 A row vector with elements following a logarithmic sequence with length L can be

generated by using the MATLAB command: U = logspace (X, Y, L), where the initial
element of U is defi ned by 10X, the fi nal element is 10Y, and L is its length given by
the number of elements.

 For example, let U = logspace(.1,3,5), then MATLAB returns the row vector U
illustrated as follows:

>> U = logspace(.1,3,5)

 U =
 1.0e+003 *
 0.0013 0.0067 0.0355 0.1884 1.0000

R.3.30 A column (or row) vector B can be appended to a matrix A if B has the same length
as the columns (or rows) of A. For example, let

A B� �

1 2 3

5 6 7

4

8


















and

 Execute the following commands using MATLAB and observe and evaluate the
responses:
a. C = [A B]

b. D = [A A]

c. E = [B B]

d. F = [A; A]

e. G = [B; B]

f. H = [A; B]

MATLAB Solution
>> A = [1 2 3;5 6 7] % matrix A

 A =
 1 2 3
 5 6 7

>> B = [4;8] % column vector B

 B =
 4
 8

>> C = [A B] % part(a)

 C =
 1 2 3 4
 5 6 7 8

CRC_47744_Ch003.indd 75CRC_47744_Ch003.indd 75 6/12/2008 5:50:36 PM6/12/2008 5:50:36 PM

76 Practical MATLAB® Basics for Engineers

>> D = [A A] % part(b)

 D =
 1 2 3 1 2 3
 5 6 7 5 6 7

>> E = [B B] % part(c)

 E =
 4 4
 8 8
 9

>> F = [A;A] % part(d)

 F =
 1 2 3
 5 6 7
 1 2 3
 5 6 7

>> G = [B;B] % part(e)

 G =
4
8
4
8

>> H = [A;B] % part(f)

??? Error using ==> vertcat
All rows in the bracketed expression must have the same
number of columns.

R.3.31 Array operations are operations performed on the individual element of a given
matrix. They are indicated by a dot (.), followed by the operation (.*, . /, .)̂.

 The ./, and .\ indicate two distinct array divisions called the right and left divi-
sion, respectively. For the case of addition and subtraction, the dot is optional (not
required).

 For example, let

A

1 2

3 4
B

6 7

8 9
� �



















and

 Then

C A B C i j A i j B i j� � � � �

7 9
11 13









 , where (,) (,) (,)

CRC_47744_Ch003.indd 76CRC_47744_Ch003.indd 76 6/12/2008 5:50:36 PM6/12/2008 5:50:36 PM

Matrices, Arrays, Vectors, and Sets 77

D A B D i j A i j B i j� � �. , where (,) (,). ()∗









 ∗

6 14
24 36

,

E A B� � �./ ,

1 6 2 7
3 8 4 9

0 1667 0 2857
0 3750 0 4444

/ /
/ /

. .

. .


















 wwhere E(i, j) = A(i, j)./B(i, j)

F A B� � �.\ , wh

6 7 2
8 3 9 4

6 0000 3 5000
2 6667 2 2500

/
/ /

. .

. .


















 eere F(i, j) = B(i, j)./A(i, j)

G A B G i j A i j B i, j� � �

� �

� �
� �

5 5
5 5









 , where () () (), ,

H A B H i j� � �. ^ , where ()

1 2
3 4

1 128
6561 262144

6 7

8 9



















 , �� A i j B i j(). ^ (), ,

I A I i j A i j� � � �. ^ 2 , where () ()

1 2
3 4

1 4
9 16

2

2 2



















 , , .. ^ 2

R.3.32 Addition, subtraction, multiplication, division, and exponentiation (+, −, *, /,)̂ of
arrays can only be performed when the arrays involved have the same size.

R.3.33 An array X can be an argument of a function, resulting in a matrix B, obtained by
applying the function to each element of X. For example, let the range of X be over
2π ≤ X ≤ 4π, consisting of eight linearly spaced points organize as a 2 × 4 matrix.
Obtain the matrix Y consisting of the natural logarithmic value of each of the ele-
ments of X.

MATLAB Solution
>> X = [2*pi:pi/3:3*pi;3*pi:pi/3:4*pi]

 X =
 6.2832 7.3304 8.3776 9.4248
 9.4248 10.4720 11.5192 12.5664

>> Y = log(X)

 Y =
 1.8379 1.9920 2.1256 2.2433
 2.2433 2.3487 2.4440 2.5310

R.3.34 The MATLAB command dot_prod = dot(X, Y) returns the scalar dot product of
the two vectors X and Y, where X and Y must have the same length. If they do
not, MATLAB returns an error message. If X and Y are real column vectors, then
 MATLAB returns the standard inner product X’ * Y or Y’ * X, as the dot_prod =
dot(X, Y), where dot_prod = ΣiXi * Yi over all i’s.

 MATLAB does not compute the inner product of complex vectors in the standard
way. The dot product of two nonzero vectors with a common origin returns a scalar

CRC_47744_Ch003.indd 77CRC_47744_Ch003.indd 77 6/12/2008 5:50:36 PM6/12/2008 5:50:36 PM

78 Practical MATLAB® Basics for Engineers

given by dot(X, Y) = �X� . �Y� cos(XY), * where �X� = sqrt(X * X'), �Y� = sqrt(Y* Y'), and
cos(XY) is the cosine of the angle between X and Y.

 The notation �V� is commonly referred as norm and defi nes the length of V.
 For example, let X = [1 2 3] and Y = [4 5 6], then dot_prod = dot(X, Y) returns

dot_prod = 4 * 1 + 2 * 5 + 3 * 6 = 32.
 The dot product can be used to determine whether two vectors (X and Y) are

orthogonal. Recall that two vectors are orthogonal if the angle between them is 90°.
Then two nonzero vectors are orthogonal if the dot product is zero.

 For example, let

X Y� �
�

�

�

1
2
3
4

0
1
2
3









































and

 Write a program that returns the angle between X and Y in radians and degrees.

MATLAB Solution
>> X= [1;2;3;4];
>> Y= [0;-1;-2;-3];
>> COS _ X _ Y= dot(X,Y)/(norm(X)*norm(Y));
>> Angle _ X _ Yin _ rad = acos(COS _ X _ Y)

 Angle _ X _ Yin _ rad =
 2.9216

>> Angle _ X _ Yin _ degree = Angle _ X _ Yin _ rad*180/pi

 Angle _ X _ Yin _ degree =
 167.3956

R.3.35 The MATLAB function cross_prod = cross(X, Y) returns the cross product of the two
vectors X and Y (where X and Y must have the same length).

 In the physical sciences the cross product of two nonzero vectors with a common
origin is given by

 X × Y = �X� . �Y� sin(XY) m → , where �X� = sqrt(X . X'), �Y� = sqrt(Y . Y'), sin(XY) is
the sine of the angle between X and Y, and the m → is a unit vector that indicates the
resulting direction.

 The direction (m →) is perpendicular to the intersection of vectors X and Y.
 Note that the cross product can only be defi ned, and makes sense in a

3-D space.
R.3.36 The dot product is used to fi nd the component of one vector in the direction of

another, or the projection of one nonzero vector along another.
 The cross product is used to implement the so-called right-handed system of

axes. For example, in physics it can be used to represent angular momentum, or

* Trigonometric functions are presented and discussed in Chapter 4.

CRC_47744_Ch003.indd 78CRC_47744_Ch003.indd 78 6/12/2008 5:50:37 PM6/12/2008 5:50:37 PM

Matrices, Arrays, Vectors, and Sets 79

in fi eld theory defi nes the direction of the force resulting to a moving charge in a
magnetic fi eld.

R.3.37 Array operations extended to the n-dimensional vectors A and B are illustrated as
follows:

 Let A = [a1 a2 a3 … an] and B = [b1 b2 b3 … bn]

 Then

 C = A + B = [a1 + b1 a2 + b2 a3 + b3 … an + bn]

 D = A – B = [a1 – b1 a2 – b2 a3 – b3 … an – bn]

 E = A. * B = [a1 * b1 a2 * b2 a3 * b3 … an * bn]

 F = A./B = [a1/b1 a2/b2 a3/b3 … an/bn]

 G = A. ^ B = [a1 ^ b1 a2 ^ b2 a3 ^ b3 … an ^ bn]

 H = A. ^ 2 = [a 1
2 a 2

2 a 3
3 … a n 2]

R.3.38 As an additional example, let

A �

1 2 3
4 5 6
7 8 9

















 Evaluate the following instructions using MATLAB:
a. B = 2. * A
b. C = A. ^ 2
c. D = 1./A

ANALYTICAL Solution

a. B �

2 4 6
8 10 12

14 16 18

















b. C �

1 4 9
16 25 36
49 64 81

















c. D �

1 1 1 2 1 3
1 4 1 5 1 6
1 7 1 8 1 9

/ / /
/ / /
/ / /

















CRC_47744_Ch003.indd 79CRC_47744_Ch003.indd 79 6/12/2008 5:50:37 PM6/12/2008 5:50:37 PM

80 Practical MATLAB® Basics for Engineers

R.3.39 The dot (⋅) preceding the operation symbol (*, /, ̂) tells MATLAB to perform element-
by-element array operations. Operations without the dot indicate matrix operations,
which are quite different from array operations, discussed later in this section.

R.3.40 Let C be the matrix product of the matrices A and B (indicated as C = A * B), then
the element C(i, j) is obtained by multiplying the elements of the ith row of A by
the corresponding elements of the jth column of B, and then adding them up, illus-
trated as follows using the dot product.

 C(i ⋅ j) = dot [A(i, :), B (:, j)], for all i’s and j’s

 The product between a row (from A) and a column (from B) requires that the
number of elements of the row must be equal to that of the column.

 For example, let A be an n × m matrix and B an m × r matrix, then the product
C = A * B returns an n × r matrix.

 For example, let

A B� �
1 2 3

4 5 6

1

0

1



























and

 then

C A� �

� �

� �

�

�
�*

* * *
* * *

B
1 1 2 0 3 1

4 1 5 0 6 1

1 3

4 6

4

10




























�

 Note that A is a 2 × 3 matrix, B is a 3 × 1 matrix, then C = A * B results in a 2 × 1
matrix. Also note that MATLAB evaluates the product A * B and returns a result, if
and only if the number of rows of A equals the number of columns of B.

 Note that if A * B exists, B * A may not exist and in general A * B ≠ B * A.

R.3.41 The following example illustrates some of the concepts just presented. Let

A B�
�

�
� �

�

2 3 5
6 9 7

4 5
3 1

6 9



























and

 Execute the following matrix operations:
a. C = A * B
b. D = B * A
c. Note that C is a 2 × 2 matrix, whereas D is a 3 × 3 matrix

MATLAB Solution
EDU>> A = [2 -3 5;6 -9 7]

 A =
 2 -3 5
 6 -9 7

CRC_47744_Ch003.indd 80CRC_47744_Ch003.indd 80 6/12/2008 5:50:37 PM6/12/2008 5:50:37 PM

Matrices, Arrays, Vectors, and Sets 81

EDU>> B = [4 5;-3 1;6 -9]

 B =
 4 5
 -3 1
 6 -9

EDU>> C = A*B

 C =
 47 -38
 93 -42

EDU>> D = B*A

 D =
 38 -57 55
 0 0 -8
 -42 63 -33

R.3.42 A matrix in which the number of rows is the same as the number of columns is
called a square matrix. The order of a square matrix is given by the number of rows
(or columns). An n × n matrix is also referred as an n-square matrix.

R.3.43 Two matrices A and B are said to be equal, if and only if, they are of the same size
and the corresponding elements are equal, that is, A(i, j) = B(i, j) for any i and j.

R.3.44 A matrix A is called diagonal, if A is a square matrix in which all the off-diagonal
elements are zeros, that is, A(i, j) ≠ 0 for i = j, and zero otherwise.

R.3.45 The main diagonal also referred as the diagonal of an n-square matrix consists of all
the elements defi ned by the sequence: A(1, 1), A(2, 2), A(3, 3), …, A(n, n).

R.3.46 An n-square matrix with 1s along the main diagonal and zeros everywhere else
is called the unit matrix, denoted by I. The matrix I plays the same role in matrix
multiplication as the number 1 does in multiplication of real numbers, that is,

 A = A * I = I * A

 Note that I is a special diagonal matrix, that can be created by the MATLAB
command eye.

R.3.47 An n-square matrix consisting of zeros everywhere is called a zero matrix, denoted
by 0. The matrix 0 plays the same role in matrix multiplication as the number 0 does
in real number multiplication, that is,

 A * 0 = I * 0 = 0

 But beware that A * B = 0 does not imply that A or B is equal to the zero (0) matrix.
R.3.48 The transpose of a matrix or vector A is denoted by A.' and is a new matrix where

the columns of A become rows of A.'. For example,

Let , then .A

1 2

3 4
A

1 3

2 4
� �



















�

CRC_47744_Ch003.indd 81CRC_47744_Ch003.indd 81 6/12/2008 5:50:37 PM6/12/2008 5:50:37 PM

82 Practical MATLAB® Basics for Engineers

and let , then .V [1 2 3 4] V

1

2

3

4

� ��





















 For the case of a square matrix, the transpose can be obtained by refl ecting the
elements across the main diagonal. Mathematicians usually indicate the transpose
operation by an exponent T. For example, A.’ = AT.

 Note that if A is an n × m matrix, then A.’ becomes an m × n matrix.
R.3.49 Let A be a complex matrix, then the MATLAB operation A’ returns the complex

conjugate transpose, often referred as the Hermitian transpose, and is denoted
by the superscript H (AH = A’), where the element anm of A becomes a* mn of AH

(* denotes complex conjugate).
 For example, let

A

j j

j
�

� �

�

1 2 3

4 5










 then

A

j

j
� �

�

�

1 4

2 3j 5










 Note that if A is a real matrix, then A = A.’. If z = a + jb, then the complex conjugate
of z = a − jb where a and b are real numbers (complex numbers are presented in
Chapter 6).

R.3.50 The transpose operations present interesting properties some of which are indi-
cated as follows.

 Let A and B be two matrices (with the same size), then

1. A = (AT)T

2. (kA)T = kT AT, where k is a scalar

3. (AB)T = BT AT

4. (AB)H = BH AH

5. (A−1)T A = (AT)−1

6. (A−1)H A = (AH)−1

7. trace(A B) = trace(B A)

8. (A + B)T = BT + AT

R.3.51 A symmetric matrix is a square matrix that remains the same if the rows and col-
umns are interchanged, that is, A(i, j) = A(j, i) for all i’s and j’s.

R.3.52 Let A be a symmetric square matrix, then it follows that A = A'.
R.3.53 An antisymmetric or skew matrix is a square matrix that satisfi es the following

relation: A(j, i) = −A(i, j), for all i’s and j’s.

R.3.54 The determinant of a square matrix A is a scalar. The following example illustrates
the procedure followed in the computation of the determinant for a 2 × 2 matrix.

CRC_47744_Ch003.indd 82CRC_47744_Ch003.indd 82 6/12/2008 5:50:38 PM6/12/2008 5:50:38 PM

Matrices, Arrays, Vectors, and Sets 83

 For example, if A =
 [1 2
3 4

] then determinant (A) = 1 * 4 − 3 * 2 = −2 (product of the ele-
ments in the main diagonal minus the product of the elements of the other diagonal).

 The MATLAB command det(A) returns the value of the determinant of A.
 The concept of determinant applies only for the case of square matrices.
R.3.55 The process of evaluating the determinant of third, fourth, and higher order matri-

ces can be defi ned and evaluated by using symbolic variables* shown as follows:

>> syms a b c d e f g h k
>> A = % 2d order
 a b
 c d
>> det (A)

 ans =
 a*d-b*c
>> B = % 3th order
 a b c
 d e f
 g h k
>> det (B)

 ans =
 a*e*k-a*f*h-d*b*k+d*c*h+g*b*f-g*c*e

 Observe that symbolic variables can be used to defi ne the rule followed to evaluate
a determinant.

R.3.56 Let A and B be two n-square matrices, then

 det(A * B) = det(A) * det(B)

R.3.57 Some useful properties of the determinant of the matrix A are
a. det(A’) = det(A).

b. If A has a row or column of zeros, then det(A) = 0 (A is then referred as
singular).

c. If A is a triangular matrix (defi ned later in this section) then det(A) = trace(A).

d. det(eye) = 1.
e. If A is orthogonal then det(A) = 1.
f. The det(A) changes sign by exchanging two of its rows.

R.3.58 A square matrix A is said to have an inverse, if there exists a matrix B that satisfi es
the following relation:

 A * B = B * A = I (identity)

 Matrix B exists and is unique provided that A is not singular, that is, det(A) ≠ O;
then B is called the inverse of A denoted as A–1.

* Symbolic variables are presented and discussed in Chapter 7. At this point it is suffi cient to know that a non-
numerical element can be a qualitative or symbolic variable.

CRC_47744_Ch003.indd 83CRC_47744_Ch003.indd 83 6/12/2008 5:50:38 PM6/12/2008 5:50:38 PM

84 Practical MATLAB® Basics for Engineers

R.3.59 The MATLAB command B = inv(A) or A^ −1 returns the matrix B, that is, the
inverse of the square matrix A.*

R.3.60 Let A and B be n-square invertible matrices, then the inverse of the product is the
product of the inverses in reverse order indicated as follows:

 inv(A B)= inv(B) * inv(A)

R.3.61 The command B = rats(A) returns the matrix B, consisting of the elements of A
converted to rational fraction approximations.

R.3.62 The following example illustrates some of the concepts and MATLAB commands
presented earlier.

 Execute and evaluate the responses of the following commands:
a. B = inv(A)

b. C = rats(B)

c. D = A * B

d. E = B * A

 for the following matrix:

A �

� �

1 3 8

2 0 6

1 5 3

















MATLAB Solution
>> A = [1 3 8;2 0 6;1 -5 -3]

 A =
 1 3 8
 2 0 6
 1 -5 -3

>> B = inv(A) % part(a)

 B =
 -2.1429 2.2143 -1.2857
 -0.8571 0.7857 -0.7143
 0.7143 -0.5714 0.4286

>> C = rats(B) % part(b)

 C =
 -15/7 31/14 -9/7
 -6/7 11/14 -5/7
 5/7 -4/7 3/7

* inv(A) = A^ −1 is not equal to 1/A and 1/A will cause an error.

CRC_47744_Ch003.indd 84CRC_47744_Ch003.indd 84 6/12/2008 5:50:38 PM6/12/2008 5:50:38 PM

Matrices, Arrays, Vectors, and Sets 85

>> D = A*B % part(c)

 D =
 1.0000 0 -0.0000
 0 1.0000 -0.0000
 0 0 1.0000

>> E = B*A % part(d)

 E =
 1.0000 0.0000 0.0000
 -0.0000 1.0000 0
 0.0000 0 1.0000

R.3.63 Matrix A is an orthogonal matrix, if A is a square matrix that possesses an inverse that
satisfi es the following relation: inv(A) = AT, or its equivalent relation ATA = AAT = I.

 Observe that matrix A is orthogonal if its rows or columns form an orthonormal
system.

R.3.64 For example, verify that matrix A, defi ned as follows, constitutes an orthogonal
matrix for any value of x.

A

x x

x x
�

�cos() sin()
sin() cos()











 Let us test orthogonality over the range 0 ≤ x ≤ 4π, using fi ve linearly spaced
points, by writing the script fi le: orthonormal.

MATLAB Solution
% Script file:orthogonal
disp(‘**’)
disp(‘B=trans(A)*A is evaluated for x=0:pi/4:pi’)
disp(‘**’)
for x =0:pi/4:pi;
 A= [cos(x) -sin(x);sin(x) cos(x)];
 B =A’*A
end

 The script fi le: orthogonal* is executed and the results are shown as follows:

>> orthogonal

B=trans(A)*A is evaluated for x=0:pi/4:pi

B =
 1 0
 0 1
B =
 1 0
 0 1

* The command for-end returns A and B for the fi ve different values of x, and returns B instead of repeating
fi ve times the same set of instructions. The for-end is presented in Chapter 8 and trigonometric functions are
presented in Chapter 4.

CRC_47744_Ch003.indd 85CRC_47744_Ch003.indd 85 6/12/2008 5:50:38 PM6/12/2008 5:50:38 PM

86 Practical MATLAB® Basics for Engineers

B =
 1 0
 0 1
B =
 1 0
 0 1
B =
 1 0
 0 1

R.3.65 Let A be a Hermitian matrix, defi ned by A = AH. (In general, a square complex
matrix with the property that the transposed conjugate of A equals A.) Then all its
diagonal elements must be real.

R.3.66 A matrix A is said to be a skew Hermitian matrix if it satisfi es the following rela-
tion: AH = −A.

R.3.67 A square matrix A, with zeros for all the elements below the main diagonal is called
an upper triangular matrix, that is, A(i, j) = 0, for i > j.

R.3.68 Similarly a square matrix A, with zeros for the elements above the main diagonal is
called a lower triangular matrix, that is, A(i, j) = 0 for i < j.

R.3.69 Recall that A is a diagonal matrix if all the elements that are not on the main diago-
nal are zeros, that is, A(i, j) = 0, for i ≠ j.

 Note that a diagonal matrix is both an upper and lower triangular matrix.
R.3.70 Elementary row operations are used to systematically transform a given matrix A,

into another equivalent matrix B, where B presents a structure that can more easily
be solved.

 Matrix A may represent a set of simultaneous equations, where each row repre-
sents an equation. Elementary row operations consist of
a. Interchanging any equation (or rows)
b. Multiplying any equation by a nonzero constant (multiply all the elements of a

row by a constant)
c. Adding an equation to another equation (or add two rows)

R.3.71 The Gauss–Jordan elimination method consists of solving the linear matrix equa-
tion of the form A * X = Y, by systematically performing elementary row operations,
where A is usually an n-square matrix, and X and Y are n by 1 column vectors. The
Gauss–Jordan method consists of reducing A into an upper triangular matrix.

 MATLAB uses the LU decomposition, which is based on a variation of the Gauss-
ian elimination method, presented later in this chapter. The fi nal step of the Gauss–
Jordan method leads to a unique solution if one exists, and the fi nal structure of the
matrix is referred as the reduced row echelon form, denoted by RREF.

R.3.72 The RREF matrix has the following properties:
a. The fi rst nonzero entry in each row is 1, referred to as a leading 1.
b. Each leading 1 is the only nonzero entry in each column.
c. Rows consisting of zeros are placed at the bottom of the matrix.

R.3.73 The RREF of the square matrix A is used to determine the existence and unique-
ness of the solution of the often-encountered matrix equation A * X = Y.

R.3.74 The rank of a matrix A is equal to the number of nonzero rows of the RREF of the
matrix A. If A is an n-square nonsingular matrix then the rank(A) = n.

CRC_47744_Ch003.indd 86CRC_47744_Ch003.indd 86 6/12/2008 5:50:39 PM6/12/2008 5:50:39 PM

Matrices, Arrays, Vectors, and Sets 87

R.3.75 The rank of a matrix A can be determined by executing the MATLAB instruction
rank(A). The rank of a matrix A can be viewed as the number of linearly indepen-
dent rows or columns of A. If A is an n-square nonsingular matrix [det(A) ≠ 0], then
the rank of A is n.

R.3.76 The MATLAB command rank(A) returns the number of nonzero rows of the RREF
of the matrix A.

R.3.77 If A is a nonsquare matrix, then the command rank(A) is the number of nonzero
rows of the reduced matrix, or the number of linearly independent rows.

R.3.78 The MATLAB instruction rref(A) returns the reduced form for A.
R.3.79 The command rrefmovie(A) activates a movie showing the execution of the sequence

of commands leading to rref(A).
R.3.80 The MATLAB command [RR, k] = rref(A) returns the reduced form of A as the

matrix RR, as well as the rank of A, denoted by k.
R.3.81 Matrix A is said to be ill condition, if matrix A is close to singularity and its inverse

then becomes inaccurate. The number associated with the singularity condition of
a matrix is called its condition number.

 Two MATLAB instructions provide an estimation of the condition of a matrix A,
where A need not be square. They are

 cond(A) and rcond(A)

 The function cond(A) returns the condition of matrix A such that
a. cond(A) ≈ 1, then A is in well condition and the inverse exists.
b. cond(A) ≈ large, then A is in ill condition, det(A) = 0, and the inverse does not

exist or may be impossible to evaluate its value with precision, due to numerical
computational errors.

 The function rcond(A), the reciprocal estimator, provides the same information as
cond(A) but is less reliable and involves less computations.

 The function rcond(A) returns the condition of the matrix A with a number
between one and zero, such that

 rcond(A) = 1 or close to 1, implies that A is well condition

 and

 rcond(A) = 0 or close to 0, implies that A is ill condition

 The smaller the value of rcond the worse the condition for A; meaning that matrix
A does not possess an inverse or det(A) = 0. Some of the matrix concepts presented
earlier are illustrated in the next example.

 Observe that the command rank(A) can also be used to estimate the condition of
a matrix. The condition number for A is defi ned as the product of the norm of A
with A−1.

R.3.82 For example, let A = [3 0 0; 0 2 0; 0 0 1] and B = [1 4 7; 2 5 8; 3 6 −9].
 Use MATLAB and determine:

a. cond(A) and rcond(A)

b. det(B), cond(B), rcond(B), and 1/rcond(B)

CRC_47744_Ch003.indd 87CRC_47744_Ch003.indd 87 6/12/2008 5:50:39 PM6/12/2008 5:50:39 PM

88 Practical MATLAB® Basics for Engineers

MATLAB Solution
>> A = [3 0 0; 0 2 0; 0 0 1]

 A =
 3 0 0
 0 2 0
 0 0 1

>> [cond(A) rcond(A)]

 ans =
 3.0000 0.3333

>> B = [1 4 7;2 5 8;3 6 -9]

 B =
 1 4 7
 2 5 8
 3 6 -9

>> det(B) % det(B) ≠ 0, then the inv(B) exist

 ans =
 54

>> [cond(B) rcond(B) 1/rcond(B)]

 ans =
 34.2158 0.0163 61.3333

R.3.83 The following problem is frequently encountered in science and engineering: Given
a set of n linearly independent algebraic equations in terms of n unknowns, obtain
a solution to these equations for each of the unknowns.

 For example, given the following set of equations: (three equations with three
unknowns)

 x + 2y + z = 0

 2x − y + z = 5

 4x + 2y + 5z = 6

 Solve for the unknowns x, y, and z.
 The preceding set of equations can be expressed in matrix form as

1 2 1

2 1 1

4 2 5

0

5

6

� �























































x

y

z

 Let

matrix , vector , aA

1 2 1

2 1 1

4 2 5

B

0

5

6

� � �



































nnd vector V �

x

y

z



















 Then the matrix equation becomes A * V = B.

CRC_47744_Ch003.indd 88CRC_47744_Ch003.indd 88 6/12/2008 5:50:39 PM6/12/2008 5:50:39 PM

Matrices, Arrays, Vectors, and Sets 89

 The existence and uniqueness of a solution for V can be checked if the augmented
matrix C = [A B], an (n) × (n + 1) matrix satisfi es the relation

 rank(A) = rank([A B]) = n

 If in contrast rank(A) = r < n, then an infi nite number of solutions exist for V.
Assume that a unique solution for the matrix equation A * V = B exists and can be
obtained (rank(A) = n) by applying either of the following MATLAB commands:
a. V = inv(A) * B

b. V = A/B, or
c. Gauss = rref(C), where C = [A B], and V = Gauss (:, end)

 The solutions (a) and (b) follow standard matrix algebra operations, whereas solu-
tion (c) uses the command rref. Recall that this technique is based on the Gaussian
elimination method (using the augmented matrix) and the Gauss–Jordan reduction
procedure, where the last column of the Gauss matrix provides the solution V.

 The backlash command A\B returns the solution vector if A is not singular.
 If A is not square, the backlash operation returns a solution using least square

approximations.
 The following MATLAB program illustrates the steps followed in obtaining the

solution for the preceding example.

MATLAB Solution
>> format compact
>> A = [1 2 1; 2 -1 1; 4 2 5]; % matrix A
>> B = [0; 5; 6]; % vector B
>> Solution _ A = inv(A)*B

 Solution _ A =
 2.0000
 -1.0000
 0

>> Solution _ B =A\B

 Solution _ B =
 2
 -1
 0

>> C = [A B]; % augmented matrix
>> Gauss = rref (C); % reduced form
>> Solution _ C = Gauss(:,4),

 Solution _ C =
 2
 -1
 0

 Note that the solutions (a), (b), and (c) return identical numerical answers.

CRC_47744_Ch003.indd 89CRC_47744_Ch003.indd 89 6/12/2008 5:50:39 PM6/12/2008 5:50:39 PM

90 Practical MATLAB® Basics for Engineers

R.3.84 Let us use the command rrefmovie(C) to show the steps involved in obtaining the
rref(C) for the matrix C defi ned in R.3.83 as follows (used in the last example):

MATLAB Solution
>> C = [1 2 1 0;2 -1 1 5;4 2 5 6]

 C =
 1 2 1 0
 2 -1 1 5
 4 2 5 6

>> rrefmovie(C)

 Original matrix
 A =
 1 2 1 0
 2 -1 1 5
 4 2 5 6
Press any key to continue. . .
swap rows 1 and 3
 A =
 4 2 5 6
 2 -1 1 5
 1 2 1 0
Press any key to continue. . .
pivot = A(1,1)
 A =
 1 1/2 5/4 3/2
 2 -1 1 5
 1 2 1 0
Press any key to continue. . .
eliminate in column 1
 A =
 1 1/2 5/4 3/2
 2 -1 1 5
 1 2 1 0
Press any key to continue. . .
 A =
 1 1/2 5/4 3/2
 0 -2 -3/2 2
 0 3/2 -1/4 -3/2
Press any key to continue. . .
pivot = A(2,2)
 A =
 1 1/2 5/4 3/2
 0 1 3/4 -1
 0 3/2 -1/4 -3/2
Press any key to continue. . .
eliminate in column 2
 A =
 1 1/2 5/4 3/2
 0 1 3/4 -1
 0 3/2 -1/4 -3/2

CRC_47744_Ch003.indd 90CRC_47744_Ch003.indd 90 6/12/2008 5:50:39 PM6/12/2008 5:50:39 PM

Matrices, Arrays, Vectors, and Sets 91

Press any key to continue. . .
 A =
 1 0 7/8 2
 0 1 3/4 -1
 0 0 -11/8 0
Press any key to continue. . .
 A =
 1 0 0 2
 0 1 0 -1
 0 0 1 0
Press any key to continue. . .

 Note that the last column of the reduction process represents the solution of the
given system of equations.

R.3.85 A set of n equations are linearly dependent (where each equation represents a row
of a matrix equation), if any one of the equations can be expressed as a linear com-
bination of any subset of the n equations.

 If the set of n equations are not linearly dependent, then they are linearly
independent.

R.3.86 The MATLAB command B = max(A) and C = min(A), where A is an arbitrary n × m
matrix, returns a row vector B or C with m columns in which each element is either
the maximum or minimum element of each one of the columns of A.

 For example, let

A �

�

1 3 4
2 1 5
3 2 1

















 then the command C = min(A) returns C = [1 1 −1] and the command B = max(A)
returns B = [3 3 5].

 For the case of a vector V, the commands max(V) and min(V) return the maxi-
mum and minimum value of V, respectively.

 The functions max and min can be used not only to determine the maximum or
minimum value but also the location in the array where the maximum and mini-
mum occurs, by employing the format

 [Vmax, index] = max(V)

 [Vmin, index] = min(V)

R.3.87 Given the vector V = [v1 v2 … vn], the command Y = sum(V) returns Y as the sum
of all the elements in V, that is, Y = ∑ i=1 n

 vi .
R.3.88 For example, let

 V = [1 3 0.1 8 5 12 13 6 3.9 −9 1.3 −5.4 0.2 13.8]

CRC_47744_Ch003.indd 91CRC_47744_Ch003.indd 91 6/12/2008 5:50:39 PM6/12/2008 5:50:39 PM

92 Practical MATLAB® Basics for Engineers

 Execute and observe the responses of the following commands using MATLAB:
a. Y = sum(V)

b. Vmax = max(V)

c. [maxv, indexmax] = max(V)

d. Vmin = min(V)

e. [minv, indexmin] = min(V)

MATLAB Solution
>> Y = sum(V) % returns the sum of all the elements

in V

 Y =
 52.900

>> Vmax = max(V) % returns the largest element
in V

 Vmax =
 13.8000

>> [maxv, indexmax] = max(V) % returns the value and location of
the largest element in V

 maxv =
 13.8000
 indexmax =
 14

>> Vmin = min(V) % returns the value of the smallest
element in V

 Vmin =
 -9

>> [minv, indexmin] = min(V) % returns the value and location of
the smallest element in V

 minv =
 -9
 indexmin =
 10

R.3.89 Let A be an n × m matrix, then the command B = sum(A) returns the row vector B
consisting of m columns, where the elements of B consist of the sum of each column
of A.

 For example, let

A �

0 1 2
3 4 5
6 7 8

















 Use MATLAB to evaluate the sum of each column of A.

CRC_47744_Ch003.indd 92CRC_47744_Ch003.indd 92 6/12/2008 5:50:40 PM6/12/2008 5:50:40 PM

Matrices, Arrays, Vectors, and Sets 93

MATLAB Solution
>> A = [0 1 2;3 4 5;6 7 8]

 A =
 0 1 2
 3 4 5
 6 7 8

>> sum(A)
 ans =
 9 12 15

R.3.90 Given the vector V = [v1 v2 … vn], the command Y = prod(V) returns Y the numeri-
cal product of all the elements in V, that is, Y = ∏ i=1

n
 (vi) .

 Vector V defi ned in R.3.88 is used through R.3.100 as illustrations. For example,

>> prod(V)

 ans =
 7.6385e+006

R.3.91 Given the vector V = [v1 v2 … vn], the command Y = sort(V) returns the vector Y,
consisting of the elements of V arranged in ascending order.

 For example,

>> sort(V)

 ans =
 Columns 1 through 7
 -9.0000 -5.4000 0.1000 0.2000 1.0000 1.3000 3.0000
 Columns 8 through 14
 3.9000 5.0000 6.0000 8.0000 12.0000 13.0000 13.8000

R.3.92 The MATLAB command [y, z] = sort(V) returns two vectors y and z, where y con-
sists of all the elements of V sorted in ascending order and z represents the indexes
of the sorted elements of y. For example,

>> V =[1 3 0.1 8 5 12 13 6 3.9 −9 1.3 −5.4 0.2 13.8]

 V =
 Columns 1 through 10
 1.0000 3.0000 0.1000 8.0000 5.0000 12.0000 13.0000
 6.0000 3.9000 -9.0000
 Columns 11 through 14
 1.3000 -5.4000 0.2000 13.8000

>> [y,z] = sort(V)

 y =
 Columns 1 through 10
 -9.0000 -5.4000 0.1000 0.2000 1.0000 1.3000 3.0000
 3.9000 5.0000 6.0000
 Columns 11 through 14
 8.0000 12.0000 13.0000 13.8000

 z =
 10 12 3 13 1 11 2 9 5 8 4 6 7 14

CRC_47744_Ch003.indd 93CRC_47744_Ch003.indd 93 6/12/2008 5:50:40 PM6/12/2008 5:50:40 PM

94 Practical MATLAB® Basics for Engineers

R.3.93 In MATLAB version 7, or higher, the sort direction can be specifi ed (in quotes) by
the following command [y, z] = sort(V, ‘descend’) or [y, z] = sort(V, ‘ascend’).

R.3.94 Given the matrix A, the command sortrows(A) returns the sorted rows of A in ascend-
ing order, according to the elements of the fi rst column of A. For example, let

A �
�

� �

1 2 3 4

0 3 4 5

4 7 8 9

3 5 0.7 5





















 Execute the command sortrows(A) and observe the response.

>> B = sortrows(A)

 ans =
 -3.0000 -5.0000 0.7000 5.0000
 0 3.0000 -4.0000 5.0000
 1.0000 2.0000 3.0000 4.0000
 4.0000 7.0000 8.0000 9.0000

R.3.95 The command B = sort(A(:, :)) returns the matrix B, consisting of the sorted ele-
ments of each of the column of A in ascending order. For example,

>> B = sort(A (:, :))

 B =
 -3.0000 -5.0000 -4.0000 4.0000
 0 2.0000 0.7000 5.0000
 1.0000 3.0000 3.0000 5.0000
 4.0000 7.0000 8.0000 9.0000

R.3.96 The command B = sort (A(:, c)) returns the column vector B, consisting of the sorted
elements of column c of A, in ascending order. For example, sorting the second col-
umn of the matrix A defi ned in R.3.94 yields

>> B = sort(A(:, 2)) % returns column 2 of A, sorted in ascending
order

 B =
 -5
 2
 3
 7

 Similarly, the command D = sort (A(r, :)) returns the row vector D, consisting of
the sorted elements of row r of A, in ascending order.

R.3.97 Given the vector V = [v1 v2 … vn], the instruction mean(V) returns the average
value of all elements of V, where mean(V) = 1 __ n ∑ i=1 n

 vi .

CRC_47744_Ch003.indd 94CRC_47744_Ch003.indd 94 6/12/2008 5:50:40 PM6/12/2008 5:50:40 PM

Matrices, Arrays, Vectors, and Sets 95

R.3.98 Similarly, the command median(V) returns the median value of the set of ele-
ments in V.

 For example, let V =[1 3 0.1 8 5 12 13 6 3.9 −9 1.3 −5.4 0.2 13.8], then

>> Ave = mean(V) % Average Ave of all the elements in V

 Ave =
 3.7786

>> median _ V = median(V)

 median _ V =
 3.45 % median _ V of the elements in V

R.3.99 The command M = median(A), where A is an n × m matrix, returns the row vector
M with m elements, where each element is the median value of each of the corre-
sponding column of A. For example, let

 A = [1 2 3;4 −5 6;7 8 −9]

 Execute and observe the response of the command M = median(A).

>> A = [1 2 3;4 -5 6;7 8 -9]

 A =
 1 2 3
 4 -5 6
 7 8 -9

>> M = median(A)

 M =
 4 2 3

R.3.100 The variance denoted by Var and the standard deviation denoted by Stander of the
elements in vector V are defi ned as

Var G� �

�

��

2
2

1 1
(() ())V x mean V

nx

n

∑

Stander

n

2 1 2

� �
�

��

G
V x mean V

x

n (() ())
/

11





∑

 The standard deviation is an index of the scattering of the samples (data) given
by the set of elements in the vector V.

 The greater the standard deviation the greater the spread of the elements in V
(more scattered).

CRC_47744_Ch003.indd 95CRC_47744_Ch003.indd 95 6/12/2008 5:50:40 PM6/12/2008 5:50:40 PM

96 Practical MATLAB® Basics for Engineers

 The MATLAB command std(V) returns the standard deviation of the ele-
ments in V.

 For example, the std(V) for the V defi ned in R.3.98 is illustrated as follows:

 Recall that V = [1 3 0.1 8 5 12 13 6 3.9 −9 1.3 −5.4 0.2 13.8], then

>> std(v)

 ans =
 6.5964 % standard deviation

R.3.101 The command C = std(A), where A is a matrix, returns a row vector C, with the
value of the standard deviation for each column of A. For example, let

A �
�

� �

1 1 1 1

0 3 4 5

4 7 8 9

3 5 0 7 5.





















 Execute the command std(A) and observe the response.

>> A = [1 1 1 1; 0 3 -4 5; 4 7 8 9; -3 -5 .7 5]

 A =
 1.0000 1.0000 1.0000 1.0000
 0 3.0000 -4.0000 5.0000
 4.0000 7.0000 8.0000 9.0000
 -3.0000 -5.0000 0.7000 5.0000

>> std (A)

 ans =
 2.8868 5.0000 4.9453 3.2660

R.3.102 Given the vector V = [v1 v2 … vn], the command cumsum_V = cumsum(V) returns
the row vector cumsum_V, consisting of the cumulative sums of the elements in V.
For example, let V = [1 3 0.1 8 5 12 13 6 3.9 −9 1.3 −5.4 0.2 13.8], then

>> cumsum _ V = cumsum(V)

 cumsum _ V =
Columns 1 through 7
1.0000 4.0000 4.1000 12.1000 17.1000 29.1000
42.1000
Columns 8 through 14
48.1000 52.0000 43.0000 44.3000 38.9000 30.1000
52.9000

R.3.103 The command P = cumprod(V) returns a row vector with the cumulative products
of the elements in V. For example, the command P = cumprod(V) is executed as
 follows for the vector V = [1 3 0.1 8 5 12 13 6 3.9 −9 1.3 −5.4 0.2 13.8].

CRC_47744_Ch003.indd 96CRC_47744_Ch003.indd 96 6/12/2008 5:50:40 PM6/12/2008 5:50:40 PM

Matrices, Arrays, Vectors, and Sets 97

>> P = cumprod(V)

 P =
1.0e+006 *

 Columns 1 through 7
 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0019
 Columns 8 through 14
 0.0112 0.0438 -0.3942 -0.51125 2.7676 0.5535 7.6385

R.3.104 The norm of the vector V expressed as ��V��, sometimes referred to as the length of
V, is defi ned by applying the generalized Pythagorean theorem given by

V v v v vi

i

n

n� � � � �
�

2

1

1 2

1
2

2
2 2∑





/

�

 The MATLAB instruction norm(V) returns the values of

 [the norm of the vector V] = sqrt(VT * V) = sqrt(dot(V, V))

 Recall that the concept of norm was fi rst introduced when the dot product was
defi ned.

R.3.105 A useful and often employed relation in a real inner product is the Cauchy–
Schwarz inequality that states

 [dot(X, Y)]2 ≤ dot(X, X) . dot(Y, Y)

 or

 |dot(X, Y)| ≤ �X� �Y�

 The angle between the vectors X and Y can be defi ned as

 cos(angle between X and Y) = dot(X, Y)/(�X� �Y�)*

 Note that X and Y are orthogonal if the angle between them is 90° (or π/2 radi-
ans), implying that

 cos(90°) = 0 = dot(X, Y)/(norm (X*.norm(Y)), or dot(X, Y) = 0

 The principle of an orthogonal set (S) is applied to vectors as well as functions,
and constitutes an important concept in a variety of applications in science and
engineering, and can easily be tested by using the dot product.

 S is an orthogonal set if dot(Xi,Yj) = 0, for any i ≠ j, then all the vectors are mutu-
ally orthogonal and S is linearly independent.

* Trigonometric functions such as cosine are treated in Chapter 4.

CRC_47744_Ch003.indd 97CRC_47744_Ch003.indd 97 6/12/2008 5:50:40 PM6/12/2008 5:50:40 PM

98 Practical MATLAB® Basics for Engineers

 The norm of an arbitrary vector V is often encountered in mechanical and elec-
trical applications. For example, the root-mean-square (or rms) value of an AC
signal with n components can be defi ned as the norm divided by √

__
 n .

R.3.106 The MATLAB instruction abs(A), when A is a matrix, returns the matrix A, in
which each element of A is replaced by its absolute value. For example,
a. Let

A �

�

�

1 3
0 2











then

abs A() �

1 3
0 2











(note that A is a real matrix).
b. Let

B

j

j
�

�

� �

1 1
3 2 3











then

abs B()

.
.

�
1 1 4242

3 6056 3










(note that B is a complex* matrix).
R.3.107 The MATLAB command diag(A) returns a column vector whose elements are the

elements of the main diagonal of the square matrix A. For example, let

A � �

1 0 3
4 3 8
9 6 5

1

3

5



































, then ()diag A

 The MATLAB command D = diag(A, d) returns the column vector D, when the
diagonal is moved d positions to the right for a positive d, or d positions to the left
when d is negative. For example, the command diag(A, 1) returns

diag A 1(,) �
0

8













* Observe that abs(a + jb) = sqrt(a2 + b2). For example, the abs(B(2, 1)) = abs(3 + 2j) = sqrt(32 + 22) = 3.6056. See
Chapter 6 for information regarding complex numbers.

CRC_47744_Ch003.indd 98CRC_47744_Ch003.indd 98 6/12/2008 5:50:41 PM6/12/2008 5:50:41 PM

Matrices, Arrays, Vectors, and Sets 99

 and the command diag(A, −1) returns

diag A(, 1)� �
4

6













R.3.108 The command S = diag(V, d), where V is a row vector, returns the square matrix S,
which consists of the elements of V placed along the diagonal moved d positions to
the right of its main diagonal when d is positive, or moved to the left when d is nega-
tive, where all the remaining elements of the matrix S are zeros. For example, let

 V = [1 2 3 4]

 then

 A = diag(v, 0)

 returns the following 4 × 4 matrix:

A �

1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4





















 and the command B = diag(v, 1) returns the following 5 × 5 matrix:

A �

0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0
0

0
0

0
0

0 4
0 0























 Observe that the command diagonal plays a double purpose illustrated by the
following examples:
a. diag(A) = V
b. diag(V) = A
c. diag(diag(A)) = A

R.3.109 The command C = A(:) returns the matrix A as a column vector C, whose ele-
ments are arranged as: fi rst column of A, followed by the second column of A, …
 followed by the last column of A.

 For example, let

A �

1 4 7
2 5 8
3 6 9

















CRC_47744_Ch003.indd 99CRC_47744_Ch003.indd 99 6/12/2008 5:50:41 PM6/12/2008 5:50:41 PM

100 Practical MATLAB® Basics for Engineers

 then the command B = A(:) returns

B �

1

2

3

4

5

6

7

8

9













































R.3.110 The command trace(A) returns the sum of the elements of the main diagonal of A.
 For example, the command B = trace(A) returns B = 9 for the matrix A defi ned

in R.3.107.
R.3.111 Given the vector V = [vi v2 … vn], the command Y = diff(V) returns the row vector Y

consisting of n − 1 elements, where each element of Y(i) = V(i + 1) – V(i) for 1 ≤ i ≤ n
arranged in order starting with Y(1) = V(2) – V(1). This command can be used to
approximate the numerical derivative.* For example, let

 V = [1 3 0.1 8 5 12 13 6 3.9 −9 1.3 −5.4 0.2 13.8]

 then

>> y = diff(V)

 y =
Columns 1 through 7
2.0000 -2.9000 7.9000 -3.0000 7.0000 1.0000 -7.0000
Columns 8 through 13
-2.10000 -12.9000 10.3000 -6.7000 5.6000 13.6000

R.3.112 The instruction Area = trapz(V) returns the area under the curve defi ned by the
elements of V (magnitude on the y-axis), assuming that the spacing on the x-axis is
unity. To evaluate the area for different spacing execute the following command:

 Area = trapz(x,V), where x and V must be vectors of the same length. For exam-
ple, let

 V = [1 3 0.1 8 5 12 13 6 3.9 −9 1.3 −5.4 0.2 13.8]

>> Area = trapz(V) % shown in Figure 3.1

 Area =
 45.5000

* The concept of derivative is presented and discussed in Chapter 7.

CRC_47744_Ch003.indd 100CRC_47744_Ch003.indd 100 6/12/2008 5:50:41 PM6/12/2008 5:50:41 PM

Matrices, Arrays, Vectors, and Sets 101

 Suppose that the x scale is compressed by half as shown in Figure 3.2.
 What is the new area under the curve?

MATLAB Solution
>> x = 1:0.5:7.5
>> Area = trapz(x,V)

 Area =
 22.7500

R.3.113 The command cumtrapz(V) returns the cumulative area under the points defi ned
by V in R.3.112 assuming a unity spacing.

>> cumtrapz(V)

 ans =
Columns 1 through 7
0 2.0000 3.5500 7.6000 14.1000 22.6000 35.1000
Columns 8 through 14
44.6000 49.5500 47.0000 43.1500 41.1000 38.5000 45.5000

R.3.114 Let A be a matrix, then the command trapz(A) returns the area of A as defi ned
in R.3.112, for each column of A, and the instruction cumtrapz(A) returns the
 cumulative area of A, for each column of A, illustrated as follows:

 For example, let

A �
�

� � �

1 2 3 4
0 3 4 5
4 7 8 9
3 5 0 7 5.





















0 2 4 6 8 10 12 14
−10

−5

0

5

10

15
Vector V vs. its index

Elements of V

FIGURE 3.1
trapz(V) returns the area under the curve defi ned by the points over x = 1:14.

CRC_47744_Ch003.indd 101CRC_47744_Ch003.indd 101 6/12/2008 5:50:41 PM6/12/2008 5:50:41 PM

102 Practical MATLAB® Basics for Engineers

 then

>> trapz(A)

 ans =
 3.0000 8.5000 5.8500 18.5000

>> cumtrapz(A)

 ans =
 0 0 0 0
 0.5000 2.5000 -0.5000 4.5000
 2.5000 7.5000 1.5000 11.5000
 3.0000 8.5000 5.8500 18.5000

R.3.115 The MATLAB command B = reshape(A, u, v), where A is an n × m matrix, returns
the elements of the matrix A rearranged into a new u × v matrix B, if and only if
n × m = u × v, where the elements of B are the columns of A, arranged in sequential
order by columns.

 For example, let A be a 4 × 4 matrix defi ned as

A �

� �

� �

� �

� �

1 5 1 4
2 6 2 6
3 7 3 7
4 8 4 8





















FIGURE 3.2
trapz(x, V) returns the area under the curve defi ned by vector V over x = 1:0.5:7.5.

1 2 3 4 5 6 7 8
−10

−5

0

5

10

15

x

y

Elements of V

CRC_47744_Ch003.indd 102CRC_47744_Ch003.indd 102 6/12/2008 5:50:42 PM6/12/2008 5:50:42 PM

Matrices, Arrays, Vectors, and Sets 103

 Then use MATLAB to reshape A into
a. A 2 by 6 matrix
b. A 2 by 8 matrix
c. An 8 by 2 matrix

 Note that B = reshape(A, 2, 8) will return a 2 × 8 matrix B and C = reshape(A, 8, 2)
will return an 8 × 2 matrix C, but reshape(A, 2, 6) will return an error message, as
indicated below.

MATLAB Solution
>> A= [1 5 -1 -4;2 6 -2 -6;3 7 -3 -7;4 8 -4 -8]

 A =
 1 5 -1 -4
 2 6 -2 -6
 3 7 -3 -7
 4 8 -4 -8

>> B = reshape(A,2,6)

??? Error using ==> reshape
To RESHAPE the number of elements % note that 4×4 ≠ 2×6
must not change.

>> B = reshape(A,2,8)

 B =
 1 3 5 7 -1 -3 -4 -7
 2 4 6 8 -2 -4 -6 -8

>> C = reshape(A,8,2)

 C =
 1 -1
 2 -2
 3 -3
 4 -4
 5 -4
 6 -6
 7 -7
 8 -8

R.3.116 The MATLAB command B = rot90(A) returns matrix B, which consists of elements
of the matrix A rotated 90° following the algorithm: the fi rst column of A becomes
the last row of matrix B, the second column of A becomes the next to the last row
of B, and so on, and the last column of A becomes the fi rst row of B indicated as
follows (using matrix A defi ned in R.3.115).

>> B = rot90(A)

 B =
 -4 -6 -7 -8
 -1 -2 -3 -4
 5 6 7 8
 1 2 3 4

CRC_47744_Ch003.indd 103CRC_47744_Ch003.indd 103 6/12/2008 5:50:42 PM6/12/2008 5:50:42 PM

104 Practical MATLAB® Basics for Engineers

R.3.117 The MATLAB command D = fl iplr(A) returns matrix D, with the columns of A
fl ipped from left to right, as indicated by the following example:

>> C = fliplr(A) % where A was defined in R.3.115

 C =
 -4 -1 5 1
 -6 -2 6 2
 -7 -3 7 3
 -8 -4 8 4

R.3.118 The command E = fl ipud(A) returns matrix E, which consists of the rows of A
interchanged, following the algorithm: the last raw of A becomes the fi rst row of
E, the row next to the last row of A becomes the second row of E, and so on, and
the fi rst row of A becomes the last row of E, illustrated as follows:

 For example,

>> E = flipud(A) % where A was defined in R.3.115

 E =
 4 8 -4 -8
 3 7 -3 -7
 2 6 -2 -6
 1 5 -1 -4

R.3.119 The MATLAB command F = fi nd(A) returns the column vector F consisting of the
indexes of all nonzero elements of A. For example, using A defi ned in R.3.115

>> F = find(A)

 F =
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16

 Since A has no zero value elements, consider now a simpler example with a new
matrix A (with a zero element) defi ned as follows:

CRC_47744_Ch003.indd 104CRC_47744_Ch003.indd 104 6/12/2008 5:50:42 PM6/12/2008 5:50:42 PM

Matrices, Arrays, Vectors, and Sets 105

Let A �

0 1
2 3











 then F = fi nd(A) returns

F �

2

3

4



















 the indexes of the nonzero elements in A.

R.3.120 The MATLAB command G = exp(A) returns matrix G, whose elements are
exp = 2.71 raised to each element of A, respectively, illustrated, for the following
case:

Let A �

0 1
2 3











 then

>> G = exp(A)

 G =
 1.00 2.7183
 7.3891 20.0855

R.3.121 The MATLAB command H = expm(a) returns the matrix H, whose elements are
evaluated using the following power series:

e I a

a a a
n

a
n

� � � � � �
2 3

2 3! ! !
�

 For example, using matrix A = [0 1
2 3

] , let’s execute the following command
H = expm(A) and observe its response.

>> H = expm(A)

 H =
 5.2892 8.4033
 16.8065 30.4990

R.3.122 The command J = log(A) returns the matrix J, where each element of J is the loga-
rithm of the corresponding element of A.

CRC_47744_Ch003.indd 105CRC_47744_Ch003.indd 105 6/12/2008 5:50:42 PM6/12/2008 5:50:42 PM

106 Practical MATLAB® Basics for Engineers

 For example,

>> J = log(A) % for A defined in R.3.121

 J =
 -Inf 0
 0.6931 1.0986

R.3.123 The MATLAB command K = logm(A) returns the matrix K, whose elements satisfy
the matrix relation eK = A, illustrated as follows for matrix A defi ned in R.3.121.

>> K= logm (A)

 K =
 -0.3255 + 2.7137i 0.4480 - 0.7619i
 0.8960 - 1.5239i 1.0186 + 0.4279i

R.3.124 The MATLAB command L = sqrt(A) returns the matrix L consisting of the square
root of each element of A. For example, let

A �

0 1
2 3











 then

>> L = sqrt(A)

 L =
 0 1.0000
 1.4142 1.7321

R.3.125 The MATLAB command M = sqrtm(A) returns the matrix M, whose elements
 satisfy the matrix product A = M * M. For example, using the matrix A defi ned in
R.3.124

>> M = sqrtm(A)

 M =
 0.2570 + 0.6473i 0.4577 - 0.1817i
 0.9154 - 0.3635i 1.6302 + 0.1021i

>> CHECK = M*M % checks if M is correct

 CHECK =
 0.0000 - 0.0000i 1.0000
 ≠ 2.0000 - 0.0000i 3.0000 -0.0000i

R.3.126 The terms eigenvalues and eigenvectors came up often in many branches of sci-
ence and engineering when solving the following matrix equation: Ax = λx, where
A is an n × n matrix, λ is an unknown scalar, and x is an unknown column vector

CRC_47744_Ch003.indd 106CRC_47744_Ch003.indd 106 6/12/2008 5:50:43 PM6/12/2008 5:50:43 PM

Matrices, Arrays, Vectors, and Sets 107

consisting of n elements. An alternate of the preceding equation can be written as
A − λIx = 0, where the nonzero values of λ, which satisfy the equation A − λI = 0,
are called as eigenvectors and the xs their eigenvalues, by mathematicians. The
eigenproblem represents an homogeneous system of equations (A − λI)x = 0, where
the solution is nontrivial x ≠ 0. A square homogeneous system has a nontrivial
solution, if and only if det(A − λI) ≠ 0. The procedure of computing eigenvalues
and eigenvectors is long and complex when done by hand, but relatively simple
with MATLAB. In fact the original purpose of MATLAB, back in the 1980s, was to
build a software capable to solve the eigenproblem. Eigenvalues and eigenvectors
are often encountered in different disciplines of the physical sciences and engineer-
ing such as controls, servos, linear systems, electronics, and communications.

 For example, eigenvalues may represent the vibration in a mechanical system,
or the frequencies of oscillations in some electrical systems.

R.3.127 The evaluation of the determinant A − λI yields an n-degree polynomial in λ (Hill
and Zitarelli, 1996), called the characteristic polynomial of the matrix A, and its
zeros or roots represent the λs. The eigenvectors of the characteristic equation are
the solutions of the homogeneous system (A − λI)x = 0.

 For example, let

A �

1 2 3
2 3 4
5 6 8

















 Write a program that returns the characteristic polynomial* as well as its
eigenvalues.

MATLAB Solution
>> A = [1 2 3;2 3 4; 5 6 8]

 A =
 1 2 3
 2 3 4
 5 6 8

>> poly _ A = poly(A)

 poly _ A =
 1.0000 -12.0000 -8.0000 1.0000

>> eigenvalues _ A = roots(poly _ A)

 eigenvalues _ A =
 12.6273
 -0.7350
 0.1077

* Polynomials are presented in Chapter 7. At this point for example, it is suffi cient to know that Y = 3X3 + 4X2 +
5X + 6 is a polynomial that can be represented using MATLAB as a row vectors using its coeffi cients as
 elements such as Y = [3 4 5 6].

CRC_47744_Ch003.indd 107CRC_47744_Ch003.indd 107 6/12/2008 5:50:43 PM6/12/2008 5:50:43 PM

108 Practical MATLAB® Basics for Engineers

 Observe that the function poly(A) returns the coeffi cients of the characteristic
polynomial. The polynomial is then poly_A(λ) = λ3 − 12λ2 − 8λ + 1.

 The roots or zeros are the eigenvalues of the characteristic equation that can be
obtained by using the function roots.*

R.3.128 An alternate way to evaluate the eigenvalues of the characteristic equation as well
as the characteristic equation is by using the symbolic functions: poly(sym(A)),
factor or solve illustrated as follows:

>> poly _ A = poly(sym(A))

 poly _ A =
 x^3-12*x^2-8*x+1

>> factor (poly _ A)

 (x- 12.6273)*(x+0.7350)*(x- 0.1077)

>> solve (poly _ A)

 ans
 [12.6273]
 [-0.7350]
 [0.1077]

R.3.129 The MATLAB function eig(A) returns the eigenvalues or/and eigenvectors of the
matrix A. The eig function can take different forms. The most frequently used are
a. eigval = eig(A)

b. [eigvec, eigval] = eig(A)

 where eigval is a vector consisting of the eigenvalues of A.
 Form (b) returns a diagonal matrix with the eigenvalues on the main diagonal

and eigvec that is a matrix consisting of all the eigenvectors of A as column vectors.
R.3.130 The MATLAB functions eigvec = eigs(A) and [eigvec, eigval] = eigs(A) return a few

selected eigenvalues, or eigenvectors of A.

R.3.131 Some observations about the eigensolutions of the system matrix A.
a. If A is a real symmetric matrix (AT = A), its eigenvalues and eigenvectors are

real (positive or negative), and the eigenvalues corresponding to distinct eigen-
values are orthogonal.

b. If AT = −A, then the eigenvalues are imaginary or zero.
c. If AT = A−1, all eigenvalues have unity magnitude.
d. If A is a real nonsymmetric matrix, its eigenvalues and eigenvectors are either

real or appear in complex conjugate pairs.
e. The sum of the eigenvalues of A is equal to the trace(A). Recall that trace(A)

returns the sum of all the elements of the main diagonal of A.

* See Chapter 7 for additional details.

CRC_47744_Ch003.indd 108CRC_47744_Ch003.indd 108 6/12/2008 5:50:43 PM6/12/2008 5:50:43 PM

Matrices, Arrays, Vectors, and Sets 109

f. The product of the eigenvalues of A is equal to the det(A).
g. Matrix A is singular if one of its eigenvalues is zero.
h. If matrix A is a triangular matrix, then its eigenvalues are its diagonal elements.
i. Eigenvalues and eigenvectors can be complex, even if the matrix A is real.
j. If A is Hermitian, then its eigenvalues are real and its eigenvectors are

orthogonal.
R.3.132 For example, write a program that returns the eigenvalues and eigenvectors for

the following system matrix:

A �

1 3 5
2 3 6
3 4 8

















MATLAB Solution
>> A = [1 3 5;2 3 6;3 4 8];
>> [eigvec,eigval] = eig(A)

 eigvec =
 -0.4418 0.9305 0.5031
 -0.5327 0.0779 0.6869
 -0.7218 -0.3579 -0.5245
 eigval =
 12.7881 0 0
 0 -0.6717 0
 0 0 -0.1164

 The results indicate that the eigenvalue: λ = –0.1164, that is, located on the third
column of eigval, is associated with the eigenvector defi ned by the third column of
the eigvec matrix. Then,

x �

�

0 5031
0 6869
0 5245

.

.
.

















R.3.133 The eigenvectors associated to a system matrix A are not unique. Furthermore, the
eigenvectors obtained by using the eig command have the property that they are
normalized, a statement that is verifi ed by using the matrix defi ned in R.3.132 as
example.

MATLAB Solution
>> A = [1 3 5;2 3 6;3 4 8];
>> [eigvec,eigval]=eig(A);
>> norm(eigvec(:,1))

CRC_47744_Ch003.indd 109CRC_47744_Ch003.indd 109 6/12/2008 5:50:44 PM6/12/2008 5:50:44 PM

110 Practical MATLAB® Basics for Engineers

 ans =
 1.0000

>> norm(eigvec(:,2))

 ans =
 1.0000

>> norm(eigvec(:,3))

 ans =
 1

 Observe also that any scalar that multiplies an eigenvector is still an eigenvector.
R.3.134 Let A be a random matrix of order 5 that can be created by the command A = rand (5).

Create the MATLAB script fi le: eig_val_vec, that
a. Creates A
b. Solves the system matrix equation Ax = λx

c. Verifi es the solutions obtained

MATLAB Solution
% Script file:eig _ val _ vec
n = 5;
disp(‘**’)
disp(‘ Matrix A is given by:’)
A = rand(5)
[V,D] = eig(A);
check(1) = sum(A*V(:,1)-D(1,1)*V(:,1));
check(2) =sum(A*V(:,2)-D(2,2)*V(:,2));
check(3) = sum(A*V(:,3)-D(3,3)*V(:,3));
check(4) = sum(A*V(:,4)-D(4,4)*V(:,4));
check(5) = sum(A*V(:,5)-D(5,5)*V(:,5));
disp(‘**’)
disp(‘The eigenvalues of A are :’)
disp(D)
disp(‘**’)
disp(‘ The eigenvectors of A are :’)
disp(V)
disp(‘**’)
disp(‘ Checks the solutions by using the characteristic equation’)
disp(check)
disp(‘**’)

 The script fi le eig_val_vec is executed and the results are shown as follows:

>> eig _ val _ vec

**
 Matrix A is given by:
 A =

0.1934 0.6979 0.4966 0.6602 0.7271
0.6822 0.3784 0.8998 0.3420 0.3093
0.3028 0.8600 0.8216 0.2897 0.8385

CRC_47744_Ch003.indd 110CRC_47744_Ch003.indd 110 6/12/2008 5:50:44 PM6/12/2008 5:50:44 PM

Matrices, Arrays, Vectors, and Sets 111

0.5417 0.8537 0.6449 0.3412 0.5681
0.1509 0.5936 0.8180 0.5341 0.3704

**

The eigenvalues of A are :
 Columns 1 through 4
 2.7925 0 0 0
 0 -0.2315 + 0.2215i 0 0
 0 0 -0.2315 - 0.2215i 0
 0 0 0 0.2850
 0 0 0 0
 Column 5
 0
 0
 0
 0
 -0.5094

**

 The eigenvectors of A are :
 Columns 1 through 4
 0.4402 -0.3071 + 0.3661i -0.3071 - 0.3661i 0.5499
 0.4262 0.6267 - 0.0339i 0.6267 + 0.0339i 0.1874
 0.4935 -0.0007 + 0.0187i -0.0007 - 0.0187i -0.5687
 0.4686 0.0051 - 0.2963i 0.0051 + 0.2963i 0.5415
 0.4018 -0.5377 - 0.0187 i -0.5377 + 0.0187i -0.2140
 Column 5
 -0.2797
 0.7496
 -0.4570
 -0.3460
 0.1771
**
 Checks the solutions by using the characteristic equation

 1.0e-014 *
 Columns 1 through 4
 -0.4663 0.4534 - 0.1883i 0.4534 + 0.1883i -0.1124
 Column 5
 0.2193
**

R.3.135 The null space of matrix A, denoted in MATLAB as Z = null(A), is the orthonormal
vector Z, such that A * Z = 0. The command Z = null(A, ’r’), where r stands for the
rational basis for the null space is obtained from the reduced row echelon form
of the matrix equation A * Z = 0. For example, execute Z = null(A) and Z = null
(A, ’r’), for the matrix

A �

1 2 3
1 2 3
1 2 3

















and observe the MATLAB responses.

CRC_47744_Ch003.indd 111CRC_47744_Ch003.indd 111 6/12/2008 5:50:44 PM6/12/2008 5:50:44 PM

112 Practical MATLAB® Basics for Engineers

MATLAB Solution
>> A = [1 2 3;1 2 3;1 2 3]; then
>> Z = null(A)

 Z =
 -0.1690 -0.9487
 0.8452 0.0000
 -0.5071 0.3162

>> ZZ = null (A,’r’)

 ZZ =
 -2 -3
 1 0
 0 1

R.3.136 A string vector can be created by typing (entering) characters within quotes.
 For example, create the stringvee consisting of this is a string.

>> stringvec = ‘this is a string’

 stringvec =
 this is a string

 stringvec is a 16-character row string, where spaces are valid characters.
 The commands length(stringvec), or size(stringvec) can be used to determine the

number of elements in stringvec. For example,

>> size(stringvec)

 ans =
 1 16

 meaning that stringvee is a row vector consisting of 16 characters.
R.3.137 String matrices can be created, as long as each row of the matrix contains exactly

the same number of characters. For example,

a. Create the string matrix A
big

red

car

�

















, and

b. Check the size of A

MATLAB Solution
>> A = [‘big’; ‘red’; ‘car’]

 A =
 big
 red
 car

>> size(A)

 ans =
 3 3

 Observe that A is then a 3 × 3 string matrix.

CRC_47744_Ch003.indd 112CRC_47744_Ch003.indd 112 6/12/2008 5:50:44 PM6/12/2008 5:50:44 PM

Matrices, Arrays, Vectors, and Sets 113

R.3.138 If the rows of a string matrix do not have the same number of characters, MATLAB
returns an error message. For example, let

B

blue

red

green

�

















 Then when entered and executed, MATLAB returns an error message indicated as
follows:

>> B = [‘blue’ ; ‘red’ ; ‘green’]

 ??? All rows in the bracketed expression must have
 the same number of columns.

R.3.139 When the rows of a string matrix do not have the same number of characters,
blanks can be inserted with the objective of creating a compatible string matrix
having the same number of characters per row. For example, convert matrix B
defi ned in R.3.138 into a string matrix.

>> B = [‘blue ‘; ‘red ‘ ; ‘green’ ‘]

 B =
 blue
 red
 green

R.3.140 The MATLAB function C = char(string_1, string_2, …, string_n) automatically inserts
spaces where and when required in each string. For example, create the following
string matrix:

C

blue

red

green

black and white

�





















MATLAB Solution
>> b = ‘blue’;
>> r = ‘red’;
>> g = ‘green’;
>> bw = ‘black and white’;
>> C = char(b,r,g,bw)

 C =
 blue
 red
 green
 black and white

CRC_47744_Ch003.indd 113CRC_47744_Ch003.indd 113 6/12/2008 5:50:45 PM6/12/2008 5:50:45 PM

114 Practical MATLAB® Basics for Engineers

R.3.141 The individual elements or sequence of elements in a string matrix can be identi-
fi ed following the rules defi ned earlier in this chapter for the case of numerical
matrices. Using as example the matrix defi ned in R.3.140, write a set of commands
to obtain from matrix C the following:
a. The third row
b. The second character of the third row
c. The seventh to ninth character of the fourth row
d. The fourth character of the second row

MATLAB Solution
>> C(3,:)

 ans =
 green

>> C(3,2)

 ans =
 r

>> C(4,7:9)

 ans =
 and

>> C(2,4) % returns a blank character

 ans =

R.3.142 Cell arrays can be created by using curly brackets indicated by {}, when the rows
or columns consist of string (defi ned in quotes). For example, create the following
cell array:

C

red

blue

green

yellow

�





















MATLAB Solution
>> D = {‘red’;‘blue’;‘green’;‘yellow’}

 D =
 ‘red’
 ‘blue’
 ‘green’
 ‘yellow’

R.3.143 The rows of the cell array are identifi ed by a numerical argument in brackets.
Once a row is defi ned then the elements of a row can be identifi ed.

 For example, identify the second row and the fourth character of the second row
of matrix D defi ned in R.3.142.

CRC_47744_Ch003.indd 114CRC_47744_Ch003.indd 114 6/12/2008 5:50:45 PM6/12/2008 5:50:45 PM

Matrices, Arrays, Vectors, and Sets 115

MATLAB Solution
>> second = D(2) % observe that blue is returned in quotes

 second =
 ‘blue’

>> sec = D{2} % observe that blue is returned without quotes

 sec =
 blue

>> sec (4) % observe that individual character can be iden-
tified using standard techniques

 ans =
 e

R.3.144 The command double(stringvec) or abs(stringvec) converts the characters of the
stringvec into the ASCII code defi ned in Table 3.1.

 For example, create the stringvec = ‘this is a string’ and encode the result into
ASCII.

MATLAB Solution
>> stringvec = ‘this is a string’

 stringvec =
 this is a string

 >> ASCII = double(stringvec)

 ASCII =
 Columns 1 through 12
 116 104 105 115 32 105 115 32 97 32 115 116
 Columns 13 through 16
 114 105 110 103

 Analyzing the preceding response, it can be observed that the character code
32, in columns 5, 8, and 10 is the ASCII character for space (Table 3.1). Observe also
that stringvec has three spaces.

R.3.145 String arrays can be manipulated like ordinary numerical arrays, defi ned earlier
in this chapter. For example, observe that the sequence string can be fi ltered out
from the string array stringvec, by executing the following command:
>> filter = stringvec(10:16) % stringvec was defined in R.3.144

 filter =
 string

R.3.146 The command char(ASCII) converts the string ASCII from the ASCII code, back to
English characters, indicated as follows

>> char (ASCII) % ASCII was defined in R.3.144

 ans =
 this is a string

CRC_47744_Ch003.indd 115CRC_47744_Ch003.indd 115 6/12/2008 5:50:45 PM6/12/2008 5:50:45 PM

116 Practical MATLAB® Basics for Engineers

R.3.147 Some additional useful string commands are summarized in Table 3.2.
R.3.148 The MATLAB command numb = dec2base(D, B), defi ned in Table 3.2, returns numb,

the decimal number D converted to base B as a string.
R.3.149 The MATLAB command numbase = base2dec(N, B) returns numbase, the number N

expressed in base B, converted into its decimal equivalent, where B must be an inte-
ger between 2 and 36. The following examples illustrates some conversions.

R.3.150 Use MATLAB and perform the following conversions:
a. a = 1357810 to binary, and assign to variable (b)
b. Convert back (b) to decimal, and assign to variable (c)
c. Convert a to hexadecimal, and assign to variable (d)

TABLE 3.1

American Standard Code for Information Interchange

 0 NUL 32 [space] 64 @ 96 ‘
 1 SOH 33 ! 65 A 97 a
 2 STX 34 >> 66 B 98 b
 3 ETX 35 # 67 C 99 c
 4 EOT 36 $ 68 D 100 d
 5 ENQ 37 % 69 E 101 e
 6 ACK 38 & 70 F 102 f
 7 BEL 39 ‘ 71 G 103 g
 8 BS 40 (72 H 104 h
 9 HT 41) 73 I 105 i
10 LF 42 * 74 J 106 j
11 VT 43 + 75 K 107 k
12 FF 44 , 76 L 108 l
13 CR 45 – 77 M 109 m
14 SO 46 . 78 N 110 n
15 SI 47 / 79 O 111 o
16 DLE 48 0 80 P 112 p
17 DC1 49 1 81 Q 113 q
18 DC2 50 2 82 R 114 r
19 DC3 51 3 83 S 115 s
20 DC4 52 4 84 T 116 t
21 NAK 53 5 85 U 117 u
22 SYN 54 6 86 V 118 v
23 ETB 55 7 87 W 119 w
24 CAN 56 8 88 X 120 x
25 EM 57 9 89 Y 121 y
26 SUB 58 : 90 Z 122 z
27 ESC 59 ; 91 [123 {
28 FS 60 < 92 \ 124 |
29 GS 61 = 93] 125 }
30 RS 62 > 94 ^ 126 ~
31 US 63 ? 95 - 127 DEL

Note: NUL, Null/Idle; SOH, start of heading; STX, start of text; ETX, end of text; EOT,
end of transmission; ENQ, enquiry; ACK, acknowledge; BEL, audible or attention
signal; BS, backspace; HT, horizontal tabulation; LF, line feed; VT, vertical tabula-
tion; FF, form feed; CR, carriage return; SO, shift out; SI, shift in; DLE, data link
escape; DC1, DC2, DC3, DC4, special device control codes; NAK, negative
acknowledge; SYN, synchronous idle; ETB, end of transmission block; CAN, can-
cel; EM, end of medium; ESC, escape; FS, fi le separator; GS, group separator; RS,
record separator; US, unit separator; and DEL, delete.

CRC_47744_Ch003.indd 116CRC_47744_Ch003.indd 116 6/12/2008 5:50:46 PM6/12/2008 5:50:46 PM

Matrices, Arrays, Vectors, and Sets 117

d. Convert d back from hexadecimal to decimal, and assign variable e
e. Convert a into the following bases: 7, 20, and 36, by assigning variables f, g, and h
f. Convert h back to decimal from base 36, by assigning variable k

MATLAB Solution
>> b = dec2bin(13578) % conversion of 13578 (decimal) to binary

 b =
 11010100001010

>> c = bin2dec(a) % conversion from binary to decimal

 c =
 13578

>> d = dec2hex(13578) % conversion of 13578 (decimal) to hex

 d =
 350A

>> e = hex2dec(c) % conversion from hex. to decimal

 e =
 13578

>> f = dec2base(13578,7) % conversion from decimal to base 7

 f =
 54405

>> g = dec2base(13578,20) % conversion from decimal to base 20

 g =
 1DII

TABLE 3.2

Additional String Commands

Instruction Description

Bin2dec(x) Converts string x from binary to decimal
Dec2bin(x) Converts string x from decimal to binary
Dec2hex(x) Converts string x from decimal to hexadecimal
Hex2dec(x) Converts string x from hexadecimal to decimal
Dec2base(x, y) Converts string x (decimal) to base y
base2dec(x, y) Converts string x (base y) to decimal
num2str Converts number to string
Str2num Converts string to number
Findstr(x1, x2) Finds one string within another
Strvcat(x1, x2, x3, …) Vertical string concatenation of x1, x2, x3
Strcat(x1, x2, x3, …) Horizontal string concatenation of x1, x2, x3

CRC_47744_Ch003.indd 117CRC_47744_Ch003.indd 117 6/12/2008 5:50:46 PM6/12/2008 5:50:46 PM

118 Practical MATLAB® Basics for Engineers

>> h = dec2base(d,36) % conversion from decimal to base 36

 h =
 AH6

>> k = base2dec(h,36) % conversion from base 36 to decimal

 k =
 13578

R.3.151 A square matrix A can be factored into a lower (L) and an upper (U) triangular
matrices, when possible, by using the command [L, U] = lu(A), where L * U = A.

R.3.152 For example, factor matrix A, into an upper (U) and a lower (L) triangular matrix
and verify its decomposition for

A �

0 1 2
3 4 5
6 7 8

















MATLAB Solution
>> A = [0 1 2;3 4 5;6 7 8]

 A =
 0 1 2
 3 4 5
 6 7 8

>> [L,U] = lu(A)

 L =
 0 1.0000 0
 0.5000 0.5000 1.0000
 1.0000 0 0
 U =
 6 7 8
 0 1 2
 0 0 0

>> L*U % check the factorization

 ans =
 0 1 2
 3 4 5
 6 7 8

R.3.153 The MATLAB command [L, U, P] = lu(A) returns three matrices L, U, and P such
that L * U = P * A, where L is the lower triangular matrix and U is its upper trian-
gular matrix.

R.3.154 For example, let

A �

0 1 2
3 4 5
6 7 8

















CRC_47744_Ch003.indd 118CRC_47744_Ch003.indd 118 6/12/2008 5:50:46 PM6/12/2008 5:50:46 PM

Matrices, Arrays, Vectors, and Sets 119

 Use the command [L, U, P] = lu(A) and verify that L * U = P * A.

MATLAB Solution
>> [L,U,P] = lu(A)

 L =
 1.0000 0 0
 0 1.0000 0
 0.5000 0.5000 1.0000
 U =
 6 7 8
 0 1 2
 0 0 0
 P =
 0 0 1
 1 0 0
 0 1 0

>> L*U % verify results

 ans =
6 7 8
0 1 2
3 4 5

>> P*A % verify results

 ans =
6 7 8
0 1 2
3 4 5

R.3.155 The command B = triu(A) returns matrix B, whose elements above the main diag-
onal are the elements of A, and the elements below the main diagonal are replaced
by zeros. The command C = triu(A, d) returns the matrix C, whose elements below
the main diagonal moved d positions to the right for positive d are replaced by
zeros (for a negative d, the main diagonal is moved d positions to the left), and the
remaining elements are the elements of A.

R.3.156 The command D = tril(A) returns the matrix D with size of matrix A, consisting of
the lower triangular part of A, and the elements above the main diagonal are replaced
by zeros. The main diagonal can be shifted to the right and left, as presented for the
case of triu(A) further controlling the elements above and below the diagonal.

R.3.157 For example, let

A �

1 2 3
4 5 6
7 8 9

















CRC_47744_Ch003.indd 119CRC_47744_Ch003.indd 119 6/12/2008 5:50:46 PM6/12/2008 5:50:46 PM

120 Practical MATLAB® Basics for Engineers

 Execute and observe the responses of the following commands:
a. B = triu(A, 1)

b. C = triu(A. –1)

c. D = tril(A)

d. E = tril(A, 1)

e. F = tril(A, –1)

MATLAB Solution
>> A = [1 2 3; 4 5 6; 7 8 9]

 A =
 1 2 3
 4 5 6
 7 8 9

>> B = triu(A,1)

 B =
 0 2 3
 0 0 6
 0 0 0

>> C = triu(A,-1)

 C =
 1 2 3
 4 5 6
 0 8 9

The execution of parts (c), (d), and (e) is left as an exercise to the reader (similar to parts
(a) and (b)).

R.3.158 The command [ort, U] = qr(A) returns the orthogonal matrix ort, and the upper
triangular matrix U, such that ort * U = A.

R.3.159 The command [ort1, diag, ort2] = svd(A) (single value decomposition) factors the matrix
A into two orthogonal matrices: ort1 and ort2, and the diagonal matrix diag such that

 ort1 * diag * ort2 = A

R.3.160 For example, let

A �

1 2 3
4 5 6
7 8 9

















 Execute and observe the responses of the following commands:
a. [ort, tri] = qr(A)

b. B = ort * tri (checks the decomposition of part (a))
c. [ort1, diag, ort2] = svd(A)

d. C = ort1 * diag * ort2‘ (checks the decomposition of part (c))

CRC_47744_Ch003.indd 120CRC_47744_Ch003.indd 120 6/12/2008 5:50:46 PM6/12/2008 5:50:46 PM

Matrices, Arrays, Vectors, and Sets 121

MATLAB Solution
>> A = [1 2 3;4 5 6;7 8 9];
>> [ort,tri] = qr(A)

ort =
-0.1231 0.9045 0.4082
-0.4924 0.3015 -0.8165
-0.8616 -0.3015 0.4082

tri =
-8.1240 -9.6011 -11.0782
0 0.9045 1.8091
0 0 -0.0000

>> B = ort*tri % verify

B =
1.0000 2.0000 3.0000
4.0000 5.0000 6.0000
7.0000 8.0000 9.0000

>> [ort1,diag,ort2]=svd(A)

 ort1=
0.2148 0.8872 -0.4082
0.5206 0.2496 0.8165
0.8263 -0.3879 -0.4082

 diag =
16.8481 0 0
0 1.0684 0
0 0 0.0000

 ort2=
0.4797 -0.7767 0.4082
0.5724 -0.0757 -0.8165
0.6651 0.6253 0.4082

>> C = ort1*diag*ort2 % verify

 C =
1.0000 2.0000 3.0000
4.0000 5.0000 6.0000
7.0000 8.0000 9.0000

R.3.161 The command maxi = max(X, Y), where X and Y are arbitrary matrices of the
same size, returns the matrix maxi, where each element maxi(i, j) is the maximum
of X(i, j), Y(i, j), for all i’s and j’s.

R.3.162 The command mini = min(X, Y), where X and Y are arbitrary matrices of the
same size, returns the matrix mini, where each element mini (i, j) is the minimum
of X(i, j), Y(i, j), for all possible is and js.

R.3.163 The following example illustrates the action of the commands max(X, Y) and
min(X, Y) for the matrices X and Y defi ned as follows:

 Let

X Y� �

1 3 5 7
2 4 6 8

1 2 3 4
5 6 7 8



















and

CRC_47744_Ch003.indd 121CRC_47744_Ch003.indd 121 6/12/2008 5:50:47 PM6/12/2008 5:50:47 PM

122 Practical MATLAB® Basics for Engineers

MATLAB Solution
>> X= [1 3 5 7;2 4 6 8]

 X =
 1 3 5 7
 2 4 6 8

>> Y = [1 2 3 4;5 6 7 8]

 Y =
 1 2 3 4
 5 6 7 8

>> mini = min(X,Y)

 mini =
 1 2 3 4
 2 4 6 8

>> maxi = max(X,Y)

 maxi =
 1 3 5 7
 5 6 7 8

R.3.164 The command B = A(V1, :) returns B consisting of the rows of matrix A permuted
following the indexing of vector V1. Similarly, the command C = A(:, V2) returns
the matrix C consisting of the columns of matrix A permuted following the index-
ing set by vector V2. Observe that if A is an m × n matrix, then length(V1) = m and
length(V2) = n.

R.3.165 For example, let

A � �

1 2 3
4 5 6
7 8 9
10 11 12
13 14 15























, V1 [2 1 4 5 3], and V2 [3 2 1]�

 Execute and observe the responses of the following commands:
a. B = A(V1, :)

b. C = A(:, V2)

MATLAB Solution
>> A = [1 2 3;4 5 6;7 8 9;10 11 12;13 14 15]

 A =
 1 2 3
 4 5 6
 7 8 9
 10 11 12
 13 14 15

CRC_47744_Ch003.indd 122CRC_47744_Ch003.indd 122 6/12/2008 5:50:47 PM6/12/2008 5:50:47 PM

Matrices, Arrays, Vectors, and Sets 123

>> V1 = [2 1 4 5 3]

 V1 =
 2 1 4 5 3

>> B = A(V1,:) % observe that the first row of B is the
second row of A, …., etc.

 B =
 4 5 6
 1 2 3
 10 11 12
 13 14 15
 7 8 9

>> V2 = [3 2 1] % observe that the first column of C is
the 3rd. column of A, …, etc

 V2 =
 3 2 1

>> C = A(:,V2)

 C =
 3 2 1
 6 5 4
 9 8 7
 12 11 10
 15 14 13

R.3.166 MATLAB has a number of built-in special functions that are used to create either
specifi c or special matrices* that occur frequently in matrix manipulations.

 Some of these matrices are magic, eye, ones, zeros, hilbert, pascal, vender, rand,
and randn.

 For a list of the special matrices available in MATLAB, use the help command
followed by specmat.

R.3.167 The command magic(n), where n is an integer smaller than 32, returns an n × n
matrix with elements that constitute a magic square.† A magic matrix is a special
square matrix where the sums along each diagonal, columns, or rows return the
same constant.

 The number of rows (or the number of columns) constitutes the order of the
magic matrix. Since their discovery, magic squares have been the source of many
mathematical puzzles and games. Also as a result of the research done on magic

* There are over 50 special matrices available in MATLAB. For a complete list type help gallery.
† Magic squares have been known from antiquity. The fi rst magic square appeared on the back of a tortoise

which was discovered by the Chinese Emperor Yu around 2200 BC. In ancient India people used to wear stone
or metal ornaments engraved with arrays forming magic squares. According to the Jewish Kabbalah teach-
ing, a specifi c magic square, called a kameas, was associated with each of the following planets: Saturn, Jupiter,
Mars, Venus, and Mercury, in addition to the sun and moon (from a 3 × 3 for Saturn to a 9 × 9 matrix for the
moon). This is probably the reason why ancient civilization believed that certain planets possess power to
infl uence human events. In old Persia, magicians were also doctors that employed magic squares for medical
purposes.

CRC_47744_Ch003.indd 123CRC_47744_Ch003.indd 123 6/12/2008 5:50:47 PM6/12/2008 5:50:47 PM

124 Practical MATLAB® Basics for Engineers

squares, a number of useful mathematical concepts have been discovered, although
no special powers are attributed to them, but it cannot be denied their important
role in certain religions and cultures.

 MATLAB returns magic squares of at least order 3. There is no magic square of
order 2. The sum obtained by adding the rows, columns, or diagonals is referred
to as the constant of the square. Note that the total number of sums needed to
verify if a matrix of order n is magic is 2(n + 1), and it is usually required that
magic squares be formed from the consecutive numbers, 1 to n2.

R.3.168 For example, let us use MATLAB to create a magic matrix of order 3, and verify
using MATLAB if indeed the returned matrix is magic by performing all the eight
required additions {2(n + 1)}, and also verify that the magic constant is given by
(n3 + n)/2.

MATLAB Solution
>> A = magic(3)

 A =
 8 1 6
 3 5 7
 4 9 2

>> sumcol1 = sum(A(:,1))

 sumcol1 =
 15

>> sumcol2 = sum(A(:,2))

 sumcol2 =
 15

>> sumcol3 = sum(A(:,3))

 sumcol3 =
 15

>> sumrow1 = sum(A(1,:))

 sumrow1 =
 15

>> sumrow2 = sum(A(2,:))

 sumrow2 =
 15

>> sumrow3 = sum(A(3,:))

 sumrow3 =
 15

CRC_47744_Ch003.indd 124CRC_47744_Ch003.indd 124 6/12/2008 5:50:48 PM6/12/2008 5:50:48 PM

Matrices, Arrays, Vectors, and Sets 125

>> sumdiag1 = trace(A)

 sumdiag1 =
 15

>> aflip = fliplr(A)

 aflip =
 6 1 8
 7 5 3
 2 9 4

>> sumdiag2 = trace(aflip)

 sumdiag2 =
 15

>> n = 3;
>> magic _ constant = (n^3+n)/2

 magic _ constant =
 15

R.3.169 The magic matrix of order 5, given as follows, requires 12 additions, where each
one of the additions yields 65. It is left for the reader as an exercise to verify if
indeed the returned matrix is magic.

>> magic (5)

 ans =
17 24 1 8 15
23 5 7 14 16
 4 6 13 20 22
10 12 19 21 3
11 18 25 2 9

R.3.170 The command pascal(n), where n is an integer, returns an n × n symmetric, posi-
tive, defi nite matrix with integers entries, made up from the Pascal triangle.*

 The Pascal triangle is named after the seventeenth century mathematician,
Blaise Pascal. The Pascal triangle is shown in Table 3.3.

 Observe that each element in the Pascal triangle is found by adding the pair of
elements from the row immediate above. Also, observe that the sum of the ele-
ments in each row is a power of two.

* Blaise Pascal (1623–1662) was a brilliant French mathematician and physicist. He began the study of math-
ematics at the age of 12 and at 13 discovered the Pascal triangle. By 16 years of age, he stated the Pascal Theo-
rem, and at the age of 17 used the theorem to derive 400 propositions. At the age of 19 he invented a calculating
machine. But by 1654, he made a radical switch from mathematics and physics (hydrostatics) into theology. For
a short period (1658–1659), he returned to mathematics where he came very close to discover calculus, which
was developed years later by Leibniz and Newton.

CRC_47744_Ch003.indd 125CRC_47744_Ch003.indd 125 6/12/2008 5:50:48 PM6/12/2008 5:50:48 PM

126 Practical MATLAB® Basics for Engineers

 The Pascal triangle for n = 5 is indicated as follows:

>> Pascal(5)

row # 1 row # 2 row # 3 row # 4

1 1 1 1 1

1 2 3 4

1 3 6
1 4
1

 The elements of the Pascal triangle constitute the coeffi cients of a binomial
(Tahan,) expression raised to the power n.

 For example, let us assume that the binomial is (a + b)4, then the coeffi cients are
shown in row 4 of the Pascal triangle, given by 1, 4, 6, 4, 1.

 Similarly, the coeffi cients of (x + y)5 are given by 1, 5, 10, 10, 5, 1.
 The coeffi cients of the binomial (a2 + 3b2)4 are 1, 4, 6, 4, 1 and the corresponding

polynomial can then be expressed as indicated below

 (a2 + 3b2)4 = (a2)4 + 4(a2)3 (3b2) + 6(a2)2 (3b2)2 + 4(a2) (3b2)3 + (3b2)4

 (a2 + 3b2)4 = a8 + 12a6b2 + 54a4b4 + 108a2b6 + 81b8

 In general, the coeffi cients of the binomial expansion (a + b)n can be expanded as
(Balador, 2000) follows:

()

()

*

()()

* *
a b a n a b

n n
a b

n n n a bn n n n
n

� � � �
�

�
� �

�� �
�

1 2 2
3 31

1 2
1 2
1 2 3

�

R.3.171 Newton’s formula can also be used to evaluate the coeffi cients of a binomial of the
form a b n

�() , indicated by

()a b

n
a b

n
a b

n
a b

n

n
n n n n+























� � � � �� �

0 1 2
0 1 1 2 2 �


a bn0

TABLE 3.3

Pascal’s Triangle

Rows Total Sum per Row

1 1 1 2 = 21

2 1 2 1 4 = 22

3 1 3 3 1 8 = 23

4 1 4 6 4 1 16 = 24

5 1 5 10 10 5 1 32 = 25

64 = 266 6 15 20 15 6 11

CRC_47744_Ch003.indd 126CRC_47744_Ch003.indd 126 6/12/2008 5:50:48 PM6/12/2008 5:50:48 PM

Matrices, Arrays, Vectors, and Sets 127

 or

()a b

n

k
a bn

k

n
n k k� �

�

�



∑

0
 Recall that

n

k

n

n k
n

n k n n k
n

n k k












�
�

�
� � �

�
�

!
()!(())!

!
()! !

R.3.172 For example expand (a + b)4, using Newton’s formula resulting in

 ()a b a a b a b ab b� � � � � �4 4 3 2 2 3 44 6 4

()a b a b a b a b a b� � � � �4 4 0 3 1 2 2 1 3

4
0

4
1

4
2

4
3

























��
4
4

0 4





a b

 Observe that the coeffi cients obtained using Newton’s formula in the preceding
example fully agree with the results obtained by using Pascal’s triangle.

R.3.173 MATLAB has a number of built-in functions that return the dates and times
in the form of vectors or arrays. Some of the functions are: calendar, now, and
datenum.

R.3.174 The command calendar(date) returns a 7 × 7 array of the month specifi ed by the
date, where date is expressed as ‘mm/dd/yyyy.’

 For example obtain the months specifi ed by 05/05/1941 and 04/09/1946.

MATLAB Solution
>> calendar (‘05/05/1941’)

 May 1941
 S M Tu W Th F S
 0 0 0 0 1 2 3
 4 5 6 7 8 9 10
 11 12 13 14 15 16 17
 18 19 20 21 22 23 24
 25 26 27 28 29 30 31
 0 0 0 0 0 0 0

>> calendar (‘04/09/1946’)

 Apr 1946
 S M Tu W Th F S
 0 1 2 3 4 5 6
 7 8 9 10 11 12 13
 14 15 16 17 18 19 20
 21 22 23 24 25 26 27
 28 29 30 0 0 0 0
 0 0 0 0 0 0 0

CRC_47744_Ch003.indd 127CRC_47744_Ch003.indd 127 6/12/2008 5:50:50 PM6/12/2008 5:50:50 PM

128 Practical MATLAB® Basics for Engineers

R.3.175 The command now returns the number of days from the year zero. For example,

>> now

 ans =
 7.3097e+005

R.3.176 The command datenum(‘date’) returns the number of days since year zero up to
date, where date is expressed using the format: ‘mm/dd/yyyy hh:mm:ss.’

 For example,

>> datenum(‘04/09/1946’) % number of days from year zero to
4/9/1946

 ans =
710861

>> datenum(‘04/09/1946 12:43’) % number of days from year zero
>> % time elapsed from zero to 4/9/1946-

time 12:43

 ans =
7.1086e+005

R.3.177 The command hilb(n), where n is an integer smaller than 32, returns a special n × n
matrix referred as the Hilbert matrix. The Hilbert matrix is defi ned as follows:

1 1 2 1 3 1
1 2 1 3 1 4 1 1

1 1 1 1 2 1 2

/ / /
/ / / /()

/ /() /() /

�
�

� � � � �
�

n

n

n n n n

�

� �



















 Hilbert matrices are known to be ill-conditioned.
R.3.178 The MATLAB command invhilb(n) returns the inverse matrix of hilb(n).
 For example, use MATLAB and perform the following:

a. A = hilb(5)

b. B = invhilb(5)

c. Verify if B is the inverse of A
d. Evaluate C = det(A), and check if A is near singularity
e. Evaluate D = cond(A) and E = cond(B), and observe that D = E

MATLAB Solution
>> A = hilb(5) % part(a)

 A =
 1.0000 0.5000 0.3333 0.2500 0.2000
 0.5000 0.3333 0.2500 0.2000 0.1667
 0.3333 0.2500 0.2000 0.1667 0.1429
 0.2500 0.2000 0.1667 0.1429 0.1250
 0.2000 0.1667 0.1429 0.1250 0.1111

>> B = invhilb(5) % part(b)

CRC_47744_Ch003.indd 128CRC_47744_Ch003.indd 128 6/12/2008 5:50:51 PM6/12/2008 5:50:51 PM

Matrices, Arrays, Vectors, and Sets 129

 B =
 25 -300 1050 -1400 630
 -300 4800 -18900 26880 -12600
 1050 –18900 79380 -117600 56700
 -1400 26880 -117600 179200 -88200
 630 –12600 56700 -88200 44100

>> hilb(5)*invhilb(5) % part(c) checks if I =A*B

 ans =
 1.0000 0 0 0 0
 0 1.0000 0 0 0
 0.0000 0 1.0000 -0.0000 0
 0 0 0 1.0000 0
 0 0 0 0 1.0000

>> C = det(A) % part(d), observe that det(A) is small

 C =
 3.7493e-012

>> D = cond(A) % part(e)

D =
 4.7661e+005

>> E = cond (invhilb(5))

 E =
 4.7661e+005

R.3.179 The MATLAB function gallery(‘special_matrix’, n) is another way to access over 50
special matrices, where special_matrix defi nes the matrix name and n its order.

 For example, gallery(‘hilb’, 5) returns the hilbert matrix of order 5.
 A partial list of special matrices that can be of interest to the reader are cauchy,

chebspec, house, lehmer, poisson, vander, wilk, etc.
R.3.180 Given a vector V = [v1 v2 … vn], the command A = vander(V) returns the vander-

monde matrix, defi ned as follows:

vandermonde matrix A

v v

v v

v v

v

n

n

n

n
n

�

�

�

�

�

1
1

1

2
1

2

3
1

3

1

1

1

1

...

...

...

.... vn 1





















R.3.181 For example, let V = [1 2 3 4 5]. Use MATLAB to obtain the matrix vander(V).

>> V = 1:1:5

 V =
 1 2 3 4 5

>> vander(V)

CRC_47744_Ch003.indd 129CRC_47744_Ch003.indd 129 6/12/2008 5:50:51 PM6/12/2008 5:50:51 PM

130 Practical MATLAB® Basics for Engineers

 ans =
 1 1 1 1 1
 16 8 4 2 1
 81 27 9 3 1
 256 64 16 4 1
 625 125 25 5 1

R.3.182 Recall that a symmetric matrix is a square matrix that is equal to its transpose
(A = AT); therefore A(i, j) = A(j, I). For example,

A �

1 3 4
3 2 6
4 6 7

















 is a symmetric matrix.
A quick way to generate a symmetric matrix is by multiplying any square matrix

by its transpose (A * A' or A' * A). For example, let

A �

1 2 3
4 5 6
7 8 9

















 Use MATLAB to verify that C = A * AT and D = AT * A are symmetric matrices,
where C ≠ D.

MATLAB Solution
>> A = [1 2 3; 4 5 6; 7 8 9]

 A =
 1 2 3
 4 5 6
 7 8 9

>> B = A’

 B =
 1 4 7
 2 5 8
 3 6 9

>> C = A*B % observe that C = A*A’ yields a symmetric
matrix

 C =
 14 32 50
 32 77 122
 50 122 194

>> D = B*A % observe that D = B*A, returns a symmetric
matrix, but D ≠ C

 D =
 66 78 90
 78 93 108
 90 108 126

CRC_47744_Ch003.indd 130CRC_47744_Ch003.indd 130 6/12/2008 5:50:51 PM6/12/2008 5:50:51 PM

Matrices, Arrays, Vectors, and Sets 131

R.3.183 Recall that if A = B * C * D, where A, B, C, and D are matrices with compatible sizes,
(and operations are possible) then A–1 = B–1 * C–1 * D–1, or in terms of MATLAB
inv(A) = inv(B) * inv(C) * inv(D).

R.3.184 The concepts of transpose, inverse, and symmetric are used to defi ne special
matrices often encountered in science and engineering.

 Some of these special matrices are defi ned as follows:

Skew Symmetric if A1 = –A
Orthogonol if A1 = inv(A)
Nilpotent if An = 0 for n = 1, 2, …
Idempotent if A2 = A

R.3.185 The MATLAB command randn(n) returns an n × n random matrix, with elements
chosen from the normal Gaussian distribution with a mean value of zero and a
variance of one.

 Similarly, randn(n, m) returns an n × m normal random matrix.
R.3.186 The command rand(n, n) returns a pseudo random n × n matrix with a uniform

distribution on the interval zero to one. Similarly, rand(n, m) returns a pseudo n × m
randomly matrix.

R.3.187 For example, execute and observe the responses of the following MATLAB
commands:
a. randn(3)

b. rand(3)

c. x = rand(1, 10)

d. y = randn(1, 10)

e. u = randn(2, 3)

>> randn (3)

 ans =
 -0.4326 0.2877 1.1892
 -1.6656 -1.1465 -0.0376
 0.1253 1.1909 0.3273

>> rand (3)

 ans =
 0.9501 0.4860 0.4565
 0.2311 0.8913 0.0185
 0.6068 0.7621 0.8214

>> x = rand (1,10)

 x =
 Columns 1 through 7
 0.9501 0.2311 0.6068 0.4860 0.8913 0.7621 0.4565
 Columns 8 through 10
 0.0185 0.8214 0.4447

>> y = randn (1,10)

CRC_47744_Ch003.indd 131CRC_47744_Ch003.indd 131 6/12/2008 5:50:52 PM6/12/2008 5:50:52 PM

132 Practical MATLAB® Basics for Engineers

 y =
 Columns 1 through 7
 -0.4326 -1.6656 0.1253 0.2877 -1.1465 1.1909 1.1892
 Columns 8 through 10
 -0.0376 0.3273 0.1746

>> u = randn(2,3)

 u =
 -0.1867 -0.5883 -0.1364
 0.7258 2.1832 0.1139

R.3.188 The command randperm(n) returns a vector with n elements randomly permuted.
 For example, execute three times the command randperm(10), and observe that

the responses are indeed random.

MATLAB Solution
>> A = randperm(10)

 A =
 5 6 9 1 4 2 10 8 3 7

>> B = randperm(10)

 B =
 4 1 5 7 10 6 9 2 8 3

>> C = randperm(10)

 C =
 1 9 6 3 5 8 10 2 7 4

R.3.189 The command B = circshift(A, C) returns the matrix B, consisting of the elements
of A, circular shifted according to the vector C.

The concept of circular shifting is best understood by means of an example.
a. If C = 1, the last column of A becomes the fi rst row of B, the fi rst column of A

becomes the second row of B, the second column of A becomes the third row of
B, and so on.

b. If C = [0 1], the last row of A becomes the fi rst column of B, the fi rst row of
A becomes the second column of B, the second row of A becomes the third
 column of B, and so on.

R.3.190 For example, let

A �

1 2 3
4 5 6
7 8 9

















 Execute and observe the responses of the following circular shift commands:
a. B = circshift(A, 1)

b. C = circshift(A, [0 1])

>> A = [1 2 3;4 5 6;7 8 9];

CRC_47744_Ch003.indd 132CRC_47744_Ch003.indd 132 6/12/2008 5:50:52 PM6/12/2008 5:50:52 PM

Matrices, Arrays, Vectors, and Sets 133

>> B = circshift(A,1)

 B =
 3 6 9
 1 4 7
 2 5 8

>> C = circshift (A, [0 1])

 C =
 7 1 4
 8 2 5
 9 3 6

 It is left as an exercise for the reader to execute and observe the responses of the
following commands B = circshift(A, 3) and circshift(A, [0 3]).

R.3.191 The creation of matrices consisting exclusively of ones or zeros can be accom-
plished by using the following special MATLAB built-in functions:
a. zeros(n, m), returns an n × m matrix consisting of zeros.
b. ones(n, m), returns an n × m matrix of ones.

R.3.192 The MATLAB command eye(n) returns the n × n identity matrix.
R.3.193 The creation of the identity matrix, as well as matrices consisting of zeros and ones

are illustrated below. For example, execute and observe the responses of the fol-
lowing MATLAB commands:
a. zeros(3)

b. zeros(2, 3)

c. ones(3)

d. ones(2, 3)

e. eye(3)

f. eye(2, 3)

g. eye(4, 3)

MATLAB Solution
>> zeros(3)

 ans =
 0 0 0
 0 0 0
 0 0 0

>> zeros(2,3)

 ans =
 0 0 0
 0 0 0

>> ones(3)

 ans =
 1 1 1
 1 1 1
 1 1 1

CRC_47744_Ch003.indd 133CRC_47744_Ch003.indd 133 6/12/2008 5:50:53 PM6/12/2008 5:50:53 PM

134 Practical MATLAB® Basics for Engineers

>> ones (2,3)

 ans =
 1 1 1
 1 1 1

>> eye(3)

 ans =
 1 0 0
 0 1 0
 0 0 1

>> eye(2,3)

 ans =
 1 0 0
 0 1 0

>> eye(4,3)

 ans =
 1 0 0
 0 1 0
 0 0 1
 0 0 0

R.3.194 As an additional example, let us create the matrix A defi ned as

A �

5 5 5
5 5 5











 by using the commands ones and zeros.

MATLAB Solution
>> B = ones(2,3).*5

 B =
 5 5 5
 5 5 5

>> C = zeros(2,3)+5

 C =
 5 5 5
 5 5 5

R.3.195 The MATLAB command a = isequal(X, Y) compares the matrices X with Y and
returns a = 1, if X = Y and a = 0 otherwise (X ≠ Y).

R.3.196 For example, let X = rand(1, 10) and Y = rand(1, 10)
a. Test if X = Y
b. Test if X. * Y = Y. * X

CRC_47744_Ch003.indd 134CRC_47744_Ch003.indd 134 6/12/2008 5:50:53 PM6/12/2008 5:50:53 PM

Matrices, Arrays, Vectors, and Sets 135

MATLAB Solution
>> X = rand(1,10)

 X =
 Columns 1 through 7
 0.9501 0.2311 0.6068 0.4860 0.8913 0.7621 0.4565
 Columns 8 through 10
 0.0185 0.8214 0.4447

>> Y = rand(1,10)

 Y =
 Columns 1 through 7
 0.6154 0.7919 0.9218 0.7382 0.1763 0.4057 0.9355
 Columns 8 through 10
 0.9169 0.4103 0.8936

>> a = isequal (X,Y)

 a =
 0

>> A = X.*Y

 A =
 Columns 1 through 7
 0.5847 0.1830 0.5594 0.3588 0.1571 0.3092 0.4270
 Columns 8 through 10
 0.0170 0.3370 0.3974

>> B = Y.*X

 B =
 Columns 1 through 7
 0.5847 0.1830 0.5594 0.3588 0.1571 0.3092 0.4270
 Columns 8 through 10
 0.0170 0.3370 0.3974

>> b = isequal(A,B)

 b =
 1

R.3.197 The elements of an array may include the following special characters:
 NaN (Not A Number), Inf (infi nity), or empty.
 NaN is clearly defi ned by IEEE mathematical standards, and it states that

any operation involving NaN results in NaN. Inf involves the division by zero
(for example, Inf = 1/0).

R.3.198 Empty arrays are arrays with no matrix element and zero length in one or more
dimensions. NaN and empty cannot be compared to another entry of NaN, or with
another empty matrix.

CRC_47744_Ch003.indd 135CRC_47744_Ch003.indd 135 6/12/2008 5:50:53 PM6/12/2008 5:50:53 PM

136 Practical MATLAB® Basics for Engineers

R.3.199 For example, consider the matrix

A

NaN
�

0 1
2











 and perform the operations indicated as follows:
a. B = A.̂ 2

b. C = ones(2)./A

c. D = logm(A)

MATLAB Solution
>> A = [0 1;2 NaN]

 A =
 0 1
 2 NaN

>> B = A.̂ 2

 B =
 0 1
 4 NaN

>> C = ones(2)./A

 Warning: Divide by zero.
 C =
 Inf 1.0000
 0.5000 NaN

>> D = logm(A)

 Warning: Log of zero.
 D =
 NaN NaN
 NaN NaN

R.3.200 The function isempty(A) is used to test whether a matrix is empty. MATLAB
returns then a 1 if A is empty, and a 0 otherwise.

R.3.201 Let us defi ne an empty array and explore some of its characteristics by executing
the following MATLAB commands and observing their responses.
a. A = []

b. size(A)

c. length(A)

d. B = zeros(0, 3)

e. size(B)

f. C = 5*ones(3, 0)

g. size(C)

h. length(C)

CRC_47744_Ch003.indd 136CRC_47744_Ch003.indd 136 6/12/2008 5:50:53 PM6/12/2008 5:50:53 PM

Matrices, Arrays, Vectors, and Sets 137

i. isempty(A)

j. isempty(B)

k. isempty(C)

l. D = A + B

m. E = A * B

n. F = 3 * A

o. G = Inf * A

MATLAB Solution
>> A = [] % part(a) empty array

 A =
 []

>> size(A) % part(b)

 ans =
 0 0

>> length(A) % part(c)

 ans =
 0

>> B = zeros(0,3) % part(d), empty array with 3 columns

 B =
 Empty matrix: 0-by-3

>> size(B) % part(e)

 ans =
 0 3

>> C = 5*ones(3,0) % part(f), empty array with 3 rows

 C =
 Empty matrix: 3-by-0

>> size(C) % part(g)

 ans =
 3 0

>> length(C) % part(h)

 ans =
 0

>> isempty(A) % part(i)

 ans =
 1

CRC_47744_Ch003.indd 137CRC_47744_Ch003.indd 137 6/12/2008 5:50:54 PM6/12/2008 5:50:54 PM

138 Practical MATLAB® Basics for Engineers

>> isempty(B) % part(j)

 ans =
 1

>> isempty(C) % part(k)

 ans =
 1

>> D = A+B % part(l)

 ??? Error using ==> +
 Matrix dimensions must agree.

>> E = A*B % part(m)

 E =
 Empty matrix: 0-by-3

>> F = 3*A % part(n)

 F =
 []

>> G = Inf*A % part(o)

 G =
 []

R.3.202 The MATLAB command B = unique(A) returns the column vector B, consisting of
the elements of A, sorted in ascending order, with single value elements (dupli-
cated elements are removed).

R.3.203 For example, let

A �

1 3 4
3 4 6











Execute the command B = unique(A) and observe the response.

>> A = [1 3 4; 3 4 6]

 A =
 1 3 4
 3 4 6

>> B = unique(A)

 B =
 1
 3
 4
 6

CRC_47744_Ch003.indd 138CRC_47744_Ch003.indd 138 6/12/2008 5:50:54 PM6/12/2008 5:50:54 PM

Matrices, Arrays, Vectors, and Sets 139

R.3.204 The command B = repmat(A, r, c) returns the matrix B, with the elements of A rep-
licated, where

A can be a scalar, vector, or matrix.
r is the number of times the rows of A will be replicated.
c the number of times the columns of A will be replicated.

R.3.205 For example, create a row vector consisting of eight elements with the same value 5,
using the command repmat.

>> repmat(5,1,8)

 ans =
 5 5 5 5 5 5 5

 Obviously ones(1, 8)*5 would also return the sequence consisting of eight 5’s.
R.3.206 The function repmat can be used to create a matrix A that repeats a given matrix D

a number of times, illustrated as follows:
 For example, let D = [1 2;3 4]. Create the matrix A consisting of matrix D

repeated 15 times in a grid like structure consisting of 3 rows by 5 columns.

MATLAB Solution
>> D = [1 2;3 4]

 D =
 1 2
 3 4

>> A = repmat (D,3,5)

 A =
 1 2 1 2 1 2 1 2 1 2
 3 4 3 4 3 4 3 4 3 4
 1 2 1 2 1 2 1 2 1 2
 3 4 3 4 3 4 3 4 3 4
 1 2 1 2 1 2 1 2 1 2
 3 4 3 4 3 4 3 4 3 4

 The matrix A can also be created by the following command A = [D D D D D;
D D D D D; D D D D D].

R.3.207 Let V = [1, 2, 3, 4], create a matrix A, consisting of the row vector V repeated three
times.

MATLAB Solution
>> V = [1 2 3 4]

 V =
 1 2 3 4

>> A = repmat (V,3,1)

 A =
 1 2 3 4
 1 2 3 4
 1 2 3 4

CRC_47744_Ch003.indd 139CRC_47744_Ch003.indd 139 6/12/2008 5:50:54 PM6/12/2008 5:50:54 PM

140 Practical MATLAB® Basics for Engineers

R.3.208 Given the following two vectors V = [v1 v2 v3 v4] and W = [w1 w2], the MATLAB
function [X, Y] = meshgrid(V, W) returns two matrices: X and Y, with sizes length
(W) by length (V), where X consists of the row vector V repeated length (W) times,
and Y consists of length (V) columns, where each column consists of the elements
of W’, illustrated as follows: Let us assume that V = [v1 v2 v3 v4] and W = [w1 w2],
then meshgrid(V, W) returns

X

v v v v

v v v v
�

1 2 3 4

1 2 3 4











 and

Y

w w w w

w w w w
�

1 1 1 1

2 2 2 2











R.3.209 For example, let V = [1 2 3 4] and W = [5 6 7]. Observe the response when the fol-
lowing command is executed [X, Y] = meshgrid(V, W):

MATLAB Solution
>> V = [1 2 3 4]

 V =
 1 2 3 4

>> W = [5 6 7]

 W =
 5 6 7

>> [X,Y] = meshgrid(v,w)

 X =
 1 2 3 4
 1 2 3 4
 1 2 3 4
 Y =
 5 5 5 5
 6 6 6 6
 7 7 7 7

 The meshgrid command is generally used to create 3-D plots (see Chapter 5).
R.3.210 A 3-D matrix can be created by specifying the three indexes as A(n, m, p), where n

and m identify the row and column, and p the page or layer number.
 For example, a 3 × 3 × 3 identity matrix A and a random 2 × 5 × 3 matrix B are

created below as follows:

>> A = eye(3, 3, 3); % returns a 27-element identity matrix.

>> B = randn(2, 5, 3); % returns a 30-element random normalize matrix.

CRC_47744_Ch003.indd 140CRC_47744_Ch003.indd 140 6/12/2008 5:50:54 PM6/12/2008 5:50:54 PM

Matrices, Arrays, Vectors, and Sets 141

R.3.211 The algebraic rules defi ned for 2-D arrays are equally valid for 3-D arrays. Observe
that a 4-D matrix uses four indexes to identify each element of the matrix, whereas
a 5-D matrix uses fi ve indexes, and so on.

R.3.212 Matrix algebra rules for d-dimensional matrices (for d > 3) are not defi ned, and
should not be used in a MATLAB environment. For example, let A = ones(3, 3, 3)
and B = eye(3, 3, 3). Execute and observe the responses of the following MATLAB
commands:
a. A(1, 1, 1)

b. B(1, 1, 1)

c. C = A + B

d. C(1, 1, 1)

e. D = A. * B

f. D(2, 1, 1)

g. E = sqrt(C)

h. E(1, 1, 1)

MATLAB Solution
>> A = ones(3,3,3);
>> B = eye(3,3,3);
>> C = B+A
>> A(1,1,1)

 ans =
 1

>> B(1,1,1)

 ans =
 1

>> C(1,1,1)

 ans =
 2

>> D = A.*B;
>> D(2,1,1)

 ans =
 0

>> E = sqrt(C);
>> E(1,1,1)

 ans =
 1.411111

R.3.213 The MATLAB function num = ndim(A) returns num, the number that identifi es the
dimension of the matrix A.

R.3.214 The MATLAB command A = kron(u, v), often referred as the Kronecker tensor
product u v, returns the matrix A, whose elements are obtained by multiplying

CRC_47744_Ch003.indd 141CRC_47744_Ch003.indd 141 6/12/2008 5:50:55 PM6/12/2008 5:50:55 PM

142 Practical MATLAB® Basics for Engineers

each element of the fi rst argument (u) by the matrix represented by the second
argument (v).

R.3.215 For example, let

u v� �

1 2
3 4

5 6
7 8



















and

 Execute and observe the responses of the following MATLAB instructions:
a. A = kron(u, v)

b. B =

u v u v

u v u v
11 12

21 22

* *
* *











c. Observe that A = B

MATLAB Solution
>> u = [1 2;3 4];
>> v = [5 6;7 8];
>> A = kron(u,v)

 A =
 5 6 10 12
 7 8 14 16
 15 18 20 24
 21 24 28 32

>> B = [u(1,1)*v u(1,2)*v;u(2,1)*v u(2,2)*v]

 B =
 5 6 10 12
 7 8 14 16
 15 18 20 24
 21 24 28 32

 Observe that indeed A is equal to B.
R.3.216 A matrix is said to be sparse if a high number of its elements are zeros. These

matrices are used to reduce storage resources and computational time, when oper-
ations are performed. There is no rule to decide when a matrix should be declared
sparse. In general, a matrix is sparse if it has more zeros than nonzero elements.

 Sparcity is usually decided by the reader/programmer based on experience,
and not by a defi nition.

R.3.217 The terms sparse and full matrix refer exclusively to the way memory is allocated to
the declared variables. Mathematically speaking these two matrices are equivalent.

R.3.218 The MATLAB function B = sparse(A) converts the full matrix A into a sparse
matrix B.

R.3.219 The MATLAB function C = full(B) converts the sparse matrix B into a full matrix C.
R.3.220 The MATLAB function eye(n) returns the identity as a full matrix. The iden-

tity matrix is a good candidate to be converted to a sparse matrix, if desired,
illustrated as follows:

CRC_47744_Ch003.indd 142CRC_47744_Ch003.indd 142 6/12/2008 5:50:55 PM6/12/2008 5:50:55 PM

Matrices, Arrays, Vectors, and Sets 143

>> A = eye(4) % full matrix

 A =
 1 0 0 0
 0 1 0 0
 0 0 1 0
 0 0 0 1

>> B = sparse(A) % sparse matrix

 B =
 (1,1) 1
 (2,2) 1
 (3,3) 1
 (4,4) 1

R.3.221 The MATLAB function Ispar = speye(n) returns Ispar, that is, the sparse identity
matrix.

R.3.222 The MATLAB function nnz(A) returns the number of nonzero elements in a given
sparse or full matrix A.

R.3.223 The MATLAB function z = nonzeros(A) returns the vector z consisting of the non-
zero elements of the sparse matrix A.

R.3.224 The MATLAB function nzmax(A) returns the maximum number of nonzero ele-
ments in the sparse matrix A.

R.3.225 The MATLAB function issparse(A) checks the structure of the matrix A, and returns
a 1, if A is sparse (true), and a 0, if A is full (false).

R.3.226 The MATLAB function spy(A) returns the structure of the matrix A, displaying
symbolically the nonzero elements as dots in a 2-D array.

R.3.227 The MATLAB function A = sparse(row, col, values, total_row, total_col) returns the
sparse matrix A, where the vectors row and col indicate the positions of the non-
zero elements specifi ed by the vector values. The arguments: total_row and total_col
defi ne the size of the sparse matrix A.

R.3.228 The MATLAB function A = spalloc(row, col, nonzero) allocates suffi cient memory
for the sparse matrix A, specifi ed by the number of rows and columns that have
nonzero elements defi ned by the variables rows, col, and nonzero, respectively.

R.3.229 The following example illustrates the action of the sparse functions just defi ned
earlier.

 First, create a 5 × 5 sparse matrix A, whose elements have the value 5 in each
diagonal and zeros elsewhere. Then convert the matrix A to a full matrix B, and
test the matrices A and B for sparsity, and for the number of nonzero elements in
each matrix.

MATLAB Solution
>> clear
>> row = 1:5;
>> col = 1:5;
>> A = sparse(row,col,values,5,5)

CRC_47744_Ch003.indd 143CRC_47744_Ch003.indd 143 6/12/2008 5:50:56 PM6/12/2008 5:50:56 PM

144 Practical MATLAB® Basics for Engineers

>> values = 5*ones(1,5);
>> A = sparse(row,col,values,5,5) % 5’s on main diagonal

 A =
 (1,1) 5
 (2,2) 5
 (3,3) 5
 (4,4) 5
 (5,5) 5

>> colrev = 5:-1:1;
>> AA = sparse(row,colrev,values,5,5) % 5’s on other diagonal

 AA =
 (5,1) 5
 (4,2) 5
 (3,3) 5
 (2,4) 5
 (1,5) 5

>> A=A+AA;
>> A(3,3) = 5; % defines the element at the

intersection of the two diagonal
>> A % non zero elements of A

 A =
 (1,1) 5
 (5,1) 5
 (2,2) 5
 (4,2) 5
 (3,3) 5
 (2,4) 5
 (4,4) 5
 (1,5) 5
 (5,5) 5

>> B = full(A)

 B =
 5 0 0 0 5
 0 5 0 5 0
 0 0 5 0 0
 0 5 0 5 0
 5 0 0 0 5

>> checksparse = [issparse(A) issparse(B)]

 checksparse =
 1 0

>> checknnz = [nnz(A) nnz(B)]

 checknnz =
 9 9

CRC_47744_Ch003.indd 144CRC_47744_Ch003.indd 144 6/12/2008 5:50:56 PM6/12/2008 5:50:56 PM

Matrices, Arrays, Vectors, and Sets 145

R.3.230 Illustrate the concentrations of nonzero elements and explore the corresponding
densities of the matrices A and B of the preceding example using the spy function
(Figure 3.3).

MATLAB Solution
>> subplot(1,2,1); % see footnote*
>> spy(A);
>> title(‘Matrix structure for spy(A)’)
>> subplot(1,2,2)
>> spy(B);
>> title(‘Matrix structure for spy(B)’)

 Observe that the spy function works equally well with sparse and nonsparse
(full) matrices.

R.3.231 The MATLAB function A = sprandn(n, m, den) returns an n × m sparse matrix A
with normally distributed nonzero element with density den, where den is in the
range 0–1.

R.3.232 The MATLAB function A = sprandsym(n, den) returns an n × n sparse symmetric
matrix A with normally distributed nonzero elements of density den, where den is
in the range 0–1.

R.3.233 The density function den is defi ned as

den

nonzero elements of A
total number of elements of A

�

R.3.234 The following example illustrates and reviews some of the concepts just presented
earlier in this section. For example, create
a. A 3 × 5 sparse matrix A, with normally distributed nonzero elements with

density den = 0.30

b. A 5 × 5 symmetric sparse matrix B, with normally distributed nonzero ele-
ments with density den = 0.5

* The subplot command is discussed in Chapter 5. The reader can test this program by suppressing the subplot
command, without any loss of generality.

FIGURE 3.3
Plots of spy(A) and spy(B) of R.3.230.

0 2 4 6

0

1

2

3

4

5

6

nz = 9

Matrix structure for spy(A)

0 2 4 6

0

1

2

3

4

5

6

nz = 9

Matrix structure for spy(B)

CRC_47744_Ch003.indd 145CRC_47744_Ch003.indd 145 6/12/2008 5:50:56 PM6/12/2008 5:50:56 PM

146 Practical MATLAB® Basics for Engineers

c. Convert the sparse matrices A and B to full matrices AA and BB, respectively,
and observe the densities by obtaining a spy diagram

d. Verify numerically the densities den of each matrix, and observe that the speci-
fi ed densities are not equal to the calculated one but very close

MATLAB Solution
>> A = sprandn(3,5,0.3) % observe that from is elements
 five are non-zero

 A =
 (2,1) -1.6656
 (1,3) -0.4326
 (3,3) 0.2877
 (3,4) -1.1465
 (2,5) 0.1253

>> B = sprandsym(5,0.5) % observe that from 25 elements
 12 are non-zero

 B =
 (3,1) -0.1867
 (5,1) 0.8628
 (4,2) 0.3273
 (5,2) -0.5883
 (1,3) -0.1867
 (4,3) 1.1909
 (2,4) 0.3273
 (3,4) 1.1909
 (5,4) 1.1892
 (1,5) 0.8628
 (2,5) -0.5883
 (4,5) 1.1892

>> AA = full(A)

 AA =
 0 0 -0.4326 0 0
 -1.6656 0 0 0 0.1253
 0 0 0.2877 -1.1465 0

>> BB = full(B)

 BB =
 0 0 -0.1867 0 0.8628
 0 0 0 0.3273 -0.5883
 -0.1867 0 0 1.1909 0
 0 0.3273 1.1909 0 1.1892
 0.8628 -0.5883 0 1.1892 0

>> check _ denA = nnz(A)/15

 check _ denA =
 0.3333 % den-error=0.333-0.3=0.033

>> check _ denB = nnz(B)/25

 check _ denB =
 0.4800 % den-error=0.50-0.48=0.02

CRC_47744_Ch003.indd 146CRC_47744_Ch003.indd 146 6/12/2008 5:50:58 PM6/12/2008 5:50:58 PM

Matrices, Arrays, Vectors, and Sets 147

>> subplot(1,2,1)
>> spy(A);
>> title(‘structure of matrix A’)
>> subplot(1,2,2)
>> spy(B);
>> title(‘structure of matrix B’)

 The corresponding spy plots are shown in Figure 3.4.

FIGURE 3.4
spy(A) and spy(B) of R.3.234.

0 2 4 6

0

1

2

3

4

nz = 5

Structure of matrix A

0 2 4 6

0

1

2

3

4

5

6

nz = 12

Structure of matrix B

R.3.235 Once a sparse matrix is created all the MATLAB functions defi ned for full matri-
ces work equally well for the sparse case.

R.3.236 MATLAB operations can be performed involving mixed matrices, full, and sparse.
 The general rules followed by MATLAB are

a. Operations involving mixed matrices result in a full matrix.
b. Operations involving sparse matrices result in a sparse matrix.
c. MATLAB tries to preserve sparsity when possible.

R.3.237 The following example illustrates reviews and explores some of the concepts pre-
sented earlier in this section.

 Execute each of the following instructions and observe the responses:
a. Create the following sparse matrices: A = sprandn(50, 50, 0.1) and B =

sprandn (50, 50, 0.5)

b. Convert the sparse matrices A and B into the full matrices: AA and BB,
respectively

c. Perform the operation ADDmix = AA + B and ADDsparse = A + B

d. Perform the operation PRODmix = AA. * B and PRODsparse = A * B

e. Check if your software uses the IEEE fl oating point arithmetic
f. Execute the command det(A) and det(AA), and compare the results
g. Execute the command whos, and observe which of the results obtained are

sparse or full as well as the storage allocated to each class of matrices

CRC_47744_Ch003.indd 147CRC_47744_Ch003.indd 147 6/12/2008 5:50:58 PM6/12/2008 5:50:58 PM

148 Practical MATLAB® Basics for Engineers

MATLAB Solution
>> A = sprandn(50,50,0.1);
>> B = sprandn(50,50,0.5);
>> AA = full(A);
>> BB = full(B);
>> ADDmix = AA+B;
>> ADDsparse = A+B;
>> PRODmix = AA.*B;
>> PRODsparse = A*B;
>> issparse(ADDmix) % observe that the mix sum results in a

full matrix

 ans =
 0

>> issparse(ADDsparse) % observe that the resulting matrix is
 sparse

 ans =
 1

>> issparse(PRODmix) % observe that the mix product results in
sparse

 ans =
 1

>> issparse(PRODsparse) % observe that the sparse product result
in sparse

 ans =
 1

>> isieee % checks IEEE floating point arithmetic

 ans =
 1

>> detsparse = det(A)

 detsparse =
 0.0015

>> detfull = det(AA) % observe that det(AA)=det(A)
 as expected

 detfull =
 0.0015

>> whos

 Name Size Bytes Class
 A 50x50 3132 sparse array
 AA 50x50 20000 double array
 ADDmix 50x50 20000 double array
 ADDsparse 50x50 14820 sparse array

CRC_47744_Ch003.indd 148CRC_47744_Ch003.indd 148 6/12/2008 5:50:59 PM6/12/2008 5:50:59 PM

Matrices, Arrays, Vectors, and Sets 149

 B 50x50 11892 sparse array
 BB 50x50 20000 double array
 PRODmix 50x50 11892 sparse array
 PRODsparse 50x50 28788 sparse array
 ans 1x1 8 double array (logical)
 detfull 1x1 8 double array
 detsparse 1x1 8 double array

Grand total is 13295 elements using 130548 bytes

 Observe that MATLAB allocates 3132 bytes to store the spare matrix A, whereas
the equivalent full version, matrix AA employs 20,000 bytes. Also note that the sparse
matrix PRODmix uses 11,892 bytes, whereas the equivalent matrix PRODsparse
employs 28,788 bytes of memory. Also note that these results do not look logical.

R.3.238 The MATLAB function B = sponces(A) returns matrix B consisting of all the non-
zero elements of the sparse matrix A replaced with ones.

R.3.239 The MATLAB function A = spdiags(diag_ele, diag_loc, m, n) returns the sparse
matrix A with size m × n, with the diagonal elements identifi ed by the location
specs, diag_ele and diag_loc, (value and location) respectively.

R.3.240 Let us illustrate the action of the functions defi ned earlier in this section by exe-
cuting and observing the responses to each of the following:
a. Create a 100 × 100 sparse matrix A, whose elements have the values of ones in

the main diagonal and the subdiagonals shifted up and down by two units, and
zeros elsewhere

b. Repeat step (a) for the other diagonal
c. Create a 100 × 100 sparse matrix C, whose elements have the values of one for

the columns 48, 50, and 52
d. Repeat part (c) by replacing the columns by the rows
e. Obtain for each structure a spy diagram
f. Store the preceding commands in the script fi le: spypattern. Execute this fi le and

display the results

MATLAB Solution
% Script file:spypatterns
a = ones(100,1);
b = ones(100,1);
c = ones(100,1);
subplot(2,2,1)
A = spdiags([a b c],[-2,0,2],100,100);
spy(A);
title(‘Matrix structure for spy(A)’)
subplot(2,2,2)
B = flipud(A);
spy(B)
title(‘Matrix structure for flipud(A)’)
subplot(2,2,3)
row =[1:100 1:100 1:100];
col =[48*ones(1,100) 50*ones(1,100) 52*ones(1,100)];
values = ones(1,300);
C = sparse(row,col,values,100,100);

CRC_47744_Ch003.indd 149CRC_47744_Ch003.indd 149 6/12/2008 5:50:59 PM6/12/2008 5:50:59 PM

150 Practical MATLAB® Basics for Engineers

spy(C)
title(‘Matrix structure for spy(C)’)
subplot(2,2,4)
D = rot90(C);
spy(D)
title(‘Matrix structure for rot90(C)’)

 The resulting plots are shown in Figure 3.5.

FIGURE 3.5
spy diagrams for R.3.240.

0

0 50
nz = 296

Matrix structure for spy(C)

Matrix structure for spy(A) Matrix structure for flipud(A)

Matrix structure for rot90(C)

100

0 50
nz = 300

100 0 50
nz = 300

100

0 50
nz = 296

100

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

R.3.241 Symbolic commands can be used to create symbolic matrices, that is, matrices
whose elements are symbolic (see Chapter 7 for additional information).

 A symbolic element can be defi ned as an element with no assigned numerical
value, that must be declared as symbolic (sym) before it is used.

R.3.242 The following example illustrates some of the commands presented earlier in this
section used now on symbolic matrices. For example, create the script fi le: sym_
oper that returns the following:
a. The symbolic matrix A = [a b;c d], where a, b, c, and d are symbolic elements.
b. The characteristic polynomial equation for matrix A.
c. The eigenvalues of A.

MATLAB Solution
% Script file:sym _ oper
syms a b c d;
disp (‘******************************’)
disp(‘The symbolic matrix is’)
sym _ A = [a b;c d]

CRC_47744_Ch003.indd 150CRC_47744_Ch003.indd 150 6/12/2008 5:50:59 PM6/12/2008 5:50:59 PM

Matrices, Arrays, Vectors, and Sets 151

disp(‘The characteristic equation is :’)
char _ eq = poly(sym _ A)
disp (‘Its eigenvalues are:’)
ieg _ values _ sym _ A = eig(sym _ A)
disp(‘******************************’)

 The script fi le: sym_oper is executed and the results are shown as follows:

>> sym _ oper

The symbolic matrix is :
sym _ A =
 [a, b]
 [c, d]
The characteristic equation is
char _ eq =
 x^2-x*d-a*x+a*d-b*c
Its eigenvalues are:
 ieg _ values _ sym _ A =
[1/2*a+1/2*d+1/2*(a^2-2*a*d+d^2+4*b*c)̂ (1/2)]
[1/2*a+1/2*d-1/2*(a^2-2*a*d+d^2+4*b*c)̂ (1/2)]

3.4 Examples

Example 3.1

Write and run a program that evaluates the following sequence:

an

n

N

=
∑

0

1�

� �for 0.5 and 11 and 21.a N

Verify if the above series converges to 2 for any large value of N.

MATLAB Solution
>> n = 0:10; % creates the vector n = [0 1 2 3 … 10]
>> y1 = (0.5) . ^ n; % creates the sequence y1 = [0.5o 0.51 0.51 …

0.510]
>> sum10 = sum(y1); % computes the sum of all the elements of y1
>> m = 0:20; % creates a vector m = [0 1 2 3 … 20]
>> y2 = (0.5) . ^ m; % creates the sequence y2 = [0.50 0.51 0.52 …

0.520]
>> sum20 = sum(y2); % computes the sum of all the elements of y2
>> sum10 % returns sum10

 sum10 =
 1.9990

CRC_47744_Ch003.indd 151CRC_47744_Ch003.indd 151 6/12/2008 5:50:59 PM6/12/2008 5:50:59 PM

152 Practical MATLAB® Basics for Engineers

>> sum20 % returns sum20

 sum20 =
 2.0000

Observe that the sum of the given series converges to 2 as N approaches infi nity.

Example 3.2

Write a program that evaluates the n factorial (n!) for n = 10 and 20, where

n n! 1 * 2 * 3 * 4 * * � �

�

i
i

n

1
∏ …

Matlab Solution
>> n=1:10; % creates the vector n = [1 2 3 … 10]
>> FACT10 = prod(n); % FACT10 is the product of the elements of n
>> FACT10 % displays the product of the elements of the

sequence n
 FACT10 =
 3628800

>> m = 1:20; % creates the vector m = [1 2 3 … 20]
>> FACT20 = prod (m); % FACT20 is the product of the sequence
 given by m
>> FACT20

 FACT20 =
 2.4329e+018

Example 3.3

Write a MATLAB program that returns the sequence consisting of square of the fi rst
50 even numbers (0 4 16 36 64 100 … 9604), and identify and display the fi rst, fi fth, and
tenth element of that sequence.

MATLAB Solution
>> n = 0:2:98; % creates the vector n = [0 2 4 6 … 98]
>> y = n.̂ 2 % creates and displays the vector y = [0 22 42

62 … 982]

 y =
 Columns 1 through 6
 0 4 16 36 64 100
 Columns 7 through 12
 144 196 256 324 400 484
 Columns 13 through 18
 576 676 784 900 1024 1156
 Columns 19 through 24
 1296 1444 1600 1764 1936 2116
 Columns 25 through 30
 2304 2500 2704 2916 3136 3364

CRC_47744_Ch003.indd 152CRC_47744_Ch003.indd 152 6/12/2008 5:50:59 PM6/12/2008 5:50:59 PM

Matrices, Arrays, Vectors, and Sets 153

 Columns 31 through 36
 3600 3844 4096 4356 4624 4900
 Columns 37 through 42
 5184 5476 5776 6084 6400 6724
 Columns 43 through 48
 7056 7396 7744 8100 8464 8836
 Columns 49 through 50
 9216 9604

>> a1 = y(1) ; % first element of y
>> a5 = y(5) ; % fifth element of y
>> a10 = y(10) ; % tenth element of y
>> format compact % suppresses extra line-feeds when

display a1,a5,and a10

>> a1

 a1 =
 0

>> a5

 a5 =
 64

>> a10

 a10 =
 324

Example 3.4

Write a Matlab program that creates matrix A composed of four submatrices B, C, D, and
E arranged forming the structure indicated as follows

A

B C

E D
�











where B, C, D, and E are 5 × 5 matrices, with the following characteristics:

 1. B is the identity matrix.
 2. C consists of ones in the fi rst two columns and the rest elements are zeros.
 3. D consists of zeros in the fi rst three columns and the remaining two columns

are ones.
 4. E consists of the sequence of integers 1 through 25 in ascending order, column by

column, from left to right.

CRC_47744_Ch003.indd 153CRC_47744_Ch003.indd 153 6/12/2008 5:51:00 PM6/12/2008 5:51:00 PM

154 Practical MATLAB® Basics for Engineers

Write a MATLAB program that returns the following:

 a. The matrix A
 b. The elements: A(5, 5), A(3, 10), and A(10, 2)
 c. The size of A
 d. The transpose of A, where F = A'
 e. The following elements: F(1, 2), F(4, 2), and F(5, 5)

MATLAB Solution
>> format compact % suppress extra line-feeds when

displaying results
>> B = [eye(5)]; % creates the identify matrix B
>> C = [ones(5,2) zeros(5,3)]; % creates the matrix C
>> D = [zeros(5,3) ones(5,2)]; % creates the matrix D
>> G = [1:5;6:10;11:15;16:20;21:25]; % creates the matrix G
>> E = G’; % creates the matrix E
>> A = [B C; E D] % creates and displays the matrix A

 A =
 1 0 0 0 0 1 1 0 0 0
 0 1 0 0 0 1 1 0 0 0
 0 0 1 0 0 1 1 0 0 0
 0 0 0 1 0 1 1 0 0 0
 0 0 0 0 1 1 1 0 0 0
 1 6 11 16 21 0 0 0 1 1
 2 7 12 17 22 0 0 0 1 1
 3 8 13 18 23 0 0 0 1 1
 4 9 14 19 24 0 0 0 1 1
 5 10 15 20 25 0 0 0 1 1

>> a5 _ 5 = A(5,5) % returns A(5,5)

 a5 _ 5 =
 1

>> A3 _ 10 = A(3,10) % returns A(3,10)

 A3 _ 10 =
 0

>> A10 _ 2 = A(10,2) % returns A(10,2)

 A10 _ 2 =
 10

>> size _ A = size(A) % returns the size of matrix A

 size _ A =
 10 10

CRC_47744_Ch003.indd 154CRC_47744_Ch003.indd 154 6/12/2008 5:51:00 PM6/12/2008 5:51:00 PM

Matrices, Arrays, Vectors, and Sets 155

>> F = A’ % displays the transpose of A

 F =
 1 0 0 0 0 1 2 3 4 5
 0 1 0 0 0 6 7 8 9 10
 0 0 1 0 0 11 12 13 14 15
 0 0 0 1 0 16 17 18 19 20
 0 0 0 0 1 21 22 23 24 25
 1 1 1 1 1 0 0 0 0 0
 1 1 1 1 1 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 1 1 1 1 1
 0 0 0 0 0 1 1 1 1 1

>> F1 _ 2 = F(1,2) % displays F(1,2)

 F1 _ 2 =
 0

>> F4 _ 2 = F(4,2) % displays F(4,2)
 F4 _ 2 =
 0

>> F5 _ 5 = F(5,5) % displays F(5,5)

 F5 _ 5 =
 1

Example 3.5

Write a MATLAB program that returns the 4 × 4 random matrix R, with random
 elements consisting of integers between 1 and 100, then determine:

 a. The maximum and minimum value for each row and column of R.
 b. The elements on the main diagonal of R.
 c. The elements of the other diagonal of R.
 d. The sum and product of the elements of the main diagonal of R.
 e. The average and median of the elements of the main diagonal of R.
 f. The maximum and minimum values of the elements on the main diagonal of R.
 g. The maximum and minimum values of all the elements in R.
 h. The determinant of R.
 i. The rank of R and if possible the inverse of R (R−1).
 j. The 2 × 2 matrix that is located at the center of R.
 k. The matrix RSQ = R2.
 l. Square each element of R.
 m. Reshape matrix R into a 2 × 8 and an 8 × 2 matrices.
 n. The matrix eR.
 o. The matrix e raise to each element of R.
 p. The matrix consisting of the square root of each element of R.
 q. The matrix Rx = √

__
 R , where Rx * Rx = R.

CRC_47744_Ch003.indd 155CRC_47744_Ch003.indd 155 6/12/2008 5:51:00 PM6/12/2008 5:51:00 PM

156 Practical MATLAB® Basics for Engineers

MATLAB Solution
>> R = fix(rand(4)*100) % R consist of random integers

 R =
 95 89 82 92
 23 76 44 73
 60 45 61 17
 48 1 79 40

>> x = max(R) % maximum of each column of R, part (a)

 x =
 95 89 82 92

>> y = min(R) % returns the minimum of each column of R

 y =
 23 1 44 17

>> RR = R’

 RR =
 95 23 60 48
 89 76 45 1
 82 44 61 79
 92 73 17 40

>> minrow = min(RR) % returns the minimum of each row of R

 minrow =
 82 23 17 1

>> maxrow = max(RR) % returns the maximum of each row of R

 maxrow =
 95 76 61 79

>> vectdiR = diag(R) % returns the diagonal of A, part (b).

 vectdiR =
 95
 76
 61
 40

>> flipR = fliplR(R) % flips the columns of R from left to
right

 flipR =
 92 82 89 95
 73 44 76 23
 17 61 45 60
 40 79 1 48

CRC_47744_Ch003.indd 156CRC_47744_Ch003.indd 156 6/12/2008 5:51:00 PM6/12/2008 5:51:00 PM

Matrices, Arrays, Vectors, and Sets 157

>> otherdiag = diag(flipR) % returns the second diagonal of R,
part (c)

 otherdiag =
 92
 44
 45
 48

>> SumdiR = sum(vectdiR) % sum of the elements of the main
diagonal, part (d)

 SumdiR =
 272

>> prodiR = prod(vectdiR) % product of the elements of the main
diagonal

 prodiR =
 17616800

>> avediR = mean(vectdiR) % average of the elements of the main
diagonal, part (e)

 avediR =
 68

>> meddiR = median(vectdiR) % median of the elements of the main
diagonal

 meddiR =
 68.5000

>> maxvalue = max(x) % maximum value in R, part (g)

 maxvalue =
 95

>> minvalue = min(y) % minimum value in R

 minvalue =
 1

>> maxdia = max(vectdiR) % largest element in the main
diagonal, part (f)

 maxdia =
 95

CRC_47744_Ch003.indd 157CRC_47744_Ch003.indd 157 6/12/2008 5:51:00 PM6/12/2008 5:51:00 PM

158 Practical MATLAB® Basics for Engineers

>> mindia = min(vectdiR) % smallest element in the main
diagonal

 mindia =
 40

>> detR = det(R) % determinant of R, part (h)

 detR =
 11580761

>> rank(R) % rank of R, part (i)

 ans =
 4

>> H = inv(R) % inverse of R, part (i).

 H =
 0.0224 -0.0236 -0.0045 -0.0067
 -0.0076 0.0122 0.0169 -0.0120
 -0.0201 0.0142 0.0154 0.0137
 0.0129 -0.0001 -0.0255 0.0063

>> cond(R)

 ans =
 12.5427

>> I = H*R % checks for the identity matrix

 I =
 1.0000 -0.0000 -0.0000 -0.0000
 0.0000 1.0000 0.0000 0.0000
 -0.0000 0 1.0000 -0.0000
 -0.0000 -0.0000 -0.0000 1.0000

>> II = R*H

 II =
 1.0000 0 -0.0000 0.0000
 0 1.0000 -0.0000 0.0000
 -0.0000 0 1.0000 -0.0000
 -0.0000 0.0000 0.0000 1.0000

>> Rcenter = R(2:3,2:3) % returns the 2x2 centered matrix of
R, part (j)

 Rcenter =
 76 44
 45 61

>> RSQ = R*R % part (k)

 RSQ =
 20408 19001 23976 20311
 10077 9876 13681 11332
 11211 11522 11964 10522
 11243 7943 11959 7432

CRC_47744_Ch003.indd 158CRC_47744_Ch003.indd 158 6/12/2008 5:51:00 PM6/12/2008 5:51:00 PM

Matrices, Arrays, Vectors, and Sets 159

>> Rsq = R.̂ 2 % square each element of R,
part (l)

 Rsq =
 9025 7921 6724 8464
 529 5776 1936 5329
 3600 2025 3721 289
 2304 1 6241 1600

>> reshape2x8 = reshape(R,2,8) % returns a 2x8 matrix with the ele-
ments of R. part (m)

 reshape2x8 =
 95 60 89 45 82 61 92 17
 23 48 76 1 44 79 73 40

>> reshape8x2 = reshape(R,8,2)

 reshape8x2 =
 95 82
 23 44
 60 61
 48 79
 89 92
 76 73
 45 17
 1 40

>> expR = expm(R) % evaluates the series I+R+R2/
2!+R3/3!+, part (n)

 expR =
 1.0e+099 *
 5.7012 5.2376 6.6039 5.3458
 3.0171 2.7717 3.4948 2.8290
 3.0906 2.8393 3.5800 2.8980
 2.7321 2.5099 3.1646 2.5618

>> expeleR = exp(R) % returns e raised to each element in
R, part (o)

 expeleR =
 1.0e+041 *
 1.8112 0.0045 0.0000 0.0902
 0.0000 0.0000 0.0000 0.0000
 0.0000 0.0000 0.0000 0.0000
 0.0000 0.0000 0.0000 0.0000

>> sqrteleR = sqrt(R) % square root of each element of R,
part (p)

CRC_47744_Ch003.indd 159CRC_47744_Ch003.indd 159 6/12/2008 5:51:00 PM6/12/2008 5:51:00 PM

160 Practical MATLAB® Basics for Engineers

 sqrteleR =
 9.7468 9.4340 9.0554 9.5917
 4.7958 8.7178 6.6332 8.5440
 7.7460 6.7082 7.8102 4.1231
 6.9282 1.0000 8.8882 6.3246

>> Rx = sqrtm(R) % square root of R

 Rx =
 8.3899 - 0.0000i 5.2142 + 0.0000i 3.2680 4.7286 + 0.0000i
 0.6054 + 0.0000i 8.7517 + 0.0000i 1.0163 4.6934 - 0.0000i
 3.8929 - 0.0000i 1.5143 - 0.0000i 7.0883 - 0.0000i -0.6346 + 0.0000i
 1.8466 -1.1267 - 0.0000i 5.5233 - 0.0000i 6.3294 + 0.0000i

>> check = Rx*Rx % checks the result

check =
95.0000-0.0000i 89.0000 + 0.0000i 82.0000 - 0.0000i 92.0000 + 0.0000i
23.0000+0.0000i 76.0000 + 0.0000i 44.0000 - 0.0000i 73.0000 + 0.0000i
60.0000-0.0000i 45.0000 - 0.0000i 61.0000 - 0.0000i 17.0000 + 0.0000i
48.0000-0.0000i 1.0000 - 0.0000i 79.0000 - 0.0000i 40.0000 + 0.0000i

Example 3.6

Write a program that returns an equivalence table of temperatures in terms of degree
Celsius (°C), Fahrenheit (°F), and Kelvin (K), over the range 0°C (freezing point) and
100°C (boiling point), linearly spaced every 10°C.

From Chapter 2, Table 2.5, the following relations are known:

 1°F = 1.8°C + 32

 1 K = 1°C + 273.15

MATLAB Solution
>> Celsius = 0:10:100; % returns an 11 elements Celsius

array
>> Farhnt = 1.8*Celsius+32 % returns the equivalent Farhnt

array
>> Kelvin = Celsius+273.15; % returns the Kelvin equivalent array
>> A= [‘Celsius Farhnt Kelvin’];
>> % display the table, where the first column is
>> % the temperature in Celsius, the second column is in Fahrenheit,
 and the third …
>> column is in Kelvin degrees
>> disp(‘*****************************’)
>> disp(‘ Tables of temperatures ’)
>> disp(‘*****************************’)
>> B = [Celsius' Farhnt' Kelvin'];
>> disp(‘*****************************’)
>> disp(A), disp(B)
>> disp(‘*****************************’)

CRC_47744_Ch003.indd 160CRC_47744_Ch003.indd 160 6/12/2008 5:51:00 PM6/12/2008 5:51:00 PM

Matrices, Arrays, Vectors, and Sets 161

 Tables of temperatures

 Celsius Farhnt Kelvin

 0 32.0000 273.1500
 10.0000 50.0000 283.1500
 20.0000 68.0000 293.1500
 30.0000 86.0000 303.1500
 40.0000 104.0000 313.1500
 50.0000 122.0000 323.1500
 60.0000 140.0000 333.1500
 70.0000 158.0000 343.1500
 80.0000 176.0000 353.1500
 90.0000 194.0000 363.1500
 100.0000 212.0000 373.1500

Example 3.7

The equivalent resistance Req_s of an electrical network consisting of n resistors con-
nected in series is given by

R

eq_s
�

�

Ri
i

n

1
∑

where the Ri’s are the series resistor (see Chapter 2* for additional details). The equiv-
alent resistance Req_p of an electrical network consisting of n resistors connected in
parallel is given by

Req_p �

�

1

1
1

/Rii

n∑

where the Ri’s are the resistors connected in parallel.
Write a MATLAB program that evaluates Req for the series and parallel cases, for an

electrical network consisting of four resistors with the following values R1 = 2.5, R2 = 4,
R3 = 11, and R4 = 6.3 (in Ohms).

MATLAB Solution
>> R1 = 2.5;R2 = 4;R3 = 11; R4 =6.3; % values of the resistors in Ohms
>> X = [R1 R2 R3 R4]; % X is the resistor network array
>> reqseries = sum(X) % equivalent resistance when

connected in series

 reqseries =
 23.8000

>> Y = 1./X; % transform the resistances to
admittances

>> Ys = sum(Y); % total admittance of the network
>> reqparal = 1/Ys % equivalent resistance connected

in parallel

 reqparal =
 1.1116

* MATLAB applications for engineers.

CRC_47744_Ch003.indd 161CRC_47744_Ch003.indd 161 6/12/2008 5:51:00 PM6/12/2008 5:51:00 PM

162 Practical MATLAB® Basics for Engineers

Example 3.8

Given the vector V specifi ed below by

 V = [1 3 7 9 12 10 8 5 3 −1 −2 0 2 3 1 2]

Write a program using MATLAB that returns the following:

 a. the row vector V
 b. the size and length of V
 c. V converted into a column vector
 d. the elements of V sorted in ascending order
 e. the addition of all the elements of V
 f. the product of all the elements of V
 g. the maximum and minimum value of V and their locations in the array
 h. the sequence that consists of squaring each element of V
 i. the mean and median of V
 j. the variance and standard deviation of V
 k. the cumulative sum and cumulative product of V
 l. the norm of V (�V�)
 m. the area under the curve defi ned by the elements of V with unit spacing
 n. the cumulative area under V
 o. a new vector consisting of the fi rst four elements of V (remove elements fi fth

through sixteenth)

MATLAB Solution
>> V = [1 3 7 9 12 10 8 5 3 -1 -2 0 2 3 1 2];
>> V _ size = size (V)

 V _ size =
 1 16

>> V _ len = length(V)

 V _ len =
 16

>> V _ col = V’

 V _ col =
 1
 3
 7
 9
 12
 10
 8
 5
 3

CRC_47744_Ch003.indd 162CRC_47744_Ch003.indd 162 6/12/2008 5:51:00 PM6/12/2008 5:51:00 PM

Matrices, Arrays, Vectors, and Sets 163

 -1
 -2
 0
 2
 3
 1
 2

>> V _ sort = sort (V)

V _ sort =
Columns 1 through 12
-2 –1 0 1 1 2 2 3 3 3 5 7
Columns 13 through 16
8 9 10 12

>> V _ sum = sum(V)

 V _ sum =
 63

>> V _ prod = prod(V)

 V _ prod =
 0

>> [V _ max,max _ position] = max(V)

 V _ max =
 12
 max _ position =
 5

>> [V _ min,min _ position] = min(V)

 V _ min =
 -2
 min _ position =
 11

>> V _ square = V.̂ 2

 V _ square =
Columns 1 through 12
1 9 49 81 144 100 64 25 9 1 4 0
Columns 13 through 16
4 9 1 4

>> V _ mean = mean(V)

 V _ mean =
 3.9375

>> V _ median = median(V)

 V _ median =
 3

CRC_47744_Ch003.indd 163CRC_47744_Ch003.indd 163 6/12/2008 5:51:01 PM6/12/2008 5:51:01 PM

164 Practical MATLAB® Basics for Engineers

>> V _ stand _ dev = std(V)

 V _ stand _ dev =
 4.1387

>> V _ variance = V _ stand _ dev^2

 V _ variance =
 17.1292

>> V _ cum _ sum = cumsum(V)

 V _ cum _ sum =
 Columns 1 through 12
 1 4 11 20 32 42 50 55 58 57 55 55
 Columns 13 through 16
 57 60 61 63

>> V _ cum _ prod = cumprod(V)

 V _ cum _ prod =
 Columns 1 through 6
 1 3 21 189 2268 22680
 Columns 7 through 12
 181440 907200 2721600 –2721600 5443200 0
 Columns 13 through 16
 0 0 0 0

>> V _ norm = norm(V)

 V _ norm =
 22.4722

>> V _ area = trapz(V)

 V _ area =
 61.5000

>> V _ cum _ area = cumtrapz(V)

 V _ cum _ area =
 Columns 1 through 7
 0 2.0000 7.0000 15.0000 25.5000 36.5000 45.5000
 Columns 8 through 14
 52.0000 56.0000 57.0000 55.5000 54.5000 55.5000
 58.0000
 Columns 15 through 16
 60.0 61.5000

>> V(5:end) = [] % removes elements 5 through 16 from V

 V =
 1 3 7 9

CRC_47744_Ch003.indd 164CRC_47744_Ch003.indd 164 6/12/2008 5:51:01 PM6/12/2008 5:51:01 PM

Matrices, Arrays, Vectors, and Sets 165

>> V _ new = V % new vector with elements 1 through 4

 V _ new =
 1 3 7 9

Example 3.9

Given the following matrices:

A �

� �

�

1 3 0
4 8 2
3 1 1

1 6 5 3
1 8 7 3
2 5 0

































and B

.
.

Write the MATLAB commands that return the following:

 a. matrices A and B
 b. C = A + B
 c. D = A − B
 d. multiply array A by B and assign the result to E
 e. divide array A by B and assign the result to F
 f. add the second column of A to the fi rst column of B
 g. the condition number for matrices A and B
 h. the determinant of A and B
 i. if possible, the inverse of A and B
 j. matrix A is converted to column and row vectors
 k. the indexes of the nonzero elements of A and B
 l. the matrix G consisting of the maximum values of either A or B
 m. the matrix H consisting of the minimum values of either A or B
 n. the matrix I that consists of multiplying every element of A by 3
 o. the composite matrices V = [A B] and W = [A B]
 p. the matrix J by replacing all the elements above the main diagonal of A by

zeros
 q. the matrix K by replacing all the elements below the main diagonal of A by

zeros

MATLAB Solution
>> A = [1 3 0; 4 8 2; 3 -1 -1]; % matrix A
>> B = [1 6 5.3; 1.8 7 3; 2 5 0]; % matrix B
>> C = A+B % add A to B

 C =
 2.0000 9.0000 5.3000
 5.8000 15.0000 5.0000
 5.0000 4.0000 -1.0000

>> D = A-B % subtract B from A

 D =
 0 -3.0000 -5.3000
 2.2000 1.0000 -1.0000
 1.0000 -6.0000 -1.0000

CRC_47744_Ch003.indd 165CRC_47744_Ch003.indd 165 6/12/2008 5:51:01 PM6/12/2008 5:51:01 PM

166 Practical MATLAB® Basics for Engineers

>> E = A.*B % array product

 E =
 1.0000 18.0000 0
 7.2000 56.0000 6.0000
 6.0000 -5.0000 0

>> F = A./B % array division

 Warning: Divide by zero.

 F =
 1.0000 0.5000 0
 2.2222 1.1429 0.6667
 1.5000 -0.2000 -Inf

>> A2 = A(:, 2) % second column of A

 A2 =
 3
 8
 -1

>> B1 = B(:, 1) % first column of B

 B1 =
 1.0000
 1.8000
 2.0000

>> G = A2+B1 % adds the second column
of A to the

 first column of B

 G =
 4.0000
 9.8000
 1.0000

>> cond(A) % condition number of A.

 ans =
 12.9106

>> cond(B) % condition number of B

 ans =
 86.5485

>> det(A) % determinant of A

 ans =
 24

CRC_47744_Ch003.indd 166CRC_47744_Ch003.indd 166 6/12/2008 5:51:01 PM6/12/2008 5:51:01 PM

Matrices, Arrays, Vectors, and Sets 167

>> det(B) % determinant of B

 ans =
 -5.5000

>> inv _ A = inv(A) % inverse of A.

 inv _ A =
 -0.2500 0.1250 0.2500
 0.4167 -0.0417 -0.0833
 -1.1667 0.4167 -0.1667

>> K = inv(B) % inverse of B

 K =
 2.7273 -4.8182 3.4727
 -1.0909 1.9273 -1.1891
 0.9091 -1.2727 0.6909

>> CA = A(:) % column vector with the
elements of A

 CA =
 1
 4
 3
 3
 8
 -1
 0
 2
 -1

>> RA = CA’ % transforms the columns
vector into a row vector

 RA =
 1 4 3 3 8 -1 0 2 -1

>> find(A) % indexes of the nonzero
elements of A

 ans =
 1
 2
 3
 4
 5
 6
 8
 9

CRC_47744_Ch003.indd 167CRC_47744_Ch003.indd 167 6/12/2008 5:51:01 PM6/12/2008 5:51:01 PM

168 Practical MATLAB® Basics for Engineers

>> % note that the 7th. element
is missing

>> find(B) % indexes of the nonzero
elements of B

 ans =
 1
 2
 3
 4
 5
 6
 7
 8

>> % note that the 9th element
is missing

>> G = max(A,B) % maximum values of A or B

 G =
 1.0000 6.0000 5.3000
 4.0000 8.0000 3.0000
 3.0000 5.0000 0

>> H = min(A,B) % minimum values of A or B

 H =
 1.0000 3.0000 0
 1.8000 7.0000 2.0000
 2.0000 -1.0000 -1.0000

>> I = A.*3 % multiplies the elements of
A by 3

 I =
 3 9 0
 12 24 6
 9 -3 -3

>> V = [A B] % V becomes a 3x6 matrix

 V =
 1.0000 3.0000 0 1.0000 6.0000 5.3000
 4.0000 8.0000 2.0000 1.8000 7.0000 3.0000
 3.0000 -1.0000 -1.0000 2.0000 5.0000 0

>> W = [A; B] % W becomes a 6x3 matrix

 W =
 1.0000 3.0000 0
 4.0000 8.0000 2.0000
 3.0000 -1.0000 -1.0000
 1.0000 6.0000 5.3000
 1.8000 7.0000 3.0000
 2.0000 5.0000 0

CRC_47744_Ch003.indd 168CRC_47744_Ch003.indd 168 6/12/2008 5:51:01 PM6/12/2008 5:51:01 PM

Matrices, Arrays, Vectors, and Sets 169

>> J = tril(A) % elements above the main
diagonal of A become zeros

 j =
 1 0 0
 4 8 0
 3 -1 -1

>> K = triu(A) % elements below the diagonal
of A become zeros

 ans =
 1 3 0
 0 8 2
 0 0 -1

Example 3.10

Write a set of MATLAB commands that return the following:

 a. The month of October 2000
 b. The magic 3 × 3 matrix
 c. The fi rst six rows of the Pascal triangle
 d. The 5 × 5 random matrix, using the commands: randn and rand
 e. A 5 × 5 matrix with all elements equal to −2
 f. The 5 × 5 identity matrix (eye)
 g. The 5 × 5 Hilbert matrix and label it H
 h. The condition numbers for matrix H and the inverse of H
 i. The eigenvalues and eigenvectors for the matrix H
 j. The present year using the command now

MATLAB Solution
>> calendar(2000,10) % returns 10/2000

 Oct 2000
 S M Tu W Th F S
 1 2 3 4 5 6 7
 8 9 10 11 12 13 14
 15 16 17 18 19 20 21
 22 23 24 25 26 27 28
 29 30 31 0 0 0 0
 0 0 0 0 0 0 0

>> magic(3) % the magic 3x3 matrix

 ans =
 8 1 6
 3 5 7
 4 9 2

CRC_47744_Ch003.indd 169CRC_47744_Ch003.indd 169 6/12/2008 5:51:01 PM6/12/2008 5:51:01 PM

170 Practical MATLAB® Basics for Engineers

>> pascal(7) % the Pascal 7x7 matrix

 ans =
 1 1 1 1 1 1 1
 1 2 3 4 5 6 7
 1 3 6 10 15 21 28
 1 4 10 20 35 56 84
 1 5 15 35 70 126 210
 1 6 21 56 126 252 462
 1 7 28 84 210 462 924

>> randn(5) % the 5x5 random Gaussian
matrix

 ans =
 -0.4326 1.1909 -0.1867 0.1139 0.2944
 -1.6656 1.1892 0.7258 1.0668 -1.3362
 0.1253 -0.0376 -0.5883 0.0593 0.7143
 0.2877 0.3273 2.1832 -0.0956 1.6236
 -1.1465 0.1746 -0.1364 -0.8323 -0.6918

>> rand(5) % the 5x5 random matrix

 ans =
 0.9501 0.7621 0.6154 0.4057 0.0579
 0.2311 0.4565 0.7919 0.9355 0.3529
 0.6068 0.0185 0.9218 0.9169 0.8132
 0.4860 0.8214 0.7382 0.4103 0.0099
 0.8913 0.4447 0.1763 0.8936 0.1389

>> eye(5) % the 5x5 identity matrix

 ans =
 1 0 0 0 0
 0 1 0 0 0
 0 0 1 0 0
 0 0 0 1 0
 0 0 0 0 1

>> M = ones(5).*-2 % the 5x5 vector with elements
of –2

 M =
 -2 -2 -2 -2 -2
 -2 -2 -2 -2 -2
 -2 -2 -2 -2 -2
 -2 -2 -2 -2 -2
 -2 -2 -2 -2 -2

>> H = hilb(5) % the 5x5 Hilbert matrix

CRC_47744_Ch003.indd 170CRC_47744_Ch003.indd 170 6/12/2008 5:51:01 PM6/12/2008 5:51:01 PM

Matrices, Arrays, Vectors, and Sets 171

 H =
 1.0000 0.5000 0.3333 0.2500 0.2000
 0.5000 0.3333 0.2500 0.2000 0.1667
 0.3333 0.2500 0.2000 0.1667 0.1429
 0.2500 0.2000 0.1667 0.1429 0.1250
 0.2000 0.1667 0.1429 0.1250 0.1111

>> cond(H) % condition number for H

 ans =
 4.7661e+005

>> inv _ H = inv(H) % inverse of H

 inv _ H =
 1.0e+005 *
 0.0002 -0.0030 0.0105 -0.0140 0.0063
 -0.0030 0.0480 -0.1890 0.2688 -0.1260
 0.0105 -0.1890 0.7938 -1.1760 0.5670
 -0.0140 0.2688 -1.1760 1.7920 -0.8820
 0.0063 -0.1260 0.5670 -0.8820 0.4410

>> cond(inv _ H) % conditional number for
inv _ H

 ans =
 4.7661e+005

>> [vec, valu] = eig(H) % eigenvector and eigenvalues
of H

 vec =
 0.0062 0.0472 0.2142 -0.6019 0.7679
 -0.1167 -0.4327 -0.7241 0.2759 0.4458
 0.5062 0.6674 -0.1205 0.4249 0.3216
 -0.7672 0.2330 0.3096 0.4439 0.2534
 0.3762 -0.5576 0.5652 0.4290 0.2098
 valu =
 0.0000 0 0 0 0
 0 0.0003 0 0 0
 0 0 0.0114 0.2085 0
 0 0 0 0 1.5671

>> x = now % number of days since year
zero

 x =
 7.3297e+005

>> present _ year = x./365.2604 % 1 year = 365 days +6.25hrs
 present _ year =
 2.0067e+003 % estimates the present year

Example 3.11

Given the following MATLAB equations:

 X = (2.^5.^2)

 Y = (2.^5).^2

 Z = 2.^(5.^2)

CRC_47744_Ch003.indd 171CRC_47744_Ch003.indd 171 6/12/2008 5:51:01 PM6/12/2008 5:51:01 PM

172 Practical MATLAB® Basics for Engineers

Write a set of MATLAB commands that return the following:

 a. X, Y, and Z as string vectors
 b. the length of each string

 c. the string matrix as A =

[
 X

Y

Z

]

 d. the size of matrix A
 e. evaluate X, Y, and Z
 f. the ASCII code for X, Y, and Z
 g. determine if string X contains the string V = ‘2.^5’
 h. concatenate the string X, Y, and Z into a row vector
 i. concatenate the strings X, Y, and Z into a column vector

MATLAB Solution
>> format compact
>> X = ‘(2.̂ 5.̂ 2)’ % strings X, Y and Z are

created

 X =
 (2.̂ 5.̂ 2)

>> Y = ‘(2.̂ 5).̂ 2’

 Y =
 (2.̂ 5).̂ 2

>> Z = ‘2.̂ (5.̂ 2)’

 Z =
 2.̂ (5.̂ 2)

>> lenX = length(X), lenY = length(Y), lenZ = length(Z)

 lenX =
 9
 lenY =
 9
 lenZ =
 9

>> A = [X;Y;Z] % creates the sting matrix A

 A =
 (2.̂ 5.̂ 2)
 (2.̂ 5).̂ 2
 2.̂ (5.̂ 2)

>> [row, col] = size (A)

 row =
 3
 col =
 9

CRC_47744_Ch003.indd 172CRC_47744_Ch003.indd 172 6/12/2008 5:51:01 PM6/12/2008 5:51:01 PM

Matrices, Arrays, Vectors, and Sets 173

>> eval(X) % evaluates each expression:
X, Y, and Z

 ans =
 1024

>> eval (Y)

 ans =
 1024

>> eval (Z)

 ans =
 33554432

>> double(X) % converts to ASCII.

 ans =
 40 50 46 94 53 46 94 50 41

>> double (Y)

 ans =
 40 50 46 94 53 41 46 94 50

>> double (Z)

 ans =
 50 46 94 40 53 46 94 50 41

>> V = ‘2.̂ 5’ % string V

 V =
 2.̂ 5

>> findstr(X,V) % finds if V is contained in X

 ans =
 2

>> strcat(X,Y,Z) % concatenates strings X, Y, Z
as a row

 ans =
 (2.̂ 5.̂ 2)(2.̂ 5).̂ 22.̂ (5.̂ 2)

>> strvcat(X;Y;Z) % concatenates strings X, Y, Z
as a column

 ans =
 (2.̂ 5.̂ 2)
 (2.̂ 5).̂ 2
 2.̂ (5.̂ 2)

CRC_47744_Ch003.indd 173CRC_47744_Ch003.indd 173 6/12/2008 5:51:02 PM6/12/2008 5:51:02 PM

174 Practical MATLAB® Basics for Engineers

Example 3.12

Create the MATLAB script fi le British_fl ag that returns the British fl ag by fi rst creating a
sparse matrix and then displaying its structure using the spy function.

MATLAB Solution
% Script file: British _ flag
a = ones(100,1);
A = spdiags([a a a a a],[-6,-2,0,2,6],100,100);
figure(1);
B = flipud(A);
Row = [1:100 1:100 1:100 1:100 1:100];
Col = [46*ones(1,100) 49*ones(1,100) 50*ones(1,100) 51*ones(1,100)
54*ones(1,100)];
values = ones(1,500);
C = sparse(row,col,values,100,100);
D = rot90(C);
E = A+B+C+D;
spy(E);
title(‘British flag’)

The resulting spy plot is shown in Figure 3.6.

Example 3.13

Create the MATLAB script fi le big_V that returns the plot of the letter V by creating an
appropriate 50 × 100 sparse matrix and by using the spy function.

FIGURE 3.6
spy diagram of the British fl ag of Example 3.12.

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

nz = 1858

British flag

CRC_47744_Ch003.indd 174CRC_47744_Ch003.indd 174 6/12/2008 5:51:02 PM6/12/2008 5:51:02 PM

Matrices, Arrays, Vectors, and Sets 175

MATLAB Solution
% Script file:big _ V
a = ones(50,1);
A = spdiags([a a a a a],[-4,-2,0,2,4],50,50);
figure(1);
B = flipud(A);
C = [A B];
spy(C);
title(‘Big V’)

The resulting spy plot is shown in Figure 3.7.

3.5 Further Analysis

Q.3.1 Load and run the program of Example 3.1.
Q.3.2 Run the program of Example 3.1 without the semicolons (;).
Q.3.3 Run Example 3.1 for N = 50 and 100.
 Is the series divergent? Comment.
Q.3.4 Run Example 3.1 for the case of a = 0.6 and 0.75. Are the series convergent? If yes,

what do they converge to?
Q.3.5 What variable is used to test for convergence?
Q.3.6 Load and run the program of Example 3.2.
Q.3.7 Load and run the program of Example 3.2 without the semicolons (;).
Q.3.8 Determine the sizes and lengths of the vectors n and m.

Q.3.9 Change the program of Example 3.2 to compute (n − 1)!/n! and n!/(n − 1)!
Q.3.10 Load and run the program of Examples 3.3.
Q.3.11 List the variables used and their sizes.

FIGURE 3.7
spy diagram of Example 3.13.

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

nz = 476

Big V

CRC_47744_Ch003.indd 175CRC_47744_Ch003.indd 175 6/12/2008 5:51:02 PM6/12/2008 5:51:02 PM

176 Practical MATLAB® Basics for Engineers

Q.3.12 Determine by hand the fi rst, fi fth, and tenth elements of the vector y and compare
your results with the values of the variables a1, a5, and a10.

Q.3.13 What is the difference between the statements n. ^ 2 and n ^ 2?
Q.3.14 Modify the program of Example 3.3 for the case of odd numbers and obtain the

square of the fi rst, fi fth, and tenth elements. Run the modifi ed program and display
the sequence y.

Q.3.15 Determine by hand computation of the fi rst, fi fth, and tenth elements of the
sequence generated in Q.3.14.

Q.3.16 Load and run the program of Example 3.4 and obtain matrix A.
Q.3.17 What is the size and total number of elements of A?
Q.3.18 Determine by hand elements A(5, 5), A(3, 10), and A(10, 2), and compare your

results with the values of variables of a5_5, a3_10, and a10_2.
Q.3.19 Using MATLAB list all the variables used in Example 3.4 and their sizes.
Q.3.20 Rerun the program of Example 3.4, instruction by instruction, and verify the com-

ments placed next to each instruction.
Q.3.21 Determine by hand the transpose of A(F = A') and compute F(1, 2), F(4, 2), and F(5, 5),

and compare them with F1_2, F4_2, and F5_5.
Q.3.22 What should be the rank of A if A has an inverse?
Q.3.23 What is the meaning and purpose of the instruction cond(A)?
Q.3.24 Describe the composition of matrix A in Example 3.4. How many submatrices con-

stitute matrix A? Can you decompose matrix A into six submatrices? Defi ne and
construct matrix A in terms of those submatrices.

Q.3.25 Load and run the program of Example 3.5.
Q.3.26 Check by hand, if the elements of the vectors x and y represent the maximum and

minimum value, for each column of R, respectively.
Q.3.27 Evaluate by hand the vector that consists of the elements of the main diagonal of R

and compare your result with the values of vectdiR.
Q.3.28 Evaluate sumdiR without using the sum instruction.
Q.3.29 Evaluate by hand the average value of the elements of the main diagonal of R, and

compare your result with avediR.
Q.3.30 Are the results obtained for the determinant, rank, and condition of R compatible?

Discuss.
Q.3.31 Does the center, 2 × 2 matrix, and Rcenter possess an inverse?
Q.3.32 Without performing any computations, what is the rank of Rcenter?
Q.3.33 Besides reshaping matrix R with an 8 × 2 and a 2 × 8 matrices, indicate other pos-

sibilities of reshaping R.
Q.3.34 What is the difference between the instructions expm(R) and exp(R)?
Q.3.35 What is the difference between the instructions sqrt(R) and sqrtm(R)?
Q.3.36 Load and run the program of Example 3.6.
Q.3.37 What is the size of vector Celsius?
Q.3.38 What is the total number of variables used in the program? Can you run Exam-

ple 3.6 with fewer variables?
Q.3.39 Verify each one of the comments placed next to the instructions.

CRC_47744_Ch003.indd 176CRC_47744_Ch003.indd 176 6/12/2008 5:51:02 PM6/12/2008 5:51:02 PM

Matrices, Arrays, Vectors, and Sets 177

Q.3.40 Load and run the program of Example 3.7.
Q.3.41 Rewrite the program of Example 3.7, for the case of incorporating two additional

resistors R5 = 1 and R6 = 9 (in Ohms), for the series and parallel cases.
Q.3.42 Compare the result obtained in Example 3.7 with the result obtained by executing

Q.3.41. Can you derive any general conclusion?
Q.3.43 Load and run the program of Example 3.8.
Q.3.44 Compute by hand:

a. The size of V
b. The smallest and largest element of V
c. The sum, product, mean, and median of all the elements of V
d. Norm of V

Q.3.45 What specifi c instructions in Example 3.8 provide the answers for Q.3.44?
Q.3.46 List the variable names used in Example 3.8.
Q.3.47 Reshape V as a square matrix different from the one shown in Example 3.8.
Q.3.48 Reshape V as a 2 × 8 and an 8 × 2 matrices.
Q.3.49 Partition vector V into two vectors V1 and V2, where V1 consists of elements 1 through

8 and V2 consists of elements 9 through 16 and modify and rerun Example 3.8.
Q.3.50 Load and run the program of Example 3.9.
Q.3.51 What are the sizes of matrices A and B?
Q.3.52 What are the condition numbers for A and B?
Q.3.53 What do the condition numbers indicate?
Q.3.54 According to the condition numbers of Q.3.52, which matrix is better conditioned?
Q.3.55 Is matrix A a symmetric matrix? If not, by what other matrix should A be multi-

plied by to obtain a symmetric matrix?
Q.3.56 Write a program that interchanges the main diagonals of matrix A with matrix B.
Q.3.57 Load and run the program of Example 3.10.
Q.3.58 Defi ne the Magic and Pascal matrices.
Q.3.59 Write a program that verifi es that indeed the 3 × 3 matrix obtained by using the

MATLAB function magic(3) is magic.
Q.3.60 Defi ne what is meant by eigenvector and eigenvalue.
Q.3.61 Defi ne the Hilbert matrix and generate hilb(n), for an m = 10.
Q.3.62 What is the size of the matrix generated by the command H = hilb(10)?
Q.3.63 Write a set of instructions that exchange the last and the fi rst row of the matrix H.
Q.3.64 Repeat Q.3.63 for the case of the columns of H.
Q.3.65 Load and run the program of Example 3.11.
Q.3.66 Defi ne what is meant by a string matrix?
Q.3.67 When can the instruction eval be used on a string vector?
Q.3.68 Why is X equal to Y, but not equal to Z? Explain.
Q.3.69 What is meant by a code word and an ASCII-coded character.
Q.3.70 Describe the characters of the ASCII code.
Q.3.71 Encode the word MATLAB using ASCII by hand.

CRC_47744_Ch003.indd 177CRC_47744_Ch003.indd 177 6/12/2008 5:51:02 PM6/12/2008 5:51:02 PM

178 Practical MATLAB® Basics for Engineers

Q.3.72 Write a program that returns the encoded string MATLAB in ASCII.
Q.3.73 Load and run the script fi le British_fl ag of Example 3.12.
Q.3.74 Modify the program of Example 3.12, so that only the upper portion of the cross is

displayed.
Q.3.75 Repeat Q.3.74 for the lower portion.
Q.3.76 Modify the program of Example 3.12 to display only the half right side.
Q.3.77 Load and run the script fi le big _V of Example 3.13.
Q.3.78 Modify and run the program of Example 3.13 that will return the plot of the letter W.

3.6 Application Problems

P.3.1 Let us
a. Construct a column vector V1 with the following elements: −1, 0, −2, and 3
b. Construct a column vector V2 with the following elements: 3, −1, −7, and 9
c. Construct a matrix A, whose columns are V1 and V2

d. Construct a matrix B, whose columns are V1, V1, V2, V2, and V1 + V2

P.3.2 Let x = 1:10. Evaluate the following commands:
a. x-x
b. x.̂ x
c. x. * x
d. x * x′
e. x′ * x
f. x.\x
g. x./x
h. x = ’x’

P.3.3 Evaluate by hand and then check by using MATLAB the output y generated by the
following sequence:

 x = [-pi:pi/2:2 * pi]

 y = x.̂ 2-pi

P.3.4 Analyse the command sum = A + B, and discuss the necessary and suffi cient
 conditions for the sum to exist.

P.3.5 Discuss the various conditions for the existence of the following commands:

 P1 = A * B

 P2 = A. * B

 P2 = A.̂ B

 P3 = A/B

 P4 = A./B

CRC_47744_Ch003.indd 178CRC_47744_Ch003.indd 178 6/12/2008 5:51:03 PM6/12/2008 5:51:03 PM

Matrices, Arrays, Vectors, and Sets 179

P.3.6 Evaluate and give a descriptive comment next to each instruction of the following
program:

 X = [-10:1:10]

 A = eye(length(x))

 B = fi x(rand(size(A))

 C = zeos(size(A)) + B

 D = tril(ceil(rand(4)))

 E = tril(fi x(5 * randn(4)))

 F = diag(d). * diag(E)

P.3.7 Create the following matrices using MATLAB:

A B� �

1 2 3
4 5 6
7 8 9

































and
1 2
3 4
5 6

 Determine using MATLAB commands
1. Size of A and B
2. Rank of A
3. Determinant of A
4. Transpose of A
5. Inverse of A
6. C = A * B
7. Maximum and minimum values of the elements in C
8. Append B to A to return a 3 × 5 matrix
9. Create a 3 × 2 array D, consisting of all the elements in the fi rst two columns

of A
P.3.8 Given matrices A and B are

A B� �

1
3

5
7

2
4

and




















6
7

a. Evaluate the following using MATLAB:
1. C = A * B
2. D = B * A
3. E = A * 3
4. F = B. * A

CRC_47744_Ch003.indd 179CRC_47744_Ch003.indd 179 6/12/2008 5:51:03 PM6/12/2008 5:51:03 PM

180 Practical MATLAB® Basics for Engineers

b. Create a 2 × 3 array consisting of all the elements of A and the fi rst column
of B

c. Create the vectors V and W consisting of

 V = [A B]

 and

W �

A

B










P.3.9 Using matrices A and B from P.3.8 evaluate

 C = A ^ 3

 D = A. ^ 3

 Observe and discuss the differences.
P.3.10 Execute the following MATLAB command: x = 10 * rand(1, 20) and record vector x.

Write a set of MATLAB commands that return
a. The maximum value of x
b. The minimum value of x
c. The sum of all the elements of x
d. The product of all the elements of x
e. The average value of the elements of x
f. The median value of the elements of x
g. The size of x
h. Identify and display the value of the 7th element of x
i. Rearrange the values of x in ascending and descending order

P.3.11 Enter the MATLAB command x = rand(1, 100) that returns a row vector consisting
of 100 random elements. Write a MATLAB program that adds all the elements of x
with even indexes indicated by the following equation:

sum even x k

k

_ (*)�
�

2
1

50

∑

P.3.12 Repeat P.3.11 for the case of the elements with odd indexes indicated by:

sum odd x k

k

_ (*)� �
�

2 1
1

50

∑

P.3.13 Write a MATLAB program that returns sum_series = ΣN n=1kan, for a = 0.5 and
N = 10 and 20. Verify if the preceding series converges to 2 * k for any integer k.

CRC_47744_Ch003.indd 180CRC_47744_Ch003.indd 180 6/12/2008 5:51:03 PM6/12/2008 5:51:03 PM

Matrices, Arrays, Vectors, and Sets 181

P.3.14 Evaluate and record the response of each of the following MATLAB commands:
a. X = 1:1:25
b. Y = rand(5)
c. V = randn(5)
d. U = sqrt(X)
e. R = [1:7, 3:3:27, 5:.5:15]
f. S = [-pi:pi/2:pi]
g. T = [Y ones(size(Y)); zeros(size(Y)), eye(size(Y))]

P.3.15 Write a MATLAB program or a script fi le that returns the following sequence
y = ΣN n=1(1/n) for N = 10 and 50.

P.3.16 Write and run a program that approximates ex, by using the following equation:

e

x
n

x
n

n

k

�
� !0
∑

 for k = 10, 15, and 30, and compare the approximations with the MATLAB built-in
function exp(1).

P.3.17 Given

A B C� � � � �[1 2 3], [5 0 1], and
1
2
3

4 7
5 8
6 9

















 Use MATLAB to create A, B, and C, then execute and explain the action of the
following commands:
a. max (A)

b. min (B)

c. dot (A, B)

d. D = C * B

e. min (A, B)

f. cumprod (B)

g. max (A, B)

h. sort((−1). * B + A)

i. sort(C)

j. mean (B)

k. median (A)

l. cumsum (B)

P.3.18 The following equation defi nes a geometric series given by

B az a z z zn

i

i

n
n� � � � � �

�

�

0

2 11∑ ()�

CRC_47744_Ch003.indd 181CRC_47744_Ch003.indd 181 6/12/2008 5:51:03 PM6/12/2008 5:51:03 PM

182 Practical MATLAB® Basics for Engineers

 Write a MATLAB program that verifi es that Bn = a(1 − z″)/1 − z, for a fi nite
n (n ≠ ∞) and Bn = a/(1 − z), for n = ∞, converges for –1 < z < 1, and diverges
otherwise.

 Verify the convergence for various values of z such as −0.5, 0.2, and 0.7, and
divergence for −1.3, 2.0, and 3.0.

P.3.19 The following equation defi nes an arithmetic series, given by

B a i dn

i

n

� � �
�

(())1
1

∑

 Write a MATLAB program that verifi es that the above arithmetic infi nite series
always diverges for any a and d (test your program for a = 1 and d = 2, and rerun it
for any arbitrary a or d).

P.3.20 A power series is defi ned by the following equation:

B

k nn x x x x x
k

n

� � � � � �
�

1
1

1
2

1
3

1
4

1

1

��∑

 Write a MATLAB program that verifi es if the series converges or diverges for
a. The infi nite series for x = 2
b. The infi nite series for x = 5 and 1

P.3.21 Use MATLAB and evaluate the following series: y = ∑ n=1 N
 (4n − 3)/(3n − 4), for

N = 50, 100, and 200, and verify if the series converges to 1.33.
P.3.22 Evaluate the following series: y = ∑ n=1 N

 (−3)n−1/4n, for N = 50, 100, and 200, and
verify if the series converges to 0.1429.

P.3.23 Evaluate the following series: y = ∑ n−1 N
 (−5)n/n!, for N = 50, 100, and 200, and show

that the series converges to zero.
P.3.24 Recall that the determinant of a square matrix is a scalar. For a 2 × 2 matrix A, the

determinant of A is defi ned as follows in terms of its elements. Let

A

a c

b d
A a b b c� � �









 , then det() * *

 For a 3 × 3 matrix B, the determinant of B is defi ned as follows in terms of its
elements:

B

a d g

b e h

c f i

� � �




























, then det() * * B a

e h

f i
b

d g

f i















� c

d

e
 *

g

h

 det(B) = a * (e * i – f * h) – b * (d * i – f * g) + c * (d * h – e * g)

Given B �

� �

�

� �

3 1 2
2 3 4
4 7 6

















CRC_47744_Ch003.indd 182CRC_47744_Ch003.indd 182 6/12/2008 5:51:03 PM6/12/2008 5:51:03 PM

Matrices, Arrays, Vectors, and Sets 183

a. Determine by hand the determinant of B.
b. Using MATLAB create the matrix B and obtain the det(B). Compare your result

with that of part (a).
c. Determine by hand the transpose of B.
d. Use MATLAB to evaluate the transpose of B. Compare your result with that of

part (c).
e. Create a random 3 × 3 matrix C, and using MATLAB verify that det(B*C) =

det(B) * det(C).

P.3.25 The inverse of a matrix A is a matrix B if and only if A * B = I, where I is the iden-
tity matrix. Recall that the identity matrix is defi ned as a square matrix with ones
along the left to right diagonal and zeros elsewhere.

 A 2 × 2 matrix A is defi ned as follows in terms of its elements, as well as its
inverse B.

A

a b

c d
�











 then the inverse of A is

B �

�

�

1
D

d b

c a










 where D = det(A) = a * d – c * b.
 Given

A �

2 3
4 7











a. Evaluate by hand B, the inverse of A
b. Verify by hand that A * B = I

c. Verify using MATLAB parts (a and b)
P.3.26 Verify using MATLAB that A + B = B + A, but A * B ≠ B * A, for the following

matrices:

A B� � �

3 1 1
2 1 1
5 2 3

4 0 1
0 0 2
2 1 4

































and
�

P.3.27 Use MATLAB to express the following expressions as single matrices:

a. 4
2 1
1 1

3
1 1

2 4* *


















�

�
�

b.
1 2 1 0
0 3 1 0

3
1 1 0 1

1 2 1 0


















�

�
�*

CRC_47744_Ch003.indd 183CRC_47744_Ch003.indd 183 6/12/2008 5:51:03 PM6/12/2008 5:51:03 PM

184 Practical MATLAB® Basics for Engineers

c. � �

�

� �3
1 1
3 2
4 6

1
2

4 6
3 8

4 9
* *

































P.3.28 Given are the matrices:

A C� � �
2 1
1 1

1 2 1
1 1 1

6 1 2 1
4 0 1 1
2 1 3 0





































, ,B
�

� , and DD �

4 2 1
1 2 0
2 3 1
6 1 1

� �





















 Show that

A B C D* *�
�

�
�

3 5 1
5 8 1

35 8 5
12 4 2
15 4 1



























and
� �

a. By hand calculation
b. Using MATLAB

P.3.29 Verify using MATLAB that A * B ≠ B * A, for the following matrices:

a. A B� �

�

2 1 5
1 2 3

1 2
3
1

1
4



























and

b. A B� �
�1 1

0 1
1 3
0 1



















and

P.3.30 Verify using MATLAB that Am * An = Am+n and (Am)n = Am*n, for A = [1 2
−1 1

] , m = 3,
n = 2, and m = n = 2.

P.3.31 Let the column vectors be

X Y� �
�

�

1
2
3
4

0
1
2

3









































and

 Use MATLAB to evaluate the angle between X and Y.
P.3.32 Given the vectors

A B� �

1
3
5
7

2
4
6
8









































and

CRC_47744_Ch003.indd 184CRC_47744_Ch003.indd 184 6/12/2008 5:51:03 PM6/12/2008 5:51:03 PM

Matrices, Arrays, Vectors, and Sets 185

 Evaluate the following using MATLAB:
a. Are the vectors A and B mutually orthogonal?
b. The norms of A and B
c. The angle between A and B
d. The dot and cross product of A and B
e. Verify Cauchy–Schwartz inequality

P.3.33 Let A be an arbitrary matrix. Defi ne conditions for which A * AT exists.
P.3.34 Let

A �

� �

1 2 3
3 5 9











 use MATLAB and obtain
a. B = A * AT

b. C = AT * A
P.3.35 Verify that (A * B)T = BT * AT (recall that T stands for transpose), using the following

matrices:

A B� �

1 4
3 7

2 6
8 9



















and

P.3.36 Let A be on abitrary matrix. Defi ne conditions for which A * A–1 exist.
P.3.37 Given

A �

�

�

1 1
1 1











 verify that

A A A* � �2

0 0
0 0











 Discuss the results obtained.
P.3.38 Given the diagonal matrix

A �

1 0 0
0 2 0
0 0 3

















CRC_47744_Ch003.indd 185CRC_47744_Ch003.indd 185 6/12/2008 5:51:04 PM6/12/2008 5:51:04 PM

186 Practical MATLAB® Basics for Engineers

 show that

An

n

n

n

�

1 0 0
0 2 0
0 0 3

















for any .n

 Use MATLAB to verify the above statement for n = 3 and 10.
P.3.39 Let A and B be two diagonal matrices. Verify that A * B = B * A, using the following

matrices:

A B� �

1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4

5 0 0 0
0 6 0 0
0 0 7 0
0 0 0 8





























and














P.3.40 Let

A �

1 0 0
0 2 0
0 0 3

















 Verify using MATLAB that A2 ≠ 0, but An = 0, for any integer n > 2.
P.3.41 Let

A �

1 2 1 2
1 2 1 2
/ /
/ /











 Verify if An = A for any integer n.
P.3.42 Let

A �

�1 0
0 1











 Verify if

A nn � �

�
I

1 0
0 1









 for any integer 2�

P.3.43 Let A be a diagonal matrix given by

A

a

a

a

a

a

a

nn

� �

11

22

33

11

220

0

1
1 0

…

…





















,

/
/

then inv()A 11
0

33/a

ann

… …























CRC_47744_Ch003.indd 186CRC_47744_Ch003.indd 186 6/12/2008 5:51:04 PM6/12/2008 5:51:04 PM

Matrices, Arrays, Vectors, and Sets 187

 Use MATLAB to verify the preceding statement for

A �

1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4





















P.3.44 For

A B� �

�

�

1 1 1
1 1 1
1 1 1

1 2 0 1 2
1 2 1 2 0

0 1 2 1 2






























and

/ /
/ /

/ / 

 Verify using MATLAB that if A * B = B * A, then A is the inverse of B.
P.3.45 Show that (AT)−1 = (A−1)T for matrix A of P.3.42 (recall that T indicates transpose and

–1 indicates inverse).
P.3.46 Verify using MATLAB that (A * B)−1 = (B−1 * A−1), for the matrices:

A B� �

1 2
3 4

1 6
5 7



















and

P.3.47 Let the following system of equations be

 x − 0.5y + 0.5z = 4

 0.33x + 0.67y + z = 3

 x − 0.33z = 1

a. Convert the set of linear equations into a matrix equation
b. Create and process the matrix equation using MATLAB
c. Solve numerically for the unknowns x, y, and z
d. Solve symbolically for the unknowns x, y, and z

P.3.48 Let

A �

� �

� �

5 8 1
4 7 4
0 0 4

















a. Defi ne the characteristic equation
b. Determine the characteristic equation
c. Show that the characteristic polynomial is given by:

 � � �3 22 11 12� � �

d. Verify that the eigenvalues of A are λ = 4, −3, and 1

CRC_47744_Ch003.indd 187CRC_47744_Ch003.indd 187 6/12/2008 5:51:04 PM6/12/2008 5:51:04 PM

188 Practical MATLAB® Basics for Engineers

e. Verify that the eigenvectors of A are

1
0
1

1
1
0

2
1
0

















































, , and

P.3.49 Create an upper random triangular matrix of order 3, and determine its eigenval-
ues and eigenvectors.

P.3.50 Repeat problem P.3.49, for a third order lower random triangular matrix.
P.3.51 Create random diagonal matrices of order 3, 4, and 5, and evaluate in each case its

eigenvalues and eigenvectors. Discuss the results.
P.3.52 Create a random vector consisting of 100 elements with a uniform random distribu-

tion between 0 and 10, and determine the average, the median, the variance, and
the standard deviation.

P.3.53 A third-order magic square matrix can be formed using the integers 1 through 9.
Construct seven other third-order square matrices from these integers.

P.3.54 Show that the constants for a fourth-order magic matrix constructed with the inte-
gers 1 through 16 is 34.

P.3.55 Verify using MATLAB that

n n

n

n n

n
n

0
1

1 1
























� � �
�

�, and

P.3.56 Determine the binomial coeffi cients for n = 5, 6, and 7 using the Pascal’s triangle
and verify using Newton’s formula.

P.3.57 Determine the binomial coeffi cients using Pascal’s triangle and Newton’s formula
for the following expressions:
a. ()a b2 33�

b. ()2 4a x�

c. ()1 3 5� a

P.3.58 (a) Write a program with a minimum number of instructions that would generate a
10 × 10 matrix where all the columns consist of the identical sequence 1, 2, 3, …, 10.
(b) Repeat part (a) by substituting the word columns with rows.

P.3.59 Let us
a. Create a 3-D array X whose three layers (A, B, C) are given by the following

MATLAB commands:

 A = [1:3; 4:6; 7:9]

 B = [2:2:6; 3:2:7; 4:2:8]

 C = [−1:−1:−3; −2:−2:−6; −3:−3:−9]

CRC_47744_Ch003.indd 188CRC_47744_Ch003.indd 188 6/12/2008 5:51:04 PM6/12/2008 5:51:04 PM

Matrices, Arrays, Vectors, and Sets 189

b. Display the elements of the array X
c. Display the elements of all the diagonals
d. Display the elements located at the second row
e. Display the elements located at the second column

P.3.60 Create a sparse 200 × 200 matrix A, with about 10% of its elements consisting of ran-
dom numbers. Next set all the elements of the main diagonal to 3, all the elements
of the other diagonal to –1, and the element located at the intersection of the two
diagonals to 10, while all the remaining elements are zero
a. Evaluate the array density.
b. Convert the sparse matrix A into a full matrix B.
c. Compare the memory requirements to store A and B. Which is more effi cient?
d. Create the vector C = randn(1, 200), and solve the system of equations A * x = C

and B * x = C, and compare the two results. Which process is more effi cient? And
defi ne the term effi ciency.

P.3.61 Write a program that draws the U.S. fl ag by creating fi rst a sparse matrix and display-
ing its structure using the MATLAB function spy (for simplicity draw only one star).

CRC_47744_Ch003.indd 189CRC_47744_Ch003.indd 189 6/12/2008 5:51:05 PM6/12/2008 5:51:05 PM

CRC_47744_Ch003.indd 190CRC_47744_Ch003.indd 190 6/12/2008 5:51:05 PM6/12/2008 5:51:05 PM

191

4
Trigonometric, Exponential, Logarithmic,
and Special Functions

It is not in the nature of things for any one man to make a sudden violent discovery;
 science goes step by step, and every man depends on the work of his predecessor.

Scientists do not depend on the ideas of a single man, but on the combined wisdom
of thousands of men.

Ernst Rutherford

4.1 Introduction

MATLAB® can be used as a scientifi c calculator in the sense that it offers, besides the means
of evaluating the common arithmetic operations (+, −, *, /,)̂, it can be use to evaluate
 logarithmic, exponential, and trigonometric functions.

Most functions are executed just by calling them by using the proper syntax. Each
function usually performs an operation that would otherwise take several programming
instructions.

Because trigonometric, exponential, and logarithmic functions are often used in engi-
neering and the sciences, it is convenient to defi ne them as MATLAB functions and call
them when needed, without having to write a program for each of them separately each
time they are called. These MATLAB functions use easy to remember notations because
their mnemonics closely resemble the function and considerably reduce the labor involved
in writing a program.

Some of the MATLAB functions can perform complicated tasks such as rem(x, y), which
returns the remainder after dividing x by y, where x and y could be polynomials.

These built-in functions are usually identifi ed by three or four lower case letters, often
referred to by the mnemonic that defi nes their action.

For example, if the cosine of x is desired to be computed, the following MATLAB
 instruction can be used:

 b = cos(x)

where the variable b is assigned the value of the cosine, whose angle is specifi ed by x given
in radians. MATLAB works only in radians where

 360 degrees = 2π radians = 1 clockwise revolution

 1 degree = {1/360} revolution

 1 radian = {180/π} degrees = 57.3 degrees

 1 degree = {π/180} radians = 0.0175 radians

CRC_47744_Ch004.indd 191CRC_47744_Ch004.indd 191 6/16/2008 6:51:32 PM6/16/2008 6:51:32 PM

192 Practical MATLAB® Basics for Engineers

The argument of the MATLAB function is always placed in parenthesis and is preceded
by the function’s name. A function can be an argument of another function as long as the
syntax and the function/parenthesis convention is maintained. For example,

 b = cos(cos(x))

One of the family of functions presented in this chapter is the trigonometric functions.
Trigonometry is a very old discipline, which dates back to the time of the old Greek astron-
omers such as Menelaus of Alexandria, as early as AD 100. Around the second century
BC, Hipparchus and Ptolemy were credited as the founders of this branch of mathematics
called trigonometry.

Trigonometry basically deals with angles and sides of triangles. These concepts were
originally developed to serve astronomers, but over time it has evolved to serve in a variety
of other applications, such as in navigation, surveying, and military and civilian construc-
tions. In more modern times, trigonometry is used in a variety of additional applications
involving the modeling of brain waves, sound waves, wave propagation and antennas,
ocean tides, oscillations and vibrations, and many other phenomenas.

MATLAB uses the MacLaurin series representation to evaluate trigonometric expressions.
Because numbers, relations, and functions, in particular trigonometric, logarithmic, and

exponential, are important in science and engineering, a brief presentation and chrono-
logical evolution of the major developments and contributions are summarized.

Although older civilizations used numbers and mathematical relations before the Greeks,
the Greeks get the credit for tabulating, recording, and leaving historic proofs of much of
the early discoveries and applications in science, philosophy, ethics, music, drama, logic,
and mathematics.

The fi rst human identifi ed as having made a signifi cant contribution to philosophy, logic,
and mathematics was Thales of Miletus (634–548 BC). He is credited with establishing one
of the fi rst centers of learning at Miletus. At that time, Miletus was a Greek city on the west
coast of Asia Minor, with strong commercial and cultural connections with the ancient
civilizations of Egypt and Babylon (Newman, 1956).

Thales taught mathematics, philosophy, and logic, and is given credit for many early dis-
coveries. Thales was considered one of the seven wise men of ancient Greece, and one of his
major contribution was the use of the deductive method. This method of reasoning became
the hallmark of Greek thought and philosophy, and centuries later of western logic.

One of Thales’ students was Pythagoras (580–500 BC) from the island of Samos.
He became the engine of Greek philosophical thinking. Pythagoras philosophy was

based on logical reasoning, relations, and numbers. In fact, for Pythagoras numbers were
atoms of the universe and the prime cause of almost any event. For Pythagoras numbers
could be used to explain, control, and infl uence all events, and were the building blocks of
reality. In fact, Pythagoras philosophy evolved into a religious–philosophical order where
discoveries were kept secret.

Pythagoras greatly infl uenced the Greek society as well as Plato, the father of idealism.
Probably, one of the greatest inventions ever made by man was the concept of numbers

and the numbering system. But different civilizations over time developed different num-
bering systems.

In fact, the great ancient civilizations were great because they had their own unique
numbering system, such as the Egyptians, Babylonians, Romans, and Mayans. Numbers
and equations are the fi rst mathematical achievement of mankind, and the early records
were found in old Babylon in the third millennium BC and in ancient Egypt around 1800 BC.
In old Babylon, mathematics was often used to settle legal questions involving the sharing

CRC_47744_Ch004.indd 192CRC_47744_Ch004.indd 192 6/16/2008 6:51:34 PM6/16/2008 6:51:34 PM

Trigonometric, Exponential, Logarithmic, and Special Functions 193

of wealth and inheritance. According to the inheritance laws of old Babylon, the fi rstborn
always receives the largest share, the second a little less, and so on, following a strict pro-
portional sequence.

The modern numbering system is based on the Hindu–Arabic (Stein, 1964) system,
believed to be developed in India and brought to Europe by the Arab traders. Equations
and algebraic symbolic language evolved over centuries incorporating concepts, such as the
equal sign (=), a relatively modern concept fi rst proposed by Robert Recorde (1510–1558), a
royal court physician, in his publication The Whetstone of Witte (1557).

One of the fi rst known numbers since antiquity is the constant called π.
The history of π is in some respect the history of the evolution of man, in the great

ancient civilizations that span over the past 4000 years. The modern defi nition of π is a
simple ratio of a circumference of a circle to its diameter.

But π is much more complex than what its simple defi nition indicates. π was the object
of study for thousands of years by the best human minds. Pi (π) happens to be an irratio-
nal number, that is, it cannot be expressed as an integer or a fraction. The earliest written
record about π was found in Egypt around 1700 BC, and suggested that π was the ratio of
(16/9)2 = 256/81 or 3.16049….

(Proofs are found in the Rhind or Ahmes Papyrus from Thebes, now in British and Brooklyn
museums)

Archimedes from ancient Syracuse is credited with the following estimation for π (Petr,
1971).

 3.140845 < π < 3.142857, around 220 BC

Around AD 125, in ancient China, Chang Hong estimated π as π = (10)1/2 = 3.162.
Around AD 265, Wan Fan estimated π as π = 142/45 = 3.1555 and around 480 BC

Ch’ung-Chih and his son Tsu Keng-Chih expressed π as π = 355/113 = 3.1415929, which is
almost the correct value (3.1415926 < π < 3.1415927); an accuracy that was not attained in
Europe until the sixteenth century.

The French mathematician Francois Vieta (AD 1592) was the fi rst to express π as an
infi nite series. In 1655, the English mathematician John Wallis came out with a simpler
series version, and later, William Bouncker, an Irish mathematician, came out with a more
compact one.

Gottfried Leibniz (1646–1716) showed that

� � � � � � � �4 1

1
3

1
5

1
7

1
9

1
9

1
11

�





In 1873, William Shank, an English mathematician, evaluated π to 707 decimal places.
In 1948, John W. French Jr. (United States) and D. F. Fergunson (England) evaluated π to

808 decimal places, and in 1950, the value of π was calculated by an electronic computer
to 2000 places.

The value of π is of critical importance in trigonometric relations and applications.
This chapter deals with trigonometry, exponentiation, logarithm, and special MATLAB

functions. One of the special MATLAB functions is prime(n), which returns the list of prime
numbers up to the number n, a problem that has occupied mathematicians for thousands
of years.

Why are prime numbers important?
Because all the natural numbers can be generated by multiplying the prime numbers,

and in this way the sequence of numbers can be controlled.

CRC_47744_Ch004.indd 193CRC_47744_Ch004.indd 193 6/16/2008 6:51:34 PM6/16/2008 6:51:34 PM

194 Practical MATLAB® Basics for Engineers

This question was fi rst studied by Euclid of ancient Greece, but only in the past 200 years
serious research has been done in this area by some of the best mathematicians of all
times, such as Riemann, Euler, Legendre, Gauss, and many others, leading to other discov-
eries such as the Zeta function by Euler (1737), Riemann functions, Riemann hypothesis,
Mobius functions, and many others.

What is amazing is that all these functions are interrelated.
A brief summary of major events and contributions are listed as follows in chronological

order starting with Pythagoras.

Pythagorean theorem* (Greece, 540 BC) (Newman, 1956).
Euclid (300 BC) in Elements, volume 13, used the law of cosines.
sin(a + b) was effectively used (around 300 BC).
Ptolemy used the law of sines (around 150 BC).
Menelaus of Alexandria (AD 100) was one of the fi rst individuals who used exten-
sible trigonometric functions.
The sine function was introduced in India (around AD 300).
Nasir ed-din (AD 1250), a Persian astronomer, published the fi rst book containing
a systematic treatment of trigonometric functions.
Regiomontanus (1436–1475) made trigonometry a part of mathematics.
Copernicus (1473–1543) improved Regiomontanus’ work.
Rhaeticus (1514–1576) was the fi rst to defi ne the six trigonometric functions as they
are presently known.
John Napier (1550–1617) and Jobst Burgi (1552–1632) invented the logarithms.
Thomas Finck (1583) defi ned the trigonometric functions with the present name.
Roger Cote’s formula: cosθ = 1/2 (e jθ + e−jθ).
John Napier (1614), from Scotland, introduced the base e = 2.71….
Henry Briggs (1615), from Oxford in England, introduced the log base 10.
James Stirline (1730) fi rst introduced the MacLaurin series.
Leonard Euler (1707–1783)† established the present notations and the famous
 relation ejθ = cos(θ) + j sin(θ) (1743).
Henry Briggs published the fi rst table of common logarithms.
Gauss (1792), at the age of 15, estimated the function prime(n) as n/ln(n), and also
estimated prime(n) as n approaches infi nity.
Andrien Marie Legendre (1798) estimated the function prime(n) as n/[ln(n) −
1.08366] (Clawson, 1996).

* Recall that Pythagoras was a pupil of Thales (640−550 BC). Little is known about Thales or Pythagoras; neither
left any known writing. Without Thales there would not have been a Pythagoras, and without Pythagoras
there would not have been a Plato (427−347 BC), and without Plato the ancient Western civilization would
have been different, deprived of many wonderful ideas.

† Leonhard Euler is one of the greatest mathematicians who ever lived. He received his bachelor’s degree at 15
and his master’s at 16 from the University of Baqsel. At 18 he published his fi rst mathematics paper, and at 25 a
two-volume text on mechanics. He became partially blind and later in his life he lost his sight completely. Yet
he published 400 papers, enough maths to fi ll 90 volumes. He was a dedicated husband and a loving father to
his 13 children.

•
•
•
•
•

•
•

•
•
•

•
•
•
•
•
•
•

•
•

•

CRC_47744_Ch004.indd 194CRC_47744_Ch004.indd 194 6/16/2008 6:51:35 PM6/16/2008 6:51:35 PM

Trigonometric, Exponential, Logarithmic, and Special Functions 195

Friedrich Bernhard Riemann (1826–1866) discovered the zeta functions and
 estimated prime(n).
August Ferdinand Mobius* (1832) developed the Mobius function, the reciprocal
of the zeta functions.
M. Deleglise (1992) estimated that prime(n) = 2,625,557,157,654,233, for n = 1016.

4.2 Objectives

After completing this chapter the reader should be able to

Understand the concept of degree and radian as units of angle measurements
Convert from degrees to radians and vice versa
Know the ratio defi nition of the basic trigonometric functions for the right triangle
(cos, sin, tan, cot, csc, sec)
Know the values of key trigonometric angles (cos(0), cos(π/4), sin(π), …)
Draw the plots of the basic trigonometric functions
Understand the law of sines
Understand the law of cosines
Use a series approximations to evaluate e = 2.71, …, sin(x), cos(x), etc.
Understand the concept of reciprocal
Understand the trigonometric relations for angles located in any of the quadrants
of the Cartesian plane
Know that the trigonometric functions are periodic
Know the range, domain, period, amplitude, and frequency of the basic six trigo-
nometric functions
Know the basic trigonometric identities that relate the sum, difference, doubling,
and half of angles
Know that trigonometric functions can be expressed in terms of exponentials
Know that an exponential can be approximated in terms of a Mac Larin’s series or
a binomial
Understand exponential and logarithmic functions (log10(x), log(x), exp(x))
Understand the rounding off of MATLAB functions (fi x(x), fl oor(x), ceil(x), etc.)
Defi ne and use the hyperbolic functions (sinh(x), cosh(x), tanh(x), etc.)
Defi ne and use the inverse trigonometric functions (acos(x), asin(x), etc.)
Use the inverse hyperbolic functions (acosh(x), asinh(x), atanh(x), etc.)
Use the special-purpose MATLAB arithmetic functions (prime(n), factor, rem(x, y),
gcd(x))
Understand the close relations between exponential, trigonometric, and logarith-
mic functions
Use the power of MATLAB to solve classes of exponential, trigonometric and
 logarithmic problems

* Student of Gauss and was considered by Gauss as his most talented student.

•

•

•

•
•
•

•
•
•
•
•
•
•

•
•

•

•
•

•
•
•
•
•
•

•

•

CRC_47744_Ch004.indd 195CRC_47744_Ch004.indd 195 6/16/2008 6:51:35 PM6/16/2008 6:51:35 PM

196 Practical MATLAB® Basics for Engineers

4.3 Background

R.4.1 A MATLAB function is generally assigned to a variable name located on the left of
an equality, and the function itself is located at the right of the equality, with the
argument in parenthesis, such as

 y = sin(x)

 where y is the variable name, sin the function, and x the argument.
R.4.2 Functions are expressed using lower case letters. Recall that MATLAB is case sensi-

tive (casesen on/off).
R.4.3 The units frequently used to express angles are in degrees, minutes, and seconds.

One complete circular revolution is defi ned as 360° 0′ 0′′, where

 1° = 60′ (the symbol ′ stands for minutes)

 1′ = 60′′ (the symbol ′′ stands for seconds)

R.4.4 An alternate unit of measuring or expressing angles is the radian, where

 1 radian = (180/π) degrees = 57.296° = 57° 17′ 45′′

 1 degree = (π/180 radians) = 0.01745 radians

 MATLAB accepts only the radian as argument.
R.4.5 To convert x-radians to degrees, it is necessary to multiply x by 57.296 or divide by

0.01745.
R.4.6 To convert y-degrees to radians, multiply the number y by 0.01745 or divide by

57.296.
R.4.7 Some useful equivalences between degrees and radians are summarized in

Table 4.1.
R.4.8 The six basic trigonometric functions that collectively apply to right triangles are

sine, cosine, tangent, cotangent, secant, and cosecant. The terminology, syntax, and
function defi nition as applied to the right triangle of Figure 4.1 are indicated below:

Function Name MATLAB Notation Value

sine of A = sin(A) = a/c
cosine of A = cos(A) = b/c
tangent of A = tan(A) = a/b
secant of A = sec(A) = c/b
cosecant of A = csc(A) = c/a
cotangent of A = cot(A) = b/a

TABLE 4.1

Degree–Radian Conversion

Degrees 0 30 45 60 90 180 270 360
Radians 0 π/6 π/4 π/3 π/2 π 3π/2 2π

CRC_47744_Ch004.indd 196CRC_47744_Ch004.indd 196 6/16/2008 6:51:35 PM6/16/2008 6:51:35 PM

Trigonometric, Exponential, Logarithmic, and Special Functions 197

R.4.9 Two acute angles are referred to as complementary if their sum is 90°. In the
 triangle shown in Figure 4.1, ∠A (angle A) and ∠B (angle B) are complementary
angles, because ∠ A + ∠B = 90°.

 The relations shown in the following indicate the pairing of the trigonometric
functions in the case of complementary angles

sin() cos()A a

c B� �

cos() sin()A B�

b
c �

tan() cot()A

a
b

B� �

sec() csc()A

c
b

B� �

csc() sec()A c

a B� �

cot() tan()A B� �

b
a

R.4.10 The paired functions, such as sin(A) = cos(B) are referred as cofunctions. Any func-
tion of an acute angle x is equal to the corresponding cofunction of its complement
of the angle (90° − x).

R.4.11 The trigonometric values of various angles are summarized in Table 4.2.
 The trigonometric values of any angle can be computed by using the appropri-

ate MATLAB syntax with arguments in radians. For example, use MATLAB to
 determine the values of sin(π), sin(π/2), sinπ, and sinπ/2.

MATLAB Solution
>> sin.(pi)

 ans =
 1.2246e-016

FIGURE 4.1
Right triangle of R.4.8.

B

CA

c

b

a

Opposite to B

Opposite to A

Hypotenuse
opposite to C

CRC_47744_Ch004.indd 197CRC_47744_Ch004.indd 197 6/16/2008 6:51:35 PM6/16/2008 6:51:35 PM

198 Practical MATLAB® Basics for Engineers

>> sin.(pi/2)

 ans =
 1
>> sin pi/2

 ans =
 -0.8900 -0.9705 0.1236 -0.2624
>> sin pi

 ans =
 -0.8900 -0.9705

 Note that some MATLAB responses are unexpected, when the argument is not in
paranthesis.

R.4.12 Trigonometric functions such as sine, cosine, and tangent are evaluated using the
MacLaurin series representation as follows:

sin(x) � � � �x

x x x x
�

3 5 7 9

3 5 7 9! ! ! !
�

cos()x

x x x x
� � � � �1

2 4 6 8

2 4 6 8

! ! ! !
�

tan()

sin(x)
cos(x)

x x
x x x x x x x

� � � � � � � �
3 5 7 9 2 4 6

3 5 7 9
1

2 4 6! ! ! ! ! ! !
� � ��

x8

8!
�

R.4.13 From the defi nitions of the six basic trigonometric functions, the following rela-
tionships can be observed:
a. sin(A) and csc(A) are reciprocal functions {sin(A) = 1/csc(A)}.
b. cos(A) and sec(A) are reciprocal functions {cos(A) = 1/sec(A)}.
c. tan(A) and cot(A) are reciprocal functions {tan(A) = 1/cot(A)}.

TABLE 4.2

Trigonometric Values of Some Angles

Angle
Degree/Radian sin cos tan sec csc cot

0° = 0 rad 0 1 0 1 ∞ ∞

30° = π __ 6 rad 1/2 √
__

 3 /2 √
__

 3 /3 2 √
__

 3 /3 2 √
__

 3

45° = π __ 4 rad √
__

 2 /2 √
__

 2 /2 1 √
__

 2 √
__

 2 1

60° = π __ 3 rad √
__

 3 /2 1/2 √
__

 3 2 2 √
__

 3 /3 √
__

 3 /3

90° = π __ 2 rad 1 0 ∞ ∞ 1 0

120° = 2π ___ 3 rad √
__

 3 /2 −1/2 − √
__

 3 −2 2 √
__

 3 /3 − √
__

 3 /3

135° = 3 π __ 4 rad √
__

 2 /2 − √
__

 2 /2 −1 − √
__

 2 √
__

 2 −1

150° = 5π ___ 6 rad 1/2 − √
__

 3 /2 − √
__

 3 /3 −2 √
__

 3 /3 2 − √
__

 3

180° = π rad 0 −1 0 −1 ∞ ∞

270° = 3π ___ 2 rad −1 0 ∞ ∞ −1 0

360° = 2π rad 0 1 0 1 ∞ ∞

CRC_47744_Ch004.indd 198CRC_47744_Ch004.indd 198 6/16/2008 6:51:35 PM6/16/2008 6:51:35 PM

Trigonometric, Exponential, Logarithmic, and Special Functions 199

R.4.14 If one trigonometric function is known, then the remaining trigonometric func-
tions can be evaluated.

R.4.15 For example, let sin(A) = 3/5, as shown in Figure 4.1, then a = 3, c = 5, and
b = √

 c2 − a2 = 4.

 Then,

 cos(A) = 4/5

 tan(A) = 3/4

 sec(A) = 5/4

 csc(A) = 5/3

 cot(A) = 4/3

R.4.16 The Cartesian plane can be defi ned in terms of quadrants, where the plane consists
of a complete rotation of 360°, and each quarter is called a quadrant.

 An angle is said to be in a standard or quadrant position if its vertex is at the
origin of the rectangular coordinate system, and one side coincides with the
positive x-axis, and the other side forms an angle α, with a range of revolutions
from 0° to 360°.

 The four quadrants are defi ned as follows:
The fi rst quadrant is when the angle α has a range defi ned by 0° ≤ α ≤ 90°.
The second quadrant is when α has a range defi ned by 90° < α ≤ 180°.
The third quadrant is when α has a range defi ned by 180° < α ≤ 270°.
The fourth quadrant is when α has a range defi ned by 270° < α < 360°.

R.4.17 All the trigonometric functions are periodic, and any two angles that differ in
360° = 2π radians have the same trigonometric value (the period is 2π). For
example,

 sin(α + 2π) = sin(α)

 cos(α + 2π) = cos(α)

 tan(α + 2π) = tan(α)

R.4.18 As an additional example, evaluate the following trigonometric functions: sin(390),
cot(3645°), sin(730°), tan(3903° 20′), and −tan(56° 40′).

ANALYTICAL Solution

sin(390) = sin(360° + 30°) = sin(30°) = 0.5

cot(3645°) = cot(360° * 10 + 45°) = cot(45°) = 1

sin(730°) = sin(730° − 2 * 360°) = sin(10°) = 0.1736

tan(3903° 20′) = tan(3903° 20′ − 10 * 360°) = tan(303° 20′) = −tan(56° 40′) = −1.5224

R.4.19 Any angle on the second, third, and fourth quadrant can be reduced to an acute
positive angle on the fi rst quadrant.

•
•
•
•

CRC_47744_Ch004.indd 199CRC_47744_Ch004.indd 199 6/16/2008 6:51:36 PM6/16/2008 6:51:36 PM

200 Practical MATLAB® Basics for Engineers

R.4.20 The process of reducing an angle α from the second quadrant to the fi rst quadrant
consists of fi nding its complement 180° − α = β. The trigonometric functions of the
resulting acute angle β, sign and magnitude are illustrated as follows:

 sin(α) = sin(180° − α) = sin(β)

 cos(α) = −cos(180° − α) = −cos(β)

 tan(α) = −tan(180° − α) = −tan(β)

 cot(α) = −cot(180° − α) = −cot(β)

 sec(α) = −sec(180° − α) = −sec(β)

 csc(α) = csc(180° − α) = csc(β)

R.4.21 For example, reduce to the fi rst quadrant, the following second quadrant trigono-
metric functions: sin(135°), sin(150°), cos(135°), cos(120°), tan(135°), cot(150°), sec(135°),
and csc(135°).

ANALYTICAL Solution

sin(135°) = sin(180° − 135°) = sin(45°) = √
__

 2 ___ 2

sin(150°) = sin(180° − 150°) = sin(30°) = 0.5

cos(135°) = −cos(180° − 135°) = −cos(45°) = − √
__

 2 ___ 2

cos(120°) = −cos(180° − 120°) = −cos(60°) = −0.5

tan(135°) = −tan(180° − 135°) = −tan(45°) = −1

cot(150°) = −cot(180° − 150°) = −cot(30°) = − √
__

 3

sec(135°) = −sec(180° − 135°) = −sec(45°) = − √
__

 2

csc(135°) = csc(180° − 135°) = csc(45°) = √
__

 2

R.4.22 The process of reducing an angle α from the third quadrant to the fi rst quadrant
consists of fi nding its complement 180° − α = β. The trigonometric functions of the
resulting acute angle β, sign and magnitude are illustrated as follows:

 sin(α) = −sin(α − 180°) = −sin(β)

 cos(α) = −cos(α − 180°) = −cos(β)

 tan(α) = tan(α − 180°) = tan(β)

 cot(α) = cot(α − 180°) = cot(β)

 sec(α) = −sec(α − 180°) = −sec(β)

 csc(α) = −csc(α − 180°) = −csc(β)

CRC_47744_Ch004.indd 200CRC_47744_Ch004.indd 200 6/16/2008 6:51:36 PM6/16/2008 6:51:36 PM

Trigonometric, Exponential, Logarithmic, and Special Functions 201

R.4.23 For example, reduce to the fi rst quadrant and evaluate the following third quadrant
trigonometric functions: sin(210°), sin(240°), cos(210°), tan(225°), and sec(210°).

ANALYTICAL Solution

sin(210°) = −sin(210° − 180°) = −sin(30°) = −0.5

sin(240°) = −sin(240° − 180°) = −sin(60°) = − √
__

 3 ___ 2

cos(210°) = −cos(210° − 180°) = −cos(30°) = − √
__

 3 ___ 2

tan(225°) = tan(225° − 180°) = tan(45°) = 1

sec(210°) = −sec(210° − 180°) = −sec(30°) = − 2 √
__

 3 ____ 3

R.4.24 The process of reducing an angle α from the fourth quadrant to the fi rst quad-
rant consists of fi nding the angle β = 360° − α. The trigonometric functions of
the resulting acute angle β consisting of sign and magnitude are illustrated as
follows:

 sin(α) = −sin(360° − α) = −sin(β)

 cos(α) = cos(360° − α) = cos(β)

 tan(α) = −tan(360° − α) = −tan(β)

 cot(α) = −cot(360° − α) = −cot(β)

 sec(α) = sec(360° − α) = sec(β)

 csc(α) = −csc(360° − α) = −csc(β)

R.4.25 For example, reduce to the fi rst quadrant and evaluate the following fourth
 quadrant trigonometric functions: sin(315°), sin(330°), cos(300°), sec(315°), tan(300°),
and csc(315°).

ANALYTICAL Solution

 sin(315°) = −sin(360° − 315°) = −sin(45°) = − √
__

 2 ___
2

 sin(330°) = −sin(360° − 330°) = −sin(30°) = −0.5

 cos(300°) = cos(360° − 300°) = cos(60°) = 0.5

 sec(315°) = sec(360° − 315°) = sec(45°) = √
__

 2

 tan(300°) = −tan(360° − 300°) = −tan(60°) = − √
__

 3

 csc(315°) = −csc(360° − 315°) = −csc(45°) = − √
__

 2

CRC_47744_Ch004.indd 201CRC_47744_Ch004.indd 201 6/16/2008 6:51:36 PM6/16/2008 6:51:36 PM

202 Practical MATLAB® Basics for Engineers

R.4.26 A triangle is a structure consisting of three sides and three angles. If one side and
two angles, or two sides and one angle are known, then the other three unknown
quantities can be evaluated.

R.4.27 Recall that the Pythagorean theorem states that in a right triangle, as illustrated in
Figure 4.1,

 c2 = a2 + b2

 where angle(A) + angle(B) = 90°.

FIGURE 4.2
Oblique triangle of R.4.30.

bc

a

A

CB

FIGURE 4.3
Plots of sine(x), cosine(x), and tangent(x).

1

0

−1

1

0

−1

20

0

−20

−6 −4 −2 0 2 4 6

−6 −4 −2 0 2 4 6

−6 −4 −2 0
x

2 4 6

Plots of sin(x) versus x, cos(x) versus x, and tan(x) versus x

 s
in

(x
)

co
s(

x)
ta

n(
x)

CRC_47744_Ch004.indd 202CRC_47744_Ch004.indd 202 6/16/2008 6:51:37 PM6/16/2008 6:51:37 PM

Trigonometric, Exponential, Logarithmic, and Special Functions 203

R.4.28 A general triangle, also called oblique, as illustrated in Figure 4.2, is a triangle that
contains no right angle.

R.4.29 Solving a triangle means fi nding the values of all the sides and angles. The law
of sines and the law of cosines are stated below and are generally used to solve an
oblique triangle (Linderburg, 1982).

R.4.30 The law of sines states that in a general oblique triangle, referred to Figure 4.2, the
following relations hold:

sin(A)

 ______ a =
sin(B)

 ______ b =
sin(C)

 ______ c

R.4.31 The law of cosines states that in a general oblique triangle, referred to Figure 4.2,
if two sides and the angle formed by them are known, then the third side can be
evaluated by the following relations:

 a2 = b2 + c2 − 2 b c cos(A)

 b2 = c2 + a2 − 2 a c cos(B)

 c2 = a2 + b2 − 2 a b cos(C)

R.4.32 Graphs of the standard trigonometric functions are shown in Figures 4.3 and 4.4.
Graphs of the reciprocal functions sin(x) = 1/csc(x) and cos(x) = 1/sec(x) are shown in

FIGURE 4.4
Plots of secant(x), cosecant(x), and cotangent(x).

−6 −4 −2 0 2 4 6

−6 −4 −2 0 2 4 6

−6 −4 −2 0 2 4 6

20

0

−20

20

0

−20

20

0

−20

Plots of sec(x) versus x, csc(x) versus x, and cot(x) versus x

 s
ec

(x
)

cs
c(

x)
co

t(
x)

x

CRC_47744_Ch004.indd 203CRC_47744_Ch004.indd 203 6/16/2008 6:51:37 PM6/16/2008 6:51:37 PM

204 Practical MATLAB® Basics for Engineers

FIGURE 4.5
Plots of sine(x) and cosecant(x).

3

2

1

0

−1

−2

−3
−6 −4 −2 0

x
2 4 6

csc(x)

sin(x)

si
n(

x)
 a

nd
 c

sc
(x

)
Plots of sin(x) versus x and csc(x) versus x

FIGURE 4.6
Plots of cosine(x) and secont(x).

3

2

1

0

−1

−2

−3
−6 −4 −2 0

x
2 4 6

sec(x)

cos(x)

co
s(

x)
 a

nd
 s

ec
(x

)

Plots of cos(x) versus x and sec(x) versus x

CRC_47744_Ch004.indd 204CRC_47744_Ch004.indd 204 6/16/2008 6:51:37 PM6/16/2008 6:51:37 PM

Trigonometric, Exponential, Logarithmic, and Special Functions 205

TABLE 4.3

Period, Amplitude, and Frequency of the Six Standard
Trigonometric Functions

Function Period T Amplitude Frequency f = 1/T

y = A sin(ω * t) 2π/ω A ω/ 2 * π
y = A cos(ω * t) 2ω/ω A ω/ 2ω
y = A tan(ω * t) π/ω — ω/ π
y = A cot(ω * t) π/ω — ω/ π
y = A sec(ω * t) 2π/ω — ω/2 * π
y = A csc(ω * t) 2π/ω — ω/2 * π

TABLE 4.4

Inverse and Direct Standard Trigonometric Functions

Inverse Function Function Domain Range

x = asin(y) y = sin(x) −1 < y < + 1 −π ≤ x ≤ + π
x = acos(y) y = cos(x) −1 < y < + 1 0 ≤ x ≤ + π
x = atan(y) y = tan(x) — −π/2 ≤ x ≤ + π/2
x = acot(y) y = cot(x) — 0 ≤ x ≤ + π
x = asec(y) y = sec(x) | y | ≥ 1 –π ≤ x ≤ 0, x ≠ –π/2
x = acsc(y) y = csc(x) | y | ≥ 1 –π/2 ≤ x ≤ π/2, x ≠ 0

Figures 4.5 and 4.6. The reader should observe the periodic nature of the trigono-
metric functions. Recall that a function f(t) is said to be periodic, with period T, if

 f(t) = f(t ± nT) for any integer n = 1, 2, 3, …

R.4.33 From the graphs of the trigonometric functions shown in Figures 4.3 and 4.4, the
period T, frequency f, and amplitude A can be evaluated. Table 4.3 summarizes the
characteristics of the standard six trigonometric functions.

R.4.34 Because the trigonometric functions are periodic, the inverse trigonometric func-
tions may not be unique, but if the domain is restricted to a particular interval, then
each trigonometric function will have a unique inverse.

 The mathematical inverse of sin(x) is denoted in two ways, arcsin(x) or sin–1(x), and the
same notation is used for the other trigonometric functions (acos(x) or cos–1(x), etc.).

R.4.35 The six inverse trigonometric MATLAB functions are

 asin(x), acos(x), atan(x), acot(x), asec(x), and acsc(x)

R.4.36 Table 4.4 indicates the inverse trigonometric functions, its direct functions, its
domain and range.

R.4.37 Some useful and often used trigonometric identities are as follows:
a. sin2(x) + cos2(x) = 1 g. sin(x) = 2sin(x/2) ⋅ cos(x/2)

b. 1 + tan2(x) = sec2(x) h. cos2(x) = 1/(1 + tan2(x))

c. 1 + cot2(x) = csc2(x) i. sin(x) ⋅ csc(x) = 1
d. cos(x) + sin(x) tan(x) = sec(x) j. cos(x) ⋅ sec(x) = 1

e. sin(2x) = 2sin(x) ⋅ cos(x) k. tan(x) ⋅ cos(x) = 1

f. cos(2x) = cos2(x) − sin2(x)

CRC_47744_Ch004.indd 205CRC_47744_Ch004.indd 205 6/16/2008 6:51:37 PM6/16/2008 6:51:37 PM

206 Practical MATLAB® Basics for Engineers

R.4.38 Some useful trigonometric identities relating sums and differences of angles are as
follows (Kay, 1994):
a. sin(x + y) = sin(x) ⋅ cos(y) + cos(x) ⋅ sin(y)

b. cos(x + y) = cos(x) ⋅ cos(y) – sin(x) ⋅ sin(y)

c. tan(x + y) = (tan(x) + tan(y))/(1 – tan(x) ⋅ tan(y))

d. sin(x – y) = sin(x) ⋅ cos(y) – cos(x) ⋅ sin(y)

e. cos(x – y) = cos(x) ⋅ cos(y) + sin(x) ⋅ sin(y)

f. tan(x – y) = [tang(x) – tan(y)]/[(1 + tan(x) ⋅ tan(y)]

g. tan(x + y) = [tang(x) + tan(y)]/[(1 – tan(x) ⋅ tan(y)]

R.4.39 Some useful trigonometric identities that relate the doubling of angles are as follows:
a. sin(2x) = 2 sin(x) ⋅ cos(x)

b. cos(2x) = cos2(x) – sin2(x)

c. tan(2x) = 2 tan(x)/(1 – tan2(x))

R.4.40 Some useful trigonometric identities that relate half angles are as follows:
a. sin(x/2) = ± √

 (1 − cos(x))/2

b. cos(x/2) = ± √

 (1 + cos(x))/2
c. tan(x/2) = ± √

 (1 − cos(x))/(1 + cos(x)) = –1 ± √

 (1 + tan2(x))/(tan(x))

R.4.41 Some useful trigonometric identities relating sums and differences of angles are as
follows:
a. sin(x) + sin(y) = 2 sin((x + y)/2) ⋅ cos((x – y)/2)

b. sin(x) – sin(y) = 2 cos((x + y)/2) ⋅ sin((x – y)/2)

c. cos(x) + cos(y) = 2 cos((x + y)/2) ⋅ cos((x – y)/2)

d. cos(x) – cos(y) = –2 sin((x + y)/2) ⋅ sin((x – y)/2)

R.4.42 Some useful trigonometric products are as follows:
a. sin(x) ⋅ cos(y) = 1/2 (sin(x + y) + sin(x – y))

b. cos(x) ⋅ sin(y) = 1/2 (sin(x + y) – sin(x – y))

c. cos(x) ⋅ cos(y) = 1/2 (cos(x + y) + cos(x – y))

d. sin(x) ⋅ sin(y) = –1/2 (cos(x + y) – cos(x – y))

R.4.43 Some useful inverse trigonometric identities are as follows:
a. arcsin(x) + arccos(x) = π/2 g. arcsin(−x) = −arcsin(x)

b. arctan(x) + arccot(x) = π/2 h. arccos(−x) = π − arccos(x)

c. arcsec(x) = arccos(1/x) i. arccsc(−x) = arcsec(x)

d. arccsc(x) = arcsin(1/x) j. arctan(−x) = −arctan(x)

e. arcsec(x) + arccsc(x) = π/2 k. arccot(−x) = π − arccot(x)

f. arccot(x) = arctan(1/x) l. arcsec(−x) = π − arcsec(x)

R.4.44 Trigonometric functions can be expressed in terms of exponentials of the irrational
number e = 2.71828182. Recall that ex is expressed in MATLAB as exp(x).

R.4.45 The number e can be defi ned as the limit of the following relation:

e

n
n

n

� �1
1



 , for a large (approaching infinity)

CRC_47744_Ch004.indd 206CRC_47744_Ch004.indd 206 6/16/2008 6:51:38 PM6/16/2008 6:51:38 PM

Trigonometric, Exponential, Logarithmic, and Special Functions 207

 Table 4.5 illustrates how e approaches 2.7182812 as n increases.
R.4.46 The value of e can also be computed by using the MacLaurin series as follows:

exp(x) � � � � � � �1

! ! ! !
x

x x x x
n

n2 3 4

2 3 4
�

 Recall that n! = n * (n – 1) * (n – 2) * … 3 * 2 * 1 is called the n-factorial.
 Therefore, if x = 1,

exp()

! ! ! !
1 1

1
1

1
2

1
3

1
4

1
� � � � � � � �e

n
�

e � � � � � � � �1 1

1
2

1
6

1
24

1
120

1
720

�

 The value of e converges faster to 2.7182812 when the MacLaurin’s series is used
instead of (1 + 1/n)n.

R.4.47 Hyperbolic functions are exponential functions of the form ex and e−x.
 The hyperbolic functions present properties that are similar to the trigonometric

functions, but are simpler and more straightforward. The combination of ex and
e−x appears regularly in certain types of engineering and science problems, and to
preserve simplicity the six hyperbolic functions are defi ned as follows:

sinh(x)

()
�

e ex x� �

2

cosh(x)

()
�

�e ex x�

2

tanh(x)

sinh(x)
cosh(x)

�
�

�
e e
e e

x x

x x

� �

�

coth(x)

cosh(x)
sinh(x)

�
�

�
e e
e e

x x

x x

�

��

sech(x)

cosh(x)
�

�
�

2 1
e ex x�

csch(x)

sinh(x)
� �

2 1
e ex x� �

R.4.48 Graphs of the hyperbolic functions are shown in Figures 4.7 and 4.8.

TABLE 4.5

Approximations for e = (1 + 1/n)n for Different n’s

n 1 2 3 4 5 6 10 1,000 10,000
e 2 2.25 2.37 2.47 2.488 2.55 2.5937 2.7169 2.71814

CRC_47744_Ch004.indd 207CRC_47744_Ch004.indd 207 6/16/2008 6:51:38 PM6/16/2008 6:51:38 PM

208 Practical MATLAB® Basics for Engineers

FIGURE 4.7
Hyperbolic plots of sine(x), cosine(x), and tangent(x) over the range –1 ≤ x ≤ 1.

−6 −4 −2 0
cosh(x)

sinh(x)

2 4 6

−6 −4 −2 0
tanh(x)

2 4 6

−6

−1

0

1

0

100

200

−100

0

100

−4 −2 0
x

2 4 6

FIGURE 4.8
Hyperbolic plots of secant(x), cosecant(x), and cotangent(x) over the range –6.26 < x < 6.28.

−6 −4 −2

−6 −4 −2

−6 −4

−1

−2

−2

0
x

2 4 6

0

x

2 4 6

0

x

2 4 6
csch(x)

sech(x)

coth(x)

0

0.5

1

2

0

0

1

CRC_47744_Ch004.indd 208CRC_47744_Ch004.indd 208 6/16/2008 6:51:38 PM6/16/2008 6:51:38 PM

Trigonometric, Exponential, Logarithmic, and Special Functions 209

R.4.49 Observe the similarity between the standard trigonometric with the hyperbolic
functions. For example, the cosh(x) (pronounce “kosh”) is an even function, whereas
sinh(x) is an odd function.

 (cosh(x) = cosh(–x) and sinh(x) = –sinh(–x))

The exact same relation holds for the standard functions such as: sin(x) = −sin(−x) and
cos(x) = cos(−x).
R.4.50 Some useful hyperbolic identities are as follows:

a. cosh2(x) – sinh2(x) = 1

b. 1 – tanh2(x) = sech2(x)

c. ex = cosh(x) + sinh(x)

d. e–x = cosh(x) – sinh(x)

e. cosh(x + y) = cosh(x) cosh(y) + sinh(x) sinh(y)

f. sinh(x + y) = sinh(x) cosh(y) + cosh(x) sinh(y)

R.4.51 The inverse hyperbolic function sinh–1(x) or arcsinh(x) denoted in MATLAB as
asinh(x) is defi ned by

a x x xsinh(x) ln� � � � � �()2 1() for �� �

R.4.52 The other inverse hyperbolic functions are defi ned as follows:

a x x xcosh(x) ln� � � �()2 1 1() for

a

x
x

xtanh(x) ln�
�

�
�

�1
1

1
1 2



 for � �

acoth(x) ln

x
x

x x�
�

�
	
 �

�1
1

1 1
1 2



 for or

asech() lnx

x
x

x�
� �

 �
1 1

0 1
2()







 for

acsch(x) ln�

� �1 1
0

2()x
x

x








 for �

R.4.53 The graphs of the six inverse hyperbolic functions are plotted using MATLAB,
and are shown in Figure 4.9, over the range −2 ≤ x ≤ 2. Observe that acoth(x) =
atanh(x).

CRC_47744_Ch004.indd 209CRC_47744_Ch004.indd 209 6/16/2008 6:51:39 PM6/16/2008 6:51:39 PM

210 Practical MATLAB® Basics for Engineers

R.4.54 For example, the MATLAB script fi le inver_hyper below returns in a table like format
the six inverse hyperbolic functions, shown in Figure 4.9, over the range –2 ≤ x ≤ 2,
with linear spacing of ∆x = 0.5:

MATLAB Solution
% Script file: inver _ hyper
x = -2:0.5:2;
aco = acosh(x);
asi = asinh(x);
ata = atanh(x);
acot = acoth(x);
ase = asech(x);
acsc = acsch(x);
disp(‘**’)
disp(‘ x(rad) asinh(x) acosh(x) atanh(x) acoth(x) ’)
disp(‘**’)
results = [x’ asi’ aco’ ata’ acot’] % the columns correspond to x, asinh(x),
 % acosh(x), atanh(x), acoth(x) ,
disp(‘**’)
disp(‘ asec(x) acsch(x))’
disp(‘**’)
res = [ase’ acsc’] % asech(x), acsch(x)

FIGURE 4.9

Plots of the six inversed hyperbolic functions over the range –2 ≤ x ≤ 2.

1.5

1

0.5

−0.5

0

2

0

−2

−2 −1

4

2

0

0

x x

1 2 −2
−4

−2

0

2

−2

−2

−1

0

2

0

1

4

−1 0 1 2

−2 −1 0 1 2

−2 −1 0 1 2 −2 −1 0 1 2

−2 −1 0 1 2

ac
os

h(
x)

at
an

h(
x)

as
ec

h(
x)

as
in

h(
x)

ac
ot

h(
x)

ac
sc

h(
x)

CRC_47744_Ch004.indd 210CRC_47744_Ch004.indd 210 6/16/2008 6:51:39 PM6/16/2008 6:51:39 PM

Trigonometric, Exponential, Logarithmic, and Special Functions 211

 The script fi le inver_hyper is executed and the results are as follows:

**
 x(rad) asinh(x) acosh(x) atanh(x) acoth(x)
**
 results =
 Columns 1 through 5
 -2.0000 -1.4436 1.3170 - 3.1416i -0.5493 -1.5708i -0.5493
 -1.5000 -1.1948 0.9624 - 3.1416i -0.8047 -1.5708i -0.8047
 -1.0000 -0.8814 0 - 3.1416i NaN + NaN -Inf
 -0.5000 -0.4812 0 - 2.0944i -0.5493 -0.5493 1.5708i
 0 0 0 - 1.5708i 0 0 1.5708i
 0.5000 0.4812 0 - 1.0472i 0.5493 0.5493 1.5708i
 1.0000 0.8814 0 NaN + NaNi NaN + NaN
 1.5000 1.1948 0.9624 0.8047 - 1.5708i 0.8047
 2.0000 1.4436 1.3170 0.5493 - 1.5708i 0.5493

 asec(x) acsch(x)

 res=
 Columns 1 through 2
 0 - 2.0944i -0.4812
 0 - 2.3005i -0.6251
 0 - 3.1416i -0.8814
 1.3170 - 3.1416i -1.4436
 Inf Inf
 1.3170 1.4436
 0 0.8814
 0 - 0.8411i 0.6251
 0 - 1.0472i 0.4812

R.4.55 The trigonometric sin(x) and cos(x) are related to the hyperbolic sinh(x) and cosh(x)
by the following relations:

cosh(jx) = cos(x)

sin(x) = – jsinh(– jx)

 where √

 –1 = j.
R.4.56 Some useful mathematical relations involving exponentials are as follows:

a. exp(0) = 1
b. exp(a) * exp(b) = exp(a + b)

c. exp(a) / exp(b) = exp(a – b)

d. (exp(a))b = exp(a * b)

R.4.57 Some useful mathematical relations, as well as the corresponding MATLAB com-
mands are summarized in Table 4.6.

R.4.58 The inverse of an exponential function is a logarithmic function. For example,
let x = loga(y), then ax = y, where a is referred as the base of the logarithmic function.

R.4.59 The equations y = ax and loga(y) = x express exactly the same relation between
x and y.

R.4.60 Table 4.7 states some important relations between dependent variable y and log(x),
where x is the independent variable for y = log(x).

CRC_47744_Ch004.indd 211CRC_47744_Ch004.indd 211 6/16/2008 6:51:39 PM6/16/2008 6:51:39 PM

212 Practical MATLAB® Basics for Engineers

R.4.61 Observe that in general
a. If y = log(x), then the larger the positive value of x, the larger the value of y.
b. The function f and its inverse f –1 are symmetrical functions with respect to y = x.

For example, 2x and log2(x), or cos(x) and acos(x) are symmetrical functions with
respect to y = x.

R.4.62 The following numerical examples provide some insight into the nature of
logarithms:
log2(8) = 3 since 23 = 8

log(0.5.)(0.125) = 3 since (0.5)3 = 0.125

log(10)(100) = 2 since 102 = 100

log(–2)(10) does not exist
log5(1/25) = –2 since 5–2 = 1/25

loge(23) = 3.135 since e3.135 = 23

log10(1) = 0 since 100 = 1
loge(1) = 0 since e0 = 1
log10(0.000001) = –6 since 10–6 = 0.000001

loge(–23) does not exist
log10(0.1) = –1 since 10–1 = 0.1

log10(
5 √

 81) = 0.38 since 100.38 = 5 √

 81

R.4.63 Some useful logarithmic properties are as follows (for a > 0, a ≠ 1, and x > 0):
loga(x) = b (then ab = x)
loga(x)−1 = −loga(x)

loga(a) = 1

log(1) = 0

TABLE 4.6

Mathematic/MATLAB Translation

Mathematical Relations MATLAB Instruction

x 0 = 1 x ^ 0
x−a = 1/(xa) x ^ (−a)
n √

__
 x = x 1/n x ^ (l/n)

 √
__

 x = x 1/2 sqrt(x)
n √

 m √

__
 x = n=m √

__
 x x ^ (1/(n * m))

x a ⋅ x b = x a+b x ^ (a + b)
x a/x b = x a – b x ^ (a − b)
(x a)b = x ab x ^ (a * b)
x a/b = b √

__
 x a x ^ (a/b)

(x/y)a = xa/ya (x/y) ^ a

TABLE 4.7

y and x Relation for y = log(x)

y log(x)

Does not exist x < 0
Negative 0 < x < 1
Positive x > 1

CRC_47744_Ch004.indd 212CRC_47744_Ch004.indd 212 6/16/2008 6:51:39 PM6/16/2008 6:51:39 PM

Trigonometric, Exponential, Logarithmic, and Special Functions 213

loga(ax) = x

loga(x)n = nloga(x)

 log a
n √

__
 x = 1/n(loga(x))

loga(x ⋅ y) = loga(x) + loga(y)

loga(x/y) = loga(x) − loga(y)

ln(x) = log10(x)/log10(e) = 2.3026 ⋅ log10(x)

log(x) = .4343ln(x)

loga(x) = log(x)/log(a) = ln(x)/ln(a)

logb(x) = (1/loga(b)) loga(x) for b > 0 and b ≠ 0

 Recall that ln(x) = loge(x).
R.4.64 Most of the practical logarithmic functions use 10, e, or 2 as their base.

The logarithm of base 10 is usually expressed as log(x) and is called decimal or
logarithm of Brigg. MATLAB uses the format log10(x) to indicate that the base is 10.

The logarithm of base e is called natural or Naperian.* MATLAB uses the format
log(x) to indicate that the base is e. The logarithm of base 2 is called binary and the
MATLAB syntax is log2(x).

R.4.65 An important property of the logarithmic function is that the plot of y = loga(x) for
any (base) a passes through the point (1, 0).

R.4.66 Some special MATLAB functions are the rounding functions, which examine the
argument of the independent variable (x) and return an approximation value for
the dependent variable y.

The most common MATLAB rounding functions are presented in Table 4.8 with
a brief description and a short example.

R.4.67 The least common multiple and greatest common divisor given the integers x and
y can be obtained by using the command gcd(x, y) and lcm(x, y).

For example, gcd(20, 25) will return 5, and lcm(20, 25) will return 100.
R.4.68 The function rem(y, x) returns the remainder r after dividing y by x as indicated by

y
x c r

y� �






 For example, rem(20, 3) will return a 2, while rem(20, 0) returns NaN.

* The abbreviation ln is from Latin logarithmic naturalis.

TABLE 4.8

MATLAB Rounding Functions

MATLAB Function Description

y = round(x) Rounds x to the nearest integer; y = round(3.7) = 4
y = ceil(x) Rounds x to the nearest greatest positive integer; y = ceil(3.7) = 4
y = fi x(x) Rounds x toward the nearest lowest integer; y = fi x(3.7) = 3
y = fl oor(x) Rounds x toward −∞; y = fl oor(3.7) = 3
y = sign(x) Returns y = 1, if x > 0

y = 0, if x = 0
y = −1, if x < 0

CRC_47744_Ch004.indd 213CRC_47744_Ch004.indd 213 6/16/2008 6:51:39 PM6/16/2008 6:51:39 PM

214 Practical MATLAB® Basics for Engineers

R.4.69 The MATLAB command factor(n), returns a vector containing the prime factors of n.
 For example, use MATLAB and factor the numbers 121 and 120.

>>factor(121)

 ans =
 11 11

>>factor(120)

 ans =
 2 2 2 3 5

R.4.70 The command primes(n) returns a vector consisting of all the prime numbers
between zero and n. Recall that a prime number is one that can only be divided
by itself or by 1, with zero remainder. For example, use MATLAB to obtain the
sequence of prime numbers that are less than 100.

>> first _ 100 _ prime = primes(100)

 first _ 100 _ prime=
 Columns 1 through 12
 2 3 5 7 11 13 17 19 23 29 31 37
 Columns 13 through 24
 41 43 47 53 59 61 67 71 73 79 83 89
 Column 25
 97

R.4.71 The command isprime(n) checks if n is a prime number, in which case MATLAB
returns a 1 (one), otherwise MATLAB returns a 0 (zero).

For example, use MATLAB and check if the numbers 13 and 14 are prime
numbers.

>>isprime(13)

 ans =
 1

>>isprime(14)

 ans =
 0

R.4.72 The command [N, D] = rat(n), where n is a number, returns the rational approxima-
tion for n, consisting of two integers such that N/D is a close approximation for n.
When the instruction rat(n) is executed, MATLAB returns the rational approxima-
tion for n consisting of sums.

For example, use MATLAB to obtain the rational approximation of e and π.

MATLAB Solution
>> rat(pi)

 ans =
 3 + 1/(7 + 1/(16))

>> [N,D] = rat(pi)

 N =
 355

CRC_47744_Ch004.indd 214CRC_47744_Ch004.indd 214 6/16/2008 6:51:39 PM6/16/2008 6:51:39 PM

Trigonometric, Exponential, Logarithmic, and Special Functions 215

 D =
 113

>> [N,D] = rat(exp(1))

 N =
 1457

 D =
 536

>> check = 1457/536

 check =
 2.7183 % observe that the rational approximation is very close

to e

4.4 Examples

Example 4.1

Create the script fi le rad_deg that returns a table of the angle x expressed in degrees and
radians as well as the corresponding values of sin(x°) and cos(x°), over the range 0° ≤ x
≤ 360°, in linear increments of ∆x = 0.314 radians.

MATLAB Solution
% Script file: rad _ deg
x = 0:0.314:2*pi; % creates the row vector x
y1 = sin(x); % creates the row vector sin(x)
y2 = cos(x); % creates the row vector cos(x)
z = x*180/pi; % converts radians to degrees

disp(‘****************************’)

disp(‘x(deg) x (rad) sin(x) cos(x)’)

disp(‘****************************’)

[z’ x’ y1’ y2] % displays in table format

disp(‘****************************’)

>> rad _ deg % in the command window

 x(deg) x (rad) sin(x) cos(x)

 0 0 0 1.0000
 17.9909 0.3140 0.3089 0.9511
 35.9817 0.6280 0.5875 0.8092
 53.9726 0.9420 0.8087 0.5882
 71.9635 1.2560 0.9509 0.3096
 89.9544 1.5700 1.0000 0.0008
 107.9452 1.8840 0.9514 -0.3081
 125.9361 2.1980 0.8097 -0.5869
 143.9270 2.5120 0.5888 -0.8083
 161.9179 2.8260 0.3104 -0.9506
 179.9087 3.1400 0.0016 -1.0000
 197.8996 3.4540 -0.3074 -0.9516
 215.8905 3.7680 -0.5862 -0.8101

CRC_47744_Ch004.indd 215CRC_47744_Ch004.indd 215 6/16/2008 6:51:40 PM6/16/2008 6:51:40 PM

216 Practical MATLAB® Basics for Engineers

 233.8814 4.0820 -0.8078 -0.5895
 251.8722 4.3960 -0.9504 -0.3111
 269.8631 4.7100 -1.0000 -0.0024
 287.8540 5.0240 -0.9518 0.3066
 305.8449 5.3380 -0.8106 0.5856
 323.8357 5.6520 -0.5901 0.8073
 341.8266 5.9660 -0.3119 0.9501
 359.8175 6.2800 -0.0032 1.0000

Example 4.2

Create the script fi le exp_appr that returns in a table like format the evaluated value of
e = 2.718182, using successive approximations from up to 10 terms, employing the fol-
lowing equations:

 a. e x x x x x xx � � � � � �1 for 1() (!) (!) (!) (!)� � � � �1 2 3 9 102 3 9 10� �

 b. e n n� � �(/)1 1 for 0, 1, 2, 3, , 9, 10n …

MATLAB Solution
% Script file: exp _ appr
% part(a)
n =1:1:10; % creates the series 1 2 3 410.
den = cumprod(n); % creates the series 1 2 6 24...........
series = cumsum(1./den); % creates the sequence 1 1+1/2 1+1/2+1/6

 +1/24+……
exposeri = 1+series ; % creates the first 10 approximations of

 the series
% part(b)
den1 = 1./n; % creates the sequence 1 1/2 1/3 1/4.....
exp = (1+den1).̂ n; % creates a series with the first 10

 approximations
disp(‘***********R E S U L T S ***************’)
disp(‘***************************************’)
disp(‘n(# of terms) e=1+1+1̂ 2/2!... e=(1+1/n)̂ n’)
disp(‘***************************************’)
[n’ exposeri’ exp’]
disp(‘***************************************’)

The script fi le exp_appr is executed and the results are shown in the following:

>> exp _ appr

*************R E S U L T S ***********************

n(# of terms) e=1+1+1̂ 2/2!... e=(1+1/n)̂ n
**
ans =

 1.0000 2.0000 2.0000
 2.0000 2.5000 2.2500
 3.0000 2.6667 2.3704
 4.0000 2.7083 2.4414
 5.0000 2.7167 2.4883

CRC_47744_Ch004.indd 216CRC_47744_Ch004.indd 216 6/16/2008 6:51:40 PM6/16/2008 6:51:40 PM

Trigonometric, Exponential, Logarithmic, and Special Functions 217

 6.0000 2.7181 2.5216
 7.0000 2.7183 2.5465
 8.0000 2.7183 2.5658
 9.0000 2.7183 2.5812
 10.0000 2.7183 2.5937

The preceding data is illustrated graphically in Figure 4.10.

1 2 3 4 5 6 7 8 9 10
2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

n (number of terms)

M
ag

ni
tu

de

Approximations for e

e = 1+1+1/2!+1/3!...

e = (1+1/n)n

FIGURE 4.10
Plots of the two approximations of e of Example 4.2.

Example 4.3

Given the function x(t) = 4e2t – 5e–3t, create the script fi le x_of_t that returns in a table like
format x1(t) = 4e2t, x2(t) = –5e–3t, and x(t) over the range 0 ≤ t ≤ 3, in linear increments of
∆t = 0.1.

MATLAB Solution
% Script file: x _ of _ t
t = 0:0.1:3; % creates an array t consisting of 31 elements
x1 = 4.*exp(2.*t); % creates an array x1 consisting of 31 elements
x2 = 5.*exp(-3.*t); % returns an array x2 consisting of 31 elements
x = x1-x2; % returns x(t) as an array of 31 elements
 (x=x1 – x2)
% the values of x1 = 4exp(2t), x2=5exp(-3t), and x1-x2
% are displayed in table like format over the range of t
disp(‘**’)
disp(‘ **x1(t) = 4exp(-2t)** x2=5exp(-3t)**x(t) = x1(t)-x2(t)**’)
disp(‘**’)
[x1’ x2’ x’]
disp(‘**’)

CRC_47744_Ch004.indd 217CRC_47744_Ch004.indd 217 6/16/2008 6:51:40 PM6/16/2008 6:51:40 PM

218 Practical MATLAB® Basics for Engineers

The script fi le x_of_t is executed and the results are shown in the following:
>> x _ of _ t

x1(t) = 4exp(-2t) x2(t)=5exp(-3t)** x(t)= x1(t)-x2(t)**

 ans =
 1.0e+003 *
 0.0040 0.0050 -0.0010
 0.0049 0.0037 0.0012
 …………… ……………… ……………
 0.0109 0.0011 0.0098
 0.0133 0.0008 0.0125
 0.0162 0.0006 0.0156
 ……………… …………… ……………
 0.0539 0.0001 0.0538
 0.0658 0.0001 0.0657
 0.0803 0.0001 0.0803
 …………… …………… ……………
 0.5937 0.0000 0.5936
 0.7251 0.0000 0.7251
 …………… …………… ……………
 1.3212 0.0000 1.3212
 1.6137 0.0000 1.6137

Example 4.4

Create the script fi le trig_values that returns in a table like format the fi rst four columns
of Table 4.2, that is x in degrees and radians as well as sin(x) and cos(x).

MATLAB Solution
%Script file :trig _ values
a = [30 15 15 30];b=[90 90];
increm = [0 a a b];
angle _ deg = cumsum(increm)
convert = ones(1,11)*pi/180;
angle _ rad = angle _ deg.*convert;
sinx = sin(angle _ rad);
cosx = cos(angle _ rad);
disp(‘**’)
disp(‘ **degrees ** radians ** sin(x) ** cos(x)**’)
disp(‘**’)
disp([angle _ deg’ angle _ rad’ sinx’ cosx’])
disp(‘**’)

The script fi le trig_values is executed and the results are shown in the following:

>> trig _ values

degrees ** radians ** sin(x) **cos(x)

 0 0 0 1.0000
 30.0000 0.5236 0.5000 0.8660
 45.0000 0.7854 0.7071 0.7071
 60.0000 1.0472 0.8660 0.5000
 90.0000 1.5708 1.0000 0.0000

CRC_47744_Ch004.indd 218CRC_47744_Ch004.indd 218 6/16/2008 6:51:40 PM6/16/2008 6:51:40 PM

Trigonometric, Exponential, Logarithmic, and Special Functions 219

 120.0000 2.0944 0.8660 -0.5000
 135.0000 2.3562 0.7071 -0.7071
 150.0000 2.6180 0.5000 -0.8660
 180.0000 3.1416 0.0000 -1.0000
 270.0000 4.7124 -1.0000 -0.0000
 360.0000 6.2832 -0.0000 1.0000

Example 4.5

Given the function y(t) = 2e−2t sin(t), create the script fi le sin_exp that returns in
a table like format y(t) versus t, over the range 0 ≤ t ≤ 4π, with linear increment of
∆ t = 0.2π.

MATLAB Solution
% Script file : sin _ exp
t = 0:.2*pi:4*pi; % creates a 21 point- array of t
y = 2.*exp(-2*t).*sin(t); % creates a 21 point- array of y(t)
% display in table format t and y(t)
disp(‘****************************’)
disp(‘** t *** y(t) *************’)
disp(‘****************************’)
[t’ y’]
disp(‘****************************’)

The script fi le sin_exp is executed and the resulting table is given below:

>> sin _ exp

 ** t *** y(t) ************

 ans =
 0 0
 0.6283 0.3346
 1.2566 0.1541
 1.8850 0.0439
 2.5133 0.0077
 3.1416 0.0000
 3.7699 -0.0006
 4.3982 -0.0003
 5.0265 -0.0001
 5.6549 -0.0000
 6.2832 -0.0000
 6.9115 0.0000
 7.5398 0.0000
 8.1681 0.0000
 8.7965 0.0000
 9.4248 0.0000
 10.0531 -0.0000
 10.6814 -0.0000
 11.3097 -0.0000
 11.9381 -0.0000
 12.5664 -0.0000

CRC_47744_Ch004.indd 219CRC_47744_Ch004.indd 219 6/16/2008 6:51:40 PM6/16/2008 6:51:40 PM

220 Practical MATLAB® Basics for Engineers

Example 4.6

Given the function f(t) = cos(w1t) cos(w2t), create the script fi le am_wave that returns in a
table like format the function f(t) as an array consisting of 21 points over the range 0 ≤
t ≤ 2π, with linear increment of ∆t = 0.1π, for w1 = 2 and w2 = 6. The function f(t) is
referred to as an amplitude-modulated wave.

MATLAB Solution
%Script file: am _ wave
t = 0:.1*pi:2*pi;
w1 = 2;w2 = 6;
y1 = cos(w1.*t); y2 = cos(w2.*t);
ft = y1.*y2;
disp(‘****************************’)
disp(‘ t f(t) ’)
disp(‘****************************’)
 [t’ ft’] % return t and f(t) as column vectors
disp(‘*************************’)

The script fi le am_wave is executed and the resulting table is given below:

>> am _ wave

 t f(t)

 ans =
 0 1.0000
 0.3142 -0.2500
 0.6283 -0.2500
 0.9425 -0.2500
 1.2566 -0.2500
 1.5708 1.0000
 1.8850 -0.2500
 2.1991 -0.2500
 2.5133 -0.2500
 2.8274 -0.2500
 3.1416 1.0000
 3.4558 -0.2500
 3.7699 -0.2500
 4.0841 -0.2500
 4.3982 -0.2500
 4.7124 1.0000
 5.0265 -0.2500
 5.3407 -0.2500
 5.6549 -0.2500
 5.9690 -0.2500
 6.2832 1.0000

CRC_47744_Ch004.indd 220CRC_47744_Ch004.indd 220 6/16/2008 6:51:40 PM6/16/2008 6:51:40 PM

Trigonometric, Exponential, Logarithmic, and Special Functions 221

Example 4.7

Create the script fi le xy_circle that returns 20, xy cartesian coordinate points in a table
like format for

 x () y () cos sin over 0 2� � � �� � � �versus

Also, verify that the above points defi ne a circle, with a unity radius r, where

 r � � � �cos () sin () 1 12 2� �

MATLAB Solution
% Script file: xy _ circle
beta = linspace(0,2*pi,20);
x = cos(beta);
y = sin(beta);
r = x.̂ 2+y.̂ 2;
disp(‘***************************************’)
disp(‘ cos(beta) sin(beta) radius ’)
disp(‘***********************************’)
[x’ y’ r’] % displays: cos(beta)
 sin(beta) radius by columns
disp(‘***********************************’)

The script fi le xy_circle is executed and the resulting table is indicated below:

>> xy _ circle

cos(beta) sin(beta) radius

 **
 1.0000 0 1.0000
 0.9458 0.3247 1.0000
 0.7891 0.6142 1.0000
 0.5469 0.8372 1.0000
 0.2455 0.9694 1.0000
 -0.0826 0.9966 1.0000
 -0.4017 0.9158 1.0000
 -0.6773 0.7357 1.0000
 -0.8795 0.4759 1.0000
 -0.9864 0.1646 1.0000
 -0.9864 -0.1646 1.0000
 -0.8795 -0.4759 1.0000
 -0.6773 -0.7357 1.0000
 -0.4017 -0.9158 1.0000
 -0.0826 -0.9966 1.0000
 0.2455 -0.9694 1.0000
 0.5469 -0.8372 1.0000
 0.7891 -0.6142 1.0000
 0.9458 -0.3247 1.0000
 1.0000 -0.0000 1.0000
 **

CRC_47744_Ch004.indd 221CRC_47744_Ch004.indd 221 6/16/2008 6:51:41 PM6/16/2008 6:51:41 PM

222 Practical MATLAB® Basics for Engineers

The points obtained from the foregoing results are plotted for x = cos(β) versus y = sin(β),
over the range 0 ≤ β ≤ 2π and the resulting graph is the unit circle shown in Figure 4.11.

Example 4.8

Create the script fi le cosh_sinh that returns 30 Cartesian coordinate points linearly
spaced in a table like format, where x = cosh(t) and y = sinh(t), over the range −2π ≤ t
≤ 2π, and verify that cosh2(t) – sinh2(t) = 1 for any t.

MATLAB Solution
% Script file: cosh _ sinh
t = linspace(-2*pi, 2*pi,30);
x = cosh(t); % x represents cosh (t)
y = sinh(t); % y represents sinh(t)
f = x.̂ 2-y.̂ 2; % f = cosh2(x) – sinh2(x))
disp(‘***’)
disp(‘ cosh(x) sinh(x) [cosh(x)]2-[sinh(x)]2’)
disp(‘***’)
[x’ y’ f ’]
disp(‘***’)

The script fi le cosh_sinh is executed and the resulting table is shown below:

>> cosh _ sinh

**
 cosh(x) sinh(x) [cosh(x)]2-[sinh(x)]2

**
 ans =
 267.7468 -267.7449 1.0000
 173.5947 -173.5918 1.0000
 ……… ………… ………
 12.9136 -12.8748 1.0000
 8.3899 -8.3301 1.0000

−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Unit circle

FIGURE 4.11
Plot of x = cos(β) versus y = sin(β), over 0 ≤ β ≤ 2π for Example 4.7.

CRC_47744_Ch004.indd 222CRC_47744_Ch004.indd 222 6/16/2008 6:51:41 PM6/16/2008 6:51:41 PM

Trigonometric, Exponential, Logarithmic, and Special Functions 223

 …… ………. ………
 1.2188 -0.6967 1.0000
 1.0236 -0.2184 1.0000
 1.0236 0.2184 1.0000
 1.2188 0.6967 1.0000
 1.6465 1.3080 1.0000
 2.3881 2.1687 1.0000
 3.5853 3.4430 1.0000
 …….. ……. …….
 173.5947 173.5918 1.0000
 267.7468 267.7449 1.0000

The points obtained in the foregoing results are plotted for x = cosh(t) versus y = sinh(t),
over the range −2π ≤ t ≤ 2π. The resulting graph consists of two straight lines that
intersect at (0, 0).

Note that these lines are mutually orthogonal, as illustrated in Figure 4.12.

Example 4.9

Verify that if y1 = sin−1(x) and y2 = sin(x) over the range −π/2 ≤ x ≤ π/2 by creating the
script fi le asin_sin. Then y1 may be complex,* y2 is always real, and y1 ≥ y2 for x > 0 and
y2 ≥ y1 for x < 0. Observe that a good approximation of y1 can be obtained by refl ecting
y2 about the line y = x over the range −1 ≤ x ≤ 1.

For the sake of simplicity, consider only the real part value (the part with no i) when
dealing with y1.

MATLAB Solution
% Script file: asin _ sin
x = -pi/2:0.25:pi/2;
y1 = asin(x);
y2 = sin(x);

* Complex means that the term i = sqrt(−1) is present. See Chapter 6 for additional information.

0 50 100 150 200 250 300
−300

−200

−100

0

100

200

300
cosh(t) versus sinh(t)

cosh(t)

si
nh

(t
)

FIGURE 4.12
Plots of x = cosh(t) versus y = sinh(t), for –2π ≤ t ≤ 2π of Example 4.8.

CRC_47744_Ch004.indd 223CRC_47744_Ch004.indd 223 6/16/2008 6:51:41 PM6/16/2008 6:51:41 PM

224 Practical MATLAB® Basics for Engineers

disp(‘**’)
disp(‘ ** x (rad) ** asin(x) ****** sin(x) ***’)
disp(‘**’)
[x’ y1’ y2’]
disp(‘***************************************’)

The script fi le asin_sin is executed and the results are shown in the following:

>> asin _ sin

**
** x (rad) ** asin(x) ***** sin(x) ***
**

 -1.5708 -1.5708 - 1.0232i -1.0000
 -1.3208 -1.5708 - 0.7810i -0.9689
 -1.0708 -1.5708 - 0.3741i -0.8776
 -0.8208 -0.9628 -0.7317
 -0.5708 -0.6075 -0.5403
 -0.3208 -0.3266 -0.3153
 -0.0708 -0.0709 -0.0707
 0.1792 0.1802 0.1782
 0.4292 0.4436 0.4161
 0.6792 0.7467 0.6282
 0.9292 1.1923 0.8011
 1.1792 1.5708 - 0.5901i 0.9243
 1.4292 1.5708 - 0.8962i 0.9900
 **

The plots of y = x versus x, y1 = asin(x) versus x, and y2 = sin(x) versus x over the range
−π/2 ≤ x ≤ π/2 are shown in Figure 4.13.

−2 −1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y,
 y

1,
 y

2

y1 = asin(x)

y versus x, y1 versus x and y2 versus x

y =x

y2 = sin(x)

FIGURE 4.13
Plots of Example 4.9.

Example 4.10

Verify that if y1 = cos−1(x) and y2 = cos(x) over the range −π ≤ x ≤ π by creating the script
fi le acos_cos. Then y1 may be complex, y2 is always real, and y1 ≥ y2 for x ≤ 1.

For the sake of simplicity, consider only the real part when dealing with y1.

CRC_47744_Ch004.indd 224CRC_47744_Ch004.indd 224 6/16/2008 6:51:41 PM6/16/2008 6:51:41 PM

Trigonometric, Exponential, Logarithmic, and Special Functions 225

MATLAB Solution
% Script file: acos _ cos
x = -pi:0.25:pi;
y1 = asin(x);
y2 = sin(x);
disp(‘***************************************’)
disp(‘** x (rad) ** acos(x)****** cos(x) ***’)
disp(‘***************************************’)
[x’ y1’ y2’]
disp(‘***************************************’)

The script fi le acos_cos is executed and the results are shown in the following:

>> acos _ cos

** x (rad) ** acos(x) ****** cos(x) ***

 ans =
 -3.1416 -1.5708 - 1.8115i -0.0000
 -2.8916 -1.5708 - 1.7236i -0.2474
 ………. …………… ………
 -1.6416 -1.5708 - 1.0796i -0.9975
 -1.3916 -1.5708 - 0.8584i -0.9840
 -1.1416 -1.5708 - 0.5261i -0.9093
 -0.8916 -1.1009 -0.7781
 …….. …………. ………….
 0.8584 1.0322 0.7568
 1.1084 1.5708 - 0.4615i 0.8950
 ……… ………. …………..
 2.6084 1.5708 - 1.6129i 0.5083
 2.8584 1.5708 - 1.7113i 0.2794
 3.1084 1.5708 - 1.8003i 0.0332

The plots of y = x versus x, y1 = acos(x) versus x and y2 = cos(x) versus x over the range
−π ≤ x ≤ π are shown in Figure 4.14.

4

3

2

1

0

−1

−2

−3

−4
−4 −3 −2 −1 0

x

x = 1

y = 0.8

y = x

y2 = cos(x)

y1 = acos(x)

y,
 y

1,
 y

2

1 2 3 4

[acos(x), x, and cos(x)] versus x

FIGURE 4.14
Plots of Example 4.10.

CRC_47744_Ch004.indd 225CRC_47744_Ch004.indd 225 6/16/2008 6:51:41 PM6/16/2008 6:51:41 PM

226 Practical MATLAB® Basics for Engineers

Example 4.11

Let y1 = 2x and y2 = log2(x). Use MATLAB to create the script fi le log_exp that returns a
table with y1 = 2x and y2 = log2(x) over the range 0 ≤ x ≤ 3, and verify that y1 ≥ y2 for
any x.

MATLAB Solution
% Script file: log _ exp
x = 0:0.25:3;
y = x;
y1 = 2.̂ x;
y2 = log2(x);
disp(‘***************************************’)
disp(‘** x (rad) ** 2 (̂x)******log2(x) ***’)
disp(‘***************************************’)
[x’ y1’ y2’]
disp(‘***************************************’)

The script fi le log_exp is executed and the results are shown in the following:

>> log _ exp

Warning: Log of zero.
> In C:\MATLABR11\work\A.m at line 6

** x (rad) ** 2 (̂x)****** log2(x) ***

ans =

 0 1.0000 -Inf
 0.2500 1.1892 -2.0000
 0.5000 1.4142 -1.0000
 0.7500 1.6818 -0.4150
 1.0000 2.0000 0
 1.2500 2.3784 0.3219
 1.5000 2.8284 0.5850
 1.7500 3.3636 0.8074
 2.0000 4.0000 1.0000
 2.2500 4.7568 1.1699
 2.5000 5.6569 1.3219
 2.7500 6.7272 1.4594
 3.0000 8.0000 1.5850

**

The plots of y = x versus x, y1 = 2x versus x, and y2 = log2(x) versus x over the range −π/2
≤ x ≤ π/2 are shown in Figure 4.15.

CRC_47744_Ch004.indd 226CRC_47744_Ch004.indd 226 6/16/2008 6:51:42 PM6/16/2008 6:51:42 PM

Trigonometric, Exponential, Logarithmic, and Special Functions 227

Example 4.12

Verify using MATLAB that sin(x) . cos(y) = 1/2[sin(x + y) + sin(x – y)] over the ranges
0 ≤ x ≤ π and –π ≤ y ≤ π, consisting of linear increments of ∆x = 0.3 and ∆y = 0.6,
respectively by creating the script fi le sin_cos.

MATLAB Solution
% Script file: sin _ cos
x = 0:0.3:pi;
y = -pi:0.6:pi;
y1 = sin(x).*cos(y);
a = x-y;
b = x + y;
y2 = (1/2)*(sin(a)+sin(b));
disp(‘***’)
disp(‘*x (rad)**y (rad)***sin(x)cos(y)**(1/2)(sin(x-y)+sin(x+y))’) ****
disp(‘***’)
[x’ y’ y1’ y2’]
disp(‘***’)

The script fi le sin_cos is executed and the results are shown in the following:

4

6

8

2

0

−2

−4
0 0.5 1 1.5

x

y = x

y1 = 2x

y2 = log2(x)

y,
 y

1,
 y

2

2 2.5 3

[2x, x and log2(x)] versus x

FIGURE 4.15
Plots of Example 4.11.

CRC_47744_Ch004.indd 227CRC_47744_Ch004.indd 227 6/16/2008 6:51:42 PM6/16/2008 6:51:42 PM

228 Practical MATLAB® Basics for Engineers

>> sin _ cos

* x (rad) **y (rad) *** sin(x)cos(y)** (1/2)(sin(x-y)+sin(x+y)) ****

 0 -3.1416 0 0
 0.3000 -2.5416 -0.2439 -0.2439
 0.6000 -1.9416 -0.2046 -0.2046
 0.9000 -1.3416 0.1780 0.1780
 1.2000 -0.7416 0.6873 0.6873
 1.5000 -0.1416 0.9875 0.9875
 1.8000 0.4584 0.8733 0.8733
 2.1000 1.0584 0.4232 0.4232
 2.4000 1.6584 -0.0591 -0.0591
 2.7000 2.2584 -0.2713 -0.2713
 3.0000 2.8584 -0.1355 -0.1355

**

Observe that the last two columns of the foregoing table are identical, representing the
term to the left and right of the equation sin(x) . cos(y) = 1/2[sin(x + y) + sin(x – y)].

Example 4.13

Verify using MATLAB that log2(A. * B) = log2(A) + log2(B) over the ranges 3 ≤ A ≤ 19
and 2 ≤ B ≤ 10, with linear increments of ∆A = 2 and ∆B = 1, by creating the script fi le
prod_sum.

MATLAB Solution
%Script file: prod _ sum
A=3:2:19;
B=2:1:10;
prod = log2(A.*B);
sum = log2(A)+log2(B);
disp (‘***’)
disp (‘**** A ***** B ***prod=log2(A.*B) *** sum=log2(A)+log2(B)’)
disp (‘***’)
[A’ B’ prod’ sum’]
disp(‘***’)

The script fi le prod_sum is executed and the resulting table is shown below:

>> prod _ sum

**
**** A ***** B ***prod=log2(A.*B) ***sum=log2(A)+log2(B)
**
ans =

 3.0000 2.0000 2.5850 2.5850
 5.0000 3.0000 3.9069 3.9069
 7.0000 4.0000 4.8074 4.8074
 9.0000 5.0000 5.4919 5.4919
 11.0000 6.0000 6.0444 6.0444
 13.0000 7.0000 6.5078 6.5078
 15.0000 8.0000 6.9069 6.9069
 17.0000 9.0000 7.2574 7.2574
 19.0000 10.0000 7.5699 7.5699

**

CRC_47744_Ch004.indd 228CRC_47744_Ch004.indd 228 6/16/2008 6:51:42 PM6/16/2008 6:51:42 PM

Trigonometric, Exponential, Logarithmic, and Special Functions 229

Observe that the last two columns of the foregoing table are identical and represent the
terms to the left and right of the equation log2(A * B) = log2(A) + log2(B).

Example 4.14

Verify using MATLAB that log2(A./B) = log2(A) − log2(B) over the ranges 3 ≤ A ≤ 19
and 2 ≤ B ≤ 10. with linear increments of ∆A = 2 and ∆B = 1 by creating the script fi le
div_sub.

MATLAB Solution
% Script file: div_sub
A=3:2:19;
B =2:1:10;
div = log2(A./B);
sub = log2(A)-log2(B);
disp(‘***’)
disp(‘**** A ***** B ***log2(A./B) *** log2(A)-log2(B)’)
disp(‘***’)
[A’ B’ div’ sub’]
disp(‘***’)

The script fi le div_sub is executed and the resulting table is indicated below:

>> div_sub

**** A ***** B *** log2(A./B) *** log2(A)-log2(B)
**
ans =
 3.0000 2.0000 0.5850 0.5850
 5.0000 3.0000 0.7370 0.7370
 7.0000 4.0000 0.8074 0.8074
 9.0000 5.0000 0.8480 0.8480
 11.0000 6.0000 0.8745 0.8745
 13.0000 7.0000 0.8931 0.8931
 15.0000 8.0000 0.9069 0.9069
 17.0000 9.0000 0.9175 0.9175
 19.0000 10.0000 0.9260 0.9260

Observe that the last two columns of the foregoing table are identical and represent the
term to the left and right of the equality log2(A./B) = log2(A) − log2(B).

4.5 Further Analysis

Q.4.1 Load and run the script fi le rad_deg of Example 4.1.
Q.4.2 Determine the number of elements of x.
Q.4.3 Do you agree with the comment statements?
Q.4.4 Draw by hand a sketch of cos(x) versus x using the results obtained.
Q.4.5 What is the period T, frequency f = 1/T, and angular frequency ω = 2π f of Q.4.4

(make sure that units are included)?
Q.4.6 Sketch by hand cos(x − π/4) versus x.

CRC_47744_Ch004.indd 229CRC_47744_Ch004.indd 229 6/16/2008 6:51:42 PM6/16/2008 6:51:42 PM

230 Practical MATLAB® Basics for Engineers

Q.4.7 Sketch by hand cos(x + π/4) versus x.

Q.4.8 Modify Example 4.1 to obtain the coordinate points for cos(x − π/4) versus x, and
check with Q.4.6.

Q.4.9 Modify Example 4.1 to obtain the xy coordinate point for y = cos(x + π/4) versus x,
and check with Q.4.7.

Q.4.10 Load and run the program of Example 4.2.
Q.4.11 What approximation converges faster to the value of e?
Q.4.12 Estimate the minimum number of terms that returns a good result.
Q.4.13 A good result is when the sum of the terms used in the series approximation is

less than 0.001. Calculate the minimum number of terms that returns such as error
(smaller than 0.001).

Q.4.14 Modify the program of Example 4.2 to output a table of �error� versus [# of
app roximations].

Q.4.15 Load and run the program of Example 4.3.
Q.4.16 Rerun Example 4.3 without the semicolons (;).
Q.4.17 Do you agree with the comments at the end of each instruction? If not modify.
Q.4.18 Sketch x(t) versus t and estimate the maximum and minimum over the range 0 ≤

t ≤ 3.
Q.4.19 Obtain the maximum and minimum of x(t) using MATLAB commands over the

same range 0 ≤ t ≤ 3. Does your answer agree with Q.4.18?
Q.4.20 Modify the program of Example 4.3 to explore the effects of the variations in the

exponentials by
a. Changing the exponent 2 to 4 and rerunning Example 4.3.
b. Changing the exponent 2 to 1 and rerunning Example 4.3.

Sketch x(t) versus t for each one of the foregoing cases and comment/discuss
your results.

Q.4.21 Load and run the script fi le trig_values of Example 4.4.
Q.4.22 Comment on the reason and purpose of the arrays a and b.
Q.4.23 Comment on the reason and purpose of the array increm.

Q.4.24 Can you generate the sequence angle_deg in a different and more effi cient way?
If you can explain.

Q.4.25 Complete the table of Example 4.4 by generating the columns for tan(x), cot(x), sec(x),
and csc(x).

Q.4.26 Load and run the program of Example 4.5.
Q.4.27 Sketch by hand y(t) versus t.
Q.4.28 Modify and run the program of Example 4.5 for the case when all the coeffi cients

are doubled.
Q.4.29 Sketch by hand the new function as given by Q4.28.
Q.4.30 Compare the sketch of Q.4.29 with the data obtained in Q.4.27.
Q.4.31 Load and run the program of Example 4.6.
Q.4.32 Defi ne each instruction in the form of comments (%).
Q.4.33 Draw by hand a sketch of f(t) versus t.
Q.4.34 Determine the maximum and minimum values from Q.4.33.

CRC_47744_Ch004.indd 230CRC_47744_Ch004.indd 230 6/16/2008 6:51:42 PM6/16/2008 6:51:42 PM

Trigonometric, Exponential, Logarithmic, and Special Functions 231

Q.4.35 Modify the program of Example 4.6 to return f(t)max and tmax as well as f(t)min
and tmin.

Q.4.36 Compare the results of Q.4.35 with Q.4.34.
Q.4.37 Load and run the program of Example 4.7.
Q.4.38 From the output obtained, pick one point from each quadrant and plot it on

Figure 4.11.
Q.4.39 Modify the program of Example 4.7 to produce a circle with a radius of 2.
Q.4.40 Modify Example 4.7 to produce only the upper and right half circle of Figure 4.11.
Q.4.41 Load and run the program of Example 4.8.
Q.4.42 From the output data, what range of t creates a positive slope, and what range of

t create a negative slope?
Q.4.43 Indicate and discuss why cosh2(t) – sinh2(t) = 1.
Q.4.44 Load and run the program of Example 4.9.
Q.4.45 Defi ne each of the output columns in terms of the programming variables.
Q.4.46 Do you agree that the asin column is showing complex values?
Q.4.47 Verify if the real angles assigned for asin are correct.
Q.4.48 Verify if the complex numbers assigned for asin are correct.
Q.4.49 Choose three points for x over the range −1 ≤ x ≤ 1 and verify the plot of

Figure 4.13.
Q.4.50 Describe the symmetry of y1 and y2 with respect to y = x.
Q.4.51 Load and run the program of Example 4.10.
Q.4.52 Defi ne each of the variables used in the program.
Q.4.53 Defi ne each of the output columns in terms of the programming variables.
Q.4.54 Defi ne the region in which y2 > y1.
Q.4.55 Describe the symmetry of y1 and y2 with respect to y = x.
Q.4.56 Do you observe any symmetry with respect to other lines? Discuss.
Q.4.57 Load and run the program of Example 4.11.
Q.4.58 Analyze and discuss the meaning of the warning message.
Q.4.59 Choose three points for x over the range 0.5 ≤ x ≤ 2.5 and plot on Figure 4.15 y1

and y2.
Q.4.60 Describe the symmetry of y1 and y2 with respect to y = x.
Q.4.61 Rerun the program of Example 4.11 for y1 = ex and y2 = ln(x).
Q.4.62 Sketch by hand y1 versus x and y2 versus x.
Q.4.63 Are the new plots similar to Figure 4.15? Did the symmetry change?
Q.4.64 Rerun the program of Example 4.11 for y1 = 10x and y2 = log(x).
Q.4.65 Discuss and compare the results obtained.
Q.4.66 Load and run the program of Example 4.12.
Q.4.67 Rerun the program of Example 4.12 for a random sequences x and y.
Q.4.68 Verify the following identities:
 sin(x) + sin(y) = 2 sin((x + y)/2) ⋅ cos((x − y)/2)
 cos(x) + cos(y) = 2 cos((x + y)/2) ⋅ cos((x − y)/2), for the sequences x and y over the

 ranges −n ≤ x ≤ π and −n ≤ y ≤ π.

CRC_47744_Ch004.indd 231CRC_47744_Ch004.indd 231 6/16/2008 6:51:43 PM6/16/2008 6:51:43 PM

232 Practical MATLAB® Basics for Engineers

Q.4.69 Load and run the program of Example 4.13.
Q.4.70 Rerun the program of Example 4.13 for the random sequences A and B with the

same number of elements and verify its results.
Q.4.71 Load and run the program of Example 4.14.
Q.4.72 Rerun the program of Example 4.14 for the random sequences A and B with the

same number of elements and verify its results.
Q.4.73 What should be the conditions imposed on the sequences A, and B to avoid error

messages?

4.6 Application Problems

P.4.1 Convert the following angles to radians:
a. 42o 15′ =
b. 72o 30′ 30′′ =
c. 82o 6′ 15′′ =
d. 35o 45′ 45′′ =

P.4.2 Convert the following angles to degrees:
a. 5.2 radians =
b. 1.35 radians =
c. 6.8 radians =
d. 3134.33 radians =

P.4.3 Determine the values of the following trigonometric functions:
a. tan(730°) =
b. sec((5/6)π) =
c. cos(π − 1) =
d. sin(820°) =

P.4.4 Use MATLAB to verify the correctness of the following relations:
a. sin(420°) . cos(390°) + cos(300°) . sin(−330°) = 1
b. (sin(120°)/sin(210°))tan(150°) + (1/sin2(210°)) = (1 + sin2(60°))

P.4.5 Let sin(60°) = √
__

 3 /2, sin(45°) = √
__

 2 /2, and sin(30°) = 1/2.
Using the preceding relations, determine the six trigonometric functions for the

following angles: 60°, 45°, and 30°.
P.4.6 Verify using MATLAB whether the following relations are valid:

a. sin(60°) = 2 tan(30°)/(1 + tan2(30°))
b. sin(30° + 60°) = sin(30°) + sin(60°)

c. (1 − tan2(45°))/(2tan(45°)) = (cos(90°))/(2sin(45°)cos(45°))

P.4.7 Determine the values of x that will satisfy the following equations:
a. sin(x) = sin(30°) + sin(45°)
b. tan(x) = cos(45°) + sin(30°)
c. cos(x) = sin(45°) + sin(80°)

CRC_47744_Ch004.indd 232CRC_47744_Ch004.indd 232 6/16/2008 6:51:43 PM6/16/2008 6:51:43 PM

Trigonometric, Exponential, Logarithmic, and Special Functions 233

P.4.8 Given the equation

 2 sin(x) − 1 = 0 for 0° ≤ x ≤ 360°

 Determine the values of x that satisfy the preceding relation.
P.4.9 Repeat problem P.4.7 for the following equations:

a. 5 cos(x) + √
__

 7 = 0 over the range −π/2 ≤ x ≤ 3π/2
b. sin(x) = cos(x) over the range 0 < x < 2π
c. 3 sin(2x) = 1
d. 4x = 5
e. 3log(x) – 2log(x) = 5
f. log(7x – 9)2 + log(3x – 4)2 = 2

P.4.10 Evaluate the value of x for the following equations:
a. log3(243) = x
b. logx(343) = 3
c. log16(x) = 1/4
d. log2(16) + log(130) + 15 * log10(120) = x

P.4.11 Evaluate each of the following expressions by hand and verify your result using
MATLAB:

 a. sin(45°) =
 b. 3 cos(30°) =
 c. sin(1) + 3cos(.5) =
 d. sin(1) + 3cos(0.5) =
 e. √

 sin2(1) + 32 cos2(.5) =

 f. sec(1) =
 g. round(1.7) =
 h. round(−2.8) =
 i. fi x(7.4) =
 j. fi x(−7.4) =
 k. fl oor(3.6) =
 l. fl oor(−3.6) =
 m. sign(−1.3) =
 n. sign(1.3) =
 o. rem(17, 3) =
 p. rem(19, 6) =
 q. abs(3.4) =
 r. abs(−3.4) =
 s. abs(sign(−1.3)) =
 t. ceil(19.2) =
 u. ceil(cos(1)) =
 v. gcd(13, 260) =

CRC_47744_Ch004.indd 233CRC_47744_Ch004.indd 233 6/16/2008 6:51:43 PM6/16/2008 6:51:43 PM

234 Practical MATLAB® Basics for Engineers

 w. lcm(13, 260) =
 x. rem(171, 320) =
 y. factor(1351) =
 z. isprime(1351) =
 a1. primes(1351) =
 b2. rat(pi-exp(1)) =

P.4.12 Write a MATLAB program that verifi es if sin(x) = cos(x − π/2) over the range
0 ≤ x < 2π.

P.4.13 Write a MATLAB program that returns the cartesian coordinates for the following
elliptic equations:
a. x2 + 4y2 = 4
b. 4x2 + y2 = 4
c. (x2/4) + (y2/4) = 4
d. (x2/4) + y2 = 4

 over the range being −4 ≤ x ≤ +4.
P.4.14 Use MATLAB to compute the Cartesian coordinates for the following (circle)

equations:
a. x2 + y2 = 9
b. (x + 2)2 + (y − 2)2 = 4
i. Once enough points are obtained, sketch each circle by hand.

ii. For each circle, determine the Cartesian coordinate at its center, as well as its
radius.

Recall that the standard form of the equation of a circle is given by (x − a)2 +
(y − b)2 = r2, where r is its radius and the center is located at the cartesian
 coordinate given by <a, b>.

P.4.15 Use MATLAB to compute the Cartesian coordinates of the following hyperbolas:
a. x2 – 4y2 = 4
b. 4x2 − y2 = 4
c. y2 – 4x2 = 4
d. 4y2 – x2 = 4

Once enough points are obtained about each function, draw each one of the
hyperbolas by hand.

P.4.16 Use MATLAB to create a table of the cartesian coordinate points required for
sketching the following functions:
a. y1 = x
b. y2 = √

__
 x

c. y3 = cos(x)

d. y4 = x − √
__

 x
e. y5 = √

__
 x + cos(x)

over the range 0 ≤ x ≤ 5, with linear increment of ∆x = 0.1.
Determine in each case the maximum and minimum values of each of the pre-

ceding functions.

CRC_47744_Ch004.indd 234CRC_47744_Ch004.indd 234 6/16/2008 6:51:43 PM6/16/2008 6:51:43 PM

Trigonometric, Exponential, Logarithmic, and Special Functions 235

P.4.17 Write a MATLAB program that verifi es the following trigonometric identities:
a. sec(x) = √

 (1 + tan2(x))

b. cos(x) = sin(2x)/2sin(x)

c. cos(x) = √

 cos(2x) + sin2(x)
d. cos(x/2) = sin(x)/2sin(x/2)

over the range 0 < x ≤ 2π.
P.4.18 Using MATLAB, evaluate the function sin(x) by using the fi rst fi ve MacLaurin terms

for the following arguments of x = 15°, 30°, 45°, 60°, and 90°.
Compare your result with the value of sin(x), for x = 15°, 30°, 45°, 60°, and 90°.
Recall that sin(x) = x − (x3/ 3!) + (x5/5!) − (x7/7!) + (x9/9!), for x given in radians.

P.4.19 Using MATLAB, evaluate the value of cos(x) using the fi rst fi ve MacLaurin terms
estimate in each case its error for the following arguments of x = 15°, 30°, 45°, 60°,
and 90°.

P.4.20 Using MATLAB, evaluate the following functions:
a. y = ex

b. z = e−x + 3e−2x

where x = 1, 2, 3, and 4.
 i. By using the fi rst fi ve terms of its series expansion
ii. By direct evaluations

P.4.21 Using MATLAB, verify the following relations:
a. sinh(x) = (ex – e–x)/2

b. cosh(x) = (ex + e–x)/2

c. tanh(x) = (ex − e−x)/(ex+e−x)

over the range 0 < x < 2π

P.4.22 Using MATLAB, verify the following identities:
a. acosh(x) = ln[x + (x2 – 1)1/2] for any 5 > x ≥ 1
b. atanh(x) = ln((1 + x)/(1 − x))1/2 for any 0 < x < 1
c. asech(x) = ln(1 + (1 + x2)1/2)/x for any 0 ≤ x ≤ 1

P.4.23 Let y1(x) = tan−1(x) and y2(x) = tan(x) over the range −π/2 ≤ x ≤ π/2.
Determine over what ranges the following holds: y1 ≥ y2, y2 ≥ y1, and y2 = y1.
Discuss if the graph of y1 can be obtained by refl ecting y2 about the line y = x.

P.4.24 Using MATLAB, evaluate and verify the following equalities:
a. log10(20) = log10(4) + log10(5)

b. log10(4) = log10(20) − log10(5)

c. log(2) = 2.3log10(2)

d. log3(6) = log10(6)/log10(3) = log(6)/log(3)

e.
5
 √

2 √

__
 2 = 10 √

__
 2

f. (3)5/(3)−2 = 37

g. 53/2 = 2 √
__

 53

h. (23)4 = 212

P.4.25 Use MATLAB to verify that log2(A)b = b.log2(A) for A = 1:1:10 and b = 3.

CRC_47744_Ch004.indd 235CRC_47744_Ch004.indd 235 6/16/2008 6:51:43 PM6/16/2008 6:51:43 PM

236 Practical MATLAB® Basics for Engineers

P.4.26 Use MATLAB to generate a list of all the prime numbers between 100 and 200.
P.4.27 Use MATLAB to factor 1030 and verify the result obtained.
P.4.28 Using MATLAB, verify the following identities:

a. cos2(x) + cos2(x) tan2(x) = 1
b. (tan(x) + tan(y))/(cot(x) + cot(y)) = tan(x)tan(y), for y = 0.5, 1, and 1.5

c. sec4(x – 1)/tan2(x) = tan2(x) + 2
d. (sin(3x)/sin(x)) – (cos(3x)/cos(x)) = 2
e. (1 + tan(x))/(sin(x) + cos(x)) = sec(x) for 0 < x < 2π

CRC_47744_Ch004.indd 236CRC_47744_Ch004.indd 236 6/16/2008 6:51:44 PM6/16/2008 6:51:44 PM

237

5
Printing and Plotting

The picture you create in your head often turns into the reality you hold in your hand.

Allan Hanson

5.1 Introduction

Graphic capabilities are quite important in engineering, social science, natural science,
education, behavioral science, health, economy, weather, production (growth and decay),
politics, biology, accounting, and business, just to mention a few and diverse disciplines.

Graphs are an important way to communicate and visualize trends and patterns that are
otherwise diffi cult to identify, and gain valuable insight into a given relation or problem in
this way. Information when given in the form of tables can be easily graphed and be used
to make educated predictions and decisions.

A graph, like an equation, is the language that best helps recognize the relationship,
which exists between the variables involved in a situation. Graphs, like languages, have
specifi c rules, some of which date back to ancient civilizations.

It is believed that the coordinate system was fi rst used in ancient times for urban plan-
ning, surveying, and astronomy in the old Egyptian and Babylonian civilizations.

For thousands of years, the rectangular coordinate system was used, not exactly the way
we know it today. It was not until the 1600s, when it was rediscovered by the mathemati-
cians of the time that geometric problems could be solved by using algebraic equations
and vice versa.

Rene Descartes (1596–1650) and Pierre Fermat (1601–1665) are credited with being the
fi rst mathematicians in taking such an approach. This approach evolved over time into the
Cartesian coordinate system, as it is known today.

The 2-D Cartesian system is the most frequently used system by engineers and scien-
tists. MATLAB® offers its users simple and easy-to-use graphic commands to obtain 2-D
and 3-D plots in the Cartesian coordinate system as well as in other systems. The goal of
the xy Cartesian* rectangular plots (2-D) is the construction of a plot of the form y = f(x). In
this plot, y is plotted versus x (denoted by y versus x), where x and y are frequently referred
to as the independent and dependent variables, respectively.

In general, a plot can be constructed once a relation in the form of a table exists between
x and y. This relation is frequently expressed by vectors (or matrices) in MATLAB.

The command plot (x, y) is the most popular plotting command used in MATLAB, and
MATLAB returns the plot of the points defi ned by <xi, yi> for all is connected by straight

* The rectangular coordinate system is named after the French philosopher and mathematician Rene Descartes
(1596–1650). Rene Descartes fi rst introduced the coordinate geometry (xy plane) in 1637 with the publication
of the book, A Discourse on the Method of Rightly Conducting the Reason and Seeking Truth in the Sciences.

CRC_47744_Ch005.indd 237CRC_47744_Ch005.indd 237 6/27/2008 4:28:00 PM6/27/2008 4:28:00 PM

238 Practical MATLAB® Basics for Engineers

segmented lines. Clearly, this implies that the two vectors x and y must have the same
dimensions.

MATLAB assumes that the points involved in the construction of the plot y = f(x) will be
connected by a solid blue or black line, unless defi ned otherwise.

5.2 Objectives

After completing this chapter, the reader should be able to

Display messages (strings) and variables
Convert variables to strings and vice versa
Display sentences consisting of text and variables
Format the display fi eld
Know the different options in the plot command
Set the domain and range for y = f(x)
Represent discrete points on a plane
Defi ne and construct functions (algebraic, trigonometric, exponential, etc.), over a
given range and domain
State the equations of a straight and a curved line
State the requirements for plotting any arbitrary function
Generate equidistant set of points on the x- and y-axis
Determine when a set of ordered points is a solution of an equation or set of
equations
Set the x and y scales
Create a linear, logarithmic, or semilogarithmic coordinate plot
Understand the reasons for using linear, semilog, and log scales applied to either
variables x and y or both
Label the x- and y-axis
Create a plot title
Create 2-D plots
Include comments on a plot
Create a legend box on a plot
Include text when appropriate in a graph
Generate multiple 2-D plots on a single graph
Use colors, markers, and line styles to identify different plots
Understand the concept and meaning of a histogram plot
Create histogram plots
Create a pie diagram
Represent a function at discrete points
Represent a function by means of continuous, bar, and stairlike approximations

•
•
•
•
•
•
•
•

•
•
•
•

•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•

CRC_47744_Ch005.indd 238CRC_47744_Ch005.indd 238 6/27/2008 4:28:03 PM6/27/2008 4:28:03 PM

Printing and Plotting 239

Represent a function in a 3-D coordinate system
Create 3-D plots
Evaluate areas and surfaces
View a 3-D fi gure or body from different reference points
Rotate and view a 3-D fi gure or body
Solve a variety of printing and plotting (2-D and 3-D) problems using the power
and the many features of MATLAB

5.3 Background

R.5.1 The command disp(‘text’) is used to display the string vector text that is enclosed in
quotes, inside parenthesis. For example, display the string: This is a string text.

MATLAB Solution
>> format compact
>> text = ‘This is a string text ’ ;
>> disp (text)

 This is a string text

R.5.2 The numerical value of a variable can be displayed by using the command
disp(variablename).

 For example, display the values of x = 1, π, and e.

MATLAB Solution
>> x =1;
>> disp(x)
 1

>> disp(pi)

 3.1416

>> disp(exp(1))

 2.7183

R.5.3 The command disp(variablename) can be used to display the numerical value
of a variable, scalar, arithmetic expression, vector, or a matrix. For example, use
MATLAB and display the variables: A, B, and C defi ned as follows:
a. A = 313/57
b. B = [1 3 5 9 11]

c. C �

1 4 7
2 5 8
3 6 9

















 Observe the responses of the disp command and how the semicolon at the end of a
statement affects the display.

•
•
•
•
•
•

CRC_47744_Ch005.indd 239CRC_47744_Ch005.indd 239 6/27/2008 4:28:03 PM6/27/2008 4:28:03 PM

240 Practical MATLAB® Basics for Engineers

MATLAB Solution
>> disp(313/57) % observe that the line ends with no

semicolon (;)
 5.4912

>> disp(313/57); % observe that the line ends with a
semicolon

 5.4912

>> B = linspace(1,11,6) % observe that the line ends with no
semicolon

 B =
 1 3 5 7 9 11

>> disp(B); % observe that the line ends with a
semicolon

 1 3 5 7 9 11

>> C = [1 4 7;2 5 8;3 6 9] % observe that the line ends with no
semicolon

 C =
 1 4 7
 2 5 8
 3 6 9

>> disp(C); % observe that the line ends with a
semicolon (;)

 1 4 7
 2 5 8
 3 6 9

R.5.4 Strings texts and variables can be displayed in a textlike format using the com-
mand disp([‘text’]), as long as the argument of disp, the text is a string.

R.5.5 A numerical variable can be converted to a character string using the command
num2str(x) or int2str(x), where x is either a number or an integer.

 For example, evaluate the values of e and π, and then display each one of the
integrated messages.
a. The value of e is ????, and pi = ?????

b. The value of e as an integer is ?????

MATLAB Solution
>> format compact
>> x = exp(1) % number

 x =
 2.7183

>> y = num2str (x) % string

 y =
 2.7183

CRC_47744_Ch005.indd 240CRC_47744_Ch005.indd 240 6/27/2008 4:28:03 PM6/27/2008 4:28:03 PM

Printing and Plotting 241

>> z = pi % number

 z =
 3.1416

>> v = num2str(z) % string

 v =
 3.1416

>> disp ([‘The value of e is ‘,y,’, and pi = ‘,z’])

 The value of e is 2.7183, and pi = 3.1416.

>> w = int2str(x)

 w =
 3

>> disp ([‘The value of e as integer is ’,w,]) % note that the integer
value of 2.718 … is 3

 The value of e as an integer is 3

R.5.6 An alternate way to display an integrated text consisting of strings and numerical
values represented by variables is by using the commands: fprintf(‘text ’,’control’,
variables), or sprintf(‘text’, ‘ control’, variables), where text is the string that will be dis-
played and control defi nes the format of the output variables as defi ned by Table 5.1,
where a and b are integers that represent the fi eld width (include the “.”) and the
number of decimal characters of the variables.

R.5.7 For example, use the commands fprintf and sprintf to display the following inte-
grated messages:
a. The value of e is ???????, to six decimal places using an eight character fi eld.
b. Today is ?????, using the standard MATLAB command.

MATLAB Solution
>> fprintf (‘The value of e = %8.6f \n’, exp (1))

 The value of e = 2.718282

>> fprintf (‘Today is %s \n’, date)

 Today is 01-Aug-2006

>> sprintf (‘The value of e is %8.6f \n’, exp (1)) % observe that
the response includes ans

 ans =
 The value of e is 2.718282

>> sprintf (‘Today is %s \n’, date)

 ans =
 Today is 01-Aug-2006

CRC_47744_Ch005.indd 241CRC_47744_Ch005.indd 241 6/27/2008 4:28:04 PM6/27/2008 4:28:04 PM

242 Practical MATLAB® Basics for Engineers

R.5.8 The control fi eld of the fprintf or sprintf may include a sign (+ or −), the number of
characters, a decimal point, and an exponential factor (following the scientifi c nota-
tion format).

 For example, display the message, The value of e is ???????, include the + sign with
two decimal places using six fi eld characters expressed in exponential format.

>> x = exp(1)

 x =
 2.7183

>> fprintf (‘The value of e is %+6.2E \n’, x)

 The value of e is +2.72E+000

R.5.9 The special sequence \n, \r, \t, \b, \f can be used to produce linefeed, carriage return,
tab, backspace, and feed character, respectively.

R.5.10 If the variable of fprintf or sprintf is the complex* number z(z = a + jb), then only the
real part of z will be displayed (a).

R.5.11 For example, let z = −1 + 2i be a complex number. Then, display the message
 The real value of z is ??????

MATLAB Solution
>> z = -1+2i;
>> fprintf (‘The real value of z is %2f \n’,z)

 The real value of z is -1.000000

>> sprintf (‘The real value of z is %2f \n’,z)

 ans =
 The real value of z is -1.000000

 Note that the imaginary part of z1 given by 2 is ignored.

* Complex numbers are discussed in Chapter 6. At this point, it is suffi cient to know that a complex number
consists of two parts: a real and an imaginary part. The imaginary part is distinguished by the character
i = j = √

 −1 .

TABLE 5.1

Format to Display a Variable

Format Description

%a.bd Display as integer, decimal
%e or %E… Display as exponential
%f Display as fl oating point
%a.bg or %G… Display the shortest version of %f or %e
%a.bx or %X… Display in hexadecimal
%c Display single character
%s Display a string of characters
\n Line feed, so that text starts in a new line

CRC_47744_Ch005.indd 242CRC_47744_Ch005.indd 242 6/27/2008 4:28:04 PM6/27/2008 4:28:04 PM

Printing and Plotting 243

R.5.12 The most common 2-D command used for plotting is the command plot(x, y). Recall
that a number is graphed on a single line. A plane is used to graph a pair of num-
bers. Two perpendicular lines called axis are used to locate a point in a plane. The
horizontal axis is referred to as the x-axis, and the vertical axis is the y-axis. In its
simplest version, x and y can be considered vectors whose elements are ordered
pairs (<xi, yi>) in the Cartesian coordinate system in honor of the French philoso-
pher Rene Descartes (1596–1650). The axes divide the plane into four regions called
“quadrants.”

 In the fi rst quadrant, both coordinates are positive (< a, b>, a > 0, and b > 0).
 In the second quadrant, the fi rst coordinate is negative, whereas the second

coordinate is positive (a < 0, b > 0).
In the third quadrant, both coordinates are negative (a < 0, b < 0).

 In the fourth quadrant, the fi rst coordinate is positive, whereas the second
coordinate is negative (a > 0, b < 0).
 The <xi, yi> ordered pair may represent a relation, a rule, an equation, or a
point on a chart. An ordered pair defi nes the fi rst element as the independent
variable x, whereas the second element represents the dependent variable y.

R.5.13 Recall that a function can be defi ned as a set of ordered pairs in which the fi rst ele-
ment of each pair is unique.

R.5.14 The set of all the values of x of y = f(x) is called the domain of f(x), whereas the set of
all the values of y is called its range. To graph y versus x means to make a drawing
that represents its solution.

R.5.15 In order to use the command plot(x, y), the variables x and y must be stored as two sep-
arate arrays of ordered numbers in sequential order. These two sequences defi ne a set
of points on the Cartesian (xy) plane. For example, point p1 is defi ned by <x(1), y(1)>,
point p2 is defi ned by <x(2), y(2)>, …, point pn by <x(n), y(n)>. The resulting graph is
constructed by connecting the consecutive points with straight-line segments.

 Observe that
a. The plot command can be executed if and only if the arrays x and y have the

same length (number of elements).
b. The resulting plot may not be smooth, unless a suffi ciently large number of

points are employed.
R.5.16 A straight line can easily be plotted using the plot command by defi ning two points

over a domain. Recall that two points defi ne a line (Euclidian geometry).
R.5.17 For example, use MATLAB and create the plot of the following line defi ned by the

equation f(x) = y = 2x − 1 over the range −3 ≤ x ≤ 2 by
a. Using the plot command with the argument consisting of two points on the

 Cartesian plane
b. Using the plot command with arguments x and f(x)

ANALYTICAL Solution

The chosen two points that defi ne the line y = 2x − 1 over the given domain are

a. point #1, x = −3, y = −7
b. point #2, x = 2, y = 3

CRC_47744_Ch005.indd 243CRC_47744_Ch005.indd 243 6/27/2008 4:28:04 PM6/27/2008 4:28:04 PM

244 Practical MATLAB® Basics for Engineers

MATLAB Solution
>> x = [-3 2];
>> y = [-7 3];
>> plot(x,y) % solution #1
>> plot(x,2.*x-1) % solution #2

 The two solutions are shown in Figure 5.1.

R.5.18 Let us now consider a polynomial.* Use MATLAB and obtain the plots of y = f(x) =
x3 + 4x2 − x − 4 over the domain −5 ≤ x ≤ 2, using 3, 4, 5, 6, 7, and 101 points (or
100 segmented approximations).

MATLAB Solution
>> x3 = linspace(-5,2,3); % x1 is defined by 3 points and 2 segments
>> y3 = x3.̂ 3+4.*x3.̂ 2-x3-4;
>> plot (x3,y3)
>> x4 = linspace(-5,2,4); % x2 is defined by 4 points and 3 segments
>> y4 = x4.̂ 3+4.*x4.̂ 2-x4-4;
>> plot (x4,y4)
>> x5 = linspace(-5,2,5); % x3 is defined by 5 points and 4 segments
>> y5 = x5.̂ 3+4.*x5.̂ 2-x5-4;
>> plot (x5,y5)
>> x6 = linspace(-5,2,6); % x4 is defined by 6 points and 5 segments
>> y6 = x6.̂ 3+4.*x6.̂ 2-x6-4;
>> plot (x6,y6)
>> x7 = linspace(-5,2,7); % x7 is defined by 7 points and 6 segments
>> y7 = x7.̂ 3+4.*x7.̂ 2-x7-4;

* Polynomials are discussed in Chapter 7. At this point, it is suffi cient to know that a polynomial is a sum of N
product terms of the independent variable x that can be defi ned by f(x) = ∑ n=0 N

 anxn.

FIGURE 5.1
Linear plots of R.5.17.

3

2

1

0

−1

−2

−3

−4

−5

−6

−7

3

2

1

0

−1

−2

−3

−4

−5

−6

−7
−4 −2 0 2 −4 −2 0 2

Using plot(x ,y)
Using plot(x, 2.∗x −1)

Plot of y = 2x−1, for −4< x < 2

CRC_47744_Ch005.indd 244CRC_47744_Ch005.indd 244 6/27/2008 4:28:05 PM6/27/2008 4:28:05 PM

Printing and Plotting 245

>> plot (x7,y7)
>> x100 = linspace(-5,2,101); % x100 is defined by 101 points and

100 segments
>> y100 = x100.̂ 3+4.*x100.̂ 2-x100-4;
>> plot (x100,y100)

 The corresponding plots are shown in Figure 5.2 for each one of the six approx-
imations.

R.5.19 Let us now plot the trigonometric function f(x) = y = 1.5 cos(2x), over the domain
0 ≤ x ≤ 2π, using 5, 10, 15, and 20 points, and the corresponding segmented
approximations.

MATLAB Solution
>> x5 = linspace(0,2*pi,5); % x5 is defined by 5 points and 4

segments
>> y5 = 1.5*cos(2.*x5);
>> plot(x5,y5)

>> x10 = linspace(0,2*pi,10); % x10 is defined by 10 points and 9
segments

>> y10 = 1.5*cos(2.*x10);
>> plot(x10,y10)

FIGURE 5.2
Polynomial approximations of R.5.18.

20

−20

−40

−40

−6 −4 −2 0 2

2 segments

0

20

−20

−6 −4 −2 0 2

0

−40

20

−20

−6 −4 −2 0 2

0

20

−20

−40

−40

−6 −4 −2 0 2

3 segments

4 segments
5 segments

100 segments6 segments

0

20

−20

−6 −4 −2 0 2

0

−40

20

−20

−6 −4 −2 0 2

0

Approximations of y = x 3 + 4x2 − x − 4

CRC_47744_Ch005.indd 245CRC_47744_Ch005.indd 245 6/27/2008 4:28:05 PM6/27/2008 4:28:05 PM

246 Practical MATLAB® Basics for Engineers

>> x15 = linspace(0,2*pi,15); % x15 is defined by 15 points and 14
segments

>> y15 = 1.5*cos(2.*x15);
>> plot(x15,y15)
>> x20 = linspace(0,2*pi,20); % x20 is defined by 20 points and 19

segments
>> y20 = 1.5*cos(2.*x20);
>> plot(x20,y20)

 The corresponding plots are shown in Figure 5.3 for each one of the four
approximations.

R.5.20 Recall that a linear equation is of the form ax + by = c, where a ≠ 0 and b ≠ 0. Its
graph is a straight line and as already mentioned, only two points or ordered pairs
are required.

R.5.21 If an equation is not linear, then the variables x and y are raised to at least the sec-
ond power, and the shape of the graph is same sort of curve. Many ordered pairs or
points are usually required to decently approximate a curved line.

R.5.22 The limits for the x- and y-axis, called the domain and range, respectively, are con-
trolled by MATLAB by the commands xlim([xmin xmax]) and ylim([ymin ymax]).

R.5.23 Recall that the x-axis is the horizontal axis on the Cartesian plane and is referred as
the abscissa.

R.5.24 Recall also that the y-axis is the vertical axis on the Cartesian plane and is referred
to as the ordinate.

R.5.25 The xi and yi are referred to as the coordinates of the point Pi, where i = 1, 2, 3, …, n.

FIGURE 5.3
Linear approximations of the cosine wave of R.5.19.

2

1

0

0 2 4 6

Using 5 points

8

−1

−2

2

1

0

0 2 4 6

Using 10 points

Plots of y =1.5∗cos (2∗x)

8

−1

−2

2

1

0

0 2 4 6

Using 15 points

8

−1

−2

2

1

0

0 2 4 6

Using 20 points

8

−1

−2

CRC_47744_Ch005.indd 246CRC_47744_Ch005.indd 246 6/27/2008 4:28:05 PM6/27/2008 4:28:05 PM

Printing and Plotting 247

R.5.26 The MATLAB command plot (x, y) is used to plot y = f(x) when the scales of both
axes are linear or equally spaced. If it is desired to plot two or more different func-
tions such as y1 = f1(x), y2 = f2(x), …, yn = fn(x) on the same graph, the command
plot (x, y1, x, y2,… x, yn) can then be used, if and only if the lengths of the arguments
used are compatible. That is length (y1) = length (y2) = … = length (yn) = length (x).
Observe that the domain is common for all the functions.

R.5.27 A logarithmic scale can be created if and when it is desired that the scale spacing
be equal between successive powers of 10. For example, the scale spacing between
10−1–100 and 100–101 are equal. Observe that from 10−1 = 0.1 to 100 = 1, the separa-
tion is 0.9 and from 100 to 101, the separation is 9, but the spacing or the scale dis-
tances are still equal.

R.5.28 Recall that negative numbers or zero cannot be (reached) plotted on a logarithmic
scale.

R.5.29 Recall that the main reason for using a logarithmic scale is to represent data that
spreads over a wide range.

R.5.30 When the function y = f(x) is linear with respect to x, a linear scale is usually appro-
priate to best illustrate the relation between x and y.

R.5.31 If the function y is of the form of f(x) = kxn and if both scales are defi ned as logarith-
mic, the plot of f(x) versus x is linear.

R.5.32 If the function y is of the form of f(x) = k(a)bx and if the x-axis is linear, but the y-axis
is logarithmic, the plot of f(x) versus x is linear.

R.5.33 Depending on the nature and domain of the function to be plotted, choosing the
appropriate scale can better illustrate the relation between the independent vari-
able x and the dependent variable y.

R.5.34 The MATLAB command semilogx(x, y) returns the plot of y versus x, where the x-
axis scale is logarithmic, but the y-axis scale is linear.

R.5.35 The MATLAB command semilogy(x, y) returns the plot of y versus x, where the x-
axis scale is linear, but the y-axis scale is logarithmic.

R.5.36 The MATLAB command loglog(x, y) returns the plot of y versus x when both the
axes scales are logarithmic.

R.5.37 Any of the plot commands such as plot, semilogx, semilogy, or loglog automatically
activates or opens the fi gure window.

R.5.38 Any of the plot commands return the following:
a. The x- and y-axis
b. The plot of the points defi ned by the ordered pairs or points Pi = <xi, yi>, for i =

1, 2, 3, …, n
c. The consecutive points (Pi with Pi+1) are connected with solid straight segmented

lines
R.5.39 If a fi gure already exists, the plot command automatically clears the existing fi gure

and creates a new one. The command clf clears the active fi gure window.
R.5.40 Recall that the plot command with multiple arguments can be used to create multi-

ple plots on the same graph. For example, the command plot (x, y1, x, y2) returns the
graph with the plot of y1 versus x1 and the plot of y2 versus x2, where y1 = f(x) and
y2 = f(x).

CRC_47744_Ch005.indd 247CRC_47744_Ch005.indd 247 6/27/2008 4:28:06 PM6/27/2008 4:28:06 PM

248 Practical MATLAB® Basics for Engineers

R.5.41 Another way of creating overlay plots is by using the MATLAB command hold on
after a plot command has been executed. The hold on command freezes the fi gure
window and allows the placing of additional plots. The command hold off clears the
hold on command.

R.5.42 For example, use MATLAB to obtain overlay plots of the following functions:

 [y1 = 2.5 cos(x)] versus x and [y2 = 3.5 sin(x)] versus x

 over the domain 0 ≤ x ≤ 2π using 50 linearly spaced points.

MATLAB Solution
>> x = linspace(0,2*pi,50); % x defines 50 points linearly spaced

over 0 ≤ x≤ 2π
>> y1 = 2.5*cos(x); % y1 are the 50 values for x
>> y2 = 3.5*sin(x); % y2 are the 50 values for x
>> plot(x,y1) % plot [2.5cos(x)] vs. x
>> hold on % holds the graph
>> plot(x,y2) % plot [3.5sin(x)] vs. x

 The corresponding plots of y1 versus x and y2 versus x are shown in Figure 5.4.
R.5.43 The plot of a line can be added to any plot by using the MATLAB command

line(x, y, ’linestyle’), where the line style is an option presented later in this section.
R.5.44 For example, let us assume that it is now desired to add the following to the two

previous plots: [2.5sin(x)] versus x and [3.5cos(x)] versus x of Figure 5.4, the plot of
the polynomial [f(x) = 0.005x3 + 0.015x2 + 0.01x − 1] versus x. The following two
instructions are added to the program of R.5.42.

>> fx = 0.005*x.̂ 3+0.015*x.̂ 2+0.01*x-1;
>> line (x, fx)

 The resulting plots are shown in Figure 5.5.

FIGURE 5.4
Plots of sin(x) and cos(x).

4

3

2

1

−1

−2

−3

−4

0

0 1 2 3 4 5 6 7

Plot of 3.5 sin (x) versus x

Plot of 2.5 cos (x)
versus x

CRC_47744_Ch005.indd 248CRC_47744_Ch005.indd 248 6/27/2008 4:28:06 PM6/27/2008 4:28:06 PM

Printing and Plotting 249

R.5.45 The command plotyy(x, f1(x), x, f2(x)) returns the plots of two different functions:
f1(x) versus x, and f2(x) versus x over the same (x) domain, but different (y) ranges
(different vertical scales).

R.5.46 For example, let y1(x) = 10 sin(x) and y2(x) = 2 cos(x) + noise(x), where noise(x) is a
random function over the range 0 ≤ x ≤ 3π using 100 linearly spaced points. Create
a program that returns the following plots:
a. [y1 = 10 sin(x)] versus x and [y2 = 2 cos(x) + noise(x)] versus. x using the same y

scale
b. [y1 = 10 sin(x)] versus x and [y2 = 2 cos(x) + noise(x)] versus x using different y

scales

MATLAB Solution
>> x = linspace(0,3*pi,100);
>> y1 = 10*sin(x);
>> y2 = 2*cos(x) + rand(1,100);
>> plot(x,y1,x,y2) % plots using same y-scale

 The resulting plots are shown in Figure 5.6.
 Observe that by using two different y-scales, the relation between y1 and y2 is

better visualized. Note that the scales are represented vertically at the two ends of
the graph.

FIGURE 5.5
(See color insert following page 342.) Plots of R.5.44.

4

3

2

1

0

0 1 2 3 4 5 6 7

−1

−2

−3

−4

Plot of 3.5 sin (x) versus x

Plot of 2.5 cos (x) versus x

Plot of [f(x) = 0.005 x.3 + 0.015 x.2 + 0.01 x − 1]
versus x

CRC_47744_Ch005.indd 249CRC_47744_Ch005.indd 249 6/27/2008 4:28:06 PM6/27/2008 4:28:06 PM

250 Practical MATLAB® Basics for Engineers

R.5.47 Multiple plots can be obtained by using the command plot(Y), where Y is an m
× n matrix. MATLAB returns n plots, one for each of the n columns of Y versus
its index. MATLAB returns the plots color coded with the fi rst plot represented by
blue, the second by green, the third by red, etc.

R.5.48 Overlaid plots can also be obtained with the command plot(Y, x), where Y is an
m × n matrix where x can be either a row vector of length n or a column vector of
length m.

 If x is a row vector of length (n) then the plot(Y, x) returns m plots, one for each of
the rows of Y versus x, and if x is a vector of length (m) then the command plot(Y, x)
returns n plots, one for each of the columns of Y versus x.

R.5.49 The command plot(X, Y), where X and Y are two matrices with the same dimen-
sions mxn. MATLAB returns a set of n plots, each one representing the [columns of
Y] versus [columns of X].

R.5.50 For example,
a. Let A = [1 2 3 4; 5 6 7 8; 9 10 11 12]. Write a program that returns the plots of each

column of A versus its index (see Figure 5.7).
b. Let B = [1 2 3]; obtain the plots of the columns of A versus the columns of B

(see Figure 5.8).
c. Now let B = [1 2 3 4]; obtain the plots of the rows of A versus the rows of B

(Fig ure 5.9).

FIGURE 5.6
(See color insert following page 342.) Plots of R.5.46 using one and two scales.

Same y -scale plots

Different y -scale plots

10

5

0

0 1 2 3 4 5 6 7 8 9 10

3
2.5

1.5

0.5

−0.5

−1.5

0

1

−1

−2

2

0 1 2 3 4 5 6 7 8 9 10

−5

−10

10
8
6
4
2

−2
−4
−6
−8

−10

0

CRC_47744_Ch005.indd 250CRC_47744_Ch005.indd 250 6/27/2008 4:28:07 PM6/27/2008 4:28:07 PM

Printing and Plotting 251

FIGURE 5.7
(See color insert following page 342.) Plot of matrix A of R.5.50(a).

12

10

8

6

4

2

0
1 1.2 1.4 1.6 1.8 32 2.2 2.4 2.6 2.8

Matrix A versus indexes

FIGURE 5.8
(See color insert following page 342.) Plot of columns of matrix A versus B of R.5.50(b).

3

2.8

2.6

2.4

2.2

2

1.8

1.6

1.4

1.2

1
0 2 4

Columns of A versus B

6 8 10 12

MATLAB Solution
>> % part (a)
>> A= [1 2 3 4;5 6 7 8;9 10 11 12]

 A =
 1 2 3 4
 5 6 7 8
 9 10 11 12

CRC_47744_Ch005.indd 251CRC_47744_Ch005.indd 251 6/27/2008 4:28:07 PM6/27/2008 4:28:07 PM

252 Practical MATLAB® Basics for Engineers

>> plot (A)
>> title (‘Matrix A vs. Indexes’)

>> % part (b)
>> B = [1 2 3]

 B =
 1 2 3

>> plot (A,B)

>> % part (c)
>> B(4) = 4

 B =
 1 2 3 4

>> plot (A,B)

R.5.51 The plot command has a number of options that are used to defi ne its line style,
markers, and colors of the plot by specifying a third argument in quotes labeled
options. The syntax is plot(x,y,’options’).

R.5.52 The plot options consists of a set of one to three characters, labeled a, b, and c entered
in sequential order in quotes, where a defi nes the color, b the marker, and c the line
style.
 The plotting options are shown in Table 5.2.

R.5.53 If no color or line style is specifi ed, the default is a solid blue or black line.
R.5.54 Markers are used to indicate points or discrete entries. If no marker type is selected,

no markers are drawn.
R.5.55 The command scatter(X, Y, S) returns a plot of the Cartesian points represented by

circles where the location of the points are represented by the vectors X and Y. The
size (area) of each marker is determined by the values assigned to the vector S.

FIGURE 5.9
(See color insert following page 342.) Plot of row of matrix A versus B of R.5.50(c).

4
Rows of A versus B

3.5

3

2.5

2

1.5

1
0 2 4 6 8 10 12

CRC_47744_Ch005.indd 252CRC_47744_Ch005.indd 252 6/27/2008 4:28:07 PM6/27/2008 4:28:07 PM

Printing and Plotting 253

The additional option fi lled assigned to S returns shaded markers all drawn with
the same size. The default version of this command is given by scatter(X, Y).

R.5.56 For example, obtain a scatter plot for the following random Cartesian coordinate
points defi ned by commands X = randn(1, 100). * randn(1, 100) and Y = rand(100, 1)
using the following options:
a. The default

b. The fi lled option

MATLAB Solution
>> X = randn(1,100).*randn(1,100); X=X’;
>> Y = rand(100,1);
>> scatter(X,Y); box on % default plot
>> scatter(X,Y,’filled’); box on % plot with filled/shaded circles

The resulting plots are shown in Figure 5.10.
R.5.57 The command subplot(m, n, p) returns m times n independent subwindows, where

m and n indicate that the active fi gure window is divided into m times n indepen-
dent matrixlike subwindows and p is an integer over the range 1 ≤ p ≤ n . m. The
integer p represents the active or current subwindow. The windows are labeled
from left to right, starting from the top row.

 For example, subplot(2, 2, 3) indicates that the fi gure window is divided into four
subwindows (two rows by two columns) and the current plot subwindow is the
third (second row by fi rst column).

R.5.58 For example, write a program that divides the window into four subwindows and
plots in each one the following functions:

 y1 = 27 e−2x and y2 = 15 * 0.3x

 over the range 1 ≤ x ≤ 5.

TABLE 5.2

Plotting Options

Option a (Color) Option b (Marker) Option c (Line Style)

b, Blue . Point/dot - Solid line
g, Green o Circle : Dotted line
r, Red xx Mark/cross -. Dash-dot line
c, Cyan + Plus -- Dashed line
m, Magenta * Star
y, Yellow s Square
k, Black d Diamond
w, White v Triangle (down)

^ Triangle (up)
< Triangle (left)
> Triangle (right)
p Pentagram
h Hexagram

CRC_47744_Ch005.indd 253CRC_47744_Ch005.indd 253 6/27/2008 4:28:07 PM6/27/2008 4:28:07 PM

254 Practical MATLAB® Basics for Engineers

 Represent the plot of y1 by discrete points indicated by the marker “*,” and y2
by a continuous (default) solid line. Construct each plot using the following scales:
a. Linear (plot 1)

b. Linear-logarithmic (plot 2)

c. Logarithmic-linear (plot 3)

d. Logarithmic-logarithmic (plot 4)

MATLAB Solution
>> X = linspace(1,5,17);
>> y1 = 27*exp(-2*X);
>> y2 = 15*(0.3).̂ X;

>> % plot 1
>> subplot(2,2,1)
>> plot (X,y1,’*’,X,y2)

>> % plot 2
>> subplot(2,2,2)
>> semilogy(X,y1,’*’,X,y2)

>> % plot 3
>> subplot(2,2,3)
>> semilogx(X,y1,’*’,X,y2)

>> % plot 4
>> subplot(2,2,4)
>> loglog(X,y1,’*’,X,y2)

The resulting plots are shown in Figure 5.11.

FIGURE 5.10
Scatter plots of R.5.56.

1

0.8

0.6

0.4

0.2

0
−3 −2 −1 0 1

scatter (X,Y)

scatter (X,Y,‘filled’)

2 3 4 5 6

1

0.8

0.6

0.4

0.2

0
−3 −2 −1 0 1 2 3 4 5 6

CRC_47744_Ch005.indd 254CRC_47744_Ch005.indd 254 6/27/2008 4:28:08 PM6/27/2008 4:28:08 PM

Printing and Plotting 255

R.5.59 Let us consider a second example. Write a program that returns the following
plots:
a. [cos(x)] versus x and [sin(x)] versus x, representing the discrete points with the

markers “*” and “d,” respectively
b. [cos(x)] versus x and [sin(x)] versus x, showing the points defi ned by the markers

in part a, and by connecting the markers with a solid line
 Use 20 points linearly spaced over the range 0 ≤ x ≤ 2π.

MATLAB Solution
>> format compact
>> X = linspace(0,2*pi,20);
>> Y1 = cos(X);
>> Y2 = sin(X);
>> subplot (2,1,1) % part (a)
>> plot (X,Y1,’*’,X,Y2,’d’)
>> subplot (2,1,2) % part (b)
>> plot (X,Y1,’*’,X,Y1,X,Y2,’d’,X,Y2)

The resulting plots are shown in Figure 5.12.
R.5.60 Table 5.3 provides additional examples of the usage of the plot function with vari-

ous options (color, markers, and line styles).

FIGURE 5.11
Plots with different scales and markers of R.5.58.

5

4

3

2

1

0

5

4

3

2

1

0

1

102

102

100

100

100 100

10−2

10−4

10−2

10−4

2 3

Plot 3 − X logarithmic scale Plot 4 − X and Y logarithmic scales

Plot 2 − Y logarithmic scalePlot 1 − Y linear scale

4 5 1 2 3 4 5

x x

y
y

y
y

CRC_47744_Ch005.indd 255CRC_47744_Ch005.indd 255 6/27/2008 4:28:08 PM6/27/2008 4:28:08 PM

256 Practical MATLAB® Basics for Engineers

R.5.61 The command colordef defi nes the overall color composition of the fi gure window.
The default is colordef white or colordef none. If a different color composition and
background is required, then use the command colordef color and specify the color
according to option a provided in Table 5.2.

R.5.62 The command grid on draws a set of grid lines superimposed on the active fi gure
plot, whereas grid off removes the grid lines. Grid lines can be very useful when
estimating or viewing a plot.

R.5.63 The command box on places the plot inside a box. The command box off removes
the box.

FIGURE 5.12
(See color insert following page 342.) Plots with different markers of R.5.59.

1

0.5

−0.5

−1

0

0 1 2 3 4 5 6 7

1

0.5

−0.5

−1

0

0 1 2 3 4 5 6 7

TABLE 5.3

Plotting Examples

Command Description

plot (x, y) Set of points <xi, yi> are connected with a solid blue line
plot (x, y, ’k’) Set of points <xi, yi> are connected with a solid black line
plot (x, y, ’*’) Set of points <xi, yi> are indicated by stars (*)
plot (x, y, ’--‘) Set of points <xi, yi> are connected with a dashed line
plot (x, y, ’r*:’) Set of points <xi, yi> are connected with a dotted (:) red

line and indicated with stars (*)

CRC_47744_Ch005.indd 256CRC_47744_Ch005.indd 256 6/27/2008 4:28:08 PM6/27/2008 4:28:08 PM

Printing and Plotting 257

R.5.64 It is common to label the x and y axes of a plot with a descriptive text defi ning the
variables used and its corresponding units such as current in amperes, power in
watts, frequency in hertz, or distance in meters.

 The commands xlabel(‘text1’) and ylabel(‘text2’), where text1 and text2 are string
vectors (in quotes) are used to label, defi ne, and describe the x- and y-axis and the
associated variables.

R.5.65 The command title(‘text3’) places the string vector text3 at the top of the current plot
as the fi gure title.

R.5.66 The command text(xa, ya, ’text4’) places the string vector text4 starting at the Carte-
sian coordinate location <xa, ya> on the current fi gure window.

R.5.67 A good graph consists of properly labeled axis that includes units, a descriptive
title, and any relevant information about the plot.

R.5.68 The command gtext(‘text5’) opens the current fi gure window, places a cursor mak-
ing a cross hair, and pauses. The center of the cross hair can be positioned any-
where on the active fi gure where the string vector text5 can be placed by pressing
the mouse button, or by pressing any key.

R.5.69 The string texts used in title, axis labels, and gtext may include about 100 special
symbols including Greek characters. Any Greek character (lower or capital) can be
called by using the back slash (\) character followed by its English version.

 Table 5.4 illustrates some of the most frequently used characters and the corre-
sponding syntax.

R.5.70 Text superscripts can be created by using the character ,̂ whereas text subscripts
are created by the character _. Additional text control involving font style, font size,
marker size, and orientation are summarized in Table 5.5.

TABLE 5.4

Special Characters Syntax

Character Command

α \alpha
η \eta
ω \omega
Ώ \Omega
μ \mu
π \pi
Π \Pi
≥ \geq

TABLE 5.5

Text Control Commands

Text Description Command

Bold face \bf
Italic \it
Slant \sl
Oblic \or
Normal rom \rm
Marker size “markersize” (n)
Font size “fontsize” (n)
Orientation “rotation” (0)

R.5.71 The following example illustrates the commands associated with placing a text
anywhere on a plot, a title, axis labels, etc. Let y1(x) = 5 cos(2x) and y2(x) = 3 sin(x)
be two functions defi ned over the domain 0 ≤ x ≤ 2π using 40 linearly spaced
points.

 Create a program that returns the plots of y1(x) versus x and y2(x) versus x with
the specs indicated as follows:
a. Use the marker “*” to indicate the points of y1(x) and connect the points with a

solid line
b. Use the marker “+” to indicate the points of y2(x) and connect the points with a

solid line

CRC_47744_Ch005.indd 257CRC_47744_Ch005.indd 257 6/27/2008 4:28:09 PM6/27/2008 4:28:09 PM

258 Practical MATLAB® Basics for Engineers

c. Label properly the x and y axes
d. Place the following text as title: 5 cos(2X) and 3 sin(X) versus X
e. Place the text 5 cos 2x at the (Cartesian coordinate) location <0.5, 4>
f. Place the text 3 sin(X) using the command gtext at the (Cartesian coordinate)

location <2, 3>

MATLAB Solution
>> X = linspace(0,2*pi,40); % creates X with 40 elements linearly

spaced
>> Y1 = 5*cos(2.*X); % evaluates Y1 for the 40 elements of X
>> Y2 = 3*sin(X); % evaluates Y2 for each of the 40

elements of X
>> plot (X,Y1,’*’,X,Y1,X,Y2,’+’,X,Y2)
 % creates the plots of [Y1 and Y2] vs. X
>> xlabel (‘X’) % creates label X
>> ylabel(‘Y’) % creates label Y
>> title (‘5cos(2X) and 3sin(X) VS X’)
 % creates the title
>> text (0.5,4,’5cos2x’) % places text at x = 0.5, y = 4
>> gtext (‘3sinx’) % places text <2,3> by the click of the

mouse
>> grid on % adds a grid

The resulting plots are shown in Figure 5.13.
R.5.72 The command legend(‘text_1’, ‘text_2’, … ‘text_n’) is used to identify multiple plots

on the same graph by creating a box in the upper-right corner of the graph that
returns the message text_1 on the fi rst line, identifying the line style used for the

FIGURE 5.13
(See color insert following page 342.) Plots with markers and text of R.5.71.

5

4

3

2

1

0

0 1 2 3

x

y

4 5 6 7

−1

−2

−3

−4

−5

5 cos(2X) and 3sin(X) versus X

3sin(X)

5 cos(2X)

CRC_47744_Ch005.indd 258CRC_47744_Ch005.indd 258 6/27/2008 4:28:09 PM6/27/2008 4:28:09 PM

Printing and Plotting 259

fi rst plot; text_2 is placed on the second line and defi nes the line type used for the
second plot, …, and the text_n is placed on the nth line that identifi es the line type
used in the nth plot.

 The legend box can then be moved to any location on the active fi gure window by
clicking and holding the left mouse button near the edge of the box and dragging
the box to a new location.

R.5.73 The following example illustrates the use of the commands: legend, box, grid, xlabel,
ylabel, text, and title for the following plots:

 y1(x) = sin(x) and y2(x) = sin2(x)/x

 over the domain −2π ≤ x ≤ 2π in linear increments (spacing) of 0.4. The dotted line
and star markers are used to plot [y1(x)] versus x, and the dashed line and square
markers for the plot y2(x) versus x.

MATLAB Solution
>> x = -2*pi:0.4:2*pi;
>> y1 = sin(x);
>> y2 = y1.̂ 2./x;
>> plot (x,y1,’:*’,x,y2,’s--’)
>> xlabel(‘x’), ylabel(‘y’), % creates labels for x and y
>> title (‘Example using legend, box, grid, labels (x & y),and title’)
>> grid on; box on; % creates grid & box
>> legend (‘y1(x)’,’y2(x)’) % creates the legend box
>> text(-4,0.7,’sin(x)’) % places the text sin(x) at <-4,0.7>
>> text(5,0.2,’sin(x)/x’) % places the text sin(x)/x at <5,0.2>

The resulting plots are shown in Figure 5.14.

FIGURE 5.14
(See color insert following page 342.) Plots with markers, text, and legend of R.5.73.

1

0.8

0.6

0.4

0.2

0

−0.2

−0.4

−0.6

−0.8

−1
−8 −6 −4 −2 0

x

y

2 4 6 8

Example using legend, box, grid, labels (x & y), and title

sin(x)

y1(x)
y2(x)

sin(x)/x

CRC_47744_Ch005.indd 259CRC_47744_Ch005.indd 259 6/27/2008 4:28:09 PM6/27/2008 4:28:09 PM

260 Practical MATLAB® Basics for Engineers

R.5.74 The script fi le, plot_enhancements illustrates the text enhancement features in
the plotting of a sine wave and a cosine wave. For example, create the script fi le,
plot_enhancements that returns the following:
a. Plots of [sin(αt)] versus αt and [cos(αt)] versus αt over the range 0 ≤ αt ≤ 2π/3 using

20 points equally spaced
b. The line width of the sin(αt) plot to 6
c. The line width of the cos(αt) plot to 3 and indicate the data points with an hexa-

gram of size 20

d. A title text using italic format with a size of 18

e. A legend box identifying each plot using bold text
f. The x-axis label using normal roman font at a 45° angle
g. The y-axis label using bold-face characters
h. A text message further identifying the sine-wave plot using bold font text with

a size 13 at an angle of 45°
i. A text message further identifying the cosine-wave plot using bold font text with

size 15 at an angle of 60°

MATLAB Solution
% Script file: plot _ enhancements
x = linspace(0,3*pi/2,20);
y1 = sin(x);y2=cos(x);
plot (x,y1,’linewidth’,6);hold on;
plot (x,y2,’linewidth’,3,’marker’,’hexagram’,’markersize’,20)
title (‘\it [sin(\alphat) & cos(\alphat)] vs \alphat’,’fontsize’,18)
legend (‘\bf sin(\alphat)’,’\bf cos(\alphat)’)
xlabel (‘\rm\alphat’, ‘rotation’,45)
ylabel (‘\bf magnitude’)
text (3.2,0.0,’\bf sin(\alphat)’,’fontsize’,13,’rotation’,30)
text (1.7,0.0,’\bf cos(\alphat)’,’fontsize’,15,’rotation’,60)
box on; grid on

 The resulting plots and enhancement features are shown in Figure 5.15.
R.5.75 Once a plot is created, additional enhancement options consisting of text, arrows,

and zoom are available within the fi gure window domain.
R.5.76 The command legend off removes the legend box.
R.5.77 The command refresh redraws the current fi gure.
R.5.78 The command axis on turns on the axis; the command axis off turns off the axis.
R.5.79 MATLAB automatically scales the axes to accommodate the given data. The com-

mand axis ([xmin xmax ymin ymax]) is used to control the ranges of the x- and the y-axis,
where xmin ≤ x ≤ xmax and ymin ≤ y ≤ ymax. The axis command overrides the scale
settings.

 The axis command (with no argument) takes the present scale settings and uses
them in subsequent plots. A second axis command is required to return the scale
setting to the automatic mode (default).

CRC_47744_Ch005.indd 260CRC_47744_Ch005.indd 260 6/27/2008 4:28:10 PM6/27/2008 4:28:10 PM

Printing and Plotting 261

R.5.80 The syntax ±inf can be used to specify the axis limits. For example, axis ([−inf xmax
ymin + inf]) specifi es only the upper limit for x and the lower limit for y.

R.5.81 The command axis equal or axis square sets the same scaling factor for the x- and
y-axis.

R.5.82 The command axis normal or axis auto returns the axis to the default scaling condi-
tion in which the best range and domain of the current plot are automatically set
by MATLAB.

R.5.83 The command axes on returns a set of axes.
R.5.84 The command [x, y] = ginput(n) is used to read the Cartesian coordinates of n points

from the fi gure window by properly positioning the cursor making a cross hair
over the target and by either clicking the mouse or by entering a character. The
clicked point returns the coordinate value of x and y

 If no argument such as [x, y] = ginput is used, then the number of target points to
be read is unlimited. The ginput command is terminated by pressing the return
key.

R.5.85 The command zoom in allows the expansion of a section of a 2-D plot for additional
details. The zoom command is implemented in the fi gure window by clicking the
left mouse button, and the plot is expanded by a factor of 2 or by clicking the right
mouse button, and the plot in the fi gure window is compressed to half. The zoom
off command deactivates the zoom mode.

FIGURE 5.15
Plots with various enhancements of R.5.74.

0.8

cos(�t)

sin(�t)

sin (�t)

[sin(�t) & cos(�t)] versus �t

cos (�t)

0.6

0.4

0.2

0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−0.2

−0.4

−0.6

−0.8

−1

M
ag

ni
tu

de

αt

CRC_47744_Ch005.indd 261CRC_47744_Ch005.indd 261 6/27/2008 4:28:10 PM6/27/2008 4:28:10 PM

262 Practical MATLAB® Basics for Engineers

R.5.86 The commands legend, ginput, and zoom are interdependent MATLAB functions,
and restricts their use. Only one command can be used at any given time.

R.5.87 The command fplot(‘f(x)’, [xmin xmax ymin ymax]) returns the plot of f(x) versus x within
the ranges xmin ≤ x ≤ xmax and ymin ≤ y ≤ ymax, where the number of points are
automatically chosen by MATLAB to display a good approximation. The term good
depends on the particular application (see Example 5.8).

R.5.88 For example, use fplot to plot [f(x) = 4 cos(x) cos(10x)] versus x over the domain 0 ≤
x ≤ 2π and range −5 ≤ y ≤ 5.

MATLAB Solution
>> fplot (‘4*cos(x)*cos(10*x)’, [0 2*pi -5 5])
>> title (‘f(x)=4*cos(x)*cos(10*x)’)
>> xlabel(‘x’)
>> ylabel(‘y’)

 The resulting plot is shown in Figure 5.16.

FIGURE 5.16
fplot of R.5.88.

5

4

3

2

1

0

0 1 2 3
x

y

4 5 6

−1

−2

−3

−4

−5

f(x) = 4∗cos(x)∗cos(10∗x)

R.5.89 The command fplot(‘f1(x), f2(x), …, fn(x).’, [xmin xmax ymin ymax]) returns the multiple
plots of f1(x) versus x, f2(x) versus x, …, fn(x) versus x, within the limits, xmin ≤ x ≤
xmax and ymin ≤ y ≤ ymax, where the number of points are automatically chosen by
MATLAB.

R.5.90 For example, use fplot to obtain the multiple plots of the following functions:
f1(x) = tan(x), f2(x) = sec(x) and f3(x) = cot(x) over the domain −π ≤ x ≤ π and range
−3 ≤ y ≤ 3.

MATLAB Solution
>> fplot (‘[tan(x),sec(x),cot(x)]’,[-pi pi -3 3])
>> xlabel(‘x’);ylabel(‘y’);
>> title(‘[tan(x),sec(x),cot(x)] vs x, for-pi<x<pi’)

 The resulting plots are shown in Figure 5.17.

CRC_47744_Ch005.indd 262CRC_47744_Ch005.indd 262 6/27/2008 4:28:10 PM6/27/2008 4:28:10 PM

Printing and Plotting 263

R.5.91 The command [x, y] = fplot(‘f(x)’, [xmin xmax ymin ymax]), returns a table (with no plot)
of the ordered pairs (points) <xi, yi> over the ranges xmin ≤ x ≤ xmax and ymin ≤ y ≤
ymax. The number of points are automatically chosen by MATLAB.

R.5.92 For example, use MATLAB and obtain a table of cos(x) versus x over the range 0.7 ≤
x ≤ 1.

MATLAB Solution
>> [X,Y] = fplot(‘cos(X)’,[0.7 1 -1 1]);
>> disp(‘ X Y’); disp(‘***************’); [X Y]

 X Y

 ans =
 0.7000 0.7648
 0.7006 0.7645
 0.7018 0.7637
 0.7042 0.7621
 0.7090 0.7590
 0.7186 0.7527
 0.7378 0.7400
 0.7762 0.7136
 0.8530 0.6577
 0.9265 0.6006
 1.0000 0.5403

R.5.93 The command ezplot(‘f(x)’) returns the plot of f(x) versus x over the default MATLAB
interval −2π ≤ x ≤ 2π. If the function behavior of f(x) is over a smaller interval,
then MATLAB automatically returns the plot of f(x) versus x over the smaller inter-
val. The range of x can be changed by including specs in brackets. The syntax is
ezplot(‘f(x)’, [xmin xmax]).

 The command ezplot is similar to the command fplot. The only difference is that
MATLAB assigns less number of points to ezplot in the plotting and table process.

FIGURE 5.17
(See color insert following page 342.) Multiple plots using fplot of R.5.90.

3

2

1

0

−1

−2

−3
−3 −2 −1 0

x

y

1 2 3

[tan(x),sec(x),cot(x)] versus x, for −pi<x<pi

CRC_47744_Ch005.indd 263CRC_47744_Ch005.indd 263 6/27/2008 4:28:11 PM6/27/2008 4:28:11 PM

264 Practical MATLAB® Basics for Engineers

FIGURE 5.18
Plots using ezplot of R.5.94.

1

0

−1

−6 −4 −2 0

sin(x)

sin(2∗x)

y = tan(x) = 0

x 2 4 6

1

0

−1

−6 −4 −2 0 x 2 4 6

1

0

−1

−6 −4 −2 0 x 2 4 6

y

R.5.94 For example, plot using ezplot the following functions: f1(x) = sin(x), f2(x) = sin(2x),
and f3(x) = tan(x), without defi ning the range x.

MATLAB Solution
>> subplot(3,1,1);ezplot(‘sin(x)’)
>> subplot(3,1,2);ezplot(‘sin(2*x)’);
>> subplot(3,1,3);ezplot(‘y=tan(x)’);

 The resulting plots are shown in Figure 5.18. Observe (from Figure 5.18) that
MATLAB automatically assumed a domain over −2π ≤ x ≤ 2π.

R.5.95 Let us further explore the plotting domain of ezplot. For example, create the plot of
f(x) = √

__
 x e −x 2 using the ezplot function without specifying its domain.

MATLAB Solution
>> ezplot(‘sqrt(x)*exp(-x^2)’)

 The resulting plot is shown in Figure 5.19.
 Observe that MATLAB automatically defi nes the (domain) interval of interest as

0 ≤ x ≤ 2.5.
R.5.96 Now, plot the same function f(x) = √

__
 x e −x

2
 using ezplot over 0 ≤ x ≤ 4.

MATLAB Solution
>> ezplot(‘sqrt(x)*exp(-x^2)’,[0 4])

 The resulting plot is shown in Figure 5.20. Observe that for x ≥ 2.5, f(x) becomes
a constant (zero) and the interval of interest is indeed 0 ≤ x ≤ 2.5. Note that this
interval becomes the MATLAB default interval.

CRC_47744_Ch005.indd 264CRC_47744_Ch005.indd 264 6/27/2008 4:28:11 PM6/27/2008 4:28:11 PM

Printing and Plotting 265

R.5.97 Observe that ezplot is an ideal tool that can be used in a quick and easy way to plot a
set of simultaneous equations and be able to estimate or evaluate a system solution.
The ezplot tool is especially useful when an algebraic approach is long and time-
 consuming, or yielding a complicated solution, or a solution that does not apply to
a particular interval. This graphic approach is illustrated in the examples provided
later in this section.

R.5.98 For example, using ezplot, let us estimate the Cartesian coordinates for the function
y3 + x2 − 3y + 2 = 0 over the range −6 ≤ x ≤ 6 at its maximum.

MATLAB Solution
>> ezplot(‘y^3+x^2-3*y+2=0’)
>> axis ([-6 6 -4 -1])
>> ginput

 The resulting plot is shown in Figure 5.21.

FIGURE 5.19
Plot of R.5.95 (no range).

0.6

0.5

0.4

0.3

0.2

0.1

0

0 0.5 1
x

y

sqrt(x) ∗ exp(−x2)

1.5 2 2.5

FIGURE 5.20
Plot of R.5.96 (given a range).

0.6

0.5

0.4

0.3

0.2

0.1

0

0 0.5 1
x

y

sqrt(x) ∗ exp(−x2)

1.5 2 2.5

CRC_47744_Ch005.indd 265CRC_47744_Ch005.indd 265 6/27/2008 4:28:11 PM6/27/2008 4:28:11 PM

266 Practical MATLAB® Basics for Engineers

 The ginput placed over the target point (maximum) returns the following
coordinates:

 -0.0276 -1.9825

 From the graph, the maximum can be estimated and occurs at the following
coordinates:

 <x = 0, y = −2>

R.5.99 As an additional example, let us create the script fi le, sol_exp_lin that is used to
solve the following set of equations graphically: y = x2 and x + 2y − 3 = 0 over the
domain −3 ≤ x ≤ 3 (see Figure 5.22).

MATLAB Solution
% Script file: sol _ exp _ lin
ezplot(‘x^2’);
axis([-3 3 -0.5 10]);hold on;
ezplot(‘x+2*y-3=0’);
xlabel(‘x-axis’);ylabel(‘y-axis’);
title(‘Simultaneous equations: y =x^2 & x+2*y-3 = 0’)
disp(‘**’)
disp(‘The solution for the system of equations is the intersection
of the two lines.’)
disp(‘ The solution can be estimated by positioning the cursor (+)’)
disp(‘at the solution points on the plot and clicking the mouse’)
disp(‘followed by the enter key. The xy (solutions) coordinates are: ’)
disp(‘**’)
grid on;
[x,y] = ginput

FIGURE 5.21
Plot of R.5.98.

−6 −4 −2 0 2 4 6
−4

−3.5

−3

−2.5

−2

−1.5

−1

x

y

Maximum

Graph of equation:

y3 + x2 − 3y + 2 = 0

y3 + x2 − 3y + 2 = 0

CRC_47744_Ch005.indd 266CRC_47744_Ch005.indd 266 6/27/2008 4:28:12 PM6/27/2008 4:28:12 PM

Printing and Plotting 267

 Back in the command window, the script fi le, sol_exp_lin is executed and the
results are shown as follows:

>> sol _ exp _ lin

 The solution for the system of equations is the intersection of the two lines. The
solution can be estimated by positioning the cursor (+) at the solution points on the
plot and clicking the mouse followed by the enter key. The xy (solutions) coordi-
nates are

 x =
 -1.5069
 0.9816
 y =
 2.1711
 0.9737

R.5.100 Since the graphic approach is simple, quick, and convenient in estimating the solu-
tion of a system of equations, let us use this method to estimate the solution of the
following set of nonlinear equations: 2y3 + 3x2 − 4x + 2 = 0 and 3y2 − x2 = 9 over
the domain −3 ≤ x ≤ 3.

MATLAB Solution
>> ezplot(‘3*y^2+7*x^2-9=0’)
>> hold on
>> ezplot(‘2*y^3+3*x^3-6*y^2+2=0’)
>> axis([-3 3 -3 3])
>> grid on

 The resulting plot and the solutions are indicated in Figure 5.23.

FIGURE 5.22
Plot of R.5.99.

−3 −2 −1 0 1 2 3

0

1

2

3

4

5

6

7

8

9

10

x-axis

Simultaneous equations: y = x2 & x+2∗y−3 = 0

y-
ax

is

CRC_47744_Ch005.indd 267CRC_47744_Ch005.indd 267 6/27/2008 4:28:12 PM6/27/2008 4:28:12 PM

268 Practical MATLAB® Basics for Engineers

R.5.101 The command ezpolar is similar to the command ezplot, with the exception that the
ezpolar uses the polar coordinates system instead of the Cartesian (rectangular)
coordinate system.

R.5.102 For example, using the ezpolar command, obtain the plot of the function f(x) =
cos(x) for the following cases:
a. With no domain specs
b. Over the interval 0 ≤ x ≤ 2π
c. Over the interval 0 ≤ x ≤ π/2

MATLAB Solution
% Script file:polar _ cos
subplot (1,3,1);
ezpolar(‘cos(x)’);title(‘no specs’)
subplot (1,3,2);ezpolar(‘cos(x)’,[0 2*pi]);title(‘with specs:0-2\pi’)
subplot (1,3,3);ezpolar(‘cos(x)’,[0 pi/2]);title(‘with specs:0-\pi/2’)

 The three resulting plots are shown in Figure 5.24.
 Observe that the ezpolar with no domain specs assumes the default range of

0 ≤ x ≤ 2π.
R.5.103 The command polar(beta, r) is the numerical version of ezpolar, and MATLAB

returns a polar plot of beta versus r. Line color and line style can be included in the
function’s argument that follows the same syntax as defi ned for the plot function.

FIGURE 5.23
Plot of R.5.100.

3

2

1

0

−1

−2

−3
−3 −2 −1 0

x

y

1 2

Solution #2

Solution #1

3

2∗y3+3∗x3−6∗y2+2 = 0

3∗y2+7∗x2−9 = 0

CRC_47744_Ch005.indd 268CRC_47744_Ch005.indd 268 6/27/2008 4:28:12 PM6/27/2008 4:28:12 PM

Printing and Plotting 269

R.5.104 The Cartesian plot [R cos(t)] versus [R sin(t)] returns a circle centered at the origin
with radius R over 0 ≤ t ≤ 2π. Since this relation is often used, let us show that this
relation indeed defi nes a circle. Since x = R cos(t) and y = R sin(t) over 0 ≤ t ≤ 2π,
then

 x2 + y2 = R2 cos2(t) + R2 sin2(x)

 x2 + y2 = R2[cos2(t) + sin2(x)]

 x2 + y2 = R2

 This last equation clearly represents the equation of a circle.
R.5.105 Let us use the power of MATLAB to verify the preceding statement by executing

the following script fi le, circl.

MATLAB Solution
% Script file: circl
ezplot(‘cos(x)’, ‘sin(x)’);
axis([-2 2 -2 2])
title(‘cos(x) vs sin(x)’)
xlabel(‘cos(x)’);ylabel(‘sin(x)’);

 The corresponding plot is shown in Figure 5.25. The circle is centered at the origin
and can be moved to any location by adding constant terms. For example, observe that
[x = 4 + cos(t)] versus [y = 5 + sin(t)] over 0 ≤ t ≤ 2π returns a circle centered at <4, 5>
with unit radius as verifi ed by the script fi le, disp_circ and its plot in Figure 5.26.

MATLAB Solution
%Script file: disp _ circ
ezplot(‘ 4+ cos(x)’,’ 5+ sin(x)’);
axis([0 8 0 8])
title(‘[4+ cos(x)] vs [5+ sin(x)]’)
xlabel(‘x-axis’); ylabel(‘y-axis’);

R.5.106 Variations of the circle equation given by [x = R cos(t)] versus [y = R sin(t)] create a
family of specialized curves some of which are defi ned as follows:
a. Cycloid, defi ned by x = Rt − sin(t) and y = R − cos(t)
b. Lemniscate, defi ned by x = cos(t) √

 2cos(2t) and y = sin(t) √

 2cos(2t)

FIGURE 5.24
Plot of R.5.102.

0.5

1

30

210

60

240

90

270

120

300

150

330

180 0

no specs

r = cos(x)

0.5

1

30

210

60

240

90

270

120

300

150

330

180 0

with specs:0-2\pi

r = cos(x)

0.5

1

30

210

60

240

90

270

120

300

150

330

180 0

with specs:0-pi /2

r = cos(x)

CRC_47744_Ch005.indd 269CRC_47744_Ch005.indd 269 6/27/2008 4:28:12 PM6/27/2008 4:28:12 PM

270 Practical MATLAB® Basics for Engineers

c. Archimedean spiral, defi ned by x = t cos(t) and y = t sin(t)
d. Logarithmic, defi ned by x = eat cos(t) and y = eat sin(t), where a is a constant
e. Cardioid, defi ned by x = 2 cos(t) − cos(2t) and y = 2 sin(t) − sin(2t)
f. Astroid, defi ned by x = R cos3(t) and y = R sin3(t)
g. Epicycloid, defi ned by x = (R + 1) cos(t) − a cos(t(R + 1)) and y = (R + 1) sin(t) −

a sin(t(R + 1)), where R and a are constants

FIGURE 5.26
Plots of a shift circle.

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

x-axis

y-
ax

is

[4+ cos(x)] versus [5+ sin(x)]

FIGURE 5.25
Plot of R.5.105.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

cos(x)

si
n(

x)

cos(x) versus sin(x)

CRC_47744_Ch005.indd 270CRC_47744_Ch005.indd 270 6/27/2008 4:28:13 PM6/27/2008 4:28:13 PM

Printing and Plotting 271

h. Hypocycloid, defi ned by x = (R − 1) cos(t) + a cos(t(R − 1)) and y = (R − 1) sin(t) −
a sin(t(R − 1)), where R and a are constants

R.5.107 Let us use the power of MATLAB to explore some of the equations just defi ned.
For example, creating the script fi le, astroid returns the plots of (Novelli, 2004b)
a. cosn(x) versus sinn(x) for n = 4, 3, 2, 1, 0.5, 0.25 over 0 ≤ x ≤ π/2

b. cos3(x) versus sin3(x) (a plot referred as astroid) over 0 ≤ x ≤ 2π

MATLAB Solution
% Script file: astroid

figure (1)
x = 0:.1:pi/2;
x1 = cos(x);y1= sin(x);
x4 = x1.̂ 4;y4 = y1.̂ 4;x3 = x1.̂ 3;y3 = y1.̂ 3;x2 = x1.̂ 2;y2 =y 1.̂ 2;
x05 = x1.̂ 0.5;y05 = y1.̂ 0.5;
x25 = x1.̂ 0.25;y25 = y1.̂ 0.25;
plot(x4,y4,x3,y3,x2,y2,x1,y1,x05,y05,x25,y25)
title(‘[cos(x)]̂ n vs [sin(x)]̂ n’)
xlabel(‘cos(x)’)
ylabel(‘sin(x)’)
legend(‘n=4’,’n=3’,’n=2’,’n=1’,’n=0.5’,’n=0.25’)

figure(2)
xx = 0:0.1:2*pi;
xx3 = cos(xx).̂ 3;yy3 = sin(xx).̂ 3;
plot(xx3,yy3)
title(‘[cos(x)]̂ 3 vs [sin(x)]̂ 3’)
xlabel(‘cos(x)’)
ylabel(‘sin(x)’)

 The script fi le, astroid is executed and the results are shown in Figures 5.27
and 5.28.

FIGURE 5.27
(See color insert following page 342.) Plots of R.5.107(a).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
[cos(x)]n versus [sin(x)]n for n = 4, 3, 2, 1, 0.5, 0.25

cos(x)

si
n(

x)

n = 4
n = 3
n = 2
n = 1
n = 0.5
n = 0.25

CRC_47744_Ch005.indd 271CRC_47744_Ch005.indd 271 6/27/2008 4:28:13 PM6/27/2008 4:28:13 PM

272 Practical MATLAB® Basics for Engineers

R.5.108 The command stem(x, y) returns a discrete plot of each ordered pair <xi, yi>, for i =
1, 2, 3, …, n indicated by the marker (o) connected to a vertical line with magnitude
yi at the points <xi, 0> for all is.

R.5.109 The command stairs(x, y) returns the plot y versus x as a stair plot, where each step
has a width xi+1 − xi and height yi, for i = 1, 2, 3, …, n.

R.5.110 The command bar(x, y) returns a vertical bar plot with uniform widths, where the
Amplitude of the bars are given by the heights yi, centered at each xi for all is. The
command barh(x, y) returns a horizontal plot where the x and y axes are exchanged.

R.5.111 For example, let us create the script fi le, diff_plots that returns four plots of the
function y = −x sin(x) over the range 0 ≤ x ≤ 6π, using 18 linearly spaced points,
where each plot is implemented using one of the following commands:
a. stem

b. stairs

c. bar

d. barh

MATLAB Solution
%Script file: diff _ plots
axis on
X = linspace(0,6*pi,18);
Y= -X.*sin(X);
subplot (2,2,1)
stem(X,Y), title (‘Plot using stem’), ylabel (‘Y’)
subplot(2,2,2)
stairs(X,Y), title (‘Plot using stairs’), ylabel (‘Y’)

FIGURE 5.28
Plots of R.5.107(b).

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
[cos(x)]3 versus [sin(x)]3

cos(x)

si
n(

x)

CRC_47744_Ch005.indd 272CRC_47744_Ch005.indd 272 6/27/2008 4:28:13 PM6/27/2008 4:28:13 PM

Printing and Plotting 273

subplot(2,2,3)
bar (X,Y),
axis([0 20 -10 20])
xlabel (‘X’), ylabel(‘Y’),title (‘Plot using bar’)
subplot (2,2,4)
barh(X,Y), xlabel(‘X’), ylabel(‘Y’), title (‘Plot using barh’)
axis([-20 20 0 20])

 The script fi le, diff_plots is executed and the results are shown in Figure 5.29.

R.5.112 The command compass(x, y) returns a polar plot where each point or ordered pair
(xi, yi) is drawn as an arrow from the origin to the <xi, yi> point. The x and y
arguments can be replaced by z, where z is a complex number given by z = x + iy,
in which case, the instruction can be expressed as compass(z). If z is complex, the
compass plot converts the rectangular form of z into polar.*

R.5.113 The command feather(a, b) or feather(z) (when z is a complex number of the form
z = a + ib) returns the plots of the argument as arrows vectors equally spaced, on
the x-axis as reference. Observe that the command feather is used to display a vec-
tor consisting of magnitude and direction along a path. Color and line style specs
can be added that are identical to the ones defi ned for the plot command.

R.5.114 The command polar(∅, r, ‘options’) returns a polar plot of the angle ∅ versus the
magnitude r where the background is a plane that consists of a grid indicating

* See Chapter 6 for additional information about complex numbers.

FIGURE 5.29
Plots of R.5.111.

20

10

0

0 5 10

Plot using bar Plot using barh

Plot using stairsPlot using stem

15 20

0 5 10
X

Y
Y

Y
Y

X
15 20

−10

−20

20

10

0

−10

20

10

15

5

0

20

10

0

0 5 10 15 20

0 10 20

−10

−20

−20 −10

CRC_47744_Ch005.indd 273CRC_47744_Ch005.indd 273 6/27/2008 4:28:13 PM6/27/2008 4:28:13 PM

274 Practical MATLAB® Basics for Engineers

the angles every 30° apart and concentric circles that represent the magnitude.
The options are identical as the ones defi ned for the plot command.

R.5.115 For example, write a MATLAB program that returns an array of arrows or line
segments with unit magnitude over the range 0 ≤ ∅ ≤ 2π, with linear incremental
spacing of ∆∅ = π/4. Let’s learn by doing and observe and analyze the respective
plots returned by using each of the following commands:
a. compass

b. feather

c. polar

MATLAB Solution
>> ang = 0:pi/4:2*pi;
>> X = cos(ang);
>> Y = sin(ang);
>> R = X.̂ 2+Y.̂ 2;
>> subplot(2,2,1)
>> compass(X,Y),
>> title(‘Plot Using Compass’)
>> subplot(2,2,2)
>> polar(ang,R),title (‘Plot Using Polar’)
>> subplot(3,1,3), feather (X,Y),
>> title (‘Plot Using Feather’)

FIGURE 5.30
Plots of R.5.115.

Plot Using Compass

90
60

30

0

330

300270
240

210

180

150

120
1

0.5

Plot Using Polar

90
60

30

0

330

300
270

240

210

180

150

120
1

0.5

Plot Using Feather
1

0

1 2 3 4 5 6 7 8 9 10
−1

 The resulting plots are shown in Figure 5.30. Observe the following from
Fig ure 5.30:
a. The compass command returns eight unit vectors, equally spaced every ∆∅ =

π/4 rad, with unit magnitude on a polar plane.

CRC_47744_Ch005.indd 274CRC_47744_Ch005.indd 274 6/27/2008 4:28:14 PM6/27/2008 4:28:14 PM

Printing and Plotting 275

b. The polar command returns eight connected segments, equally spaced every
∆∅ = π/4 rad, forming a circle with unit radius.

c. The feather command returns nine unit vectors with unit spacing and with
angle increments of ∆∅ = π/4 rad plotted on a Cartesian plane.

R.5.116 The command quiver (X, Y, Z, V) returns the plot of the velocity vectors as arrows
with components <z, v> at the points <x, y>. The matrices X, Y, Z, and V must all
have the same size and contain corresponding position and velocity components
(X and Y can also be vectors to specify a uniform grid). The arrows are automati-
cally scaled to fi t within the grid. The line style, markers, and colors for the velocity
vectors V can be specifi ed adding a fi eld in quiver. This command can be used to
illustrate the action of a physical variables such as lines of force induced by an elec-
tric or magnetic fi eld. The option quiver(..., ’fi lled’) returns a shaded (fi lled) plot.

R.5.117 For example create the script fi le, quiver_fn that returns the plot of the lines of force
(using quiver) resulting from implementing z = sqrt(−x^2 − y^2), given the func-
tion meshgrid(−2:.2:2,−1:.15:1) that specifi es the XY grid.*

MATLAB Solution
>> % Script file: quiver _ fn
>> [x,y] = meshgrid(-2:.2:2,-1:.15:1);
>> z = sqrt(-x.̂ 2 - y.̂ 2);
>> contour (x,y,z), hold on
>> quiver(x,y,z), hold off
>> xlabel(‘x-axis’),ylabel(‘y-axis’)
>> title(‘z = sqrt(-x^2 - y^2)’)

 The resulting plot is shown in Figure 5.31.

* The command meshgrid and countour are defi ned in R.5.151 and R.5.163, respectively.

FIGURE 5.31
Plots of R.5.117.

15
z = sqrt(−x2 − y2)

10

5

0
0 5 10

x-axis

y-
ax

is

15 20 25−5

CRC_47744_Ch005.indd 275CRC_47744_Ch005.indd 275 6/27/2008 4:28:14 PM6/27/2008 4:28:14 PM

276 Practical MATLAB® Basics for Engineers

R.5.118 The command hist(x) returns a histogram plot of the distribution of the values of
the vector x grouped in 10 bins, equally spaced over the range xmin ≤ x ≤ xmax.

R.5.119 For example, let x be a collection of 100 random, normally distributed numbers.
Create the script fi le, hist_gram that returns its histogram plot.

MATLAB Solution
% Script file : hist _ gram
X = randn(100,1)*10; % X consists of 100 normally random numbers
hist(X), title(‘Histogram plot of X, using hist(X)’)
xlabel(‘X’)
ylabel(‘Amplitude of X’)
axis([-25 25 0 25])

 The script fi le, hist_gram is executed and the result is shown in Figure 5.32.

FIGURE 5.32
Histogram plot of R.5.119.

25
Histogram plot of X, using hist(X)

20

15

10

5

0
−25 −20 −15 −10 −5 0 5 10 15 20 25

A
m

pl
itu

de
 o

f X

X

R.5.120 The command hist(x, N) is similar to the command hist(x), but it groups the values
of x in N bins.

R.5.121 Rerun the script fi le, hist_gram for the case of (N) 20 bins.

MATLAB Solution
% Script file: hist _ gran _ 20
X= randn(100,1)*10; % X consist of 100 normally random distributed

numbers
hist(X,20) % histogram plot with 20 bins
title(‘Histogram plot of X, using hist(X,20)’)
xlabel(‘X’)
ylabel(‘Amplitude of X’)
axis([-30 30 0 15])

 The script fi le hist_gram_20 is executed and the result is shown in Figure 5.33.

CRC_47744_Ch005.indd 276CRC_47744_Ch005.indd 276 6/27/2008 4:28:14 PM6/27/2008 4:28:14 PM

Printing and Plotting 277

R.5.122 The command [Nbin, Xave] = hist(x, N) returns two row arrays.
a. Array Nbin, consisting of the number of elements in each of the N bins
b. Array Xave, consisting of the average values per bin

R.5.123 For example, the command [Nbin, Xave] = hist(x, N) is executed as follows for the
data used in the earlier example.

MATLAB Solution
>> [Nbin,Xave] = hist(X,20)

 Nbin =
 Columns 1 through 13
 2 0 0 1 9 7 5 8 12 8 13 8 11
 Columns 14 through 20
 7 2 3 2 0 1 1
 Xave =
 Columns 1 through 8
 -25.0185 -22.3559 -19.6932 -17.0306 -14.3680 -11.7053 -9.0427 -6.3801
 Columns 9 through 16
 -3.7175 -1.0548 1.6078 4.2704 6.9331 9.5957 12.2583 14.9209
 Columns 17 through 20
 17.5836 20.2462 22.9088 25.5715

R.5.124 The command pie(x) returns a pie graph, where each slice of the pie is proportional
(areawise) to the number of elements in x (similar to the histogram plot, where a
pie is similar to the bin).

R.5.125 For example, the pie command and its graphical representation using the data of
the earlier example (X = randn(100,1) * 10) is illustrated in Figure 5.34.

MATLAB Solution
>> pie(Nbin)

FIGURE 5.33
Histogram plot of R.5.121.

15

10

5

0
−30 −20 −10 0 10 20 30

X

A
m

pl
itu

de
 o

f X

Histogram plot of X, using hist (X,20)

CRC_47744_Ch005.indd 277CRC_47744_Ch005.indd 277 6/27/2008 4:28:15 PM6/27/2008 4:28:15 PM

278 Practical MATLAB® Basics for Engineers

R.5.126 Let us consider another example. Write a program that returns the pie plot of the
academic performance of a class of 25 students with the grading distribution indi-
cated in Table 5.6. Also identify each pie by a legend box.

 The resulting pie plot is shown in Figure 5.35.

MATLAB Solution
>> dist = [3 6 10 4 2]; % grade distribution
>> pie(dist)
>> title(‘Class Performance’), legend (‘A’, ‘B’, ‘C’, ‘D’, ‘F’)

R.5.127 The command pie(x, detach) returns a plot similar to the command pie(x), where
detach is a logical argument in the form of a binary array (consisting of 0’s and 1’s)
with length(x). The portion of the pie that is detached corresponds to the elements
of x represented by the ones (1s) of the detach argument.

R.5.128 The following example employs the command pie(x, detach), where the detached
pies correspond to the academic performance below C (D and F) using the data of
the earlier example (Figure 5.36).

MATLAB Solution
>> dist = [3 6 10 4 2];
>> detach = [0 0 0 1 1]; % detach pies; academic performance

of D and F

FIGURE 5.34
(See color insert following page 342.) Pie plot of R.5.125.

3%
2%

2%1%
2%

1%1%

7%

11%

8%

8%

8%

5%

7%

9%

12%
13%

Pie graph of 20 bins with a total of 100 normal random numbers

TABLE 5.6

Grade Distribution of a Class of 25 Students

Number of Students 3 6 10 4 2
Performance/Grade A B C D F

CRC_47744_Ch005.indd 278CRC_47744_Ch005.indd 278 6/27/2008 4:28:15 PM6/27/2008 4:28:15 PM

Printing and Plotting 279

>> pie(dist,detach)
>> legend (‘A’, ‘B’, ‘C’, ‘D’, ‘F’);
>> title(‘Performance of D and F Detached’)

R.5.129 The command fi ll(x, y, ’a’) returns a colored 2-D plot under the points defi ned by
the vectors x and y, with the color specifi ed by the option a defi ned by Table 5.2.

R.5.130 For example, write a program that returns a black circle of radius 3 centered at the
origin.

FIGURE 5.35
(See color insert following page 342.) Pie plot of R.5.126.

12%

24%

8%

Class Performance

16%

40%

A
B
C
D
E

FIGURE 5.36
(See color insert following page 342.) Detached pie plot of R.5.128.

12%

8%

16%

40%

24%

Performance of D and F detached

A
B
C
D
E

CRC_47744_Ch005.indd 279CRC_47744_Ch005.indd 279 6/27/2008 4:28:15 PM6/27/2008 4:28:15 PM

280 Practical MATLAB® Basics for Engineers

MATLAB Solution
>> Beta = linspace(0,2*pi,100);
>> X=3*cos(Beta);
>> Y=3*sin(Beta);
>> fill(X,Y,’k’); axis (‘square’);
>> xlabel(‘x-axis’); ylabel(‘y-axis’)
>> title(‘Black circle’)

 The resulting plot is shown in Figure 5.37.

FIGURE 5.37
Plot of R.5.130.

3

2

1

0

−1

−2

−3
−3 −2 −1 0 1 2 3

x-axis

Black circle

y-
ax

is

R.5.131 The command area(x, y) returns a shaded plot of the area under y = f(x).
R.5.132 The following example returns the shaded area under the positive half period of

y(x) = sin(x).

MATLAB Solution
>> x = linspace(0,pi,20);
>> y = sin(x); % positive half period of sin(x)
>> area(x,y), xlabel(‘x-axis’), ylabel(‘y-axis’)
>> title (‘Shaded plot using area (x,y)’)
>> axis([-0.5 4.0 0 1.1])

 The resulting plot is shown in Figure 5.38.
R.5.133 To obtain a hard copy of a plot present in the active fi gure window, activate the

fi gure window and then select Print from the File menu by clicking the left button
of the mouse, which sends the current plot to the printer.

R.5.134 Multiple fi gure windows can be created by using the command fi gure(n) repeat-
edly and a new fi gure window is created for each integer n, where n = 1, 2, 3, ….
The current fi gure window is the active and visible fi gure.

CRC_47744_Ch005.indd 280CRC_47744_Ch005.indd 280 6/27/2008 4:28:16 PM6/27/2008 4:28:16 PM

Printing and Plotting 281

R.5.135 The command close closes the current fi gure window; close(n) closes the n fi gure
window; and the command close all closes all the fi gure windows.

R.5.136 The command shg that stands for show graph window selects the current fi gure as
the active and visible fi gure.

R.5.137 The command clf clears the current (active) window.
R.5.138 The command ribbon(X, Y, width) returns a 2-D line as ribbons in a 3-D plane,

where X is plotted versus Y. The columns of Y are plotted as separated ribbons in
3-D. The command ribbon(Y) uses the default value of X = 1 with width = 0.75.

R.5.139 For example, let A = eye(4) and B = magic(4). Execute the command ribbon(A, B)
and observe the four 3-D ribbons drawn.

MATLAB Solution
>> A= eye(4);
>> B = magic(4);
>> ribbon(A,B)
>> title(‘ribbon plot’);
>> xlabel(‘x’); ylabel(‘y’) ; zlabel(‘z’);

 The corresponding plot is shown in Figure 5.39.
R.5.140 The 2-D command plot(x, y, ’options’) can be expanded to a 3-D space by using

the following syntax plot3(x, y, z, ’options’), where x, y, and z are the arrays of the
same length that defi ne the points on the 3-D coordinate space (length, height, and
width). The options are identical to the ones defi ned for the 2-D case (Table 5.2).

R.5.141 The commands grid, axis, label (x, y and z), and title defi ned for 2-D works equally
well for 3-D plots (plot3).

R.5.142 For example, create the script fi le, helix and verify that the set of equations x =
R cos(t), y = R sin(t), and z = kt, where R and k are real positive numbers, returns
the plot of an helix. Test the script for the following cases:
a. A constant radius of R = 1
b. A radius-dependent function given by R = t2 over the range 0 ≤ t ≤ 10π, with

k = 9

FIGURE 5.38
Plot of R.5.132.

1

0.8

0.6

0.4

0.2

0.5 1.5 2.51 2
x-axis

y-
ax

is

3 43.5
0

0−0.5

Shaped plot using area (x,y)

CRC_47744_Ch005.indd 281CRC_47744_Ch005.indd 281 6/27/2008 4:28:16 PM6/27/2008 4:28:16 PM

282 Practical MATLAB® Basics for Engineers

MATLAB Solution
% Script file: helix
% R=1, k=9
t = 0:0.1:10*pi;
x = cos(t); y = sin(t);z = 9*t;

figure(1)
plot3(x,y,z); title(‘Helix with constant radius R=1’)
xlabel(‘x-axis’);ylabel(‘y-axis’);zlabel(‘z-axis’)
grid on;

figure(2)
% R = t^2,k = 9
x1 = t.̂ 2.*cos(t); y1 = t.̂ 2.*sin(t);
plot3(x1,y1,z); title(‘Helix with variable radius R=t^2’)
xlabel (‘x-axis’); ylabel(‘y-axis’);zlabel(‘z-axis’)
grid on;

 The script fi le, helix is executed and the resulting plots are shown in Figures 5.40
and 5.41.

R.5.143 The general equation (x2/a2) + (y2/b2) + (z2/c2) = 1 represents the ellipsoidal
(Novelli, 2004b) family. Variations of the preceding equation gives rise to a num-
ber of specialized functions, some of which are defi ned below:
a. (x2/a2) + (y2/b2) − z = 0 represents the equation of an elliptic parabolic surface.
b. (x2/a2) − (y2/b2) − z = 0 represents the equation of an hyperbolic parabolic

surface.
c. (x2/a2) + (y2/b2) − z2 = m > 0 represents the equation known as one face

 hyperbolic function.

FIGURE 5.39
(See color insert following page 342.) Ribbon plots of R.5.139.

20

15

10

5

0

0 0
1 x

ribbon plot

y

z

2
3

4
5

0.5

1

CRC_47744_Ch005.indd 282CRC_47744_Ch005.indd 282 6/27/2008 4:28:16 PM6/27/2008 4:28:16 PM

Printing and Plotting 283

FIGURE 5.40
Plots of R.5.142(a).

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
0

50

100

150

200

250

300

x-axis

Helix with constant radius R = 1

y-axis

z-
ax

is

FIGURE 5.41
Plots of R.5.142(b).

−1000
−500

0
500

1000

−1000

−500

0

500

1000
0

50

100

150

200

250

300

x-axis

Helix with variable radius R = t2

y-axis

z-
ax

is

CRC_47744_Ch005.indd 283CRC_47744_Ch005.indd 283 6/27/2008 4:28:17 PM6/27/2008 4:28:17 PM

284 Practical MATLAB® Basics for Engineers

d. (x2/a2) + (y2/b2) − z2 = m < 0 represents the equation known as a two face
hyperbolic function.

e. (x2/a2) + (y2/b2) − z2 = 0 represents a conic surface.
R.5.144 For example, create the script fi le, plot_hyper that returns the plots of the follow-

ing 3-D set of equations: x = cos(t), y = sin(t), and z = √

 x2 + y2 over the range 0 ≤
t ≤ 10π.

% Script file: plot _ hiper
t = 0:0.1:10*pi;
x = cos(t);
y = sin(t);
z = sqrt(x.̂ 2-y.̂ 2);
plot3 (x,y,z);
xlabel(‘x-axis’); ylabel(‘y-axis’);
zlabel(‘z-axis’);grid on;

 The script fi le, plot_hyper is executed and the resulting plot is shown in Figure 5.42.
R.5.145 The following example illustrates the plotting of a 3 × 3 identity matrix concat-

enated three times forming the matrix A (3 × 9). Write a program that returns the
plot of the case: [rows of A] versus [index of A].

MATLAB Solution
>> A = [eye(3),eye(3),eye(3)] % creates the identity matrix

concatenated 3 times

 A =
 1 0 0 1 0 0 1 0 0
 0 1 0 0 1 0 0 1 0
 0 0 1 0 0 1 0 0 1

FIGURE 5.42
Plot of R.5.144.

−1
−0.5

0
0.5

1

−1

−0.5

0
0.5

1
0

0.2

0.4

0.6

0.8

1

x-axisy-axis

z-
ax

is

CRC_47744_Ch005.indd 284CRC_47744_Ch005.indd 284 6/27/2008 4:28:17 PM6/27/2008 4:28:17 PM

Printing and Plotting 285

>> plot3(A(1,:),A(2,:),A(3,:))
>> title(‘3D Plot’)
>> xlabel(‘X’),ylabel(‘Y’),zlabel(‘Z’)
>> grid on

 The resulting graph is shown in Figure 5.43.

FIGURE 5.43
3-D plot of R.5.145.

1

0.8

0.6

0.4

0.2

0
1

0.5

0 0
0.2

0.4
XY

Z

0.6
0.8

1

3D Plot

R.5.146 The next example illustrates the 3-D plot of the trajectory of a particle defi ned by
the following set of equations:

x = t

y = t * cos(t)

z = e0.2t

 over the range 0 ≤ t ≤ 4π.

MATLAB Solution
>> t = 0:0.3:4*pi;
>> x = t;
>> y = t.*cos(t);
>> z = exp(0.2.*t);
>> plot3(x,y,z)
>> grid on, xlabel(‘t’), ylabel(‘tcos(t)’), zlabel(‘exp (0.2t)’)
>> title (‘Plot of a Curve in 3D’)
>> axis (‘normal’)

 The resulting 3-D plot is shown in Figure 5.44.

CRC_47744_Ch005.indd 285CRC_47744_Ch005.indd 285 6/27/2008 4:28:17 PM6/27/2008 4:28:17 PM

286 Practical MATLAB® Basics for Engineers

R.5.147 The preceding example is now plotted using the command stem3.

MATLAB Solution
>> t = 0:0.3:4*pi;
>> X = t;
>> Y = t.*cos(t);
>> Z = exp(0.2.*t);
>> stem3(X,Y,Z,’Filled’), title(‘3D plot using stem3’),
>> xlabel(‘t’), ylabel(‘t cos(t)’), zlabel(‘exp(0.2*t)’)

 The resulting plot is shown in Figure 5.45.

FIGURE 5.45
stem3 plot of R.5.147.

12

3-D plot using stem3

10

8

6

4

2

0
20

10

0

0

5
ttcos(t)

ex
p(

0.
2*

t)

15

−10

10

FIGURE 5.44
3-D plot of R.5.146.

12

Plot of a curve in 3D

10

8

6

4

2

0
20

10

0

0
5

ttcos(t)

ex
p

(0
.2

t)

10

15

−10

CRC_47744_Ch005.indd 286CRC_47744_Ch005.indd 286 6/27/2008 4:28:17 PM6/27/2008 4:28:17 PM

Printing and Plotting 287

R.5.148 The 2-D commands such as fi ll, pie, stem, bar, and barh can be expanded to 3-D by
just adding a 3 to its syntax. The corresponding 3-D commands are fi ll3, pie3, stem3,
bar3, and barh3, respectively.

R.5.149 The following examples serve to review and illustrate some 2-D and 3-D plot com-
mands. Let y = sin(x) over 0 ≤ x ≤ π.

 Create the script fi le, plots_2D_3D that returns the plots using the following
commands:
a. plot(x,y)

b. stairs(x,y)

c. fi ll(x,y) and fi ll3(x,y,z,’k’)

d. stem(x,y)

e. stem3(x,y)

f. bar(x,y)

g. bar3(x,y)

h. barh(x,y)

 Observe and analyze the plotting commands and the corresponding returning
plots.

MATLAB Solution
% Script file: plots _ 2D _ 3D
x = linspace(0,pi,25);y=sin(x);

figure(1)
subplot (3,2,1);plot(x,y);
xlabel(‘x’);ylabel(‘y’);title(‘plot(x,y)’)
axis([0 3.5 0 1.1])
subplot (3,2,2);stairs(x,y);
xlabel(‘x’);ylabel(‘y’);title(‘stairs(x,y) plot’)
axis([0 3.5 0 1.1])
subplot (3,2,3)
fill(x,y,’k’);title(‘fill(x,y) plot’)
xlabel(‘x’);ylabel(‘y’);zlabel(‘z’)
axis([0 3.5 0 1.1])
subplot (3,2,4)
z =3+[1:2:50]; fill3 (x,y,z,’k’);
xlabel(‘x’);ylabel(‘y’);
title(‘fill3(x,y,z) plot’)
subplot (3,2,5);stem(x,y);
xlabel(‘x’);ylabel(‘y’);
title(‘stem(x,y) plot’)
axis([0 3.5 0 1.1])
subplot (3,2,6);stem3(x,y),
xlabel(‘x’);ylabel(‘y’);zlabel(‘z’);
title(‘stem3(x,y) plot’)

figure(2)
subplot (1,3,1); bar(x,y);
xlabel(‘x’);ylabel(‘y’);
title(‘bar(x,y) plot’)
axis([0 3.2 0 1])
subplot (1,3,2); bar3(x,y);

CRC_47744_Ch005.indd 287CRC_47744_Ch005.indd 287 6/27/2008 4:28:18 PM6/27/2008 4:28:18 PM

288 Practical MATLAB® Basics for Engineers

xlabel(‘x’);ylabel(‘y’);title(‘bar3(x,y) plot’)
subplot (1,3,3); barh(x,y);
xlabel(‘x’);ylabel(‘y’);
title(‘barh(x,y) plot’)

 The script fi le, plots_2D_3D is executed and the resulting plots are shown in
Figures 5.46 and 5.47.

FIGURE 5.46
Plot of R.5.149(a, b, c, d and e).

plot(x,y)

1

0.5

0
0 1 2

x

y

3

stairs(x,y) plot

1

0.5

0
0 1 2

x
y

3

1

0.5

0
0 1 2

x

y

3

1

0.5

0
0 1 2

x

y

3

2
1

1
0

50

100

0.5
0 0

2
x

x

y

y

z

4

0 0
20

40
0

2

4
stem(x,y) plot

stem3(x,y) plot

fill(x,y) plot
fill3(x,y,z) plot

R.5.150 Let us rerun the example of the pie plot that returns the performance of the class
of 25 students using the academic data in Table 5.6 by employing the 3-D com-
mand pie3.

MATLAB Solution
>> % Data: A, B, C, D, F
>> dist = [3 6 10 4 2]; % data
>> pie3(dist),title (‘Class Performance’)

 The resulting plot is shown in Figure 5.48.

CRC_47744_Ch005.indd 288CRC_47744_Ch005.indd 288 6/27/2008 4:28:18 PM6/27/2008 4:28:18 PM

Printing and Plotting 289

FIGURE 5.47
Plot of R.5.149(f, g and h).

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 2

x

1

3.5

3

2.5

2

1.5

1

0.5

0

0 1
−0.5

0.5

bar3(x,y) plot

bar(x,y) plot barh(x,y) plot

0.5

0
−2

0

2

4

y

y

x

y

FIGURE 5.48
(See color insert following page 342.) pie3 plot of R.5.150.

Class Performance

16%8%

12%

24%

40%

CRC_47744_Ch005.indd 289CRC_47744_Ch005.indd 289 6/27/2008 4:28:18 PM6/27/2008 4:28:18 PM

290 Practical MATLAB® Basics for Engineers

R.5.151 The command [X, Y] = meshgrid(x, y) returns two rectangular matrices X and Y
given the vectors x and y that defi ne the 2-D grid points on the Cartesian plane.
This command is the 2-D version of the linspace command. From the matrices X
and Y, the Z component can be defi ned as a function of x and y, returning a 3-D
spaced system.

R.5.152 Once the X and Y matrices are generated as a result of using meshgrid(x, y), then the
command mesh(X, Y, Z), where Z(x, y) returns a 3-D mesh structure. The command
mesh can also be used directly with the arguments x, y, and z as mesh(x, y, z).

R.5.153 A surface is generated when the function y = f(x) is rotated about the x-axis, over
the interval of interest, for example, between a and b.

R.5.154 The command surf(X, Y, Z) is similar to the mesh command, and returns a 3-D
parametric surface plot where the surface color is a function of the surface height.

R.5.155 The command [X, Y, Z] = cylinder(y, n) returns the matrices X, Y, and Z, which rep-
resent the coordinates of the points on the surface of revolution, where the axis of
revolution is the vertical axis. The scale is from 0 to 1 over the z-axis. The argument
n represents the number of points in each circle of revolution evenly spaced.

R.5.156 For example, write a MATLAB program that returns the 3-D plot of a cone centered at
the origin with unit length using 25 equally spaced points on the x and y directions.

MATLAB Solution
>> x = linspace(0,2,50);
>> y = x;
>>[x,y,z] = cylinder(y,25);
>> surf(x,y,z)
>> title(‘Cylinder’)
>> xlabel(‘x’); ylabel(‘y’);zlabel(‘z’)

 The resulting plot is shown in Figure 5.49.

FIGURE 5.49
(See color insert following page 342.) Plot of R.5.156.

1

0.8

0.6

0.4

0.2

0
2

1

0

−1

−2 −2
−1

0
1

2

Cylinder

x
y

z

CRC_47744_Ch005.indd 290CRC_47744_Ch005.indd 290 6/27/2008 4:28:19 PM6/27/2008 4:28:19 PM

Printing and Plotting 291

FIGURE 5.50
(See color insert following page 342.) Plot of R.5.157.

1

Cylinder with quadratic surface

0.8

0.6

0.4

0.2

0
4

42
20

0
x

y

z

−4 −4
−2

−2

R.5.157 Repeat the above example by changing y, the surface of revolution, to y = x2.
Observe how the resulting shape of the cone changes from a linear to a quadratic
surface. The resulting plot is shown in Figure 5.50.

R.5.158 The command [X, Y, Z]= spherer(n) returns the three n by n matrices X, Y, and Z,
which represent the coordinate points of a sphere. The matrices X, Y, and Z, when
used as arguments of the surf or mesh command, return the plot of a sphere of
radius one, centered at the origin. The default value for n is 20.

R.5.159 For example, the following program returns the plots of the default sphere when
used with the commands surf and mesh. Observe and analyze the commands and
their corresponding plots.

MATLAB Solution
>> subplot(1,2,1)
>> [x,y,z] = sphere;
>> surf(x,y,z)
>> axis equal
>> subplot(1,2,2)
>> mesh(x,y,z)
>> axis equal

 The resulting plots are shown in Figure 5.51.

CRC_47744_Ch005.indd 291CRC_47744_Ch005.indd 291 6/27/2008 4:28:20 PM6/27/2008 4:28:20 PM

292 Practical MATLAB® Basics for Engineers

R.5.160 The command [X, Y, Z] = ellipsoid(Xc, Yc, Zc, Xr, Yr, Zr, n) (distorted sphere) returns
the three matrices X, Y, and Z that represent the 3-D coordinate system of the
resulting body. When the ellipsoid’s output are used as arguments of the command
surf(X, Y, Z), MATLAB returns the plot of an ellipsoid centered at the Cartesian
coordinates Xc, Yc, and Zc, and radii Xr, Yr, and Zr. The default version for n is
20. When no output variables are used, MATLAB returns only the graph of the
ellipsoid’s surface.

R.5.161 The command waterfall(x, y, z) is similar to the mesh command, but the mesh lines
are drawn in the x direction only.

R.5.162 The shading function is used to modify the color image created with the surf, mesh,
or fi ll commands. The shading option can be accompanied with the arguments fl at,
interp, or (the default) faceted.

R.5.163 The command contour(x, y, z) returns 10 equally spaced horizontal traces (lines)
according to the heights (equal heights) of the fi gure. A fourth argument n may be
used to control the number of traces, such as contour(x, y, f(x, y), n). The different
heights, line style, and color can also be controlled. The contour command returns
plots that can be used in 2-D or 3-D with the commands contour and contour3.

R.5.164 The command view(∅xy, ∅z) returns the view of the fi gure image rotated by an
angle ∅xy on the xy plane in a counterclockwise direction (azimuth), with the
angle ∅xz rotated in a counterclockwise direction about the xz plane (elevation).
Both angles ∅xy and ∅xz are specifi ed in degrees.

R.5.165 A number of examples using the view command are presented and defi ned below:
1. view(0, 90) is the xy projection, same as view(2).
2. view(0, 0) is the xz projection.
3. view(90, 0) is the yz projection.
4. view(−37.5, 30) shows the 3-D view (default), same as view(3).

R.5.166 The script fi le, surf_view_cont illustrate some of the commands just presented by
returning the following plots:
a. The surf and the shaded surf (interp) plots
b. The plots with the following view’s arguments: (0, 0), (90, 0), (−127.5, 0), and

(−82.5, 0)

FIGURE 5.51
(See color insert following page 342.) Plot of R.5.159.

Sphere using surf Sphere using mesh

1

0

−1

−1 −1

1
1

0
y y

z z

0
x x

1

0

−1

−1 −1

1
1

0
0

CRC_47744_Ch005.indd 292CRC_47744_Ch005.indd 292 6/27/2008 4:28:20 PM6/27/2008 4:28:20 PM

Printing and Plotting 293

c. The contour and contour3 plots of the function defi ned by the following
equation:

z f x y� �(,) x y

y
y

2 2 2
�

sin()

 over the ranges −13 ≤ x ≤ +13, and −13 ≤ y ≤ +13.

MATLAB Solution
% Script file:surf _ view _ cont
x = linspace(-13,13,100);
y = x;
[X,Y] = meshgrid(x,y);
Z = sqrt(X.̂ 2+Y.̂ 2).*sin(2.*Y)./Y;

figure(1) % surf plot
surf(X,Y,Z)
shading interp;
title(‘surf plot’);
box on; xlabel(‘X’),ylabel(‘Y’), zlabel(‘Z’)

figure(2) % shaded surf plot
surf (X,Y,Z)
shading faceted
title (‘shaded surf plot’);
box on
xlabel(‘X’),ylabel(‘Y’), zlabel(‘Z’)

figure(3) % view plots
subplot(2,2,1)
surf(X,Y,Z)
shading faceted
view(0,0);
xlabel(‘X’),ylabel(‘Y’), zlabel(‘Z’)
subplot(2,2,2)
surf(X,Y,Z)
shading faceted
view(90,0)
xlabel(‘X’),ylabel(‘Y’), zlabel(‘Z’)
subplot(2,2,3)
surf(X,Y,Z)
shading faceted
view(-37.5-90,0)
xlabel(‘X’),ylabel(‘Y’), zlabel(‘Z’)
subplot(2,2,4)
surf(X,Y,Z)
shading faceted
view(-37.5-45,0)
xlabel(‘X’),ylabel(‘Y’), zlabel(‘Z’)

figure(4) % contour plot
contour(X,Y,Z,20);axis square;

CRC_47744_Ch005.indd 293CRC_47744_Ch005.indd 293 6/27/2008 4:28:20 PM6/27/2008 4:28:20 PM

294 Practical MATLAB® Basics for Engineers

box on; shading interp;grid off;
title(‘contour plot’)
xlabel(‘X’),ylabel(‘Y’), zlabel(‘Z’)

figure(5) % contour3 plot
contour3(X,Y,Z,20);axis on;grid off
axis square;box on;
shading interp;
title(‘contour3 plot’);
xlabel(‘X’),ylabel(‘Y’), zlabel(‘Z’)

 The script fi le, surf_view_cont is executed and the resulting plots are shown in
Figures 5.52 through 5.56.

FIGURE 5.52
(See color insert following page 342.) Surf plot of R.5.159(a).

30

20

20

2010
100

0
X

Y

Z 10

0

−10

−10
−10

−20 −20

surf plot

R.5.167 The command rotate3d permits interactive changes to view the body displayed,
and by clicking the (left) mouse, the fi gure can then be dragged to any desired
destination. The changes are shown at the left corner of the fi gure in terms of its
azimuth and elevation. This command is closely related to the view command.

R.5.168 The commands meshc(x, y, z) and surfc(x, y, z) return the mesh and surface plots, but
the second command in addition draws a contour plot under the surface.

R.5.169 The command meshz(x, y, z) returns the mesh plot and adds vertical lines to the
plot, under the surface.

R.5.170 The command Data = smooth3(data) returns the fi lter Data, given the unfi ltered
data. The input (unfi ltered) data can further be controlled by using a ‘gaussian’ or
the ‘box’ (default) fi lter. The syntax format is Data = smooth3(data, ‘fi lter’).

R.5.171 MATLAB provides the users with a number of predefi ned functions that are basi-
cally used for test and demo purposes. Examples of these functions are peaks and
humps.

CRC_47744_Ch005.indd 294CRC_47744_Ch005.indd 294 6/27/2008 4:28:21 PM6/27/2008 4:28:21 PM

Printing and Plotting 295

FIGURE 5.53
(See color insert following page 342.) Shaded surf plot of R.5.159(a).

30

20

10

20

−20 −20
−10

10

0
0

X
Y

Z

10
20

0

−10

−10

shaded surf plot

FIGURE 5.54
View plots of R.5.159(b).

30

20

20

10

10
X

view (0,0) view (90,0)

view (−82.5,0)

view (−127.5,0)

Z
Z

Z
Z

−10
−20 −10

0

0 2010

Y

Y X

−20 −10 0

0

X Y

20

20

20

10

20

30

20

30

10

−20
−10 −10

−20 −200 0

0

10

20

30

−10

0

0

0

View plots

CRC_47744_Ch005.indd 295CRC_47744_Ch005.indd 295 6/27/2008 4:28:21 PM6/27/2008 4:28:21 PM

296 Practical MATLAB® Basics for Engineers

FIGURE 5.55
contour plot of R.5.159(c).

10

10

5

5

0

0
X

Y

−5

−5

−10

−10

contour plot

FIGURE 5.56
(See color insert following page 342.) contour3 plot of R.5.159(c).

25

20

15

10

10

10

5

5
5

0

0
0

−5

−10 −10

−5 −5 X

Y

Z

contour3 plot

CRC_47744_Ch005.indd 296CRC_47744_Ch005.indd 296 6/27/2008 4:28:22 PM6/27/2008 4:28:22 PM

Printing and Plotting 297

R.5.172 The function peaks returns an n × n matrix with elements taken from translat-
ing and scaling the coeffi cients of the Gaussian distribution function. The various
syntax forms of the function peaks are:

z = peaks

z = peaks(n)

[x, y, z] = peaks

[x, y, z] = peaks(n)

 When no argument is given, MATLAB returns a 49-by-49 matrix. When n is
specifi ed, MATLAB returns an n × n matrix, or if desired, the x, y, and z Cartesian
3-D coordinates.

R.5.173 For example, the program that returns the 2-D plot of the MATLAB function peaks
using a 150 × 150 matrix is illustrated as follows:
MATLAB Solution
>> k = peaks(150);
>> plot (k)
>> title(‘2D plot using peaks’)
>> xlabel(‘x-axis’);ylabel(‘y-axis’)

 The 2-D plot of peaks is shown in Figure 5.57.

FIGURE 5.57
2-D plot of peaks R.5.173.

10

8

6

4

2

−2

−4

−6

−8

0

0 50 100 150
x-axis

y-
ax

is

2-D plot using peaks

R.5.174 The function humps returns a smooth function with maxima at x = 0.3 and x = 0.9.
The syntax and format of the function humps are
a. y = humps(x)

b. y = humps (assuming x = 0:0.05:1)
c. [x, y] = humps(x)

CRC_47744_Ch005.indd 297CRC_47744_Ch005.indd 297 6/27/2008 4:28:22 PM6/27/2008 4:28:22 PM

298 Practical MATLAB® Basics for Engineers

R.5.175 For example, write a program that returns the 2-D plot of the MATLAB function
humps using the default case.

MATLAB Solution
>> [X,Y] = humps;
>> plot(X,Y)
>> plot(X,Y)
>> title(‘plot of humps’)
>> xlabel(‘x-axis’)
>> ylabel(‘y-axis’)

 The resulting plot is shown in Figure 5.58.

FIGURE 5.58
2-D plot of humps of R.5.175.

100

90

80

70

60

50

40

30

20

10

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

plot of humps

x-axis

y-
ax

is

R.5.176 Let us now create a 3-D plot of the MATLAB function peaks using a 150 × 150
matrix for each of the variables x, y, and z. The plot is displayed and the size of
each of the variables are checked (Figure 5.59).

MATLAB Solution
>> [x,y,z] = peaks(150);
>> plot3(x,y,z)
>> title(‘3D plot using peaks’)
>> xlabel(‘x-axis’);ylabel(‘y-axis’);zlabel(‘z-axis’);
>> size (x)

 ans =
 150 150

>> size (y)

 ans =
 150 150

CRC_47744_Ch005.indd 298CRC_47744_Ch005.indd 298 6/27/2008 4:28:23 PM6/27/2008 4:28:23 PM

Printing and Plotting 299

>> size (z)

 ans =
 150 150

R.5.177 The command trimesh (tri, X, Y, Z, c) returns the plot of a mesh structure consist-
ing of triangles, where tri = delaunay(X, Y) returns a planar structure consisting of
planar triangles (2-D) that in conjunction with the Z component create a 3-D grid.
The parameter c represents the color. The default for c is the color for Z = c; this
color is proportional to the surface height.

R.5.178 The command trisurf (tri, X, Y, Z, c) returns the plot of the triangular surface plot
where the arguments tri, X, Y, and Z are the same as in the function trimesh.

R.5.179 For example, write a program that returns the plot of the function peaks by using
the commands
a. trimesh and delaunay

b. trisurf

MATLAB Solution
>> x = linspace(-13,13,15);
>> y = x;
>> [X,Y] = meshgrid(x,y);
>> Z = peaks(15);

>> figure(1)
>> tri = delaunay(X,Y);
>> trimesh(tri,X,Y,Z)
>> title(‘trimesh plot’);
>> box on; xlabel(‘x-axis’),ylabel(‘y- axis’), zlabel(‘z-axis’)

>> figure(2)
>> trisurf(tri,X,Y,Z)

FIGURE 5.59
(See color insert following page 342.) 3-D plot of peaks of R.5.176.

10

5

0

−5

−4

2

0

−2

−4 −4
−2

0
2

4

−10

x-axisy-axis

z-
ax

is
3-D plot using peaks

CRC_47744_Ch005.indd 299CRC_47744_Ch005.indd 299 6/27/2008 4:28:23 PM6/27/2008 4:28:23 PM

300 Practical MATLAB® Basics for Engineers

>> title(‘trisurf plot’);
>> box on; xlabel(‘x-axis’),ylabel(‘y- axis’), zlabel(‘z-axis’)

>> figure(3)
>> Y= sqrt((-X.̂ 2 – Y.̂ 2 - Z.̂ 2);
>> slice(X,Y,Z,v,[-1.2 .8 2],2,[-2 -.2])

 The resulting plots are shown in Figures 5.60 and 5.61.

FIGURE 5.60
(See color insert following page 342.) Plot of R.5.179(a).

10

20
10

0

−10
−20 −20

−10
0

x-axis

10
20

5

0

−5

−10

y-axis

z-
ax

is

trimesh plot

FIGURE 5.61
(See color insert following page 342.) Plot of R.5.179(b).

10

5

2010
20

100
0

−10 −10
−20 −20

0

−5

−10

trisurf plot

y-axis

z-
ax

is

x-axis

CRC_47744_Ch005.indd 300CRC_47744_Ch005.indd 300 6/27/2008 4:28:23 PM6/27/2008 4:28:23 PM

Printing and Plotting 301

R.5.180 The 3-D ez functions are equivalent to their numerical counterpart. A list of
 MATLAB ez functions follows:
a. ezcontour

b. ezcontourf

c. ezcontour3

d. ezmesh

e. ezmeshc

f. ezplot3

g. ezsurf

h. ezsurfc

R.5.181 The command scatter3 (x, y, z) returns circles having the same size at the locations
specifi ed by the vectors x, y, and z. The command scatter3 (x, y, z, ’fi lled’) returns
shaded circles at the locations specifi ed by the vectors x, y, and z. The color and
size of the circles can be controlled by options.

R.5.182 Create the script fi le, scatter_3D that returns the plot of 100 randomly chosen points
indicated by shaded (fi lled) circles.

MATLAB Solution
% Script file: scatter _ 3D
x = rand(1,100);
y = rand(1,100).*3;
z = rand(1,100).*2;

figure(1)
scatter3(x,y,z);
xlabel(‘x-axis’)
ylabel(‘y-axis’)
zlabel(‘z-axis’)
title(‘scatter 3(x,y,z)’)

figure(2)
scatter3(x,y,z,’filled’);
xlabel(‘x-axis’)
ylabel(‘y-axis’)
zlabel(‘z-axis’)
title(‘scatter 3(x,y,z,filled)’)

 The script fi le, scatter_3D is executed and the resulting plots are shown in
Fig ures 5.62 and 5.63.

R.5.183 For additional information concerning 2-D and 3-D commands, use the help
graph2D or help graph3D, and MATLAB will return a list of frequently used 2- or
3-D graph commands.

 Partial lists of 2-D and 3-D commands follow, which can serve as a brief sum-
mary and review of the commands presented in this chapter.

>> help graph2D

Two dimensional graphs.
Elementary X-Y graphs.
plot - Linear plot.
loglog - Log-log scale plot.

CRC_47744_Ch005.indd 301CRC_47744_Ch005.indd 301 6/27/2008 4:28:24 PM6/27/2008 4:28:24 PM

302 Practical MATLAB® Basics for Engineers

semilogx - Semi-log scale plot.
semilogy - Semi-log scale plot.
polar - Polar coordinate plot.
plotyy - Graphs with y tick labels on the left and right.

Axis control.
axis - Control axis scaling and appearance.
zoom - Zoom in and out on a 2-D plot.
grid - Grid lines.

FIGURE 5.62
scatter plot of R.5.182.

2

1

0
3

2

1

0 0
0.2

0.4
x-axisy-axis

z-
ax

is

0.6
0.8

1

0.5

1.5

scatter 3(x,y,z)

FIGURE 5.63
scatter plot of R.5.182 (fi lled).

0 0
0.2

0.4
x-axisy-axis

z-
ax

is

0.6
0.8

1

1

2
3
0

0.5

1

1.5

2

scatter 3(x,y,z,filled)

CRC_47744_Ch005.indd 302CRC_47744_Ch005.indd 302 6/27/2008 4:28:24 PM6/27/2008 4:28:24 PM

Printing and Plotting 303

box - Axis box.
hold - Hold current graph.
axes - Create axes in arbitrary positions.
subplot - Create axes in tiled positions.

Graph annotation.
legend - Graph legend.
title - Graph title.
xlabel - X-axis label.
ylabel - Y-axis label.
texlabel - Produces TeX format from a character string
text - Text annotation.
gtext - Place text with mouse.

>> help graph3d

 Three-dimensional graphs.
 Elementary 3D Plots:

plot3 Plot lines and points in 3D space.
mesh 3D mesh surface.
surf 3D colored surface.
fill3 Filled 3D polygons.

 Color Control:

colormap Color look-up table.
caxis Pseudocolor axis scaling.
shading Color shading mode.
hidden Mesh hidden line removal mode.
brighten Brighten or darken color map.

 Lighting:

surfl 3D shaded surface with lighting
lighting Lighting mode.
material Material reflectance mode.
specular Specular reflectance.
diffuse Diffuse reflectance.
surfnorm Surface normals.

 Axis Control:

axis Control axis scaling and appearance.
zoom Zoom in and out on a 2D plot.
grid Grid Lines.
box Axis box.
hold Hold current graph.
axes Creates axes in arbitrary positions.
subplot Creates axes in tiled positions.

CRC_47744_Ch005.indd 303CRC_47744_Ch005.indd 303 6/27/2008 4:28:24 PM6/27/2008 4:28:24 PM

304 Practical MATLAB® Basics for Engineers

5.4 Examples

Example 5.1

Write a program that returns the following plots:

 1. sin(x) versus x
 2. cos(x) versus x
 3. [sin(x)+cos(x)] versus x
 4. [sin(x)−cos(x)] versus x

over the range 0 ≤ x ≤ 2π using the following specs:

 1. Twenty points to create each plot
 2. Label the x- and y-axis
 3. Choose color, markers, and line style for each curve
 4. Create the plots in a box and without one; with and without a grid
 5. plot (x, y) to create both the plots: sin(x) and cos(x)
 6. Limit the plotting range over 1.5 ≤ y ≤ −2
 7. Remove the axis
 8. Identify each curve by a text string
 9. Create a legend and then remove the legend
 10. Plot each curve in an individual subwindow by using the subplot and the stem

commands
 11. Use the stairs command to plot sin(x) versus x and cos(x) versus x on separate plots

MATLAB Solution
>> X=linspace(0,2*pi,20); % creates a 20 element vector X from 0 to

2pi
>> Y1= sin(X); % creates a 20 element vector Y1 = sin(X)

for 0 < X < 2pi
>> Y2 =cos(X); % creates a 20 element vector of Y2 =

cos(X) for 0 < X < 2pi
>> Y3 =Y1+Y2;
>> Y4 =Y1-Y2;
>> plot (X,Y1,’K*:’) % plots sin(X) vs X with a dotted (:) black

(k) line
>> % indicating the points with a star (*)

marker
>> hold on
>> plot(X,Y2,’r--’) % plots cos(X) vs X with a dashed (--) red

(r) line
>> hold on
>> plot(X,Y3,’b’) % plots [sin(X) + cos(X)] vs X with a solid

line (blue)
>> hold on
>> plot(X,Y4,’g’) % plots [sin(X) - cos(X)] vs X with a solid

green (g) line
>> hold off
>> box off % suppresses the figure box

CRC_47744_Ch005.indd 304CRC_47744_Ch005.indd 304 6/27/2008 4:28:24 PM6/27/2008 4:28:24 PM

Printing and Plotting 305

>> title (‘Trigonometric Functions with “Box Off”’) % see Figure 5.64
>> box on % turns on the

Figure Box
>> title (‘Trigonometric Functions with “Box On”’) % see Figure 5.65
>> grid on % turns the grid

on
>> xlabel(‘Independent Variable X’) % labels the x

axis
>> ylabel(‘Dependent Variable Y’) % labels the y

axis
>> title (‘Trigonometric Functions with “Grid On”’) % see Figure 5.66
>> grid off
>> title (‘Trigonometric Functions with “Grid off”’) % see Figure 5.67
>> axis ([0 2*pi -2 1.5]) % sets the axis 0≤ x ≤ -2pi, and -2≤ y

≤ 1.5
>> axis off % removes axis
>> axis on % creates axis
>> legend (‘sin(X)’,’cos(X)’,’sin(X)+cos(X)’,’sin(X)-cos(X)’)
>> title(‘Trigonometric Functions with Fixed axis and Legend’) % see

Figure 5.68.
>> gtext(‘sinX’) % identifies each curve with a text string
>> gtext(‘cos(X)’)
>> gtext(‘sin(X)+cos(X)’)
>> gtext(‘sin(X)-cos(X)’) % see Figure 5.69 where the curves are

identified by texts
>> % plot the four functions using steam, in separate subplot
>> axis on;
>> axis([0 2*pi -1.5 2]);
>> subplot(2,2,1)
>> stem(X,Y1)
>> title(‘Sin(X) VS X’)
>> subplot(2,2,2)
>> stem(X,Y2)
>> title(‘Cos(X) VS X’)
>> subplot(2,2,3)
>> stem(X,Y3)
>> title(‘Sin(X)+Cos(X) VS X’)
>> subplot(2,2,4)
>> stem(X,Y4)
>> title(‘Sin(X)-Cos(X) VS X’)
>> title(‘Sin(X)+Cos(X) VS X’)
>> see Figure 5.70.
>> subplot(2,1,1)
>> stairs(X,Y1)
>> title(‘Sin(X) VS X’)
>> subplot(2,1,2)
>> stairs(X,Y2)
>> title(‘Cos(X) VS X’)
>> % plots of :Sin(X) vs X, and Cos(X) vs X using a stair case

approximation
>> % see Figure 5.71

CRC_47744_Ch005.indd 305CRC_47744_Ch005.indd 305 6/27/2008 4:28:25 PM6/27/2008 4:28:25 PM

306 Practical MATLAB® Basics for Engineers

FIGURE 5.64
(See color insert following page 342.) Trigonometric plots of Example 5.1 (“Box Off”).

1.5

1

0.5

0

0 1 2 3 4 5 6 7

−0.5

−1

−1.5

Trigonometric Functions with “Box Off”

FIGURE 5.65
(See color insert following page 342.) Trigonometric plots of Example 5.1 (“Box On”).

1.5

1

0.5

0

0 1 2 3 4 5 6 7

−0.5

−1

−1.5

Trigonometric Functions with “Box On”

CRC_47744_Ch005.indd 306CRC_47744_Ch005.indd 306 6/27/2008 4:28:25 PM6/27/2008 4:28:25 PM

Printing and Plotting 307

FIGURE 5.66
(See color insert following page 342.) Trigonometric plots of Example 5.1 (“grid on”).

1.5

1

0.5

0

0 1 2 3

Independent Variable X

Trigonometric Functions with "Grid On"

D
ep

en
de

nt
 V

ar
ia

bl
e

Y

4 5 6 7

−0.5

−1

−1.5

FIGURE 5.67
(See color insert following page 342.) Trigonometric plots of Example 5.1 (“grid off”).

1.5

1

0.5

0

0 1 2 3

Independent Variable X

Trigonometric Functions with "Grid Off"

D
ep

en
de

nt
 V

ar
ia

bl
e

Y

4 5 6 7

−0.5

−1

−1.5

CRC_47744_Ch005.indd 307CRC_47744_Ch005.indd 307 6/27/2008 4:28:25 PM6/27/2008 4:28:25 PM

308 Practical MATLAB® Basics for Engineers

FIGURE 5.69
(See color insert following page 342.) Trigonometric plots of Example 5.1 (axis and legend).

1.5

1

0.5

0

0 1 2 3

Independent Variable X

Trigonometric Functions with Fixed Axis and Legend

D
ep

en
de

nt
 V

ar
ia

bl
e

Y

4 5 6

−0.5

−1

−1.5

−2

sinX

cos(X)

sin(X) − cos(X)

sin(X) + cos(X)

sin(X)
cos(X)
sin(X) + cos(X)
sin(X) − cos(X)

FIGURE 5.68
(See color insert following page 342.) Trigonometric plots of Example 5.1 (axis and legend).

1.5

1

0.5

0

0 1 2 3

Independent Variable X

Trigonometric Functions with Fixed Axis and Legend

D
ep

en
de

nt
 V

ar
ia

bl
e

Y

4 5 6

−0.5

−1

−1.5

−2

sin(X)
cos(X)
sin(X) + cos(X)
sin(X) − cos(X)

CRC_47744_Ch005.indd 308CRC_47744_Ch005.indd 308 6/27/2008 4:28:25 PM6/27/2008 4:28:25 PM

Printing and Plotting 309

FIGURE 5.70
Stem plots of Example 5.1.

1

0.5

0

0

Sin(X)+Cos(X) versus X

Sin(X) versus X Cos(X) versus X

Sin(X)+Cos(X) versus X

2 4 6 8 0 2 4 6 8

0 2 4 6 8 0 2 4 6 8

−0.5

−1

2

1

0

−1

−2

2

1

0

−1

−2

1

0.5

0

−0.5

−1

FIGURE 5.71
Stairs plots of Example 5.1.

1

0.5

0

0 1 2 3

Cos(X) versus X

Sin(X) versus X

4 5 6 7

0 1 2 3 4 5 6 7

−0.5

−1

1

0.5

0

−0.5

−1

CRC_47744_Ch005.indd 309CRC_47744_Ch005.indd 309 6/27/2008 4:28:25 PM6/27/2008 4:28:25 PM

310 Practical MATLAB® Basics for Engineers

Example 5.2

The objective of Examples 5.2 and 5.3 is to explore using the power of MATLAB the behav-
ior of often encountered family of functions and provide on insight of their coeffi cients.

Write a program that returns the plots of the families of curves given in Table 5.7 (a
through g) over the domain −2π ≤ x ≤ 2π by using 500 linearly spaced points.

TABLE 5.7

Families of Functions for Example 5.2

a b c d e f g

Y1 = 1 + sin(x) Y4 = sin(x) Y7 = sin(x) Y10 = 5 sin(x) + x Y11 = sin(x) Y15 = sin(x) cos(3x)
versus
sin(4x)

Y2 = 2 + sin(x) Y5 = 2 sin(x) Y8 = 3 + sin(2x) Y12 = sin(x − π/2) Y16 = −sin(x)
Y3 = 3 + sin(x) Y6 = 3 sin(x) Y9 = 6 + sin(3x) Y13 = sin(x − π) Y17 = 2sin(x)

Y14 = sin(x − 3π/2) Y18 = –2sin(x)

MATLAB Solution
>> % plot for parts: a, b, c, and d, are shown in Figure 5.72
>> format compact
>> X = linspace(-2*pi,2*pi,500); % creates an X vector with 500 element
>> Z = sin(X); % creates a 500 element Z vector
>> subplot(2,2,1) % divides the window into 2x2

sub-window
>> Y1 = Z+1; % activates sub-window 1,1
>> Y2 = 2+Z;
>> Y3 = 3+Z;
>> plot (X,Y1,X,Y2,X,Y3) % plots Y1 vs X, Y2 vs X, and Y3 vs X
>> title(‘1+sin(X), 2+sin(X), 3+sin(X)’)
>> axis([-2*pi 2*pi -1 6])
>> ylabel(‘Y1, Y2, Y3’)
>> subplot (2,2,2) % activates sub-window 1,2
>> Y4 = Z;
>> Y5 = 2*Z;
>> Y6 = 3*Z;
>> plot (X,Y4,X,Y5,X,Y6)
>> title (‘sin(X), 2sin(X), 3sin(X)’)
>> axis([-2*pi 2*pi -4 4])
>> ylabel(‘Y4, Y5, Y6’)
>> subplot(2,2,3) % activates sub-window 2,1
>> Y7 = Z;
>> Y8 = 3+sin(2*X);
>> Y9 = 6+sin(3*X);
>> plot (X,Y7,X,Y8,X,Y9)
>> title(‘sin(X), 3+sin(X), 6+sin(X)’)
>> axis([-2*pi 2*pi -2 8])
>> ylabel(‘Y7, Y8, Y9’)
>> subplot(2,2,4) % activates sub-window 2,2
>> Y10 = 5*Z+X;
>> plot (X,Y10)
>> title(‘5sin(X)+X’)
>> axis([-2*pi 2*pi -8 8])
>> ylabel(‘Y10’)

>> The resulting plots for parts a, b, c, and d are shown in Figure 5.72.

CRC_47744_Ch005.indd 310CRC_47744_Ch005.indd 310 6/27/2008 4:28:26 PM6/27/2008 4:28:26 PM

Printing and Plotting 311

>> % plot for parts (e)
>> clf
>> subplot(2,1,1)
>> Y12 = sin(X-pi/2);
>> Y13 = sin(X-pi);
>> Y14 = sin(X-3*pi/2);
>> plot(X,Z,X,Y12,X,Y13,X,Y14)
>> ylabel(‘Y11, Y12, Y13, Y14’)
>> title(‘Sin(X), Sin(X-pi/2), Sin(X-pi), Sin(X-3pi/2)’)
>> subplot(2,1,2)
>> % plots for part (f)
>> Y16 = -Z;
>> Y17 = 2.*Z;
>> Y18 = -Y17;
>> plot(X,Z,X,Y16,X,Y17,X,Y18)
>> title(‘Sin(X), -Sin(X), 2Sin(X), -2Sin(X)’)
>> xlabel(‘X’),
>> ylabel(‘Y15, Y16, Y17, Y18’)

>> The plots for parts e and f are shown in Figure 5.73.

>> % plots for part (g)
>> plot (cos(3*X), sin(4*X));
>> axis ([-2 2 –1.5 1.5])
>> title (‘Cos(3X) Vs Sin(4X)’)
>> xlabel (‘X’), ylabel (‘Magnitude Sin(4X)’)

 The plot for part g is shown in Figure 5.74.

FIGURE 5.72
Plots of Example 5.2(a, b, c, and d).

6

4

4

2

0

−2

−4
−5

5

8

6

4

2

0

−2
−5 0 5

2

0

0

1+sin(X), 2+sin(X), 3+sin(X) sin(X), 2sin(X), 3sin(X)

sin(X), 3+sin(X), 6+sin(X)

5 0 5

−5

−5

0

Y
10

Y
4,

Y
5,

Y
6

Y
1,

Y
2,

Y
3

Y
7,

Y
8,

Y
9

0

5

5sin(X)+X

−5

CRC_47744_Ch005.indd 311CRC_47744_Ch005.indd 311 6/27/2008 4:28:26 PM6/27/2008 4:28:26 PM

312 Practical MATLAB® Basics for Engineers

FIGURE 5.74
Plot of Example 5.2(g).

−2 −1.5
−1.5

−1

−0.5

0

0.5

1

1.5

−1 −0.5 0
X

Y

1 1.5 20.5

Cos(3X) versus Sin(4X)

FIGURE 5.73
Plots of Example 5.2(e and f).

1
Y

11
, Y

12
, Y

13
, Y

14
Y

15
, Y

16
, Y

17
, Y

18

0.5

0

−0.5

−1
−8 −6 −4 −2 0 2 4 6 8

−8 −6

−1

−2
−4 −2 0

X
2 4 6 8

2

1

0

Sin(X), Sin(X-pi/2), Sin(X-pi), Sin(X-3pi/2)

Sin(X), -Sin(X), 2Sin(X), -2Sin(X)

CRC_47744_Ch005.indd 312CRC_47744_Ch005.indd 312 6/27/2008 4:28:26 PM6/27/2008 4:28:26 PM

Printing and Plotting 313

Example 5.3

Write a program that returns the plots of the following families of curves:

 a. Y1a = xa, for a = 1, 2, 3, 4, 5, and 6 over the range −2 ≤ x ≤ 2 in separate subplots
 b. Y2b = b * x2, for b = 5, 2, 1, −5, and −2

 Y3c = c * x2, for c = −5, −2, −1, −0.5, and −0.1
 Y4d = x2 + d, for d = 2, 1, 0, −1, and −2
 Y5e = −x2 + e, for e = 2, 1, 0, −1, and −2 over the range −2 ≤ x ≤ 2 in separate subplots

 c. Y6f = f * x2 for, f = 5, 2, 1, 0.5, 0.1 over the range −2 ≤ x ≤ 2 on the same subplot
 d. Y7g = e(g*x), for g = −5, −2, 1, −0.5, and −0.1 over the range 0 ≤ x ≤ 5 on the same

subplot

MATLAB Solution
>> % part (a)
>> % plots of Y11, Y12, Y13, Y14, Y15, and Y16 are shown in Figure 5.75
>> X = linspace(-2,2,36);
>> Y= X;
>> subplot(2,3,1);
>> plot (X,Y)
>> title (‘Y11=x’);xlabel(‘x’);
>> ylabel(‘Amplitude of Y11’);
>> subplot(2,3,2);
>> Y= X.̂ 2;
>> plot (X,Y)
>> title (‘Y12=x^2’);xlabel(‘x’);
>> ylabel(‘Amplitude of Y12’);
>> subplot(2,3,3);
>> Y= X.̂ 3;
>> plot (X,Y)
>> title (‘Y13=x^3’);xlabel(‘x’);
>> ylabel(‘Amplitude of Y13’);
>> subplot (2,3,4);
>> Y= X.̂ 4;
>> plot (X,Y)
>> title(‘Y14=x 4̂’);xlabel(‘x’);
>> ylabel(‘Amplitude of Y14’);
>> subplot(2,3,5);
>> Y=X.̂ 5;
>> plot (X,Y);xlabel(‘x’);
>> ylabel(‘Amplitude of Y15’);
>> title (‘Y15=x^5’)
>> ubplot(2,3,6);
>> Y= X.̂ 6;
>> plot (X,Y)
>> title (‘Y16=x^6’);xlabel(‘x’);
>> ylabel(‘Amplitude of Y16’);

>> The plots for part a are shown in Figure 5.75.

>> % part(b), plots of Y2b, Y3c, Y4d, and Y5e
>> X = linspace(-2,2,36);
>> subplot (2,2,1);
>> Y21 = 5*X.̂ 2;
>> Y22 = 2*X.̂ 2;
>> Y23 = X.̂ 2;
>> Y24 = -5*X.̂ 2;

CRC_47744_Ch005.indd 313CRC_47744_Ch005.indd 313 6/27/2008 4:28:27 PM6/27/2008 4:28:27 PM

314 Practical MATLAB® Basics for Engineers

>> Y25 = -2*X.̂ 2;
>> plot (X,Y21,X,Y22,X,Y23,X,Y24,X,Y25)
>> title (‘Y2b = b*x^2, for b = 5,2,1,-5,-2’);
>> ylabel(‘Amplitude of Y2b’);xlabel(‘x’);
>> subplot (2,2,2);
>> Y31 = -5*X.̂ 2;
>> Y32 = -2*X.̂ 2;
>> Y33 = -X.̂ 2;
>> Y34 = -.5*X.̂ 2;
>> Y35 = -.1*X.̂ 2;
>> plot (X,Y31,X,Y32,X,Y33,X,Y34,X,Y35);xlabel(‘x’);
>> title (‘Y3c = c*x^2, for c = -5,-2,-1,-.5,-.1’);
>> ylabel(‘Amplitude of Y3c’);
>> subplot(2,2,3);
>> Y41 = X.̂ 2+2;
>> Y42 = X.̂ 2+1;
>> Y43 = X.̂ 2;
>> Y44 = X.̂ 2-1;
>> Y45 = X.̂ 2-2;
>> plot (X,Y41,X,Y42,X,Y43,X,Y44,X,Y45);
>> xlabel(‘x’);
>> title (‘Y4d = x^2+d, for d = 2,1,0,-1,-2’);
>> ylabel(‘Amplitude of Y4d’);
>> subplot (2,2,4);
>> Y51 = -X.̂ 2+2;
>> Y52 = -X.̂ 2+1;
>> Y53 = -X.̂ 2;
>> Y54= -X.̂ 2-1;
>> Y55 = -X.̂ 2-2;
>> plot (X,Y51,X,Y52,X,Y53,X,Y54,X,Y55);xlabel(‘x’);
>> title (‘Y5e = -x^2+e, for e = 2,1,0,-1,-2’);
>> ylabel(‘Amplitude of Y5e’);

>> The resulting plots are shown in Figure 5.76.

>> % part (c and d) , plots of Y6f and Y7g
>> clf
>> X = linspace(-2,2,36);
>> subplot(2,1,1);
>> Y61=5*X.̂ 2;
>> Y62 = 2*X.̂ 2;
>> Y63 = X.̂ 2;
>> Y64 =.5*X.̂ 2;
>> Y65 =.1*X.̂ 2;
>> plot(X,Y61,X,Y62,X,Y63,X,Y64,X,Y65);
>> ylabel(‘Amplitude of Y6f’); xlabel(‘x’)
>> title(‘Y6f = f*x^2, for f = 5,2,1,0.5,0.1’)
>> subplot(2,1,2);
>> X= linspace(0,5,50);
>> Y71 = exp(-5.*X);
>> Y72 = exp(-2.*X);
>> Y73 = exp(-X);
>> Y74 = exp(-.5*X);
>> Y75 = exp(-.1*X);
>> plot(X,Y71,X,Y72,X,Y73,X,Y74,X,Y75)

CRC_47744_Ch005.indd 314CRC_47744_Ch005.indd 314 6/27/2008 4:28:27 PM6/27/2008 4:28:27 PM

Printing and Plotting 315

FIGURE 5.75
Plot of Example 5.3(a).

2 4

3

2

1

0

1

0

A
m

pl
itu

de
 o

f Y
11

A
m

pl
itu

de
 o

f Y
14

A
m

pl
itu

de
 o

f Y
12

A
m

pl
itu

de
 o

f Y
15

10

5

0

−5

−10

A
m

pl
itu

de
 o

f Y
13

A
m

pl
itu

de
 o

f Y
16

−1

−2

40

15

10

5

0

40

20

0

20

−40

80

60

40

20

0

−2 0 2 −2 0 2 −2 0 2

Y11 = x

Y14 = x4 Y15 = x5 Y16 = x6

Y11 = x2 Y13 = x3

x x x

−2 0 2 −2 0 2 −2 0 2
x x x

FIGURE 5.76
Plots of Example 5.3(b).

20

10

0

0
x

1 2

−10

−20
−2 −1 0

0

−5

−10

−15

−20

x
1 2−2 −1

0
x

1 2−2
−2

−1 0
x

1 2−2
−6

−4

−2

−1

Y2b = b∗x2, for b = 5,2,1,−5,−2

Y4d = x2+d, for d = 2,1,0,−1,−2

Y3c = c∗x2, for c = −5,−2,−1,−5,−1

Y5e = −x2+e, for e = 2,1,0,−1,−2
6

4

2

0

0

2

A
m

pl
itu

de
 o

f Y
2b

A
m

pl
itu

de
 o

f Y
3c

A
m

pl
itu

de
 o

f Y
5e

A
m

pl
itu

de
 o

f Y
4d

>> title(‘Y7k = en(-gx), for g = 5,2,1,0.5,0.1’);
>> ylabel(‘Amplitude of Y7k’); xlabel(‘x’)

 The plots for parts c and d are shown in Figure 5.77.

CRC_47744_Ch005.indd 315CRC_47744_Ch005.indd 315 6/27/2008 4:28:27 PM6/27/2008 4:28:27 PM

316 Practical MATLAB® Basics for Engineers

Example 5.4

Create the script fi le, sin_x_over_x that returns the plot of [f(x) = sin(x)/x] versus x using
the following commands:

 1. fplot
 2. ezplot
 3. plot
 4. ezpolar

in four different subwindows over the domain −5π ≤ x ≤ 5π.
Analyze the commands used and the resulting plots in each case.

MATLAB Solution
% Script file: sin _ x _ over _ x
FX = ‘sin(X)/X’;
subplot(2,2,1);
fplot(FX, [-5*pi, 5*pi]);xlabel(‘x axis’); ylabel(‘y-axis’);
title(‘[sin(x)/x] vs x, using fplot’)
subplot(2,2,2)
ezplot(FX, [-5*pi, 5*pi])
title(‘[sin(x)/x] vs x, using ezplot’)
subplot(2,2,3)
X = linspace(-5*pi,5*pi,100);
Y = sin(X)./X;
plot(X,Y);xlabel(‘x axis’); ylabel(‘y-axis’);
title(‘[sin(x)/x] vs x, using plot’)
subplot(2,2,4)
ezpolar(FX, [-5*pi, 5*pi])
title(‘[sin(x)/x] vs x, using ezpolar’)

 The script fi le, sin_x_over_x is executed and the resulting plots are shown in Figure 5.78.

FIGURE 5.77
Plots of Example 5.3(c and d).

x

1

0.8

0.6

0.4

0.2

0
0 0.5 1 2 3 4 53.5 4.52.51.5

Y7k = e−gx, for g = 5,2,1,0.5,0.1

A
m

pl
itu

de
 o

f Y
7k

20

15

10

0
x

1 2

5

0
−2 −1

Y6f = f∗x2, for f = 5,2,1,0.5,0.1

A
m

pl
itu

de
 o

f Y
6f

CRC_47744_Ch005.indd 316CRC_47744_Ch005.indd 316 6/27/2008 4:28:28 PM6/27/2008 4:28:28 PM

Printing and Plotting 317

Example 5.5

Create the script fi le, three_circ that returns the plot consisting of three concentric circles
with radius of 1, 2, and 3, where the innermost circle is shaded (fi lled).

MATLAB Solution
% Script file: three _ circ
t = 0:0.01:2*pi;
X = cos(t);
Y = sin(t);
Area (X,Y)
hold on
X=2*cos(t);
Y= 2*sin(t);
plot (X,Y)
hold on
X=3*cos(t);Y=3*sin(t);
plot (X,Y)
axis([-3.5 3.5 -3.5 3.5]);
xlabel(‘X’), ylabel(‘Y’),title(‘3 concentric circles’)

 The script fi le, three_circ is executed, and the resulting plot is shown in Figure 5.79.

FIGURE 5.78
Plots of Example 5.4.

−10 0 10 −10 0 10
−0.5

0

0.5

1

x axis

y-
ax

is

[sin(x)/x] versus x, using fplot

−0.2

0

0.2

0.4

0.6

0.8

X

[sin(x)/x] versus x, using ezplot

−20 −10 0 10 20
−0.5

0

0.5

1

x axis

y-
ax

is

[sin(x)/x] versus x, using plot

0.5

 1

30

210

60

240

90
120

300

150

330

180 0

[sin(x)/x] versus x, using ezpolar

r = sin(X)/X

270

CRC_47744_Ch005.indd 317CRC_47744_Ch005.indd 317 6/27/2008 4:28:28 PM6/27/2008 4:28:28 PM

318 Practical MATLAB® Basics for Engineers

Example 5.6

Write a program that returns the plots of each of the following equations:

 1. r1 = 10 sin(β)
 2. r2 = −10 sin(β)
 3. r3 = 10 cos(β)
 4. r4 = −10 cos(β)

in separate subplots using the polar coordinate system over the range 0 ≤ β ≤ 2π, and ver-
ify that, in effect each function returns a circle with a radius of 5 on each axis segment.

MATLAB Solution
>> Beta = linspace(0,2*pi,50);
>> R1=10*sin(Beta);
>> subplot(2,2,1)
>> polar(Beta,R1)
>> title(‘10sin(Beta)’)
>> subplot(2,2,2)
>> R2 = -R1;
>> polar(Beta,R2)
>> title(‘-10sin(Beta)’)
>> subplot(2,2,3)
>> R3 =10*cos(Beta);
>> polar (Beta,R3)
>> title(‘10cos(Beta)’)
>> subplot(2,2,4)
>> R4 = -R3;
>> polar(Beta,R4)
>> title(‘-10cos(Beta)’)

 The resulting plots are shown in Figure 5.80.

FIGURE 5.79
Plots of Example 5.5.

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

X

Y

3 concentric circles

CRC_47744_Ch005.indd 318CRC_47744_Ch005.indd 318 6/27/2008 4:28:28 PM6/27/2008 4:28:28 PM

Printing and Plotting 319

Example 5.7

Modify the program of Example 5.6 so that the four (circles) equations are plotted on
the same polar graph.

MATLAB Solution
>> clf
>> Beta = linspace(0,2*pi,50);
>> R1=10*sin(Beta);
>> R2 =-R1;
>> R3 =10*cos(Beta);
>> R4 =-R3;
>> polar (Beta,R1);
>> hold on
>> polar (Beta,R2);
>> hold on
>> polar (Beta,R3);
>> hold on
>> polar (Beta,R4);
>> title (‘[10sin(Beta), -10sin(Beta), 10cos(Beta), -10cos(Beta)] vs Rs,

onone polar graph’)

 The resulting plot is shown in Figure 5.81.

FIGURE 5.80
Plots of Example 5.6.

10sin(Beta)

90
60

30

0

5 5

330

300
270

240

210

280

150

120
10

10cos(Beta)

90
60

30

0

5

330

300
270

240

210

280

150

120
10

-10sin(Beta)

90
60

30

0

330

300
270

240

210

280

150

120
10

5

-10cos(Beta)

90
60

30

0

330

300
270

240

210

280

150

120
10

CRC_47744_Ch005.indd 319CRC_47744_Ch005.indd 319 6/27/2008 4:28:28 PM6/27/2008 4:28:28 PM

320 Practical MATLAB® Basics for Engineers

Example 5.8

Create the script fi le, ez_xsinx with the objective to solve the following non linear equa-
tion graphically: x sin(x) = sin(1/x); on two intervals: inside and outside the domain
−0.15 ≤ x ≤ 0.15 using ezplot, when and if possible.

ANALYTICAL Solution

The functions x sin(x) and sin(1/x) are plotted separately inside and outside −0.15 ≤ x ≤
0.15, and the intersection of the two plots represent the points where x sin(x) = sin(1/x),
and constitute the solutions.

MATLAB Solution
% Script file: ez _ xsinx

figure(1)
ezplot(‘sin(1/x)’)
hold on
ezplot(‘x*sin(x)’)
disp(‘***’)
disp(‘The solutions outside -0.15≤ x ≤0.15 are :’)
ginput
disp(‘***’)

figure(2)
ezplot(‘sin(1/x)’)
hold on

FIGURE 5.81
Plot of Example 5.7.

2

4

6

 8

10

30

210

60

240

90

270

120

300

150

330

180 0

[10sin(Beta), -10sin(Beta), 10cos(Beta), -10cos(Beta)] versus Rs on one polar graph

CRC_47744_Ch005.indd 320CRC_47744_Ch005.indd 320 6/27/2008 4:28:29 PM6/27/2008 4:28:29 PM

Printing and Plotting 321

ezplot(‘x*sin(x)’)
axis([-0.5 0.5 -2 2])

The script fi le, ez_xsinx is executed and the results are shown in Figures 5.82 and 5.83.

The solutions outside -0.15≤ x ≤0.15 are :
 -6.2253 -0.1880
 -3.2429 -0.3309
 0.9555 0.8119
 3.0403 0.2881
 6.2253 0.1215
**

FIGURE 5.82
ezplot of Example 5.8.

−6 −4 −2 0 2 4 6

−5

−4

−3

−2

−1

0

1

2

x

x sin(x) and sin(1/x)

FIGURE 5.83
ezplot of Example 5.8 over −0.5 ≤ x ≤ 0.5.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

x sin(x) and sin(1/x)

CRC_47744_Ch005.indd 321CRC_47744_Ch005.indd 321 6/27/2008 4:28:29 PM6/27/2008 4:28:29 PM

322 Practical MATLAB® Basics for Engineers

Observe that the returned plot inside −0.5 ≤ x ≤ 0.53 is not well defi ned (continuous)
for all values of x, since the MATLAB command ezplot does not assign a suffi cient num-
ber of points. To obtain the solutions of x sin(x) = sin(1/x) over the range −0.15 ≤ x ≤
0.15, the numerical script fi le num_xsinx is created, indicated as follows:

MATLAB Solution
% Script file: num _ xsinx
x = -0.15:0.001:0.15;
y1 = x.*sin(x);
y2 = x.*sin(1./x);
plot (x,y1,x,y2,’o’,x,y2)
axis equal;
legend (‘y1’,’y2’)
xlabel(‘x’), ylabel(‘y1 & y2’),title(‘y1=xsin(x)and y2=xsin(1/x)’)
disp(‘***’)
disp(‘ Five solutions over the range -0.15≤ x ≤0.15 are shown below ’)
disp(‘***’)
[x,y] = ginput(5)
disp(‘***’)

The script fi le, num_xsinx is executed and the solutions in the range −0.15 ≤ x ≤ 0.15
are many, as seen in Figure 5.84. To illustrate the process, only fi ve numerical solutions
are shown.

FIGURE 5.84
(See color insert following page 342.) Numerical plot of Example 5.8 over −0.15 ≤ x ≤ 0.15.

0.12

0.1

0.08

0.06

0.04

0.02

0

−0.02

−0.04

−0.06

−0.08

−0.1 −0.05 0 0.05 0.1 0.15

X

y1
y2

y1 = xsin(x) and y2 = xsin(1/x)

y1
 &

 y
2

CRC_47744_Ch005.indd 322CRC_47744_Ch005.indd 322 6/27/2008 4:28:29 PM6/27/2008 4:28:29 PM

Printing and Plotting 323

>> num _ xsinx
Warning: Divide by zero.
>> In C:\MATLAB6p1\work\A.m at line 4

Five solutions over the range -0.15 ≤ x ≤ 0.15 are shown below

 x =
 -0.1069
 -0.0792
 -0.0633
 -0.0522
 -0.0460
 y =
 0.0113
 0.0071
 0.0043
 0.0037
 0.0023

Example 5.9

Create the script fi le, sin_cos that returns the following plots:

 1. x1 = 5 cos(2β) versus y1 = 5 sin(β) over −2π ≤ β ≤ 2π
 2. x2 = sin(2β + π/3) versus y2 = sin(β) over −2π ≤ β ≤ 2π

 1. On different subplots using the same scale
 2. On the same plot, but using different scales with 100 linearly spaced points

MATLAB Solution
% Script file: sin _ cos
Beta = linspace(-2*pi,2*pi,100); % creates a 100 element Beta array

figure(1)
subplot(2,1,1)
X1 = 5*cos(2*Beta);
Y1 = 5*sin(Beta);
plot(X1,Y1) % returns the plot of X1 vs Y1
ylabel(‘Y1’)
title(‘X1=5*cos(2*Beta) vs Y1 = 5*sin(Beta)’);
subplot(2,1,2)
X2 = sin(2*Beta+pi/3);
Y2 =sin(Beta);
plot(X2,Y2) % returns the plot of X2 vs Y2
title(‘X2 = sin(2*Beta + pi /3) vs Y2 = sin(Beta)’);
ylabel(‘Y2’), xlabel(‘Beta’)

figure(2)
plotyy(X1,Y1,X2,Y2) % returns the plots of Y1 vs X &

Y2 vs X
 % on different scales
xlabel (‘Beta’), ylabel (‘Y1,Y2’)
title(‘X1 vs Y1 and X2 vs Y2’);

 The script fi le, sin_cos is executed, and the resulting plots are shown in Figures 5.85
and 5.86.

CRC_47744_Ch005.indd 323CRC_47744_Ch005.indd 323 6/27/2008 4:28:30 PM6/27/2008 4:28:30 PM

324 Practical MATLAB® Basics for Engineers

 Observe that the plot of Figure 5.86 shows a clearer relation between the two plots
illustrated in the separate plots of Figure 5.85.

Example 5.10

Create a 3-D plot from a 2-D, 11 × 11 matrix (in the xy plane) having ones along the main
diagonals, zeros everywhere else, with the center element having a magnitude of 2. It
is desired that the zx planes indicate the magnitudes of the elements position on the xy
plane all having triangular shapes.

FIGURE 5.85
Plots of Example 5.9(1).

5

0

−5
−5 −4 −3 −2 −1 0 1 2 3 4 5

1

0.5

0

−0.5

−1
−1 −0.8 −0.6 −0.4 −0.5 0 0.2 0.4 0.6 0.8 1

Y
1

Y
2

Beta

X1 = 5∗cos(2∗Beta) versus Y1 = 5∗sin(Beta)

X2 = sin(2∗Beta + pi /3) versus Y2 = sin(Beta)

FIGURE 5.86
Plots of Example 5.9(2).

5

0

Y
1,

Y
2

−5
−5 −4 −3 −2 −1 0 1 2 3 4 5

−1

0

1

Beta

X1 versus Y1 and X2 versus Y2

CRC_47744_Ch005.indd 324CRC_47744_Ch005.indd 324 6/27/2008 4:28:30 PM6/27/2008 4:28:30 PM

Printing and Plotting 325

MATLAB Solution
>> format compact
>> M = eye(11);
>> N = fliplr(M);
>> addMN = M+N

 addMN =
 1 0 0 0 0 0 0 0 0 0 1
 0 1 0 0 0 0 0 0 0 1 0
 0 0 1 0 0 0 0 0 1 0 0
 0 0 0 1 0 0 0 1 0 0 0
 0 0 0 0 1 0 1 0 0 0 0
 0 0 0 0 0 2 0 0 0 0 0
 0 0 0 0 1 0 1 0 0 0 0
 0 0 0 1 0 0 0 1 0 0 0
 0 0 1 0 0 0 0 0 1 0 0
 0 1 0 0 0 0 0 0 0 1 0
 1 0 0 0 0 0 0 0 0 0 1

>> mesh(addMN)
>> AX = [0 12 1 12 0 2]

 AX =
 0 12 1 12 0 2

>> axis(AX)
>> xlabel(‘X’), ylabel(‘Y’), zlabel(‘Z’)
>> title(‘3D Plot of Example 5.9’)

 The resulting graph is shown in Figure 5.87.

FIGURE 5.87
Three-dimensional plot of Example 5.10.

3-D plot of Example 5.9

2

1.5

1

0.5

0
12

10
8

6
4

2Y
0

4
6

8
10

12

X2

Z

CRC_47744_Ch005.indd 325CRC_47744_Ch005.indd 325 6/27/2008 4:28:30 PM6/27/2008 4:28:30 PM

326 Practical MATLAB® Basics for Engineers

Example 5.11

Write a program that returns the plot of the 3-D trajectory of a particle defi ned by the
following set of spatial equations:

x = r cos(2t)

y = r sin(2t)

z = t

where r = e−t/7 over the range 0 ≤ t ≤ 12π.

 1. Show the 3-D view
 2. Show the front and top views
 3. Show the resulting view by using the command view(30, 120)

MATLAB Solution
>> T = linspace(0,12*pi,400);
>> Z =T;
>> R = exp(-T/7);
>> X = R.*cos(2*T);
>> Y= R.*sin(2*T);
>> subplot (2,2,1); plot3(X,Y,Z)
>> grid on
>> xlabel (‘X’), ylabel(‘Y’), zlabel(‘Z’)
>> title (‘3D view for Example 5.11’)
>> subplot(2,2,2); plot3(X,Y,Z); view(0,90)
>> grid on
>> xlabel (‘X’),ylabel(‘Y’)
>> title (‘XY Plane Projection’)
>> subplot
(2,2,3); plot3(X,Y,Z); view(0,0)
>> grid on
>> xlabel(‘X’),zlabel(‘Z’)
>> title(‘XZ Plane Projection’)
>> subplot(2,2,4); plot3(X,Y,Z); view(30,120)
>> grid on
>> xlabel(‘X’),ylabel(‘Y’),zlabel(‘Z’)
>> title(‘3D Plot Using View (30,120)’)

 The resulting plots are shown in Figure 5.88.

Example 5.12

Write a program that returns the plot of the 3-D trajectory of a particle defi ned by the
following set of spatial equations:

 x = t

 y = (−t + 10π) cos(t)

 z = 3e0.2t − 3

over the range 0 ≤ t ≤ 10, and show the following views:

 1. The 3-D view using stem3
 2. The 3-D view using plot3
 3. The xy view

CRC_47744_Ch005.indd 326CRC_47744_Ch005.indd 326 6/27/2008 4:28:30 PM6/27/2008 4:28:30 PM

Printing and Plotting 327

 4. The xz view
 5. The zy view

MATLAB Solution
>> format compact;
>> t = linspace(0,10*pi,200);
>> X = t;
>> Y=(-t+10*pi).*cos(t);
>> Z=3*exp(0.2*t)-3;
>> stem3(X,Y,Z)
>> xlabel(‘t’), ylabel(‘(-t+10*pi).*cos(t)’)
>> zlabel(‘3*exp(0.2*t)-3’),title(‘Stem3(X,Y,Z), 3D View’)
>> % the graph is shown in Figure 5.89
>> subplot(2,2,1); plot3(X,Y,Z)
>> grid on
>> xlabel(‘X’),ylabel(‘Y’),zlabel(‘Z’)
>> title(‘Plot3(X,Y,Z), 3D View’)
>> subplot(2,2,2); plot3(X,Y,Z); view(0,0)
>> xlabel(‘X’),zlabel(‘Z’)
>> title(‘XZ View’)
>> subplot(2,2,3); plot3(X,Y,Z); view(0,90)
>> xlabel(‘X’),ylabel(‘Y’)
>> title(‘XY View’)
>> subplot(2,2,4); plot3(X,Y,Z); view(90,0)
>> ylabel(‘Y’),zlabel(‘Z’)
>> title(‘YZ View’)

 The resulting plots are shown in Figure 5.90.

FIGURE 5.88
view plots of Example 5.11.

3-D view for Example 5.11 XY Plane Projection

XZ Plane Projection
3-D Plot Using View (30, 120)

40

20

0

0 0

1

−1 −1

1

Y
X

Z

1

0.5

0

-0.5

−1
−1

−0.5 0 0.5 1

Y

X

40

30

20

10

0
−1 −0.5 0 0.5 1

Z
1

0

−1
0

−1
40

20

0

Z
X

X

1

CRC_47744_Ch005.indd 327CRC_47744_Ch005.indd 327 6/27/2008 4:28:31 PM6/27/2008 4:28:31 PM

328 Practical MATLAB® Basics for Engineers

FIGURE 5.89
3-D stem plot of Example 5.12(1).

2000

1500

1000

500

0

20

-20
-40

40

0

0

20
10

30
40

t

Stem3(X, Y, Z) 3-D View

3
*e

xp
(0

.2
*t

)-
3

(-t+10*pi). *cos(t)

FIGURE 5.90
View plots of Example 5.12(2, 3, 4, and 5).

2000

1000

0
50

0

0
20

40
500

−50 X
0

0 10 20 30 40

2000

1500

1000Z

Y

XY View
2000

1000

500

0
−40 −20 0 40200

0

4020 3010

1500

YX

40

−40

20

−20

Y Z

XZ View

XZ View

X

Plot3(X,Y,Z), 3-D View

Z

CRC_47744_Ch005.indd 328CRC_47744_Ch005.indd 328 6/27/2008 4:28:31 PM6/27/2008 4:28:31 PM

Printing and Plotting 329

Example 5.13

Create a program that returns the polar plot of a rose in the polar coordinate system
given by the following equations:

 R1 = 3 cos(nβ) versus β and R2 = 3 sin(nβ) versus β

over the range 0 ≤ β ≤ 2π, using 200 linearly spaced points.
Verify that the given set of equations returns a rose fi gure with 2n petals when n is

even, and n petals when n is odd. Test the program and verify the preceding statements
for n = 4 and n = 5.

MATLAB Solution
>> Beta = linspace(0,2*pi,200);
>> R1 = 3*cos(4*Beta);
>> subplot(2,2,1);polar(Beta,R1)
>> title(‘Rose Figure for R1=3*cos(4*Beta)’)
>> R2 = 3*sin(4*Beta);
>> subplot(2,2,2); polar(Beta,R2)
>> title(‘Rose Figure for R2=3*sin(4*Beta)’)
>> R3 = 3*cos(5*Beta);
>> subplot(2,2,3); polar(Beta,R3)
>> title(‘Rose Figure for R3=3*cos(5*Beta)’)
>> R4 = 3*sin(5*Beta);
>> subplot(2,2,4); polar(Beta,R4)
>> title(‘Rose Figure for R4=3*sin(5*Beta)’)

 The resulting plots are shown in Figure 5.91.

FIGURE 5.91
Plots of Example 5.13.

150

180

210

240
270

300

330

0

30

60
4

90
120

150

180

210

240
270

300

330

0

30

60
4

90
120

150

180

210

240
270 300

330

0

30

60
490

120

150

180

210

240
270

300

330

0

30

60
4

90120

Rose Figure for R1 = 3*cos(4*Beta)

Rose Figure for R3 = 3*cos(5*Beta) Rose Figure for R4 = 3*sin(5*Beta)

Rose Figure for R2 = 3*sin(4*Beta)

2 2

2 2

CRC_47744_Ch005.indd 329CRC_47744_Ch005.indd 329 6/27/2008 4:28:31 PM6/27/2008 4:28:31 PM

330 Practical MATLAB® Basics for Engineers

Example 5.14

On the basis of the earlier example, create the script fi le, black_white_rose that returns an
eight-petal black rose and a fi ve-petal white rose.

MATLAB Solution
% Script file: black _ white _ rose
clear; clf % clears variables and the figure window
T=linspace(0,2*pi,200);
subplot(1,2,1)
R=3*cos(4*T);
X=abs(R).*cos(T);
Y=abs(R).*sin(T);
fill(X,Y,’k’)
axis(‘square’)
title(‘8 petal black rose’)
subplot(1,2,2)
R1=3*sin(5*T);
X1 = (R1).*cos(T);
Y1= (R1).*sin(T);
plot(X1,Y1);
axis(‘square’)
title(‘5 petal white rose’)

 The script fi le, black_white_rose is executed, and the results are shown in Figure 5.92.

FIGURE 5.92
Plots of a black and white rose of Example 5.14.

3

2

1

0

−1

−2

−4
−3

0−2 2 4

3

2

1

0

−1

−2

−4
−3

0−2 2 4

8 petal black rose 5 petal white rose

Example 5.15

Write a program that returns the 3-D mesh and surf plots of the following function:

Z sin x cos y�

� �
(2) . (2) exp

sqrt x y()2 2

2






over the ranges −π ≤ x ≤ π and −π ≤ y ≤ π.

MATLAB Solution
>> XY= linspace(-pi,pi,100);
>> YX =XY;

CRC_47744_Ch005.indd 330CRC_47744_Ch005.indd 330 6/27/2008 4:28:31 PM6/27/2008 4:28:31 PM

Printing and Plotting 331

>> [X,Y] = meshgrid(XY,YX);
>> Z = sin(2.*Y).*cos(2.*X).*exp(-sqrt(X.̂ 2+Y.̂ 2)./2);
>> subplot (2,1,1);
>> mesh (X,Y,Z)
>> xlabel (‘X’),ylabel(‘Y’),zlabel(‘Z’)
>> title (‘Mesh Plot’)
>> subplot(2,1,2);
>> surf (X,Y,Z)
>> xlabel(‘X’),ylabel(‘Y’),zlabel(‘Z’)
>> title(‘Surf Plot’)

 The resulting plots are shown in Figure 5.93.

FIGURE 5.93
(See color insert following page 342.) 3-D mesh and surf plots of Example 5.15.

Mesh Plot

1

0Z

−1

2
4

−2

−4 −4
−2

0

4

20
Y

X

Surf Plot

1

0

−1
4

2

0

−2
−4 −4

−2
0

2

4

Y
X

Z

CRC_47744_Ch005.indd 331CRC_47744_Ch005.indd 331 6/27/2008 4:28:32 PM6/27/2008 4:28:32 PM

332 Practical MATLAB® Basics for Engineers

Example 5.16

Write a program that returns the contour and view plots with arguments (0, 0), (90, 0),
(−127.5, 0), and (−82.5, 0) of the fi gure of Example 5.15.

MATLAB Solution
% Script file: cont _ view
XY = linspace (-pi,pi,100);
YX = XY;
[X,Y] = meshgrid(XY,YX);
Z = sin(2.*Y).*cos(2.*X).*exp(-sqrt(X.̂ 2+Y.̂ 2)./2);

Figure (1) % contour plot
contour (X,Y,Z,13)
xlabel (‘X’), ylabel (‘Y’), zlabel (‘Z’)
title (‘Contour plot’)

figure (2) % view plots
subplot (2,2,1)
surf (X,Y,Z)
shading faceted
view (0,0);
xlabel (‘X’),ylabel (‘Y’), zlabel (‘Z’)
subplot (2,2,2)
surf (X,Y,Z)
shading faceted
view (90,0)
xlabel (‘X’),ylabel(‘Y’), zlabel(‘Z’)
subplot (2,2,3)
surf (X,Y,Z)
shading faceted
view (-37.5-90,0)
xlabel (‘X’),ylabel(‘Y’), zlabel(‘Z’)
subplot (2,2,4)
surf (X,Y,Z)
shading faceted
view (-37.5-45,0)
xlabel (‘X’),ylabel (‘Y’), zlabel (‘Z’)

 The resulting plots are shown in Figures 5.94 and 5.95.

CRC_47744_Ch005.indd 332CRC_47744_Ch005.indd 332 6/27/2008 4:28:32 PM6/27/2008 4:28:32 PM

Printing and Plotting 333

FIGURE 5.94
(See color insert following page 342.) Contour plot of Example 5.16.

−3

−3

−1−2 0 1 2 3

X

−2

−1

0

1

2

3

Y

Contour plot

FIGURE 5.95
View plots of Example 5.16.

1

0.5

−0.5

0

−1
−4 −2 0 2 4

X

view(0,0)

view(-127.5,0) view(-82.5,0)

view(90,0)

View plots

Z

Z

Z

Z

1

0.5

−0.5

0

−1

1

0.5

−0.5

0

−1

1

0.5

−0.5

0

−1
−4 −2 0 2 4

Y

5 −5 −50 0 5 −5 50 0

XYX Y

CRC_47744_Ch005.indd 333CRC_47744_Ch005.indd 333 6/27/2008 4:28:32 PM6/27/2008 4:28:32 PM

334 Practical MATLAB® Basics for Engineers

Example 5.17

Given the function z = 16x4 + 15x2 − x + 6 − 2yx2 + 15y2 − y, over the ranges of x and y
given by −3 ≤ x ≤ 3 and −3 ≤ y ≤ 9. Create the script fi le, fn_z that returns the 3-D plots
of z using the following commands:

 1. mesh
 2. meshe
 3. meshz
 4. surf
 5. surfc
 6. waterfall

MATLAB Solution
%Script file: fn _ z
XY=linspace(-3,3,19);
YX=linspace(-3,9,21);
[x,y]=meshgrid(XY,YX);
z=16*x.̂ 4+15*x.̂ 2-x+6-2*y.*x.̂ 2+15*y.̂ 2-y;

figure(1);
mesh(x,y,z);
box on; axis on;
xlabel(‘x-axis’);ylabel(‘y-axis’);zlabel(‘z-axis’)
title(‘Plot using mesh’)

figure(2)
meshc(x,y,z)
box on; axis on;
xlabel(‘x-axis’);ylabel(‘y-axis’);zlabel(‘z-axis’)
title(‘Plot using meshc’)

figure(3)
meshz(x,y,z)
box on; axis on;
xlabel(‘x-axis’);ylabel(‘y-axis’);zlabel(‘z-axis’)
title(‘Plot using meshz’)

figure(4);
surf(x,y,z);
box on; axis on;
xlabel(‘x-axis’);
ylabel(‘y-axis’);zlabel(‘z-axis’)
title(‘Plot using surf’)

figure(5)
surfc(x,y,z)
box on; axis on;
xlabel(‘x-axis’);ylabel(‘y-axis’);zlabel(‘z-axis’)
title(‘Plot using surfc ‘)

figure(6)
waterfall(x,y,z)
box on; axis on;
xlabel(‘x-axis’);ylabel(‘y-axis’);zlabel(‘z-axis’)
title(‘Plot using waterfall’)

 The script fi le, fn_z is executed and the resulting plots are shown in Figures 5.96
through 5.101.

CRC_47744_Ch005.indd 334CRC_47744_Ch005.indd 334 6/27/2008 4:28:32 PM6/27/2008 4:28:32 PM

Printing and Plotting 335

FIGURE 5.96
(See color insert following page 342.) 3-D plot using mesh of Example 5.17.

2500

2000

1500

1000

500

0
10

5

−5 −4
−2

0 0
2

4

x-axisy-axis

Plot using mesh

z-
ax

is

FIGURE 5.97
(See color insert following page 342.) 3-D plot using meshc of Example 5.17.

−5 −4
−2

2
4

0

x-axis
y-axis

z-
ax

is

0

Plot using meshc

2500

2000

1500

1000

500

0

5

10

CRC_47744_Ch005.indd 335CRC_47744_Ch005.indd 335 6/27/2008 4:28:33 PM6/27/2008 4:28:33 PM

336 Practical MATLAB® Basics for Engineers

FIGURE 5.99
(See color insert following page 342.) 3-D plot using surf of Example 5.17.

z-
ax

is

2500

2000

1500

1000

500

0
10

Plot using surf

−5 −4
−2

2
4

0

x-axis
y-axis 0

5

FIGURE 5.98
(See color insert following page 342.) 3-D plot using meshz of Example 5.17.

Plot using meshz

2500

2000

1500

1000

500

0
10

5

0

−5 −4
−2

0
2

4

x-axis
y-axis

z-
ax

is

CRC_47744_Ch005.indd 336CRC_47744_Ch005.indd 336 6/27/2008 4:28:33 PM6/27/2008 4:28:33 PM

Printing and Plotting 337

FIGURE 5.100
(See color insert following page 342.) 3-D plot using surfc of Example 5.17.

Plot using surfc

2500

2000

1500

1000

500

0

5

0

−5 −4
−2

0
2

4

x-axis
y-axis

z-
ax

is

10

FIGURE 5.101
(See color insert following page 342.) 3-D plot using waterfall of Example 5.17.

Plot using waterfall

2500

2000

1500

1000

500

0
10

5

0

−5 −4
−2

0
2

4

x-axis

y-axis

z-
ax

is

CRC_47744_Ch005.indd 337CRC_47744_Ch005.indd 337 6/27/2008 4:28:33 PM6/27/2008 4:28:33 PM

338 Practical MATLAB® Basics for Engineers

Example 5.18

Create the script fi le, ctl_sphere that return the normalized shapes of: a cone, a cylinder,
and a sphere using a purely mathematical approach (the MATLAB cylinder and sphere
commands cannot be used in this example).

MATLAB Solution
% Script file: ctl _ sphere

figure(1)
[r,ang] = meshgrid(linspace(0,1,50),linspace(0,2*pi,50));
x = r.*cos(ang);
y = r.*sin(ang);
surf(x,y,r);axis equal

figure(2)
[a,b] = meshgrid(linspace(0,2*pi,50),-1:2:1);
x = cos(a);
y = sin(a);
surf(x,y,b)
axis equal

figure(3)
[c,d] = meshgrid(linspace(0,2*pi,50),linspace(0,pi,25));
x = cos(c).*sin(d);
y = sin(c).*sin(d);
z = cos(d);
surf(x,y,z)
axis equal

 The resulting plots are shown in Figures 5.102 through 5.104.

FIGURE 5.102
(See color insert following page 342.) 3-D plot of the cone of Example 5.18.

1

0.5

0

0.5

−0.5
−0.5

0.50
0

x-axis

y-axis

z-
ax

is

1

CRC_47744_Ch005.indd 338CRC_47744_Ch005.indd 338 6/27/2008 4:28:34 PM6/27/2008 4:28:34 PM

Printing and Plotting 339

5.5 Further Analysis

Q.5.1 Load and run the program of Example 5.1.
Q.5.2 Execute the fi rst instruction without the semicolon. What is the objective and pur-

pose of this instruction?
Q.5.3 Execute the second instruction without the semicolon. What is the purpose of the

second instruction?
Q.5.4 With only the fi rst and second instruction, is it possible to sketch sin(x) versus x by

hand?
Q.5.5 Is it possible to create the four plots of Figures 5.64 through 5.68 using one plot

instruction per fi gure? If it is, indicate how.
Q.5.6 Indicate how to move the legend to the upper-left corner of Figure 5.68.
Q.5.7 Identify the curves shown in Figure 5.67 using a text command.
Q.5.8 Is it possible to use the stem command when plotting more than one function? Test

your answer.
Q.5.9 Is it possible to use the stair instruction when plotting more than one function? Test

your answer.
Q.5.10 Load and run the program of Example 5.2.
Q.5.11 Rearrange the subplots shown in Figure 5.72 in at least two other ways.
Q.5.12 Rearrange the four subplots shown in Figure 5.72 in a way that each one occupies

the whole fi gure window.
Q.5.13 Discuss the elements that distinguish each of the following families of curves:

a. Y1, Y2, and Y3
b. Y4, Y5, and Y6
c. Y7, Y8, and Y9
d. Y11, Y12, Y13, and Y14
e. Y15, Y16, Y17, and Y18

FIGURE 5.103
3-D plot of the cylinder of Example 5.18.

1

0.5

−0.5

0.5

−0.5 −0.5

0.5

0

−1

0
0

1

x-axis
y-axis

z-
ax

is

FIGURE 5.104
(See color insert following page 342.) 3-D plot of the
sphere of Example 5.18.

1

0.5

−0.5

0.5

−0.5
−0.5

0.5

0

−1

0
0

1

x-axis
y-axis

z-
ax

is

CRC_47744_Ch005.indd 339CRC_47744_Ch005.indd 339 6/27/2008 4:28:34 PM6/27/2008 4:28:34 PM

340 Practical MATLAB® Basics for Engineers

Q.5.14 Determine the frequencies, amplitudes, periods, and phase angle of each of the
sinusoids used in the generation of the functions Yn, for n = 1, 2, 3, …, 18.

Q.5.15 Describe the shape of Figure 5.72.
Q.5.16 Describe the shape of Figure 5.74. Can Figure 5.74 give information about the

 relation of the input frequencies? Discuss.
Q.5.17 Run the portion of the program of Example 5.3 that returns Y1a.
Q.5.18 Defi ne the concept of even and odd functions, and identify which functions of Fig-

ure 5.75 are even and which ones are odd.
Q.5.19 Indicate if there is any relation between the exponent of x and the symmetry of the

function Y1a.
Q.5.20 Using the information given in Figure 5.75, sketch by hand the functions Y1 = x +

x2 and Y2 = x + x3.
Q.5.21 Using the instruction fplot, obtain the plots of Q.5.20.
Q.5.22 Repeat Q.5.21 by using the instruction ezplot.
Q.5.23 Describe the effect of the coeffi cient b for the function Y2b.
Q.5.24 Compare the function Y2b with the function Y3c.
Q.5.25 Describe the effect of the coeffi cient d in equation Y4d.
Q.5.26 Describe the effect of the minus sign for x2 in equation Y5e.
Q.5.27 Compare equations Y4d with Y5e.
Q.5.28 Compare equations Y3c with Y6f.
Q.5.29 Discuss the effect of the coeffi cient g in equation Y7g.
Q.5.30 Load and run the script fi le, sin_x_over_x of Example 5.4.
Q.5.31 Compare the graphs obtained using the instruction fplot with ezplot. Which graph

provides a better resolution? Can you detect any differences?
Q.5.32 Compare the graphs obtained by using the instruction plot with fplot. Which graph

provides a more reliable description of sin(x)/x?
Q.5.33 Load and run the script fi le, three_circ of Example 5.5.
Q.5.34 Using only one plot instruction, modify the program that returns a graph with the

same three concentric circles.
Q.5.35 Modify the program to obtain 10 concentric circles with radius of (0.8) * n for n = 1,

2, 3, …, 10.
Q.5.36 Once the 10 concentric circles are obtained, modify the program that shades the

center circle and all the even concentric strips.
Q.5.37 Load and run the program of Example 5.6.
Q.5.38 Compare the plots obtained in Figure 5.80. Clearly state the similarities, differences,

and draw conclusions.
Q.5.39 State the equations of each plot in Figure 5.80.
Q.5.40 Discuss the effect of the sinusoid and its frequencies.
Q.5.41 Load and run the program of Example 5.7.
Q.5.42 Can you use one polar instruction to create Figure 5.81?
Q.5.43 Modify the program that replaces in the label of Figure 5.81, the word “Beta” by the

Greek character “β.”

CRC_47744_Ch005.indd 340CRC_47744_Ch005.indd 340 6/27/2008 4:28:35 PM6/27/2008 4:28:35 PM

Printing and Plotting 341

Q.5.44 Modify the program that returns two shaded circles located on the x-axis.
Q.5.45 Load and run the script fi le, ez_xsinx of Example 5.8.
Q.5.46 Verify the solutions obtained outside −0.15 ≤ x ≤ 0.15 by direct substitution.
Q.5.47 Describe the curves for −0.15 ≤ x ≤ 0.15.
Q.5.48 Give reasons for the nature of the curves outside −0.15 ≤ x ≤ 0.15.
Q.5.49 Verify the solution obtained outside −0.15 ≤ x ≤ 0.15 by direct substitution.
Q.5.50 Run the script fi le, num_xsinx using fplot. Are the results obtained any better?
Q.5.51 Load and run the script fi le, sin_cos of Example 5.9.
Q.5.52 Draw a fl owchart and describe the objective of each coded line of the program in

the form of comments (%).
Q.5.53 What is the relation between the frequencies of x1 and y1?
Q.5.54 What is the relation between the frequencies of x2 and y2?
Q.5.55 Indicate how are the magnitudes related in Figures 5.85 and 5.86?
Q.5.56 What is the effect of the phase angle of x2 on the plots?
Q.5.57 Load and run the program of Example 5.10.
Q.5.58 What is the objective and purpose of the variable addMN?
Q.5.59 What do the elements of addMN represent?
Q.5.60 Does the variable addMN defi ne a plane? If so, what is the plane?
Q.5.61 Describe the purpose of the instruction mesh(addMN).
Q.5.62 Defi ne the purpose of variable AX.
Q.5.63 State the height of the center element of Figure 5.87 and identify its location in

terms of its Cartesian coordinates.
Q.5.64 Describe how the centered element was created.
Q.5.65 Modify the label of Figure 5.87 by bold-style characters.
Q.5.66 Replace the axis labels X, Y, and Z by italic-style characters.
Q.5.67 Load and run the program of Example 5.11.
Q.5.68 What equation or equations best describe the top view?
Q.5.69 What equation or equations describe the front view?
Q.5.70 Describe the meaning of the command view(30, 120).
Q.5.71 Load and run the program of Example 5.12.
Q.5.72 Indicate the instruction that returns the analog 3-D plot.
Q.5.73 Indicate the instructions that return the discrete 3-D plot.
Q.5.74 Indicate the instructions that return the xy, xz, and zy views.
Q.5.75 Describe the argument of the view instruction.
Q.5.76 Replace the labels of Figure 5.89 by bold-style characters.
Q.5.77 Replace the equation on the axis to italic-style characters, the exponential exp(0.2t)

to e0.2t, and pi by the Greek character π.
Q.5.78 Load and run the program of Example 5.13.
Q.5.79 State the differences between the cos(n * β) versus β and sin(n * β) versus β plots in

Figure 5.91.
Q.5.80 Load and run the script fi le, black_white_rose of Example 5.14.

CRC_47744_Ch005.indd 341CRC_47744_Ch005.indd 341 6/27/2008 4:28:35 PM6/27/2008 4:28:35 PM

342 Practical MATLAB® Basics for Engineers

Q.5.81 Replace the cosines by sines and rerun Example 5.14. Comment on the
results.

Q.5.82 Rerun Example 5.14 to create a rose with red petals and a green background.
Q.5.83 Load and run the program of Example 5.15.
Q.5.84 State the purpose of the instruction meshgrid.
Q.5.85 State the purpose of the instruction mesh.
Q.5.86 Run the program of Example 5.15 by changing the cos(2y) by sin(2y) and compare

the results.
Q.5.87 Load and run the script fi le, con_view of Example 5.16.
Q.5.88 Describe the contour command.
Q.5.89 Why is the response of the contour command a 2-D plot?
Q.5.90 What are the coordinates of the highest point of the plot of Figure 5.94?
Q.5.91 What are the coordinates of the lowest point of the plot of Figure 5.94?
Q.5.92 Discuss the meaning of the different colors.
Q.5.93 Estimate the number of peaks of the fi gure shown in Figure 5.94.
Q.5.94 Defi ne the meaning and purpose of the surf command.
Q.5.95 Describe the command view(0, 0).

Q.5.96 Explain why only fi ve peaks are shown in Figure 5.95.
Q.5.97 What do the colors represent in the view(0, 0) command?
Q.5.98 How are the plots of view(0, 0) and view(90, 0) related?
Q.5.99 Identify at least three points (using the coordinates) that relate the plots obtained

by view(0, 0) and view(90, 0).

Q.5.100 Discuss why view(-127, 5, 0) is shown with a unique color.
Q.5.101 Discuss why view(-87, 5, 0) basically returns one-color fi gure.
Q.5.102 Discuss how view(-127.5, 0) and view(-87.5, 0) are related.
Q.5.103 Identify at least three points (using the coordinates) that relate view(-127.5, 0) with

view(90, 0).
Q.5.104 Load and run the script fi le, fn_z of Example 5.17.
Q.5.105 Compare the instructions mesh with ezmesh.

Q.5.106 Describe the command shading.
Q.5.107 Is it possible to use the shading instruction with the mesh instruction?
Q.5.108 What are the arguments of the contour instruction?
Q.5.109 Load and run the script fi le, ctl _sphere of Example 5.18.
Q.5.110 Defi ne the variables r and ang used in the plot of Figure 5.102.
Q.5.111 State the variables that control the width, height, and length of the body of

 Figure 5.102.
Q.5.112 Label the variables that control the width, height, and length of the plot shown

in Figure 5.103.
Q.5.113 List the variables that control the width, height, and length of the plot in

Figure 5.103.

CRC_47744_Ch005.indd 342CRC_47744_Ch005.indd 342 6/27/2008 4:28:35 PM6/27/2008 4:28:35 PM

Printing and Plotting 343

5.6 Application Problems

P.5.1 Plot each of the points defi ned by the following Cartesian coordinates by hand and
by using MATLAB: <−3, 8>, <2, −9>, <−4.2, −10.3>, and <3, 3.3>.

P.5.2 Let x = [0:10 10: −1:0]. Execute the command plot (x) and observe the resulting
fi gure.

P.5.3 Duplicate the plot of P.5.2 by using the command plot(x, y).
P.5.4 Let x = [2:2:20] and y = x.^2. Execute the command plot (x, y) and observe the

returning plot.
P.5.5 Replace the program of P.5.4 (consisting of three statements) using one command.
P.5.6 Write a script that returns the following plots over the domain 0 ≤ x ≤ 2π using 20

linearly spaced points:
1. [y1(x) = sin2(x)] versus x

2. [y2(x) = cos2(x)] versus x
3. [y3(x) = sin2(x) + cos2(x)] versus x

P.5.7 Rerun the programs of P.5.6 that returns the discrete plots using triangular markers.
P.5.8 Verify graphically that sin(2x) = 2 sin(x) cos(x) over the range 0 ≤ x ≤ 2π using 20

linearly spaced points.
P.5.9 Let a = (n − 1)! and b = (2π)0.5 nn–0.5 e−n. Write a program that returns the plots of

a versus n and b versus n, and determine for what range of n, a constitutes a good
approximation of b. This approximation is referred to as the Stirling’s formula.

P.5.10 Solve the following equation graphically: cos(2x) = cos2(x) − sin2(x) over the range
0 ≤ x ≤ 2π. (Hint: plot y1(x) = cos(2x) and y2(x) = cos2(x) − sin2(x) and the intersection
of y1(x) with y2(x) are the possible solutions.)

P.5.11 Estimate the solution for the following equation graphically: sin(x) = cos(x) over the
range 0 ≤ x ≤ 2π. Use overlay plots.

P.5.12 Repeat problem P.5.11 for the following case: sin(x) = 3 cos(2x) over the range 0 ≤
x ≤ 2π.

P.5.13 Estimate graphically the solution for the following equation: 5 sin(t) = t, for all t.
P.5.14 Write a program that returns the plot of the function y = x2 over the domain 1 <

x < 100 using the following scales:
a. Linear

b. Linear-log

c. Log-linear

d. Log-log

P.5.15 Create a MATLAB program that returns the plot of a circle of radius r = 2, centered
at <x = 0, y = 0> using 50 linearly spaced points.

P.5.16 The equation of a circle in Cartesian coordinates centered at (x0, y0) is given by

 x = x0 + r cos(θ) and y = y0 + r sin(θ)

a. Write a MATLAB script that returns a circle centered at <1, 1> with a radius of 2.
b. On the same plot, add another circle centered at <−2, 1> with a radius of 3 using

the hold on command, and set the y-axis to be twice the size of the x-axis.

CRC_47744_Ch005.indd 343CRC_47744_Ch005.indd 343 6/27/2008 4:28:35 PM6/27/2008 4:28:35 PM

344 Practical MATLAB® Basics for Engineers

P.5.17 Create a MATLAB program that returns a table and the corresponding plot that
relates degree Celsius (°C) to degree Fahrenheit (°F) by using the following conver-
sion equation:

F C�

9
5

32�

 where F is in °F (degree Fahrenheit) and C is in °C (degree Celsius).
P.5.18 Plot the function y(x) = −3x2 + 6x + 1 over the domain −2 ≤ x ≤ 3 and evaluate

the following:
a. The y and the x intercepts (by letting x = 0 and solving for y, and by letting y = 0

and solving for x) by hand
b. Its maximum and minimum by hand
c. Repeat parts a and b using MATLAB

P.5.19 Repeat problem P.5.18 for the following function:

y �

� �

x
x x()()1 1

 over the domain −1 ≤ x ≤ 1.
P.5.20 Write a MATLAB script fi le that returns the plot of the following function:

 y = (x − 2)3

 over the domain 8 ≤ x ≤ 2.
P.5.21 Verify the following relations graphically over the range 0 ≤ x ≤ 2π:

a. (sin(3x) − sin(x))/(cos(3x) + cos(x)) = −2
b. cos(x) − cos2(x/2) = −1
c. cot(x/2) tan(x/2) = 2 csc(x)

P.5.22 Solve the following equations over the domain 0 ≤ x ≤ 2π:
a. 1 + cos(x) = 2 cos(x/2)
b. cos(x) − tan(x) − sec(x) = 0
c. (sin(x)cot(x))/(cos(x)) = sin(x)
d. 1 + tan(x) = 5 sin(x)
e. sin2(2x) − sin2(x) = 1/2

P.5.23 Solve the following systems of equations graphically:
a. 3x + 2y = 5
 −4x + 5y = 13
b. 4y + 3x = 11
 −y + 3x = 1
c. x2 + y2 = 16
 4x − 3y = 0
d. y = 2x = −3
 x2 + 2xy = −1

CRC_47744_Ch005.indd 344CRC_47744_Ch005.indd 344 6/27/2008 4:28:36 PM6/27/2008 4:28:36 PM

Printing and Plotting 345

e. y = x
 y = 5 sin(2x) + 4
f. 2cos2(x) + cos(x) − 1 = 0

P.5.24 Create a MATLAB script fi le that returns the plot of each equation in polar coordi-
nates over the range 0 ≤ θ ≤ 2π.
a. r1 = 3/(1 − cos(θ)) (parabola)
b. r2 = 1/(4 − 3 cos(θ)) (ellipse)
c. r3 = 3/(2 − 3 cos(θ)) (hyperbola)
d. r4 = 3 √

 sin(2θ) (lemniscate equation—propeller shape)

e. r5 = 3e0.3θ (spiral equation)
f. r6 = 2 + 3 cos(θ) (limaçons equation)
g. r7 = 3 sin(3θ) (rose equation)
h. r8 = 3 cos(3θ) (rose equation)
i. r9 = 3 + 3 cos(θ) (cardioid’s equation)
j. r10 = 3θ (Archimedean spiral equation)

P.5.25 Verify that the plot r versus θ over 0 ≤ θ ≤ 2π using MATLAB returns the following:
a. A four-petal rose with petals at 0°, 90°, 180°, and 270°, If r = 3 cos(2θ)
b. A four-petal rose with petals at 45°, 135°, −135°, and −45°, where r = 3 sin(2θ)
c. The limniscate equation along the 0° and 180° diagonal, where r = 3 √

 cos(2θ)

d. The limniscate equation with the propellers at 45° and 225°, where r = 3 √

 sin(2θ)
P.5.26 Polar-to-rectangular conversion is given by the following equations:

 x = r cos(θ), y = r sin(θ)

 Rectangular-to-polar conversion is given by the following equations:

 R x y� � �2 2

sin

y
x y

� �
�

�2 2

cos� �

�

�

x
x y2 2

tan

y
x� �

�

 Plot the following equations in polar and rectangular coordinates:
a. x2 + y2 = 16 (circle)

b. (x/16) + (y/4) = 1 (ellipse)

c. (x/16) − (y/4) = 1 (hyperbola)

d. r = 1/(4 − cos(θ)) (ellipse)

e. r = 3/(1 − cos(θ)) (parabola)

CRC_47744_Ch005.indd 345CRC_47744_Ch005.indd 345 6/27/2008 4:28:36 PM6/27/2008 4:28:36 PM

346 Practical MATLAB® Basics for Engineers

P.5.27 The equation of a circle of radius r centered at the Cartesian coordinates <x0, y0> is
given by (x − x0)2 + (y − y0) = r2. Write a MATLAB script that returns the following
plots:
a. A circle of radius 5, centered at <1, −1>
b. A circle of radius 4, centered at <−1, 1>

P.5.28 Write a program that returns a black circle of radius r = 1, centered at <1, 1> (use
the fi ll instruction).

P.5.29 Create the script and function fi les that returns a red circle, given the radius and
the Cartesian coordinates of its center.

P.5.30 The following data represent the student enrollment in a given college per year:

Number of Students 311 413 503 562 651
Year 1993 1996 1999 2002 2006

 Use MATLAB to construct linear, stairs, bar, and stem plots showing the enroll-
ment trend.

P.5.31 The annual sales of a company are given as follows:

Sale in Thousands ($) 313 423 673 832 931
Year 1993 1996 1999 2002 2006

 Use MATLAB and construct linear, bar, stem, and stairs graphs.
P.5.32 Write a program that returns the 3-D plot and xy, xz, and yz projections of the

resulting fi gure for the following equation:

z �

15
3 1 12 2� � � �() ()x y

 over the ranges −5 ≤ x ≤ 5 and −5 ≤ y ≤ 5.
P.5.33 Write a program that returns the 3-D mesh plots for the following functions:

a. z = (−sin(2x2 + 2y2)1/2)/ √

 2x2 + 2y2 over the ranges −10 ≤ x ≤ 10 and −10 ≤
y ≤ 10

b. z = (x − 1)2 + (y − 2)2 + xy over the ranges −2 ≤ x ≤ 2 and −2 ≤ y ≤ 2

c. z = xe − √

 (x2−y)2+x2 over the ranges −3 ≤ x ≤ 3 and −3 ≤ y ≤ 3

d. z = sin(x) cos xe ((x−1)2+(y−1)2) over the ranges −10 ≤ x ≤ 10 and −10 ≤ y ≤ 10

P.5.34 Write a program that returns the 3-D meshgrid and mesh plots for the following
function:

z �

2
2 2

xy
x y�

 over the ranges 1 ≤ x ≤ 4 and 1 ≤ y ≤ 4.
P.5.35 Write a program that returns the following plots using the commands indicated in

the following for the function defi ned in P.5.34.
a. waterfall

b. contour

CRC_47744_Ch005.indd 346CRC_47744_Ch005.indd 346 6/27/2008 4:28:36 PM6/27/2008 4:28:36 PM

Printing and Plotting 347

c. contour3

d. plot3

e. surf

P.5.36 Write a program that returns the 3-D contour and surface plot of the following
functions:
a. z = (x − 1)2 + (y − 2)2 + xy

b. z = sin(x) . sin(y) . exp ((− √

 2x2 + 3y2) /5)
c. z = 3.5 e −x2 . e −y2 over the ranges −5 ≤ x ≤ 5 and −5 ≤ y ≤ 5

CRC_47744_Ch005.indd 347CRC_47744_Ch005.indd 347 6/27/2008 4:28:36 PM6/27/2008 4:28:36 PM

CRC_47744_Ch005.indd 348CRC_47744_Ch005.indd 348 6/27/2008 4:28:36 PM6/27/2008 4:28:36 PM

349

6
Complex Numbers

Imagination is more important than knowledge.

Albert Einstein

6.1 Introduction

The real number system consists of rational and irrational numbers that can be repre-
sented on a straight line called the real number line. Square roots of nonnegative real
numbers may be represented on the real number line system, but not the square roots of
negative numbers. Despite the fact that no negative number has a square root on the real
number line system, it is still possible to develop algebraic expressions that contain such
square roots.

There is no real number that multiplied by itself equals to −1, therefore the relation
(−1)1/2 has no real solution, and a simple equation such as x = (−1)1/2 cannot be solved.

To fi nd solutions to such equations the theory of complex numbers was developed.
The square root of a negative real number is a pure imaginary number represented by
the imaginary symbol i or j, where √

 −1 = j = i. Then, the square root of any negative

real number can be expressed in terms of i. Since i is used to denote electrical current,
many technical books use j instead, to avoid confusion. For example, √

 −9 = √

__
 9 ⋅ √

 −1 = 3j.

Imaginary numbers can be represented by a straight line called the imaginary number line.
In general, a complex number z can be represented by two parts: a real and an imaginary.

A complex number can be represented as an ordered pair z = (x, y), or more general as
z = x + jy, where x and y are real numbers. The second form of writing complex number (z
= x + jy) is more convenient to manipulate them in a computational environment. A com-
plex number then can be represented in the real/imaginary coordinate system called the
complex plane as a point, as shown in Figure 6.1. Thus, each point on the plane represents
a complex number and conversely, each complex number represents a point on the plane.
The collection of all these points constitutes the complex plane.

The complex plane consists of a Cartesian rectangular axes system, where the x-axis
(horizontal) of the complex plane is referred as the real axis, where the real part is repre-
sented, whereas the y-axis (vertical) is referred as the imaginary axis, where the imagi-
nary part is represented (with i as its unit). Observe that the real numbers are just a subset
of the complex numbers, when the imaginary part is equal to zero. Much of modern
mathematics is based on complex numbers, and they are used extensively in science and
engineering. For example, in electrical circuit theory, when dealing with impedances,
the real axis is generally associated with the resistance, whereas the imaginary axis is
referred as the reactance axis.

Most standard MATLAB® algebraic manipulations defi ned for real numbers work with
complex numbers. There are a few exceptions between real and complex numbers, such as

CRC_47744_Ch006.indd 349CRC_47744_Ch006.indd 349 6/17/2008 7:01:26 PM6/17/2008 7:01:26 PM

350 Practical MATLAB® Basics for Engineers

the concept of equivalence. For the case of complex numbers, the only equivalent relation
is the identity. Other relations such as greater than and smaller than have no meaning
when dealing with complex numbers.

For example, two complex numbers z1 = x1 + jy1 and z2 = x2 + jy2 are equal, if and only
if, x1 = x2 and y1 = y2. The concept of one complex number being greater than, or smaller
than, another is meaningless.

The nature of complex numbers can best be illustrated and visualized by analyzing the
following set of quadratic equations:

 1. y1 = x2 − 6x − 7

 2. y2 = x2 − 6x + 9

 3. y3 = x2 − 6x + 10

(Observe that only the constant terms have been changed.)
Each one of the preceding equations has been solved graphically (Figure 6.2), and also

numerically by the following program (by observing the respective plots and evaluating
the respective roots of y1, y2, and y3):

MATLAB Solution
>> X= [-2:0.05: 8]; % generates a 201 elements array X
>> Y1 = X.̂ 2-6*X-7; % generates a 201 elements array Y1
>> Y2 = X.̂ 2-6*X+9; % generates a 201 elements array Y2
>> Y3 = X.̂ 2-6*X+10; % generates a 201 elements array Y3
>> subplot(3,1,1)
>> plot (X,Y1) % plots Y1 vs X
>> axis on, grid on
>> xlabel(‘X’), ylabel(‘Y1’)
>> subplot(3,1,2)
>> plot (X,Y2) % plots Y2 vs X
>> axis on, grid on
>> xlabel(‘X’), ylabel(‘Y2’)
>> subplot(3,1,3)
>> plot (X,Y3) % plots Y3 vs X

Imaginary

y

z = x + i y

x
Real

FIGURE 6.1
Complex plane.

CRC_47744_Ch006.indd 350CRC_47744_Ch006.indd 350 6/17/2008 7:01:28 PM6/17/2008 7:01:28 PM

Complex Numbers 351

>> axis on, grid on
>> xlabel(‘X’), ylabel(‘Y3’)
>> P1 = [1 -6 -7]; % array of coefficients of Y1.
>> P2 = [1 -6 9]; % array of coefficients of Y2.
>> P3 = [1 -6 10]; % array of coefficients of Y3.
>> disp(‘The roots of Y1 are:’);
>> roots(P1) % returns the roots of Y1

 The roots of y1(x) are:
 ans =
 7
 -1

>> disp(‘The roots of y2(x) are:’);
>> roots(P2) % returns the roots of Y2

 The roots of y2(x) are:
 ans =
 3.0000 + 0.0000i
 3.0000 - 0.0000i

>> disp(‘The roots of y3(x) are:’);
>> roots(P3) % returns the roots of Y3

 The roots of y3(x) are:
 ans =
 3.0000 + 1.0000i
 3.0000 - 1.0000i

y1(x) = x 2 – 6x – 7

y2(x) = x 2 – 6x + 9

y3(x) = x 2 – 6x +10

10

−10

−20

0

−2 −1 0 1 2 3 5 6 7 84

−2 −1 0 1 2 3 5 6 7 84

−2 −1 0 1 2 3 5 6 7 84
X

30

20

10

0

30

20

10

0

Y1

Y2

Y3

X

X

FIGURE 6.2
Plots of y1(x) versus x, y2(x) versus x, and y3(x) versus x.

CRC_47744_Ch006.indd 351CRC_47744_Ch006.indd 351 6/17/2008 7:01:28 PM6/17/2008 7:01:28 PM

352 Practical MATLAB® Basics for Engineers

From the plots shown in Figure 6.2 (and the preceding program), it can be seen that the
roots of y1(x), {y1(x) = 0 = x2 − 6x − 7} are +7 and −1. The roots of y2(x) are 3 and 3 (repeated
roots); but the roots for y3(x) do not have a real solution because y3(x) does not intersect the
x-axis. The roots of y3(x) can be evaluated analytically by using the standard quadratic
formula

x1,2 �

� � �b b ac
a

2 4
2








Substituting the coeffi cients of y3(x) (a = 1, b = −6, and c = 10) in the preceding formula
yields

x1,2 �

� �6 36 4 1 10
2

()()

x1,2 �

� �6 36 40
2

x1,2 � �

�6
2

4
2

 x1 3� � �1

 x2 3� � �1

Clearly, the roots of y3 (= 0) are complex.
Let us verify the solutions obtained by substituting x1,2 = 3 ± √

 −1 in (equation) y3(x),

yielding

 (3 + i)2 − 6(3 + i) + 10 = 9 + 6i − 1 − 18 − 6 i + 10 = 0, and

 (3 − i)2 − 6(3 − i) + 10 = 9 − 6 i − 1 − 18 − 6 i + 10 = 0

Clearly, the preceding substitutions indicate that indeed 3 ± √

 −1 , or 3 ± i, are the roots of
y3(x) and are complex.

Operations involving complex numbers, as well as complex functions, are extensively
used in AC circuits (see Chapter 3 of the book entitled Practical MATLAB® Applications
for Engineers), and in circuit analysis when using the Fourier or the Laplace operators
(see Chapter 4 of the book entitled Practical MATLAB® Applications for Engineers). Owing
to the importance of complex numbers, and complex functions in engineering and
science, this chapter is dedicated to the algebra of complex number, manipulations,
properties, and some applications (such as phasors). One of the nicest things about
MATLAB is that complex numbers are treated in the same way as real numbers.

CRC_47744_Ch006.indd 352CRC_47744_Ch006.indd 352 6/17/2008 7:01:29 PM6/17/2008 7:01:29 PM

Complex Numbers 353

6.1.1 A Brief History

In older civilizations with strong foundations in phylosophy, logic and mathematics such
as the Greeks, Arabs, and Babylonians, complex numbers did not exist or had no practical
or physical meaning.

The theory of complex numbers was fi rst seriously studied during the sixteenth century
by two Italian mathematicians

Raffaele Bombelli (1501–1576)
Ferrari (1499–1557)

Bombelli called these new numbers sophistic. For centuries thereafter, mathematicians
worked with complex numbers but without believing in their existence, or practical appli-
cation. In later centuries starting around the 1600s, prominent fi gures such as Leibnitz,
Newton, and Bernoulli saw the value of complex numbers as a means to explain their theo-
ries. The symbol i, which represents √

 −1 , was fi rst introduced by Leonhard Euler in 1777.

The complex notation using i was fi rst employed in 1777 by Caspar Wessel (1745–1818) and
adopted in 1787 by Jean Robert Ardon (1787–1822). This representation became known for
obvious reason as the Ardon representation or diagram. Rene Descaters (1637) fi rst introduced
formally the terms real and imaginary, and Carl Frederick Gauss (1777–1855) fi rst used
the terms complex and Gaussian plane; the modern terminology presently employed by
engineers and scientists.

The complex numbers are the foundation of the theory of complex variables, fi rst
introduced by Leonhard Euler (1707–1783), who was born in Basel, Switzerland. If Newton
is the greatest scientist of all times, then Euler is the greatest mathematician of all times.
Euler published a total of 886 books and mathematical memoirs. This is an amazing
accomplishment, even more amazing in light of the fact that Euler lost his vision in one
eye in 1735, and became totally blind by 1771.

Like Newton and Einstein, Euler was not particularly brilliant as a child. At the University
of Basel he studied theology, Greek, Latin, Hebrew (he was already fl uent in French and
German), physics, astronomy, medicine, and in particular mathematics, taught by a brilliant
mathematician named Jean Bernoulli (1667–1748). The Bernoullis are considered the most dis-
tinguished family in the history of mathematics (Nicolaus III, Daniel I, Jean II, etc.).

Euler’s work was extensive and brilliant, fundamental, and original, in particular, in
the areas of calculus of variations and the theory of complex variables. He served as the
chief mathematician at the Academy of Science at St. Petersburg, capital of Russia. Years
later he was invited to serve at the Academy in Berlin, by Frederick II of Prussia, where
he spent 25 years. Catherine II (the Great) of Russia instructed the Russian ambassador
in Prussia, to return Euler to the Academy, by offering him the title of Director of the
 Academy, with a salary of 3000 rubles per year. In addition, his wife was to receive a
 pension of 1000 rubles per year in case of his death, and employment of his three sons
(in the St. Petersburg area).

Euler left his mark in different scientifi c areas, including differential equations, number
theory, geometry, probability, astronomy, strength of materials, mechanics, and hydrody-
namics. In mathematics, Euler’s contributions are many, and his name is often associated
with some of his many discoveries that are commonly referred as

Euler’s theorem on …, Euler theorem of …, Euler’s identities, Euler’s functions, Euler’s proofs,
Euler’s coeffi cients, Euler’s constant, etc.

CRC_47744_Ch006.indd 353CRC_47744_Ch006.indd 353 6/17/2008 7:01:29 PM6/17/2008 7:01:29 PM

354 Practical MATLAB® Basics for Engineers

Probably Euler’s greatest contribution can be summarized by the following two equations:

 a. ejφ = cos(φ) + j sin(φ)

 b. eπj + 1 = 0

The above equations are complex, but in particular the second equation is considered by
mathematicians as the most elegant equation ever written. This equation relates e and π, 1
(one), 0 (zero), and

 √

 −1 = j, the most often used mathematical constants.
Laplace best described Euler’s works and accomplishments by these words

Read Euler, read Euler, he is our master in everything.

6.2 Objectives

After completing this chapter the reader should be able to

Enter manually complex numbers using MATLAB
Assign values to a complex variable
Perform arithmetic calculations using complex numbers such as addition, subtrac-
tion, multiplication, division, and exponentiation
Determine the complex conjugate of a complex number or variable
Convert a complex number from rectangular to trigonometric, exponential, or
polar forms and vice versa
Determine the real and imaginary parts of a complex number or expression
Obtain the magnitude and angle of a complex number
Know, understand, and use the DeMoivre theorem
Calculate the complex roots, and be able to predict their locations and behavior
Express a complex exponential as a complex number
Express a sinusoidal function as a complex exponential
Understand the concept of phasors, and know that a phasor is a short-hand
notation or representation of a complex function
Defi ne the complex (Gaussian) plane
Defi ne the different coordinate systems such as Cartesian, polar, rectangular, and
spherical
Represent a complex number as a point on the complex plane
Represent a complex number as a vector on the complex plane
Understand the properties of a complex variable
Manipulate complex numbers using MATLAB
Create complex matrices and vectors
Determine the transpose, inverse, and conjugate of a complex matrix
Understand the meaning and concept of the principal value
Use MATLAB to perform algebraic manipulations involving complex numbers or
functions

•
•
•

•
•

•
•
•
•
•
•
•

•
•

•
•
•
•
•
•
•
•

CRC_47744_Ch006.indd 354CRC_47744_Ch006.indd 354 6/17/2008 7:01:29 PM6/17/2008 7:01:29 PM

Complex Numbers 355

6.3 Background

R.6.1 Any arbitrary complex number z = a + ib can be represented as the sum of a real
and an imaginary part, where a is the real part and b the imaginary part.

R.6.2 MATLAB stores the complex number z = a + ib as two real numbers a and b.
R.6.3 MATLAB assumes that i and j represent √

 −1 , unless i or j had been previously

assigned a different value.
R.6.4 The following examples illustrate how MATLAB responds when the preassigned

values of i and j (√

 −1) are used.

MATLAB Solution
>> sqrt(-1)

 ans =
 0 + 1.0000i
>> j

 ans =
 0 + 1.0000i
>> i*j

 ans =
 -1

R.6.5 A complex number z = a + ib can be entered using MATLAB in three different
ways, indicated as follows:
1. z = a + bi

2. z = a + i*b

3. z = complex(a, b)

 where expression (1) is always complex, and expression (2) is complex, if i has not
been assigned a value. MATLAB does not recognize z as complex, unless z is explic-
itly declared as complex (z = a + bi) (expression [3]).

R.6.6 For example, use MATLAB to enter the complex number z = 1 + 2i, in all possible
ways.

MATLAB Solution
>> z1 = 1+2i

 z1 =
 1.0000 + 2.0000i

>> z2 = 1+2j

 z2 =
 1.0000 + 2.0000i

>> z3 = 1+j*2

 z3 =
 1.0000 + 2.0000i

>> z4 = 1+i*2

 z4 =
 1.0000 + 2.0000i

>> z5 = complex(1,2)

 z5 =
 1.0000 + 2.0000i

CRC_47744_Ch006.indd 355CRC_47744_Ch006.indd 355 6/17/2008 7:01:30 PM6/17/2008 7:01:30 PM

356 Practical MATLAB® Basics for Engineers

>> z6 = 1+i2

??? Undefined function or variable ‘i2’.

R.6.7 The MATLAB command C = complex(a, b) returns C, where a and b may be vectors,
arrays, or matrices with identical sizes.

 In the event that b is all zeros, C is complex with zeros as the imaginary part,
unlike the result of the addition a + 0i, which returns a strictly real result.

 The MATLAB command C = complex(A), where A is a real matrix, returns the
 complex matrix C, with the matrix A as the real part, and the imaginary part
 comprises zeros.

R.6.8 For example, using MATLAB create the following complex sequence:

 1 − 2i, 3 − 4i, 5 − 6i, 7 − 8i, …, 11 − 12i

MATLAB Solution
>> a = 1:2:11;
>> b = 2:2:12
>> sequence = (complex(a,b))’

 sequence =
 1.0000 - 2.0000i
 3.0000 - 4.0000i
 5.0000 - 6.0000i
 7.0000 - 8.0000i
 9.0000 - 10.0000i
 11.0000 - 12.0000i

R.6.9 It is a recommended programming practice to reserve i and j exclusively to denote
the imaginary part of a complex number (√

 −1), and avoid using i or j to defi ne any

other variable.
R.6.10 The standard operations defi ned for real numbers apply equally well for complex

numbers.
 For example, let z = 1 + 2i, use MATLAB and evaluate the following expressions:

a. C1 = 1 + z * ez

b. C2 = 3 − z2 + 1/z * log(z)

MATLAB Solution
>> z =1+2i;
>> C1 =1+z*exp(z)

 C1 =
 -5.0747 + 0.2093i

>> C2 = 3-z^2+1/z*log10(z)

 C2 =
 6.2622 - 4.0436i

R.6.11 The standard representation of z as z = a + ib is called rectangular, binomial, or
Cartesian form. z can be represented graphically as a point on the complex plane
with the abscissa (horizontal axis) as the real axis and the ordinate (vertical axis)
as the imaginary axis, as illustrated in Figure 6.3. Note that a complex number can
also be considered as a vector.

CRC_47744_Ch006.indd 356CRC_47744_Ch006.indd 356 6/17/2008 7:01:30 PM6/17/2008 7:01:30 PM

Complex Numbers 357

R.6.12 Clearly from Figure 6.3, z = a + ib, and z can also be represented as z = r cos(θ) +
i r sin(θ). This format of representing z is known as the trigonometric form, where

a r a b

b r b a

� � �

� � �

cos r

sin tan 1

(), (

, and

2 2�

� �

)

) ()(/

R.6.13 The variable r is referred as the absolute value of z (|z|), modulus z or magnitude
of z, which represents the length of z from the origin <x = 0, y = 0> to the terminal
point: <x = a and y = b> and θ is often referred as the argument or (phase) angle.

R.6.14 Using Euler’s relation, eiθ = cos θ + i sin θ, the trigonometric representation: z =
r cos(θ) + i r sin(θ) can also be expressed as z = reiθ, a format known as the exponen-
tial form of z.

R.6.15 The exponential form for z expressed in R.6.14 can be converted to the Steinmetz
form (representing magnitude and phase). In the Steinmetz form, z is represented
as z = reiθ = r ∠ θ. This last form is widely used in electrical circuit theory, and is
referred as polar representation.

R.6.16 The conjugate of z = a + ib is also a complex number represented in rectangular
form as z* = a − ib, if z = a + ib (* denotes complex conjugate).

R.6.17 The conjugate z of the complex function expressed in exponential form as z = reiθ is
z* = re−iθ.

R.6.18 The complex conjugate z* of a complex number z is the image or projection of z with
respect to the real axis, as indicated in Figure 6.4.

R.6.19 In summary, the complex conjugate of z = a + ib can be expressed in different
forms as a − ib, re−iθ, r ∠ −θ, or r cos θ − i r sin θ.

 Thus, the complex conjugate of a complex number is obtained by reversing the
sign of
1. The imaginary part when expressed in rectangular or trigonometric form
2. The angle in polar (Steinmetz) or exponential form

Imaginary

b
z = a + ib

r =
 √a

2 + b
2

a

Real�

FIGURE 6.3
Plot of z = a + ib.

CRC_47744_Ch006.indd 357CRC_47744_Ch006.indd 357 6/17/2008 7:01:30 PM6/17/2008 7:01:30 PM

358 Practical MATLAB® Basics for Engineers

R.6.20 Sinusoidal functions can be expressed as complex exponentials, by using Euler’s
equalities, indicated as follows:

sin cos() ()� �

� � � �
�

�
�

�� �e e
i

e ei i i i

2 2
,

R.6.21 The components of a sinusoid function can be expressed as two rotating vectors of
the form ejwt and e−jwt, where w represents the angular rotational velocity.

R.6.22 For example, let the complex number z be given by z = −6.7 + j 8.43. Transform the
complex number z from rectangular to polar form.

ANALYTICAL Solution

 z � � � � � � �6.7 8.43j 6.7 8.43 arctan 8.3/ 6.72 2 1/2() ()∠

 z e j� �10.7682 128.4770 10.7682 128.477∠ ° °

R.6.23 Let us explore the opposite relations. For example, express z = 3ejπ/4 in rectangular
and polar forms.

Imaginary

+b

a

z = a + ib

 z*(Complex conjugate) = a – ib
−b

Real

r

r

�

−�

FIGURE 6.4
Plots of z = a + ib and z* = a − ib.

CRC_47744_Ch006.indd 358CRC_47744_Ch006.indd 358 6/17/2008 7:01:31 PM6/17/2008 7:01:31 PM

Complex Numbers 359

ANALYTICAL Solution

The polar form of z is given by z = 3 ∠ [(π*180)/(4π)] = 3∠45°

The rectangular form of z is z = 3[cos(45o) + sin(45o)] = 2.1213 + 2.1213j = 2.1213(1 + j)

R.6.24 Some useful and often used powers of i are presented as follows:

 i0 = (√

 −1)0 = 1

recall that i = j, for MATLAB

 i2 = (√

 −1)2 = −1

 i3 = (√

 −1)3 = (√

 −1)2 ∙ √

 −1 = −j

 i4 = (√

 −1)4 = (√

 −1)2 ∙ (√

 −1)2 = (−1) ∙ (−1) = +1

 i5 = i4 ∙ i = j

 i6 = i4 ∙ i2 = (1) ∙ (−1) = −1

 i7 = −i = −j

 The powers of i are cyclic and follow the sequence j, −1, −j, 1, j, −1, −j, 1, … for the
powers 1, 2, 3, 4, 5, 6, … .

What is √
_
 i then?

ANALYTICAL Solution

 √
_
 i = i1/2

 i i i� � � �() [(/) (/)]/ /0 2 21 2 1 2cos sin� �

 i i� �() [(/) (/)]/1 4 41 2 cos sin� �

by the DeMoivre formula (see R.6.27 and R.6.28)

 √
_
 i = √

__
 2 ___

2
 + √

__
 2 ___

2
 j

R.6.25 From R.6.24, it can be observed that any integer power of j takes one of four possible
values: j, −1, −j, and 1. It is useful to observe that any power of j evenly divided by
four is equal to one.

For example, if in = 1, then n = 4 ∙ k for k = 1, 2, …
in = i, then n = 4 ∙ k + 1
in = −1, then n = 4 ∙ k + 2
in = −i, then n = 4 ∙ k + 3

 In general, in = iR, where n/4 = C + (R/4)
For example, i37 = (i4)9 i = i.

R.6.26 The addition of two complex numbers z1 and z2 results in a new complex number
consisting of adding the real and the imaginary parts separately of z1 and z2.

 For example, let

 zi = a1 + ib1 and z2 = a2 + ib2

CRC_47744_Ch006.indd 359CRC_47744_Ch006.indd 359 6/17/2008 7:01:31 PM6/17/2008 7:01:31 PM

360 Practical MATLAB® Basics for Engineers

 then

 z1 + z2 = (a1 + a2) + i(b1 + b2)

R.6.27 To subtract two complex numbers, z1 from z2, subtract the real and imaginary parts
separately. For example,

 z1 − z2 = (a1 − a2) + i(b1 − b2)

R.6.28 The addition and subtraction of two complex numbers can be performed con-
veniently, if both numbers are expressed in either rectangular or trigonometric
form.

R.6.29 The product of two complex numbers z1z2, when expressed in rectangular form, is
evaluated as follows:

 z1z2 = (a1 + ib1)(a2 + ib2) = a1a2 + ia1b2 + ib1a2 + i2b1b2

since i2 = (√

 −1)2 = −1

 z1z2 = (a1a2 − b1b2) + i(a1b2 + b1a2)

R.6.30 The product of two complex numbers z1z2, when expressed in trigonometric form,
is shown as follows:
Let

 z1 = r1 cos(θ1) + i r1 sin(θ1)

and

 z2 = r2 cos(θ2) + i r2 sin(θ2)

then

 z1 ⋅ z2 = r1 ⋅ r2 [cos(θ1 + θ2) + i sin(θ1 + θ2)]

or

 z z r r r r1 2 1 1 2 2 1 2 1 2= � � �� � � �. � �()

R.6.31 The product of two complex numbers given by z1 and z2 can be conveniently evalu-
ated when both numbers are expressed in exponential or polar form illustrated as
follows:

z z r e r e r r e r r jj j j

1 2 cos s� � � � ��()() () ()()
1 2 1 2 1 1 2

1 2 1 2� � � � � �2 iin()� �1 2� 

R.6.32 The division of two complex numbers, z1/z2, expressed in rectangular form is accom-
plished by multiplying the numerator and denominator by the complex conjugate
of the denominator (z2), and simplifying the remaining expression.

CRC_47744_Ch006.indd 360CRC_47744_Ch006.indd 360 6/17/2008 7:01:32 PM6/17/2008 7:01:32 PM

Complex Numbers 361

 The algebraic manipulations are indicated as follows:

z
z

a ib
a ib

a ib a ib
a ib a ib

1

2

1 1

2 2

1 1 2 2

2 2 2 2

�
�

�
�

�

�

()()
()()

�

�

z
z

a a b b i a b b a
a b

1

2

1 2 1 2 2 1 2 1

2
2

2
2

�
� �

�

() ()�

z
z

a a b b
a b

i a b b a
a b

1

2

1 2 1 2

2
2

2
2

2 1 2 1

2
2

2
2

�
�() ()�

�
�

�
(expressed in reectangular form)

R.6.33 The division of two complex numbers, z1/z2, given in trigonometric form is evaluated
as follows:

 Let

 z1 = r1 cos(θ1) + i r1 sin(θ1)

 and

 z2 = r2 cos(θ2) + i r2 sin(θ2)

 then

 z1/z2 = [r1/r2] [cos(θ1 − θ2) + i sin(θ1 − θ2)]

R.6.34 The division of two complex numbers, z1/z2, can be conveniently evaluated when
both complex numbers are expressed in exponential or polar form indicated as
follows:

z
z

r e
r e

r
r

e
r
r

j

j
j1

2

1

2

1

2

1

2
1 2

1

2
1 2� � �

�

�
� � � �













() . cos(� �)) sin()� j � �1 2� 

z
z

r
r

r
r

1

2

1 1

2 2

1

2
1 2� �

�

�
�

�
�

� �






()�

R.6.35 The reciprocal of a complex number z is by defi nition 1 divided by z (1/z = 1/re jθ).
R.6.36 Since any complex number can be expressed in exponential form as z = reiθ or

z = re(jθ+2πm), hence m √
__

 z = m √
__

 r ∙ e(iθ+2πη)/m. The m roots of a complex number can be
obtained by assigning to n the values n = 0, 1, 2, 3, …, m − 1, successively in the
following equation:

z r

m
n
m

i
m

n
mm

m� �cos sin
� � � �

� �
2 2

















CRC_47744_Ch006.indd 361CRC_47744_Ch006.indd 361 6/17/2008 7:01:32 PM6/17/2008 7:01:32 PM

362 Practical MATLAB® Basics for Engineers

 where

� � 	arc tan , ,

b
a

a



 for 0

 or

� �� �
arc tan ,

b
a

a



 for 0

R.6.37 The DeMoivre* formula is employed when a complex number z is raised to a power
n, where n ≥ 1, illustrated as follows:

 Let

 z = |r| ∙ (cos θ + j sin θ)

 then

 zn = |r|n ∙ (cos θ + j sin θ)n

 and

 zn = |r|n ∙ (cos (nθ) + j sin(nθ))

 which is called the DeMoivre theorem.
 The DeMoivre theorem was published in 1730 and was named after Abraham

DeMoivre, but DeMoivre relations were known by many mathematicians as
early as 1710.

 For example, to evaluate the three cubic roots of 27 the following equation is
used: x = 271/3 or x3 = 27 + j0. Since 271/3 = 3, the three roots are located on a
circle of radius 3, centered at the origin of the complex plane, and they are
a. root#1 = 3

b. root#2 = 3[cos(2π/3) + j sin(2π/3)]

c. root#3 = 3[cos(−2π/3) + j sin(−2π/3)]

R.6.38 MATLAB returns only the principal value of the nth roots of a given complex
number. The polynomial form illustrated in R.6.39 can be used to evaluate all the
roots.

R.6.39 For example, evaluate using MATLAB the principal root as well as all the roots of
x = (−1)1/5, and verify the results obtained.

ANALYTICAL Solution

The 5th root of x = (−1)1/5 can be evaluated by solving the following equation: x5 + 1 = 0.
This equation is converted into a polynomial MATLAB vector as X = [1 0 0 0 0 1],
and the roots are evaluated, indicated as follows (see Chapter 7 for more details
about polynomials):

* Abraham DeMoivre (1667–1754) was a French Protestant exiled in London where he hoped to become a college
professor. He was a friend of Isaac Newton and became a member of the Royal Society of London. He supported
himself by solving problems related to games of chance and betting strategies. It is believed that he calculated
the day of his own death. He died at the age of 87.

CRC_47744_Ch006.indd 362CRC_47744_Ch006.indd 362 6/17/2008 7:01:33 PM6/17/2008 7:01:33 PM

Complex Numbers 363

MATLAB Solution
>> x = (-1)̂ (1/5) % MATLAB returns only the principal value

 x =
 0.8090 + 0.5878i

>> y = x^5 % verifies the value of x

 y =
 -1.0000

>> X= [1 0 0 0 0 1]; % MATLAB polynomial vector for x^5+1 = 0
>> roots _ are = roots(X) % evaluates the five roots of -1

 roots _ are =
 -1.0000
 -0.3090 + 0.9511i
 -0.3090 - 0.9511i
 0.8090 + 0.5878i
 0.8090 - 0.5878i

>> roots _ 1 = roots _ are % converts from column to a row vector

 roots _ 1 =
 -1.0000 -0.3090 - 0.9511i -0.3090 + 0.9511i 0.8090 - 0.5878i

0.8090 + 0.5878i

>> Checks _ results = roots _ 1.̂ 5 % verifies the five roots

 Checks _ results =
 -1.0000 -1.0000 + 0.0000i -1.0000 - 0.0000i

-1.0000 - 0.0000i -1.0000 + 0.0000i

R.6.40 The m roots of a complex number are cyclic in nature, and when graphed on the
complex plane, the m roots of a complex number are equally spaced around a circle
with radius r1/m, and centered at the origin.

 Whenever one root of a complex number is known, all the m roots can be evalu-
ated and plotted on the complex plane. They are all located on the circle mentioned
earlier and separated into m arcs of equal length.

R.6.41 The natural logarithm of a complex number can be evaluated, indicated as follows:
 let

 z = reiθ = rei(θ+2πη),

 then

 ln(z) = ln(reiθ) = ln(rei(θ+2πη)) = ln(r) + i(θ + 2πn)

 for any integer n.
 The natural logarithm of a complex number is not unique and its principal value

occurs at n = 0. The principal value is then given by

 ln(z) = ln(r) + iθ

R.6.42 For example, use MATLAB to evaluate y = log(3 + 4i), and verify the result
obtained.

CRC_47744_Ch006.indd 363CRC_47744_Ch006.indd 363 6/17/2008 7:01:33 PM6/17/2008 7:01:33 PM

364 Practical MATLAB® Basics for Engineers

MATLAB Solution
>> y = log(3+4i)

 y =
 1.6094 + 0.9273i

>> z = exp(y) % verify the result (value of y)

 z =
 3.0000 + 4.0000i

R.6.43 Some useful relations of the complex number z = a + ib, when expressed in rectan-
gular form, are stated as follows:

z + z* = 2a

z − z* = 2ib

z ∙ z* = a2 + b2 = |z|2 = |z*|2

(recall that * denotes complex conjugate).
R.6.44 Some useful relations for the case of two complex numbers z1 and z2, when expressed

in rectangular form, are stated as follows:
 let

 z1 = a1 + ib1

 and

 z2 = a2 + ib2

 then

 real(z1) + real(z2) = real(z1 + z2)

 k real(z1) = real(k z1)

where k is a real number.

 d/dt[real(z1)] = real[d/dt(z1)]

where d/dt means the derivative with respect to t.*

 ∫[real(z1)] dt = real [∫(z1) dt]
where ∫[] dt means the integral with respect to t.

 (z1 + z2)* = z1* + z2*

(recall that * denotes complex conjugate).

 (z1z2)* = z1* ∙ z2*

 |z1 + z2| ≤ |z1| + |z2| (triangle inequality)

 � � �(.)z z z z1 2 1 2� �

� � �

z
z

z z1

2
1 2







� �() ()

* See Chapter 7 for information about derivatives and integrals.

CRC_47744_Ch006.indd 364CRC_47744_Ch006.indd 364 6/17/2008 7:01:33 PM6/17/2008 7:01:33 PM

Complex Numbers 365

R.6.45 For example, use MATLAB to verify the following equation:

 (z1z2)* = z1* ∙ z2*

(one of the equalities of R.6.44).
The preceding equality states that the complex conjugate of a product equals

the products of the conjugates. The following MATLAB script fi le conjugate prod
verifi es that (z1z2)* = z1* ∙ z2*, for the following arbitrary complex numbers:

 z1 = 1 + 2i and z2 = 3 + 4i

MATLAB Solution
%Script file: Conjugateprod
z1 = 1+2i;
z2 = 3+4i;
conj _ prodz1z2 = conj(z1*z2);
conj _ z1 = conj(z1);
conj _ z2 = conj(z2);
prod _ conjz1z2=conj _ z1*conj _ z2;
disp(‘*************** RESULTS *************’);
disp(‘*** conj(z1*z2) is : ***’);
conj _ prodz1z2
disp(‘*** conj(z1)*conj(z2) is : ***’);
prod _ conjz1z2
disp(‘**************************************’);

 The script fi le: Conjugateprod is executed, and the results are shown as follows:
>> Conjugateprod

 **************** RESULTS ***************
 *** conj(z1*z2) is : ***
 conj _ prodz1z2 =
 -5.0000 -10.0000i
 *** conj(z1) *conj(z2) is : ***
 prod _ conjz1z2 =
 -5.0000 -10.0000i

The results obtained clearly indicate that (z1z2)* is indeed equal to (z1* ∙ z2*).

R.6.46 Use MATLAB to verify the following relation:

 (z1 + z2)* = z1* + z2*

(one of the equalities of R.6.44).
 The preceding equality states that the complex conjugate of a sum equals the
sum of the conjugates. The following MATLAB script fi le verifi es conjugatesum
(z1 + z2)* = z1* + z2* for the same arbitrary complex numbers: given by z1 =
1 + 2i and z2 = 3 + 4i.

MATLAB Solution
%Script file: Conjugatesum
z1 = 1+2i; z2 = 3+4i;
conj _ sumz1z2 = conj(z1+z2);
conj _ z1 = conj(z1); conj _ z2= conj(z2);

CRC_47744_Ch006.indd 365CRC_47744_Ch006.indd 365 6/17/2008 7:01:34 PM6/17/2008 7:01:34 PM

366 Practical MATLAB® Basics for Engineers

sum _ conz1z2 = conj _ z1 + conj _ z2;
disp(‘***************RESULTS**************’);
disp(‘*** conj(z1+z2) is : ***’);
conj _ sumz1z2
disp(‘*** conj(z1)+conj(z2) is : ***’);
sum _ conz1z2
disp(‘*************************************’);

The script fi le Conjugatesum is executed below, and the results clearly indicate
that indeed (z1 + z2)* is equal to (z1* + z2*).

 >> Conjugatesum

***************RESULTS*************
*** conj(z1+z2) is : ***
 conj _ sumz1z2 =
 4.0000 - 6.0000i
*** conj(z1)+conj(z2) is : ***
 sum _ conz1z2 =
 4.0000 - 6.0000i

R.6.47 A complex function is a function whose argument (the independent variable) is a
complex variable. For example,

f z

z
z

() �
�2 1

where z = a + ib, then

f z f a ib

a ib
a ib

a b a ab
a b

i
a b a b

() ()
() () (

� � �
� �

�
�

� �

�
�

2 2 2 2

2

2 21 1 2 2� � � 22

2 2

1�

�

)b
a b

R.6.48 Let z = a + ib, then the function f(z) = kez is a complex exponential function.
R.6.49 Let us get some experience performing the basic operations such as addition, sub-

traction, multiplication, division, and exponentiation using complex numbers.
Let

 z1 = 8 + 10i

 z2 = 3 − 9i

 z3 = 5 − 12j

 z4 = 7 − i * 13

 z5 = 7 − i13

 Perform the following commands using MATLAB:
1. Enter z1, z2, z3, z4, and z5

2. Sum_z1z2 = z1 + z2

3. Prod_z1z2 = z1 * z2

4. Div_z1z2 = z1/z2

CRC_47744_Ch006.indd 366CRC_47744_Ch006.indd 366 6/17/2008 7:01:34 PM6/17/2008 7:01:34 PM

Complex Numbers 367

5. w = z1* z2 + z3* z4

6. v = z 1
2 + z 2

2 + z 3
2 + z 4

2

MATLAB Solution
>> z1 = 8+10i % part (1)

 z1 =
 8.0000 +10.0000i

>> z2 = 3-9i

 z2 =
 3.0000 - 9.0000i

>> z3 = 5-12j

 z3 =
 5.0000 -12.0000i

>> z4 = 7-i*13

 z4 =
 7.0000 -13.0000i

>> z5 = 7-i13 % wrong notation

 ??? Undefined function or variable ‘i13’.

>> Sum _ z1z2 = z1+z2 % part (2)

 Sum _ z1z2 =
 11.0000 + 1.0000i

>> Prod _ z1z2 = z1*z2 % part (3)

 Prod _ z1z2 =
 1.1400e+002 -4.2000e+001i

>> Div _ z1z2=z1/z2 % part (4)

 Div _ z1z2 =
 -0.7333 + 1.1333i

>> w = z1*z2+z3*z4 % part (5)

 w =
 -7.0000e+000 -1.9100e+002i

>> v = z1̂ 2+z2^2+z3^2+z4^2 % part (6)

 v =
 -3.4700e+002 -1.9600e+002i

R.6.50 When complex numbers are entered in MATLAB within brackets, they become
elements of a matrix.

R.6.51 When complex numbers are elements of a matrix, the matrix is referred as a com-
plex matrix. Care must be taken when inputting complex numbers where blank
spaces should be avoided, since blanks represent characters.
 For example, let

x = 1 + 2j and y = 1 + 2j

blank space
then x is not equal to y.

CRC_47744_Ch006.indd 367CRC_47744_Ch006.indd 367 6/17/2008 7:01:34 PM6/17/2008 7:01:34 PM

368 Practical MATLAB® Basics for Engineers

R.6.52 The elements of a complex matrix can be entered in MATLAB by following the
same rules defi ned for real matrices in Chapter 3. For example, let

A
j j

j
�

�1 2 3 4
5 6 7

�

�











 then the matrix A is entered using MATLAB syntax indicated as follows:

>> A = [1+2j 3-4j;5 6-7j];

R.6.53 The elements of a complex matrix can be entered in rectangular, exponential,
or trigonometric form, but MATLAB always stores the elements in rectangular
format.

R.6.54 Complex matrix and array operations use the same commands and follow the same
rules as the ones defi ned for real matrices.

R.6.55 For example, let A and B be two complex matrices defi ned as follows:

A
e i

i e

j

i

�
�

� �

[] cos sin

.

(/)

(/)

3 6
6

6
6

3 4 4 23 9

3

18

�

�

� �













�













and

B

j e

j j

j

�
�5 9 5

2 3 6 8

3 5

3 3

�

� �

(/ /)

.() log()

� �









 Create the script MATLAB fi le Compmatop that performs the following matrix
operations:
 1. Create the matrix A
 2. Create the matrix B
 3. C = A + B
 4. D = A * B
 5. E = A. * B
 6. F = inv(A)
 7. G = F * A
 8. H = A * F
 9. I = A ^ i
10. J = A. ^ B

MATLAB Solution
% Script file: Compmatop
A = [3*exp(pi/3*j) 6*cos(pi/6)+i*6*sin(pi/6);3+4i 4.23*exp(-i*pi/18)+9]
B = [5-9j 5*exp(pi/3*j+pi/5);(2-3j)̂ 3.3 log(6-8j)]
C = A+B
D = A*B
E = A.*B
F = inv(A)
G = F*A
H = A*F

CRC_47744_Ch006.indd 368CRC_47744_Ch006.indd 368 6/17/2008 7:01:35 PM6/17/2008 7:01:35 PM

Complex Numbers 369

I = A^i
J = A.̂ B

 The script fi le Compmatop is executed below and the results are shown as
follows:

>> Compmatop

A =
 1.5000 + 2.5981i 5.1962 + 3.0000i
 3.0000 + 4.0000i 13.1657 - 0.7345i
B =
 5.0000 - 9.0000i 4.6861 + 8.1166i
 -68.5109 + 6.9866i 2.3026 - 0.9273i
C =
 6.5000 - 6.4019i 9.8823 +11.1166i
 -65.5109 +10.9866i 15.4683 - 1.6618i
D =
 1.0e+002 *
 -3.4607 - 1.6974i 0.0069 + 0.2644i
 -8.4587 + 1.3531i 0.1123 + 0.2919i
E =
 1.0e+002 *
 0.3088 - 0.0051i 0.0000 + 0.5623i
 -2.3348 - 2.5308i 0.2963 - 0.1390i
F =
 0.6976 - 0.1688i -0.3077 - 0.1095i
 -0.2000 - 0.1846i 0.1059 + 0.1243i
G =
 1.0000 - 0.0000i -0.0000 - 0.0000i
 0.0000 1.0000
H =
 1.0000 + 0.0000i -0.0000 - 0.0000i
 0.0000 + 0.0000i 1.0000 - 0.0000i
I =
 0.8065 - 0.0403i -0.7942 - 0.2316i
 -0.5328 - 0.4375i -0.6469 + 0.7881i
J =
 1.0e+006
 -0.1832 + 3.0056i -0.0000 - 0.0001i
 -0.0000 - 0.0000i -0.0003 - 0.0002i

R.6.56 The prime operator (‘) on a complex matrix returns its conjugate transpose. Using
the matrix A from R.6.52 as an example, perform the following command: B = A′.
Then

B

j

j j
�

� �

1 2 5
3 4 6 7

�









R.6.57 The point transpose (.′) operation on a complex matrix returns the (unconjugate)
transpose. Using the matrix A from R.6.52 as an example, perform the following
operation: C = A.′. Then

C

j

j j
�

�1 2 5
3 4 6 7� �











CRC_47744_Ch006.indd 369CRC_47744_Ch006.indd 369 6/17/2008 7:01:35 PM6/17/2008 7:01:35 PM

370 Practical MATLAB® Basics for Engineers

R.6.58 The MATLAB command conj(z) returns the complex conjugate of z. For example, let
z = 1 − 2i, perform the following operation conjz = conj(z)

MATLAB Solution
>> z =1-2i

 z =
 1.0000 - 2.0000i

>> conjz = conj(z)

 conjz =
 1.0000 + 2.0000i

R.6.59 The MATLAB command real(z) returns the real part of z. For example, evaluate the
real part of z defi ned in R.6.58.

MATLAB Solution
>> z = 3 + 4i;
>> realz = real(z)

 realz =
 3

R.6.60 The MATLAB command imag(z) returns the imaginary part of z.
 For example, let z = 3 + 4i, execute the following command imagz = imag(z) and

observe the response.

MATLAB Solution
>> z = 3+4i;
>> imagz = imag(z)

 imagz =
 4

R.6.61 Let us illustrate some of the matrix concepts defi ned earlier, in this section. For
example, let the complex matrix A be

A
e i

e

j

i

�
�

� �

[] cos sin

.

(/)

(/)

3 6
6

6
6

3 4 23 9

3

18

�

�

� �













4i �













 Create the script fi le Compmatrix that performs the following operations:
1. real_A = real(A)

2. imag_A = imag(A)

3. check_A = real_A + j*imag_A, reconstructing the original matrix A

MATLAB Solution
% Script file: Compmatrix
A = [3*exp(pi/3*j) 6*cos(pi/6)+i*6*sin(pi/6);3+4i 4.23*exp(-i*pi/18)+9]
real _ A = real(A)
imag _ A = imag(A)
check _ A = real _ A+j*imag _ A

CRC_47744_Ch006.indd 370CRC_47744_Ch006.indd 370 6/17/2008 7:01:35 PM6/17/2008 7:01:35 PM

Complex Numbers 371

 The script fi le Compmatrix is executed as follows, and the results indicate that
indeed matrix A is equal to [real(A)] + [j * imag(A)].

>> Compmatrix

 A =
 1.5000 + 2.5981i 5.1962 + 3.0000i
 3.0000 + 4.0000i 13.1657 - 0.7345i
 real _ A =
 1.5000 5.1962
 3.0000 13.1657
 imag _ A =
 2.5981 3.0000
 4.0000 -0.7345
 check _ A =
 1.5000 + 2.5981i 5.1962 + 3.0000i
 3.0000 + 4.0000i 13.1657 - 0.7345i

 Observe that each element of A is saved in rectangular form.

R.6.62 The MATLAB command abs(z) returns the absolute value of z. For example, let
z = 3 + 4i, perform the following operation absz = abs(z).

MATLAB Solution
>> z = 3+4i;
>> absz = abs(z) % note that absz = [absolute value of z] = sqrt (3̂ 2+4̂ 2)

 absz =
 5

R.6.63 Let us illustrate some of the matrix concepts presented earlier in this section. Let A
and B be the two complex matrices defi ned as follows:

A
e i

e

j

i

�
�

� �

[] cos sin

.

(/)

(/)

3 6
6

6
6

3 4 23 9

3

18

�

�

� �













4i �













and

B

j e

j j

j

�
�5 9 5

2 3 6 8

3 5

3 3

�

� �

((/ /)

.() log()

� �









 Create the script fi le com_matr_op that performs the operations indicated as
follows:
1. A = [3 * exp(pi/3 * j) 6 * cos(pi/6) + i * 6 * sin(pi/6); 3 + 4i 4.23 * exp(−i * pi/18) + 9]

2. B = [5−9j 5 * exp(pi/3 * j + pi/5); (2 − 3j) ^ 3.3 log(6 − 8j)]

3. C = det(A)

4. D = conj(A)

5. E = A ^ 2
6. F = A. ^ B
7. G = A′
8. H = A.′
9. I = [A B]

CRC_47744_Ch006.indd 371CRC_47744_Ch006.indd 371 6/17/2008 7:01:36 PM6/17/2008 7:01:36 PM

372 Practical MATLAB® Basics for Engineers

10. J = [A; B]

11. K = I(1, :)

 12. L = J(:, 1)

13. M = eig(A)

MATLAB Solution
% Script file : comp _ matr _ op
A = [3*exp(pi/3*j) 6*cos(pi/6)+i*6*sin(pi/6);3+4i 4.23*exp(-i*pi/18)+9]
B = [5-9j 5*exp(pi/3*j+pi/5);(2-3j)̂ 3.3 log(6-8j)]
C = det(A)
D = conj(A)
E = A^2
F = A.̂ B
G = A’
H = A.’
I = [A B]
J = [A;B]
K = I(1,:)
L = J(:,1)
M = eig(A)

 The script fi le comp_matr_op is executed below and the results are indicated as
follows:

>>comp _ matr _ op

A = % A is defined as a 2 by
 1.5000 + 2.5981i 5.1962 + 3.0000i 2 complex matrix
 3.0000 + 4.0000i 13.1657 - 0.7345i % observe that the

 elements of A are stored
 % in rectangular form
B = % B is defined as a 2 by
 5.0000 - 9.0000i 4.6861 + 8.1166i 2 complex matrix
 -68.5109 + 6.9866i 2.3026 - 0.9273i
C = % observe that C is the
 18.0685 + 3.3192i determinant of
 % matrix A, also complex
D = % D is the complex conj
 1.5000 - 2.5981i 5.1962 - 3.0000i of matrix A
 3.0000 - 4.0000i 13.1657 + 0.7345i
E = % E is the matrix product
 1.0e+002 [A*A]
 -0.0091 + 0.3758i 0.7061 + 0.5368i
 0.3654 + 0.6425i 1.7639 + 0.1044i
F = % F is A raised to B
 1.0e+006
 -0.1832 + 3.0056i -0.0000 - 0.0001i
 -0.0000 - 0.0000i -0.0003 - 0.0002i
G = % G is the transpose of A
 1.5000 - 2.5981i 3.0000 - 4.0000i
 5.1962 - 3.0000i 13.1657 + 0.7345i

CRC_47744_Ch006.indd 372CRC_47744_Ch006.indd 372 6/17/2008 7:01:36 PM6/17/2008 7:01:36 PM

Complex Numbers 373

H = % H is the un-conjugate
 1.5000 + 2.5981i 3.0000 + 4.0000i transpose of A
 5.1962 + 3.0000i 13.1657 - 0.7345i
I = % I is A concatenated with
 1.5000 + 2.5981i 5.1962 + 3.0000i matrix B (2x4matrix)
 5.0000 - 9.0000i 4.6861 + 8.1166i
 3.0000 + 4.0000i 13.1657 - 0.7345i
 -68.5109 + 6.9866i 2.3026 - 0.9273i
J = % J is matrix A followed
 1.5000 + 2.5981i 5.1962 + 3.0000i by B (J is 4 x 2 matrix)
 3.0000 + 4.0000i 13.1657 - 0.7345i
 5.0000 - 9.0000i 4.6861 + 8.1166i
 -68.5109 + 6.9866i 2.3026 - 0.9273i
K = % K is the first row of
 1.5000 + 2.5981i 5.1962 + 3.0000i matrix I
 5.0000 - 9.0000i 4.6861 + 8.1166i
L = % L is the first column of
 1.5000 + 2.5981i matrix J
 3.0000 + 4.0000i
 5.0000 - 9.0000i
 -68.5109 + 6.9866i
M = % M are the eigenvalues of A
 1.3675 + 0.0646i
 13.2983 + 1.7989i

R.6.64 The MATLAB command angle(z) returns the value of the angle of the exponential
or polar representation of z by evaluating the function tan−1[imag(z)/real(z)], or the
MATLAB function atan(imag(z), real(z)), in radians, within the range −π, +π.

R.6.65 Complex data in polar form can be plotted using polar coordinates by employing
the function polar (alpha, r), where alpha is given by angle(z), in rad and r = abs(z).

 Observe that a point in the z-plane can be uniquely identifi ed using polar coor-
dinates by defi ning r and alpha. An arbitrary point in the z-plane can be represented
by more than one pair of polar coordinates. For example, the polar coordinates
(9, 130°) and (9, −230°) represent the same point in the z-plane.

R.6.66 Complex data can be represented as vectors, with an arrow drawn from the origin
of the complex plane with length r, and an angle of Φ = arctan (b/a), by using the
instruction compass(z), where z = a + jb and r = √

 a2 + b2 . For example, let z = 1 + 3i,

and perform then the command compass(z) and show the result.

MATLAB Solution
>> z =1+3i;
>> compass(z) % returns the plot of Figure 6.5

R.6.67 Complex data can be shown as vectors by using the command feather (z), or feather
(a, b). The argument of feather, z or a + jb, represents in the complex plane a direc-
tional arrow with a slope of b/a. For example, let z1 = 1 + i and z2 = −(1 + i); per-
form the instruction feather (z), where z = [z1z2], and show the resulting plot.

CRC_47744_Ch006.indd 373CRC_47744_Ch006.indd 373 6/17/2008 7:01:36 PM6/17/2008 7:01:36 PM

374 Practical MATLAB® Basics for Engineers

MATLAB Solution
>> z1 =1+i;
>> z2 = -(1+i);
>> z = [z1 z2];
>> feather (z) % returns the plot shown in Figure 6.6
>> title (‘plot using feather (z), z = ±(1+i)’)
>> xlabel (‘real’);ylabel (‘imaginary’)

1

 2

 3

 4

30

210

60

240

90

270

120

300

150

330

180 0

FIGURE 6.5
compass plots of z of R.6.66.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Plot using feather (z), z = ±(1+i)

Real

Im
ag

in
ar

y

FIGURE 6.6
feather plots of z of R.6.67.

CRC_47744_Ch006.indd 374CRC_47744_Ch006.indd 374 6/17/2008 7:01:36 PM6/17/2008 7:01:36 PM

Complex Numbers 375

R.6.68 Two complex numbers z1 = a1 + jb1 and z2 = a2 + b2 are equal if and only if

 a1 = a2 and b1 = b2

or

 | | | | and1 2z z� �� �z z1 2

 Recall that the concept of comparing two complex numbers z1 and z2, and labeling
one greater or smaller than the other is meaningless.

R.6.69 The phase angle of z = a + jb is expressed as

 �z b a� 	tan (/)�1 , for 0a

and

 �z b a�
� � �tan (/)1 , for 0a

R.6.70 The addition and subtraction of sinusoidal functions is frequently encountered in the
physical sciences and engineering such as AC circuit analysis where the sinusoids
have the same frequency, but different magnitudes and phase angles. One way to
deal with this problem is by constructing the sinusoidal functions on the same set of
axes and performing the required operation at every point along the abscissa.

 This process is convenient if done by a computer, but is long and tedious if done
by hand. A more effi cient and convenient way, used extensively by engineers, is
to use complex numbers to represent time sinusoidal functions using the polar or
exponential complex form. A slightly modifi ed polar form is commonly referred by
engineers as a phasor representation. The conversion process is illustrated as fol-
lows. Let f(t) = r cos(wt + θ), this function can be represented as

 f(t) = real[r ejθ e jwt]

 where F = real[r ejθ], or in short F = r ejθ, omitting the term real, but knowing that
only the real part is considered.

 If the time function is f(t) = r sin(wt + θ), then f(t) would be represented as

 f(t) = imag[r ejθ e jwt] or F = imag[r ejθ] or in short, F = r ejθ

 This representation is frequently given in the compressed form as r ∠ θ and is
frequently referred as a phasor representation.

R.6.71 For example, the following time domain sinusoidal functions, shown in the left
column, are converted to phasor representations in the right column.

Time Domain Phasor Domain

f1(t) = 5.65 sin(wt) F1 = 5.65 ∠ 0°
f2(t) = 9.13 sin(wt + 35°) F2 = 9.13 ∠ 35°
f3(t) = 8.93 cos(wt) F3 = 8.93 ∠ 90°

CRC_47744_Ch006.indd 375CRC_47744_Ch006.indd 375 6/17/2008 7:01:37 PM6/17/2008 7:01:37 PM

376 Practical MATLAB® Basics for Engineers

 The preceding examples use the peak or maximum value of the time func-
tions instead of the more frequently employed effective value (peak value times
0.707) in electrical AC circuit analysis by engineers and the angles are usually
expressed in degrees, rarely in radians.

R.6.72 The MATLAB functions

 [A, B, C] = cart2sph(x, y, z)

and
 [D, E, F] = cart2pol(x, y, z)

transform the Cartesian coordinates into spherical, or polar coordinates (cylin-
drical), respectively, where A (azimuth), B (elevation), and D are angles expressed
in radians; C and E represent the radius; and F represents the height.
 Similarly, the instructions pol2cart and sph2cart convert polar or cylindrical
coordinates to Cartesian.
 For example, transform the 3D Cartesian point defi ned by

 x = 1, y = 1, and z = 1

into spherical and polar coordinates, and back to Cartesian coordinates as a
check, using MATLAB.

MATLAB Solution
>> x =1;y =1;z =1;
>> [A,B,C] = cart2sph(x,y,z) % spherical coordinate

 A =
 0.7854
 B =
 0.6155
 C =
 1.7321

>> [X,Y,Z] = sph2cart(A,B,C) % Cartesian coordinates

 X =
 1
 Y =
 1.0000
 Z =
 1.0000

>> [D,E,F] = cart2pol(x,y,z) % polar coordinates

 D =
 0.7854
 E =
 1.4142
 F =
 1

>> [X,Y,Z] = pol2cart(D,E,F) % back to Cartesian coordinates

 X =
 1.0000
 Y =
 1
 Z =

 1

CRC_47744_Ch006.indd 376CRC_47744_Ch006.indd 376 6/17/2008 7:01:37 PM6/17/2008 7:01:37 PM

Complex Numbers 377

6.4 Examples

Example 6.1

Given the following two complex numbers:

 z1 = 1 + 2i

and

 z2 = 3 + 4i

Write a MATLAB program that performs the following operations:

 a. z1 + z2

 b. z1 − z2

 c. z1 ⋅ z2 (the . denotes product)

 d. z1/z2

 e. z1* and z2* (recall that the * denotes complex conjugate)

 f. real(z1 ⋅ z2) and imag(z1 ⋅ z2)

 g. real(z1 + z2) and imag(z1 + z2)

 h. v = real (z1) + imag(z1 * z2)

 i. w = imag (z2) + i real(z1 + z2)

 j. (z1 . z2)* and (z1 + z2)*

 k. mag. of |z1| and |z2|

 l. Phase angles of z1 and z2

MATLAB Solution
>> % MATLAB program that evaluates and illustrates the basic complex

operations
>> % for the following complex numbers:
>> z1 = 1+2i;
>> z2 = 3+4i;
>> sum = z1+z2 % sum of z1+z2, part (a)

 sum =
 4.0000 + 6.0000i

>> dif = z1-z2 % subtraction of z1-z2, part (b)

 dif =
 -2.0000 - 2.0000i

>> prod = z1*z2 % product of z1*z2, part (c)

 prod =
 -5.0000 +10.0000i

>> div = z1/z2 % division of z1/z2, part (d)

 div =
 0.4400 + 0.0800i

>> z1conj = conj(z1) % complex conjugate of z1 and z2, part (e)

 z1conj =
 1.0000 - 2.0000i

>> z2conj = conj(z2)

 z2conj =
 3.0000 - 4.0000i

CRC_47744_Ch006.indd 377CRC_47744_Ch006.indd 377 6/17/2008 7:01:37 PM6/17/2008 7:01:37 PM

378 Practical MATLAB® Basics for Engineers

>> realprod = real(prod) % real and imaginary parts of the product
z1*z2, part (f)

 realprod =
 -5
>> imagprod = imag(prod)

 imagprod =
 +10

>> realsum = real(sumcomp); % part (g)

 realsum =
 4

>> imasum = imag(sumcomp)

 imagsum =
 6

>> v = real(z1) + i*imag(prod) % create v, part (h)

 v =
 1.0000 +10.0000i

>> w = imag(z2)+i*real(sum); % part (i)

 w =
 4.0000 + 4.0000i

>> conprod = conj(prod) % complex conjugate of (z1.z2) and
(z1+z2)*, part (j)

 conprod =
 -5.0000 -10.0000i

>> consum = conj(sum)

 consum =
 4.0000 - 6.0000i

>> magz1 = abs(z1) % evaluates magnitudes of z1 and z2,
part (k)

 magz1 =
 2.2361

>> magz2 = abs(z2) % angles are in radians

 magz2 =
 5

>> angz1 = angle(z1) % evaluates phase angles of z1 and z2,
part (l)

 angz1 =
 1.1071

>> angz2 = angle(z2)

 angz2 =
 0.9273

Example 6.2

Given the exponential discrete complex sequence y(n) = 3ezn, where z = −1 + i(π/3); create
the script MATLAB fi le discrete that returns the following plots:

 a. real(y) versus n
 b. imag(y) versus n

 c. [√

 (real(y))2 + (imaginary(y))2] versus n, over the range 0 ≤ n ≤ 12, with regular
spacing of ∆n = 0.2

CRC_47744_Ch006.indd 378CRC_47744_Ch006.indd 378 6/17/2008 7:01:37 PM6/17/2008 7:01:37 PM

Complex Numbers 379

MATLAB Solution
% Script file: discrete
% generation of the complex exponential sequence y(n)
z = -1+i*(pi/3);
n = 0:0.2:12;
y = 3*exp(z*n);
a = real(y);
b = imag(y);
axis on ;

figure(1)
subplot(2,1,1)
stem(n,a)
xlabel(‘time index n’), ylabel(‘Amplitude’)
title(‘Plot of real[3*exp(-1+i(pi/3))*n] vs. n’)
grid on
subplot(2,1,2)
stem(n,b)
xlabel(‘time index n’),ylabel(‘Amplitude’)
Title(‘Plot of imag [3*exp(-1+i(pi/3))*n] vs n’)
grid on

figure(2)
stem(n,abs(y))
title(‘Plot of magnitude of [y] vs. n’)
xlabel(‘time index n’),ylabel(‘Magnitude of [y]’)

 The script fi le discrete is executed and the results are shown in Figures 6.7 and 6.8.

3

2

1

0

0
−1

2 4 6 8 10 12

0 2 4 6 8 10 12

Time index n

Time index n

A
m

pl
itu

de
A

m
pl

itu
de

1.5

0.5

−0.5

0

1

Plot of real [3*exp(-1+i(pi/3))*n] versus n

Plot of imag [3*exp(-1+i(pi/3))*n] versus n

FIGURE 6.7
Discrete plots of Example 6.2(a and b).

CRC_47744_Ch006.indd 379CRC_47744_Ch006.indd 379 6/17/2008 7:01:38 PM6/17/2008 7:01:38 PM

380 Practical MATLAB® Basics for Engineers

Example 6.3

Write a program that plots the following functions:

y

e e
y

e e
j

jz jz jz jz

1 22 2
�

�
�

� ��
and

for z = 2πn − π/4 and 0 ≤ n ≤ 2, with regular spacing of ∆n = 0.05; verifying Euler’s
identities.

Recall that Euler’s identities are

cos() sin()z

e e
z

e e
j

jz jz jz jz
�

�
�

� ��

2 2
and

MATLAB Solution
>> % generation of a sinusoid using

Euler’s identities
>> n = 0:0.05:2;
>> z = 2*pi*n-pi/4;
>> y1 = 0.5*exp(i * z);
>> y = y1+ conj(y1);
>> y2 = -j.*(y1-conj(y1));
>> clf % clears the figure window
>> subplot (1,2,1)
>> stem(n,y) % returns the discrete sinusoid

3

2.5

2

1.5

1

0.5

0
0 2 4 6 8 10 12

Time index n

M
ag

ni
tu

de
 o

f [
y

]

Plot of magnitude of [y] versus n

FIGURE 6.8
Discrete plot of Example 6.2(c).

CRC_47744_Ch006.indd 380CRC_47744_Ch006.indd 380 6/17/2008 7:01:38 PM6/17/2008 7:01:38 PM

Complex Numbers 381

0 0.5 1.5 21 0 0.5 1.5 21
Index nIndex n

A
m

pl
itu

de

A
m

pl
itu

de

1.5

0.5

−0.5

−1.5

−1

0

1

1

0.8

0.6

0.4

0.2

0

−0.2

−0.4

−0.6

−0.8

−1

Cosine construction using Euler's identity Sine construction using Euler's identity

FIGURE 6.9
Plots of Example 6.3, verifying Euler’s identity.

>> axis on;
>> axis ([0 2 -1.5 1.5])
>> grid on
>> xlabel (‘Index n’),ylabel (‘Amplitude’)
>> title(‘Cosine Construction Using Eulers Identity’)
>> subplot (1,2,2)
>> stem(n,y2)
>> xlabel (‘Index n’), ylabel(‘Amplitude’)
>> title (‘Sine Construction Using Euler’s Identity’)
>> grid on

See Figure 6.9.

Example 6.4

Given the following complex numbers:

 z1 = 3 + i

and

 z2 = −4 + i2

Write a program that performs the following:

 a. Represent z1 and z2 on the complex plane as points (indicated by * and +,
re spectively)

 b. Represent z1 and z2 as vectors plotted in the complex plane (magnitude and angle)

 c. Represent the vectors z1, z2, and z = z1 + z2, as plots in the polar coordinate system

 d. Plot of [mag1] versus ∠β/(4π), where [mag1] = abs(z1)(β/4π), over the range 0 ≤ β ≤ 4π,
in the polar coordinate system with regular spacing of 0.1

CRC_47744_Ch006.indd 381CRC_47744_Ch006.indd 381 6/17/2008 7:01:39 PM6/17/2008 7:01:39 PM

382 Practical MATLAB® Basics for Engineers

MATLAB Solution
>> % Figure 6.10 are the plots of Example 6.4
>> subplot(2,2,1)
>> plot(3,1,’*’,-4,2,’+’) % char.* represents z1 and, + represents z2
>> xlabel(‘Real’) ,ylabel(‘Imaginary’)
>> title (‘Representation of z1(*) and z2(+) as points’)
>> axis([-5 4 0 3])
>> z1=3+i;
>> z2 = -4+2i;
>> z = [z1 z2];
>> subplot(2,2,2)
>> feather (z)
>> axis ([-5 4 0 3])
>> grid on
>> text (real(z1), imag(z1), ‘z1’)
>> text (real(z2), imag(z2), ‘z2’)
>> xlabel (‘Real’), ylabel(‘Imaginary’)
>> title (‘Feather Representation of z1 and z2’)
>> z3 = z1+z2;
>> z4 = [z1 z2 z3];
>> subplot(2,2,3)
>> compass(z4)
>> text (real(z1),imag(z1),’z1’)
>> text (real(z2),imag(z2),’z2’)
>> text (real(z1+z2),imag(z1+z2),’z1+z2’)
>> title(‘Vector z=z1+z2’)

Vector z = z1 + z2

210

240
270

300

330

0

30

60
90120

150

180

5

5

210

240
270

300

330

0

30

60
90

120

150

180

4

2

z1

z1
z2

z2

Polar representation of vector lz1lβ/4*pi

Im
ag

in
ar

y

Im
ag

in
ar

y

Real Real

−4 −2 0 2 4 −4 −2 0 2 4
0

1

2

3

0

1

2

3

z2

z1

Feather representation of z1 and z2Representation of z1 (*) and z2 (+) as points

FIGURE 6.10
Plots of Example 6.4.

See Figure 6.10.

CRC_47744_Ch006.indd 382CRC_47744_Ch006.indd 382 6/17/2008 7:01:39 PM6/17/2008 7:01:39 PM

Complex Numbers 383

>> subplot (2,2,4)
>> beta = 0:0.1:4*pi;
>> mag1= abs(z1)*beta/(4*pi);
>> polar (beta,mag1);
>> title (‘Polar representation of vector |z1|ß/(4*pi)’)

Example 6.5

Given the following discrete complex function:

f z

z
z

() �
� 1

where z = x + 3j, over the range −10 ≤ x ≤ 10, represented by regular linear spacing of 0.1.

 a. Obtain analytical expressions for |f(z)| and ∠f(z).
 b. Create the script fi le Example65 that returns the plots of |f(z)| versus x and ∠f(z)

versus x.

ANALYTICAL Solution

f x j

x j
x j

x x
x x

()
tan (/)

() tan (/()
� �

�

�
�

�

�
3

3
3 1

3 3
1 3 3 1

2 2 1

2 2 1� � �

�

�

�

�))

The magnitude is given by

| ()|

()
f z

x
x

�
�

�

2 2

2

3
1 3�

The angle is given by

 � �f z x x() tan (/) tan (/())� � �� �1 13 3 1

MATLAB Solution
% Script file: Example65
% The plots of Example 6.5 are shown in Figure 6.11
X=-10: .1: 10;
Z = X+3j; % Creates an array of complex elements
F = Z./(Z-1);
Subplot (2,1,1)
plot (X,abs(F))
xlabel (‘x axis’), ylabel (‘Magnitude’)
title (‘mag[f(z)] vs. x’)
subplot (2,1,2)
angleF = angle(F);
plot (X,angleF)
xlabel (‘x axis’), ylabel (‘Angle in radians’)
title (‘angle[f(z)] vs. x’)

 The script fi le Example65 is executed and the results are shown in Figure 6.11.

CRC_47744_Ch006.indd 383CRC_47744_Ch006.indd 383 6/17/2008 7:01:40 PM6/17/2008 7:01:40 PM

384 Practical MATLAB® Basics for Engineers

Example 6.6

Create the script fi le Example66 that uses MATLAB to verify the following identity
(Euler’s identity):

 ejωo t = cos(ωo t) + j sin(ωo t)

for any arbitrary value of ωo. Let us choose ωo = 2 rad/s.

MATLAB Solution
%Script file: Example66
t =-pi:.1*pi:2*pi;
wo =2;
y = exp(j*wo.*t);
y1= cos(wo.*t); y2=sin(wo.*t);
realy = real(y);
imagy = imag(y);
subplot (2,1,1)
plot (t,realy,’o’,t,y1)
legend (‘real[y]’, ‘cos(2t)’)
title (‘real[exp(j*2*t)] vs t’)
ylabel (‘Amplitude of real[exp(j*2*t)]’), xlabel(‘time’)
subplot (2,1,2)
plot (t,imag(y),’o’,t,y2)
legend(‘imaginary[y]’, ‘sin(2t)’)
title(‘imaginary [exp(j*2*t)]’)
ylabel(‘ Amplitude of imaginary[(exp(j*2*t)]’),
xlabel(‘time’)

 The script fi le Example66 is executed and the resulting plots are shown in Figure 6.12.

1.3

1.2

1.1

1

0.9

0.8
−10 −6 −4 −2−8 20 4 6 108

x -axis

M
ag

ni
tu

de

0

−0.1

−0.2

−0.3

−0.4
−10 −8 −6 −4 −2 0 2 64 8 10

x - axis

mag [f(z)] versus x

angle [f(z)] versus x

A
ng

le
 (

in
 r

ad
ia

ns
)

FIGURE 6.11
Plots of Example 6.5.

CRC_47744_Ch006.indd 384CRC_47744_Ch006.indd 384 6/17/2008 7:01:40 PM6/17/2008 7:01:40 PM

Complex Numbers 385

Example 6.7

Given the following function f(t) = (1 − e0.1t) [cos(2t) + j sin(2t)].
Create the script fi le Example67 that returns the following plots:

 a. |f(t)| versus t
 b. real[f(t)] versus t
 c. imaginary[f(t)] versus t
 d. polar plot of {angle[f(t)]} versus abs[f(t)]

MATLAB Solution
%Script file: Example67
t=0:.1*pi:3*pi;
ft=(1-exp(.1.*t)).*(cos(2.*t)+j*sin(2.*t));
subplot(2,2,1);
plot(t,abs(ft));
title(‘abs [f(t)] vs. t’),
ylabel(‘magnitude [(f(t)]’); xlabel(‘time’)
subplot(2,2,2);
plot(t,real(ft));
title(‘real[f(t)] vs. t’),
ylabel(‘Amplitude of real[f(t)]’);xlabel(‘time’)
subplot(2,2,3)

1

0.5

−0.5

−1
−2 0 2 4 86

Time

real [exp(j*2*t)] versus t

real[y]

cos(2t)

imaginary [exp(j*2*t)]

imaginary[y]

sin(2t)

−4 −2 0 2 4 6 8

Time

−4

1

0.5

−0.5

−1

0

A
m

pl
itu

de
 o

f i
m

ag
in

ar
y

[(
ex

p(
j*

2*
t)

]
A

m
pl

itu
de

 o
f r

ea
l [

ex
p(

j*
2*

t)
]

0

FIGURE 6.12
Plots of Example 6.6.

CRC_47744_Ch006.indd 385CRC_47744_Ch006.indd 385 6/17/2008 7:01:40 PM6/17/2008 7:01:40 PM

386 Practical MATLAB® Basics for Engineers

plot(t,imag(ft));
title(‘imag[f(t)] vs. t’), ylabel(‘Amplitude of imag [f(t)]’);
xlabel(‘time’)
subplot(2,2,4);polar(angle(ft), abs(ft))
title(‘Polar representation of |f(t)| vs. angle[(f(t)]’)

The script fi le Example67 is executed and the results are shown in Figure 6.13.

2

1.5

0.5

0
0

1

5 10

0 5 10

0 5 10

Time Time

Time

2

1

0

−1

−2

2

1

0

−1

−2
Polar representation of [f(t)] versus angle [(f(t)]

300

330

0

30

60
290120

150

210

240 270

180

1

M
ag

ni
tu

de
 [(

f(
t)

]

abs [f(t)] versus t real [f(t)] versus t

A
m

pl
itu

de
 o

f r
ea

l [
f(

t)
]

imag [f(t)] versus t

A
m

pl
itu

de
 o

f i
m

ag
 [f

(t
)]

FIGURE 6.13
Plots of Example 6.7.

Example 6.8

Given the following time functions:

 f1(t) = 25 sin(wt + 30°)

and
 f2(t) = 15 sin(wt + 60°)

 1. Determine by hand the sum of [f1(t) + f2(t)], using complex algebra (phasors)
 2. Use MATLAB as a calculator to evaluate [f1(t) + f2(t)]
 3. Evaluate using complex exponentials the sum of [f1(t) + f2(t)]
 4. Compare the answers obtained in parts: 1, 2, and 3
 5. Obtain the plot in the time domain of [f1(t) + f2(t)] versus t using complex algebra,

assuming w = π
 6. Plot the sum of [f1(t) plus f2(t)] versus t, directly in the time domain, assuming w = π

CRC_47744_Ch006.indd 386CRC_47744_Ch006.indd 386 6/17/2008 7:01:42 PM6/17/2008 7:01:42 PM

Complex Numbers 387

ANALYTICAL Solution

Part (1)

Converting f1(t) and f2(t) from the time domain to the phasor domain yields

Time Domain Phasor Domain

f1(t) = 25 sin(πt + 30°) F1 = 25∠30°
f2(t) = 15 sin(πt + 60°) F2 = 15∠60°

Convert F1 and F2 to rectangular form to perform the addition, obtaining the following
relations:

 F1 = 25 ∠ 30° = 25[cos(30°) + j sin(30°)] = 21.65 + j 12.50

and

 F2 = 15 ∠ 60° = 15[cos(60°) + j sin(60°)] = 7.5 + j 13

fi nally

 F = F1+ F2 = 29.15 + j 25.50 = 38.72 ∠ 41.72°

MATLAB Solution
% Script file: Example68
% sum of two sinusoids: f1(t) = 25 sin (πt + 30°);
% and f2(t) = 15 sin (πt + 60°)
disp('Part (2)')
disp('Complex form using MATLAB as a calculator')
echo on
f1real = 25*cos(30*pi/180)
f1imag = 25*sin(30*pi/180)
f2real = 15*cos(60*pi/180)
f2imag =15*sin(60*pi/180)
freal = f1real+f2real
fimag = f1imag+f2imag
f = freal+j*fimag
fmag = abs(f)
fang = angle(f)*180/pi
echo off
% exponential complex form using MATLAB
f1 = 25*exp(j*30*pi/180);
f2 = 15*exp(j*60*pi/180);
fc = f1 + f2;
fcmag = abs(fc);
fcang = angle(fc)*180/pi;
disp(‘***’);
disp(‘*********Summary results *************’);
disp(‘***’);
disp(‘** MATLAB used as a calculator **’);
disp(‘** the magnitude and phase **’);

CRC_47744_Ch006.indd 387CRC_47744_Ch006.indd 387 6/17/2008 7:01:42 PM6/17/2008 7:01:42 PM

388 Practical MATLAB® Basics for Engineers

disp(‘** of f1(t) + f2(t) are : **’);
[fmag fang]
disp(‘** MATLAB phasor approach ; **’);
disp(‘** the magnitude and phase **’);
disp(‘** of f1(t) + f2(t) is: **’);
[fcmag fcang]
disp(‘***’);
t = -2:.01:2;
fcc = fcmag*sin(pi.*t+fcang*pi/180);
subplot (2,1,1)
plot (t,fcc)
title (‘Phasor domain [f1+f2] vs t ‘)
ylabel (‘Magnitude’)
subplot (2,1,2)
f1input = 25*sin(pi.*t+30*pi/180);
f2input =15*sin(pi.*t+60*pi/180);
sum = f1input+f2input;
plot (t,sum)
title (‘Time domain [f1(t)+f2(t)] vs t’)
ylabel (‘Magnitude’)
xlabel (‘time’)

 The script fi le Example68 is executed below and the results are shown as follows:

>> Example68

Part (2)
Complex form using MATLAB as a calculator
f1real = 25*cos(30*pi/180)
f1real =
 21.6506
f1imag = 25*sin(30*pi/180)
f1imag =
 12.5000
f2real = 15*cos(60*pi/180)
f2real =
 7.5000
f2imag = 15*sin(60*pi/180)
f2imag =
 12.9904
freal = f1real+f2real
freal =
 29.1506
fimag = f1imag+f2imag
fimag =
 25.4904
f = freal+j*fimag
f =
 29.1506 +25.4904i
fmag =abs(f)
fmag =
 38.7236
fang =angle(f)*180/pi
fang =
 41.1676

CRC_47744_Ch006.indd 388CRC_47744_Ch006.indd 388 6/17/2008 7:01:43 PM6/17/2008 7:01:43 PM

Complex Numbers 389

echo off

************Summary results ***************

** MATLAB used as a calculator **
** the magnitude and phase **
** of f1(t) + f2(t) is : **
 ans =
 38.7236 41.1676
** MATLAB phasor approach ; **
** the magnitude and phase **
** of f1(t) + f2(t) are : **
 ans =
 38.7236 41.1676

40

20

−20

−40

0

40

20

−20

−40

0

−2 −1.5 −0.5−1 0 0.5 1 1.5 2

−2 −1.5 −0.5−1 0 0.5 1 1.5 2

A
m

pl
itu

de
A

m
pl

itu
de

Phasor domain [f1+f2] versus t

Time

Time domain [f1+f2(t)] versus t

FIGURE 6.14
Plots of Example 6.8.

Clearly the results of parts 1, 2, and 3 are identical. Also observe that the pha-
sor and the time domain approach return exactly the same plots, as shown in
Figure 6.14.

Example 6.9

Using the time functions defi ned in Example 6.8:

 f1(t) = 25 sin(wt + 30°)

and

 f2(t) = 15 sin(wt + 60°)

CRC_47744_Ch006.indd 389CRC_47744_Ch006.indd 389 6/17/2008 7:01:43 PM6/17/2008 7:01:43 PM

390 Practical MATLAB® Basics for Engineers

 1. Determine by hand the subtraction of f1(t) − f2(t) using complex algebra (phasors)
 2. Using MATLAB as a calculator evaluate [f1(t) − f2(t)] using complex algebra
 3. Use MATLAB complex exponentials to evaluate [f1(t) − f2(t)]
 4. Compare the answers obtained in parts 1, 2, and 3
 5. Plot in the time domain [f1(t) − f2(t)] versus t, using the phasor approach, and plot

[f1(t) − f2(t)] versus t, directly in the time domain, and compare the results (assume
w = π)

ANALYTICAL Solution

Part (1)

Converting f1(t) and f2(t) from the time (domain) to the phasor domain yields

f1(t) = 25 sin(πt + 30°) F1 = 25 ∠ 30°

f2(t) = 15 sin(πt + 60°) F2 = 15 ∠ 60°

And converting F1 and F2 to rectangular form to perform conveniently the subtraction
yields

 F1 = 25 ∠ 30° = 25[cos(30°) + j sin(30°)] = 21.65 + j 12.50

and

 F2 = 15 ∠ 30° = 15[cos(60°) + j sin(60°)] = 7.5 + j 13

fi nally

 F = F1 − F2 = 14.15 − j 0.50 = 14.16 ∠ −2°

MATLAB Solution
% Script file: Example69
% Subtraction of two sinusoids
disp (‘complex form using MATLAB as a calculator’)
echo on
f1real = 25*cos(30*pi/180)
f1imag = 25*sin(30*pi/180)
f2real =15*cos(60*pi/180)
f2imag =15*sin(60*pi/180)
freal = f1real-f2real
fimag = f1imag-f2imag
f = freal + j*fimag
fmag = abs(f)
fang =angle(f)*180/pi
echo off
% complex exponential form
f1 =25*exp(j*30*pi/180);
f2 =15*exp(j*60*pi/180);
fc = f1-f2; fcmag = abs(fc);
fcang = angle(fc)*180/pi;

CRC_47744_Ch006.indd 390CRC_47744_Ch006.indd 390 6/17/2008 7:01:43 PM6/17/2008 7:01:43 PM

Complex Numbers 391

disp(‘***’);
disp(‘**************R E S U L T S ************’);
disp(‘***’);
disp(‘** MATLAB used as a calculator **’);
disp(‘** the magnitude and phase **’);
disp(‘** of f1(t)-f2(t) is: **’);
[fmag fang]
disp(‘** MATLAB phasor approach **’);
disp(‘** the magnitude and phase **’);
disp(‘** of f1(t)-f2(t) are : **’);
[fcmag fcang]
disp(‘***’);
t = -2:.01:2;
fcc = fcmag*sin(pi.*t+fcang*pi/180);
subplot (2,1,1)
plot (t,fcc);title(‘Phasor domain [f1-f2] vs t ‘)
ylabel (‘Amplitude’);subplot(2,1,2);xlabel(‘time’);
f1input = 25*sin(pi.*t+30*pi/180);
f2input =15*sin(pi.*t+60*pi/180);
diff = f1input-f2input;plot(t,diff);
title (‘Time domain [f1(t)-f2(t)] vs t’)
ylabel (‘Amplitude’);xlabel(‘time’)

 The script fi le Example69 is executed below and the results are given as follows:

>> Example69

complex form using MATLAB as a calculator
f1real = 25*cos(30*pi/180)
f1real =
 21.6506
f1imag = 25*sin(30*pi/180)
f1imag =
 12.5000
f2real = 15*cos(60*pi/180)
f2real =
 7.5000
f2imag =15*sin(60*pi/180)
f2imag =
 12.990
freal = f1real-f2real
freal =
 14.1506
fimag =f1imag-f2imag
fimag =
 -0.4904
f = freal+j*fimag
f =
 14.1506 - 0.4904i
fmag =abs(f)
fmag =
 14.1591
fang =angle(f)*180/pi
fang =
 -1.9848
echo off

CRC_47744_Ch006.indd 391CRC_47744_Ch006.indd 391 6/17/2008 7:01:44 PM6/17/2008 7:01:44 PM

392 Practical MATLAB® Basics for Engineers

**
**************R E S U L T S *************
**
** MATLAB used as a calculator **
** the magnitude and phase **
** of f1(t) - f2(t) is : **
 ans =
 14.1591 -1.9848
** MATLAB phasor approach **
** the magnitude and phase **
** of f1(t)-f2(t) are : **
 ans =
 14.1591-1.9848
**

20

10

0

−10

−20

20

10

0

−10

−20

−2 −1.5 −1 0.5−0.5 0 1 1.5 2

−2 −1.5 −1 0.5−0.5 0 1 1.5 2

Time

A
m

pl
itu

de
A

m
pl

itu
de

Phasor domain [f1-f2] versus t

Time domain [f1(t)-f2(t)] versus t

Time

FIGURE 6.15
Plots of Example 6.9.

Clearly the results of parts 1, 2, and 3 are identical, and the corresponding plots are
shown in Figure 6.15.

Example 6.10

Verify the following relation:

 F3 = F1 + F2

CRC_47744_Ch006.indd 392CRC_47744_Ch006.indd 392 6/17/2008 7:01:44 PM6/17/2008 7:01:44 PM

Complex Numbers 393

where

 F1 = 80 ∠ −36.87°, F2 = 60 ∠ 53.13°, and F3 = 100 ∠ 0°

 a. In the phasor domain, using MATLAB complex algebra.
 b. In the time domain plotting F1 + F2, converted from the phasors over the range

−2 ≤ t ≤ 2, with linear spacing of ∆t = 0.01.
 c. On the same plot, obtain [f1(t) + f2(t)] in time, phasor, and directly (F3), over the

range −2 ≤ t ≤ 1.5 (quarter cycle) with linear spacing of ∆t = 0.01, and observe the
three overlaying plots fully agree (assume w = π).

MATLAB Solution
% Script file: Example610
% verify
f1 = 80*exp(-j*36.87*pi/180);
f2 = 60*exp(j*53.13*pi/180);
fc = f1+f2;
fcmag = abs(fc);
fcang = angle(fc)*180/pi;
disp(‘**’)
disp(‘**************R E S U L T S *******************’)
disp(‘**’)
disp(‘** MATLAB phasor approach **’)
disp(‘** the magnitude and phase of F1+F2 are: **’)
[fcmag fcang]
disp(‘***’)
t =-2:.01:2;
fcc = fcmag*sin(pi.*t+fcang*pi/180);

figure(1)
subplot(2,1,1)
plot (t,fcc)
title (‘Phasor domain [f1+f2] vs. t ‘)
ylabel (‘Amplitude’); xlabel(‘time’);
subplot (2,1,2)
f1input = 80*sin(pi.*t-36.87*pi/180);
f2input = 60*sin(pi.*t+53.13*pi/180);
sum = f1input+f2input;
plot (t,sum)
title (‘Time domain [f1(t)+f2(t)] vs. t’)
ylabel (‘Amplitude’); xlabel(‘time’)

figure(2)
f3 = 100*sin(pi.*t);
plot (t,f3,’o’,t,fcc,’h’,t,sum,’+’);
legend(‘direct’, ‘phasor add’, ‘time add’)
title (‘Plots of: [direct, phasor add, time add]vs. t’)
ylabel (‘Amplitude’);
xlabel (‘time’);axis([-2 -1.5 0 100])

 The script fi le Example610 is executed below, the results follow and their plots are
shown in Figures 6.16 and 6.17.

>> Example610

CRC_47744_Ch006.indd 393CRC_47744_Ch006.indd 393 6/17/2008 7:01:44 PM6/17/2008 7:01:44 PM

394 Practical MATLAB® Basics for Engineers

100

50

−50

−100

100

50

−50

−100

−2 −1.5 −0.5 0.5 1.50−1

0

1 2

−2 −1.5 −0.5 0.5 1.50−1 1 2

Time

Time

A
m

pl
itu

de
A

m
pl

itu
de

Time domain [f1(t) + f2(t)] versus t

Phasor domain [f1 + f2] versus t

0

FIGURE 6.16
Plots of Example 6.10(b).

100

90

80

70

60

50

40

30

20

10

0
−2 −1.95 −1.9 −1.85 −1.8 −1.75 −1.7 −1.65 −1.6 −1.55 −1.5

Time

Direct
Phasor add
Time add

A
m

pl
itu

de

Plots of: [direct, phasor add, time add] versus t

FIGURE 6.17
Plots of Example 6.10(c).

CRC_47744_Ch006.indd 394CRC_47744_Ch006.indd 394 6/17/2008 7:01:45 PM6/17/2008 7:01:45 PM

Complex Numbers 395

**************R E S U L T S ****************

** MATLAB phasor approach **
** the magnitude and phase of F1+F2 are: **
 ans =
 100.0000 -0.0001

Example 6.11

Create the script fi le Example611 that returns the following plots using the polar coordi-
nate system of the following polar equations (Kay, 1994):

 a. r1 = 1 + 2 cos(nx), for n = 1, 2, 3, 4
 b. r2 = 1 + 2 sin(nx), for n = 1, 2, 3, 4
 c. r3 = 2 cos(nx), for n = 1, 2, 3, 4
 d. r4 = x2, over the range 0 < x < 4π

Observe the effects of the constant term, on the sinusoids (sines and cosines) and n.

MATLAB Solution
% Script file: Example611

figure(1)
subplot(2,2,1)
ezpolar(‘1+2*cos(x)’,[0,2*pi])
subplot(2,2,2)
ezpolar(‘1+2*cos(2*x)’,[0,2*pi])
subplot(2,2,3)
ezpolar(‘1+2*cos(3*x)’,[0,2*pi])
subplot(2,2,4)
ezpolar(‘1+2*cos(4*x)’,[0,2*pi])

figure(2)
subplot(2,2,1)
ezpolar(‘1+2*sin(x)’,[0,2*pi])
subplot(2,2,2)
ezpolar(‘1+2*sin(2*x)’,[0,2*pi])
subplot(2,2,3)
ezpolar(‘1+2*sin(3*x)’,[0,2*pi])
subplot(2,2,4)
ezpolar(‘1+2*sin(4*x)’,[0,2*pi])

figure(3)
subplot(2,2,1)
ezpolar(‘2*cos(x)’,[0,2*pi])
subplot(2,2,2)
ezpolar(‘2*cos(2*x)’,[0,2*pi])
subplot(2,2,3)
ezpolar(‘2*cos(3*x)’,[0,2*pi])
subplot(2,2,4)
ezpolar(‘2*cos(4*x)’,[0,2*pi])

figure(4)
ezpolar(‘(x)’,[0,4*pi])

 The script fi le Example611 is executed and the resulting plots are shown in Figures
6.18 through 6.21.

CRC_47744_Ch006.indd 395CRC_47744_Ch006.indd 395 6/17/2008 7:01:45 PM6/17/2008 7:01:45 PM

396 Practical MATLAB® Basics for Engineers

Polar plots of r 1 = 1+2 cos(nx) for n = 1,2,3,4

 r = 1+2 cos(x)

 r = 1+2 cos(3 x)

 r = 1+2 cos(2 x)

 r = 1+2 cos(4 x)

300

330

0

30

60
90

120

150

180

210

240
270

4

2

300

330

0

30

60
90

120

150

180

210

240 270

4

2

300

330

0

30

60
90

120

150

180

210

240
270

4

2

300

330

0

30

60
90

120

150

180

210

240
270

4

2

FIGURE 6.18
Plots of Example 6.11(a).

Polar plots of r 2 = 1+2 sin(nx) for n = 1,2,3,4

 r = 1+2 sin(x) r = 1+2 sin(2 x)

 r = 1+2 sin(3 x) r = 1+2 sin(4 x)

300

330

0

30

60
90

120

150

180

210

240
270

4

2

300

330

0

30

60
90120

150

180

210

240
270

4

2

300

330

0

30

60
90

120

150

180

210

240 270

4

2

300

330

0

30

60
90

120

150

180

210

240
270

4

2

FIGURE 6.19
Plots of Example 6.11(b).

CRC_47744_Ch006.indd 396CRC_47744_Ch006.indd 396 6/17/2008 7:01:45 PM6/17/2008 7:01:45 PM

Complex Numbers 397

300

330

0

30

60
90120

150

180

210

240 270

2

1

300

330

0

30

60
90

120

150

180

210

240
270

2

1

300

330

0

30

60
90120

150

180

210

240
270

2

1

300

330

0

30

60
90

120

150

180

210

240
270

2

1

Polar plots of r 3 = 2 cos(nx) for n = 1,2,3,4

 r = 2 cos(x) r = 2 cos(2 x)

 r = 2 cos(3 x)
 r = 2 cos(4 x)

FIGURE 6.20
Plots of Example 6.11(c).

120

150

180

210

240

270

330

300

0

30

60
20090

150

100

50

r = (x 2)

Polar plot of r4 = x2 for 0<x<4 pi

FIGURE 6.21
Plots of Example 6.11(d).

CRC_47744_Ch006.indd 397CRC_47744_Ch006.indd 397 6/17/2008 7:01:46 PM6/17/2008 7:01:46 PM

398 Practical MATLAB® Basics for Engineers

Example 6.12

Create the script fi le Example612 that returns the plots on the complex plane of the roots
of the following equations:

 a. x1 = (−1)1/20

 b. x2 = (−1)1/40

From the plots, verify that the roots are located on a circle with radius r1/n, where n =
20 and 40, centered at the origin of the complex plane, separated by n equal arcs. Also
verify for x1 that the roots occur in complex conjugate pairs. It is left for the reader to
verify that the roots for x2 occur also in complex conjugate pairs.

The polynomial equations are given as follows:

 a. x1
20 + 1 = 0

 b. x2
40 + 1 = 0

MATLAB Solution
% Script file: Example612
X1 = [1 zeros(1,19) 1];
X2 = [1 zeros(1,39) 1];
roots _ X1=[roots(X1)]’;

figure(1)
plot (real(roots _ X1),imag(roots _ X1),’o’)
title(‘Plot of the roots of X1’)
axis([-1.2 1.2 -1.2 1.2])
grid on
roots _ X2 = [roots(X2)]’;

figure(2)
plot (real(roots _ X2),imag(roots _ X2),’o’)
title (‘Plot of the roots of X2’)
axis ([-1.2 1.2 -1.2 1.2])
grid on

figure(3)
plot (real(roots _ X1),imag(roots _ X1),’o’,real(roots _ X1),imag(roots _ X1))
title (‘Plot connecting the roots of X1 ‘)
axis ([-1.2 1.2 -1.2 1.2])
grid on

The script fi le Example612 is executed and the resulting plots are shown in Figures 6.22
through 6.24.

CRC_47744_Ch006.indd 398CRC_47744_Ch006.indd 398 6/17/2008 7:01:46 PM6/17/2008 7:01:46 PM

Complex Numbers 399

1

1

0.8

0.8

0.6

0.6

0.4

0.4

0.2

0.2

0

0

−0.2

−0.2

−0.4

−0.4

−0.6

−0.6

−0.8

−0.8

−1

−1

Imaginary axis

Plot of the roots of X1

Radius of circle

Real axis

FIGURE 6.22
Plots of the roots of x1 of Example 6.12.

1

1

0.8

0.8

0.6

0.6

0.4

0.4

0.2

0.2

0

0

−0.2

−0.2

−0.4

−0.4

−0.6

−0.6

−0.8

−0.8

−1

−1

Plot of the roots of X2

Real axis

Radius of circle

Imaginary axis

FIGURE 6.23
Plots of the roots of x2 of Example 6.12.

CRC_47744_Ch006.indd 399CRC_47744_Ch006.indd 399 6/17/2008 7:01:47 PM6/17/2008 7:01:47 PM

400 Practical MATLAB® Basics for Engineers

6.5 Further Analysis

Q.6.1 Load and run the program of Example 6.1.
Q.6.2 Defi ne and discuss each of the following commands conj, abs, and angle.
Q.6.3 Evaluate by hand the following MATLAB instructions:
 conj(z1)

 conj(z2)

 abs(z1)

 abs(z2)

 angle(z1)

 angle(z2)

Q.6.4 Identify the variable names assigned to the commands defi ned in Q.6.3 and com-
pare the MATLAB results with the manual results of Q.6.3.

Q.6.5 Modify and rerun Example 6.1 for the case z1 = 1 − i2 and z2 = 3 − i4.
Q.6.6 Repeat Q.6.5 for the case: z1 = +i2 and z2 = +i4.
Q.6.7 Repeat Q.6.5 for the case: z1 = 1 and z2 = 3.
Q.6.8 Defi ne the parameters that control the magnitude, and phase of z1* and z2* (recall

that * denotes complex conjugates).
Q.6.9 Defi ne and discuss each of the following MATLAB commands: real(z) and imag(z),

when z is expressed in polar and exponential forms.

1

1

0.8

0.8

0.6

0.6

0.4

0.4

0.2

0.2

0

0

−0.2

−0.2

−0.4

−0.4

−0.6

−0.6

−0.8

−0.8

−1

−1

Imaginary axis
Plot connecting the roots of X1

Vertical lines connect conjugate roots

Real axis

FIGURE 6.24
Complex conjugate plot of the roots of x1 of Examples.

CRC_47744_Ch006.indd 400CRC_47744_Ch006.indd 400 6/17/2008 7:01:47 PM6/17/2008 7:01:47 PM

Complex Numbers 401

Q.6.10 Which parameters control the angle? Discuss how to obtain a maximum and mini-
mum phase angle for z1 and z2.

Q.6.11 Modify Example 6.1 to display the plot abs(z1) versus abs(z2).
Q.6.12 Repeat Q.6.11 for the case of compass(x, y) and feather(x, y), for x = abs(z1) and y = abs(z2).
Q.6.13 Load and run the script fi le discrete of Example 6.2.
Q.6.14 Which variables control the rate of growth of y(n)?
Q.6.15 Which variables control the amplitude of y(n)?
Q.6.16 What is the length of the sequence labeled y?
Q.6.17 Indicate how to change the length of the sequence label y to 100 elements, over the

same range.
Q.6.18 Consider the following case: z is changed to z = conj(z).
 Will the magnitude change?
 Will the phase change?
Q.6.19 Repeat Q.6.18 for the cases z = conj(−z) and z = −conj(z).
Q.6.20 Load and run the program of Example 6.3.
Q.6.21 Evaluate the frequencies of y1 and y2.
Q.6.22 What is the period and peak value for y1 and y2?
Q.6.23 Express the ys in term of a cosine and sine wave in a standard form as y = cos(ωt + θ)

and y = sin(ωt − Φ)
Q.6.24 Are the angles θ and Φ leading or lagging with respect to the reference wave cos(ωt)?

Discuss.
Q.6.25 Repeat questions Q.6.23 and Q.6.24, for the case y = e

jz − e−jz

2j
 and z = 2πn + π/3.

Q.6.26 Determine the length of the sequences y1 and y2 in Example 6.3, and indicate how
they can be changed.

Q.6.27 Modify the equations for y1 and y2 of Example 6.3, when the frequency is f = 0.4 Hz
and the amplitude is 2.

Q.6.28 Modify the equations for y1 and y2 in Example 6.3 for the case f = 1.2 Hz and unit
amplitude.

Q.6.29 Modify the program of Example 6.3 for the case of y1 = iy1 and y2 = −iy2.
Q.6.30 Modify the program of Example 6.3 by replacing the instruction stem(n, y) with

bar(n, y) and rerun the program. Compare and discuss the results.
Q.6.31 Repeat Q.6.30 for the case of stairs(n, y) and plot(n, y).

Q.6.32 Load and run the program of Example 6.4.
Q.6.33 Analyze subplot(2, 2, 1) with subplot(2, 2, 2) of Figure 6.10. Is that what you expect?

Explain and discuss.
Q.6.34 Defi ne and discuss the command polar.
Q.6.35 Provide a practical example when the command polar can be of interest.
Q.6.36 Evaluate by hand z = z1 + z2, and compare it with the result obtained in

subplot(2, 2, 3).

Q.6.37 Describe the graph obtained in subplot(2, 2, 4) of Figure 6.9.
 What variables affect the function growth?
 What variables affect the displacement?

CRC_47744_Ch006.indd 401CRC_47744_Ch006.indd 401 6/17/2008 7:01:49 PM6/17/2008 7:01:49 PM

402 Practical MATLAB® Basics for Engineers

Q.6.38 Load and run the program of Example 6.5.
Q.6.39 What are the lengths of the sequences Z and F?
Q.6.40 Replace the plot command with the stem command and rerun the program.
Q.6.41 Repeat question Q.6.40 using the stair command.
Q.6.42 Modify the program of Example 6.5 to evaluate the maximum and minimum val-

ues of the magnitude of F, with respect to X.
Q.6.43 Repeat question Q.6.42 for the case of angle.
Q.6.44 Load and run the program of Example 6.6.
Q.6.45 Determine the amplitude, frequency, and phase of the function plotted on Fig-

ure 6.12 subplot(2, 1, 1).

Q.6.46 Repeat question Q.6.45 for Figure 6.12 subplot(2, 1, 2).

Q.6.47 Load and run the program of Example 6.7.
Q.6.48 What are the coeffi cients that control the magnitude of f(t)?
Q.6.49 Express analytically the real part of f(t).
Q.6.50 Express analytically the imaginary part of f(t).
Q.6.51 Rerun the program of Example 6.7 for −π ≤ t ≤ 2π, using 100 points.
Q.6.52 Use MATLAB to evaluate and plot abs(f(t)) versus t, for t < 0.
Q.6.53 Modify the program to obtain the plot of real [f(t)] versus imag[f(t)].

Q.6.54 Discuss and comment on how the plot of the angle [f(t)] versus abs[f(t)] would be
affected for t < 0.

Q.6.55 Load and run the program of Example 6.8.
Q.6.56 What is a phasor and what variables defi ne a phasor?
Q.6.57 Discuss when and why phasors are used in engineering problems.
Q.6.58 What is the main assumption when phasors are used?
Q.6.59 Describe the steps involved when evaluating abs(z) by hand, a calculator, or using

MATLAB.
Q.6.60 Compare and discuss the time domain versus the phasor domain representation.
Q.6.61 If MATLAB is available, what would be the best way to evaluate the addition of

Example 6.8?
Q.6.62 Load and run the program of Example 6.9.
Q.6.63 Describe the steps involved when evaluating angle(z) by hand, using a calculator,

and by using MATLAB.
Q.6.64 Load and run the program of Example 6.10.
Q.6.65 Obtain plots of F1 and F2 as phasors.
Q.6.66 Observe that F2 leads F1. Evaluate the phase angle in degrees and radians between

F1 and F2.
Q.6.67 Calculate by hand F1 + F2 and compare your result with F3.
Q.6.68 Load and run the program of Example 6.11.
Q.6.69 Defi ne what is a polar equation.
Q.6.70 Explain when and why it is convenient to use polar coordinates.
Q.6.71 Give a practical example when polar coordinates should be used.

CRC_47744_Ch006.indd 402CRC_47744_Ch006.indd 402 6/17/2008 7:01:49 PM6/17/2008 7:01:49 PM

Complex Numbers 403

Q.6.72 Modify and rerun your program by replacing ezplot by plot fi rst, and then by
ezpolar.

Q.6.73 What are the relations between n and the graphs obtained?
Q.6.74 What are the relations between the sine and cosine in polar coordinates for differ-

ent values of n?
Q.6.75 Load and run Example 6.12.
Q.6.76 How would you calculate the arc length between the roots?
Q.6.77 How would you calculate the angle between the roots?
Q.6.78 What are the main values for the equations (a) and (b)?
Q.6.79 Plot the roots in polar coordinates.

6.6 Application Problems

P.6.1 Given the following quadratic equations:
a. x2 − 4x − 5 = 0
b. x2 − 4x + 4 = 0
c. x2 − 4x + 13 = 0
Verify by hand and using MATLAB that the corresponding solutions are

a. x1 = −1 and x2 = 5
b. x1 = x2 = 2
c. x1 = 2 + 3 √

 −1 and x2 = 2 − 3 √

 −1

P.6.2 Plot the quadratic equation given in P.6.1 and verify graphically the results obtained,
if possible.

P.6.3 Verify analytically and by using MATLAB the following equalities:

i i i i i i

i i

347 3 943 1134

880 880

1
1 1

� � � �

� �

� � �

�

�

�

P.6.4 Let z1 = 2 − i, z2= −1 + 3i, and z3 = −3 − 4i.

 Verify which of the following relations are true:
a. z1 + z2 = 4 + 6i

b. z1 * z2 = 1 + 7i

c. z1i − (z1 + z2)2 = −14 − 6i

d. z2 2 = 8 − 18i

e. √
__

 z3 = { 1 − 2i
−1 + 2i

P.6.5 Given z1 = 3 − 4i and z2 = 2 + i. Verify that

z
z

i1

2

2
5

11
5

� �

by hand and by using MATLAB.

CRC_47744_Ch006.indd 403CRC_47744_Ch006.indd 403 6/17/2008 7:01:49 PM6/17/2008 7:01:49 PM

404 Practical MATLAB® Basics for Engineers

P.6.6 Given z1 = 3 + i and z2 = 2 − 3i. Verify the following equality:

 | |2 5 3051 2z z� �

by hand and by using MATLAB.
P.6.7 Given z1 = 3 + i and z2 = −2 + 4i. Verify that

z z
z z

1 2

1 2

1
1

3
5

� �

� �
�

P.6.8 Verify which of the following relations are true:
a. (3 − 2i)2 = −9 − 46i

b. √
__

 3 − 2i = √
__

 7 (cos 310°89′ + j sin 310°89′)
c. 1 + √

__
 3i = (1 + √

__
 3) cos 90°

d. 1 − √
__

 3i = 2(cos 300° + j sin 300°)
e. − √

__
 3i = √

__
 3 (cos 180° + j sin 180°)

f.
(3 + i)(1 − i)2

(i − 3)(3 − i)

 = 13 ___ 25 + 9 ___ 25 . i

g.
5(−3i)(1 + i)

5− √

__
 5 . i

 = −3.62 − 1.38i

h. (1 + 5i)−3 = −0.004 + 0.06i

P.6.9 Given the complex numbers A and B by

 A = 2 + 2j and B = √
__

 3 ∠ 30°

perform the following operations:
a. A + B

b. A * B

c. A/B

d. A2

e. (A + B)2

P.6.10 Given the complex numbers z1 = 3 + 4j and z2 = 5 + j2. Use MATLAB and evaluate
the following:
a. |z1|, |z2|, and |z|, where z = z1/z2

b. ∠z1, ∠z2, and ∠z

c. |z1| ⋅ |z2|
d. |z1| ⋅ |z2*|
e. |z1| ⋅ |z2*|
f. |z1* ⋅ z2*|
g. z1 ⋅ z2 (* denotes complex conjugate)

CRC_47744_Ch006.indd 404CRC_47744_Ch006.indd 404 6/17/2008 7:01:49 PM6/17/2008 7:01:49 PM

Complex Numbers 405

P.6.11 Let z = 4 − 3j, perform the following operations by hand and by using MATLAB:
1. sqrt(z) =
2. log(z) =
3. zI =
4. z3.25 =
5. z*z′ =
6. z/z′ =

P.6.12 Verify analytically and by using MATLAB the following relation:

 1 __
j
 = −j

P.6.13 Verify analytically and by using MATLAB that

 eπ √

 −1 = −1

P.6.14 Verify that

e jj� � � �

� �
�� � �cos() sin(), , , ,for and0

3 2
.

P.6.15 Express the complex functions f(z) given below, where z = 1 + 2j in terms of its
real and imaginary parts
a. f(z) = z2 + 2z + 5
b. f(z) = (z + 1)(z − 2)/(z + 3)
c. f(z) = (z + 1)/(z2 + 2z + 5)

P.6.16 The function f(z) is defi ned by the following expression:

 f(z) = 5(z + 2)(z2 + 3)/(z − 1)

where z = (2 + i)2

 Determine
a. |f(z)| and ∠f(z)

b. real[f(z)]

c. imag[f(z)]

P.6.17 Let f(z) = 10e−zn be a function of the complex variable z = 1 − j
a. Express f(z) in rectangular format for n = 1
b. Plot |f(z)| versus n
c. Plot |f(z)| versus ∠f(z)

P.6.18 Using MATLAB, obtain simplifi ed expressions in rectangular and polar forms of
the following equations:
a. z = (1 + 2j)(1 − 2j)e2j

b. z = (3 + 2j)(3 + 4j)/e2j

c. z = 4e−2j(2 − 3j)/(√
__

 3 . e2j)

CRC_47744_Ch006.indd 405CRC_47744_Ch006.indd 405 6/17/2008 7:01:50 PM6/17/2008 7:01:50 PM

406 Practical MATLAB® Basics for Engineers

P.6.19 Let z = r(cosθ + j sinθ) be a complex function then the n roots of z are defi ned by

z r

n
k

n
j

n
k

nk
n� � � �cos sin

� � � �2 2

















or if z = r ∠ θ, then

 zk = n √
__

 r ∠ (θ + n 360°)/k, for k = 0, 1, 2, …, n − 1

 Do you agree with this result? Solve then z3 = 1 + j using MATLAB and compare
the result obtained with the formulas given above.

P.6.20 Repeat P.6.17 for the case z = 3 + j4.
P.6.21 The three roots of a complex number z are given as follows:

 z0 =
3
 √

__
 3 (cos 40° + j sin 40°)

 z1 =
3
 √

__
 3 (cos 160° + j sin 160°)

 z2 =
3
 √

__
 3 (cos 280° + j sin 280°)

 Determine z in polar and rectangular forms.
P.6.22 The MacLaurin series expansions of cos(z) and sin(z) are given as follows:

cos
! ! !

sin
! ! !

z
z z z

z z
z z z

� �

� �

1
2 4 6

3 5 7

2 4 6

3 5 7

� �

� �

Show by using MATLAB that ejz = cos z + j sin z.
P.6.23 Using MATLAB prove the following relations:

z z a

z z j b

z z a b

� �

�

� �

*

*

* *

2

2

2 2

� �

where z = a + jb, for a = 4 and b = −3 (recall that z* denotes complex conjugate).
P.6.24 Using MATLAB verify the following equalities:

a. z = 2(cos 30° + j sin 30°) = 2 [√
__

 3 ___ 2 + 0.5i]
b. 6 ∠ 45° + 3 ∠ 45° = 9 ∠ 0°
c. 6 ∠ 0° − 7 ∠ 180° = 13 ∠ 0°

P.6.25 Using MATLAB determine that if: z1 = r1(cos θ1 + j sin θ1) and z2 = r2(cos θ2 + j sin θ2),
then

 z1 ⋅ z2 = r1r2(cos(θ1 + θ2) + j sin(θ1 + θ2))

for r1 = 2, r2 = 3, θ1 = ±π/4, and θ2 = ±π/3.

CRC_47744_Ch006.indd 406CRC_47744_Ch006.indd 406 6/17/2008 7:01:50 PM6/17/2008 7:01:50 PM

Complex Numbers 407

P.6.26 Using z1 and z2 of P.6.25, prove

z
cos sin2

1

2

1
2 1 2 1z

r
r j� �(() ())� � � �� �

P.6.27 The De Moivre theorem states that if z = r(cos θ + j sin θ), then zn = rn(cos nθ + j sin nθ).
Write a MATLAB program that verifi es the De Moivre theorem for the case when
z = 1 + 2j, for n = 2, 3, and 4.

P.6.28 Verify if the following relations are true:
a. 1 + j = √

 2ej45°

b. (1 + j)5 = −4 . (1 + j)
c. (3 + 4j)3 = −117 + 44j

d. 8 . (cos 20° + j sin 20°)3 = 4 . (1 + √
__

 3j)

e. (cos 20° + j sin 20°) . (cos(−80°) + j sin (100°)) = cos(280°) + j sin(230°)

f.
cos 20° + j sin 20°

cos (−80°) + j sin 100°

 = cos 120° + j sin 120°

P.6.29 Given the following two complex matrices A and B:

A

j
�

13 4 20
10 20 10 45

� �

� � � °










B

j
�

13 4 10
10 15

� �

�











Write a MATLAB program that performs the following:
a. Input matrices A and B
b. Evaluate the determinant of the matrix A, [det(A)], and show that it is equal to

156 ∠ 247.4°
c. Repeat point (b) for matrix B, and show that det(B) = 112.3 ∠ 32.4°
d. Show then that |A|/|B| = 1.39 ∠ 279.7°

P.6.30 Using MATLAB verify that [A]/[B] = 3.33, where

A

j

j
�

�5 5 55 8 17 4
5 0

. .� �

�











and

B

j j

j j
�

�

�

5 5 5
5 8 8

�

�











CRC_47744_Ch006.indd 407CRC_47744_Ch006.indd 407 6/17/2008 7:01:51 PM6/17/2008 7:01:51 PM

408 Practical MATLAB® Basics for Engineers

P.6.31 Verify the following relations:

a.
(5 + j5)(15 + j5)

5 + j5 + 15 + j5

 = 4 + j3

b. 5 ∠ 30° ⋅
5 + j5

20 + j10

 = 1.585 ∠ 48.4°

c. 5 ∠ 30° ⋅
5 + j5

5 + j5 + 10

 = 2.24 ∠ 56.6°

d.
12 + j24

33 + j24

 −
(30 + j60) . 20

80 + j60

 = 0.328 ∠ 170.5°

e.
15 − j6

2 . (4 − j)

 = 1.94 − j0.265

f.
(3 + 4i)

(3 + 3i)

 = 0.96 + 0.28i

g. (2 + 4i)4 = −119 − 120i

P.6.32 Using MATLAB show that |e−jx| = 1 for any value of x. Test the preceding equality
for following MATLAB sequence of numbers:

 x = 0:.1π:2π

P.6.33 Using MATLAB evaluate
a. j−j

b. jj

P.6.34 Given the exponential function

 y(t) = 3e−.2t(cos 2t + i sin 2t)

 Write a MATLAB program that generates the following plots:
a. y(t) versus t, for 0 ≤ t ≤ 5, using 100 points
b. real[y(t)] versus t

c. imag[y(t)] versus t

d. real[y(t)] versus imag[y(t)]

e. |y(t)| versus ∠y(t) (use polar and plot commands)
P.6.35 Express the following time functions in phasor form:

a. 5[sin(wt − 35o)]

b. 2.72 . (0.34) sin(377 t + 45o)

c. 3.62 cos(wt + 60)

d. 8.39 cos(377 t − 123o)

P.6.36 Express and plot in the time domain the following phasors as cosine waves, for a
frequency of 60 Hz.
a. A = √

__
 3 ∠ 30°

b. B = 5 ∠ 135°
c. C = √

__
 3 (3.1)2.23 ∠ 58°

d. D = √
__

 3
4
 √

__
 8 ______

3
 √

 13
 ∠ 35.8°

CRC_47744_Ch006.indd 408CRC_47744_Ch006.indd 408 6/17/2008 7:01:51 PM6/17/2008 7:01:51 PM

Complex Numbers 409

P.6.37 Obtain plots of the sinusoidal expressions f(t) = 15 sin(377 t + 30°) − 22 sin(377 t −
60°) by
a. Using the phasors representation
b. The time domain representation

P.6.38 Given f1(t) = 5 cos(π t/4 + 36o) and f2(t) = 7 cos(π t/4 − 30o). Evaluate f1(t) + f2(t) and
f1(t) − f2(t) by
1. Hand
2. Using phasor representation
3. Using the time domain representation

P.6.39 Verify that the four roots of x = (−1)1/4 are

 x1 = √
__

 2 ___ 2 + j √
__

 2 ___ 2

 x2 = − √
__

 2 ___ 2 + j √
__

 2 ___ 2

 x3 = − √
__

 2 ___ 2 − j √
__

 2 ___ 2

 x4 = √
__

 2 ___ 2 − j √
__

 2 ___ 2

Plot the roots of x = (−1)1/4 on the complex plane.

CRC_47744_Ch006.indd 409CRC_47744_Ch006.indd 409 6/17/2008 7:01:51 PM6/17/2008 7:01:51 PM

CRC_47744_Ch006.indd 410CRC_47744_Ch006.indd 410 6/17/2008 7:01:51 PM6/17/2008 7:01:51 PM

411

7
Polynomials and Calculus, a Numerical
and Symbolic Approach

I keep the subject constantly before me and wait till the fi rst dawning open little by little
into full light.

Sir Isaac Newton

7.1 Introduction

Polynomials are algebraic expressions consisting of the sum of one or more product terms.
A function defi ned by a polynomial expression is referred to as a polynomial. In its simplest
form, each of the product terms consists of a coeffi cient, and a variable of interest (x) raised to a
nonnegative integer power. A polynomial {of one variable (x)} can in general be expressed as

f x a x a x a x a a xn

n
n

n
n

() � � � � � ��
�

1
1

1 0 1
1

1 0

�
=
∑

where x is the variable, the a’s (an, an−1, an−2, …, a0) are the coeffi cients assuming that an ≠ 0, and
the nonnegative integer n with the highest exponent defi nes the degree of the polynomial.

Some of the most frequently used polynomials are defi ned as follows:

f(x) = 0, where f(x) has no degree

f(x) = a0, where a0 ≠ 0, and the degree of f(x) is zero

f(x) = a1x + a0, where a1 ≠ 0, the degree of f(x) is 1, and defi nes a
linear relation

f(x) = a2x2 + a1x + a0, where a2 ≠ 0, the degree of f(x) is 2, and defi nes a
quadratic relation

f(x) = a3x3 + a2x2 + a1x + a0, where a3 ≠ 0, the degree of f(x) is 3, and defi nes a
cubic relation

Polynomials are extensively used in technology, engineering, and the sciences because they
can best represent, or model a physical system. Polynomials are also easy to defi ne and to evalu-
ate because they involve the basic operations of additions, subtractions, and multiplications.

In engineering and science, it is often required to determine the roots of the polynomial
equation defi ned by

f x a xm

m

m

n

() � �
�

0
0

∑

where in general the coeffi cients am, for m = 0, 1, 2, 3, …, n, may be complex.

CRC_47744_Ch007.indd 411CRC_47744_Ch007.indd 411 6/27/2008 4:55:51 PM6/27/2008 4:55:51 PM

412 Practical MATLAB® Basics for Engineers

An often-encountered polynomial in science and engineering is the quadratic, or sec-
ond-order polynomial. It is well-known that the roots of the quadratic polynomial (equa-
tion of the form a2x2 + a1x + a0 = 0) are

x

a
a

a a a
a1 2

1

2

1
2

0 2

22
4

2, � �
� �

For higher-order polynomials, such analytic expressions do not in general exist. Fortu-
nately, cubic and higher-order polynomials occur infrequently in engineering and science,
and when they do occur, they are diffi cult to solve.

Graphical means and trial and error were in general the preferred methods used in
the past. Luckily, modern software packages such as MATLAB® provide simple and
powerful functions to evaluate the roots (also called zeros) of a polynomial. For exam-
ple, the MATLAB command roots (P) returns a column vector with the roots of the poly-
nomial P, where P is defi ned by the order coeffi cients of the polynomial f(x) as an array
P = [an, an−1, …, a0].

Polynomials as well as an extensive list of other functions can be converted into symbolic
objects or expressions. Symbolic variables differ from the ordinary MATLAB variables in
the sense that ordinary MATLAB variables are associated with numerical values, which
must be defi ned and stored in the computer’s memory before they are used, whereas sym-
bolic variables are not associated with any numerical value, but rather indicate a qualita-
tive relation among the variables.

MATLAB requires for that reason that symbolic variables be defi ned as symbolic (syms)
before they are used.

Integration and differentiation are just two examples of symbolic applications defi ned as
functions in the MATLAB Symbolic Toolbox. These types of operations can be performed
using MATLAB with almost unlimited precision.

The MATLAB Symbolic Toolbox is a link between MATLAB and the symbolic algebra
known as Maple. Integration and differentiation are part of a branch of mathematics known
as calculus. Calculus was developed in the seventeenth century with the objective of pro-
viding a tool for solving problems involving motion such as velocity and acceleration. Cal-
culus was fi rst applied in physics, and since then calculus has been used in many fi elds of
studies, specially involving the rate of change of a variable of interest. The concept of rate
of change is used in diverse disciplines and applications; for example, in economics, as the
rate of growth of the money supply (as an index of infl ation); in chemistry, as the rate of
change of a chemical reaction with respect to heat in electricity, as the rate of change of an
electric charge with respect to time better known as electric current; in biology, as the rate
of change of the hormones; in psychology, as the rate of change of the IQ over time, etc.

In the past centuries, many engineers and scientists studied the dynamic behavior of
a wide range of physical systems, and in many cases, the studies showed how the rate of
change between two or more variables interrelate. Those problems are best described in
terms of differential equations (DEs), and MATLAB provide with a number of functions to
evaluate their solution, if such solution exists.

A preferred fi rst model used by engineers and educators, in many practical applications,
is to describe a given system by means of a second-order DE. In the past, the techniques
used to solve those equations consisted of using a series of approximations, transforms, or
Green’s functions.

Most practical systems, however, are described by higher-order DEs.

CRC_47744_Ch007.indd 412CRC_47744_Ch007.indd 412 6/27/2008 4:55:53 PM6/27/2008 4:55:53 PM

Polynomials and Calculus, a Numerical and Symbolic Approach 413

These equations can usually be transformed into sets of interrelated fi rst-order DEs,
called the state–space form, which can easily be solved using MATLAB, or be transformed
into an equivalent discrete system and then be solved.

MATLAB provides two approaches to solve a DE or a system of simultaneous DEs.

 1. A symbolic solution using the function dsolve

 2. A numerical solution using a family of ode (ordinary differential equations)
solvers (such as, 23, 45, and 116)

Both methods will be presented and discussed in this chapter from a general system
approach, as well as many other applications.

7.2 Objectives

After completing this chapter the reader should be able to

Input polynomials using MATLAB
Determine the degree of a polynomial
Determine the roots of a polynomial
Evaluate a polynomial for a specifi c value or range of values
Perform polynomial algebra
Obtain the transfer function of a system (division of polynomials)
Plot the transfer function of a system
Decompose a rational function into partial fractions expansion
Provide a pole-zero diagram of a system transfer function
Create symbolic variables and symbolic expressions
Understand concepts and nomenclatures used in calculus (such as limits, continu-
ous, delta, maximal, and minimal)
Understand the concepts of integration and differentiation
Use MATLAB numerical methods to evaluate integrals and derivatives
Integrate and differentiate a variable, a constant, a trigonometric, a logarithmic,
and an exponential function
Understand the concept of a differential and a partial DE
Understand concepts and nomenclatures used in DEs (such as ordinary, linear,
and homogeneous)
Identify and understand the concept of smoothness and continuity
Understand that differentiation and integration are inverse operations
Perform algebra and calculus operations on symbolic expressions
State the solution of fi rst-order linear DEs as the sum of two solutions (particular
and general)
Know that the general solution of a linear DE contains arbitrary constants

•
•
•
•
•
•
•
•
•
•
•

•
•
•

•
•

•
•
•
•

•

CRC_47744_Ch007.indd 413CRC_47744_Ch007.indd 413 6/27/2008 4:55:53 PM6/27/2008 4:55:53 PM

414 Practical MATLAB® Basics for Engineers

Know that the particular solution contains no arbitrary constant
Know that a unique solution can be calculated if initial or boundary conditions
are given
Solve a system of DEs using symbolic and numerical methods
Understand the strength and weakness of the numerical and symbolic method
used to solve DEs
Understand the meaning and implication of the term stiff DEs
Convert a high-order linear DEs into a set of fi rst-order DEs
State the state–space model description of a given linear time invariant system
Convert the state–space equations into a transfer function, DE, and vice versa
Discretize a continuous (linear time invariant) system
Know and be able to use a number of functions available in the MATLAB Symbolic
Toolbox to solve a variety of problems and applications

7.3 Background

R.7.1 A polynomial consists of two or more terms. For example, y − x, x2 + 2x + y.
R.7.2 A monomial is an algebraic expression that consists of exactly one term, for exam-

ple, 2x, xy, 3x2. A polynomial is a monomial, or a sum of monomials.
R.7.3 A binomial is a polynomial that consists of exactly two terms, for example, 3x + 2y,

xy − 3z.
R.7.4 Polynomial functions are referred to as polynomials.
R.7.5 A polynomial in one variable (x) can be arranged in one of two ways: ascending or

descending order.
R.7.6 A polynomial arranged in ascending order means that the power of the variable of

interest (x) increase for each succeeding term, such as f(x) = 3 + 2x + 4x2 + 5x3.
R.7.7 A polynomial arranged in descending order means that the power of the vari-

able of interest (x) decrease for each succeeding term, such as f(x) = 5x3 + 4x2 +
2x + 3.

R.7.8 The graph of a polynomial is characterized by being smooth and continuous.
Smooth means no sharp variations, and continuous means no gaps.

R.7.9 When a polynomial f(x) is equated to zero, f(x) = 0 is referred as the polynomial
equation.

R.7.10 Let f(x) be a polynomial with x as its variable, and let r be a number (real or com-
plex) such that f(r) = 0; then r is called a zero, a root, or a solution of f(x).

R.7.11 To solve a polynomial equation means to fi nd the roots of the equation f(x) = 0, or
decomposing f(x) into its factors.

R.7.12 Let f(x) = anxn + an−1xn−1 + an−2xn−2 + … + a1x + a0 = 0, and if an ≠ 0, then f(x) has
exactly n roots, also referred to as zeros or solutions.

R.7.13 Let f(x) = anxn + an−1xn−1 + an−2xn−2 + … + a1x + a0 = 0, where an ≠ 0. Then the term
anxn is called the leading term (the term with the highest degree) and the coeffi cient
an constitutes the leading coeffi cient.

•
•

•
•

•
•
•
•
•
•

CRC_47744_Ch007.indd 414CRC_47744_Ch007.indd 414 6/27/2008 4:55:53 PM6/27/2008 4:55:53 PM

Polynomials and Calculus, a Numerical and Symbolic Approach 415

R.7.14 The degree of a polynomial is given by the monomial with the highest degree
anxn.

R.7.15 If f(x) is divided by a factor (x + r) until a constant remainder is obtained, the
remainder is f(−r). Observe then that f(x) = (x + r) Q(x) + f(−r), where Q(x) is a poly-
nomial of degree n − 1, one less than f(x).

R.7.16 Let (x + r) be a factor of f(x), then f(−r) = 0, and −r is a root or solution of f(x).
R.7.17 Let c + bj be a (complex) root of f(x) (where c and b are real numbers and b ≠ 0), then

c − bj, its complex conjugate, is also a root of f(x).
R.7.18 Let n be an odd integer (where n represents the degree of f(x), then f(x) has at least

one real root.
R.7.19 Let r be a root of f(x), then (x − r) is a factor of f(x).
R.7.20 Recall that if f(x) = ax2 + bx + c (quadratic equation), then the two roots of f(x),

labeled x1 and x2 (f(x1) = f(x2) = 0) are

x

b b ac
a1

2 4
2

�
�� �

x

b b ac
a2

2 4
2

�
� � �

 The roots of a quadratic equation can be real or complex numbers. If b2 − 4ac < 0, then
the roots are complex, otherwise they are real. If the roots of f(x) are complex, then they
occur as complex conjugate pairs, in either quadratic or higher degree polynomials.

R.7.21 Let (x − r) be a factor of f(x) and if that occurs more than once, then r is called a
repeated root of f(x).

R.7.22 Let f(x) be a repeated root of multiplicity ni, then (x − r)ni is a factor of f(x). For
example, the polynomial f(x) = x3 − 2x2 − 7x − 4 = 0, has two repeated roots at −1,
and a single root at 4. Then f(x) = (x + 1)2(x − 4).

R.7.23 Every polynomial f(x) of degree n can generally be transformed into n linear prod-
uct terms (factors), times a constant C, as indicated in the following equation:

f x a x a x a x a a x C x rn

n
n

n
m

m

m

n

m
m

n

() ()� � � � � �
� �

�
� �1

1
1 0

0 1

0… ∑ ∏

 Observe that the polynomial equation f(x) = 0 has exactly n roots, labeled r1, r2, …,
rn−1, rn.*

R.7.24 Let a and b be two numbers, and if f(a) is positive and f(b) is negative, then the func-
tion f(x) has at least one zero between x = a and x = b.

R.7.25 A rational function can be constructed as a division of polynomials.

* Karl Friedrick Gauss (1777–1855) is credited with important contributions in the study of polynomials. At the
young age of 22, in his doctoral dissertation, Gauss proved the fundamental theory in Algebra, which says
that a polynomial of degree n has n roots. At 19, Gauss demonstrated that the 17-sided polygon can be con-
structed using the compass. This idea contradicted the belief supported by the mathematicians since the time
of Euclid. From early times mathematicians believed that the only regular polygons that can be constructed
with a compass were the triangle and the pentagon.

CRC_47744_Ch007.indd 415CRC_47744_Ch007.indd 415 6/27/2008 4:55:54 PM6/27/2008 4:55:54 PM

416 Practical MATLAB® Basics for Engineers

 The general form is given as

H x

P x
Q x

()
()
()

�

 where P(x) and Q(x) are polynomial functions, with Q(x) ≠ 0 and no common fac-
tors. Ratios of integers are called rational numbers. By extension, ratios of polyno-
mials are called rational functions.

R.7.26 The domain of a rational function consists of all the real numbers except those for
which the denominator of H(x){Q(x) = 0} is zero. To sketch a rational function it
helps to factor the numerator and denominator of H(x). The x-intercept determines
by the zeros of the numerator of H(x) and the y-intercept by the value of the func-
tion at x = 0.

R.7.27 A short list of often-encountered polynomials and their decomposition into factors
are given below:

 (a + b)(a − b) = a2 − b2

 (a ± b)2 = a2 ± 2ab + b2

 (a ± b)3 = a3 ± 3a2b + 3ab2 + b3

 a3 ± b3 = (a ± b)(a2 ∓ ab + b2)

 an + bn = (a + b)(an−1 − an−2b + … + bn−1)

 an − bn = (a + b)(an −1 + an−2b + … + bn−1)

R.7.28 Descarte’s rule of signs for the roots of a polynomial states the following:

 Suppose f(x) is a polynomial whose terms are arranged in descending powers of x,
then the number of positive real roots of f(x) cannot exceed the number of variations
in the sign of the coeffi cients of the polynomial, and the number of negative roots
cannot exceed the number of variations in the sign of the coeffi cients of f(−x).

R.7.29 To add or subtract polynomials, fi rst arrange them in like terms, and then add or
subtract the corresponding coeffi cients separately. For example, let

 f(x) = 3x2 + 5x − 4 and g(x) = 5x2 − 2x + 2

 then

 f(x) + g(x) = 8x2 + 3x − 2 and f(x) − g(x) = −2x2 + 7x − 6

R.7.30 To multiply two polynomials f(x) by g(x), each term of the polynomial f(x) must be
multiplied by each term of the polynomial g(x), and then the fi nal expression must
be simplifi ed. For example, using the polynomials of R.7.29, then

f(x) g(x) (3x 5x 4)(5x 2x 2)

15x 6x 6x 25x 10x 1

2 2

4 3 2 3 2

⋅ � � �

� � � �

� �

� � 00x 20x 8x 8

15x 19x 24x 18x 8

2

4 3 2

� �

� �

�

� � �

CRC_47744_Ch007.indd 416CRC_47744_Ch007.indd 416 6/27/2008 4:55:54 PM6/27/2008 4:55:54 PM

Polynomials and Calculus, a Numerical and Symbolic Approach 417

R.7.31 To divide a polynomial f(x) by a monomial g(x), proceed in the following way: divide
each term of the polynomial f(x) by the monomial g(x). For example, let

 f(x) = 8x3 + 4x2 + 10x

 and

 g(x) = 2x

 then

f x
g x

x x
()
()

� � �4 2 52

R.7.32 To divide a polynomial by another polynomial, fi rst rearrange the two polynomials
in descending order and then use long division, as illustrated in the following:

for example, let

 f(x) = 8x3 + 10x2 + 6x + 4

 and

 g(x) = 2x + 2

 then the division of f(x) by g(x) is accomplished by the process illustrated below,
referred to as long division:

2 2 8 10 6 4

8 8

2 6 4

3 2

3 2

2

x x x x

x x

x x

� � � �

�

� �

�

�

()

(22 2

4 4

4 4

2x x

x

x

�

�

�

)

(

 �

)

))

 0

4 22x x� �

 Therefore,

f x
g x

x x x
x

x x
()
()

�
� � �

�
� � �

8 10 6 4
2 2

4 2
3 2

2

R.7.33 To factor f(x), means to fi nd two or more polynomials y(x) and z(x), such that f(x) =
y(x) ⋅ z(x).

CRC_47744_Ch007.indd 417CRC_47744_Ch007.indd 417 6/27/2008 4:55:54 PM6/27/2008 4:55:54 PM

418 Practical MATLAB® Basics for Engineers

 For example, let f(x) = x2 − 9, then y(x) = (x + 3) and z(x) = (x − 3) are factors
of f(x).

 In a similar way, x2 − 5x − 14 = (x − 7) ⋅ (x + 2) and 4x3 + 4x2 + x = x ⋅ (2x + 1)2.
R.7.34 MATLAB inputs a polynomial of one variable x, as a row vector having as elements

the coeffi cients of the polynomial, real or complex arranged in descending powers
of x, placed in brackets. For example, let y(x) = 3x4 + 2x3 + x2 − x + 5; then the Y
MATLAB vector that represents the polynomial y(x) is given by

 >> Y = [3 2 1 -1 5];

 In general, if y(x) = anxn + an−1xn−1 + an−2xn−2 + … + a1x + a0, then the polynomial
expressed as a MATLAB vector Y is given by

 Y = [an an−1 an−2 … a1 a0]

R.7.35 When some coeffi cients of a polynomial are not present, then the missing coeffi -
cients are entered as zeros in the MATLAB vector representation. For example, let
y(x) = 8x7 + 6x6 + 3x4 + x2, then the vector Y is given by

 >> Y= [8 6 0 3 0 1 0 0]

 Observe that the missing coeffi cients of y(x) are a5, a3, a1, and a0 and are indicated by
zeros in Y.

R.7.36 Let p(x) be a polynomial of a single variable (x), defi ned by a row MATLAB vector
P, where the coeffi cients of p(x) are the order elements in P.

 Then the MATLAB function r = roots (P) returns the column vector r with
the roots of the polynomial p(x). Using the polynomial of R.7.35, p(x) = 8x7 + 6x6 +
3x4 + x2 as example the following commands return its roots.

>> P = [8 6 0 3 0 1 0 0];
>> r = roots(P)

 r =
 0
 0
 1.1246
 0.3594 + 0.4796i
 0.3594 - 0.4796i
 0.1720 + 0.5290i
 0.1720 - 0.5290i

R.7.37 Let the roots of the polynomial p(x) be a column vector r; then the MATLAB com-
mand poly (r) returns the row vector P, with the coeffi cients of the polynomial p(x)
arranged in descending powers of x, as in the following illustration, using the vec-
tor r of R.7.36:

>> poly(r)

 ans =
 1.0000 0.7500 -0.0000 0.3750 -0.0000 0.1250 0 0

CRC_47744_Ch007.indd 418CRC_47744_Ch007.indd 418 6/27/2008 4:55:54 PM6/27/2008 4:55:54 PM

Polynomials and Calculus, a Numerical and Symbolic Approach 419

 Observe that the preceding coeffi cients are the coeffi cients of p(x), scaled by a factor
of 8 (the command poly always returns a value of unity to the leading coeffi cient).

R.7.38 Let the polynomial p(x) be defi ned by a row vector P, then the MATLAB function
polyval (P, k) returns the polynomial p(x) evaluated at x = k. For example, let p(x) =
πx4 – √

__
 7 x3 + 5x – 1, then the value of p(x = 0) is evaluated by executing the follow-

ing commands

>> P = [pi – sqrt (7) 0 5 -1];
>> polyval (P,0) % returns p(x) for x = 0

 ans =
 -1

 The MATLAB command A = polyval(P, X), where X may be a matrix, returns the
matrix A with the same size and shape of X, having as its elements the polynomial
P, evaluated for each element (value) of X.

R.7.39 The MATLAB command B = polyvalm(P, X), where X is a square matrix, returns B,
representing the polynomial matrix evaluated for the matrix X. For example, evalu-
ate the polynomial p(X) = πX4 – √

__
 7 X3 + 5X – 1, for

X �

1 2 3
4 5 6
7 8 9

















 by using polyval(P, X). Also evaluate polyvalm(P, X) and observe the profound

difference.

MATLAB Solution
>> P = [pi -sqrt(7) 0 5 -1];
>> X = [1 2 3; 4 5 6; 7 8 9];
>> A = polyval (P,X)

 A =
 1.0e+004 *
 0.0004 0.0038 0.0197
 0.0654 0.1657 0.3529
 0.6669 1.1552 1.8727

>> B = polyvalm (P,X)

 B =
 1.0e+005 *
 0.2252 0.2767 0.3281
 0.5099 0.6265 0.7431
 0.7946 0.9763 1.1581

R.7.40 Let us assume that it is desired to obtain a plot of the polynomial p(x) = πx4 – √
__

 7 x3 +
5x – 1, over the range −1 ≤ x ≤ + 1. The following program returns the plot of p(x),
defi ned by the vector P, using 101 points as shown in Figure 7.1:

MATLAB Solution
>> x = -1:2/100:1;
>> length(x)

 ans =
 101

CRC_47744_Ch007.indd 419CRC_47744_Ch007.indd 419 6/27/2008 4:55:54 PM6/27/2008 4:55:54 PM

420 Practical MATLAB® Basics for Engineers

>> P = [pi –sqrt (7) 0 5 -1];
>> Y = polyval(P,x);
>> plot (x,Y)
>> grid on
>> title (‘Polynomial p(x) for -1 < x < 1’)
>> xlabel (‘variable x’), ylabel (‘Amplitude of p(x)’)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−4

−3

−2

−1

0

1

2

3

4

5
Polynomial p(x) for −1 < x < 1

variable x

A
m

pl
itu

de
 o

f
p(

x)

FIGURE 7.1
Plot of p(x) of R.7.40.

R.7.41 Let the coeffi cients of the two polynomials P and Q be the row vectors defi ned
by P = [pn pn−1 … p0] and Q = [qn qn−1 … q0]. Recall that the addition P + Q (or
subtraction P − Q) is accomplished by adding the coeffi cients of like exponents of
P and Q (or subtracting them).

R.7.42 MATLAB can perform the addition (or subtraction) of two polynomials represented
by P and Q, only if the two (MATLAB) vectors (P and Q) have the same number of
elements (length and size). For example, let

 p(x) = 3x4 + 2x3 + x − 1

 be represented by P, and

 q(x) = 5x3 − 2x2 + 6

 be represented by Q. Then the addition and subtraction of the polynomials p(x) and
q(x) is indicated by the following program:

MATLAB Solution
>> P = [3 2 0 1 -1];
>> Q = [0 5 -2 0 6];
>> sum = P + Q % sum = p(x) + q(x)

 sum =
 3 7 -2 1 5

CRC_47744_Ch007.indd 420CRC_47744_Ch007.indd 420 6/27/2008 4:55:54 PM6/27/2008 4:55:54 PM

Polynomials and Calculus, a Numerical and Symbolic Approach 421

>> sub = P- Q % sub = p(x) - q(x)

 sub =
 3 -3 2 1 -7

 Note that the vector’s lengths are defi ned by the degree of the highest polynomial
{p(x) or q(x)}. Recall that the missing coeffi cients are entered as zeros.

R.7.43 The MATLAB function M = conv(P, Q) returns the row vector M consisting of the
coeffi cients of the product of the two polynomials, p(x) by q(x) represented as row
vectors P and Q.

 For example, let p(x) = 3x + 2 be represented by the variable P and q(x) = 2x + 4
be represented by the variable Q. Then the program that returns the product of p(x)
by q(x) is illustrated as follows:

MATLAB Solution
>> P = [3 2];
>> Q = [2 4];
>> prod = conv(P,Q)

 prod =
 6 16 8

 This result is interpreted as prod (x) = p(x) � q(x) = 6x2 + 16x + 8.
R.7.44 Observe that the product of more than two polynomials requires repeated use of

the conv function. For example, let

 p(x) = 2x2 + 6x + 4

 q(x) = −3x2 + 7x − 5

 y(x) = −6x2 + 18

 z(x) = 5x3 + 3 x + 2

 Use MATLAB and evaluate the polynomial product consisting of [p(x) q(x)
y(x) z(x)].

MATLAB Solution
>> P = [2 6 4];
>> Q = [-3 7 -5];
>> Y = [-6 0 18];
>> Z = [5 0 3 2];
>> prodPQ = conv(P,Q)

 prodPQ =
 -6 -4 20 -2 -20

>> prodYZ = conv(Y,Z)

 prodYZ =
 -30 0 72 -12 54 36

CRC_47744_Ch007.indd 421CRC_47744_Ch007.indd 421 6/27/2008 4:55:54 PM6/27/2008 4:55:54 PM

422 Practical MATLAB® Basics for Engineers

>> prodPQYZ = conv(prodPQ, prodYZ)

 prodPQYZ =
 Columns 1 through 6
 180 120 -1032 -156 1764 -816
 Columns 7 through 10
 -480 852 -1152 -720

 This result is interpreted as the product of

(p(x) q(x) y(x) z(x)) = 180x9 + 120x8 − 1032x7 − 156x6 + 1764x5 − 816x4 − 480x3
 + 852x2 − 1152x − 720

R.7.45 The MATLAB command [D, R] = deconv (P1, P2) performs the following polynomial
operation, P1/P2 = D + R/P2, and returns D and R as row vectors, where D is the
quotient polynomial and R is the residue or remainder polynomial. For example, let

 p1(x) = x4 + 3x3 + x2 + 16x

 and

 p2(x) = x2 + 3x − 1

 then, p1(x)/p2(x) is evaluated by executing the following sequence of commands:

MATLAB Solution
>> P1 = [1 3 1 16 0];
>> P2 = [1 3 -1];
>> [D,R] = deconv(P1, P2)

 D =
 1 0 2
 R =
 0 0 0 10 2

 The preceding result is interpreted as

(())/(()) (()/())p x p x x x x x1 2
2 22 10 2 3 1� � � � � �

R.7.46 Let the set of order points <xi, yi> be defi ned by the vectors X and Y. Then the
 MATLAB command P = polyfi t(X, Y, n) returns a row vector defi ning the polynomial
P with n + 1 coeffi cients that is the best fi t polynomial of degree n or smaller. The
coeffi cients of P are returned as a row vector in descending powers of x.

R.7.47 Recall that a way to connect a given set of order points <xi, yi> using a curve that
appears to the eye to be smooth is by using the spline command. Polynomials of
various degrees are used to interconnect polynomial points.

 One of the most frequently used plotting techniques is the cubic spline. The cubic
spline uses a cubic polynomial to connect adjacent data points. A general cubic
 polynomial y = ax3 + bx2 + cx + d has four unknown coeffi cients a, b, c, and d.
These unknowns are estimated by solving the following four equations for adjacent
points K, K + 1 or K − 1.
a. Equation 1, data point K
b. Equation 2, data point K + 1 or K − 1

CRC_47744_Ch007.indd 422CRC_47744_Ch007.indd 422 6/27/2008 4:55:55 PM6/27/2008 4:55:55 PM

Polynomials and Calculus, a Numerical and Symbolic Approach 423

c. Equation 3, continuity of slopes dy/dx at joints
d. Equation 4, continuity of curvature dy2/dx2 at joints

 For a set of n points, n − 1 cubic polynomials are evaluated having a total of
4(n − 1) unknowns. The points as well as the fi rst and second derivatives* provide
with 2(n − 1) + 2(n − 2) equations, respectively. Since 4(n − 1) = 2(n − 1) + 2(n − 2) + 2,
the extra two equations can be obtained from the data points at both ends. For
additional details regarding this subject consult the MATLAB help fi le.

R.7.48 Let H(x) be a rational function of the form H(x) = P(x)/Q(x); then the partial frac-
tion expansion can be accomplished by using the MATLAB function [r, p, k] =
residue(P, Q), where r are the partial fraction coeffi cients, p the roots of Q (also called
poles), and k represents the gain or stand-alone term. For example, let

 P(x) = 9x3 + 8x2 + 7x + 6

 Q(x) = 5x3 + 4x2 + 3x + 2

Use MATLAB and obtain the partial fraction expansion of H(x) = P(x)/Q(x).

MATLAB Solution
>> P = [9 8 7 6];
>> Q = [5 4 3 2];
>> [r,p,k] = residue(P,Q)

 r =
 0.0812 - 0.2848i
 0.0812 + 0.2848i
 0.3224

 p =
 0.0353 + 0.7397i
 0.0353 - 0.7397i
 0.7293

 k =
 1.8000

 The results are interpreted as

P x
Q x

x x x
x x x

i
x

()
()

. .
.

�
� � �

� � �
�

9 8 7 6
5 4 3 2

0 0812 0 2848
0 0353 0

3 2

3 2

�

� � ..
. .

. .

.
.

.

7397
0 0812 0 2848

0 0353 0 7397

0 3224
0 7293

1 80

i
i

x i

x

�
�

�

� �

�

�
00

 The residue command illustrated earlier in this chapter can be used if Q(x) does
not have multiple roots. If n multiple roots are present, the expansion would include
terms such as x − a … (x − a)n, discussed in Chapter 4 of the book titled Practical
MATLAB® Applications for Engineers.

R.7.49 The same MATLAB function [P, Q] = residue(r, p, k) can be used to evaluate the
numerator and the denominator of the polynomials of the rational function

* The concept of derivative is introduced later in this chapter. At this point, the reader can skip the theory and
concentrate on how a function y is plotted using discrete points, and return later for more depth if desired.

CRC_47744_Ch007.indd 423CRC_47744_Ch007.indd 423 6/27/2008 4:55:55 PM6/27/2008 4:55:55 PM

424 Practical MATLAB® Basics for Engineers

H(x) = P(x)/Q(x), where the input arguments are the column vector r (partial frac-
tion coeffi cients), the column vector p {roots of Q(x)}, and gain k (stand-along term).

 For example, using the residues, poles, and gain obtained in Example R.7.48
(where P(x) = 9x3 + 8x2 + 7x + 6, Q(x) = 5x3 + 4x2 + 3x + 2 and H(x) = P(x)/Q(x))
as input arguments, the original rational polynomials are reconstructed with the
coeffi cients slightly modifi ed (by a factor of 5), as indicated in the following:

>> [P,Q] = residue(r,p,k)

 P =
 1.8000 1.6000 1.4000 1.2000
 Q =
 1.0000 0.8000 0.6000 0.4000

 Observe that all the coeffi cients obtained are scaled by 5. Recall that MATLAB
always returns the leading coeffi cient of Q(x) set to 1.

R.7.50 The MATLAB command residue is used for continuous or analog functions. In elec-
trical applications, for example, the independent variable is commonly frequency,
expressed as w (Fourier) or s (Laplace) (see Chapter 4 of the book titled Practical
MATLAB® Applications for Engineers). A slightly modifi ed version is used for the
case of discrete functions where the independent variable is labeled z. For example,
let H(z) be a discrete rational function of the form

H z

P z
Q z

z z
z z z

()
()
()

� �
� �

� � �

2

3 2

2 5
15 13 6 10

 where z−1 represents a unit delay (see Chapter 5 of the book titled Practical MATLAB®
Applications for Engineers for additional information), then [r, p, k] = residuez(P, Q) is
the equivalent discrete version of the analog function [r, p, k] = residues(P, Q).

R.7.51 The MATLAB function [z, p, k] = tf2zp(P, Q) returns the zeros(z) and poles(p) as
column vectors, as well as the gain constant k of the function H(z). The input
 arguments are the row vectors P and Q containing the coeffi cients of the numera-
tor and denominator of H(z) arranged in descending power of z as indicated in the
following:

H z

P z
Q z

p p z p z p z
g g z g z g z

n
n

n
n

()
()
()

� �
� � � �

� � � �
0 1

1
2

2

0 1
1

2
2

� � �

� � �

�
�

�� �

�

K
z z

z p
II

n

ii
n

()
()

�

�
1

1

∏
∏

 Observe that the degree of the numerator P(z) is assumed to be equal to the degree
of the denominator Q(z). If the degrees of P(z) and Q(z) are not the same, then the
missing coeffi cients of the polynomial with lower degree are entered as zeros. Note
that length(P) = length(Q).

R.7.52 The MATLAB function [P, Q] = zp2tf(z, p, k), where the zeros (z), the poles (p), and the
gains (k) are input as column vectors, MATLAB returns the rational function H(z)
in the form of two row vectors P and Q (numerator and denominator of H(z)).

R.7.53 The MATLAB function zplane(z, p) and zplane(P, Q) return a pole-zero plot, where
either the z and the p arguments (zeros and poles) are entered as column vectors or
P and Q are entered {numerator and denominator of H(z)} as row vectors arranged
in descending powers of z.

R.7.54 The MATLAB function [h, n] = impz(P, Q) divides the polynomial P by the
 polynomial Q resulting in a row vector h, with length n. This function is referred

CRC_47744_Ch007.indd 424CRC_47744_Ch007.indd 424 6/27/2008 4:55:55 PM6/27/2008 4:55:55 PM

Polynomials and Calculus, a Numerical and Symbolic Approach 425

to in system applications as the impulse response (see Chapter 1 of the book titled
Practical MATLAB® Applications for Engineers).

R.7.55 The rational function H(x) = P(x)/Q(x) is often associated by engineers and scientists
to what is referred the system transfer function, where the variable x is commonly
replaced by s or w (Laplace or Fourier), where either s or w represents frequencies.

 The transfer function assumes that the system is de-energized, meaning that
all the initial conditions (ICs) are set to zero. The system transfer function can be
determined from the system DE by taking the Laplace transformation and ignor-
ing all the ICs. Assuming that the transfer function is known and given by H(s) =
P(s)/Q(s), then the system DEs can be obtained by replacing s by d/dt and 1/s by ∫ dt
(see Chapter 4 of the book titled Practical MATLAB® Applications for Engineers).

 The concepts of integration, differentiation, as well as DEs are introduced later
in this chapter. The system transfer function H(s) = P(s)/Q(s) is used to evaluate the
behavior, performance, and effi ciency or gain of a given system, where Q(s) repre-
sents the input to the system, and P(s) represents its output. Frequently the output
is labeled Y(s) while the input is X(s)).

 Frequency response plots are widely used in engineering to understand impor-
tant characteristics about the system such as gain, attenuation, stability, and perfor-
mance, which in the time domain are not evident.

R.7.56 The MATLAB function freqs(P, Q, w) or freqresp(P, Q, w) returns the analog transfer
H(s) = P(s)/Q(s) points evaluated over the range w, where P and Q are input as row
vectors arranged in descending powers of s, where, in general, s is a complex vari-
able of the form s = σ + jw. For example, let

H s

s s
() �

�3 7s
2 2 3� �

 be the transfer function of a continuous time system. Then the sequence consisting
of the following four MATLAB instructions:

>> P = [0 3 7];
>> Q = [1 -2 -3];
>> w = [0:1:10];
>> Hs = freqs (P,Q,w);

 returns 11 points of the transfer function H(s), over the domain of frequencies (s)
from 0 to 10 rad/s in increments of 1 rad/s.

 The command [H, w] = freqs(P, Q), assigns automatically a set of 200 frequencies (to
w) and returns the analog transfer function H(s) for those frequencies. MATLAB auto-
matically chooses and returns a range of frequencies that best describes the system.

R.7.57 Another useful MATLAB function is [P, Q] = invfreqs (H, w, a, b), which returns the
coeffi cients of P and Q, of order a and b, respectively, when the transfer function H
is known, over the range w.

 For the example used earlier, the 11 values assigned to H are used to obtain back
the polynomials P and Q, respectively, as indicated in the following:

MATLAB Solution
>> [num, den] = invfreqs (Hs, w, 1, 2)

 num =
 3.0000 7.0000
 den =
 1.0000 -2.0000 -3.0000

CRC_47744_Ch007.indd 425CRC_47744_Ch007.indd 425 6/27/2008 4:55:55 PM6/27/2008 4:55:55 PM

426 Practical MATLAB® Basics for Engineers

R.7.58 The plots of |H(s)| versus s (magnitude) and ∠H(s) versus s (phase) (where s =
jw) are referred to as Bode plots. Bode plots are used extensively in industry to
describe the behavior of a system using experimental or analytical data.

 Bode plots consist of two plots—a magnitude and a phase plot, which are used to
convey important information about a given system. Both plots use the horizontal
axis to represent frequencies, employing a linear or logarithmic scale.

 The magnitude is usually expressed in dB {where dB = 20log10 |H(jω)|} or |H(jω)|
(unitless gain), whereas the phase plot is expressed in degrees (vertical axis).

 The function [mag, phase] = bode(P, Q, w) returns the values of magnitude and phase
of H(s) = P(s)/Q(s), over the range of frequencies specifi ed by the row vector w, where
P and Q are also specifi ed as row vectors arranged in descending powers of s.

 For example, let

H s

s
s s

()
2

�
� �2 1

 be the transfer function of a given analog system, then the program below illustrates
the commands involved in obtaining the Bode plots of H(s) over the range 0 ≤ w ≤ 10.

MATLAB Solution
>> w = [.1: .1:10];
>> num = [1, 0];
>> den = [1 2 1];
>> [mag , phase] = Bode(num, den, w);
>> subplot (2 ,1, 1)
>> plot (w, mag);
>> xlabel(‘w’), ylabel(‘Magnitude’)
>> title(‘Bode plots for 0 ≤ w ≤ 10’) ;grid on
>> subplot (2 , 1, 2)
>> plot(w, phase) ; xlabel (‘w’), ylabel(‘Phase’) ; grid on
>> % the resulting plots are shown in Figure 7.2

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

w

M
ag

ni
tu

de

Bode plots for 0 < w < 10

0 1 2 3 4 5 6 7 8 9 10

0

50

−50

−100

100

w

P
ha

se

FIGURE 7.2
Bode plot of H(s) of R.7.48 (given range s).

CRC_47744_Ch007.indd 426CRC_47744_Ch007.indd 426 6/27/2008 4:55:55 PM6/27/2008 4:55:55 PM

Polynomials and Calculus, a Numerical and Symbolic Approach 427

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

w

M
ag

ni
tu

de

Bode plots with no input frequencies

0 1 2 3 4 5 6 7 8 9 10
−100

−50

0

50

100

w

P
ha

se

FIGURE 7.3
Bode plot of H(s) of R.7.48 (no range s).

 The function Bode can be used with the argument w (presented earlier), or without
it, as illustrated in the following:

MATLAB Solution
>> num = [1 0];
>> den = [1 2 1];
>> [mag, phase, w] = Bode(num,den);
>> subplot (2,1,1)
>> plot (w,mag) ;grid on;
>> subplot (2,1,2)
>> title (‘Bode plots with no input frequencies’)
>> plot (w,phase)
>> grid on; % the resulting plots are shown in Figure 7.3

 Observe that MATLAB assigns a range of key frequencies to w, when w is not speci-
fi ed and returns a column vector of mag[H(w)] versus w, and phase [H(w)] versus w.

 Bode magnitude plots are also referred as Alpha plots, whereas Bode phase plots
are also referred as Beta plots.

 For the case of discrete systems, where the data is sampled with a sampling
rate Ts, Bode uses z as the independent variable [ejwTs] to get a plot (see Chap-
ter 5 of the book titled Practical MATLAB® Applications for Engineers for additional
information).

 The frequency response is plotted for frequencies smaller than the Nyquist
 frequency π/Ts, with a default value of 1 s (when Ts is not specifi ed). This chapter
deals exclusively with MATLAB functions and the reader should not be too con-
cerned about the applications, which are revisited in later chapters.

CRC_47744_Ch007.indd 427CRC_47744_Ch007.indd 427 6/27/2008 4:55:55 PM6/27/2008 4:55:55 PM

428 Practical MATLAB® Basics for Engineers

R.7.59 Let H(z) = P(z)/Q(z) be the discrete transfer function of a digital system, where
z = e−jWT; then the MATLAB function [H, W] = freqz(P, Q, W), where P and Q are
the coeffi cients of the polynomials P(z) and Q(z) (row vectors arranged in descend-
ing order of z) returns H as a function of W, where H is evaluated over the range of
frequencies specifi ed by W. For example, let

H z

z z
z z

()
. . .

. .
�

� �

�

0 37525 0 4235 0 3725
1 0 3592 0 2092

1 2

1 2

� �

� ��

 be a discrete system transfer function.
 Then the following program returns 11 frequency points of the transfer function

H(z) = P(z)/Q(z):

MATLAB Solution
>> P = [0.3725 0.4235 0.725];
>> Q = [1 -0.359 0.2092];
>> W = 0: 0.2 :2 ;
>> [H, W] = freqz(P,Q,W);
>> disp (‘******************************’)
>> disp (‘ W abs(H)’)
>> disp (‘******************************’)
>> [H’ W’]
>> disp (‘******************************’)

 W abs(H)

 ans =
 1.7890 0
 1.7358 + 0.4149i 0.2000
 1.5656 + 0.8207i 0.4000
 1.2515 + 1.1860i 0.6000
 0.7758 + 1.4333i 0.8000
 0.1923 + 1.4425i 1.0000
 -0.3224 + 1.1488i 1.2000
 -0.5775 + 0.6691i 1.4000
 -0.5547 + 0.2185i 1.6000
 -0.3767 - 0.0839i 1.8000
 -0.1601 - 0.2382i 2.0000

 The preceding table may be shown graphically. The following instructions return
the magnitude plot:

>> plot (W,abs(H),’d’,W,abs(H))
>> xlabel (‘Discrete frequencies W’),
>> ylabel (‘abs(H)’); title (‘abs[H(z)] vs W’)
>> grid on; % the resulting plot is shown in Figure 7.4

CRC_47744_Ch007.indd 428CRC_47744_Ch007.indd 428 6/27/2008 4:55:56 PM6/27/2008 4:55:56 PM

Polynomials and Calculus, a Numerical and Symbolic Approach 429

R.7.60 The MATLAB function y = fi lter(P, Q, x, IC) returns the discrete output y of a given
discrete system transfer function P(z)/Q(z), with input sequence x, given in the form
of a row vector, where IC are the initial conditions specs of the system.

R.7.61 The MATLAB function y = lsim(P, Q, x, t) returns the output y of an analog system,
given the system continuous transfer function P(s)/Q(s), for the input sequence x,
over time t.

R.7.62 The following examples, given by the script fi le cont_dis, illustrate the use of the
functions fi lter and lsim, when evaluating the output of a discrete system given by
the discrete transfer function

H z

z z
z z

()
. . .

. .
�

� �

�

0 37525 0 4235 0 3725
1 0 3592 0 2092

1 2

1 2

� �

� ��

 with input x(n) = 3.1 ⋅ sin [6π(k − 1)], for 0 ≤ n ≤ 101, and the analog system given
by the transfer function

H s

s
s s

() �
� �2 2 1

 with input x(t) = 5cos(2πt) + 10sin(6πt), over the range 0 ≤ t ≤ 10. See Figure 7.5.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Discrete frequencies W

ab
s(

H
)

abs[H(z)] versus W

FIGURE 7.4
Magnitude plot of H(z) of R.7.59.

CRC_47744_Ch007.indd 429CRC_47744_Ch007.indd 429 6/27/2008 4:55:56 PM6/27/2008 4:55:56 PM

430 Practical MATLAB® Basics for Engineers

MATLAB Solution
% Script file:cont _ dis
% discrete case
k = [0:100];
x = 3.1*sin(6*pi*(k-1));
P = [0.3725 0.4235 0.3725];
Q = [1 -0.3592 0.2092];

figure(1)
subplot (2, 1, 1)
stem (k, x), hold on;plot(k,x)
ylabel (‘amplitude x(n)’)
title (‘Input x(n) vs. n’)
subplot(2, 1, 2)
y = filter(P,Q,x);
stem(k, y)
xlabel(‘index k’)
ylabel (‘amplitude y(n) ‘)
title (‘Output using y = filter(P,Q,x)’)
% The input and output plots are shown in Figure 7.6
% as continuous functions
% analog case

figure(2)
t = 0:.1:10;
P = [1 0];Q = [1 2 1];
x = 5*cos(2*pi.*t)+10*sin(6*pi.*t);
y = lsim (P,Q,x,t);
subplot(2,1,1)
plot(t,x);
ylabel(‘amplitude x(t)’) ;title(‘input x(t) vs. t’)
subplot(2,1,2) ;plot(t,y);
xlabel(‘time (sec)’) ; title(‘Output using y=lsim(P,Q,x,t)’)
ylabel(‘amplitude y(t)’)

% The input and output plots are shown in Figure 7.7

R.7.63 The MATLAB function y = fi ltfi lt(P, Q, x) returns the output sequence y for a given
system transfer function given by P and Q, for the forward- and time-reversed
input sequence x.

R.7.64 MATLAB allows variables to be used in mathematical expressions without assign-
ing them numerical values. MATLAB calls this variables symbolic. For example, if
the instruction y = log(x) is entered, MATLAB probably responds with an error
message, such as undefi ned variable x. But if x is declared as a symbolic object using
the statement sym(‘x’), then MATLAB accepts the instruction y = log(x) as symbolic,

x(n) = 3.1 sin (6�n) y(n) = filter (P,Q,x)
H(z) = P(z)/Q(z)

x(t) = 5 cos(2.pi.t)+10sin (6�t) y(t) = lsim(P,Q,x,t)
H(s) = P(s)/Q (s)

FIGURE 7.5
Discrete and analog systems representation of R.7.62.

CRC_47744_Ch007.indd 430CRC_47744_Ch007.indd 430 6/27/2008 4:55:56 PM6/27/2008 4:55:56 PM

Polynomials and Calculus, a Numerical and Symbolic Approach 431

and no numerical value is assigned to x. The symbolic expression y is then stored
as a string.

 Symbolic objects can be declared one at a time such as x = sym(‘x’), y = sym(‘y’),
or they can be declared all at once by using the command syms x y, where the order
is unimportant. The MATLAB Symbolic Toolbox consists of about 100 specialized

FIGURE 7.7
Continuous input and output plots of the system defi ned by H(s).

input x(t) versus t
20

10

−10

−20
0

2

1

0

0

−1

−2

1 2 3 4 5 6 7 8 9 10

0

am
pl

itu
de

 x
(t

)
am

pl
itu

de
 y

(t
)

Output using y = Isim(P,Q,x,t)

1 2 3 4 5
time (s)

6 7 8 9 10

Input x(n) versus nx 10−13

x 10−13

2

0

10 20 30

Output using y = filter (P,Q,x)

40 50 60 70 80 90 1000

−2

−4

−6

am
pl

itu
de

 x
(n

)

2

0

−2

−4

−6
0 10 20 30 40 50 60 70 80 90 100

index k

am
pl

itu
de

 y
(n

)

FIGURE 7.6
Discrete input and output plots of the system defi ned by H(z).

CRC_47744_Ch007.indd 431CRC_47744_Ch007.indd 431 6/27/2008 4:55:57 PM6/27/2008 4:55:57 PM

432 Practical MATLAB® Basics for Engineers

functions, some of which will be presented later in this chapter. The standard
numerical operators: +, −, *, /, and ^ can be used on symbolic variables to create
symbolic algebraic expressions.

R.7.65 MATLAB can perform mathematical operations on symbolic expressions consist-
ing of addition, subtraction, multiplication, division, simplifi cation, integration,
differentiation, factorization, solution of set of equations, and many other opera-
tions, some of which are presented below.

R.7.66 Symbolic expressions can be constructed using symbolic variables. For example,
write a program that defi nes the following functions as symbolic objects:
a. f1 = x + 1
b. f2 = cos(y)

c. f3 = log10(z)

d. f4 = 3x2 + 4x + 16

MATLAB Solution
>> sym x y z; % declares x, y, and z as symbolic
>> f1 = x+1 ; f2 = cos(y); f3 = log10 (z);
>> f4 = 3 *x^2 +4*x +16;
>> % f1, f2, f3 and f4 become sym objects

R.7.67 The MATLAB command whos can be used to check whether a given variable is
symbolic, numerical (array), string or complex. For example, let
a. A = 3 (constant)

b. B �
1 2
3 4









 (matrix)

c. C = 3 − 4j (complex)
d. D = “string sequence” (string)
e. x, y, and z (symbolic)

 Process each of the variables defi ned above then check the class of variables
used by executing the command whos.

MATLAB Solution
>> A = 3;
>> B = [1 2; 3 4];
>> syms x y;
>> C =3-4*j;
>> D = ‘string sequence’;
>> z = 2*x+3*y;
>> whos

 Name Size Bytes Class
 A 1x1 8 double array
 B 2x2 32 double array
 C 1x1 16 double array (complex)
 D 1x15 30 char array
 x 1x1 126 sym object
 y 1x1 126 sym object
 z 1x1 138 sym object

 Grand total is 33 elements using 476 bytes

CRC_47744_Ch007.indd 432CRC_47744_Ch007.indd 432 6/27/2008 4:55:57 PM6/27/2008 4:55:57 PM

Polynomials and Calculus, a Numerical and Symbolic Approach 433

R.7.68 Let us construct the symbolic matrix symmatrix, by using the symbolic MATLAB
variables x, y, and z, as indicated in the following:

sym matrix

x x x

y x y x y

z x z y y x

_
*

* / log()
* * *

� �

2
1

2















MATLAB Solution
>> syms x y z;
>> sym _ matrix = [x 2*x x^2; y*x 1/y+x log10(y);z*x z*y x*y]

 sym _ matrix =
 [x, 2*x, x^2]
 [y*x, 1/y+x, log(y)]
 [z*x, z*y, y*x]

R.7.69 The elements of a symbolic matrix are identifi ed by using the same rules defi ned
for the case of numerical matrices (indexes of row by column). For example,

>> sym _ matrix(1,2), % identifies the element located on row # 1, column # 2

 ans =
 2*x

>> sym _ matrix(2,:), % returns row # 2

 ans =
 [y*x, 1/y+x log(y)]

>> sym _ matrix(:,3) , % returns column # 3

 ans =
 [x^2]
 [log(y)]
 [y*x]

R.7.70 The MATLAB command fi ndsym(y) is used to identify or fi nd the symbolic vari-
ables in a symbolic expression y, which is defi ned in the following:

 For example, let

>> a = 1;
>> y = sym (‘3*X^2+4*Y+Z+a’); % then
>> findsym(y)

 returns a list of all the symbolic variables that make up y, as indicated in the
following:

 ans =
 X, Y, Z, a

R.7.71 The command fi ndsym(y, n) returns only the n symbolic variables that are closer to x.

CRC_47744_Ch007.indd 433CRC_47744_Ch007.indd 433 6/27/2008 4:55:58 PM6/27/2008 4:55:58 PM

434 Practical MATLAB® Basics for Engineers

R.7.72 Standard algebraic operations can be performed on symbolic expressions such as
addition, subtraction, multiplication, division, and exponentiation employing the
same rules defi ned for the numerical case.

 For example, defi ne the following expressions as symbolic objects:
a. y1 = 2x + 3y + 4z

b. y2 = 5x + 6y + 7z

c. y3 = 8x + 9y

d. y4 = (1/(x + 2)(x + 1)

e. y5 = (x + 1)(x + 3)

 and perform the following symbolic operations:
i. y6 = y1 + y2

ii. y7 = y1 − y3

iii. y8 = y6 + y4

iv. y9 = y6*2

MATLAB Solution
>> y1 = sym(‘2 * x + 3 * y + 4 * z’)

 y1 =
 2 * x + 3 * y + 4 * z

>> y2 = sym(‘5 * x + 6 * y + 7 * z’)

 y2 =
 5 * x + 6 * y + 7 * z

>> y3 = sym(‘8 * x + 9 * y’)

 y3 =
 8 * x + 9 * y

>> y4 = sym(‘1/(x+2) * (x+1)’)

 y4 =
 1/(x+2) * (x+1)

>> y5 = sym(‘(x+1) * (x+3)’)

 y5 =
 (x+1) * (x+3)

>> y6 = y1 + y2

 y6 =
 7*x+9*y+11*z

>> y7 = y1 - y3

 y7 =
 6*x-6*y+4*z

CRC_47744_Ch007.indd 434CRC_47744_Ch007.indd 434 6/27/2008 4:55:58 PM6/27/2008 4:55:58 PM

Polynomials and Calculus, a Numerical and Symbolic Approach 435

>> y8 = y6 * y4

 y8 =
 (7*x+9*y+11*z)/(x+2)*(x+1)

>> y9 = y6 * 2

 y9 =
 14*x+18*y+22*z

R.7.73 Algebraic operations such as addition, subtraction, multiplication, and division
using the symbolic expressions f1 and f2 can also be accomplished by using the fol-
lowing MATLAB symbolic instructions:

symadd(f1, f2) returns the symbolic addition of f1 and f2

symsub(f1, f2) returns the symbolic subtraction of f2 from f1

symmul(f1, f2) returns the symbolic multiplication of f1 by f2

symdiv(f1, f2) returns the symbolic division of f1 by f2

R.7.74 The MATLAB command pretty(f) returns the symbolic expression f in typeset
format.

 For example, let y10 = 2.y5, where y5 = (x + 1)(x + 3).
 Use symbolic techniques to evaluate and express y10.

MATLAB Solution
>> y5 = sym(‘(x+1) * (x+3)’);
>> y10 = pretty (y5 * 2)

 y10 =
 2x2 + 8x + 6

R.7.75 The MATLAB command subs (y, y1, yf) returns the expression for y in which the
symbolic variable y1 is substituted by the symbolic variable yf. For example, let y =
3x + 4y be a symbolic expression. Write a short MATLAB program that substitutes
in y x by z.

MATLAB Solution
>> syms x y z
>> y = 3*x + 4*y;
>> subxbyz = subs(y,x,z)

 subxbyz =
 3*z+4*y

R.7.76 The MATLAB command y = sym(‘y(x)’) defi nes y as a function of x. For example,
use MATLAB to defi ne y(x) and create the function g_x = y(x) − 2 * y(x − 1) + 3 *
y(x − 2).

MATLAB Solution
>> syms x
>> y = sym(‘y(x)’);
>> g _ x = subs(y,x,x) - 2* subs(y,x,x-1) + 3*subs(y,x,x-2)

CRC_47744_Ch007.indd 435CRC_47744_Ch007.indd 435 6/27/2008 4:55:58 PM6/27/2008 4:55:58 PM

436 Practical MATLAB® Basics for Engineers

 g _ x =
 y(x) - 2*y(x-1) + 3*y(x-2)

R.7.77 A two symbolic variables substitution x, z by p, q in the symbolic expression y can
be accomplished by the following command: subs(y, ⎨‘x’, ‘z’⎬, ⎨‘p’, ‘q’⎬).

R.7.78 For example, let y = 2x2 + log(z2) be a symbolic expression. Write a program that
defi nes y, and then substitutes x by p and z by q.

MATLAB Solution
>> syms x y z p q
>> y=2*x^2+3*log(z^2);
>> subsxzbypq = subs(y,{‘x’,’z’},{‘p’,’q’})

 subsxzbypq =
 2*p^2+3*log(q^2)

R.7.79 The MATLAB function compose(f, y) returns the function f(y(x)).
R.7.80 For example, let f(x) = 1 + 2x and y(x) = log(x). Use MATLAB to obtain an expres-

sion for f(y).

MATLAB Solution
>> f=sym(‘1+2*x’);
>> y=sym(‘log(x)’);
>> comfy = compose(f,y)

 comfy =
 1+2*log(x)

R.7.81 The symbolic MATLAB function H = symdiv(A, B) returns the symbolic function H
= A/B, where A and B consist of two symbolic polynomials. Observe that the sym-
div command can be used to defi ne a symbolic system transfer function expression
where (A = P) and (B = Q).

R.7.82 For example, let A = 2x3 + 3x2 + 2x − 10 and B = 5x4 + 4x3 + 3x2 + 2x − 25 be two
symbolic polynomial expressions. Use MATLAB to create the symbolic expression
H = A/B.

MATLAB Solution
>> A = sym(‘2 * x^3 + 3 * x^2 + 2*x - 10’);
>> B = sym(‘5 * x 4̂ + 4 * x^3 + 3 * x^2 + 2*x - 25’);
>> H = symdiv(A, B)

 H =
 (2*x^3+3*x^2+2*x-10)/(5*x 4̂+4*x^3+3*x^2+2*x-25)

R.7.83 The MATLAB command [num, den] = numden(H) returns the numerator num and
the denominator den, respectively, of the symbolic expression H. For example, using
the result obtained in R.7.82, then [num, den] = numden(H) returns

 num = 2 * x^3 + 3 * x^2 + 2*x – 10
 den = 5 * x 4̂ + 4 * x^3 + 3 * x^2 + 2*x – 25

CRC_47744_Ch007.indd 436CRC_47744_Ch007.indd 436 6/27/2008 4:55:58 PM6/27/2008 4:55:58 PM

Polynomials and Calculus, a Numerical and Symbolic Approach 437

R.7.84 Let y be a symbolic expression. Then the MATLAB functions simple(y) and simplify(y),
returns the simplifi ed expressions for y. The difference between the functions sim-
ple and simplify is that the command simple attempts to simplify y using a variety of
methods and displays the various results, whereas simplify returns a unique simpli-
fi ed expression for y.

R.7.85 For example, use the commands simple and simplify on the following symbolic
function

f a t j a t� �cos(.) (.sin(.))2 2

MATLAB Solution
>> syms a t
>> f = sqrt (cos(a*t)̂ 2 + (j*sin(a*t))̂ 2);
>> simple(f)

 simplify:
 (2*cos(a*t)̂ 2-1)̂ (1/2)
 radsimp:
 (cos(a*t)̂ 2-sin(a*t)̂ 2)̂ (1/2)
 combine(trig):
 cos(2*a*t)̂ (1/2)
 factor:
 (-(sin(a*t)-cos(a*t))*(sin(a*t)+cos(a*t)))̂ (1/2)
 expand:
 (cos(a*t)̂ 2-sin(a*t)̂ 2)̂ (1/2)
 combine:
 cos(2*a*t)̂ (1/2)
 convert(exp):
 ((1/2*exp(i*a*t)+1/2/exp(i*a*t))̂ 2+1/4*(exp(i*a*t)-
 1/exp(i*a*t))̂ 2)̂ (1/2)
 convert(sincos):
 (cos(a*t)̂ 2-sin(a*t)̂ 2)̂ (1/2)
 convert(tan):
 ((1-tan(1/2*a*t)̂ 2)̂ 2/(1+tan(1/2*a*t)̂ 2)̂ 2-
 4*tan(1/2*a*t)̂ 2/(1+tan(1/2*a*t)̂ 2)̂ 2)̂ (1/2)
 collect(t):
 (cos(a*t)̂ 2-sin(a*t)̂ 2)̂ (1/2)
 ans =
 cos(2*a*t)̂ (1/2)

>> simplify(f)

 ans =
 (2*cos(a*t)̂ 2-1)̂ (1/2)

R.7.86 The command [r, how] = simple(f) returns r the compact form for f, and how, represents
a string sequence defi ning the algorithm used to obtain r.

R.7.87 For example, use the command [r, how] = simple(f) for f = √

 cos(a.t)2 + (j.sin(a.t))2 and
observe its response.

MATLAB Solution
>> syms a t
>> f = sqrt (cos(a*t)̂ 2 + (j*sin(a*t))̂ 2);
>> [r,how] = simple(f)

CRC_47744_Ch007.indd 437CRC_47744_Ch007.indd 437 6/27/2008 4:55:58 PM6/27/2008 4:55:58 PM

438 Practical MATLAB® Basics for Engineers

 r =
 cos(2*a*t)̂ (1/2)
 how =
 combine

R.7.88 The MATLAB command collect(y) returns y in which like terms are collected. The
more general function collect(y, z) returns y, in which the coeffi cients dependent on
the symbolic variable z are collected.

R.7.89 For example, let y = 3x + 2y − 2x − 2y + 2 be a symbolic expression. Use
MATLAB to
a. Create y
b. Substitute x by π in y
c. Collect the like terms in y
d. Simplify (y)

 For each case observe and verify the MATLAB results.

MATLAB Solution
>> syms x y
>> y = 3*x+2*y-2*x-2*y+2;
>> sub = subs (y,x,pi)

 sub =
 5.1416

>> collect(y)

 ans =
 x+2

>> simplify(y)

 ans =
 x+2

R.7.90 The MATLAB function factor(y) returns the symbolic expression y, in terms of its
factors. For example, let y = x2 − x − 2 be a symbolic expression. Use MATLAB and
decompose y into its factors.

MATLAB Solution
>> y = sym (‘x^2-x-2’);
>> factor(y)

 ans =
 (x+1)*(x-2)

R.7.91 The MATLAB function factorial(n) returns the value of y = prod(1:n). For example,
evaluate y = 9! by symbolic and numerical means.

MATLAB Solution
>> factorial(9)

 ans =
 362880

CRC_47744_Ch007.indd 438CRC_47744_Ch007.indd 438 6/27/2008 4:55:58 PM6/27/2008 4:55:58 PM

Polynomials and Calculus, a Numerical and Symbolic Approach 439

>> prod(1:9)

 ans =
 362880

Note that the numerical and symbolic results fully agree.

R.7.92 The MATLAB function expand(y) returns the symbolic expanded expression for y.
R.7.93 For example, let y1 = (x + a + b)3 and y2 = cos(a + b) be symbolic expressions. Use

MATLAB to obtain the expanded version for
a. y1 = (x + a + b)3

b. y2 = cos(a + b)

MATLAB Solution
>> syms x a b;
>> y1 = (x+a+b)̂ 3

 y1 =
 (x+a+b)̂ 3

>> expy1 = expand(y1)

 expy1 =
 x^3+3*x^2*a+3*x^2*b+3*x*a^2+6*x*a*b+3*x*b^2+
 a^3+3*a^2*b+3*a*b^2+b^3

>> y2 = cos(a+b);
>> expye = expand(y2)

 expye =
 cos(a)*cos(b)-sin(a)*sin(b)

R.7.94 The MATLAB function numsp = sym2poly(sp) returns the symbolic polynomial
sp(x), converted into a numerical polynomial consisting of a row vector with its
coeffi cients arranged in descending powers of x.

R.7.95 For example, let sp(x) = 5x4 + 4x3 + 3x2 + 2x + 1 be a symbolic polynomial.
 Use MATLAB to convert the symbolic polynomial sp into a numerical vector

polynomial numsp.

MATLAB Solution
>> syms x
>> sp = sym(‘5 * x 4̂ + 4 * x^3 + 3 * x^2 + 2*x + 1’);
>> numsp = sym2poly(sp)

 numsp =
 5 4 3 2 1

R.7.96 The MATLAB function sp = poly2sym(P) returns the numerical row vector P con-
sisting of the coeffi cients of the polynomial p(x) converted into a symbolic polyno-
mial sp(x).

CRC_47744_Ch007.indd 439CRC_47744_Ch007.indd 439 6/27/2008 4:55:58 PM6/27/2008 4:55:58 PM

440 Practical MATLAB® Basics for Engineers

R.7.97 For example, let p(x) = x4 + 2x3 + 3x2 + 4x + 5 be represented by the row vector
P = [1 2 3 4 5]. Use MATLAB to convert the numerical polynomial P, into the
symbolic polynomial sp.

MATLAB Solution
>> P = [1 2 3 4 5] ; % corresponds to p(x) = x 4̂+2*x^3+3*x^2+4*x+5
>> sp = poly2sym(P) % returns the symbolic polynomial sp(x)

 sp =
 x 4̂+2*x^3+3*x^2+4*x+5

R.7.98 The MATLAB function horner(sp) returns the symbolic expression sp in a nested
format.

R.7.99 For example, use MATLAB to transform the symbolic object sp(x) = x4 − 4x2 +
10x − 30, into a nested format.

MATLAB Solution
>> sp = sym(‘x 4̂-4*x^2+10*x-30’);
>> hor _ for = horner (sp)

 hor _ for =
 30+(10+(-4+x^2)*x)*x

R.7.100 Let x be the independent variable of f, and let x1 and x2 be two numerical values
of x. Then subtracting x2 from x1 is called the increment of x or delta x expressed
as ∆x.

R.7.101 Recall that a tangent is the straight line which touches the (curve) function defi ned
by f(x) at a point.

R.7.102 A straight line that passes through the (two) points x = a and x = b of f(x) that are
near one another on a continuous curve, separated by a ∆x, is referred to as secant
line. Its slope is given by

slope a b

f x x f x
x

[,]
() ()

�
� �

�
�

 Notice that when ∆x = 0, then the slope is undefi ned. In the limit as ∆x approaches
zero, the secant line becomes a tangent, and the two points a and b merge
into one.

R.7.103 The independent variable x of f(x) is said to have a constant value l as limit, when
the successive values of x are such that |l − x| ultimately become and remain less
than any preassigned positive number. The notation used to defi ne the limit of a
function f(x) is lim

x→a
 [f(x)] = l.

 The preceding expression says that the limit of f(x) as x approaches a
equals l. x will be very close to a, but x will not be equal to a, and f(x) will get
closer to the number l as x gets closer to a. The limit of f(x) for a particular value
x = a describes the behavior of f(x) at the point a. The concept of limit is one of
the basic concepts of calculus, and is generally diffi cult to visualize, understand,
and apply.

CRC_47744_Ch007.indd 440CRC_47744_Ch007.indd 440 6/27/2008 4:55:58 PM6/27/2008 4:55:58 PM

Polynomials and Calculus, a Numerical and Symbolic Approach 441

R.7.104 The following relations are used to defi ne and summarize some frequently used
properties associated with limits. Let us assume that lim

x→a
 [f(x)] and lim

x→a
 [g(x)] exist

and are fi nite, then

a.

lim[() ()] lim[()] lim[()]
x a x a x a

f x g x f x g x
→

� � �
→ →

b. lim[() ()] [lim[()]][lim[()]]
x a x a x a

f x g x f x g x
→ → →

⋅ �

c.

lim
()
()

lim[()]/lim[()] lim[(
x a x a x a x a

f x
g x

f x g x g x
→ → → →









 � if))] ≠ 0

d.

lim () lim[()],
x a

n
x a

nf x f x
→ →

  � where is a positive integen rr

e.

lim () lim[()] ,
x a

n

x a

n

f x f x
→ →

  { }� for any positive integer n

f.

lim , where is a constant
x a

A
→ →

⋅ = ⋅[()] lim[()]A f x A f x
x a

g.

If lim[()] (),
x a

f x f a
→

� then the function is said to be cf(x) oontinuous at the

point x a�

R.7.105 The symbolic MATLAB command F = limit(f, x, a) returns F, the numerical value
of the limit of f(x) as x approaches a {expressed as F = lim

x→a
 [f(x)]}. The default value

for a is zero.
R.7.106 For example, use MATLAB and evaluate the limits of the following expressions:

a. F
a t

a tt a
1 � lim

sin(.)
.�







b. F
t at a

2
1

�
�

lim
�







c. F
t at

3
0

1
�

�
lim
�







d. F
nn

4

2

1
1

� �lim
�



















e. F
n

a
n

5
1

� �lim
�







f. F
t at

6
1

�
�

lim
�







CRC_47744_Ch007.indd 441CRC_47744_Ch007.indd 441 6/27/2008 4:55:59 PM6/27/2008 4:55:59 PM

442 Practical MATLAB® Basics for Engineers

MATLAB Solution
>> syms a t n
>> F1= limit(sin(a*t)/(a*t))

 F1 =
 1

>> F2 = limit(1/(t+a),t,a)

 F2 =
 1/2a

>> F3 = limit(1/(t+a),t,0)

 F3 =
 1/a

>> F4 = limit((1+1/n)̂ n, n, inf)

 F4 =
 exp(1)

>> F5= limit((1/n+a),n, inf)

 F5 =
 a

>> F6 = limit(1/(t+a),t,inf)

 F6 =
 0

R.7.107 Let y = f(x), and let lim
∆x→0

 [∆y/∆x] exist in the limit. Then this limiting process is
known as the derivative of y with respect to x.

R.7.108 The derivative of y = f(x) with respect to x is defi ned as the slope of the tangential
line at any point of y, often referred as the slope function, given by

dy
dx

f x
y
x

f x x f x
xx x

� � � �
� �

() lim lim
() ()

� �

�
�

�
�� �0 0





 { }

 Since the concept of derivative is so important in science and engineering, let us
explore its defi nition and meaning.

 Let y = f(x), then y + ∆y = f(x + ∆x); increment both sides by ∆, then ∆y =
f(x + ∆x) − y, or ∆y = f(x + ∆x) − f(x). Then

�
�

�
�

y
x

f x x f x
x

�
� �() ()

 dividing both sides of the equation by ∆x, and taking the limit as x approaches
zero yields

lim lim

() ()
� �

�
�

�
�x x

y
x

f x x f x
x� �0 0













�
� �

CRC_47744_Ch007.indd 442CRC_47744_Ch007.indd 442 6/27/2008 4:55:59 PM6/27/2008 4:55:59 PM

Polynomials and Calculus, a Numerical and Symbolic Approach 443

 Recall that the preceding relation was defi ned as the derivative, given by

df x
dx

y
xx

()
lim�
�

�
��0







R.7.109 The process of evaluating the derivative is called differentiation. Let y = f(x), then
the fi rst derivative corresponds to the slope of the tangent line at any point of y,
and the equation dy/dx = 0 is often used to determine the locations of the maxima
and minima of y, and it is probably one of the most important applications of dif-
ferential calculus. Observe that when the function f(x) is at its maximum or mini-
mum, its slope is zero, because the tangent line at y is parallel to the abscissa.

R.7.110 Let’s get an insight into the process of differentiation, for example, for an economist
the variable of interest can represent an investment, and the economist may be
interested in maximizing profi ts and minimizing costs.

R.7.111 In the physical sciences, a distance may be expressed as a function of the inde-
pendent variable time (t), denoted by f(t) (in meters). Then v(t) = (df(t))/dt, repre-
sents velocity (in meter per second), and a(t) = (d2[f(t)])/dt2 represents acceleration
(in meter per second square). Or let w(t) represent energy (in joules), then p(t) =
(d[w(t)])/dt represents power (in watts or joules per second).

R.7.112 The fi rst derivative of y(x) can be used to predict the behavior of y(x) by means of
a new function that represents the slope of y(x) with respect to x that indicates the
rate of change. The units of the derivative are then the unit of the dependent vari-
able y divided by the unit of the independent variable x.

 For example, let y = f(x), then the fi rst derivative can be used to determine if y
tends to increase or decrease, as indicated in the following:
a. If dy/dx > 0 on an interval x, then the function f(x) increases, otherwise.
b. If dy/dx < 0, then f(x) decreases on an interval x.
 If y(x) does not change, then the derivative is zero.
 The fi rst derivative of y(x) is expressed using the following standard notation:

dy
dx

y f x� � � �()

The notation used to denote the second derivative of y(x) and its meaning is given
in the following:

d y
dx

d
dx

dy
dx

y f x
f x x f x

x
f x x f x

2

2

2

�

� � � �
� � � � � �







()
() () () (�

�
�

�
�� ��

�
x f x

x
) ()

()2

R.7.113 The second derivative is often used to test the concavity of y = f(x), over a particu-
lar interval of x as indicated in the following:
a. If f′′(x) > 0, for any point on an interval of x, then f(x) is concave up (otherwise).
b. If f′′(x) < 0, for any point on an interval of x, then f(x) is concave down.

R.7.114 The MATLAB function derivP = polyder(P), where P is a row vector consisting of the
coeffi cients of the polynomial p(x), expressed in descending powers of x returns

CRC_47744_Ch007.indd 443CRC_47744_Ch007.indd 443 6/27/2008 4:55:59 PM6/27/2008 4:55:59 PM

444 Practical MATLAB® Basics for Engineers

derivP, the coeffi cients of the expression d[p(x)]/dx, as a row vector arranged in
descending powers of x.

R.7.115 For example, let p(x) = 3x4 + 2x3 − 4x2 + 7x + 21. Then use MATLAB to evaluate
d[p(x)]/dx.

MATLAB Solution
>> P = [3 2 -4 7 21];
>> derivP = polyder(P)

 derivP =
 12 6 -8 7

 The preceding result is interpreted as d[p(x)]/dx = 12x3 + 6x2 − 8x + 7.
R.7.116 The command polyder can be used to evaluate the derivatives of either a product or

a quotient of polynomials (entered as vectors), as indicated in the following:

derivProd polyder (P1,P2)� �

d P P
dx

[*]1 2

 and

 [der_P1, der_P2] = polyder (P1, P2)

 where

d P P
dx

der P
der P

[] _
_

1 2 1
2

�
�

R.7.117 For example, let p1(x) = 1x4 + 2x3 − 3x2 + 5x + 7 and p2(x) = 3x4 + 6x3 − 4x2 + 9x + 13.
Then use MATLAB and evaluate the following:

a.

d P P
dx

[*]1 2

b.

d P P
dx

[]1 2�

MATLAB Solution
>> P1 = [1 2 -3 5 7];
>> P2 = [3 6 -4 9 13];
>> derP1xP2 = polyder(P1,P2)

 derP1xP2 =
 24 84 -6 -10 376 63 -44 128

>> [derP1,derP2] = polyder (P1,P2)

 derP1 =
 10 -8 -56 -55 -22 2
 derP2 =
 9 36 12 6 202 84 -23 234 169

CRC_47744_Ch007.indd 444CRC_47744_Ch007.indd 444 6/27/2008 4:55:59 PM6/27/2008 4:55:59 PM

Polynomials and Calculus, a Numerical and Symbolic Approach 445

 The preceding results are interpreted as

d P P
dx

x x x x x x x
[*]1 2

24 84 6 10 376 63 44 1287 6 5 4 3 2� � � � �� � �

d P P
dx

x x x x x
x x x x x

[/]1 2 10 8 56 55 22 2
9 36 12 6 202

5 4 3 2

8 7 6 5 4
�

� � � � �

� � � � �� � � �84 23 234 1693 2x x x

R.7.118 Let y1 = f1(x) and y2 = f2(x) be two functions of the independent variable x, and let c
be an arbitrary constant. Then the relations in the following summarize the rules
and relations frequently used in the evaluation of derivatives:

a.

d
dx

c() � 0

b.

d
dx

c f x c
d

dx
f x[()] ()⋅ 1 1�

c.

d
dx

f x f x
df x

dx
df x

dx
[() ()]

() ()
1 2

1 2� � �

d.

d
dx

f x f x f x
d

dx
f x f x

d
dx

f x[() ()] () () () ()1 2 1 2 2 1⋅ � �

e.

d
dx

f x
f x

f x d dx f x f x d dx f x
f x

1

2

2 1 1 2

2
2

()
()

()() () ()() ()
(









 �

�� �

))

f.

d
dx

x cxc c[] � �1

g.

d
dx

f x cf x
d

dx
f xc c

1 1
1

1() () [()]� �

h.

d
dx

x
x

(ln()) �
1

i.

d
dx

e cecx cx[] �

j.

df x
dx

df x
du

du
dx

() ()
� ⋅ (chain rule)

R.7.119 A list of the derivatives of the standard trigonometric functions are given
below:

a.

d
dx

x xsin() cos()[] �

b.

d
dx

x xcos() sin()[] � �

CRC_47744_Ch007.indd 445CRC_47744_Ch007.indd 445 6/27/2008 4:56:00 PM6/27/2008 4:56:00 PM

446 Practical MATLAB® Basics for Engineers

c.

d
dx

x x
x

tan() sec ()
cos ()

[] � �2
2

1

d.

d
dx

x xcot() csc()[]� �

e.

d
dx

x x xsec() sec() tan()[] [][]�

f.
d

dx
x x xcsc() csc() cot()[] [][]� �

g.

d
dx

x
x

arcsin()[] �
�

1
1 2

h. d
dx

x
x

arctan()[] �
�

1
1 2

i.

d
dx

x
x x

arcsec()[]�
�

1
1 2

j.

d
dx

x
d

dx
xarccos() arcsin()[] []� �

k.
d

dx
x

d
dx

xarccot() arctan()[] []� �

l.
d

dx
x

d
dx

xarc arccsc() sec()[] []� �

R.7.120 The examples below illustrate the evaluation process of the derivatives when per-
formed by hand for each of the following expressions:

a.

y t
d
dt

t t1 3 6 18() [cos()] /� �at �

b.

y t
d
dt

t2
23() [sin ()]� �

c.

y t
d
dt

e t
3

43 5() �  

d.

y t
d
dt

e tt
4

32 5() [sin()]� �

e.

y t
d
dt

t5 3 5() [ln()]� �

f.

y t
d
dt

t t6() [ln()]�

CRC_47744_Ch007.indd 446CRC_47744_Ch007.indd 446 6/27/2008 4:56:00 PM6/27/2008 4:56:00 PM

Polynomials and Calculus, a Numerical and Symbolic Approach 447

ANLYTICAL Solutions

a. y t
d
dt

t t
t

1
18

3 6 3 6 6

18 6 18 18

() [cos()] * * sin()

sin(* /) s

/

� � �

� � � �

��

� iin(/)

sin() (.) .

� 3

18 60 18 0 886 15 588� � � � � ��

b. y t
d
dt t

d
dt

t

t
d

2 2
2

3

3
3

3 2

()
sin ()

sin ()

* () * sin () *

� �

� �

�

�









  

ddt
t

t t

[sin()]

cos()/sin ()� �6 3

c. y t
d
dt

e e
d
dt

t

y t e t

t

t t

t

3
4 4 5

3
4 4

3 3 4

3 20

60

5 5

5

()

()

*

� �

�

�

   

 

44 4 5
* e t

d. y t
d
dt

e t e
d
dt

t t
d
dt

et t
4

3 32 5 2 5 2 5() sin() [sin()] sin()� � �� � �⋅  33

4
3 3

4
3

2 5 5 2 5 3

10

t

t ty t e t t e

y t e

 

 () [cos()] sin()

()

� � �

�

� �

� tt t

t

t e t

e t t

cos() sin()

[cos() sin()]

5 6 5

10 5 6 5

3

3

�

� �

�

�

e. y t
d
dt

t
t

d
dt

t

t

5 3 5
3

5
5

3
5

() [ln()] ()� � �
�

�

�
�

f. y t
d
dt

t t t
d
dt

t t
d
dt

t

t
t

t

6

1

() [ln()] [ln()] ln() []

ln()

� � �

� � �



 11� ln()t

R.7.121 The process, called differentiation of f(x) with respect to x, is the process that
returns the expression for (df(x))/dx. Integration is the inverse of differentiation.
The notation used to denote integration is ∫ f(x) dx that reads the integral of f(x)
with respect to x.

R.7.122 Let y1 = f1(x) and y2 = f2(x) be two functions of the independent variable x, and let
b and c be arbitrary constants, where b ≠ 0.

 Then the relations below summarize the rules and properties frequently used
in the evaluation of integrals by hand:
a. dx x c� �∫
b. f x f x dx f x dx f x dx1 2 1 2() () () ()� � � ∫ ∫ ∫

CRC_47744_Ch007.indd 447CRC_47744_Ch007.indd 447 6/27/2008 4:56:00 PM6/27/2008 4:56:00 PM

448 Practical MATLAB® Basics for Engineers

c.

bdx bx c� �∫

d.

x dx
x
b

cb
b

∫ ≠�
�

� �
�1

1
b 1

e.

dx
x

x c� �ln � �∫

f.

e dx
b

e cbx bx∫ � �
1

R.7.123 A list of integrals of the standard trigonometric functions are given in the
following:

a. sin() cos()x dx x c� � �∫

b. cos() sin()x dx x c� �∫

c. tan() ln sec()x dx x c=∫ �

d. cot() ln sin()x dx x c�∫ �

e. sec() ln sec()x dx x� � �tan()x c∫

f. csc() ln csc() cot()x dx x x� �∫ � c

g. sinh() cosh()x dx x c� �∫

h. cosh() sinh()x dx x c� �∫

i.
dx

x
x c

1 2�
� �arctan()∫

j. dx
x

x c
1 2�

� �arcsin()∫

k. dx
x x

x c
2 1�

� �arcsec()∫
R.7.124 The term defi nite integral defi nes the expression, when the limits of integration

are over the range a and b. The notation used is indicated by

 f x dx b a
a

b
() () ()� �f f∫

 where φ(b) = ∫ f(x) dx at x = b and φ(a) = ∫ f(x) dx at x = a.

CRC_47744_Ch007.indd 448CRC_47744_Ch007.indd 448 6/27/2008 4:56:00 PM6/27/2008 4:56:00 PM

Polynomials and Calculus, a Numerical and Symbolic Approach 449

R.7.125 The indefi nite integral is defi ned by ∫ f(x) dx = φ(x) + c, with no assigned limits of
integration.

R.7.126 Observe that some integrals may be undefi ned depending on the limits of integra-
tion. For example,

dx
x

x c� �ln∫

 is undefi ned for x = 0.
 These integrals are called improper, and the points where the integral becomes

undefi ned are called singularities.

R.7.127 The examples below illustrate the integration process performed by hand for the
following expressions:

a.

6 5
0

1
sin()�t dt∫ �

b.
1

3 5�
�

t
dt



∫

ANALYTICAL Solutions

a. 6 5
6

5
5

6
5

5 0

6
5

1

0

1

0

1

sin() cos()

[cos() cos()]

[

�
�

�

�
�

�

t dt t∫ �
�

�
�

�

�
�

� �� 1
12
5

] =
�

b. 1
3 5

1
5

1
3 5

5

1
5

3 5

�
�

� �
�

� � � �

t
dt

t
d t

t c











∫ ∫ ()

ln()

R.7.128 In the physical sciences, the concept of integration is used in a variety of appli-
cations such as the evaluations of planar areas, lengths, areas of surfaces, and
volumes.

 The area of a continuous function y = f(x), over the range a ≤ x ≤ b, can be
evaluated (approximated) discretely by the following equation:

f x x x b a

nk
k

n

() � �
�

�
�

0
∑ where

 Of course, the approximation improves if n increases (in the limit as n approaches
infi nity), implying that Δx decreases.

 Recall that the areas above the x-axis are considered positive, whereas areas
under the x-axis are negative. In systems, integration is used to determine average
and rms or effective values, energies, voltages, and currents.

CRC_47744_Ch007.indd 449CRC_47744_Ch007.indd 449 6/27/2008 4:56:01 PM6/27/2008 4:56:01 PM

450 Practical MATLAB® Basics for Engineers

 For many functions the integral can be evaluated analytically, but for many
other functions the integral cannot be accomplished analytically, and requires
numerical or symbolic approximations.

R.7.129 The following examples, chosen from the physical sciences illustrate various appli-
cations where integration is employed:

 Let y = f(x) be defi ned in the interval of interest between x = a and x = b. Then,
a. The area of y = f(x), over the range y|x=b ≤ y ≤ y|x=b, is given by

f x dx

a

b

()∫

b. The surface area obtained by rotating f(x) about the x-axis is given by

2 1
2

� f x
df x

dx
dx

a

b

()
()

� 















∫

c. The volume obtained by rotating the function f(x) about the x-axis, over the
range x = a and x = b, is given by*

� f x dx

a

b

() ∫
2

d. The length of the curve defi ned by f(x) between x = a and x = b is given by
(Linderburg, 1982)

1

2

�
df x

dx
dx

a

b ()



∫

R.7.130 The MATLAB function diff(sp) returns the derivative of the symbolic expression sp
with respect to the default variable x. The most frequent MATLAB differentiation
commands are defi ned below for the general symbolic object sp = f(x, z).

 Newer versions of MATLAB use x as the default variable, when present, or the
variable that is closest to x.

a. diff sp
d sp

dx
()

()
�

b. diff sp z
d
dz

sp(,) ()� � �

c. diff sp n
d

dx
sp

n

n
(,) ()�

d. diff sp z n
d
dz

sp
n

n
(, ,) ()� � �

* For surfaces of revolution, and double and triple integrals consult Jensen (2000).

CRC_47744_Ch007.indd 450CRC_47744_Ch007.indd 450 6/27/2008 4:56:01 PM6/27/2008 4:56:01 PM

Polynomials and Calculus, a Numerical and Symbolic Approach 451

 The reader should not confuse the symbolic command diff with the MATLAB
numerical command differ = diff(Y), where Y is a vector that represents the points
of y(x) for a specifi ed range of x. Recall that MATLAB returns in this case the vector
differ consisting of the differences of adjacent elements in differ = [(x2 − x) (x3 − x2)
(x4 − x3) … (xn − xn−1)] (see Chapter 3).

 The [(dy(x))/dx] expressed as the MATLAB variable dydx can be evaluated by
numerical means by the code line given by

>> dydx = diff(Y)./(deltax*ones(1,length(x)-1))

 where deltax represents the step size over x.

R.7.131 For example, let y = x2, over the range 0 ≤ x ≤ 3. Use MATLAB to evaluate numeri-
cally (dy(x))/dx, by using the MATLAB command diff with a step size Δx = 0.5.

MATLAB Solution
>> x = 0:.5:3

 x =
 0 0.5000 1.0000 1.5000 2.0000 2.5000 3.0000

>> y = x.̂ 2

 y =
 0 0.2500 1.0000 2.2500 4.0000 6.2500 9.0000

>> diffy = diff(y)

 diffy =
 0.2500 0.7500 1.2500 1.7500 2.2500 2.7500

>> dxdy = diffy./(ones(1,length(x)-1)*0.5)

 dxdy =
 0.5000 1.5000 2.5000 3.5000 4.5000 5.5000

 Clearly, dxdy = y′ represents the equation of a straight line with y′ = slope =
change(y)/change(x) = 1/0.5 = 2.

R.7.132 The integration process can be accomplished by numerical or symbolic means.
 Numerical integration for the case of a polynomial can be accomplished by using

the function P = polyint(P1, k) and the inverse function given by P1 = polyder(P),
where k represents the constant term of P. Recall that P is a vector that consists of
the coeffi cients of p(x) in descending powers of x.

R.7.133 For example, let p(x) = x4 + 2x3 − 3x2 + 5x + 7. Use MATLAB and evaluate by
numerical means

a. dp x
dx
()

�

b. dp x
dx

dx
()



∫ �

CRC_47744_Ch007.indd 451CRC_47744_Ch007.indd 451 6/27/2008 4:56:02 PM6/27/2008 4:56:02 PM

452 Practical MATLAB® Basics for Engineers

MATLAB Solution
>>P = [1 2 -3 5 7];
>> der _ P = polyder(P,k)

 der _ P =
 4 6 -6 5

>> int _ of _ der _ P = polyint(der _ P,7)

 int _ of _ der _ P =
 1 2 -3 5 7

R.7.134 Numerical integration can also be approximated by using the MATLAB function
area = trapz(x, Y)* (see Chapter 3 for additional details), where Y is an array that
represents Y = f(x), the values of f(x) over the domain specifi ed by the array x. There
are other simple numerical ways to evaluate areas such as area = sum(Y) * deltax,
or area = trapz(Y) * deltax. The area under y(x) as a function of the independent
variable x, also referred as the running integral, can be approximated by the follow-
ing MATLAB instructions:
a. run_int = cumtrapz(Y) * deltax

b. run_int = cumsum(Y) * deltax

 where deltax is the step size used to generate x. In general, to improve accuracy the
domain of x should include a relatively large number of elements.

R.7.135 There are other MATLAB integration solvers such as (Jensen, 2000)
a. quad(‘f’, a, b, tol, trace)

b. quad1(‘f’, a, b, tol, trace)

c. quad8(‘f’.a, b, tol, trace)

that accept directly the function f as a symbolic object, and returns

f x dx

a

b

()∫

 where tol is an optional parameter that represents the error tolerance (the default
value is 10−3), and trace is a scalar optional parameter used to control the display
of the intermediate results.

 The difference between quad, quad1, and quad8 is that the fi rst uses the Simp-
son’s rule,† the second uses the Lobatto’s algorithm (not used in newer MATLAB
versions), and the third uses the Newton–Cotes’ algorithm.‡

* The trapezoidal rule approximates the area under y = f(x) by dividing x into ∆x subintervals, connected by
straight lines, and adding the areas of the subintervals. Clearly, as the number of subintervals increases and
approaches infi nity, the piecewise straight lines better approximate f(x).

† The Simpson’s rule uses a quadratic polynomial approximation to f(x) over adjacent pairs of subintervals.
‡ The Newton–Cotes formulas use the Simpson’s rule, but approximate f(x) by a higher degree polynomial

through the given number of points (quad8 uses a polynomial approximation of order 8).

CRC_47744_Ch007.indd 452CRC_47744_Ch007.indd 452 6/27/2008 4:56:02 PM6/27/2008 4:56:02 PM

Polynomials and Calculus, a Numerical and Symbolic Approach 453

R.7.136 Examples of the use of the quad family, abbreviation for quadrature* are illustrated
as follows. Evaluate

y x() � cos()

/

x dx
0

4�

∫

 by using quad, quad8, trapz, cumtrapz, and the sum. Observe, compare, and verify
the accuracy of each MATLAB solution.

MATLAB Solution
>> area1quad = quad(‘cos’,0.0,pi/4)

 areaquad =
 0.7071

>> areaquad8=quad8(‘cos’,0.0,pi/4)

 areaquad8 =
 0.7071

>> clear
>> x = 0:.01:pi/4;
>> y = cos(x);
>> areatrap1= trapz(x,y)

 areatrap1 =
 0.7033

>> areatrap2 = trapz(y)*0.01

 areatrap2=
 0.7033

>> areasum = sum(y)*0.01

 areasum =
 0.7118

>> areacumtra = cumtrapz(y)*0.01 % cumulative evaluations

areacumtra =
Columns 1 through 8
0 0.0100 0.0200 0.0300 0.0400 0.0500 0.0600 0.0699

Columns 9 through 16
0.0799 0.0899 0.0998 …… ………. …………….

Columns 73 through 79
0.6594 0.6669 0.6743 0.6816 0.6889 0.6961 0.7033

* Old term used to evaluate areas.

CRC_47744_Ch007.indd 453CRC_47744_Ch007.indd 453 6/27/2008 4:56:02 PM6/27/2008 4:56:02 PM

454 Practical MATLAB® Basics for Engineers

R.7.137 The MATLAB symbolic function int(sp) returns the indefi nite symbolic integral of
sp with respect to the default variable x. The most frequent MATLAB integration
commands are defi ned below for the symbolic object sp = f(x, z):

a.

int() (,)sp f x z dx� ∫
b.

int(, ,) (,)sp a b f x z dx

a

b
� ∫

c. int(,) (,)sp z f x z dz� � � ∫
d.

int(, , ,) (,)sp z a b f x z dz

a

b
� � � ∫

R.7.138 Examples illustrating the integration and differentiation processes are presented
below using the following expression:

 y1(x) = 2x3 + 3x2 + 4x − 5 and y2(x) = sin(x) + (1/4)x2

 Evaluate by hand and by using MATLAB the following expressions:

a.

y dx1∫ =

b.

y dx11

2

∫ �

c.

y dx2∫ �

d.

y dx20

�

∫ �

e.

d y
dx
()1 �

f.

d y
dx
()2 �

g.

d y
dx

5
2

5

()
�

ANALYTICAL Solutions

a.

y dx x x x x1
4 3 20 5 2 5� � �. �∫

 Let us evaluate the preceding expression in the interval x = 0.1 and x = 0.2.

b.

y dx1
4 4

1

2
3 3 20 5 0 2 0 1 0 2 0 1 2 0 2� � � � � �. (.) (.) (.) (.) (.) (

.

.
   ∫ 00 1 5 0 2 0 1

1729
4000

4323

2.) . .

.

  []� �

� � � �

c.
y dx x x dx x x2

2 31 4 1 12∫ ∫� � � � �(sin() (/)) cos() (/)

d.

y dx20
2 4 584

�
� �∫ � � � �[cos() cos(0)]

1
12

02� �() .

e. d y dx x x()/1
26 6 4� � �

CRC_47744_Ch007.indd 454CRC_47744_Ch007.indd 454 6/27/2008 4:56:02 PM6/27/2008 4:56:02 PM

Polynomials and Calculus, a Numerical and Symbolic Approach 455

f.
d y

dx
x x

()
cos()2 1

2
� � 





g. d y
dx

x
5

2
5

()
cos()�

MATLAB Solutions
>> syms x
>> y1 = 2*x^3+3*x^2+4*x-5;
>> inty1= int(y1) % integrate y1

 inty1 =
 1/2*x 4̂+x^3+2*x^2-5*x

>> inty1lim = int(y1,.1,.2) % evaluate integral y1 between
x = 0.1 to x = 0.2

 inty1lim =
 -1729/4000

>> double(inty1lim); % converts inty1lim into double
precision

 ans =
 -0.4323

>> y2 = sin(x) + (1/4)*x^2;
>> inty2 = int(y2) % integral of y2

 inty2 =
 -cos(x)+1/12*x^3

>> inty2lim = int(y2,0,pi) ; % integral of y2 between x=0
and x=pi

 inty2lim =
 2+1/12*pi^3

>> double(inty2lim)

 ans =
 4.5839

>> dify1= diff(y1) % dy1(x)/dx

 dify1 =
 6*x^2+6*x+4

>> dify2 = diff(y2) % dy2(x)/dx

 dify2 =
 cos(x)+1/2*x

CRC_47744_Ch007.indd 455CRC_47744_Ch007.indd 455 6/27/2008 4:56:02 PM6/27/2008 4:56:02 PM

456 Practical MATLAB® Basics for Engineers

>> dif5y2 = diff(y2,5) %[fifth derivative of y2 with
respect to x

 dif5y2 =
 cos(x)

 Observe that the analytical results fully agree with the MATLAB results.
R.7.139 The MATLAB function sinint(x) frequently encountered in engineering and tech-

nology is referred as the sampling function denoted by (Sa) returns the integral

sin()y
y

dy
x

0
∫

 where x may represent a constant, or a matrix.
R.7.140 For example, evaluate the following expressions using the MATLAB sinint

command:

a.

sin()y
y

dy
0

3

∫

b.

sin
,

sin()
,

sin()
,

sin()^ /y
y

dy
y

y
dy

y
y

dy
y

y
dy

e

0

1

0

2

0 0

1 5

∫ ∫∫ ∫
�

and

 by employing a matrix approach.

MATLAB Solution
>> syms y1 y2 a
>> y1= sinint(3) % part(a)

 y1 =
 1.8487

>> a = [1 pi exp(2) 1/5]; % part(b)
>> y2 = sinint(a)

 y2 =
 0.9461 1.8519 1.4970 0.1996

R.7.141 The function double(c) converts the symbolic object c (constants, scalar, or matrix)
into a double precision fl oating point variable.

R.7.142 For example, let y = x3 + 2x2 + x − 15. Use MATLAB to evaluate the following:
a. y1 = y(x = 1)

b. Convert y1 into a fl oating point variable (y2)

c. y3 = y 2
2

d. Verify the class of variables employed in this example

MATLAB Solution
>> syms x y y1
>> y = x^3+2*x^2+x-15;
>> y1 = subs(y,x,1)

CRC_47744_Ch007.indd 456CRC_47744_Ch007.indd 456 6/27/2008 4:56:02 PM6/27/2008 4:56:02 PM

Polynomials and Calculus, a Numerical and Symbolic Approach 457

 y1 =
 -11

>> y2=double(y1)

 y2 =
 -11

>> y3= y2^2

 y3 =
 121

>> whos

 Name Size Bytes Class
 x 1x1 126 sym object
 y 1x1 152 sym object
 y1 1x1 8 double array
 y2 1x1 8 double array
 y3 1x1 8 double array
 Grand total is 20 elements using 302 bytes

R.7.143 The MATLAB function vpa(k, d), which stands for variable precision arithmetic,
returns k with d digits of accuracy where k may be a constant or a matrix. For
example, evaluate
a. e (natural logarithm) to 25 digits of accuracy
b. π/2 to 30 digits of accuracy
c. The 3 × 3, Hilbert matrix to six digits of accuracy

MATLAB Solution
>> f1= vpa(exp(1), 25)

 f1 =
 2.718281828459045534884808

>> f2 = vpa(pi/2, 30)

 f2 =
 1.57079632679489661923132169164

>> A= vpa(hilb(3), 6)

 A =
 [1., .500000, .333333]
 [.500000, .333333, .250000]
 [.333333, .250000, .200000]

R.7.144 The MATLAB function digit(d) defi nes the precision used to perform symbolic
operations using variable precision arithmetic. The default precision is set to 32
digits for the rpa command.

CRC_47744_Ch007.indd 457CRC_47744_Ch007.indd 457 6/27/2008 4:56:02 PM6/27/2008 4:56:02 PM

458 Practical MATLAB® Basics for Engineers

R.7.145 For example, use MATLAB to express the variables x, z, and w, defi ned below:
a. x = 1/3 using the default and 32 digits
b. z = e using the default and 20 digits
c. w = π using the default and 25 digits

MATLAB Solution
>> syms v w x y
>> x =1/3

 x =
 0.3333

>> v = vpa(x) % part(a)

 v =
 .33333333333333333333333333333333

>> z = exp(1)

 z =
 2.7183

>> digits(20) % part(b)
>> z = vpa(z)

 z=
 2.7182818284590455349

>> digits(25)
>> w = pi

 w =
 3.1416

>> w = vpa(pi) % part(c)

 ww =
 3.141592653589793238462643

R.7.146 The MATLAB function taylor(sp, n) returns the symbolic object sp, using an n term
Taylor (Maclarin) polynomial series approximation.

R.7.147 For example, approximate cos(x) by a Taylor’s series, using six and eight terms
(Lindfi eld, 2000).

MATLAB Solution
>> syms y1 x
>> y1 = taylor(cos(x),6) % six term approximation

 y1 =
 1-1/2*x^2+1/24*x 4̂

CRC_47744_Ch007.indd 458CRC_47744_Ch007.indd 458 6/27/2008 4:56:02 PM6/27/2008 4:56:02 PM

Polynomials and Calculus, a Numerical and Symbolic Approach 459

>> y2 = taylor(exp(cos(x)),8)) % eight term approximation

 y2 =
 exp(1)-1/2*exp(1)*x^2+1/6*exp(1)*x^31/720*exp(1)*x^6

R.7.148 The symbolic function sum_n = symsum(f(x), a, b) returns sum_n, which consist of
the sum of the sequence of elements defi ned by f(x) over the range n given by a,
a + 1, a + 2, …, b for b > a.

R.7.149 For example, use MATLAB to evaluate the sum of f(x), as defi ned in the following
expression:

f x x xm

m

n

() � �
�

for 0.5
1

∑

 for
a. n = 20
b. n = 5
c. 6 ≤ n ≤ 20 in two ways

 i. [part a] – [part b]
ii. Direct evaluation

MATLAB Solution
>> syms n sum20 sum5 sumdif
>> sum20 = symsum(.5^n, 1, 20) % sum of first 20 terms

 sum20 =
 1048575/1048576

>> sum5 = symsum(.5^n, 1, 5) % sum of first 5 terms

 sum5 =
 31/32

>> sumdif = sum20-sum5 % sum over terms 6 to
20 / part(c1)

 sumdif =
 32767/1048576

>> sumdifsym = symsum(.5^n, 6, 20) ; % direct evaluation /
part(c2)

 sumdifsym =
 32767/1048576

R.7.150 The commands defi ned for numerical matrices in Chapter 3, such as det, inv, eig,
and trace, work equally well for symbolic matrices.

CRC_47744_Ch007.indd 459CRC_47744_Ch007.indd 459 6/27/2008 4:56:03 PM6/27/2008 4:56:03 PM

460 Practical MATLAB® Basics for Engineers

R.7.151 For example, let A be a 4 × 4 symbolic matrix, defi ned in the following expression
with elements a, b, c, and d:

A

a b c d

b c d a

c d a d

d a b c

�





















 Use MATLAB and obtain symbolic expressions for
a. B = det(A)

b. C = inv(A)

c. D = eig(A)

d. E = diag(A)
e. F = trace(A)

MATLAB Solution
>> syms a b c d A
>> A = [a b c d ;b c d a ;c d a d ;d a b c]

 A =
 [a, b, c, d]
 [b, c, d, a]
 [c, d, a, d]
 [d, a, b, c]

>> B = det(A) % part (a)

 B =
 2*a^2*c^2-2*a*c*d*b-4*a*d^2*c+3*d*a^2*b+a^2*d^2-a 4̂-
 2*b^2*a*c+d*b^3+3*b*d*c^2-d^2*b^2-c 4̂-d^3*b+d^2*c^2+d 4̂

>> C = inv(A) % part(b)

 C =
 (-a*c^2+c*d*b+d^2*c-d*a*b-a*d^2+a^3)/(-2*a^2*c^2+2*a*c*d*b+4*a*d

^2*c-3*d*a^2*b-a^2*d^2+a 4̂+2*b^2*a*c-d*b^3- ...

>> D = eig(A) % part (c)

 D =
 RootOf(_ Z 4̂+(-2*c-2*a)* _ Z^3+(-b^2-2*d^2-d*b+4*a*c)* _

Z^2+(d^2*c-2*a^2*c-2*a*c^2+2*c^3+a*d^2+2*a^3+c*b^2
-2*d*a*b-2*c*d*b+a*b^2)* _ Z+2*a^2*c^2-2*a*c*d*b-4*a*d^2*c+3
*d*a^2*b+a^2*d^2-a 4̂-2*b^2*a*c+d*b^3+3*b*d*c^2-d^2*b^2-c 4̂-
d^3*b+d^2*c^2+d 4̂)

CRC_47744_Ch007.indd 460CRC_47744_Ch007.indd 460 6/27/2008 4:56:03 PM6/27/2008 4:56:03 PM

Polynomials and Calculus, a Numerical and Symbolic Approach 461

>> E = diag(A) % part (d)

 E =
 [a]
 [c]
 [a]
 [c]

>> F = trace(A) % part (e)

 F =
 2*a+2*c

R.7.152 The MATLAB symbolic functions y = solve(eq1), or solve(eq1, eq2, eq3, …) returns
the symbolic solution of an equation (eqs1) or the system of equations given by eq1,
eq2, …, eqn.

R.7.153 For example, solve the following equation, or sets of equations given below by
using the MATLAB symbolic solver:
a. x2 = 9
 x − 0.5 * y + 1.5 * z = 5
b. 6 * x + 4 * y − 2 * z = 10
 x − y + z = −1

MATLAB Solution
>> y1 = sym(‘x^2-9’); % equation x^2-9=0
>> y2 = sym(‘x-0.5*y+1.5*z-5’); % equationx-0.5*y+1.5*z-5=0
>> y3 = sym(‘6*x+4*y-2*z-10’); % equation 6*x+4*y-2*z-10=0
>> y4 = sym(‘-x-y+z+1’); % equation -x-y+z+1=0
>> x = solve(y1) % solution of part(a)

 x =
 [3]
 [-3]

>> [x,y,z]=solve(y2,y3,y4) % solutions for part (b)

 x =
 5.
 y =
 -6.
 z =
 -2.

>> % part a can also be solved by the following commands:
>> syms x
>> x = solve(‘x^2-9=0’)

 x =
 [3]
 [-3]

CRC_47744_Ch007.indd 461CRC_47744_Ch007.indd 461 6/27/2008 4:56:03 PM6/27/2008 4:56:03 PM

462 Practical MATLAB® Basics for Engineers

R.7.154 When more than one solution satisfi es a given equation, MATLAB returns the
solution that is closest to zero.

R.7.155 For example, use MATLAB to solve the following equation: sin2(x) = cos2(x).

MATLAB Solution
>> y = sym(‘sin(x)̂ 2-cos(x)̂ 2’)

 y =
 sin(x)̂ 2-cos(x)̂ 2

>> x = solve(y) ; % returns the closest solution
with respect to x= 0

 x =
 [1/4*pi]
 [-1/4*pi]

R.7.156 When a system of equations consists of more equations than unknowns, MATLAB
returns a warning message. On the other hand, when a system consists of more
unknowns than equations, MATLAB treats the fi rst alphabetic variable (s) as a
constant and returns the solution in term (s) of that variable (s).

R.7.157 MATLAB is also capable of solving DEs.
 A DE is an equation that involves derivatives or integrals. A DE is a mathemati-

cal relation between the variable x (where y = y(x)) and y and its derivatives with
respect to x. This relation can best be stated mathematically by

d y
dx

f x y y y y
n

n
n� � � �(, , , , ,)… 1

 Recall that y is the dependent variable, x is the independent variable, and yn denotes
y differentiated n times with respect to x.

 At least one derivative or integral must be present in an equation to make that
equation a DE.

R.7.158 Given a DE, the problem consists of fi nding the function or set of functions y(x)
that satisfi es the equation f(x, y, y′, y″, …, yn−1yn) = 0.

 The set of functions {y(x)} is referred to as the solutions of the DE.
R.7.159 For example, let

d y x
dx

y x
2

2
16 0

()
()� �

 be a DE, then let us assume that the solution is of the form y(x) = C1e4x + C2e
−4x.

Then,

 y′(x) = 4C1e 4x −4C2 e
−4x

CRC_47744_Ch007.indd 462CRC_47744_Ch007.indd 462 6/27/2008 4:56:03 PM6/27/2008 4:56:03 PM

Polynomials and Calculus, a Numerical and Symbolic Approach 463

 and

 y′′(x) = 16C1e 4x + 16C2e
−4x

 Substituting the preceding derivatives in the DE yields

 16C1e4x + 16C2e−4x −16C1e4x − 16C2e−4x = 0

 verifying that the resulting relation is indeed an equation, and its solution is y(x) =
C1e4x + C2e−4x. Observe in general that if y(x) is substituted in a given DE and the
resulting expression is an identity over x in some interval, then y(x) is the solution of
the DE. The constants C1 and C2 are referred to as the boundary conditions of the DE.

R.7.160 The order of the DE is given by its highest derivative of the dependent variable y,
with respect to the independent variable x.

R.7.161 For example, a fi rst-order DE contains only the fi rst derivative of y with respect to
x. The equation

d y x
dx

y x
2

2
16 0

()
()� �

 is an example of a second-order DE.
R.7.162 A DE is linear if the dependent variable y is raised to the fi rst power. For

example,

3 2

2

2
2d y

dx
t

dy
dx

y x x� � �sin() cos ()

 is a linear, second-order DE.
R.7.163 The term ordinary DE refers to a DE where only the derivatives are functions of

one variable. The general form is

k

d y
dx

k
d y
dx

k y f y xn

n

n n

n

n
� ��

�

�1

1

1 0� (,)

 Observe that the solution of an ordinary DE is a function of one variable.
 When the solution is a function of more than one variable, the derivatives are

then called partial derivatives, and the equation is referred as a partial DE.
 Only certain types of ordinary DEs will be considered in this chapter.
R.7.164 DEs have in general an infi nite number of solutions.
 A unique solution y(x) can be evaluated when ICs (or boundaries) are specifi ed,

such as y(x = a) = ya, as well as the range of x for which the solution y(x) holds.
R.7.165 A second-order DE is defi ned in general by the following relation:

a

d y
dx

b
dy
dx

cy d
2

2
� � �

 where a, b, c, and d can be constants or functions of the independent variable x.

CRC_47744_Ch007.indd 463CRC_47744_Ch007.indd 463 6/27/2008 4:56:03 PM6/27/2008 4:56:03 PM

464 Practical MATLAB® Basics for Engineers

R.7.166 When the equation in R.7.165 is equated to zero (d = 0), then the equation is called
homogeneous, otherwise it is referred as inhomogeneous.

R.7.167 A DE with ICs is referred to as an initial value problem.
 In general, an n-order DE needs n ICs, where the ICs are given by the depen-

dent variable y specifi ed at particular values of x, the independent variable, and its
n − 1 derivatives of y with respect to x, specifi ed at particular values of x.*

R.7.168 Ordinary DEs that are of initial value are often encountered in real world prob-
lems in the physical sciences and engineering such as in electrical circuits, elec-
tronics, mechanics, heat transfer, and dynamics.

R.7.169 Since linear DEs constitute an important part of real world problems, particular
emphasis is given in its treatment. The solution of linear DEs consists of the sum
of two solutions called (Stanley, 2005)
a. The particular solution (denoted by y1)
b. The general solution (denoted by y2)

R.7.170 The particular solution of the homogeneous equation usually has the form
of the right-hand side of the DE, and the general solution involves exponential
functions.

R.7.171 An often-encountered DE in the sciences and engineering is

dy t
dt

ky t
()

()�

 Its solution is y(t) = Aekt, a growing or decaying exponential depending on if k > 0 or
k < 0, where A is an arbitrary constant that satisfi es a given boundary condition.

 This DE models situations as diverse as the growth of the world population, the
growth of the economy, or the charging or discharging of a capacitor.

R.7.172 To gain some experience in solving DE, four examples of analytical solutions of
DEs are illustrated as follows:

 The steps involved in arriving at the solutions are indicated and hopefully can be
followed by the reader.

Example 1

 Solve the following DE:

dy t

dt
y t

()
(())� �4 3

 with the following condition y = 5 at t = 0, commonly expressed as y(0) = 5, or
y0 = 5.

* In many practical problems, the independent variable is time, denoted by t.

CRC_47744_Ch007.indd 464CRC_47744_Ch007.indd 464 6/27/2008 4:56:03 PM6/27/2008 4:56:03 PM

Polynomials and Calculus, a Numerical and Symbolic Approach 465

ANALYTICAL Solution

dy t
dt

y t

dy t
dt

y t

()
()

()
()

� �

� �

4 12

4 12

then the particular solution (y1) is a constant. Then,

dy t
dt

y
()

� � �0
12
4

31and � �

The general solution (y2) involves exponentials of the form y2 = Aest, where the coeffi cient of
the exponential is evaluated by fi rst replacing d __ dt by s and the constant term by zero, obtaining
in this way what is called the auxiliary equation s − 4 = 0.

Solving for s, yield s = 4. The solution is then given by y = y1 + y2 = −3 + Ae4t.
The given ICs yield

 y	t = 0 = 5 = −3 + Ae4(0)

 5 = −3 + A

 A = 5 + 3 = 8

The complete solution y(t) is therefore y(t) = −3 + 8e4t

 This solution can be verifi ed by substituting y(t) into the given DE. Then

d
dt

e et t[] []� � � � � �3 8 4 3 8 124 4

Performing the differentiation yields 32e4t = −12 + 32e4t + 12, verifying in this way that
indeed y(t) is the solution of the given DE, satisfying the given IC.

Example 2

Solve analytically the following DE:

dy t

dt t
()

�
�

1
3 2

with the IC y = 7 at t = 0, or y(0) = 7.

ANALYTICAL Solution

DEs can be solved in some cases using simple algebraic manipulations, and by applying
 calculus concepts, as in the following illustration:

Solving for dy, and then integrating yields,

dy

t
dt�

�

1
3 2







(separation of variables)

CRC_47744_Ch007.indd 465CRC_47744_Ch007.indd 465 6/27/2008 4:56:03 PM6/27/2008 4:56:03 PM

466 Practical MATLAB® Basics for Engineers

dy

t
dt�

�

1
3 2





∫∫

 y t t k() / tan /� ��1 3 31() ()

The preceding solution for the given IC yields

y	t − 0 = 7 = tan−1(0) + k, therefore k = 7

and

y t t() / tan /� ��1 3 3 71() ()

Example 3

Obtain the particular and general solutions for the following second-order DE, given by

d y t

dt
dy t

dt
y t

2

2
2 10

() ()
()� � �

ANALYTICAL Solution

Since, dy/dt = 0, then the particular solution is y1 = −10/2 = −5, and the general solution y2 is
obtained by evaluating the auxiliary equation given by s2 + s − 2 = 0, replacing d __ dt = s. Then
(s − 1) (s + 2) = 0, and s = +1, and s = −2 are its roots. Thus the general solution y2 is of the
form y2(t) = Aet + Be−2t and the complete solution is then given by

y(t) = y1(t) + y2(t)

y(t) = −5 + Aet + Be−2t

The constants A and B can be evaluated if boundary conditions are known or given.

Example 4

Solve the following DE by separation of variables:

dy t

dt
t y

()
� �4 1 2

ANALYTICAL Solution

dy t

y
tdt

()
1

4
2�

�

1
1

4
2�

� �
y

dy t dt c










∫ ∫ []

sin−1(y) = 2t2 + c

y = sin(2t2 + c)

CRC_47744_Ch007.indd 466CRC_47744_Ch007.indd 466 6/27/2008 4:56:03 PM6/27/2008 4:56:03 PM

Polynomials and Calculus, a Numerical and Symbolic Approach 467

R.7.173 The MATLAB functions ode23 and ode45 are used in this book to illustrate the
steps followed in the numerical solution of either one, or a set of ordinary DEs
using the variable step Runge–Kutta method (approximations using second/third
for ode23 or fourth/fi fth order for ode45). MATLAB has, in addition, a library of
other ordinary DEs solvers, used for particular cases, such as ode113, ode15s, ode23s,
ode23t, and odets. The implementation and usage of the ode solvers are presented in
the next section.

R.7.174 The MATLAB functions

 [y, t] = ode23(‘difeq,’ tin, tfi n, yic, tol, trace)

 [y, t] = ode45(‘difeq,’ tin, tfi n, yic, tol, trace)

 are used to solve ordinary couple DEs using numerical techniques, where “difeq,”
is the given DE defi ned as a string, contained in an M-function fi le specially cre-
ated for this purpose. The solution y(t) is evaluated over the range tin < t < tfi n,
with an optional accuracy given by (tolerance) tol with MATLAB default values
of 10−3 for ode23 and 10−6 for ode45. The optional argument trace can be nonzero,
in which case the intermediate results are displayed. The tolerance (tol) and other
parameters can be specifi ed by the odeset function (see script fi le R_6_176). The
functions ode23 and ode45 are very similar.

 The only difference is that ode45 is more accurate but much slower than ode23.
yic represent the ICs specifi ed as a column vector. MATLAB has a number of solv-
ers for ordinary DEs. The preferred function is ode45 and is the one that usually
provides satisfactory results. Other MATLAB numerical solvers of DEs are

 ode113, ode15s, ode23s, ode23t, and ode23tb.

 The MATLAB solvers

 ode15s, ode23t, ode23s, ode23tb

 are particularly useful when the ordinary DE is stiff.
 The purpose of all the numerical solvers is to fi nd approximations to almost

any system of DEs. The syntax is very similar for all the ode solvers, and by learn-
ing one we learn how to use any of them.

 For additional information about any of the numerical solvers and how to use
them, check the online help.

R.7.175 A stiff DE is an equation that affects unequally different time intervals, and any
time scale cannot accurately refl ect and plot its behavior.

 For example, the following DE can be considered stiff:

d y t
dt

dy t
dt

2

2
10 000 0

() ()
,� � �

 The general solution is of the form y(t) = Ae−t + Be−10,000t.
 To give physical meaning to the preceding equation, assume that t represents

time in seconds. Observe that Ae−t has an effective range over 0 s ≤ t ≤ 5s, whereas
Be−10,000t has an effective range over, 0 s ≤ t ≤ 0.005 s.

 Clearly, a time interval of 5 s should be appropriate to observe the contributions
of each exponential. Then, any time scale plot of Be−10,000t would appear as a distur-
bance, because a change of Be−10,000t from its maximum to its minimum would take a
very small interval of time, requiring a large number of small steps in its evaluation.

CRC_47744_Ch007.indd 467CRC_47744_Ch007.indd 467 6/27/2008 4:56:04 PM6/27/2008 4:56:04 PM

468 Practical MATLAB® Basics for Engineers

R.7.176 For example, consider the fi rst-order, linear, ordinary DE

dy
dt

t y� �4 2

 with IC given by y(0) = 150.
 The analytical solution is then given by y(t) = 151e−2t + 2t − 1.

dy
dt

t y� �4 2

 is solved later by creating the script fi le R_6_176 using the functions ode23, ode45,
and ode113. The analytical solution is plotted in Figure 7.8, over the range 0 ≤ t ≤ 4
and 0 ≤ t ≤ 30.

 The reader can compare the various solutions that are illustrated graphically
and observe that they are not exactly equal. Observe that for the domain shown,
between 0 and 30 the lengths of the solutions presented are not equal (40 versus
105). Furthermore, observe that the solution using ode45 represents a much better
approximation t than the solution employing ode23, but is equivalent to ode113.

 Recall that to use the functions ode23, ode45, or ode113 (or any ode solver), the DE
must fi rst be defi ned in a function fi le,* named f in this example, and given as follows:

 function dery = f(t, y)

 dery = 4 * t − 2 * y

 The functions ode23, ode45, and ode113 are called by the script fi le R_6_176, with
an initial and fi nal time of 0 and 30, and IC y(0) = 150.

MATLAB Solution
% Script file:R _ 6 _ 176
format compact;
[t,y1] = ode23(‘f’,[0,30],150);
[t,y2] = ode45(‘f’,[0,30],150);
lengtht = length(t); lengthy1=length(y1); lengthy2 = length(y2);

figure (1)
subplot (2,1,1); x = linspace(0,30,40);
plot (x,y1,’*’); xlabel (‘t’); grid on;
title (‘Solution using ode23,for 40 points for 0<t<30’);
subplot (2,1,2);
plot (t(1:40),y2(1:40),’d’);grid on;xlabel (‘t(time)’);
title (‘Solution using ode45,for first 40 points for 0<t<30’);

figure(2)
sol = 151*exp(-2.*t)+2.*t-1;
subplot(2,1,1);
plot(t(1:40),sol(1:40),’+’) ; xlabel(‘t’); grid on;
title(‘Analytic solution ,for first 40 points for 0<t<4.1’);
subplot(2,1,2);
plot(t,sol,’+’);grid on;
title(‘Analytic solution ,for first 105 points for 0<t<30’);
xlabel (‘t(time)’);

* Function fi les are treated with details in Chapter 9, but were briefl y introduced in Chapter 1. At this point, just by
observing the format and structure of the function fi le the reader can get a clear idea of how to use the ode solver.

CRC_47744_Ch007.indd 468CRC_47744_Ch007.indd 468 6/27/2008 4:56:04 PM6/27/2008 4:56:04 PM

Polynomials and Calculus, a Numerical and Symbolic Approach 469

figure(3)
subplot(2,1,1);
plot(t,y2,’̂ ’);
title (‘Solution using ode45,for 105 points for 0<t<30’);
grid on; xlabel(‘t’);
subplot(2,1,2);[t,y3]=ode113(‘f’,[0 30],150);
plot(t,y3,’o’)
title(‘Solution using ode113,for 105 points’);
grid on; xlabel(‘t(time)’);

 Back in the command window the function fi le R_6_176 is executed, and the
solutions in the form of plots are shown in Figures 7.8 through 7.10.

>> R _ 6 _ 167

 lenhtt =
 105
 lenhty1 =
 40
 lenhty2=
 105

K>>return
K>>return

FIGURE 7.8
Solution using ode of R.7.176.

0 5 10 15 20 25 30
0

50

100

150

t

Solution using ode23, for 40 points for 0 < t < 30

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

50

100

150

t (time)

Solution using ode45, for first 40 points for 0 < t < 30

CRC_47744_Ch007.indd 469CRC_47744_Ch007.indd 469 6/27/2008 4:56:04 PM6/27/2008 4:56:04 PM

470 Practical MATLAB® Basics for Engineers

FIGURE 7.9
Analytical solution of R.7.176.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

50

100

150

t

Analytic solution, for first 40 points for 0 < t < 4.1

0 5 10 15 20 25 30
0

50

100

150
Analytic solution, for first 105 points for 0 < t < 30

t (time)

FIGURE 7.10
Solutions using ode45 and ode113 of R.7.176.

0 5 10 15 20 25 30
0

50

100

150
Solution using ode45, for 105 points for 0 < t < 30

t

0 5 10 15 20 25 30
0

50

100

150
Solution using ode113, for 105 points

t (time)

CRC_47744_Ch007.indd 470CRC_47744_Ch007.indd 470 6/27/2008 4:56:04 PM6/27/2008 4:56:04 PM

Polynomials and Calculus, a Numerical and Symbolic Approach 471

R.7.177 The MATLAB Symbolic function

dsolve(‘difeq1’, ‘difeq2’, ‘difeq3’, … ‘IC1’, ‘IC2’, ‘IC3’, …)

 is used to solve up to 10 DEs given by (difeq1, difeq2, …, difeq10) with the corre-
sponding ICs, provided that the total number of arguments do not exit 12 (Polking
and Arnold, 2004).

 The function dsolve returns a solution if one exists. If no solution exceed, then
the numerical approach using an ode solver, such as ode23, ode45, or ode113, is the
choice left.

 The arguments difeq1, difeq2, …, difeq10 must be specifi ed using standard sym-
bolic notation where the character D denotes the fi rst derivative. Similarly, D2,
D3, …, Dn represent higher derivatives, assuming that the dependent variable is t.

 Observe that dsolve requires that the DEs be entered as strings, which means
inside single quotes.

 The following are syntax examples used by dsolve:
a. The second derivative is denoted by

D y

d y
dt

2
2

2
�

b. The IC is denoted by y(0) = a.

c. The fi rst derivative of y with respect to t evaluated at t = 0 is denoted by
Dy(0) = b, where a and b can be either constants or symbolic variables.

R.7.178 To illustrate the use of the function dsolve, the following three examples are pre-
sented and solved:
a. Example 1: dy/dt = −3y, with y(0) = 1
b. Example 2: (1 + t3)(dy/dt) + 3ty = cos(t), and simplify the result
c. Example 3: dy/dt = 4t − 2y, with y(0) = 150, for 0 ≤ t ≤ 4, and obtain the plot y(t)

versus t

Example 1

Solve the following DE:

dy
dt

y� �3

with the IC y(0) = 1.

MATLAB Solution
>> y = dsolve(‘Dy=-3*y,‘y(0)=1’)

 y =
 exp(-3*t)

A more complex example, where the steady-state response (solution) is determined (when
no ICs are given) is illustrated in Example 2.

CRC_47744_Ch007.indd 471CRC_47744_Ch007.indd 471 6/27/2008 4:56:04 PM6/27/2008 4:56:04 PM

472 Practical MATLAB® Basics for Engineers

Example 2

Solve the following DE:

Let

() cos()1 33� � �t

dy
dt

ty t

and simplify the solution obtained.

MATLAB Solution
>> syms t y
>> solution = dsolve(‘(1+t^3)*Dy+3*t*y=cos(t)’)

 solution =
 (exp(-3 (̂1/2)*atan(2/3*3 (̂1/2)*t-1/3*3 (̂1/2)))*Int(cos(t)*(t^2-

+1)̂ (1/2)*exp(3 (̂1/2)*atan(2/3*3 (̂1/2)*t-
1/3*3 (̂1/2)))/(t 4̂+t^3+t+1),t)*t+
exp(-3 (̂1/2)*atan(2/3*3 (̂1/2)*t-1/3*3 (̂1/2)))*Int(cos(t)*(t^2-
t+1)̂ (1/2)*exp(3 (̂1/2)*atan(2/3*3 (̂1/2)*t-
1/3*3 (̂1/2)))/(t 4̂+t^3+t+1),t)+exp(-3 (̂1/2)*atan(2/3*3 (̂1/2)*t-
1/3*3 (̂1/2)))*C1*t+exp(-3 (̂1/2)*atan(2/3*3 (̂1/2)*t-
1/3*3 (̂1/2)))*C1)/(t^2-t+1)̂ (1/2)

>> simplify (solution)

 ans =
 exp(-3 (̂1/2)*atan(2/3*3 (̂1/2)*t-1/3*3 (̂1/2)))*(Int(cos(t)*(t^2-

t+1)̂ (1/2)*exp(3 (̂1/2)*atan(2/3*3 (̂1/2)*t-
1/3*3 (̂1/2)))/(t 4̂+t^3+t+1),t)*t+Int(cos(t)*(t^2-
t+1)̂ (1/2)*exp(3 (̂1/2)*atan(2/3*3 (̂1/2)*t-
1/3*3 (̂1/2)))/(t 4̂+t^3+t+1),t)+C1*t+C1)/(t^2-t+1)̂ (1/2)

Observe that in many cases the solution obtained using MATLAB is long and complex, and
given in terms of arbitrary constant note that, Example 3, the fi rst-order, linear, ordinary
DE presented in R.7.176 is revisited. Recall that the DE that was solved using the ode solver
(numerical) is now solved using the command dsolve (symbolic) below.

Example 3

Solve and plot the following DE:

dy
dt

t y� �4 2

with y(0) = 150, over the range 0 ≤ t ≤ 4.

CRC_47744_Ch007.indd 472CRC_47744_Ch007.indd 472 6/27/2008 4:56:04 PM6/27/2008 4:56:04 PM

Polynomials and Calculus, a Numerical and Symbolic Approach 473

MATLAB Solution
>> syms t y
>> y = dsolve(‘Dy = 4*t − 2*y’, ‘y(0) = 150’)

 y =
 2*t−1+151*exp(−2*t)

>> ezplot (y) % returns the plot of the sym object y
>> axis([0 4 0 200])
>> xlabel(‘t (time)’); ylabel(‘y(t)’);

The plot of the solution y(t) versus t is shown in Figure 7.11.
 Note that the symbolic solution fully agrees with the analytical solution of R.7.176.

FIGURE 7.11
Symbolic solution of R.7.181.

200

180

160

140

120

100

80

60

40

20

0
0 0.5 1 1.5 2 2.5 3 3.5 4

t (time)

y(
t)

Sym solution: 2 t−1 +151 exp(−2 t)

Symbolic solution (using dsolve)

R.7.179 The command class (y) returns the class of y as either a symbolic or a numerical
variable. An alternate way to determine the class is by using the command whos.

R.7.180 The ode commands can be used to solve fi rst-order DEs. If a given DE is of second-
or higher-order, then the equation must fi rst be transformed into a set of fi rst-
order DEs, a technique referred as the state–space, state variable, or Cauchy form.

R.7.181 To discuss the state–space approach, and the solution of a system of DEs, let us get
back to the model of a system.

 Recall that any linear system can be described in terms of an n-order DE, in
the time domain, or the equivalent relation called the transfer function in the fre-
quency domain, given by

H s

Y s
X s

()
()
()

�

 with all the ICs set to zero (IC’s = 0).

CRC_47744_Ch007.indd 473CRC_47744_Ch007.indd 473 6/27/2008 4:56:04 PM6/27/2008 4:56:04 PM

474 Practical MATLAB® Basics for Engineers

R.7.182 The transfer functions, as well as the system DE, gives a quantitative and qualita-
tive relation between the system input(s) and output(s). This relationship results
essentially from the elimination of all internal system variables.

 The block box system variables can be evaluated from experimentation and
measurements, without any knowledge of the internal structure of the system.

 In practical systems, the internal structure is known and the variables that
affect its performance can be observed and analyzed.

R.7.183 The state model, on the other hand, utilizes some of the system variables, which
ordinarily are not included in the transfer function. These additional variables
permit the resolution of a system into a set of fi rst-order subsystems, or analyti-
cally in a set of fi rst-order DEs.

 For example, the state model of an n-order system can be decomposed in a set
of n fi rst-order subsystems, involving the n state–space variables.

R.7.184 Recall that the input–output description of a system is appropriate only if the
system is initially relaxed. If the system is not initially relaxed, then the output
depends also on the system’s ICs. The set of ICs are referred to as a state. A state of
a system can be defi ned as the set of variables such that if the output is known at
a time t0, and all inputs and ICs are known for t > t0, then its output can be deter-
mined uniquely for any t > t0.

R.7.185 The growing interest in system optimization has led to the extensive use of state–
space equations in a variety of disciplines. The concept of state is a universally
accepted concept that is equally useful when applied to any type of dynamic sys-
tem such as economical, political, epidemiological, educational, ecological, and
meteorological just to mention a few.*

R.7.186 Let v be the system state variable, x(t) the input, and y(t) the system output. Then
the state variable system description is given by the following set of equations:

 v Av t Bx ti
� �() ()

 and the system output equation given by

 y t Cv t Dx t() () ()� �

 where in general A, B, C, and D are nxn, nxp, qxn, and qxp matrices, respectively.
R.7.187 A suffi cient condition for the state–space equations to have a unique solution is

that every element of A, B, C, and D should be a continuous function of t over the
range −∞ to ∞.

 If A, B, C, and D are time dependent, then the set of equations describes a linear
time-varying dynamic system. If, on the other hand, A, B, C, and D are indepen-
dent of t, then the system is a linear-invariant dynamic system.

* Under the supervision of Prof. John R. Raggazzini of Columbia University (1950), Rudolf E. Kalman, a
 graduate student. They became the leading advocate of the decomposition of a system into a state–space
structure. The work by Zadeh and Desoer, Linear Systems Theory, the State Space Approach, published in 1963,
and reprinted in 1979, was in general well received by the electrical engineering community, and became the
standard approach in the fi eld of control theory.

CRC_47744_Ch007.indd 474CRC_47744_Ch007.indd 474 6/27/2008 4:56:04 PM6/27/2008 4:56:04 PM

Polynomials and Calculus, a Numerical and Symbolic Approach 475

R.7.188 Let the following general n-order system DE be given by

a

d y t
dt

x tk
k

n k

k
�

� �
0

1∑ ()
()b an0 with

 where x(t) is the system input and y(t) is the system output. Then, the preceding
dynamic system can be represented by n fi rst-order DEs, by assigning the (state)
variables v1(t), v2(t), …, vk(t) as indicated in the following relations:

 v1(t) = y(t)

v t

dy t
dt

y2()
()

� �
i

v t

d y t
dt

y3

2

2
()

()
� �

ii

 …

v t

d y t
dtn

n

n�

�

�1

2

2
()

()
�

dv t
dt

a v t a v t a v t a v t b x tn
n n

()
� � �� � � � �0 1 1 2 2 3 1() () () () ()0�

 The preceding set of equations can be written in matrix form as

v

v

v

v

v

n

n

i

i

i

i

i

2

3

1

0 1 0 0 0
0 0 1 0 0

...

−

































�

…
…

00 0 0 1 0
0 1 0
0 0 0 1

0 1 2 1

1

…
… … …

… …
… …� � � � �a a a a

v

v

n



























22

3

0

0
0
0
0

v

v b

x

n

…
… …





















































� (tt)

 where

A

a a a an

�

� � � � �

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 1 0
0 0 0 1

0 1 2 1

…
…
…

… … …
… …
… …





















































and B

b

�

0
0
0
0

0

…

CRC_47744_Ch007.indd 475CRC_47744_Ch007.indd 475 6/27/2008 4:56:05 PM6/27/2008 4:56:05 PM

476 Practical MATLAB® Basics for Engineers

 and the output matrix equation becomes

y t

v

v

v

v

v

x t

n

n

() ()� �

�

1 0 0 0 0

1

2

3

1

� �
…

 



























[][]

 where C = [1 0 0 … … 0] and D = [0].
 For simplicity, the discussions in this text will be limited to the time- unvarying

systems with constant coeffi cients, because they constitute the vast majority of
practical cases.

R.7.189 For example, let

7 3 4 5

2

2

d y t
dt

dy t
dt

y t
() ()

sin()� � �

 be a system equation.
 Then, obtain the system’s state–space matrix equation.

Analytical Solution

v

v

v

v

i

i

1

2

1

2

0 1
4 7 3 7

0
1 7

5












































�

� �
�

/ / /
sin(()t[]

 and

y t

v

v
t() sin()� �1 0 0 51

2
 









 [][]

R.7.190 The MATLAB command [y, v] = lsim(A, B, C, D, x, t, Vo) returns the system output
y and the state variables v, given the system state–space matrices A, B, C, D, and
input x defi ned over an interval t, with the ICs given by Vo, assuming that the sys-
tem is time invariant.

R.7.191 The MATLAB command lsim(A, B, C, D, x, t, Vo) returns the plot y(t) versus t.
 Color, line style, and marker can be used to defi ne the responses, when dealing

with multiple systems in which case lsim(sys1, ’r’, sys2, ’y--’, sys3, …, x, t).

R.7.192 The MATLAB command initial (A, B, C, D) returns the plot of the free response
of the linear, time-invariant (LTI) system defi ned by the state–space equations
(A, B, C, D).

R.7.193 For example, create the script fi le lsim_plots that returns the plot of y(t) versus t of
the system equation

7 3 4 5

2

2

d y t
dt

dy t
dt

y t
() ()

sin()� � �

CRC_47744_Ch007.indd 476CRC_47744_Ch007.indd 476 6/27/2008 4:56:05 PM6/27/2008 4:56:05 PM

Polynomials and Calculus, a Numerical and Symbolic Approach 477

 for the following cases:
a. With no IC
b. With IC = [2 ; 3]
c. The free response

MATLAB Solution
% Script file: lsim _ plots
A= [0 1;-4/7 -3/7]; B = [0;1/7]; C =[1 0]; D = [0];
t =linspace(0,6,500);
subplot(3,1,1)
x = 5*sin(t);
lsim (A,B,C,D,x,t);
subplot (3,1,2)
Vo = [2;3];lsim(A,B,C,D,x,t,Vo)
subplot (3,1,3)
initial(A,B,C,D,Vo) % Figure 7.12

FIGURE 7.12
Solutions of R.7.193(a, b, and c).

Linear simulation results

2

0

0 1 2 3 4 5 6
−2

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de

Linear simulation results

Response to initial conditions

Time (s)

5

5

0

0

−5

−5

0

0

1 2 3 4 5 6

5 10 15 20 25 30

Time (s)

Time (s)

CRC_47744_Ch007.indd 477CRC_47744_Ch007.indd 477 6/27/2008 4:56:05 PM6/27/2008 4:56:05 PM

478 Practical MATLAB® Basics for Engineers

R.7.194 The MATLAB command [Y, X] = tf2ss(A, B, C, D) returns the system transfer func-
tion H(s) = Y(s)/X(s) as vectors (or polynomial) containing the coeffi cients of the Y
(numerator) and X (denominator) in descending powers of s, given the state–space
matrices A, B, C, and D.

R.7.195 The MATLAB command [A, B, C, D] = tf2ss(Y, X) returns the state–space matrix
representation of the system given by

 v Av Bx
i

� �

 y = Cv + Dx

 where the transfer function is H(s) = Y(s)/X(s).
 This command also works for discrete systems. For discrete-time transfer func-

tions, the length of the numerator and denominator are made equal to ensure cor-
rect results (pad with zeros).

R.7.196 For example, use MATLAB and obtain the transfer-function of the system defi ned
by the DE is given by

7 3 4

2

2

d y t
dt

dy t
dt

y x t
() ()

()� � �

 Since the state–space matrices are already known, let us verify the system transfer
function as illustrated in the following:

MATLAB Solution
>> A = [0 1;-4/7 -3/7]; B=[0;1/7]; C = [1 0]; D=[0];
>> [Y,X] = ss2tf (A,B,C,D)

 Y =
 0 0 0.1429
 X =
 1.0000 0.4286 0.5714

 Observe that the transfer function can be calculated directly from the DE as

 Y(S)(7s2 + 3s + 4) = X(s)

 or

Y s
X s s s

()
()

�
� �

1
7 3 42

 The MATLAB command ss2tf returns the leading denominator (X) coeffi cient
set to one (observe that all the coeffi cients are divided by 7).

 Let us verify the transfer function by getting the ss matrices.

>> [A,B,C,D] = tf2ss(Y,X)

 A =
 -0.4286 -0.5714
 1.0000 0

CRC_47744_Ch007.indd 478CRC_47744_Ch007.indd 478 6/27/2008 4:56:05 PM6/27/2008 4:56:05 PM

Polynomials and Calculus, a Numerical and Symbolic Approach 479

 B =
 1
 0
 C =
 0 0.1429
 D =
 0

 Note that the matrices obtained represent an equivalent system to the one in
P.7.189.

R.7.197 The MATLAB command tf(indep, depend) returns the system transfer function,
where indep represents the coeffi cients of the DE arranged in descending order
of the independent variable (x) and depend represents the coeffi cients of the DE
arranged in descending order of the dependent variable (y).

 For example, the command tf is used to obtain the transfer function for the
system DE given by

7 3 4

2

2

d y t
dt

dy t
dt

y x t
() ()

()� � �

 where indep = [1] and depend = [7 3 4], then

>> tf([1],[7 3 4])
 Transfer function:
 1

7 s^2 + 3 s + 4

R.7.198 Clearly, the state variable model of a given system is not unique.
 Instead of having a model of a given LTI system based directly on its transfer

function in rational fraction form, it may instead be modeled upon the partial frac-
tion expansion of the transfer function. Each partial fraction component is then
considered separately as a subsystem and the system response y is the addition of
all the subsystems, which may be considered as connected in parallel.

R.7.199 The MATLAB command [Ad, Bd, Cdd, ICd] = c2d(A, B, C, D, Ts] returns the dis-
crete-time space–state system description given the continuous time state–space
model, including the discrete ICs ICd, using the sampling rate Ts.

 The discretization method employed by MATLAB is an option chosen from the
following:

 ‘zoh’ zero-order hold on the inputs
 ‘foh’ linear interpolation of inputs (triangle approximation)
 ‘tustin’ bilinear approximation
 ‘prewarp’ with frequency prewarping

 The default option is ‘zoh’.
R.7.200 For example, using the state–space continuous matrices A and B from the system

given by the DE

7 3 4

2

2

d y t
dt

dy t
dt

y x t
() ()

()� � �

CRC_47744_Ch007.indd 479CRC_47744_Ch007.indd 479 6/27/2008 4:56:05 PM6/27/2008 4:56:05 PM

480 Practical MATLAB® Basics for Engineers

 obtain the discrete state–space matrices using the following sampling times:
Ts = 1, 0.5, and 0.25, and zoh as the discretization option.

MATLAB Solution
>> A= [0 1;-4/7 -3/7], B = [0;1/7]

 A =
 0 1.0000
 -0.5714 -0.4286
 B =
 0
 0.1429

>> [Ad1,Bd1] = c2d(A,B,1)

 Ad1 =
 0.7624 0.7383
 -0.4219 0.4460
 Bd1 =
 0.0594
 0.1055

>> [Ad05,Bd05] = c2d(A,B,0.5)

 Ad05 =
 0.9342 0.4394
 -0.2511 0.7459
 Bd05 =
 0.0165
 0.0628

>> [Ad025,Bd025] = c2d(A,B,0.25)

 Ad025 =
 0.9828 0.2357
 -0.1347 0.8818
 Bd025 =
 0.0043
 0.0337

R.7.201 The MATLAB command [A, B] = d2c(Ad, Bd, Ts] returns the continuous-time
space–state system description, given the discrete time state–space model dis-
cretized with a sampling rate of Ts. The conversion method employed by MATLAB
is an option that can be chosen from the following:

 ‘zoh’ zero-order hold on the inputs
 ‘tustin’ bilinear approximation
 ‘prewarp’ with frequency prewarping

 The default option is ‘zoh’.

CRC_47744_Ch007.indd 480CRC_47744_Ch007.indd 480 6/27/2008 4:56:05 PM6/27/2008 4:56:05 PM

Polynomials and Calculus, a Numerical and Symbolic Approach 481

R.7.202 For example, using the discrete state–space matrices Ad025 and Bd025, with Ts =
0.25, obtained in R.7.200 from the continuous system given by the DE

7 3 4

2

2

d y t
dt

dy t
dt

y x t
() ()

()� � �

 is used to get back the continuous state–space matrices A and B.

MATLAB Solution
>> Ad025

 Ad025 =
 0.9828 0.2357
 -0.1347 0.8818

>> Bd025

 Bd025 =
 0.0043
 0.0337

>> [A,B] = d2c(Ad025,Bd025,0.25)

 A =
 0.0000 1.0000
 -0.5714 -0.4286
 B =
 -0.0000
 0.1429

 Observe that continuous matrices fully agree with the matrices of R.7.200.
R.7.203 The MATLAB command [Add, Bdd] = d2d(Ad, Bd, Ts] returns a resample-time

space–state discrete equivalent system model discretized with a resampling rate
of Ts.

R.7.204 The MATLAB command [y, v] = dlsim(Ad, Bd, Cd, Dd, x.Vo) or [y,v] = dlsim(Y, X,
x, Vo) returns the system output y and state variables v, given the discrete system
state–space matrices Ad, Bd, Cd, Dd or the coeffi cients of the transfer function,
given by Y and X (functions of z), and input x, with the ICs Vo.

R.7.205 The MATLAB command dlsim(Ad, Bd, Cd, Dd, x, Vo) or lsim(num, den, x) returns
the time response plot. Color, line style, and the choice of markers are options
that can defi ne the responses when dealing with multiple systems, in which case
dlsim(sys1, ’r’, sys2, ’y--’, sys3, …, x).

 The discrete system simulation corresponds to the state–space model given by
the difference equations

 v[n + 1] = Av[n] + Bx[n]

 y[n] = Cx[n] + Dx[n]

 If lengh(Y) = lengh(x), then dlsin(Y, X, x) is equivalent to fi lter(num, den, x).

CRC_47744_Ch007.indd 481CRC_47744_Ch007.indd 481 6/27/2008 4:56:05 PM6/27/2008 4:56:05 PM

482 Practical MATLAB® Basics for Engineers

R.7.206 Recall that MATLAB offers a number of symbolic plotting commands (see Chap-
ter 5) that returns the plots of symbolic objects. These commands have the prefi x
ez, such as

 ezcontour

 ezcontourf

 ezmesh

 ezmeshc

 ezplot

 ezplot3

 ezpolar

 ezsurf

 ezsurfc

 For any additional information regarding any of the preceding functions, use the
help online command.

R.7.207 Recall that ezplot was introduced and used in earlier chapters.
 For example, let us quickly review ezplot by plotting the function y(x) =

(x − 1)3 + 2, over the range 0.5 ≤ x ≤ 2.5.

MATLAB Solution
>> y = sym(‘(x-1)̂ 3+2’);
>> ezplot(y), grid on
>> axis([-0.5 2.5 0 5])
>> xlabel(‘X’), ylabel(‘Y’), title(‘Y VS X’)
>> % the resulting plot is shown in Figure 7.13

FIGURE 7.13
ezplot of R.7.207.

5

4.5

3.5

Y

3

2.5

2

1.5

1

0.5

0
−0.5 0 0.5 1

X
1.5 2 2.5

4

Y versus X

CRC_47744_Ch007.indd 482CRC_47744_Ch007.indd 482 6/27/2008 4:56:06 PM6/27/2008 4:56:06 PM

Polynomials and Calculus, a Numerical and Symbolic Approach 483

R.7.208 Let y = f(x), then the MATLAB function fmin(‘yy’, x1, x2) returns the minimum of
f(x) over the range x1 ≤ x ≤ x2, where the function y is defi ned by the function
fi le yy.

 The newer versions of MATLAB replaces fmin by fminbnd(‘yy’, x1, x2).

R.7.209 For example, use MATLAB to determine the local minimum of y(x) = cos(2 * x), over
the range 0.5 ≤ x ≤ 1.0, using the function fmin, with the following arguments:
a. y is specifi ed as a function fi le
b. y is specifi ed as a string

MATLAB Solution
The function y is defined by the function file yy:

 function y = yy(x)
 y = cos(2*x);

Back in the command window, the following commands are executed

>> x = fmin(‘yy’, .5, 1.0) % using the function file yy

 x =
 0.9999

>> x = fmin(‘cos(2*x)’, .5, 1.0) % y is a string

 x =
 0.9999

R.7.210 The MATLAB function eval(‘ya’), where ya is a string representing a polynomial
or any arbitrary function returns the numerical value for ya.

R.7.211 For example, the symbolic command eval (‘ya=6 * sin(3 * pi+pi/3)’) is equivalent
of executing the numerical command ya=6 * sin(3 * pi+pi/3), as in the following
illustration:

MATLAB Solution
>> eval(‘ya = 6*sin(3*pi+pi/3)’) % symbolic evaluation

 ya =
 -5.1962

>> ya = 6*sin(3*pi+pi/3) % numerical evaluation

 ya =
 -5.1962

R.7.212 The function yzero = fzero(‘y’, a) returns the zero of the expression y, closest to
a, where y can be a polynomial or any other function. The general format of the
function is given by yzero = fzero(‘y’, a, tol, trace). Recall that the optional specs tol
and trace were defi ned for the ode commands (R.7.174). This function is particularly
useful to solve nonlinear equations involving one variable.

CRC_47744_Ch007.indd 483CRC_47744_Ch007.indd 483 6/27/2008 4:56:06 PM6/27/2008 4:56:06 PM

484 Practical MATLAB® Basics for Engineers

R.7.213 For example, solve the following equation sin(x) = cos(x), for the value of x closest
to 1.

MATLAB Solution
Let us define the nonlinear equation in the function file: funct.m,
indicated as follows:

 function y = funct(x)
 y = sin(x) –cos(x);

Then, back in the command window the following command is executed.

>> x1 = fzero(‘funct’, 1) % returns the solution closest to x =1

 x1 =
 0.7854

R.7.214 Since symbolic functions were introduced and used in this chapter, it is appropriate
to say a few words about other MATLAB symbolic functions not used yet.

 The MATLAB Symbolic Toolbox provides access to a number of specialized
functions used in engineering and technology. Some of these specialized func-
tions, because of their importance, constitute the topics of portions or entire chap-
ters in this book such as

Dirac-delta, and Heaviside function, in Chapter 1 of the book titled Practical
 MATLAB® Applications for Engineers

Laplace and Fourier transforms, in Chapter 4 of the book titled Practical
 MATLAB® Applications for Engineers

Ztransforms and Fast Fourier Transforms, in Chapter 5 of the book titled Practi-
cal MATLAB® Applications for Engineers

R.7.215 The MATLAB Symbolic Toolbox also provides access to a number of Maple
functions.

 These functions can be evaluated numerically by using the command mfun.
The syntax is mfun(‘f’, a1, a2,….an), where f is the name of a Maple function, and the
a’s are the numerical quantities assigned to f’.

 The Maple functions are not MATLAB functions, because they are not defi ned
in standard M fi les, and the MATLAB help command cannot be used to get any
information about them. In general, Maple functions are not available in the stu-
dent edition of MATLAB.

R.7.216 A list of Maple functions available in MATLAB can be obtained by using the help
command followed by mfunlist. A partial list of the Maple functions are given as
follows:
 bernoulli (Bernoulli numbers/Bernoulli polynomial)

 Bessel (Bessel function of the fi rst kind)

 Beta (Beta function)

 Binomial (Binomial coeffi cients)

 erfc (Error function)

 erf (Error function)

 euler (Euler numbers/Euler polynomials)

 Fresnel (Fresnel cosine integral)

•

•

•

CRC_47744_Ch007.indd 484CRC_47744_Ch007.indd 484 6/27/2008 4:56:06 PM6/27/2008 4:56:06 PM

Polynomials and Calculus, a Numerical and Symbolic Approach 485

 Gamma (Gamma function)

 harmonic (Harmonic function)

 chi (Hyperbolic cosine integral)

 shi (Hyperbolic sine integral)

 w (Lambert’s w function)

 zeta (Riemann/zeta function)

 T (Chebyshev)

 H (Hermite)

 P (Jacobi)

 L (Laguerre)

 P (Legendre)

7.4 Examples

Example 7.1

The polynomial p(x) is the product of two polynomials, p1(x) and p2(x), given by

 p1(x) = x2 + 2x + 8 and p2(x) = x2 + 15x + 25

Write a MATLAB program that returns

 1. The coeffi cients of p(x)
 2. The polynomial p(x)
 3. The degree of p(x)
 4. The roots of p(x), p1(x), and p2(x)

MATLAB Solution
>> clc % clears the command window
>> format compact % suppresses extra line-feeds
>> P1 = [1 2 8] ; % defines p1(x)
>> P2 = [1 15 25] ; % defines p2(x)
>> coeff = conv(P1, P2) % product of P1*P2
>> disp (‘The coefficients of p(x) are:’); disp(coeff)

 The coefficients of p(x) are:
 coeff =
 1 17 63 170 200

>> syms x
>> px = poly2sym(coeff)
>> disp(‘The polynomial p(x) is:’);disp(px)

 The polynomial p(x) is:
 px =
 x 4̂ + 17*x^3 + 62*x^2 + 170*x + 200

CRC_47744_Ch007.indd 485CRC_47744_Ch007.indd 485 6/27/2008 4:56:06 PM6/27/2008 4:56:06 PM

486 Practical MATLAB® Basics for Engineers

>> D = length(P)-1;
>> disp(‘The degree of the polynomial p(x) is :’); disp(D)

 The degree of the polynomial p(x) is :
 4

>> R1= roots(P1);
>> R2 = roots(P2);
>> R3 = roots(P);
>> disp (‘The roots of p1(x) are:’); disp (R1)

 The roots of p1(x) are :
 1.0000 + 2.6458i
 1.0000 - 2.6458I

>> disp (‘The roots of p2(x) are :’); disp(R2)

 The roots of p2(x) are :
 -13.0902
 -1.9098

>> disp(‘The roots of p(x) are:’); disp(R3)

 The roots of p(x) are :
 -13.0902
 -1.0000 + 2.6458i
 -1.0000 - 2.6458i
 -1.9098

Example 7.2

Let p1(x) = x + 3, p2(x) = x2 + 3x + 14, p3(x) = 10, p4(x) = x3 + 2x2 + 8x + 4, and p(x) =
p1(x) * p2(x) + p3(x) * p4(x).

Write a MATLAB program that returns the coeffi cients of the polynomial p(x) as well as the
explicit polynomial p(x).

MATLAB Solution
>> P1 = [1 3];
>> P2 = [1 3 14];
>> P3 = 10;
>> P4 = [1 2 8 4];
>> % Obtain the partial products of P12 = P1*P2 and P34 = P3*P4
>> P12 = conv (P1, P2)

 P12 =
 1 6 23 42

>> P34 = conv (P3,P4)

 P34 =
 10 20 80 40

>> % determine the length of these polynomials for compatibility,
>> % and add zero when required

CRC_47744_Ch007.indd 486CRC_47744_Ch007.indd 486 6/27/2008 4:56:06 PM6/27/2008 4:56:06 PM

Polynomials and Calculus, a Numerical and Symbolic Approach 487

>> L1 = length(P12)

 L1 =
 4

>> L2 = length (P34)

 L2 =
 4

>> L= [L1 L2]

 L =
 4 4

>> M = max(L)

 M =
 4

>> % Obtain the coefficients of the polynomial P=P12+P34.
>> P = [zeros(1,M-L1),P12]+[zeros(1,M-L2),P34];
>> disp (‘The coefficients of the resulting polynomial p(x) = p1(x) *

 p2(x) + p3(x) * p4(x) are:’);
>> disp (P)

The coefficients of the resulting polynomial p(x) = p1(x) * p2(x) +
p3(x) * p4(x) are:
 11 26 103 82

>> px = poly2sym(P)
>> disp (‘The polynomial p(x) = p1(x) * p2(x) + p3(x) * p4(x) is:’);
disp(px)

The polynomial p(x) = p1(x) * p2(x) + p3(x) * p4(x) is:

 px =
 11*x^3+26*x^2+103*x+82

Example 7.3

Analyze the discrete system shown in Figure 7.14 where x(n) = 5 cos(0.3 * 2 * π * n/256) +
3 sin(0.8 * 2 * π * n/256); for n = 0, 1, 2, 3, …, 600, and the transfer function of each
box is given by

H z

z
z z1

1

1 2

1 5
4 2 2

() �
�

� �

�

�−

H z

z z
z z2

1 2

1 2

3 2 3
4 2 2

() �
� �

� �

� �

� �

FIGURE 7.14
Block box of the discrete system of Example 7.3.

H1(z)

H2(z) +

x (n) y1(n)

y
2
(n) y (n)

CRC_47744_Ch007.indd 487CRC_47744_Ch007.indd 487 6/27/2008 4:56:06 PM6/27/2008 4:56:06 PM

488 Practical MATLAB® Basics for Engineers

Create the script fi le Example 7.3 that returns the following plots:

 a. x(n) versus n
 b. y1(n) versus n
 c. y2(n) versus n
 d. y(n) versus n
 e. Repeat parts 2, 3, and 4 if a transient is observed

MATLAB Solution
% Script file:Example73.m
n = 0:600;
x1= 5*cos(.3*2*pi*n/256);
x2 = 3*sin(.8*2*pi*n/256);
x = x1+x2; p1=[1 -5];
q1 = [4 2 2]; p2=[3 2 3];
y1 = filter(p1,q1,x); y2=filter(p2,q1,x);

figure(1)
subplot (2,2,1);
stem(n,x); ylabel (‘Amplitude’)
title(‘Input sequence x(n)’);grid on;
subplot(2,2,2);
stem(n,y1); ylabel(‘Amplitude’)
title (‘Output sequence y1(n)’); grid on;
subplot (2,2,3);
stem(n,y2); xlabel(‘index n’)
ylabel (‘Amplitude’) ;title(‘Output sequence y2(n)’);
grid on;
subplot (2,2,4);
y = y1+y2; stem(n,y);
xlabel (‘index n’)
ylabel (‘Amplitude’) ; title (‘Output sequence y(n) =y1(n)+y2(n)’);
grid on; % plots are shown in Figure 7.15

figure(2)
nn = 0:20;x1=5*cos(.3*2*pi*nn/256);
x2 = 3*sin(.8*2*pi*nn/256);
xx = x1+x2; p1=[1 -5];
q1 = [4 2 2]; p2=[3 2 3];
y11 = filter(p1,q1,xx); y22=filter(p2,q1,xx);
subplot(3,1,1);
stem (nn,y11);hold on; plot(nn,y11);
ylabel(‘y1(n)’)
title (‘Output sequences y1(n),y2(n) & y(n), for 0<n<20’);
subplot (3,1,2);
stem (nn,y22);hold on; plot(nn,y22);
ylabel (‘y2(n)’) ;
subplot (3,1,3);
yy = y11+y22;
stem(nn,yy);hold on; plot(nn,yy);
ylabel (‘y(n)’) ;xlabel(‘index n’) % plots are shown in Figure 7.16

CRC_47744_Ch007.indd 488CRC_47744_Ch007.indd 488 6/27/2008 4:56:06 PM6/27/2008 4:56:06 PM

Polynomials and Calculus, a Numerical and Symbolic Approach 489

FIGURE 7.15
Plots of Example 7.3(a, b, c, and d).

10

5

0

−5

−10

10

5

−5

−10

0 200 400 600 0 200 400 600

0 200 400 6000 200 400 600
Index nIndex n

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de
A

m
pl

itu
de

Input sequence x(n) Output sequence y1(n)

Output sequence y2(n) Output sequence y(n) = y1(n)+y2(n)

4

2

0

−2

−4

−6

4

2

−4

−2

6

0
0

FFIGURE 7.16
Plots of Example 7.3(e).

Output sequence y1(n), y2(n) & y(n), for 0<n<20
5

2 4 6 8 10
−10

10

5

0

0

0
0

5

−5

2 4 6 8

12 14 16 18 20

y1
(n

)
y2

(n
)

y(
n)

10 12 14 16 18 20

0

0 2 4 6 8 10 12 14 16 18 20
index n

−5

CRC_47744_Ch007.indd 489CRC_47744_Ch007.indd 489 6/27/2008 4:56:06 PM6/27/2008 4:56:06 PM

490 Practical MATLAB® Basics for Engineers

Example 7.4

Given the following system discrete transfer function:

H z

z z z z
z z z z

() �
� � � �

� � � �

3 10 5 30 41
8 3 12 18 10

4 3 2

4 3 2

Write a MATLAB program that performs the following:

 1. Input H(z) as two row vectors pH and qH, the numerator and denominator of H(z)
 2. Returns the poles, zeros, and gain of H(z)
 3. Returns the magnitudes of the poles of H(z)
 4. Returns the plot of the poles of H(z), and evaluates if the poles are inside the unit

circle. (If they are inside the unit circle, then the system is stable, otherwise the
system is unstable.)

 5. From the poles, zeros, and gain of part 2, reconstruct the transfer function H(z)

MATLAB Solution
>> pH = [3 10 5 30 41]; % numerator of H(z)
>> qH = [8 3 -12 18 -10]; % denominator of H(z)
>> [z,p,k] = tf2zp(pH,qH);
>> disp(‘The zeros of H(z) are at :’), disp(z)

 The zeros of H(z) are at :
 3.3626
 0.6287 + 1.7071i
 0.6287 - 1.7071i
 1.2281

>> disp (‘The poles of H(z) are at :’), disp (p)

 The poles of H(z) are at :
 1.9301
 0.4178 + 0.8518i
 0.4178 - 0.8518i
 0.7195

>> disp (‘The gain of H(z) is :’), disp(k)

 The gain of H(z) is :
 0.3750

>> magpole = abs(p);
>> disp(‘The magnitude of the poles are:’), disp(magpole)

 The magnitude of the poles are:
 1.9301
 0.9488
 0.9488
 0.7195

>> zplane(pH,qH); % zplane plot shown in Figure 7.17
>> title(‘Plot of poles and zeros’)
>> grid on ;

CRC_47744_Ch007.indd 490CRC_47744_Ch007.indd 490 6/27/2008 4:56:07 PM6/27/2008 4:56:07 PM

Polynomials and Calculus, a Numerical and Symbolic Approach 491

>> [a,b] = zp2tf(z,p,k);
>> disp (‘The coefficients of the numerator of H(z) are:’),
>> disp(a)

 The coefficients of the numerator of H(z) are:
 0.3750 1.2500 0.6250 3.7500 5.1250

>> disp(‘The coefficients of the denominator of H(z) are:’)
>> disp(b)

 The coefficients of the denominator of H(z) are :
 1.0000 0.3750 -1.5000 2.2500 -1.2500

FIGURE 7.17
Plot of poles and zeros of Example 7.4.

Plot of poles and zeros

1.5

1

0.5

0

−0.5

−1

−1.5

−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1

Real part

Im
ag

in
ar

y
pa

rt

Observe that one pole < x = −1.9301, y = 0 > is located outside the unit circle. Then the system
is unstable. Observe also that the function zp2tf returns the numerator and denominator of
the transfer function by a scaling factor of 8 (recall that MATLAB sets the leading coeffi cient
of H(z) to 1).

Example 7.5

Using the transfer function of Example 7.4, obtain the following:

 a. The partial fraction expansion of H(z) = P(z)/Q(z)
 b. Verify the partial fraction expansion of part a, by reconstructing the transfer func-

tion H(z) = P(z)/Q(z), from the partial fraction expansion (by a factor of 8)

CRC_47744_Ch007.indd 491CRC_47744_Ch007.indd 491 6/27/2008 4:56:07 PM6/27/2008 4:56:07 PM

492 Practical MATLAB® Basics for Engineers

 c. The fi rst fi ve coeffi cients of the impulse response using the impz function*
 d. Verify the fi rst three coeffi cients of the impulse response of part c using the long

division
 e. The plot of the impulse response versus n, obtained in part c

MATLAB Solution
>> pH = [3 10 5 30 41];
>> qH = [8 3 -12 18 -10];
>> [r,p,k] = residuez(pH,qH);
>> disp(‘The partial fraction residues of H(z) are:’), disp(r)

 The partial fraction residues of H(z) are:
 -0.1118
 -0.5049 + 1.5915i
 -0.5049 - 1.5915i
 -5.5966

>> disp (‘The poles of H(z) are:’), disp(p)

 The poles of H(z) are :
 -1.9301
 -0.4178 + 0.8518i
 -0.4178 - 0.8518i
 -0.7195

>> disp (‘The constant K is :’), disp(k)

 The constant K is :
 4.1000

>> [A,B] = residuez (r’,p’,k’);
>> disp (‘ The coefficients of the numerator of H(z) are :’), disp(A)

 The coefficients of the numerator of H(z) are :
 0.3750 1.2500 0.6250 3.7500 5.1250

>> disp (‘The coefficients of the denominator of H(z) are:’),disp(B)

 The coefficients of the denominator of H(z) are:
 1.0000 0.3750 -1.5000 2.2500 -1.2500

>> L= 5;
>> [y,n] = impz (pH,qH,L);
>> disp (‘The impulse response output sequence is:’), disp(y) % part(c)

 The impulse response output sequence is:
 0.3750
 1.1094
 0.7715
 4.2810
 2.6495

* The impulse–response is the response of the system to an input consisting of a single one followed by zeros.

CRC_47744_Ch007.indd 492CRC_47744_Ch007.indd 492 6/27/2008 4:56:07 PM6/27/2008 4:56:07 PM

Polynomials and Calculus, a Numerical and Symbolic Approach 493

>> [A,B]= deconv(pH,qH);
>> disp (‘The residue1 is :’), disp(A)

 The residue1 is:
 0.3750

>> disp (‘The quotient’s coefficients are:’), disp(B)

 The quotient’s coefficients are:
 0 8.8750 9.5000 23.2500 44.7500

>> B(1)=[] ; B(5) = 0;
>> [C, D] = deconv(B, qH);
>> disp(‘The residue2 is:’);disp (C)

 The residue2 is:
 1.1050

>> D(1) = []; D(5) = 0;
>> [E, F] = deconv(C, qH);
>> disp(‘The residue3 is :’);disp(E)

 The residue3 is:
 0.7715

>> % observe that the residues obtained correspond to the
 coefficients of impz
>> stem(n, y)
>> title(‘impz of H(z) of Example 7.4’)
>> grid on;
>> xlabel(‘index n’); ylabel(‘magnitude of impz’); % impulse plot

Figure 7.18

FIGURE 7.18
Discrete system impulse–response plot of Example 7.5.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
impz of H(z) of Example 7.5

index n

m
ag

ni
tu

de
 o

f i
m

pz

CRC_47744_Ch007.indd 493CRC_47744_Ch007.indd 493 6/27/2008 4:56:07 PM6/27/2008 4:56:07 PM

494 Practical MATLAB® Basics for Engineers

Example 7.6

Given the Cartesian coordinate points, shown in Table 7.1.
Write a MATLAB program that approximates the six (6) given points by a linear,

quadratic, and cubic polynomial, and for each case indicate the points as well as the
corresponding approximation.

Show also the spline function approximation plot that illustrates the best possible fi t for the
given data (six points).

MATLAB Solution
>> x = -2:3;
>> y = [-11 -6 -7 -8 3 14]; % < x,y > points
>> subplot (2,2,1)
>> plot (x,y,’*’), xlabel (‘x’), ylabel(‘y’),
>> title (‘Input data’), grid on
>> p1= polyfit(x,y,1) % linear approximation

 p1 =
 4.3143 -4.6571

>> x1 = linspace (-2,3,100);
>> pa1 = polyval (p1,x1);
>> subplot (2,2,2)
>> plot (x,y,’*’,x1,pa1); grid on ; xlabel (‘x’); ylabel (‘y’) ;
>> title (‘First Order Approximation’)
>> p2 = polyfit (x,y,2) % quadratic approximation.

 p2 =
 1.3929 2.9214 -8.3714

>> pa2 = polyval(p2,x1);
>> subplot (2,2,3)
>> plot (x,y,’*’,x1,pa2), grid on, xlabel(‘x’),ylabel(‘y’)
>> title (‘Quadratic Approximation’)
>> p3 = polyfit(x,y,3) % cubic approximation.

 p3 =
 0.6111 0.4762 0.2937 -6.9048

>> pa3 = polyval(p3,x1);subplot(2,2,4)
>> plot(x,y,’*’,x1,pa3),grid on, xlabel(‘x’), ylabel(‘y’)
>> title(‘Cubic Approximation’) % Figure 7.19.
>> xx =-2:.1:3;
>> yy = spline(x,y,xx);
>> clf;plot (x,y,’*’, xx, yy), grid on
>> xlabel (‘x’), ylabel(‘y’), title(‘Spline Fit’)
>> % the spline approximation plot is shown in Figure 7.20

TABLE 7.1

Cartesian Coordinate Points of Example 7.6

x −2 −1 0 1 2 3
y −11 −6 −7 −8 3 14

CRC_47744_Ch007.indd 494CRC_47744_Ch007.indd 494 6/27/2008 4:56:07 PM6/27/2008 4:56:07 PM

Polynomials and Calculus, a Numerical and Symbolic Approach 495

FIGURE 7.20
Approximation plots of the points of Example 7.6 using spline.

Spline Fit

−2 −1.5 −1 −0.5 0 0.5 1
x

1.5 2 2.5 3

15

10

5

0

−5

−10

−15

y

FIGURE 7.19
Approximation plots of the points of Example 7.6 using polyval.

Input data First Order Approximation
20

10

0

−10

−20
−2 0 2 4

20

10

−10

−20

20

10

−10

−20
−2 0

x
2 4

0

−2 0 2

0

4
x x

Quadratio Approximation

20

10

−10

−2 0 2
−20

0

Cubic Approximation

y
y y

y

4
x

CRC_47744_Ch007.indd 495CRC_47744_Ch007.indd 495 6/27/2008 4:56:07 PM6/27/2008 4:56:07 PM

496 Practical MATLAB® Basics for Engineers

Example 7.7

Given the following polynomials:

 p1(s) = 3x4 + 2x3 + x2 + 4x + 5

and

 p2(s) = 5x4 − x3 − 3x2 + x − 1

 a. Perform the following MATLAB symbolic operations and observe the respective
responses

 i. p1 + p2

 ii. p1 − p2

 iii. p1 * p2

 iv. p1/p2

 v. p1 ^ 3
 vi. pretty (p1/p2)

 b. Evaluate or determine using MATLAB:
 i. The symbolic variable used in p1

 ii. The nested form of p1
 iii. The symbolic polynomials p1 and p2 converted to a numerical polynomial (vector)
 iv. The numerical representation of the polynomial that results from the symbolic

product of p1 with p2
 v. The numerical polynomial p1*p2 and convert the product to symbolic
 vi. Factor the product of part v, and verify that the factors are p1 and p2
 vii. (dp1(x))/dx and (dp2(x))/dx
 viii. (d3p1(x))/dx3 and (d3p2(x)) dx3

 ix. The expression for ∫ p1(x) dx

 x. The numerical value for ∫ 1
2
 p1(x) dx

 xi. Identify the symbolic variables using the class command for p1(x), p2(x),
(d/dx)[p1(x)], and ∫ p1(x) dx

 xii. Identify all the variables used (symbolic or numerical), using the command
whos

 c. Create the following plots, over the range −6 ≤ x ≤6:
 i. p1(x) versus x
 ii. p2(x) versus x
 iii. [p1(x) * p2(x)] versus x (symbolic)
 iv. [p1(x) * p2(x)] versus x (numerical)

 v. [∫ p1(x) dx] versus x (symbolic)
 vi. [(dp1(x))/dx] versus x (symbolic)

MATLAB Solution
>> p1 = sym(‘3*x 4̂+2*x^3+x^2+4*x+5’); % symbolic polynomials p1 and p2
>> p2 = sym(‘5*x 4̂-x^3-3*x^2+x-1’);
>> % part(a)
>> Symb _ sum = symadd(p1,p2)

 Symb _ sum =
 8*x 4̂+x^3-2*x^2+5*x+4

>> Symb _ sub = symsub(p1,p2)

 Symb _ sub =
 -2*x 4̂+3*x^3+4*x^2+3*x+6

CRC_47744_Ch007.indd 496CRC_47744_Ch007.indd 496 6/27/2008 4:56:07 PM6/27/2008 4:56:07 PM

Polynomials and Calculus, a Numerical and Symbolic Approach 497

>> Symb _ prod = symmul(p1,p2)

 Symb _ prod =
 (3*x 4̂+2*x^3+x^2+4*x+5)*(5*x 4̂-x^3-3*x^2+x-1)

>> % observe that the product is indicated but not performed
>> Symb _ div = symdiv (p1,p2)

 Symb _ div =
 (3*x 4̂+2*x^3+x^2+4*x+5)/(5*x 4̂-x^3-3*x^2+x-1)

>> psqr = p1̂ 3;
>> pretty(psqr)

 4 3 2 3
 (3 x + 2 x + x + 4 x + 5)

>> pretty(Symb _ div)

 4 3 2
 3 x + 2 x + x + 4 x + 5
 4 3 2
 5 x - x - 3 x + x - 1

>> % part (b)
>> findsym (p1) % sym variables used in p1

 a ns =
 x

>> nestp1= horner(p1) % p1 expressed in nested form

 nestp1 =
 5+(4+(1+(2+3*x)*x)*x)*x

>> p11 = sym2poly(p1) % convert the sym polynomial p1 to numerical

 p11 =
 3 2 1 4 5

>> p22 = sym2poly(p2) % converts symbolic polynomial p2 to numerical

 p22 =
 5 -1 -3 1 -1

>> p33 = conv(p11, p22) % numerical coef of the product of (p1*p2)

 p33 =
 15 7 -6 16 17 -18 -12 1 -5

>> p33sym = poly2sym(p33) % converts p1*p2 to symbolic

 p33sym =
 15*x^8+7*x^7-6*x^6+16*x^5+17*x 4̂-18*x^3-12*x^2+x-5

>> factor (p33sym)

 ans =
 (3*x 4̂+2*x^3+x^2+4*x+5)*(5*x 4̂-x^3-3*x^2+x-1)

>> poly2sym (p11) % observe that MATLAB returns p1

CRC_47744_Ch007.indd 497CRC_47744_Ch007.indd 497 6/27/2008 4:56:07 PM6/27/2008 4:56:07 PM

498 Practical MATLAB® Basics for Engineers

 ans =
 3*x 4̂+2*x^3+x^2+4*x+5

>> poly2sym(p22) % observe that MATLAB returns p2

 ans =
 5*x 4̂-x^3-3*x^2+x-1

>> dp1 = diff(p1) % dp1/dx

 dp1 =
 12*x^3+6*x^2+2*x+4

>> dp2 = diff(p2) % dp2/dx

 dp2 =
 20*x^3-3*x^2-6*x+1

>> dp13 = diff(p1,3)

 dp13 =
 72*x+12

>> dp23 = diff(p2,3)

 dp23 =
 120*x-6

>> intp1= int(p1) % integral of p1

 intp1 =
 3/5*x^5+1/2*x 4̂+1/3*x^3+2*x^2+5*x

>> intp112 = int (p1,1,2) % integral of p1 from x=1 to x=2

 intp112 =
 1183/30

>> class p1, p2, intp1, dp1 % check class of p1, p2, intp1, dp1
are symbolic

 ans =
 char
 p1 =
 3*x 4̂+2*x^3+x^2+4*x+5
 p2 =
 5*x 4̂-x^3-3*x^2+x-1
 intp1 =
 3/5*x^5+1/2*x 4̂+1/3*x^3+2*x^2+5*x
 dp1 =
 12*x^3+6*x^2+2*x+4

>> whos

 Name Size Bytes Class
 Symb _ sum 1x1 166 sym object
 ans 1x4 8 char array
 dp1 1x1 160 sym object

CRC_47744_Ch007.indd 498CRC_47744_Ch007.indd 498 6/27/2008 4:56:08 PM6/27/2008 4:56:08 PM

Polynomials and Calculus, a Numerical and Symbolic Approach 499

 dp13 1x1 138 sym object
 dp2 1x1 160 sym object
 dp23 1x1 138 sym object
 intp1 1x1 190 sym object
 intp112 1x1 138 sym object
 estp1 1x1 170 sym object
 p1 1x1 166 sym object
 p11 1x5 40 double array
 p2 1x1 162 sym object
 p22 1x5 40 double array
 p33 1x9 72 double array
 p33sym 1x1 224 sym object
 psqr 1x1 174 sym object
 rootsp1 4x1 5664 sym object
 symb _ div 1x1 214 sym object
 symb _ prod 1x1 214 sym object
 symb _ sub 1x1 172 sym object

Grand total is 3037 elements using 8410 bytes

>> % part (c)

>> figure(1)
>> subplot(2,1,1)
>> ezplot(p1) % plot of p1(x)
>> xlabel(‘x’), ylabel(‘p1(x)’);
>> title(‘p1(x) vs. x’), grid on;
>> subplot(2,1,2)
>> ezplot(p2); % plot of p2(x)
>> xlabel(‘x’), ylabel(‘p2(x)’),
>> title(‘p2(x) vs x’);
>> grid on;
>> % Figure 7.21

>> figure(2)
>> subplot(2,1,1)
>> ezplot(symb _ prod); grid on;
>> xlabel(‘x’), ylabel(‘ mag. syms(p1(x)*p2(x)) ‘)
>> title(‘symbolic product[p1(x)*p2(x)] vs x’);
>> subplot(2, 1, 2);
>> x = -6:0.1:6;
>> y = polyval(p33, x);
>> plot(x, y)
>> grid on;
>> title(‘numerical product [p1(x)*p2(x)] vs x’);
>> xlabel(‘x’); ylabel(‘mag[(p1(x)*p2(x)]’);
>> % Figure 7.22

>> figure(3)
>> subplot(2,1,1)
>> ezplot(intp1); % plots integral of p1(x)
>> xlabel(‘x’), ylabel(‘mag.int[p1(x)]dx’)
>> grid on;
>> title(‘integral[p1(x)]dx vs. x’)
>> subplot(2, 1, 2);
>> ezplot(dp1) % plots dp1/dx

CRC_47744_Ch007.indd 499CRC_47744_Ch007.indd 499 6/27/2008 4:56:08 PM6/27/2008 4:56:08 PM

500 Practical MATLAB® Basics for Engineers

>> xlabel(‘x’); ylabel(‘mag. [dp1(x)/dx]’);
>> title(‘[dp1(x)/dx] vs. x’);
>> grid on;
>> % Figure 7.23

FIGURE 7.22
Plots of the products of p1(x) * p2(x) of Example 7.7.

−6 −4 −2 0 2 4 6
0

0.5

1

1.5

2

x 107

x

symbolic product [p1(x)*p2(x)] versus x

 m
ag

. s
ym

s(
p1

(x
)*

p2
(x

))

−6 −4 −2 0 2 4 6
−1

0

1

2

3
x 107 numerical product [p1(x)*p2(x)] versus x

x

m
ag

[(
p1

(x
)*

p2
(x

)]

FIGURE 7.21
Plots of p1(x) and p2(x) of Example 7.7.

5000

4000

3000

2000

1000

8000

6000

4000

2000

0

0
−6 −4 −2 0

x
2 4

p1
(x

)
p2

(x
)

6

p1(x) versus x

p2(x) versus x

−6 −4 −2 0
x

2 4 6

CRC_47744_Ch007.indd 500CRC_47744_Ch007.indd 500 6/27/2008 4:56:08 PM6/27/2008 4:56:08 PM

Polynomials and Calculus, a Numerical and Symbolic Approach 501

FIGURE 7.23
Plots of the integration and differentiation of p1(x) of Example 7.7.

0 2 4 6

0

2000

−2000

4000

x

integral[p1(x)]dx versus x

m
ag

.in
t[p

1(
x)

]d
x

0 2 4 6

0

2000

x

[dp1(x)/dx] versus x

m
ag

. [
dp

1(
x)

/d
x]

−4000

−2000

−2−4−6

−4 −2−6

Example 7.8

The function y(x) = x2 over the range 1 ≤ x ≤ 2 is shown in Figure 7.24.
Write a MATLAB program that returns

 1. The shaded area
 2. The surface of the area obtained by rotating y(x) = x2 about the x-axis (for 1 ≤ x ≤ 2)
 3. The volume of the body shown in Figure 7.25
 4. The length of the curve y = x2, over the range 1 ≤ x ≤ 2*

* The equations of the area, surface area, volume, and length are given in R.7.129.

CRC_47744_Ch007.indd 501CRC_47744_Ch007.indd 501 6/27/2008 4:56:08 PM6/27/2008 4:56:08 PM

502 Practical MATLAB® Basics for Engineers

MATLAB Solution
>> y = sym(‘x^2’);
>> area = int(y,1,2);% area is the integral(shaded area in Figure7.24)
>> disp(‘The shaded area is =’); disp(area)

 The shaded area is =
 7/3

>> dy = diff(y);
>> y1 = (1+dy^2)̂ 0.5;
>> y2 = y*y1;
>> integ = int(y2,1,2);
>> A= sym2poly(integ);
>> surf = 2*pi*A;
>> disp(‘The surface area is:’); disp(surf)

 The surface area is:
 49.4162

>> p = y^2;
>> I = pi*int(p,1,2);
>> volume = sym2poly(I);
>> disp (‘The volume is:’);disp(volume)

 The volume is :
 19.4779

>> C = int(y1,1,2);
>> L = sym2poly (C);
>> disp (‘The length is:’); disp(L)

 The length is:
 3.1678

FIGURE 7.24
Sketch of y(x) = x2 over the range 1 ≤ x ≤ 2 of Example 7.8.

CRC_47744_Ch007.indd 502CRC_47744_Ch007.indd 502 6/27/2008 4:56:08 PM6/27/2008 4:56:08 PM

Polynomials and Calculus, a Numerical and Symbolic Approach 503

Example 7.9

Let’s revisit the often encountered problem of solving a set of linear independent
equations.

For example let

 x + 2y + z = 0 (7.1)

 2x − y + z = 5 (7.2)

 4x + 2y + 5z = 6 (7.3)

 a. Solve the set of equations by hand, and show that the solutions are x = 2, y = −1,
and z = 0.

 b. Solve the preceding set of equations using MATLAB matrix algebra.
 c. Solve the same set of equations using MATLAB symbolic techniques.

ANALYTICAL Solution

By hand

 x + 2y + z = 0 (7.1)
− 2x − y + z = 5 –(7.2)
 −x + 3y = −5 (7.4)

 (x + 2y + z) * 5 = 5x + 10y + 5z = 0 (Equation 7.1 multiplied by 5)

FIGURE 7.25
Surface sketch of Example 7.8.

4

1

1 2
x

y

−4

−1

y = x2

CRC_47744_Ch007.indd 503CRC_47744_Ch007.indd 503 6/27/2008 4:56:08 PM6/27/2008 4:56:08 PM

504 Practical MATLAB® Basics for Engineers

 5x + 10y + 5z = 0 (Equation 7.1 multiplied by 5)
− 4x + 2y + 5z = −6 (7.3)
 x + 8y = −6 (7.5)

 −x + 3y = −5 (7.4)
+ x + 8y = −6 +(7.5)
 11y = −11

and y = −1

Substituting y = −1 in Equation 7.4,

 −x + 3 (−1) = −5

 − x − 3 = −5

 x + 3 = + 5

 x = 5 − 3 = 2

 x = 2

Substituting x = 2 and y = −1 in Equation 7.1,

 2 + 2 (−1) + z = 0

 2 − 2 + z = 0

 z = 0

MATLAB Solution
>> % part (b),using matrix algebra
>> A= [1 2 1;2 -1 1;4 2 5] % coefficients of the set of

equations

 A =
 1 2 1
 2 -1 1
 4 2 5

>> B = [0; 5; 6]

 B =
 0
 5
 6

>> Solution = inv(A)*B;
>> disp(‘The matrix solution (part b) for x, y, and z are:’);
>> disp(Solution)

 The matrix solution (part b) for x, y, and z are:
 2.0000
 - 1.0000
 0

>> % Solution (c), using Symbolic Expressions
>> eq1 = sym(‘x+2*y+z’);
>> eq2 = sym(‘2*x-y+z-5’);

CRC_47744_Ch007.indd 504CRC_47744_Ch007.indd 504 6/27/2008 4:56:08 PM6/27/2008 4:56:08 PM

Polynomials and Calculus, a Numerical and Symbolic Approach 505

>> eq3 = sym(‘4*x+2*y+5*z-6’);
>> [x,y,z] = solve(eq1,eq2,eq3);
>> disp (‘The sym solution(part c) for x, y, and z are:’);disp(x;y;z)

 The sym solution (part c) for x, y, and z are:
 x =
 2
 y =
 -1
 z =
 0

Example 7.10

Let the set of fi rst-order DEs be given by

dy t

dt
y t y t1

1 2
32

()
() ()� � �

dy t

dt
y t e y tt2

1
2

22
()

() ()()� ��

with the following ICs: y1(0) = 0, y2(0) = 3, over the range 0 ≤ t ≤ 2.
Create the script fi le Example710 that returns the solution of the system of DEs, by using

the numerical solvers

 1. ode23
 2. ode45

MATLAB Solution
%function file that defines the differential equation
function y1y2 = fy1y2(t, y)
y1y2 = [-2*y(1)-y(2)̂ 3; y(1)*exp(2-t)+2*y(2)];

% main program
% Script file:Example710
y0 = [0; 3];
[t, y1] = ode23(‘fy1y2’, [0 2], y0);
subplot(2, 1, 1)
plot(t, y1(:, 1), ‘*’)
grid on
title(‘Solution y1 using ode 23’) % Figure 7.26
subplot(2, 1, 2)
plot(t, y1(:, 2), ‘d’)
title(‘Solution y2 using ode 23’)
grid on ;
keyboard;
subplot(2, 1, 1)
[t, y2] = ode45(‘fy1y2’, [0 2], y0);
plot(t, y2(:, 1), ‘*’);
grid on;
title(‘Solution y1 using ode 45’) % Figure 7.27
subplot(2, 1, 2)
plot(t, y2(:, 2), ‘d’)
grid on;
title(‘Solution y2 using ode 45’)

CRC_47744_Ch007.indd 505CRC_47744_Ch007.indd 505 6/27/2008 4:56:08 PM6/27/2008 4:56:08 PM

506 Practical MATLAB® Basics for Engineers

FIGURE 7.27
Plots of the solutions of Example 7.10 using ode45.

0 0.2 0.4 0.6 0.8 1 1.2 1. 4 1.6 1.8 2
−10

−5

0

5
Solution y1 using ode 45

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−4

−2

0

2

4
Solution y2 using ode 45

t axis

FIGURE 7.26
Plots of the solutions of Example 7.10 using ode23.

F
F

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

5

−5

−10

−2

−4

Solution y1 using ode 23

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

2

4
Solution y2 using ode 23

t axis

CRC_47744_Ch007.indd 506CRC_47744_Ch007.indd 506 6/27/2008 4:56:09 PM6/27/2008 4:56:09 PM

Polynomials and Calculus, a Numerical and Symbolic Approach 507

Example 7.11

Create the MATLAB script fi le diff_eqs that returns the solutions for x(t) and y(t), for the fol-
lowing set of DEs:

dx t

dt
y t x t

()
() ()� � �2 3

dy t

dt
y t x t

()
() ()� � �3 5

given the following ICs: x(0) = 1 and y(0) = 2, over the range −5 ≤ t ≤ −3. Use the solver dsolve
and obtain plots of

 1. x(t) versus t
 2. y(t) versus t

MATLAB Solution
% Script file: diff _ eqs
disp(‘**’)
disp(‘The solution of the equations : dx/dt =-2*y-3*x,
 and dy/dt=-3*y+5*x’)
disp(‘with the initial conditions: x(0)=1,y(0)=2,are given by ‘)
[x,y] = dsolve(‘Dx=-2*y-3*x,Dy=-3*y+5*x’,’x(0)=1,y(0)=2’)
disp(‘The pretty x(t) is given by’)
pretty(x)
disp(‘The pretty y(t) is given by’)
pretty(y)
disp(‘**’)
subplot(2,1,1);
ezplot(x)
title(‘plot of x(t) vs t using dsolve’)
axis([-5 -3 -5e5 9e5])
subplot(2,1,2)
ezplot(y)
title(‘plot of y(t) vs t using dsolve’)
xlabel(‘t (time)’)
axis([-5 -3 -6e5 6e5])
% the plots of x(t) vs.t and y(t) vs. t, are shown in Figure 7.28

Back in the command window, the fi le diff_eqs is executed and the results are shown as
follows:

>> diff _ eqs

The solution of the equations: dx/dt =-2*y-3*x, and dy/dt=-3*y+5*x
with the initial conditions: x(0) =1, y(0)=2,are given by

 x =
 1/5*exp(-3*t)*(5*cos(t*10 (̂1/2))- 2*10 (̂1/2)*sin(t*10 (̂1/2)))
 y =
 1/2*exp(-3*t)*(10 (̂1/2)*sin(t*10 (̂1/2)) +4*cos(t*10 (̂1/2)))

CRC_47744_Ch007.indd 507CRC_47744_Ch007.indd 507 6/27/2008 4:56:09 PM6/27/2008 4:56:09 PM

508 Practical MATLAB® Basics for Engineers

The pretty x(t) is given by
 1/2 1/2 1/2
 - 1/5 exp(-3 t) (-5 cos(t 10) + 2 10 sin(t 10))

The pretty y(t) is given by
 1/2 1/2 1/2
 1/2 exp(-3 t) (10 sin(t 10) + 4 cos(t 10))

FIGURE 7.28
Plots of x(t) and y(t) of Example 7.11.

x 105

x 105

plot of x(t) versus t using dsolve

plot of x(t) versus t using dsolve

5

0

−5
−4.8 −4.6 −4.4 −4.2 −4 −3.8 −3.6 −3.4 −3.2 −3−5

t

6

4

2

0

−2

−4

−6
−5 −4.8 −4.6 −4.4 −4.2 −4

t (time)
−3.8 −3.6 −3.4 −3.2 −3

Example 7.12

Let

d
dt

y t y t t[()] ()� � �2 4 0

with the IC given by y(0) = 10.
Create the script fi le Example712 that performs the following:

 1. Solves the preceding DE using the symbolic solver dsolve
 2. Verifi es using MATLAB the solution obtained in part 1
 3. Obtains the general solution of the given DE

CRC_47744_Ch007.indd 508CRC_47744_Ch007.indd 508 6/27/2008 4:56:09 PM6/27/2008 4:56:09 PM

Polynomials and Calculus, a Numerical and Symbolic Approach 509

 4. Verify the solution using MATLAB from the given IC (initial conditions)
 5. The plot of (the solution) y(t) versus t, over the range 0 ≤ t ≤ 5

MATLAB Solution
%Script file: Example712
syms y y1 t
disp (‘***’)
disp (‘The solution of the equations : dy/dt+2*y-4*t=0’)
disp (‘with the initial conditions: y(0)=10 is :’)
y = dsolve(‘Dy+2*y-4*t=0’,’y(0)=10’,’t’)
% verifies the solution
disp(‘Evaluate: verify = dy/dt +2*y-4*t, yields’)
verify = diff(y,t)+2*y-4*t
% solves the given equation for the general solution
clear ;
disp (‘The general solution is:’);
y1= dsolve(‘Dy1+2*y1-4*t=0’,’t’)
% solves for the initial conditions
y=10; t=0;
disp(‘The calculated y(0)=C1, where:’)
C1 = subs(y)
Disp (‘**’)
y = dsolve(‘Dy+2*y-4*t=0’,’y(0)=10’,’t’);
ezplot (y,[0,5])
title (‘Solution of y(t),with y(0)=10, for 0<t<5 ‘)
ylabel (‘ y(t)’); xlabel (‘t’) ; grid on

Back in the command window, the script fi le Example712 is executed, and the results are shown
in the following (Figure 7.29):

>> Example712

 The solution of the equations : dy/dt+2*y-4*t=0
 with the initial conditions: y(0)=10 is:

 y =
 2*t-1+11*exp(-2*t)

 Evaluate: verify = dy/dt+2*y-4*t, yields
 verify =
 0

 The general solution is:
 y1 =
 2*t-1+exp(-2*t)*C1
 The calculated y(0)=C1, where:
 C1 =
 10
 y =
 2*t-1+11*exp(-2*t)

CRC_47744_Ch007.indd 509CRC_47744_Ch007.indd 509 6/27/2008 4:56:09 PM6/27/2008 4:56:09 PM

510 Practical MATLAB® Basics for Engineers

7.5 Further Analysis

Q.7.1 Load and run Example 7.1.
Q.7.2 Run Example 7.1 without the semicolons, and place descriptive comments (%) at the

end of each line.
Q.7.3 What are the degrees of p1, p2, and p, and how are those polynomials related to the

MATLAB variables used?
Q.7.4 Discuss the purpose of variable D.
Q.7.5 Are the roots of p related to the roots of p1 and p2?
Q.7.6 What is in general the relation between the degree of a polynomial and its vector

length representation?
Q.7.7 Discuss the relation between the degrees of p1 and p2, and p1 * p2.
Q.7.8 What is the relation between the degrees of p1, p2, and the MATLAB command

length of the conv(p1, p2)?
Q.7.9 Load and run Example 7.2.
Q.7.10 Defi ne and discuss the purpose of the statement L = [L1 L2].
Q.7.11 What is the MATLAB variable that defi nes the polynomial p, and why zeros are

added in defi ning the array P?
Q.7.12 Load and run Example 7.3.
Q.7.13 Evaluate the number of points used for each plot of Figures 7.15 and 7.16.
Q.7.14 Modify and rerun Example 7.3 for the case Heq(z) = H1(z) + H2(z), as indicated in the

block diagram of Figure 7.30.

FIGURE 7.29
Plots of y(t) of Example 7.12.

10

9

8

7

6

5

4

3

2

0 0.5 1.5 2.5 3.5 4.521 3 4 5

Solution of y(t), with y(0) =10, for 0< t<5

y(
t)

t

CRC_47744_Ch007.indd 510CRC_47744_Ch007.indd 510 6/27/2008 4:56:09 PM6/27/2008 4:56:09 PM

Polynomials and Calculus, a Numerical and Symbolic Approach 511

Q.7.15 Compare the output y obtained in Q.7.14 with the result obtained for Example 7.3
(y(n)), shown in Figure 7.15.

Q.7.16 Compare the outputs y1 and y2 shown in Figure 7.15. What are the main similarities
and differences?

Q.7.17 Compare the transfer function H1(z) with H2(z), and state similarities and
differences.

Q.7.18 Is it possible to approximate H1(z) in terms of H2(z)?
 If it is, how can it be done?
Q.7.19 Modify and rerun Example 7.3 for the case H(z) = H1(z) * H2(z).

Q.7.20 Is it possible to predict the system output of Q.7.19 based on the results obtained in
the Example 7.3?

Q.7.21 Modify script fi le Example73.m to generate the outputs y1, y2, and y for n = 50, 100,
300, 500, and 1000.

Q.7.22 Load and run Example 7.4.
Q.7.23 Rerun Example 7.4 without the semicolons, and place brief descriptive comment

(%) at the end of each line of the program.
Q.7.24 What is the purpose of the command tf2zp(pH, qH)?
Q.7.25 Analyze the function magpole = abs(p), and evaluate by hand the values for magpole.
Q.7.26 Describe the function zplane(pH, qH).

Q.7.27 Discuss the objective and meaning of the graph shown in Figure 7.17 (z-plane).
Q.7.28 Draw and estimate the numerical values of magpole (magnitude and direction)

shown in Figure 7.17.
Q.7.29 Compare the function residuez with zp2tf.
Q.7.30 Modify and rerun Example 7.4 using the function roots to determine the poles and

zeros of H(z).

Q.7.31 What is the relation between the stability of a discrete system and the unit circle in
the z-plane?

Q.7.32 What is meant by a stable system?
Q.7.33 Are the poles of H(z) inside the unit circle? Indicate which ones are inside and

which ones are outside. Discuss why they are relevant and their implications.
Q.7.34 Load and run Example 7.5.
Q.7.35 Discuss the purpose of the function residuez.
Q.7.36 What is meant by residues of H(z)?
Q.7.37 Describe the purpose of the function impz(p, q, n).
Q.7.38 Describe the purpose of the function deconv(p, q) and its corresponding output.
Q.7.39 Load and run Example 7.6.
Q.7.40 Determine the total number of points used in the subplot(2, 2, 1).

FIGURE 7.30
Block diagram of Q.7.14.

x(n) Heq(z) = H1(z) + H2(z) y(n)

CRC_47744_Ch007.indd 511CRC_47744_Ch007.indd 511 6/27/2008 4:56:09 PM6/27/2008 4:56:09 PM

512 Practical MATLAB® Basics for Engineers

Q.7.41 Determine the number of points used in the subplot(2, 2, 2).
Q.7.42 Describe the approximations used in Example 7.6.
Q.7.43 Defi ne the linear, quadratic, and cubic polynomial approximations, and indicate

which one is the “best” approximation.
Q.7.44 What is meant by “best” approximation?
Q.7.45 Describe and defi ne variable p1.
Q.7.46 Describe and defi ne variable p2.

Q.7.47 Describe the relations between the variables p1, p2, and p3.

Q.7.48 Load and run Example 7.7.
Q.7.49 Indicate the similarities and differences between the following set of instructions:

a. psums = p1 + p2 and psum = symadd(p1, p2)
b. psubs = p1 − p2 and psub = symsub(p1, p2)
c. pdivs = deconv(p1, p2) and pdiv = symdiv(p1, p2)
d. pprods = conv(p1, p2) and pprod = symmul(p1, p2)

Q.7.50 Indicate if the instruction symdiv(p1/p2) returns the result you expected.
Q.7.51 Compare and indicate the differences between the MATLAB functions roots, factor,

and solve.

Q.7.52 Indicate and discuss the purpose(s) of converting a symbolic polynomial expres-
sion into a row numerical array.

Q.7.53 Defi ne and discuss the main purpose of integration.
Q.7.54 Repeat question Q.7.53 for the case of differentiation.
Q.7.55 What is the purpose of using a symbolic variable, and when should a symbolic

variable be used?
Q.7.56 Load and run Example 7.8.
Q.7.57 What is meant by “surface area”?
Q.7.58 Repeat question Q.7.57 for “length of a curve.”
Q.7.59 Replace variable y by x and x by y, and rerun Example 7.8. Indicate the outputs and

discuss their meaning and implication.
Q.7.60 Load and run Example 7.9.
Q.7.61 Compare the analytical solutions with the MATLAB solutions.
Q.7.62 Load and run the couple fi rst-order DEs of Example 7.10.
Q.7.63 Determine the total number of variables used to defi ne the set of DEs.
Q.7.64 Determine and discuss the number of ICs required to obtain a unique solution.

Generalize for any given set of different equations.
Q.7.65 Compare the solutions shown in Figures 7.26 and 7.27.
Q.7.66 Obtain error plots of y1 and y2, between ode23 and ode45.
Q.7.67 Solve the given set of DEs using the numerical solvers ode113 and ode23tb.
Q.7.68 Compare the solutions obtained.
Q.7.69 Load and run Example 7.11.
Q.7.70 Rerun Example 7.11 using numerical techniques and compare the result with the

symbolic solutions.

CRC_47744_Ch007.indd 512CRC_47744_Ch007.indd 512 6/27/2008 4:56:09 PM6/27/2008 4:56:09 PM

Polynomials and Calculus, a Numerical and Symbolic Approach 513

Q.7.71 Load and run Example 7.12.
Q.7.72 Rerun Example 7.12 using ode solvers numerical techniques and compare the result

with the symbolic solution.
Q.7.73 Obtain an error plot by comparing the numerical solution with the system solution.

7.6 Application Problems

P.7.1 Given the polynomial y = x5 + x4 + x2 − 2x + 2, write a MATLAB program that
a. Defi nes 100 Cartesian rectangular coordinate points for y over the range −2 ≤

x ≤ 2

b. Determines the roots of y
c. Returns the plot y(x) versus x over the following ranges:

 i. −2 ≤ x ≤ + 2
ii. −5 ≤ x ≤ + 10

d. Use the function polyfi t to approximate y with the polynomials of degree n, for
n = 1, 2, 3, 4, and 5

e. Returns the plots for each approximation and compares each approximation at
the points <x(1), y(1)> <x(10), y(10)>, <x(20), y(20)>, <x(30), y(30)>, <x(40), y(40)>,
and <x(100), y(100)>

f. Using the roots (obtained in part b), reconstruct the polynomial y
g. Verify if the roots of y(x) are

 x1 = −1.8182

 x2,3 = −0.2775 ± 1.206i

 x4,5 = 0.6866 ± 0.4966i

P.7.2 Let y(x) = x3 + 2x2 − 5x − 6.
a. Verify by hand that the roots of y are x = −1, −3, and +2

b. Write a MATLAB program that returns the roots of y by employing symbolic
and numerical techniques, and compare the results obtained

c. Verify the results of part b by using Descarte’s rule of signs
P.7.3 The polynomials y(x) and z(x) are given as follows:

 y(x) = −4x7 + x3 − x2 − 1

 z(x) = −2x6 + x4 + 5

 Write a MATLAB program that performs the following operations:
a. A = y + z
b. B = y − z
c. C = z − y
d. D = y * z
e. E = y/z

CRC_47744_Ch007.indd 513CRC_47744_Ch007.indd 513 6/27/2008 4:56:10 PM6/27/2008 4:56:10 PM

514 Practical MATLAB® Basics for Engineers

f. The roots of y and z
g. The roots of D
h. Compare and discuss the results obtained in parts f and g

P.7.4 Let y(x) = x8 + 7x7 − 5x3 + 2x − 2.
 Write a MATLAB program that returns

a. The remainder when y(x) is divided by x + 1
b. The value of y evaluated at x = −1, +1, and 0

P.7.5 Given y(x) = x5 + 3x4 − 2k + 2, determine the numerical value for k such that x − 2
is a factor of y.

P.7.6 Verify using MATLAB that (x + a) is a factor of x2n − a2n for any arbitrary n. Test
your program for a = 3 and n = 2.

P.7.7 Verify using MATLAB that (x − a) is a factor of xn − an for any natural n. Test your
program for a = 5 and n = 10.

P.7.8 Given y(x) = x4 + x3 − 13x2 − x + 12.
a. Verify using MATLAB that all the roots of y are in the range −1 ≤ x ≤ 3

b. Plot y(x) versus x, over the range −1 ≤ x ≤ 3, and indicate with a “*” the location
of all the roots.

P.7.9 Given the polynomial y(x) = 3x4 − 16x3 + 18x2 − 12x − 24.
a. Verify that x = 2, is the root of y with multiplicity 3
b. Verify that the gain is 3
c. Verify that the forth root is −1

P.7.10 Construct using MATLAB a polynomial having the following roots:

 −2, +2, −1, +1, ± 3i

P.7.11 Construct a fourth-degree polynomial having the following roots:

 −2 with a multiplicity of 3, and 0 with multiplicity 1.

P.7.12 Construct a polynomial having the following roots:

 −1 ± i, 2 ± i, and 3 ± √
__

 2

P.7.13 Given the xy Cartesian rectangular coordinate points shown in Table 7.2, determine
and plot the polynomial function that best approximates y in terms of x, and evalu-
ates the largest error over the range −3 ≤ x ≤ 4 at the given points.

TABLE 7.2

Cartesian Coordinates for P.7.13

x −3 −2 −1 0 1 2 3 4
y 0 −3 1 0 −1 −0 −2 −4

CRC_47744_Ch007.indd 514CRC_47744_Ch007.indd 514 6/27/2008 4:56:10 PM6/27/2008 4:56:10 PM

Polynomials and Calculus, a Numerical and Symbolic Approach 515

P.7.14 Given the xy Cartesian rectangular coordinate points shown in Table 7.3.
a. Approximate y with linear, quadratic, and cubic equations
b. Which approximation of part (a) is the “best”?
c. Determine the roots of y for the best approximation
d. Using the cubic approximation, plot y(x) versus x as a continuous function over

the domain −6 ≤ x ≤ 1 using 100 points, and indicate on the plot the data points
as well as the approximation.

TABLE 7.4

Cartesian Coordinates for P.7.15
x 0 1 −1 2 −2
y 1 −1 3 3 −1

TABLE 7.3

Cartesian Coordinates for P.7.14

x −3 √
__

 2 − √
__

 2 −6 −1 2 −2 1
y 0 1.5 1 0 −2 1 2 −4

P.7.15 Repeat P.7.14 for the set of points shown in Table 7.4.

P.7.16 Given the following analog transfer function:

H s

s s
() �

�3 7s
2 2 3� �

Use MATLAB to
a. Determine the poles, zeros, and gain of H(s)
b. Decompose H(s) into partial fractions expansion
c. From the poles, zeros, and gain reconstruct H(s)
d. From the partial fractions expansion reconstruct H(s)

e. Obtain the plot H(s) versus s, over the range 0 ≤ s ≤ 10, using 100 points
f. Obtain the following plots:
 i. H1(s) = 4/(s−3) versus s

 ii. H2(s) = −1/(s + 1) versus s

 iii. [H1(s) + H2(s)] versus s

 g. Compare the plot s of [H1(s) + H2(s)] versus s, with H(s) versus s. Discuss.
P.7.17 Given the following analog transfer function:

H s

s s
() �

5 15 11
(1)(2) (1)(1)

2

2 2

s s
s s s s

� �

� �

� �

� �

5 15 112

CRC_47744_Ch007.indd 515CRC_47744_Ch007.indd 515 6/27/2008 4:56:10 PM6/27/2008 4:56:10 PM

516 Practical MATLAB® Basics for Engineers

 Write a MATLAB program that
a. Proves that the partial fraction expansion of H(s) is given by

H s() �

�

�
�

�

�
�

�
�

�

�

1 3
1

7
2

4
2

1 3
23 2

/
() () ()

/
s s s s

b. Plots H(s) versus s, and each one of the terms of the partial fraction expansion
of H(s)

c. Determines the poles, zeros, and residues of H(s)
d. Evaluates H(s) for s = 0, s = 5, s = 10, and s = 100

P.7.18 The block box diagram of a feedback control system is shown in Figure 7.31.
 The transfer function of the preceding system is

H s

G s
()

()
� �

y s
x s R s G s

()
() 1 () * ()�

 Use MATLAB to evaluate the following:
a. The coeffi cient of the numerator and denominator of H(s)
b. The poles, zeros, and gain of H(s)
c. Analyze the stability of the system (for a system to be stable the poles must be

on the left half of the complex plane, which means that the real part of the poles
must be negative) by plotting the poles of H(s)

d. The system transfer function by using the command tf
e. The system state–space equations

P.7.19 For the functions defi ned in the following:

 f(x) = 1 + 3sin(x)

y x

x
x

() �
�

�
1

2

 z(x) = log(x) + 3 tan(x)

a. Create the symbolic expressions for f, y, and z
b. Determine the expression y(f(x))
c. Verify part b
d. Evaluate f + y
e. Evaluate f* y * z

f. Determine the expressions of the numerator and denominator of part e

FIGURE 7.31
System diagram of P.7.18.

G(s) =
s2 + 10s + 4

s + 2
+

x(s)

R(s) =
10

10

+s

+

–

y (s)

CRC_47744_Ch007.indd 516CRC_47744_Ch007.indd 516 6/27/2008 4:56:10 PM6/27/2008 4:56:10 PM

Polynomials and Calculus, a Numerical and Symbolic Approach 517

g. Obtain an expression for df(x)/dx

h. Evaluate dy(x)/dx, at x = 0

i. Evaluate ∫ 0
1
 y(x) dx

j. Obtain an expression for dz(x)/dx

k. Evaluate ∫ 0
2π

 f(x) dx

l. Verify the result obtained in part k by numerical means
P.7.20 Given the following set of linear equations:

 3x + 4y = 18

 x − 3y = −7

a. Verify by hand calculations that x = 2, and y = 3 are the solutions
b. Solve graphically the given set of equations over the range 0 ≤ x ≤ 5

c. Use symbolic techniques to evaluate the solution of the given equations
d. Repeat part c, using matrix algebra

P.7.21 Repeat P.7.20 b, c, and d for the following set of equations:

 2x − 5y = −11

 x + y = 5

P.7.22 Given the following set of equations:

 2x2 − 3xy + y2 = 15

 x2 − 2xy + y2 = 9

 x = −2xy

 solve for x and y, and verify that x = ±2 and y = ±1.
P.7.23 Use MATLAB to verify the following identities:

a. 16 − x4 = (4 + x2) ⋅ (2 + x) ⋅ (2 − x)
b. x4 − 36 = (x2 + 6) ⋅ (x2 − 6)
c. 6x3 + 24x2 − 72x = 6x ⋅ (x −2) ⋅ (x + 6)
d. 7x3 − 49x2 − 420 = 7x ⋅ (x + 5) ⋅ (x − 12)
e. 2x2 − 315x − 5500 = (2x − 275) ⋅ (x − 20)

P.7.24 The following program corresponds to the analysis of a discrete system. The result-
ing plots are shown in Figure 7.32.

>> n = 0:0.2:200;
>> x1= 5*cos(5*pi*n/256);
>> x2 = 3*cos(50*pi*n/256);
>> x = x1+x2;
>> p1= [0.6 0.3 0.8];
>> y1 = filter(p1,1,x);
>> p2 = [0.5 0.55 0.48];
>> q2 = [1 -0.6 0.48];
>> y2 = filter(p2,q2,x);
>> y = y1+y2;
>> subplot(2,2,1)
>> plot(n,x), grid on
>> ylabel(‘Amplitude’), title(‘Input sequence’)

CRC_47744_Ch007.indd 517CRC_47744_Ch007.indd 517 6/27/2008 4:56:10 PM6/27/2008 4:56:10 PM

518 Practical MATLAB® Basics for Engineers

>> subplot(2,2,2)
>> plot(n,y1), grid on, ylabel(‘Magnitude’), title(‘Output y1’)
>> subplot(2,2,3)
>> plot(n,y2), grid on, xlabel(‘Index n’)
>> ylabel(‘Magnitude’), title(‘Output y2’)
>> subplot(2,2,4)
>> plot(n,y), grid on, xlabel(‘Index n’)
>> ylabel(‘Magnitude’), title(‘Output y’)

FIGURE 7.32
The system input and output plots of P.7.24.

10

5

0

−5

−10
0 50 100 150 200

20

10

0

−10

−20
0 50 100 150 200

20

10

0

−10

−20
0 50 100 150 200

40

20

0

−20

−40
0 50 100 150 200

Index nIndex n

Output y2 Output y

Output y1Input sequence

M
ag

ni
tu

de

M
ag

ni
tu

de
M

ag
ni

tu
de

A
m

pl
itu

de

a. Draw a block box diagram representation of the system, and clearly indicate
inputs, outputs, and transfer function

b. Draw a fl owchart of the program
c. What are the main frequencies present in the system?
d. What does the system do?
e. Do you agree with the choice of variables and commands used?

P.7.25 a. Express the following series using symbolic commands.

sum1 � � � � � �1

1
2

1
3

1
4

1
n

�

 sum2 = 1−2 + 2−2 + 3−2 + 4−2 + 5−2 + … + n−2

 sum3 = exp(−1) + exp(−2) + exp(−3) + … + exp(−n)

CRC_47744_Ch007.indd 518CRC_47744_Ch007.indd 518 6/27/2008 4:56:10 PM6/27/2008 4:56:10 PM

Polynomials and Calculus, a Numerical and Symbolic Approach 519

*sum4 1� � � � � �

2
2!

3
3!

4
4!

L
n
n!

*

sum5 0.3� � � � � �

() ())) ()� � � � �0.3
1!

0.3
2!

0.3
3!

0.3
4!

0.32 3 4 5 6((
55!

0.3
n!

n
�

()�

b. Obtain for each series a numerical value for the fi rst 20 terms
c. Evaluate the sums of the preceding series over the range 15 ≤ n ≤ 25

P.7.26 Find the derivatives with respect to t, for each of the following functions:
a. y1(t) = 2t + 2
b. y2(t) = 3t2 + 2t + 5
c. y3(t) = t4 + log(t) + 4

P.7.27 Find the value of the slope or the tangent line for the following functions:
a. y1(t) = 3t2 + 2t − 7, at t = 0
b. y2(t) = 3t3 + 2t2 − 6t + 3, at t = 1.2

P.7.28 Obtain the expressions of the derivative with respect to t, of the following
functions:
a. f1(t) = cos(t) − tan(t)

b. f2(t) = cos(t) − sin(t)

c. f3(t) = e(sin(t))

d. f4(t) = tan(√

 t2 − 1)
e. f4(t) = 3cos(3t + pi/3)

P.7.29 Evaluate by hand and by using MATLAB the following limits:

a. F t
t a

1 2� �lim
�

�[]

b. F t t t
t a

2
3 22 3 4� � � �lim

�
 

c. F
t
tt a

3

2 9
3

�
�

�
�lim

�







P.7.30 Perform the following integrals and plot the results over the range 0 ≤ t ≤ 3, for
each of the following expressions:

a. t dt3∫
b.

3 2t dt∫

c.

()1 2� t dt∫
d.

log ()2 t dt∫

* The gamma function may be used, defi ned by gamma(x) = 1*2*3*4…(x − 1) = (x − 1)!

CRC_47744_Ch007.indd 519CRC_47744_Ch007.indd 519 6/27/2008 4:56:10 PM6/27/2008 4:56:10 PM

520 Practical MATLAB® Basics for Engineers

P.7.31 Evaluate by hand and by using MATLAB, the following defi nite integrals:

a.

t dt3
0

4

∫

b.

()t t dt2
10

1
2 3� �

�∫

c.

t dt
�1

2

∫

d.

cos ()2
0

2
2t dt∫

P.7.32 Given the functions

 g(x) = x5 + 4x3 + 2x2 + 3x − 5

 and

 y(x) = x3 + 3x2 + x − 4

 use MATLAB and evaluate the following expressions:
a. g(x) * y(x)
b. g(x)/y(x)
c. g(x)|x=pi

d. ∫ 0
1
 g(x) dx

e. ∫ −1
0
 y (x) dx

f. (d/dx)g(x)
g. (d/dx)y(x)
h. (d3/dx3)y(x)

P.7.33 Use MATLAB (symbolic) to obtain the series expansion of the following
expressions:
a. tan(2x)

b. cos(3x)

c. sin−1(4x)

P.7.34 Simplify the resulting expressions obtained in parts a, b, and c of P.7.33 and arrange
the expressions in a nested format.

P.7.35 Given the symbolic matrix A, shown as follows:

A

a b

a b a b

b b a b

�

1

1 1

2 2 *
/ / /

















 evaluate the following:
a. A−1

b. det(A)

c. eig(A)

d. diag(A)

CRC_47744_Ch007.indd 520CRC_47744_Ch007.indd 520 6/27/2008 4:56:11 PM6/27/2008 4:56:11 PM

Polynomials and Calculus, a Numerical and Symbolic Approach 521

P.7.36 Verify that the general solution [y2(t)] for the DE

d y
dx

e t y t e t At Bt t
2

2
2

2
42 3 2 4� � � � � �is () (/)

P.7.37 Given the following DE:

d
dt

y t
d
dt

y t y t y y
2

2
2 5 0 0 1 0[()] [()] () () ()� � � �with IC given by

i
�� 2

a. Verify that the roots of the characteristic equation are s1,2 = −1 ± 2i

b. Verify that the general solution is of the form y(t) = Ae−t cos(2t) + Be−xsin(2t)

c. Solve for the constants A and B
P.7.38 Given the following DE:

d
dt

y t
d
dt

y t y t
2

2
2 0[()] [()] ()� � �

a. Verify that the roots of the characteristic equation are s1 = −1 and s2 = 2
b. Verify that the general solution is of the form y(t) = Ae−t + Be2t

c. Solve for the constants A and B if y(0) = 2 and y
i
()0 3�

P.7.39 Show that the general solution [y2(t)] of the DE

d
dt

y t y t y t Ae Bet t
2

2 2
4 416 0[()] () ()� � � � �is

P.7.40 Obtain the analytic and the MATLAB solutions for the following DE:

d
dt

y t
d
dt

y t y t
2

2
5 24[()] [()] ()� � �

P.7.41 Find the complete solution to the following DE:

dy
dt

y� �
5
3

10

 with the IC given by y = 5, at t = 0.
P.7.42 Find the general solutions for the following DEs:

a. (t+3) dy = y2 dt

b. d y
dx

y
2

2
25 0� �

P.7.43 Solve the following DE:

dy t
dt

y t te t()
()� � 2 2

 with the IC given by y(0) = 3

CRC_47744_Ch007.indd 521CRC_47744_Ch007.indd 521 6/27/2008 4:56:11 PM6/27/2008 4:56:11 PM

522 Practical MATLAB® Basics for Engineers

a. Using a numerical approach
b. Using a symbolic approach
c. Plot the solutions of parts a and b, over the range 0 ≤ t ≤ 2

d. Compare the solutions of parts a with part b by means of an error plot
P.7.44 Let

2 3 9 0

d
dt

y t y t t() ()� � �

 with the IC given by y(0) = 20.
a. Verify by hand and by using MATLAB that the solution of the preceding DE is

y(t) = −44e1.5t −3t

b. Solve the given DE by using the following solvers: ode23, ode45, and ode113, and
plot the solutions over the range 0 ≤ t ≤ 2

c. Repeat part b, using the symbolic function dsolve

d. Compare the result of parts b with c
P.7.45 Let

20 6 3 7 2 5 3

2

2

d
dt

y t
d
dt

y t y t() . () . sin()� � �

 be a system DE.
a. Identify the input and output system variables
b. Obtain the state–space system equations
c. Obtain its system transfer function
d. Obtain its discrete state–space model, for Ts = 0.5, 1.0, and 1.5

e. Obtain the impulse time plot response for the continuous and discrete systems
P.7.46 Repeat problem P.7.45 for the following system equation:

6 3 18 100 3 4 2

3

3

2

2

d
dt

y t
d
dt

y t
d
dt

y y t t() () () cos()� � � � �

CRC_47744_Ch007.indd 522CRC_47744_Ch007.indd 522 6/27/2008 4:56:11 PM6/27/2008 4:56:11 PM

523

8
Decisions and Relations

Good judgment comes from experience. And where does experience come from?
 Experience comes from bad judgment.

Mark Twain

8.1 Introduction

MATLAB® executes the instructions in the same sequence as they are input. The fi rst
instruction is executed fi rst, the second instruction is executed second, and so on, and the
last instruction is executed last. In this chapter, MATLAB commands, which will allow a
program to change the normal execution sequence, are introduced. The fl ow control in a
MATLAB program can be altered by relations, logical expressions, and branching instruc-
tions. As a result, a computer program can execute different sequences of instructions
depending on the condition set. Relational and logical operations allow the comparison
of variables, and based on their results the transfer and selection of a pathway to satisfy a
particular condition can be accomplished. For example, if statement A is true, then the pro-
gram executes the instructions B, C, and D, but if not, then the program executes instruc-
tions E, F, and G instead.

Recall that MATLAB returns a 1 (one) if a statement is found to be true, otherwise
 MATLAB returns a 0 (zero). MATLAB supports the traditional branching commands uni-
versally used in other high-level programming languages (such as Fortran and Basic) as
well as the standard logical operations that may be used to control the fl ow of the instruc-
tions that make up a program.

8.2 Objectives

After completing this chapter, the reader should be able to

Know the meaning and syntax of the standard relations
Know the meaning and syntax of standard logical operations
Know the hierarchy of logical, relational, and arithmetic operations
Perform relational and logical algebra on vectors, matrices, and scalars
Work with and evaluate logical variables, logical relations, and logical expressions
Know the meaning and syntax of the conditional branching instruction such as
for-end, while-end, if-end, and switch-end

•
•
•
•
•
•

CRC_47744_Ch008.indd 523CRC_47744_Ch008.indd 523 7/13/2008 10:46:36 AM7/13/2008 10:46:36 AM

524 Practical MATLAB® Basics for Engineers

Compare strings with substrings
Locate and replace a string in a string by another string
Use the experience gained with the decision and relation commands to solve
a variety of problems in diverse areas such as economics, mathematics, and
engineering

8.3 Background

R.8.1 In addition to the arithmetic operations, MATLAB also allows the use of the stan-
dard mathematical relations such as larger than, equal to, etc.

The relational characters are defi ned in Table 8.1.
R.8.2 When a comparison is executed using relational operators the possible outcomes

are 1 if the relation is true and 0 otherwise (if false).
R.8.3 The MATLAB relational operations follow the syntax C = A relation B, where C

takes the value of 1 or 0, depending on the outcome of the condition set by the
 relation. In its simplest form, the arguments for A and B can be constants or arrays.

R.8.4 If the relational arguments consist of two arrays A and B, then A and B must
 necessarily have the same size. If A is an array and B is a scalar, the relation is used
to compare each element of A with B, and MATLAB returns the binary matrix C
indicating the result of the relation, where C has the same dimension as A.

R.8.5 For example, let the relational arguments be A = 5 and B = 1, then Table 8.2 shows
the commands and its corresponding output C for C = A relation B.

R.8.6 Examples showing relational commands for the case where the arguments, A and B
are vectors, are illustrated in Table 8.3, for A = [0 1 2 3] and B = [−1 2 1 3].

•
•
•

TABLE 8.1

Algebraic Relational Characters

Relational Symbol Description

> Greater than
< Less than
== Equal to
>= Greater than or equal to
<= Less than or equal to
∼== Not equal to

TABLE 8.2

Relations Involving Constants

Input Output

C = 5>1 C = 1
C = 5==1 C = 0
C = 5<1 C = 0
C = 5∼=1 C = 1
C = 5>=1 C = 1
C = 5<=1 C = 0

TABLE 8.3

Relations Involving Vectors

Input Output

C = A>B C = [1 0 1 0]
C = A==B C = [0 0 0 1]
C = A<B C = [0 1 0 0]
C = A∼=B C = [1 1 1 0]
C = A>=B C = [1 0 1 1]
C = A<=B C = [0 1 0 1]

CRC_47744_Ch008.indd 524CRC_47744_Ch008.indd 524 7/13/2008 10:46:37 AM7/13/2008 10:46:37 AM

Decisions and Relations 525

R.8.7 Relational operations can also be used to compare two matrices provided they have
the same dimensions. For example, let

A B� �

1 2
3 4

1 0
5 2



















and

 Write a short program that returns
a. The matrix C with the information that indicates if the elements in A are greater

than the corresponding elements in B.
b. The matrix D with the information that indicates if the elements in A are equal

to the corresponding elements in B. Observe that the relations are performed on
the individual elements of A and B according to their location, that is, A(n, m)
with respect to B(n, m), for all possible n and m (n = 1, 2… and m = 1, 2…).

MATLAB Solution
>> A = [1 2; 3 4];
>> B = [1 0; 5 2];
>> C = A>B

 C =
 0 1
 0 1

>> D = A==B

 D =
 1 0
 0 0

R.8.8 Recall that relational operators can also be used to compare an array with a scalar.
For example, let

A �

1 2
3 4











 Then write a program that returns
a. The matrix B with the information that indicates if each element of A is greater

than 2
b. The matrix C with the information that indicates if each element of A is

negative
c. The matrix D with the information that indicates if each element of A is equal to 2

MATLAB Solution
>> A = [1 2; 3 4];
>> B = A>2 % part (a)

 B =
 0 0
 1 1

CRC_47744_Ch008.indd 525CRC_47744_Ch008.indd 525 7/13/2008 10:46:38 AM7/13/2008 10:46:38 AM

526 Practical MATLAB® Basics for Engineers

>> C = A<0 % part (b)

 C =
 0 0
 0 0

>> D = A==2 % part(c)

 D =
 0 1
 0 0

R.8.9 Let us consider now an example using vectors. Let

A = [−5 −4 −3 −2 −1 0 1 2 3 4 5]

 and

B = [−1 1 −1 1 −1 1 −1 1 −1 1 −1]

 Write a MATLAB program that returns
a. An array C with the information indicating if the elements in A are greater than

the elements in B
b. An array D with the information indicating if the elements in A are equal to the

corresponding elements in B
c. An array E with the information indicating if the elements in A are smaller than

the elements in B
d. An array F with the information indicating if the elements in B are positive
e. An array G with the information indicating if the elements in A are greater or

equal to 5

MATLAB Solution
>> A = -5:5

 A =
 -5 -4 -3 -2 -1 0 1 2 3 4 5

>> B = (-1).̂ A

 B =
 -1 1 -1 1 -1 1 -1 1 -1 1 -1

>> C = A>B % part (a)

 C =
 0 0 0 0 0 0 1 1 1 1 1

>> D = A==B % part (b)

 D =
 0 0 0 0 1 0 0 0 0 0 0

CRC_47744_Ch008.indd 526CRC_47744_Ch008.indd 526 7/13/2008 10:46:38 AM7/13/2008 10:46:38 AM

Decisions and Relations 527

>> D = A<B

 D =
 1 1 1 1 0 1 0 0 0 0 0

>> E = A<B % part (c)

 E =
 1 1 1 1 0 1 0 0 0 0 0

>> F = B>0 % part (d)

 F =
 0 1 0 1 0 1 0 1 0 1 0

>> G = A>=5 % part (e)

 G =
 0 0 0 0 0 0 0 0 0 0 1

R.8.10 It is possible to combine arithmetic and operational relations in one compact
format.

R.8.11 For example, analyze the following program:

>> A = 1:10;
>> B = (-2) .̂ A;
>> C = B>=A;
>> result1 = A-C

 result1 =
 1 1 3 3 5 5 7 7 9 9

 The last two lines of the preceding program can be compressed into one coded line
by combining the arithmetic and relational operators as indicated in the following
by the variable result2.

>> result2 = A- (B>=A)

 result2 =
 1 1 3 3 5 5 7 7 9 9

R.8.12 Relational operators can also be used when the arguments are characters.
For example, write a program that compares whether the character A is greater

than character B.

MATLAB Solution
>> X = ‘A’;
>> Y = ‘B’;
>> Z = X>Y
 Z =
 0

 MATLAB performs a quantitative relation by converting the characters A and B
into its ASCII code* representation.

* Recall that the ASCII code converts a character into a binary coded sequence. See Chapter 3 for additional
information about the ASCII code.

CRC_47744_Ch008.indd 527CRC_47744_Ch008.indd 527 7/13/2008 10:46:38 AM7/13/2008 10:46:38 AM

528 Practical MATLAB® Basics for Engineers

R.8.13 MATLAB can be used to compare strings of characters. The MATLAB function
C = strcmp(x, y) compares the characters of the string x with the corresponding
characters of the string y and returns the binary vector C in which the elements
C(n) = 1 (true) if the element x(n) is identical to the element y(n), for n = 1, 2,…
length(x), otherwise the element C(n) = 0 (false). This function is case sensitive. Recall
also that a blank (or a space) in ASCII is a character, like any other character.

R.8.14 The MATLAB function stcmpi(x, y) is similar to strcmp(x, y) but is not case sensitive.
R.8.15 The MATLAB function C = strncmp(x, y, n) compares only the fi rst n characters

of the strings x with the corresponding elements of the string y and returns the
 element C(n) = 1, if x(n) = y(n), otherwise MATLAB returns the element C(n) = 0,
for all possible values of n. This function is case sensitive.

R.8.16 The MATLAB function strncmpi(x, y, n) is similar to strcmp(x, y, n) function, but is
not case sensitive. The following examples illustrate the different modalities of the
comparison commands just presented.

R.8.17 Let string A = ’Matlab’ and string B = ’MATLAB.’
Write a set of MATLAB commands that compares the strings A with B using

a. strcmp

b. strcmpi

c. strncmp for the fi rst 2 characters, n = 2

d. strncmpi for the fi rst 2 characters, n = 2

MATLAB Solution
>> A = ‘Matlab’;
>> B = ‘MATLAB’;
>> C = strcmp(A,B), % part (a) , case sensitive

 C =
 0

>> D = strcmpi(A,B), % part(b), not-case sensitive

 D =
 1

>> E = strncmp(A,B,2), % part(c), compares the first 2 characters,
 >> % case sensitive

 E =
 0

>> F = strncmpi(A,B,2), % part(d), compares the first 2 characters,
>> % not-case sensitive

 F =
 1

R.8.18 Two strings x and y can be compared by using the relational symbols defi ned in
Table 8.1. For example, perform the following comparisons using the strings A and
B defi ned in R.8.17 and the appropriate relational statements:
a. A = B
b. A > B

CRC_47744_Ch008.indd 528CRC_47744_Ch008.indd 528 7/13/2008 10:46:38 AM7/13/2008 10:46:38 AM

Decisions and Relations 529

 Observe and verify their responses.

MATLAB Solution
>> A = ’MatlaB’;
>> B = ’MATLAB’; % part (a)
>> C = A==B % observe that the relational ==is case sensitive

 C =
 1 0 0 0 0 1

>> D = A>B % part (b), according to the ASCII values for
>> % A(i) and B(i), for i=1,2,3,4,….6

 D =
 0 1 1 1 1 0

R.8.19 The MATLAB command B = lower(A) assigns to the variable B consisting of the
 corresponding uppercase characters of A converted to lowercase characters,
whereas all the lowercase characters of A remain unchanged.

R.8.20 The MATLAB command B = upper(A) assigns to the variable B consisting of the
 lowercase characters of A converted to uppercase characters, whereas all the upper-
case characters of A remain unchanged.

R.8.21 For example, let A = ’MaTlaB’ and B = ’mAtLaB.’
Use MATLAB and perform the following:

a. Convert string A to uppercase characters
b. Convert string B to lowercase characters
c. Verify if upper(A) is equal to upper(lower(B))

MATLAB Solution
>> A =’MaTlaB’ , B =’mAtLaB’

 A =
 MaTlaB
 B =
 MAtLaB

>> UPPER _ CASE = upper(A) % part (a)

 UPPER _ CASE =
 MATLAB

>> lower _ case = lower(B) % part (b)

 lower _ case =
 matlab

>> C = UPPER _ CASE==upper(lower _ case) % part (c)

 C =
 1 1 1 1 1 1

CRC_47744_Ch008.indd 529CRC_47744_Ch008.indd 529 7/13/2008 10:46:38 AM7/13/2008 10:46:38 AM

530 Practical MATLAB® Basics for Engineers

R.8.22 The MATLAB function fi ndstr (string, ‘fi nd’) returns the positions of the substring
‘fi nd’ given the string string. For example, identify the locations of the single charac-
ter ‘a’ in the string ‘Matlab.’

MATLAB Solution
>> X = ‘Matlab’;
>> locations _ of _ a = findstr(X,’a’)

 locations _ of _ a =
 2 5

R.8.23 The MATLAB function newstring = strrep (‘a’, ‘b’, ‘c’) replaces the string ‘b’ in string
‘a’ by string ‘c.’

R.8.24 For example, replace the string ‘atla’ by the string ‘ATLA’ in the string ‘Matlab.’

MATLAB Solution
>> X=’Matlab’;
>> Y= strrep (X,’atla’,’ATLA’)

 Y =
 MATLAb

R.8.25 MATLAB uses the standard logical operators of AND, OR, NOT, and X-OR on
arrays.

The syntax is defi ned in Table 8.4.
R.8.26 Recall that logic variables are binary consisting of ones and zero. Logic variables

may be connected using logical operators forming logic expressions. Recall that
logical as well as relational operators return a 1 when true and 0 otherwise.

R.8.27 Logical operations can be performed on logical variables and relational expres-
sions. Logic expressions can be best defi ned by means of a truth table.

R.8.28 A truth table is a table that relates any possible input to its corresponding output. A
truth table is an exhaustive form of defi ning an expression, relation, or a function
output in terms of its inputs.

R.8.29 Table 8.5 shows a summary of the truth tables of the standard logical MATLAB rela-
tions. Recall that the input variables A and B are binary in the sense that they are
either zero or not zero, where the nonzero elements are indicated by X in Table 8.5.

R.8.30 The command C = A&B returns the array C {where the size(A) = size(B) = size(C)}
with entries of ones when both A and B are nonzero elements, and zeros when
either A, B or both A and B are zero.

R.8.31 The command C = A|B returns the array C {where size(A) = size(B) = size(C)} with
entries of ones when either A, B or both A and B are nonzero, and zero when both
A and B are zero.

TABLE 8.4

Standard Logical Operators

Symbol Description of Operation

& AND
| OR
∼ NOT
Xor EXCLUSIVE OR

CRC_47744_Ch008.indd 530CRC_47744_Ch008.indd 530 7/13/2008 10:46:38 AM7/13/2008 10:46:38 AM

Decisions and Relations 531

R.8.32 The command C = ~A returns the array C, with the dimension of A, with entries
of ones when the elements of A are zeros, and zeros when the elements of A are
nonzero.

R.8.33 The command C = xor (A, B) returns the array C, with the dimension of A (or B)
{size(A) = size(B)}, with entries of ones when the elements of A and B are not equal
(0 and X or X and 0), and zeros when both the elements of A and B are equal (either
2 zeros or 2 Xs).

R.8.34 Examples of logical operations for the case when the arguments are vectors are illus-
trated in Table 8.6. Let A = [2 0 – 1 5] and B = [1 0 0 6]. Then, MATLAB returns the
array C after executing the commands indicated in the fi rst column of the Table 8.6.

R.8.35 Logical operations can also be used when the arguments do not have the same
dimensions, such as an array and a scalar.

R.8.36 For example, let

 A �
0 1
2 3









 and B = 1

 Execute the instructions indicated as follows and observe and verify their
responses
a. C = A & B

b. D = A/B

MATLAB Solution
>> A = [0 1;2 3];
>> B = 1;
>> C = A&B % part (a)

 C =
 0 1
 1 1

TABLE 8.5

Truth Table of the Standard Logical Operators*

Logical Variables A and B A or B A xor B Not A Not B

A B A&B A|B xor (A, B) ∼A ∼B

0 0 0 0 0 1 1
0 X 0 1 1 1 0
X 0 0 1 1 0 1
X X 1 1 0 0 0

* The character X indicates a nonzero element.

TABLE 8.6

Logical Responses for A = [2 0 −1 5], and B = [1 0 0 6]

Input Output

C = A&B C = [1 0 0 1]
C = A|B C = [1 0 1 1]
C = ∼(A&B) C = [0 1 1 0]
C = xor(A,B) C = [0 0 1 0]
C = ∼A C = [0 1 0 0]

CRC_47744_Ch008.indd 531CRC_47744_Ch008.indd 531 7/13/2008 10:46:38 AM7/13/2008 10:46:38 AM

532 Practical MATLAB® Basics for Engineers

>> D = A|B % part (b)

 D =
 1 1
 1 1

R.8.37 Observe that logical operations always return a binary vector, matrix, or scalar
(consisting of 1’s and 0’s). Observe also that the input arguments may not neces-
sarily be binary. Note that an array A may be connected by a logical operator to a
constant c resulting in an array output with the same dimensions of A in which the
logical operator of each element of A is evaluated with respect to c.

R.8.38 For example, let A = 1:10 and B = (−2).^A.
Write and execute the MATLAB statements that return

a. An array C that indicates the locations where A > 6 and B < 3

b. An array D that indicates the locations where A > 6 or B < 3

MATLAB Solution
>> A = 1:10

 A =
 1 2 3 4 5 6 7 8 9 10

>> B = (-2).̂ A

 B =
 -2 4 -8 16 -32 64 -128 256 -512 1024

>> C = (A>6)&(B<3)

 C =
 0 0 0 0 0 0 1 0 1 0

>> D = (A>6)|(B<3)

 D =
 1 0 1 0 1 0 1 1 1 1

R.8.39 Relational operators have a higher order of precedence than logical operators.
The hierarchy of arithmetic operations have been presented in Chapter 2.

These rules need to be extended at this point to include the relational and logical
 operations. Table 8.7 summarizes the hierarchy of the arithmetic, relational, and
logical operators.

Parentheses have the highest precedence of all the operators, and they can change
the hierarchy of the operators. When a set of operators have the same hierarchy,
then the hierarchy of the operators is from left to right.

R.8.40 Let us illustrate the logical and relational examples using vectors and arrays. For
example, let A = [2 0 −1 5] and B = [1 0 0 6]. Verify the responses indicated by C
if the input commands are given in the fi rst column of Table 8.8.

CRC_47744_Ch008.indd 532CRC_47744_Ch008.indd 532 7/13/2008 10:46:39 AM7/13/2008 10:46:39 AM

Decisions and Relations 533

R.8.41 Additional examples using relational and logical operations on arrays are illustrated
as follows:

let

 A �
1 0
2 5









 and B �

1 2
1 6











 Execute, observe, and verify the responses of each of the following commands:
a. C = A>B

b. D = A==B

c. E = −(A==B)

d. F = A&B

e. G = A|B

f. H = xor(A, B)

g. I = (A>B)|(A==B)

MATLAB Solution
>> format compact
>> A = [1 0; 2 5]

 A =
 1 0
 2 5

>> B = [1 2; 1 6]

 B =
 1 2
 1 6

TABLE 8.7

Operational Hierarchy

Operators Hierarchy

Arithmetic operators ^ , ’
* , /
+, −

Relational operators ==
∼=
>=
<
<=
>

Logical operators ∼
&
|
xor

TABLE 8.8

Examples for A = [2 0 −1 5], and B = [1 0 0 6]

Input Output

C = A>B C = [1 0 0 0]
C = A==B C = [0 1 0 0]
C = (A>B)&(A==B) C = [0 0 0 0]
C = (A>B)|(A==B) C = [1 1 0 0]
C = A<B C = [0 0 1 1]
C = (A<B)|(A==B) C = [0 1 1 1]
C = xor(A, B) C = [0 0 1 0]
C = xor((A>B), (A==B)) C = [1 1 0 0]
C = A&B C = [1 0 0 1]
C = ∼(A&B) C = [0 1 1 0]
C = ∼A&B C = [0 0 0 0]

CRC_47744_Ch008.indd 533CRC_47744_Ch008.indd 533 7/13/2008 10:46:39 AM7/13/2008 10:46:39 AM

534 Practical MATLAB® Basics for Engineers

>> C = A>B % part (a)

 C =
 0 0
 1 0

>> D = A==B % part (b)

 D =
 1 0
 0 0

>> E =-(A==B) % part (c)

 E =
 -1 0
 0 0

>> F = A&B % part (d)

 F =
 1 0
 1 1

>> G = A|B % part (e)

 G =
 1 1
 1 1

>> H = xor(A,B) % part (f)

 H =
 0 1
 0 0

>> I = (A>B)|(A==B) % part (g)

 I =
 1 0
 1 0

R.8.42 MATLAB provides, besides the standard logical relations, an additional number of
built-in logical functions (some were already introduced in previous chapters).

A brief summary of additional logical functions are presented in Table 8.9.
R.8.43 Let us consider an additional example. Let

A �

0 1 2
4 5 6
1 2 3� � �

















 X = [−3 −2 −1 0 1 2 3 ……. 8 9 10], Y = []

 and

 String = ‘ABC’

CRC_47744_Ch008.indd 534CRC_47744_Ch008.indd 534 7/13/2008 10:46:39 AM7/13/2008 10:46:39 AM

Decisions and Relations 535

 Execute, observe, and verify the responses after executing the following MATLAB
built-in logical functions:
a. all(X)

b. all(A)

c. all(Y)

d. C = ones(1, 14)./X; any(X)

e. isnumeric(A)

f. isempty(A)

g. isempty(Y)

h. isinf(A)

i. isfi nite(A)

j. isinf(C)

k. fi nd(A)

l. ischar(String)

MATLAB Solution
>> format compact.
>> A = [0 1 2; 4 5 6; -1 -2 -3]

 A =
 0 1 2
 4 5 6
 -1 -2 -3

>> X = -3:10

 X =
 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

TABLE 8.9

Built-In Logical Functions

Function Description

all(x) Returns a 1 if all the elements in the vector x are positive (x > 0) and 0 otherwise
any(x) Returns a 1 if any of the elements of the array x are nonzero
exist(x) Returns a 1 if the variable x exists
Isnumeric(x) Returns a 1 if x is a numeric array, 0 otherwise
ischar(x) Returns a 1 if x is a character array, 0 otherwise
isempty(A) Returns a 1 if A is an empty matrix, 0 otherwise
isnan(A) Returns a matrix with ones where the elements of the matrix A are NaN, and zero

otherwise
fi nd(A) Returns the nonzero elements of the matrix A. This function was defi ned and used in

Chapter 3
fi nite(A) Returns a matrix with ones when the elements of A are fi nite and zero otherwise
isfi nite(A) Returns a 1 if all the elements of the matrix A are fi nite
isinf(A) Returns a 1 or 0 for each element of the matrix A; 1 if the element is infi nite, 0 otherwise
isreal(a) Returns a 1 if a is real, 0 otherwise
isimag(a) Returns a 1 if a is imaginary, 0 otherwise
isletter(a) Returns a 1 if a is a letter, 0 otherwise
isspace(a) Returns a 1 if a is blank, tab, or new line, 0 otherwise

CRC_47744_Ch008.indd 535CRC_47744_Ch008.indd 535 7/13/2008 10:46:39 AM7/13/2008 10:46:39 AM

536 Practical MATLAB® Basics for Engineers

>> Y= []

 Y =
 []

>> String =’ABC’

 String =
 ABC

>> all(X) % part (a)

 ans =
 0

>> all(A) % part (b)

 ans =
 0 1 1

>> all(Y) % part (c)

 ans =
 1

>> C = ones(1,14)./X % part (d)

Warning: Divide by zero.
 C =
-0.3333 -0.5000 -1.0000 Inf 1.0000 0.5000 0.3333
 0.2500 0.2000 0.1667 0.1429 0.1250 0.1111 0.1000

>> any(X) % observe that one element
of X is nonzero

ans =
 1

>> isnumeric(A) % part (e)

ans =
 1

>> isempty(A) % part (f)

ans =
 0

>> isempty(Y) % part (g)

ans =
 1

CRC_47744_Ch008.indd 536CRC_47744_Ch008.indd 536 7/13/2008 10:46:39 AM7/13/2008 10:46:39 AM

Decisions and Relations 537

>> isinf(A) % part (h)

ans =
 0 0 0
 0 0 0
 0 0 0

>> isfinite(A) % part (i)

ans =
 1 1 1
 1 1 1
 1 1 1

>> isinf(C) % part (j)

ans =
 0 0 0 1 0 0 0 0 0 0 0 0 0 0

>> find(A) % part(k)

ans =
 2
 3
 4
 5
 6
 7
 8
 9

>> ischar(String) % part (l)

ans =
 1

R.8.44 The relational and logical operations are frequently used to set up a conditional
statement. A conditional statement is an instruction that sets up a condition, and
based on its outcome, decides the correct program path to follow, such as

 if <condition> is true, then execute the sequence of commands B, C, and D

 if <condition> is not true, then execute the sequence of commands E, F, and G
 The fl owchart shown in Figure 8.1 illustrates the decision-making action and the

two distinct paths.
R.8.45 The fl ow-control path of a program can be altered by each of the following four

conditional MATLAB commands:
a. the if-end

b. the for-end

c. the while-end

d. the switch-end

CRC_47744_Ch008.indd 537CRC_47744_Ch008.indd 537 7/13/2008 10:46:39 AM7/13/2008 10:46:39 AM

538 Practical MATLAB® Basics for Engineers

 The decision-making conditions set by using any of the conditional commands will
alter the normal sequential fl ow of the program. The syntax and control command
mechanisms are presented and discussed next.

R.8.46 The syntax and format of the simplest form of the if-end statement is as follows:

if <condition>
 <statements>
end

 Only one decision-making <condition> is used, and if this <condition> is true, then
the <statements> are executed, followed by the end.

However, if the <condition> is false, then the <statements> are not executed, fol-
lowed by the end.

The fl owchart shown in Figure 8.2 graphically illustrates the decision-making
action with the corresponding path.

R.8.47 The if-end statement can be expanded to include two different paths by executing
two different sets of statements based on a single decision-making condition.

The syntax and format are as follows:

if <condition>
 <statements _ 1>
else
 <statements _ 2>
end

 Meaning that if <condition> is true, then <statements_1> is executed followed by the
end (exit); but if <condition> is not true, then <statements_2> is executed followed by
the end (exit). The fl owchart shown in Figure 8.3 illustrates the decision-making
action resulting in distinct execution paths.

FIGURE 8.1
Decision-making fl owchart representation.

Is

<condition >

<condition >

true?

B

C

D

E

F

G

NoYes

Input

Path # 1 Path # 2

CRC_47744_Ch008.indd 538CRC_47744_Ch008.indd 538 7/13/2008 10:46:39 AM7/13/2008 10:46:39 AM

Decisions and Relations 539

FIGURE 8.2
Decision-making fl owchart representation of the if-end statement.

Is

<condition >

true ?

<statements>

end

Rest of the
program

Input
<condition >

Yes No

Is

<condition>

true?

<statements_1> <statements_2>

end

Rest of the
 program

Input
<condition>

Yes No

FIGURE 8.3
Decision-making fl owchart of the if-end (with else) statement.

CRC_47744_Ch008.indd 539CRC_47744_Ch008.indd 539 7/13/2008 10:46:39 AM7/13/2008 10:46:39 AM

540 Practical MATLAB® Basics for Engineers

R.8.48 A multiple path can be set based on multiple decision-making conditions by using
the general form of the if-end statement. The syntax and format are as follows:
if <condition _ 1>
 <statements _ 1>
elseif <condition _ 2>
 <statements _ 2>
elseif <condition _ 3>
 <statements _ 3>

elseif <condition _ n-1>
 <statements _ n-1>
else
 <statements _ n>
end

 Meaning that if <condition_1> is true, then the <statements_1> are executed fol-
lowed by the end (exit); but if <condition_1> is not true, then MATLAB checks if
<condition_2> is true; if it is true, then <statements_2 > are executed, followed by the
end (exit), otherwise the <condition_3> is tested, and so on; if none of the n−1 condi-
tions are true, then MATLAB executes <statements_n> followed by the end (exit).

R.8.49 Note that the multiple conditions format based on the elseif <condition_k> for k = 1,
2, 3, …, n−1 provide n alternate paths based on the n conditions.

Observe that only the fi rst true condition encountered is executed, and all the
other statements and conditions are ignored by MATLAB. Figure 8.4 shows the fl ow-
chart of the general if-end statement with multiple conditions (elseifs). Recall that
the = sign is used to assign a value to a variable, whereas the == sign is used as a
relational operator (is equal to).

R.8.50 Let us illustrate the use of the if-then command in the following example:
Create the script fi le plot_cos_spikes that returns the plot of y(x) = 10 cos(2πx/100)

over the following ranges 0 ≤ x ≤ 24, 26 ≤ x ≤ 49, 51 ≤ x ≤ 74, and 76 ≤ x ≤ 99,
and y(x) takes the following values at the points defi ned by x = 25, 50, 75, and 100,
y(25) = 20, y(50) = −30, y(75) = 20, and y(100) = −30. The script fi le plot_cos_spikes
is executed below and its resulting plot is shown in Figure 8.5.

MATLAB Solution
% Script file: plot _ cos _ spikes
for x=1:1:100
 if x==25
 y(x)=20;
 elseif x==50
 y(x)=-30;
 elseif x==75
 y(x)=20;
 elseif x==100
 y(x)=-30;
 else
 y(x)=10*cos(2*pi.*x./100);
 end
end
plot(y), title(‘[y(x)=10*cos(2pix/100)+ [spikes at x=25,50,75,100]] vs x’)
xlabel(‘x’), ylabel(‘y(x)’),axis([0 100 -33 23])

CRC_47744_Ch008.indd 540CRC_47744_Ch008.indd 540 7/13/2008 10:46:40 AM7/13/2008 10:46:40 AM

Decisions and Relations 541

R.8.51 When a loop condition statement is being entered in the command window, the
loop is executed and any display is suspended until the execution of the loop. The
suspension includes turning off the cursor (within the loop).

Note that the if statement does not require semicolons at the end of each line
because a line does not represent a command but a partial command, and errors
and responses are displayed only when the loop is terminated.

FIGURE 8.4
Flowchart of the if-end statement with multiple conditions (elseif).

Input
(condition)

<statements_1>

end

Rest of the
program

No YesIs

<condition_1>
true?

Is
<condition_2 >

true?

<statements_2 >

Is
<condition_3 >

true?

<statements_3 >

YesNo

<statements_n>

Is
<cond_n>

true?

YesNo

CRC_47744_Ch008.indd 541CRC_47744_Ch008.indd 541 7/13/2008 10:46:40 AM7/13/2008 10:46:40 AM

542 Practical MATLAB® Basics for Engineers

FIGURE 8.5
Resulting plot of executing plot_cos_spikes of R.8.50.

[y(x) = 10*cos(2pix/100) + [spikes at x = 25,50,75,100]] versus x

20

15

10

5

0

−5

−10

−15

−20

−25

−30

0 10 20 30 40 50 60 70 80 90 100
x

y(
x)

R.8.52 For example, analyze the following script fi le check_value of_a given below, which
tests the value for a given variable a and returns one condition message indicating
pass or fail.

The test conditions are
a. a > 80, the condition fails
b. a > 75, the condition fails
c. a > 70, the condition passes
d. a > 60, the condition fails
e. a > 50, the condition fails

 The script fi le check_value of_a is tested for a = 72. The reader should follow the logic
and observe and verify its response.

MATLAB Solution
% Script file: check _ value of _ a
a =72;
if a>80
 disp(‘*** a>80, the condition fails ***’)
elseif a>75
 disp(‘*** a>75, the condition fails ***’)
elseif a>70
 disp(‘*** a>70, the condition passes ***’)
elseif a>60
 disp(‘*** a>60, the condition fails ***’)
elseif a>50
 disp(‘*** a>50, the condition fails ***’)
end

CRC_47744_Ch008.indd 542CRC_47744_Ch008.indd 542 7/13/2008 10:46:41 AM7/13/2008 10:46:41 AM

Decisions and Relations 543

 The fi le check_value of_a is executed and the result is as follows:

>> check _ value of _ a

 *** a>70, the condition passes ***

 Observe that the script fi le check_value of_a returns only the following message:

 *** a>70, the condition passes***

 The other true conditions such as a > 60 and a > 50 are ignored because they are
never executed by MATLAB.

R.8.53 Let us consider a more sophisticated example.
Create the script fi le check_age that returns one of the following messages: teen-

ager, adult, and senior given as the input of the variable age.
Test the script fi le check_age for the following inputs (age): 34, 13, and 68. Analyze

the program’s logic, and observe and verify each response.

MATLAB Solution
% Script file: check _ age
age = input(‘Enter the age of the person in question :’)
if age<=18
 disp(‘**************************’)
 disp(‘******* teenager***********’)
 disp(‘**************************’)
elseif age<=62
 disp(‘***********************’)
 disp(‘****** adult***********’)
 disp(‘***********************’)
else
 disp(‘***********************’)
 disp(‘**** senior ***********’)
 disp(‘***********************’)
end

 The script fi le check_age is executed for three age inputs (34, 13, and 68), and the
results are indicated as follows:

>> check _ age

Enter the age of the person in question : 34
age =
 34

****** adult***********

>> check _ age

Enter the age of the person in question :13
age =
 13

******* teenager***********

CRC_47744_Ch008.indd 543CRC_47744_Ch008.indd 543 7/13/2008 10:46:41 AM7/13/2008 10:46:41 AM

544 Practical MATLAB® Basics for Engineers

>> check _ age

Enter the age of the person in question : 68
age =
 68

****** senior ***********

R.8.54 Let us now use the if-end statement to implement the following function:

y t

t

t

t

() �

�

�

0 0
2 0 3
3 3

for
for
for

�
��









 Draw a fl owchart and create the Matlab script fi le y_of_t that returns the value of
the function y(t) for any given t. Test the script fi le y_of_t for the following values
of t = −5, 1.7, and 6. Trace the logic of the program for each value of t and observe
and verify their responses.

ANALYTICAL Solution
See Figure 8.6.

MATLAB Solution
% Script file: y _ of _ t
format compact
t = input(‘Enter a numerical value for t=’)
if t<=0;
 y = 0

y = 0

Is

t < = 0?

Yes No

y = –3 y = 2

Input t

Is
t > 3?

NoYes

FIGURE 8.6
Flowchart of R.8.54.

CRC_47744_Ch008.indd 544CRC_47744_Ch008.indd 544 7/13/2008 10:46:41 AM7/13/2008 10:46:41 AM

Decisions and Relations 545

elseif t>3
 y=-3
else y=2
 end
end

 The script fi le y_of_t is tested for the following values of t = −5, 1.7, and 6, and the
results are as follows:

>> y _ of _ t

Enter a numerical value for t = -5
t =
 -5
y =
 0

>> y _ of _ t

Enter a numerical value for t = 1.7
t =
 1.7000
y =
 2

>> y _ of _ t

Enter a numerical value for t = 6
t =
 6
y =
 -3

R.8.55 The command

for <range>
 <statements>
end

 referred as the for-end statement is used to create a loop that executes repetitively
the <statements> a fi x number of times based on the spec <range>. The spec <range>
is frequently given by a vector or a matrix. In either case, the commands between
the for and end indicated by <statements> are executed once for each column of the
<range>.

R.8.56 For example, write a program that returns the following sequence:

C = [1 1/2 1/3 1/4 1/5 … 1/10] as a column vector by using the for-end statement.

MATLAB Solution
>> format compact
>> for I =1:10; % <range>
 C(I) = 1./I; % <statements>
 end

CRC_47744_Ch008.indd 545CRC_47744_Ch008.indd 545 7/13/2008 10:46:41 AM7/13/2008 10:46:41 AM

546 Practical MATLAB® Basics for Engineers

>> disp(C’)
 1.0000
 0.5000
 0.3333
 0.2500
 0.2000
 0.1667
 0.1429
 0.1250
 0.1111
 0.1000

 Observe that the same sequence can be generated by executing the following
commands:

>> n =1:10;
>> C = (1./n)’

R.8.57 Let us consider an additional example.

Let

A �

3 7 4
2 5 7
1 2 3� � �

















 Create the script fi le sum_prod that returns the sum and product of each of the col-
umns of A by using the for-end statement and the matrix A as the <range>.

Analyze the logic of the script fi le sum_prod given below, and observe and verify
each responses.

MATLAB Solution
% Script file: sum _ prod
disp(‘***’)
disp(‘ This script returns the sum and product ‘)
disp(‘of each column of the matrix A defined below’)
disp(‘**’)
format compact
n =1;
A= [3 7 4;2 5 7;-1 -2 -3]
for K= A
 fprintf (‘The sum and product of the elements of column

%1.1f\n’,n)
 ColumnSum = K(1)+K(2)+K(3)
 ColumnProd = K(1)*K(2)*K(3)
 n = n+1;
 end

 The script fi le sum_prod is executed and the results are as follows:

>> sum _ prod

**
This script returns the sum and product
of each column of the matrix A defined below
**

CRC_47744_Ch008.indd 546CRC_47744_Ch008.indd 546 7/13/2008 10:46:41 AM7/13/2008 10:46:41 AM

Decisions and Relations 547

A =
 3 7 4
 2 5 7
 -1 -2 -3
The sum and product of the elements of column 1.0
ColumnSum =
 4
ColumnProd =
 -6
The sum and product of the elements of column 2.0
ColumnSum =
 10
ColumnProd =
 -70
The sum and product of the elements of column 3.0
ColumnSum =
 8
ColumnProd =
 -84

 Observe that the for-end statement results in a loop that is executed three times, one
for each of the columns of A.

R.8.58 If multiple loops are required, the loop structure must be nested, meaning that each
loop must be constructed inside another loop. Observe that the resulting nested
loop indexes can be used to create matrices where the fi rst index is used to defi ne
its rows, whereas the second index is used to defi ne its columns.

R.8.59 For example, write a program that returns a 13 by 3 matrix A where the fi rst column
of A consists of the sequence 1, 2, 3, 4, …, 13; the second column of A consists of the
sequence 2, 4, 6, 8, …, 24, 26; and the third column of A consists of the sequence 3, 6,
9, 12, …, 36, 39.

MATLAB Solution
>> format compact
>> for N=1:13;
for M=1:3;
A(N,M)=N*M;
end
end
>> disp(A)
 1 2 3
 2 4 6
 3 6 9
 4 8 12
 5 10 15
 6 12 18
 7 14 21
 8 16 24
 9 18 27
 10 20 30
 11 22 33
 12 24 36
 13 26 39

CRC_47744_Ch008.indd 547CRC_47744_Ch008.indd 547 7/13/2008 10:46:41 AM7/13/2008 10:46:41 AM

548 Practical MATLAB® Basics for Engineers

R.8.60 Let us revisit the script fi le y_of_t. Modify this script fi le and call it y_of_t_mod,
which now returns the plot of the function y(t) over the range 0 ≤ t ≤ 6. Recall that
y(t), is given by

y t

t

t

t

() �

�

�

0 0
2 0 3
3 3

for
for
for

�
��









MATLAB Solution
% Script file: y _ of _ t _ mod
format compact
n =1;
for t =-2:0.01:6;
 if t<=0;
 y(n) = 0;
 n =n+1;
 elseif t>3
 y(n) =-3;
 n =n+1;
 else y(n)=2;
 n =n+1;
 end
end
t = -2:0.01:6;
plot(t,y)
xlabel(‘t’)
ylabel(‘Amplitude’)
title(‘y(t) vs t’)
axis([-2 6 -3.3 2.3])

 The script fi le y_of_t_mod is executed and the resulting plot is shown in Figure 8.7.
R.8.61 Observe that by using the for-end command in the previous program, the loop

variable y is reevaluated over and over; and for each of its new values, a memory
expansion is required. It is therefore a good and effi cient programming practice to
defi ne the fi nal memory size of the affected variables before they are used in a loop.
Avoiding multiple memory expansions.

For example, analyze the following program:

>> A= ones(1,10);
>> for x = 1:10
 A(x) = x.̂ 2;
 end

 Observe that the fi rst instruction A = ones(1, 10) allocates the total required
memory to A. If this command is not included, the same A is still created; but the
computational effi ciency of evaluating and storing each element of A would be
affected.

CRC_47744_Ch008.indd 548CRC_47744_Ch008.indd 548 7/13/2008 10:46:41 AM7/13/2008 10:46:41 AM

Decisions and Relations 549

R.8.62 The command

while <condition>
 <statements>
 end,

 referred as the while-end statements is used to create a loop in which the <statements>
are executed repetitively for an indefi nite number of times as long as the specifi ed
<condition> is and remains true. When the <condition> is no longer true, then the
program exits the loop and continues with the normal execution of the remaining
of the program by executing the fi rst instruction after the end statement.

R.8.63 For example, draw a fl owchart and write a program that returns the sequence
C = [1 1/2 1/3 1/4 1/5 … 1/10], using the while-end statement. Analyze the fl ow-
chart (Figure 8.8) and program and observe and verify its output.

ANALYTICAL Solution

See Figure 8.8.

MATLAB Solution
>> format compact
>> n = 1;
>> while n<11; % <condition>
 C(n) =1./n; % <statements>
 n = n+1;
 end

y(t) versus t

2

1.5

1

0.5

0

−0.5

−1

−1.5

−2.5

−2

−3

−2 −1 0 1 2 3 4 5 6

A
m

pl
itu

de

t

FIGURE 8.7
Plot of R.8.60.

CRC_47744_Ch008.indd 549CRC_47744_Ch008.indd 549 7/13/2008 10:46:41 AM7/13/2008 10:46:41 AM

550 Practical MATLAB® Basics for Engineers

>> disp(C’)
 1.0000
 0.5000
 0.3333
 0.2500
 0.2000
 0.1667
 0.1429
 0.1250
 0.1111
 0.1000

 The commands between the while and end referred as <statements> are executed
10 times, one for each value of n (n = 1, 2, 3, …, 9, 10) as long as n (while) is smaller
than 11.

R.8.64 The while-end statement is a powerful command, which can be particularly useful
when exploring the behavior of a given equation or relation over a given range.

 For example, create the script fi le explore that returns the plot of y = 5 √

 k 0.5 over the
range 1 ≤ k ≤ 5 in discrete increments of ∆K = 0.5, as long as abs(y) < 8.
MATLAB Solution
% Script file: explore
figure(1)
k=1;
while k<=5
 y = 5*sqrt(k.̂ (0.5));
 k = k+0.5;
 while abs(y)<8
 plot(k,y,’*’), hold on
 end
 end

FIGURE 8.8
Flowchart of R.8.63.

n =1

while

n<11

x(n) = 1/n

n = n+1

end

Yes

No

Display x

CRC_47744_Ch008.indd 550CRC_47744_Ch008.indd 550 7/13/2008 10:46:42 AM7/13/2008 10:46:42 AM

Decisions and Relations 551

xlabel (‘ values of k in steps of 0.5’)
ylabel (‘y’)
title(‘y=5*sqrt(k.̂ (0.5)) vs k’);

 The script fi le explore is executed and the resulting plot is shown in Figure 8.9.

1.5 2 2.5 3 3.5 4 4.5 5 5.5
5

5.5

6

6.5

7

7.5

Values of k in steps of 0.5

y

y = 5*sqrt (k. (0.5)) versus k

FIGURE 8.9
Plot of R.8.64.

R.8.65 Some general observations about the looping process
a. The loop variable is updated for each loop pass.
b. While the loop variable is true, the commands inside the while-end statement are

executed.
c. Care must be taken not to create an infi nite loop. An infi nite loop is created

when the conditions inside the while-end <statements> remain always true and
the condition for exiting the loop is never met.

d. Both the while-end and for-end statements are used to create loops. The main dif-
ference between the two commands is that the for-end command creates a loop
that is executed a specifi c number of times, whereas the while-end command
executes a loop for an unspecifi ed implied number of times.

e. If the number of times of execution of a loop is known in advance, then the
for-end command is recommended. Otherwise, a decision mechanism to con-
trol the looping is required, and the while-end or if-end commands are better
choices.

R.8.66 Observe that the looping condition in a while-end and if-end statement must be care-
fully set to avoid the possibility of getting into an infi nite loop.

CRC_47744_Ch008.indd 551CRC_47744_Ch008.indd 551 7/13/2008 10:46:42 AM7/13/2008 10:46:42 AM

552 Practical MATLAB® Basics for Engineers

R.8.67 For example, analyze the following sequence of instructions:

x = 1
while x>0.5
 y = 2.̂ x
 x = x + 0.1
end

 Observe that the condition set for x always returns a true outcome, resulting in an
infi nite loop.

R.8.68 Observe that each if-, while-, and for statements must have a corresponding match-
ing end statement.

R8.69 Looping construction by means of the for-end or while-end statements should be
avoided whenever possible because of the slow execution time in favor of the implied
loop (see Chapter 9 for performance analysis).

R.8.70 There are a number of exit or safety mechanisms that can be used when dealing
with loops to avoid getting into traps or infi nite loops by setting limits on the num-
ber of iterations or loop executions.

R.8.71 For example, the following program limits the while-end loop to 1000 iterations by
using the if-end statement and the break command (presented in R.8.75 as an exit
and safety mechanism).

n =1
x = 1
while x>0.5
y = 2.̂ x
x = x+0.1
n = n+1
 if n=1000
 disp(‘exit after 1000 iterations’)
 break
 end
end

R.8.72 Let us review the looping concepts by creating a program that evaluates the sum_x
defi ned by the following equation (for the fi rst 10 digits):

sum x x

x

_ �
�1

10

∑

 employing the following:
a. The implied loop
b. The for-end loop
c. The while-end loop

MATLAB Solution
>> x =1:10;
>> imp _ sum _ x =sum(x); % part (a), the implied

loop solution

CRC_47744_Ch008.indd 552CRC_47744_Ch008.indd 552 7/13/2008 10:46:42 AM7/13/2008 10:46:42 AM

Decisions and Relations 553

>> imp _ sum _ x

 imp _ sum _ x =
 55

>> for _ sum _ x = 0;
>> for x =1:10;
 for _ sum _ x = for _ sum _ x+x; % part (b), the for-end

loop solution
 end
>> for _ sum _ x

 for _ sum _ x =
 55

>> while _ sum _ x = 0;
>> i =1;
>> while i <11; % part (c), the while-end

loop solution
 while _ sum _ x = while _ sum _ x + i;
 i = i+1;
 end
>> while _ sum _ x

 while _ sum _ x =
 55

R.8.73 The switch-end statement is another decision-making command. The general form
presents the following format and syntax:

switch flag,
 case flag1
 <statments1>
 case flag2
 <statements2>
 case flag3
 <statement3>

…………………………

 otherwise
 <statementn>
 end

 where the fl agn is a string or a variable, which is used to branch when multiple
conditions are tested for a common argument.

R.8.74 The commands break, error, and return are useful when operating inside a loop to
stop or control its execution.

R.8.75 The break command unconditionally terminates the execution of a loop and the
program continues with the fi rst instruction after the end command.

CRC_47744_Ch008.indd 553CRC_47744_Ch008.indd 553 7/13/2008 10:46:42 AM7/13/2008 10:46:42 AM

554 Practical MATLAB® Basics for Engineers

R.8.76 The command error (‘text’) stops the execution of a loop, displays the string text on
the computer screen, and transfers control to the keyboard.

R.8.77 The command return produces an unconditional exit from a loop, ignoring the
instructions inside the loop. The fl owchart illustrating the fl ow control of the return
and break commands are shown in Figures 8.10 and 8.11, respectively.

R.8.78 A few words of advice—a good programmer must be able to understand the mech-
anisms and conditions set, and trace the logic used in repeating a block of com-
mands by using loops and nested loops when analyzing a program. Looping and
decision making constitutes, in the author’s opinion, the main power and capabil-
ity of most digital computer systems. The analysis of a looping sequence must be
followed either mentally by the experienced programmer or by relying on a fl ow-
chart or table by the beginner or less experienced programmer. A recommended
practice is to assign values to the loop variables tracing its execution for at least two
complete cycles to get a good insight of the mechanism used and be able to visual-
ize a pattern of the purpose and nature of the looping algorithm.

range / condition

return

 is

<condition>

 true
?

end

Rest of the

program

Yes

No

Loop

Is
<condition>

true?

Input

FIGURE 8.10
Flowchart of the return command.

CRC_47744_Ch008.indd 554CRC_47744_Ch008.indd 554 7/13/2008 10:46:42 AM7/13/2008 10:46:42 AM

Decisions and Relations 555

8.4 Examples

Example 8.1

Create the script fi le max_min that returns the maximum and minimum values of a given
vector V, assuming that no two elements in V are equal (the commands sort, max, and min
are not allowed). Test the script fi le max_min by using the vector V = [1 2 3 4 −3 9].

MATLAB Solution
% Script file: max _ min
V = input(‘Enter the numerical vector V in brackets; V= ‘)
n = length(V);
for k = 2:n;
 if V(k) >= V(k-1);
 maxim = V(k);
 minim = V(k-1);
 else
 maxim = V(k-1);

FIGURE 8.11
Flowchart of the break command.

range / condition

break

is

<condition>

true?

end

Rest of the

program

Yes

No

Loop

Input

CRC_47744_Ch008.indd 555CRC_47744_Ch008.indd 555 7/13/2008 10:46:43 AM7/13/2008 10:46:43 AM

556 Practical MATLAB® Basics for Engineers

 minim = V(k);
 end
end
disp(‘**’)
disp(‘ ************* R E S U L T S *****************’)
disp(‘**’)
fprintf(‘The element with the largest value in the array V is

%3.2f\n’,maxim);
fprintf(‘The element with the smallest value in the array V is

%3.2f\n’,minim);
disp(‘**’)

The sript fi le max_min is tested for V= [1 2 3 4 −3 9] as follows:

>> max _ min

Enter the numerical vector V in brackets; V= [1 2 3 4 -3 9]
 V =
 1 2 3 4 -3 9
**
 ************* R E S U L T S *****************
**
The element with the largest value in the array V is 9.00
The element with the smallest value in the array V is -3.00
**

Example 8.2

Create the script fi le matrix_of_ones that returns the n by m matrix A that consists of all
its elements equal to one, emulating the MATLAB command ones(n, m).

Test the script fi le matrix_of_ones for n = 3 and m = 9.

MATLAB Solution
% Script file: matrix _ of _ ones
% emulates the command ones(n,m)
disp(‘***’)
disp(‘This program returns the matrix A consisting of ones. ‘)
rows = input(‘Enter the number of rows of the matrix A you want

to create = ‘)
columns = input(‘Enter the number of columns of the matrix A you

want to create = ‘)
for k =1:rows
 for j =1:columns;
 A(k,j) =1;
 end
end
disp(‘******** The resulting matrix is : *********************’)
A
disp(‘***’)

The sript fi le matrix_of_ones is tested for n = 3 (rows) and m = 9 (columns), and the
results are shown as follows:

>> matrix _ of _ ones

CRC_47744_Ch008.indd 556CRC_47744_Ch008.indd 556 7/13/2008 10:46:43 AM7/13/2008 10:46:43 AM

Decisions and Relations 557

This program returns the matrix A consisting of ones.
Enter the number of rows of the matrix you want to create = 3
rows =
 3
Enter the number of columns of the matrix you want to create = 9
columns =
 9
 ******** The resulting matrix is : *****************
A =
 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1

Example 8.3

Create the script fi le perm_matrix that returns the n × n (square) matrix A that consists
of the random permutations of the elements of each row of A where the row elements
consist of the integers 1 through n. Test the script fi le perm_matrix, for n = 6.

MATLAB Solution
% Script file: perm _ matrix
n = input(‘Enter the size of the square matrix A, n = ‘)
for k =1:n;
 A(k,:) = randperm(n);
end
disp(‘*********************************’)
disp(‘ The permuted row matrix is : ‘)
A
disp(‘*********************************’)

The script fi le perm_matrix is tested for n = 6 as follows:

>> perm _ matrix

Enter the size of the square matrix A, n = 6
n =
 6

The permuted row matrix is :
A =
 3 2 4 1 5 6
 6 5 4 3 1 2
 2 4 3 6 5 1
 4 3 2 5 6 1
 2 1 3 4 5 6
 5 2 3 4 1 6

CRC_47744_Ch008.indd 557CRC_47744_Ch008.indd 557 7/13/2008 10:46:43 AM7/13/2008 10:46:43 AM

558 Practical MATLAB® Basics for Engineers

Example 8.4

Write a program that returns n versus √
__

 n , for n = 1, 2, 3, …, 10 in a tablelike format by
using each of the following commands:

a. an implied loop
b. for-end statement
c. while-end statement

MATLAB Solution
>> % part (a)
>> format compact
>> X=1:10;
>> VA = sqrt(X);
>> Result _ A = [X’ VA’];
>> disp(‘Result part(a)’);disp(‘ n sqrt(n)’);
>> disp(‘ **************’);
>> disp(Result _ A); disp(‘ **************’);

 Result part(a)
 n sqrt(n)

 1.0000 1.0000
 2.0000 1.4142
 3.0000 1.7321
 4.0000 2.0000
 5.0000 2.2361
 6.0000 2.4495
 7.0000 2.6458
 8.0000 2.8284
 9.0000 3.0000
 10.0000 3.1623

>> % part (b)
>> for K=1:10;
 VB(K) = sqrt(K);
 end
>> Result _ B = [X’ VB’];
>> disp(‘Result part(b)’), disp(‘ n sqrt(n)’);
>> disp(‘ **************’);
>> disp(Result _ B); disp(‘*************’);

 Result part(b)
 n sqrt(n)

 1.0000 1.0000
 2.0000 1.4142
 3.0000 1.7321
 4.0000 2.0000
 5.0000 2.2361
 6.0000 2.4495
 7.0000 2.6458
 8.0000 2.8284
 9.0000 3.0000
 10.0000 3.1623

CRC_47744_Ch008.indd 558CRC_47744_Ch008.indd 558 7/13/2008 10:46:43 AM7/13/2008 10:46:43 AM

Decisions and Relations 559

>> % part (c)
>> Y=11;
>> A=1;
>> while A<Y
 VC(A) = sqrt(A);
 A=A+1;
 end
>> Result _ C= [X’ VC’];
>> disp(‘Result part(c)’), disp(‘ n sqrt(n)’);
>> disp(‘ **************’);
>> disp(Result _ C)
>> disp(‘ **************’);

 Result part(c)
 n sqrt(n)

 1.0000 1.0000
 2.0000 1.4142
 3.0000 1.7321
 4.0000 2.0000
 5.0000 2.2361
 6.0000 2.4495
 7.0000 2.6458
 8.0000 2.8284
 9.0000 3.0000
 10.0 3.1623

Example 8.5

Let the array x = rand (1, 20).
Draw a fl owchart and create the script fi le grett_05 that returns the number of ele-

ments of x that are smaller than or equal to 0.5.

ANALYTICAL Solution

The corresponding fl owchart is shown in Figure 8.12.

MATLAB Solution
% Script file: grett _ 05
format compact
x = rand(1,20);
Addx = 0;
for i =1:20
 if x(i)<=0.5
 Addx = Addx+1;
 else
 Addx = Addx+0;
 end
end
disp(‘ ****************** R E S U L T S *********************** ‘)
disp(‘**’)
disp(‘The random vector x is given by x = ‘)

CRC_47744_Ch008.indd 559CRC_47744_Ch008.indd 559 7/13/2008 10:46:43 AM7/13/2008 10:46:43 AM

560 Practical MATLAB® Basics for Engineers

disp(x)
disp(‘**’)
fprintf (‘The number of elements of x that are smaller than or

equal to 0.5 is % 4.2f\n’,Addx)
disp(‘**’)

The script fi le grett_05 is executed and the results are as follows:

>> grett _ 05

********************* R E S U L T S *********************************
**
The random vector x is given by x =
 Columns 1 through 7
 0.2618 0.5973 0.0493 0.5711 0.7009 0.9623 0.7505
 Columns 8 through 14
 0.7400 0.4319 0.6343 0.8030 0.0839 0.9455 0.9159
 Columns 15 through 20
 0.6020 0.2536 0.8735 0.5134 0.7327 0.4222
**
The number of elements of x that are smaller than or equal to 0.5
is 6.00
**

Addx = addx+1

Is

x (i) ≤0.5?

Yes No

X = rand(1,20)

Addx = 0

i = 1

i = i+1

Is

i == 21?
No Yes

disp(Addx)

end

Addx = addx+0

FIGURE 8.12
Flowchart of Example 8.5.

CRC_47744_Ch008.indd 560CRC_47744_Ch008.indd 560 7/13/2008 10:46:43 AM7/13/2008 10:46:43 AM

Decisions and Relations 561

Example 8.6

Create the script fi le apprx_exp that returns the number of terms required to approxi-
mate e = 2.71828182 by means of the Maclarin series with an error of less than 0.000001.
Indicate its error as well as the approximation and error plots given by

a. [error] versus [number of terms of the approximation]
b. [magnitude of approximation] versus [number of terms of the approximation]

Recall that the Maclarin series expansion for ex is given by

ex

n
x x

x x x x
n

� � � � � � � �exp()
! ! ! !

1
2 3 4

2 3 4
�

Therefore, for x = 1

exp()

! ! ! ! !
1 1

1
1

1
2

1
3

1
4

1
� � � � � � � �e

n
�

MATLAB Solution
% Script file: approx _ exp
format long
exact _ e = exp(1);
error =1;
approx =1;app(1) =1;err(1) = exact _ e-1;
n=1:100;
x = cumprod(n);i =1;error(1) = 1.7;
while error>0.000001
 approx=approx+ 1/x(i);
 i=i+1;
 app(i) = approx
 err(i) = exact _ e-app(i)
 error = abs(exact _ e-app(i));
end
k=1:i,
subplot(2,1,1)
plot(k,err)
ylabel(‘[error]’);
title(‘[erros] vs [# of terms]’)
subplot(2,1,2)
plot(k,app)
ylabel(‘approximations for e=2.7182...’);
xlabel(‘number of terms’)
title(‘[approximations] vs [# of terms]’)
disp(‘****************** R E S U L T S *************************’)
disp(‘***’)
fprintf(‘The number of terms required in the approximation is %
4.2f\n’,i)
fprintf(‘The approximation error is % 10.9f\n’,error)
disp(‘***’)

CRC_47744_Ch008.indd 561CRC_47744_Ch008.indd 561 7/13/2008 10:46:43 AM7/13/2008 10:46:43 AM

562 Practical MATLAB® Basics for Engineers

The script fi le approx_e is executed and the results are as follows:

>> approx _ exp

****************** R E S U L T S *****************************
**
The number of terms required in the approximation is 10.00
The approximation error is 0.000000303
**

Example 8.7

a. Create the script fi le traffi c_light_if that returns one of the following messages based on
the conditions stated below:
It is safe to pass, if the traffi c light is green
It is not safe to pass, if the traffi c light is red
Proceed with caution, if the traffi c light is yellow
Light is not functioning, if the traffi c light color is neither green, red or yellow.

b. Use the if-end statement to check the traffi c light specifi ed by the fi rst three letters gre,
red, yel and test the script fi le traffi c_light_if for the following traffi c light colors: red, green,
yellow, and blue.

c. Repeat part a using the switch-end statement by specifying the complete color green, red,
yellow.

Create the script fi le traffi c_light_switch and test the fi le for the (same) traffi c light colors
red, green, yellow, and blue.

MATLAB Solution
% part(a)
% Script file: traffic _ light _ if
disp(‘***’)
disp(‘ **************** Traffic light condition ****************’)
disp(‘***’)
light = input(‘Enter the first 3 letters of the following traffic light
color: red, green, yellow, others:’,’s’)
if light == ‘gre’
 disp(‘It is safe to pass’)
elseif light == ‘red’
 disp(‘It is not safe to pass’)
elseif light == ‘yel’
 disp(‘Proceed with caution’)
else
 disp(‘Light is not functioning’)
end

Back in the command window, the script fi le traffi c_light_if is executed for each of the
traffi c light colors red, green, yellow, and blue; and the results are as follows:

>> traffic _ light _ if

 ************* Traffic light condition ******************

CRC_47744_Ch008.indd 562CRC_47744_Ch008.indd 562 7/13/2008 10:46:43 AM7/13/2008 10:46:43 AM

Decisions and Relations 563

Enter the first 3 letters of the following traffic light color: red,
green, yellow, others: red
ligth =
 red
 It is not safe to pass

>> traffic _ light _ if

Enter the first 3 letters of the following traffic light color: red,
green, yellow, others: gre
 ligth =
 gre
 It is safe to pass

>> traffic _ light _ if

Enter the first 3 letters of the following traffic light color: red,
green, yellow, others: yel
 ligth =
 yel
 Proceed with caution

>> traffic _ light _ if

Enter the first 3 letters of the following traffic light color: red,
green, yellow, others: blu
 ligth =
 blu
 Light is not functioning

% part(b)
% Script file: traffic _ light _ switch

disp(‘***’)
disp(‘ **************** Traffic light condition *****************’)
disp(‘***’)
light = input(‘Enter the following traffic light color: red, green,

yellow, others:’,’s’)
switch light
case’green’
 disp(‘It is safe to pass’)
case’red’
 disp(‘It is not safe to pass’)
case’yellow’
 disp(‘Proceed with caution’)
otherwise
 disp(‘Light is not functioning’)
end

CRC_47744_Ch008.indd 563CRC_47744_Ch008.indd 563 7/13/2008 10:46:43 AM7/13/2008 10:46:43 AM

564 Practical MATLAB® Basics for Engineers

Back in the command window, the script fi le traffi c_light_switch is executed for the traffi c
light colors—red, green, yellow, and blue; and the results are as follows:

>> traffic _ light _ switch

 **************** Traffic light condition **************

Enter the following traffic light color: red, green, yellow,
others: red
 light =
 red
 It is not safe to pass

>> traffic _ light _ switch

 **************** Traffic light condition ***************

Enter the following traffic light color: red, green, yellow,
others: green
 light =
 green
 It is safe to pass

>> traffic _ light _ switch

 **************** Traffic light condition ****************

Enter the following traffic light color: red, green, yellow, others:
yellow
 light =
 yellow
 Proceed with caution

>> traffic _ light _ switch

 **************** Traffic light condition ***************

Enter the following traffic light color: red, green, yellow, others:
blue
 light =
 blue
 Light is not functioning

See Figure 8.13.

CRC_47744_Ch008.indd 564CRC_47744_Ch008.indd 564 7/13/2008 10:46:43 AM7/13/2008 10:46:43 AM

Decisions and Relations 565

Example 8.8

Create the script fi le voting_age that, given the name and age of citizen A, returns a mes-
sage indicating if citizen A is eligible or not eligible to vote (the U.S. Constitution states that
all its citizens of age ≥ 18 are eligible to vote).

Test the script fi le voting_age for the following cases:

Mike Douglas, age 33
Cong Lee, age 43
Carlos Espinosa, age 17

MATLAB Solution
% Script file: voting _ age
name = input (‘Enter the citizen’s full name :’,’s’);
age = input (‘Enter hers/his age in years :’);
if age>=18
 disp (‘***********************************’)
 fprintf (‘%s is eligible to vote\n’,name)
 disp (‘************************************’)
else
 disp (‘************************************’)
 fprintf (‘%s is not eligible to vote\n’,name)
 disp (‘************************************’)
end

Back in the command window, the script fi le voting_age is tested with the following
data: Mike Douglas, age 33; Cong Lee, age 43; and Carlos Espinosa, age 17.

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

[e
rr

or
]

[error] versus [number of terms]

1 2 3 4 5 6 7 8 9 10
1

1.5

2

2.5

3

A
pp

ro
xi

m
at

io
ns

 fo
r

e
=

 2
.7

18
2.

..

Number of terms

[approximations] versus [number of terms]

FIGURE 8.13
Plots of Example 8.7.

CRC_47744_Ch008.indd 565CRC_47744_Ch008.indd 565 7/13/2008 10:46:44 AM7/13/2008 10:46:44 AM

566 Practical MATLAB® Basics for Engineers

The results are indicated as follows:

>> voting _ age

Enter the citizen’s full name: Mike Douglas
Enter hers/his age in years : 33

Mike Douglas is eligible to vote

>> voting _ age

Enter the citizen’s full name: Cong Lee
Enter hers/his age in years : 43

Cong Lee is eligible to vote

>> voting _ age

Enter the citizen’s full name: Carlos Espinosa
Enter hers/his age in years : 17

Carlos Espinosa is not eligible to vote

Example 8.9

Given a person’s age, draw a fl owchart and create the script fi le age_des that returns a
message, which states the person’s age status according to the four categories indicated
in Table 8.10.

Test the script fi le age_des for the following ages: 34, 12, 77, and 18.

ANALYTICAL Solution

The corresponding fl ow-chart is shown in Figure 8.14.

MATLAB Solution
% Script file: age _ des
format compact
disp(‘* * *AGE activator “ON” * * * ‘)
disp(‘*******************************’)
age =input(‘Enter the persons age:’);

TABLE 8.10

Person’s Age Status

Age Message

age >= 65 Senior
65 > age >= 20 Adult
20 > age >= 13 Teenager
age < 13 Child

CRC_47744_Ch008.indd 566CRC_47744_Ch008.indd 566 7/13/2008 10:46:44 AM7/13/2008 10:46:44 AM

Decisions and Relations 567

disp(‘*******************************’)
 if age>=65
 disp(‘This person is a «Senior»’)
 else
 if age >=20
 disp(‘This person is an “Adult”’)
 else
 if age< 13
 disp(‘This person is a “Child”’)
 else
 disp(‘This person is a “Teenager”’)
 end
 end
 end
disp(‘**********************************’)

Input: age

Is

age≥65?

NoYes

Display:

‘Senior ’ Is

age≥20?

NoYes

Display:

‘Adult’ Is

age<13?

NoYes

Display:

‘Child’

Display:

‘Teenager’

FIGURE 8.14
Flowchart of Example 8.9.

CRC_47744_Ch008.indd 567CRC_47744_Ch008.indd 567 7/13/2008 10:46:44 AM7/13/2008 10:46:44 AM

568 Practical MATLAB® Basics for Engineers

The script fi le age_des is tested for age: 34, 12, 77, and 18. The results are as follows:

>> age _ des

* * *AGE activator “ON” * * *

Enter the persons age: 34

This person is an “Adult”

>> age _ des

* * *AGE activator “ON” * * *

Enter the persons age: 12

This person is a “Child”

>> age _ des

* * *AGE activator “ON” * * *

Enter the persons age: 77

This person is a “Senior”

>> age _ des

* * *AGE activator “ON” * * *

Enter the persons age: 18

This person is a “Teenager”

Example 8.10

Given three unequal numbers A, B, and C, draw a fl owchart and create the script fi le
order that returns the three numbers arranged in descending order (the sort, max, and
min commands are not allowed). Test the script fi le order for the following three num-
bers randomly chosen 10, 5, and 3 and all its possible (six) permutations.

ANALYTICAL Solution
The corresponding fl owchart is shown in Figure 8.15.

MATLAB Solution
Script file: order
format compact;
A= input (‘Enter the value of A =’);
B= input (‘Enter the value of B =’);
C= input (‘Enter the value of C =’);
disp(‘***’)
disp(‘The order of the given inputs: A, B and C is :’)
if A>B
 if A>C

CRC_47744_Ch008.indd 568CRC_47744_Ch008.indd 568 7/13/2008 10:46:44 AM7/13/2008 10:46:44 AM

Decisions and Relations 569

 if B>C
 disp(‘A>B>C’)
 else disp(‘A>C>B’)
 end
 else disp(‘C>A>B’)
 end
 elseif B>C
 if A>C
 disp(‘B>A>C’)
 else
 disp(‘B>C>A’)
 end
 else
 disp(‘C>B>A’)
 end
end
disp(‘**’)

No

No

Is
A>B?

NoYes

Inputs: A, B, C

Is
B>C?

Yes No

Is
A>C?

Yes No

Display
C>B>A

Display
B>C>A

Display
B>A>C

Is
A>C?

Yes

Is
B>C?

Yes

Display
C>A>B

Display
A>C>B

Display
A>B>C

FIGURE 8.15
Flowchart of Example 8.10.

The script fi le order is tested for all possible permutations of the numbers 10, 5, and 3.
The results are as follows:

>> order

Enter the value of A =10
Enter the value of B =5
Enter the value of C =3

CRC_47744_Ch008.indd 569CRC_47744_Ch008.indd 569 7/13/2008 10:46:44 AM7/13/2008 10:46:44 AM

570 Practical MATLAB® Basics for Engineers

**
The order of the given inputs: A, B and C is :
A>B>C
**

>> order

Enter the value of A =10
Enter the value of B =3
Enter the value of C =5
**
The order of the given inputs: A, B and C is :
A>C>B
**

>> order

Enter the value of A =5
Enter the value of B =10
Enter the value of C =3
**
The order of the given inputs: A, B and C is :
B>A>C
**

>> order

Enter the value of A =5
Enter the value of B =3
Enter the value of C =10
**
The order of the given inputs: A, B and C is :
C>A>B
**

>> order

Enter the value of A =3
Enter the value of B =10
Enter the value of C =5
**
The order of the given inputs: A, B and C is :
B>C>A
**

>> order

Enter the value of A =3
Enter the value of B =5
Enter the value of C =10
**
The order of the given inputs: A, B and C is :
C>B>A
**

CRC_47744_Ch008.indd 570CRC_47744_Ch008.indd 570 7/13/2008 10:46:44 AM7/13/2008 10:46:44 AM

Decisions and Relations 571

Example 8.11

Draw a fl owchart and create the script fi le qua_roots that, given the coeffi cients of the
quadratic equation of the form f(x) = ax2 + bx + c, returns the following:

 1. Its roots
 2. The corresponding message, indicating if the roots are real, repeated, or complex

conjugate
 3. The plot of the roots on the complex plane using zplot and pzmap for the following

equation:

 f(x) = 3x2 + 9x + 10

Test the script fi le qua_roots for the following three equations (each one represents a
different case):

 1. f(x) = x2 + x − 2

 2. f(x) = x2 − 4x + 4

 3. f(x) = 3x2 + 9x + 10

ANALYTICAL Solution

See Figure 8.16.

MATLAB Solution
% Script file: qua _ roots
format compact;
disp (‘**’)
disp (‘This program returns the roots of the quadratic equation’)
disp (‘of the form f(x)=ax^2+bx+c’)
a = input (‘Enter the value of the coefficient a=’);
b = input (‘Enter the value of the coefficient b=’);
c = input (‘Enter the value of the coefficient c=’);
disp(‘**’)
p = [a b c];
r = roots(p);
d = b^2-4*a*c;
if d<0
 disp (‘The roots x1 and x2 are complex conjugate’)
 elseif d==0.0
 disp (‘The roots x1 and x2 are real and repeated’)
 else disp (‘The roots x1 and x2 are real and distinct‘)
 end
disp (‘The roots of x1 and x2 are =’); disp(r)
disp (‘***’)
num =1;
subplot(2,1,1)
zplane (num,p)
title(‘plot of the roots of the quadratic equation: f(x) = ax^2 +
bx + c’)
grid on
subplot(2,1,2)

CRC_47744_Ch008.indd 571CRC_47744_Ch008.indd 571 7/13/2008 10:46:45 AM7/13/2008 10:46:45 AM

572 Practical MATLAB® Basics for Engineers

pzmap (num,p)
title(‘plot of the roots of the quadratic equation: f(x) = ax^2 +
bx + c’)
grid on

r = roots(p)

Is

d <0?

Yes No

Is

d = 0?

Yes No

Display: ‘the roots are
complex conjugate’; r

Display: ‘the roots are
real and distinct’; r

Display: ‘the roots are
real and repeated’; r

The roots
x1 and x2

are real

x1 ≠ x2

Display

p = [a b c]

d = b2−4∗a∗c

Input the coefficients

a, b, c

x1 = x2

FIGURE 8.16
Flowchart of Example 8.11.

The script fi le qua_roots is tested for the following coeffi cients:

 1. a=1,b=1,c=−2
 2. a=1,b=−4,c=4
 3. a=3,b=9,c=10

The results are as follows:

>> qua _ roots

**
This program returns the roots of the quadratic equation
of the form f(x)=ax^2+bx+c

CRC_47744_Ch008.indd 572CRC_47744_Ch008.indd 572 7/13/2008 10:46:45 AM7/13/2008 10:46:45 AM

Decisions and Relations 573

Enter the value of the coefficient a=1
Enter the value of the coefficient b=1
Enter the value of the coefficient c=-2
**
The roots x1 and x2 are real and distinct
The roots of x1 and x2 are =
 -2
 1
**

>> qua _ roots

**
This program returns the roots of the quadratic equation
of the form f(x)=ax^2+bx+c
Enter the value of the coefficient a=1
Enter the value of the coefficient b=-4
Enter the value of the coefficient c=4
**
The roots x1 and x2 are real and repeated
The roots of x1 and x2 are =
 2
 2
**

>> qua _ roots

**
This program returns the roots of the quadratic equation
of the form f(x)=ax^2+bx+c
Enter the value of the coefficient a=3
Enter the value of the coefficient b=9
Enter the value of the coefficient c=10
**
The roots x1 and x2 are complex conjugate
The roots of x1 and x2 are =
 -1.5000 + 1.0408i
 -1.5000 - 1.0408i
**

The plot of the roots of f(x) = 3x2 + 9x + 10, using zplot and pzmap on the complex
plane, is illustrated in Figure 8.17.

Example 8.12

Create the script fi le capital_inter that returns a tablelike format of the number of
years (n) versus the capital (principal plus interest), invested in a bank account, and its
corresponding stem, stairs, bar, and plot (by using the for-end command) of its growth,
given the principal P (in $), annual interest I, and number of years n of the investment.

Test the script fi le capital_inter for the following case: P = $1000, I = 6%, and a period
of n = 10 years.

CRC_47744_Ch008.indd 573CRC_47744_Ch008.indd 573 7/13/2008 10:46:45 AM7/13/2008 10:46:45 AM

574 Practical MATLAB® Basics for Engineers

MATLAB Solution
% Script file: capital _ inter
P = input(‘ Enter the principal in dollars:’)
I = input(‘ Enter the annual percent interest rate: ‘)
n = input(‘ Enter the number of years:’)
I = I/100;
for k=1:n+1;
 F(k)=P*(1+I)̂ k;
end
k=0:n;
subplot(2,2,1)
stem(k,F)
title(‘discrete plot’)
ylabel(‘[principal + interest]’);
subplot(2,2,2)
stairs(k,F)

−2.5 −2
−2

−2 −1

−1

−0.5

−3

−1

−1.5 −1 −0.5 0

Real axis

0

0 1

1

2

2

3

1

2
0.76

1.5

0.62 0.48 0.36

0.360.62 0.480.76

0.88

0.88

0.97

0.97

2
Complex conjugate roots

Complex conjugate roots

1 0.5

0.24

0.24 0.12

0.12

Im
ag

in
ar

y
ax

is

Im
ag

in
ar

y
pa

rt

Plot of the roots of the quadratic equation: f(x) = ax2 + bx + c, using pzmap
a=3, b=9, and c=10

Plot of the roots of the quadratic equation: f(x) = ax2 + bx + c, using zplot
a=3, b=9, and c=10

Real part

0

0.5

x

x

x

x

FIGURE 8.17
Plots of Example 8.11 (equation 3).

CRC_47744_Ch008.indd 574CRC_47744_Ch008.indd 574 7/13/2008 10:46:45 AM7/13/2008 10:46:45 AM

Decisions and Relations 575

title(‘stair plot’)
ylabel(‘[principal + interest]’);
subplot(2,2,3)
bar(k,F)
title(‘bar plot’)
ylabel(‘[principal+ interest]’);xlabel (‘# of years’)
subplot(2,2,4)
plot(k,F,k,F,’s’)
title(‘continuous plot’)
ylabel(‘[principal + interest]’);xlabel (‘# of years’)
disp(‘ * * * R E S U L T S * * *’)
disp(‘************************************’)
disp(‘years amount in $(capital+ interest)’)
disp(‘************************************’)
[k’ F’]
disp(‘************************************’)

Back in the command window, the script fi le capital_inter is tested for P = $1000, I = 6%,
and n = 10 years. The results are as follows:

>> capital _ inter

 Enter the principal in dollars: 1000
 P =
 1000
 Enter the annual percent interest rate: 6
 I =
 6
Enter the number of years: 10
n =
 10
 * * * R E S U L T S * * *
**
 years amount in $(capital + interest)

**

 ans =
 1.0e+003 *
 0.0010 1.0600
 0.0020 1.1236
 0.0030 1.1910
 0.0040 1.2625
 0.0050 1.3382
 0.0060 1.4185
 0.0070 1.5036
 0.0080 1.5938
 0.0090 1.6895
 0.0100 1.7908
**

See Figure 8.18.

CRC_47744_Ch008.indd 575CRC_47744_Ch008.indd 575 7/13/2008 10:46:45 AM7/13/2008 10:46:45 AM

576 Practical MATLAB® Basics for Engineers

Example 8.13

Two bank accounts are opened simultaneously: account A with an initial capital of
$1535 at an annual interest rate of 8.5% and account B with an initial capital of $2150 at
an annual interest rate of 6.3%.

Create the script fi le accounts _A_B that returns the growth of each account in a table-
like format and its corresponding plots. Estimate graphically using ginput, if and when the
two accounts reach the same amount, assuming a time period of n = 20 years. Also indi-
cate by means of a plot if account B outperforms account A over the given time period.

MATLAB Solution
% Script file: accounts _ A _ B
Account _ A=1535;
Account _ B=2150;
I _ A = 8.5;I _ B = 6.3;
n =20;
I _ A = I _ A/100;I _ B = I _ B/100;
for k=1:n;
 F _ A(k) = Account _ A*(1+I _ A)̂ k;
 F _ B(k) =Account _ B*(1+I _ B)̂ k;
 diff(k) =F _ B(k)-F _ A(k);
end
k =1:n;
figure(1)
plot(k,F _ A,’o’,k,F _ A,k,F _ B,’h’,k,F _ B)
ylabel(‘[principal + interest] of Accounts A and B’);xlabel (‘# of

years’)

FIGURE 8.18
Plots of Example 8.12.

2000

1500

1000

500

0
0 5 10

Discrete plot Stair plot
2000

1800

1600

1400

1200

1000
0 5 10

Continuous plot
2000

1800

1600

1400

1200

1000
0 5 10

Number of yearsNumber of years
0 1 2 3 4 5 6 7 8 910

Bar plot
2000

1500

1000

500

0

[P
rin

ci
pa

l +
 in

te
re

st
]

[P
rin

ci
pa

l +
 in

te
re

st
]

[P
rin

ci
pa

l+
in

te
re

st
]

[P
rin

ci
pa

l +
 in

te
re

st
]

CRC_47744_Ch008.indd 576CRC_47744_Ch008.indd 576 7/13/2008 10:46:45 AM7/13/2008 10:46:45 AM

Decisions and Relations 577

title(‘[growth of Accounts A and B] vs [# of years]’)
legend(‘points A’, ‘plot _ A’, ‘points B’,’plot _ B’)
disp(‘**’)
disp(‘Variables when the two accounts reach the same amount’)
[year _ n,amount]=ginput(1)
figure(2)
plot(k,diff,’o’,k,diff)
ylabel(‘[difference between Accounts B and A’);xlabel (‘# of years’)
title(‘[growth of Accounts (B - A)] vs [# of years]’)
disp(‘************************************’)
disp(‘ Table indicating growth’)
disp(‘years Ac _ A Ac _ B (capital + interest)’)
disp(‘************************************’)
[k’ F _ A’ F _ B’]
disp(‘************************************’)

The script fi le accounts_A_B is executed and the results are as follows:

>> accounts _ A _ B

**
Variables when the two accounts reach the same amount
 year _ n =
 16.5438
amount =
 5.9123e+003

 Table indicating growth
 years Ac _ A Ac _ B (capital + interest)

 ans =
 1.0e+003 *
 0.0010 1.6655 2.2855
 0.0020 1.8070 2.4294
 0.0030 1.9606 2.5825
 0.0040 2.1273 2.7452
 0.0050 2.3081 2.9181
 0.0060 2.5043 3.1020
 0.0070 2.7172 3.2974
 0.0080 2.9481 3.5051
 0.0090 3.1987 3.7260
 0.0100 3.4706 3.9607
 0.0110 3.7656 4.2102
 0.0120 4.0857 4.4755
 0.0130 4.4330 4.7574
 0.0140 4.8098 5.0571
 0.0150 5.2186 5.3757
 0.0160 5.6622 5.7144
 0.0170 6.1435 6.0744
 0.0180 6.6657 6.4571
 0.0190 7.2322 6.8639
 0.0200 7.8470 7.2963

CRC_47744_Ch008.indd 577CRC_47744_Ch008.indd 577 7/13/2008 10:46:45 AM7/13/2008 10:46:45 AM

578 Practical MATLAB® Basics for Engineers

[Growth of accounts (B −A)] versus [number of years]

[D
iff

er
en

ce
 b

et
w

ee
n

ac
co

un
ts

 B
 a

nd
 A

]

800

600

400

200

−400

−600

0

−200

0 2 4 6 8 10 12 14 16 18 20

Number of years

FIGURE 8.20
Plots of growth of accounts (B − A) of Example 8.13.

Observe from the table and plots that account B outperforms account A during the fi rst
16.54 years; but over the 20-year period, account A outperforms account B by $550.

See Figures 8.19 and 8.20.

[Growth of accounts A and B] versus [number of years]
8000

7000

6000

5000

4000

3000

2000

1000
0 2 4 6 8 10 12 14 16 18 20

Points A

Points B

PlotA

PlotB

Number of years

[P
rin

ci
pa

l +
 in

te
re

st
] o

f a
cc

ou
nt

s
A

 a
nd

 B

FIGURE 8.19
Plots of growth of accounts A and B of Example 8.13.

Example 8.14

The stock value of a company XYZ taken during the closing of 15 consecutive trading
days of two time periods A and B are given. Analyze the performance of the company’s
stock by comparing the two time periods. Draw a fl owchart and create the script fi le
stock that returns the following:

 1. The performance plot of the stock during each period A and B.

CRC_47744_Ch008.indd 578CRC_47744_Ch008.indd 578 7/13/2008 10:46:45 AM7/13/2008 10:46:45 AM

Decisions and Relations 579

 2. Let A be the array that represents the stock values during period A and B the array
that represents the stock values during period B (with 15 entries each). Determine
the number of days that {A(n) ≥ B(n)} the stocks during period A outperformed or
showed equal performance with respect to the stocks during period B.

 3. Evaluate the number of days that the stocks during period B outperformed the
stocks during period A.

 4. Evaluate which period of time shows better performance. Let C = A − B and D = B
− A. Implement a simple performance mechanism by comparing the sum(C) with
sum(D).

 5. An equal valid model of performance prediction is the evaluation of the area under
the curve of magnitude[A(n) − B(n)] versus n, or magnitude[B(n) − A(n)] versus n, for
n = 1, 2, 3, …, 15.

 6. Note that the magnitude plots and areas in part 5 are the same, but with opposite
sign.

 7. Observe that the sign in part 6 can be used to indicate performance and the area
may be used to indicate the level of performance.

See Figure 8.21.

ANALYTICAL Solution

Inputs:
A = [A1A2 A3 … A15]

B = [B1B2 B3… B15]

Is

A(n) ≥ B(n)?
NoYes

DayA = DayA +1
C(n) = A(n) – B(n)

DayA = 0
DayB = 0

n = 1

DayB = DayB + 1
D(n) = B(n) – A(n)

n = n +1

Is
n =16?

Yes

sumC = sum(C)
sumD = sum(D)

No

Is
sumC =
sum(D)?

NoYes

Display:
‘A and B have equal

performance’
Is

sumC >
sumD?

NoYes

Display:
‘A outperforms B ’

Display:
‘B outperforms A

FIGURE 8.21
Flowchart of Example 8.14.

CRC_47744_Ch008.indd 579CRC_47744_Ch008.indd 579 7/13/2008 10:46:46 AM7/13/2008 10:46:46 AM

580 Practical MATLAB® Basics for Engineers

MATLAB Solution
% Script file: stock
format compact
A= input(‘Enter the 15 stock values in brackets at the closing
during period a = ‘);
B= input(‘Enter the 15 stock values in brackets at the closing
during period b =’);
 if length(A) == length(B)
 else disp(‘A mistake was made!!!’)
 disp(‘The input data does not have the same number of

days closings’)
 end
 if length(A) ==15
 else disp(‘A mistake was made!!!’)
 disp(‘The input data does not have 15 days closings’)
 end
 DayA =0;
 DayB =0;
 for n =1:15
 if A(n)>=B(n);
 DayA=DayA+1;
 else DayB=DayB+1;
 end
 C(n) =A(n)-B(n);
 D(n) =B(n)-A(n);
 end
 sumc = sum(C);
 sumd = sum(D);
 disp(‘**’)
 disp(‘********************R E S U L T *********************’)
 disp(‘**’)
 if sumc == sumd
 disp(‘The stock performance during the periods A and B

are equal’)
 elseif sumc>sumd;
 disp(‘The stock during the period A outperforms the

period B’)
 fprintf (‘Period A outperformed period B during %4.2f

days\n’,DayA)
 disp(‘from 15 days’)
 else disp(‘***The stock during the period B outperforms

the period A***’)
 fprintf (‘Period B outperformed period A during %4.2f

days\n ‘,DayB)
 disp(‘from 15 days’)
 end
 disp(‘***’)
 disp(‘ ‘)
 n =1:15;

CRC_47744_Ch008.indd 580CRC_47744_Ch008.indd 580 7/13/2008 10:46:46 AM7/13/2008 10:46:46 AM

Decisions and Relations 581

 figure (1)
 plot (n,A,’o’,n,A,n,B,’s’,n,B)
 ylabel (‘[Stocks values during periods A and B]’);xlabel

(‘n in days ‘)
 title (‘[Stocks values during periods A and B] vs [days]’)
 legend (‘points A’,’stock _ A’,’points B’, ‘stock _ B’)

 figure(2)
 subplot(2,1,1)
 plot (n,C,’o’,n,C)
 fill(n,C,’k’)
 ylabel (‘[period A-period B]’);xlabel (‘n in days ‘)
 title (‘[Difference between periods A and B] vs. [days]’)
 subplot (2,1,2)
 plot (n,D,’o’,n,D)
 fill(n,D,’k’)
 ylabel(‘[period B-period A]’);xlabel (‘n in days ‘)
 title(‘[Difference between periods B and A] vs. [days]’)
 area _ A = trapz(n,C);
 area _ B = trapz(n,D);
 disp (‘***’)
 fprintf (‘The area under [period A- period B] is =

%4.2f\n’,area _ A)
 fprintf (‘The area under [period B- period A] is =

%4.2f\n’,area _ B)
 disp (‘**’)
 disp (‘**’)

 The script fi le stock is executed and the results are as follows:

 >> stock

 Enter the 15 stock values in brackets at the closing during
period A =

 [1.8 2 2.3 3 4 5 6.7 4.5 5.6 5 3.5 4.6 2.3 3.6 4.2]
 Enter the 15 stock values in brackets at the closing during

period B =
 [1.3 2.5 3.3 3.9 4 5.4 4.7 3.5 3.3 5 3.25 4.36 3.3 3.86 4.4]

**
******************* R E S U L T ***********************************
**
**
 The stock during the period A outperformed the period B
 Period A outperformed period B during 8.00 days
 from 15 days
**
 The area under [period A- period B] is = 1.94
 The area under [period A- period B] is = -1.94
**

See Figures 8.22 and 8.23.

CRC_47744_Ch008.indd 581CRC_47744_Ch008.indd 581 7/13/2008 10:46:46 AM7/13/2008 10:46:46 AM

582 Practical MATLAB® Basics for Engineers

[Stock values during periods A and B] versus [days]
7

6

5

4

3

2

1
0 5 10 15

n in days

[S
to

ck
 v

al
ue

 d
ur

in
g

pe
rio

ds
 A

 a
nd

 B
]

Points A

Points B

StockA

StockB

FIGURE 8.22
Stock performance plots of Example 8.14.

[Difference between periods A and B] versus [days]

[Difference between periods B and A] versus [days]

3

2

1

0

−1
0 5 10 15

[P
er

io
d

A
−p

er
io

d
B

]
[P

er
io

d
B

−p
er

io
d

A
]

1

0

−2

−3
0 5 10 15

n in days

n in days

−1

FIGURE 8.23
Performance plots of the differences between A and B of Example 8.14.

CRC_47744_Ch008.indd 582CRC_47744_Ch008.indd 582 7/13/2008 10:46:46 AM7/13/2008 10:46:46 AM

Decisions and Relations 583

Example 8.15

Let a system polynomial equation be y(x) = 3x5 + (4 + k)x4 + (5 − k)x3 − 2kx2 − kx + (2 + k),
over the range −2 ≤ k ≤ 2. Evaluated k in linear increments of 0.5 represents a system,
where x is its input, y its output, and k may represent a disturbance.

Create the script fi le plots_roots that returns the following plots:

 a. [the real and imaginary part of the roots of y(t)] versus k
 b. {abs[the roots of y(x)]} versus k
 c. [the real part of the roots of y(x)] versus [the imaginary part of the roots of y(x)]

MATLAB Solution
% Script file: plots _ roots
figure(1)
for K=-2:0.5:2;
 Y = [3 4+K 5-K -2*K -K 2+K];
 K,r = roots(Y);
 K = K*ones(1,5);
 plot(K,real(r),’*’,K,imag(r),’o’)
 hold on
end
grid on
title(‘Plot of [roots of y(x)] vs [k], for-2<k<2’)
xlabel(‘disturbance-k’);ylabel(‘roots of y(x)’)
legend(‘real part’,’imag. part’)
figure(2)
for K=-2:0.5:2;
 Y = [3 4+K 5-K -2*K -K 2+K];
 K,r = roots(Y);
 k=K*ones(1,5);
 plot(k,abs(r),’o’)
 hold on
 end
 grid on
 title(‘Plot of [abs(roots of y(x))] vs [k], for-2<k<2’)
 xlabel(‘k’);ylabel(‘magnitute’)
 figure(3)
 for K =-2:0.5:2;
 Y= [3 4+K 5-K -2*K -K 2+K];
 R= roots(Y);
 imagR=imag(R);
 realR=real(R);
 plot(realR,imagR,’*’,realR,imagR)
 hold on
 end
 grid on
 title(‘Plot of the roots of y(x) on the complex plane

 for -2<k<2’)
 xlabel(‘real axis’);ylabel(‘imaginary axis’)

See Figures 8.24 through 8.26.

CRC_47744_Ch008.indd 583CRC_47744_Ch008.indd 583 7/13/2008 10:46:48 AM7/13/2008 10:46:48 AM

584 Practical MATLAB® Basics for Engineers

FIGURE 8.25
Plots of the magnitude of the roots of Example 8.15.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5
Plot of [abs(roots of y(x))] versus [k], for −2<k<2

Disturbance-k

M
ag

ni
tu

te

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5
Plot of [roots of y(x)] versus [k], for −2<k <2

Disturbance-k

R
oo

ts
 o

f y
(x

)

Real part
Imaginary part

FIGURE 8.24
Plots of roots of Example 8.15.

CRC_47744_Ch008.indd 584CRC_47744_Ch008.indd 584 7/13/2008 10:46:48 AM7/13/2008 10:46:48 AM

Decisions and Relations 585

Example 8.16

Let y1(t) = sin(2 π t). Create the script fi le waves that returns the following plots by properly
transforming y1(t):

 1. y1(t) versus t
 2. y2(t) versus t
 3. y3(t) versus t
 4. y4(t) versus t
 5. y5(t) versus t
 6. y6(t) versus t

over the range 0 ≤ t ≤ 2 by converting y1(t) into the periodic functions yn(t), for n = 2, 3,
4, 5, 6, defi ned as follows:

 1. y2(t) = y1(t) = sin(2 π t), for 0 ≤ t ≤ 0.5, which repeats periodically with T = 0 (y2(t) is
known as a fully rectifi ed wave)

 2. y t
t t

t

y t

3

3

()
sin(2) 0 0 5

0 0 5 1

()

�
� �

�

�
�

for
for

(is known as a

.
.





 half rectified wave)

 3. y t

y t

y t

y t
4

1

()

0 5 () 0 5

0 5 () 0 5

()

�

�

�

. .
. .

for
for

otherwise

(

1

1� �









yy t4() is known as a clipped wave)

FIGURE 8.26
Plots on the complex plane of the roots of Example 8.15.

Plot of the roots of y(x) on the complex plane for −2<k<2
1.5

1

0.5

0

−0.5

−1

−1.5
−1.5 −1 −0.5 0 0.5

Real axis

Im
ag

in
ar

y
ax

is

1

CRC_47744_Ch008.indd 585CRC_47744_Ch008.indd 585 7/13/2008 10:46:48 AM7/13/2008 10:46:48 AM

586 Practical MATLAB® Basics for Engineers

4. y t

t

t

y t

5

5

()
1 0 0 5

0 0 5 1

()

�
� �

�

for
for

(becomes a square wav

.
. �





ee with unity peak-to-peak value)

 5. y t
t

t

y t

6

6

()
10 0 0 5

5 0 5 1

()

�
� �

�

for
for

(becomes a rectangu

.
.� �





llar wave with a peak-to-peak value)� 15

MATLAB Solution
% Script file: waves
format compact
figure(1)
t = 0:0.01:2;
Y1 = sin(2*pi.*t);
subplot (2,1,1);
plot (t,Y1)
title(‘[y1(t)=sin(2*pi*t)] vs. t’)
ylabel(‘Amplitude’); axis([0 2 -1.2 1.2])
n = 1;
for n =1:201;
 if Y1(n)<0;
 Y2(n) = -1*Y1(n);
 n = n+1;
 else Y2(n)=Y1(n);
 n = n+1;
 end
end
subplot (2,1,2)
plot (t,Y2)
title (‘[y2(t)] vs. t (full rectified wave)’)
ylabel (‘Amplitude’)
xlabel (‘t. in sec.’) ;axis([0 2 -0.2 1.2])
K=1;
figure(2)
while K<202;
 if Y1(K)<0;
 Y3(K)=0;
 K= K+1;
 else Y3(K) =Y1(K);
 K= K+1;
 end
end
subplot(2,1,1);
plot (t,Y3)
title(‘[y3(t)] vs. t (half rectified wave)’)
ylabel(‘Amplitude’)
axis([0 2 -0.2 1.2])
for M =1:201
 if Y1(M)>=0.5;
 Y4(M)=0.5;
 elseif Y1(M)<=-0.5
 Y4(M)=-0.5;
 else Y4(M)=Y1(M);
 end

CRC_47744_Ch008.indd 586CRC_47744_Ch008.indd 586 7/13/2008 10:46:49 AM7/13/2008 10:46:49 AM

Decisions and Relations 587

end
subplot (2,1,2);
plot (t,Y4)
title (‘[y4(t)] vs. t (clipped wave)’)
ylabel (‘Amplitude’)
xlabel (‘t in sec.’);axis([0 2 -1 1])
figure(3)
for K= 1:201;
 if Y1(K)<=0;
 Y5(K) =0;
 else Y5(K) =1;
 end
end
subplot (2,1,1);
plot (t,Y5)
title (‘[y5(t)] vs. t (square wave with a unity peak to peak value)’)
ylabel (‘Amplitude ‘)
axis ([-0.1 2 -0.2 1.2])
for K=1:201;
 if Y1(K)<=0
 Y6(K) =-5;;
 else Y6(K) =10;
 end
end
subplot (2,1,2);
plot (t,Y6)
xlabel (‘t in sec.’); ylabel(‘Amplitude’)
title (‘[y6(t)] vs. t (rectangular wave with a peak to peak value=15)’)
axis ([-0.1 2 -6 11])

The script fi le waves is executed and the resulting plots are shown in Figures 8.27
through 8.29.

FIGURE 8.27
Plots of y1(t) and y2(t) of Example 8.16.

[y1(t) = sin(2*pi*t)] versus t

1

0.5

0

−0.5

−1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

[y2(t)] versus t (full rectified wave)

t (s)

t (s)

A
m

pl
itu

de

1

0.5

0

A
m

pl
itu

de

CRC_47744_Ch008.indd 587CRC_47744_Ch008.indd 587 7/13/2008 10:46:50 AM7/13/2008 10:46:50 AM

588 Practical MATLAB® Basics for Engineers

FIGURE 8.28
Plots of y3(t) and y4(t) of Example 8.16.

[y3(t)] versus t (half rectified wave)

1

0.5

0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.81.6 2

t (s)

t (s)

[y4(t)] versus t (clipped wave)
1

0.5

0

−0.5

−1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

A
m

pl
itu

de
A

m
pl

itu
de

[y5(t)] versus t (square wave with a unity peak-to-peak value = 1)

[y6(t)] versus t (rectangular wave with a peak-to-peak value = 15)

1

0.5

0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

10

−5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

5

0

A
m

pl
itu

de
A

m
pl

itu
de

t (s)

t (s)

FIGURE 8.29
Plots of y5(t) and y6(t) of Example 8.16.

CRC_47744_Ch008.indd 588CRC_47744_Ch008.indd 588 7/13/2008 10:46:50 AM7/13/2008 10:46:50 AM

Decisions and Relations 589

8.5 Further Analysis

Q.8.1 Load and run the script fi le max_min of Example 8.1.
Q.8.2 Draw a clear fl owchart of the script fi le max_min.
Q.8.3 Estimate the number of times that the program is in a loop.
Q.8.4 Modify the script max_min in which every time a loop is executed, MATLAB

returns a message indicating the loop number, starting with 1 (2, 3, 4, …).

Q.8.5 Modify the program so that the maximum and minimum is displayed for each
loop iteration.

Q.8.6 Discuss the case when two elements in V are equal.
Q.8.7 Modify the script max_min to take into account the case in which two or more equal

elements are part of V.

Q.8.8 Modify the script to perform the search by using the absolute values of max and min.
Q.8.9 Load and run the script fi le matrix_of_ones of Example 8.2.
Q.8.10 Draw a fl owchart of the script fi le matrix_of_ones.
Q.8.11 Estimate the number of loops in the script program.
Q.8.12 Defi ne the purpose of each loop.
Q.8.13 Modify the script to return a matrix consisting of zeros (similar to zeros).
Q.8.14 Modify the script to return the eye (square) matrix.
Q.8.15 Modify the script to return a diagonal (square) matrix with the element values of 1,

2, 3, …, n in the main diagonal (the diag command is not allowed).
Q.8.16 Load and run the script fi le perm_matrix of Example 8.3.
Q.8.17 Verify that each row sum returns the same result.
Q.8.18 Modify the script fi le so that the permutations of the elements are done columnwise.
Q.8.19 Load and run the program of Example 8.4.
Q.8.20 Draw a fl owchart for each of the solutions (a, b, and c).
Q.8.21 Which solution in your opinion is the best. Discuss and defi ne the term best.
Q.8.22 Can you implement Example 8.4 using the if-end statement? If possible indicate how.
Q.8.23 Load and run the script fi le grett_05 of Example 8.5.
Q.8.24 Defi ne the variable Addx and indicate if the command Addx = Addx + 0 can be

omitted.
Q.8.25 Redraw the fl owchart for the case of estimating the number of elements in x greater

than 0.5.
Q.8.26 Rerun the modifi ed script for Q.8.25 and test the program with a new array x.
Q.8.27 Redraw the fl owchart to return the number of elements whose values are between

0.5 and 0.7 using the if-end statement.
Q.8.28 Code and rerun the program for Q.8.27 and test the modifi ed program with a new

sequence.
Q.8.29 How many if-end statements are required in Q.8.28?
Q.8.30 Modify the script fi le of Example 8.5 to obtain the sum of all the elements smaller

than 0.5 in addition to the number of elements.

CRC_47744_Ch008.indd 589CRC_47744_Ch008.indd 589 7/13/2008 10:46:51 AM7/13/2008 10:46:51 AM

590 Practical MATLAB® Basics for Engineers

Q.8.31 Load and run the script fi le approx_exp of Example 8.6.
Q.8.32 Draw a clear fl owchart of approx_exp.
Q.8.33 Defi ne the variables app and approx.
Q.8.34 If the desired number of terms of the approximation is 10, what is the total number

of iterations executed?
Q.8.35 Modify the script to evaluate the number of terms required to obtain an approxi-

mation with an error of less than 1%.
Q.8.36 From the plots (Figure 8.13) it seems that a fi ve term approximation is appropriate. If

that is the case, then estimate the error in terms of the absolute and percentage values.
Q.8.37 Load and run each of the script fi les of Example 8.7, traffi c_light_if and traffi c_light_

switch {parts (a) and (b)}.
Q.8.38 Draw a fl owchart for each of the preceding script fi les.
Q.8.39 Modify the script fi les to accept inputs that are not case sensitive. Test the modifi ed

fi les with your own input strings.
Q.8.40 Modify the script fi le traffi c_light_if to include the full traffi c light colors as inputs.
Q.8.41 Compare the two script fi le solutions {part (a) with part (b)}.
Q.8.42 Modify each script fi le so that the output message is repeated 10 times when the

traffi c light is red.
Q.8.43 Load and run the script fi le voting_age of Example 8.8.
Q.8.44 Draw a clear fl owchart of voting_age.
Q.8.45 Modify the program so that the input includes gender (male or female).
Q.8.46 Modify this program to return (display) also the voting place, such as females in

booth #A and males in booth #B.
Q.8.47 Load and run the script fi le age_des of Example 8.9.
Q.8.48 Modify the fl owchart and script to include the additional category of toddler that

corresponds to the age range age ≤ 2. Test the modifi ed script for age = 1.
Q.8.49 Modify the program to include the party’s name as an additional input.
Q.8.50 Modify the display to replace This person by the person’s name (Q.8.49).
Q.8.51 Load and run the script fi le order of Example 8.10.
Q.8.52 Redraw the fl owchart and modify the program that would allow for equal values.
Q.8.53 Rerun the program with the modifi cations and test it for A = 1, B = 2, and C = 2.
Q.8.54 Modify the fl owchart and scripts of Example 8.10 with the objective of returning

A, B, and C in descending order.
Q.8.55 Modify and redraw the fl owchart of Example 8.10 for the case of four unequal

numbers.
Q.8.56 Load and run the script fi le qua_roots of Example 8.11 for the case y(x) = x2 − x − 6.
Q.8.57 Test the script fi le qua_roots of Example 8.11 for the following cases:

a. y1(t) = x2 − 6x − 7

b. y2(t) = x2 − 6x + 9

c. y3(t) = x2 − 6 + 10

 Analyze and verify the results for each of the above cases.
Q.8.58 Verify the values obtained in Q.8.57 by hand.

CRC_47744_Ch008.indd 590CRC_47744_Ch008.indd 590 7/13/2008 10:46:51 AM7/13/2008 10:46:51 AM

Decisions and Relations 591

Q.8.59 Verify Q.8.57 by obtaining the plots for each equation.
Q.8.60 Load and run the script fi le capital_inter of Example 8.12 for P = $2500, I = 7.15%,

and n = 12 years.
Q.8.61 Assuming that monies are withdrawn at the rate of $60 annually at the end of

every year, modify the program that returns a table and plots of the balance in the
account over a 10-year period.

Q.8.62 Load and run the script fi le accounts_A_B of Example 8.13.
Q.8.63 Modify the script to return automatically the number of years when the two

accounts reach the same value (the command ginpu is not allowed).
Q.8.64 Load and run the script fi le stock of Example 8.14.
Q.8.65 Analyze the given fl owchart. Does the script stock agree with the given fl owchart?
Q.8.66 Defi ne the purpose of the variables DayA, DayB, and n.
Q.8.67 Defi ne and discuss how the performance of the stock is evaluated. Discuss the

model and state if you agree.
Q.8.68 Redraw the fl owchart and include the area to measure performance.
Q.8.69 Modify the program so that the average value of the stocks over each period (A and

B) is used to evaluate their performance.
Q.8.70 Defi ne performance now in terms of areas (divided by 15). Modify the fl owchart

and script to include this new approach.
Q.8.71 Compare the performance models.
Q.8.72 Load and run the script fi le plots_roots of Example 8.15.
Q.8.73 Estimate the number of times the command roots(y) is executed.
Q.8.74 Estimate the number of times the plot command is executed.
Q.8.75 Draw a clear fl owchart of the script of Example 8.15.
Q.8.76 Load and run the script fi le waves of Example 8.16.
Q.8.77 Draw a fl owchart for the script fi le of Example 8.16.
Q.8.78 Replace the while-end command by the equivalent for-end command and rerun the

script waves.

Q.8.79 Modify the script fi le of Example 8.16 to return y7(t) defi ned below as a plot:

y t

y t t

t

t

y t t

7

1

1

()

()

()

�

�

�

�

� �

0 0 5
1 0 5 1

1 1 1 5
2 1 5 2

�
�

�
�

.
.

.
.

�










8.6 Application Problems

P.8.1 Let A = [–2 0 4 8 1] and B = [–1 1 0 7 1].
Evaluate the following expressions by hand and using MATLAB:

a. C = ∼A & B

b. D = A & ∼B

CRC_47744_Ch008.indd 591CRC_47744_Ch008.indd 591 7/13/2008 10:46:51 AM7/13/2008 10:46:51 AM

592 Practical MATLAB® Basics for Engineers

c. E = ∼(A & B)

d. F = ∼A/B

e. G = ∼ X or (A, ∼B)

f. H = (A > B) & (A = = B)

g. J = ∼(A = = B)

P.8.2 Given

A �

0 1
2 3









 , B = ‘a b c’, C = 0, and D = [1 2 3 4]

 Anticipate the display and verify your answers after executing the following
commands:
a. all(D)

b. fi nd(A)

c. isinf(A)

d. ischar(B)

e. isnumeric(B)

f. exist(C)

g. any(D)

h. isreal(A)

i. isempty(A)

j. isempty(C)

k. isnan(A./C)

P.8.3 Evaluate and determine if the following pair of expressions are equivalent:
a. (a==b)|(c==d)

 ∼(a==b)|∼(c==d)

b. (a==b) & (c==d)

 ∼(a==b) & ∼(c==d)

c. (a==b) & ∼(c==d)|(d==a)

 (a==b)|(c==d) & (d==a)

d. (a==b) xor (c==d) & (d==a)

 (a==b) & (c==d) xor (d==a)

 Assign arbitrary values to a, b, c, and d; then test and verify your answers using
MATLAB.

P.8.4 Indicate for what ranges of x are the following expressions true:
a. a = (x < 15) & ∼(x >= 25)

b. b = (x >= 2315) & (x < 33)

c. c = (x >= 0)|(x <− 3)

P.8.5 For what ranges of x are the expressions given in P.8.4 false.
P.8.6 Evaluate how many times each loop is executed and what are the resulting loop

variables after executing each of the following segments of programs:

CRC_47744_Ch008.indd 592CRC_47744_Ch008.indd 592 7/13/2008 10:46:51 AM7/13/2008 10:46:51 AM

Decisions and Relations 593

a. for i = 1:2:25
 y = i + 2
 end

b. for j = –1:2:26.
 k = (j) ^ 2
 end

c. y = 2; z = 25.
 while y > z
 x = y – 25
 y = y + 2
 end

d. for i = [3,7,9,13]
 d = i.̂ 2
 end

e. for i = 1:4
 for j = 1:3
 A(i,j) = i*3/j
 end
 end

f. n = 2, y(1) = 1,
 while n<4
 y(n) = n*2
 n = n+1
 end

g. n =2,m=5,
 if n>2
 y = n*3
 elseif n<2
 z=m*n
 end

h. n =0
 for x= linspace(0,2*pi,100)
 if x>pi
 n=n+1
 y(n)=sin(x)
 elseif x>2*pi
 n=n+1
 y(n)=-1
 else n=n+1
 y(n)=1
 end

P.8.7 Draw clear fl owcharts for each segment of P.8.6.

P.8.8 Anticipate the display for the following short programs and verify your answers
using MATLAB:

a. for x = 1: 10
 disp(‘This is a loop’)
 end

CRC_47744_Ch008.indd 593CRC_47744_Ch008.indd 593 7/13/2008 10:46:51 AM7/13/2008 10:46:51 AM

594 Practical MATLAB® Basics for Engineers

b. y = 0; z = 10;
 if y < z
 disp(‘Loop =’, y)
 y = y+1
 end

c. for i = 1:5
 for j = 4
 A(i,j) = (i*j)̂ 2
 disp(A(i,j))
 end
 end

d. for k = 0:pi/10: 2*pi
 a(k) = k*sin (k)
 b(k) = –k*cos(k)
 end
 disp(a(k)’ b(k)’)

P.8.9 Draw clear fl owcharts for each program of P.8.8.
P.8.10 Create a script fi le that returns the message Matlab is fun, 10 times.
P.8.11 Create a script fi le that, given a number N, returns a message indicating if N is a

multiple of 7 and 11 or both.
P.8.12 Draw a fl owchart for the program of P.8.11.

P.8.13 Draw a fl owchart and write a program (using conditional statements where the
commands, not allowed cumprod or prod, are not allowed) that returns n! (factorial).
Test your program for n = 6, 15, and 34.

P.8.14 Evaluate the following series:

sin()

! ! ! ! !
, , , , ,x x

x x x x x
n

n
n

� � � �� � �
3 5 7 9

3 5 7 9
1 3 5 7� …for odd

 and

exp()

! ! !
, ,x x

x x x
n

n
n

� � � � � � �1
2 3

1 2 3
2 3

� …for

 for x = 0:5 and n = 25 in a tablelike format using the for-end and while-end
commands.

P.8.15 Draw a fl owchart, test and verify if the results obtained in P.8.14 are correct. Esti-
mate in each case the error.

P.8.16 Draw a fl owchart and write a MATLAB program that returns log(x) for x = 1:10 in
a tablelike format, using
a. implied looping
b. for-end command

c. while-end command

P.8.17 Write a MATLAB program that uses the for-end and while-end commands that
return the plots of the following functions:
a. f(t) = 1 __ π t + 1, over the domain −π < t < 0
b. f(t) = cos(t), over the domain 0 < t < π
c. f(t) = 1 __ π t − 2, over the domain π < t < 2π

CRC_47744_Ch008.indd 594CRC_47744_Ch008.indd 594 7/13/2008 10:46:51 AM7/13/2008 10:46:51 AM

Decisions and Relations 595

P.8.18 The Fibonacci sequence is defi ned by the following recursive equation: Fn = Fn − 1 +
Fn, for n = 2, 3, 4, …, where Fo = 0 and F1 = 1. Write a program that returns the nth
Fibonacci coeffi cient given n.

P.8.19 Write a program that returns the sum of the Fibonacci sequence for any given n.
P.8.20 Draw a fl owchart and write a program that returns the number of required terms

resulting in the sum of the Fibonacci sequence closest to 1000.
P.8.21 Let A(i, j) = (i.j) for the case of a 3 by 5 matrix. Draw a fl owchart and write a program

that returns the matrix A, using the for-end- and while-end commands.
P.8.22 Draw a fl owchart and write a program (using conditional branching) that, given

four unequal numbers, returns the smallest- and largest number. The sort, max, and
min commands are not allowed.

P.8.23 Draw a fl owchart and create a script fi le that, given the number of hours worked
during a week and the hourly pay for a given employee, returns the weekly gross
salary. The salary is computed in the following way:
a. The fi rst 35 hours are paid according to the agreed hourly salary
b. Overtime is paid for the hours worked in excess of the fi rst 35 h, but less than

50 hours at a rate of one and a half the base pay
c. The hourly rate is twice the base rate when the weekly number of hours worked

exceeds 50 h
 Test the script for the following case:
 Base hourly rate at $13.45, and the weekly number of hours worked 27, 38, 44, 55,

and 62.

P.8.24 Draw a fl owchart and write a program that, given a (telegram) message, returns its
cost C. The cost C is calculated in the following way:
a. A fl at $4.15 for the fi rst 100 characters or less
b. $0.05 for any additional character

P.8.25 Evaluate and plot the absolute value of the roots of the equation y = x3 − x + (2 + k),
over the range k = −1:0.1:1, using
a. The while-end loop
b. The for-end loop
c. The implied loop

P.8.26 Given a positive number A and an integer B, draw a fl owchart and write a program
that evaluates
a. A* B without using *
b. A/B without using /
c. AB without using ^

P.8.27 The variance VAR for n samples is defi ned as

VAR

n
x nx nk i

k

n

�
�

1
1

2 2

1�
�∑







 for 1�

where x

n
xn k

k

n

�
�

1

1
∑

 Let x = [1 3 2.1 3 4 6 8 9.1 4 5 9.2 2]

CRC_47744_Ch008.indd 595CRC_47744_Ch008.indd 595 7/13/2008 10:46:51 AM7/13/2008 10:46:51 AM

596 Practical MATLAB® Basics for Engineers

 Draw a fl owchart and write a program that returns the plots of VAR versus n over
3 ≤ n ≤ 12.

P.8.28 The equations of the geometric mean (GM), RMS, and harmonic mean (HM) for n
samples are defi ned as

a. GM �
�

()xi
i

n

n

1
∏

b. RMS �
�

1
n

()xi
n

i

n

1
∑

c. HM �

�

n

xi
i

n
()1

1
∑

 For the case of x given in P.8.27, draw a fl owchart and write a program that returns
GM, RMS, and HM using the for-end and while-end statements.

P.8.29 Implement the MATLAB commands sum(x) and cumsum(x) using the for-end and
while-end commands. Draw a fl owchart and test the program using the array x
defi ned in P.8.27.

P.8.30 Implement the MATLAB command diag(A), for a given square matrix A, using the
for-end and while-end statements.

P.8.31 Implement the MATLAB command fi nd(B), where B is an arbitrary array using the
for-end and while-end statements.

P.8.32 Given g(t) = 5 sin(2πt), draw a fl owchart and write a program that returns the plot
of f(t) versus t over the range 0 ≤ t ≤ 5, where

f t

t g t

g t
()

() | ()| .
. | ()| .

�

	

5 2 2 7
2 7 2 7

sin � for
for





P.8.33 Repeat P.8.32 for the following cases:

a. f t
t t g t

g t
()

() () | ()| .
. | ()| .

�
�5 2 2 2 7

2 7 2 7
sin cos� � �

�
for
for





b. f t
t t g t

g t
()

() | ()| .
. | ()| .

�
sin 2 2 7

2 7 2 7
� �

�
for
for





P.8.34 Two bank accounts A and B are opened simultaneously: account A with an initial
deposit of $1300 at an annual interest rate of 8.25% and account B with an initial
deposit of $2200 at an annual interest rate of 6.50%. Write a program that returns,
when and if the two accounts reach, the same amount (in term of years, months,
and days), assuming that no withdrawals or additional deposits are ever made.

P.8.35 Mr. X opens a bank account with $5000 at an annual interest rate of 5.50%. Mr. X
plans to deposit at the end of every year an additional $1000. How many years
are required for the account to reach $250,000 if no withdrawals are ever made.
Write a program and draw a fl owchart that returns the plot showing the growth of
the account over time.

CRC_47744_Ch008.indd 596CRC_47744_Ch008.indd 596 7/13/2008 10:46:52 AM7/13/2008 10:46:52 AM

597

9
Files, Statistics, and Performance Analysis

Man’s mind, once stretched by a new idea, never regains its original dimensions.

Oliver Wendell Holmes

9.1 Introduction

The command window uses the interactive mode. In this mode, each instruction once
entered is processed and a response is returned before a new instruction is processed.

Another way to process MATLAB® instructions or run a program is to save a program
in a fi le, and then execute the fi le. The fi le that contains a program can be called by typing
the fi lename and pressing the <enter> key, while in the command window. The instruc-
tions in the fi le are then executed, line by line, in sequential order, just as they would be by
entering them at the command window. This approach is particularly useful when a set of
instructions in a program is used repeatedly in many places of the program. In this case,
the interactive mode is not adequate or effi cient.

A more effi cient way is to store a block of frequently used instructions in a fi le, called
either a script or function fi le, and execute each fi le as a command when needed. Of course,
these fi les are stored in a permanent place and can be accessed when desired. This is
not a new topic. Recall that script and function fi les were introduced in Chapter 2 and
used in different chapters of this book. In this chapter, M-fi les are revisited and further
discussed.

Script fi les are used to store data and/or instructions, whereas function fi les are designed
by the user to return a calculated function similar to the built-in MATLAB functions—
sort(x), max(x), abs(x), cos(x), log(x), etc.

Recall that script fi les as well as function fi les are M-fi les. These fi les (M-fi les) are similar
to subroutines in the old traditional computer languages such as Fortran or Basic. Let us
review and summarize the main purpose, goal, and objectives of the M-fi le.

 1. A long complex program can be made more manageable by breaking up the pro-
gram into smaller and simpler modular segments. Each of these segments can
constitute an M-fi le.

 2. Before starting the coding of a program, an experienced programmer draws a
fl owchart (Chapter 1) indicating and identifying the steps and variables involved
and grouping some commands into possible M-fi les. Sometimes, it is also useful
and helpful to describe the M-fi les using simple English sentences before starting
the process of program coding.

 3. It is always recommended to choose variables and fi lenames that best describe
and identify their purpose. Also, comments should be included to clarify, docu-
ment, and explain the step(s) involved in a program.

CRC_47744_Ch009.indd 597CRC_47744_Ch009.indd 597 6/27/2008 5:22:26 PM6/27/2008 5:22:26 PM

598 Practical MATLAB® Basics for Engineers

 4. The partitioning or modular formatting of a program makes the program in gen-
eral more readable, logical, easier to follow, and better-structured and organized.
The segmentation as well as the planning of a program involves some level of
experience (recall the heuristics from Chapter 1), a task learned best by doing and
not necessarily by just reading.

 5. Error detection, error correction, maintenance, and upgrading of programs can be
made easier by testing the individual modules with simple inputs and by provid-
ing warning and error checks at appropriate points.

 6. By constructing a modular program in terms of blocks of commands, the program
can easily be updated, modifi ed, maintained, and can grow and be improved by
incorporating new blocks and changing others.

 7. By using blocks or M-fi les, the end user or programmer can build up a library of
useful modular functions that can be used and reused in other applications.

 8. The segments, blocks, or modules can make up a good portion of a program. These
segments can be written and tested separately by different programmers, located
in different geographic locations, since each segment is completely independent
from one another.

 9. In summary, by breaking up the program into segments, the following benefi ts
are evident:
a. The program can be shorter, user-friendly, readable, logical, and compact.
b. The segment may result in an over all economy of codes and labor, promoting

code reuse.
c. In general, the overall program would be more effi cient. MATLAB M-fi les

are similar to the source code in C or Fortran. When a MATLAB function is
used for the fi rst time, each instruction is interpreted or compiled into internal
pseudocodes, an action called parsing. MATLAB saves the parsed version of
a function in a p-fi le for later use, saving valuable processing time especially
when a function is repeatedly called.

d. The modular M-fi le structure and organization is also used by MATLAB for its
own management and control. For example, when MATLAB is activated, two
fi les are called and executed. They are matlabrc.m and startup.m, and when a ses-
sion is terminated, MATLAB calls fi nish.m to execute the exit or quit commands.
The main objective of these fi les (matlabrc.m and startup.m) is to set the default
features like format, color, and access to the fi gure window, whereas the fi nish.m
fi le confi rms the quitting action by way of a dialog menu.

This chapter deals with fi les; fi le organization and addresses; the MATLAB search fi le
path (to access a given fi le); recommendations about fi le structure; and in general the many
commands associated with fi le creation, modifi cation, deleting, existence checking, stor-
ing, loading, etc.

The creation and usage of special MATLAB fi les are also introduced and discussed.
 Statistical performance analysis, performance techniques, and tools to improve the execu-
tion effi ciency, error detection, and dependencies are also introduced and discussed. Many
examples solved in previous chapters are revisited with different objectives in mind—to
present an alternate solution in some cases; a more effi cient solution in other cases; show
the techniques and quantize the effi ciency of a solution in some cases; just to compare the
structure, presentation, or a new approach to an old problem in others. Many cases are

CRC_47744_Ch009.indd 598CRC_47744_Ch009.indd 598 6/27/2008 5:22:27 PM6/27/2008 5:22:27 PM

Files, Statistics, and Performance Analysis 599

used to develop the analytical tools, techniques, equations, graphs, and models to evalu-
ate, measure, estimate, and represent a variety of statistical data.

Some of the revisited problems are

 a. The solution of a second-order equation
 b. The capital–interest problem is generalized (to include annual, semiannual,

weekly, daily, and continuous interest rates)
 c. The solution of a set of linear equations with a disturbance (over a range)
 d. Area estimation
 e. Statistical data analysis (HM, variance, deviation, etc.)
 f. Performance analysis of different programming implementations (estimating

cputime, elapse-t ime, etc.)
 g. Function fi le versus script fi le, comparisons, and recommendations
 h. Function fi le analysis (using the profi ler)
 i. Histogram and pie representation of data
 j. Numerical and computation performance effi ciencies of sparse versus full matrices

Since this is the last chapter of Practical MATLAB® Basics for Engineers, an effort was made to
use this chapter to review and revisit the type (or classes) of problems most often encoun-
tered by students and professionals, when they are fi rst exposed to MATLAB.

9.2 Objectives

After reading this chapter, the reader should be able to

Defi ne the different fi le types
Know the meaning and application of the different fi le types
Know the difference between ASCII and binary fi les
Learn the computer terminology and meaning such as loading, saving, and storing
Know the fi le format and syntax
Review the steps involved to create, save, and run a script fi le
Know how to use the MATLAB editor
Know how to copy and delete a fi le
Know how to open and modify a fi le
Know how to add and delete a fi le
Know how to use the diary fi le to record the workspace activity
Know what is a mat fi le
Revisit script and function fi les
Know in what directory a fi le is saved
Know the path fi le search
Determine or alter the path fi le search

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

CRC_47744_Ch009.indd 599CRC_47744_Ch009.indd 599 6/27/2008 5:22:27 PM6/27/2008 5:22:27 PM

600 Practical MATLAB® Basics for Engineers

Create, add, and remove directories from the fi le search path
Know the difference between global and local variables
Set and test a global variable
Understand how fi les are executed and converted into pseudocodes (parsing)
Understand the meaning of a p-fi le
Know the directories and the current directory
Organize the directories into subdirectories
Know how the information search is done when executing the lookfor and help
commands
Revisit the control commands used in fi les (error, warning, and keyboard)
Know the statistical methods, techniques, and models used in measuring
performance
Know the performance commands
Estimate the time required by MATLAB to evaluate standard and non-standard
operations
Estimate the best techniques and practices in the construction of effi cient programs

9.3 Background

R.9.1 A fi le may contain a program, a set of instructions, or data that are stored in a stor-
age computer media such as a hard disk, fl oppy disk, or CD-ROM.

R.9.2 Files can be classifi ed according to their contents as
a. Data fi les
b. Program fi les
c. Executable fi les
d. Source fi les
e. Batch fi les

R.9.3 Data fi les contain numbers, graphs, words, or pictures. These fi les can be viewed,
edited, saved, or printed, and they may also constitute the input to other programs
or fi les.

R.9.4 Executable fi les are fi les that contain sequence of instructions that tell the computer
how to perform a particular task. Examples of executable fi les are the programs
that make up the operating system, application software such as MATLAB, and
icons that accessed applications in the Microsoft (MS) Window environment, by a
click of the mouse.

R.9.5 Source fi les are computer programs that are translated into computer code instruc-
tions that can run under an application software.

R.9.6 Batch fi les are source fi les that must be translated before they can be executed by
the application software. Frequently, batch fi les are used by the operating system
to customize the user’s computer system during the initialization process. For
example, the action in an IBM-compatible computer when executing the batch fi le
autoexec.bat.

•
•
•
•
•
•
•
•

•
•

•
•

•

CRC_47744_Ch009.indd 600CRC_47744_Ch009.indd 600 6/27/2008 5:22:27 PM6/27/2008 5:22:27 PM

Files, Statistics, and Performance Analysis 601

R.9.7 Files are stored or saved in storage devices identifi ed by the computer software
with a letter such as
a. A or B, which identify a 3.5 in. fl oppy disk
b. C, which identifi es the hard drive
c. D, E, ..., Z, which identify additional storage devices

R.9.8 The process of storing a fi le in a computer storage facility is referred as saving.
R.9.9 The process of accessing a fi le with the purpose of executing, or reading its contents

is referred as loading.
R.9.10 The process of reading a fi le is commonly referred as opening a fi le.
R.9.11 Files are identifi ed by a format consisting of a fi lename followed by a dot (.) and

suffi x (.m), referred as its extension.
R.9.12 The fi lename consists of characters that begin with a letter, uppercase or lowercase,

followed by any letter, number, or underscore (similar to a MATLAB variable name).
R.9.13 The fi lename’s length is restricted by

a. The MATLAB software allows up to 31 characters
b. The MATLAB software allows 19 characters for the case of a script fi le
c. The user’s operating system imposes restrictions, usually choosing the shortest

length of the restriction imposed by the various software applications used
R.9.14 A fi lename must be unique, different from any MATLAB function, another M-fi le,

or a variable name.
R.9.15 Since MATLAB searches fi rst for variables in the workspace (and if a fi le is named

the same way as a variable), once the variable is found, the search is stopped and
MATLAB never accesses the intended fi le.

R.9.16 Recall that the command exist(‘fi lename’,’fi le’) checks for the existence of fi lename in
the fi le or dir and returns a 0 if the fi le fi lename does not exist and a 2 if it does exist.

R.9.17 In general, a fi lename is followed by a dot (.) and one to three characters that constitute
its extension. The extension of a fi lename further serves to identify and describe its
content. Table 9.1 illustrates frequently used fi le applications and their extensions.

R.9.18 Files are stored in directories, also referred as folders.
R.9.19 The location of a fi le is given by an address referred as its path, consisting of drive:\

application. For example, C:\MATLAB (drive C, application MATLAB).

TABLE 9.1

File Types and Extensions

File Type or Application Extension

MATLAB (script or function)(ASCII) .m
MATLAB (binary) .mat
MATLAB (C or Fortran) .mex
MATLAB (parsed) .p
Text .txt
MS Word document .doc
Compressed .zip
Executable .exe
Sound recording .wav
Batch .bat

CRC_47744_Ch009.indd 601CRC_47744_Ch009.indd 601 6/27/2008 5:22:27 PM6/27/2008 5:22:27 PM

602 Practical MATLAB® Basics for Engineers

R.9.20 To access a fi le, MATLAB must know its precise location. The path tells MATLAB
what directories to search for accessing a particular fi le.

R.9.21 Directories may have subdirectories. The path to a subdirectory is the path to a
directory followed by \ and the name of the subdirectory. The objective of divid-
ing a directory into subdirectories is to create a better-organized environment. For
example, a directory can be courses and the fi les in the subdirectory may be aca-
demic subjects such as Mathematics, English, and Physics. For example, the fi le
path to math.txt (mathematics) would then be C:\courses\math.txt. The preceding
command (path) states that the subdirectory math.txt is in the directory courses,
which is located in drive C.

R.9.22 The word path is a MATLAB-reserved fi lename, which contains the path of all the
directories that are automatically included in the MATLAB’s search. The path pro-
vides the operating system with the routing information required to fi nd a desired
fi le. The command path returns the MATLAB directory path. The MATLAB search
path can be modifi ed by clicking fi le from the command window and by choosing
set path … to add a path.

R.9.23 Some MATLAB versions automatically create the directory work as the default direc-
tory where all the M-fi les created by the MATLAB are automatically saved.

R.9.24 The current directory and its path is displayed at the top of the command window’s
toolbar in a small window clearly identifi ed by

 current directory:C\MATLAB\ …

R.9.25 The MATLAB command addpath dir_A dir_B dir_C adds the directories dir_A, dir_B,
and dir_C automatically to the MATLAB search path.

R.9.26 The MATLAB command rmpath dir_A dir_B dir_C removes the directories dir_A,
dir_B, and dir_C from the MATLAB search path.

R.9.27 The MATLAB command mkdir(‘dir_new’) sets the directory dir_new as the current
directory.

R.9.28 The MATLAB command cd returns the current directory. The general command
cd A changes the current directory to A.

R.9.29 The MATLAB command pwd returns the current working directory.
R.9.30 The commands dir or ls return a list of all fi les in the current directory. The more

 general command dir C, for example, returns a list of all the fi les in the C directory.
R.9.31 The command what returns a list of all MATLAB fi les in the current directory. The

more general command what C, for example, returns a list of all the fi les in the
C directory.

R.9.32 The command type fi lename returns the content of the fi le fi lename. For example,

 >> type fi lename.m % returns the fi le called fi lename

R.9.33 Recall that the sequence of instructions to access a fi le from the command window
are given by

 File → Open → fi lename (opens the fi le fi lename for editing purposes).

The same sequence of instructions File → New → M-fi le (opens a blank edit
window and a new fi le can be created).

CRC_47744_Ch009.indd 602CRC_47744_Ch009.indd 602 6/27/2008 5:22:27 PM6/27/2008 5:22:27 PM

Files, Statistics, and Performance Analysis 603

Information can then be entered and stored by following the sequence: File →
Save as (type a fi lename) → <enter> key.

Recall that this process is not new and should be familiar to the reader since
it was introduced in Chapter 2 and used frequently throughout this book. It is
stated only for completeness and review.

R.9.34 For example, to create the test fi le test_fi le, the following actions are taken (while
in the command window): fi le → new → M-fi le → opens the edit window, and the
following MATLAB statements are entered (just to illustrate the process):

% Script file: file:test _ file
disp(‘***’)
disp(‘This is a script test file called test _ file’)
disp(‘It contains no specific program or data ’)
disp(‘***’)

To save the fi le test_fi le, follow the sequence File → Save as → type test_fi le
(in the dialog box displayed) followed by the <enter> key.

R.9.35 The command edit activates (opens) a blank edit window while in the command
window.

R.9.36 The command edit fi lename.m opens the fi le fi lename while in the command
window.

R.9.37 The command which fi lename.ext returns the path to the fi le fi lename, if this fi le is in
the current working directory or on the MATLAB path.

For example, the path to the just created fi le test_fi le is returned by executing

>> which test _ file

 C:\MATLAB6p1\work\test _ file.m

R.9.38 The command inmem returns a list of the M-function currently in memory.
For example,

>> inmem

ans =
 ‘javachk’
 ‘iscellstr’
 ‘edit’
 ………
 ‘pathdef’
 ‘matlabrc’

R.9.39 The command copyfi le (fi lename_old, fi lename_new) copies the contents of fi lename_
old into the new fi le fi lename_new.

R.9.40 The command copyfi le (fi lename, X) copies the content of the fi le fi lename into direc-
tory X, where X can be any storage devices such as A, B, C, …, Z.

R.9.41 The command movefi le (source, destination) is used to move a fi le or directory to a
new destination.

R.9.42 The command delete fi lename.m deletes (erases) the fi le fi lename.m from the
 computer memory.

R.9.43 A fi le is created when instructions or data are typed while in the editing mode. The
typed information is stored in memory after a valid fi lename or a default untitled
name is assigned, after the saving process is executed.

CRC_47744_Ch009.indd 603CRC_47744_Ch009.indd 603 6/27/2008 5:22:28 PM6/27/2008 5:22:28 PM

604 Practical MATLAB® Basics for Engineers

R.9.44 The command fopen (fi lename) opens the existing fi le fi lename for reading purposes.
Filename can be opened in binary mode (the default) or in text mode. The more general
form is fopen (fi lename, mode, format), where mode and format are defi ned as follows:
 The mode can include one of the following arguments:
‘r’ Read
‘w’ Write
‘a’ Append
‘r+’ Read and write
‘w+’ Truncate or create for read and write
‘a+’ Read and append (create if necessary)
‘W’ Write without automatic fl ushing
‘A’ Append without automatic fl ushing

To open a fi le in text mode, add ‘t’ to the mode, for example, ‘rt’ and ‘wt+.’
The format can include one of the following arguments:

‘native’ or ‘n’—local machine format—the default
‘ieee-le’ or ‘ieee-be’—IEEE fl oating point
‘vaxd’ or ’vaxdg’—VAX fl oating point
‘cray’ or ‘c’—Cray fl oating point
‘ieee-le.l64’ or ‘a’ or ‘s’—IEEE fl oating point with 64 bits

R.9.45 The command [A, num_ele] = fread (fi d) reads binary data from the opened fi le
(fi d = fopen fi lename) into matrix A. The returning argument num_ele represents the
number of elements read successfully.

R.9.46 The work performed in the command window during a MATLAB session,
 consisting of commands as well as responses (excluding the fi gure window), can
be recorded by typing the command diary followed by pressing the <enter> key.
The interactive session is then stored in an ASCII fi le named matlab.mat.

R.9.47 The recording information into a diary fi le can be controlled by the commands diary
off or diary on to stop or start recording.

R.9.48 The diary fi le can be retrieved by typing the command load, while in the command
window. MATLAB returns a message indicating if the fi le matlab.mat is not found.

R.9.49 The command diary creates the default fi le matlab.mat during each session, meaning
that the same fi lename will be reused and rewritten during each session.

R.9.50 The command get (o, ‘diary’) returns the status of the diary fi le.
R.9.51 A standard and unique fi le can be created with all the characteristics of the diary

fi le by entering the command diary diaryname. The fi le diaryname will record all the
commands and responses during an interactive session, while at the command
window.

R.9.52 The interactive session can be saved with the fi lename diaryname by entering the
command save diaryname (a prefi x can be included to indicate the data type).

R.9.53 The fi lename diaryname is saved as a mat-fi le (extension.mat) in binary format.
R.9.54 The command get (o, ‘dairyfi le’) returns the status of diaryfi le.

R.9.55 The fi le created by diary has similarities and differences with respect to the fi le
 created by dairy diaryname (both fi les record a MATLAB session but using different
data type).

CRC_47744_Ch009.indd 604CRC_47744_Ch009.indd 604 6/27/2008 5:22:28 PM6/27/2008 5:22:28 PM

Files, Statistics, and Performance Analysis 605

R.9.56 The command load diaryname retrieves the fi le diaryname.mat and all the workplace
variables of the previous MATLAB session are restored in the active workspace.

R.9.57 The command save fi lename A, B, C saves the selected variables A, B, and C from an
interactive session (after pressing the <enter> key).

R.9.58 The command load fi lename (without specifying any variable) restores the variables
A, B, and C previously saved in fi lename.

R.9.59 The command save saves all the workspace variables in the default fi le matlab.mat.
R.9.60 The command load loads or restores all the workplace variables previously saved

by the default fi le matlab.mat.
R.9.61 If a MATLAB session is interrupted and then resumed at a later date, select save

workplace in the fi le menu followed by a destination and fi lename. For example, save
workplace A: session.mat.

The fi le menu is illustrated in Figure 9.1. The fi le session.mat saves all the workspace
variables in binary format and cannot be opened, but it can be loaded back into the
workspace while in MATLAB by using the command load A: session.mat.

R.9.62 The MATLAB software distinguishes three types of fi les:
a. M-fi les (with extension.m)
b. Mat fi les (with extension.mat)
c. Mex-fi les (with extension.mex)

R.9.63 The general characteristics of M-fi les are summarized below:
a. The information is stored in an ASCII format.
b. The fi lename extension consists of .m (dot follow by m).

FIGURE 9.1
(See color insert following page 342.) File menu.

CRC_47744_Ch009.indd 605CRC_47744_Ch009.indd 605 6/27/2008 5:22:28 PM6/27/2008 5:22:28 PM

606 Practical MATLAB® Basics for Engineers

c. It contains either a script- or function fi le.
d. A function fi le is equivalent to a built-in function (inputs are given to produce

outputs).
e. A script fi le is just a collection of MATLAB instructions.
f. Can be created by any word processor software from any machine.
g. Can be used to store data or programs.

R.9.64 The general characteristics of mat fi les are summarized below:
a. The information is stored in binary format.
b. The fi lename extension is .mat (dot followed by mat).
c. They are generally used to save variable and/or data.
d. They can only be processed by the machine that generates them.

R.9.65 Mex fi les are C or Fortran fi les that may be called while in MATLAB. Mex fi les are
not used or discussed in this book, since this topic is beyond the scope and objec-
tives of a simple, introductory, practical MATLAB textbook.

R.9.66 Binary fi les are, in general, more compact and effi cient than ASCII fi les. ASCII vari-
ables can be saved by using either single precision (one byte) or double precision
(two bytes), by typing save fi lename-ASCII for the case of one (byte) or save fi lename-
double for the case of two bytes, or double precision. MATLAB uses effi ciently the
disk space and stores every variable by using full precision, and no precision is lost
due to the conversion to or from ASCII.

R.9.67 Let us revisit script fi les. Recall that a script fi le consists of a sequence of MATLAB
instructions and/or data. Script fi les are generally created for a particular applica-
tion and are then discarded after used.

R.9.68 A script fi le is executed at the command window by typing its fi lename without the
extension (.m) followed by the <enter> key. The instructions stored in the fi le are
then executed, one instruction after the other in the same sequence as they were
typed. The effect of executing this type of fi le is the same as manually entering
each instruction of the fi le, while at the command window.

R.9.69 The steps involved in the creation of a script fi le in an MS Window or Mac environ-
ment are summarized as follows:
a. Access the command window
b. Once in the command window, select (click) File → New → M-fi le

 c. A blank edit window, label editor, or debugger is then opened
d. Create as an example, a script by typing the following instructions:

t = 0:.01:10;
infor = 5*cos(t);
carr = cos(10.*t);
modul = infor.*carr;
plot(t,mod);
xlabel(‘time(sec)’);
ylabel(‘magnitude’);
title(‘AM Signal’);

See Figure 9.2.

CRC_47744_Ch009.indd 606CRC_47744_Ch009.indd 606 6/27/2008 5:22:28 PM6/27/2008 5:22:28 PM

Files, Statistics, and Performance Analysis 607

FIGURE 9.2
(See color insert following page 342.) The edit window with the program just entered R.9.69.

R.9.70 Recall that the fi le’s name must be unique. The command exist (‘fi lename’) can be used
to test for uniqueness. For this case, test the fi le existence by executing exist (‘AM’),
while at the command window, and if the response is 0, that would indicate that AM
is a valid fi lename (not previously used). Any other response would indicate that the
name was already assigned to another fi le or variable. Observe that the existence of
the fi lename search is done generally before the editing process is started.

R.9.71 Recall that the MATLAB fi le search is done as follows:
a. MATLAB looks fi rst for a variable defi ned in the workplace by the fi lename.

b. If the given fi lename is not a variable, then MATLAB looks for a built-in fi lename
function.

c. If the fi lename is not a variable or a built-in function, then MATLAB looks in the
C directory (C:\) for the fi lename where the M-fi les are usually stored.

R.9.72 When creating a fi le, it is highly recommended to dedicate the fi rst line to defi ne
and describe the fi le’s purpose, goals, and objectives by using key words as com-
ments (%).

 Recall that the contents of the fi rst comment line are returned when a search is
performed by either the help or lookfor commands.

R.9.73 It is essential to use the subsequent (%) comment lines to include additional com-
ments that describe the purpose of a fi le in question, logic and algorithms used,
author of the fi le (program), date it was written, and subsequent modifi cations
and updates, syntax, inputs and outputs, and in general, any additional informa-
tion regarding the fi le to make a given fi le readable, identifi able, and clear (user-
friendly) for any possible user.

R.9.74 The following fi le illustrates the format and content, of a well-structured and orga-
nized fi le, using the script fi le AM (R.9.69) as example.

CRC_47744_Ch009.indd 607CRC_47744_Ch009.indd 607 6/27/2008 5:22:28 PM6/27/2008 5:22:28 PM

608 Practical MATLAB® Basics for Engineers

MATLAB Solution
% Script file name: AM.m
% Returns the plot of the amplitude modulated signal
% consisting of the carrier: cos(10t), and the signal = 5cos (t)
% Created by: M.K. date: Dec. 2005
% New York City College of Technology, Brooklyn, NY 11201.
% ***
t= 0:.01:10; % creates a time vector t
infor = 5*cos(t); % creates the cosine vector name infor with

w =1
carr = cos(10.*t); % creates the cosine vector name carr with

w =10
mod = infor.*carr; % creates the vector mod, cos(t).cos(10t)
plot(t,mod); % plots t vs. mod
xlabel(‘time/sec’)
ylabel(‘Magnitude’)
title(‘AM Signal with wc = 10, and wi = 1’)
grid on;

R.9.75 Recall that the preceding fi le can now be saved by selecting (clicking) File → Save
as… → and a dialog box will be displayed. Type the fi lename AM.m in the reserved
fi eld followed by (clicking) Save. Figures 9.3 and 9.4 illustrate the menus followed in
the saving process.

FIGURE 9.3
(See color insert following page 342.) Saving the fi le.

CRC_47744_Ch009.indd 608CRC_47744_Ch009.indd 608 6/27/2008 5:22:29 PM6/27/2008 5:22:29 PM

Files, Statistics, and Performance Analysis 609

R.9.76 Once the fi le AM.m is saved, exit the edit window and return to the command
window to test (execute) the fi le just saved (AM.m).

Observe that AM.m is stored in the default directory work, as indicated in
Figure 9.4.

R.9.77 Let us test the fi le AM.m, while in the command window, by executing the follow-
ing commands and observing their responses:
a. exist(‘AM’)

b. help AM

 c. lookfor AM

d. whos

 e. type AM.m

 f. AM

g. whos

MATLAB Solution
>> exist(‘AM’) % part (a)

 ans =
 2

>> help AM % part (b)

FIGURE 9.4
(See color insert following page 342.) Saving the script fi le as AM.m.

CRC_47744_Ch009.indd 609CRC_47744_Ch009.indd 609 6/27/2008 5:22:29 PM6/27/2008 5:22:29 PM

610 Practical MATLAB® Basics for Engineers

 % Script file name: AM.m
 % Returns the plot of the amplitude modulated signal
 % consisting of the carrier: cos(10t), and the signal = 5cos(t)
 % Created by: M.K. date: Dec. 2005
 % New York City College of Technology, Brooklyn, NY 11201.
 % ***
>> lookfor AM % part(c)

 AM.m: % Script file name: AM.m

>> whos % returns the variables used,
part (d)

 Name Size Bytes Class
 ans 1x1 8 double array
 x 1x1 8 double array
 Grand total is 2 elements using 16 bytes

>> type AM.m % returns the AM file without opening the file,
part (e)

 Script file name: AM.m
 % Returns the plot of the amplitude modulated signal
 % consisting of the carrier: cos(10t), and the signal =

5cos(t)
 % Created by: M.K. date: Dec. 2005
 % New York City College of Technology, Brooklyn, NY 11201.
 % ***
 t= 0:.01:10; % creates a time vector t
 infor =5*cos(t); % creates a cosine vector name

infor with w = 1
 carr = cos(10.*t); % creates a cosine vector name carr

with w = 10
 mod = infor.*carr; % creates a vector mod,

cos(t)*cos(10t)
 plot(t,mod); % plots t vs. mod
 xlabel(‘time/sec’)
 ylabel(‘Magnitude’)
 title(‘AM signal with wc = 10 and wi = 1’)
 grid on;

>> AM % executes the AM.m file and returns the plot shown in
Figure 9.5

>> whos % returns all the variables used, part(g)

 Name Size Bytes Class
 ans 1x1 8 double array
 carr 1x1001 8008 double array
 infor 1x1001 8008 double array
 mod 1x1001 8008 double array
 t 1x1001 8008 double array

 Grand total is 4005 elements using 32040 bytes

CRC_47744_Ch009.indd 610CRC_47744_Ch009.indd 610 6/27/2008 5:22:30 PM6/27/2008 5:22:30 PM

Files, Statistics, and Performance Analysis 611

R.9.78 If the fi le AM.m was saved in a directory other than C (e.g., in a fl oppy), MATLAB
must be directed to include this directory (the fl oppy) in its search path inorder to
fi nd and execute the referred fi le.

R.9.79 Recall that script fi les can be used also as data fi les. For example, let us assume that,
measured data, the result of an experiment is stored as a vector V in the fi le data.
m. This data can be made available while in the command window by typing data
followed by the <enter > key, assuming that data.m is in the search MATLAB path.
Let us also assume that the vector V in data.m is the input to a program stored as
another script fi le named analysis_V.m, which has as its objectives to analyze V and
return the following information of interest:

a. The number of elements in V
b. The maximum value in V
c. The minimum value in V
d. The average and median values in V
e. Rearrange the elements in V in ascending order
f. The standard deviation of the elements in V
g. Plot [sample value] versus [sample number]

FIGURE 9.5
Plot of the script fi le AM.m.

5

4

3

2

1

0

−1

−2

−3

−4

−5
0 1 2 3 4 5 6 7 8 9 10

time/sec

m
ag

ni
tu

de

AM signal with wc = 10 and wi = 1

CRC_47744_Ch009.indd 611CRC_47744_Ch009.indd 611 6/27/2008 5:22:30 PM6/27/2008 5:22:30 PM

612 Practical MATLAB® Basics for Engineers

The following solution consists of two fi les data.m and analysis_V.m:

MATLAB Solution
% Script file: analysis _ V.m
format compact
disp(‘************ RESULTS****************’)
length _ of _ V= length(V)
max _ value _ in _ V = max(V)
min _ value _ in _ V = min(V)
average _ of _ V = mean(V)
median _ of _ V = median(V)
sort _ samples _ V = sort(V)’
std _ in _ V = std(V)
disp (‘*************************************’)
plot (x,V,x,V,’s’)
title (‘ [sample value] vs [sample num.]’)
xlabel (‘sample num.’)
ylabel (‘sample value’)
disp (‘*************************************’)

For testing and illustrative purposes, let us assume that the vector V located
in the fi le data.m consists of a sequence of 10 random numbers. The data.m fi le is
as follows:

% Script file: data.m
V = (rand(1,10).*3); x=1:10;
disp (‘The data is given by V (below)’), disp (‘sample num.value’);
disp (‘̂ ^^^^^^^^^^^^^^^^^^^^^^^^^ ’̂)
[x’ V’]
disp (‘̂ ^^^^^^^^^^^^^^^^^^^^^^^^^ ’̂)

Observe that the process of analyzing the data (vector V) is accomplished by
executing two commands while at the command window.

>> data % loads the data represented by V
>> analysis _ m % returns the analysis using vector V

 The process is illustrated as follows:

MATLAB Solution
>> data

The data is given by V (below)
 sample num. value
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ans =
 1.0000 0.0458
 2.0000 2.2404
 3.0000 1.3353
 4.0000 2.7954
 5.0000 1.3980
 6.0000 1.2559
 7.0000 2.5387
 8.0000 1.5755
 9.0000 0.6079
 10.0000 2.0164
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

CRC_47744_Ch009.indd 612CRC_47744_Ch009.indd 612 6/27/2008 5:22:30 PM6/27/2008 5:22:30 PM

Files, Statistics, and Performance Analysis 613

>> analysis _ V

************ RESULTS****************
length _ of _ V =
 10
max _ value _ in _ V =
 2.7954
min _ value _ in _ V =
 0.0458
average _ of _ V =
 1.5809
median _ of _ V =
 1.4867
sort _ samples _ V =
 0.0458
 0.6079
 1.2559
 1.3353
 1.3980
 1.5755
 2.0164
 2.2404
 2.5387
 2.7954
std _ in _ V =
 0.8511

See Figure 9.6.

FIGURE 9.6
Plot of the 10 samples in V of R.9.79.

3

2.5

2

1.5

1

0.5

0
1 2 3 4 5 6 7 8 9 10

sample num.

sa
m

pl
e

va
lu

e

[sample value] versus [sample num.]

CRC_47744_Ch009.indd 613CRC_47744_Ch009.indd 613 6/27/2008 5:22:30 PM6/27/2008 5:22:30 PM

614 Practical MATLAB® Basics for Engineers

R.9.80 Observe from the last example that the script fi le variables operate globally on the
workspace and become part of the overall MATLAB session. Note that the variable
x defi ned in data.m fi le is used in the analysis_V fi le (global).

R.9.81 Recall that when an M-fi le is executed, its commands are not displayed on the
screen unless the echo command is included. Observe that the punctuation used in
the construction (and display) of a fi le follows the standard MATLAB syntax rules.
Recall also that the effect of the command echo is to display each command of the
fi le as they are executed. The echo on command is particularly useful when the
intermediate variable values created during the execution of a fi le are of particular
interest to the programmer.

R.9.82 Recall that function fi les are also M-fi les whose purpose is to create new MATLAB
functions. The variables used in the creation of a function fi le are local, defi ned,
and used only inside the fi le and have no incidence on the global workspace. These
variables are erased once the fi le is executed unless they are declared global.

R.9.83 The command global A B C declares the variables A, B, and C as global. The workspace
then shares a single copy of the variables A, B, and C, and any assignment to A, B, and
C in any function used in the workplace is available to all the other functions used.

R.9.84 The command isglobal A returns a 1 if A has been declared or is global, and 0
otherwise.

R.9.85 The command help funfun returns a list of the MATLAB’s functions of functions.
R.9.86 Recall that the fi rst line in a function fi le is a function defi nition line that defi nes the

function name, input variables (I1, I2, …, In), and corresponding output variables
[O1, O2, …, Om].

R.9.87 The general format and syntax of a function fi le is as follows:

function [O1 O2 … Om] = fi lename (I1, I2, …, In)

Observe that the keyword function must be typed in lowercase letters. Note
also that the output variables O1, O2, …, Om are enclosed in square brackets,
whereas the input variables I1, I2, …, In are enclosed in parentheses.

R.9.88 The comment lines (%) defi ning the purpose of a function fi le should use key
(descriptive) words and be placed immediately after the line that contains the fi le
function defi nition. Recall that the comment lines are accessed by the help and look-
for commands when a search is done.

Recall also that the fi rst character of the comment line must be % with no
preceding spaces, and the fi rst comment line after the function defi nition line is
the only line searched by the lookfor command.

R.9.89 If the function fi le has a single output variable O1, then the square brackets are not
required, and the syntax is as follows:

function O1 = fi lename (I1, I2, …, In)

R.9.90 If the function fi le has no output variables, then the square brackets as well as the
equal sign are omitted, and the syntax is as follows:

function fi lename (I1, I2, …, In)

R.9.91 Recall that the objective and purpose of a function fi le is to take the input vari-
ables I1, I2, …, In and transform them into the output variables O1, O2, …, Om.

CRC_47744_Ch009.indd 614CRC_47744_Ch009.indd 614 6/27/2008 5:22:30 PM6/27/2008 5:22:30 PM

Files, Statistics, and Performance Analysis 615

The process of transforming the inputs into outputs is usually hidden from the
end user (unless the echo command is included in the fi le). Function fi les use a
temporary workspace, and the variables defi ned are deleted after the execution of
the (function) fi le.

The fi rst noncomment line constitutes the beginning of the program and blank
lines are ignored.

R 9.92 The steps involved in the creation of a function fi le are summarized as follows (the
steps are similar to the case of script fi les in MS Window or Mac environments):
 a. Start at the command window.
 b. Use the exist command to check if the function name to be chosen is valid (should

be unique).
 c. While at the command window, select the fi le menu.
d. Click New → M-fi le.
 e. A blank edit window label edit or debugger is then opened.
 f. Create the function fi le’s defi nition line.
 g. The next line is used to describe and document the fi le to be created as a com-

ment line using key words.
h. Include additional comments regarding the fi le such as inputs, outputs, syntax,

date, author.
i. Type in the function program (output variables in term of input variables).
j. Once the program is completed, the fi le is saved by selecting from the menu

File → Save as … → type in the fi lename.m chosen in the reserved fi eld followed
by (clicking) Save.

k. Click File → Exit (the edit or debugger window), and MATLAB returns to the
command window where the fi le just created can now be tested.

l. Test the fi le with simple verifi able data.
R.9.93 For example, the following fi le function [A, B] = fn(I1, I2, I3), where fn is its function

fi lename, can be executed using the following format:
a. [A, B] = fn(l1, l2, …, l3), where I1, I2, I3 have been already defi ned.
b. [A, B] = fn(0, 5, pi), where I1 = 0, I2 = 5, and I3 = π.
c. fn(2, –2.5, 3.89), where the inputs are I1 = 2, I2 = –2.5, and I3 = 3.89; but the out-

put variables A and B are assigned no values.
R.9.94 For example, create the function sine_fn that returns y(t) = A sin(wt + ph), over

the range 0 ≤ t ≤ 5, where A represents its amplitude, w frequency, and ph phase
angle. The function’s input variables are A, w, and ph, and its output variables are
t and y.

MATLAB Solution
function [t, y] = sine _ fn(A, w, ph)
% sine _ fn : returns a table and plot of [y(t) = A sin(wt + ph)]
 vs. t, for 0 < t < 5
% Variables: A= Amplitude, w = angular frequency in radians/sec,

ph = phase in radians
% y(t)= Asin(wt+ph)
% Author: M. K date : Dec 2006
% Call syntax: [t,y] = sine _ fn(A, w, ph)

CRC_47744_Ch009.indd 615CRC_47744_Ch009.indd 615 6/27/2008 5:22:30 PM6/27/2008 5:22:30 PM

616 Practical MATLAB® Basics for Engineers

% Inputs: A, w, ph
% Output: [t, y] for 0 ≤ t ≤ 5,
% **
t = linspace(0, 5, 15); % creates a 15 elements vector t over

 the range 0 to 5
y = A* sin(w.*t + ph) ;
plot(t, y, t,y,’s’); % plots [Asin (wt+ph)] vs. t
title([‘[A sin (wt+ph)] vs t, for 0 < t < 5, where A’= num2str(A),

‘, w =’, num2str(w), ‘and ph= ’, num2str(ph),])
xlabel(‘t (time in sec.)’)
ylabel(‘ y(t) =A sin (wt+ph)’)

R.9.95 The function fi le sine_fn, created in R.9.94, is tested by executing the following com-
mands and observing their responses:
a. exist (sine_fn)
b. help sine_fn

c. lookfor sine_fn

MATLAB Solution
>> format compact
>> exist sine _ fn % part (a)

 ans =
 2

>> help sine _ fn % part (b)

sine _ fn : returns a table and plot of [y(t) = A sin(wt + ph)] vs.
t, for 0 ≤ t ≤ 5

Variables: A= Amplitude, w = angular frequency in radians/sec, ph =
phase in radians
y(t)= A sin(wt+ph)
 Author: M. K Date : Dec 2006
 Call syntax: [t,y] = sine _ fn(A, w, ph)
 Inputs: A, w, ph
 Output : [t, y] for 0 < t < 5
**

>> lookfor sine _ fn % part (c)

sine _ fn : returns a table and plot of [y(t) = A sin(wt + ph)] vs.
t, for 0 ≤ t ≤ 5

R.9.96 The function fi le sine_fn is now tested by executing the following instructions:
a. [t, y] = sine_fn(3, pi, pi/4)

b. sine_fn(3, pi, pi/4)

c. A = 3.5*sqrt(2), w = pi – 2/3, ph = pi/7),[t, y] = sine_fn(A, w, ph)

d. which sine_fn

e. isglobal t

CRC_47744_Ch009.indd 616CRC_47744_Ch009.indd 616 6/27/2008 5:22:30 PM6/27/2008 5:22:30 PM

Files, Statistics, and Performance Analysis 617

MATLAB Solution
>> [t,y] = sine _ fn(3,pi,pi/4) % part (a)
 t =
 Columns 1 through 8
 0 0.3571 0.7143 1.0714 1.4286 1.7857 2.1429 2.5000
 Columns 9 through 15
 2.8571 3.2143 3.5714 3.9286 4.2857 4.6429 5.0000
 y =
 Columns 1 through 8
 2.1213 2.8316 0.3359 -2.5402 -2.5402 0.3359 2.8316

2.1213
 Columns 9 through 15
 -0.9908 -2.9811 -1.5961 1.5961 2.9811 0.9908 -2.1213

>> sine _ fn(3,pi,pi/4) % part (b)

>> A = 3.5*sqrt(2); % part (c)
>> w = pi-2/3;
>> ph = i/7;
>> [t,y] = sine _ fn(A,w,ph)

 t =
 Columns 1 through 8
 0 0.3571 0.7143 1.0714 1.4286 1.7857 2.1429 2.5000
 Columns 9 through 15
 2.8571 3.2143 3.5714 3.9286 4.2857 4.6429 5.0000
 y =
 Columns 1 through 8
 2.1476 4.8101 3.9529 0.2033 -3.6951 -4.8897 -2.5064

1.7109
 Columns 9 through 15
 4.6763 4.2199 0.6758 -3.3629 -4.9408 -2.9035 1.2584

>> which sine _ fn % part (d)

 C:\MATLAB6p1\work\sine _ fn.p

>> isglobal t % part (e)

 ans =
 0

 See Figures 9.7 and 9.8.

R.9.97 Any changes, upgrades, revisions, and debugging of an M-fi le is done using the
edit or debugger window.

R.9.98 The execution of an M-fi le terminates or stops with the execution of the last
instruction of the fi le, or it is interrupted when it encounters either one of the com-
mands—return, error, warning, input, keyboard, pause, or waitforbuttonpress.

R.9.99 Recall that the return command causes a return to the invoking function or keyboard.
R.9.100 Recall that the command error (‘string’) in an M-fi le is used to stop the execution of

the fi le and returns control to the command window displaying the message string.

CRC_47744_Ch009.indd 617CRC_47744_Ch009.indd 617 6/27/2008 5:22:30 PM6/27/2008 5:22:30 PM

618 Practical MATLAB® Basics for Engineers

FIGURE 9.7
Plot of the function fi le sine_fn of R.9.96.

3

2

1

0

−1

−2

−3
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t (time in seconds)

y(
t)

=
A

 s
in

 (
w

t+
ph

)

[A sin (wt+ph)] versus t, for 0 < t < 5, where A=3, w =3.1416 and ph = 0.7854

FIGURE 9.8
Second plot of the function fi le sine_fn of R.9.96.

5

4

3

2

1

0

−1

−2

−3

−4

−5
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

[A sin (wt+ph)] versus t, for 0 < t < 5, where
A = 4.9497, w = 2.4749 and ph = 0.4488

t (time in seconds)

y(
t)

 =
 A

 s
in

 (
w

t+
ph

)

CRC_47744_Ch009.indd 618CRC_47744_Ch009.indd 618 6/27/2008 5:22:31 PM6/27/2008 5:22:31 PM

Files, Statistics, and Performance Analysis 619

R.9.101 Recall that the command warning (‘string’) returns the message (‘string’) when
certain programmed conditions are not satisfi ed. The warning command can be
switched by using warning on or warning off.

R.9.102 Recall that the command A = input (‘string’) introduced and used in early chapters
causes the execution of a fi le to stop and returns the message ‘string’ in the com-
mand window and waits for the user to enter data that is assigned to A, after the
<enter> key is executed.

R.9.103 Recall that the command keyboard inside a fi le stops the execution of the fi le and
transfers control to the keyboard while in the command window where the prompt
becomes k >>. At this point, the user can execute any instruction or return to com-
plete the execution of the M-fi le by typing the instruction return followed by the
<enter> key. This instruction is particularly useful when dealing with a long fi le,
and it is a good strategy in many cases to stop the execution of a fi le at key points,
and to check the partial results, if indeed they make sense before continuing with
the execution of the rest of the fi le.

R.9.104 Recall that the pause command stops the execution of a fi le, transfers control to
the command window, and waits for the user to enter any character to resume the
execution of the fi le. The command pause (n) stops the execution of the fi le during
n second (see Chapter 2, Table 2.1).

R.9.105 The command waitforbuttonpress stops the execution of the fi le until a character is
entered either by the keyboard or mouse.

R.9.106 MATLAB function fi les can call other function fi les including themselves during
their execution.

R.9.107 When a function fi le is called for the fi rst time, MATLAB compiles the fi le and
any other fi le called during the execution, where each function uses its own inde-
pendent workplace. The executed function fi les are stored in precompiled format.
This process saves valuable time when a function is called several times during the
execution of a program.

R.9.108 Strictly speaking, MATLAB does not compile each input statement, what it
does is something very similar, called parsing. Parsing is the process of con-
verting the MATLAB instructions into a lower-level language, similar to
assembly or machine language. The parsing process also checks for errors and
inconsistencies.

R.9.109 The performance of a MATLAB function fi le can be evaluated by using the com-
mand profi le, which evaluates the performance of a function fi le (no script fi les) in
terms of the time spent on each line (in terms of 0.01 s).

R.9.110 The output of the command profi le is in the form of a report (table) or a plot. The
profi le report returns an HTML fi le, displayed by (clicking)

 view → desktop layout → default → current directory → 0.html

The profi ler is a powerful, simple, and useful tool that consists of a family of
commands, some of which are defi ned in the following discussion.

R.9.111 The command profi le on activates the profi ler immediately followed by the com-
mand profi le fn, where fn is the function’s name.

R.9.112 The profi le function also checks optimization and effi ciency of the codes used in
the fi le fn. To get reliable results, the function fn must be executed a number of
times to accumulate suffi cient statistical data about its performance.

CRC_47744_Ch009.indd 619CRC_47744_Ch009.indd 619 6/27/2008 5:22:31 PM6/27/2008 5:22:31 PM

620 Practical MATLAB® Basics for Engineers

R.9.113 The command profi le off deactivates the profi ler.

R.9.114 The command profi le resume restarts the profi ler without clearing the previous func-
tion statistics.

R.9.115 The command profi le clear clears all the previous statistical data.
R.9.116 The command profi le reset resets the statistical compiled data used to evaluate the

performance of the function fi le fn and restarts the profi ler.

R.9.117 The command profi le report returns a report consisting of the line codes of the func-
tion fi le fn that consumes the greatest amount of time.

R.9.118 The command profi le report n returns the n code lines of the function fi le fn that
consumes the greatest amount of time.

R.9.119 The command profi le report m, where m has a range over 0 ≤ m ≤ 1.0, returns a
report consisting of the code lines of the function fi le fn, which consumes a time
greater than m*100% of the total execution time of fn.

R.9.120 The command profi le plot returns a bar graph of the function fn with the com-
mands that consume the greatest amount of time.

R.9.121 The command profi le(‘status’) returns the information about the current profi ler
state such as profi ler status (on or off), detail level, and history tracking (on or off).

R.9.122 The command profreport(basename) returns a report using the current profi ler sta-
tistics that are automatically saved by the profi ler in fi le basename.

R.9.123 For example, let the script fi le performance be used to accumulate performance data
and return the profi ler’s status and profi le report 2 and 0.4 of the function fi le sine_fn
(R.9.94). To get reliable statistical data, the function fi le is executed 150 times as
illustrated by the following script fi le performance:

MATLAB Solution
% Script file: performance
profile sine_fn
profile on
profile clear;
n = 150;
m = 1;
while m<n
 A=3;
 w = m/150;
 ph = 2*pi*m/150;
 [t,y] = sine _ fn(A,w,ph);
 m = m+1;
end
profile report
profile plot
disp(‘**************************************’)
disp(‘********profile status***************’)
profile(‘status’)
disp(‘**************************************’)
profile report 2
profile report 0.4

CRC_47744_Ch009.indd 620CRC_47744_Ch009.indd 620 6/27/2008 5:22:31 PM6/27/2008 5:22:31 PM

Files, Statistics, and Performance Analysis 621

 The script fi le performance is executed and the results are indicated below:

>> performance

********profile status***************
ans =
 ProfilerStatus: ‘off’
 DetailLevel: ‘mmex’
 HistoryTracking: ‘off’

MATLAB Profile Report: Summary
Report generated 20-Jan-2007 13:01:04

Total recorded time:
2.17 s

Number of M-functions:
21

Number of M-subfunctions:
4

Clock precision:
0.010 s

 Function List
Name

 Time Calls Time/call Self time Location
sine _ fn 2.173 100.0% 149 0.014584 0.191 8.8% C:\MATLAB6p1

\work\sine _
fn.p

newplot 0.561 25.8% 149 0.003765 0.050 2.3%
………………………
title 0.530 24.4% 149 0.003557 0.450 20.7%
xlabel 0.401 18.5% 149 0.002691 0.291 13.4%
xlabel 0.401 18.5% 149 0.002691 0.291 13.4%
……………………………
num2str 0.300 13.8% 447 0.000671 0.170 7.8%
newplot 0.291 13.4% 149 0.001953 0.020 0.9%
clo 0.271 12.5% 149 0.001819 0.191 8.8%
gcf 0.240 11.0% 596 0.000403 0.240 11.0%
ylabel 0.190 8.7% 149 0.001275 0.170 7.8%
gca 0.110 5.1% 596 0.000185 0.090 4.1%
isappd 0.100 4.6% 447 0.000224 0.070 3.2%
int2str 0.060 2.8% 894 0.000067 0.060 2.8%
allchild 0.060 2.8% 149 0.000403 0.060 2.8%
isfield 0.030 1.4% 447 0.000067 0.030 1.4%
gca 0.110 5.1% 596 0.000185 0.090 4.1%
log10 0.030 1.4% 447 0.000067 0.030 1.4%
deblank 0.020 0.9% 447 0.000045 0.020 0.9%
strvcat 0.020 0.9% 447 0.000045 0.020 0.9%
setdiff 0.020 0.9% 149 0.000134 0.010 0.5%
unique 0.010 0.5% 298 0.000034 0.010 0.5%

 See Figure 9.9.

CRC_47744_Ch009.indd 621CRC_47744_Ch009.indd 621 6/27/2008 5:22:31 PM6/27/2008 5:22:31 PM

622 Practical MATLAB® Basics for Engineers

FIGURE 9.9
Profi le plot of the performance of the fi le sine_fn of R.9.94.

sine_fn

newplot

Newplot/ObserveAxesNextPlot

clo

xlabel

allchild

ylabel

title

num2str

int2str

0 0.5 1 1.5 2 2.5

total time (seconds)

R.9.124 A given function fi le fn.m can be parsed (compiled) by executing the command
pcode fn. This command creates the parsed (compiled) function, which is saved in
the new created fi le fn.p, for later use. This fi le is placed in the current MATLAB
directory. Note that the fn.m fi le may be anywhere on the MATLAB search path.

R.9.125 For example, let us parse the function fi le sine_fn and check its parsed existence
and location.

MATLAB Solution
>> pcode sine_fn
>> exist(‘sine_fn.p’)

 ans =
 6

>> which sine _ fn.p

 C:\MATLAB6p1\work\sine _ fn.p

R.9.126 The command pcode fn1 fn2 … fnn creates and stores the parse p-fi les of the
 functions fn1, fn2, …, fnn in the current directory.

R.9.127 The command pcode *.m creates the parse fi les of all the M-fi les in the current
 directory (stored as p-fi les).

CRC_47744_Ch009.indd 622CRC_47744_Ch009.indd 622 6/27/2008 5:22:31 PM6/27/2008 5:22:31 PM

Files, Statistics, and Performance Analysis 623

R.9.128 The command pcode fn-inplace creates and then stores the p-fi le of fn in the same
directory where the fn M-fi le is located.

R.9.129 The command nlint fn parses the M-fi le fn.m in MATLAB 7. Recall that the
objective of parsing also includes searching for errors, inconsistencies, and
ineffi ciencies.

R.9.130 The command mlock(‘functionname’) locks the parse function, and the clear com-
mand does not clear the lock function. A function can be unlocked by using the
command numlock(‘functionname’).

R.9.131 The command mislocked(functionname’) returns a 1 (true) if the function is locked.
R.9.132 Some commands that may be of interest in the performance analysis process

are etime, clock, tic-tac, fl ops, and cputime, introduced in early chapters (Chapter 2,
Table 2.1). These commands are revisited in the discussion below.

R.9.133 Recall that the command etime(t1, t0) returns the elapsed time in seconds between
t1 and t0, where t1 and t0 are the times defi ned by six fi elds given by year, month,
day, hour, minute, and second.

R.9.134 The command clock returns the current date as a six-fi eld vector consisting of year,
month, day, hour, minute, and seconds. For example, the current date is given by

>> clock

 ans =
 1.0e+003 *
 2.0070 0.0010 0.0200 0.0140 0.0110 0.0597

R.9.135 The command fl ops returns the number of fl oating-point operations. With the
incorporation of LAPACK in MATLAB 6, the fl ops command is not supported by
MATLAB 6.0 and subsequent releases (2000).

R.9.136 The command tic, <statements>, toc where tic starts a stopwatch timer and toc stops
it. The sequence tic <statements> toc returns the time in seconds elapsed between
the activation of tic and execution of toc.

R.9.137 The command cputime returns the cpu time in seconds that has been used by the
MATLAB processor. For example, the sequence t0 = cputime; <statements>, t1 =
cputime, returns cpu_time = t1 – t0 representing the processing and execution time
for <statements>.

R.9.138 By taking advantage of the sparsity of a matrix, a substantial saving in operational
time as well as storing facilities is attained. Recall that a matrix is sparsed if it con-
tains a high number of zero elements (see Chapter 3).

R.9.139 The following example, given by the script fi le sparse_versus_full shows how to
generate a large 125 × 125 sparse matrix A and evaluate the number of fl oating-
point operations required to evaluate A3 = A^3, for both the sparse and full matrix
versions.

Observe that matrix A is created for a range of different densities (0.01 to 0.2)
and returns the following plots:

a. [densities] versus matrix

b. [ineffi ciency] versus [densities]

c. [# of operations] versus [densities]

CRC_47744_Ch009.indd 623CRC_47744_Ch009.indd 623 6/27/2008 5:22:31 PM6/27/2008 5:22:31 PM

624 Practical MATLAB® Basics for Engineers

Recall that the density of the matrix A is given by

 [density of the matrix A] =
[number of nonzero elements in A]

[total number of elements in A]

 MATLAB Solution
% Script file: sparse _ vs _ full
n = 125;k=1;
disp(‘ * * * R E S U L T S * * * ‘)
disp (‘****Performance results for sparse vs. full matrix oper. *****’);
disp (‘ dens # oper. sparse # oper. full’);
disp (‘**’);

figure(1)
for dens = 0.01:0.02:0.2;
A = sprand (n,n,dens);
flops(0);
prodsp=A^3;
opersp = flops; sp(k) = opersp;
subplot (5,2,k)
spy(A)
B = full(A);
flops(0);
prodfull=B^3;
operfull=flops;fu(k)=operfull;k=k+1;
fprintf(‘%10.3f %6.1f %6.1f\n’,dens,opersp,operfull);
end
disp (‘**’);
dens = 0.01:0.02:0.2;
ineffic= (fu-sp).*100./fu;
figure(2)
plot(dens,sp)
xlabel(‘density of matrix A’)
title(‘ # of operations of A^3 vs density’)
ylabel(‘# of oper.for sparse A^3’)

figure(3)
plot(dens,ineffic)
xlabel(‘density of matrix’)
ylabel(‘percentage inefficiency’)
title(‘inefficiency vs density’)

The script fi le sparse_versus_full is executed and the results are as follows:
>> sparse_vs_full

 * * * R E S U L T S * * *
****Performance results for sparse vs. full matrix oper. ******
 dens # oper. sparse # oper. Full

 0.010 1082.0 11718750.0
 0.030 16336.0 11718750.0
 0.050 63706.0 11718750.0

CRC_47744_Ch009.indd 624CRC_47744_Ch009.indd 624 6/27/2008 5:22:31 PM6/27/2008 5:22:31 PM

Files, Statistics, and Performance Analysis 625

 0.070 134646.0 11718750.0
 0.090 235714.0 11718750.0
 0.110 341024.0 11718750.0
 0.130 473312.0 11718750.0
 0.150 575486.0 11718750.0
 0.170 679488.0 11718750.0
 0.190 774470.0 11718750.0
**

 Observe that the preceding script uses the command fl ops (fl oating-point opera-
tion count), which is no longer supported by MATLAB 6.0, release 12 (November
2000), and subsequent releases. This program clearly illustrates the computational
effi ciency of the sparse matrices over the full matrices. The reader can still verify
the results of this program by replacing the fl ops and its dependent instructions by
an equivalent set of instructions that count the number of operations performed.

 Note that as the sparsity decreases, the density and number of fl oating-point
operations increases, whereas the number associated with the full matrices opera-
tions remains constant at 11718750.0, independent of its sparsity.

See Figures 9.10 through 9.12.

FIGURE 9.10
Plots of sparse matrix A over a range of densities.

0 100 × 100 Sparse matrix A,
Low density50

100

0 50 100
0

50

100

0 50 100
0

50

100

0 50 100
0

50

100

0 50 100
0

50

100

0 50 100
nz = 2439 nz = 2682

0

50

100

0 50 100

100

0

50

0 50 100

100

0

50

0 50 100

100

0

50

0 50 100

0 50 100

100

0

50

High density

CRC_47744_Ch009.indd 625CRC_47744_Ch009.indd 625 6/27/2008 5:22:32 PM6/27/2008 5:22:32 PM

626 Practical MATLAB® Basics for Engineers

FIGURE 9.12

Plot of [full-sparse
 _______ full * 1000] versus density of R.9.139 of A3.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

1

2

3

4

5

6

7

8
× 105

density of matrix A

 # of operations of A3 versus densities

of

 o
pe

r.
 fo

r
sp

ar
se

 A
3

FIGURE 9.11
Ineffi ciency plot of A3 over a range of densities of R.9.139.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
93

94

95

96

97

98

99

100

density of matrix

pe
rc

en
ta

ge
 in

ef
fic

ie
nc

y

inefficiency versus densities

9.4 Examples

Example 9.1

Create and execute the script fi le redrose that returns a four-petal red rose. Illustrate and
discuss the steps in the creation of this script fi le and show

CRC_47744_Ch009.indd 626CRC_47744_Ch009.indd 626 6/27/2008 5:22:32 PM6/27/2008 5:22:32 PM

Files, Statistics, and Performance Analysis 627

 a. The edit window with the script fi le redrose

 b. The fi le path

MATLAB Solution
From the command windows click
Edit → New M File → and enter the following instructions

% Script file: redrose.m
% The script file redrose returns a
% red rose, if a color printer is available, otherwise returns a

black rose.
% Inputs: none
% Outputs: plots of a red rose
% Call syntax: :redrose
% Author: M.K …………………..date: Jan,2004
%***
clf
n = 2;
t = linspace(0,2*pi,200);
r = 5*cos(n*t);
x = abs(r).*cos(t);
y = abs(r).*sin(t);
fill(x,y,’r’);axis(‘equal’);
title(‘red rose’)
grid on;

Once the preceding program is entered, (click) File, → Save as …, → and type in the
reserved fi eld the fi lename redrose.m and (click) Save.

The edit window with the created fi le redrose.m is shown in Figure 9.13.

FIGURE 9.13
(See color insert following page 342.) Edit window with the script fi le redrose.

CRC_47744_Ch009.indd 627CRC_47744_Ch009.indd 627 6/27/2008 5:22:32 PM6/27/2008 5:22:32 PM

628 Practical MATLAB® Basics for Engineers

FIGURE 9.15
(See color insert following page 342.) Plot of redrose of Example 9.1.

4

3

2

1

0

−1

−2

−3

−4

redrose

−6 −4 −2 0 2 4 6

See Figure 9.14.

FIGURE 9.14
(See color insert following page 342.) The script fi le redrose is stored in the folder work.

Once the fi le redrose is saved in the directory work, the directory is checked, as indi-
cated in Figure 9.14, to confi rm that the fi le is stored there.

Back in the command window, the script fi le redrose is tested, and the resulting plot
is shown in Figure 9.15.

>> redrose;

See Figure 9.15.

Example 9.2

Create and test the script fi le sinc33.m that returns the plot consisting of threading of
two lines with a frequency of w = π, over the range 0 ≤ t ≤ 6, with an initial magnitude
of 1 at t = 0.

CRC_47744_Ch009.indd 628CRC_47744_Ch009.indd 628 6/27/2008 5:22:32 PM6/27/2008 5:22:32 PM

Files, Statistics, and Performance Analysis 629

ANALYTICAL Solution

The following two super impose equations return the desired plot:

 f1 = abs (sin(π t)/(πt),
 f2 = –abs(sin(πt)/(πt)

MATLAB Solution
% Script file : sinc33.m
% Returns the plot of thread of two lines, given by the function
% abs (sin (pi.*t)./(pi.*t)) and -abs(sin(pi.*t)./(pi.*t)) vs t
% for 0<t<6 in increments of 0.25, and thread frequency w=pi
% Inputs:none
% Outputs: plots of abs(sin(pi.*t)./(pi.*t)) , plus
% -abs(sin(pi.*t)./(pi.*t)) vs. t
% Call syntax: sinc33
% Author: M. K………………………. date: Jan. 2007
%%%

t = 0:0.25:6;
f = abs(sin(pi.*t)./(pi.*t));
plot (t,f)
axis ([0.25 6 -1 1.25]);
hold on;
plot (t, -f)
title (‘[abs(sin(pi.*t)./(pi.*t))] vs. t, and [-abs(sin(pi.*t)./(pi.*t))]
vs. t’);
xlabel (‘time’);
ylabel (‘Amplitude’)
grid on;

The script fi le sinc33.m is executed as follows, and the resulting plot is shown in
Figure 9.16.

>> sinc33

See Figure 9.16.

FIGURE 9.16
Plot of sinc33 of Example 9.2.

1

0.5

0am
pl

itu
de

−0.5

−1
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

time

[abs(sin(pi.*t)./(pi.*t))] versus t, and [-abs(sin(pi.*t)./(pi.*t))] versus t

CRC_47744_Ch009.indd 629CRC_47744_Ch009.indd 629 6/27/2008 5:22:33 PM6/27/2008 5:22:33 PM

630 Practical MATLAB® Basics for Engineers

Example 9.3

The objective of this example is to explore the execution time of a script versus an equiv-
alent function fi le, as well as its parse and nonparse responses.

Let us revisit the solution of a quadratic equation of the form ax2 + bx + c = 0 by

 a. Creating the script fi le quadratic
 b. Test the script fi le quadratic by creating the new script fi le test_quadratic, which

returns the execution time of the parse and nonparse version for the following
equation, used for testing purposes:

3x2 + 7x + 13 = 0

 c. Creating the equivalent function fi le and label it quadraticf (that returns the roots of
a quadratic equation)

 d. Test the function fi le quadraticf by creating the new script fi le test_quadraticf, which
returns the execution time of the parse and nonparse version, by using the same
equation 3x2 + 7x + 13 = 0 (twice, parsed and nonparsed)

 e. Compare and discuss the performance of the script and function solutions for the
parse and nonparse cases

MATLAB Solution
% (part (a))
% Script file: quadratic
% This script file solves
% the quadratic equation
% of the form,a*x^2+b*x+c = 0
% Inputs : coeficient,a,b,c.
% Outputs: roots x1,x2
% Call syntax: quadratic
% Author: M. K. date: Jan, 2007
%***
clc;
disp(‘**’)
disp(‘This program solves the quadratic equation:’)
disp(‘ a*x^2+b*x+c=0 ‘)
disp(‘**’)
disp(‘Provide the values of the coefficients ‘)
disp(‘ of the quadratic equation’)
disp(‘*** ****’)
disp(‘ ‘)
a = input(‘Enter the value of the coefficient for a = ’);
b = input(‘Enter the value of the coefficient for b = ’);
c = input(‘Enter the value of coefficient for c = ’);
x1=(-b-sqrt(b^2-4*a*c))/(2*a);
x2=(-b+sqrt(b^2-4*a*c))/(2*a);
disp(‘̂ ^^^ ’̂)
disp(‘The solutions of the given quadratic equation are : ‘);
disp([‘x1=’,num2str(x1),’ and x2=’,num2str(x2)])
disp(‘̂ ^^^ ’̂)

%(part(b))
% Script file: test _ quadratic
tic;

CRC_47744_Ch009.indd 630CRC_47744_Ch009.indd 630 6/27/2008 5:22:33 PM6/27/2008 5:22:33 PM

Files, Statistics, and Performance Analysis 631

quadratic
t1 = toc;
time _ not _ parsed = t1;
tic;
quadratic
toc;
time _ parsed =toc;
disp(‘************Time Results******************’)
disp(‘First calculations of the roots of the quadratic equation’)
fprintf(‘non-parse time (in sec)=%f\n’,time _ not _ parsed’)
disp(‘Second calculations of the roots of the quadratic equation’)
fprintf(‘parse time(in sec)=%f\n’,time _ parsed’)
disp(‘**’)

The script fi le test _quadratic is executed and the results are as follows:

>> test _ quadratic

**
This program solves the quadratic equation:
 a*x^2+b*x+c=0
**
Provide the values of the coefficients
 of the quadratic equation
*** ****
Enter the value of the coefficient for a=3
Enter the value of the coefficient for b=7
Enter the value of the coefficient for c=13

^^^
The solutions of the given quadratic equation are :
x1=-1.1667-1.724i and x2=-1.1667+1.724i
^^^
**
This program solves the quadratic equation:
 a*x^2+b*x+c=0
**
Provide the values of the coefficients
 of the quadratic equation
*** ****

Enter the value of the coefficient for a=3
Enter the value of the coefficient for b=7
Enter the value of the coefficient for c=13
^^^
The solutions of the given quadratic equation are :
x1=-1.1667-1.724i and x2=-1.1667+1.724i
^^^
******************Time Results******************
First calculations of the roots of the quadratic equation
non-parse time(in sec) = 6.048000
Second calculations of the roots of the quadratic equation
parse time(in sec)= 5.659000
**

Observe that the time difference for the identical executions of the script fi le quadratic
for the same test equation, given by 3x2 + 7x + 13 = 0, between the parse- (compiled

CRC_47744_Ch009.indd 631CRC_47744_Ch009.indd 631 6/27/2008 5:22:33 PM6/27/2008 5:22:33 PM

632 Practical MATLAB® Basics for Engineers

script stored in computer memory) and nonparse script (executed for the fi rst time) is
5.659000 and 6.048000 s, respectively.

MATLAB Solution
(part (c))
function quadraticf(a,b,c)
%This function file solves
%the quadratic equation
%of the form,a*x^2+b*x+c=0
%Inputs:a,b,c.
%Outputs:x1,x2
%Call syntax: quadraticf(a,b,c)
% Author:M.K………………… date: Jan, 2007
%***************************************
x1= (-b-sqrt(b^2-4*a*c))/(2*a);
x2 = (-b+sqrt(b^2-4*a*c))/(2*a);
disp (‘ ‘)
disp (‘***’)
disp (‘The solutions of the given quadratic equation are : ‘);
disp ([‘x1=’,num2str(x1),’ and x2=’,num2str(x2)])
disp (‘***’)

% Script file:test _ quadraticf
tic;
quadraticf (3,7,13);
t1=toc;
time _ not _ parsed=t1;
tic;
quadraticf(3,7,13);
toc;
time _ parsed = toc;
disp(‘************Time Results******************’)
disp (‘First calculations of the roots of the quadratic equation’)
fprintf (‘non-parsed time(in sec)=%f\n’,time _ not _ parsed’)
disp (‘Second calculations of the roots of the quadratic equation’)
fprintf (‘parsed time(in sec)=%f\n’,time _ parsed’)

The script fi le test _quadraticf is executed and the results are as follows:

>> test _ quadraticf

**
The solutions of the given quadratic equation are:
x1 = -1.1667-1.724i and x2=-1.1667 + 1.724i
**

**
The solutions of the given quadratic equation are:
x1 = -1.1667-1.724i and x2 = -1.1667+1.724i
**

********************Time Results*******************************
First calculations of the roots of the quadratic equation
non-parse time (in sec) = 0.101000
Second calculations of the roots of the quadratic equation
parse time (in sec) = 0.020000
**

CRC_47744_Ch009.indd 632CRC_47744_Ch009.indd 632 6/27/2008 5:22:33 PM6/27/2008 5:22:33 PM

Files, Statistics, and Performance Analysis 633

Observe the signifi cant time difference (from 0.101 to 0.02 s) for the identical two responses
of the function fi le quadraticf, for the same arguments (a = 3, b = 7, and c = 13), between
the parse (compiled script stored in computer memory) and the nonparse versions.

Also observe the signifi cant time improvement between the function solution (0.02 s)
and equivalent script solution (5.659 s).

Example 9.4

Create the function fi le [dist] = dst(x1, y1, x2, y2) that, given two Cartesian coordinate
points P1 < x1, y1>, and P2 <x2, y2>, returns the calculated distance between the points
and a plot of their distance.

Test the function fi le dst, and observe the respective responses for the following
instructions:

 a. dst for <x1 = 2, y1 = 2>, <x2 = 5, y2 = 6> and <x1 = –2, y1 = 3>, <x2 = 5, y2 = –6>
 b. help dst (description of the function fi le dst)
 c. which dst (the fi le path)
 d. what (the fi les in the current directory)
 e. inmem (list of functions in memory)
 f. exist(‘dst’) (checks the existence of dst)
 g. whos (list of the variables in the workplace)
 h. profi le dst for the points P1 < –2, 3> and P2 < 5, –6> See Figure 9.17.

FIGURE 9.17
Plot of the function fi le dst of the Example 9.4(a).

the distance between P1 and P2

y-
ax

is

x-axis

7

6

5

4

3

2

1
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

 i. profi le report
 j. profi le report2 for the two lines of dst that consume the longest amount of line
 k. profi le report for the lines of dst that consume more than 50% of the total execution

time

MATLAB Solution
function [dist] = dst(x1,y1,x2,y2)
% This function file computes the distance
% between points P1(x1,y1) and P2(x2,y2) ,

CRC_47744_Ch009.indd 633CRC_47744_Ch009.indd 633 6/27/2008 5:22:33 PM6/27/2008 5:22:33 PM

634 Practical MATLAB® Basics for Engineers

% and returns the plot of the shortest distance
% between P1 and P2 as well as the points:
% P1(x1,y1) and P2(x2,y2).
% Inputs : x1,y1,x2,y2
% Outputs: dist and plot of the dist
% Author : M.K date: Jan,2007
%**
clc,clf;
xd = x2-x1;
yd = y2-y1;
dist = sqrt(xd^2+yd^2);
disp(‘ * * * R E S U L T * * *’)
disp(‘**’)
fprintf(‘ The calculated distance between points P1 and P2
is=%f\n’,dist);
disp(‘**’)
disp(‘The graphic distance between points’)
disp(‘P1 and P2 is shown in the figure window.....’);
disp(‘ ‘);
disp(‘**’);
fprintf(‘The approximate distance is......’);
x = [x1 x2];
y = [y1 y2];
maxx = max(x);minx = min(x);
maxy = max(y);miny = min(y);
MAXX = maxx+1;MINX = minx-1;
MAXY = maxy+1;MINY= miny-1;
x = linspace(x1,x2,100);
y = linspace(y1,y2,100);
plot(x1,y1,’d’,x2,y2,’d’,x,y)
title(‘ The distance between P1 and P2’)
xlabel(‘x-axis’)
ylabel(‘y-axis’)
axis([MINX MAXX MINY MAXY]);
grid on

The function fi le dst is tested for the following Cartesian points:

<x1 = 2, y1 = 2> and <x2 = 5, y2 = –6>, and the results are indicated as follows:

>> % part(a)
>> dst(2,2,5,6)

 * * * R E S U L T * * *

The calculated distance between points P1 and P2 is = 5.000000

The graphic distance between points
P1 and P2 is shown in the figure window.....

The approximate distance is......
ans =
 5

>> help dst % part(b)

 This function file computes the distance
 between points P1(x1,y1) and P2(x2,y2) ,

CRC_47744_Ch009.indd 634CRC_47744_Ch009.indd 634 6/27/2008 5:22:33 PM6/27/2008 5:22:33 PM

Files, Statistics, and Performance Analysis 635

 and returns the plot of the shortest distance
 between P1 and P2 as well as the points:
 P1(x1,y1) and P2(x2,y2).
 Inputs : x1,y1,x2,y2
 Outputs: dist and plot of the dist
 Author : M.K date: Jan,2007
**

>> which dst % part(c)

 C:\MATLAB6p1\work\dst.m

>> what % part (d)

 M-files in the current directory C:\MATLAB6p1\work
 Impfun quadraticf
 diana sine_fn
 dst test_file
 f test_quadratic
 func _ quad _ sol
 perf
 pz
 quadratic
 P-Files in the current directory C:\MATLAB6p1\work

>> inmem % part(e)
 ans =
 ‘dst’
 ‘getappdata’
 ………
 ‘closereq’
 ‘grid’
 ‘axis’
 ‘ylabel’
 v‘xlabel’
 ‘title’
 ‘gcf’
 ‘C:\MATLAB6p1\toolbox\matlab\graphics\private\clo’
 ‘C:\MATLAB6p1\toolbox\matlab\general\private\openm’

>> exist(‘dst’) % part (f)

 ans =
 2

>> whos % part(g)

 Name Size Bytes Class
 ans 1x1 8 double array
 distance _ P1 _ P2 1x1 8 double array
 Grand total is 2 elements using 16 bytes

>> profile dst % part (h)
>> profile on
>> dst (-2, 3, 5, -6)

 * * * R E S U L T * * *

The calculated distance between points P1 and P2 is =11.401754
**

CRC_47744_Ch009.indd 635CRC_47744_Ch009.indd 635 6/27/2008 5:22:34 PM6/27/2008 5:22:34 PM

636 Practical MATLAB® Basics for Engineers

The graphic distance between points
P1 and P2 is shown in the figure window.....
**
The approximate distance is
 ans =
 11.4018

See Figure 9.18.

FIGURE 9.18
Plot of the function fi le dst (−2, 3, 5,−6) of the Example 9.4(a).

the distance between P1 and P2
4

3

2

1

0

−1

−2

−3

−4

−5

−6

−7

y-
ax

is

−3 −2 −1 0 1 2 3 4 5 6
x-axis

>> profile report % part (i)

Total time in “c:\matlab\work\dst.m”: 1.07 seconds
100% of the total time was spent on lines: [11 38 42 39 16 36 14

41 40]
 10: %**
0.51s, 48% 11: clc;clf;
 12: xd=x2-x1;
 13: yd=y2-y1;
0.02s, 2% 14: dist=sqrt(xd^2+yd^2);
 15:disp(‘**’)
0.06s, 6% 16: fprintf(‘The calc distance bet P1 and P2

is=%f\n’,dist);
 17: disp(‘***’)
 35: MAXY=maxy+1;MINY=miny-1;
0.02s, 2% 36: x=linspace(x1,x2,100);
 37: y=linspace(y1,y2,100);
0.19s, 18% 38: plot(x1,y1,’d’,x2,y2,’d’,x,y)
0.10s, 9% 39: title(‘ The distance between P1 and P2’)
0.01s, 1% 40: xlabel(‘x’)

CRC_47744_Ch009.indd 636CRC_47744_Ch009.indd 636 6/27/2008 5:22:34 PM6/27/2008 5:22:34 PM

Files, Statistics, and Performance Analysis 637

0.01s, 1% 41: ylabel(‘y’)
0.15s, 14% 42: axis([MINX MAXX MINY MAXY]);
 43: grid on

>> profile report 2 % part (j)

Total time in “c:\matlab\work\dst.m”: 1.07 seconds
65% of the total time was spent on lines: [11 38]
 10: %**********
0.51s, 48% 11: clc;clf;
 12: xd= x2-x1;
………………………………………
……………………………………
 37: y=linspace(y1,y2,100);
0.19s, 18% 38: plot(x1,y1,’d’,x2,y2,’d’,x,y)
 39: title(‘ The distance between P1 and P2’)

>> profile report 0.5 % part (k)

Total time in “c:\matlab\work\dst.m”: 1.07 seconds

No line took more time than 0.5 *total_time.

Observe that the total execution time is 1.07 s, and 0.5 * 1.07 = 0.535 s.
Indeed there is no line that takes more than 0.535 s. The closest line is clc,clf with an

execution time of 0.51 s.

Example 9.5

Create the script fi le calc_area that returns the calculated area indicated by the shaded
plot for any arbitrary cubic polynomial of the form

f(x) = ax3 + bx2 + cx + d over the range x1 ≤ x ≤ x2

Test the script fi le calc_area for the following cases:

 a. f1(x) = 3x3 + 5x2 – 7x + 13, over the range –3 ≤ x ≤ 4
 b. f2(x) = –3x3 + 2x2 – x + 4, over the range –2.5 ≤ x ≤ 3
 c. f3(x) = 10x3 + 3x2 – 5x + 28, over the range –4 ≤ x ≤ 5

MATLAB Solution
% Script file : calc_area.m
% This program-file returns the area under
% a cubic polynomial of the form:
% y = a*x^3 + b*x^2 +c *x + d ,
% over the range: x1 ≤ x ≤x2
% Input variables: a, b, c, d, x1, x2.
% Call syntax: calc _ area
% Author: M.K………………………… date: June, 2007
disp(‘***’)
disp(‘This program-file calculates and plots ‘)

CRC_47744_Ch009.indd 637CRC_47744_Ch009.indd 637 6/27/2008 5:22:34 PM6/27/2008 5:22:34 PM

638 Practical MATLAB® Basics for Engineers

disp (‘the area under a cubic polynomial defined by: ‘)
disp (‘ y = a*x^3+b*x^2+c*x+d ‘)
disp(‘ over the range: x1 ≤ x ≤ x 2’)
disp (‘***’)
disp (‘ ‘)
disp (‘ ‘)
disp (‘Provide the following data about the polynomial’)
a = input(‘Enter the coefficient a = ‘);
b = input(‘Enter the coefficient b = ‘);
c = input(‘Enter the coefficient c = ‘);
d = input(‘Enter the coefficient d = ‘);
x1 = input(‘Enter the lower limit x1 = ‘);
x2 = input(‘Enter the upper limit x2 = ‘);
x = linspace(x1,x2,100);
y = a.*x.̂ 3+b.*x.̂ 2+c.*x+d;
trarea = trapz(x,y);
disp (‘*******************RESULTS**************************’)
fprintf (‘The area is=%f\n’,trarea)
disp ([‘of y=a*x^3+b*x^2+c*x+d ,between ‘,num2str(x2),’<x <’,num2str(x1)]);
disp (‘The shaded plot is displayed in the figure window’)
disp (‘***’)
area (x,y)
xlabel (‘x’);
ylabel (‘y’);
grid on
title(‘Area of y=a*x^3+b*x^2+c*x+d vs x’)

The script fi le calc_area.m is tested as follows:

>> calc _ area % part (a) for f1(x)

This program-file calculates and plots
the area under a cubic polynomial defined by:
 y=a*x^3+b*x^2+c*x+d
 over the range: x1 ≤ x ≤ x 2

Provide the following data about the polynomial
Enter the coefficient a= 3
Enter the coefficient b= 5
Enter the coefficient c= -7
Enter the coefficient d= 13
Enter the lower limit x1= -3
Enter the upper limit x2= 4
*******************RESULTS**************************
The area is=349.472078
of y=a*x^3+b*x^2+c*x+d ,between -3<x<4
The shaded plot is displayed in the figure window

See Figure 9.19.

CRC_47744_Ch009.indd 638CRC_47744_Ch009.indd 638 6/27/2008 5:22:34 PM6/27/2008 5:22:34 PM

Files, Statistics, and Performance Analysis 639

>> calc _ area % part(b) for f2(x)

This program-file calculates and plots
the area under a cubic polynomial defined by:
 y=a*x^3+b*x^2+c*x+d
 over the range: x1 ≤ x ≤ x2

Provide the following data about the polynomial
Enter the coefficient a= -3
Enter the coefficient b= 2
Enter the coefficient c= -1
Enter the coefficient d= 4
Enter the lower limit x1= -2.5
Enter the upper limit x2= 3
*******************RESULTS**************************
The area is=17.587834
of y=a *x^3+b*x^2+c*x+d ,between -2.5<x<3
The shaded plot is displayed in the figure window

See Figure 9.20.

FIGURE 9.19
Plot of calc_area of Example 9.5(a).

300

250

200

150

100

50

0

−50
−3 −2 −1 0 1 2 3 4

x

y

area of y=a*x3+b*x2+c*x+d versus x

CRC_47744_Ch009.indd 639CRC_47744_Ch009.indd 639 6/27/2008 5:22:34 PM6/27/2008 5:22:34 PM

640 Practical MATLAB® Basics for Engineers

>> calc _ area % part (c) for f3(x)

This program-file calculates and plots
 the area under a cubic polynomial defined by:
 y =a*x^3+b*x^2+c*x+d
 over the range: x1 ≤ x ≤ x2

Provide the following data about the polynomial
Enter the coefficient a= 10
Enter the coefficient b= 3
Enter the coefficient c= -5
Enter the coefficient d= 28
Enter the lower limit x1= -4
Enter the upper limit x2= 5

*******************RESULTS**************************
The area is=1341.223140
of y=a*x^3+b*x^2+c*x+d ,between -4<x<5
The shaded plot is displayed in the figure window

See Figure 9.21.

FIGURE 9.20
Plot of calc_area of Example 9.5(b).

area of y=a*x3+b*x2+c*x+d versus x
80

60

40

20

0

−20

−40

−60

−80

y

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3

x

CRC_47744_Ch009.indd 640CRC_47744_Ch009.indd 640 6/27/2008 5:22:34 PM6/27/2008 5:22:34 PM

Files, Statistics, and Performance Analysis 641

FIGURE 9.21
Plot of calc_area of Example 9.5(c).

1400

1200

1000

800

600

400

200

0

−200

−400

−600
−4 −3 −2 −1 0

x
1 2 3 4 5

y

area of y=a*x3+b*x2+c*x+d versus x

Example 9.6

Create the function fi le prodz1z2 that returns the product of two complex numbers
z1 and z2 (in polar form) as magnitude and angle where angle is expressed in radians
and degrees, given z1 and z2 in rectangular form.

Test the function fi le prodz1z2 for the following case z1 = 2 + 3i and z2 = 4 + 5i.

MATLAB Solution
function[mag,phase _ rad,phase _ deg] = prodz1z2(z1,z2)
% This function file performs the product of
% two complex numbers z1 and z2 given in
% rectangular format, and returns their product
% in polar format with the angle expressed
% in radians and degrees.
% Inputs : z1, z2 (rectangular format)
% Output: magnitude and angle in radians and degrees
% Call syntax : [mag,angle _ rad,angle _ deg]= prodz1z2 (z1,z2)
% Author:M.K…………………………………… date: june 2007
%***
clc;
disp (‘ ‘)
disp (‘**’)
disp(‘**********R E S U L T S *******************’)
disp (‘***’)
disp (‘ The mag. and angle (in rad and degrees)’);
disp (‘ of the product of z1*z2 is given by:’)

CRC_47744_Ch009.indd 641CRC_47744_Ch009.indd 641 6/27/2008 5:22:34 PM6/27/2008 5:22:34 PM

642 Practical MATLAB® Basics for Engineers

mag _ z1= abs(z1);
mag _ z2 = abs(z2);
mag = mag _ z1*mag _ z2;
angle _ z1 = angle(z1);
angle _ z2 = angle(z2);
phase _ rad = angle _ z1+angle _ z2;
phase _ deg = phaserad*(180/pi);
disp (‘***************************************’)

The function fi le prodz1z2.m is tested and the results are as follows:

MATLAB Solution
>> z1 = 2+3i;
>> z2 = 4+5i;
>> [mag,angle _ radians,angle _ degrees] = prodz1z2(z1, z2)

**
**********R E S U L T S *******************
**
 The mag. and angle (in rad and degrees)
 of the product of z1*z2 is given by :
 mag =
 23.0868
 angle _ radians =
 1.8788
 angle _ degrees =
 107.6501

Example 9.7

Let us revisit the capital–interest problem.

 a. Create the script fi le growth.m that returns the growth of an initial capital of $1000 in a
tablelike format that earns an interest rate of 6, 8, and 10% per annum during 10 years.

 b. Change part a for the case of the interest rates (6, 8, and 10%) compounded quar-
terly. Call this new script fi le growth_quot.m that returns in addition to the table the
plot indicating the nonlinearity growth, over the range 1 ≤ n (years) ≤ 10.

ANALYTICAL Solution

Part a. Let P be the present value ($1000), F the principal in the account at the expira-
tion of n interest periods and referred as future worth, I the interest rate, and n (1, 2, …,
9, 10) the number of years. Then the principal at the end of n periods is given by (Kurtz,
1985)

F = P(1 + I)n (from Chapter 1)

Part b. The preceding equation (F = P * (1 + I)n) is modifi ed for smaller intervals such
as quarters as follows:

F = P * (1 + I/4)n*4

MATLAB Solution
% part(a)

CRC_47744_Ch009.indd 642CRC_47744_Ch009.indd 642 6/27/2008 5:22:35 PM6/27/2008 5:22:35 PM

Files, Statistics, and Performance Analysis 643

% Script file : growth.m
% The script file growth displays
% the in a tabe like format
% the growth of an initial capital
% of $1000, that earns 6%,8% and 10%
% per annum, during a period of 10 years.
% Inputs: none
% Outputs: growth of $1000 at 6%, 8% and 10%
% Call syntax: growth
% Author: M. K ……………………date: January, 2007
%***
clc
format compact
P = 1000;
n = 1:10;
one = ones(1,10);
one6 = one+.06;
one8 = one+.08;
one10 = one+.1;
G6 = (one6.̂ n).*P;
G8 = (one8.̂ n).*P;
G10 = (one10.̂ n).*P;
% Display table
disp (‘**’)
disp(‘ TABLE OF GROWTH ‘)
disp(‘ years Fat6% Fat8% Fat10% ‘)
disp([n’ G6’ G8’ G10’])
disp (‘**’)

The script fi le growth.m is tested and the results are as follows:

>> growth

 TABLE OF GROWTH
 years Fat6% Fat8% Fat10%
 1.0e+003 *
 0.001 1.0600 1.0800 1.1000
 0.002 1.1236 1.1664 1.2100
 0.003 1.1910 1.2597 1.3310
 0.004 1.2625 1.3605 1.4641
 0.005 1.3382 1.4693 1.6105
 0.006 1.4185 1.5869 1.7716
 0.007 1.5036 1.7138 1.9487
 0.008 1.5938 1.8509 2.1436
 0.009 1.6895 1.9990 2.3579
 0.010 1.7908 2.1589 2.5937

MATLAB Solution
% part(b)
% Script file : growth_quot.m
% The script file growthquot.m
% traces the growth of an initial
% capital of $1000 at an annual

CRC_47744_Ch009.indd 643CRC_47744_Ch009.indd 643 6/27/2008 5:22:35 PM6/27/2008 5:22:35 PM

644 Practical MATLAB® Basics for Engineers

% interest rate of 6%, 8% and 10%
% compounded quarterly during a
% period of 10 years.
% Inputs: none
% Outputs: growth of $10,000 at 6%,8%
% and 10% compounded quarterly.
% Call syntax: growth _ quot
% Author: M.K………………………date: January 2007
%**
clc;clf;
format compact;
P =1000;
n =1:10;one=ones(1,10);
one6q = one+.02;
one10q = one+.025;
G6q= (one6q.̂ (n.*4)).*P;
G8q = (one8q.̂ (n.*4)).*P;
G10q = (one10q.̂ (n.*4)).*P;
disp (‘***’)
disp (‘ TABLE OF GROWTH COMPOUNDED QUARTERLY‘);
disp (‘** ’)
disp (‘ ‘);
disp (‘ YEARS Fat6% Fat8% Fat10% ’);
disp (‘**’);
disp ([n’ G6q’ G8q’ G10q’]);
disp (‘***’)
plot (n,G6q,’:o’,n,G8q,’*-’,n,G10q,’+’,n,G10q)
xlabel (‘years’);
ylabel (‘growth($)’);
title (‘Quarterly growth of an initial $10,000’);
legend (‘6%’,’8%’,’10%’);
grid on

The script fi le growth_qout.m is executed and the results are as follows:

>> growth _ quot

TABLE OF GROWTH COMPOUNDED QUARTERLY

YEARS Fat6% Fat8% Fat10%
**
 1.0e+003 *
 0.001 1.0614 1.0824 1.1038
 0.002 1.1265 1.1717 1.2184
 0.003 1.1956 1.2682 1.3449
 0.004 1.2690 1.3728 1.4845
 0.005 1.3469 1.4859 1.6386
 0.006 1.4295 1.6084 1.8087
 0.007 1.5172 1.7410 1.9965
 0.008 1.6103 1.8845 2.2038
 0.009 1.7091 2.0399 2.4325
 0.010 1.8140 2.2080 2.6851
**

See Figure 9.22.

CRC_47744_Ch009.indd 644CRC_47744_Ch009.indd 644 6/27/2008 5:22:35 PM6/27/2008 5:22:35 PM

Files, Statistics, and Performance Analysis 645

Example 9.8

Create the script fi le effective_int.m. that returns the effective interest rate of 10% per
annum and its effect on the growth of an initial capital of $10,000, during 10 years, com-
pounded in the following ways:

 a Annually
 b. Semi annually
 c. Quarterly
 d. Monthly
 e. Weekly
 f. Daily
 g. Continuously

Indicate the different growth plots over the range 1 ≤ n (years) ≤ 10. Also indicate, in
a different plot, the last 8.4 months of growth of the different modes, over the range 9.3
≤ n (years) ≤ 10.

MATLAB Solution
% Script file: effective_int.m
% returns the different effective
% interest rates and display the plot of
% the growth of $10,000 at an annual interest
% rate of 10 % during 10 years, and the last 8.4 months
% with the following effective interest rates compounded:
% (a) annually
% (b) semi-annually

FIGURE 9.22
Growth plots of Example 9.7(b).

6%
8%
10%

quarterly growth of an initial $10,000
2800

2600

2400

2200

2000

1800

1600

1400

1200

1000
1 2 3 4 5 6 7 8 9 10

years

gr
ow

th
 (

$)

CRC_47744_Ch009.indd 645CRC_47744_Ch009.indd 645 6/27/2008 5:22:35 PM6/27/2008 5:22:35 PM

646 Practical MATLAB® Basics for Engineers

% (c) quarterly
% (d) monthly
% (e) weekly
% (f) daily
% (g) continuously
% Inputs: none
% Outputs: (a) plot of the growth of $10,000 at 10%
% during a period of 10 years, and the last 8.4 months
% (b) Effective interest of 10% compounded:
% (1) annually
% (2) semi annually
% (3) quarterly
% (4) monthly
% (5) weekly
% (6) daily
% (7) continuously
% Call syntax: effective _ int
% Author: M.K …………………date: January, 2007
%**
clc; clf;
format compact
I =.10;
P = 10000;
I6month = (1.0+(10/2)*.01)̂ 2-1;
I3month = (1.0+(10/4)*.01)̂ 4-1;
I1month = (1.0+(10/12)*.01)̂ 12-1;
I1week = (1.0+(10/52)*.01)̂ 52-1;
I1day = (1.0+(10/365)*.01)̂ 365-1;
I _ cont = exp(.1)-1;
disp(‘**’)
disp(‘******* EFFECTIVE INTEREST RATES**************’);
disp(‘**’);
disp([‘EFFECTIVE ANNUAL INTEREST=’,num2str(I)]);
disp([‘EFFECTIVE SEMMI-ANNUAL INTEREST=’,num2str(I6month)]);
disp([‘EFFECTIVE QUARTERLY INTEREST=’,num2str(I3month)]);
disp([‘EFFECTIVE MONTHLY INTEREST=’,num2str(I1month)]);
disp([‘EFFECTIVE WEEKLY INTEREST=’,num2str(I1week)]);
disp([‘EFFECTIVE DAILY INTEREST=’,num2str(I1day)]);
 disp([‘EFFECTIVE CONTINOUS COMPOUNDING INT=’,num2str (I _ cont)]);
disp(‘***’)
n=1:10;
Fyear=P.*(1+I).̂ n;
F6month=P.*(1+I6month).̂ n;
F3month=P.*(1+I3month).̂ n;
F1month=P.*(1+I1month).̂ n;
F1week=P.*(1+I1week).̂ n;
F1day=P.*(1+I1day).̂ n;
F _ cont=P.*(1+I _ cont).̂ n;
clf;
subplot(2,1,1);
grid on
plot(n,Fyear,n,F6month,n,F3month,n,F1month,n,F1week,n,F1day,n,F_cont);
title(‘years vs growth’);
ylabel(‘Growth’)

CRC_47744_Ch009.indd 646CRC_47744_Ch009.indd 646 6/27/2008 5:22:35 PM6/27/2008 5:22:35 PM

Files, Statistics, and Performance Analysis 647

subplot(2,1,2);
plot(n,Fyear,n,F6month,n,F3month,n,F1month,n,F1week,n,F1day,n,F_cont);
title(‘years(9.3 through 10) vs growth’);
ylabel(‘Growth’)
xlabel(‘Years’)
axis([9.3 10 25000 28000])
grid on

The script fi le effective_int.m is executed and the results are as follows:

>> effective_int

**
******* EFFECTIVE INTEREST RATES********************

EFFECTIVE ANNUAL INTEREST = 0.1
EFFECTIVE SEMMI-ANNUAL INTEREST = 0.1025
EFFECTIVE QUARTERLY INTEREST = 0.10381
EFFECTIVE MONTHLY INTEREST = 0.10471
EFFECTIVE WEEKLY INTEREST = 0.10506
EFFECTIVE DAILY INTEREST = 0.10516
EFFECTIVE CONTINOUS COMPOUNDING INT = 0.10517

 See Figure 9.23.

FIGURE 9.23
Growth plots of Example 9.8.

years versus growth
3

2.5

2

1.5

1
1 2 3 4 5 6 7 8 9 10

× 104

× 104

gr
ow

th
gr

ow
th

years (9.3 through 10) versus growth
2.8

2.7

2.6

2.5
9.3 9.4 9.5 9.6 9.7 9.8 9.9 10

years

Example 9.9

Create the function fi le growthf1 that returns the growth of an initial capital P in a table-
like format, given the three interest rates I1, I2, and I3 per annum during a time period
of n years.

CRC_47744_Ch009.indd 647CRC_47744_Ch009.indd 647 6/27/2008 5:22:35 PM6/27/2008 5:22:35 PM

648 Practical MATLAB® Basics for Engineers

Test the function fi le growthf1 for the following cases:

 a. P = 10,000, I1 = 3%, I2 = 6%, I3 = 9%, and n = 10
 b. P = 10,000, I1 = 5%, I2 = 7%, I3 = 9%, and n = 11

MATLAB Solution
function growthf1(P,I1,I2,I3,n)
% This function file computes the growth
% rates I1,I2,I3 and duration of n years.
% Inputs :P,I1,I2,I3,n.
% Call syntax:growthf (P,I1,I2,I3,n)
% Author :M. Kalechman ,date:june 2002.
%***
one = ones(1,n);
oneI1 = one+one.*(I1*(.01));
oneI2 = one+one.*(I2*(.01));
oneI3 = one+one.*(I3*(.01));
m =1:1:n;
F1= (oneI1.̂ m).*P;
F2=(oneI2.̂ m).*P;
F3=(oneI3.̂ m).*P;
disp(‘**’);
disp(‘ Years n Fut.%I1 Fut.%I2 Fut.%I3’);
disp(‘**’);
disp([m’ F1’ F2’ F3’]);
disp(‘**’);

 The function fi le growthf1.m is tested for the following cases:

 a. P = 10,000, I1 = 3%, I2 = 6%, I3 = 9%, and n = 10
 b. P = 10,000, I1 = 5%, I2 = 7%, I3 = 9%, and n = 11

and the results are as follows:

>> growthf1(10000, 3, 6, 9, 10) %***** part (a)

**
 Years n Fut.%I1 Fut.%I2 Fut.%I3
**
 1.0e+004 *
 0.0001 1.0300 1.0600 1.0900
 0.0002 1.0609 1.1236 1.1881
 0.0003 1.0927 1.1910 1.2950
 0.0004 1.1255 1.2625 1.4116
 0.0005 1.1593 1.3382 1.5386
 0.0006 1.1941 1.4185 1.6771
 0.0007 1.2299 1.5036 1.8280
 0.0008 1.2668 1.5938 1.9926
 0.0009 1.3048 1.6895 2.1719
 0.0010 1.3439 1.7908 2.3674
**

>> growthf1(10000, 5, 7, 9, 11) %***** part(b)

CRC_47744_Ch009.indd 648CRC_47744_Ch009.indd 648 6/27/2008 5:22:35 PM6/27/2008 5:22:35 PM

Files, Statistics, and Performance Analysis 649

**
 Years n Fut.%I1 Fut.%I2 Fut.%I3
**
 1.0e+004 *
 0.0001 1.0500 1.0700 1.0900
 0.0002 1.1025 1.1449 1.1881
 0.0003 1.1576 1.2250 1.2950
 0.0004 1.2155 1.3108 1.4116
 0.0005 1.2763 1.4026 1.5386
 0.0006 1.3401 1.5007 1.6771
 0.0007 1.4071 1.6058 1.8280
 0.0008 1.4775 1.7182 1.9926
 0.0009 1.5513 1.8385 2.1719
 0.0010 1.6289 1.9672 2.3674
 0.0011 1.7103 2.1049 2.5804
**

Example 9.10

Create the function fi le solv that returns the solution of the following set of linear
equations:

(3 – u)x + 5y + 2z = 2

(–2u)x + 2y – 6z = –1

(4/u)x – 3y + 5z = 4

where u may represent a disturbance (over a range). Also explore and evaluate the con-
ditions for the existence of the solutions.

 a. Use the help command to obtain information about the fi le solv.
 b. Test the function fi le solv, by creating the script fi le test_solv, that returns the solu-

tion of the given set of equations for u = –3.61.
 c. Repeat part b over the range a ≤ u ≤ b with linear increments given by the variable

c(u = a:c:b).
 d. Test part c for 1 ≤ u ≤ 3 with unit increments (u = 1:1:3).

ANALYTICAL Solution

The preceding set of equations can be expressed in a matrix format as

()
()
(/)

3 5 2
2 2 6

4 3 5

2
1

4

�

� �

�

�

u

u

u

x

y

z













































�




Let

A

u

u

u

�

()
()
(/)

3 5 2
2 2 6

4 3 5

�

� �

�

















,

B �

2
1

4
�

















,

and XYZ =

x

y

z

















then

[A] * [XYZ] = [B]

CRC_47744_Ch009.indd 649CRC_47744_Ch009.indd 649 6/27/2008 5:22:35 PM6/27/2008 5:22:35 PM

650 Practical MATLAB® Basics for Engineers

Recall that the existence of a solution of a system of equations is associated to the value
of the det(A) and condition number cond(A) (recall that the condition number indicates
the singularity condition of A).

MATLAB Solution
function[x,y,z,detA,condA]=solv(u)
%**
% This function file solves the following
% set of linear equations:
% (3-u)*x+5*y+2*z= 2 ;
% (-2*u)*x+2*y-6*z=-1;
% (4/u)*x-3*y+5*z= 4 ;
% for the variables x, y, z, det(A(u)), cond(A(u))
% where A=[(3-u) 5 2 ;(-2*u) 2 6;(4/u) -3 5] ;
% Inputs : u
% Outputs:x, y, z, detA, condA
% where detA= det(A) and condA = cond(A)
% Author: M.K. date:june 2002.
% Call syntax:[x, y, z, detA, condA] = solv(u)
%**
clc;
A = [(3-u) 5 2 ;(-2*u) 2 6;(4/u) -3 5] ;
B = [2;-1;4];
DetA = det(A);
condA = cond(A);
xyz = inv(A)*B;
disp(‘*************RESULTS**********************’)
disp(‘The values of x, y, and z are:’);
disp([xyz]);
disp(‘The values of det(A) and the cond(A) are:’);
disp([detA condA])
disp(‘***’)

% Script file = test_solv
disp(‘ This file solves the following set equations:’)
disp(‘ (3-u)*x+5*y+2*z= 2 ‘) ;
disp(‘ (-2*u)*x+2*y-6*z=-1’);
disp(‘ (4/u)*x-3*y+5*z= 4 ‘) ;
disp(‘ for the variables x, y, z, det(A(u)), cond(A(u))’);
disp(‘ where A= [(3-u) 5 2 ;(-2*u) 2 6;(4/u) -3 5]’);
disp(‘over the range a ≤u ≤b’)
disp(‘***’)
disp(‘ Provide the following information about the range of the

 disturbance (u)’)
a=input(‘Enter the lower value of the disturbance =’)
b=input(‘Enter the higher value of the disturbance =’)
c=input(‘Enter the increment size=’)
for u =a:c:b
fprintf(‘The result is for perturbation u=%f\n’,u)
solv(u)
end

The fi le solv and test_ solv are tested and the results are as follows:

>> help solv % part(a)

CRC_47744_Ch009.indd 650CRC_47744_Ch009.indd 650 6/27/2008 5:22:35 PM6/27/2008 5:22:35 PM

Files, Statistics, and Performance Analysis 651

**
This function file solves the following
set of linear equations:
 (3-u)*x+5*y+2*z= 2 ;
 (-2*u)*x+2*y-6*z=-1;
 (4/u)*x-3*y+5*z= 4 ;
for the variables x, y, z, det(A(u)), cond(A(u))
where A=[(3-u) 5 2 ;(-2*u) 2 6;(4/u) -3 5] ;
Inputs : u
Outputs:x,y,z,detA,condA
 where detA=det(A) and condA=cond(A)
Author: M. K. date: june 2002.
Call syntax :[x,y,z,detA,condA]=solv(u)
**

The function solv.m is executed fi rst for u = –3.61 and then over the range 1 ≤ u ≤ 3 by
calling the fi le test_solv.

>> solv(-3.61) % part (b)

*************RESULTS**********************
The values of x, y, and z are:
 -2.8276
 3.2812
 2.1421

The values of det(A) and the cond(A) are:
 -67.5489 15.4333

>> test _ solv % part(c/d)

This file solves the following set of equations:
 (3-u)*x+5*y+2*z = 2
 (-2*u)*x+2*y-6*z =-1
 (4/u)*x-3*y+5*z = 4
for the variables x, y, z, det(A(u)), cond(A(u))
where A=[(3-u) 5 2 ;(-2*u) 2 6;(4/u) -3 5]
over the range a ≤u ≤b’)
Enter the lower value of the disturbance =1
Enter the higher value of the disturbance =3
Enter the increment size=1

**
The result is for perturbation u=1.000000

*************RESULTS************************
The values of x, y, and z are:
 0.8604
 0.0090
 0.1171

The values of det(A) and the cond(A) are:
 222.0000 1.9714

The result is for perturbation u=2.000000

*************RESULTS**********************

CRC_47744_Ch009.indd 651CRC_47744_Ch009.indd 651 6/27/2008 5:22:35 PM6/27/2008 5:22:35 PM

652 Practical MATLAB® Basics for Engineers

The values of x, y, and z are:
 0.9363
 0.0343
 0.4461
The values of det(A) and the cond(A) are:
 204.0000 2.1279

The results is for perturbation u=3.000000
*************RESULTS************************
The values of x, y, and z are:
 0.8656
 0.1390
 0.6526

The values of det(A) and the cond(A) are:
 220.6667 2.4688

Example 9.11

Evaluate the performance of each of the three script fi les, defi ne below where each script
returns the sum of the square roots of all the positive integers smaller than 501 by creating

 a. The script fi le vector_loop that employs the implied loop
 b. The script fi le forend_loop that employs the for-end command

 i. Without preallocation memory for the loop variable

 ii. With preallocation memory for the loop variable
 c. The script fi le whileend_loop that employs the while-end command

For each of the preceding fi les, estimate their performance by evaluating the following
timing parameters:

 1. Estimated time
 2. Cpu time
 3. Elapsed time

ANALYTICAL Solution

The objective of each one of the three fi les defi ned earlier is to evaluate the y variable
defi ned by

y i

i

�
�

() /1 2

1

500

∑

MATLAB Solution
% Script file: vector _ loop.m
% This program-file returns
% the sum of the square
% roots of all the numbers
% between 0 and 500,
% using the implied loop method.
% Input: none

CRC_47744_Ch009.indd 652CRC_47744_Ch009.indd 652 6/27/2008 5:22:36 PM6/27/2008 5:22:36 PM

Files, Statistics, and Performance Analysis 653

% Output: (1) sum(sqrt(1,2,...500))
% (2) statistics: a. estimated time
% b. cpu time
% c. elapse time
% Call syntax: vector _ loop
% Author: M.K……………….date: January 2007
%***************************************
% solution (a)
tstart = clock;tic;
ta = cputime;
xa =1:500;
solution _ a = sum(sqrt(xa));
estimea = etime(clock,tstart);
tictoca = toc;
t1= cputime-ta;
disp (‘***********RESULTS USING THE IMPLIED LOOP*******’)
disp ([‘Sum of sqrt of 1 _ 500 =’,num2str(solution _ a)]);
disp (‘***’)
disp (‘******TIME STATICS USING THE IMPLIED LOOP*******’)
fprintf (‘est.time = %6.6f\n’,estimea);
fprintf (‘cpu.time = %6.6f\n’,t1);
fprintf (‘time elapsed =%6.6f\n’,tictoca);
disp (‘***’)

% Script file: forend _ loop.m
%***************************************
% This program-file returns
% the sum of the square
% roots of all the numbers
% between 0 and 500,
% using the implied loop method.
% Input: none
% Output: (1) sum(sqrt(1,2,...500))
% (2) statistics: a. estimated time
% b. cpu time
% c. elapse time
% Call syntax: vector _ loop
% Author: M.K ………… date: January 2007
%***
% solution (b)
tstartb = clock;tic;
tb = cputime;
for xb=1:500;
 b(xb)=sqrt(xb);
end
solution _ b=sum(b);
estimeb=etime(clock,tstartb);
tictocb=toc;
t2=cputime-tb;
disp(‘***********RESULTS USING THE FOR-END**********’)
disp([‘Sum of sqrt of 1 _ 500 =’,num2str(solution _ b)]);
disp(‘**’)
disp(‘*******TIME STATISTICS USING THE FOR-END********’)
fprintf(‘est.time = %6.6f\n’,estimeb);
fprintf(‘cpu.time = %6.6f\n’,t2);

CRC_47744_Ch009.indd 653CRC_47744_Ch009.indd 653 6/27/2008 5:22:36 PM6/27/2008 5:22:36 PM

654 Practical MATLAB® Basics for Engineers

fprintf(‘time elapsed =%6.6f\n’,tictocb);
disp(‘***’)

% Script file: whileend_loop.m
% This program-file returns
% the sum of the square
% roots of all the numbers
% between 0 and 500,
% using the implied loop method.
% Input: none
% Output: (1) sum(sqrt(1,2,...500))
% (2) statistics: a. estimated time
% b. cpu time
% c. elapse time
% Call syntax: vector _ loop
% Author: M.K………………date: January 2007
%***************************************
% solution (c)
tstartc = clock;tic;
tc= cputime;
xc =1;y =501;c =0;
while xc<y;
c = c+sqrt(xc);
xc = xc+1;
end
solution_c= c;
estimec = etime(clock,tstartc);
tictocc = toc;
t3 = cputime-tc;
disp (‘***********RESULTS USING THE WHILE-END***********’)
disp ([‘Sum of sqrt of 1_500 =’,num2str(solution _ c)]);
disp (‘***’)
disp (‘*******TIME STATISTICS USING THE WHILE-END******’)
fprintf (‘est.time =%6.6f\n’,estimec);
fprintf (‘cpu.time =%6.6f\n’,tc);
fprintf (‘time elapsed =%6.6f\n’,tictocc);
disp (‘***’)

Each of the preceding script files are executed, and the results are
indicated as follows:

>> vector _ loop % part(a)

***********RESULTS USING THE IMPLIED LOOP******
Sum of sqrt of 1 _ 500 =7464.5342
**
******* TIME STATICS USING THE IMPLIED LOOP****
est.time = 0.010000
cpu.time = 0.030000
time elapsed = 0.031000

>> forend _ loop % part (b1)

***********RESULTS USING THE FOR-END************

CRC_47744_Ch009.indd 654CRC_47744_Ch009.indd 654 6/27/2008 5:22:36 PM6/27/2008 5:22:36 PM

Files, Statistics, and Performance Analysis 655

Sum of sqrt of 1 _ 500 = 7464.5342
**
****** TIME STATISTICS USING THE FOR-END*******
est.time = 0.010000
cpu.time = 0.030000
time elapsed = 0.030000
**

>> b= zeros(1,500);
>> forend _ loop % part (b2)

***********RESULTS USING THE FOR-END************
Sum of sqrt of 1 _ 500 =7464.5342
**
*******TIME STATISTICS USING THE FOR-END*******
est.time = 0.011000
cpu.time = 0.020000
time elapsed =0.020000

>> whileend _ loop % part (c)

***********RESULTS USING THE WHILE-END*********
Sum of sqrt of 1_500 =7464.5342
**
****TIME STATISTICS USING THE WHILE-END***
est.time = 0.020000
cpu.time = 11.686000
time elapsed = 0.040000
**

Observe that the sum of the square roots of all positive numbers smaller than 501 is
exactly the same (7464.5342) in all the four cases; but the computational times are quite
different, with the implied loop vector approach as the most effi cient and the while-end
as the least effi cient. Observe that the for-end solution shows good time performance
that is signifi cantly improved by preallocating the memory size of the loop variable
(part b).

Example 9.12

Create the function fi le statis_perf that returns the following statistics of a given row
array x:

 • The average
 • The standard deviation
 • The variance
 • The GM
 • The RMS
 • The HM
 • The timing statistics
 � Estimated execution time
 � Cpu time
 � Elapse time

CRC_47744_Ch009.indd 655CRC_47744_Ch009.indd 655 6/27/2008 5:22:36 PM6/27/2008 5:22:36 PM

656 Practical MATLAB® Basics for Engineers

Test the function fi le statis_perf for the following input arrays:

 a. x1 = rand(1, 33)
 b. x2 = randn(1, 99)
 c. Get information about statis_perf
 d. Discuss and compare the timing statistics

ANALYTICAL Solution

The variables to be used in statis_perf are defi ned as follows:

n x

n
x i

i

n

�

�

length() (is the number of elements)

ave (av

n

1

1

()
=
∑ eerage)

dev ave (standard deviation)

geomean

�

�

(()) /

(

x i n
i

n
2

1

�
=
∑

xx i

n
x i

xi

i

n

i

n

i

n

())

() ()

()

=
∏

∑

∑

1

2

1

1

1

1

(GM)

rms RMS

harmean HM

�

�

�

�

n

MATLAB Solution
function statis_ perf(x)
% This function file returns the
% statistical values of a given row
% array of data x such as :
% * average (ave)
% * standard deviation(dev)
% * variance (var)
% * geometric mean (geomean)
% * root mean square (rms)
% * harmonic mean (harmean)
% * timing statistics:
% • estimated time
% • cpu time
% • elapse time
% Input : x (row array of data)
% Outputs: ave, dev, var, geomean, rms, harmean, performing

statistics
% Call syntax: [sta,perf] = statis_ perf(x)
% Author : M.K ………………………date: January, 2007
%***
tstart = clock;
tic;
t0 = cputime;;
n = length(x);
ave = sum(x)/n;
dev = sqrt(sum(x.̂ 2)/n-ave^2);
one = ones(1,n);
var = sum(x-one.*ave)/(n-1);

CRC_47744_Ch009.indd 656CRC_47744_Ch009.indd 656 6/27/2008 5:22:36 PM6/27/2008 5:22:36 PM

Files, Statistics, and Performance Analysis 657

geomean = sqrt(prod(x));
rms = sqrt(sum(x.̂ 2)/n);
harmean = n/sum(one./x);
sta = [ave dev var geo_mean rms har _ mean];
disp (‘***************STATISTICAL RESULTS*********************’);
disp (‘ ave dev var geo_mean rms har_mean’);
disp (sta)
disp (‘***’);
timeelaps = etime(clock,tstart);
ter = toc;
tf = cputime-t0;
disp (‘*****************TIMING RESULTS************************’);
fprintf (‘est.time =......%6.6f\n’,timeelaps);
fprintf (‘cpu.time =......%6.6f\n’,tf);
fprintf (‘time elapsed =...%6.6f\n’,ter);
disp(‘**’);

>> help statis _ perf % part(c)

This function file returns the
statistical values of a given row
array of data x such as :
 * average (ave)
 * standard deviation(dev)
 * variance (var)
 * geometric mean (geomean)
 * root mean square (rms)
 * harmonic mean (harmean)
 * timing statistics:
 • estimated time
 • cpu time
 • elapse time
 Input : x (row array of data)
 Outputs: ave, dev, var, geomean, rms, harmean, performing

statistics
 Call syntax: [sta,perf] =statis _ perf(x)
 Author : M.K ………………………date: January, 2007

>> x1 = rand(1, 33); % part(a)
>> statis _ perf(x1)
*************STATISTICAL RESULTS**********************************
 ave dev var geo _ mean rms har _ mean
 0.5089 0.2710 0.0000 0.0000 0.5766 0.1867
**
*****************TIMING RESULTS*********************************
est.time =...... 0.090000
cpu.time =..... .0.091000
time elapsed =...0.090000

>> x2 = randn(1,99); % part (b)
>> statis _ perf(x2)

****************STATISTICAL RESULTS*********************************
 ave dev var geo _ mean rms har _ mean
 -0.1317 0.9302 -0.0000 0.0000 0.9394 1.0871

CRC_47744_Ch009.indd 657CRC_47744_Ch009.indd 657 6/27/2008 5:22:36 PM6/27/2008 5:22:36 PM

658 Practical MATLAB® Basics for Engineers

**
********************TIMING RESULTS***********************************
est.time =...... 0.100000
cpu.time =...... 0.110000
time elapsed =...0.110000

Observe that x2 consists of an array of elements that is three times greater than x1, but
the execution time increases by less than 12%.

Example 9.13

Create the function fi le graph_perf that, given a (data) row array x, returns the following
plots:

 1. The [number of elements of x] versus [magnitude of the elements of x]
 2. The histogram of x consisting of fi ve bins
 3. Pie graph of the histogram
 4. Profi le plot and report

Test this function fi le by executing the following:

 a. The help graph_perf command

 b. Let the input array x be given by x1 = rand(1, 33)

 c. Let the input array x be given by x2 = rand(1, 99), and display

 1. The sample and pie graphs

 2. The profi le report and profi le plot

 d. Discuss and compare the results

MATLAB Solution
function graph _ perf(x)
% This function file returns the plots of the
% statistical behavior of the row data
% array x, , and the profile
% (timing) performance of this file.
% This function returns:
% * plot of [Amplitude of x] vs [#of samples]
% * histogram of x consisting of 5 bins
% * pie graph
% * profile plot
% * profile report
% Inputs : x (row array of data)
% Outputs: * plot of [Amplitude of x] vs. [# of samples of x]
% * histogram of x consisting of 5 bins
% * profile plot
% * profile report
% Call syntax: graph _ perf(x)
% Author: M.K…………………………………… date: January 2007
%**
profile graph _ perf
profile on
n = length(x);
m = 1:n;
subplot (2,1,1);
plot(m,x)

CRC_47744_Ch009.indd 658CRC_47744_Ch009.indd 658 6/27/2008 5:22:36 PM6/27/2008 5:22:36 PM

Files, Statistics, and Performance Analysis 659

title (‘Amplitude vs # of SAMPLES’);
xlabel (‘# of samples’);
ylabel (‘Amplitude’);
grid on;
subplot (2,1,2);
[N,X] = hist(x,5); % histogram with 5 bins
hist (x,5); % histogram plot
title (‘Histogram with 5 bins’)
disp (‘**’);
disp (‘If you wish , print the plots’.);
disp (‘Enter «return» to continue the execution’);
disp (‘of this function ; next figure is the pie plot.’);
disp (‘**’);
keyboard; % pause
pie(N)
title (‘Pie plot of the histogram’)
legend (‘bin#1’,’bin#2’,’bin#3’,’bin#4’,’bin#5’)
disp(‘***’)
disp (‘If you wish , print the pie plots.’);
disp (‘Enter «return» to continue the execution’)
disp (‘of this function ; next is the profile report.’)
disp (‘**’)
keyboard % pause
profile report
disp (‘**’)
disp (‘Enter «return» to continue the execution’)
disp (‘of this function ; next figure is the profile plot’)
disp (‘**’)
keyboard; % pause
profile plot

>> help graph _ perf % part(a)

 This function file returns the plots of the
 statistical behavior of the row data
 array x, , and the profile
 (timing) performance of this file.
 This function returns:
 * plot of [Amplitude of x] vs [# of samples of x]
 * histogram of x consisting of 5 bins
 * pie graph
 * profile plot
 * profile report
 Inputs: x (row array of data)
 Outputs: * plot of [Amplitude of x] vs. [# of samples of x]
 * histogram of x consisting of 5 bins
 * profile plot
 * profile report
 Call syntax: graph_perf(x)
 Author: M.K…………………………………… date: January 2007

**

>> x1= rand(1,33); % part (b)
>> graph _ perf(x1);

**

CRC_47744_Ch009.indd 659CRC_47744_Ch009.indd 659 6/27/2008 5:22:36 PM6/27/2008 5:22:36 PM

660 Practical MATLAB® Basics for Engineers

If you wish, print the plots.
Enter “return” to continue the execution
of this function ; next figure is the pie plot.

**

See Figure 9.24.

FIGURE 9.25
(See color insert following page 342.) Pie plots of x1 of Example 9.13.

Pie plot of the histogram

18%

18%

18%

30%

15%

bin#1

bin#2

bin#3

bin#4

bin#5

K>> return

**
If you wish , print the pie plots.
Enter “return” to continue the execution
of this function ; next is the profile report.

**

See Figure 9.25.

FIGURE 9.24
Sample plot and histogram of Example 9.13.

amplitude versus # of samples
1

0.8

0.6

0.4

0.2

0
0 5 10 15 20 25 30 35

am
pl

itu
de

10

8

6

4

2

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

histogram with 5 bins

of samples

CRC_47744_Ch009.indd 660CRC_47744_Ch009.indd 660 6/27/2008 5:22:36 PM6/27/2008 5:22:36 PM

Files, Statistics, and Performance Analysis 661

K>> return

Total time in “C:\MATLAB\work\graph _ perf.m”: 204.58 seconds
100% of the total time was spent on lines: [40 49 33 43 41 25 26

 32 31 30]
 24: m=1:n;
 0.07s, 0% 25: subplot(2,1,1);
 0.06s, 0% 26: plot(m,x)
 27: title(‘MAG. vs # of SAMPLES’);
 28: xlabel(‘# of samples’);
 29: ylabel(‘Magnitude’);
 0.02s, 0% 30: grid on;
 0.02s, 0% 31: subplot(2,1,2);
 0.04s, 0% 32: [N,X]=hist(x,5);%histogram with 5 bins
 0.31s, 0% 33: hist(x,5);%histogram plot
 34: title(‘Histogram with 5 bins’)

 39: disp(‘***************************************’);
173.57s, 85% 40: keyboard;%pause;
 0.24s, 0% 41: pie(N)
 42: title(‘Pie plot of the histogram’)
 0.25s, 0% 43: legend(‘bin#1’,’bin#2’,’bin#3’,’bin#4’,’bin#5’)
 44: disp(‘**************************************’)

 48: disp(‘**************************************’)
 29.98s, 15% 49: keyboard; % pause;
 50: profile report

Enter “return” to continue the execution
of this function ; next figure is the profile plot.

See Figure 9.26.

FIGURE 9.26
Profi le plot of x1 of Example 9.13.

filemenufcn

print

printdlg

render

prepare

preparehg

legend

saveas

legend/make_legend

subplot

0 10 20 30 40 50 60
total time (s)

CRC_47744_Ch009.indd 661CRC_47744_Ch009.indd 661 6/27/2008 5:22:37 PM6/27/2008 5:22:37 PM

662 Practical MATLAB® Basics for Engineers

FIGURE 9.27
(See color insert following page 342.) Pie plots for x2 of Example 9.13.

amplitude versus # of samples
1

0.8

0.6

0.4

0.2

am
pl

itu
de

0
0 10 20 30 40 50 60 70 80 90 100

of samples
Pie plot of the histogram

13%
20%

22%

25%

19%

bin#1

bin#2

bin#3

bin#4

bin#5

K>> return

>> x2 = rand (1, 99);
>> graph_perf (x2); % part(c)

If you wish , print the plots.
Enter “return” to continue the execution
of this function ; next figure is the pie plot.

K>> return

If you wish , print the pie plots.
Enter “return” to continue the execution
of this function ; next is the profile report

See Figure 9.27.

K>> return

Total time in “C:\MATLAB\work\graph_perf.m”: 132.88 seconds
100% of the total time was spent on lines: [40 49 33 41 26 43 25

48 42 35]
 24: m = 1:n;
 0.02s, 0% 25: subplot(2,1,1);
 0.04s, 0% 26: plot(m,x)
 27: title(‘MAG. vs # of SAMPLES’);
 32: [N,X] = hist(x,5);%histogram with 5 bins
 0.11s, 0% 33: hist(x,5);%histogram plot
 34: title(‘Histogram with 5 bins’)
 0.01s, 0% 35: disp(‘**’);
 36: disp(‘If you wish ,print the plots’);

CRC_47744_Ch009.indd 662CRC_47744_Ch009.indd 662 6/27/2008 5:22:37 PM6/27/2008 5:22:37 PM

Files, Statistics, and Performance Analysis 663

 39: disp(‘**’);
104.61s, 79% 40: keyboard;%pause;
 0.09s, 0% 41: pie(N)
 0.01s, 0% 42: title(‘Pie plot of the histogram’)
 0.03s, 0% 43: legend(‘bin#1’,’bin#2’,’bin#3’,’bin#4’,’bin#5’)
 44: disp(‘**************************************’)
 47: disp(‘of this function ;next is the profile

report’)
 0.01s, 0% 48: disp(‘**************************************’)
 27.93s, 21% 49: keyboard;%pause;
 50: profile report

**
Enter “return” to continue the execution
of this function ;next figure is the profile plot.
**

K>> return

See Figure 9.28.

FIGURE 9.28
Profi le plot of x2 of Example 9.13.

filemenufcn

print

saveas

gcf

legend/make_legend

legend

prepare

subplot

preparehg

render

total time (s)
0 5 10 15 20 25 30 35

Observe from the fi le reports that the total time spent in the execution of the program
lines decreased from 204.58 s (array x1) to 132.88 s (array x2), and the plots indicate,
for example, that the print command consumes approximately 12 s (for array x1) and
approximately 1 s (for array x2), when the number of elements of x2 is three times greater
(99) than the elements of x1 (33). Note that the profi le results were obtained by executing
the same function fi le. Observe also that the better performance is a consequence of the
parsed or precompiled attribute of MATLAB.

Example 9.14

Let the 100 × 100 sparse matrix A be defi ned by the following MATLAB command:

 A = sprand(n, n, dens) + speye(n), for n = 100,

CRC_47744_Ch009.indd 663CRC_47744_Ch009.indd 663 6/27/2008 5:22:37 PM6/27/2008 5:22:37 PM

664 Practical MATLAB® Basics for Engineers

over the following range of densities 0.02 ≤ dens ≤ 0.2, with linear increments of 0.02.
Create the script fi le sparse_full that compares the timing statistics of performing

sparse matrix operations versus full matrix operations, returning the following:

 a. A table with the densities of A over the indicated range and timing required to
perform [A * inv(A)] and [B * inv(B)], where B = full(A)

 b. The cumulative cpu and estimated times to perform [A * inv(A)] and [B * inv(B)]
over the indicated density range

 c. Graphs of the sparse matrix A over the indicated density range
 d. Plots of the cumulative cpu times of sparse [A * inv(A)] versus [densities] and the

cumulative cpu times of full [B * inv(B)] versus [densities]
 e. Plots of the cumulative estimated times of sparse [A * inv(A)] versus [densities] and

cumulative estimated times of full [B * inv(B)] versus [densities]

MATLAB Solution
% Script file = sparse_full
n =100;k=1;
disp (‘********** Performance Results ***************’)
disp (‘********* Sparse vs full matrix *************’)
disp (‘ ************* [A*inv(A)] ********************’);
disp (‘ dens cpu.time _ sp est.time _ sp cpu.time _ full est.
 time _ full’);
tstart = clock; totaltimeA = 0; totaltimeB =0;
totalcpuA = 0; totalcpuB = 0;

figure(1)
for dens = 0.02:0.02:0.2;
 A= sprand(n,n,dens)+speye(n); % 100x 100 sparse matrix
 tstartA = clock; t0A = cputime;
 prodsp = A*inv(A);
 tfA = cputime-t0A;
 totalcpuA = tfA+totalcpuA;tcpu _ A(k) = totalcpuA;
 timeelapsA = etime(clock,tstartA);
 totaltimeA = totaltimeA+timeelapsA; telapse _ A(k)=totaltimeA;
 subplot(5,2,k)
 spy(A)
 B = full(A); tstartB = clock; t0B = cputime;
 prodfull =B*inv(B);
 tfB =cputime-t0B; totalcpuB = tfB + totalcpuB;
 tcpu_B(k) = totalcpuB;
timeelapsB = etime(clock,tstartB);
totaltimeB = totaltimeB+timeelapsB; telapse _ B(k) = totaltimeB;
fprintf(‘%4.3f %6.5f %6.5f %10.8f %10.8f\n’,dens,tfA,timeelapsA,tfB,

 timeelapsB);

k = k+1;
end
dens = 0.02:0.02:0.2;

figure(2)

CRC_47744_Ch009.indd 664CRC_47744_Ch009.indd 664 6/27/2008 5:22:37 PM6/27/2008 5:22:37 PM

Files, Statistics, and Performance Analysis 665

plot (dens,tcpu _ A,dens,tcpu _ A,’s’,dens,tcpu _ B,dens,tcpu _ B,’h’);
xlabel (‘density of matrix A’);
title (‘ [time elapsed in sec.] vs [density of A]’);
ylabel (‘ time elapsed in sec’);

figure (3)
plot (dens,telapse_A,dens,telapse _ A,’*’,dens,telapse _ B,dens,

 telapse _ B,’+’);
xlabel (‘density of matrix A’);
ylabel (‘cpu time in sec. ‘);
title (‘ [cpu time of (A*inv(A)])] vs [density of A]’);
disp (‘**’);
disp (‘*******Perf. results for sparse[A*inv(A)]******************’);
fprintf (‘total exec. time =......%6.6f\n’,totaltimeA);
fprintf (‘total cpu.time =......%6.6f\n’,totalcpuA);
disp (‘**’);
disp (‘************Perf. results for full[A*inv(A)]****************’);
fprintf (‘total exec.time =......%6.6f\n’,totaltimeB);
fprintf (‘totaL cpu.time =......%6.6f\n’,totalcpuB);
disp (‘***’)

See Figure 9.29.

FIGURE 9.29
Spy diagrams of the 100 × 100 sparse matrix A, over the density range 0.02 to 0.2.

100 × 100 Sparse matrix A with density range from 0.02 to 0.2

0

50

100
0 50 100

0

50

100
0 50 100

0

50

100
0 50 100

0

50

100
0 50 100

0 50 100

0

50

100

0

50

100
0 50 100

0

50

100
0 50 100

0

50

100
0 50 100

0

50

100
0 50 100

0 50 100

0

50

100

dens = 0.02

dens = 0.12

dens = 0.1

dens = 0.2

nz = 1732 nz = 1901

CRC_47744_Ch009.indd 665CRC_47744_Ch009.indd 665 6/27/2008 5:22:37 PM6/27/2008 5:22:37 PM

666 Practical MATLAB® Basics for Engineers

The script fi le sparse_full is executed and the results are as follows:

>> sparse _ full

A********** Performance Results ************************************
********* Sparse vs full matrix ***********************************
************[A*inv(A)]***
dens cpu.time _ sp est.time _ sp cpu.time _ full est.time _ full
0.020 0.01000 0.01000 0.00000000 0.00000000
0.040 0.01000 0.01000 0.01000000 0.01000000
0.060 0.02000 0.02000 0.01000000 0.01000000
0.080 0.02000 0.02100 0.01000000 0.01000000
0.100 0.02000 0.02000 0.01000000 0.01000000
0.120 0.02000 0.02000 0.00000000 0.00000000
0.140 0.02000 0.02000 0.01000000 0.01000000
0.160 0.02000 0.02000 0.00000000 0.00000000
0.180 0.02000 0.02000 0.01000000 0.01000000
0.200 0.02000 0.02000 0.01000000 0.01000000
**
******* Perf. results for sparse[A*inv(A)] ************************
total exec. time =....... 0.181000
total cpu. time =...... 0.180000
**
************ Perf. results for full[A*inv(A)] *********************
total exec.time =......0.070000
totaL cpu.time =......0.070000

Observe the unexpected results. The operations using the sparse matrix A consume more
time than the equivalent operations using the full matrix A (Figures 9.30 and 9.31).

FIGURE 9.30
Evaluations of sparse and full matrix operations of Example 9.14.

0.2

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0
0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22

density of matrix A

tim
e

el
ap

se
d

in
 s

ec

[time elapsed in sec.] versus [density of A]

sparse

full

CRC_47744_Ch009.indd 666CRC_47744_Ch009.indd 666 6/27/2008 5:22:37 PM6/27/2008 5:22:37 PM

Files, Statistics, and Performance Analysis 667

FIGURE 9.31
Computational time of sparse and full matrix operations of Example 9.14.

0.2

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0
0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22

density of matrix A

cp
u

tim
e

in
 s

ec
. sparse

full

[cpu time of (A*inv(A))] versus [density of A]

Example 9.15

Create the script fi le timing_oper that returns the average required time (computed by
executing 10,000 times the same operation) to perform the following simple MATLAB
operations in a tablelike format and corresponding plot for

 1. Addition
 2. Multiplication
 3. Division
 4. Squaring
 5. Square root
 6. Exponentiation

MATLAB Solution
% Script file= timing_oper
n = 1;
disp(‘̂ ^^^ ’̂)
disp(‘**********Performance Timing Results ************’)
disp(‘ ^^^ ’̂);
% addition
tic
for I=1:10000;
 add(I)=I+1;
end
Average_add = toc/10000;
A(n) = Average _ add;
N = n+1;
% product

CRC_47744_Ch009.indd 667CRC_47744_Ch009.indd 667 6/27/2008 5:22:38 PM6/27/2008 5:22:38 PM

668 Practical MATLAB® Basics for Engineers

tic
for J=1:10000;
 pro(J)=J*2;
end

Average_pro = toc/10000;
A(n) =Average _ pro;
n = n+1;
% division
tic
for K=1:10000;
 div(K)=K/2;
end

Average _ div=toc/10000;
A(n) =Average _ div;
n =n+1;
% squaring
tic
for L=1:10000;
 sqr(L)=L̂ 2;
end

Average _ sqr = toc/10000;
A(n) = Average _ sqr;
n = n+1;
% square root
tic
for M =1:10000;
 srt(M) = sqrt(M);
end

Average _ srt = toc/10000;
A(n) =Average _ srt;
n = n+1;
% exponentiation
tic
for N =1:10000;
 ext(J) =exp(N);
end

Average _ ext = toc/10000;
A(n) =Average _ ext;
X =1:6;
stem(x,A)
title(‘Average time per operation’)
xlabel(‘operations’)
ylabel(‘ time in seconds’)
axis([0 7 0 0.00009]);
disp(‘**’);
fprintf(‘The ave. time of a simple addition in sec. is =......
 %10.9f\n’,Average _ add);
fprintf(‘The ave. time of a simple multiplication in sec. is=......
 %10.9f\n’,Average _ pro);
fprintf(‘The ave. time of a simple division in sec. =......
 %10.9f\n’,Average _ div);

CRC_47744_Ch009.indd 668CRC_47744_Ch009.indd 668 6/27/2008 5:22:38 PM6/27/2008 5:22:38 PM

Files, Statistics, and Performance Analysis 669

fprintf(‘The ave. time of squaring in sec. =......
 %10.9f\n’,Average _ sqr);
fprintf(‘The ave. time of a square root in sec. =......
 %10.9f\n’,Average _ srt);
fprintf(‘The ave. time of an exponentiation in sec. =......%
 %10.9f\n’,Average _ ext);
disp(‘***’);

The script file timing _ oper is executed and the results are as
follows:

>> timing _ oper

^^^
**********Performance Timing Results ************

^^^
**
The ave. time of a simple addition in sec. is =......0.000055100
The ave. time of a simple multiplication in sec. is =......
 0.000063100
The ave. time of a simple division in sec. =......0.000061100
The ave. time of squaring in sec. =......0.000055100
The ave. time of a square root in sec. =......0.000071100
The ave. time of an exponentiation in sec. =......0.000004000
**

See Figure 9.32.

FIGURE 9.32
Computational time of basic operations of Example 9.15.

average time per operation

addition

product
quotient

squaring

square root

exponentiation

9

8

7

6

5

4

3

2

1

0
76543210

tim
e

in
 s

ec
on

ds

operations

× 10−5

CRC_47744_Ch009.indd 669CRC_47744_Ch009.indd 669 6/27/2008 5:22:38 PM6/27/2008 5:22:38 PM

670 Practical MATLAB® Basics for Engineers

9.5 Further Analysis

Q.9.1 Load and run the script fi le redrose of Example 9.1.
Q.9.2 Transform the script fi le redrose to a function fi le blackrose(n) that returns a black

rose of n petals, where n is an even integer (see Example 5.13).
Q.9.3 Transform the function fi le blackrose.m of Q.9.2 into a fi le that returns a rose of any

color with any number of petals (see Examples 5.1 and 5.12).
Q.9.4 Load and run the script fi le sinc33.m of Example 9.2.
Q.9.5 Transform the script fi le sinc33.m to the function fi le sinc33f.m where the magnitude

and frequency of the sinc function constitute the input variables.
Q.9.6 Modify the function fi le sinc33f.m to return the area inside the times.
Q.9.7 Load and run the script fi le quadratic.m, of Example 9.3, for the equation y(x) = 2x2 +

7x + 6. Verify that the roots are –2 and –1.5.
Q.9.8 Modify Example 9.3 so that the roots x1 and x2 as well as the messages indicated in

the following table are displayed when the conditions apply.

See Table 9.2.

TABLE 9.2

Characteristics of the Roots of a 2d Order Equation

Condition Message

b2 > 4 ⋅ a ⋅ c Real and distinct roots

b2 = 4 ⋅ a ⋅ c Repeated real roots

b2 < 4 ⋅ a ⋅ c Complex roots

Q.9.9 Test the script fi le of Q.9.8 with examples that satisfy the following conditions:

 a = 0, b ≠ 0, c ≠ 0

 a = 0, b = 0, c ≠ 0

 a ≠ 0, b = 0, c ≠ 0

 a ≠ 0, b = 0, c = 0

 and print the roots x1 and x2 displaying the appropriate message.
Q.9.10 Repeat Q.9.7, Q.9.8, and Q.9.9 for the function fi le quadraticf.m of Example 9.3.
Q.9.11 Load and run the function fi le dst.m of Example 9.4 for the Cartesian points given

by P1(2, –1) and P2(3, 2).

Q.9.12 Defi ne and describe the purpose of each line of the function dst.m as comments (%).
Q.9.13 Modify the function fi le dst.m to output the distance and slope defi ned by the line

that passes through points P1 and P2.
Q.9.14 Load and run the modifi ed fi le of Q.9.13.
Q.9.15 Evaluate by hand Q.9.14 and compare with the results obtained.
Q.9.16 The profi le report indicates the timing used for each line of the fi le tested. Indicate

and discuss which lines of dst consume 75% of the total time.

CRC_47744_Ch009.indd 670CRC_47744_Ch009.indd 670 6/27/2008 5:22:38 PM6/27/2008 5:22:38 PM

Files, Statistics, and Performance Analysis 671

Q.9.17 Load and run the script fi le calc_area.m of Example 9.5 for the following cases:
a. f1(x) = 8x3 + 2x2 – 6x – 35, over the range –2 ≤ x ≤ 5

b. f2(x) = –3x3 + 2x2 – x + 4, over the range –2.5 ≤ x ≤ 3

c. f3(x) = 10x3 + 3x2 – 5x + 28, over the range –4 ≤ x ≤ 5

Q.9.18 Modify Example 9.5 into the equivalent function fi le calc_areaf.m.
Q.9.19 Evaluate, compare, and discuss the timing performance of the fi les calc_areaf.m and

calc_area.m.

Q.9.20 Load and run the function fi le prodz1z2.m of Example 9.6 for the following case:

 z1 = 3 – 8i and z2 = –5 + 7i

Q.9.21 Modify the function fi le prodz1z2 to output the product of z1 and z2 in rectangular
form.

Q.9.22 Load and run the script fi le growth.m of Example 9.7, part a.
Q.9.23 Modify the script fi le growth to include two additional output columns: Fat 12% and

Fat 14%.
Q.9.24 Load and run the script fi le growthquot.m of Example 9.7, part b.
Q.9.25 Compare the growth of an initial capital of $10,000 at 10% compounded annually

(Example 9.7) versus the same initial capital compounded quarterly.
Q.9.26 Modify Example 9.7 to include an additional plot that displays the extra benefi ts of

the interest when compounded quarterly instead of annually versus years for the
cases of 6, 8, and 10%.

Q.9.27 Load and run the script fi le effective_int.m of Example 9.8.
Q.9.28 Identify the variables that defi ne the effective interest compounded annually, semi-

annually, quarterly, monthly, weekly, daily, and continuously and defi ne these vari-
ables in the form of equations.

Q.9.29 Modify Example 9.8 to display in a tablelike format the growth of $10,000 by using
the different effective interest rates per year during a time period of 10 years.

Q.9.30 Load and run the function fi le growthf1.m of Example 9.9 for the following cases:
a. P = 25,000, I1 = 5%, I2 = 10%, I3 = 15%, and n = 15 years

b. P = 50,000, I1 = 6%, I2 = 12%, I3 = 18%, and n = 18 years

Q.9.31 Load and run the function fi le solv.m of Example 9.10 for the following cases:
a. u = –2

b. u = 6

c. –2 < u < 6 in linear increments of 0.5
Q.9.32 Load and run each of the script fi les of Example 9.11 (vec_loop, forend_loop, and

 whileend_loop) and compare the execution time in each case. Discuss the results.
Which program is the most effi cient? Which program is the least effi cient?

Q.9.33 Load and run the function fi le statis_perf.m of Example 9.12 for the data array
defi ned as follows:

 n = 1:33

x n

n
n

() =
5 cos(3/2)

0.01
�

CRC_47744_Ch009.indd 671CRC_47744_Ch009.indd 671 6/27/2008 5:22:38 PM6/27/2008 5:22:38 PM

672 Practical MATLAB® Basics for Engineers

Q.9.34 Load and run the function fi le graph_perf.m of Example 9.13 for the data defi ned in
Q.9.33.

Q.9.35 Load and run the script fi le sparse_full of Example 9.14.
Q.9.36 Run the fi le sparse_full for the case AA = A^3 + A^2 + A twice for A sparse and

A full.
Q.9.37 Evaluate and estimate the effi ciencies of using the sparse versus the full version.
Q.9.38 Compare the execution time for the sparse and full version.
Q.9.39 Compare the effi ciencies for the operation A*inv(A) for the two cases, sparse

and full.
Q.9.40 Why are the effi ciencies so different? Discuss.
Q.9.41 Load and run the script fi le timing_oper of Example 9.15.
Q.9.42 Explore the execution time of An, for n = 3, 4, 5, 6 where A is the magic matrix,

returning the results in the form of the plot n versus execution time.
Q.9.43 Obtain the equivalent of Figure 9.32 for the case of matrices.

9.6 Application Problems

P.9.1 Create a script fi le that returns the square matrices X = magic(3) and Y = hilb(3) and
evaluate the following matrices:

 A = X + Y

 B = X – Y

 C = X * Y

 D = X ⋅ * Y

 E = AB

 F = A3

 Estimate also the execution time for each operation.
P.9.2 Create a script fi le that computes and displays a conversion table between tempera-

ture scales of Celsius, Fahrenheit, and Kelvin over the range 0–100°C with liner
increments of 10°C (use the conversion shown in Table 2.5).

P.9.3 Create a script fi le that computes and displays a conversion table between miles,
meters, and feet over the range of 0–1000 m (use the conversions shown in P.2.29) in
steps of 100 m.

P.9.4 Create a script fi le that returns a conversion table between gallon, liters, and cubic
feet over the range of 0–100 L, in steps (increments) of 5 L.

P.9.5 Create a script fi le that traces the amount accumulated during 5 years, of an initial
investment of $5000 at an interest of 6.5% annually, compounded quarterly.

P.9.6 Create a script fi le that returns a conversion table between the following
currencies:

CRC_47744_Ch009.indd 672CRC_47744_Ch009.indd 672 6/27/2008 5:22:38 PM6/27/2008 5:22:38 PM

Files, Statistics, and Performance Analysis 673

 U.S. dollars, euros, Denmark kronens, British pounds, Jordan dinars, and Ven-
ezuelan bolivars over a range of $0–$100 (use the conversion shown in Table 2.6), in
increments of $5.

P.9.7 Create a script fi le that returns the plots of the functions y1 versus x and y2 versus x
on the same graph, where

 y1 = x cos(x)

 y2 = 1/3 * x2sin(x)

 over the range –π ≤ x ≤ + π.
P.9.8 Given an input vector x, create a script and its equivalent function fi le that returns

the following:
a. Sum of all the elements of x
b. Product of all the elements of x
c. Sort the elements of x in ascending order
d. Sort the elements of x in descending order

P.9.9 Create a function fi le where the inputs <x1, y1>, <x2, y2>, and <x3, y3> represent the
vertices of a triangle in Cartesian coordinates and return the plot of the triangle as
well as its area and perimeter.

P.9.10 Create a function fi le that draws a circle of radius r centered at <x0, y0> in the rect-
angular coordinate system.

P.9.11 Create a function fi le that, given the coeffi cients of a set of three linear equations,
returns its solution in terms of the three unknown x, y, and z.

P.9.12 Given a square matrix A, create a function fi le that returns the following:
The value 1 if A is square and 0 if it is not
The cond(A)

The det(A)

The inv(A)

The eigenvalues and eigenvectors of A
P.9.13 Draw a clear fl owchart of the function fi le that returns a rose inside a circle with

radius r and n petals, where n ≤ 18.

P.9.14 Create the script fi le matrix_1_n that returns the matrix A defi ned as

A

n

n

n

n

n

n

n n

�

1 2 3 4
2 3 4 1
3 4 5 1 2
4

1 2 3 1

. .
. .
.

.
.
.

. . �





























 for any given integer n ≤ 10.

•
•
•
•
•

CRC_47744_Ch009.indd 673CRC_47744_Ch009.indd 673 6/27/2008 5:22:38 PM6/27/2008 5:22:38 PM

674 Practical MATLAB® Basics for Engineers

P.9.15 Convert the script fi le of P.9.14 into a function fi le with n as input, for any integer
n ≤ 10.

P.9.16 Create a function fi le that converts the time t, given as a vector t = [hh mm ss],
into hours.

P.9.17 Create a function fi le with input f(t) that returns the function f(–t), over a given
range t1 ≤ t ≤ t2.

P.9.18 Create a function fi le with input f(t) that returns the following functions:
f(t – t0)
 −f(t)
f(t + t0)
 −f(–t + t0)

 over a given range t1 ≤ t ≤ t2.
P.9.19. Create a function fi le with input y = f(x) that returns

a. dy/dx

b. d2y/dx2

c. ∫ydx

d. ∫∫ydxdx

P.9.20 Repeat P.9.19 that returns the function plots.
P.9.21 For the script fi le of P.9.1, estimate the execution and cpu time for each operation.
P.9.22 Let x = rand(1, 1000) * 5. Repeat P.9.8 and estimate in each case the number of opera-

tions as well as the total execution time.
P.9.23 For the vector x defi ned in P.9.22, create a program that returns the following statis-

tical data:
a. Average (ave)
b. Standard deviation (dev)
c. Variance (var)
d. GM (geomean)
e. RMS (rms)
f. HM (harmean)

P.9.24 Estimate the following statistical data for P.9.23:
a. Number of operations
b. Estimated time
c. Cpu time
d. Elapsed time

P.9.25 Using the data of P.9.22, create a program that returns an 8-bins histogram and its
corresponding pie graph.

P.9.26 Evaluate the performance of the function fi le of P.9.9 by executing the profi le report
and profi le plot.

P.9.27 Create a function fi le that returns the effective interest rate compounded annually,
monthly, and weekly, given an initial investment P, interest I, and number of years n.

P.9.28 Repeat P.9.27 for the case of effective interest rate compounded quarterly, weekly,
and daily.

•

•

•

•

CRC_47744_Ch009.indd 674CRC_47744_Ch009.indd 674 6/27/2008 5:22:38 PM6/27/2008 5:22:38 PM

Files, Statistics, and Performance Analysis 675

P.9.29 Test the function fi le of P.9.13 for r = 3 and n = 9, and estimate the cpu time.
P.9.30 Run P.9.29 twice and estimate and discuss the improved effi ciency.
P.9.31 Create the sparse matrix A = eye(3) and full matrix B = eye(3), and perform the

following operations:
a. C = A2 + B2

b. D = B2 * A2

 In each case, estimate the execution time and the resulting matrix.
P.9.32 Repeat P.9.31 for the following cases:

a. E = A2 + A2

b. F = B2 * B2

P.9.33 Compare and discuss the execution times obtained in P.9.31 and P.9.32.

CRC_47744_Ch009.indd 675CRC_47744_Ch009.indd 675 6/27/2008 5:22:38 PM6/27/2008 5:22:38 PM

CRC_47744_Ch009.indd 676CRC_47744_Ch009.indd 676 6/27/2008 5:22:39 PM6/27/2008 5:22:39 PM

677

Bibliography

Adamson, T., Structured Basic, 2nd Edition, Merrill Publishing Co., New York, 1993.
Ana, B., The state of the research isn’t all that grand, The New York Times, September 3, 2006.
Attia, J.O., Electronics and Circuits, Analysis Using Matlab, CRC Press, Boca Raton FL, 1999.
Austin, M. and Chancogne, D., Engineering Programming C, Matlab, Java, Wiley, New York, 1999.
Ayres, A., Theory and Problems of Differential Equations, Schaum’s Outlines Series, McGraw-Hill,

New York, 1952.
Balador, A., Algebra, Deama Octava Re-impression, Publications Cultural, Mexico, 2000.
Biran, A. and Breiner, M., Matlab for Engineers, Cambridge, Great Britain, 1995.
Bogard, T.F., Beasley, J.S., and Rico, G., Electronic Devices and Circuits, 5th Edition, Prentice-Hall,

New York, 1997.
Borse, G.J., Numerical Methods with Matlab, P.W.S. Publishing Co., Boston, 1997.
Brooks, D., The populist myths on income inequality, The New York Times, September 7, 2006.
Buck, J., Daniel, M., and Singer, A., Computer Explorations in Signals and Systems Using Matlab, 2nd

Edition, Prentice-Hall, Upper Saddle River, NJ, 2002.
Caputo, D.A., The world’s best education; remade in America, The New York Times, A29, December 6,

2006.
Carlson, A.B., Circuits, Brooks/Cole, Pacifi c Grove, CA, 2000.
Cartinhour, J., Digital Signal Processing, Prentice-Hall, New York, 2000.
Chapman, S., Matlab for Engineers, Brooks/Cole, Pacifi c Grove, CA, 2000.
Clawson, C.C., Mathematical Mysteries, Perseus Books, Cambridge, MA, 1996.
Connor, F.R., Circuits, Calabria, Barcelona, Spain, 1976.
Cyganski, D., Orr, J.A., and Vaz, R.F., Information Technology Inside and Outside, Prentice-Hall,

New York, 2001.
Deziel, P.J., Applied Digital Signal Processing, Prentice-Hall, New York, 2001.
Dwyer, D. and Gruenwald, M., Precalculus, Thomson-Brookes/Cole, Pacifi c Grove, CA, 2004.
Edminister, J., Theory and Problems of Electric Circuits, Schaum’s Outlines Series, McGraw-Hill,

New York, 1965.
Etter, D.M., Introduction to Matlab for Engineers and Scientist, Prentice-Hall, Upper Saddle River,

NJ, 1996.
Etter, D.M. and Kuncicky, D.C., Introduction to Matlab, Prentice-Hall, New York, 1999.
Exxon Mobil, Multiplier effects, The New York Times, A33, December 19, 2006.
Friedman, T.L., Learning to keep learning, The New York Times, A33, December 13, 2006.
Gabel, R. and Roberts, R., Signals and Linear Systems, Wiley, New York, 1973.
Gawell, K., report available at http:/www.geo-energy.org/publications/reports.asp. 2007.
Grover, D. and Deller, J.R., Digital Signal Processing and the Microcontroller, Prentice-Hall, New York,

1999.
Grunwald, M., The Clean Energy Scan, Time Magazine, 2008.
Gustafsson, F. and Bergman, N., Matlab for Engineers Explained, The Cromwell Press, Springer- Verlag,

London, U.K., 2004.
Hanselman, D. and Littlefi eld, D., The Student Edition of Matlab, Version 5, User’s Guide, Prentice-

Hall, Upper Saddle River, NJ, 1997.
Hanselman, D. and Littlefi eld, D., Mastering Matlab 7, Prentice-Hall, Upper Saddle River, NJ, 2005.
Harman, T.L., Dabney, J., and Richer, N., Advanced Engineering Mathematics Using Matlab, Brooks/

Cole, Pacifi c Grove, CA, 2000.
Hayt, W. and Kemmerly, J.E., Engineering Circuit Analysis, McGraw-Hill, New York, 1962.
Hill, D. and David, E.Z., Linear Algebra Labs with Matlab, Second Edition, Prentice-Hall, Upper Saddle

River, NJ, 1996.
Hodge, N., Solar energy stock, Wealth Daily, Anger Publishing LLC, 2007.

CRC_47744_Biblio.indd 677CRC_47744_Biblio.indd 677 6/27/2008 6:10:52 PM6/27/2008 6:10:52 PM

678 Bibliography

Hsu, H.P., Analysis De Fourier, Fondo Education Interamericano, S.A., Bogata, Colombia, 1973.
Ingle, V. and Proakis, J., Digital Signal Processing, Brooks/Cole, Pacifi c Grove, CA, 2000a.
Ingle, V. and Proakis, J., Digital Signal Processing Using Matlab, Brooks/Cole, Pacifi c Grove, CA, 2000b.
Jack, K., Engineering Circuit Analysis, McGraw-Hill, New York, 1962.
Jairam, A., Companion in Alternating Current Technology, Prentice-Hall, Upper Saddle River, NJ, 1999.
Jairam, A., Companion in Direct Current Technology, Prentice-Hall, Upper Saddle River, NJ, 2000.
Jensen, G., Using Matlab in Calculus, Prentice-Hall, Upper Saddle River, NJ, 2000.
Joseph, J.D. III, Allen, R.S., and Ivan, J.W., Feedback and Control Systems, Schaum Publishing Co.,

New York, 1967.
Judith, M. and Muschle, G.R., The Math Teacher’s Book of Lists, Prentice-Hall, Upper Saddle River,

NJ, 1995.
Kamen, E.W. and Heck, B.S., Fundamentals and Systems Using the Web and Matlab, 2nd Edition, Prentice-

Hall, Upper Saddle River, NJ, 2000.
Kay, D.A., Trigonometry, Cliffs Quick Review, First Edition, Cliffs Notes, Lincoln, NE, 1994.
Keedy, M., Bittinger, M.L., and Rudolph, W.B., Essential Mathematics for Long Island University, Brook-

lyn Campus, Pearson-Addison-Wesley, Custom Publishing, Boston, 1992.
Keedy, M., Griswold, A., Schacht, J., and Mamary, A., Algebra and Trigonometry, Holt, Rinehart and

Winston Inc., New York, 1967.
Krauss, C., Move over, Oil. There’s Money in Texas Wind, The New York Times (pp. A1, A15), February

23, 2008.
Kurtz, M., Engineering Economics for Professional Engineer’s Examinations, Third Edition, McGraw-Hill,

New York, 1985.
Lathi, B.P., Modern Digital and Analog Communication Systems, 3rd Edition, Oxford University Press,

New York, 1998.
Leon, S., Eugene, H., and Richard, F., ATLAST, Computer Exercises for Linear Algebra, Prentice-Hall,

Upper Saddle River, NJ, 1996.
Linderburg, M., Engineer in Training Review, 6th Edition, Belmont, CA, 1982.
Lindfi eld, G. and Penny, J., Numerical Methods Using Matlab, Prentice-Hall, Upper Saddle River,

NJ, 2000.
Lipschutz, S., Theory and Problems of Linear Algebra, Schaum’s Outlines Series, McGraw-Hill,

New York, 1968.
Lutovac, M.D., Tosic, D.V., and Evans, B.L., Filter Design for Signal Processing (Using Matlab and Math-

ematics), Prentice-Hall, Upper Saddle River, NJ, 2001.
Lynch, W.A. and Truxal, J.G., Signals and Systems in Electrical Engineering, McGraw-Hill, The Maple

Press Company, York, PA, 1962.
Magrad, E.B., Azarm, S., Balachandran, B., Duncan, J.H., Herold, K.E., Walsh, G., An Engineer’s Guide

to Matlab, Prentice-Hall, Upper Saddle River, NJ, 2000.
Maloney, T.J., Electric Circuits: Principles and Adaption, Prentice-Hall, Upper Saddle River, NJ, 1984.
Markoff, J., Smaller than a pushpin, more power than a PC, The New York Times, C3, February 7, 2005.
Markoff, J., A chip that can move data at the speed of laser light, The New York Times, C1, Septem-

ber 18, 2006.
Markoff, J., Intel prototype may herald a new age of processing, The New York Times, C9, February 12,

2007.
Matt, R., Start up fever shift to energy in Silicon Valley, The New York Times, A1/C4, March 14, 2007.
McClellan, J.H., Schafer, R.W., and Yoder, M.A., DSP First: A Multimedia Approach, Prentice-Hall,

Upper Saddle River, NJ, 1998.
McMenamin, S.M. and John, F.P., Essentials Systems Analysis, Yourdon Press Computing Series,

 Prentice-Hall, Englewood Cliffs, NJ, 1984.
Meador, D., Analog Signal Processing with Laplace Transforms and Active Filter Design, Belmont, CA,

2002.
Miller, M.L., Introduction to Digital and Data Communications, West Publishing Company, St. Paul,

MN, 1992.
Minister, J.A., Electric Circuits, Schaum Publishing Co., New York, 1965.

CRC_47744_Biblio.indd 678CRC_47744_Biblio.indd 678 6/27/2008 6:10:53 PM6/27/2008 6:10:53 PM

Bibliography 679

Miroslav, D., Tosic, D., and Evan, B., Filtering Design for Signal Processing, Prentice-Hall, Upper Saddle
River, NJ, 2001.

Mitra, S.K., Digital Signal Processing Laboratory Using Matlab, McGraw-Hill, New York, 1999.
Mitra, S.K., Digital Signal Processing, McGraw-Hill, New York, 2001.
Nashelsky, L. and Boylestad, R.L., Basic Applied to Circuit Analysis, Merrill Publishing Co., Columbus,

OH, 1984.
Navarro, H., Instrumentacion Electronica Moderna, Univsidad Central de Venezuela, 1995.
New York City Board of Education, Sequential Mathematics, 1989 (Revision).
Newman, J., The World of Mathematics, Volumes 1, 2, 3 and 4, Simon and Schuster, New York, 1956

(commentaries).
Novelli, A., Lecciones De Analisis I, Impresiones Avellaneda, Buenos Aires, Argentina, 1998.
Novelli, A., Algebra Lineal Y Geometria, 2nd Edition, Impresiones Avellaneda, Buenos Aires,

Argentina, 2004a.
Novelli, A., Lecciones De Analisis II, Impresiones Avellaneda, Buenos Aires, Argentina, 2004b.
O’Brien, M.J. and Larry, S., Profi t from Experience, Bard & Stephen, Austin, TX, 1995.
Oppenheim, A.V., Schafer, R.W., and Buck, J.R., Discrete-Time Signal Processing, 2nd Edition, Prentice-

Hall, Upper Saddle River, NJ, 1999.
Oppenheim, A., Willsky, A. and Young, I., Signals and Systems, Prentice-Hall, Upper Saddle River,

NJ, 1983.
Palm, W.J., III, Introduction to Matlab for Engineers, McGraw-Hill, Natick, MA, 1998.
Parson, J.J., and Oja, D., Computer Concepts, Thomson Publishing Company, 1996.
Patrick, D.R. and Fardo, S.W., Electricity and Electronics: A Survey, 4th Edition, Prentice-Hall, Upper

Saddle River, NJ, 1999.
Petr, B., A History of TT, St. Martin’s Press (Golem), New York, 1971.
Petruzella, F., Essentials of Electronics, 2nd Edition, McGraw-Hill, New York, 2001.
Polking, J. and Arnold, D., Ordinary Differential Equations Using Matlab, 3rd Edition, Prentice-Hall/

Pearson, Upper Saddle River, NJ, 2004.
Pratap, R., Getting Started with Matlab, Saunders College Publishing, Orlando, FL, 1996.
Proakis, J., and Salekis, M., Contemporary Communication Systems Using Matlab, PWS Publishing Co.,

Boston, 1998.
Randall, S., It’s not who you know. It’s where you are, The New York Times, B3, December 22, 2006.
Recktenwald, G., Numerical Methods with Matlab, Prentice-Hall, Upper Saddle River, NJ, 2000.
Rich, B., Elementary Algebra, Schaum’s Outline Series, McGraw-Hill, New York, 1960.
Rich, B., Modern Elementary Algebra, Schaum’s Outline Series, McGraw-Hill, New York, 1973.
Robert, J.P., Introduction to Engineering Technology, Third Edition, Prentice-Hall, Englewood Cliffs,

NJ, 1996.
Robinson, D., Fundamentals of Structured Program Design, Prentice-Hall, Upper Saddle River, NJ,

2000.
Russel, M.M., and Mark, J.T.S., Digital Filtering: A Computer Laboratory Textbook, John Wiley, New York,

1994.
Ruston, H. and Bordogna, J., Electric Networks: Functions, Filters Analysis, McGraw-Hill, New York, 1966.
Sarachik, P., Principles of Linear Systems, Cambridge University Press, New York, 1997.
Schilling, R. and Harris, S., Applied Numerical Methods for Engineers, Using Matlab and C, Brooks/Cole,

Pacifi c Grove, CA, 2000.
Schuller, C.A., Electronics Principles and Applications, McGraw-Hill, New York, 1989.
Shenoi, K., Digital Signal Processing in Telecommunications, Prentice-Hall, Upper Saddle River, NJ, 1995.
Sherrick, J.D., Concepts in Systems and Signals, Prentice-Hall, Upper Saddle River, NJ, 2001.
Silverman, G. and Tukiew, D.B., Computers and Computer Languages, McGraw-Hill, New York, 1988.
Smith, D.M., Engineering Computation with Matlab, Pearson, Boston, 2008.
Smith, M.J.T. and Mersereau, R.M., Introduction to Digital Signal Processing, Wiley, New York, 1992.
Spasov, P., Programming for Technology Students Using Visual Basic, 2nd Edition, Prentice-Hall, Upper

Saddle River, NJ, 2002.
Spiegel, M.R., Laplace Transforms, Schaum’s Outline Series, McGraw-Hill, New York, 1965.

CRC_47744_Biblio.indd 679CRC_47744_Biblio.indd 679 6/27/2008 6:10:54 PM6/27/2008 6:10:54 PM

680 Bibliography

Sprankle, M., Problem Solving and Programming Concepts, 5th Edition, Prentice-Hall, Upper Saddle
River, NJ, 2001.

Sprankle, M., Problem Solving for Information Processing, Prentice-Hall, Upper Saddle River, NJ, 2002.
Stanley, W.D., Network Analysis with Applications, 4th Edition, Prentice-Hall, Upper Saddle River,

NJ, 2003.
Stanley, W.D., Technical Analysis and Applications With Matlab, Thomson V Delmar Learning,

New York, 2005.
Stearns, S. and David, R., Signal Processing Algorithms in Matlab, Prentice-Hall, Upper Saddle River,

NJ, 1996.
Stein, E.I., Fundamentals of Mathematics, Modern Edition, Allyn and Bacon Inc., Boston, 1964.
Steve, L., Parsing the truths about visas for tech workers, The New York Times, April 15, 2007.
Sticklen, J. and Taner, E.M., An Introduction to Technical Problem Solving with Matlab, Volume 7, Second

Edition, Great Lakes Press Inc., Wildwood, MO, 2006.
Strum, R. and Kirk, D., Contemporary Linear Systems Using Matlab, Brooks/Cole, Pacifi c Grove, CA,

2000.
Tagliabue, J., The eastern bloc of outsourcing, The New York Times, C1/5, April 19, 2007.
Tahan, M., EL Hombre the Calculaba Segunola, Edition Ampliaoa, Buenos Aires, Argentina (Traduudo

por Mario Cappetti), 1938.
The Math Work Inc, The Student Edition of Matlab, Version 4, User’s Guide, Prentice-Hall, Englewood

Cliffs, NJ, 1995.
Theodore, F.B., Basic Programs for Electrical Circuit Analysis, Reston Publishing Company, Inc., Reston,

VA, 1985.
Van de Vegte, J., Fundamentals of Digital Signal Processing, Prentice-Hall, Upper Saddle River, NJ,

2002.
Van Valkenbung, M.E., Network Analysis, Third Edition, Prentice-Hall, Englewood Cliffs, NJ, 1974.
Von Seggern, D., Standard Curves and Surfaces, CRC Press, Boca Raton, FL, 1993.
White, S., Digital Signal Processing, Thomson Learning, Albany, NY, 2000.
Young, P.H., Electronic Communication Techniques, 4th Edition, Prentice-Hall, Upper Saddle River, NJ,

1999.
Zabinski, M.P., Introduction to TRS-80 Level II Basic, Prentice-Hall, Upper Saddle River, NJ, 1980.

CRC_47744_Biblio.indd 680CRC_47744_Biblio.indd 680 6/27/2008 6:10:54 PM6/27/2008 6:10:54 PM

681

Index

A

Abscissa, 356, 375
Absolute value, 357
Access to information, 10
Active window

closing, 281
printing from, 280

Ada, 21
Addition, 44, 77, 360, 366, 416, 420,

432, 435
Administrative skills, 10
Advanced Research Project Agency

Network (Arpanet), 2
Airbus, 11
Airline industry, 7
Alexander, Lamar, 9
Algebra

calculations, 42
equations, 88
operations, 434–435

Algorithmic language (ALGOL), 20
Algorithmic solutions, 32–33
Algorithms, 10
Alpha plots, 427
Alternating current (AC), 14
Alternative energy sources, 12–13
Amplitude, standard trigonometric

functions, 205
Analog systems, 429–430
Ancient history of mathematics

Babylon, 192–193
China, 193
Egypt, 192–194
Greece, 192–194

Angles
acute, 199–200
expression of, 196
trigonometric functions, see Angles,

trigonometric functions
types of, 197

Angles, trigonometric functions
differences, 206
doubling, 206
half, 206
sums, 206
values, 198, 218

Antisymmetric matrix, 82
Appending fi les, 604

Application problems, 59–66, 178–189, 232–236,
343–347, 403–409, 513–522, 591–596,
672–675

Application software, 19
Approximations, 412, 450
A programming language (APL), 21
Archimedean spiral, 270
Archimedes, 193
Ardon, Jean Robert, 353
Area estimation, 599
Argument angle, 357
Arithmetic logic unit (ALU), 18, 36
Arithmetic operations, 523–524, 532–533
Array

in matrix, 67, 69, 76–77
operations, 79
three-dimensional (3-D), 141
two-dimensional (2-D), 141

Artifi cial intelligence, 13
ASCII (American Standard Code Information

Interchange)
code representation, 527–528
fi les, 46–47, 604, 606
matrix creation, string commands,

115–116, 172
Assembler, functions of, 20
Assembly language, 19–20
Augmented matrix, 89
Automation, 8
Automobile industry, 2, 7
Average, 449
axis

performance analysis, 629, 634, 647
plotting, 260–261, 265–267, 269, 273, 276, 281,

285, 291, 294, 302–303, 350–351
polynomials, 473, 482

Azimuth, 292, 294

B

Backlash, 89
Bar graphs, 620
Batch fi les, 600
Beginners All-purpose Symbolic Instruction

Code (BASIC), 16, 20, 523
Berners-Lee, Tim, 2
bernoulli function, 484
Bernoulli, Daniel I, 353

CRC_47744_INDEX.indd 681CRC_47744_INDEX.indd 681 6/18/2008 4:41:48 PM6/18/2008 4:41:48 PM

682 Index

Bernoulli, Jean, 353
Bernoulli, Jean, II, 353
Bernoulli, Nicolaus, III, 353
Bessel function, 484
Best fi t polynomial, 422
Beta, function, 484
Binary fi les, 47, 606
Bingaman, Jeff, 9
Binomial

characteristics of, 126
complex numbers, 356
defi ned, 414

Binomial function, 484
Biotechnology, 13
Blank spaces, 66
Block box system, 474
Bode plots, 426–427
Boeing, 7, 11
Boldface, 257, 260
Bombelli, Raffaele, 353
Bouncker, William, 193
Boundary conditions, 463–464, 466
Brackets, 67, 69, 114, 263, 367, 418, 614
Brain science, 13
Branching commands, 523–524
Briggs, Henry, 194
Burgi, Jobst, 194
Bus, defi ned, 18

C

C/C++ programming languages, 21–22, 598
Calculations, performance sequence, 43
Calculus, 412, 440
Capital-interest problem, 573–576,

599, 642–649
Cartesian coordinate points

implications of, 221–222, 243, 261, 376
2-D, 237
3-D, 376

Cartesian form, complex numbers, 356
Cartesian plane, 199, 246, 290
Cartesian plot, 269
Cartesian rectangular axes system, 349
Case sensitivity, 46, 196, 528
Cauchy form, 473
Cauchy matrix, 129
Cell architecture, 12
Cell arrays, 114
Cell phones, 11
Central processing unit (CPU), 17–20
Chain rule, 445
char, 113–116, 151

Character strings
in matrix creation, 69–70
plotting, 240–241

Chebspec matrix, 129
Chebyshev function, 485
China, see Ancient history of mathematics,

China
competition from, 6
educational attainment in, 8
research and development, 8

Ch’ung-Chih, 193
Circuit analysis, 14
Circular shifting, 132–133
Citigroup, 6
Climate change, 13
Cofunctions, 197
Cognitive science, 13
Colon, 45, 72–73, 99–100, 122–123
Color

coding, plotting, 251–253, 255–256
selection of, 598

Column(s)
in matrix, 67, 69, 71–72, 74–76, 80–81, 83, 87,

91–113
vector, 71–72

Comma, 47, 67, 69, 71
Command(s), see Commands list

case sensitivity, 529
clearing, 43
entering, 43
format, 43, 46, 196
list of, 44
lowercase, 46, 196
multiple line, 73
partial, 541
special characters, 257
text control, 257
window, 24, 26–27

Commands list, see xlabel; ylabel; zlabel
abs, 98, 371, 373, 597
addpath dir, 602
afl ip, 125
all, 535–536
alpha, 373
analyze, 611–613
AND, 530
angle, 373, 641
ans, 44, 149
any, 535–536
approx, 561–562
area, 100–101, 164, 280, 452–453, 581
arrows, 260
astroid, 270–272
autoexec.bat, 600

CRC_47744_INDEX.indd 682CRC_47744_INDEX.indd 682 6/18/2008 4:41:49 PM6/18/2008 4:41:49 PM

Index 683

backspace, 242
bar, 272–273, 287–288
base2dec, 116–117
bath, 287
beep, 44, 56
beta, 268, 280, 427
bin2dec, 117
bitmax, 44, 55
bold, 303
box, 259, 303
box on/box off, 256
break, 553, 555
calendar, 127, 169
cardioid, 270
carriage return, 242
Casesen on/casesen off, 43, 196
check_age, 543–544
check_value_of_a, 542–543
circshift, 132–133
class, 473
clc, 43
clear, 43
clf, 281
clock, 44, 55, 623
close, 281
collect, 438
color, 256
comp_matr_op, 371–372
compass, 273–274, 373
complex, 356
Compmatop, 368–371
compose, 436
computer, 44, 55
cond, 87–88, 129, 166, 171
conj, 370
conjugate, 365–366
constant radius, 281–282
contour, 275, 292–294, 296, 301
conv, 421
copyfi le, 603
cos, 597
cputime, 44, 55, 599, 623
Ctrl key, with C key, 46
cumprod, 96–97, 164, 216
cumsum, 96, 164, 216
cumtrapz, 101–102, 453
cylinder, 290
Data, 294
date, 44, 55
datenum, 127–128
dec2base, 116–117
dec2bin, 117
dec2hex, 117
default, 253

delaunay, 299
den, 145–146, 216, 427, 624–626, 664
der, 452
deriv, 444
det, 83, 87–88, 109, 129, 147–149, 166–167, 459–460
detach, 278
diag, 98–99, 120–121, 149, 459–461
diary fi le, 604
diaryname, 604
dif, 455–456
difeq, 467, 471
diff, 100, 450–451, 507
differ, 451
diff_plots, 272–274
digit, 457–458
discrete, 379
disp

complex numbers, 351, 365–366
matrices, 150–151, 216–217
performance analysis, 620, 624, 630–632,

634, 638, 641, 643–644, 646, 648, 650,
653–654, 657, 659, 664, 667

plotting, 239–241, 266
polynomials, 486–487, 490–493, 502, 504,

507, 509
relational operations, 542–543, 546,

556–561, 564–568, 571, 574, 577, 580
disp_circle, 269–270
dist, 278, 288
div, 366
dlsim, 481
dot, 77–78, 97
double, 173, 456
dsolve, 413, 471, 473
dydx, 451
echo, 47, 614–615
eig, 108, 459–460
eigval, 108–110
eigvec, 108–110
elapse-time, 599
else, 566–567, 569, 586
elseif, 540, 542–543, 545
ellipsoid, 292
empty, 135
end, 72, 557, 564, 567, 569, 580, 583, 587, 620,

624, 650, 667–668
eps, 44, 55
erf, 484
erfc, 484
error, 553–554, 617
etime, 44, 623
eval, 173
exist, 535, 601, 609, 616, 635
exp, 44, 105, 216, 240

CRC_47744_INDEX.indd 683CRC_47744_INDEX.indd 683 6/18/2008 4:41:50 PM6/18/2008 4:41:50 PM

684 Index

Commands list (contd.)
expand, 439
expm, 105
expression, 59
expy, 439
eye, 133–134, 140–143, 154, 169, 281, 284
ezplot, 263–267, 269, 482, 499, 507, 509
ezpolar, 268
faceted, 292
factor, 214, 438
factorial, 438–439
feather, 273–275, 373–374
feed character, 242
fi gure, 280
fi ll, 279–280, 287–288, 292
fi lled, 253, 301
fi ltfi lt, 430
fi nd, 104–105, 167–168, 535, 537
fi ndstr, 173
fi ndsym, 433, 497
fi nish.m, 598
fi nite, 535
fi x, 156
fl agn, 553
fl at, 292
fl iplr, 104, 156
fl ipud, 104, 149
fl ops, 44, 55, 623–625
fmin, 483
fn, 619, 622–623
foh, 479
for-end, 85, 537, 545–546, 548–549,

552–553, 558
fplot, 262–263
fprint, 556, 650
fprintf, 241–242, 561, 565, 632, 638, 653–654,

657, 664–665, 668–669
freqs, 425
full, 142, 144, 146, 148–149
function, 47, 50–51, 53
gallery, 129
gcd, 195, 213
ginput, 261–262, 265–266
global, 614
grid, 281, 302
grid off, 256, 258–259
grid on

complex numbers, 350–351
performance analysis, 629, 634, 638, 644,

646–647
plotting, 256, 258–259, 266–267, 282, 285
polynomials, 420, 427–428, 469, 490, 493,

499–500, 505
relational operations, 571, 583

gtext, 257–258
help

help funfun, 614
help graph2D/help graph3D, 301
helpwin, 30–31

hex2dec, 117
hilb, 128–129, 169–170
hist, 276
hold on/hold off, 248, 267, 583
horner, 440
ieg, 151
imag, 370
imp_sum_x, 552–553
impz, 424–425
increment, 73
indexes, 141
indexmax, 92
indexmin, 92
inf, 44, 135
inmem, 603, 635
input

example of, 53n
implications of, 44, 617, 619
matrix creation, 69–71

int, 455, 498
integ, 502
interp, 292
inv, 84, 131, 167, 171, 459–460
ischar, 535, 537
isempty, 136–138, 535–536
isequal, 134–135
isfi nite, 535, 537
isieee, 46, 148
Isim, 476
isimag, 535
isinf, 535, 537
isletter, 535
isnan, 535
isnumeric, 535–536
Ispar, 143
isprime(n), 214
isreal, 535
isspace, 535
issparse, 143, 148
keyboard, 617, 619
kron, 141–142
label, 257–259. See also xlabel; ylabel; z-label
legend, 258–260, 271, 279, 303, 577, 581, 644
len, 172
length

implications of, 137, 140, 247, 450, 481
matrix creation, 71, 112
polynomials, 424–425

license, 44, 56

CRC_47744_INDEX.indd 684CRC_47744_INDEX.indd 684 6/18/2008 4:41:50 PM6/18/2008 4:41:50 PM

Index 685

limit, 441–442
line, 248
line color, 268, 273, 476
linefeed, 242
line style, 248, 268, 273, 275, 476
linspace, 74–75, 244–246, 254, 258, 280,

290, 293
load, 47
log, 44, 105–106, 226–229
logm, 106, 136
logspace, 75
lookfor, 26, 29, 609, 616
ls, 602
mag, 641
magic, 123–125, 169, 281
matlabrc.m, 598
max, 91–92, 121–122, 168, 566, 597, 634
maxi, 121
mean, 94–95
median, 95, 163
mesh, 290–292, 294, 301
meshgrid, 140, 275, 290, 293, 299
mfun, 484
min, 91–92, 121–122, 163, 168, 556
mini, 121
mix, 147–149
mkdir, 602
mlock, 623
more, 46
nan, 44
Nbin, 277
[N/D], 214–215
nestpl, 497
new, 165
newstring, 530
nnz, 143–144
noise, 249
norm, 78, 97–98, 164
NOT, 530
now, 127–128, 169, 171
null, 111–112
num, 141, 426–427
numb, 116
numbase, 116
numden, 436
num_ele, 604
numsp, 439
nzmax, 143
ode, 413, 467–470, 506
ones, 133–134, 136–137, 139, 141, 144, 149, 154,

169, 643
options, 252–253, 274–275, 281
OR, 530
ort, 120–121

orthonormal, 85
part, 137–138
pascal, 123, 125, 169
pause, 44, 617, 619
pcode, 622–623
peaks, 294–295, 298–299
performance, 620–622
perm, 557
phase, 641
pi, 44
pie, 277–279, 287–289
plot

complex numbers, 350
performance analysis, 624, 629, 634, 644,

647, 658
plotting, 237–238, 243–244, 246–251,

254–255, 268, 271, 273, 281–285, 287,
298, 302

polynomials, 420, 426–428, 468–469, 473,
494

relational operations, 540, 542, 561, 574,
576, 581, 587

point transpose, 369
polar, 268, 273–275, 302, 373
poles, 424
poly, 107–108, 151, 497–498
polyfi t, 422
polyval, 419
polyvalm, 419
present, 171
pretty, 435, 497, 507
prewarp, 479–480
prime(n), 193, 195, 214
prod, 93, 163, 365–366, 420–422, 438
profi le, 619–620, 635–637, 658
psqr, 497
quad, 452–453
quiver, 275
rand, 110, 134–135, 169, 253, 301
randn, 131–132, 140, 169, 276
random, 131
randperm, 132
rank, 87, 89
rat(n), 214–215
rats, 84
rcond, 87–88
real, 370
realmax, 44, 55
realmin, 44, 55
refresh, 260
rem, 213
repmat, 139
reshape, 102–103
residue, 423–424

CRC_47744_INDEX.indd 685CRC_47744_INDEX.indd 685 6/18/2008 4:41:50 PM6/18/2008 4:41:50 PM

686 Index

Commands list (contd.)
result, 527
return, 553–554, 617
ribbon, 281
rmpath, 602
rms, 449
rotate, 294
roots, 351
rot90, 103
rpa, 457
rref, 87, 90
rrefmovie, 28, 90
scatter, 252–254, 301–302
semilog, 302
shading, 292–294
shg, 281
simple, 437–438
simplify, 437–438
size, 71, 112, 137, 298
sol, 468
solve, 461–462
sort, 93–94, 597
sortrows, 94
spallo, 143
sparse, 142–145, 147–149, 623–624
sphere, 291
spline, 422–423, 494–495
sprandn, 145–148
sprandsym, 145–146
sprintf, 241–242
spy, 143, 145–147, 149–150, 174–175, 624
sqrt, 44, 97, 106, 265, 275, 284, 293, 300, 355
sqrtm, 106
square, 163
stairs, 272–273, 287–288, 574
stand, 164
startup.m, 598
std, 96
stem, 272–273, 286–288, 430, 488,

493, 574, 668
stiff, 467
strcat, 173
strcmp, 528
string

implications of, 116–120, 257, 617
in matrix creation, 69–70, 115, 172
polynomials, 432
relational operations, 530

stringvec, 112, 115
strncmp, 528
subplot

complex numbers, 350
matrices, 145n, 147, 149–150
performance analysis, 624, 646–647, 658

plotting, 253–254, 264, 268, 273–274,
287–288, 291, 293, 303

polynomials, 426–427, 430, 435, 468–469,
477, 488, 494, 499, 505, 507

relational operations, 561, 571, 574–575,
581, 586–587

successive, 73
sum, 366, 459
sumcol, 124
sumdiag, 125
sumdif, 459
sum_prod, 546–547
sumrow, 124
surf, 290–294, 301, 303, 502
surface, 294
svd, 120
switch-end, 537, 553
sym, 150–151, 461–462, 473
symadd, 435
symb, 496–497
symdiv, 435–436
symmatrix, 433
symmul, 435
syms, 431–432, 434, 436–439, 456, 458–459,

472–473, 509
symsub, 435
tab, 242
taylor, 458–459
text, 259–260, 303
tic-toc, 44, 623, 632, 653, 667–668
title

complex numbers, 374
performance analysis, 624, 629, 634,

637–638, 659
plotting, 257–260, 262, 269, 271, 273–276,

278–281, 285–288, 290, 293–294,
297–298, 301, 303

polynomials, 420, 426–427, 430, 468–469,
488, 490, 493–494, 499–500, 505, 507,
509

relational operations, 551, 561, 571–572,
574–577, 583, 586–587

tol, 467
trace, 100, 108–109, 452, 459–461
trapz, 100–102, 453
tri, 121
tril, 119–120
trimesh, 299–300
trisurf, 299–300
triu, 119–120
tustin, 479–480
unique, 138
valu, 171
vander, 129–130

CRC_47744_INDEX.indd 686CRC_47744_INDEX.indd 686 6/18/2008 4:41:50 PM6/18/2008 4:41:50 PM

Index 687

Var, 95
vec, 171
ver, 44, 56
verify, 509
version, 44
view, 292–293, 295
vpa, 457–458
waitforbuttonpress, 617, 619
warning, 617, 619
waterfall, 292
what, 602, 635
whatsnew, 28, 30
which, 635
who

defi ned, 45
matrix creation, 71

whos
defi ned 45
implications of, 498, 609, 635
matrix creation, 71, 148
polynomials, 432

xlabel
complex numbers, 350, 374
performance analysis, 624, 629, 634, 638,

644, 647, 659, 665, 668
plotting, 258–259, 262, 266, 269, 271,

273, 275–276, 280–282, 284–288, 290,
293–294, 297–298, 301, 303

polynomials, 420, 426, 428, 430, 468, 473,
482, 488, 493–494, 499–500, 507

relational operations, 551, 561, 583,
586–587

X-OR, 530
ylabel

complex numbers, 350
performance analysis, 629, 634, 638, 644,

646–647, 659, 665, 668
plotting, 258–259, 262, 266, 269, 271,

273, 275–276, 280–281, 284–288, 290,
293–294, 297–298, 303

polynomials, 420, 426, 428, 430, 473, 482,
493–494, 509

relational operations, 561, 574–576, 581,
586–587

zeros, 133–134, 136, 483–484
zeta, 485
zoh, 479–480
zoom, 260–262, 302
zplane, 571

Comments, clarity in, 52, 597–598, 607, 614–615
Common business oriented language

(COBOL), 20
Comparisons, 524–525, 528, 599
Competition, globalization and, 6

Complementary angles, 197
Complex matrix, 98, 109, 367–368
Complex numbers

addition of, 360, 366
analytical exercises, 400–403
application examples, 377–400, 641–642
application problems, 403–409
characteristics of, 42, 82, 242, 273, 349, 355, 375
commands, 356, 365–376, 391, 393
conjugation, 357–358, 364–365, 369
division of, 360–361, 366
exponentials, 357–358, 366, 368, 373
expression of 355–356, 360
historical perspectives, 353–354
i, 356, 359
j, 356, 359
matrices, 367–368, 370
multiplication, 360, 366
natural logarithm, 363
operations, 352–353
principal value, 362–363
products of, 360
real numbers distinguished from, 349–350
reciprocal of, 361
relations, 364
roots, 350–352, 362–363, 398–399
storage of, 355
subtraction, 360, 366
theory of, 349, 353–354
transposition, 369

Comprehensive school mathematics program
(CSMP), 21

Computer
codes, 2, 600
defi ned, 17
evolution of, 1–2
hardware, 17–19, 22
software, 19, 22
solutions, 36–37

Computing, meaning of, 1
Concavity, 443
Condition number, 87, 169
Conditional statement, 537–538, 540, 542
Conjugates, polynomials, 415
Conjugation, complex numbers, 357–358,

364–365, 369
Constant

implications of, 42–43
matrix, 67
of the square, 124

Consulting applications, 5
Contingent work, 5
Continuous function, 449
Continuous time system, 425

CRC_47744_INDEX.indd 687CRC_47744_INDEX.indd 687 6/18/2008 4:41:51 PM6/18/2008 4:41:51 PM

688 Index

Contract work, 5
Control

systems, 3, 12
theory, 474

Conversions, string commands, 116–117
Coordinate system, see Cartesian, coordinate

system
characteristics of, 237
3-D, 292

Copernicus, 194
Copying fi les, 603
Cosecant functions, 196–210, 446
Cosine functions

complex numbers, 357, 361
plotting, 245–246, 248–249, 255, 258, 260, 269,

271–272, 280, 284
polynomials, 439, 445–447, 449, 454–455, 484
types of, 191–192, 194, 196–202, 204–212, 215,

218, 220–228
Cotangent functions, 196–201, 203,

205–210, 262, 448
Cote, Roger, 194
Cray super computers, 19
Creativity, 10
Cross product, in matrix creation, 78
Cumulative products, 96–97
Cumulative sums, 96
Currents, 449
Curve fi tting, 3
Cycloid, 269

D

Data
analysis, statistical, 599
fi les, 46, 600, 611–612

DEC Alpha, 19
Decimal points, 42, 46, 242
Decision-making conditions

analytical exercises, 589–591
application examples, 555–588
application problems, 591–596
fl owchart, 538–539, 550
multiple conditions, 540
roots, 584–585
statements, 538–554

Default
data, 46
fi lter, 294
folder, 50
value, 74

Degrees, conversion to/from radians, 196
Deleglise, M., 195

Deleting
fi les, 603
variables, 43

Delta, 440
Demographic studies, cell phone

utilization, 11
Demo program, 27
DeMoivre, Abraham, 362n
DeMoivre formula/theorem, 359, 362
Dependent variable, 211, 243, 247, 462–463
Derivatives, polynomials, 442–443, 446–447,

462–463, 471–475, 479
Descartes, Rene, 237, 353
Descarte’s rule of signs, 416
Determinant, in matrix, 83
Diagonal matrix, 81–82, 86, 120
Differential equations (DEs), 412, 425, 462–463
Differentiation, 432, 443, 447, 454, 501
Digital Equipment Corporation (DEC), 19
Digitization, 8
Dirac-delta, 484
Direct current (DC), 14
Directories

components of, 601–602
fi le search, 611

Discrete system, 428–431, 478
Division, 44, 77, 360–361, 366, 417, 432, 435
Domain

complex numbers commands, 375, 391, 393
plotting commands, 243, 245
polynomials, 473
standard trigonometric functions, 205

Dot (.), 76–77, 79, 97, 601
Drawings, 34

E

Economic Policy Institute, 5
Editing fi les, 603, 615
Editor/Debugger, 47
Edit window, 24–25, 47, 607
Educational organizations, 2
Effi cient computer programs, 37
Eigensolutions, matrix creations, 108–109
Eigenvalues, matrix creation, 106–111, 169
Eigenvectors, matrix creation, 106–111, 169
EISPACK, 3
Electrical circuit theory, 349
Electronics workbench, 21
Elevation, 292, 294
Ellipsis, 73
Elliptic parabolic surface, 282
Emerging Energy Research, 13

CRC_47744_INDEX.indd 688CRC_47744_INDEX.indd 688 6/18/2008 4:41:51 PM6/18/2008 4:41:51 PM

Index 689

Employees
benefi ts, trends in, 6–7
success factors, 10–11

Empty, implications of
arrays, 135
matrix, 136–137

Energies, 449
Enhancements, 260–261
Entertainment industry, 2
Epicycloid, 270
ePOCRATeS®, 12
Equal matrices, 81
Erasable programmable read only memory

(E-PROM), 18
Error(s)

detection/correction, 598
functions, 484
messages, 43, 113

Essential knowledge, 9–11
Ethanol plants, 12
Euclid, 194
Euler, Leonard, 194, 353–354
euler function, 484
Euler’s identities, 380–381
European Organization for Nuclear Research

(CERN), 2
European Particle Laboratory, 2
Executable fi les, 600
Exit/exiting fi les, 24, 615
Exponential

factor, plotting, 242
form, complex numbers, 357–358, 368, 373
functions, example of, 54
mathematical relations, 211

Exponentiation, 44, 77
ez functions, 301, 482

F

Factorization, 432
Fan, Wan, 193
Fast Fourier transforms, 484
Fergunson, D. F., 193
Fermat, Pierre, 237
Ferrari, 353
Field theory applications, 79
Figure window

access to, 598
characteristics of, 24, 26
clearing, 43

File(s)
analytic exercises, 670–672
application examples, 630–663

application problems, 672–675
contents of, 600
copying, 603
creation of, 603, 607
data analysis, 611–613
deleting, 603
editing, 603
extensions, 601
formats, 601, 607–608
loading, 601, 604–605
location of, 601–602
menu, 280, 605
mode, 604
moving, 603
names, 601. See also Filenames
opening, 597, 601–602, 604
saving, 603, 605, 608
search for, 607, 611
storage, 601, 603
test, 603, 607, 609–610
types of, 600, 605–606

Filenames
components of, 605–606
edit, 603
function fi les, 614–615
selection factors, 597–598, 607
type, 602

Filter design, 3
fi nal, matrix creation, 73–74
Finck, Thomas, 194
First-order

derivatives, 463, 468, 472, 473–475
differential equations, 413

Floating-point
format, 46, 157
operations, 623
variable, 456

Floppy disks/diskettes, 18. See also Files,
saving and storage

Flowcharts
characteristics of, 34, 37–39, 56–57
performance analysis, 538–539, 540, 544,

554–555
Flow control, 523, 537–538
Flow diagram, 37
Folders, 601
Font, commands for, 257, 260
Format

binary, 47
case sensitivity, 46, 196
of commands, 43, 196
decision-making statements, 540
fl oating-point, 46, 147
in fi le creation, 601, 607–608

CRC_47744_INDEX.indd 689CRC_47744_INDEX.indd 689 6/18/2008 4:41:51 PM6/18/2008 4:41:51 PM

690 Index

Format (contd.)
function fi les, 47, 614
logarithmic functions, 213
matrix creation, 73, 91
modular, 597–598
precision, 46
selection of, 598
variable display, 242

Formula calculator (FOCAL), 20
Forth, 21
Fortran, 16, 20, 22, 523, 598
Fourier operators, 352, 424
Fourier transform, 14, 484. See also Fast Fourier

transform
Fraction approximation, 84
French, John W., Jr., 193
Frequency, standard trigonometric

functions, 205
Fresnel function, 484
Function fi le

analytic exercises, 670–672
application examples, 630–637, 641–642,

647–652, 655–663
application problems, 672–675
characteristics of, 47, 50–51, 53, 599, 614
creation of, 47, 615
editing, 615
format, 614–615, 619
func_quad_sol, 50–51
parsing, 619, 622–623, 630
plotting example, 616, 618
saving, 597, 615
testing, 616–617

G

Gamma function, 485
Gates, Bill, 1
Gauss, Carl Frederick, 194, 353
Gauss, Karl Frederick, 415
Gauss-Jordan

elimination, 86
reduction procedure, 89

Gaussian distribution function, 131, 297
Gaussian fi lter, 294
General Electric, 6
General Motors (GM), 6–7
General purpose simulation system (GPSS), 21
Geothermal energy, 13
Gillette, 11
Globalization, impact of, 6
Global positioning satellite system (GPS), 14
Global warming, 13
Government agencies/organizations, 2, 8, 11

Graph
importance of, 237
multiple plots, 247, 258, 262
plotting commands, 243, 247, 249
trigonometric functions, 202–205

Graph algorithm and software package
(GASP), 21

Graying industry, 1
Greek characters, 257
Greek philosophers, 192
Green’s functions, 412

H

Hardware-based languages, 20
harmonic function, 485
Health care benefi ts trends, 6–7
Health organizations, 2
Heaviside, 484
Helix, 281–282
Help command, 26–30, 467, 484, 609, 616
Hermite function, 485
Hermitian matrix, 86, 109
Heuristic solutions

defi ned, 32
example of, 33
problem-solving techniques, 34–35

Hewlett-Packard (HP), 11–12
H function, 485
High-level language, 19–20
Higher-degree polynomials, 415
Higher-order polynomials, 412, 452
Hilbert matrix, 123, 128, 169, 457
Histograms, 276–277, 599
History window, 24
Home entertainment, digital, 12
Home offi ces, 5
Hong, Chang, 193
House matrix, 129
HP 9000 series, 19
humps, 294, 297–298
Hydrogen power, 12
Hyperbolic

cosine integral, 485
functions, 207–211, 282–283
parabolic surface, 282
sine integral, 485

Hypertext markup language (HTML), 21
Hypocycloid, 271

I

i, 44
Idempotent matrix, 131

CRC_47744_INDEX.indd 690CRC_47744_INDEX.indd 690 6/18/2008 4:41:51 PM6/18/2008 4:41:51 PM

Index 691

Identity matrix, 169
if-end statement, 537–541, 551
Image processing, 3
Imaginary axis, 349, 356
Imaginary numbers, 349
Impedance, 349
Implied loop, 552, 558, 655
Improper integrals, 449
Independent variables

complex numbers, 366
plotting, 243, 247
polynomials, 424, 427, 440, 445, 447–448,

462, 464
trigonometric functions, 211

Index
of matrix elements, 67, 72, 122
plotting commands, 250–251

India
competition from, 6
research and development, 8

Information analysis, 10
Information fl ow, 46
Information processing, 10
Information resources

contact information, 23
online help facility, 22

Information revolution, 2
initial, matrix creation, 73–74, 477
Initial conditions (ICs), 425, 429, 463–468, 471,

473–474, 477
Innovation, 8
Inputs, 34. See Command(s); Commands list
Institute of Electrical and Electronics

Engineers (IEEE) standards, 46, 135,
147

Instruction(s)
accessing, 597
in fl owchart, 38–39
fl ow of, 523
input statement, 69–70
mathematical relations, 212
plotting, 248, 273
sequence of, 52, 602–603
statement, 46, 49–50

Integers, 46
Integrals

complex numbers, 364
hyperbolic, 485
polynomials, 447–449, 452, 454–455, 462

Integration, polynomials, 425, 432, 447–449,
451–452, 465

Intel, 12
International Business Machines (IBM),

11–12, 19–20

Internet, historical perspectives, 2
Inverse

hyperbolic functions, 209–211
in matrix creation, 83–84
standard trigonometric functions,

205–206, 212
Irrational numbers, 42n, 349
IRS series 4D, 19
Italics, 257, 260

J

j, 44
Jacobi function, 485
Japan, educational attainment, 8
Java, 21
Job market trends, 4, 9

K

Kaiser Foundation, 6
Keng-Chih, Tsu, 193
Kronecker tensor product, 141

L

Labor trends, 4–7
LabVIEW, 21
Laguerre function, 485
Lambert’s w function, 485
LAPACK, 623
Laplace, 14
Laplace operators, 352, 424
Laplace transform, 354, 425, 484
Law enforcement applications, 2
Law of cosines, 203
Law of sines, 203
Leading coeffi cient, 414
Leading term, 414
Left division, 76
Legendre, Andrien Marie, 194
Legendre function, 485
Lehmer matrix, 129
Leibniz, Gottfried, 193, 353
Lemniscate, 269
L function, 485
Libraries, 11
Limits, 440–441
Linear

derivatives, 463–464, 472
equations, 246, 599
matrix, 86
plots, 244, 246

CRC_47744_INDEX.indd 691CRC_47744_INDEX.indd 691 6/18/2008 4:41:52 PM6/18/2008 4:41:52 PM

692 Index

LINPACK, 3
Lisp, 21
Little, Jack, 3
Loading fi les, 601, 604–605
Lobatto’s algorithm, 452
Logarithmic functions

application examples, 226–229
characteristics of, 211–213, 270
plotting commands, 247

Logical operations/operators
application examples, 533–535
built-in functions, 534–535
characteristics of, 523, 530–533

long format, 46, 55
Loops

condition statements, 541, 547, 550–551
exit mechanisms, 552, 554
patterns of, 554
safety mechanisms, 552

Lower triangular matrix, 86, 118
LU

decomposition, 86
matrix creation, 118–119

M

Machine language, 19–20
Macintosh applications, 19, 606, 615
MacLaurin series representation, 192, 194, 198,

207
Magic matrix, 123–125
Magnitude, 426, 584
Managerial skills, 10
Manufacturing industry, 5
Maple functions, 412, 484–485
Market trends, 4–7
matdemo, 29
Mat fi les, 605–606
Mathcad, 21
Math coprocessor, 22
Mathematica, 21
Mathematical operations

algebraic symbols, 43
hierarchy of standards, 43–45
list of, 44

Mathematics, historical perspectives
algebra, 415n
calculus, 412
complex number theory, 353–354
coordinate system, 237
numbering system, 192–193
terminology, 353
theories, 192–194

MathSoft, Inc., 21
MATLAB (Matrix Laboratory)

applications, overview of, 4–7, 41, 191
basic elements of, 3
current applications, 3
defi ned, 22–23
development of, 3
evolution of, 3
popularity of, 3–4
utilization of, 3
windows, 23–24

Matrix algebra, demos, 28
Matrix/matrices

analytic exercises, 175–178
application problems, 178–189
application examples, 151–175
benefi ts of, 68
commands, 69–151
creation of, 68–69
defi ned, 67
empty, 70
elements of, 67, 69
extended, 73–74
fi ve-dimensional (5-D), 141
four-dimensional (4-D), 141
full, 142–143, 145–149, 599, 625, 667
ill condition, 87
multiple loop structure, 547
n-square matrix, 67, 81, 83–84, 86
polynomial, 419, 476
rank, 86–87
sequence of elements, 73–76, 80–81, 152–153
size, 22
sparse, 142–149, 599, 623, 625, 663–667
specifi c matrices

1 × 1, 67
2 × 2, 72, 82, 155
2 × 3, 80
2 × 4, 77
3 × 3, 80–81, 112, 169, 284, 457
4 × 4, 99, 102
5 × 5, 169
8 × 2, 103
n × m, 92–93, 95, 102, 131
n × n, 81, 106, 123, 131, 145, 297. See also

n-square matrix
n × r, 80
u × v, 102

structure of, 67, 71–72, 153–154, 547
symbolic, 459–460
types of, overview, 82–83

means, 439–440
Medical records, 12
Medicare, 13

CRC_47744_INDEX.indd 692CRC_47744_INDEX.indd 692 6/18/2008 4:41:52 PM6/18/2008 4:41:52 PM

Index 693

Memory, storage format, 47. See also Storage
Menelaus, 194
MEX fi les, 22, 605–606
M-fi les, 16, 47, 51, 597–598, 602–603, 605–606,

614, 617
Microprocessors, 7, 12
Microsim Pspice, 21
Microsoft (MS) Windows, 19, 47, 600, 606, 615
Military organizations

applications for, 2
research and development, 13

Mobius, August Ferdinand, 195
Mobius functions, 194–195
Modeling, large-scale, 13
Modula–2, 21
Moler, Cleve, 3
Mononomial, 414
Moving fi les, 603
m × n matrix, 149, 250
Multiplication, 44, 77, 81, 86, 360, 366, 416, 432,

435

N

NaN, 135–136
Nanotechnology, 12
Napier, John, 194
Naperian, 213
Nasir ed-din, 194
National Science Foundation, 8, 12
Natural

defi ned, 213
logarithm, 363

Neumann, John von, 2
Neural network design, 3
New fi les, creation of, 47, 603, 607
Newton, Isaac, 353
Newton-Cotes formula, 452
Newton’s formula, 126–127
n-factorial, 207
Nilpotent matrix, 131
Nonlinear equations, 267–268, 483
Nonsingular matrix, 86
Nonsymmetric matrices, 108
Normal distribution, 276
Notation, 46, 72, 80, 196
Null

space, in matrix creation, 111
vector, 74

Number line, 349
Numbers

complex, see Complex numbers
condition, 87, 169

with decimals, 42, 46
expression of, 42
imaginary, 349
irrational, 42n, 349
prime, 193, 195, 214
rational, 42n, 349, 416
real, 42n, 349–350, 356–358

Numerical evaluation, 483
Numerical integration, 451–452
Numerical matrices, 114
Numerical variable, 473

O

Oblique triangle, 203
One-dimensional (1-D) array, 67
Ones matrix, 123
Online jobs, 5
Opening fi les, 47, 601–602, 604
Operating system (OS), 19
Operational relations, 527
Operations, symbols, 76–77. See also Logical

operations; Mathematical operations;
Relational operations

Optimization, 3
Ordered pairs, 246–247, 263, 272–273
Ordinary derivatives, 463–464, 467–468, 472
Ordinary differential equations, see ode
Ordinates, 356
Orthogonal matrix, 84–85, 120, 131
Orthogonal vectors, 78, 96–97
Orthonormal system, 85
Outputs, 34
Outsourcing, 6
Overlay plots, 247–248

P

Parsing, 598, 619, 622–623
Partitioning, 598
Pascal, 21
Pascal triangle, 125–126, 169
Pattern recognition, 10
Pentagon applications, 14
Percentage (%), 45, 614
Performance analysis, 652–655
Period, standard trigonometric functions, 205
Periods (. . .), 73
Peripherals, 19
P function, 485
Pharmaceutical companies, applications for, 11
Phase angle, 357, 375

CRC_47744_INDEX.indd 693CRC_47744_INDEX.indd 693 6/18/2008 4:41:52 PM6/18/2008 4:41:52 PM

694 Index

Phase plot, 426
Phasor representation, 375
Photovoltaic panels, 13
Physical model, construction of, 34
Physics applications, 78–79
Pi (π), 44, 193, 199, 458
Pie representations, 599
Planar triangles, 299
Plotting, see plot

analytic exercises, 339–342
application examples, 304–339
application problems, 343–347
boxes, 259
circle equation, 269–271
color coded, 250–251
commands, 237, 239–240, 243, 245
enhancements, 260
helix, 281–282
histograms, 276–277, 599
intervals, 263–265, 268
overlay, 247–248
three-dimensional (3-D), 140, 281, 285–287,

290, 298
two-dimensional (2-D), 243, 261, 279, 281,

287, 298
Poisson matrix, 129
Polar form, complex numbers, 358–359
Polynomial equation

defi ned, 414
roots of, 414

Polynomials, see specifi c types of
polynomials

algebraic operations, 434–435,
465–466

analytic exercises, 510–513
application examples, 485–510
application problems, 513–522
arithmetic, 457
ascending order, 414
characteristics of, 126, 411, 414
coeffi cients, 418, 420, 424, 428, 443–444
commands, 245, 422, 457–462, 467–470, 478,

482–485
decomposition of, 416
defi ned, 414
degree of, 415, 421
derivatives, 463–468, 471–475, 479
descending order, 414, 417–418, 422, 424, 426,

439, 443, 451
differentiation, 443, 447, 454
discretization option, 479–480
Euler, 484
exponentials, 464–465, 467
factoring, 417–418

frequency/frequencies, 425–429, 473
frequently used, 411, 146
functions, 416, 421–426, 468
graphical, 412, 414
impulse response, 425
integration, 425, 447, 449, 451–452, 454, 465
integrals, 447–449, 452, 454–455, 462
mathematical operations, 416–417, 420
matrix creation, 107, 150
missing coeffi cients, 418, 424
partial fraction expansion, 423, 491
plot of, 419–420, 426–427
root(s) of, 415–416, 418–419
symbolic function, 471
symbolic variables, 412, 431–433,

436–439, 483
transfer function, 428, 474, 478–479
transform, 425
trigonometric functions, 446–447

Prime numbers, 193, 195, 214
Print

commands, 241–242, 561, 556, 565, 632, 638,
650, 653–654, 657, 664–665, 668–669

menu, 280–281
Problem-solving skills, 10
Procter & Gamble, 11
Profi ler, 619–620
Program fi les, 600
Programmation en logique (Prolog), 21
Programmers, functions of, 20
Programming Language One (PL/1), 16, 20
Programming languages, 19–21, 523, 598
Proofs, 35–36
Pseudocodes, 598
Ptolemy, 194
Punctuation

fi le construction, 614
in matrix, 67, 69, 70–73, 89, 99–100, 114–115,

122–123
plotting commands, 239–240, 251–252
types of, 45–47

Pythagorean theorem, 97, 194
Pythagorus, 192, 194

Q

Quadrants
Cartesian coordinate points, 243
trigonometric functions, 199–200

Quadratic equations, 47–50
Quadratic polynomials, 412
Quotes, 70, 115, 251–252
Quotient polynomial, 422

CRC_47744_INDEX.indd 694CRC_47744_INDEX.indd 694 6/18/2008 4:41:52 PM6/18/2008 4:41:52 PM

Index 695

R

r, 357, 373
Radian

conversion to degrees, 196, 217–218
defi ned, 196
degrees converted to, 196, 217–218
examples, 215, 217–218

Radio frequency ID (RFID), 11
Radio tagging technologies, 11
Rand matrix, 123
Randn matrix, 123
Random access memory (RAM), 18–19, 43
Random matrix, creation of, 155–160, 169
Range, standard trigonometric functions, 205
Rational functions, 416, 423, 425
Rational numbers, 42n, 349, 416
Read only memory (ROM), 18
Reading fi les, 47, 604
Real axis, 349
Real matrix, 98
Real numbers

characteristics of, 42
compared with complex numbers, 349–350
standard operations, 356
z, 356–358

Reciprocal functions, 198–199
Recommendations, 599
Recordkeeping applications, 12
Rectangular form, complex numbers, 356–360,

364, 368
Reduced row echelon form (RREF), 86
Reed, Daniel, 8
Regiomontanus, 194
Relational operations

algebraic characters, 524, 527
analytical exercises, 589–591
application examples, 533–535,

555–588
application problems, 591–596
case sensitivity of commands, 529
characteristics of, 524, 532–533
characters, 527–528
comparison commands, 524–525, 528
conditional statements, 537–538, 540, 542
constants, 524
defi ned, 523
fl ow-control path, 537–538
logical operators/operations, 530–533, 537
truth tables, 530–531
vectors, 524, 526–528

Remainder polynomial, 422
Research and development (R&D)

investment, 8

Reserve variables, 43
Residue polynomial, 422
Revisions, 617
Rhaeticus, 194
Riemann, Friedrich Bernhard, 195
Riemann functions, 194–195, 485
Riemann hypothesis, 194
Right division, 76
Right triangle, 197
Rising Above the Storm, 9
Robotics, 12–13
Root-mean-square (rms), 98
Rounding functions, 213
Row(s)

elementary operations, 86
in matrix, 67, 69, 71–72, 74–76, 80–81, 83, 87,

91–113
vector, 71–72

RPG (report program generator), 21
RREF matrix, 86
Runge-Kutta method, 467
Running integral, 452

S

Sampling function, 456
Save/saving

ASCII fi les, 47
fi les, generally, 597, 601, 603, 605, 608–609
function fi les, 597, 615
M-fi les, 602
new fi les, 47, 51
script fi les, 48

Scalar, matrix creation, 67, 82, 106
Scientifi c industries, 2
Scientifi c notation, see Notation
Script fi le

analytic exercises, 670–672
application examples, 626–633, 637–641,

645–647, 652–655, 667–669
characteristics of, 51, 53, 599, 605–606
complex numbers, 365, 368–372, 379,

383–385, 387–388, 390–391, 393, 395, 398
creation of, 606
as data fi les, 611, 614
decision-making conditions, 540–546, 548
defi ned, 47–49, 51, 53, 606
logarithmic functions, 226–229
matrix creation, 85, 110–111, 150
performance command, 620–622
plotting, 260, 266–269, 272–273, 275–276,

281–282, 284, 287–288, 292, 294, 301
polynomials, 430, 468, 476–477, 488, 507, 509

CRC_47744_INDEX.indd 695CRC_47744_INDEX.indd 695 6/18/2008 4:41:52 PM6/18/2008 4:41:52 PM

696 Index

Script fi le (contd.)
saving, 597, 609
testing fi les, 609–610
trigonometric functions, 215–226

Secant functions, 196–210, 262, 440, 446, 448
Second-order

derivatives, 463–464, 466, 473
differential equations, 412
equations, 599
polynomials, 412

Self-employment applications, 5
Semicolon, 45–46, 69, 71, 239–240
Sensitivity controls, 43
Sensors, electronic, 123
Shank, William, 193
short format, 46, 55
Signal analysis, 14
Signal processing, 3
Silicon Valley, 7, 12
Simplifi cation, 432
Simpson’s rule, 452
SIMSCRIPT, 21
Simula, 21
Simulation, 2, 10, 13, 35–36
Simultaneous equations, 67, 86
Sine functions

complex numbers, 357, 361
implications of, 194, 196–201, 204–299, 211,

215, 218–219, 221–225, 227–228
performance analysis, 615–616, 618
plotting, 248–249, 255, 258, 260, 264, 269,

271–272, 280, 284
polynomials, 445–449, 454, 466,

483–484
Sine integral, 485
Single value decomposition (svd), 120
Singularities, 449
Singular matrix, 83
Sinusoidal functions, 358, 375, 380
Skew matrix

defi ned, 82
symmetric, 131

Slope function, 423, 442
Smart phone systems, 11
Software, copyrighted, 26
Software programs, registration, 22
Solar power, 12–13
Solid-state memory, 18
Sony, 12
Source

fi les, 600
programs, 20

Spacing, 42, 69. See also Blank spaces
Sparsity, 625
Special-purpose computers, 12
Spherical coordinate, 376
Square matrix, 67, 81–82, 85–86, 130
Square root, 349
Standard deviation, 95–96
Standard generalized markup language

(SGML), 21
Stander, 95
Statements, 45–46. See also specifi c types of

statements
State model, 474
State-space

equation, 413, 473, 476, 478
matrices, 479–481

State variable, polynomials, 473–474
Statistical data, profi le

command, 619
Statistics, 3
Steady-state response, 471
Steinmetz format, 357
Stirline, James, 194
Storage, see Save

fi les, 601
media, types of, 600

String
array, matrix creation, 115–116
commands, see string; stringvec
matrix, 112–114
polynomials, 483
relational operators, 528
vectors, 112, 172, 257

Subdirectories, 602
Subtraction, 44, 77, 360, 366,

416, 420, 432, 435
Subwindows, 253–254
Sun Microsystems, 20–21
Surface area, 450
Symbolic evaluation, 483
Symbolic integration, 451
Symbolic matrices, 150–151, 459–460
Symbolic Toolbox, 412, 431–432, 484
Symbols

algebraic, 43
commands for, 257
Greek, 257
list of operations, 44
operations, 76–77
percentage (%), 45, 614

Symmetric matrix, 82, 130–131, 145
Syntax, 36, 257, 538, 614

CRC_47744_INDEX.indd 696CRC_47744_INDEX.indd 696 6/18/2008 4:41:53 PM6/18/2008 4:41:53 PM

Index 697

System, generally
maintenance, 598
optimization, 474
software, 18–19
transfer function, 425

T

Table construction, 34
Tangent functions, 196–202, 205–210, 262,

440, 446, 448
Taylor (MacLarin) polynomial series

approximation, 458–459
Technical knowledge, 7–9
Technological trends, 11–14
Telecommunications industry, 5
Temporary work, 5
Terafl op chip, 12
Termination of program, 24.

See also Exit
Testing, fi les, 603, 607, 609–610, 616–617
T function, 485
Thales of Miletus, 192
Three-dimensional (3-D) graphics, 3, 140, 281,

285–287, 290, 298
Toolboxes, 22. See also Symbolic Toolbox
Toshiba, 12
Toyota, 7
Transfer function, polynomials, 425, 428–429,

436, 473–474, 478–479
Transforms

function fi les, 615
polynomials, 412–413, 415

Translator, functions of, 20
Transposition, in matrix operations, 81–82, 86,

130, 154
Trapezoidal rule, 452
Trend analysis, 237
Trial and error, 34
Triangles, types of, 125–126, 169, 197, 203, 299
Triangular matrix, 83, 86, 109, 118
Trigonometric form, complex numbers, 368
Trigonometric functions, see specifi c types of

trigonometric functions
analytic exercises, 229–232
application examples, 215–229
application problems, 232–236
basic, 196–197
characteristics of, 191–192, 195
example of, 54
exponential expression, 206–207, 211

hyperbolic functions, 207–211
inverse, 205–206, 209–211
matrix creation, 85n
plotting, 245–246, 248–249

Truncation, of fi les, 604
Truth tables, 530–531
Two-dimensional (2-D)

array, 67, 141
graphics, 3, 243, 261, 279, 281, 287, 298

U

U.S. Bureau of Labor Statistics, 6, 9
U.S. Department of Defense, 2
U.S. Geothermal Energy Associates (GEO), 13
Unit vector, 78
Unix, 19
Unknowns, matrix creation, 88–89
Upgrades, 598, 617
Upper triangular matrix, 86, 118, 120–125

V

Validity, of solutions, 35
Value creation, 8
Vandermonde matrix, 129–130
Variable(s)

default, 450
defi ned, 36–37
deleting, 43
dependent, 211, 243, 247, 462–463
display commands, 239–242
fl oating-point, 456
increment, in matrix creation, 73
independent, 211, 424, 427, 440, 445, 447–448,

462, 464
names, 43, 52, 71
plotting, 239
reserve, 43
symbolic, 83, 412, 430–433, 436–439
types of, 43
undefi ned, 430

Vector(s)
1 × 5, 72
benefi ts of, 68
complex, 77–78
creation of, 69, 73
defi ned, 67, 71
elements of, 67, 74
extended, 73–74, 79

CRC_47744_INDEX.indd 697CRC_47744_INDEX.indd 697 6/18/2008 4:41:53 PM6/18/2008 4:41:53 PM

698 Index

null, 74
orthogonal, 78, 96–97
relational operators, 524, 526–528
row, 71–72
sequence of elements, 73–75
six-element, 74
string, 112, 172, 257

Vender matrix, 123
Vertex, standard quadrant position, 199
Video gaming, 12
Vieta, Francois, 193
Virtual Address eXtension (VAX), 19
Vista, 13
Visual Basic, 20
Voltages, 449
Volume, 450

W

Wallis, John, 193
Watt com era, 12
Wessel, Caspar, 353
w function, 485
while-end statement, 537, 549–552, 558, 655
Wilk matrix, 129
Wind power, 13

Windows, see Microsoft (MS) Windows
Wolfram Research Inc., 221
World Wide Web, 2
Writing

fi les, 604
programs, examples of, 52–57
symbolic expressions, 432

X

Xave, 277
x-axis, 243–244, 247, 349

Y

y-axis, 243–244, 247, 250, 349

Z

z, 356–358, 370–374
Zeros matrix, 123
Zeta function, 194–195
zlabel, 284–288, 290, 293–294
Ztransforms, 14, 484

CRC_47744_INDEX.indd 698CRC_47744_INDEX.indd 698 6/18/2008 4:41:53 PM6/18/2008 4:41:53 PM

4

3

2

1

0

0 1 2 3 4 5 6 7

−1

−2

−3

−4

Plot of 3.5 sin (x) versus x

Plot of 2.5 cos (x) versus x

Plot of [f(x) = 0.005 x.3 + 0.015 x.2 + 0.01 x − 1]
 versus x

COLOR FIGURE 5.5
Plots of R.5.44.

Same y -scale plots

Different y -scale plots

10

5

0

0 1 2 3 4 5 6 7 8 9 10

3
2.5

1.5

0.5

−0.5

−1.5

0

1

−1

−2

2

0 1 2 3 4 5 6 7 8 9 10

−5

−10

10
8
6
4
2

−2
−4
−6
−8

−10

0

COLOR FIGURE 5.6
Plots of R.5.46 using one and two scales.

CRC_47744_colpla.indd 681CRC_47744_colpla.indd 681 6/18/2008 3:38:50 PM6/18/2008 3:38:50 PM

3

2.8

2.6

2.4

2.2

2

1.8

1.6

1.4

1.2

1
0 2 4

Columns of A versus B

6 8 10 12

COLOR FIGURE 5.8
Plot of columns of matrix A versus B of R.5.50(b).

12

10

8

6

4

2

0
1 1.2 1.4 1.6 1.8 32 2.2 2.4 2.6 2.8

Matrix A versus indexes

COLOR FIGURE 5.7
Plot of matrix A of R.5.50(a).

CRC_47744_colpla.indd 682CRC_47744_colpla.indd 682 6/18/2008 3:38:53 PM6/18/2008 3:38:53 PM

4
Rows of A versus B

3.5

3

2.5

2

1.5

1
0 2 4 6 8 10 12

COLOR FIGURE 5.9
Plot of row of matrix A versus B of R.5.50(c).

1

0.5

−0.5

−1

0

0 1 2 3 4 5 6 7

1

0.5

−0.5

−1

0

0 1 2 3 4 5 6 7

COLOR FIGURE 5.12
Plots with different markers of R.5.59.

CRC_47744_colpla.indd 683CRC_47744_colpla.indd 683 6/18/2008 3:38:53 PM6/18/2008 3:38:53 PM

5

4

3

2

1

0

0 1 2 3

x

y

4 5 6 7

−1

−2

−3

−4

−5

5 cos(2X) and 3sin(X) versus X

3sin(X)

5 cos(2X)

COLOR FIGURE 5.13
Plots with markers and text of R.5.71.

1

0.8

0.6

0.4

0.2

0

−0.2

−0.4

−0.6

−0.8

−1
−8 −6 −4 −2 0

x

y

2 4 6 8

Example using legend, box, grid, labels (x & y), and title

sin(x)

y1(x)
y2(x)

sin(x)/x

COLOR FIGURE 5.14
Plots with markers, text, and legend of R.5.73.

CRC_47744_colpla.indd 684CRC_47744_colpla.indd 684 6/18/2008 3:38:54 PM6/18/2008 3:38:54 PM

3

2

1

0

−1

−2

−3
−3 −2 −1 0

x

y

1 2 3

[tan(x),sec(x),cot(x)] versus x, for −pi<x<pi

COLOR FIGURE 5.17
Multiple plots using fplot of R.5.90.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
[cos(x)]n versus [sin(x)]n for n = 4, 3, 2, 1, 0.5, 0.25

cos(x)

si
n(

x)

n = 4
n = 3
n = 2
n = 1
n = 0.5
n = 0.25

COLOR FIGURE 5.27
Plots of R.5.107(a).

CRC_47744_colpla.indd 685CRC_47744_colpla.indd 685 6/18/2008 3:38:56 PM6/18/2008 3:38:56 PM

12%

24%

8%

Class Performance

16%

40%

A
B
C
D
E

COLOR FIGURE 5.35
Pie plot of R.5.126.

3%
2%

2%1% 2%1%1%

7%

11%

8%

8%

8%

5%

7%

9%

12%
13%

Pie graph of 20 bins with a total of 100 normal random numbers

COLOR FIGURE 5.34
Pie plot of R.5.125.

CRC_47744_colpla.indd 686CRC_47744_colpla.indd 686 6/18/2008 3:38:57 PM6/18/2008 3:38:57 PM

20

15

10

5

0

0 0
1 x

ribbon plot

y

z

2
3

4
5

0.5

1

COLOR FIGURE 5.39
Ribbon plots of R.5.139.

12%

8%

16%

40%

24%

Performance of D and F detached

A
B
C
D
E

COLOR FIGURE 5.36
Detached pie plot of R.5.128.

CRC_47744_colpla.indd 687CRC_47744_colpla.indd 687 6/18/2008 3:38:57 PM6/18/2008 3:38:57 PM

Class Performance

16%8%

12%

24%

40%

COLOR FIGURE 5.48
pie3 plot of R.5.150.

1

0.8

0.6

0.4

0.2

0
2

1

0

−1

−2 −2
−1

0
1

2

Cylinder

x
y

z

COLOR FIGURE 5.49
Plot of R.5.156.

CRC_47744_colpla.indd 688CRC_47744_colpla.indd 688 6/18/2008 3:39:07 PM6/18/2008 3:39:07 PM

1

Cylinder with quadratic surface

0.8

0.6

0.4

0.2

0
4

42

20
0

x
y

z

−4 −4
−2

−2

COLOR FIGURE 5.50
Plot of R.5.157.

Sphere using surf Sphere using mesh

1

0

−1

−1 −1

1
1

0
y y

x x

z z

0

1

0

−1

−1 −1

1
1

0
0

COLOR FIGURE 5.51
Plot of R.5.159.

CRC_47744_colpla.indd 689CRC_47744_colpla.indd 689 6/18/2008 3:39:08 PM6/18/2008 3:39:08 PM

30

20

20

2010

100
0

X
Y

Z 10

0

−10

−10
−10

−20 −20

surf plot

COLOR FIGURE 5.52
Surf plot of R.5.159(a).

30

20

10

20

−20 −20
−10

10

0
0

X
Y

Z

10
20

0

−10

−10

shaded surf plot

COLOR FIGURE 5.53
Shaded surf plot of R.5.159(a).

CRC_47744_colpla.indd 690CRC_47744_colpla.indd 690 6/18/2008 3:39:13 PM6/18/2008 3:39:13 PM

25

20

15

10

10

10

5

5
5

0

0
0

−5

−10 −10

−5
−5

Y

Z

contour3 plot

X

COLOR FIGURE 5.56
contour3 plot of R.5.159(c).

10

5

0

−5

−4

2

0

−2

−4 −4
−2

0
2

4

−10

y-axis

z-
ax

is

3-D plot using peaks

x-axis

COLOR FIGURE 5.59
3-D plot of peaks of R.5.176.

CRC_47744_colpla.indd 691CRC_47744_colpla.indd 691 6/18/2008 3:39:17 PM6/18/2008 3:39:17 PM

10

20
10

0

−10
−20 −20

−10

0
x-axis

10
20

5

0

−5

−10

y-axis

z-
ax

is

trimesh plot

COLOR FIGURE 5.60
Plot of R.5.179(a).

10

5

2010
20

100
0−10

−10
−20 −20

0

−5

−10

trisurf plot

y-axis

z-
ax

is

x-axis

COLOR FIGURE 5.61
Plot of R.5.179(b).

CRC_47744_colpla.indd 692CRC_47744_colpla.indd 692 6/18/2008 3:39:39 PM6/18/2008 3:39:39 PM

1.5

1

0.5

0

0 1 2 3 4 5 6 7

−0.5

−1

−1.5

Trigonometric Functions with “Box Off”

COLOR FIGURE 5.64
Trigonometric plots of Example 5.1 (“Box Off”).

1.5

1

0.5

0

0 1 2 3 4 5 6 7

−0.5

−1

−1.5

Trigonometric Functions with “Box On”

COLOR FIGURE 5.65
Trigonometric plots of Example 5.1 (“Box On”).

CRC_47744_colpla.indd 693CRC_47744_colpla.indd 693 6/18/2008 3:39:41 PM6/18/2008 3:39:41 PM

1.5

1

0.5

0

0 1 2 3

Independent Variable X

Trigonometric Functions with "Grid On"

D
ep

en
de

nt
 V

ar
ia

bl
e

Y

4 5 6 7

−0.5

−1

−1.5

COLOR FIGURE 5.66
Trigonometric plots of Example 5.1 (“grid on”).

1.5

1

0.5

0

0 1 2 3

Independent Variable X

Trigonometric Functions with "Grid Off"

D
ep

en
de

nt
 V

ar
ia

bl
e

Y

4 5 6 7

−0.5

−1

−1.5

COLOR FIGURE 5.67
Trigonometric plots of Example 5.1 (“grid off”).

CRC_47744_colpla.indd 694CRC_47744_colpla.indd 694 6/18/2008 3:39:42 PM6/18/2008 3:39:42 PM

1.5

1

0.5

0

0 1 2 3

Independent Variable X

Trigonometric Functions with Fixed Axis and Legend

D
ep

en
de

nt
 V

ar
ia

bl
e

Y

4 5 6

−0.5

−1

−1.5

−2

sin(X)
cos(X)
sin(X) + cos(X)
sin(X) − cos(X)

COLOR FIGURE 5.68
Trigonometric plots of Example 5.1 (axis and legend).

1.5

1

0.5

0

0 1 2 3

Independent Variable X

Trigonometric Functions with Fixed Axis and Legend

D
ep

en
de

nt
 V

ar
ia

bl
e

Y

4 5 6

−0.5

−1

−1.5

−2

sinX

cos(X)

sin(X) − cos(X)

sin(X) + cos(X)

sin(X)
cos(X)
sin(X) + cos(X)
sin(X) − cos(X)

COLOR FIGURE 5.69
Trigonometric plots of Example 5.1 (axis and legend).

CRC_47744_colpla.indd 695CRC_47744_colpla.indd 695 6/18/2008 3:39:42 PM6/18/2008 3:39:42 PM

0.12

0.1

0.08

0.06

0.04

0.02

0

−0.02

−0.04

−0.06

−0.08

−0.1 −0.05 0 0.05 0.1 0.15

X

y1
y2

y1 = xsin(x) and y2 = xsin(1/x)

y1
 &

 y
2

COLOR FIGURE 5.84
Numerical plot of Example 5.8 over −0.15 ≤ x ≤ 0.15.

CRC_47744_colpla.indd 696CRC_47744_colpla.indd 696 6/18/2008 3:39:43 PM6/18/2008 3:39:43 PM

Mesh Plot

1

0Z

−1

2
4

−2

−4 −4
−2

0

4

20
Y

X

Surf Plot

1

0

−1
4

2

0

−2
−4 −4

−2
0

2

4

Y
X

Z

COLOR FIGURE 5.93
3-D mesh and surf plots of Example 5.15.

CRC_47744_colpla.indd 697CRC_47744_colpla.indd 697 6/18/2008 3:39:43 PM6/18/2008 3:39:43 PM

−3

−3

−1−2 0 1 2 3

X

−2

−1

0

1

2

3

Y

Contour plot

COLOR FIGURE 5.94
Contour plot of Example 5.16.

2500

2000

1500

1000

500

0
10

5

−5 −4
−2

0 0
2

4

x-axisy-axis

Plot using mesh

z-
ax

is

COLOR FIGURE 5.96
3-D plot using mesh of Example 5.17.

CRC_47744_colpla.indd 698CRC_47744_colpla.indd 698 6/18/2008 3:39:45 PM6/18/2008 3:39:45 PM

y-axis

z-
ax

is

0

−5 −4
−2

2
4

0

x-axis

Plot using meshc

2500

2000

1500

1000

500

0

5

10

COLOR FIGURE 5.97
3-D plot using meshc of Example 5.17.

Plot using meshz

2500

2000

1500

1000

500

0
10

5

0

−5 −4
−2

0
2

4

x-axis
y-axis

z-
ax

is

COLOR FIGURE 5.98
3-D plot using meshz of Example 5.17.

CRC_47744_colpla.indd 699CRC_47744_colpla.indd 699 6/18/2008 3:39:46 PM6/18/2008 3:39:46 PM

Plot using surfc

2500

2000

1500

1000

500

0

5

0

−5 −4
−2

0
2

4

x-axis
y-axis

z-
ax

is

10

COLOR FIGURE 5.100
3-D plot using surfc of Example 5.17.

z-
ax

is

2500

2000

1500

1000

500

0
10

Plot using surf

−5 −4
−2

2
4

0

x-axis
y-axis 0

5

COLOR FIGURE 5.99
3-D plot using surf of Example 5.17.

CRC_47744_colpla.indd 700CRC_47744_colpla.indd 700 6/18/2008 3:39:47 PM6/18/2008 3:39:47 PM

Plot using waterfall

2500

2000

1500

1000

500

0
10

5

0

−5 −4
−2

0
2

4

x-axis

y-axis

z-
ax

is

COLOR FIGURE 5.101
3-D plot using waterfall of Example 5.17.

1

0.5

0

0.5

−0.5
−0.5

0.50
0

x-axis

y-axis

z-
ax

is

1

COLOR FIGURE 5.102
3-D plot of the cone of Example 5.18.

CRC_47744_colpla.indd 701CRC_47744_colpla.indd 701 6/18/2008 3:39:50 PM6/18/2008 3:39:50 PM

1

0.5

−0.5

0.5

−0.5
−0.5

0.5

0

−1

0
0

1

x-axis
y-axis

z-
ax

is

COLOR FIGURE 5.104
3-D plot of the sphere of Example 5.18.

COLOR FIGURE 9.1
File menu.

CRC_47744_colpla.indd 702CRC_47744_colpla.indd 702 6/18/2008 3:39:51 PM6/18/2008 3:39:51 PM

COLOR FIGURE 9.2
The edit window with the program just entered R.9.69.

COLOR FIGURE 9.3
Saving the fi le.

CRC_47744_colpla.indd 703CRC_47744_colpla.indd 703 6/18/2008 3:39:55 PM6/18/2008 3:39:55 PM

COLOR FIGURE 9.13
Edit window with the script fi le redrose.

COLOR FIGURE 9.4
Saving the script fi le as AM.m.

CRC_47744_colpla.indd 704CRC_47744_colpla.indd 704 6/18/2008 3:39:57 PM6/18/2008 3:39:57 PM

COLOR FIGURE 9.14
The script fi le redrose is stored in the folder work.

4

3

2

1

0

−1

−2

−3

−4

redrose

−6 −4 −2 0 2 4 6

COLOR FIGURE 9.15
Plot of redrose of Example 9.1.

CRC_47744_colpla.indd 705CRC_47744_colpla.indd 705 6/18/2008 3:40:00 PM6/18/2008 3:40:00 PM

amplitude versus # of samples
1

0.8

0.6

0.4

0.2

am
pl

itu
de

0
0 10 20 30 40 50 60 70 80 90 100

of samples
Pie plot of the histogram

13%
20%

22%

25%

19%

bin#1

bin#2

bin#3

bin#4

bin#5

COLOR FIGURE 9.27
Pie plots for x2 of Example 9.13.

Pie plot of the histogram

18%

18%

18%

30%

15%

bin#1

bin#2

bin#3

bin#4

bin#5

COLOR FIGURE 9.25
Pie plots of x1 of Example 9.13.

CRC_47744_colpla.indd 706CRC_47744_colpla.indd 706 6/18/2008 3:40:01 PM6/18/2008 3:40:01 PM

	Front cover
	Contents
	Preface
	Author
	Chapter 1. Trends, the Industry, and MATLAB
	Chapter 2. Getting Started
	Chapter 3. Matrices, Arrays, Vectors, and Sets
	Chapter 4. Trigonometric, Exponential, Logarithmic, and Special Functions
	Chapter 5. Printing and Plotting
	Chapter 6. Complex Numbers
	Chapter 7. Polynomials and Calculus, a Numerical and Symbolic Approach
	Chapter 8. Decisions and Relations
	Chapter 9. Files, Statistics, and Performance Analysis
	Bibliography
	Index
	Back cover

