The Essential Turing:
Seminal Writings in
Computing, Logic, Philosophy,
Artificial Intelligence, and
Artificial Life:

Plus The Secrets of Enigma

B. Jack Copeland,
Editor

OXFORD UNIVERSITY PRESS

The Essential Turing

Alan M. Turing

The Essential Turing

Seminal Writings in Computing, Logic, Philosophy,
Artificial Intelligence, and Artificial Life
plus The Secrets of Enigma

Edited by B. Jack Copeland

CLARENDON PRESS - OXFORD

OXFORD

UNIVERSITY PRESS

Great Clarendon Street, Oxford ox2 6Dp

Oxford University Press is a department of the University of Oxford.
It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide in

Oxford New York

Auckland Cape Town Dar es Salaam Hong Kong Karachi
Kuala Lumpur Madrid Melbourne Mexico City Nairobi
New Delhi Taipei Toronto Shanghai

With offices in

Argentina Austria Brazil Chile Czech Republic France Greece
Guatemala Hungary Italy Japan South Korea Poland Portugal
Singapore Switzerland Thailand Turkey Ukraine Vietnam

Published in the United States
by Oxford University Press Inc., New York

© In this volume the Estate of Alan Turing 2004
Supplementary Material © the several contributors 2004
The moral rights of the author have been asserted
Database right Oxford University Press (maker)

First published 2004

All rights reserved. No part of this publication may be reproduced,

stored in a retrieval system, or transmitted, in any form or by any means,
without the prior permission in writing of Oxford University Press,

or as expressly permitted by law, or under terms agreed with the appropriate
reprographics rights organization. Enquiries concerning reproduction
outside the scope of the above should be sent to the Rights Department,
Oxford University Press, at the address above.

You must not circulate this book in any other binding or cover
and you must impose this same condition on any acquirer.
British Library Cataloguing in Publication Data

Data available

Library of Congress Cataloging in Publication Data
Data available

ISBN 0-19-825079-7
ISBN 0-19-825080-0 (pbk.)

109876543

Typeset by Kolam Information Services Pvt. Ltd, Pondicherry, India
Printed in Great Britain
on acid-free paper by Biddles Ltd., King’s Lynn, Norfolk

Acknowledgements

Work on this book began in 2000 at the Dibner Institute for the History of
Science and Technology, Massachusetts Institute of Technology, and was com-
pleted at the University of Canterbury, New Zealand. I am grateful to both these
institutions for aid, and to the following for scholarly assistance: John Andreae,
Friedrich Bauer, Frank Carter, Alonzo Church Jnr, David Clayden, Bob Doran,
Ralph Erskine, Harry Fensom, Jack Good, John Harper, Geoff Hayes, Peter
Hilton, Harry Huskey, Eric Jacobson, Elizabeth Mahon, Philip Marks, Elisabeth
Norcliffe, Rolf Noskwith, Gualtiero Piccinini, Andrés Sicard, Wilfried Sieg, Frode
Weierud, Maurice Wilkes, Mike Woodger, and especially Diane Proudfoot. This
book would not have existed without the support of Turing’s literary executor,
P. N. Furbank, and that of Peter Momtchiloff at Oxford University Press.

B.J.C.

This page intentionally left blank

10.

Contents

Alan Turing 1912-1954
Jack Copeland

Computable Numbers: A Guide
Jack Copeland

. On Computable Numbers, with an Application to the

Entscheidungsproblem (7936)

On Computable Numbers: Corrections and Critiques
Alan Turing, Emil Post, and Donald W. Davies

. Systems of Logic Based on Ordinals (7938), including

excerpts from Turing’s correspondence, 1936—-1938
Letters on Logic to Max Newman (c.7940)

Enigma

Jack Copeland

History of Hut 8 to December 1941 (7945), featuring an
excerpt from Turing’s ‘Treatise on the Enigma’
Patrick Mahon

Bombe and Spider (7940)
Letter to Winston Churchill (7947)

Memorandum to OP-20-G on Naval Enigma (c.7947)

Artificial Intelligence
Jack Copeland

Lecture on the Automatic Computing Engine (1947)

Intelligent Machinery (7948)

58

91

125

205

217

265

313

336

341

353

362

395

viii | Contents

11.

12.

13.

14.

15.

16.

17.

Computing Machinery and Intelligence (7950)
Intelligent Machinery, A Heretical Theory (c.7957)
Can Digital Computers Think? (1957)

Can Automatic Calculating Machines Be Said to Think? (7952)

Alan Turing, Richard Braithwaite, Geoffrey Jefferson,
and Max Newman

Artificial Life
Jack Copeland

The Chemical Basis of Morphogenesis (7952)

Chess (7953)

Solvable and Unsolvable Problems (7954)

Index

433

465

476

487

507

519

562

576

597

Alan Turing 1912-1954
Jack Copeland

Alan Mathison Turing was born on 23 June 1912 in London!; he died on 7
June 1954 at his home in Wilmslow, Cheshire. Turing contributed to logic,
mathematics, biology, philosophy, cryptanalysis, and formatively to the areas
later known as computer science, cognitive science, Artificial Intelligence, and
Artificial Life.

Educated at Sherborne School in Dorset, Turing went up to King’s College,
Cambridge, in October 1931 to read Mathematics. He graduated in 1934, and in
March 1935 was elected a Fellow of King’s, at the age of only 22. In 1936 he
published his most important theoretical work, ‘On Computable Numbers, with
an Application to the Entscheidungsproblem [Decision Problem]’ (Chapter 1,
with corrections in Chapter 2). This article described the abstract digital com-
puting machine—now referred to simply as the universal Turing machine—on
which the modern computer is based. Turing’s fundamental idea of a universal
stored-programme computing machine was promoted in the United States by
John von Neumann and in England by Max Newman. By the end of 1945 several
groups, including Turing’s own in London, were devising plans for an electronic
stored-programme universal digital computer—a Turing machine in hardware.

In 1936 Turing left Cambridge for the United States in order to continue his
research at Princeton University. There in 1938 he completed a Ph.D. entitled
‘Systems of Logic Based on Ordinals’, subsequently published under the same
title (Chapter 3, with further exposition in Chapter 4). Now a classic, this work
addresses the implications of Godel’s famous incompleteness result. Turing gave
a new analysis of mathematical reasoning, and continued the study, begun in ‘On
Computable Numbers, of uncomputable problems—problems that are ‘too
hard’ to be solved by a computing machine (even one with unlimited time and
memory).

Turing returned to his Fellowship at King’s in the summer of 1938. At the
outbreak of war with Germany in September 1939 he moved to Bletchley Park,
the wartime headquarters of the Government Code and Cypher School (GC &
CS). Turing’s brilliant work at Bletchley Park had far-reaching consequences.

1 At 2 Warrington Crescent, London W9, where now there is a commemorative plaque.

2 | Jack Copeland

‘T won’t say that what Turing did made us win the war, but I daresay we might
have lost it without him), said another leading Bletchley cryptanalyst.2 Turing
broke Naval Enigma—a decisive factor in the Battle of the Atlantic—and was the
principal designer of the ‘bombe’, a high-speed codebreaking machine. The
ingenious bombes produced a flood of high-grade intelligence from Enigma. It
is estimated that the work done by Turing and his colleagues at GC & CS
shortened the war in Europe by at least two years.> Turing’s contribution to
the Allied victory was a state secret and the only official recognition he
received, the Order of the British Empire, was in the circumstances derisory.
The full story of Turing’s involvement with Enigma is told for the first time
in this volume, the material that forms Chapters 5, 6, and 8 having been
classified until recently.

In 1945, the war over, Turing was recruited to the National Physical Labora-
tory (NPL) in London, his brief to design and develop an electronic digital
computer—a concrete form of the universal Turing machine. His design (for
the Automatic Computing Engine or ACE) was more advanced than anything
else then under consideration on either side of the Atlantic. While waiting for the
engineers to build the ACE, Turing and his group pioneered the science of
computer programming, writing a library of sophisticated mathematical pro-
grammes for the planned machine.

Turing founded the field now called ‘Artificial Intelligence’ (AI) and was a
leading early exponent of the theory that the human brain is in effect a digital
computer. In February 1947 he delivered the earliest known public lecture to
mention computer intelligence (‘Lecture on the Automatic Computing Engine’
(Chapter 9)). His technical report ‘Intelligent Machinery’ (Chapter 10), written
for the NPL in 1948, was effectively the first manifesto of Al. Two years later, in
his now famous article ‘Computing Machinery and Intelligence’ (Chapter 11),
Turing proposed (what subsequently came to be called) the Turing test as a
criterion for whether machines can think. The Essential Turing collects together
for the first time the series of five papers that Turing devoted exclusively to
Artificial Intelligence (Chapters 10, 11, 12, 13, 16). Also included is a discussion
of Al by Turing, Newman, and others (Chapter 14).

In the end, the NPLs engineers lost the race to build the world’s first working
electronic stored-programme digital computer—an honour that went to the
Computing Machine Laboratory at the University of Manchester in June 1948.
The concept of the universal Turing machine was a fundamental influence on the
Manchester computer project, via Newman, the project’s instigator. Later in

2 Jack Good in an interview with Pamela McCorduck, on p. 53 of her Machines Who Think (New York:
W. H. Freeman, 1979).

3 This estimate is given by Sir Harry Hinsley, official historian of the British Secret Service, writing on
p- 12 of his and Alan Stripp’s edited volume Codebreakers: The Inside Story of Bletchley Park (Oxford: Oxford
University Press, 1993).

Alan Turing 1912-1954 | 3

1948, at Newman’s invitation, Turing took up the deputy directorship of the
Computing Machine Laboratory (there was no Director). Turing spent the rest of
his short career at Manchester University. He was elected a Fellow of the Royal
Society of London in March 1951 (a high honour) and in May 1953 was
appointed to a specially created Readership in the Theory of Computing at
Manchester.

It was at Manchester, in March 1952, that he was prosecuted for homosexual
activity, then a crime in Britain, and sentenced to a period of twelve months’
hormone ‘therapy’—the shabbiest of treatment from the country he had helped
save, but which he seems to have borne with amused fortitude.

Towards the end of his life Turing pioneered the area now known as Artificial
Life. His 1952 article “The Chemical Basis of Morphogenesis’ (Chapter 15)
describes some of his research on the development of pattern and form in living
organisms. This research dominated his final years, but he nevertheless found
time to publish in 1953 his classic article on computer chess (Chapter 16) and in
1954 ‘Solvable and Unsolvable Problems’ (Chapter 17), which harks back to ‘On
Computable Numbers’. From 1951 he used the Computing Machine Labora-
tory’s Ferranti Mark I (the first commercially produced electronic stored-pro-
gramme computer) to model aspects of biological growth, and in the midst of
this groundbreaking work he died.

Turing’s was a far-sighted genius and much of the material in this book is of
even greater relevance today than in his lifetime. His research had remarkable
breadth and the chapters range over a diverse collection of topics—mathematical
logic and the foundations of mathematics, computer design, mechanical
methods in mathematics, cryptanalysis and chess, the nature of intelligence
and mind, and the mechanisms of biological growth. The chapters are united
by the overarching theme of Turing’s work, his enquiry into (as Newman put it)
‘the extent and the limitations of mechanistic explanations’.4

Biographies of Turing

Gottfried, T., Alan Turing: The Architect of the Computer Age (Danbury, Conn.: Franklin
Watts, 1996).

Hodges, A., Alan Turing: The Enigma (London: Burnett, 1983).

Newman, M. H. A., ‘Alan Mathison Turing, 1912-1954’, Biographical Memoirs of Fellows of
the Royal Society, 1 (1955), 253—63.

Turing, S., Alan M. Turing (Cambridge: W. Heffer, 1959).

4 M. H. A. Newman, ‘Alan Mathison Turing, 1912-1954, Biographical Memoirs of Fellows of the Royal
Society, 1 (1955), 253-63 (256).

This page intentionally left blank

Computable Numbers: A Guide
Jack Copeland

Part | The Computer
1. Turing Machines 6
. Standard Descriptions and Description Numbers 10
Subroutines 12
. The Universal Computing Machine 15
. Turing, von Neumann, and the Computer 21
. Turing and Babbage 27
7. Origins of the Term ‘Computer Programme’ 30

o v AW N

Part Il Computability and Uncomputability
8. Circular and Circle-Free Machines 32
9. Computable and Uncomputable Sequences 33
10. Computable and Uncomputable Numbers 36
11. The Satisfactoriness Problem 36
12. The Printing and Halting Problems 39
13. The Church-Turing Thesis 40
14. The Entscheidungsproblem 45

‘On Computable Numbers, with an Application to the Entscheidungsproblem’
appeared in the Proceedings of the London Mathematical Society in 1936.! This,

1 Proceedings of the London Mathematical Society, 42 (1936-7), 230-65. The publication date of ‘On
Computable Numbers’ is sometimes cited, incorrectly, as 1937. The article was published in two parts, both
parts appearing in 1936. The break between the two parts occurred, rather inelegantly, in the middle of
Section 5, at the bottom of p. 240 (p. 67 in the present volume). Pages 230-40 appeared in part 3 of volume
42, issued on 30 Nov. 1936, and the remainder of the article appeared in part 4, issued on 23 Dec. 1936. This
information is given on the title pages of parts 3 and 4 of volume 42, which show the contents of each part
and their dates of issue. (I am grateful to Robert Soare for sending me these pages. See R. I. Soare,
‘Computability and Recursion’, Bulletin of Symbolic Logic, 2 (1996), 284-321.)

The article was published bearing the information ‘Received 28 May, 1936.—Read 12 November, 1936.
However, Turing was in the United States on 12 November, having left England in September 1936 for what
was to be a stay of almost two years (see the introductions to Chapters 3 and 4). Although papers were read
at the meetings of the London Mathematical Society, many of those published in the Proceedings were ‘taken
as read’, the author not necessarily being present at the meeting in question. Mysteriously, the minutes of the
meeting held on 18 June 1936 list ‘On Computable Numbers, with an Application to the Entscheidungs-
problem’ as one of 22 papers taken as read at that meeting. The minutes of an Annual General Meeting held

6 | Jack Copeland

Turing’s second publication,? contains his most significant work. Here he pion-
eered the theory of computation, introducing the famous abstract computing
machines soon dubbed ‘Turing machines’ by the American logician Alonzo
Church.? ‘On Computable Numbers’ is regarded as the founding publication
of the modern science of computing. It contributed vital ideas to the develop-
ment, in the 1940s, of the electronic stored-programme digital computer. ‘On
Computable Numbers’ is the birthplace of the fundamental principle of the
modern computer, the idea of controlling the machine’s operations by means
of a programme of coded instructions stored in the computer’s memory.

In addition Turing charted areas of mathematics lying beyond the scope of the
Turing machine. He proved that not all precisely stated mathematical problems
can be solved by computing machines. One such is the Entscheidungsproblem or
‘decision problem’. This work—together with contemporaneous work by Church*
—initiated the important branch of mathematical logic that investigates and
codifies problems ‘too hard’ to be solvable by Turing machine.

In this one article, Turing ushered in both the modern computer and the
mathematical study of the uncomputable.

Part | The Computer

1. Turing Machines

A Turing machine consists of a scanner and a limitless memory-tape that moves
back and forth past the scanner. The tape is divided into squares. Each square
may be blank or may bear a single symbol—°0’ or ‘1, for example, or some other
symbol taken from a finite alphabet. The scanner is able to examine only one
square of tape at a time (the ‘scanned square’).

The scanner contains mechanisms that enable it to erase the symbol on the
scanned square, to print a symbol on the scanned square, and to move the tape to
the left or right, one square at a time.

In addition to the operations just mentioned, the scanner is able to alter what
Turing calls its ‘m-configuration’. In modern Turing-machine jargon it is usual to

on 12 Nov. 1936 contain no reference to the paper. (I am grateful to Janet Foster, Archives Consultant to the
London Mathematical Society, for information.)

2 The first was ‘Equivalence of Left and Right Almost Periodicity’, Journal of the London Mathematical
Society, 10 (1935), 284-5.

3 Church introduced the term “Turing machine’ in a review of Turing’s paper in the Journal of Symbolic
Logic, 2 (1937), 42-3.

4 A. Church, ‘An Unsolvable Problem of Elementary Number Theory’, American Journal of Mathematics,
58 (1936), 345-63, and ‘A Note on the Entscheidungsproblem, Journal of Symbolic Logic, 1 (1936), 40-1.

Computable Numbers: A Guide | 7

SCANNER

use the term ‘state’ in place of ‘m-configuration’. A device within the scanner is
capable of adopting a number of different states (m-configurations), and the
scanner is able to alter the state of this device whenever necessary. The device
may be conceptualized as consisting of a dial with a (finite) number of positions,
labelled ‘@, ‘D) ‘c) etc. Each of these positions counts as an m-configuration or
state, and changing the m-configuration or state amounts to shifting the dial’s
pointer from one labelled position to another. This device functions as a simple
memory. As Turing says, ‘by altering its m-configuration the machine can
effectively remember some of the symbols which it has “seen” (scanned) previ-
ously’ (p. 59). For example, a dial with two positions can be used to keep a record
of which binary digit, 0 or 1, is present on the square that the scanner has just
vacated. (If a square might also be blank, then a dial with three positions is
required.)

The operations just described—erase, print, move, and change state—are
the basic (or atomic) operations of the Turing machine. Complexity of operation
is achieved by chaining together large numbers of these simple basic actions.
Commercially available computers are hard-wired to perform basic operations
considerably more sophisticated than those of a Turing machine—add, multiply,
decrement, store-at-address, branch, and so forth. The precise list of basic
operations varies from manufacturer to manufacturer. It is a remarkable fact,
however, that despite the austere simplicity of Turing’s machines, they are
capable of computing anything that any computer on the market can compute.
Indeed, because they are abstract machines, with unlimited memory, they are
capable of computations that no actual computer could perform in practice.

Example of a Turing machine

The following simple example is from Section 3 of ‘On Computable Numbers’
(p. 61). The once-fashionable Gothic symbols that Turing used in setting out the
example—and also elsewhere in ‘On Computable Numbers’—are not employed
in this guide. I also avoid typographical conventions used by Turing that seem
likely to hinder understanding (for example, his special symbol ‘9’ which he used
to mark the beginning of the tape, is here replaced by).

The machine in Turing’s example—call it M—starts work with a blank tape.
The tape is endless. The problem is to set up the machine so that if the scanner is

8 | Jack Copeland

positioned over any square of the tape and the machine set in motion, the scanner
will print alternating binary digits on the tape,01010 1..., working to the right
from its starting place, and leaving a blank square in between each digit:

In order to do its work, M makes use of four states or m-configurations. These
are labelled ‘a, ‘b), ‘¢’ and ‘d’. (Turing employed less familiar characters.) M is in
state a when it starts work.

The operations that M is to perform can be set out by means of a table with four
columns (Table 1). ‘R’ abbreviates the instruction ‘reposition the scanner one
square to the right’ This is achieved by moving the tape one square to the left. ‘T’
abbreviates ‘reposition the scanner one square to the left], ‘P[0]” abbreviates ‘print
0 on the scanned square’, and likewise ‘P[1]”. Thus the top line of Table 1 reads: if
you are in state a and the square you are scanning is blank, then print 0 on the
scanned square, move the scanner one square to the right, and go into state b.

A machine acting in accordance with this table of instructions—or pro-
gramme—toils endlessly on, printing the desired sequence of digits while leaving
alternate squares blank.

Turing does not explain how it is to be brought about that the machine acts in
accordance with the instructions. There is no need. Turing’s machines are
abstractions and it is not necessary to propose any specific mechanism for
causing the machine to act in accordance with the instructions. However, for
purposes of visualization, one might imagine the scanner to be accompanied by a
bank of switches and plugs resembling an old-fashioned telephone switchboard.
Arranging the plugs and setting the switches in a certain way causes the machine
to act in accordance with the instructions in Table 1. Other ways of setting up the
‘switchboard’ cause the machine to act in accordance with other tables of
instructions. In fact, the earliest electronic digital computers, the British Colossus
(1943) and the American ENIAC (1945), were programmed in very much this
way. Such machines are described as ‘programme-controlled’, in order to distin-
guish them from the modern ‘stored-programme’ computer.

Table 1

State Scanned Square Operations Next State

a blank P[0], R b
b blank R c
c blank P[1],R d
d blank R a

Computable Numbers: A Guide | 9

As everyone who can operate a personal computer knows, the way to set up a
stored-programme machine to perform some desired task is to open the appro-
priate programme of instructions stored in the computer’s memory. The stored-
programme concept originates with Turing’s universal computing machine,
described in detail in Section 4 of this guide. By inserting different programmes
into the memory of the universal machine, the machine is made to carry out
different computations. Turing’s 1945 technical report ‘Proposed Electronic
Calculator’ was the first relatively complete specification of an electronic
stored-programme digital computer (see Chapter 9).

E-squares and F-squares

After describing M and a second example of a computing machine, involving the
start-of-tape marker ‘" (p. 62), Turing introduces a convention which he makes
use of later in the article (p. 63). Since the tape is the machine’s general-purpose
storage medium—serving not only as the vehicle for data storage, input, and
output, but also as ‘scratchpad’ for use during the computation—it is useful to
divide up the tape in some way, so that the squares used as scratchpad are
distinguished from those used for the various other functions just mentioned.

Turing’s convention is that every alternate square of the tape serves as scratch-
pad. These he calls the ‘E-squares), saying that the ‘symbols on E-squares will be
liable to erasure’ (p. 63). The remaining squares he calls ‘F-squares’ (‘E’ and ‘F’
perhaps stand for ‘erasable’ and ‘fixed’.)

In the example just given, the ‘F-squares’ of M’s tape are the squares bearing
the desired sequence of binary digits, 0 1 0 1 0 1... In between each pair of
adjacent F-squares lies a blank E-square. The computation in this example is so
simple that the E-squares are never used. More complex computations make
much use of E-squares.

Turing mentions one important use of E-squares at this point (p. 63): any
F-square can be ‘marked’ by writing some special symbol, e.g. ‘«’, on the E-square
immediately to its right. By this means, the scanner is able to find its way back to
a particular string of binary digits—a particular item of data, say. The scanner
locates the first digit of the string by finding the marker ‘x’.

Adjacent blank squares

Another useful convention, also introduced on p. 63, is to the effect that the tape
must never contain a run of non-blank squares followed by two or more adjacent
blank squares that are themselves followed by one or more non-blank squares.
The value of this convention is that it gives the machine an easy way of finding
the last non-blank square. As soon as the machine finds two adjacent blank
squares, it knows that it has passed beyond the region of tape that has
been written on and has entered the region of blank squares stretching away
endlessly.

10 | Jack Copeland

The start-of-tape marker

Turing usually considers tapes that are endless in one direction only. For pur-
poses of visualization, these tapes may all be thought of as being endless to the
right. By convention, each of the first two squares of the tape bears the symbol ‘!,
mentioned previously. These ‘signposts’ are never erased. The scanner searches
for the signposts when required to find the beginning of the tape.

2. Standard Descriptions and Description Numbers

In the final analysis, a computer programme is simply a (long) stream, or row, of
characters. Combinations of characters encode the instructions. In Section 5 of
‘On Computable Numbers’ Turing explains how an instruction table is to be
converted into a row of letters, which he calls a ‘standard description’. He then
explains how a standard description can be converted into a single number. He
calls these ‘description numbers’.

Each line of an instruction table can be re-expressed as a single ‘word’ of the
form q;S;SxMgq;. q; is the state shown in the left-hand column of the table. S; is
the symbol on the scanned square (a blank is counted as a type of symbol). Sy is
the symbol that is to be printed on the scanned square. M is the direction of
movement (if any) of the scanner, left or right. q; is the next state. For example,
the first line of Table 1 can be written: a-ORb (using ‘-’ to represent a blank). The
third line is: c-1Rd.

The second line of the table, which does not require the contents of the
scanned square (a blank) to be changed, is written: b--Rc. That is to say we
imagine, for the purposes of this new notation, that the operations column of the
instruction table contains the redundant instruction P[-]. This device is
employed whenever an instruction calls for no change to the contents of the
scanned square, as in the following example:

State Scanned Square Operations Next State
d X L c

It is imagined that the operations column contains the redundant instruction
P[x], enabling the line to be expressed: dxxLc.
Sometimes a line may contain no instruction to move. For example:

State Scanned Square Operations Next State
d * P[1] c

The absence of a move is indicated by including ‘N’ in the instruction-word:
d=1Nc.

Sometimes a line may contain an instruction to erase the symbol on the
scanned square. This is denoted by the presence of ‘E’ in the ‘operations’ column:

Computable Numbers: A Guide | 11

State Scanned Square Operations Next State

m * E, R n

Turing notes that E is equivalent to P[-]. The corresponding instruction-word is
therefore m«-Rn.

Any table of instructions can be rewritten in the form of a stream of instruc-
tion-words separated by semicolons.> Corresponding to Table 1 is the stream:

a-ORb; b--Rc; c-1Rd; d--Ra;

This stream can be converted into a stream consisting uniformly of the letters
A, C, D, L, R, and N (and the semicolon). Turing calls this a standard description
of the machine in question. The process of conversion is done in such a way that
the individual instructions can be retrieved from the standard description.

The standard description is obtained as follows. First, ‘-’ is replaced by ‘D’, ‘0’
by ‘DC’, and ‘1’ by ‘DCC’. (In general, if we envisage an ordering of all the
printable symbols, the nth symbol in the ordering is replaced by a ‘D’ followed by
n repetitions of ‘C’.) This produces:

aDDCRb; bDDRc¢; cDDCCRd; dDDRa;

Next, the lower case state-symbols are replaced by letters. ‘@’ is replaced by ‘DA,
‘D’ by ‘DAA, ‘c by ‘DAAA and so on. An obvious advantage of the new notation is
that there is no limit to the number of states that can be named in this way.

The standard description corresponding to Table 1 is:

DADDCRDAA; DAADDRDAAA; DAAADDCCRDAAAA; DAAAADDRDA;

Notice that occurrences of ‘D’ serve to mark out the different segments or
regions of each instruction-word. For example, to determine which symbol an
instruction-word says to print, find the third ‘D’ to the right from the beginning
of the word, and count the number of occurrences of ‘C’ between it and the next
D to the right.

The standard description can be converted into a number, called a description
number. Again, the process of conversion is carried out in such a way that the
individual instructions can be retrieved from the description number. A standard
description is converted into a description number by means of replacing each ‘A’
by ‘1, ‘C’ by 2, ‘D’ by ‘3’ ‘L’ by 4} ‘R’ by ‘5, ‘N’ by 6}, and ;’ by 7. In the case of
the above example this produces:

31332531173113353111731113322531111731111335317.6

5 There is a subtle issue concerning the placement of the semicolons. See Davies’s ‘Corrections to Turing’s
Universal Computing Machine’, Sections 3, 7, 10.

6 Properly speaking, the description number is not the string ‘313325311731133531117311133225
31111731111335317, but is the number denoted by this string of numerals.

12 | Jack Copeland

Occurrences of ‘7’ mark out the individual instruction-words, and occurrences
of 3’ mark out the different regions of the instruction-words. For example: to find
out which symbol the third instruction-word says to print, find the second 7’
(starting from the left), then the third ‘3’ to the right of that ‘7, and count the
number of occurrences of 2’ between that 3’ and the next ‘3’ to the right. To find out
the exit state specified by the third instruction-word, find the last ‘3’ in that word
and count the number of occurrences of ‘1’ between it and the next 7’ to the right.

Notice that different standard descriptions can describe the behaviour of one
and the same machine. For example, interchanging the first and second lines of
Table 1 does not in any way affect the behaviour of the machine operating in
accordance with the table, but a different standard description—and therefore a
different description number—will ensue if the table is modified in this way.

This process of converting a table of instructions into a standard description
or a description number is analogous to the process of compiling a computer
programme into ‘machine code’. Programmers generally prefer to work in so-
called high-level languages, such as Pascal, Prolog, and C. Programmes written in
a high-level language are, like Table 1, reasonably easy for a trained human being
to follow. Before a programme can be executed, the instructions must be
translated, or compiled, into the form required by the computer (machine code).

The importance of standard descriptions and description numbers is ex-
plained in what follows.

3. Subroutines

Subroutines are programmes that are used as components of other programmes.
A subroutine may itself have subroutines as components. Programmers usually
have access to a ‘library’ of commonly used subroutines—the programmer takes
ready-made subroutines ‘off the shelf” whenever necessary.

Turing’s term for a subroutine was ‘subsidiary table’. He emphasized the
importance of subroutines in a lecture given in 1947 concerning the Automatic
Computing Engine or ACE, the electronic stored-programme computer that he
began designing in 1945 (see Chapter 9 and the introduction to Chapter 10):

Probably the most important idea involved in instruction tables is that of standard
subsidiary tables. Certain processes are used repeatedly in all sorts of different connections,
and we wish to use the same instructions. .. every time. .. We have only to think out how
[a process] is to be done once, and forget then how it is done.”

In ‘On Computable Numbers’—effectively the first programming manual of
the computer age—Turing introduced a library of subroutines for Turing ma-
chines (in Sections 4 and 7), saying (p. 63):

7 The quotation is from p. 389 below.

Computable Numbers: A Guide | 13

There are certain types of process used by nearly all machines, and these, in some
machines, are used in many connections. These processes include copying down se-
quences of symbols, comparing sequences, erasing all symbols of a given form, etc.

Some examples of subroutines are:

cpe(4, B, x, y) (p. 66):
‘cpe’ may be read ‘compare for equality’. This subroutine compares the string of
symbols marked with an x to the string of symbols marked with a y. The subrou-
tine places the machine in state Bif the two strings are the same, and in state A if
they are different. Note: throughout these examples, ‘A and ‘B’ are variables
representing any states; ‘x’ and ‘y’ are variables representing any symbols.

f(A, B, x) (p. 63):
‘f” stands for ‘find’. This subroutine finds the leftmost occurrence of x. f(A, B,
x) moves the scanner left until the start of the tape is encountered. Then the
scanner is moved to the right, looking for the first x. As soon as an x is found,
the subroutine places the machine in state A, leaving the scanner resting on the
x. If no x is found anywhere on the portion of tape that has so far been written
on, the subroutine places the machine in state B, leaving the scanner resting on
a blank square to the right of the used portion of the tape.

e(A, B, x) (p. 64):
‘e’ stands for ‘erase’. The subroutine e(A, B, x) contains the subroutine f(A,
B, x). e(A, B, x) finds the leftmost occurrence of symbol x and erases it, placing
the machine in state A and leaving the scanner resting on the square that has just
been erased. If no xis found the subroutine places the machine in state B, leaving
the scanner resting on a blank square to the right of the used portion of the tape.

The subroutine f(A, B, x)

It is a useful exercise to construct f(A, B, x) explicitly, i.e. in the form of a table of
instructions. Suppose we wish the machine to enter the subroutine f(A, B, x) when
placed in state n, say. Then the table of instructions is as shown in Table 2.
(Remember that by the convention mentioned earlier, if ever the scanner encoun-
ters two adjacent blank squares, it has passed beyond the region of tape that has been
written on and has entered the region of blank squares stretching away to the right.)

As Turing explains, f(A, B, x) is in effect built out of two further subroutines,
which he writes f;(A, B, x) and f,(A, B, x). The three rows of Table 2 with an ‘m’
in the first column form the subroutine f; (A, B, x), and the three rows with ‘0’ in
the first column form f,(A, B, x).

Skeleton tables

For ease of defining subroutines Turing introduces an abbreviated form of
instruction table, in which one is allowed to write expressions referring to

14 | Jack Copeland

Table 2
Scanned Next

State Square Operations State Comments

n does not contain! L n Search for the first square.

n ! L m Found right-hand member
of the pair ‘II’; move left to
first square of tape; go into
state m. (Notice that x might
be %)

m X none A Found x; go into state A;
subroutine ends.

m neither x nor R m Keep moving right looking

blank for x or a blank.

m blank R o Blank square encountered;
go into state o and examine
next square to the right.

o X none A Found x; go into state A;
subroutine ends.

o neither x nor R m Found a blank followed by a

blank non-blank square but no x;
switch to state m and keep
looking for x.
o blank R B Two adjacent blank squares

encountered; go into state B;
subroutine ends.

Table 3
not! L f(A, B, x)

f(A, B, x){! L f1(A B,x)
X A

fi(A, B, x){ neither x nor blank R f;(A, B, x)
blank R f3(A, B, x)
X A

f,(A, B, x){ neither x nor blank R f,(A, B, x)
blank R B

subroutines in the first and fourth columns (the state columns). Turing calls
these abbreviated tables ‘skeleton tables’ (p. 63). For example, the skeleton table
corresponding to Table 2 is as in Table 3.

Turing’s notation for subroutines is explained further in the appendix to this
guide (‘Subroutines and m-functions’).

Computable Numbers: A Guide | 15

4. The Universal Computing Machine

In Section 7 of ‘On Computable Numbers’ Turing introduces his ‘universal
computing machine’, now known simply as the universal Turing machine. The
universal Turing machine is the stored-programme digital computer in abstract
conceptual form.

The universal computing machine has a single, fixed table of instructions
(which we may imagine to have been set into the machine, once and for all, by
way of the switchboard-like arrangement mentioned earlier). Operating in ac-
cordance with this table of instructions, the universal machine is able to carry out
any task for which an instruction table can be written. The trick is to put an
instruction table—programme—for carrying out the desired task onto the tape
of the universal machine.

The instructions are placed on the tape in the form of a standard descrip-
tion—i.e. in the form of a string of letters that encodes the instruction table. The
universal machine reads the instructions and carries them out on its tape.

The universal Turing machine and the modern computer

Turing’s greatest contributions to the development of the modern computer
were:

* The idea of controlling the function of a computing machine by storing a
programme of symbolically encoded instructions in the machine’s memory.

* His demonstration (in Section 7 of ‘On Computable Numbers’) that, by this
means, a single machine of fixed structure is able to carry out every compu-
tation that can be carried out by any Turing machine whatsoever, i.e. is
universal.

Turing’s teacher and friend Max Newman has testified that Turing’s interest in
building a stored-programme computing machine dates from the time of ‘On
Computable Numbers’ In a tape-recorded interview Newman stated, ‘Turing
himself, right from the start, said it would be interesting to try and make such a
machine’8 (It was Newman who, in a lecture on the foundations of mathematics
and logic given in Cambridge in 1935, launched Turing on the research that led
to the universal Turing machine; see the introduction to Chapter 4.°) In his
obituary of Turing, Newman wrote:

The description that [Turing] gave of a ‘universal’ computing machine was entirely
theoretical in purpose, but Turing’s strong interest in all kinds of practical experiment

8 Newman in interview with Christopher Evans (‘The Pioneers of Computing: An Oral History of
Computing, London, Science Museum).

o Ibid.

16 | Jack Copeland

made him even then interested in the possibility of actually constructing a machine on
these lines.10

Turing later described the connection between the universal computing machine
and the stored-programme digital computer in the following way (Chapter 9,
pp- 378 and 383):

Some years ago I was researching on what might now be described as an investigation of the
theoretical possibilities and limitations of digital computing machines. I considered a type of
machine which had a central mechanism, and an infinite memory which was contained on
an infinite tape. .. It can be shown that a single special machine of that type can be made to
do theworkofall... The special machine may be called the universal machine; it works in the
following quite simple manner. When we have decided what machine we wish to imitate we
punch a description of it on the tape of the universal machine. This description explains what
the machine would do in every configuration in which it might find itself. The universal
machine has only to keep looking at this description in order to find out what it should do at
each stage. Thus the complexity of the machine to be imitated is concentrated in the tape and
does not appear in the universal machine proper in any way. .. [D]igital computing ma-
chines such as the ACE. .. are in fact practical versions of the universal machine. There is a
certain central pool of electronic equipment, and a large memory. When any particular
problem has to be handled the appropriate instructions for the computing process involved
are stored in the memory of the ACE and it is then ‘set up’ for carrying out that process.

Turing’s idea of a universal stored-programme computing machine was pro-
mulgated in the USA by von Neumann and in the UK by Newman, the two
mathematicians who, along with Turing himself, were by and large responsible
for placing Turing’s abstract universal machine into the hands of electronic
engineers.

By 1946 several groups in both countries had embarked on creating a universal
Turing machine in hardware. The race to get the first electronic stored-programme
computer up and running was won by Manchester University where, in Newman’s
Computing Machine Laboratory, the ‘Manchester Baby’ ran its first programme
on 21 June 1948. Soon after, Turing designed the input/output facilities and the
programming system of an expanded machine known as the Manchester Mark 1.1
(There is more information about the Manchester computer in the introductions
to Chapters 4, 9, and 10, and in ‘Artificial Life’) A small pilot version of Turing’s
Automatic Computing Engine first ran in 1950, at the National Physical Labora-
tory in London (see the introductions to Chapters 9 and 10).

10 ‘Dr. A. M. Turing, The Times, 16 June 1954, p. 10.

11 R C. Williams described some of Turing’s contributions to the Manchester machine in a letter written
in 1972 to Brian Randell (parts of which are quoted in B. Randell, ‘On Alan Turing and the Origins of
Digital Computers), in B. Meltzer and D. Michie (eds.), Machine Intelligence 7 (Edinburgh: Edinburgh
University Press, 1972)); see the introduction to Chapter 9 below. A digital facsimile of Turing’s Program-
mers” Handbook for Manchester Electronic Computer (University of Manchester Computing Machine
Laboratory, 1950) is in The Turing Archive for the History of Computing <www.AlanTuring.net/
programmers_handbook>.

www.AlanTuring.net/programmers_handbook
www.AlanTuring.net/programmers_handbook

Computable Numbers: A Guide | 17

By 1951 electronic stored-programme computers had begun to arrive in the
market place. The first model to go on sale was the Ferranti Mark I, the
production version of the Manchester Mark I (built by the Manchester firm
Ferranti Ltd.). Nine of the Ferranti machines were sold, in Britain, Canada, the
Netherlands, and Italy, the first being installed at Manchester University in
February 1951.12 In the United States the first UNIVAC (built by the Eckert-
Mauchly Computer Corporation) was installed later the same year. The LEO
computer also made its debut in 1951. LEO was a commercial version of the
prototype EDSAC machine, which at Cambridge University in 1949 had become
the second stored-programme electronic computer to function.!* 1953 saw the
IBM 701, the company’s first mass-produced stored-programme electronic com-
puter. A new era had begun.

How the universal machine works

The details of Turing’s universal machine, given on pp. 69-72, are moderately
complicated. However, the basic principles of the universal machine are, as
Turing says, simple.

Let us consider the Turing machine M whose instructions are set out in Table 1.
(Recall that M’s scanner is positioned initially over any square of M’s endless
tape, the tape being completely blank.) If a standard description of M is placed
on the universal machine’s tape, the universal machine will simulate or mimic the
actions of M, and will produce, on specially marked squares of its tape, the
output sequence that M produces, namely:

0101010101...

The universal machine does this by reading the instructions that the standard
description contains and carrying them out on its own tape.

In order to start work, the universal machine requires on its tape not only the
standard description but also a record of M’s intial state (a) and the symbol that
M is initially scanning (a blank). The universal machine’s own tape is initially
blank except for this record and M’s standard description (and some ancillary
punctuation symbols mentioned below). As the simulation of M progresses, the
universal machine prints a record on its tape of:

* the symbols that M prints

* the position of M’s scanner at each step of the computation
* the symbol ‘in’ the scanner

* M’s state at each step of the computation.

12§, Lavington, ‘Computer Development at Manchester University’, in N. Metropolis, J. Howlett, and
G. C. Rota (eds.), A History of Computing in the Twentieth Century (New York: Academic Press, 1980).
13 See M. V. Wilkes, Memoirs of a Computer Pioneer (Cambridge, Mass.: MIT Press, 1985).

18 | Jack Copeland

When the universal machine is started up, it reads from its tape M’s initial
state and initial symbol, and then searches through M’s standard description for
the instruction beginning: ‘when in state a and scanning a blank...” The relevant
instruction from Table 1 is:

a blank P[O],R b

The universal machine accordingly prints ‘0. It then creates a record on its tape
of M’s new state, b, and the new position of M’s scanner (i.e. immediately to the
right of the ‘0’ that has just been printed on M’s otherwise blank tape). Next, the
universal machine searches through the standard description for the instruction
beginning ‘when in state b and scanning a blank.... And so on.

How does the universal machine do its record-keeping? After M executes its
first instruction, the relevant portion of M’s tape would look like this—using ‘b’
both to record M’s state and to indicate the position of the scanner. All the other
squares of M’s tape to the left and right are blank.

b

The universal machine keeps a record of this state of affairs by employing three
squares of tape (pp. 62, 68):

The symbol ‘b has the double function of recording M’s state and indicating the
position of M’s scanner. The square immediately to the right of the state-symbol
displays the symbol ‘in’ M’s scanner (a blank).

What does the universal machine’s tape look like before the computation
starts? The standard description corresponding to Table 1 is:

DADDCRDAA; DAADDRDAAA; DAAADDCCRDAAAA; DAAAADDRDA;

The operator places this programme on the universal machine’s tape, writing
only on F-squares and beginning on the second F-square of the tape. The first
F-square and the first E-square are marked with the start-of-tape symbol ‘I’. The
E-squares (shaded in the diagram) remain blank (except for the first).

[t [e]o [a o[{o] e[r[lo [{al al < []o[{a] Ja] e

On the F-square following the final semicolon of the programme, the operator
writes the end-of-programme symbol “:. On the next F-square to the right of
this symbol, the operator places a record of M’s initial state, a, and leaves the

Computable Numbers: A Guide | 19

following F-square blank in order to indicate that M is initially scanning a blank.
The next F-square to the right is then marked with the punctuation symbol ‘"
This completes the setting-up of the tape:

[[tlelr]o]s]r]am|m|e [F=]a] [7]:]

What does the universal machine’s tape look like as the computation progresses?

In response to the first instruction in the standard description, the universal
machine creates the record ‘Ob-:” (in describing the tape, -’ will be used to represent
a blank) on the next four F-squares to the right of the first . Depicting only the
portion of tape to the right of the end-of-programme marker “::’ (and ignoring any
symbols which the universal machine may have written on the E-squares in the
course of dealing with the first instruction), the tape now looks like this:

ENONENERCONONERE

Next the universal machine searches for the instruction beginning ‘when in

state b and scanning a blank...". The relevant instruction from Table 1 is
b blank R c

This instruction would put M into the condition:

c

So the universal machine creates the record ‘0-c-:’ on its tape:

HNONENERONONERRNONERE NN

Each pair of punctuation marks frames a representation (on the F-squares)
of M’s tape extending from the square that was in the scanner at start-up to the
furthest square to the right to have been scanned at that stage of the computation.

The next instruction is:

c blank P[1],R d

This causes the universal machine to create the record ‘0-1d-:. (The diagram
represents a single continuous strip of tape.)

20 | Jack Copeland

And so on. Record by record, the outputs produced by the instructions in Table 1
appear on the universal machine’s tape.

Turing also introduces a variation on this method of record-keeping, whereby
the universal machine additionally prints on the tape a second record of the
binary digits printed by M. The universal machine does this by printing in front
of each record shown in the above diagram a record of any digit newly printed by
M (plus an extra colon):

These single digits bookended by colons form a representation of what has been
printed by M on the F-squares of its tape.

Notice that the record-keeping scheme employed so far requires the universal
machine to be able to print each type of symbol that the machine being
simulated is able to print. In the case of M this requirement is modest, since
M prints only ‘0, ‘1>, and the blank. However, if the universal machine is to be
able to simulate each of the infinitely many Turing machines, then this record-
keeping scheme requires that the universal machine have the capacity to print an
endless variety of types of discrete symbol. This can be avoided by allowing the
universal machine to keep its record of M’s tape in the same notation that is used
in forming standard descriptions, namely with ‘D’ replacing the blank, ‘DC’
replacing ‘0’ ‘DCC’ replacing ‘1’, ‘DA’ replacing ‘@), ‘DAA’ replacing ‘b’ and so on.

The universal machine’s tape then looks like this (to the right of the end-of-
programme symbol “:’ and not including the second record of digits printed
by M):

=l]e [laf ol]: [o [He ol al {a[Jo[]: [lo[e[Jo|ee

In this elegant notation of Turing’s, ‘D’ serves to indicate the start of each new
term on the universal machine’s tape. The letters ‘A’ and ‘C’ serve to distinguish
terms representing M’s states from terms representing symbols on M’s tape.

The E-squares and the instruction table

The universal machine uses the E-squares of its tape to mark up each instruction
in the standard description. This facilitates the copying that the universal
machine must do in order to produce its records of M’s activity. For example,
the machine temporarily marks the portion of the current instruction specifying
M’s next state with ‘y’ and subsequently the material marked)’ is copied to the
appropriate place in the record that is being created. The universal machine’s
records of M’s tape are also temporarily marked in various ways.

Computable Numbers: A Guide | 21

In Section 7 Turing introduces various subroutines for placing and erasing
markers on the E-squares. He sets out the table of instructions for the universal
machine in terms of these subroutines. The table contains the detailed instruc-
tions for carrying out the record-keeping described above.

In Section 2.4 of Chapter 2 Turing’s sometime colleague Donald Davies gives
an introduction to these subroutines and to Turing’s detailed table of instruc-
tions for the universal machine (and additionally corrects some errors in Turing’s
own formulation).

5. Turing, von Neumann, and the Computer

In the years immediately following the Second World War, the Hungarian-
American logician and mathematician John von Neumann—one of the most
important and influential figures of twentieth-century mathematics—made the
concept of the stored-programme digital computer widely known, through his
writings and his charismatic public addresses. In the secondary literature, von
Neumann is often said to have himself invented the stored-programme com-
puter. This is an unfortunate myth.

From 1933 von Neumann was on the faculty of the prestigious Institute for
Advanced Study at Princeton University. He and Turing became well acquainted
while Turing was studying at Princeton from 1936 to 1938 (see the introduction
to Chapter 3). In 1938 von Neumann offered Turing a position as his assistant,
which Turing declined. (Turing wrote to his mother on 17 May 1938: ‘T had
an offer of a job here as von Neumann’s assistant at $1500 a year but decided
not to take it’14 His father had advised him to find a job in America,!> but on
12 April of the same year Turing had written: ‘I have just been to see the Dean
[Luther Eisenhart] and ask him about possible jobs over here; mostly for Daddy’s
information, as I think it unlikely I shall take one unless you are actually at
war before July. He didn’t know of one at present, but said he would bear it
all in mind.)

It was during Turing’s time at Princeton that von Neumann became familiar
with the ideas in ‘On Computable Numbers’. He was to become intrigued with
Turing’s concept of a universal computing machine.!’¢ It is clear that von

14 Turing’s letters to his mother are among the Turing Papers in the Modern Archive Centre, King’s
College Library, Cambridge (catalogue reference K 1).

15 S, Turing, Alan M. Turing (Cambridge: Heffer, 1959), 55.

16 ‘T know that von Neumann was influenced by Turing ... during his Princeton stay before the war, said
von Neumann’s friend and colleague Stanislaw Ulam (in an interview with Christopher Evans in 1976; ‘The
Pioneers of Computing: An Oral History of Computing), Science Museum, London). When Ulam and von
Neumann were touring in Europe during the summer of 1938, von Neumann devised a mathematical game
involving Turing-machine-like descriptions of numbers (Ulam reported by W. Aspray on pp. 178, 313 of his
John von Neumann and the Origins of Modern Computing (Cambridge, Mass.: MIT Press, 1990)). The word

22 | Jack Copeland

Neumann held Turing’s work in the highest regard.l” One measure of his esteem
is that the only names to receive mention in his pioneering volume The Com-
puter and the Brain are those of Turing and the renowned originator of infor-
mation theory, Claude Shannon.18

The Los Alamos physicist Stanley Frankel—responsible with von Neumann
and others for mechanizing the large-scale calculations involved in the design of
the atomic and hydrogen bombs—has recorded von Neumann’s view of the
importance of ‘On Computable Numbers’:

I know that in or about 1943 or ’44 von Neumann was well aware of the fundamental
importance of Turing’s paper of 1936 ‘On computable numbers. .., which describes in
principle the ‘Universal Computer’ of which every modern computer (perhaps not
ENIAC as first completed but certainly all later ones) is a realization. Von Neumann
introduced me to that paper and at his urging I studied it with care. Many people have
acclaimed von Neumann as the ‘father of the computer’ (in a modern sense of the term)
but I am sure that he would never have made that mistake himself. He might well be called
the midwife, perhaps, but he firmly emphasized to me, and to others I am sure, that the
fundamental conception is owing to Turing—insofar as not anticipated by Babbage,
Lovelace, and others. In my view von Neumann’s essential role was in making the world
aware of these fundamental concepts introduced by Turing and of the development work
carried out in the Moore school and elsewhere.!®

In 1944 von Neumann joined the ENIAC group, led by Presper Eckert and
John Mauchly at the Moore School of Electrical Engineering (part of the Univer-
sity of Pennsylvania).20 At this time von Neumann was involved in the Manhat-
tan Project at Los Alamos, where roomfuls of clerks armed with desk calculating
machines were struggling to carry out the massive calculations required by the
physicists. Hearing about the Moore School’s planned computer during a chance
encounter on a railway station (with Herman Goldstine), von Neumann imme-
diately saw to it that he was appointed as consultant to the project.2! ENIAC—
under construction since 1943—was, as previously mentioned, a programme-
controlled (i.e. not stored-programme) computer: programming consisted of

‘intrigued’ is used in this connection by von Neumann’s colleague Herman Goldstine on p. 275 of his The
Computer from Pascal to von Neumann (Princeton: Princeton University Press, 1972).)

17 Turing’s universal machine was crucial to von Neumann’s construction of a self-reproducing automa-
ton; see the chapter ‘Artificial Life’, below.

18 J. von Neumann, The Computer and the Brain (New Haven: Yale University Press, 1958).

19 TLetter from Frankel to Brain Randell, 1972 (first published in B. Randell, ‘On Alan Turing and the
Origins of Digital Computers, in Meltzer and Michie (eds.), Machine Intelligence 7. 1 am grateful to Randell
for giving me a copy of this letter.

20 John Mauchly recalled that 7 September 1944 ‘was the first day that von Neumann had security
clearance to see the ENIAC and talk with Eckert and me’ (J. Mauchly, ‘Amending the ENIAC Story),
Datamation, 25/11 (1979), 217-20 (217)). Goldstine (The Computer from Pascal to von Neumann, 185)
suggests that the date of von Neumann’s first visit may have been a month earlier: ‘I probably took von
Neumann for a first visit to the ENIAC on or about 7 August’.

21 Goldstine, The Computer from Pascal to von Neumann, 182.

Computable Numbers: A Guide | 23

rerouting cables and setting switches. Moreover, the ENIAC was designed with
only one very specific type of task in mind, the calculation of trajectories of
artillery shells. Von Neumann brought his knowledge of ‘On Computable
Numbers’ to the practical arena of the Moore School. Thanks to Turing’s abstract
logical work, von Neumann knew that by making use of coded instructions
stored in memory, a single machine of fixed structure could in principle carry
out any task for which an instruction table can be written.

Von Neumann gave his engineers ‘On Computable Numbers’ to read when, in
1946, he established his own project to build a stored-programme computer at
the Institute for Advanced Study.22 Julian Bigelow, von Neumann’s chief engin-
eer, recollected:

The person who really...pushed the whole field ahead was von Neumann, because he
understood logically what [the stored-programme concept] meant in a deeper way than
anybody else ... The reason he understood it is because, among other things, he under-
stood a good deal of the mathematical logic which was implied by the idea, due to the
work of A. M. Turing...in 1936-1937. ...Turing’s [universal] machine does not sound
much like a modern computer today, but nevertheless it was. It was the germinal
idea...So...[von Neumann] saw...that [ENIAC] was just the first step, and that great
improvement would come.??

Von Neumann repeatedly emphasized the fundamental importance of ‘On
Computable Numbers’ in lectures and in correspondence. In 1946 von Neumann
wrote to the mathematician Norbert Wiener of ‘the great positive contribution of
Turing), Turing’s mathematical demonstration that ‘one, definite mechanism can
be “universal”’24 In 1948, in a lecture entitled ‘The General and Logical Theory
of Automata’, von Neumann said:

The English logician, Turing, about twelve years ago attacked the following problem. He
wanted to give a general definition of what is meant by a computing automaton . .. Turing
carried out a careful analysis of what mathematical processes can be effected by automata
of this type...He...also introduce[d] and analyse[d] the concept of a ‘universal auto-
maton’... An automaton is ‘universal’ if any sequence that can be produced by any
automaton at all can also be solved by this particular automaton. It will, of course, require
in general a different instruction for this purpose. The Main Result of the Turing Theory.
We might expect a priori that this is impossible. How can there be an automaton which is

22 Letter from Julian Bigelow to Copeland (12 Apr. 2002). See also Aspray, John von Neumann, 178.

23 Bigelow in a tape-recorded interview made in 1971 by the Smithsonian Institution and released in
2002. I am grateful to Bigelow for sending me a transcript of excerpts from the interview.

24 The letter, dated 29 Nov. 1946, is in the von Neumann Archive at the Library of Congress, Washington,
DC. In the letter von Neumann also remarked that Turing had ‘demonstrated in absolute ... generality that
anything and everything Brouwerian can be done by an appropriate mechanism’ (a Turing machine). He
made a related remark in a lecture: ‘It has been pointed out by A. M. Turing [in “On Computable
Numbers”] ... that effectively constructive logics, that is, intuitionistic logics, can be best studied in terms
of automata’ (‘Probabilistic Logics and the Synthesis of Reliable Organisms from Unreliable Components),
in vol. v of von Neumann’s Collected Works, ed. A. H. Taub (Oxford: Pergamon Press, 1963), 329).

24 | Jack Copeland

at least as effective as any conceivable automaton, including, for example, one of twice its
size and complexity? Turing, nevertheless, proved that this is possible.2

The following year, in a lecture delivered at the University of Illinois entitled
‘Rigorous Theories of Control and Information, von Neumann said:

The importance of Turing’s research is just this: that if you construct an automaton right,
then any additional requirements about the automaton can be handled by sufficiently
elaborate instructions. This is only true if [the automaton] is sufficiently complicated, if it
has reached a certain minimal level of complexity. In other words...there is a very
definite finite point where an automaton of this complexity can, when given suitable
instructions, do anything that can be done by automata at all.2¢

Von Neumann placed Turing’s abstract ‘universal automaton’ into the hands of
American engineers. Yet many books on the history of computing in the United
States make no mention of Turing. No doubt this is in part explained by the
absence of any explicit reference to Turing’s work in the series of technical reports
in which von Neumann, with various co-authors, set out a logical design for an
electronic stored-programme digital computer.2” Nevertheless there is evidence in
these documents of von Neumann’s knowledge of ‘On Computable Numbers’. For
example, in the report entitled ‘Preliminary Discussion of the Logical Design of an
Electronic Computing Instrument’ (1946), von Neumann and his co-authors,
Burks and Goldstine—both former members of the ENIAC group, who had joined
von Neumann at the Institute for Advanced Study—wrote the following:

3.0. First Remarks on the Control and Code: It is easy to see by formal-logical methods, that
there exist codes that are in abstracto adequate to control and cause the execution of any
sequence of operations which are individually available in the machine and which are, in
their entirety, conceivable by the problem planner. The really decisive considerations from
the present point of view, in selecting a code, are more of a practical nature: Simplicity of
the equipment demanded by the code, and the clarity of its application to the actually
important problems together with the speed of its handling of those problems.28

Burks has confirmed that the first sentence of this passage is a reference to
Turing’s universal computing machine.2?

25 The text of ‘The General and Logical Theory of Automata’ is in vol. v of von Neumann, Collected
Works; see pp. 313-14.

26 The text of ‘Rigorous Theories of Control and Information’ is printed in J. von Neumann, Theory of
Self-Reproducing Automata, ed. A. W. Burks (Urbana: University of Illinois Press, 1966); see p. 50.

27 The first papers in the series were the ‘First Draft of a Report on the EDVAC’ (1945, von Neumann; see
n. 31), and ‘Preliminary Discussion of the Logical Design of an Electronic Computing Instrument’ (1946,
Burks, Goldstine, von Neumann; see n. 28).

28 A. W. Burks, H. H. Goldstine, and J. von Neumann, ‘Preliminary Discussion of the Logical Design of
an Electronic Computing Instrument), 28 June 1946, Institute for Advanced Study, Princeton University,
Section 3.1 (p. 37); reprinted in vol. v of von Neumann, Collected Works.

2 Letter from Burks to Copeland (22 Apr. 1998). See also Goldstine, The Computer from Pascal to von
Neumann, 258.

Computable Numbers: A Guide | 25

The situation in 1945-1946

The passage just quoted is an excellent summary of the situation at that time. In
‘On Computable Numbers’ Turing had shown in abstracto that, by means of
instructions expressed in the programming code of standard descriptions, a
single machine of fixed structure is able to carry out any task that a ‘problem
planner’ is able to analyse into effective steps. By 1945, considerations in
abstracto had given way to the practical problem of devising an equivalent
programming code that could be implemented efficiently by means of thermi-
onic valves (vacuum tubes).

A machine-level programming code in effect specifies the basic opera-
tions that are available in the machine. In the case of Turing’s universal machine
these are move left one square, scan one symbol, write one symbol, and so
on. These operations are altogether too laborious to form the basis of efficient
electronic computation. A practical programming code should not only
be universal, in the sense of being adequate in principle for the program-
ming of any task that can be carried out by a Turing machine, but must in
addition:

* employ basic operations that can be realized simply, reliably, and efficiently
by electronic means;

* enable the ‘actually important problems’ to be solved on the machine as
rapidly as the electronic hardware permits;

* be as easy as possible for the human ‘problem planner’ to work with.

The challenge of designing a practical code, and the underlying mechanism
required for its implementation, was tackled in different ways by Turing and the
several American groups.

Events at the Moore School

The ‘Preliminary Discussion of the Logical Design of an Electronic Computing
Instrument’ was not intended for formal publication and no attempt was made
to indicate those places where reference was being made to the work of others.
(Von Neumann’s biographer Norman Macrae remarked: Johnny borrowed (we
must not say plagiarized) anything from anybody. 3¢ The situation was the same
in the case of von Neumann’s 1945 paper ‘First Draft of a Report on the
EDVAC31 This described the Moore School group’s proposed stored-
programme computer, the EDVAC. The ‘First Draft’ was distributed (by Gold-
stine and a Moore School administrator) before references had been added—and
indeed without consideration of whether the names of Eckert and Mauchly

30 N. Macrae, John von Neumann (New York: Pantheon Books, 1992), 23.

31 J. von Neumann, ‘First Draft of a Report on the EDVAC, Moore School of Electrical Engineering,
University of Pennsylvania, 1945; reprinted in full in N. Stern, From ENIAC to UNIVAC: An Appraisal of the
Eckert-Mauchly Computers (Bedford, Mass.: Digital Press, 1981).

26 | Jack Copeland

should appear alongside von Neumann’s as co-authors.32 Eckert and Mauchly
were outraged, knowing that von Neumann would be given credit for everything
in the report—their ideas as well as his own. There was a storm of controversy
and von Neumann left the Moore School group to establish his own computer
project at Princeton. Harry Huskey, a member of the Moore School group from
the spring of 1944, emphasizes that the ‘First Draft’ should have contained
acknowledgement of the considerable extent to which the design of the proposed
EDVAC was the work of other members of the group, especially Eckert.33

In 1944, before von Neumann came to the Moore School, Eckert and Mauchly
had rediscovered the idea of using a single memory for data and programme.34
(They were far, however, from rediscovering Turing’s concept of a universal
machine.) Even before the ENIAC was completed, Eckert and Mauchly were
thinking about a successor machine, the EDVAC, in which the ENIAC’s most
glaring deficiencies would be remedied. Paramount among these, of course, was
the crude wire’n’plugs method of setting up the machine for each new task. Yet if
pluggable connections were not to be used, how was the machine to be con-
trolled without a sacrifice in speed? If the computation were controlled by means
of existing, relatively slow, technology—e.g. an electro-mechanical punched-card
reader feeding instructions to the machine—then the high-speed electronic
hardware would spend much of its time idle, awaiting the next instruction.
Eckert explained to Huskey his idea of using a mercury ‘delay line:

Eckert described a mercury delay line to me, a five foot pipe filled with mercury which
could be used to store a train of acoustic pulses.. .. [O]ne recirculating mercury line would
store more than 30 [32 bit binary] numbers. .. My first question to Eckert: thinking about
the pluggable connections to control the ENIAC, ‘How do you control the operations?’
‘Instructions are stored in the mercury lines just like numbers, he said. Of course! Once he
said it, it was so obvious, and the only way that instructions could come available at rates
comparable to the data rates. That was the stored program computer.3s

32 See N. Stern, ‘John von Neumann’s Influence on Electronic Digital Computing, 1944-1946’, Annals of
the History of Computing, 2 (1980), 349-62.

33 Huskey in interview with Copeland (Feb. 1998). (Huskey was offered the directorship of the EDVAC
project in 1946 but other commitments prevented him from accepting.)

3¢ Mauchly, ‘Amending the ENIAC Story’; J. P. Eckert, ‘The ENIAC’, in Metropolis, Howlett, and Rota, A
History of Computing in the Twentieth Century; letter from Burks to Copeland (16 Aug. 2003): ‘before von
Neumann came’ to the Moore School, Eckert and Mauchly were ‘saying that they would build a mercury
memory large enough to store the program for a problem as well as the arithmetic data’. Burks points out
that von Neumann was however the first of the Moore School group to note the possibility, implict in the
stored-programme concept, of allowing the computer to modify the addresses of selected instructions in a
programme while it runs (A. W. Burks, ‘From ENIAC to the Stored-Program Computer: Two Revolutions in
Computers), in Metropolis, Howlett, and Rota, A History of Computing in the Twentieth Century, 340-1).
Turing employed a more general form of the idea of instruction modification in his 1945 technical report
‘Proposed Electronic Calculator’ (in order to carry out conditional branching), and the idea of instruction
modification lay at the foundation of his theory of machine learning (see Chapter 9).

35 H. D. Huskey, ‘The Early Days, Annals of the History of Computing, 13 (1991), 290-306 (292-3). The
date of the conversation was ‘perhaps the spring of 1945’ (letter from Huskey to Copeland (5 Aug. 2003)).

Computable Numbers: A Guide | 27

Following his first visit to the ENIAC in 1944, von Neumann went regularly to
the Moore School for meetings with Eckert, Mauchly, Burks, Goldstine, and
others.?s Goldstine reports that ‘these meetings were scenes of greatest intellec-
tual activity’ and that ‘Eckert was delighted that von Neumann was so keenly
interested” in the idea of the high-speed delay line memory. It was, says Gold-
stine, ‘fortunate that just as this idea emerged von Neumann should have
appeared on the scene’.?”

Eckert had produced the means to make the abstract universal computing
machine of ‘On Computable Numbers’ concrete! Von Neumann threw himself at
the key problem of devising a practical code. In 1945, Eckert and Mauchly
reported that von Neumann ‘has contributed to many discussions on the logical
controls of the EDVAC, has prepared certain instruction codes, and has tested
these proposed systems by writing out the coded instructions for specific prob-
lems’?® Burks summarized matters:

Pres [Eckert] and John [Mauchly] invented the circulating mercury delay line store, with
enough capacity to store program information as well as data. Von Neumann created the
first modern order code and worked out the logical design of an electronic computer to
execute it.®

Von Neumann’s embryonic programming code appeared in May 1945 in the
‘First Draft of a Report on the EDVAC.

So it was that von Neumann became the first to outline a ‘practical version
of the universal machine’ (the quoted phrase is Turing’s; see p. 16). The
‘First Draft’ contained little engineering detail, however, in particular concern-
ing electronics. Turing’s own practical version of the universal machine
followed later the same year. His ‘Proposed Electronic Calculator’ set out a
detailed programming code—very different from von Neumann’s—together
with a detailed design for the underlying hardware of the machine (see
Chapter 9).

6. Turing and Babbage

Charles Babbage, Lucasian Professor of Mathematics at the University
of Cambridge from 1828 to 1839, was one of the first to appreciate the enormous
potential of computing machinery. In about 1820, Babbage proposed an

36 Goldstine, The Computer from Pascal to von Neumann, 186.

37 Ibid.

38 J. P. Eckert and J. W. Mauchly, ‘Automatic High Speed Computing: A Progress Report on the EDVAC,,
Moore School of Electrical Engineering, University of Pennsylvania (Sept. 1945), Section 1; this section of
the report is reproduced on pp. 184—6 of L. R. Johnson, System Structure in Data, Programs, and Computers
(Englewood Cliffs, NJ: Prentice-Hall, 1970).

39 Burks, ‘From ENIAC to the Stored-Program Computer: Two Revolutions in Computers’, 312.

28 | Jack Copeland

‘Engine’ for the automatic production of mathematical tables (such as
logarithm tables, tide tables, and astronomical tables).4® He called it the ‘Differ-
ence Engine’. This was the age of the steam engine, and Babbage’s Engine was to
consist of more accurately machined forms of components found in railway
locomotives and the like—brass gear wheels, rods, ratchets, pinions, and so
forth.

Decimal numbers were represented by the positions of ten-toothed metal
wheels mounted in columns. Babbage exhibited a small working model of the
Engine in 1822. He never built the full-scale machine that he had designed, but
did complete several parts of it. The largest of these—roughly 10 per cent of the
planned machine—is on display in the London Science Museum. Babbage used
it to calculate various mathematical tables. In 1990 his ‘Difference Engine No. 2’
was finally built from the original design and this is also on display at the London
Science Museum—a glorious machine of gleaming brass.

In 1843 the Swedes Georg and Edvard Scheutz (father and son) built a sim-
plified version of the Difference Engine. After making a prototype they built two
commercial models. One was sold to an observatory in Albany, New York, and
the other to the Registrar-General’s office in London, where it calculated and
printed actuarial tables.

Babbage also proposed the ‘Analytical Engine’, considerably more ambitious
than the Difference Engine.#! Had it been completed, the Analytical Engine
would have been an all-purpose mechanical digital computer. A large model of
the Analytical Engine was under construction at the time of Babbage’s death in
1871, but a full-scale version was never built.

The Analytical Engine was to have a memory, or ‘store’ as Babbage called it,
and a central processing unit, or ‘mill’ The behaviour of the Analytical Engine
would have been controlled by a programme of instructions contained on
punched cards, connected together by ribbons (an idea Babbage adopted from
the Jacquard weaving loom). The Analytical Engine would have been able to
select from alternative actions on the basis of outcomes of previous actions—a
facility now called ‘conditional branching’

Babbage’s long-time collaborator was Ada, Countess of Lovelace (daughter of
the poet Byron), after whom the modern programming language Ap A is named.
Her vision of the potential of computing machines was in some respects perhaps
more far-reaching even than Babbage’s own. Lovelace envisaged computing that

40 C. Babbage, Passages from the Life of a Philosopher, vol. xi of The Works of Charles Babbage, ed.
M. Campbell-Kelly (London: William Pickering, 1989); see also B. Randell (ed.), The Origins of Digital
Computers: Selected Papers (Berlin: Springer-Verlag, 3rd edn. 1982), ch. 1.

41 See Babbage, Passages from the Life of a Philosopher; A. A. Lovelace and L. F. Menabrea, ‘Sketch of the
Analytical Engine Invented by Charles Babbage, Esq. (1843), in B. V. Bowden (ed.), Faster than Thought
(London: Pitman, 1953); Randell, The Origins of Digital Computers: Selected Papers, ch. 2; A. Bromley,
‘Charles Babbage’s Analytical Engine, 1838, Annals of the History of Computing, 4 (1982), 196-217.

Computable Numbers: A Guide | 29

went beyond pure number-crunching, suggesting that the Analytical Engine
might compose elaborate pieces of music.*2

Babbage’s idea of a general-purpose calculating engine was well known to
some of the modern pioneers of automatic calculation. In 1936 Vannevar Bush,
inventor of the Differential Analyser (an analogue computer), spoke in a lecture
of the possibility of machinery that ‘would be a close approach to Babbage’s large
conception’.#? The following year Howard Aiken, who was soon to build the
digital—but not stored-programme and not electronic—Harvard Automatic
Sequence Controlled Calculator, wrote:

Hollerith...returned to the punched card first employed in calculating machinery by
Babbage and with it laid the groundwork for the development of ... machines as manu-
factured by the International Business Machines Company, until today many of the things
Babbage wished to accomplish are being done daily in the accounting offices of industrial
enterprises all over the world.44

Babbage’s ideas were remembered in Britain also, and his proposed computing
machinery was on occasion a topic of lively mealtime discussion at Bletchley
Park, the wartime headquarters of the Government Code and Cypher School and
birthplace of the electronic digital computer (see ‘Enigma’ and the introductions
to Chapters 4 and 9).45

It is not known when Turing first learned of Babbage’s ideas.*s There is
certainly no trace of Babbage’s influence to be found in ‘On Computable
Numbers’. Much later, Turing generously wrote (Chapter 11, p. 446):

The idea of a digital computer is an old one. Charles Babbage. .. planned such a machine,
called the Analytical Engine, but it was never completed. Although Babbage had all
the essential ideas, his machine was not at that time such a very attractive prospect.

Babbage had emphasized the generality of the Analytical Engine, claiming that
‘the conditions which enable a finite machine to make calculations of unlimited
extent are fulfilled in the Analytical Engine’#” Turing states (Chapter 11, p. 455)
that the Analytical Engine was universal—a judgement possible only from the
vantage point of ‘On Computable Numbers. The Analytical Engine was not,
however, a stored-programme computer. The programme resided externally on

12 Lovelace and Menabrea, ‘Sketch of the Analytical Engine’, 365.

43 V. Bush, ‘Instrumental Analysis, Bulletin of the American Mathematical Society, 42 (1936), 649—69
(654) (the text of Bush’s 1936 Josiah Willard Gibbs Lecture).

4 H. Aiken, ‘Proposed Automatic Calculating Machine’ (1937), in Randell, The Origins of Digital
Computers: Selected Papers, 196.

45 Thomas H. Flowers in interview with Copeland (July 1996).

46 Dennis Babbage, chief cryptanalyst in Hut 6, the section at Bletchley Park responsible for Army,
Airforce, and Railway Enigma, is sometimes said to have been a descendant of Charles Babbage. This was
not in fact so. (Dennis Babbage in interview with Ralph Erskine.)

47 Babbage, Passages from the Life of a Philosopher, 97.

30 | Jack Copeland

punched cards, and as each card entered the Engine, the instruction marked on
that card would be obeyed.

Someone might wonder what difference there is between the Analytical Engine
and the universal Turing machine in that respect. After all, Babbage’s cards
strung together with ribbon would in effect form a tape upon which the
programme is marked. The difference is that in the universal Turing machine,
but not the Analytical Engine, there is no fundamental distinction between
programme and data. It is the absence of such a distinction that marks off a
stored-programme computer from a programme-controlled computer. As
Gandy put the point, Turing’s ‘universal machine is a stored-program machine
[in that], unlike Babbage’s all-purpose machine, the mechanisms used in reading
a program are of the same kind as those used in executing it’.48

7. Origins of the Term ‘Computer Programme’

As previously mentioned, Turing’s tables of instructions for Turing machines are
examples of what are now called computer programmes. When he turned to design-
ing an electronic computer in 1945 (the ACE), Turing continued to use his term
‘instruction table’ where a modern writer would use ‘programme’ or ‘program’.4?
Later material finds Turing referring to the actual process of writing instruction
tables for the electronic computer as ‘programming’ but still using ‘instruction
table’ to refer to the programme itself (see Chapter 9, pp. 388, 390-91).5°

In an essay published in 1950 Turing explained the emerging terminology to
the layman (Chapter 11, p. 445): ‘Constructing instruction tables is usually
described as “programming”. To “programme a machine to carry out the oper-
ation A” means to put the appropriate instruction table into the machine so that
it will do A’

Turing seems to have inherited the term ‘programming’ from the milieu
of punched-card plug-board calculators. (These calculators were electro-
mechanical, not electronic. Electro-mechanical equipment was based on the
relay—a small electrically driven mechanical switch. Relays operated much
more slowly than the thermionic valves (vacuum tubes) on which the first
electronic computers were based; valves owe their speed to the fact that they

48 R. Gandy, ‘The Confluence of Ideas in 1936’, in R. Herken (ed.), The Universal Turing Machine: A Half-
Century Survey (Oxford: Oxford University Press, 1998), 90. Emphasis added.

49 ‘Program’ is the original English spelling, in conformity with ‘anagram’, ‘diagram), etc. The spelling
‘programme’ was introduced into Britain from France in approximately 1800 (Oxford English Dictionary).
The earlier spelling persisted in the United States. Turing’s spelling is followed in this volume (except in
quotations from other authors and in the section by Davies).

50 See also “The Turing-Wilkinson Lecture Series on the Automatic Computing Engine’ (ed. Copeland),
in K. Furukawa, D. Michie, and S. Muggleton (eds.), Machine Intelligence 15 (Oxford: Oxford University
Press, 1999).

Computable Numbers: A Guide | 31

have no moving parts save a beam of electrons—hence the term ‘electronic’)
Plug-board calculators were set up to perform a desired sequence of arithmetical
operations by means of plugging wires into appropriate sockets in a board
resembling a telephone switchboard. Data was fed into the calculator from
punched cards, and a card-punching device or printer recorded the results of
the calculation. An early example of a punched-card machine was constructed in
the USA by Herman Hollerith for use in processing statistical data gathered in
the 1890 census. By the mid-twentieth century most of the world’s computing
was being done by punched-card calculators. Gradually the technology was
displaced by the electronic computer.

When Turing joined the National Physical Laboratory in 1945 there was a large
room filled with punched-card calulating equipment. David Clayden, one of the
engineers who built the ACE, describes the punched-card equipment and the
terminology in use at that time:

When I started at NPL in 1947 there was a well established punched card department,
mainly Hollerith. The workhorse of punched card equipment is the ‘Reproducer’, which
has a broadside card reader and a broadside card punch. By taking a stack of cards from
the punch and putting them into the reader, it is possible to do iterative calculations. All
functions are controlled by a plugboard on which there are two sets of 12 x 80 sockets,
one for the reader and one for the punch. In addition there is a relay store [i.e. memory].
The plugboard can be connected in many ways (using short plugleads) in order to
perform many functions, including addition, subtraction, and multiplication. The plug-
boards are removable. NPL had a stack of them and called them ‘programme’ boards.5!

Turing’s own preference for ‘instruction table’ over the noun ‘programme’ was
not shared by all his colleagues at the NPL. Mike Woodger, Turing’s assistant
from 1946, says: ‘ “Programme” of course was an ordinary English word meaning
a planned sequence of events. We adopted it naturally for any instruction table
that would give rise to a desired sequence of events.>2 The noun ‘programme’
was in use in its modern sense from the earliest days of the ACE project. A
report (probably written by Turing’s immediate superior, Womersley) describing
work done by Turing and his assistants during 1946 stated: ‘It is intended to
prepare the instructions to the machine [the ACE] on Hollerith cards, and it is
proposed to maintain a library of these cards with programmes for standard
operations.5? By the early 1950s specially printed ruled sheets used at the
NPL for writing out programmes bore the printed heading ‘ACE Pilot Model
Programme’.>*

51 Letter from Clayden to Copeland (3 Oct. 2000).

52 Letter from Woodger to Copeland (6 Oct. 2000).

53 ‘Draft Report of the Executive Committee for the Year 1946, National Physical Laboratory, paper
E.910, section Ma. 1, anon., but probably by Womersley (NPL Library; a digital facsimile is in The Turing
Archive for the History of Computing <www.AlanTuring.net/annual_report_1946>).

5¢ J. G. Hayes, ‘The Place of Pilot Programming, MS, 2000.

www.AlanTuring.net/annual_report_1946

32 | Jack Copeland

A document written by Woodger in 1947 used the single ‘m’ spelling: ‘A
Program for Version H’.55 Woodger recalls: “We used both spellings carelessly
for some years until Goodwin (Superintendent of Mathematics Division
from 1951) laid down the rule that the “American” spelling should be used.56
It is possible that the single ‘m’ spelling first came to the NPL via the American
engineer Huskey, who spent 1947 with the ACE group. Huskey was respon-
sible for “Version H’, a scaled-down form of Turing’s design for the ACE (see
Chapter 10).

Like Turing, Eckert and Mauchly, the chief architects of ENIAC, probably
inherited the terms ‘programming’ and ‘program’ from the plug-board calcula-
tor. In 1942, while setting out the idea of a high-speed electronic calculator,
Mauchly used the term ‘programming device’ (which he sometimes shortened to
‘program device’) to refer to a mechanism whose function was to determine how
and when the various component units of a calculator shall perform.57 In the
summer of 1946 the Moore School organized a series of influential lectures
entitled ‘Theory and Techniques for Design of Electronic Digital Computers’ In
the course of these, Eckert used the term ‘programming’ in a similar sense when
describing the new idea of storing instructions in high-speed memory: ‘We.. . . feed
those pieces of information which relate to programming from the memory.s8
Also in 1946, Burks, Goldstine, and von Neumann (all ex-members of the Moore
School group) were using the verb-form ‘program the machine’, and were speak-
ing of ‘program orders’ being stored in memory.>® The modern nominalized form
appears not to have been adopted in the USA until a little later. Huskey says, ‘Tam
pretty certain that no one had written a “program” by the time I left Philadelphia
in June 1946.60

Part Il Computability and Uncomputability

8. Circular and Circle-Free Machines

Turing calls the binary digits ‘0’ and ‘1’ symbols ‘of the first kind’. Any symbols
that a computing machine is able to print apart from the binary digits—such as

55 M. Woodger, ‘A Program for Version H’, handwritten MS, 1947 (in the Woodger Papers, National
Museum of Science and Industry, Kensington, London (catalogue reference N30/37)).

56 Letter from Woodger to Copeland (6 Oct. 2000).

57 J. W. Mauchly, ‘The Use of High Speed Vacuum Tube Devices for Calculating’ (1942), in Randell, The
Origins of Digital Computers: Selected Papers.

58 J. P. Eckert, ‘A Preview of a Digital Computing Machine’ (15 July 1946), in M. Campbell-Kelly and
M. R. Williams (eds.), The Moore School Lectures (Cambridge, Mass.: MIT Press, 1985), 114.

59 Sections 1.2, 5.3 of Burks, Goldstine, and von Neumann, ‘Preliminary Discussion of the Logical Design
of an Electronic Computing Instrument’ (von Neumann, Collected Works, vol. v, 15, 43).

60 Letter from Huskey to Copeland (3 Feb. 2002).

Computable Numbers: A Guide | 33

2), ‘%, ‘x, and blank—Turing calls ‘symbols of the second kind’ (p. 60). He also
uses the term ‘figures’ for symbols of the first kind.

A computing machine is said by Turing to be circular if it never prints more
than a finite number of symbols of the first kind. A computing machine that will
print an infinite number of symbols of the first kind is said to be circle-free
(p. 60). For example, a machine operating in accordance with Table 1 is circle-
free. (The terms ‘circular’ and ‘circle-free’ were perhaps poor choices in this
connection, and the terminology has not been followed by others.)

A simple example of a circular machine is one set up to perform a single
calculation whose result is an integer. Once the machine has printed the result (in
binary notation), it prints nothing more.

A circular machine’s scanner need not come to a halt. The scanner may
continue moving along the tape, printing nothing further. Or, after printing a
finite number of binary digits, a circular machine may work on forever, printing
only symbols of the second kind.

Many real-life computing systems are circle-free, for example automated teller
machine networks, air traffic control systems, and nuclear reactor control
systems. Such systems never terminate by design and, barring hardware failures,
power outages, and the like, would continue producing binary digits forever.

In Section 8 of ‘On Computable Numbers’ Turing makes use of the circular/
circle-free distinction in order to formulate a mathematical problem that cannot
be solved by computing machines.

9. Computable and Uncomputable Sequences

The sequence of binary digits printed by a given computing machine on the
F-squares of its tape, starting with a blank tape, is called the sequence computed by
the machine. Where the given machine is circular, the sequence computed by the
machine is finite. The sequence computed by a circle-free machine is infinite.

A sequence of binary digits is said to be a computable sequence if it is the
sequence computed by some circle-free computing machine. For example, the
infinite sequence 010101 ...1is a computable sequence.

Notice that although the finite sequence 010, for example, is the sequence
computed by some machine, this sequence is not a computable sequence,
according to Turing’s definition. This is because, being finite, 010 is not the
sequence computed by any circle-free machine. According to Turing’s definition,
no finite sequence is a computable sequence. Modern writers usually define
‘computable’ in such a way that every finite sequence is a computable sequence,
since each of them can be computed (e.g. by means of an instruction table that
simply prints the desired sequence). Turing, however, was not much interested in
finite sequences.

34 | Jack Copeland

The focus of Turing’s discussion is his discovery that not every infinite
sequence of binary digits is a computable sequence. That this is so is shown by
what mathematicians call a diagonal argument.

The diagonal argument

Imagine that all the computable sequences are listed one under another. (The
order in which they are listed does not matter.) The list stretches away to infinity
both downwards and to the right. The top left-hand corner might look like this:

01100101011000100101101001000111101 ...
01011101001110001111111111111110111 ...
11010000011011010100000110010000011 . ..

Let’s say that this list was drawn up in the following way (by an infinite deity,
perhaps). The first sequence on the list is the sequence computed by the machine
with a description number that is smaller than any description number of any
other circle-free machine. The second sequence on the list is the one computed
by the circle-free machine with the next smallest description number, and so on.
Every computable sequence appears somewhere on this list. (Some will in fact be
listed twice, since sometimes different description numbers correspond to the
same sequence.)

To prove that not all infinite binary sequences are computable, it is enough to
describe one that does not appear on this list. To this end, consider the infinite
binary sequence formed by moving diagonally down and across the list, starting
at the top left:

01100...
01011...
11010...

The twist is to transform this sequence into a different one by switching each ‘0’
lying on the diagonal to ‘1’ and each ‘1’ to ‘0’ So the first digit of this new
sequence is formed by switching the first digit of the first sequence on the list
(producing 1); the second digit of the sequence is formed by switching the
second digit of the second sequence on the list (producing 0); the third digit is
formed by switching the third digit of the third sequence on the list (producing 1);
and so on. Turing calls this sequence ‘B’ (p. 72).

Computable Numbers: A Guide | 35

A moment’s reflection shows that § cannot itself be one of the listed se-
quences, since it has been constructed in such a way that it differs from each
of these. It differs from the first sequence on the list at the first digit. It differs
from the second sequence on the list at the second digit. And so on. Therefore,
since every computable sequence appears somewhere on this list, 3 is not among
the computable sequences.

Why the computable sequences are listable

A sceptic might challenge this reasoning, saying: ‘Perhaps the computable
sequences cannot be listed. In assuming that the computable sequences can be
listed, one, two, three, and so on, you are assuming in effect that each comput-
able sequence can be paired off with an integer (no two sequences being paired
with the same integer). But what if the computable sequences cannot be paired
off like this with the integers? Suppose that there are just foo many computable
sequences for this to be possible.’ If this challenge were successful, it would pull
the rug out from under the diagonal argument.

The response to the challenge is this. Each circle-free Turing machine produces
just one computable sequence. So there cannot be more computable sequences
than there are circle-free Turing machines. But there certainly cannot be more
circle-free Turing machines than there are integers. This is because every Turing
machine has a description number, which is an integer, and this number is not
shared by any other Turing machine.

This reasoning shows that each computable sequence can be paired off with an
integer, one sequence per integer. As Turing puts this, the computable sequences
are ‘enumerable’ (p. 68).

The totality of infinite binary sequences, however, is non-enumerable. Not all
the sequences can be paired off with integers in such a way that no integer is
allocated more than one sequence. This is because, once every integer has had an
infinite binary sequence allocated to it, one can ‘diagonalize’ in the above way
and produce an extra sequence.

Starting with a blank tape

Incidentally, notice the significance, in Turing’s definition of sequence computed
by the machine, of the qualification ‘starting with a blank tape’. If the comput-
ing machine were allowed to make use of a tape that had already had an
infinite sequence of figures printed on it by some means, then the concept of
a computable sequence would be trivialized. Every infinite binary sequence
would become computable, simply because any sequence of digits whatever—
e.g. B—could be present on the tape before the computing machine starts
printing.

The following trivial programme causes a machine to run along the tape
printing the figures that are already there!

36 | Jack Copeland

a 1 P[1], R a
a 0 P[0], R a
a - P[-], R a

(The third line is required to deal with blank E-squares, if any.)

10. Computable and Uncomputable Numbers

Prefacing a binary sequence by ‘0’ produces a real number expressed in the form
of a binary decimal. For example, prefacing the binary sequence 010101 ... pro-
duces 0.010101 . .. (the binary form of the ordinary decimal 0.363636...). If Bis
the sequence of binary digits printed by a given computing machine, then 0.B is
called the number computed by the machine.

Where the given machine is circular, the number computed by the machine is
always a rational number. A circle-free machine may compute an irrational
number (1, for example).

A number computed by a circle-free machine is said to be a computable
number. Turing also allows that any number ‘that differs by an integer’ from
a number computed by a circle-free machine is a computable number (p. 61).
So if B is the infinite sequence of binary digits printed by some circle-free
machine, then the number computed by the machine, 0.B, is a comput-
able number, as are all the numbers that differ from 0.B by an integer: 1.B,
10.B, etc.

In Section 10 of ‘On Computable Numbers, Turing gives examples of large
classes of numbers that are computable. In particular, he proves that the import-
ant numbers 7 and e are computable.

Not all real numbers are computable, however. This follows immediately from
the above proof that not all infinite binary sequences are computable. If S is an
infinite binary sequence that is uncomputable, then 0.S is an uncomputable
number.

11. The Satisfactoriness Problem

In Section 8 of ‘On Computable Numbers’ Turing describes two mathematical
problems that cannot be solved by computing machines. The first will be referred
to as the satisfactoriness problem.

Satisfactory descriptions and numbers

A standard description is said to be satisfactory if the machine it describes is
circle-free. (Turing’s choice of terminology might be considered awkward, since
there need be nothing at all unsatisfactory, in the usual sense of the word, about a
circular machine.)

Computable Numbers: A Guide | 37

A number is satisfactory if it is a description number of a circle-free machine.
A number is unsatisfactory if either it is a description number of a circular
machine, or it is not a description number at all.

The satisfactoriness problem is this: decide, of any arbitrarily selected standard
description—or, equivalently, any arbitrarily selected description number—
whether or not it is satisfactory. The decision must be arrived at in a finite
number of steps.

The diagonal argument revisited

Turing approaches the satisfactoriness problem by reconsidering the above proof
that not every binary sequence is computable.

Imagine someone objecting to the diagonal argument: ‘Look, there must be
something wrong with your argument, because 3 evidently is computable. In the
course of the argument, you have in effect given instructions for computing
each digit of B, in terms of counting out digits and switching the relevant
ones. Let me try to describe how a Turing machine could compute . I'll
call this Turing machine BETA. BETA is similar to the universal machine in
that it is able to simulate the activity of any Turing machine that one wishes.
First, BETA simulates the circle-free machine with the smallest description
number. BETA keeps up the simulation just as far as is necessary in order to
discover the first digit of the sequence computed by this machine. BETA then
switches this digit, producing the first digit of 3. Next, BETA simulates the circle-
free machine with the next smallest description number, keeping up the simula-
tion until it finds the second digit of the sequence computed by this machine.
And so on.

The objector continues: ‘I can make my description of BETA specific. BETA
uses only the E-squares of its tape to do its simulations, erasing its rough work
each time it begins a new simulation. It prints out the digits of B on successive F-
squares. I need to take account of the restriction that, in order for it to be said
that B is the sequence computed by BETA, BETA must produce the digits of
Bstarting from a blank tape. What BETA will do first of all, starting from a blank
tape, is find the smallest description number that corresponds to a circle-free
machine. It does this by checking through the integers, one by one, starting at 1.
As BETA generates the integers one by one, it checks each to see whether it is a
description number. If the integer is not a description number, then BETA moves
on to the next. If the integer is a description number, then BETA checks whether
the number is satisfactory. Once BETA finds the first integer to describe a circle-
free machine, it uses the instructions contained in the description number in
order to simulate the machine. This is how BETA finds the first digit of 3. Then
BETA continues its search through the integers, until it finds the next smallest
description number that is satisfactory. This enables BETA to calculate the
second digit of 3. And so on’

38 | Jack Copeland

Turing tackles this objection head on, proving that no computing machine can
possibly do what BETA is supposed to do. It suffices for this proof to consider a
slightly simplified version of BETA, which Turing calls &. # is just like BETA
except that & does not switch the digits of the list’s ‘diagonal’ sequence. & is
supposed to write out (on the F-squares) the successive digits not of 8 but of the
‘diagonal’ sequence itself: the sequence whose first digit is the first digit of the
first sequence on the list, whose second digit is the second digit of the second
sequence on the list, and so on. Turing calls this sequence 3. If no computing
machine can compute 3, then there is no such computing machine as BETA—
because if there were, a machine that computes B’ could be obtained from it,
simply by deleting the instructions to switch each of the digits of the diagonal
sequence.

What happens when & meets itself?

Turing asks: what happens when, as & searches through the integers one by one,
it encounters a number describing # itself? Call this description number K.

must first check whether K is a description number. Having ascertained that
it is, & must test whether K is satisfactory. Since # is supposed to be computing
the endless binary sequence B', # itself must be circle-free. So # must pronounce
K to be satisfactory.

In order to find the next digit of B/, # must now simulate the behaviour of the
machine described by K. Since # is that machine, # must simulate its own
behaviour, starting with its very first action. There is nothing wrong with the
idea of a machine starting to simulate its own previous behaviour (just as a
person might act out some episode from their own past). & first simulates (on its
E-squares) the series of actions that it performed up to and including writing
down the first digit of B, then its actions up to and including writing down the
second digit of B’, and so on.

Eventually, however, #’s simulation of its own past reaches the point where &
began to simulate the behaviour of the machine described by K. What must & do
now? # must simulate the series of actions that it performed when simulating the
series of actions that culminated in its writing down the first digit of ', and then
simulate the series of actions that it performed when simulating the series of
actions that culminated in its writing down the second digit of ', and so on! & is
doomed to relive its past forever.

From the point when it began simulating itself, & writes only on the E-squares
of its tape and never adds another digit to the sequence on its F-squares.
Therefore, & does not compute B’. # computes some finite number of digits of
B’ and then sticks.

The problem lies with the glib assumption that # and BETA are able to
determine whether each description number is satisfactory.

Computable Numbers: A Guide | 39

No computing machine can solve the satisfactoriness problem

Since, as has just been shown, no computing machine can possibly do what &
was introduced to do, one of the various tasks that & is supposed to carry out
must be impossible for a computing machine. But all the things that # is
supposed to do apart from checking for satisfactoriness—decide whether a
number is a description number, extract instructions from a description number,
simulate a machine that follows those instructions, and so on—are demonstrably
things that can be done by the universal machine.

By a process of elimination, then, the task that it is impossible for a computing
machine to carry out must be that of determining whether each description
number is satisfactory or not.

12. The Printing and Halting Problems

The printing problem

Some Turing-machine programmes print ‘0’ at some stage in their computation;
all the remaining programmes never print ‘0. Consider the problem of deciding,
given any arbitrarily selected programme, into which of these two categories it
falls. This is an example of the printing problem.

The printing problem (p. 73) is the problem of determining whether or not
the machine described by any arbitrarily selected standard description (or,
equivalently, any arbitrarily selected description number) ever prints a certain
symbol (0, for example). Turing proves that if the printing problem were
solvable by some computing machine, then the satisfactoriness problem would
be too. Therefore neither is.

The halting problem

Another example of a problem that cannot be solved by computing machines,
and a close relative of the printing problem, is the halting problem. This is the
problem of determining whether or not the machine described by any arbitrarily
selected standard description eventually halts—i.e. ceases moving altogether—
when started on a given tape (e.g. a blank tape).

The machine shown in Table 1 is rather obviously one of those that never
halt—but in other cases it is not at all obvious from a machine’s table whether or
not it halts. Simply watching the machine run (or a simulation of the machine) is
of little help, for what can be concluded if after a week or a year the machine has
not halted? If the machine does eventually halt, a watching human—or Turing
machine—will sooner or later find this out; but in the case of a machine that has
not yet halted, there is no systematic method for deciding whether or not it is
going to halt.

40 | Jack Copeland

The halting problem was so named (and, it appears, first stated) by Martin
Davis.6! The proposition that the halting problem cannot be solved by computing
machine is known as the ‘halting theorem’.62 (It is often said that Turing stated and
proved the halting theorem in ‘On Computable Numbers’, but strictly this is not
true.)

13. The Church-Turing Thesis

Human computers

When Turing wrote ‘On Computable Numbers, a computer was not a machine
at all, but a human being. A computer—sometimes also spelt ‘computor’'—was a
mathematical assistant who calculated by rote, in accordance with a systematic
method. The method was supplied by an overseer prior to the calculation. Many
thousands of human computers were employed in business, government, and
research establishments, doing some of the sorts of calculating work that now-
adays is performed by electronic computers. Like filing clerks, computers might
have little detailed knowledge of the end to which their work was directed.

The term ‘computing machine’ was used to refer to small calculating machines
that mechanized elements of the human computer’s work. These were somewhat
like today’s non-programmable hand-calculators: they were not automatic, and
each step—each addition, division, and so on—was initiated manually by the
human operator. A computing machine was in effect a homunculus, calculating
more quickly than an unassisted human computer, but doing nothing that could
not in principle be done by a human clerk working by rote. For a complex
calculation, several dozen human computers might be required, each equipped
with a desk-top computing machine.

In the late 1940s and early 1950s, with the advent of electronic computing
machines, the phrase ‘computing machine’ gave way gradually to ‘computer’.
During the brief period in which the old and new meanings of ‘computer’
coexisted, the prefix ‘electronic’ or ‘digital’ would usually be used in order to
distinguish machine from human. As Turing stated, the new electronic machines
were ‘intended to carry out any definite rule of thumb process which could have
been done by a human operator working in a disciplined but unintelligent
manner’.5> Main-frames, laptops, pocket calculators, palm-pilots—all carry out

61 See M. Davis, Computability and Unsolvability (New York: McGraw-Hill, 1958), 70. Davis thinks it
likely that he first used the term ‘halting problem’ in a series of lectures that he gave at the Control Systems
Laboratory at the University of Illinois in 1952 (letter from Davis to Copeland, 12 Dec. 2001).

62 It is interesting that if one lifts the restriction that the determination must be carried out in a finite
number of steps, then Turing machines are able to solve the halting and printing problems, and moreover in
a finite time. See B. J. Copeland, ‘Super Turing-Machines’, Complexity, 4 (1998), 30-2, and ‘Accelerating
Turing Machines’, Minds and Machines, 12 (2002), 281-301.

63 Turing’s Programmers’ Handbook for Manchester Electronic Computer, 1.

Computable Numbers: A Guide | 41

work that a human rote-worker could do, if he or she worked long enough, and
had a plentiful enough supply of paper and pencils.

It must be borne in mind when reading ‘On Computable Numbers’ that
Turing there used the word ‘computer’ in this now archaic sense. Thus he says,
for example, ‘Computing is normally done by writing certain symbols on paper’
(p. 75) and ‘The behaviour of the computer at any moment is determined by the
symbols which he is observing, and his “state of mind”’ (p. 75).

The Turing machine is an idealization of the human computer (p. 59):
‘We may compare a man in the process of computing a real number to a
machine which is only capable of a finite number of conditions... called
“m-configurations”. The machine is supplied with a “tape” ...” Wittgenstein
put the point in a striking way: ‘Turing’s “Machines”. These machines are
humans who calculate.64

In the primary sense, a computable number is a real number that can be
calculated by a human computer—or in other words, a real number that a
human being can calculate by means of a systematic method. When Turing
asserts that ‘the “computable” numbers include all numbers which would natur-
ally be regarded as computable’ (p. 74), he means that each number that is
computable in this primary sense is also computable in the technical sense
defined in Section 2 of ‘On Computable Numbers' (see Section 10 of this
introduction).

The thesis
Turing’s thesis, that

the ‘computable’ numbers include all numbers which would naturally be
regarded as computable,

is now known as the Church—Turing thesis.
Some other ways of expressing the thesis are:

1. The universal Turing machine can perform any calculation that any human
computer can carry out.
2. Any systematic method can be carried out by the universal Turing machine.

The Church—Turing thesis is sometimes heard in the strengthened form:

Anything that can be made completely precise can be programmed for a
universal digital computer.

However, this strengthened form of the thesis is false.65 The printing, halting,
and satisfactoriness problems are completely precise, but of course cannot be
programmed for a universal computing machine.

64 L. Wittgenstein, Remarks on the Philosophy of Psychology, vol. i (Oxford: Blackwell, 1980), § 1096.
65 As Martin Davis emphasized long ago in his Computability and Unsolvability, p. vii.

42 | Jack Copeland

Systematic methods

A systematic method—sometimes also called an effective method and a mechan-
ical method—is any mathematical method of which all the following are true:

* the method can, in practice or in principle, be carried out by a human
computer working with paper and pencil;

* the method can be given to the human computer in the form of a finite

number of instructions;

the method demands neither insight nor ingenuity on the part of the human

being carrying it out;
* the method will definitely work if carried out without error;
the method produces the desired result in a finite number of steps; or, if the
desired result is some infinite sequence of symbols (e.g. the decimal expan-
sion of), then the method produces each individual symbol in the
sequence in some finite number of steps.

The term ‘systematic’ and its synonyms ‘effective’ and ‘mechanical’ are terms
of art in mathematics and logic. They do not carry their everyday meanings. For
example: if some type of machine were able to solve the satisfactoriness problem,
the method it used would not be systematic or mechanical in this sense. (Turing
is sometimes said to have proved that no machine can solve the satisfactoriness
problem. This is not so. He demonstrates only that his idealized human com-
puters—Turing machines—cannot solve the satisfactoriness problem. This does
not in itself rule out the possibility that some other type of machine might be
able to solve the problem.s¢)

Turing sometimes used the expression rule of thumbin place of ‘systematic’. If this
expression is employed, the Church—Turing thesis becomes (Chapter 10, p. 414):

LCMs can do anything that could be described as ‘rule of thumb’ or ‘purely
mechanical’.

‘LCM’ stands for ‘logical computing machine’, a term that Turing seems to have
preferred to the (then current) “Turing machine’

Section 9 of ‘On Computable Numbers’ contains a bouquet of arguments for
Turing’s thesis. The arguments are persuasive, but do not offer the certainty
of mathematical proof. As Turing says wryly of a related thesis in Chapter 17
(p. 588): ‘The statement is. ..one which one does not attempt to prove. Propa-
ganda is more appropriate to it than proof’

Additional arguments and other forms of evidence for the thesis amassed.
These, too, left matters short of absolute certainty. Nevertheless, before long it
was, as Turing put it, ‘agreed amongst logicians’ that his proposal gives the

66 See R. Gandy, ‘Church’s Thesis and Principles for Mechanisms), in J. Barwise, H. J. Keisler, and K.
Kunen (eds.), The Kleene Symposium (Amsterdam: North-Holland, 1980).

Computable Numbers: A Guide | 43

‘correct accurate rendering’ of talk about systematic methods (Chapter 10,
p- 414).67 There have, however, been occasional dissenting voices over the years
(for example, Kalmar and Péter).68

The converse of the thesis
The converse of the Church-Turing thesis is:

Any number, or binary sequence, that can be computed by the universal
Turing machine can be calculated by means of a systematic method.

This is self-evidently true—the instruction table on the universal machine’s tape
is itself a specification of a systematic method for calculating the number
or sequence in question. In principle, a human being equipped with paper
and pencil could work through the instructions in the table and write out the
digits of the number, or sequence, without at any time exercising ingenuity or
insight (‘in principle’ because we have to assume that the human does not throw
in the towel from boredom, die of old age, or use up every sheet of paper in the
universe).

Application of the thesis

The concept of a systematic method is an informal one. Attempts—such as the
above—to explain what counts as a systematic method are not rigorous, since the
requirement that the method demand neither insight nor ingenuity is left
unexplicated.

One of the most significant achievements of ‘On Computable Numbers'—and
this was a large step in the development of the mathematical theory of compu-
tation—was to propose a rigorously defined expression with which the informal
expression ‘by means of a systematic method’ might be replaced. The rigorously
defined expression is, of course, ‘by means of a Turing machine’.

The importance of Turing’s proposal is this. If the proposal is correct—i.e. if
the Church-Turing thesis is true—then talk about the existence or non-existence
of systematic methods can be replaced throughout mathematics and logic by talk
about the existence or non-existence of Turing-machine programmes. For in-
stance, one can establish that there is no systematic method at all for doing such-
and-such a thing by proving that no Turing machine can do the thing in
question. This is precisely Turing’s strategy with the Entscheidungsproblem, as
explained in the next section.

67 There is a survey of the evidence in chapters 12 and 13 of S. C. Kleene, Introduction to Metamathe-
matics (Amsterdam: North-Holland, 1952).

68 L. Kalmar, ‘An Argument against the Plausibility of Church’s Thesis, R. Péter, ‘Rekursivitit und
Konstruktivitit’; both in A. Heyting (ed.), Constructivity in Mathematics (Amsterdam: North-Holland,
1959).

44 | Jack Copeland

Church’s contribution

In 1935, on the other side of the Atlantic, Church had independently proposed a
different way of replacing talk about systematic methods with formally precise
language (in a lecture given in April of that year and published in 1936).6° Turing
learned of Church’s work in the spring of 1936, just as ‘On Computable
Numbers’ was nearing completion (see the introduction to Chapter 4).

Where Turing spoke of numbers and sequences, Church spoke of mathemat-
ical functions. (x* and x + y are examples of mathematical functions. 4 is said to
be the value of the function x* for x = 2.) Corresponding to each computable
sequence S is a computable function fx (and vice versa). The value of fx for x = 1
is the first digit of S, for x = 2, the second digit of S, and so on. In ‘On
Computable Numbers’ Turing said (p. 58): ‘Although the subject of this paper
is ostensibly the computable numbers, it is almost equally easy to define and
investigate computable functions...I have chosen the computable numbers for
explicit treatment as involving the least cumbrous technique.

Church’s analysis was in terms of his and Stephen Kleene’s concept of a
lambda-definable function. A function of positive integers is said to be lambda-
definable if the values of the function can be calculated by a process of repeated
substitution.

Thus we have alongside Turing’s thesis

Church’s thesis: every function of positive integers whose values can be calcu-
lated by a systematic method is lambda-definable.

Although Turing’s and Church’s approaches are different, they are nevertheless
equivalent, in the sense that every lambda-definable function is computable by
the universal machine and every function (or sequence) computable by the
universal machine is lambda-definable.”® Turing proved this in the Appendix
to ‘On Computable Numbers’ (added in August 1936).

The name ‘Church-Turing thesis’, now standard, seems to have been intro-
duced by Kleene, with a flourish of bias in favour of his mentor Church: ‘So
Turing’s and Church’s theses are equivalent. We shall usually refer to them both
as Church’s thesis, or in connection with that one of its. .. versions which deals
with “Turing machines” as the Church-Turing thesis.7!

Although Turing’s and Church’s theses are equivalent in the logical sense, there
is nevertheless good reason to prefer Turing’s formulation. As Turing wrote in
1937: ‘The identification of “effectively calculable” functions with computable

69 Church, ‘An Unsolvable Problem of Elementary Number Theory’.

70 Equivalent, that is, if the computable functions are restricted to functions of positive integers. Turing’s
concerns were rather more general than Church’s, in that whereas Church considered only functions of
positive integers, Turing described his work as encompassing ‘computable functions of an integral variable
or a real or computable variable, computable predicates, and so forth’ (p. 58, below). Turing intended to
pursue the theory of computable functions of a real variable in a subsequent paper, but in fact did not do so.

71 S. C. Kleene, Mathematical Logic (New York: Wiley, 1967), 232.

Computable Numbers: A Guide | 45

functions is possibly more convincing than an identification with the N-definable
[lambda-definable] or general recursive functions.’72 Church acknowledged the
point:

As a matter of fact, there is... equivalence of three different notions: computability by a
Turing machine, general recursiveness in the sense of Herbrand-Godel-Kleene, and
N-definability in the sense of Kleene and [myself]. Of these, the first has the advantage
of making the identification with effectiveness in the ordinary (not explicitly defined)
sense evident immediately. .. The second and third have the advantage of suitability for
embodiment in a system of symbolic logic.73

The great Kurt Godel, it seems, was unpersuaded by Church’s thesis until he
saw Turing’s formulation. Kleene wrote:

According to a November 29, 1935, letter from Church to me, Godel ‘regarded as
thoroughly unsatisfactory’ Church’s proposal to use A-definability as a definition of
effective calculability...It seems that only after Turing’s formulation appeared did
Godel accept Church’s thesis.”*

Hao Wang reports Godel as saying: “We had not perceived the sharp concept of
mechanical procedures sharply before Turing, who brought us to the right
perspective.7>

Godel described Turing’s analysis of computability as ‘most satisfactory’ and
‘correct . .. beyond any doubt’.”¢ He also said: ‘the great importance of . .. Turing’s
computability...seems to me...largely due to the fact that with this concept
one has for the first time succeeded in giving an absolute definition of an
interesting epistemological notion.7”

14. The Entscheidungsproblem

In Section 11 of ‘On Computable Numbers’, Turing turns to the Entscheidungs-
problem, or decision problem. Church gave the following definition of the
Entscheidungsproblem:

By the Entscheidungsproblem of a system of symbolic logic is here understood the problem
to find an effective method by which, given any expression Q in the notation of the system,
it can be determined whether or not Q is provable in the system.”8

72 Turing, ‘Computability and \-Definability’, Journal of Symbolic Logic, 2 (1937), 153-63 (153).

73 Church’s review of ‘On Computable Numbers’ in Journal of Symbolic Logic, 43.

74 S. C. Kleene, ‘Origins of Recursive Function Theory’, Annals of the History of Computing, 3 (1981),
52-67 (59, 61).

75 H. Wang, From Mathematics to Philosophy (New York: Humanities Press, 1974), 85.

76 K. Godel, Collected Works, ed. S. Feferman et al., vol. iii (Oxford: Oxford University Press, 1995), 304,
168.

77 Ibid., vol. ii. (Oxford: Oxford University Press, 1990), 150.

78 Church, ‘A Note on the Entscheidungsproblem, 41.

46 | Jack Copeland

The decision problem was brought to the fore of mathematics by the German
mathematician David Hilbert (who in a lecture given in Paris in 1900 set the
agenda for much of twentieth-century mathematics). In 1928 Hilbert described
the decision problem as ‘the main problem of mathematical logic, saying that
‘the discovery of a general decision procedure is a very difficult problem which is
as yet unsolved, and that the ‘solution of the decision problem is of fundamental
importance’.’?

The Hilbert programme

Hilbert and his followers held that mathematicians should seek to express
mathematics in the form of a complete, consistent, decidable formal system—a
system expressing ‘the whole thought content of mathematics in a uniform
way’.80 Hilbert drew an analogy between such a system and ‘a court of arbitra-
tion, a supreme tribunal to decide fundamental questions—on a concrete basis
on which everyone can agree and where every statement can be controlled’s!
Such a system would banish ignorance from mathematics: given any mathemat-
ical statement, one would be able to tell whether the statement is true or false by
determining whether or not it is provable in the system. As Hilbert famously
declared in his Paris lecture: ‘in mathematics there is no ignorabimus (there is no
we shall not know).82

It is important that the system expressing the ‘whole thought content of
mathematics’ be consistent. An inconsistent system—a system containing con-
tradictions—is worthless, since any statement whatsoever, true or false, can be
derived from a contradiction by simple logical steps.83 So in an inconsistent

79 D. Hilbert and W. Ackermann, Grundziige der Theoretischen Logik [Principles of Mathematical Logic]
(Berlin: Julius Springer, 1928), 73, 77.

80 D. Hilbert, “The Foundations of Mathematics’ (English translation of a lecture given in Hamburg in
1927, entitled ‘Die Grundlagen der Mathematik’), in J. van Heijenoort (ed.), From Frege to Gidel: A Source
Book in Mathematical Logic, 1879-1931 (Cambridge, Mass.: Harvard University Press, 1967), 475.

81 D, Hilbert, ‘Uber das Unendliche’ [On the Infinite], Mathematische Annalen, 95 (1926), 161-90 (180);
English translation by E. Putnam and G. Massey in R. L. Epstein and W. A. Carnielli, Computability: Computable
Functions, Logic, and the Foundations of Mathematics (2nd edn. Belmont, Calif.: Wadsworth, 2000).

82 D, Hilbert, ‘Mathematical Problems: Lecture Delivered before the International Congress of Mathem-
aticians at Paris in 1900, Bulletin of the American Mathematical Society, 8 (1902), 437-79 (445).

83 To prove an arbitrary statement from a contradiction P & not P, one may use the following rules of
inference (see further pp. 49-52, below):

(a) not P + not (P & X)
(b) P & not (P & X) F not X.

Rule (a) says: from the statement that it is not the case that B, it can be inferred that not both Pand X are the
case—i.e. inferred that one at least of P and X is not the case—where X is any statement that you please.
Rule (b) says: given that P is the case and that not both Pand X are the case, it can be inferred that X is not
the case. Via (a), the contradiction ‘P & not P’ leads to ‘not (P & X)’; and since the contradiction also offers
us B we may then move, via (), to ‘not X. So we have deduced an arbitrary statement, ‘not X, from the
contradiction. (To deduce simply X, replace X in (a) and (b) by ‘not X, and at the last step use the rule saying
that two negations ‘cancel out’: not not X - X.)

Computable Numbers: A Guide | 47

system, absurdities such as 0 = 1 and 6 # 6 are provable. An inconsistent system
would indeed contain all true mathematical statements—would be complete,
in other words—but would in addition also contain all false mathematical
statements!

Hilbert’s requirement that the system expressing the whole content of math-
ematics be decidable amounts to this: there must be a systematic method for
telling, of each mathematical statement, whether or not the statement is provable
in the system. If the system is to banish ignorance totally from mathematics then
it must be decidable. Only then could we be confident of always being able to tell
whether or not any given statement is provable. An undecidable system might
sometimes leave us in ignorance.

The project of expressing mathematics in the form of a complete, consistent,
decidable formal system became known as ‘proof theory’ and as the ‘Hilbert
programme’. In 1928, in a lecture delivered in the Italian city of Bologna,
Hilbert said:

In a series of presentations in the course of the last years I have...embarked upon a new
way of dealing with fundamental questions. With this new foundation of mathematics,
which one can conveniently call proof theory, I believe the fundamental questions in
mathematics are finally eliminated, by making every mathematical statement a concretely
demonstrable and strictly derivable formula. ..

[I]n mathematics there is no ignorabimus, rather we are always able to answer meaningful
questions; and it is established, as Aristotle perhaps anticipated, that our reason involves
no mysterious arts of any kind: rather it proceeds according to formulable rules that are
completely definite—and are as well the guarantee of the absolute objectivity of its
judgement.84

Unfortunately for the Hilbert programme, however, it was soon to become
clear that most interesting mathematical systems are, if consistent, incomplete
and undecidable.

In 1931, Godel showed that Hilbert’s ideal is impossible to satisty, even in the
case of simple arithmetic.8> He proved that the formal system of arithmetic set
out by Whitehead and Russell in their seminal Principia Mathematicas® is, if
consistent, incomplete. That is to say: if the system is consistent, there are true

84 D. Hilbert, ‘Probleme der Grundlegung der Mathematik’ [Problems Concerning the Foundation of
Mathematics], Mathematische Annalen, 102 (1930), 1-9 (3, 9). Translation by Elisabeth Norcliffe.

85 K. Godel, ‘Uber formal unentscheidbare Sitze der Principia Mathematica und verwandter Systeme 1.
[On Formally Undecidable Propositions of Principia Mathematica and Related Systems I], Monatshefte fiir
Mathematik und Physik, 38 (1931), 173-98. English translation in M. Davis (ed.), The Undecidable: Basic
Papers on Undecidable Propositions, Unsolvable Problems and Computable Functions (New York: Raven,
1965), 5-38.

86 A. N. Whitehead and B. Russell, Principia Mathematica, vols. i-iii (Cambridge: Cambridge University
Press, 1910-13).

48 | Jack Copeland

statements of arithmetic that are not provable in the system—the formal system
fails to capture the ‘whole thought content’ of arithmetic. This is known as
Godel’s first incompleteness theorem.

Godel later generalized this result, pointing out that ‘due to A. M. Turing’s
work, a precise and unquestionably adequate definition of the general concept
of formal system can now be given, with the consequence that incomplete-
ness can ‘be proved rigorously for every consistent formal system containing a
certain amount of finitary number theory.8” The definition made possible
by Turing’s work is this (in Godel’s words): ‘A formal system can simply be
defined to be any mechanical procedure for producing formulas, called provable
formulas.’s8

In his incompleteness theorem, Godel had shown that no matter how hard
mathematicians might try to construct the all-encompassing formal
system envisaged by Hilbert, the product of their labours would, if consistent,
inevitably be incomplete. As Hermann Weyl—one of Hilbert’s greatest pupils—
observed, this was nothing less than ‘a catastrophe’ for the Hilbert pro-
gramme.?®

Decidability

Godel’s theorem left the question of decidability open. As Newman summarized
matters:

The Hilbert decision-programme of the 1920’s and 30’s had for its objective the discovery
of a general process.. . for deciding... truth or falsehood...A first blow was dealt at the
prospects of finding this new philosopher’s stone by Godel’s incompleteness theorem
(1931), which made it clear that truth or falsehood of A could not be equated to
provability of A or not-A in any finitely based logic, chosen once for all; but there still
remained in principle the possibility of finding a mechanical process for deciding whether
A, or not-A, or neither, was formally provable in a given system.%°

The question of decidability was tackled head on by Turing and, independently,
by Church.

On p. 84 of ‘On Computable Numbers’ Turing pointed out—by way of a
preliminary—a fact that Hilbertians appear to have overlooked: if a system is
complete then it follows that it is also decidable. Bernays, Hilbert’s close collabor-
ator, had said: ‘One observes that [the] requirement of deductive completeness

87 Godel, ‘Postscriptum’, in Davis, The Undecidable: Basic Papers on Undecidable Propositions, Unsolvable
Problems and Computable Functions, 71-3 (71); the Postscriptum, dated 1964, is to Gddel’s 1934 paper ‘On
Undecidable Propositions of Formal Mathematical Systems’ (ibid. 41-71).

88 bid. 72.

89 H. Weyl, ‘David Hilbert and his Mathematical Work’, Bulletin of the American Mathematical Society, 50
(1944), 612-54 (644).

9 M. H. A. Newman, ‘Alan Mathison Turing, 1912-1954’, Biographical Memoirs of Fellows of the Royal
Society, 1 (1955), 253-63 (256).

Computable Numbers: A Guide | 49

does not go as far as the requirement of decidability.®! Turing’s simple argument
on p. 84 shows that there is no conceptual room for the distinction that Bernays
is claiming.

Nevertheless, the crucial question was still open: given that in fact simple
arithmetic is (if consistent) incomplete, is it or is it not decidable? Turing and
Church both showed that no consistent formal system of arithmetic is decidable.
They showed this by proving that not even the functional calculus—the weaker,
purely logical system presupposed by any formal system of arithmetic—is decid-
able. The Hilbertian dream of a completely mechanized mathematics now lay in
total ruin.

A tutorial on first-order predicate calculus

What Turing called the functional calculus (and Church, following Hilbert, the
engere Funktionenkalkiil) is today known as first-order predicate calculus (FOPC).
FOPC is a formalization of deductive logical reasoning.

There are various different but equivalent ways of formulating FOPC. One
formulation presents FOPC as consisting of about a dozen formal rules of infer-
ence. (This formulation, which is more accessible than the Hilbert—Ackermann
formulation mentioned by Turing on p. 84, is due to Gerhard Gentzen.?2)

The following are examples of formal rules of inference. The symbol ‘+’
indicates that the statement following it can be concluded from the statements
(or statement) displayed to its left, the premisses.

(i) X,if Xthen Y Y
(i) Xand YF X
(i) X, YFXand Y

So if, for example, ‘X represents ‘It is sunny’ and ‘Y’ represents “‘We will go for a
picnic), (i) says:

‘We will go for a picnic’ can be concluded from the premisses ‘It is sunny’” and
If it is sunny then we will go for a picnic.

(ii) says:

‘It is sunny’ can be concluded from the conjunctive premiss ‘It is sunny and we

will go for a picnic’.

Turing uses the symbol ‘—’ to abbreviate ‘if then’ and the symbol ‘&’ to
abbreviate ‘and’. Using this notation, (i)—(iii) are written:

91 P. Bernays, ‘Die Philosophie der Mathematik und die Hilbertsche Beweistheorie’ [The Philosophy of
Mathematics and Hilbert’s Proof Theory], Blitter fiir Deutsche Philosophie, 4 (1930/1931), 326—67. See also
H. Wang, Reflections on Kurt Godel (Cambridge, Mass.: MIT Press, 1987), 87-8.

92 G. Gentzen, ‘Investigations into Logical Deduction’ (1934), in The Collected Papers of Gerhard Gentzen,
ed. M. E. Szabo (Amsterdam: North-Holland, 1969).

50 | Jack Copeland

) X, X—YFrY
(i) X&YEFX
(i) X, YFX &Y

Some more rules of the formal calculus are as follows. a represents any object,
F represents any property:

(iv) a has property F - there is an object that has property F
(v) each object has property F |- a has property F

In Turing’s notation, in which ‘a has property F’ is abbreviated ‘F(a)’, these are
written:

(iv) F(a) - (3x)F(x)
(V) (0)F(x) - F(a)

‘(3x)’ is read: ‘there is an object (call it x) which ...”. So ‘(3x)F(x)’ says ‘there is
an object, call it x, which has property F’. ‘(x)’ is read: ‘each object, x, is such that
.... So ‘(x)F(x)’ says ‘each object, x, is such that x has property F’.

Set out in full, FOPC contains not only rules like (i)—(v) but also several rules
leading from statements containing ‘-’ to other statements containing ‘. One
such rule is the so-called ‘cut rule’, used in moving from lines (2) and (3) to (4)
in the proof below.

Turing calls ‘(Ix)’ and ‘(x)’ quantors; the modern term is quantifiers. A
symbol, such as ‘F’, that denotes a property is called a predicate. Symbols
denoting relationships, for example ‘<’ (less than) and ‘=" (identity), are also
classed as predicates. The symbol ‘X’ is called a variable.

(FOPC is first-order in the sense that the quantifiers of the calculus always
involve variables that refer to individual objects. In second-order predicate calcu-
lus, on the other hand, the quantifiers can contain predicates, as in ‘(3F)’. The
following are examples of second-order quantification: ‘Jules and Jim have some
properties in common, ‘Each relationship that holds between a and b also holds
between c and d.)

Using the dozen or so basic rules of FOPC, more complicated rules of
inference can be proved as theorems (‘provable formulas’) of FOPC. For example:

Theorem (x)(G(x) — H(x)), G(a) F (Ix)H(x)
This theorem says: ‘There is an object that has property H’ can be concluded
from the premisses ‘Each object that has property G also has property H’ and ‘a
has property G’
The proof of the theorem is as follows:

(1) (0)(G(x) — H(x)) - G(a) — H(a) (rule (v))
(2) G(a), (G(a) — H(a)) - H(a) (rule (1))
(3) H(a) F (3x)H(x) (rule (iv))

(4) G(a), (G(a) —» H(a)) F (Ix)H(x) (from (2) and (3) by the cut rule)

Computable Numbers: A Guide | 51

(5) (0)(G(x) — H(x)), G(a) - (3x)H(x)
(from (1) and (4) by the cut rule)

The cut rule (or rule of transitivity) says in effect that whatever can be con-
cluded from a statement Y (possibly in conjunction with additional premisses P)
can be concluded from any premiss(es) from which Y can be concluded (together
with the additional premisses B if any). For example, if Y Z and X+ Y,
then X - Z. In the transition from (1) and (4) to (5), the additional premiss
G(a) in (4) is gathered up and placed among the premisses of (5).

So far we have seen how to prove further inference rules in FOPC. Often
logicians are interested in proving not inference rules but single statements
unbroken by commas and ‘. An example is the complex statement

not (F(a) & not (3x)F(x)),

which says ‘It is not the case that both F(a) and the denial of (3x) F(x) are true’; or in
other words, you are not going to find F(a) true without finding (3x) F(x) true.

To say that a single statement, as opposed to an inference rule, is provable in
FOPC is simply to say that the result of prefixing that statement by " can be
derived by using the rules of the calculus. Think of a ‘- with no statements on its
left as indicating that the statement on its right is to be concluded as a matter of
‘pure logic—no premisses are required.

For example, the theorem

F not (F(a) & not (dx)F(x))
can be derived using rule (iv) and the following new rule.%?

XkY
F not (X & not Y)

This rule is read:

If Y can be concluded from X, then it can be concluded that not both X and the

denial of Yare true.

Much of mathematics and science can be formulated within the framework of
FOPC. For example, a formal system of arithmetic can be constructed by adding
a number of arithmetical axioms to FOPC. The axioms consist of very basic
arithmetical statements, such as:

()(x+0=x)
and
() (y)(Sx =Sy — x = y),
93 In Gentzen’s system this rule can itself be derived from the basic rules. It should be mentioned that in

the full system it is permissible to write any finite number of statements (including zero) on the right hand
side of ‘.

52 | Jack Copeland

where ‘S’ means ‘the successor of —the successor of 1 is 2, and so on. (In these
axioms the range of the variables ‘X’ and ‘y’ is restricted to numbers.) Other
arithmetical statements can be derived from these axioms by means of the rules
of FOPC. For example, rule (v) tells us that the statement

1+0=1

can be concluded from the first of the above axioms.

If FOPC is undecidable then it follows that arithmetic is undecidable. Indeed, if
FOPC is undecidable, then so are very many important mathematical systems. To
find decidable logics one must search among systems that are in a certain sense
weaker than FOPC. One example of a decidable logic is the system that results if all
the quantifier rules—rules such as (iv) and (v)—are elided from FOPC. This
system is known as the propositional calculus.

The proof of the undecidability of FOPC

Turing and Church showed that there is no systematic method by which, given any
formula Q in the notation of FOPC, it can be determined whether or not Q is
provable in the system (i.e. whether or not - Q). To put this another way, Church
and Turing showed that the Entscheidungsproblemis unsolvablein the case of FOPC.

Both published this result in 1936.94 Church’s demonstration of undecidability
proceeded via his lambda calculus and his thesis that to each effective method
there corresponds a lambda-definable function. There is general agreement that
Turing was correct in his view, mentioned above (p. 45), that his own way of
showing undecidability is ‘more convincing’ than Church’s.

Turing’s method makes use of his proof that no computing machine can solve
the printing problem. He showed that if a Turing machine could tell, of any
given statement, whether or not the statement is provable in FOPC, then a
Turing machine could tell, of any given Turing machine, whether or not it
ever prints ‘0. Since, as he had already established, no Turing machine can do
the latter, it follows that no Turing machine can do the former. The final step of
the argument is to apply Turing’s thesis: if no Turing machine can perform the
task in question, then there is no systematic method for performing it.

94 In a lecture given in April 1935—the text of which was printed the following year as ‘An Unsolvable
Problem of Elementary Number Theory’ (a short ‘Preliminary report’ dated 22 Mar. 1935 having appeared in
the Bulletin of the American Mathematical Society (41 (1935), 332—3))—Church proved the undecidability of a
system that includes FOPC as a part. This system is known as Principia Mathematica, or PM, after the treatise in
which it was first set out (see n. 86). PM is obtained by adding mathematical axioms to FOPC. Church
established the conditional result that if PM is omega-consistent, then PM is undecidable. Omega-consistency
(first defined by Godel) is a stronger property than consistency, in the sense that a consistent system is not
necessarily omega-consistent. As explained above, a system is consistent when there is no statement Ssuch that
both S and not-S are provable in the system. A system is omega-consistent when there is no predicate F of
integers such that all the following are provable in the system: (3x)F(x), not-F(1), not-F(2), not-F(3), and
so on, for every integer. In his later paper ‘A Note on the Entscheidungsproblem’ (completed in April 1936)
Church improved on this earlier result, showing unconditionally that FOPC is undecidable.

Computable Numbers: A Guide | 53

In detail, Turing’s demonstration contains the following steps.

1. Turing shows how to construct, for any computing machine m, a compli-
cated statement of FOPC that says ‘at some point, machine m prints 0. He
calls this formula ‘Un(m)’. (The letters ‘Un’ probably come from ‘undecid-
able’ or the German equivalent ‘unentscheidbare’.)

2. Turing proves the following:

(a) If Un(m) is provable in FOPC, then at some point m prints 0.
(b) If at some point m prints 0, then Un(m) is provable in FOPC.

3. Imagine a computing machine which, when given any statement Q in the
notation of FOPC, is able to determine (in some finite number of steps)
whether or not Q is provable in FOPC. Let’s call this machine HILBERT’S
DREAM. 2(a) and 2(b) tell us that HILBERT’S DREAM would solve the
printing problem. Because if the machine were to indicate that Un(m)
is provable then, in view of 2(a), it would in effect be indicating that m does
print 0; and if the machine were to indicate that the statement Un(m) is
not provable then, in view of 2(b), it would in effect be indicating that m
does not print 0. Since no computing machine can solve the printing
problem, it follows that HILBERT’S DREAM is a figment. No computing
machine is able to determine in some finite number of steps, of each statement
Q, whether or not Q is provable in FOPC.

4. If there were a systematic method by which, given any statement Q, it can
be determined whether or not Q is provable in FOPC, then it would follow,
by Turing’s thesis, that there is such a computing machine as HILBERT’S
DREAM. Therefore there is no such systematic method.

The significance of undecidability

Poor news though the unsolvability of the Entscheidungsproblem was for the
Hilbert school, it was very welcome news in other quarters, for a reason that
Hilbert’s illustrious pupil von Neumann had given in 1927:

If undecidability were to fail then mathematics, in today’s sense, would cease to exist; its
place would be taken by a completely mechanical rule, with the aid of which any man would
be able to decide, of any given statement, whether the statement can be proven or not.%s

As the Cambridge mathematician G. H. Hardy said in a lecture in 1928: ‘if
there were...a mechanical set of rules for the solution of all mathematical
problems. .. our activities as mathematicians would come to an end.%¢

95 J. von Neumann, ‘Zur Hilbertschen Beweistheorie’ [On Hilbert’s Proof Theory], Mathematische
Zeitschrift, 26 (1927), 1-46 (12); reprinted in vol. i of von Neumann’s Collected Works, ed. A. H. Taub
(Oxford: Pergamon Press, 1961).

9 G. H. Hardy, ‘Mathematical Proof’, Mind, 38 (1929), 1-25 (16) (the text of Hardy’s 1928 Rouse Ball
Lecture).

54 | Jack Copeland

Further reading

Barwise, J., and Etchemendy, J., Turing’s World: An Introduction to Computability Theory
(Stanford, Calif.: CSLI, 1993). (Includes software for building and displaying Turing
machines.)

Boolos, G. S., and Jeffrey, R. C., Computability and Logic (Cambridge: Cambridge Univer-
sity Press, 2nd edn. 1980).

Copeland, B. J., ‘Colossus and the Dawning of the Computer Age’ in R. Erskine and
M. Smith (eds.), Action This Day (London: Bantam, 2001).

Epstein, R. L., and Carnielli, W. A., Computability: Computable Functions, Logic, and the
Foundations of Mathematics (Belmont, Calif.: Wadsworth, 2nd edn. 2000).

Hopcroft, J. E., and Ullman, J. D., Introduction to Automata Theory, Languages, and Comput-
ation (Reading, Mass.: Addison-Wesley, 1979).

Minsky, M. L., Computation: Finite and Infinite Machines (Englewood Cliffs, NJ: Prentice-
Hall, 1967).

Sieg, W., ‘Hilbert’s Programs: 1917-1922’, Bulletin of Symbolic Logic, 5 (1999), 1-44.

Sipser, M., Introduction to the Theory of Computation (Boston: PWS, 1997).

Appendix

Subroutines and M-Functions®?

Section 3 of this guide gave a brief introduction to the concept of a skeleton table, where
names of subroutines are employed in place of letters referring to states of the machine.
This appendix explains the associated idea of an m-function, introduced by Turing on
p. 63. m-functions are subroutines with parameters—values that are plugged into the
subroutine before it is used.

The example of the ‘find’ subroutine f makes this idea clear. The subroutine f(A, B, x) is
defined in Section 3 (Tables 2 and 3). Recall that f(A, B, x) finds the leftmost x on the tape
and places the machine in A, leaving the scanner resting on the x; or if no x is found,
places the machine in B and leaves the scanner resting on a blank square to the right of the
used portion of the tape. ‘4, ‘B, and ‘x’ are the parameters of the subroutine. Parameter ‘x’
may be replaced by any symbol (of the Turing machine in question). Parameters ‘A" and
‘B’ may be replaced by names of states of the machine. Alternatively, Turing permits ‘A
and ‘B’ (one or both) to be replaced by a name of a subroutine. For example, replacing ‘A
by the subroutine name ‘e;(C)’ produces:

f(el (C), B: x)

This says: find the leftmost x, let the scanner rest on it, and go into subroutine e; (C); or, if
there is no x, go into B (leaving the scanner resting on a blank square to the right of the
used portion of the tape).

The subroutine e;(C) simply erases the scanned square and places the machine in C,
leaving the scanner resting on the square that has just been erased. (‘C’ is another
parameter of the same type as ‘A and ‘B.) Thus the subroutine f(e;(C), B, x) finds

97 By Andrés Sicard and Jack Copeland.

Computable Numbers: A Guide | 55

the leftmost occurrence of the symbol x and erases it, placing the machine in Cand leaving
the scanner resting on the square that has just been erased (or if no x is found, leaves the
scanner resting on a blank square to the right of the used portion of the tape and places
the machine in B). Since in this case nothing turns on the choice of letter, the name of the
subroutine may also be written ‘f(e;(A), B, x).

The subroutine f(e;(A), B, x) is one and the same as the subroutine e(A, B, x) (Section
3). The new notation exhibits the structure of the subroutine.

More examples of m-functions are given below. While the use of m-functions is not
strictly necessary for the description of any Turing machine, m-functions are very useful in
describing large or complex Turing machines. This is because of the possibilities they offer
for generalization, reusability, simplification, and modularization. Generalization is
achieved because tasks of a similar nature can be done by a single m-function, and
modularization because a complex task can be divided into several simpler m-functions.
Simplification is obtained because the language of m-functions submerges some of the
detail of the language of instruction-words—i.e. words of the form q;S;SxMq;—so produ-
cing transparent descriptions of Turing machines. Reusability arises simply because we can
employ the same m-function in different Turing machines.

Although it is difficult (if not impossible) to indicate the exact role that Turing’s
concept of an m-function played in the development of today’s programming languages,
it is worth emphasizing that some characteristics of m-functions are present in the
subroutines of almost all modern languages. Full use was made of the idea of parametrized
subroutines by Turing and his group at the National Physical Laboratory as they pioneered
the science of computer programming during 1946. A contemporary report (by Huskey)
outlining Turing’s approach to programming said the following:

The fact that repetition of subroutines require[s] large numbers of orders has led to the
abbreviated code methods whereby not only standard orders are used but special words
containing parameters are converted into orders by an interpretation table. The general idea
is that these describe the entries to subroutines, the values of certain parameters in the
subroutine, how many times the subroutine is to be used, and where to go after the
subroutine is finished.’8

Rather than give a formal definition of an m-function we present a series of illustrative
examples.

First, some preliminaries. An alphabet A is some set of symbols, for example {-, 0, 1, 2},
and a word of alphabet A is a finite sequence of non-blank symbols of A. The blank symbol,
represented ‘- is used to separate different words on the tape and is part of the alphabet, but
never occurs within words. The following examples all assume that, at the start of operation,
there is a single word w of the alphabet on an otherwise blank tape, with the scanner
positioned over any symbol of w. The symbols of w are written on adjacent squares, using
both E-squares and F-squares, and wis surrounded by blanks (some of the examples require
there to be at least one blank in front of w and at least three following w).

98 H. D. Huskey, untitled typescript, National Physical Laboratory, n.d. but c. Mar. 1947 (in the Woodger
Papers, National Museum of Science and Industry, Kensington, London (catalogue reference M12/105); a
digital facsimile is in The Turing Archive for the History of Computing <www.AlanTuring.net/
huskey_1947>).

www.AlanTuring.net/huskey_1947
www.AlanTuring.net/huskey_1947

56 | Jack Copeland

Let M be a Turing machine with alphabet A = {-, 0, 1, 2}. The following instructions result
in M printing the symbol ‘1” at the end of w, replacing the first blank to the right of w:

q:100Rq1, qi11Rq;, qi22Rqs, q1-1Nq,
The first three instructions move the scanner past the symbols ‘0’ ‘1’, and 2, and once the
scanner arrives at the first blank square to the right of w, the fourth instruction prints ‘1’
(leaving M in state q,).
If the symbols ‘3’, 4, ..., ‘9 are added to the alphabet, so A = {-,0, 1, ...,9}, then the
necessary instructions for printing ‘1’ at the end of w are lengthier:

q100Rq1, qllqul, ey q199Rq1, ql'quZ

The m-function add(S, o) defined by Table 4 carries out the task of printing one symbol
‘o’ at the end of any word w of any alphabet (assuming as before that the machine starts
operating with the scanner positioned over one or another symbol of w and that w is
surrounded by blanks).

Table 4 is the skeleton table for the m-function add(S,). (Skeleton tables are like tables
of instructions but with some parameters to be replaced by concrete values.) Table 4 has
two parameters, ‘@’ and ‘S’ The second parameter ‘S’ is to be replaced by the state or
m-function into which the machine is to go once add(S, o) completes its operation, and
the first parameter ‘o’ is to be replaced by whatever symbol it is that we wish to be printed
at the end of the word.

Both sets of instruction-words shown above can now be replaced by a simple call to the
m-function add(S, a), where S = q; and o = 1.

If instead of adding ‘1’ at the end of a word from alphabet A = {-, 0, 1, ..., 9}, we
wanted to add a pair of symbols ‘5” and ‘4’, then the instruction-words would be:

q100Rq1, Q111Rq1, ey q199Rq1, ql'SRqu q2—4Nq3

These instruction-words can be replaced by the m-function add(add(qs, 4), 5). This m-
function finds the end of the word and writes ‘5, going into m-function add(qs, 4), which
writes ‘4’ and ends in state qs.

Another example: suppose that ‘5’ and ‘4’ are to be printed as just described, and then
each occurrence of the symbol 3’ is to be replaced by ‘4. The m-function
add(add(change(qn, 3, 4), 4), 5) carries out the required task, where the m-function
change(S, o, B) is defined by Table 5. The m-function change,; (S, o, B) is a subroutine
inside the m-function change(S, o, B).

m-functions can employ internal variables. Although internal variables are not strictly
necessary, they simplify an m-function’s description. Internal variables are not parameters
of the m-function—we do not need to replace them with concrete values before the m-
function is used. In the following example, the internal variable ‘3’ refers to whatever symbol
is present on the scanned square when the machine enters the m-function repeat, (S).

Suppose we wish to print a repetition of the first symbol of w at the end of w. This can
be achieved by the m-function repeat(S) defined by Table 5. (The m-function add(S, 3) is
as given by Table 4.)

Every m-function has the form: name(S;, Sz, ...,Sn, @1, &, ...,), where
S1, S2, ..., Sy refer either to states or to m-functions, and o, a, ..., a, denote sym-
bols. Each m-function is a Turing machine with parameters. To convert an m-function’s

Computable Numbers: A Guide | 57

Table 4
State Scanned Square Operations Next State
add(S, o) not - R add(S, o)
add(S, o) - Pla] S
Table 5
State Scanned Square Operations Next State
change(S, o, B) not - L change(S, o, B)
change(S, o, B) - R change; (S, o, B)
change; (S, o, B) a P[B], R change; (S, o, B)
change; (S, o, B) not o R change; (S, o, B)
change; (S, o, B) - L S
Table 6
State Scanned Square Operations Next State
repeat(S) not - L repeat(S)
repeat(S) - R repeat, (S)
repeat, (S) d add(S, 9)

skeleton table to a Turing-machine instruction table, where each row is an instruction-
word of the form q;S;SxMqy, it is necessary to know the context in which the m-function
is to be used, namely, the underlying Turing machine’s alphabet and states. It is necessary
to know the alphabet because of the use in skeleton tables of expressions such as ‘does not
contain !, ‘not o), ‘neither « nor - ‘any’. Knowledge of the underlying machine’s states is
necessary to ensure that the m-function begins and ends in the correct state.

The economy effected by m-functions is illustrated by the fact that if the m-functions
are eliminated from Turing’s description of his universal machine, nearly 4,000
instruction-words are required in their place.®

9 A. Sicard, ‘Maquinas de Turing dinamicas: historia y desarrollo de una idea’ [Dynamic Turing
Machines: Story and Development of an Idea], appendix 3 (Master’s thesis, Universidad EAFIT, 1998);
‘Maquina universal de Turing: algunas indicaciones para su construccién’ [The Universal Turing Machine:
Some Directions for its Construction], Revista Universidad EAFIT, vol. 108 (1998), pp. 61-106.

CHAPTER 1

On Computable Numbers,
with an Application to the
Entscheidungsproblem (7936)
Alan Turing

The “computable” numbers may be described briefly as the real numbers
whose expressions as a decimal are calculable by finite means. Although the
subject of this paper is ostensibly the computable numbers, it is almost equally
easy to define and investigate computable functions of an integral variable or a
real or computable variable, computable predicates, and so forth. The funda-
mental problems involved are, however, the same in each case, and I have chosen
the computable numbers for explicit treatment as involving the least cumbrous
technique. I hope shortly to give an account of the relations of the computable
numbers, functions, and so forth to one another. This will include a development
of the theory of functions of a real variable expressed in terms of computable
numbers. According to my definition, a number is computable if its decimal can
be written down by a machine.

In §§9, 10 I give some arguments with the intention of showing that the comp-
utable numbers include all numbers which could naturally be regarded as
computable. In particular, I show that certain large classes of numbers are
computable. They include, for instance, the real parts of all algebraic numbers,
the real parts of the zeros of the Bessel functions, the numbers 7, e, etc. The
computable numbers do not, however, include all definable numbers, and an
example is given of a definable number which is not computable.

Although the class of computable numbers is so great, and in many ways
similar to the class of real numbers, it is nevertheless enumerable. In §8 I
examine certain arguments which would seem to prove the contrary. By the
correct application of one of these arguments, conclusions are reached which are

[Received 28 May, 1936.—Read 12 November, 1936.]
This article first appeared in Proceedings of the London Mathematical Society, Series 2, 42 (1936-7). It is
reprinted with the permission of the London Mathematical Society and the Estate of Alan Turing.

On Computable Numbers | 59

superficially similar to those of Godel.! These results have valuable applications.
In particular, it is shown (§11) that the Hilbertian Entscheidungsproblem can
have no solution.

In a recent paper Alonzo Church has introduced an idea of “effective calcul-
ability”, which is equivalent to my “computability”, but is very differently
defined.? Church also reaches similar conclusions about the Entscheidungspro-
blem.> The proof of equivalence between “computability” and “effective
calculability” is outlined in an appendix to the present paper.

1. Computing machines

We have said that the computable numbers are those whose decimals are
calculable by finite means. This requires rather more explicit definition. No
real attempt will be made to justify the definitions given until we reach §9. For
the present I shall only say that the justification lies in the fact that the human
memory is necessarily limited.

We may compare a man in the process of computing a real number to a machine
which is only capable of a finite number of conditions q;, ¢, ..., ggr which will be
called “m-configurations”. The machine is supplied with a “tape” (the analogue of
paper) running through it, and divided into sections (called “squares”) each
capable of bearing a “symbol”. At any moment there is just one square, say the
r-th, bearing the symbol &(r) which is “in the machine”. We may call this square
the “scanned square”. The symbol on the scanned square may be called the
“scanned symbol”. The “scanned symbol” is the only one of which the machine
is, so to speak, “directly aware”. However, by altering its m-configuration the
machine can effectively remember some of the symbols which it has “seen”
(scanned) previously. The possible behaviour of the machine at any moment is
determined by the m-configuration g, and the scanned symbol &(r). This pair
qn>» ©(r) will be called the “configuration”: thus the configuration determines the
possible behaviour of the machine. In some of the configurations in which the
scanned square is blank (i.e. bears no symbol) the machine writes down a new
symbol on the scanned square: in other configurations it erases the scanned
symbol. The machine may also change the square which is being scanned, but
only by shifting it one place to right or left. In addition to any of these operations
the m-configuration may be changed. Some of the symbols written down will form
the sequence of figures which is the decimal of the real number which is being

! Godel, “Uber formal unentscheidbare Sitze der Principia Mathematica und verwandter Systeme, I”,
Monatshefte Math. Phys., 38 (1931), 173-198.

2 Alonzo Church, “An unsolvable problem of elementary number theory”, American J. of Math., 58
(1936), 345-363.

3 Alonzo Church, “A note on the Entscheidungsproblem”, J. of Symbolic Logic, 1 (1936), 40-41.

60 | Alan Turing

computed. The others are just rough notes to “assist the memory”. It will only be
these rough notes which will be liable to erasure.

It is my contention that these operations include all those which are used in
the computation of a number. The defence of this contention will be easier when
the theory of the machines is familiar to the reader. In the next section I therefore
proceed with the development of the theory and assume that it is understood

» «

what is meant by “machine”, “tape”, “scanned”, etc.

2. Definitions

Automatic machines

If at each stage the motion of a machine (in the sense of §1) is completely
determined by the configuration, we shall call the machine an “automatic
machine” (or a-machine).

For some purposes we might use machines (choice machines or ¢-machines)
whose motion is only partially determined by the configuration (hence the use of
the word “possible” in § 1). When such a machine reaches one of these ambigu-
ous configurations, it cannot go on until some arbitrary choice has been made by
an external operator. This would be the case if we were using machines to deal
with axiomatic systems. In this paper I deal only with automatic machines, and
will therefore often omit the prefix a-.

Computing machines

If an g-machine prints two kinds of symbols, of which the first kind (called
figures) consists entirely of 0 and 1 (the others being called symbols of the second
kind), then the machine will be called a computing machine. If the machine is
supplied with a blank tape and set in motion, starting from the correct initial
m-configuration, the subsequence of the symbols printed by it which are of the
first kind will be called the sequence computed by the machine. The real number
whose expression as a binary decimal is obtained by prefacing this sequence by a
decimal point is called the number computed by the machine.

At any stage of the motion of the machine, the number of the scanned square,
the complete sequence of all symbols on the tape, and the m-configuration will
be said to describe the complete configuration at that stage. The changes of the
machine and tape between successive complete configurations will be called the
moves of the machine.

Circular and circle-free machines

If a computing machine never writes down more than a finite number of
symbols of the first kind, it will be called circular. Otherwise it is said to be
circle-free.

On Computable Numbers | 61

A machine will be circular if it reaches a configuration from which there is no
possible move, or if it goes on moving, and possibly printing symbols of the
second kind, but cannot print any more symbols of the first kind. The sig-
nificance of the term “circular” will be explained in § 8.

Computable sequences and numbers

A sequence is said to be computable if it can be computed by a circle-free
machine. A number is computable if it differs by an integer from the number
computed by a circle-free machine.

We shall avoid confusion by speaking more often of computable sequences
than of computable numbers.

3. Examples of computing machines

I. A machine can be constructed to compute the sequence 010101... . The
machine is to have the four m-configurations “b”, “c”, “f”, “¢” and is capable of
printing “0” and “1”. The behaviour of the machine is described in the following
table in which “R” means “the machine moves so that it scans the square
immediately on the right of the one it was scanning previously”. Similarly for
“L” “E” means “the scanned symbol is erased” and “P” stands for “prints”. This
table (and all succeeding tables of the same kind) is to be understood to mean
that for a configuration described in the first two columns the operations in the
third column are carried out successively, and the machine then goes over into
the m-configuration described in the last column. When the second column is left
blank, it is understood that the behaviour of the third and fourth columns
applies for any symbol and for no symbol. The machine starts in the
m-configuration b with a blank tape.

Configuration Behaviour
m-config. symbol operations final m-config.
b None PO, R ¢
¢ None R e
¢ None PL,R f
f None R b

If (contrary to the description in § 1) we allow the letters L, R to appear more
than once in the operations column we can simplify the table considerably.

m-config. symbol operations final m-config.
None PO b

b { 0 R,R,P1 b
1 R,R, PO b

62 | Alan Turing

II. As a slightly more difficult example we can construct a machine to
compute the sequence 001011011101111011111... . The machine is to be
capable of five m-configurations, viz. “0”, “q” “p”, “f” “b” and of printing
“Q” “x”, “07, “1”. The first three symbols on the tape will be “0907; the other
figures follow on alternate squares. On the intermediate squares we never print
anything but “x”. These letters serve to “keep the place” for us and are erased
when we have finished with them. We also arrange that in the sequence of figures

on alternate squares there shall be no blanks.

Configuration Behaviour
m-config. symbol operations final m-config.
b Py R, Py R PO,R R PO,L,L
5 { R,Px,L,L, L 0

q

] {Any (0 or 1) R,R qa
None P1,L p

E,R q

Cn f
None LL p

; { Any R, R f
None PO, L, L 0

To illustrate the working of this machine a table is given below of the first few
complete configurations. These complete configurations are described by writing
down the sequence of symbols which are on the tape, with the m-configuration
written below the scanned symbol. The successive complete configurations are
separated by colons.

:9900 0:000 0:200 0:200 O t9900 0 1:
b 0 q q q P
000 0 1:090 0 1:020 0 1:000 0 1:
v] f f
990 0 1:200 0 1 990 0 1 0:
f f)

990 O 1z0: ...
)
This table could also be written in the form

b 9000 0 :00q0 0 :..., (C)

in which a space has been made on the left of the scanned symbol and the
m-configuration written in this space. This form is less easy to follow, but we shall
make use of it later for theoretical purposes.

On Computable Numbers | 63

The convention of writing the figures only on alternate squares is very useful: I
shall always make use of it. I shall call the one sequence of alternate squares
F-squares and the other sequence E-squares. The symbols on E-squares will be
liable to erasure. The symbols on F-squares form a continuous sequence. There
are no blanks until the end is reached. There is no need to have more than one
E-square between each pair of F-squares: an apparent need of more E-squares
can be satisfied by having a sufficiently rich variety of symbols capable of being
printed on E-squares. If a symbol B is on an F-square S and a symbol « is on the
E-square next on the right of S, then S and B will be said to be marked with c.
The process of printing this o will be called marking B (or S) with a.

4. Abbreviated tables

There are certain types of process used by nearly all machines, and these, in some
machines, are used in many connections. These processes include copying down
sequences of symbols, comparing sequences, erasing all symbols of a given form,
etc. Where such processes are concerned we can abbreviate the tables for the
m-configurations considerably by the use of “skeleton tables”. In skeleton tables
there appear capital German letters and small Greek letters. These are of the nature
of “variables” By replacing each capital German letter throughout by an
m-configuration and each small Greek letter by a symbol, we obtain the table for
an m-configuration.

The skeleton tables are to be regarded as nothing but abbreviations: they are
not essential. So long as the reader understands how to obtain the complete
tables from the skeleton tables, there is no need to give any exact definitions in
this connection.

Let us consider an example:

m-config. Symbol Behaviour Final m-config.
. 2 L f1(C, B, a) From the m-configuration
(€0, o) {not 5 L (S, B, @) f(S, B, o) the machine finds

the symbol of form « which

o ¢ is farthest to the left (the
F.(€, B, a) {not a R f1(C, B, @) “first «”) and the
None R f2(C, B, @) m-configuration then
becomes €. If there is no «
« ¢ then the m-configuration
1€ B,) {HOt «a R (€, B,) becomes 8.
None R B

If we were to replace € throughout by q (say), 8 by 1, and « by x, we should
have a complete table for the m-configuration f(q,r,x). | is called an
“m-configuration function” or “m-function”

64 | Alan Turing

The only expressions which are admissible for substitution in an m-function
are the m-configurations and symbols of the machine. These have to be enumer-
ated more or less explicitly: they may include expressions such as p(e, x); indeed
they must if there are any m-functions used at all. If we did not insist on this
explicit enumeration, but simply stated that the machine had certain
m-configurations (enumerated) and all m-configurations obtainable by substi-
tution of m-configurations in certain m-functions, we should usually get an
infinity of m-configurations; e.g., we might say that the machine was to have
the m-configuration q and all m-configurations obtainable by substituting
an m-configuration for € in p(C). Then it would have g, p(q), P(P(q)),
p(P(p(q))), ... as m-configurations.

Our interpretation rule then is this. We are given the names of the
m-configurations of the machine, mostly expressed in terms of m-functions.
We are also given skeleton tables. All we want is the complete table for the
m-configurations of the machine. This is obtained by repeated substitution in
the skeleton tables.

Further examples

>

(In the explanations the symbol “—” is used to signify “the machine goes into

the m-configuration....”)
e(S, B, a) f(e; (8,8, a), B,) From ¢(C, B, «) the first o is erased
(€ B,) E € and — G. If there is no o — 9.
e(B, o) e(e(’B, a), B, o) From ¢(B, o) all letters « are erased

and — B.

The last example seems somewhat more difficult to interpret than most. Let us
suppose that in the list of m-configurations of some machine there appears
e(b, x) (= q, say). The table is

e(b, x) e(e(b, x), b, x)
or q L’(C[, b, x).

Or, in greater detail:

q e(q, b, %)
e(q, b) x) f(el(Qa ba x)7 b» x)
ei(q, b, x) E q.

In this we could replace e;(q, b, x) by ' and then give the table for { (with the
right substitutions) and eventually reach a table in which no m-functions
appeared.

On Computable Numbers | 65

pe(€, B) f(pei (€, B), €, 9) From pe(€, B) the machine
prints B at the end of the
S
pe (€, B){ zlélr(?r/le };éR 291(L> k) sequence of symbols and — €.
[(©) L o From (€, B, a) it does the
(©) R ¢ same as for f(€, B, a) but
(€, B, o) F(S), B, a) moves to the left before — &.

(G, B,
(¢, B, a)

f(x(€), B, o)
f’(cl(@)) \B) 0()

¢(¢, B, a). The machine

writes at the end the first
symbol marked o and — €.

a(®) B pe(S, B)

The last line stands for the totality of lines obtainable from it by replacing 3 by
any symbol which may occur on the tape of the machine concerned.

ce(C, B, o)
ce(B, a)

c(e(€, B, a),B, a)
ce(ce(’B, a), B, a)

ce(*B, a). The machine
copies down in order
at the end all symbols
marked o and erases
the letters a; — 8.

re(@, %a Qa, B) f(rel(gr 58) Q, B)) SB, OL)
re; (€, B, a, B) E,PB €

re(C, B, o, B). The machine
replaces the first a by B and
— € — B if there is no a.

re(*B, a, B) re(re(*B, o, B), B, o, B) re(YB, a, B). The machine
replaces all letters o by

B; — V.

c(re(S, B, o, a), B, o) cr(B, «) differs from
cr(cr(’B, a), re(B, a, a), a) ce(B, a) only in that the
letters a are not erased. The

(€, B, o)
(B, o)

m-configuration cr(*B, o) is
taken up when no letters “a”
are on the tape.

(S, A €, o, B) f'(eni (G, 2, B), FU, €, B), @)

(G, A B) Y (e, (€, 2,), A, B)
. Y ¢
0, (6, A, y) {oty o

66 | Alan Turing

The first symbol marked o and the first marked 8 are compared. If there is
neither o nor B, — €. If there are both and the symbols are alike, — €.
Otherwise — 9.

(‘pe(@) S‘)I, @, Q, B) (‘p(e(e(@> 67 B), @> OL), 91) ®) Q, B)

cpe(C, A, €, a, B) differs from cp(€, A, €, o, B) in that in the case when
there is similarity the first o and 8 are erased.

cpe(UA, €, a, B) cpe(epe(A, €, a, B), A, €, a, B).
cpe(U, €, a, B). The sequence of symbols marked a is compared with the

sequence marked B. — & if they are similar. Otherwise — 2. Some of the
symbols o and B are erased.

N Any R q(®) q(€, a). The machine finds
a®) {None R q,(6) the last symbol of form
(©) {Any R q(©) “
M None ¢
q(@, (1) q(ql((s) (l))
G
5 @
ql((./; 0() {NOt a L ql(@) OL)
per (€, o, B) pe(pe(S, B), a) pey(€, a, B). The machine
prints o 3 at the end.
ce2 (B, o, B) ce(ce(B, B), a) ces(B, a, B, ¥). The
ces(B, o, B, V) ce(ce,(B, B, v), machine copies down at the
a) end first the symbols marked
a, then those marked B, and
finally those marked -y; it
erases the symbols «, B, .
o(©) {9 R e (€) From ¢(€) the marks are
Notoa L e(®) erased from all marked
¢ Any RER a(©) symbols. — €.
e(C) {None ¢

5. Enumeration of computable sequences

A computable sequence <y is determined by a description of a machine which
computes y. Thus the sequence 001011011101111... is determined by the table
on p. [62], and, in fact, any computable sequence is capable of being described in
terms of such a table.

It will be useful to put these tables into a kind of standard form. In the first
place let us suppose that the table is given in the same form as the first table, for

On Computable Numbers | 67

example, I on p. [61]. That is to say, that the entry in the operations column is
always of one of the forms E: E, R: E,L: Pa: Po,, R: Pa, L: R: L: or no entry
at all. The table can always be put into this form by introducing more m-
configurations. Now let us give numbers to the m-configurations, calling them
qQi> ---> qr, as in § 1. The initial m-configuration is always to be called q;. We
also give numbers to the symbols S, ..., S,, and, in particular, blank = S,
0=3S;, 1 =S,. The lines of the table are now of form

m-config. Symbol Operations Final m-config.

i S; PSi, L dm (NY)
gi Sj PSi, R qm (N2)
qi S; PSy qm (N3)

Lines such as

qi S; E R Gm
are to be written as

qi Sj PSp, R Gm
and lines such as

gi Sj R Gm
to be written as

qi S; PS;, R m

In this way we reduce each line of the table to a line of one of the forms (),
(N2), (N3).

From each line of form (N)) let us form an expression ¢;S;SxLg,,; from each
line of form (N;) we form an expression ¢;S;SxRq,;; and from each line of form
(N3) we form an expression ¢;5;SyNgy,.

Let us write down all expressions so formed from the table for the machine and
separate them by semi-colons. In this way we obtain a complete description of the
machine. In this description we shall replace g; by the letter “D” followed by the
letter “A” repeated i times, and S; by “D” followed by “C” repeated j times. This
new description of the machine may be called the standard description (S.D). It is
made up entirely from the letters “A”, “C”, “D”, “L”, “R”, “N”, and from “;”.

If finally we replace “A” by “17, “C” by “2”, “D” by “3”, “L” by “4”, “R” by “5”,
“N” by “6”, and “;” by “7” we shall have a description of the machine in the form
of an arabic numeral. The integer represented by this numeral may be called a
description number (D.N) of the machine. The D.N determine the S.D and the
structure of the machine uniquely. The machine whose D.N is # may be de-
scribed as M.(n).

68 | Alan Turing

To each computable sequence there corresponds at least one description
number, while to no description number does there correspond more than one
computable sequence. The computable sequences and numbers are therefore
enumerable.

Let us find a description number for the machine I of § 3. When we rename
the m-configurations its table becomes:

q So PS;, R @
P So PSy, R 95
B So PS, R o
Qs So PSy, R Q

Other tables could be obtained by adding irrelevant lines such as
q S PS;, R @
Our first standard form would be
DS Rp; pSoSoRqs; 3S0S2Rqs qaSoSoRqs;

The standard description is

DADDCRDAA ;DAADDRDAAA ;DAAADDCCRDAAAA ;DAAAADDRDA ;

A description number is

31332531173113353111731113322531111731111335317
and so is

3133253117311335311173111332253111173111133531731323253117

A number which is a description number of a circle-free machine will be called
a satisfactory number. In § 8 it is shown that there can be no general process for
determining whether a given number is satisfactory or not.

6. The universal computing machine

It is possible to invent a single machine which can be used to compute any
computable sequence. If this machine < is supplied with a tape on the beginning
of which is written the S.D of some computing machine %/, then U will compute
the same sequence as 970. In this section I explain in outline the behaviour of the
machine. The next section is devoted to giving the complete table for .

Let us first suppose that we have a machine 972’ which will write down on the
F-squares the successive complete configurations of 90. These might be ex-
pressed in the same form as on p. [62], using the second description, (C), with
all symbols on one line. Or, better, we could transform this description (as in § 5)

On Computable Numbers | 69

by replacing each m-configuration by “D” followed by “A” repeated the appro-
priate number of times, and by replacing each symbol by “D” followed by “C”
repeated the appropriate number of times. The numbers of letters “A” and “C”
are to agree with the numbers chosen in § 5, so that, in particular, “0” is replaced
by “DC”, “1” by “DCC”, and the blanks by “D”. These substitutions are to be
made after the complete configurations have been put together, as in (C).
Difficulties arise if we do the substitution first. In each complete configuration
the blanks would all have to be replaced by “D”, so that the complete configura-
tion would not be expressed as a finite sequence of symbols.

If in the description of the machine II of § 3 we replace “0” by “DAA”, “9” by
“DCCC”, “q” by “DAAA’, then the sequence (C) becomes:

DA : DCCCDCCCDAADCDDC : DCCCDCCCDAAADCDDC : ... (Cy)

(This is the sequence of symbols on F-squares.)

It is not difficult to see that if 90 can be constructed, then so can 9. The
manner of operation of M’ could be made to depend on having the rules of
operation (i.e. the S.D) of 91 written somewhere within itself (i.e. within 9/);
each step could be carried out by referring to these rules. We have only to regard
the rules as being capable of being taken out and exchanged for others and we
have something very akin to the universal machine.

One thing is lacking: at present the machine 9’ prints no figures. We may
correct this by printing between each successive pair of complete configurations
the figures which appear in the new configuration but not in the old. Then (C,)
becomes

DDA : 0: 0 : DCCCDCCCDAADCDDC : DCCC.... (C)

It is not altogether obvious that the E-squares leave enough room for the
necessary “rough work”, but this is, in fact, the case.

The sequences of letters between the colons in expressions such as (C;) may be
used as standard descriptions of the complete configurations. When the letters
are replaced by figures, as in §5, we shall have a numerical description of the
complete configuration, which may be called its description number.

7. Detailed description of the universal machine

A table is given below of the behaviour of this universal machine. The
m-configurations of which the machine is capable are all those occurring in
the first and last columns of the table, together with all those which occur when
we write out the unabbreviated tables of those which appear in the table in the
form of m-functions. E.g., e(anf) appears in the table and is an m-function. Its
unabbreviated table is (see p. [66])

70 | Alan Turing

B R ey (anf)
e(anf) {nots L e(anf)

o A RER €ilanf)
¢i(anf) {Nl(l))rlle anf

Consequently e, (anf) is an m-configuration of U.

When U is ready to start work the tape running through it bears on it the
symbol 9 on an F-square and again 9 on the next E-square; after this, on
F-squares only, comes the S.D of the machine followed by a double colon “::”
(a single symbol, on an F-square). The S.D consists of a number of instructions,
separated by semi-colons.

Each instruction consists of five consecutive parts

(i) “D” followed by a sequence of letters “A” This describes the relevant
m-configuration.

(ii) “D” followed by a sequence of letters “C”. This describes the scanned
symbol.

(iii) “D” followed by another sequence of letters “C”. This describes the
symbol into which the scanned symbol is to be changed.

(iv) “L’ “R”, or “N”, describing whether the machine is to move to left, right,
or not at all.

(v) “D” followed by a sequence of letters “A”. This describes the final m-
configuration.

The machine U is to be capable of printing “A”, “C”, “D”, “0”, “1”, “u’, “v,
((W))’ ((x)’, ((y)” “Z)). The S'D iS formed from ((;)), ((A))) ((C’), ((D))’ ((E)’ ((R)), ((N))‘
Subsidiary skeleton table
Not A R.R con(S, @) con(€, a). Starting from an
A L, Pa, R comy (€, a) F-square, S say, the sequence C of

symbols describing a configuration
closest on the right of S is marked

con(€, a) {

R, Po,R oy (€, o)

, A
Y
com (€, o) {D RPo,R com(S, o)

out with letters a. — €.

© C R,Pa, R con, (€, o) con(C,). In the final configuration
cony(C, o) Not C R,R ¢ the machine is scanning the square
which is four squares to the right
of the last square of C. C is left

unmarked.
The table for U
b f(by, by, ::) Db. The machine prints : DA on
b, RRP:;,RRPDRRPA anj the F-squares after :: — anf.
anf a(anfy,) anf. The machine marks the
anf, con(fom, y) configuration in the last complete

configuration with y. — font.

On Computable Numbers | 71

5 R Pz, L con(fmp, x) fom. The machine finds the
fom z L L fom last semi-colon not marked
not znor; L fom with z. It marks this semi-colon

with z and the configuration
following it with x.

fimp cpe(e(fom, x,), 5101, x, y) fmp. The machine compares
the sequences marked x and y.
It erases all letters x and y. —
gim if they are alike. Otherwise
— fom.

anf. Taking the long view, the last instruction relevant to the last configura-
tion is found. It can be recognised afterwards as the instruction following the last
semi-colon marked z. — &int.

3tm #(3tm,, 8imy, z) &itm. The machine marks out

siny con(sim,,) the instructions. That part of

‘ A s, the ins.tructions whic}.l refers tlo

s3tm, {not A RPuwRRR sim, operations to be carried out is

marked with u, and the final

sim, {not A L Py e('mf’ 2) m-configuration with y. The
A L, Py, R, R, R 3im; letters z are erased.

mf g(mf, :) mf. The last complete

configuration is marked out

mt, {not A RR mf, into four sections. The

A L LLL mf, configuration is left unmarked.

C RPxLILL mf, The symbol directly preceding

mf, . mi, it is marked with x. The

D RPxLLL mf, remainder of the complete

configuration is divided into

mi; { not: R Pv, L L L mfé two parts, of which the first is
mf, marked with v and the last
mi, con({({(mfs)),) with w. A colon is printed
) after the whole. — 3.
{Any R, Pw, R mfs
mfs 3
None P: 3
3h f(sh,, inst, u) 30. The instructions (marked
3h, L L L 3h, u) are examined. If it is found
, D R R R R 3, (t(hat. they”lnvolve Print 0 o.r
3b, st Print 1°, then 0 : or 1 : is
not D m printed at the end.
C R, R 3
50 { s
not C st

72 | Alan Turing

) {c R R 305
) not C pe,(insdt, 0, 1)
56, {C t'nét' ,‘

not C pe,(inst, 1, :)
st g(l(insty), u) inst. The next complete
ingt;, o R E inst(a) configuration is written down,
st (L) ces(ob, v, ¥, x, u, w) carrying out the marked
st (R) ces(o0, v, x, u, ¥, W) instructions. The letters u, v, w,
st (N) ecs(ob, v, x, ¥, u, w) x, y are erased. —anf.
b e(anf)

8. Application of the diagonal process

It may be thought that arguments which prove that the real numbers are not
enumerable would also prove that the computable numbers and sequences
cannot be enumerable.* It might, for instance, be thought that the limit of a
sequence of computable numbers must be computable. This is clearly only true if
the sequence of computable numbers is defined by some rule.

Or we might apply the diagonal process. “If the computable sequences are
enumerable, let o, be the n-th computable sequence, and let ¢, () be the m-th
figure in a,. Let B be the sequence with 1 — ¢,(n) as its n-th figure. Since 3 is
computable, there exists a number K such that 1 — ¢, (n) = ¢ (n) all n. Putting
n= K, we have 1 = 2¢;(K), i.e. 1 is even. This is impossible. The computable
sequences are therefore not enumerable.”

The fallacy in this argument lies in the assumption that 3 is computable. It
would be true if we could enumerate the computable sequences by finite means,
but the problem of enumerating computable sequences is equivalent to the
problem of finding out whether a given number is the D.N of a circle-free
machine, and we have no general process for doing this in a finite number of
steps. In fact, by applying the diagonal process argument correctly, we can show
that there cannot be any such general process.

The simplest and most direct proof of this is by showing that, if this general
process exists, then there is a machine which computes 3. This proof, although
perfectly sound, has the disadvantage that it may leave the reader with a feeling that
“there must be something wrong”. The proof which I shall give has not this
disadvantage, and gives a certain insight into the significance of the idea “circle-
free”. It depends not on constructing 3, but on constructing ', whose n-th figure is
¢,(n).

Let us suppose that there is such a process; that is to say, that we can invent a
machine $ which, when supplied with the S.D of any computing machine 9

* Cf. Hobson, Theory of functions of a real variable (2nd ed., 1921), 87, 88.

On Computable Numbers | 73

will test this S.D and if 970 is circular will mark the S.D with the symbol “4” and
if it is circle-free will mark it with “s”. By combining the machines & and U we
could construct a machine & to compute the sequence B’. The machine & may
require a tape. We may suppose that it uses the E-squares beyond all symbols on
F-squares, and that when it has reached its verdict all the rough work done by &%
is erased.

The machine & has its motion divided into sections. In the first N —1
sections, among other things, the integers 1, 2, ..., N — 1 have been written
down and tested by the machine . A certain number, say R(N — 1), of them
have been found to be the D.N’s of circle-free machines. In the N-th section the
machine b tests the number N. If N is satisfactory, i.e., if it is the D.N of a circle-
free machine, then R(N) =1+ R(N — 1) and the first R(N) figures of the
sequence of which a D.N is N are calculated. The R(N)-th figure of this sequence
is written down as one of the figures of the sequence ' computed by #. If N is
not satisfactory, then R(N) = R(N — 1) and the machine goes on to the
(N + 1)-th section of its motion.

From the construction of & we can see that & is circle-free. Each section of the
motion of # comes to an end after a finite number of steps. For, by our
assumption about &, the decision as to whether N is satisfactory is reached in
a finite number of steps. If N is not satisfactory, then the N-th section is finished.
If N is satisfactory, this means that the machine 72(N) whose D.N is N is circle-
free, and therefore its R(N)-th figure can be calculated in a finite number of
steps. When this figure has been calculated and written down as the R(N)-th
figure of B/, the N-th section is finished. Hence # is circle-free.

Now let K be the D.N of #. What does & do in the K-th section of its motion?
It must test whether K is satisfactory, giving a verdict “s” or “u”. Since K is the
D.N of & and since # is circle-free, the verdict cannot be “«”. On the other hand
the verdict cannot be “s”. For if it were, then in the K-th section of its motion &
would be bound to compute the first R(K — 1) + 1 = R(K) figures of the
sequence computed by the machine with K as its D.N and to write down the
R(K)-th as a figure of the sequence computed by #. The computation of the first
R(K) — 1 figures would be carried out all right, but the instructions for calculat-
ing the R(K)-th would amount to “calculate the first R(K) figures computed by &
and write down the R(K)-th”. This R(K)-th figure would never be found. Le., & is
circular, contrary both to what we have found in the last paragraph and to the

<«

verdict “s”. Thus both verdicts are impossible and we conclude that there can be
no machine 5.

We can show further that there can be no machine € which, when supplied with
the S.D of an arbitrary machine W, will determine whether N ever prints a given
symbol (0 say).

We will first show that, if there is a machine &, then there is a general process
for determining whether a given machine 97 prints 0 infinitely often. Let 9, be

74 | Alan Turing

a machine which prints the same sequence as 970, except that in the position
where the first 0 printed by 97 stands, 9, prints 0. 91, is to have the first two
symbols 0 replaced by 0, and so on. Thus, if 9 were to print

ABAO1AABOO10AB...,
then 97, would print

ABAO1AABOO10AB...
and 9, would print

ABAO1AABOOLIOAB....

Now let ¥ be a machine which, when supplied with the S.D of 97, will write
down successively the S.D of M, of M, of NM,, ... (there is such a machine).
We combine ¥ with € and obtain a new machine, <. In the motion of < first
F is used to write down the S.D of 9, and then & tests it, : 0 : is written if it is
found that 772 never prints 0; then ¥ writes the S.D of 771, and this is tested, : 0 :
being printed if and only if 972, never prints 0, and so on. Now let us test < with
6. If it is found that < never prints 0, then 970 prints 0 infinitely often; if <
prints 0 sometimes, then 970 does not print 0 infinitely often.

Similarly there is a general process for determining whether 972 prints 1 infi-
nitely often. By a combination of these processes we have a process for deter-
mining whether 970 prints an infinity of figures, i.e. we have a process for
determining whether 970 is circle-free. There can therefore be no machine &.

The expression “there is a general process for determining...” has been used
throughout this section as equivalent to “there is a machine which will determine
...” This usage can be justified if and only if we can justify our definition of
“computable”. For each of these “general process” problems can be expressed as a
problem concerning a general process for determining whether a given integer n
has a property G(n) [e.g. G(n) might mean “n is satisfactory” or “n is the Godel
representation of a provable formula”], and this is equivalent to computing a
number whose n-th figure is 1 if G(n) is true and 0 if it is false.

9. The extent of the computable numbers

No attempt has yet been made to show that the “computable” numbers include
all numbers which would naturally be regarded as computable. All arguments
which can be given are bound to be, fundamentally, appeals to intuition, and for
this reason rather unsatisfactory mathematically. The real question at issue is
“What are the possible processes which can be carried out in computing a
number?”

The arguments which I shall use are of three kinds.

On Computable Numbers | 75

(a) A direct appeal to intuition.

(b) A proof of the equivalence of two definitions (in case the new definition
has a greater intuitive appeal).

(¢) Giving examples of large classes of numbers which are computable.

Once it is granted that computable numbers are all “computable”, several
other propositions of the same character follow. In particular, it follows that, if
there is a general process for determining whether a formula of the Hilbert
function calculus is provable, then the determination can be carried out by a
machine.

I. [Type (a)]. This argument is only an elaboration of the ideas of § 1.

Computing is normally done by writing certain symbols on paper. We may
suppose this paper is divided into squares like a child’s arithmetic book. In
elementary arithmetic the two-dimensional character of the paper is sometimes
used. But such a use is always avoidable, and I think that it will be agreed that the
two-dimensional character of paper is no essential of computation. I assume
then that the computation is carried out on one-dimensional paper, i.e. on a tape
divided into squares. I shall also suppose that the number of symbols which may
be printed is finite. If we were to allow an infinity of symbols, then there would
be symbols differing to an arbitrarily small extent.” The effect of this restriction
of the number of symbols is not very serious. It is always possible to use
sequences of symbols in the place of single symbols. Thus an Arabic numeral
such as 17 or 999999999999999 is normally treated as a single symbol. Similarly
in any European language words are treated as single symbols (Chinese, however,
attempts to have an enumerable infinity of symbols). The differences from
our point of view between the single and compound symbols is that the
compound symbols, if they are too lengthy, cannot be observed at one glance.
This is in accordance with experience. We cannot tell at a glance whether
9999999999999999 and 999999999999999 are the same.

The behaviour of the computer at any moment is determined by the symbols
which he is observing, and his “state of mind” at that moment. We may suppose
that there is a bound B to the number of symbols or squares which the computer
can observe at one moment. If he wishes to observe more, he must use successive
observations. We will also suppose that the number of states of mind which need
be taken into account is finite. The reasons for this are of the same character as

> If we regard a symbol as literally printed on a square we may suppose that the square is
0=x=<1,0=y=<1. The symbol is defined as a set of points in this square, viz. the set occupied by printer’s
ink. If these sets are restricted to be measurable, we can define the “distance” between two symbols as the
cost of transforming one symbol into the other if the cost of moving unit area of printer’s ink unit distance
is unity, and there is an infinite supply of ink at x = 2,y = 0. With this topology the symbols form a
conditionally compact space.

76 | Alan Turing

those which restrict the number of symbols. If we admitted an infinity of states of
mind, some of them will be “arbitrarily close” and will be confused. Again, the
restriction is not one which seriously affects computation, since the use of more
complicated states of mind can be avoided by writing more symbols on the tape.

Let us imagine the operations performed by the computer to be split up into
“simple operations” which are so elementary that it is not easy to imagine them
further divided. Every such operation consists of some change of the physical
system consisting of the computer and his tape. We know the state of the system
if we know the sequence of symbols on the tape, which of these are observed by
the computer (possibly with a special order), and the state of mind of the
computer. We may suppose that in a simple operation not more than one symbol
is altered. Any other changes can be split up into simple changes of this kind. The
situation in regard to the squares whose symbols may be altered in this way is the
same as in regard to the observed squares. We may, therefore, without loss of
generality, assume that the squares whose symbols are changed are always
“observed” squares.

Besides these changes of symbols, the simple operations must include changes
of distribution of observed squares. The new observed squares must be immedi-
ately recognisable by the computer. I think it is reasonable to suppose that they
can only be squares whose distance from the closest of the immediately previ-
ously observed squares does not exceed a certain fixed amount. Let us say that
each of the new observed squares is within L squares of an immediately previ-
ously observed square.

In connection with “immediate recognisability”, it may be thought that there
are other kinds of square which are immediately recognisable. In particular,
squares marked by special symbols might be taken as immediately recognisable.
Now if these squares are marked only by single symbols there can be only a finite
number of them, and we should not upset our theory by adjoining these marked
squares to the observed squares. If, on the other hand, they are marked by a
sequence of symbols, we cannot regard the process of recognition as a simple
process. This is a fundamental point and should be illustrated. In most math-
ematical papers the equations and theorems are numbered. Normally the
numbers do not go beyond (say) 1000. It is, therefore, possible to recognise a
theorem at a glance by its number. But if the paper was very long, we might reach
Theorem 157767733443477; then, further on in the paper, we might find “...
hence (applying Theorem 157767733443477) we have ...”. In order to make sure
which was the relevant theorem we should have to compare the two numbers
figure by figure, possibly ticking the figures off in pencil to make sure of their not
being counted twice. If in spite of this it is still thought that there are other
“immediately recognisable” squares, it does not upset my contention so long as
these squares can be found by some process of which my type of machine is
capable. This idea is developed in III below.

On Computable Numbers | 77

The simple operations must therefore include:

(a) Changes of the symbol on one of the observed squares.
(b) Changes of one of the squares observed to another square within L squares
of one of the previously observed squares.

It may be that some of these changes necessarily involve a change of state of
mind. The most general single operation must therefore be taken to be one of the
following:

(A) A possible change (a) of symbol together with a possible change of state
of mind.

(B) A possible change (b) of observed squares, together with a possible change
of state of mind.

The operation actually performed is determined, as has been suggested on
p- [75], by the state of mind of the computer and the observed symbols. In
particular, they determine the state of mind of the computer after the operation
is carried out.

We may now construct a machine to do the work of this computer. To each
state of mind of the computer corresponds an “m-configuration” of the machine.
The machine scans B squares corresponding to the B squares observed by the
computer. In any move the machine can change a symbol on a scanned square or
can change any one of the scanned squares to another square distant not more
than L squares from one of the other scanned squares. The move which is done,
and the succeeding configuration, are determined by the scanned symbol and the
m-configuration. The machines just described do not differ very essentially from
computing machines as defined in § 2, and corresponding to any machine of this
type a computing machine can be constructed to compute the same sequence,
that is to say the sequence computed by the computer.

II. [Type (b)].
If the notation of the Hilbert functional calculus® is modified so as to be
systematic, and so as to involve only a finite number of symbols, it becomes
possible to construct an automatic’ machine %, which will find all the
provable formulae of the calculus.®

¢ The expression “the functional calculus” is used throughout to mean the restricted Hilbert functional
calculus.

7 It is most natural to construct first a choice machine (§2) to do this. But it is then easy to construct the
required automatic machine. We can suppose that the choices are always choices between two possibilities 0
and 1. Each proof will then be determined by a sequence of choices 7,4, ..., (i =0or 1,
i =0o0r1l,...,i, =0 or 1), and hence the number 2" + 2" ! + 52" 2 + ... +1i, completely determines
the proof. The automatic machine carries out successively proof 1, proof 2, proof 3,... .

8 The author has found a description of such a machine.

78 | Alan Turing

Now let a be a sequence, and let us denote by G, (x) the proposition “The x-th
figure of a is 17, so that —G,(x) means “The x-th figure of o is 0”.° Suppose
further that we can find a set of properties which define the sequence a and
which can be expressed in terms of G,(x) and of the propositional functions
N(x) meaning “x is a non-negative integer” and F(x, y) meaning “y = x + 1”.
When we join all these formulae together conjunctively, we shall have a formula,
A say, which defines a. The terms of 2 must include the necessary parts of the
Peano axioms, viz.,

(Fu)N(u) & (x)(N(x) — (I F(x,9)) & (F(x,y) — N()),

which we will abbreviate to P.
When we say “? defines o”, we mean that —%[is not a provable formula, and
also that, for each n, one of the following formulae (A,) or (B,,) is provable.®

A & F" — Gy (ul), (An)

A & F" — (=G (u™)), (B,

where F stands for F(u, /) & F(u/, ") & ... F(u"1, 4").

I say that « is then a computable sequence: a machine %X, to compute a can
be obtained by a fairly simple modification of X.

We divide the motion of X, into sections. The n-th section is devoted to
finding the n-th figure of a. After the (n — 1)-th section is finished a double
colon :: is printed after all the symbols, and the succeeding work is done wholly
on the squares to the right of this double colon. The first step is to write the letter
“A” followed by the formula (A,) and then “B” followed by (B,). The machine
K then starts to do the work of K, but whenever a provable formula is found,
this formula is compared with (A,) and with (B,). If it is the same formula as
(A,), then the figure “1” is printed, and the n-th section is finished. If it is (B,,),
then “0” is printed and the section is finished. If it is different from both, then
the work of X is continued from the point at which it had been abandoned.
Sooner or later one of the formulae (A,,) or (B,,) is reached; this follows from our
hypotheses about a and I, and the known nature of K. Hence the n-th section
will eventually be finished. K, is circle-free; a is computable.

It can also be shown that the numbers a definable in this way by the use of
axioms include all the computable numbers. This is done by describing comput-
ing machines in terms of the function calculus.

It must be remembered that we have attached rather a special meaning to the
phrase “U defines a”. The computable numbers do not include all (in the
ordinary sense) definable numbers. Let 8 be a sequence whose n-th figure is

° The negation sign is written before an expression and not over it.
10 A sequence of r primes is denoted by .

On Computable Numbers | 79

1 or 0 according as # is or is not satisfactory. It is an immediate consequence of
the theorem of § 8 that & is not computable. It is (so far as we know at present)
possible that any assigned number of figures of 8 can be calculated, but not by a
uniform process. When sufficiently many figures of 8 have been calculated, an
essentially new method is necessary in order to obtain more figures.

III. This may be regarded as a modification of I or as a corollary of II.

We suppose, as in I, that the computation is carried out on a tape; but we avoid
introducing the “state of mind” by considering a more physical and definite
counterpart of it. It is always possible for the computer to break off from his
work, to go away and forget all about it, and later to come back and go on with it.
If he does this he must leave a note of instructions (written in some standard
form) explaining how the work is to be continued. This note is the counterpart
of the “state of mind”. We will suppose that the computer works in such a
desultory manner that he never does more than one step at a sitting. The note of
instructions must enable him to carry out one step and write the next note. Thus
the state of progress of the computation at any stage is completely determined by
the note of instructions and the symbols on the tape. That is, the state of the
system may be described by a single expression (sequence of symbols), consisting
of the symbols on the tape followed by A (which we suppose not to appear
elsewhere) and then by the note of instructions. This expression may be called
the “state formula”. We know that the state formula at any given stage is
determined by the state formula before the last step was made, and we assume
that the relation of these two formulae is expressible in the functional calculus. In
other words, we assume that there is an axiom 2 which expresses the rules
governing the behaviour of the computer, in terms of the relation of the state
formula at any stage to the state formula at the preceding stage. If this is so, we
can construct a machine to write down the successive state formulae, and hence
to compute the required number.

10. Examples of large classes of numbers which
are computable

It will be useful to begin with definitions of a computable function of an integral
variable and of a computable variable, etc. There are many equivalent ways of
defining a computable function of an integral variable. The simplest is, possibly,
as follows. If vy is a computable sequence in which 0 appears infinitely'! often,
and n is an integer, then let us define &(vy,n) to be the number of figures

' If M computes v, then the problem whether 97 prints 0 infinitely often is of the same character as the
problem whether 7 is circle-free.

80 | Alan Turing

1 between the n-th and the (n + 1)-th figure 0 in . Then ¢(n) is computable if,
for all nand some vy, ¢(n) = &(y, n). An equivalent definition is this. Let H(x, y)
mean ¢(x) = y. Then, if we can find a contradiction-free axiom “2[4), such that
A, — P, and if for each integer n there exists an integer N, such that

914) & F(N) _ H(u(ﬂ)’u(d)(fl))),
and such that, if m # ¢(n), then, for some N/,
Ay & FN) — (—Hu™, um),

then ¢ may be said to be a computable function.

We cannot define general computable functions of a real variable, since there is
no general method of describing a real number, but we can define a computable
function of a computable variable. If » is satisfactory, let y, be the number
computed by N (n), and let

= tan(x(1,)

unless vy, = 0 or y,, = 1, in either of which cases &, = 0. Then, as n runs through
the satisfactory numbers, o, runs through the computable numbers.'> Now let
¢(n) be a computable function which can be shown to be such that for any
satisfactory argument its value is satisfactory.!* Then the function f, defined by
f(on) = apmy, 1s @ computable function and all computable functions of a
computable variable are expressible in this form.

Similar definitions may be given of computable functions of several variables,
computable-valued functions of an integral variable, etc.

I shall enunciate a number of theorems about computability, but I shall prove
only (ii) and a theorem similar to (iii).

(i) A computable function of a computable function of an integral or
computable variable is computable.

(ii) Any function of an integral variable defined recursively in terms of
computable functions is computable. Le. if ¢(m, n) is computable, and
r is some integer, then #(#n) is computable, where

n0) =r,
n(n) = ¢(n,n(n—1)).

(iii) If ¢(m, n) is a computable function of two integral variables, then ¢ (1, n)
is a computable function of n.

2 A function a, may be defined in many other ways so as to run through the computable numbers.
3 Although it is not possible to find a general process for determining whether a given number is
satisfactory, it is often possible to show that certain classes of numbers are satisfactory.

On Computable Numbers | 81

(iv) If ¢(n) is a computable function whose value is always 0 or 1, then the
sequence whose n-th figure is ¢(n) is computable.

Dedekind’s theorem does not hold in the ordinary form if we replace “real”
throughout by “computable”. But it holds in the following form:

(v) If G(av) is a propositional function of the computable numbers and

(@) o) (FB){G(a) & (—G(B))}
(b) Gla) & (=G(B)) — (a < B),

and there is a general process for determining the truth value of G(a), then there
is a computable number & such that

Glo) —a <

—Gla) ma=¢.

In other words, the theorem holds for any section of the computables such that
there is a general process for determining to which class a given number belongs.

Owing to this restriction of Dedekind’s theorem, we cannot say that a com-
putable bounded increasing sequence of computable numbers has a computable
limit. This may possibly be understood by considering a sequence such as

1, =1 1 1 11

2 1> ga_ﬁ; 5)
On the other hand, (v) enables us to prove

(vi) If @ and B are computable and o < B and ¢(a) < 0 < ¢(B), where
¢(o) is a computable increasing continuous function, then there is a
unique computable number v, satisfying o« < y < B and ¢(y) = 0.

Computable convergence

We shall say that a sequence 3, of computable numbers converges computably if
there is a computable integral valued function N(e) of the computable variable e,
such that we can show that, if € >0 and n> N(e) and m > N(¢), then

|Bn - Bm| <e.

We can then show that

(vii) A power series whose coefficients form a computable sequence of comp-
utable numbers is computably convergent at all computable points in
the interior of its interval of convergence.

(viii) The limit of a computably convergent sequence is computable.

And with the obvious definition of “uniformly computably convergent”:

(ix) The limit of a uniformly computably convergent computable sequence
of computable functions is a computable function. Hence

82 | Alan Turing

(x) The sum of a power series whose coefficients form a computable sequence
is a computable function in the interior of its interval of convergence.

From (viii) and w = 4(1—1+1—...) we deduce that 7 is computable.

From e = 141+ 344+ ... we deduce that e is computable.

From (vi) we deduce that all real algebraic numbers are computable.

From (vi) and (x) we deduce that the real zeros of the Bessel functions are
computable.

Proof of (ii)
Let H(x, y) mean “n(x) = y”, and let K(x, y, z) mean “¢(x, y) = z". Ay is the
axiom for ¢(x, y). We take 2, to be
Ay & P & (F(x, y) — G(x, y)) & (G(x, y) & G(y, z) — G(x, z))
& (F(r)—>H(u, u(’))) & (F(v, w) & H(v, x) & K(w, x, z) — H(w, z))
& [H(w, z) & G(z, t) v G(t, z) — (—H(W, t))].
I shall not give the proof of consistency of 2,. Such a proof may be con-
structed by the methods used in Hilbert and Bernays, Grundlagen der Mathema-

tik (Berlin, 1934), p. 209 et seq. The consistency is also clear from the meaning.
Suppose that, for some 1, N, we have shown

A, & FN — H (D, -1,
then, for some M,
Wy & FM — K (), 001 y00)),

%[VI & FM _, F(u(ﬂfl)’ u(ﬂ)) & H(u(nil), u("l(ﬂfl)))
&K(u("), u(n(n—l))) u(n(ﬂ)))’

and
A, & FM — [F(u"D, ™) & H(u"D, yntn=1))
& K(u(”), (ntn=1) u(n(n))) N H(u(n)’ u(i](n)))]
Hence A, & M) H(u(”), u(n(ﬂ))).
Also A, & F H(u, u(n(o))).

Hence for each n some formula of the form
9, & FO . F (4", 00
is provable. Also, if M’ = M and M’ = m and m # n(u), then
g{n & FM) G(u”((")), u(m)) v G(u(m), u(ﬂ(ﬂ)))

and

On Computable Numbers | 83

?IW & F([{G((n(n)) (m) (u(m) (n n)))
w9},)
Hence A, & F(M' _ (—H(u(”), u(”’))).

The conditions of our second definition of a computable function are there-
fore satisfied. Consequently # is a computable function.

Proof of a modified form of (iii)

Suppose that we are given a machine 7, which, starting with a tape bearing on it
9 9 followed by a sequence of any number of letters “F” on F-squares and in the
m-configuration b, will compute a sequence vy, depending on the number n of
letters “F”. If ¢, (m) is the m-th figure of v,, then the sequence B whose n-th
figure is ¢, (n) is computable.

We suppose that the table for 97 has been written out in such a way that in
each line only one operation appears in the operations column. We also
suppose that =, O, 0, and 1 do not occur in the table, and we replace o
throughout by ©, 0 by 0, and 1 by 1. Further substitutions are then made. Any
line of form

A a Po B
we replace by
A o PO re(’B, u, h, k)

and any line of the form

A a P1 B
by A o P1 re(!B, b, h, k)
and we add to the table the following lines:
u pe (ul) 0)
1 R, Pk, R, PO, R, PO 1,
1, re(us, Us, k, h)
U3 pe(uz, F)

and similar lines with b for 11 and 1 for 0 together with the following line
¢ R, PE, R, Ph b.

We then have the table for the machine 97’ which computes . The initial
m-configuration is ¢, and the initial scanned symbol is the second a.

84 | Alan Turing

11. Application to the Entscheidungsproblem

The results of §8 have some important applications. In particular, they can be
used to show that the Hilbert Entscheidungsproblem can have no solution. For
the present I shall confine myself to proving this particular theorem. For the
formulation of this problem I must refer the reader to Hilbert and Ackermann’s
Grundeziige der Theoretischen Logik (Berlin, 1931), chapter 3.

I propose, therefore, to show that there can be no general process for deter-
mining whether a given formula 2 of the functional calculus K is provable, i.e.
that there can be no machine which, supplied with any one 2 of these formulae,
will eventually say whether 2(is provable.

It should perhaps be remarked that what I shall prove is quite different
from the well-known results of Godel.'* Godel has shown that (in the
formalism of Principia Mathematica) there are propositions 2 such that
neither 2 nor —2 is provable. As a consequence of this, it is shown that no
proof of consistency of Principia Mathematica (or of K) can be given within that
formalism. On the other hand, I shall show that there is no general method
which tells whether a given formula 2 is provable in K, or, what comes to the
same, whether the system consisting of K with —2[adjoined as an extra axiom is
consistent.

If the negation of what Godel has shown had been proved, i.e. if, for each 2,
either A or —A is provable, then we should have an immediate solution of
the Entscheidungsproblem. For we can invent a machine X which will
prove consecutively all provable formulae. Sooner or later X will reach either 2
or — . If it reaches 2, then we know that 2l is provable. If it reaches —%l, then,
since K is consistent (Hilbert and Ackermann, p. 65), we know that 2 is not
provable.

Owing to the absence of integers in K the proofs appear somewhat lengthy.
The underlying ideas are quite straightforward.

Corresponding to each computing machine 9 we construct a formula
Un (9) and we show that, if there is a general method for determining whether
Un (M) is provable, then there is a general method for determining whether 970
ever prints 0.

The interpretations of the propositional functions involved are as follows:

Rs,(x, y) is to be interpreted as “in the complete configuration x (of 970) the
symbol on the square y is S”.

I(x, y) is to be interpreted as “in the complete configuration x the square y is
scanned’.

4 Loc. cit.

On Computable Numbers | 85

K, (x) is to be interpreted as “in the complete configuration x the m-con-
figuration is gy,.

F(x, y) is to be interpreted as “y is the immediate successor of x”.

Inst {g;S;jSkLq;} is to be an abbreviation for

(x, v, X,)/){(st(x, y) & I(x, y) & Ky, (x) & F(x, x') & F(y/, y))
— (I(x, y) & Rs, (', y) & Ky ()
& (2)[F(y, 2) v (Rs(x, 2) = Rs (¥, 2))])}.

Inst {g;S;SxRqi} and Inst {q;S;SiNq;}

are to be abbreviations for other similarly constructed expressions.

Let us put the description of 970 into the first standard form of §6. This
description consists of a number of expressions such as “q;S;SxLq;” (or with R or
N substituted for L). Let us form all the corresponding expressions such as Inst
{4iS;SkLq;} and take their logical sum. This we call Des (971).

The formula Un () is to be

(Fu)[N(u) & (x)(N(x) — (3x')F(x, x'))

& (y, 2)(F(y, z) — N(y) & N(2))

& (y)Rs(u, y) & I(u, u) & Ky(u) & Des ()]
— (Fs)(FN[N(s) & N(t) & Rg(s, t)].

[N(u) & ... & Des (9)] may be abbreviated to A(M).

When we substitute the meanings suggested on [pp. 84-85] we find that
Un (970) has the interpretation “in some complete configuration of 9, S; (i.e.
0) appears on the tape”. Corresponding to this I prove that

(a) If S; appears on the tape in some complete configuration of 971, then
Un (M) is provable.

(b) If Un (9) is provable, then S; appears on the tape in some complete
configuration of M.

When this has been done, the remainder of the theorem is trivial.

LeMmMma 1. If Syappears on the tape in some complete configuration of M, then
Un (M) is provable.

We have to show how to prove Un (97). Let us suppose that in the n-th
complete configuration the sequence of symbols on the tape is Sy, o)
Sr(n, 1)> ---> S(n, n)» followed by nothing but blanks, and that the scanned
symbol is the i(n)-th, and that the m-configuration is gk(,). Then we may form
the proposition

86 | Alan Turing

R, o (™, u) & Rs,, (u", v) & ... &R, , (™, u™)
& I(u(ﬂ)’ u(i(ﬂ))) & qu(”)(u(ﬂ))
& (WE((y,) v F(u, p) vEGW, y)v ...v F"™Y, y)vRs, (ul", y)),

which we may abbreviate to CC,.

As before, F(u, /) & F(u/, ') & ... & F(u"V, 1) is abbreviated to F".

I shall show that all formulae of the form A(9) & F" — CC, (abbreviated
to CF,) are provable. The meaning of CF, is “The n-th complete configuration
of M is so and so”, where “so and so” stands for the actual n-th
complete configuration of 9. That CF, should be provable is therefore to be
expected.

CF, is certainly provable, for in the complete configuration the symbols are all
blanks, the m-configuration is g;, and the scanned square is u, i.e. CCj is

(PR, (u, y) & I(u, u) & Ky (u).

A(M) — CC, is then trivial.

We next show that CF,, — CF,,, is provable for each n. There are three cases
to consider, according as in the move from the n-th to the (n + 1)-th configura-
tion the machine moves to left or to right or remains stationary. We suppose that
the first case applies, i.e. the machine moves to the left. A similar argument
applies in the other cases. If r(n, i(n)=a, r(n+1, i(n+1)) =c¢
k(i(n)) = b, and k(i(n+ 1)) = d, then Des (971) must include Inst {q,S,S4Lq.}
as one of its terms, i.e.

Des (M) — Inst {q,SpSaLq.}.
Hence A(M) & FY — Inst {g,S,S4Lq.} & F" Y.
But Inst {q,8S4Lg.} & F"*Y — (CC, — CCpy1)
is provable, and so therefore is
A(M) & F"Y — (CCy — CCyii)
and

(A(M) & F" — CC,) — (A(M) & F"V — CCpp1),

ie. CE, — CF,,,.

CF, is provable for each n. Now it is the assumption of this lemma that S; appears
somewhere, in some complete configuration, in the sequence of symbols printed by

On Computable Numbers | 87

M; that is, for some integers N, K, CCy has Ry, (™)) 4 as one of its terms,
and therefore CCy — Rg, (uN), 4K is provable. We have then

CCx — R, (u'N), %)
and A(Mm) & FN) — ccN.

We also have
A AM) — Cuw 3 ... Gu™N))(A(m) & FN),
where N’ = max (N, K). And so

(FwAM) — Qw3 ... FuN)Rg (u™),),
BwAMm) — Q™) Fu")Rg, (N, 1),
(Fu)A(NM) — (Fs)(31) R, (s, 1),

i.e. Un (M) is provable.
This completes the proof of Lemma 1.

Lemma 2. If Un (M) is provable, then S; appears on the tape in some com-
plete configuration of M.

If we substitute any propositional functions for function variables in a
provable formula, we obtain a true proposition. In particular, if we substitute
the meanings tabulated on pp. [84-85] in Un (771), we obtain a true proposition
with the meaning “S; appears somewhere on the tape in some complete con-
figuration of 970"

We are now in a position to show that the Entscheidungsproblem cannot
be solved. Let us suppose the contrary. Then there is a general (mechanical)
process for determining whether Un (970) is provable. By Lemmas 1 and 2,
this implies that there is a process for determining whether 97 ever prints 0,
and this is impossible, by §8. Hence the Entscheidungsproblem cannot be
solved.

In view of the large number of particular cases of solutions of the Entschei-
dungsproblem for formulae with restricted systems of quantors, it is interesting
to express Un (770) in a form in which all quantors are at the beginning. Un (1)
is, in fact, expressible in the form

() (Fx)(w)(Fu) (Fu)B, @

where B contains no quantors, and n = 6. By unimportant modifications we can
obtain a formula, with all essential properties of Un (977), which is of form (I)
with n = 5.

88 | Alan Turing

Added 28 August, 1936.'

Appendix
Computability and effective calculability

The theorem that all effectively calculable (\-definable) sequences are computable and its
converse are proved below in outline. It is assumed that the terms “well-formed formula”
(W.EE) and “conversion” as used by Church and Kleene are understood. In the second of
these proofs the existence of several formulae is assumed without proof; these formulae
may be constructed straightforwardly with the help of, e.g., the results of Kleene in “A
theory of positive integers in formal logic”, American Journal of Math, 57 (1935), 153-173,
219-244.

The W.EE representing an integer n will be denoted by N,. We shall say that a
sequence y whose n-th figure is ¢, (n) is A-definable or effectively calculable if
1+ ¢,(u) is a N-definable function of n, i.e. if there is a W.EE. M, such that, for all
integers n,

{My}(Nn) conv Ny (n+1,

ie. {My}(Nn) is convertible into Axy.x(x(y)) or into Axy.x(y) according as the n-th
figure of N is 1 or 0.

To show that every \-definable sequence <y is computable, we have to show how to
construct a machine to compute y. For use with machines it is convenient to make a trivial
modification in the calculus of conversion. This alteration consists in using x, X', x”, ... as
variables instead of 4, b, ¢, We now construct a machine <£ which, when supplied with
the formula M,, writes down the sequence y. The construction of &£ is somewhat similar to
that of the machine X which proves all provable formulae of the functional calculus. We
first construct a choice machine <£;, which, if supplied with a W.EE, M say, and suitably
manipulated, obtains any formula into which M is convertible. <£; can then be modified so
as to yield an automatic machine &£, which obtains successively all the formulae into which
M s convertible (cf. foot-note p. [77]). The machine <£ includes <, as a part. The motion
of the machine <£ when supplied with the formula M, is divided into sections of which
the n-th is devoted to finding the n-th figure of . The first stage in this n-th section
is the formation of {M,}(N,). This formula is then supplied to the machine
<£,, which converts it successively into various other formulae. Each formula into which it
is convertible eventually appears, and each, as it is found, is compared with

N[N [{x}({x} ()], ie. No,
and with AN [{x} (X)), ie. Ny

If it is identical with the first of these, then the machine prints the figure 1 and the
n-th section is finished. If it is identical with the second, then 0 is printed and the
section is finished. If it is different from both, then the work of <£, is resumed.

!> The Graduate College, Princeton University, New Jersey, USA.

On Computable Numbers | 89

By hypothesis, {My}(N,) is convertible into one of the formulae N, or N;; consequently
the n-th section will eventually be finished, i.e. the n-th figure of y will eventually be
written down.

To prove that every computable sequence y is A-definable, we must show how to find a
formula M, such that, for all integers n,

{My}(Nn) conv Nl+d)y(ﬂ)‘

Let 970 be a machine which computes y and let us take some description of the
complete configurations of 970 by means of numbers, e.g. we may take the D.N of the
complete configuration as described in §6. Let {(n) be the D.N of the n-th complete
configuration of 970. The table for the machine 970 gives us a relation between &(n+ 1)
and &(n) of the form

En+1) = py (&),

where p,, is a function of very restricted, although not usually very simple, form: it is
determined by the table for 9. Py is \-definable (I omit the proof of this), i.e. there is a
W.EF. A, such that, for all integers n,

{Ay}(Ni(n)) conv Ni(n+l)'
Let U stand for
N[{{uh (A YN,
where r = £(0); then, for all integers n,
{Uy}(N,) conv Neg(y.
It may be proved that there is a formula V such that

conv N; if, in going from the n-th to
the (1 + 1)-th complete configuration, the

(VI (Netmen) Y (Neon) figure 0 is printed.

conv N, if the figure 1 is printed.
conv N3 otherwise.

Let W, stand for

(VA (U}) } ({U ()],

so that, for each integer 1,

{V}(Ne(ni1)) } (Nemy) conv { W, H(N,),

and let Q be a formula such that

{{Q}(W'y)}(Ns) conv Nr(z):

90 | Alan Turing

where r(s) is the s-th integer q for which {W,}(N,) is convertible into either N; or Nj.
Then, if M, stands for
[H({IQH W)),

it will have the required property.'®

' In a complete proof of the N-definability of computable sequences it would be best to modify this
method by replacing the numerical description of the complete configurations by a description which can be
handled more easily with our apparatus. Let us choose certain integers to represent the symbols and the
m-configurations of the machine. Suppose that in a certain complete configuration the numbers represent-
ing the successive symbols on the tape are s;s,...s,, that the m-th symbol is scanned, and that the
m-configuration has the number t; then we may represent this complete configuration by the formula

[[Ng>Ng» ..o, No,1ly [N N, T, [Ng, 415 -5 N 1]

where [a, b] stands for Nu[{{u}(a)}(D)],

[a, b, c] stands for Nu[{{{u}(a)}(D)}(c)],

etc.

CHAPTER 2

On Computable Numbers:
Corrections and Critiques

Alan Turing, Emil Post,
and Donald W. Davies

Introduction
Jack Copeland

This chapter contains four items:

2.1 On Computable Numbers, with an Application to the Entscheidungs-
problem. A Correction. Alan Turing

2.2 On Computable Numbers, with an Application to the Entscheidungs-
problem. A Critique. Emil Post

2.3 Draft of a Letter from Turing to Alonzo Church Concerning
the Post Critique

2.4 Corrections to Turing’s Universal Computing Machine Donald W. Davies

As is not uncommon in work of such complexity, there are a number of mistakes
in ‘On Computable Numbers’ (Chapter 1). Turing corrected some of these in his
short note 2.1, published in the Proceedings of the London Mathematical Society a
few months after the original paper had appeared.

The mathematician Emil L. Post’s critique of ‘On Computable Numbers’ was
published in 1947 and formed part of Post’s paper ‘Recursive Unsolvability of a
Problem of Thue’! Post is one of the major figures in the development of mathe-
matical logic in the twentieth century, although his work did not gain wide recogni-
tion until after his death. (Born in 1897, Post died in the same year as Turing.)

By 1936 Post had arrived independently at an analysis of computability
substantially similar to Turing’s.2 Post’s ‘problem solver’ operated in a ‘symbol

U Journal of Symbolic Logic, 12 (1947), 1-11.
2 E. L. Post, ‘Finite Combinatory Processes—Formulation 1’, Journal of Symbolic Logic, 1 (1936), 103—4.

92 | Jack Copeland

space’ consisting of ‘a two way infinite sequence of spaces or boxes. A box
admitted ‘of but two possible conditions, i.e., being empty or unmarked,
and having a single mark in it, say a vertical stroke. The problem solver
worked in accordance with ‘a fixed unalterable set of directions’ and could
perform the following ‘primitive acts’: determine whether the box at present
occupied is marked or not; erase any mark in the box that is at present occupied;
mark the box that is at present occupied if it is unmarked; move to the box to
the right of the present position; move to the box to the left of the present
position.

Later, Post considerably extended certain of the ideas in Turing’s ‘Systems of
Logic Based on Ordinals’ (Chapter 3), developing the important field now called
degree theory.

In his draft letter to Church, Turing responded to Post’s remarks concerning
“Turing convention-machines’? It is doubtful whether Turing ever sent the letter.
The approximate time of writing can be inferred from Turing’s opening remarks:
Kleene’s review appeared in the issue of the Journal of Symbolic Logic dated
September 1947 (12: 90-1) and Turing’s ‘Practical Forms of Type Theory’
appeared in the same journal in June 1948.

In his final year at university Donald Davies (1924-2000) heard about Turing’s
proposed Automatic Computing Engine and the plans to build it at the National
Physical Laboratory in London (see Chapter 9). Davies immediately applied
to join the National Physical Laboratory and in September 1947 became a member
of the small team surrounding Turing. Davies played a leading role in the develop-
ment and construction of the pilot model of the Automatic Computing Engine,
which ran its first programme in May 1950. From 1966 he was head of the
computer science division at the National Physical Laboratory. He originated
the important concept of ‘packet switching’ used in the ARPANET, forerunner
of the Internet. From 1979 Davies worked on data security and public key
cryptosystems.

‘On Computable Numbers’ contained a number of what would nowadays be
called programming errors. Davies described Turing’s reaction when he drew
Turing’s attention to some of these:

I was working more or less under [Turing’s] supervision ... I had been reading his
famous work on computable numbers ... and I began to question some of the details of
his paper. In fact I ... found a number of quite bad programming errors, in effect, in the
specification of the machine that he had written down, and I had worked out how
to overcome these. I went along to tell him and I was rather cock-a-hoop ... I thought
he would say ‘Oh fine, I'll send along an addendum’ [to the London Mathematical
Society]. But in fact he was very annoyed, and pointed out furiously that really it

3 The draft is among the Turing Papers in the Modern Archive Centre, King’s College Library,
Cambridge; catalogue reference D 2.

Corrections and Critiques | 93

didn’t matter, the thing was right in principle, and altogether I found him extremely
touchy on this subject.*

In Section 4 of his ‘Corrections to Turing’s Universal Computing Machine’
Davies mends the errors that he discovered in 1947. He emphasizes that—as
Turing said—these programming errors are of no significance for the central
arguments of ‘On Computable Numbers’.

Davies’s lucid commentary forms an excellent introduction to ‘On Comput-
able Numbers’>

4 Davies in interview with Christopher Evans (‘The Pioneers of Computing: An Oral History of
Computing’ (London: Science Museum, 1975)).
5 Tam grateful to Diane Davies for her permission to publish this article.

2.1

On Computable Numbers, with an Application to
the Entscheidungsproblem. A Correction. (7937)
Alan Turing

In a paper entitled “On computable numbers, with an application to the
Entscheidungsproblem” [Chapter 1] the author gave a proof of the insolubility
of the Entscheidungsproblem of the “engere Funktionenkalkiil”. This proof
contained some formal errors! which will be corrected here: there are also
some other statements in the same paper which should be modified, although
they are not actually false as they stand.

The expression for Inst {g;S;SxLq;} on p. [85] of the paper quoted should
read

(x, y, %/, y'){(RSj(x, y) & I(x, y) & K, (x) & F(x, x') & F(y/, y))
— (I(x’, y') & Rs, (¥, y) & Ky (x') & F(y', 2) v [(Rs,(x, 2) — R, (¥, 2))
& (Rs,(x, z) — Rs, (¥, 2)) & ... &(Rs,,(x, z) — Rs,, (¥, z))])},

So> St - - .» Sum being the symbols which 970 can print. The statement on p. [86],
[lines 24-25], viz.

“Inst {g.SpSaLqc} & F"™D — (CC, — CCpyy)

is provable” is false (even with the new expression for Inst {q,S;S;Lq.}): we are
unable for example to deduce F"*V — (—F(u, u")) and therefore can never use
the term

F(y, z) v [(Rs,(x, 2) — R, (¥, 2)) & ... & (R, (x, z) — Rs,, (¥, 2))]

in Inst {q,S5,S4Lq.}. To correct this we introduce a new functional variable
G [G(x, y) to have the interpretation “x precedes y”]. Then, if Q is an abbrevi-
ation for

(x)(3w)(y, 2){F(x, w) & (F(x, y)— G(x, y)) & (F(x, z) & G(z, y) — G(x, y))
& [G(Z’ x) v (G(X, }’) & F()” Z)) v (F(x’)’) & F(z,)’)) - (_F(x) Z))]}

the corrected formula Un (70) is to be

This article first appeared in Proceedings of the London Mathematical Society, Series 2, 43 (1937), 544-6. It is
reprinted with the permission of the London Mathematical Society and the Estate of Alan Turing.

! The author is indebted to P. Bernays for pointing out these errors.

Corrections and Critiques | 95

(FuA(M) — @9)(3DRs, (5 1),
where A(71) is an abbreviation for
Q & (y)Rs,(u, y) & I(u, u) & Ky (1) & Des (M).
The statement on page [86] (line [24]) must then read
Inst {q,SS4Lq.} & Q & F"'V — (CC, — CC,11),
and [lines 19-20] should read
r(n, i(n))=b, r(n+1,in)=d, k(n)=a kin+1)=c.

For the words “logical sum” on p. [85], line [13], read “conjunction”. With these
modifications the proof is correct. Un (770) may be put in the form (I) (p. [87])
with n = 4.

Some difficulty arises from the particular manner in which “computable
number” was defined (p. [61]). If the computable numbers are to satisfy intuitive
requirements we should have:

If we can give a rule which associates with each positive integer n two rationals
a,, by, satisfying a,, < a1 < b, < by, b, — a, < 27", then there is a computable
number o for which a, < o < b, each n. (A)

A proof of this may be given, valid by ordinary mathematical standards, but
involving an application of the principle of excluded middle. On the other hand
the following is false:

There is a rule whereby, given the rule of formation of the sequences a,, b, in (A)
we can obtain a D.N. for a machine to compute o. (B)

That (B) is false, at least if we adopt the convention that the decimals of
numbers of the form m/2" shall always terminate with zeros, can be seen in this
way. Let 9 be some machine, and define ¢, as follows: ¢, :% if 97 has not
printed a figure 0 by the time the n-th complete configuration is reached
¢y =3—27"77if 0 had first been printed at the m-th complete configuration
(m < n).Puta, =c, —27"2, b, = ¢, + 27"2 Then the inequalities of (A) are
satisfied, and the first figure of o is 0 if 97 ever prints 0 and is 1 otherwise. If (B)
were true we should have a means of finding the first figure of o given the D.N. of
N: i.e. we should be able to determine whether 7 ever prints 0, contrary to the
results of §8 of the paper quoted. Thus although (A) shows that there must be
machines which compute the Euler constant (for example) we cannot at present
describe any such machine, for we do not yet know whether the Euler constant is
of the form m/2".

This disagreeable situation can be avoided by modifying the manner in which
computable numbers are associated with computable sequences, the totality of
computable numbers being left unaltered. It may be done in many ways of which

96 | Alan Turing

this is an example.2 Suppose that the first figure of a computable sequence 1y is i
and that this is followed by 1 repeated n times, then by 0 and finally by the
sequence whose r-th figure is ¢,; then the sequence v is to correspond to the real
number

2i—1)n + i Q¢ - 1))
r=1

If the machine which computes vy is regarded as computing also this real number
then (B) holds. The uniqueness of representation of real numbers by sequences
of figures is now lost, but this is of little theoretical importance, since the D.N's
are not unique in any case.

The Graduate College, Princeton, N.J., U.S.A.

2 This use of overlapping intervals for the definition of real numbers is due originally to Brouwer.

2.2

On Computable Numbers, with an Application to
the Entscheidungsproblem. A Critique. (71947)
Emil Post

The following critique of Turing’s “computability” paper [Chapter 1] concerns
only pp. [58-74] thereof. We have checked the work through the construction of
the “universal computing machine” in detail, but the proofs of the two theorems
in the section following are there given in outline only, and we have not supplied
the formal details. We have therefore also left in intuitive form the proofs of the
statements on recursiveness, and alternative procedures, we make below.

One major correction is needed. To the instructions for ¢o11; (€, o) p. [70], add
the line: None PD, R, Pa, R, R, R €. This is needed to introduce the representa-
tion D of the blank scanned square when, as at the beginning of the action of the
machine, or due to motion right beyond the rightmost previous point, the com-
plete configuration ends with a , and thus make the fmp of p. [71] correct. We
may also note the following minor slips and misprints in pp. [58-74]. Page [63],
to the instructions for (&, B, a) add the line: None L f(E&,®B,a); p. [67] and
p- [68], the S.D should begin, but not end, with a semicolon; p. [69], omit the first
Din (C,); p. [70], last paragraph [above skeleton table], add “:” to the first list of
symbols; pp. [71-72], replace g by q; p. [71], in the instruction for mf, nif should
be mf;; p. [71], in the second instruction for $in,, replace the first Rby L; p. [71],
in the first instruction for 30),, replace 3f), by 30);. A reader of the paper will be
helped by keeping in mind that the “examples” of pages [63—66] are really parts of
the table for the universal computing machine, and accomplish what they are said
to accomplish not for all possible printings on the tape, but for certain ones that
include printings arising from the action of the universal computing machine. In
particular, the tape has o printed on its first two squares, the occurrence of two
consecutive blank squares insures all squares to the right thereof being blank, and,
usually, symbols referred to are on “F-squares”, and obey the convention of p. [63].!

Turing’s definition of an arbitrary machine is not completely given in his
paper, and, at a number of points, has to be inferred from his development. In
the first instance his machine is a “computing machine” for obtaining the
successive digits of a real number in dyadic notation, and, in that case, starts
operating on a blank tape. Where explicitly stated, however, the machine may

Post’s critique originally formed an untitled appendix occupying pp. 7-11 of ‘Recursive Unsolvability of a
Problem of Thue’, Journal of Symbolic Logic, 12 (1947), 1-11. The critique is reprinted here by permission of
the Association for Symbolic Logic. All rights reserved. This reproduction is by special permission for this
publication only.

1 Editor’s note. This paragraph originally formed a footnote (the first) to Post’s appendix.

98 | Emil Post

start operating on a tape previously marked. From Turing’s frequent references to
the beginning of the tape, and the way his universal computing machine treats
motion left, we gather that, unlike our tape, this tape is a one-way infinite affair
going right from an initial square.

Primarily as a matter of practice, Turing makes his machines satisfy the
following convention. Starting with the first square, alternate squares are called
F-squares, the rest, E-squares. In its action the machine then never directs
motion left when it is scanning the initial square, never orders the erasure, or
change, of a symbol on an F-square, never orders the printing of a symbol on a
blank F-square if the previous F-square is blank, and, in the case of a computing
machine, never orders the printing of 0 or 1 on an E-square. This convention is
very useful in practice. However the actual performance, described below, of the
universal computing machine, coupled with Turing’s proof of the second of the
two theorems referred to above, strongly suggests that Turing makes this con-
vention part of the definition of an arbitrary machine. We shall distinguish
between a Turing machine and a Turing convention-machine.

By a uniform method of representation, Turing represents the set of instruc-
tions, corresponding to our quadruplets,2 which determine the behavior of a
machine by a single string on seven letters called the standard description (S.D)
of the machine. With the letters replaced by numerals, the S.D of a machine is
considered the arabic representation of a positive integer called the description
number (D.N) of the machine. If our critique is correct, a machine is said to be
circle-free if it is a Turing computing convention-machine which prints an
infinite number of 0’s and 1’s.> And the two theorems of Turing’s in question
are really the following. There is no Turing convention-machine which,
when supplied with an arbitrary positive integer n, will determine whether
n is the D.N of a Turing computing convention-machine that is circle-free.
There is no Turing convention-machine which, when supplied with an
arbitrary positive integer n, will determine whether # is the D.N of a Turing
computing convention-machine that ever prints a given symbol (0 say).4

2 Qur quadruplets are quintuplets in the Turing development. That is, where our standard instruction
orders either a printing (overprinting) or motion, left or right, Turing’s standard instruction always orders a
printing and a motion, right, left, or none. Turing’s method has certain technical advantages, but compli-
cates theory by introducing an irrelevant “printing” of a symbol each time that symbol is merely passed over.

3 “Genuinely prints”, that is, a genuine printing being a printing in an empty square. See the previous
footnote.

4 Turing in each case refers to the S.D of a machine being supplied. But the proof of the first theorem, and
the second theorem depends on the first, shows that it is really a positive integer # that is supplied. Turing’s
proof of the second theorem is unusual in that while it uses the unsolvability result of the first theorem, it
does not “reduce” [Post (1944)] the problem of the first theorem to that of the second. In fact, the first
problem is almost surely of “higher degree of unsolvability” [Post (1944)] than the second, in which case it
could not be “reduced” to the second. Despite appearances, that second unsolvability proof, like the first, is
a reductio ad absurdum proof based on the definition of unsolvability, at the conclusion of which, the first
result is used.

Corrections and Critiques 1 99

In view of [Turing (1937)], these “no machine” results are no doubt equivalent
to the recursive unsolvability of the corresponding problems.> But both of these
problems are infected by the spurious Turing convention. Actually, the set of n’s
which are D.N’s of Turing computing machines as such is recursive, and hence
the condition that n be a D.N offers no difficulty. But, while the set of #’s which
are not D.N’s of convention-machines is recursively enumerable, the comple-
ment of that set, that is, the set of n’s which are D.N’s of convention-machines, is
not recursively enumerable. As a result, in both of the above problems, neither
the set of #’s for which the question posed has the answer yes, nor the set for
which the answer is no, is recursively enumerable.

This would remain true for the first problem even apart from the convention
condition. But the second would then become that simplest type of unsolvable
problem, the decision problem of a non-recursive recursively enumerable set of
positive integers [(Post 1944)]. For the set of #’s that are D.N’s of unrestricted
Turing computing machines printing 0, say, is recursively enumerable, though its
complement is not. The Turing convention therefore prevents the early appear-
ance of this simplest type of unsolvable problem.

It likewise prevents the use of Turing’s second theorem in the ... unsolvability
proof of the problem of Thue.6 For in attempting to reduce the problem of
Turing’s second theorem to the problem of Thue, when an n leads to a Thue
question for which the answer is yes, we would still have to determine whether n
is the D.N of a Turing convention-machine before the answer to the question
posed by 7 can be given, and that determination cannot be made recursively for
arbitrary n. If, however, we could replace the Turing convention by a convention
that is recursive, the application to the problem of Thue could be made. An
analysis of what Turing’s universal computing machine accomplishes when
applied to an arbitrary machine reveals that this can be done.

The universal computing machine was designed so that when applied to the
S.D of an arbitrary computing machine it would yield the same sequence of 0’s
and I’s as the computing machine as well as, and through the intervention of, the
successive “complete configurations”—representations of the successive states of
tape versus machine—yielded by the computing machine. This it does for a
Turing convention-machine.” For an arbitrary machine, we have to interpret a
direction of motion left at a time when the initial square of the tape is scanned as

5 Qur experience with proving that “normal unsolvability” in a sense implicit in [Post (1943)] is
equivalent to unsolvability in the sense of Church [(1936)], at least when the set of questions is recursive,
suggests that a fair amount of additional labor would here be involved. That is probably our chief reason for
making our proof of the recursive unsolvability of the problem of Thue independent of Turing’s develop-
ment.

6 Editor’s note. Thue’s problem is that of determining, for arbitrary strings of symbols A, B from a given
finite alphabet, whether or not A and B are interderivable by means of a succession of certain simple
substitutions. (See further Chapter 17.)

7 Granted the corrections [detailed above].

100 | Emil Post

meaning no motion.8 The universal computing machine will then yield again
the correct complete configurations generated by the given machine. But the
space sequence of 0’s and 1’s printed by the universal computing machine will now
be identical with the time sequence of those printings of 0’s and 1’s by the given
machine that are made in empty squares. If, now, instead of Turing’s conven-
tion we introduce the convention that the instructions defining the machine
never order the printing of a 0 or 1 except when the scanned square is empty,
or 0, 1 respectively, and never order the erasure of a 0 or 1, Turing’s
arguments again can be carried through. And this “(0, 1) convention™,
being recursive, allows the application to the problem of Thue to be
made.® Note that if a machine is in fact a Turing convention-machine, we
could strike out any direction thereof which contradicts the (0, 1) convention
without altering the behavior of the machine, and thus obtain a (0, 1)
convention-machine. But a (0, 1) convention-machine need not satisfy the
Turing convention. However, by replacing each internal-configuration g; of
a machine by a pair g;, g;’ to correspond to the scanned square being an F- or
an E-square respectively, and modifying printing on an F-square to include
testing the preceding F-square for being blank, we can obtain a “(g, q)
convention” which is again recursive, and usable both for Turing’s argu-
ments and the problem of Thue, and has the property of, in a sense, being
equivalent to the Turing convention. That is, every (g, ') convention-
machine is a Turing convention-machine, while the directions of every
Turing convention-machine can be recursively modified to yield a (g, q)
convention-machine whose operation yields the same time sequence and
spatial arrangement of printings and erasures as does the given machine,
except for reprintings of the same symbol in a given square.

These changes in the Turing convention, while preserving the general outline
of Turing’s development and at the same [time] admitting of the application to
the problem of Thue, would at least require a complete redoing of the formal
work of the proof of the second Turing theorem. On the other hand, very little
added formal work would be required if the following changes are made in the
Turing argument itself, though there would still remain the need of extending the
equivalence proof of [Turing (1937)] to the concept of unsolvability. By using the
above result on the performance of the universal computing machine when
applied to the S.D of an arbitrary machine, we see that Turing’s proof of his
first theorem, whatever the formal counterpart thereof is, yields the following
theorem. There is no Turing convention-machine which, when supplied with an

8 This modification of the concept of motion left is assumed throughout the rest of the discussion, with
the exception of the last paragraph.

9 So far as recursiveness is concerned, the distinction between the Turing convention and the (0, 1)
convention is that the former concerns the history of the machine in action, the latter only the instructions
defining the machine. Likewise, despite appearances, the later (g, ¢') convention.

Corrections and Critiques | 101

arbitrary positive integer n, will determine whether # is the D.N of an arbitrary
Turing machine that prints 0’s and 1’s in empty squares infinitely often. Now
given an arbitrary positive integer n, if that # is the D.N of a Turing machine 97,
apply the universal computing machine to the S.D of 970 to obtain a machine
M. Since M satisfies the Turing convention, whatever Turing’s formal proof of
his second theorem is, it will be usable intact in the present proof, and, via the
new form of his first theorem, will yield the following usable result. There is no
machine which, when supplied with an arbitrary positive integer #, will deter-
mine whether 7 is the D.N of an arbitrary Turing machine that ever prints a given
symbol (0 say).10

These alternative procedures assume that Turing’s universal computing ma-
chine is retained. However, in view of the above discussion, it seems to the writer
that Turing’s preoccupation with computable numbers has marred his entire
development of the Turing machine. We therefore suggest a redevelopment of the
Turing machine based on the formulation given in [‘Recursive Unsolvability of a
Problem of Thue’!]. This could easily include computable numbers by defining
a computable sequence of 0’s and 1’s as the time sequence of printings of 0’s and
I’s by an arbitrary Turing machine, provided there are an infinite number of such
printings. By adding to Turing’s complete configuration a representation of the
act last performed, a few changes in Turing’s method would yield a universal
computing machine which would transform such a time sequence into a space
sequence. Turing’s convention would be followed as a matter of useful practice in
setting up this, and other, particular machines. But it would not infect the theory
of arbitrary Turing machines.

10 Tt is here assumed that the suggested extension of [Turing (1937)] includes a proof to the effect that the
existence of an arbitrary Turing machine for solving a given problem is equivalent to the existence of a
Turing convention-machine for solving that problem.

11 Editor’s note. See the reference at the foot of p. 97.

References

Church, A. 1936. ‘An Unsolvable Problem of Elementary Number Theory, American
Journal of Mathematics, 58, 345-363.

Post, E. L. 1943. ‘Formal Reductions of the General Combinatorial Decision Problem’,
American Journal of Mathematics, 65, 197-215.

Post, E. L. 1944. ‘Recursively Enumerable Sets of Positive Integers and their Decision
Problems’, Bulletin of the American Mathematical Society, 50, 284-316.

Turing, A. M. 1937. Computability and \-definability, Journal of Symbolic Logic, 2,
153-163.

2.3
Draft of a Letter from Turing to Alonzo Church
Concerning the Post Critique

Dear Professor Church,

I enclose corrected proof of my paper ‘Practical forms of type theory’ and
order for reprints.

Seeing Kleene’s review of Post’s paper (on problem of Thue) has reminded me
that I feel I ought to say a few words somewhere to clear up the points which Post
has raised about ‘Turing machines’ and ‘Turing convention machines’ [see 2.2].
Post observes that my initial description of a machine differs from the machines
which I describe later in that the latter are subjected to a number of conventions
(e.g. the use of E and F squares). These conventions are nowhere very clearly
enumerated in my paper and cast a fog over the whole concept of a ‘Turing
machine’. Post has enumerated the conventions and embodied them in a defini-
tion of a “Turing convention machine’

My intentions in this connection were clear in my mind at the time the paper
was written; they were not expressed explicitly in the paper, but I think it is now
necessary to do so. It was intended that the ‘Turing machine’ should always be
the machine without attached conventions, and that all general theorems about
machines should apply to this definition. To the best of my belief this was
adhered to. On the other hand when it was a question of describing particular
machines a host of conventions became desirable. Clearly it was best to choose
conventions which did not restrict the essential generality of the machine, but
one was not called upon to establish any results to this effect. If one could find
machines obeying the conventions and able to carry out the desired operations,
that was enough. It was also undesirable to keep any fixed list of conventions. At
any moment one might wish to introduce a new one.

Published with the permission of the Estate of Alan Turing.

24

Corrections to Turing’s Universal
Computing Machine

Donald W. Davies

1. Introduction

In 1947 I was working in a small team at the National Physical Laboratory in
London, helping to build one of the first programmed computers. This had been
designed by Turing. (See Chapter 9.)

When I first studied Turing’s ‘On Computable Numbers, with an Application
to the Entscheidungsproblem), it soon became evident to me that there were a
number of trivial errors, amounting to little more than typographic errors, in the
design of his universal computing machine U. A closer look revealed a—now-
adays typical—programming error in which a loop led back to the wrong place.
Then I became aware of a more fundamental fault relating to the way U describes
the blank tape of the machine it is emulating. Perhaps it is ironic, as well as
understandable, that the first emulation program for a computer should have
been wrong. I realized that, even though the feasibility of the universal comput-
ing machine was not in doubt, the mistakes in Turing’s exposition could puzzle
future readers and plague anyone who tried to verify Turing’s design by imple-
menting his universal machine in practice.

When I told Turing about this he became impatient and made it clear that I
was wasting my time and his by my worthless endeavours. Yet I kept in mind the
possibility of testing a corrected form of U in the future. It was to be nearly fifty
years before I finally did this.

I could not implement exactly Turing’s design because this generates a profu-
sion of states when the ‘skeleton tables’ are substituted by their explicit form (to a
depth of 9). Also the way in which U searches for the next relevant instruction
involves running from end to end of the tape too many times. Features of
Turing’s scheme which greatly simplify the description also cause the explicit
machine to have many symbols, a considerable number of states and instruc-
tions, and to be extremely slow. Turing would have said that this inefficiency was
irrelevant to his purpose, which is true, but it does present a practical problem if
one is interested in verifying an actual machine. Some fairly simple changes to
the design reduce this problem. The final part of this paper outlines a redesign of
the universal machine which was tested by simulation and shown to work. There
can be reasonable confidence that there are no further significant errors in
Turing’s design, but a simulation starting directly from Turing’s ‘skeleton tables’
would clinch the matter.

104 | Donald Davies

By and large I use Turing’s notation and terminology in what follows. Where
my notation differs from Turing’s the aim has been to make matters clearer. In
particular, Turing’s Gothic letters are replaced by roman letters. I sometimes
introduce words from modern computer technology where this makes things
clearer. (There is no special significance to the use of boldface type—this is used
simply for increased clarity.)

2. The Turing Machine T

Turing required a memory of unlimited extent and a means of access to that
memory. Access by an address would not provide unlimited memory. In this
respect the Turing machine goes beyond any existing real machine.

His method, of course, was to store data in the form of symbols written on a
tape of unlimited length. Specifically, the tape had a beginning, regarded as its
left-hand end, marked with a pair of special symbols ‘e € that can easily be
found. To the right of these symbols there are an unlimited number of symbol-
positions or ‘squares’ which can be reached by right and left movements of the
machine, shown as ‘R’ and ‘L’ respectively in the machine’s instructions. By
repeated R and L movements any square can be accessed.

Let us consider how the machine’s instructions are composed. We are not
concerned yet with U, the universal machine, but with a specific Turing machine
T—the ‘target machine’—which will later be emulated by U.

An instruction for T consists of five parts. The purpose of the first two parts is
to address the instruction. These give the state of the machine (I shall call this M)
and the symbol S that the machine is reading in the scanned square. This state-
symbol pair M-S determines the next operation of the machine. Turing called
M-S a ‘configuration’. For each such pair that can occur (finitely many, since
there is a finite number of states and of symbols), the next operation of the
machine must be specified in the instructions, by notations in the remaining
three parts. The first of these is the new symbol to be written in place of the one
that has been read, and I call this S'. Then there is an action A, which takes place
after the writing of the new symbol, and this can be a right shift R, a left shift L,
or N, meaning no movement. Finally the resultant state M’ is given in the last of
the five parts of the instruction.

To summarize: an instruction is of the form MSS'AM’. The current machine
configuration is the pair M-S, which selects an appropriate instruction. The
instruction then specifies §’, A, and M/, meaning that the symbol S’ is written
in place of S. The machine then moves according to action A (R, L, or N) and
finally enters a new state M'. A table of these instructions, each of five parts,
specifies the entire behaviour of the target machine T. The table should have
instructions for all the M-S pairs that can arise during the operation of the
machine.

Corrections and Critiques 1 105

There are some interesting special cases. One of the options is that S’ =S,
meaning that the symbol that was in the scanned square remains in place. In
effect, no writing has occurred. Another is that S’ = blank, meaning that the
symbol S which was read has been erased.

As a practical matter, note that the part of the tape which has been used is
always finite and should have well-defined ends, so that the machine will not run
away down the tape. As already mentioned, Turing specifies that at the left-hand
end the pair of special symbols ‘e € is printed. These are never removed or
altered. On the extreme right of the used part of the tape there must be a
sequence of blank squares. Turing arranges that there will never be two adjacent
blanks anywhere in the used part of the tape, so that the right-hand end of the
used portion can always be found. This convention is necessary to make U work
properly, as is explained in detail later. However, Turing does not necessarily
follow this convention in specifying target machines T. This can result in misbe-
haviour.

The purpose of T is to perform a calculation, therefore T must generate
numbers. For this reason the symbols it can print include 0 and 1, which are
sufficient to specify a binary result. By convention these two symbols are never
erased but remain on the tape as a record of the result of the computation. It
happens that they are treated in a special way in the emulation by U, in order
to make the result of the calculation more obvious, as I shall explain in due
course.

3. The Basic Plan of U

The universal machine U must be provided with the table of instructions of
the Turing machine T that it is to emulate. The instructions are given at the
start of U’s tape, separated by semicolons . At the end of these instructions is
the symbol “ (which is a single symbol). Later I shall settle the question
of whether a semicolon should be placed before the first instruction or after the
last one.

Following " is the workspace, in which U must place a complete description,
in U’s own symbols, of machine T. This description consists of all the symbols on
T’s tape, the position of the machine on that tape, and the state of the machine. I
call such a description an image or snapshot of machine T. As T goes through its
computational motions, more and more snapshots are written in U’s workspace,
so that an entire history of T gradually appears.

In order to make this evolving representation of T’s behaviour possible, U
must not change any of the images on its tape. U simply adds each new image to
the end of the tape as it computes it.

The first action of U is to construct the initial image of T, in the space
immediately following the ‘" symbol which terminates the set of instructions.

106 | Donald Davies

(3%

Subsequently, U writes new images of T, separated by colons , each image
representing a successive step in the evolution of T’s computation.
Whenever T is asked to print a 0 or 1, the image in which this happens

> >

is followed by the symbols 0 :” or ‘1 :
the results of the computation. For example, U’s tape might look like this,
with the instruction set followed by successive images of T. The ‘output’ charac-
ter 0 printed in image 3 is highlighted by printing it again after the image, and

likewise in the case of the ‘output’ character 1 that is printed in image 5.

respectively. This serves to emphasize

ee;inst 1 ;inst2; ... inst n : image 1 : image 2 : image 3: 0 :
image 4 : image 5: 1 : etc.

Note that each instruction begins with a semicolon. This differs from Turing,
who has the semicolon after each instruction, so that the instructions end with
the pair of characters ; :. I found this departure from Turing’s presentation
necessary, as I shall explain later.

The symbols on the tape up to and including the “:—i.e. T’s instructions—are
given to U before it starts operating. When U commences its operations, it writes
out the first image and then computes successive images from this, using the
instructions, and intersperses the images with ‘outputs’ as required.

To complete this description of the basic plan of U I must specify how the
symbols are spaced out in order to allow for marking them with other symbols.
Looking in more detail at the start of the tape we would find squares associated
in pairs. The left square of each pair contains a symbol from the set:

ACDULRNOTI1;

These symbols are never erased by U; they form a permanent record of the
instructions and the images of T. Thus the first few squares of a tape might
contain these symbols representing an instruction, where ‘-’ refers to the blank
symbol, meaning an empty square:

eeD-A-D-D-C—-R-D-A-A—;— ... (1)

The blank squares leave room for symbols from the set u v w x y z, which are
reserved for use as markers and serve to mark the symbol to their immediate left.
For example, at one stage of the operation of U the parts of this instruction are
marked out as follows:

eeD-A-D-DuCuRuDyAyAy;— ...

Here the ‘v’ and ‘Y’ mark D C R and D A A respectively.

Unlike the symbols ACD L RN 0 1 ;::: which are never erased, the letters u
v w x y z are always temporary markings and are erased when they have done
their job.

Corrections and Critiques | 107

The positions of the ACD LRN 0 1;::: symbols will be called ‘non-erasing
positions’. Note that the left hand ‘e’ occupies such a position also.

4. Notation for States, Symbols, and Actions in U’s
Instructions and in Images of T

The states, symbols, and actions which U represents on its tape are those of T,
which U is emulating. We do not know how many states and symbols have to be
emulated, yet the set of symbols of U is limited by its design. For economy in U’s
symbols, the nth state of T is represented on U’s tape by DAA...A with n
occurrences of letter ‘A> The blank spaces between these letters are not shown
here but are important for the operation of U and will always be assumed. The
nth symbol of T is shown on U’s tape by the string DCC. .. C with n occurrences
of letter ‘C.. It appears from an example in Turing’s text that D by itself (with a
marking square to its right, as always) can be one of these ‘symbol images’. In fact
I shall choose to make this the ‘blank’ symbol.

Read in accordance with these conventions, the symbols in example (1), above,
form the instruction: ‘when in state 1—reading a blank—write symbol 0—move
right—change to state 2’

With the semicolons as spacers we now have a complete notation for instruc-
tions on U’s tape. Next we need a notation for an image of machine T, which is
also made up from these state and symbol images, DAA... and DCC...
respectively.

The keys to the next action of T are its present state and the symbol it is
reading, which have been stored in the instruction table as the pair M-S. So this
same combination is used in the image, by listing in correct sequence all the
symbols on T’s tape and inserting the state image immediately in front of the
symbol which machine T’s emulation is currently reading. The placing of the
state image indicates which square is currently scanned. So a tape image might
look like this:

symbol 1, symbol 2, symbol 3, state, symbol 4, symbol 5 :

The current state is given at the position indicated. This emulated tape of T
records that T is scanning symbol 4. The combination ‘state, symbol 4’ which
appears in this string is the M-S pair that U must look up, by searching for it in
the instruction table. To get the image of the next state of T, state and symbol 4
may have to be changed and the state image, also changed, may have to be moved
to the right, or to the left, or not moved. These are the processes which occur
in one step of evolution of the machine T. It will be done by building a
completely new image to the right of the last > (Consequently the tape space
is rapidly used up.)

108 | Donald Davies

5. Notation for Machine U

In principle, machine U should be specified in the same formal notation as
machine T, but this would be bulky and tedious to read and understand, so
Turing used a much more flexible notation. A compiler could be built to take the
‘higher-level’ notation of machine U’s specification as given by Turing and
generate the complete set of instructions for U.

The statements which make up Turing’s specification of U are similar to
procedures with parameters (more correctly they are like macros) and they
have four parts. As with the instructions of T, a state and symbol select which
statement is to apply, except that the symbol can now be a logical expression such
as ‘not C, which in the explicit specification would require as many instructions
as there are symbols other than ‘C’. There are also statements that copy symbols
from one part of the (real) tape to another, and this requires one instruction for
each allowed symbol variety. The actions, which in the explicit notation can only
write a symbol and optionally move one place left or right, are expanded here to
allow multiple operations such as ‘L, Pu, R, R, R, specifying that symbol ‘i’ is
being printed to the left of the starting point and the machine ends up two
places to the right of that point. Turing requires that these specifications be
‘compiled’ into the standard five-part instructions. I will call these procedures
‘routines’. Their parameters are of two kinds, the states that the operations lead
to, which are shown as capital letters, and symbol values, which are shown in
lower case.

The specification of machine U consists of a collection of ‘subroutines’ which
are then used in a ‘program’ of nine routines that together perform the evolution
of T. We shall first describe the subroutines, then the main program.

6. Subroutines

In principle, the action of a routine depends on the position of the
machine when the routine is invoked, i.e. the square on the tape which is
being scanned. Also, the position of the scanned square at the end of a routine’s
operation could be significant for the next operation to come. But Turing’s
design avoids too much interaction of this kind. It can be assumed that the
positions are not significant for the use of the subroutines in U unless the
significance is described here. Certain subroutines which are designed to find a
particular symbol on the tape (such as f(A, B, a) and q(A, a) and others) leave
the machine in a significant position. Con(A, a) has significant starting and
finishing positions.

Where a routine uses other routines, these are listed (for convenience in
tracing side-effects). Also listed are those routines that use the routine in

Corrections and Critiques | 109

question. It would be possible to make several of the routines much more
efficient, greatly reducing the amount of machine movement, but I have not
made such changes here. (For efficiency, routines could be tailored for each of
their uses and states and symbols could easily be coded in binary. But this would
be a redesign.)

f(A, B, a)

The machine moves left until it finds the start of the tape at an ‘€’ symbol. Then it
moves right, looking for a symbol ‘a’. If one is found it rests on that symbol and
changes state to A. If there is no symbol ‘a’ on the whole tape it stops on the first
blank non-erasing square to the right of the used portion of tape, going into state
B. In general terms, this routine is looking for the leftmost occurrence of the
symbol ‘a’. The special case f(A, B, e) will find the leftmost occurrence of ‘e,
which is in a non-erasing position. Uses no routines. Used by b, e(A, B, a), f'(A,
B, a), cp(A, B, E, a, b), sh, and pe(A, b).

f'(A, B, a)

As for f(A, B, a) except that if a symbol ‘a’ is found, the machine stops one
square to the left, over the square which is marked by the ‘a’. Uses f(A, B, a) and
1(A). Used by cp(A, B, E, a, b), sim, and c(4A, b, a).

1(A)
Simply shifts one square to the left. Uses none. Used by f'(A, B, a), mk, and inst.

e(A)

The marks are erased from all marked symbols, leaving the machine in state A.
Uses none. Used by ov.

e(A, B, a)

The machine finds the leftmost occurrence of symbol ‘a’, using routine f(A, B, a),
then erases it, resting on the blank symbol and changing to state A. If there is no
such symbol to erase, it stops on the non-erasing square to the right of the used
portion of tape in state B, as for f(A, B, a). Uses f(A, B, a). Used by kmp, cpe(A, B,
E, a, b), and e(B, a).

e(B, a)

Erases all occurrences of the symbol ‘a’ on the tape, leaving the machine in state
B. Uses e(A, B, a). Used by sim.

pe(A, b)

Prints the symbol ‘b’ in the first blank non-erasing position at the end of the
sequence of symbols. Uses f(A, B, a). Used by pe, (A, a, b) and c(4, B, a).

110 | Donald Davies

pex(A, a, b)

Prints the symbol ‘a’ and then ‘b’ in the first blank non-erasing positions. Uses
pe(A, b). Used by sh.

q(A)
Moves to the next non-erasing position after the used portion of tape and goes to
state A. Uses none. Used by q(4, a).

q(A, a)

Finds the last occurrence of symbol ‘a’ and stops there in state A. Uses q(A).
Used by anf, mk, and inst. If the symbol does not exist, the machine will run off
the tape to the left. However, in its use in anf, mk, and inst, it will find a colon or
‘t on which to stop.

c(A, B, a)

Finds the leftmost symbol marked with ‘@’ and copies it at the end of the
tape in the first non-erasing square available, then goes to state A. If no symbol
‘a’ is found goes to state B. The symbols which this routine (and those that
use it) will be required to copy are ‘D) ‘C, and ‘A. This means that each
invocation needs three different states. Uses f'(A, B, a) and pe(A, b). Used by
ce(A, B, a).

ce(A, B, a)

Copies at the end of the tape in the first non-erasing square the leftmost symbol
marked by ‘a’, then goes to state A with the single (leftmost) marking ‘@’ erased. If
there is no symbol ‘a’ on the tape, goes to state B. Uses c(A, B, a) and e(A, B, a).
Used by ce(B, a).

ce(B, a)

Copies in the correct sequence, at the end of the tape in non-erasing squares, all
the symbols on the tape that are marked with ‘a’, at the same time erasing each
‘a’, and then goes to state B. If there are no symbols marked with ‘a’ it goes
straight to B. Uses ce(A, B, a). Used by cey(B, a, b), ces(B, a, b, ¢), ces(B, a, b, ¢,
d), and ce5(B, a, b, ¢, d, e).

Ce5(B, a, b) G d) e)

Copies in the sequence given, at the end of the tape in non-erasing squares, all
the symbols marked with ‘a, then those marked with ‘b’ then ‘¢, ‘d’, and ‘¢ in
turn, ending in state B. Uses ce4(B, 4, b, ¢, d) and ce(B, a) and ce4 uses ce; which
uses ce; and all of these use ce(B, a). Only ces(B, a, b, ¢, d, €) is used elsewhere, by
inst.

Corrections and Critiques | 111

cp(A, B, E a,)

Compares the leftmost symbols marked by ‘a” and ‘b’ First it finds the symbol
marked ‘d, by using the routine f'(A, B, a). It enters a different state cp, (A, B, x)
according to the symbol ‘x” it finds there. There are three possible symbols: ‘D’,
‘C, and ‘A’ Then it finds the symbol marked ‘b’ in the same way. If they are the
same, the resultant state is A, if not the state becomes B. If one of these marked
symbols is found, but not the other, the outcome is state B. If neither is found,
the outcome is E. Uses f(A, B, a) and f'(A, B, a). Used by cpe(A, B, E, a, b). (I
have changed Turing’s state-symbol ‘U’ to ‘B’ to avoid confusion.)

cpe(A, B, E, a, b)
Action as for c¢p(A, B, E, a, b) followed by, if the marked symbols are the same,

the erasure of both the markings ‘a’ and ‘b’. Uses cp(A, B, E, a, b) and e(A, B, a).
Used by cpe(B, E, a, b).

cpe(B, E, a, b)

Comparison of two marked sequences. First it compares the leftmost symbols
marked with ‘@’ and ‘b’. If they differ the state B is reached and the process stops.
If they are both absent, state E. Otherwise both marked symbols are erased and
the process is repeated with the next leftmost marked symbols. So, if the whole
sequence of symbols marked with ‘a’ equals the sequence marked with ‘b’ (or
both are absent) the result is state E and all markings ‘@’ and ‘0’ have been
removed. If the sequences differ, state B is reached and some of the markings
have been removed. Uses cpe(A, B, E, a, b). Used by kmp.

con(A, a)

This routine’s action depends on where it starts on the tape. It leaves the machine
in a significant position after its action is completed. The purpose is to mark with
symbol ‘a’ the M-S pair next on the right of the start position. The routine must
start on a non-erasing square. It seeks a pattern such as:

D-A-A- ...A-D-C-C—- ... C—

and will replace all the blanks (or any other symbols in these places) by the symbol
‘a’. There may be as few as one ‘A’ after the first ‘D), representing the state, and
optionally no ‘C’ following the second ‘D’, representing the symbol. The starting
point can be on the first ‘D’ of this pattern, or earlier if no other ‘A’ symbols
intervene. For example, in an image there is only one state, so the first ‘A’ symbol
can be sought from anywhere to its left in the image string. The final state is A and
the position is two non-erasable squares to the right of the last marked symbol.
(Turing refers to this as ‘the last square of C’ but his own example shows a
symbol image with no Cs. Turing’s comment ‘C is left unmarked’ does not

112 | Donald Davies

seem to make sense.) Uses none. Used by anf, kom, sim, and mk. The use of
con(A, a) in sim and mk employs the final position it reaches.

7. Operation of the Universal Machine U

The routines which comprise the operation of U are entered in succession, except
for the process of searching for the relevant instruction, which has its own loop.
The initial state of the machine is b, remembering that the instruction table for
the Turing machine which U is emulating must already be on the tape. The
starting position is immaterial.

b

The beginning of U’s operation. It writes the symbols : D A’ in the non-erasing
squares after the symbol :: that signifies the end of the instructions which are
already on the tape. This is the image of the initial state of the emulated machine
T and consists of the coding for ‘state 1’ with no following symbol images,
meaning that the initial tape of T is blank.

This operation uses f(A, B, a).

anf

Presumably this is from the German Anfang, or beginning. It is the start of the
process of generating the next image of T. The process will return to anf when
one new image has been appended on U’s tape, so that building of successive
images continues. Its action is q(anf,, :) which finds the last > and then anf,
uses con(kom, y) to mark the last M-S pair on the tape with ‘y’ and go to state
kom. Thus the machine state and scanned symbol of the last image on the tape
have been marked. Initially this results in marking just the ‘D’ A} but there is an
error in this design because absence of a symbol image means that con will fail,
since it looks only for symbols ‘A’ or ‘D’ when in its internal state con;. This is
easily corrected: see Section 8.
This operation uses con(A, a) and q(A4, a).

kom

From its position in the image region, the machine moves left, looking for either
% or ‘Z. It will find " at the start of the last instruction, provided that the
termination of the instruction area is shown as just 2’ and not % :’ (the latter is
implied by Turing). Also, if all instructions are to be available, the first instruc-
tion must begin with . The correct designation of a single instruction should be
% followed by the five parts, and not as shown on p. 68 of Turing’s treatment.
With these changes, kom will ignore any ;” which is marked with ‘z’. ‘z’ signifies
that the instruction which follows has already been tried. The rightmost

Corrections and Critiques | 113

unmarked ¢ having been found, this symbol is marked with ‘z’ and the routine
con(kmp, x) is used to mark the following M-S pair with ‘x’. Each time that kom
is used, the next instruction to the left will be processed.

If no instruction matches the current state and symbol of T, meaning that the
machine is badly defined, the search for a colon will run off the left end of the
tape. This bug is fixed in Section 9.

This operation uses con(A, a).

kmp
The action of kmp is shown by Turing as cpe(e(kom, x, y), sim, x, y). This will
compare the sequences marked by ‘x” and ‘y’ to discover if the marked instruc-
tion actually applies to the M-S pair shown in the current image of T. If it does,
the state becomes sim, which is the start of building the next image. If not, there
is a problem with partial erasure of the markings, so these are erased by the
e(kom, x, y) operation and we try again, this time trying the next instruction to
the left of those tried so far, which have the ‘z” marking. However, there is a bug,
explained and corrected in Section 8.

This operation uses cpe(B, E, g, b) and e(A, B, a).
sim
This routine marks the parts of the leftmost instruction marked with ‘z’, which
now applies to the next of T’s operations to be performed. The leftmost marked
colon is located by f'(sim;, simj, z) and then sim, is con(sim,,), which marks
the M-S pair with blanks, since this is not required again in this round. The
routine con leaves the machine scanning the next non-erasing square to the right
of the ‘D’ in the coding for the new symbol to be written by T. The ‘D’ is marked
with ‘u’ as are any Cs which follow, so that the new symbol image is marked. The
marking with ‘4> continues, marking to the left of each square being examined
until an A’ is found, when the marking is changed to ‘y’. Consequently, both the
new symbol image and the action (L, R, or N) have been marked with ‘4’ and the
new state image has been marked with ‘y’, which continues until the ¢ or
terminating the instruction has been reached. Then the ‘z’ markings are all
removed, since the relevant parts of the instruction for the next stage of T’s
operation have been marked. The line on p. 71 for state sim, and symbol ‘not A’
has an error; see Section 10.

This operation uses e(B, a), con(A4, a), and f'(A, B, a).

mk

The last ’ is found by means of an operation which should read q(mk;, :) (see
Section 10). Moving right from there, the first ‘A’ is found, which is at the start of
the state image, then two non-erasable squares to the left of this point is the end
of the preceding symbol image. The start of the whole image might have been

114 | Donald Davies

found (%), if this was the initial state, which finishes this part of the marking. Ifa
‘C is found, this is marked with ‘x” and so are previous Cs moving backwards until
a ‘D’ is found and marked. From this point backward, symbols in non-erasable
squares are marked with ‘v’ until the ‘.’ that begins the image is found. In this way
the symbol image preceding the one currently scanned (if any) has been marked
with ‘x” and all the earlier symbols in the image (if any) are marked with ‘v’

In the second stage of marking, the con(A, a) routine is used to find the M-S
pair, marking it with a blank and ending two non-erasable squares beyond the
last marked ‘D’ or ‘C’ of the symbol image. Two left shifts leave the machine at
the start of the symbol image which immediately follows the scanned symbol.
From there, all symbols are marked with ‘w’ until the end is reached and finally a
 is placed at the end of the old image, ready for copying out the new image
later.

It may be useful to summarize the marking which is now ready for copying
out the new image. The instruction has been marked with ‘u’ for both the new
symbol and the action (R, L, or N) then with ‘y’ for the new state. The image has
been marked in three places. Starting from the left, its symbol images are marked
with ‘v’ until the one before the scanned symbol, which is marked with ‘x’. Then
the state and symbol scanned, the current M-S pair, are unmarked, because they
will be superseded. To the right of the scanned symbol, all symbol images are
marked with ‘w’

This operation uses con(A, a), 1(A), and q(4,).

sh

Before the copying of these marked regions to make a new image, the output of
machine T is made visible on the tape. The part marked with ‘u’ begins with the
new symbol (S') to be written on T’s tape, which may be 0, coded as D C, or 1,
coded as D C C. It is immediately preceded in the instruction by the old symbol
that is being overwritten (S). The 0 or 1 is considered as being written if it
replaces a space, which is coded as D, so sh looks for D-DuCu or D-DuCuCu,
using the ‘& marking to locate this combination. According to which it finds, it
writes either :—0" or “—1’ at the end of the tape.

The convention that 0 or 1 is output if it replaces a space implies that the target
machine T conforms to the same convention as U, which is not to overwrite
most symbols, only treating special markers in this way. This is in fact an
unnecessary restriction on the programming of T. The restriction means that
U is not really universal. On the other hand, the use of 0 and 1 as special symbols
indicating output goes beyond the fundamental definition of a Turing machine.
We must assume that the sh operation is designed for use in the special case of a
target Turing machine with output, the output action consisting of writing 0 or
1 in a square which previously held a space.

This operation uses f(A, B, a) and pe,(4, a, b).

Corrections and Critiques | 115

inst

This routine creates the new image of T’s machine and tape and writes it at the
end of U’s tape, after the final colon. The operation q(1(inst;), u) finds the last
‘w’ on the tape and the square that it marks, which contains L, R, or N. This
single ‘v’ is deleted because the action symbol L, R, or N must not be copied into
the new image. According to the action symbol found, the parts are assembled in
one of these sequences, where the machine state ‘y’ is shown in bold.

R v x uy w
N v x y uw
L vy x uw

In each case the symbols preceding the active part are marked ‘v’ and are copied
first (they may not exist). The symbols following the previously scanned symbol
are marked ‘w’ and are copied last. Without a movement of machine T, the new
state, marked ‘y’, is followed by the new symbol, marked ‘u’; and the previous
symbol, marked ‘x’, stays in its place. With left movement, the new state is placed
before the previous symbol. With right movement, the new state is placed after
the new symbol, marked ‘v’

The tape image should always end with a ‘blank’ symbol, which is simply D.
Any rewritten symbols within the used portion of T’s tape which are deleted will
have been overwritten with ‘D’, but at the end, if the section marked with ws was
empty, the action R may leave the state image at the end of the tape. This will
cause a matching failure during the next cycle of the emulation if comparison
occurs with the M-S pair of an instruction that has a symbol value of ‘blank;,
represented by D. Repairs are made in Section 8.

This operation uses 1(A), q(A, a), f(A, B, a), and ces(B, a, b, ¢, 4, e).

ov

This final operation e(anf) clears all markings and returns to anf to begin once
again the process of generating a new tape image. Since the ‘Z markings were
cleared by sim and the ces operation clears all its markings, there seems no need
for ov, but it does no harm.

This operation uses e(A).

8. The Interesting Errors

The first phase of an evolution of T is to find the relevant instruction. This is
done by marking the current state-symbol pair of T with ‘y’ and the state-symbol
pair of an instruction with ‘x’, then using the cpe operation to compare the
marked strings. The process of cpe deletes some of the ‘x’ and ‘y’ markings.
When comparison fails on one instruction the machine moves on to the next.
This comparing process is shown in the table for U on p. 71 of Turing’s paper as

116 | Donald Davies
kmp cpe(e(kom, x, y), sim, x, y)

The e operation is intended to delete all the remaining ‘x” and ‘)’ markings. In
fact this is not quite how erasure works as defined on p. 64 and the correct form
would be e(e(kom, x), y). But there is a more serious error in returning to kom,
since the essential ‘y” marking will not be restored. Returning to anf will repair
this error. The correct definition of kmp should be

kmp cpe(e(e(anf, x), y), sim, x, y)

To introduce the second of these interesting errors, it is instructive to look at the
penultimate step in the copying out of the evolved new snapshot of T. This has
been reduced, by Turing’s clever scheme of skeleton tables, to a choice of one of
three copy instructions on p. 72, such as, for example

inst;(R) ces(ov, v, x, u, y, w)

This copies five marked areas from the current instruction and the last image of
T in the sequence to create the new image, for the case where the machine moves
right. The part marked)’ is the new machine state, ‘v’ and ‘x’ form the string of
T-symbols to the left, ‘u’ is the newly printed symbol, and ‘w’ the string of
T-symbols to the right. Because ‘u’ replaces an existing symbol, the number of
symbols (including blanks) on T’s conceptual tape has not changed! The same is
true for left and null movement. There must be something wrong in an emula-
tion in which the emulated machine can never change the number of symbols on
its tape.

The image shows just the occupied part of T’s tape, and this is conceptually
followed by an unlimited set of blank symbols, which are the tape as yet unused.
The number of symbols in the image of T will increase by moving right from the
last occupied square and writing on the blank square. After a move right onto
blank tape, there will be no string marked ‘w’, so machine state ‘)’ will be the last
thing in the image.

This will lead to a failure of the emulation at the next evolution because the
state-symbol pair of the image, due to be marked with ‘y’ during the search for
the relevant instruction, is incomplete.

The remedy is to print a new blank symbol for T at the end of the image, when
the move has been to the right and there is no T-symbol there. The necessary
corrections, on p. 72, to the table for U are:

inst; (R) ces(q(insty, A), 1, x, , 3, W)
inst, R, R inst;

. none PD ov

inst; D ov

In the case of a move right, after copying the parts of the previous image, the
operation q finds the last ‘A’ on the tape, which is the end of the state-symbol

Corrections and Critiques | 117

copied from markings y. If there is a T-symbol to its right, there is no problem.
After two right moves of U, if a ‘D’ is found there is a T-symbol but, if not, by
printing ‘D’ a new blank tape square is added to the image of T. In this way T’s
conceptual tape is extended and the state-symbol pair is made complete.

The error perhaps arose because the endless string of blank symbols on U’s
tape was taken as sufficient for the purpose of T. But for the emulation a blank
square is shown as D. Machines U and T represent a blank tape differently.

There is a corresponding error in the way the initial state of T is placed on U’s
tape. It should contain the U-symbols: DAD with suitable spaces between them,
representing T’s initial state DA followed by the scanned symbol D, a blank. The
correction on p. 70 is:

b; R, R, P, R R, PD,R R, PA, R, R, PD anf

9. Diagnostics

With experience of writing programs it is second nature to build in diagnostics.
Whether they are needed in U is arguable. Since U is a conceptual tool, its
requirements are determined by its use in the argument of Turing’s paper. For
testing the design of U, diagnostics are certainly needed.

There may be a need for two kinds of failure indication in the program of U.

Suppose that T has a deficient set of instructions, meaning that its latest image
has a state-symbol pair which does not appear among the instructions. I believe
that Turing would class this as a circular machine. The effect on the operation of
U is that the search for the relevant instruction fails with U moving left beyond
the left-hand end of its tape, and continuing to move left indefinitely. Perhaps
this is acceptable for the purpose for which U was intended, but it seems
anomalous that a deficiency in T should cause U to misbehave. It can be avoided
by adding a line to the definition of kom on p. 71:

kom e fail; (deficient T instructions)

then changing the next line to respond to symbols not z nor ; nor e.

If T moves right without limit, this will be emulated correctly, but moving left
beyond the limits of its tape is a problem. The way U works will cause the next
image of T to appear as if no shift had occurred. There is no way to represent T as
scanning a square to the left of its starting position. This means that the
subsequent behaviour of T will differ from what its instructions imply. I think
this might affect the use that Turing made of the machine in the main part of the
paper.

The changes to deal with this problem are:

inst; (L) f(insty, fail,, x) (machine T has run off left)
insty ces(ov, v, ¥, X, U, W)

118 | Donald Davies

10.

1.

11.

Trivial Errors and Corrections

There is potential confusion in the use of the symbol q for different states in
two places, and it is also confused with state g. The best resolution is as
follows.

We can treat the use of q in the example on p. 62 as casual, without
permanent significance. The same might be said of its use on p. 64, which is
unrelated. But from there onwards the examples will form part of the
definition of U, so the symbols have global significance.

On p. 66, the states q and q; appear but, in their subsequent uses in U,
they have been replaced by g, for example in the definitions of anf, mk, and
inst. I have retained the notation q, while remembering that previous uses
of this symbol are unrelated.

The skeleton tables for re and cr on p. 65, which comprise five different states,
are redundant, serving no illustrative purpose and not being used again.

On p. 68, the format of the instruction table of T, as written on the tape of
U, is described. Instructions are separated by semicolons. An example
DADDCRDDA;DAA ... DDRDA; is given. As already explained, this is
misleading, because each instruction should be preceded by a semicolon.
The example should begin with a semicolon, not end with one.

In the explanation of the skeleton table for con (p. 70), ‘C’ is one of the
symbols being read and marked. But the words refer to ‘the sequence C of
symbols describing a configuration’ The final remarks ‘... to the right of
the last square of C. C is left unmarked. use ‘C’ in the second sense. It
would otherwise seem as if the final symbol ‘C’ was left unmarked, but this
is not so. To clarify, replace by ‘the sequence S’ and ‘... last square of S.
Configuration S is left unmarked.

. On p. 71, a line for sim, should read:

sim, not A L, Pu, R, R, R sim,
On p. 71, the line for mk should read:
mk q(mky,:)
On p. 72, the line for inst;(N) should read:

inst; (N) ces(ov, v, X, ¥, U, w)

A Redesign of the Universal Machine

To verify, as far as this is possible, that there are no remaining errors in the
amended version of Turing’s program for U, it would be best to generate the

explicit machine instruction table by substitutions and repetitions, then run this

machine with one or more examples of a machine T and find if the emulations

Corrections and Critiques | 119

behaved as they should. But the complexity and slowness of the explicit form of
Turing’s U makes this difficult.

Therefore I made some changes to the design of U before constructing a
simulation of a Turing machine, loading the instructions for U, producing a
tape image for a machine T and running the program. After some corrections to
my version of U, the simulation behaved correctly. In this section the main
features of the redesign are described.

The new version of U follows Turing’s methods quite closely. The substitution
process introduced with the skeleton tables had been nested to a depth of 9,
causing a proliferation of states and instructions in the explicit machine. To
avoid this, no skeleton tables were used in the new version and this allowed the
procedures to be optimized for each application. The downside is that the ‘low-
level” description of U which results takes up more space than the original and is
harder to understand and check for accuracy. There are 147 states and 295
instructions in the new version, an enormous reduction.

The representation of T’s states and symbols in a monadic notation such as
DAAAA was replaced by a binary notation. This was an easy change that reduced
the length of the workspace used. Because nearly all the time is used moving from
end to end of the workspace, this is worthwhile. The small cost of the change is that
there are four U-symbols to represent states and symbols instead of three.

The classic Turing machine can move right or left or stay put in each operation.
To simplify U a little, the third option was removed, so that a left or right
movement became mandatory. For consistency, U was also run on a machine T
with this characteristic. In the whole of U’s program, a compensating movement
became necessary only a few times, so it is not a significant restriction.

Turing’s skeleton tables show, for the scanned symbol, such words as any, or
not A. When translated into a list of discrete symbols for the explicit machine
these generate many instructions. By introducing a ‘wild card’ notation and
searching instructions in a definite sequence, this proliferation can be avoided.
A form of instruction was added which, in its written form, had an asterisk for
both the scanned symbol and the written symbol. This acted on any scanned
symbol and did not overwrite it. The way that U worked would have made it
possible to read a wild card (i.e. any) scanned symbol and write over it or to read
a specific symbol and leave it unchanged, but these were never needed in
practice. The wild card scanned symbol should only be actioned after all other
possibilities (for this particular state) have been tested. Therefore instructions
now have a defined sequence and must be tested accordingly. U always did test
instructions in sequence but never made use of that fact.

Testing all instructions in sequence to find a match is very time-consuming
because it requires marking, then comparing square by square, running from
instruction space to work space. It was largely avoided by writing in U’s instruc-
tion table an offset which indicated where the next instruction could be found.

120 | Donald Davies

This indication led to a section of instructions dealing with a given state; after
this, sequential testing took place. This was a shortcut to speed up U and was not
envisaged as a feature of all Turing machines, since it would greatly complicate U.
Technically it was a little more complex than I have described, but it has no effect
on the design of U, being merely a chore for the programmer and a detail of the
computer program which interprets those instructions.

U spends some of its time searching for a region on the tape where it will begin
work. To make this easier, additional markers were introduced, for the action
symbol (L or R) and for the start of the current snapshot. Also, the end of the
workspace was marked, and this marking was placed in one of the squares
normally reserved for permanent symbols. Since it had to be overwritten when
the workspace extended, this broke one of Turing’s conventions.

Finally the two failure-indications described earlier were incorporated, one for
a deficient T-instruction set and the other for T running its machine left, beyond
the usable tape.

11.1 Testing the redesigned machine

A computer program, which I shall call T*, was written which would simulate the
underlying Turing machine, using a set of instructions in its own special code,
which had one byte per symbol or state. This code was chosen for convenience of
writing U’s instructions. It incorporated the wild card feature and the offset
associated with each instruction, but the offset did not alter the way it responded
to its instructions, only making it faster. When the design of U is complete and its
instructions have been loaded, T* will behave as the universal machine U.

A simple editor was written to help the user write and amend the instruction
tables for T* and prepare a starting tape for T* which holds the coded instruc-
tions for the emulated Turing machine T.

For T, the example given by Turing on p. 62 was used. It prints a sequence of
increasing strings of ones, such as 001011011101111011111... This program in
its explicit form would have 23 instructions and 18 states. To make it simpler, it
was rewritten without the ‘alternate squares’ principle and it then had 12
instructions and 6 states. It may be interesting to see how the wild card feature
operates by studying this example, shown below.

As a first step, the example was loaded into the program space of T* and run,
thus testing the mechanism of T* as well as the example in the table below.

Then the example was coded for the initial part of the tape of T, so that it
would cause U to emulate it as the target T. The program of U was loaded in
many stages, debugging each by testing its part in the whole operation of U. Two
serious program errors were found. One was in the operation sh which prints the
output of T between the snapshots of T’s evolution. The other was in the
correction to Turing’s scheme which wrote a blank symbol (D) at the end of
the tape. It had been inserted at the wrong place. With these and several minor

Corrections and Critiques | 121

errors corrected the redesigned U performed as expected and the evolution of T
agreed with expectation and with its earlier running, directly on T*. Only this
one example of T was tried, but it probably does test the universal machine fully.
The full results are given below.

Because of the differences between the version of U that was tested and
Turing’s design with my corrections, the testing must be regarded as incomplete.
A compiler could be written to take the design in the form of skeleton tables and
generate the explicit machine, which could then be run to emulate examples of
the target machine. This would be extraordinarily slow.

12. The Program for T

The instructions for T are given in the standard five-part form: state, scanned
symbol, written symbol, movement, and resultant state. The images are shown
for the first eleven moves, in the standard form with the state-symbol (a to e,
printed bold) preceding the scanned symbol.

The blank space symbol is a hyphen and the other symbols are 0, 1, x, and y.

The program writes a block of xs followed by a y then converts the xs
successively to 1s and the y to a 0, while writing the next block of xs and a y,
increasing the number of xs by one.

s - 0 R a print 0 :0a—
a - y R b print y at end :0yb— :00xa—
a * * R a :00xyb—
b — x L c print x at end :0cyx :00xcyx
b * * R b

¥ y L d run back to y :d0yx :00dxyx
C * * L C
d X R b change x to 1 :001lbyx
d 0 0 R e none left :0eyx
d * * L d
e y 0 R a change y to 0 :00ax
€ * * R €

13. Results of the Test

Here is a copy of the symbols on the tape of T* after 22 evolutions of U. The part
up to the symbol % represents the 12 instructions for T. Then follow the 23
images, separated by colons. Whenever U prints a 0 or 1, this is also an output of
T. To make this explicit (following Turing’s practice) the strings ‘1 :” or ‘0 :” are

122 | Donald Davies

inserted into the tape (bold in our table). So the whole set of evolutions shown
has printed ‘0 0 1 0’. The tape shown is printed on alternate spaces, except for the
initial ‘e €’ The final F is a device of my own to make it easy to find the end of the
written area of tape.

ees MCSSCRMD;MDSSCDRMCC;MDSESERMD;
MCCSSCCLMCD;MCCSESERMCC;MCDSCDSCDLMDC;
MCDSESELMCD;MDCSCCSDRMCC;MDCSCSCRMDD;
MDCSESELMDC;MDDSCDSCRMD;MDDSESERMDD %:
MCS:0:SCMDS:SCSCDMCCS:SCMCDSCDSCC:
MDCSCSCDSCC:SCMDDSCDSCC:0:SCSCMDSCC:
SCSCSCCMDS:SCSCSCCSCDMCCS::
SCSCSCCMCDSCDSCC:S§CSCMDCSCCSCDSCC:1:
SCSCSDMcCCSCDSCC:SsCSCSDsCDhDMCCScCC:
SCSCSDSCDSCCMCCS:SCSCSDSCDMCDSCCSCC:
SCSCSDMCDSCDSCCSCC:SCSCMDCSDSCDSCCSCC:
SCMDCSCSDSCDSCCSCC:SCSCMDDSDSCDSCCSCC:
SCSCSDMDDSCDSCCSCC:0:SCSCSDSCMDSCCSCC:
SCSCSDSCSCCMDSCC:SCSCSDSCSCCSCCMDSF

As an aid to understanding this tape, here are the symbols and states of T in
U’s notation:

- S s MC
0 SC a MD
1 SD b MCC
x SCC c MCD
¥ SCD d MDC
* SE e MDD

The first few snapshots therefore read:

s—:0:0a—:0yb—:0cyx:d0Oyx:0eyx:0:00ax:00ax—:
00xyb—:00xcyx:00dxyx:1:001byx:001y bx:001yxb —:
001lycxx:00lcyxx:

The final configuration of the above tapeis0010 xxa —:

14. The Corrected Tables for U: Summary

The table for f(A, B, a) is unchanged on p. 63.

On p. 64, e(A, B, a) and e(B, a) are unchanged, but note that the state q used
in the explanation of e(B, a) is a local notation, unrelated to the states of that
name on p. 66.

Corrections and Critiques | 123

On p. 65, pe(A, b), 1(A), f'(A, B, a), and c(A, B, a) are unchanged, but r(A) and
f”(A, B, a), defined on that page, are not used again.

On pp. 65-66, ce(A, B, a), ce(B, a), cp(A, B, C, a, b), cpe(A, B, C, a, b), and
cpe(A, B, a, b) are unchanged but re(A, B, a, b), re(B, a, b), cr(A, B, a), and
cr(B, a) are not used again.

On p. 66, q(A), pe,(4, a, b), and e(A) are unchanged. Also, ce;(B, a, b) and
ces;(B, a, b, ¢) are defined, but it is ces(B, a, b, ¢, d, e), derived in an analogous
way, which is actually used, in the inst function.

On p. 70, con(A, a) is unchanged, but the remark that ‘C is left unmarked’ is
confusing and is best ignored.

In the table for U, which begins on p. 70, the state b; should have the following
action: R, R, P:;, R, R, PD, R, R, PA, R, R, PD, in order to print : D A D’ on the F
squares, so that a blank symbol D is available for matching with an instruction.

On p. 70 the table for anf should lead to q(anf, :).

If the set of instructions for the target machine T is deficient, so that a
state-symbol pair is created which has no matching instruction, machine U
will attempt to search beyond the left-hand end of its tape. What happens

then is undefined. To make it definite, kom (p. 71) can be augmented by the
line:

kom e fail;,
which indicates the failure, and the last line will be:
kom not z nor ; nor e kom

The table for kmp (p. 71) should read:
kmp cpe(e(e(anf, x),), sim, x, y),

since e(A, B, a) should return to anf, to restore the markings deleted by cpe.
On p. 71, sim, with scanned symbol ‘not A’ should have the action L, Pu, R, R, R.

The first line of mk (p. 71) should lead to q(mk;, :). On this same page, sh is
unchanged.

On p. 72, inst should lead to q(I(inst;), u) and the line for inst;(N) should
read
inst; (N) ces(ov, 1, x, ¥, U, W)

The instruction for inst; (L) (p. 72) could try to move the target machine left
beyond its end of tape, but there is no way for U to represent this condition, so T
will seem not to move. To make this kind of error explicit, these changes can be
made:

inst; (L) f(insty, fail,, x)

124 | Donald Davies
insty ces(ov, v, ¥ x, U, W)

To correct the fundamental flaw that a right movement inst; (R) (p. 72) could
move the state-symbol to the right of all other symbols, making a future match
with an instruction impossible, the following change is needed:

inst; (R) ces(q(insty, A), v, x, 4, , w) finds the last A on the tape
inst, R, R inst; move to start of scanned symbol
inst; { none PD ov if blank space, print D

D ov but not if a symbol follows

Finally, ov (p. 72) is unchanged.

CHAPTER 3

Systems of Logic Based on Ordinals (7938)

Alan Turing

Introduction
Jack Copeland

The Princeton Years, 193638

On 23 September 1936 Turing left England on a vessel bound for New York.! His
destination was Princeton University, where the Mathematics Department and
the Institute for Advanced Study combined to make Princeton a leading centre
for mathematics. Turing had applied unsuccessfully for a Visiting Fellowship to
Princeton in the spring of 1935.2 When a year later he learned of Church’s
work at Princeton on the Entscheidungsproblem, which paralleled his own (see
‘Computable Numbers: A Guide’), Turing ‘decided quite definitely’ to go
there.? He planned to stay for a year.

In mid-1937 the offer of a Visiting Fellowship for the next academic year
persuaded him to prolong his visit, and he embarked on a Ph.D. thesis. Already
advanced in his academic career, Turing was an unusual graduate student (in the
autumn of 1937, he himself was appointed by Cambridge University to examine
a Ph.D. thesis). By October 1937 Turing was looking forward to his thesis being
‘done by about Christmas’. It took just a little longer: ‘Systems of Logic Based on
Ordinals’ was accepted on 7 May 1938 and the degree was awarded a few weeks
later.* The following year the thesis was published in the Proceedings of the
London Mathematical Society.

‘Systems of Logic Based on Ordinals’ was written under Church’s supervision.
His relationship to Turing—whose formalization of the concept of an effective

v S. Turing, Alan M. Turing (Cambridge: Heffer, 1959), 51.

2 Letter from Turing to Sara Turing, his mother, 24 May 1935 (in the Turing Papers, Modern Archive
Centre, King’s College Library, Cambridge (catalogue reference K 1)).

3 Letter from Turing to Sara Turing, 29 May 1936 (Turing Papers, catalogue reference K 1).

4 Letter from Turing to Sara Turing, 7 May 1938 (see below); Turing, Alan M. Turing, 54. The thesis is
held in the Seeley G. Mudd Manuscript Library at Princeton University (catalogue reference P685.1938.47).

126 | Jack Copeland

procedure and work on the Entscheidungsproblem was ‘possibly more convincing’
than Church’s own>—was hardly the usual one of doctoral supervisor to gradu-
ate student. In an interview given in 1984, Church remarked that Turing ‘had the
reputation of being a loner’ and said: ‘I forgot about him when I was speaking
about my own graduate students—truth is, he was not really mine.¢ Neverthe-
less Turing and Church had ‘a lot of contact’ and Church ‘discussed his
dissertation with him rather carefully’.” Church’s influence was not all for
the good, however. In May 1938 Turing wrote:

My Ph.D. thesis has been delayed a good deal more than I had expected. Church made a
number of suggestions which resulted in the thesis being expanded to an appalling length.
I hope the length of it won’t make it difficult to get it published.8

Moreover, Turing elected to couch ‘Systems of Logic Based on Ordinals’ in the
notation of Church’slambda calculus, so making his work much less accessible than
it might otherwise have been. (By that time even Church’s student Kleene, who had
contributed importantly to the development of the lambda calculus, had turned
away from it. Kleene said: ‘T myself, perhaps unduly influenced by rather chilly
receptions from audiences around 1933-35 to disquisitions on A-definability,
chose, after general recursiveness had appeared, to put my work in that format.®)
In a letter written not long after Turing’s death, Turing’s friend Robin Gandy
said: ‘Alan considered that his paper on ordinal logics had never received the
attention it deserved (he wouldn’t admit that it was a stinker to read).10

Notwithstanding its notational obscurity, ‘Systems of Logic Based on Ordin-
als’ is a profound work of first rank importance. Among its achievements are the
exploration of a means of circumventing Godel’s incompleteness theorems; the
introduction of the concept of an ‘oracle machine’, thereby opening the field of
relative computability; and, in the wake of the demolition of the Hilbert pro-
gramme (by Godel, Turing, and Church), an analysis of the place of intuition in
mathematics and logic.

Turing’s two years at Princeton are the best documented of his life, thanks to a
series of letters that he wrote to Sara Turing. (Of the fifty-five letters that he sent
her from 1932 until his death, twenty-seven are from the Princeton period.) The
following excerpts give a glimpse of his time there. All were written from the
Graduate College, Princeton University.!!

5 See the subsection ‘Church’s contribution’ of ‘Computable Numbers: A Guide’.

6 Church in interview with William Aspray (17 May 1984); transcript no. 5 in the series “The Princeton
Mathematics Community in the 1930s} Princeton University.

7 Ibid.

8 See below.

9 S. C. Kleene, ‘Origins of Recursive Function Theory’, Annals of the History of Computing, 3 (1981),
52-67 (62).

10 Letter from Gandy to Max Newman, n.d. (Turing Papers, catalogue reference A 8).

11 All the letters are in the Turing Papers (catalogue reference K 1).

Systems of Logic Based on Ordinals | 127

Excerpts from Turing’s Letters Home

6 October 1936"

I reached here late last Tuesday evening.!* We were practically in New York at 11:00 a.m. on
Tuesday but what with going through quarantine and passing the immigration officers we
were not off the boat until 5:30 p.m. Passing the immigration officers involved waiting in a
queue for over two hours with screaming children round me. Then, after getting through
the customs I had to go through the ceremony of initiation to the U.S.A., consisting of
being swindled by a taxi driver. I considered his charge perfectly preposterous, but as I had
already been charged more than double English prices for sending my luggage, I thought it
was possibly right. However, more knowing people say it was too much. ...

The mathematics department here comes fully up to expectations. There is a great
number of the most distinguished mathematicians here. J. v. Neumann, Weyl, Courant,
Hardy, Einstein, Lefschetz, as well as hosts of smaller fry. Unfortunately there are not
nearly so many logic people here as last year. Church is here of course, but Godel, Kleene,
Rosser and Bernays who were here last year have left. I don’t think I mind very much
missing any of these except Godel. Kleene and Rosser are, I imagine, just disciples of
Church and have not much to offer that I could not get from Church. Bernays [I] think is
getting rather ‘vieux jeu’: that is the impression I get from his writing, but if I were to meet
him I might get a different impression.

The graduate students include a very large number who are working in mathematics,
and none of them mind talking shop. It is very different from Cambridge in that way.

I have seen Church two or three times and I get on with him very well. He seems quite
pleased with my paper!* and thinks it will help him to carry out a programme of work he
has in mind. I don’t know how much I shall have to do with this programme of his, as I
am now developping [sic] the thing in a slightly different direction, and shall probably
start writing a paper on it in a month or two.!> After that I may write a book.

The proofs!6 have been sent direct to me here. They arrived last Saturday, and I have
just finished them and sent them off. It should not be long now before the paper comes
out. I have arranged for the reprints'? to be sent to you, and will get you, if you would
not mind, to send out the ones that are to go to people in Europe, and to send some of
the remainder on to me. ...

These Americans have various peculiarities in conversation which catch the ear some-
how. Whenever you thank them for any thing they say ‘You're welcome’. I rather liked it at
first, thinking that I was welcome, but now I find it comes back like a ball thrown against a
wall, and become positively apprehensive. Another habit they have is to make the sound

12 Editor’s note. Sara Turing’s dating of the letters is followed where dates are absent or incomplete.

13 Editor’s note. Turing’s previous letter to Sara on 28 Sept. 1936 was written on board the vessel
Berengaria bound for New York.

14 Editor’s note. Presumably ‘On Computable Numbers, with an Application to the Entscheidungs-
problem’.

15 Editor’s note. This may refer to the ‘development of the theory of functions of a real variable’
mentioned by Turing on p. 58 of Chapter 1. No such paper ever appeared, nor a book.

16 Editor’s note. Here the letter is marked ‘“On Computable Numbers”’ in Sara’s hand.

17 Editor’s note. The author’s copies of ‘On Computable Numbers’.

128 | Alan Turing

described by authors as ‘Aha’ They use it when they have no suitable reply to a remark, but
think that silence would be rude.
Maurice Pryce has just got a Fellowship at Trinity.!8

14 October 1936"

I have just discovered a possible application of the kind of thing I am working on at
present. It answers the question “‘What is the most general kind of code or cipher possible’,
and at the same time (rather naturally) enables one to construct a lot of particular and
interesting codes. One of them is pretty well impossible to decode without the key and
very quick to encode. I expect I could sell them to H. M. Government for quite a
substantial sum, but am rather doubtful about the morality of such things. ...

Church had me out to dinner the other night. Considering that the guests were all
university people I found the conversation rather disappointing. They seem, from what I
can remember of it, to have discussed nothing but the different States that they came
from. Description of travel and places bores me intensely.

I had a nasty shock when I got into Church’s house. I think I had told you that Church
was half blind in one eye. Well I saw his father in the house and he was quite blind (and
incidentally very deaf). I should have thought very little of it had it not been for Church
being rather blind himself. Any hereditary defects of that kind give me the shudders.

Hardy is here for this term. At first he was very standoffish or possibly shy. I met him in
Maurice Pryce’s rooms the day I arrived, and he didn’t say a word to me. But he is getting
much more friendly now.

3 November 1936

Church has just suggested to me that I should give a lecture to the Mathematical Club here
on my Computable Numbers. I hope I shall be able to get an opportunity to do this, as it
will bring the thing to people’s attention a bit. ...

I have got one or two things on hand at present not connected with my work in logic,
but in theory of groups.2® One of them is something I did about a year ago and left in cold
storage, and which Baer thinks is quite useful; but of course am not taking these things so
seriously as the logic.

Tonight is the evening of election day and all results are coming out over the wireless
(‘radio’ they say in the native language). My method of getting the results is to go to bed
and read them in the paper next morning.

11 November 1936

One of the Commonwealth Fellows, Francis Price (not to be confused with Maurice Pryce
or Bobby Price) arranged a hockey match the other day between the Graduate College and

18 Editor’s note. Trinity College, Cambridge.

19 Editor’s note. Sara has written ‘probably’ against the date.

20 Editor’s note. In 1938 Turing published two papers in group theory: ‘Finite Approximations to Lie
Groups’ (Annals of Mathematics, 39: 105-11), which developed a method due to R. Baer, and ‘The
Extensions of a Group’ (Compositio Mathematica, 5: 357—67).

Systems of Logic Based on Ordinals | 129

Vassar, a women’s college (amer.)/university (engl.) some 130 miles away. He got up a
team of which only half had ever played before. We had a couple of practice games
and went to Vassar in cars on Sunday. It was raining slightly when we arrived, and
what was our horror when we were told the ground was not fit for play. However we
persuaded them to let us play a pseudo-hockey game in their gymn. at wh. we defeated
them 11-3. Francis is trying to arrange a return match, which will certainly take place on a
field.

22 November 1936

I am sending you some cuttings about Mrs Simpson as representative sample of what we
get over here on this subject. I don’t suppose you have even heard of her, but some days it
has been ‘front page stuff’ here.

The hockey here has become a regular fixture three days a week. It’s great fun.

1 December 1936

I spent a good deal of my time in New York pottering about Manhattan getting used to
their traffic and subways (underground). I went to the Planetarium. ...
I am giving my lecture to the Maths Club tomorrow.

3 December 1936

I am horrified at the way people are trying to interfere with the King’s marriage. It may be
that the King should not marry Mrs Simpson, but it is his private concern. I should
tolerate no interference by bishops myself and I don’t see that the King need either.

11 December 1936

I suppose this business of the King’s abdication has come as rather a shock to you. I gather
practically nothing was known of Mrs Simpson in England till about ten days ago. I am
rather divided on my opinion of the whole matter. At first I was wholly in favour of the
King retaining the throne and marrying Mrs Simpson, and if this were the only issue it
would still be my opinion. However I have heard talk recently which seems to alter it
rather. It appears that the King was extremely lax about state documents leaving them
about and letting Mrs Simpson and friends see them. There had been distressing leakages.
Also one or two other things of same character, but this is the one I mind about most.

December 1936 (no day)

... Talking of Christmas reminds me that as a small child I was quite unable to predict
when it would fall, I didn’t even realise that it came at regular intervals.

1 January 1937

I have been away with Maurice skiing in New Hampshire. ...

I am sorry that Edward VIII has been bounced into abdicating. I believe the Govern-
ment wanted to get rid of him and found Mrs Simpson a good opportunity. Whether they
were wise to try to get rid of him is another matter. I respect Edward for his courage. As

130 | Alan Turing

for the Archbishop of Canterbury I consider his behaviour disgraceful. He waited until
Edward was safely out of the way and then unloaded a whole lot of quite uncalled-for
abuse. He didn’t dare do it whilst Edward was King. Further he had no objections to the
King having Mrs Simpson as a mistress, but marry her, that wouldn’t do at all. I don’t see
how you can say that Edward was guilty of wasting his ministers time and wits at a critical
moment. It was Baldwin who opened the subject.

There was rather bad attendance at the Maths Club for my lecture on Dec 2. One
should have a reputation if one hopes to be listened to. The week following my lecture
G. D. Birkhoff came down. He has a very good reputation and the room was packed.
But his lecture wasn’t up to standard at all. In fact everyone was just laughing about it
afterwards.

27 January 1937

I have just finished a paper2! in group theory; not a very exciting one this time. I shall send
it off in a day or two to the L. M. $22 or possibly to the ‘Annals of Mathematics’, which
is the Princeton mathematical journal.

There was a problem in the ‘Caliban’ volume of the N S & N23 a few weeks ago set by
Eddington. It was phrased in Alice through the Looking Glass language and called
‘Looking Glass Zoo. The solution picked out for publication was also in looking glass
language and sent by ‘Champ’, i.e. Champernowne.?4 It started off ‘There couldn’t have
been more than three girls’ reflected Humpty Dumpty ‘because a girl is always the
square root of minus one, and there are only 12 of those, they taught us that at
school’. ...

Maurice and Francis Price arranged a party with a Treasure Hunt last Sunday. There
were 13 clues of various kinds, cryptograms, anagrams and others completely obscure to
me. It was all very ingenious, but I am not much use at them.

11 February 1937

The printers for the L. M. S have been rather inefficient, sending the reprints straight on to
me instead of looking at the address I had filled up on their form. Unfortunately I had not
kept a second copy of all the addresses I gave you, so as they are rather tiresome to find I
am sending some of the reprints back to you to deal with if you can find time before you
go. ... I have dealt with

All King’s addresses
Littlewood
Wittgenstein
Newman

Atkins

Eperson

21 Editor’s note. Presumably ‘Finite Approximations to Lie Groups’ (see above).
22 Editor’s note. London Mathematical Society.

23 Editor’s note. New Statesman and Nation.

24 Editor’s note. See the introduction to Chapter 16.

Systems of Logic Based on Ordinals | 131

I am told that Bertrand Russell is inclined to be ashamed of his peerage, so the situation
calls for tact. I suggest that the correct address for an earl be used on envelope, but
that you mark the reprint itself ‘Bertrand Russell’ on the top right hand corner of the
cover.

22 February 1937

I went to the Eisenhart’s regular Sunday tea yesterday, and there they took me in relays to
try and persuade me to stay another year. Mrs Eisenhart mostly put forward social or
semi-moral semi sociological reasons why it would be a good thing to have a second year.
The Dean?5 weighed in with hints that the Procter Fellowship26é was mine for the asking
(this is worth $2,000 p.a.). I said I thought King’s would probably prefer that I return,
but gave some vague promise that I would sound them on the matter. Whether I want
to stay is another matter. The people I know here will all be leaving, and I don’t much
care about the idea of spending a long summer in this country. ... I think it is most
likely I shall come back to England.

I have had two letters asking for reprints?’, one from Braithwaite?s at King’s and
one from a proffessor [sic] in Germany?®...They seemed very much interested in
the paper. I think possibly it is making a certain amount of impression. I was
disappointed by its reception here. I expected Weyl who had done some work
connected quite closely with it some years ago at least to have made a few remarks
about it.

15 March 1937°°

I only wrote to the Provost?! last week so don’t expect to hear from him just yet.
I was rather diffident and apologetic and told him most probably I should be coming
back.

29 March 1937

I have been sent a notice of lecturers in mathematics to be appointed next term, by Philip
Hall.?2 Maurice and I are both putting in for it, though I don’t suppose either of us will get
it: I think it is a good thing to start putting in for these things early, so as to get one’s
existence recognised.?? It’s a thing I am rather liable to neglect. Maurice is much more
conscious of what are the right things to do to help his career. He makes great social
efforts with the mathematical bigwigs. ...

2!

G

Editor’s note. Luther Eisenhart, Dean of the Graduate College.

26 Editor’s note. The Jane Eliza Procter Visiting Fellowship.

27 Editor’s note. Reprints of ‘On Computable Numbers’.

28 Editor’s note. See Chapter 14.

29 Editor’s note. H. Scholz. Scholz’s postcard is in the Turing Papers (catalogue reference D 5).

30 Editor’s note. Turing wrote ‘15 Feb ’37’; ‘Feb’ has been corrected on the letter to ‘Mar’.
3

Editor’s note. Provost of King’s College, Cambridge.

32 Editor’s note. Hall was a Fellow of King’s. In 1938 Hall became Secretary of the London Mathematical
Society.

33 Editor’s note. Turing did not get the lectureship.

132 | Alan Turing

I am now working out some new ideas in logic.3* Not so good as the computable
numbers, but quite hopeful.

18 April 1937

The temperature here is going right up already. It’s almost like June now. Tennis has
started. They play on courts of dry clay. Easier on the feet (and probably on the pocket)
than our hard courts, but not very quick at recovering from showers.

There was a return hockey match on Sunday against Vassar, who came over to us this
time. We defeated them quite easily, but I think only because we could run faster.

I shall certainly be coming back in July.?®

19 May 1937

I have just made up my mind to spend another year here, but I shall be going back to
England for most of summer in accordance with previous programme. Thank you very
much for your offer of help with this: I shall not need it, for if I have this Procter as the
Dean suggests I shall be a rich man, and otherwise I shall go back to Cambridge. Another
year here on the same terms would be rather an extravagance. I don’t think there can be
any reasonable doubt I shall have the Procter: the Dean would hardly have made any
remarks about it unless they meant something. ...

My boat sails June 23. I might possibly do a little travelling here before the boat goes, as
there will be very little doing here during the next month and it’s not a fearfully good
time of year for work. More likely I shall not as I don’t usually travel for the sake of
travelling.

15 June 1937

Have just been back from Cousin Jack’s a couple of days. I went up north with Maurice in
his car and Maurice stayed a night with Cousin Jack, and made a good impression there.
I enjoyed the time I spent at Cousin Jack’s. He is an energetic old bird. He has a little
observatory with a telescope that he made for himself. He told me all about the grinding
of mirrors. ... I think he comes into competition with Aunt Sybil for the Relations Merit
Diploma. Cousin Mary is a little bit of a thing you could pick up and put in your pocket.
She is very hospitable and rather timid: she worships Cousin Jack. Cousin Mary’s sister
Annie also lives in the house. I forgot her surname very soon after I was told it, which put
me at rather a disadvantage.
I am just starting in on packing etc.

4 October 1937

Journey?3¢ completed without any mishap more serious than loss of my fountain pen a few
hours after getting on board. ...

A vast parcel of manuscript arrived for me from the L. M. S secretary the other day. It
was a paper for me to referee; 135 pages. Also have just heard from Bernays.

34 Editor’s note. Presumably the ideas that formed ‘Systems of Logic Based on Ordinals’
35 Editor’s note. To England.
36 Editor’s note. From England to the United States.

Systems of Logic Based on Ordinals | 133

19 October 1937

The refereeing business rather petered out. The author’s mathematical technique was
hopelessly faulty, and his work after about p. 30 was based on so many erroneous notions
as to be quite hopeless. So I had to send it back and say so. Rather distressing as the man
has apparently been working on it for 18 months or so.

I am working on my Ph.D thesis now. Should have it done by about Christmas.

Scholz of Miinster sent me a photolithoprinted reprint the other day, containing the gist of
my paper?” in the L. M. S, apparently as ‘vorgetragt’8 in Miinster. It was most delight-
fully done, with most excellent translations into the German of the expressions I
had used.

2 November 1937

Have just been playing in a hockey match, the first we have had this year. The team is not
so good as last year’s, our two brilliant players from New College no longer being in
Princeton. I have found I get involved with making a good deal of arrangements for these
games, but it has not yet got to the point of being really tiresome. ...

I am getting rather more competent with the car...

23 November 1937

I had a letter the other day from the Secretary of the Faculty Board of Mathematics
at Cambridge asking if I would be a Ph.D examiner: the candidate is the same man whose
paper I refereed for L. M. S. After some hesitation I decided to take this thing on.
I thought it might be rather unsuitable for me to be connected with it twice, but I talked
to Newman (who is here for a term) about it, and he thought such scruples were rather
foolish. ...

There is a mysterious woman in Virginia who has invited me to stay for Christmas. She
gets the names of Englishmen living in the Graduate College from Mrs Eisenhart.

¢. New Year**

Did I tell you that a very nice man called Martin (the i is mute in this country) asked me to
go and stay with him in South Carolina before Christmas. We drove down from here in
two days and then I stayed there for two or three days before I came back to Virginia to
stay with Mrs Welbourne. It was quite as far south as I had ever been—about 34°.
The people seem to be all very poor down there still, even though it is so long since the
civil war.

Mrs Welbourne and her family were all very agreeable, though I didn’t make much
conversational progress with any of them.

Two short papers of mine have just come out in the Journal of Symbolic Logic.°

37 Editor’s note. ‘On Computable Numbers’

38 Editor’s note. ‘Lectured’.

39 Editor’s note. The letter is undated and marked ‘Recd. Jan 14. 38’.

40 Editor’s note. ‘Computability and N-Definability’ (Journal of Symbolic Logic, 2 (1937), 153—63), and
‘The ‘p’-Function in N\-K-Conversion’ (Journal of Symbolic Logic, 2 (1937), 164).

134 | Alan Turing

7 March 1938

I went to ‘Murder in the Cathedral’ last Saturday with Will James. Was very much
impressed with it. It was very much easier to understand when acted than when read.
Most particularly this was so with the choruses. ...

I can’t say for certain yet when I will be back. I haven’t yet booked a passage. Most
probably it will be about the same time and I shall be going up for the Long?*! again.

12 April 1938

Have found out now about my Fellowship: it has been renewed. When Daddy wrote me
about getting a job here I thought it was time to get King’s to say something definite, so I
sent them a cable. I can’t think why they didn’t let me know before. They are usually rather
strong on formal notifications: it all seems rather out of character.

I have just been to see the Dean and ask him about possible jobs over here; mostly
for Daddy’s information, as I think it unlikely I shall take one unless you are actually
at war before July. He didn’t know of one at present, but said he would bear it all in
mind.

Have just been down to Washington and Annapolis with Will James. Will went to visit
some people who are running St John’s College Annapolis, and we both went to lunch
there. They have a scheme in operation for teaching people by making them read a vast
syllabus of 100% concentrated classics. Kant’s ‘Critique of Pure Reason’ is a fairly typical
example. The trouble about it is that they are so deep that any one of them really needs
several years study to be understood. Presumably their undergraduates will only get
something very superficial out of them.

We also went and listened to the Senate for a time. They seemed very informal. There
were only six or eight of them present and few of them seemed to be attending.

7 May 1938

There was quite a good performance of ‘H. M. S. Pinafore’ and ‘Trial by Jury’ here last
week-end. The ‘Pinafore’ didn’t seem to be so good as when we saw it in Hertford (and
picked up measles). “Trial by Jury’ was very good: I think I like it better than any other
Gilbert and Sullivan.

My Ph.D. thesis has been delayed a good deal more than I had expected. Church made a
number of suggestions which resulted in the thesis being expanded to an appalling length.
I hope the length of it won’t make it difficult to get it published. I lost some time too when
getting it typed by a professional typist here. I took it to a firm which was very well spoken
of, but they put a very incompetent girl onto it. She would copy things down wrong on
every page from the original, which was almost entirely in type. I made long lists of
corrections to be done and even then it would not be right. ...

The thesis has just been accepted to-day.

I expect to leave here at the beginning of July. Shall probably go direct to Cambridge.

I had an offer of a job here as von Neumann’s assistant at $1,500 a year but decided not
to take it.

41 Editor’s note. The Cambridge long vacation.

Systems of Logic Based on Ordinals | 135

The Purpose of Ordinal Logics

Turing explained the purpose of his ‘ordinal logics’ in Section 11 of ‘Systems of
Logic Based on Ordinals’. He first distinguished between what he called ‘intu-
ition’ and ‘ingenuity’ (a distinction that is discussed again in Chapter 4 in his
letters to Newman):

Mathematical reasoning may be regarded rather schematically as the exercise of a com-
bination of two faculties, which we may call intuition and ingenuity. The activity of the
intuition consists in making spontaneous judgments which are not the result of conscious
trains of reasoning. These judgments are often but by no means invariably correct (leaving
aside the question what is meant by ‘correct’). Often it is possible to find some other way
of verifying the correctness of an intuitive judgment. We may, for instance, judge that all
positive integers are uniquely factorizable into primes; a detailed mathematical argument
leads to the same result. This argument will also involve intuitive judgments, but they will
be less open to criticism than the original judgment about factorization. I shall not
attempt to explain this idea of ‘intuition’ any more explicitly.

The exercise of ingenuity in mathematics consists in aiding the intuition through
suitable arrangements of propositions, and perhaps geometrical figures or drawings. It
is intended that when these are really well arranged the validity of the intuitive steps which
are required cannot seriously be doubted.

The parts played by these two faculties differ of course from occasion to occasion, and
from mathematician to mathematician. This arbitrariness can be removed by the intro-
duction of a formal logic. The necessity for using the intuition is then greatly reduced by
setting down formal rules for carrying out inferences which are always intuitively valid.
When working with a formal logic, the idea of ingenuity takes a more definite shape. In
general a formal logic will be framed so as to admit a considerable variety of possible steps
in any stage in a proof. Ingenuity will then determine which steps are the more profitable
for the purpose of proving a particular proposition. (p. 192)

The intuition/ingenuity distinction is illustrated by the Gentzen-style formal
logic described in ‘Computable Numbers: A Guide’ (see the subsection ‘A tutorial
on first-order predicate calculus’). Most people see intuitively that, for example,
the rule

XFY
F not(X & not Y)

is valid. In order to grasp that the rule is valid, it is necessary only to reflect on
the rule’s meaning, namely:

If Y can be concluded from X, then it can be concluded that not both X and the
denial of Y are true.

With only a dozen or so basic rules, this formal logic places very little demand on
intuition. Once one has accepted these few rules as valid, proofs can be
constructed in the system without the need for any further exercise of
intuition. Nevertheless, constructing proofs can place considerable strain on

136 | Jack Copeland

one’s ingenuity. To form a proof one must—playing always by the rules—devise
a chain of propositions culminating in the proposition that is to be proved. As
Turing remarked, at each point in the chain there are always various possibilities
for the next move. Typically, most of these possible moves are of no help at all,
and it may require significant ingenuity to find a sequence of moves that leads to
the desired conclusion.

Important though ingenuity is in practice, it is in principle unnecessary so
long as unlimited time and paper are available. This perhaps surprising fact is
clear from ‘On Computable Numbers’. Once intuition has supplied the materials
from which proofs are to be constructed—the basic inference rules, in the case of
the logical system under discussion—then a suitably programmed Turing ma-
chine is able to grind out all the valid proofs of the system one by one. No
ingenuity is required to apply the rules of the system blindly, making legal move
after legal move. If a proposition is provable in the system then a machine
operating in this ‘blind’ fashion will sooner or later prove it (so long as the
machine is programmed in such a way that no legal moves are missed):

We are always able to obtain from the rules of a formal logic a method of enumerating the
propositions proved by its means. We then imagine that all proofs take the form of a
search through this enumeration for the theorem for which a proof is desired. In this way
ingenuity is replaced by patience. (p. 193)

Intuition, on the other hand, cannot be replaced by patience. This is a lesson
of Godel’s incompleteness results.

In pre-Godel times it was thought by some that it would probably be possible to carry this
programme [the setting down of formal rules] to such a point that all the intuitive
judgments of mathematics could be replaced by a finite number of these rules. The
necessity for intuition would then be entirely eliminated. (pp. 192-3)

Turing is here referring to the Hilbert programme. The Hilbert programme
aimed to bring mathematics to order by setting down a finite system of formal
rules (a ‘concrete basis on which everyone can agree’42) by means of which all the
infinitely many intuitively true mathematical statements could be proved without
further appeals to intuition—without ‘mysterious arts’, as Hilbert put it.#3 (See
further ‘Computable Numbers: A Guide’.) Following Gd&del, it was clear
that this cannot be done. No matter which rules are selected, there will
always be statements that a mathematician can see intuitively are true but
which cannot be proved using the rules.

42 D, Hilbert, ‘Uber das Unendliche’ [On the Infinite], Mathematische Annalen, 95 (1926), 161-90 (180);
English translation by E. Putnam and G. Massey in R. L. Epstein and W. A. Carnielli, Computability:
Computable Functions, Logic, and the Foundations of Mathematics (2nd edn. Belmont, Calif.: Wadsworth,
2000).

43 D. Hilbert, ‘Probleme der Grundlegung der Mathematik’ [Problems Concerning the Foundation of
Mathematics], Mathematische Annalen, 102 (1930), 1-9 (9).

Systems of Logic Based on Ordinals | 137

While it had been shown that intuition cannot be replaced by such a system of
rules, there remained the question whether it might nevertheless be possible to
circumscribe the use made of intuition, so that the mathematician is only
required to use intuition in judging the truth of (an unlimited number of)
propositions of a very specific form. This would not achieve the elimination of
intuition desired by Hilbertians, but would achieve something in that direction.
The truths of mathematics could be derived, not by using a set of formal rules
alone, but by using a set of formal rules together with intuitive judgements of
that very specific form. To those wary of intuition, this is certainly preferable to
the uncontrolled use of ‘mysterious arts’ Although not eliminated, the use of
intuition would at least be brought under strict control.

This successor to the defeated Hilbert programme#* is the subject of investi-
gation of ‘Systems of Logic Based on Ordinals’

In our discussions. .. we have gone to the opposite extreme [to Hilbertians] and elimin-
ated not intuition but ingenuity, and this in spite of the fact that our aim has been in
much the same direction. We have been trying to see how far it is possible to eliminate
intuition, and leave only ingenuity. (p. 193)

In consequence of the impossibility of finding a formal logic which wholly eliminates the
necessity of using intuition, we naturally turn to ‘non-constructive’ systems of logic with
which not all the steps in a proof are mechanical, some being intuitive. ... What proper-
ties do we desire a non-constructive logic to have if we are to make use of it for the
expression of mathematical proofs? We want it to show quite clearly when a step makes
use of intuition, and when it is purely formal. The strain put on the intuition should be a
minimum. (ibid.)

The following extension of the Gentzen-style formal logic just discussed is a
simple example of a logical system that incorporates, as well as formal rules,
intuitive judgements of a very specific kind. In this extended system, each step in
a proof is either a derivation from previous statements in the proof, using a
formal rule (as before), or else—and this is the new part—is the assertion of a
(true) proposition of form ‘Un(m). ‘Un(m)’ is a construction saying ‘At some
point, Turing machine m prints 0’ (see Section 11 of ‘On Computable Numbers),
and the subsection ‘The proof of the undecidability of FOPC’ of ‘Computable
Numbers: A Guide’). Steps of this second sort are non-mechanical, in the sense
that no Turing machine—no effective procedure—is able to determine, for all
propositions of the form ‘Un(m)’, which are true and which false. Nevertheless,
when one is proving theorems in this system, one is allowed to include, at any
point in a proof where it is helpful to do so, an intuitively true proposition of the
form ‘Un(m)’. No other type of intuitive step is permitted in the system—the

44 This post-Godelian programme was also investigated by Church’s student Barkley Rosser in his ‘Godel
Theorems for Non-Constructive Logics, Journal of Symbolic Logic, 2 (1937), 129-37.

138 | Jack Copeland

strain put on the intuition is ‘a minimum’. The result is a system whose theorems
go far beyond what is provable in the first-order predicate calculus alone.

The question of how much mathematics can be captured by a system in which
the use of intuition is strictly controlled in this manner is the crucial one for the
success or otherwise of this post-Hilbertian programme.

Ordinal Logics and Godel’s Incompleteness Theorem

To say that a system is complete with respect to some specified set of formulae S,
e.g. the set of arithmetical truths, is to say that every formula in S is provable in
the system. Godel showed that not all arithmetical truths can be proved in the
formal system of arithmetic set out by Whitehead and Russell in Principia
Mathematica. Turing’s work enabled this result to be extended to any mechanical
procedure for producing truths of arithmetic (see Section 14 of ‘Computable
Numbers: A Guide’).

Godel established his incompleteness result by showing how to construct an
arithmetical formula—call it G—that is not provable in the system and yet is
true. In order to show that G is true, Godel appealed to the way he constructed
G. G is of such a nature that G in effect says that it itself is not provable in the
system—and so, since G is not provable, what G says is true.

Can the incomplete formal system of arithmetic be made complete by adding
G to it as a new axiom (thereby making it the case—trivially—that G is provable
in the system)? No. This is because, once G is added, producing a new system, the
Godel construction can be applied once again to produce a true formula G; that
is unprovable in the new system. And when G is itself added as a new axiom,
producing a further system, there is a true but unprovable G;, and so on ad
infinitum.

Following Turing’s notation (p. 146), let the system of arithmetic that forms
the starting point of this infinite progression be called L. The result of adding G
to Lis called L;; the result of adding G to L; is L,, and so on. Taken together, the
systems in the infinite progression L, L;, L, L3, ... form a non-constructive
logic of the sort described by Turing in the above quotation. New axioms are
seen to be true by intuition, but otherwise only ingenuity (or patience) is
required in proving theorems in any of the systems.

There are a lot of systems in the progression L, L;, L, L3, ... Saying merely
that there are infinitely many oversimplifies matters. Not only is there a system
for each one of the infinitely many finite ordinal numbers 1, 2, 3, ... There is a
system that contains the theorems of every one of the systems L;, where i is a
finite ordinal. This system is called L, (w being the first ‘transfinite’ ordinal
number). The system L, is ‘bigger’ than any one of the systems L; in the sense
that, no matter which L; is considered, L, includes all the theorems of L;, but not

Systems of Logic Based on Ordinals | 139

vice versa. If P is the set of provable formulae of L;, P, of L,, and so on, then P,
is the union of all the sets Py, P,, Ps, ... But even L, has a true but unprovable
G,- Adding G, to L, produces L, 1, adding G, 1 to Ly, produces L, >, and so
on and so on. The progression of systems L, Ly, Ly, L3, ..., Ly, Lot1> Lot2s - - -
is an example of an ordinal logic.

As Turing noted in the first paragraph of ‘Systems of Logic Based on Ordinals’,
each L; is ‘more complete’ than its predecessor: some of the true formulae
unprovable in L are provable in the less incomplete L;, and so on. This raises
the possibility of our being able to construct a progression of systems—an
ordinal logic—that is complete, the systems in the progression proving between
them all the truths of arithmetic. If so, then not every systematic formulation of
arithmetic falls prey to Godel’s theorem. Such an ordinal logic would ‘avoid as
far as possible the effects of Godel’s theorem’, Turing said (p. 178):

Godel’s theorem shows that such a system cannot be wholly mechanical; but with a
complete ordinal logic we should be able to confine the non-mechanical steps. .. (p. 180)

In his investigations Turing considered sequences of systems in which the non-
mechanical steps consist, not of recognizing that Godel-formulae (the Gs) are
true, but of recognizing that certain formulae are what he called ordinal formu-
lae. The concept of an ordinal formula is defined in terms of operations of the
lambda calculus (p. 162). Roughly, a formula of the lambda calculus is an ordinal
formula if it represents a (constructive) ordinal number. The important point
is that there is no effective procedure for determining, of any given formula
of the calculus, whether or not it is an ordinal formula; Turing proved this
on p. 170.

Turing gave examples of ordinal logics of three different types, the logic Ap
(p. 177), the logic Ay (p. 178), and his ‘Gentzen type’ ordinal logics (Section
12).45 (The ‘P’ in ‘Ap’ refers to Godel’s 1931 system B equivalent to the system of
arithmetic given by Whitehead and Russell in Principia Mathematica. Seemingly
‘H was for Hilbert.)

Ordinal Logics and Proof-Finding Machines

In one of his letters to Newman (Chapter 4), Turing outlined the relationship
between an ordinal logic and a hierarchy of theorem-proving Turing machines
(p. 215):

One imagines different machines allowing different sets of proofs, and by choosing a
suitable machine one can approximate ‘truth’ by ‘provability’ better than with a less
suitable machine, and can in a sense approximate it as well as you please.

45 The ‘Gentzen-type’ logics of Section 12 are different from the Gentzen-style formulation of first-order
predicate calculus discussed above (although, as the names imply, both are suggested by work of Gentzen).

140 | Jack Copeland

If one wants a particular true statement to be proved by a Turing machine (in the
sense described earlier, where ‘ingenuity is replaced by patience’), then, since no
single Turing machine can prove every true arithmetical statement, one must
pick a suitable machine, a machine that actually is able to prove the statement
in question. The selection of a suitable machine typically ‘involves intuition’
(p. 215).

The intuition involved in choosing a suitable proof-finding machine is, Turing
went on to say in the letter, ‘interchangeable’ with the intuition required
for selecting a system, from among a progression of systems, in which the
statement is provable. Furthermore, if rather than following the rules of
a particular logical system, one were to prove the statement free-style, then this
too would require intuition, and the necessary intuition would be inter-
changeable with that required for choosing a suitable proof-finding machine
or for choosing a suitable logical system. (See further the introduction to
Chapter 12.)

Completeness of Ordinal Logics

Let I}, b, L, ... be any progression of logical systems indexed by (expressions
for) ordinals. To say that I, b, L, ... is complete with respect to some set of
formulae S is to say that for each formula x in S, there is some ordinal o such that
x is provable in .

Turing proved the following ‘completeness theorem’ his ordinal logic Ap
is complete with respect to the set of all true formulae of the form ‘for every
integer x, f(x) = 0’, where f is a primitive recursive function (pp. 187-190).
Many mathematically interesting theorems are of this form. In modern termin-
ology, formulae of this form are called ‘Tl formulae’. Turing referred to them as
being of the form ‘f(x) vanishes identically’ (by ‘f(x) vanishes’ is meant
F(x) = 0).

This completeness theorem shows that Ap circumvents Godel’s incomplete-
ness result in the way discussed above. Solomon Feferman, who in the 1960s
continued Turing’s work on ordinal logics, commented on the theorem: ‘[This]
partial completeness result. .. could have been regarded as meeting the...aim of
“overcoming” the incompleteness phenomena discovered by Godel, since these
only concerned true but unprovable H(l) statements.’46

In his letter to Newman from the Crown (Chapter 4), Turing pointed out that
this ‘completeness theorem...is of course completely useless for the purpose of
actually producing proofs’ (p. 213). Why this is so is explained by means of an
example in ‘Systems of Logic Based on Ordinals’ (p. 191):

46 S, Feferman, “Turing in the Land of O(z)}, in R. Herken (ed.), The Universal Turing Machine: A Half-
Century Survey (Oxford: Oxford University Press, 1988), 122-3.

Systems of Logic Based on Ordinals | 141

Although [the completeness theorem] shows, for instance, that it is possible to prove
Fermat’s last theorem with Ap (if it is true) yet the truth of the theorem would really be
assumed by taking a certain formula as an ordinal formula.

Nevertheless, as Turing went on to say in the letter, the completeness theorem does
succeed perfectly well in its purpose of providing ‘an insurance against certain
sorts of “Godel incompleteness theorems” being proved about the ordinal logic’
Not all true arithmetical statements are of I1° form (this is why the completeness
theorem is only a partial result). Turing was especially concerned with formulae
of the form (x)(3y)f(x, y) = 0 (where fis a primitive recursive function). In
modern terminology, formulae of this form are called ‘TI3 formulae’. Turing called
(true) formulae of this form ‘number-theoretic theorems’ (p. 152). (The choice of
this term is curious; he defended it in a footnote to p. 152.) In Section 5, Turing
explained why he regarded number-theoretic theorems as having ‘an importance
which makes it worth while to give them special consideration’ (mentioning also,
on p. 155, that a number of unsolved mathematical problems are number-theor-
etic). Turing conjectured that Ap is complete with respect to the set of all true IT5
formulae, but said ‘I cannot at present give a proof of this’ (p. 187).
Unfortunately Turing’s conjecture that Ap is complete with respect to true H(z)
formulae was proved incorrect by Feferman, in work published in 1962.47 Is
there nevertheless some ordinal logic that is complete with respect to this wider
class of truths? A negative answer would represent a spectacular incompleteness
result. Commenting on his refutation of Turing’s conjecture, Feferman said:

A general incompleteness theorem for recursive progressions. .. would have been dramatic
proof of the far-reaching extent of incompleteness phenomena. However, the situation has
not turned out in this way. ... [A]ll true sentences of elementary number theory are
provable in the recursive progression based on [a principle studied by Shoenfield].48

At the end of Section 11, Turing gave some reasons for being dissatisfied with
the logics Ay and Ap, and moved on to the Gentzen-type ordinal logics of
Section 12. He said of the last of his three examples of Gentzen-type logics, Ag>,
that it ‘appears to be adequate for most purposes’, adding ‘How far this is the case
can, of course, only be determined by experiment’ (p. 202).

Oracle Machines

In Section 4, ‘A type of problem which is not number-theoretic, Turing intro-
duced the concept of an o-machine. An o-machine is like a Turing machine

47 §. Feferman, ‘Transfinite Recursive Progressions of Axiomatic Theories’, Journal of Symbolic Logic, 27
(1962), 259-316.

48 Tbid. 261; J. R. Shoenfield, ‘On a Restricted w-Rule’, Bulletin de ’Académie Polonaise des Sciences, 7
(1959), 405-7.

142 | Jack Copeland

except that the machine is endowed with an additional basic operation of a type
that no Turing machine can simulate. For example, the new operation may be
that of displaying the answer to any question of the form ‘Is Turing machine m
circle-free?” (A circle-free machine is one that prints an infinite number of binary
digits; see Sections 8 and 11 of ‘Computable Numbers: A Guide’.) Turing called
the new operation the ‘oracle’. He did not go into the nature of the oracle: it
works by ‘some unspecified means’ (p. 156).

The question ‘Is Turing machine m circle-free?’ may be presented to the oracle
simply by writing out, on successive F-squares of the o-machine’s tape, the descrip-
tion number of the Turing machine in question (marking the E-squares at the start
and finish of the description number with some special symbol, e.g. ‘@’). As in the
case of an ordinary Turing machine, the behaviour of an o-machine is governed by
a table of instructions. Among the states of the o-machine is a state that is used to
call in the oracle. When an instruction in the table places the machine in that state,
the marked description is ‘referred to the oracle’ (p. 156). The oracle determines by
unspecified means whether or not the Turing machine so numbered is circle-free,
and delivers its pronouncement by shifting the machine into one or other of two
states, one indicating the affirmative answer and the other the negative.

Turing’s aim in Section 4, paralleling his aim in ‘On Computable Numbers,
was to prove the existence of mathematical problems that cannot be solved by
o-machine. Just as no Turing machine can decide, of arbitrarily selected Turing-
machine description numbers, which are numbers of circle-free machines, no
o-machine can decide, of arbitrarily selected o-machine description numbers,
which are numbers of circle-free o-machines. Turing showed this by reworking
the argument that he gave in ‘On Computable Numbers’ (p. 72ff of ‘On
Computable Numbers’” and p. 157 of ‘Systems of Logic Based on Ordinals’).

The connection with number-theoretic problems is via an equivalence pointed
out by Turing in Section 3: ‘every number-theoretic theorem is equivalent to the
statement that a corresponding [Turing] machine is circle free’ (p. 154). In the
light of this equivalence, an oracle for deciding whether or not Turing machines
are circle-free is in effect an oracle for deciding whether or not statements are
number-theoretic theorems. (Indeed, Turing introduced o-machines in terms of
an oracle for ‘solving number-theoretic problems’ (p. 156).)

Given that an o-machine is able to solve all number-theoretic problems, the
o-machine satisfactoriness problem—the problem of deciding whether arbitrar-
ily selected o-machine description numbers are numbers of circle-free ma-
chines—is an example of a type of problem that is not number-theoretic.

Turing has shown, then, that there are types of mathematical truth that cannot
be proved by means of an effective method augmented by pronouncements of
the oracle. If the project is to formalize mathematics by means of Hilbertian
inference rules augmented by a strictly circumscribed use of intuition, then the
intuitive steps cannot be limited to true propositions of the form ‘Turing

Systems of Logic Based on Ordinals | 143

machine m is circle-free’. Equivalently, the intuitive steps cannot be limited to
number-theoretic theorems.

In Section 9, Turing generalized his oracle-machine argument, considering
ordinal logics that ‘prove more general theorems than number-theoretic ones’
(p. 179). An ordinal logic itself provides the materials for the formulation, via the
oracle-machine construction, of a problem that it cannot solve. Consider an oracle
for a class of problems more extensive than the number-theoretic problems, and let
the notion of an o-machine be broadened to include machines availing themselves
of this oracle. It can be shown, by the same form of argument as before, that there are
problems ‘which cannot be solved by a uniform process even with the help of this
oracle’ (p. 180). Thus there are true mathematical statements not provable in an
ordinal logic in which all the intuitive steps correspond to pronouncements of the
oracle.

This negative result of Turing’s exposes the limitations of the post-Hilbertian
programme that is his focus, just as his attack in ‘On Computable Numbers’
exposed the limitations of Hilbert’s own programme. Turing tempered this
negative result with the pragmatic view that an appropriate ordinal logic (per-
haps Ag?) would be ‘adequate for most purposes’ (p. 202).

Generalized Recursion Theory and Degrees of Unsolvability

The oracle-machine concept has in fact had a considerably greater impact on
mathematical logic than the parent concept of an ordinal logic. Turing’s introduc-
tion of the o-machine led to the development of the rich and important field of
mathematical logic known as generalized recursion theory. Generalized recursion
theory extends the concept of an algorithm. In his textbook Degrees of Unsolvabil-
ity Joseph Shoenfield introduces the field in this way:

We extend the notion of an algorithm to allow the use of oracles. The extension consists of
allowing a new instruction to appear in the algorithm. This new instruction tells us that
the next computation step is to be the value given by the oracle for the argument obtained
at the last computation step.4?

Much of the credit for laying the foundations of generalized recursion theory
belongs to Emil Post, who in the 1940s further developed what Turing had begun
in ‘Systems of Logic Based on Ordinals’5° In 1944 Post introduced the term
‘Turing-reducible’ into the literature, saying that the decision problem for a
(recursively enumerable) set of positive integers A—i.e. the problem of correctly

49 J. R. Shoenfield, Degrees of Unsolvability (Amsterdam: North-Holland, 1971), 15.

50 E. L. Post, ‘Recursively Enumerable Sets of Positive Integers and their Decision Problems’, Bulletin of
the American Mathematical Society, 50 (1944), 284-316; E. L. Post, ‘Recursive Unsolvability of a Problem of
Thue’, Journal of Symbolic Logic, 12 (1947), 1-11; E. L. Post, ‘Degrees of Recursive Unsolvability - Preliminary
Report), Bulletin of the American Mathematical Society, 54 (1948), 641-2.

144 | Jack Copeland

answering the question ‘Is x in A? for each positive integer x—is Turing-redu-
cible to the decision problem for a (recursively enumerable) set of positive
integers B when the first problem is solvable by an o-machine with an oracle
for solving the second.5! If the decision problem for A is Turing-reducible to
the decision problem for B, A is said to be computable relative to B.

In the same article Post introduced the concept of degrees of unsolvability. It is
natural to think of the problems that are solvable by an o-machine as being
harder than those solvable by a Turing machine unaided by an oracle. Problems
solvable by an unaided Turing machine are said to be of the lowest degree.
Problems of equal hardness are said to be of the same degree.

o-machines whose oracle answers questions of the form ‘Is Turing machine m
circle-free?” are sometimes called first-order oracle machines. Problems that are
solvable by an o-machine whose oracle answers questions of the form ‘Is first-
order o-machine m circle-free?’—a second-order o-machine—are of a higher
degree than (harder than) problems solvable by first-order o-machines. Problems
that are solvable by a third-order o-machine are of a higher degree again than
problems solvable by a second-order o-machine, and so on.

Post wrote:

For unsolvable problems the concept of reducibility leads to the concept of degree of
unsolvability, two unsolvable problems being of the same degree of unsolvability if each is
reducible to the other, one of lower degree of unsolvability than another if it is reducible
to the other, but that other is not reducible to it, of incomparable degrees of unsolvability
if neither is reducible to the other.52

Post called problems other than those of the lowest degree ‘unsolvable’ (Turing
comments on this terminology in Chapter 17). He pointed out that, in Section 4
of ‘Systems of Logic Based on Ordinals’, Turing proved ‘a result which immedi-
ately generalizes to the result that for any “recursively given” unsolvable problem
there is another of higher degree of unsolvability’.3

In the modern literature the degrees of unsolvability generated by Turing-
reducibility are known simply as Turing degrees.5*

Further reading

Barendregt, H. P., The Lambda-Calculus, its Syntax and Semantics (Amsterdam: North-
Holland, 1984).
Davis, M., Computability and Unsolvability (New York: McGraw-Hill, 1958).

51 ‘Recursively Enumerable Sets of Positive Integers and their Decision Problems’, 311.

52 Tbid. 289.

53 Ibid. 289-90.

54 T am grateful to Peter Hilton and Gualtiero Piccinini for their comments on a draft of this introduc-
tion.

Systems of Logic Based on Ordinals | 145

Feferman, S., “Turing in the Land of O(z), in R. Herken (ed.), The Universal Turing
Machine: A Half-Century Survey (Oxford: Oxford University Press, 1988).

Kleene, S. C., Mathematical Logic (New York: Wiley, 1967).

Rogers, H., Theory of Recursive Functions and Effective Computability (New York: McGraw-
Hill, 1967).

Shoenfield, J. R., Degrees of Unsolvability (Amsterdam: North-Holland, 1971).

Simpson, S. G., ‘Degrees of Unsolvability: A Survey of Results, in J. Barwise (ed.),
Handbook of Mathematical Logic (Amsterdam: North-Holland, 1977).

Soare, R. L., Recursively Enumerable Sets and Degrees (Berlin: Springer-Verlag, 1987).

Systems of Logic Based on Ordinals

Introduction 146
. The conversion calculus. Godel representations 147
. Effective calculability. Abbreviation of treatment 150
. Number-theoretic theorems 152
. A type of problem which is not number-theoretic 156
. Syntactical theorems as number-theoretic theorems 157
. Logic formulae 158
. Ordinals 161
. Ordinal logics 170

W N o Ul WN =

9. Completeness questions 178
10. The continuum hypothesis. A digression 191
11. The purpose of ordinal logics 192

—_
N

. Gentzen type ordinal logics 194
Index of definitions 202
Bibliography 203

The well-known theorem of Godel (G6del [1], [2]) shows that every system of
logic is in a certain sense incomplete, but at the same time it indicates means
whereby from a system L of logic a more complete system L' may be obtained.!
By repeating the process we get a sequence L, Ly = L', L, = L/, ... each more
complete than the preceding. A logic L, may then be constructed in which the
provable theorems are the totality of theorems provable with the help of the
logics L, Ly, Ly, ... We may then form L,, related to L, in the same way as L,
was related to L. Proceeding in this way we can associate a system of logic with
any constructive ordinal.2 It may be asked whether a sequence of logics of this
kind is complete in the sense that to any problem A there corresponds an
ordinal « such that A is solvable by means of the logic L,. I propose to
investigate this question in a rather more general case, and to give some
other examples of ways in which systems of logic may be associated with
constructive ordinals.

This article first appeared in Proceedings of the London Mathematical Society, Series 2, 45 (1939),
161-228. It is reprinted with the permission of the London Mathematical Society and the Estate of Alan
Turing.

1 This paper represents work done while a Jane Eliza Procter Visiting Fellow at Princeton University,
where the author received most valuable advice and assistance from Prof. Alonzo Church.

2 The situation is not quite so simple as is suggested by this crude argument. See pages [162-73],
[181-3].

Systems of Logic Based on Ordinals | 147

1. The calculus of conversion. Godel representations

It will be convenient to be able to use the “conversion calculus” of Church for the
description of functions and for some other purposes. This will make greater
clarity and simplicity of expression possible. I give a short account of this
calculus. For detailed descriptions see Church [3], [2], Kleene [1], Church and
Rosser [1].

The formulae of the calculus are formed from the symbols {, },), [, I, A, 8,
and an infinite list of others called variables; we shall take for our infinite list
a, b, ..., z,x, %", ... Certain finite sequences of such symbols are called well-
formed formulae (abbreviated to W.EE); we define this class inductively,
and define simultaneously the free and the bound variables of a W.EE Any
variable is a W.EF,; it is its only free variable, and it has no bound variables. 8 is a
W.EE. and has no free or bound variables. If M and N are W.EF. then {M}(N) is a
W.EE., whose free variables are the free variables of M together with the free
variables of N, and whose bound variables are the bound variables of M together
with those of N. If M is a W.E.E. and V is one of its free variables, then A\V[M] is a
W.EE whose free variables are those of M with the exception of V, and whose
bound variables are those of M together with V. No sequence of symbols is a
W.EE except in consequence of these three statements.

In metamathematical statements we use heavy type letters to stand for variable
or undetermined formulae, as was done in the last paragraph, and in future such
letters will stand for well-formed formulae unless otherwise stated. Small letters
in heavy type will stand for formulae representing undetermined positive inte-
gers (see below).

AW.EF. is said to be in normal form if it has no parts of the form {A\V[M]}(N)
and none of the form {{8}(M)}(N), where M and N have no free variables.

We say that one W.EE. is immediately convertible into another if it is obtained
from it either by:

(i) Replacing one occurrence of a well-formed part A\V[M] by AU[N], where
the variable U does not occur in M, and N is obtained from M by
replacing the variable V by U throughout.

(ii) Replacing a well-formed part {A\V[M]}(N) by the formula which is
obtained from M by replacing V by N throughout, provided that the
bound variables of M are distinct both from V and from the free variables
of N.

(iii) The process inverse to (ii).

(iv) Replacing a well-formed part {{3}(M)}(M) by

MU H))]]

if M is in normal form and has no free variables.

148 | Alan Turing
(v) Replacing a well-formed part {{8}(M)}(N) by
M INx[{f}(x)]]

if M and N are in normal form, are not transformable into one another by
repeated application of (i), and have no free variables.

(vi) The process inverse to (iv).

(vii) The process inverse to (v).

These rules could have been expressed in such a way that in no case could
there be any doubt about the admissibility or the result of the transformation [in
particular this can be done in the case of process (v)].

A formula A is said to be convertible into another B (abbreviated to “A conv
B”) if there is a finite chain of immediate conversions leading from one formula
to the other. It is easily seen that the relation of convertibility is an equivalence
relation, i.e. it is symmetric, transitive, and reflexive.

Since the formulae are liable to be very lengthy, we need means for abbreviat-
ing them. If we wish to introduce a particular letter as an abbreviation for a
particular lengthy formula we write the letter followed by “—” and then by the
formula, thus

I — \x[x]

indicates that Iis an abbreviation for Ax[x]. We also use the arrow in less sharply
defined senses, but never so as to cause any real confusion. In these cases the
meaning of the arrow may be rendered by the words “stands for”.

If a formula F is, or is represented by, a single symbol we abbreviate {F}(X) to
F(X). A formula {{F}(X)}(Y) may be abbreviated to

{F}(X, Y),

or to F(X, Y) if F is, or is represented by, a single symbol. Similarly for
{{{F}X) }(Y)}(Z), etc. A formula AV|[AV, ... [\V,[M]]...] may be abbreviated
to AV;V,...V, .M.

We have not as yet assigned any meanings to our formulae, and we do not
intend to do so in general. An exception may be made for the case of the positive
integers, which are very conveniently represented by the formulae
Mx. f(x), Mx. f(f(x)), ... In fact we introduce the abbreviations

1 — NMx. f(x)
2 = Mx. f(f(x)
3= Mx f(f(f(x)), etc.,

and we also say, for example, that Mfx. f(f(x)), or in full
M N[,

Systems of Logic Based on Ordinals | 149

represents the positive integer 2. Later we shall allow certain formulae to
represent ordinals, but otherwise we leave them without explicit meaning; an
implicit meaning may be suggested by the abbreviations used. In any case where
any meaning is assigned to formulae it is desirable that the meaning should be
invariant under conversion. Our definitions of the positive integers do not
violate this requirement, since it may be proved that no two formulae represent-
ing different positive integers are convertible the one into the other.
In connection with the positive integers we introduce the abbreviation

S — Aufx. f(u(f, x)).

This formula has the property that, if n represents a positive integer, S(n) is
convertible to a formula representing its successor.?

Formulae representing undetermined positive integers will be represented by
small letters in heavy type, and we adopt once for all the convention that, if a
small letter, n say, stands for a positive integer, then the same letter in heavy type,
n, stands for the formula representing the positive integer. When no confusion
arises from so doing, we shall not trouble to distinguish between an integer and
the formula which represents it.

Suppose that f(#) is a function of positive integers taking positive integers as
values, and that there is a W.EE F not containing & such that, for each positive
integer n, F(n) is convertible to the formula representing f(#). We shall then say
that f(n) is N-definable or formally definable, and that F formally defines f(n).
Similar conventions are used for functions of more than one variable. The sum
function is, for instance, formally defined by Nabfx . a(f, b(f, x)); in fact, for any
positive integers m, n, p for which m 4+ n = p, we have

{\abfx . a(f, b(f, x))}(m, n) conv p.

In order to emphasize this relation we introduce the abbreviation
X+Y — {Nabfx.a(f, b(f, x)) }(X, Y)

and we shall use similar notations for sums of three or more terms, products, etc.
For any W.EE. G we shall say that G enumerates the sequence G(1), G(2), ...
and any other sequence whose terms are convertible to those of this sequence.
When a formula is convertible to another which is in normal form, the second is
described as a normal form of the first, which is then said to have a normal form. I
quote here some of the more important theorems concerning normal forms.

(A) If a formula has two normal forms they are convertible into one another by
the use of (i) alone. (Church and Rosser [1], 479, 481.)

(B) If a formula has a normal form then every well-formed part of it has a
normal form. (Church and Rosser [1], 480-481.)

3 This follows from (A) below.

150 | Alan Turing

(C) There is (demonstrably) no process whereby it can be said of a formula
whether it has a normal form. (Church [3], 360, Theorem XVIII.)

We often need to be able to describe formulae by means of positive integers.
The method used here is due to Godel (Godel [1]). To each single symbol s of the
calculus we assign an integer r{s] as in the table below.

s [L,Gor[|}),or]| N 3 a z x x| X"
r(s] 1 2 3 4 5 30 31 32 33
If 51,5, ..., 5 is a sequence of symbols, then 2715t137(s] .p,ilsk] (where py is

the k-th prime number) is called the Gddel representation (G.R.) of that sequence
of symbols. No two W.EE. have the same G.R.
Two theorems on G.R. of W.EE are quoted here.

(D) There is a W.EE. “form” such that if a is the G.R. of a W.EE. A without
free variables, then form (a) conv A. (This follows from a similar theorem
to be found in Church [3], 53 66. Metads are used there in place of G.R.)

(E) There is a W.EE. Gr such that, if A is a W.EE. with a normal form without
free variables, then Gr(A) conv a, where a is the G.R. of a normal form of A.
[Church [3], 53, 66, as (D).]

2. Effective calculability. Abbreviation of treatment

A function is said to be “effectively calculable” if its values can be found by some
purely mechanical process. Although it is fairly easy to get an intuitive grasp of
this idea, it is nevertheless desirable to have some more definite, mathematically
expressible definition. Such a definition was first given by Godel at Princeton in
1934 (Godel [2], 26), following in part an unpublished suggestion of Herbrand,
and has since been developed by Kleene [2]). These functions were described as
“general recursive” by Godel. We shall not be much concerned here with this
particular definition. Another definition of effective calculability has been given
by Church (Church [3], 356-358), who identifies it with A-definability. The
author has recently suggested a definition corresponding more closely to the
intuitive idea (Turing [1], see also Post [1]). It was stated above that “a function
is effectively calculable if its values can be found by some purely mechanical
process”. We may take this statement literally, understanding by a purely mech-
anical process one which could be carried out by a machine. It is possible to
give a mathematical description, in a certain normal form, of the structures
of these machines. The development of these ideas leads to the author’s defini-
tion of a computable function, and to an identification of computability

Systems of Logic Based on Ordinals | 151

with effective calculability.* It is not difficult, though somewhat laborious, to
prove that these three definitions are equivalent (Kleene [3], Turing [2]).

In the present paper we shall make considerable use of Church’s identification
of effective calculability with N-definability, or, what comes to the same thing, of
the identification with computability and one of the equivalence theorems. In
most cases where we have to deal with an effectively calculable function, we shall
introduce the corresponding W.EE. with some such phrase as “the function fis
effectively calculable, let F be a formula \ defining it”, or “let F be a formula such
that F(n) is convertible to ... whenever n represents a positive integer”. In such
cases there is no difficulty in seeing how a machine could in principle be
designed to calculate the values of the function concerned; and, assuming this
done, the equivalence theorem can be applied. A statement of what the formula F
actually is may be omitted. We may immediately introduce on this basis a W.EE.
w with the property that

w(m,n) conv r,

if r is the greatest positive integer, if any, for which m" divides n and ris 1 if there
is none. We also introduce Dt with the properties

Dt(n,n) conv 3,
Dt(n + m,n) conv 2,
Dt(n,n + m) conv 1.

There is another point to be made clear in connection with the point of view
that we are adopting. It is intended that all proofs that are given should be
regarded no more critically than proofs in classical analysis. The subject matter,
roughly speaking, is constructive systems of logic, but since the purpose is
directed towards choosing a particular constructive system of logic for practical
use, an attempt at this stage to put our theorems into constructive form would be
putting the cart before the horse.

Those computable functions which take only the values 0 and 1 are of
particular importance, since they determine and are determined by computable
properties, as may be seen by replacing “0” and “1” by “true” and “false”. But,
besides this type of property, we may have to consider a different type, which is,
roughly speaking, less constructive than the computable properties, but more so
than the general predicates of classical mathematics. Suppose that we have a
computable function of the natural numbers taking natural numbers as values,
then corresponding to this function there is the property of being a value of the
function. Such a property we shall describe as “axiomatic”; the reason for using

4 We shall use the expression “computable function” to mean a function calculable by a machine, and we
let “effectively calculable” refer to the intuitive idea without particular identification with any one of these
definitions. We do not restrict the values taken by a computable function to be natural numbers; we may for
instance have computable propositional functions.

152 | Alan Turing

this term is that it is possible to define such a property by giving a set of axioms,
the property to hold for a given argument if and only if it is possible to deduce
that it holds from the axioms.

Axiomatic properties may also be characterized in this way. A property of
positive integers is axiomatic if and only if there is a computable property ¢ of
two positive integers, such that y(x) is true if and only if there is a positive
integer y such that ¢(x, y) is true. Or again V is axiomatic if and only if there is a
W.EE F such that /(#n) is true if and only if F(n) conv 2.

3. Number-theoretic theorems

By a number-theoretic theorem® we shall mean a theorem of the form “0(x)
vanishes for infinitely many natural numbers x”, where 0(x) is a primitive
recursive function.s

We shall say that a problem is number-theoretic if it has been shown that any
solution of the problem may be put in the form of a proof of one or more
number-theoretic theorems. More accurately we may say that a class of problems
is number-theoretic if the solution of any one of them can be transformed (by a
uniform process) into the form of proofs of number-theoretic theorems.

I shall now draw a few consequences from the definition of “number theoretic
theorems”, and in section 5 I shall try to justify confining our consideration to
this type of problem.

An alternative form for number-theoretic theorems is “for each natural
number x there exists a natural number y such that ¢(x, y) vanishes”, where
¢(x, y) is primitive recursive. In other words, there is a rule whereby, given the

5 1 believe that there is no generally accepted meaning for this term, but it should be noticed that we are
using it in a rather restricted sense. The most generally accepted meaning is probably this: suppose that we
take an arbitrary formula of the functional calculus of the first order and replace the function variables by
primitive recursive relations. The resulting formula represents a typical number-theoretic theorem in this
(more general) sense.

6 Primitive recursive functions of natural numbers are defined inductively as follows. Suppose that
f(xt, ooy X0m1),8(x1, <5 X), M1, - .., Xuq1) are primitive recursive, then ¢(xi, ..., x,) is primitive
recursive if it is defined by one of the sets of equations (a) to (e).

(a) d(x15 «vvs xn) = h(x1, oo oy Xone1> (X150 Xn)s Xont1s - - o> Xne1> Xm) (1 < m < n);
D) d(x1, -y x0) = 22, -5 Xn)s
(¢) ¢(x1) = a, where n =1 and a is some particular natural number;
(d) ¢(x1) =x+1 (n=1);
(&) d(xts s Xyt 0) = f1, - ooy Xum1)s
Gx1, - Xty X+ 1) = h(x1, - Xy B(X15 -5 X))

The class of primitive recursive functions is more restricted than the class of computable functions, but it
has the advantage that there is a process whereby it can be said of a set of equations whether it defines a
primitive recursive function in the manner described above.

If ¢(x1, ..., x,) is primitive recursive, then ¢(xi, ..., x,) =0 is described as a primitive recursive
relation between x;, ..., x,.

Systems of Logic Based on Ordinals | 153

function 0(x), we can find a function ¢(x, y), or given ¢(x,y), we can find a
function 0(x), such that “0(x) vanishes infinitely often” is a necessary and
sufficient condition for “for each x there is a y such that ¢(x,y) = 0”. In fact,
given 0(x), we define

P (x,y) = 0(x) + a(x, y),

where a(x, y) is the (primitive recursive) function with the properties

a(ny) =1y =< x),
=0 (y > x).

If on the other hand we are given ¢(x, y) we define 6(x) by the equations

0,(0) =3,

91 (X+ 1) — 2(1+m2(01 (x)))a(d(w3(01(x)) —1, w2 (0, (x))))3m3(91 (x))+1—0(¢p(w3(0:(x)—1, w5, (0, (x)))),
0(x) = ¢(3(01(x)) — 1, @2(01(x))),

where @, (x) is defined so as to mean “the largest s for which r° divides x”. The
function ¢(x) is defined by the equations ¢(0) =0, o(x+ 1) = 1. It is easily
verified that the functions so defined have the desired properties.

We shall now show that questions about the truth of the statements of the
form “does f(x) vanish identically”, where f(x) is a computable function, can be
reduced to questions about the truth of number-theoretic theorems. It is under-
stood that in each case the rule for the calculation of f(x) is given and that we are
satisfied that this rule is valid, i.e. that the machine which should calculate f(x) is
circle free ([p. 60]). The function f(x), being computable, is general recursive in
the Herbrand—Gdodel sense, and therefore, by a general theorem due to Kleene?, is
expressible in the form

Y (eyld(x,y) = 0]), (3.2)

where £y[2(y)] means “the least y for which (y) is true” and Y/(y) and ¢(x, y)
are primitive recursive functions. Without loss of generality, we may suppose
that the functions ¢, take only the values 0, 1. Then, if we define p(x) by the
equations (3.1) and

p(0) = ¥(0)(1 — 6(0)),
plx+1) =1—(1—p(x)) o[l + 0(x) — Y{w2(0:(x))}]

it will be seen that f(x) vanishes identically if and only if p(x) vanishes for
infinitely many values of x.

7 Kleene [3], 727. This result is really superfluous for our purpose, since the proof that every computable
function is general recursive proceeds by showing that these functions are of the form (3.2). (Turing [2],
161).

154 | Alan Turing

The converse of this result is not quite true. We cannot say that the question
about the truth of any number-theoretic theorem is reducible to a question
about whether a corresponding computable function vanishes identically; we
should have rather to say that it is reducible to the problem of whether a certain
machine is circle free and calculates an identically vanishing function. But more
is true: every number-theoretic theorem is equivalent to the statement that a
corresponding machine is circle free. The behaviour of the machine may be
described roughly as follows: the machine is one for the calculation of the
primitive recursive function 0(x) of the number-theoretic problem, except that
the results of the calculation are first arranged in a form in which the figures 0
and 1 do not occur, and the machine is then modified so that, whenever it has
been found that the function vanishes for some value of the argument, then 0 is
printed. The machine is circle free if and only if an infinity of these figures are
printed, ie if and only if 6(x) vanishes for infinitely many values of the
argument. That, on the other hand, questions of circle freedom may be reduced
to questions of the truth of number-theoretic theorems follows from the fact that
0(x) is primitive recursive when it is defined to have the value 0 if a certain
machine /¢ prints 0 or 1 in its (x + 1)-th complete configuration, and to have
the value 1 otherwise.

The conversion calculus provides another normal form for the number-the-
oretic theorems, and the one which we shall find the most convenient to use.
Every number-theoretic theorem is equivalent to a statement of the form “A(n) is
convertible to 2 for every W.EE. n representing a positive integer”, A being a
W.EE. determined by the theorem; the property of A here asserted will be
described briefly as “A is dual”. Conversely such statements are reducible to
number-theoretic theorems. The first half of this assertion follows from our
results for computable functions, or directly in this way. Since 0(x — 1) + 2 is
primitive recursive, it is formally definable, say, by means of a formula G. Now
there is (Kleene [1], 232) a W.EF. & with the property that, if T(r) is convertible
to a formula representing a positive integer for each positive integer r, then
(T, n) is convertible to s, where s is the n-th positive integer ¢ (if there is one)
for which T(t) conv 2; if T(t) conv 2 for less than n values of t then @(T, n) has
no normal form. The formula G(2(G, n)) is therefore convertible to 2 if and
only if O(x) vanishes for at least n values of x, and is convertible to 2 for every
positive integer x if and only if (x) vanishes infinitely often. To prove the second
half of the assertion, we take Godel representations for the formulae of the
conversion calculus. Let ¢(x) be 0 if x is the G.R. of 2 (i.e. if x is 23.31°.5.73.
11%%.13.17.19'9.232.29.31.37'0. 41%. 43 . 47%% . 532,592, 61°.67°) and let ¢(x)
be 1 otherwise. Take an enumeration of the G.R. of the formulae into which
A(m) is convertible: let a(m, n) be the n-th number in the enumeration. We can
arrange the enumeration so that a(m, n) is primitive recursive. Now the state-
ment that A(m) is convertible to 2 for every positive integer m is equivalent to

Systems of Logic Based on Ordinals | 155

the statement that, corresponding to each positive integer m, there is a positive
integer n such that c(a(m, n)) = 0; and this is number-theoretic.

It is easy to show that a number of unsolved problems, such as the problem
of the truth of Fermat’s last theorem, are number-theoretic. There are, how-
ever, also problems of analysis which are number-theoretic. The Riemann
hypothesis gives us an example of this. We denote by {(s) the function defined

for Ns = o > 1 by the series Y, n~* and over the rest of the complex plane with

n=1
the exception of the point s = 1 by analytic continuation. The Riemann hypoth-
esis asserts that this function does not vanish in the domain ¢ > 1. It is easily
shown that this is equivalent to saying that it does not vanish for
2>0> %, ®s=1>2, ie that it does not vanish inside any rectangle
2>0>3141/T, T>t>2, where T is an integer greater than 2. Now the
function satisfies the inequalities

N 1-s

. N
)=y n =

1

<2(N-2)73 2<a<i, =2

[L(s) = ()] <60t|s =5, 2<0 <L, =2

and we can define a primitive recursive function &(I, I', m, m/, N, M) such that
I . m
< 2, s = P + lﬁ >

(L M, my M, M? +2, M) = X(I, m, M),

N 1—s

. N
PIEAE e

1

’5(1) lla m, m,) Na M) -M

and therefore, if we put

we have

X, m, M) — 122T
‘C<l+9+im+9>‘> (1, m, M)
M M
provided that

(-1<9<1, 1< ¥ <1).
If we define B(M, T) to be the smallest value of X(I, m, M) for which

RRLIRL IS S N L
2T ™M M M’ M M M

then the Riemann hypothesis is true if for each T there is an M satisfying

>

B(M, T) > 122T.

156 | Alan Turing

If on the other hand there is a T such that, for all M, B(M, T) < 122T, the
Riemann hypothesis is false; for let Iy, m1y, be such that

X(ZM, Mg, M) = 122T,

} 244T
then ¢ by + i <)
M M

Now if a is a condensation point of the sequence (Iy + i) /M then since {(s)
is continuous except at s = 1 we must have {(a) = 0 implying the falsity of the
Riemann hypothesis. Thus we have reduced the problem to the question whether
for each T there is an M for which

B(M, T) > 122T.

B(M, T) is primitive recursive, and the problem is therefore number-theoretic.

4. A type of problem which is not number-theoretic®

Let us suppose that we are supplied with some unspecified means of solving
number-theoretic problems; a kind of oracle as it were. We shall not go any
further into the nature of this oracle apart from saying that it cannot be a
machine. With the help of the oracle we could form a new kind of machine
(call them o-machines), having as one of its fundamental processes that of
solving a given number-theoretic problem. More definitely these machines are
to behave in this way. The moves of the machine are determined as usual by a
table except in the case of moves from a certain internal configuration o. If the
machine is in the internal configuration o and if the sequence of symbols marked
with [is then the well-formed® formula A, then the machine goes into the
internal configuration p or 1 according as it is or is not true that A is dual.
The decision as to which is the case is referred to the oracle.

These machines may be described by tables of the same kind as those used for
the description of a-machines, there being no entries, however, for the internal
configuration 0. We obtain description numbers from these tables in the same
way as before. If we make the convention that, in assigning numbers to internal
configurations, 0, P, t are always to be ¢, g3, g4, then the description numbers
determine the behaviour of the machines uniquely.

Given any one of these machines we may ask ourselves the question whether or
not it prints an infinity of figures 0 or 1; I assert that this class of problem is not
number-theoretic. In view of the definition of “number-theoretic problem” this
means that it is not possible to construct an o-machine which, when supplied

8 Compare Rosser [1].
9 Without real loss of generality we may suppose that A is always well formed.

Systems of Logic Based on Ordinals | 157

with the description of any other o-machine, will determine whether that
machine is o-circle free.1° The argument may be taken over directly from Turing
[1], § 8. We say that a number is o-satisfactory if it is the description number of
an o-circle free machine. Then, if there is an o-machine which will determine of
any integer whether it is o-satisfactory, there is also an o-machine to calculate the
values of the function 1 — ¢, (n). Let r(n) be the n-th o-satisfactory number and
let ¢,(m) be the m-th figure printed by the o-machine whose description
number is r (n). This o-machine is circle free and there is therefore an o-satisfac-
tory number K such that ¢y (n) =1 — ¢,(n) for all n. Putting n = K yields a
contradiction. This completes the proof that problems of circle freedom of
o-machines are not number-theoretic.

Propositions of the form that an o-machine is o-circle free can always be put in
the form of propositions obtained from formulae of the functional calculus of
the first order by replacing some of the functional variables by primitive recursive
relations. Compare foot-note [5] on page [152].

5. Syntactical theorems as number-theoretic theorems

I now mention a property of number-theoretic theorems which suggests that
there is reason for regarding them as of particular importance.

Suppose that we have some axiomatic system of a purely formal nature. We do
not concern ourselves at all in interpretations for the formulae of this system;
they are to be regarded as of interest for themselves. An example of what is in
mind is afforded by the conversion calculus (§1). Every sequence of symbols “A
conv B”, where A and B are well formed formulae, is a formula of the axiomatic
system and is provable if the W.EE. A is convertible to B. The rules of conversion
give us the rules of procedure in this axiomatic system.

Now consider a new rule of procedure which is reputed to yield only formulae
provable in the original sense. We may ask ourselves whether such a rule is valid.
The statement that such a rule is valid would be number-theoretic. To prove this,
let us take Godel representations for the formulae, and an enumeration of the
provable formulae; let ¢(r) be the G.R. of the r-th formula in the enumeration.
We may suppose ¢(r) to be primitive recursive if we are prepared to allow
repetitions in the enumeration. Let i/(r) be the G.R. of the r-th formula obtained
by the new rule, then the statement that this new rule is valid is equivalent to the
assertion of

()3 [P (r) = ¢(s)]

(the domain of individuals being the natural numbers). It has been shown in §3
that such statements are number-theoretic.

10 Compare Turing [1], §6, 7.

158 | Alan Turing

It might plausibly be argued that all those theorems of mathematics which
have any significance when taken alone are in effect syntactical theorems of this
kind, stating the validity of certain “derived rules” of procedure. Without going
so far as this, I should assert that theorems of this kind have an importance
which makes it worth while to give them special consideration.

6. Logic formulae

We shall call a formula L a logic formula (or, if it is clear that we are speaking of a
W.EE, simply a logic) if it has the property that, if A is a formula such that L(A)
conv 2, then A is dual.

A logic formula gives us a means of satisfying ourselves of the truth of
number-theoretic theorems. For to each number-theoretic proposition there
corresponds a W.EE. A which is dual if and only if the proposition is true.
Now, if L is a logic and L(A) conv 2, then A is dual and we know that the
corresponding number-theoretic proposition is true. It does not follow that, if L
is a logic, we can use L to satisfy ourselves of the truth of any number-theoretic
theorem.

If L is a logic, the set of formulae A for which L(A) conv 2 will be called the
extent of L.

It may be proved by the use of (D), (E), p. [150], that there is a formula X such
that, if M has a normal form, has no free variables and is not convertible to 2,
then X(M) conv 1, but, if M conv 2, then X(M) conv 2. If L is a logic, then
Ax. X(L(x)) is also a logic whose extent is the same as that of L, and which has
the property that, if A has no free variables, then

{Ax. X(L(x))}(A)

either is always convertible to 1 or to 2 or else has no normal form. A logic with
this property will be said to be standardized.

We shall say that a logic L' is at least as complete as a logic L if the extent of L is
a subset of the extent of L. The logic L’ is more complete than L if the extent of L
is a proper subset of the extent of L.

Suppose that we have an effective set of rules by which we can prove formulae
to be dual; i.e. we have a system of symbolic logic in which the propositions
proved are of the form that certain formulae are dual. Then we can find a logic
formula whose extent consists of just those formulae which can be proved to be
dual by the rules; that is to say, there is a rule for obtaining the logic formula
from the system of symbolic logic. In fact the system of symbolic logic enables us
to obtain a computable function of positive integers whose values run through
the Godel representations of the formulae provable by means of the given rules.!

11 Compare Turing [1], [p. 77, n. 7], [2], 156.

Systems of Logic Based on Ordinals | 159

By the theorem of equivalence of computable and A-definable functions, there is
a formula J such that J(1), J(2), ... are the G.R. of these formulae. Now let

W — Njv. P(Au.8(j(u), v), 1, 1, 2).

Then I assert that W(]) is a logic with the required properties. The properties of
@ imply that P(C, 1) is convertible to the least positive integer n for which C(n)
conv 2, and has no normal form if there is no such integer. Consequently
P(C, 1, I, 2) is convertible to 2 if C(n) conv 2 for some positive integer n, and
it has no normal form otherwise. That is to say that W(J, A) conv 2 if and only if
3(J(n), A) conv 2, some n, i.e. if J(n) conv A some .

There is conversely a formula W’ such that, if L is a logic, then W’(L)
enumerates the extent of L. For there is a formula Q such that Q(L, A, n) conv
2 if and only if L(A) is convertible to 2 in less than n steps. We then put

W' — Nn.form (w(2, P(\x. Q(I, form (w(2, x)), w(3, x)), n))).

Of course, W/(W(J)) normally entirely different from J and W(W'(L)) from L.

In the case where we have a symbolic logic whose propositions can be inter-
preted as number-theoretic theorems, but are not expressed in the form of the
duality of formulae, we shall again have a corresponding logic formula, but its
relation to the symbolic logic is not so simple. As an example let us take the case
where the symbolic logic proves that certain primitive recursive functions vanish
infinitely often. As was shown in §3, we can associate with each such proposition a
W.EE which is dual if and only if the proposition is true. When we replace the
propositions of the symbolic logic by theorems on the duality of formulae in this
way, our previous argument applies and we obtain a certain logic formula L.
However, L does not determine uniquely which are the propositions provable in
the symbolic logic; for it is possible that “0;(x) vanishes infinitely often” and
“0,(x) vanishes infinitely often” are both associated with “A is dual”, and that the
first of these propositions is provable in the system, but the second not. However, if
we suppose that the system of symbolic logic is sufficiently powerful to be able to
carry out the argument on pp. [154-5] then this difficulty cannot arise. There is
also the possibility that there may be formulae in the extent of L with no propos-
itions of the form “0(x) vanishes infinitely often” corresponding to them. But to
each such formula we can assign (by a different argument) a proposition p of the
symbolic logic which is a necessary and sufficient condition for A to be dual. With
pisassociated (in the first way) a formula A’. Now L can always be modified so that
its extent contains A’ whenever it contains A.

We shall be interested principally in questions of completeness. Let us suppose
that we have a class of systems of symbolic logic, the propositions of these
systems being expressed in a uniform notation and interpretable as number-
theoretic theorems; suppose also that there is a rule by which we can assign to
each proposition p of the notation a W.EE. A, which is dual if and only if p is

160 | Alan Turing

true, and that to each W.EFE. A we can assign a proposition pa which is a
necessary and sufficient condition for A to be dual. ps, is to be expected to
differ from p. To each symbolic logic C we can assign two logic formulae L¢ and
L. A formula A belongs to the extent of L¢ if pa is provable in C, while the
extent of L¢’ consists of all A,, where p is provable in C. Let us say that the class
of symbolic logics is complete if each true proposition is provable in one of them:
let us also say that a class of logic formulae is complete if the set-theoretic sum of
the extents of these logics includes all dual formulae. I assert that a necessary
condition for a class of symbolic logics C to be complete is that the class of logics
L¢ is complete, while a sufficient condition is that the class of logics L¢’ is
complete. Let us suppose that the class of symbolic logics is complete; consider
Pa, where A is arbitrary but dual. It must be provable in one of the systems, C say.
A therefore belongs to the extent of L¢, i.e. the class of logics L¢ is complete.
Now suppose the class of logics L’ to be complete. Let p be an arbitrary true
proposition of the notation; A, must belong to the extent of some L¢’, and this
means that p is provable in C.

We shall say that a single logic formula L is complete if its extent includes all
dual formulae; that is to say, it is complete if it enables us to prove every true
number-theoretic theorem. It is a consequence of the theorem of Godel (if
suitably extended) that no logic formula is complete, and this also follows
from (C), p. [150], or from the results of Turing [1], §8, when taken in conjunction
with §3 of the present paper. The idea of completeness of a logic formula is not
therefore very important, although it is useful to have a term for it.

Suppose Y to be a W.EFE. such that Y(n) is a logic for each positive integer n.
The formulae of the extent of Y(n) are enumerated by W(Y(n)), and the
combined extents of these logics by

N WX (w(2, 1), w(3, 1))).
If we put
=Ny W W(y(w(2, 1), @(3, 1)),
then I'(Y) is a logic whose extent is the combined extent of
Y(1), Y(2), Y(3), ...

To each W.EE. L we can assign a W.EE V(L) such that a necessary and sufficient
condition for L to be a logic formula is that V(L) is dual. Let Nm be a W.EE.
which enumerates all formulae with normal forms and no free variables. Then
the condition for L to be a logic is that L(Nm(r), s) conv 2 for all positive
integers r, s, i.e. that

Na.L(Nm(w(2, a)), @(3,a))

Systems of Logic Based on Ordinals | 161

is dual. We may therefore put

V — Na . I(Nm(w(2, a)), @(3, a)).

7. Ordinals

We begin our treatment of ordinals with some brief definitions from the Cantor
theory of ordinals, but for the understanding of some of the proofs a greater
amount of the Cantor theory is necessary than is set out here.

Suppose that we have a class determined by the propositional function D(x)
and a relation G(x, y) ordering its members, i.e. satisfying

G(x, y) & G(y, z) D G(x, z), (1)

D(x) & D(y) D G(x, y) v G(y, x) v x =y, (ii) 7.1)
G(x, y) D D(x) & D(y), (iii)

~ G(x, x). (iv)

The class defined by D(x) is then called a series with the ordering relation G(x, y).
The series is said to be well ordered and the ordering relation is called an ordinal if
every sub-series which is not void has a first term, i.e. if

(D) {(3x)(D'(x)) & (x)(D'(x) D D(x))

7.2
D (32)(»)[D'(2) & (D'(y) D Gz, y) vz =y)]}. 72

The condition (7.2) is equivalent to another, more suitable for our purposes,
namely the condition that every descending subsequence must terminate; for-
mally

(x){D'(x) > D(x) &(Iy)(D'(y) & G(y, x))} D (x)(~ D'(x)). (7.3)

The ordering relation G(x, y) is said to be similar to G'(x, y) if there is a one—
one correspondence between the series transforming the one relation into the
other. This is best expressed formally, thus

(AM)[(x){D(x) D (I)M(x, x')} & (x){D'(x') D (Fx)M(x, x)}
&{(M(x, x) &M(x, x")) v (M(x, x) &M(x", x)) D x' = x"}
&{M(x, X)&M(y, y') D (G(x, y) = G(x, ¥))}]- (7.4)

Ordering relations are regarded as belonging to the same ordinal if and only if
they are similar.

We wish to give names to all the ordinals, but this will not be possible until
they have been restricted in some way; the class of ordinals, as at present defined,
is more than enumerable. The restrictions that we actually impose are these: D(x)
is to imply that x is a positive integer; D(x) and G(x, y) are to be computable

162 | Alan Turing

properties. Both of the propositional functions D(x), G(x, y) can then be
described by means of a single W.EE. with the properties:

Q(m, n) conv 4 unless both D(m) and D(n) are true,

Q(m, m) conv 3 if D(m) is true,

Q(m, n) conv 2 if D(m), D(n), G(m, n), ~ (m = n) are true,
Q(m, n) conv 1 if D(m), D(n), ~ G(m, n), ~ (m = n) are true.

In consequence of the conditions to which D(x), G(x, y) are subjected, £ must
further satisfy:

(a) if Q(m, n) is convertible to 1 or 2, then Q(m, m) and (n, n) are
convertible to 3,

(b) if Q(m, m) and Q(n, n) are convertible to 3, then (m, n) is convertible
to 1,2, or3,

(¢) if &(m, n) is convertible to 1, then (n, m) is convertible to 2 and

conversely,
(d) if @(m, n) and Q(n, p) are convertible to 1, then Q(m, p) is also,
(e) there is no sequence my, m,, ... such that &(m;,;, m;) conv 2 for each

positive integer 1,
(f) Q(m, n) is always convertible to 1, 2, 3, or 4.

If a formula € satisfies these conditions then there are corresponding propos-
itional functions D(x), G(x, y). We shall therefore say that { is an ordinal formulaif
it satisfies the conditions (a)—(f). It will be seen that a consequence of this
definition is that Dt is an ordinal formula; it represents the ordinal w. The
definition that we have given does not pretend to have virtues such as elegance
or convenience. It has been introduced rather to fix our ideas and to show how it is
possible in principle to describe ordinals by means of well-formed formulae. The
definitions could be modified in a number of ways. Some such modifications are
quite trivial; they are typified by modifications such as changing the numbers 1, 2,
3, 4, used in the definition, to others. Two such definitions will be said to be
equivalent; in general, we shall say that two definitions are equivalent if there are
W.EE. T, T’ such that, if A is an ordinal formula under one definition and
represents the ordinal «, then T'(A) is an ordinal formula under the second
definition and represents the same ordinal; and, conversely, if A’ is an ordinal
formula under the second definition representing «, then T(A’) represents o
under the first definition. Besides definitions equivalent in this sense to our
original definition, there are a number of other possibilities open. Suppose for
instance that we do not require D(x) and G(x, y) to be computable, but that we
require only that D(x) and G(x, y) &x < y are axiomatic.!?> This leads to a

12 To require G(x, y) to be axiomatic amounts to requiring G(x, y) to be computable on account of (7.1)

(ii).

Systems of Logic Based on Ordinals | 163

definition of an ordinal formula which is (presumably) not equivalent to the
definition that we are using.!* There are numerous possibilities, and little to
guide us in choosing one definition rather than another. No one of them
could well be described as “wrong”; some of them may be found more
valuable in applications than others, and the particular choice that we
have made has been determined partly by the applications that we have in
view. In the case of theorems of a negative character, one would wish to
prove them for each one of the possible definitions of “ordinal formula™.
This programme could, I think, be carried through for the negative results of
§9, 10.

Before leaving the subject of possible ways of defining ordinal formulae, I must
mention another definition due to Church and Kleene (Church and Kleene [1]).
We can make use of this definition in constructing ordinal logics, but it is more
convenient to use a slightly different definition which is equivalent (in the sense
just described) to the Church—Kleene definition as modified in Church [4].

Introduce the abbreviations

U — Nufx.u(\y.f(y(I, x))),
Suc — Naufx. f(a(u, f, x)).

We define first a partial ordering relation “<” which holds between certain pairs
of W.EE. [conditions (1)—(5)].

(1) If A conv B, then A < C implies B < C and C < A implies C < B.

(2) A < Suc (A).

(3) For any positive integers m and n, Aufx.R(n) < Aufx.R(m) implies
Aufx . R(n) < hufx. u(R).

(4) If A<B and B < C, then A < C. (1)—(4) are required for any W.EE
A, B, C, hufx.R.

(5) The relation A < B holds only when compelled to do so by (1)—(4).

We define C-K ordinal formulae by the conditions (6)—(10).

(6) If A conv B and A is a C-K ordinal formula, then B is a C-K ordinal
formula.

(7) Uis a C-K ordinal formula.

(8) If A is a C-K ordinal formula, then Suc (A) is a C-K ordinal formula.

(9) If Aufx.R(n) is a C-K ordinal formula and

AMufx . R(n) < Nufx . R(S(n))

13 On the other hand, if D(x) is axiomatic and G(x, y) is computable in the modified sense that there is a
rule for determining whether G(x, y) is true which leads to a definite result in all cases where D(x) and D(y)
are true, the corresponding definition of ordinal formula is equivalent to our definition. To give the proof
would be too much of a digression. Probably other equivalences of this kind hold.

164 | Alan Turing

for each positive integer n, then Aufx . u(R) is a C-K ordinal formula.4
(10) A formula is a C-K ordinal formula only if compelled to be so by
(6)—(9).

The representation of ordinals by formulae is described by (11)—(15).

(11) If A conv B and A represents o, then B represents a.

(12) U represents 1.

(13) If A represents o, then Suc (A) represents o + 1.

(14) If Nufx.R(n) represents o, for each positive integer n, then Aufx. u(R)
represents the upper bound of the sequence oy, o, as, ...

(15) A formula represents an ordinal only when compelled to do so by
(11)—(14).

We denote any ordinal represented by A by E, without prejudice to the
possibility that more than one ordinal may be represented by A. We shall write
A < B to mean A < B or A conv B.

In proving properties of C-K ordinal formulae we shall often use a kind of
analogue of the principle of transfinite induction. If ¢ is some property and we
have:

(a) If A conv B and ¢(A), then ¢(B),

(b) ¢(U),

(¢) If ¢(A), then ¢p(Suc (A)),

(d) If ¢(\ufx.R(n)) and Aufx.R(n) < Aufx.R(S(n))
for each positive integer n, then

o(\ufx. u(R));

then ¢(A) for each C-K ordinal formula A. To prove the validity of this principle
we have only to observe that the class of formulae A satisfying ¢(A) is one of
those of which the class of C-K ordinal formulae was defined to be the smallest.
We can use this principle to help us to prove:

(7.5)

(i) Every C-K ordinal formula is convertible to the form Aufx . B, where B is
in normal form.

(ii) There is a method by which for any C-K ordinal formula, we can
determine into which of the forms U, Suc (Aufx.B), Nufx. u(R) (where

14 If we also allow Nufx . u(R) to be a C-K ordinal formula when
Nufx.n(R) conv Nufx.S(n, R)

for all n, then the formulae for sum, product and exponentiation of C-K ordinal formulae can be much
simplified. For instance, if A and B represent « and 3, then

Nufx. B(u, f, A(u, f, x))

represents a + . Property (6) remains true.

Systems of Logic Based on Ordinals | 165

u is free in R) it is convertible, and by which we can determine B, R. In
each case B, R are unique apart from conversions.

(iii) If A represents any ordinal, E, is unique. If 24, Ep exist and A < B, then
S < Ep.

(iv) If A, B, C are C-K ordinal formulae and B < A, C < A, then either
B < C, C<B,orBconvC.

(v) A formula A is a C-K ordinal formula if:
(A) U=<A,
(B) If Nufx. u(R) =< A and n is a positive integer, then

Aufx . R(n) < Aufx.R(S(n)),

(C) For any two W.EE B, Cwith B < A, C < Awe have B< C, C < B,
or B conv C, but never B < B,
(D) There is no infinite sequence By, B,, ... for which

B, <B, 1 <A

for each r.

(vi) There is a formula H such that, if A is a C-K ordinal formula, then H(A)
is an ordinal formula representing the same ordinal. H(A) is not an
ordinal formula unless A is a C-K ordinal formula.

Proof of (i). Take ¢(A) to be “A is convertible to the form Aufx . B, where B is
in normal form”. The conditions (a) and (b) are trivial. For (¢), suppose that A
conv \ufx . B, where B is in normal form; then

Suc (A) conv hufx. f(B)

and f(B) is in normal form. For (d) we have only to show that #(R) has a normal
form, i.e. that R has a normal form; and this is true since R(1) has a normal form.

Proof of (ii). Since, by hypothesis, the formula is a C-K ordinal formula we have
only to perform conversions on it until it is in one of the forms described. It is not
possible to convert it into two of these three forms. For suppose that
Nufx . f(A(w, f, x)) conv hufx. u(R) and is a C-K ordinal formula; it is then
convertible to the form Aufx.B, where B is in normal form. But the normal
form of Aufx.u(R) can be obtained by conversions on R, and that of
Nufx . f(A(w, f, x)) by conversions on A(u, f, x) (as follows from Church and
Rosser [1], Theorem 2); this, however, would imply that the formula in question
had two normal forms, one of form hufx . u(S) and one of form Aufx . f(C), which
is impossible. Or let U conv Aufx . u(R), where R is a well formed formula with u
as a free variable. We may suppose R to be in normal form. Now U is
Nufx. u(Ny . f(y(I, x))). By (A), p. [149], R is identical with \y.f(y(I, x)),
which does not have u as a free variable. It now remains to show only that if

166 | Alan Turing

Suc (Aufx.B) conv Suc (Aufx.B’) and Aufx. u(R) conv Aufx. u(R),

then B conv B’ and R conv R'.

If Suc (\ufx.B) conv Suc (\ufx.B’),
then Aufx. f(B) conv hufx. f(B');

but both of these formulae can be brought to normal form by conversions on B,
B’ and therefore B conv B’. The same argument applies in the case in which
Nufx . u(R) conv Aufx. u(R').

Proof of (iii). To prove the first half, take ¢(A) to be “E, is unique”. Then (7.5)
(a) is trivial, and (b) follows from the fact that Uis not convertible either to the form
Suc (A) or to Nufx . u(R), where R has u as a free variable. For (¢): Suc (A) is not
convertible to the form Aufx.u(R); the possibility that Suc (A) represents an
ordinal on account of (12) or (14) is therefore eliminated. By (13), Suc (A)
represents o’ + 1 if A’ represents o’ and Suc (A) conv Suc (A’). If we suppose that
A represents «, then A, A’, being C-K ordinal formulae, are convertible to the forms
Aufx . B, Nufx . B'; but then, by (ii), B conv B, i.e. A conv A’, and therefore a = o’
by the hypothesis ¢(A). Then Egyc (o) = &’ + 1isunique. For (d): Aufx . u(R) is not
convertible to the form Suc (A) or to Uif R has u as a free variable. If Aufx . u(R)
represents an ordinal, it is so therefore in virtue of (14), possibly together with (11).
Now, if Aufx.u(R) conv Aufx.u(R’), then R conv R/, so that the sequence
Aufx . R(1), Aufx.R(2), ...in(14) is unique apart from conversions. Then, by the
induction hypothesis, the sequence a1, o, a3, ... 1is unique. The only ordinal that
is represented by Aufx . u(R) is the upper bound of this sequence; and this is unique.

For the second half we use a type of argument rather different from our
transfinite induction principle. The formulae B for which A < B form the
smallest class for which:

Suc (A) belongs to the class.
If C belongs to the class, then Suc (C) belongs to it.
If Nufx.R(n) belongs to the class and
Aufx.R(n) < Aufx.R(m),
where m, n are some positive integers, then Aufx.u(R) belongs to it.
If C belongs to the class and C conv C', then C' belongs to it.

(7.6)

It will be sufficient to prove that the class of formulae B for which either Zp
does not exist or E5 < Ejp satisfies the conditions (7.6). Now

ESuc (A) — E'A +1> EA)

Esuc () > B¢ > By if Cis in the class.

Systems of Logic Based on Ordinals | 167

If E\ufc.rn) does not exist, then =), ,r) does not exist, and therefore
Aufx. u(R) is in the class. If Ey,5.rm) exists and is greater than Z,, and
Aufx.R(n) < Aufx.R(m), then

E)\ufx.u(R) = E)\ume(n) > EA)

so that Aufx . u(R) belongs to the class.

Proof of (iv). We prove this by induction with respect to A. Take ¢(A) to be
“whenever B < A and C < A then B < C or C < B or B conv C”. ¢(U) follows
from the fact that we never have B < U. If we have ¢(A) and B < Suc (A), then
either B < A or B conv A; for we can find D such that B <D, and then
D < Suc (A) can be proved without appealing either to (1) or (5); (4) does not
apply, sowe must have D conv A. Then, if B < Suc (A) and C < Suc (A), wehave
four possibilities,

B conv A, C conv A,
B conv A, C<A,
B <A, C conv A,
B <A, C <A

In the first case B conv C, in the second C < B, in the third B < C, and in the
fourth the induction hypothesis applies.
Now suppose that Aufx.R(n) is a C-K ordinal formula, that

Mufx . R(n) < Aufx.R(S(n)) and ¢(R(n)),

for each positive integer n, and that A conv Aufx.u(R). Then, if B < A, this
means that B < Aufx.R(n) for some n; if we have also C < A, then
B < Mufx.R(q), C < Aufx.R(q) for some g. Thus, for these B and C, the
required result follows from ¢ (Aufx.R(q)).

Proof of (v). The conditions (C), (D) imply that the classes of interconvertible
formulae B, B < A arewell-ordered by the relation “<”. We prove (v) by (ordinary)
transfinite induction with respect to the order type o of the series formed by these
classes; (o is, in fact, the solution of the equation 1 + a = E4, but we do not need
this). We suppose then that (v) is true for all order typesless than a. IfE < A, then E
satisfies the conditions of (v) and the corresponding order type is smaller: E is
therefore a C-K ordinal formula. This expresses all consequences of the induction
hypothesis that we need. There are three cases to consider:

(x) a=0.

() a=B+1.
(z) a is of neither of the forms (x), (y).

168 | Alan Turing

In case (x) we must have A conv U on account of (A). In case (y) there is a
formula D such that D < A, and B < D whenever B < A. The relation D < A
must hold in virtue of either (1), (2), (3), or (4). It cannot be in virtue of (4); for
then there would be B, B < A, D < B contrary to (C), taken in conjunction with
the definition of D. If it is in virtue of (3), then « is the upper bound of a
sequence oy, 0, ... of ordinals, which are increasing by reason of (iii) and the
conditions Aufx.R(n) < Aufx.R(S(n)) in (B). This is inconsistent with
o =B+ 1. This means that (2) applies [after we have eliminated (1) by
suitable conversions on A, D] and we see that A conv Suc (D); but, since
D < A, D is a C-K ordinal formula, and A must therefore be a C-K ordinal
formula by (8). Now take case (z). It is impossible for A to be of the form Suc
(D), for then we should have B < D whenever B < A, and this would mean that
we had case (). Since U < A, there must be an F such that F < A is demon-
strable either by (2) or by (3) (after a possible conversion on A); it must of
course be demonstrable by (3). Then A is of the form Aufx. u(R). By (3), (B)
we see that Aufx.R(n) < A for each positive integer n; each Aufx.R(n) is
therefore a C-K ordinal formula. Applying (9), (B) we see that A is a C-K ordinal
formula.

Proof of (vi). To prove the first half, it is sufficient to find a method whereby
from a C-K ordinal formula A we can find the corresponding ordinal formula €.
For then there is a formula H; such that H(a) conv p if ais the G.R. of A and p s
that of Q. H is then to be defined by

H — \a.form (H,(Gr(a))).

The method of finding {2 may be replaced by a method of finding (m, n),
given A and any two positive integers m, n. We shall arrange the method so that,
whenever A is not an ordinal formula, either the calculation of the values does
not terminate or else the values are not consistent with € being an ordinal
formula. In this way we can prove the second half of (vi).

Let Ls be a formula such that Ls(A) enumerates the classes of formulae
B,B < A [ie if B < A there is one and only one positive integer n for which
Ls(A, n) conv B]. Then the rule for finding the value of (m, n) is as follows:

First determine whether U < A and whether A is convertible to the form
r(Suc, U). This terminates if A is a C-K ordinal formula.

If A conv r(Suc, U) and either m > r + 1 or n > r + 1, then the value is 4. If
m<n<r+1, the value is 2. If n<m=<r+1, the value is 1. If
m=n< r -+ 1, the value is 3.

If A is not convertible to this form, we determine whether either A or Ls(A, m)
is convertible to the form Aufx.u(R); and if either of them is, we verify that
Aufx . R(n) < Nufx.R(S(n)). We shall eventually come to an affirmative answer
if A is a C-K ordinal formula.

Systems of Logic Based on Ordinals | 169

Having checked this, we determine concerning m and »n whether
Ls(A, m) < Ls(A, n), Ls(A, n) < Ls(A, m), or m = n, and the value is to be
accordingly 1, 2, or 3.

If A is a C-K ordinal formula, this process certainly terminates. To see that
the values so calculated correspond to an ordinal formula, and one representing
Ea, first observe that this is so when E, is finite. In the other case (iii) and (iv)
show that Zp determines a one—one correspondence between the ordinals
B, 1 < B < E,, and the classes of interconvertible formulae B, B < A. If we
take G(m, n) to be Ls(A, m) < Ls(A, n), we see that G(m, n) is the ordering
relation of a series of order type Z4 and on the other hand that the values of
Q(m, n) are related to G(m, n) as on p. [162].15

To prove the second half suppose that A is not a C-K ordinal formula. Then
one of the conditions (A)—(D) in (v) must not be satisfied. If (A) is not satisfied
we shall not obtain a result even in the calculation of (1, 1). If (B) is not
satisfied, we shall have for some positive integers p and g,

Ls(A, p) conv Aufx. u(R)

but not Aufx.R(q) < Aufx.R(S(q)). Then the process of calculating Q(p, q)
will not terminate. In case of failure of (C) or (D) the values of (m, n) may all
be calculable, but if so conditions (a)—(f), p. [162], will be violated. Thus, if A is
not a C-K ordinal formula, then H(A) is not an ordinal formula.

I propose now to define three formulae Sum, Lim, Inf of importance in
connection with ordinal formulae. Since they are comparatively simple, they
will for once be given almost in full. The formula Ug is one with the property
that Ug(m) is convertible to the formula representing the largest odd integer
dividing m: it is not given in full. P is the predecessor function; P(S(m)) conv m,
P(1) conv 1.

Al — Npxy . p(Nguv . g(v, u), huv. u(l, v), x, y),
Hf — Am. P(m(\guv. g(v, S(w)), Nuv . v(I, u), 1, 2)),
Bd — Aww'ad'x. Al(Nf . w(a, a, W (d, d, f)), x, 4),

Sum — Aww'pq . Bd(w, w', Hf(p), Hf(q),
Al(p, Al(g, w'(Hf(p), Hf(q)), 1), Al(S(q), w(Hf(p), HE(q)), 2))),
Lim — Azpq.{\ab.Bd(z(a), z(b), Ug(p), Ug(q), Al(Dt(a, b) + Dt(b, a),
Dt(a, b), z(a, Ug(p), Ug(q))))} (w(2, p), @(2, q)),

Inf — ANwapq . Al(Nf . w(a, p, w(a, g, f)), w(p, @), 4).

The essential properties of these formulae are described by:

15 The order type is 3, where 1 4+ B = E4; but B = E,, since E, is infinite.

170 | Alan Turing

Al(2r — 1, m, n) conv m, Al(2r, m, n) conv n,
Hf(2m) conv m, Hf(2m — 1) conv m,
Bd(Q, €, a, @/, x) conv 4, unless both

Q(a, a) conv 3 and Q'(a’, a’) conv 3,

it is then convertible to x.

If ©Q,9Q are ordinal formulae representing «, 3 respectively, then
Sum(Q, Q) is an ordinal formula representing o + B. If Z is a W.EE. enumer-
ating a sequence of ordinal formulae representing o;, o, ..., then Lim(Z) is an
ordinal formula representing the infinite sum o; 4+ o 4+ o3 . . . If £ is an ordinal
formula representing a, then Inf(£2) enumerates a sequence of ordinal formulae
representing all the ordinals less than o without repetitions other than repeti-
tions of the ordinal 0.

To prove that there is no general method for determining about a formula
whether it is an ordinal formula, we use an argument akin to that leading to the
Burali-Forti paradox; but the emphasis and the conclusion are different. Let us
suppose that such an algorithm is available. This enables us to obtain a recursive
enumeration £, £,, ... of the ordinal formulae in normal form. There is a
formula Z such that Z(n) conv ,. Now Lim (Z) represents an ordinal greater
than any represented by an €2, and it has therefore been omitted from the
enumeration.

This argument proves more than was originally asserted. In fact, it proves that,
if we take any class E of ordinal formulae in normal form, such that, if A is any
ordinal formula, then there is a formula in E representing the same ordinal as A,
then there is no method whereby one can determine whether a W.EF. in normal
form belongs to E.

8. Ordinal logics

An ordinal logic is a W.EE. A such that A(€2) is a logic formula whenever €2 is an
ordinal formula.

This definition is intended to bring under one heading a number of ways of
constructing logics which have recently been proposed or which are suggested by
recent advances. In this section I propose to show how to obtain some of these
ordinal logics.

Suppose that we have a class Wof logical systems. The symbols used in each of
these systems are the same, and a class of sequences of symbols called “formulae”
is defined, independently of the particular system in W. The rules of procedure of
a system C define an axiomatic subset of the formulae, which are to be described
as the “provable formulae of C”. Suppose further that we have a method whereby,
from any system C of W, we can obtain a new system C’, also in W, and such that

Systems of Logic Based on Ordinals | 171

the set of provable formulae of C’' includes the provable formulae of C (we shall
be most interested in the case in which they are included as a proper subset). It is
to be understood that this “method” is an effective procedure for obtaining the
rules of procedure of C' from those of C.

Suppose that to certain of the formulae of W we make number-theoretic
theorems correspond: by modifying the definition of formula, we may suppose
that this is done for all formulae. We shall say that one of the systems Cis valid if
the provability of a formula in Cimplies the truth of the corresponding number-
theoretic theorem. Now let the relation of C’ to C be such that the validity of C
implies the validity of C’, and let there be a valid system Cy in W. Finally, suppose
that, given any computable sequence C;, C,, ... of systems in W, the “limit
system”, in which a formula is provable if and only if it is provable in one of the
systems C;, also belongs to W. These limit systems are to be regarded, not as
functions of the sequence given in extension, but as functions of the rules of
formation of their terms. A sequence given in extension may be described by
various rules of formation, and there will be several corresponding limit systems.
Each of these may be described as a limit system of the sequence.

In these circumstances we may construct an ordinal logic. Let us associate
positive integers with the systems in such a way that to each C there corresponds
a positive integer mc, and that mc completely describes the rules of procedure of
C. Then there is a W.EE K, such that

K(m¢) conv m¢
for each C in W, and there is a W.EE O such that, if D(r) conv m¢, for each
positive integer 7, then ®(D) conv mc, where C is a limit system of C;, G, ...
With each system C of W it is possible to associate a logic formula L¢: the
relation between them is that, if G is a formula of Wand the number-theoretic
theorem corresponding to G (assumed expressed in the conversion calculus

form) asserts that B is dual, then Lc(B) conv 2 if and only if G is provable in
C. There is a W.EFE. G such that

G(m¢) conv L¢
for each C of W. Put
N — Na.G(a(0, K, mg,)).

I assert that N(A) is a logic formula for each C-K ordinal formula A, and that, if
A < B, then N(B) is more complete than N(A), provided that there are formulae
provable in C’ but not in C for each valid C of W.

To prove this we shall show that to each C-K ordinal formula A there
corresponds a unique system C[A] such that:

(i) A(O, K, mg,) conv mcja),

and that it further satisfies:

172 | Alan Turing

(ii) C[U] is a limit system of G/, G/, ...,
(iii) C [Suc (A)] is (C[A])',
(iv) C[hufx.u(R)] is a limit system of C[Aufx.R(1)], C[Aufx.R(2)], ...,

A and Mufx. u(R) being assumed to be C-K ordinal formulae. The uniqueness
of the system follows from the fact that m¢ determines C completely. Let us try
to prove the existence of C[A] for each C-K ordinal formula A. As we have seen
(p- 164) it is sufficient to prove

(a) C[U] exists,
(b) if C[A] exists, then C[Suc (A)] exists,
(o) if C[Aufx.R(1)], C[Aufx. R(2)], ... exist, then C[Aufs . u(R)] exists.
Proof of (a).
{\y .K(y(I, m¢,))}(n) conv K(mg,) conv m

for all positive integers n, and therefore, by the definition of @, there is a system,
which we call C[U] and which is a limit system of G/, C/, ..., satisfying

O(\y .K(y(I, mg,))) conv mcyj.
But, on the other hand,
U(0, K, mg,) conv @Ay .K(y(I, mg,))).
This proves (a) and incidentally (ii).
Proof of (b).
Suc (A, O, K, mg,) conv K(A(O, K, mg,))

conv K(mcpa))

conv m(C[A])/‘

Hence C[Suc (A)] exists and is given by (iii).

Proof of (¢).
{{\ufx.R}(O, K, m¢,)}(n) conv {Aufx.R(n)}(O, K, mg,)

CoONV Mc\ufx.R(n)]

by hypothesis. Consequently, by the definition of @, there exists a C which is a
limit system of

C[Aufx.R(1)], C[hufx.R(2)], ...,

and satisfies

O({Aufx. u(R)}(O, K, mg,)) conv mc.

Systems of Logic Based on Ordinals | 173
We define C[Aufx. u(R)] to be this C. We then have (iv) and

{Nufx. u(R)}HO, K, m¢,) conv O({Aufx.R}O, K, mg,))

Conv Mcnufx. u(R)]-

This completes the proof of the properties (i)—(iv). From (ii), (iii), (iv), the
fact that G, is valid, and that C’ is valid when C is valid, we infer that C[A] is
valid for each C-K ordinal formula A: also that there are more formulae provable
in C[B] than in C[A] when A < B. The truth of our assertions regarding N now
follows in view of (i) and the definitions of N and G.

We cannot conclude that N is an ordinal logic, since the formulae A are C-K
ordinal formulae; but the formula H enables us to obtain an ordinal logic from
N. By the use of the formula Gr we obtain a formula Tn such that, if A has a
normal form, then Tn(A) enumerates the G.R.’s of the formulae into which A is
convertible. Also there is a formula Ck such that, if 4 is the G.R. of a formula
H(B), then Ck(h) conv B, but otherwise Ck(h) conv U. Since H(B) is an
ordinal formula only if B is a C-K ordinal formula, Ck(Tn(€2, n)) is a C-K
ordinal formula for each ordinal formula £ and each integer n. For many ordinal
formulae it will be convertible to U, but, for suitable €2, it will be convertible to
any given C-K ordinal formula. If we put

A — hwa . I'(An.N(Ck(Tn(w, n))), a),

A is the required ordinal logic. In fact, on account of the properties of
I', A(Q, A) will be convertible to 2 if and only if there is a positive integer n
such that

N(Ck(Tn(£2, n)), A) conv 2.

If Q conv H(B), there will be an integer n such that Ck(Tn(€2, n)) conv B, and
then

N(Ck(Tn(£2, n)), A) conv N(B, A).

For any n, Ck(Tn(£2, n)) is convertible to U or to some B, where Q conv H(B).
Thus A(L, A) conv 2 if conv H(B) and N(B, A) conv 2 or if N(U, A) conv 2,
but not in any other case.

We may now specialize and consider particular classes W of systems. First let
us try to construct the ordinal logic described roughly in the introduction. For W
we take the class of systems arising from the system of Principia Mathematica's
by adjoining to it axiomatic (in the sense described on p. [151]) sets of axioms.1?

16 Whitehead and Russell [1]. The axioms and rules of procedure of a similar system P will be found in a
convenient form in Godel [1], and I follow Goédel. The symbols for the natural numbers in P are
0,10, ffO, ..., f(">0. .. Variables with the suffix “0” stand for natural numbers.

17 Tt is sometimes regarded as necessary that the set of axioms used should be computable, the intention
being that it should be possible to verify of a formula reputed to be an axiom whether it really is so. We can

174 | Alan Turing

Godel has shown that primitive recursive relations can be expressed by
means of formulae in P.!8 In fact, there is a rule whereby, given the recursion
equations defining a primitive recursive relation, we can find a formula
Alxp, ..., 2] such that

Ao, ..., fimo)

is provable in Pif F(my, ..., m,) is true, and its negation is provable otherwise.®
Further, there is a method by which we can determine about a formula
Alx, ..., z0] whether it arises from a primitive recursive relation in this way,
and by which we can find the equations which defined the relation. Formulae of
this kind will be called recursion formulae. We shall make use of a property that
they possess, which we cannot prove formally here without giving their defini-
tion in full, but which is essentially trivial. Db[xy, y] is to stand for a certain
recursion formula such that Db[f("™0, f("0] is provable in P if m = 2n and its
negation is provable otherwise. Suppose that A[xy], B[xy] are two recursion
formulae. Then the theorem which I am assuming is that there is a recursion
relation g, 3[xp] such that we can prove

Cy, slx0] = (o) ((Db[xo, 0] . Alyo]) v (Dbl fxo, frol . Blw])) (8.1)
in P
The significant formulae in any of our extensions of P are those of the form

(%) (3y0) Al x0, o], (8.2)

where 2 [xy, yo] is a recursion formula, arising from the relation R(m, n) let us
say. The corresponding number-theoretic theorem states that for each natural
number m there is a natural number n such that R(m, n) is true.

The systems in W which are not valid are those in which a formula of the form
(8.2) is provable, but at the same time there is a natural number, m say, such that,
for each natural number #, R(m, n) is false. This means to say that
~ A[f™0, fM0] is provable for each natural number . Since (8.2) is provable,
(Fx)A[f™0, 3] is provable, so that

)AL ™0, 3], ~AF™0, 0], ~ A[F™o, fo], ... (8.3)

are all provable in the system. We may simplify (8.3). For a given m we may prove
a formula of the form A[f™0, y,] = B[] in B where B[x,] is a recursion

obtain the same effect with axiomatic sets of axioms in this way. In the rules of procedure describing which
are the axioms, we incorporate a method of enumerating them, and we also introduce a rule that in the
main part of the deduction, whenever we write down an axiom as such, we must also write down its
position in the enumeration. It is possible to verify whether this has been done correctly.

18 A relation F(my, ..., m,) is primitive recursive if it is a necessary and sufficient condition for the
vanishing of a primitive recursive function ¢(my, ..., m.).

19 Capital German letters will be used to stand for variable or undetermined formulae in P. An expression
such as A[B, €] stands for the result of substituting ¥ and € for xy and y, in 2.

Systems of Logic Based on Ordinals | 175

formula. Thus we find that a necessary and sufficient condition for a system of W
to be valid is that for no recursion formula B[xg] are all of the formulae

provable. An important consequence of this is that, if

?Il[x()]r ?Iz[X{)], e ?In[xﬂ]

are recursion formulae, if

(Fx0) s [x0] v...v (3x0) A [x0] (8.5)

is provable in C, and C is valid, then we can prove %,[f(“)O] in C for some
natural numbers r, g, where 1 < r < n. Let us define D, to be the formula

(Fx) A [x0] v...v (Txg) A [x0]

and then define €,[x] recursively by the condition that €;[xy] is ;[x] and
C,i1lx] be €, 9, [%]. Now I say that

D, D (Fx0) €, [x0] (8.6)

is provable for 1 < r < n It is clearly provable for r = 1: suppose it to be
provable for a given r. We can prove

(70)(3x0)Db[x9, 3]
and (30)(3x0) Db fxo, frol,

from which we obtain

€. [y] D Fx0) ((Dblxo, 3ol €:[30]) v (Db[fxo, fyo] - Ussi[y0]))

and

Ari1lyo] O (Fxo) ((Dblxo, 301 - €,0]) v (Db fxo, fro] - Ui [30])).-
These together with (8.1) yield

(F0)C [n] v Fyo) A1 lyo] D (F)Cs,, o, [%0]s

which is sufficient to prove (8.6) for r + 1. Now, since (8.5) is provable in C,
(3%)€,,[x] must also be provable, and, since C is valid, this means that
€, [f™0] must be provable for some natural number 7. From (8.1) and the
definition of ©,[x] we see that this implies that 9, [f(?0] is provable for some
natural numbers aand r, 1 < r < n.

To any system C of W we can assign a primitive recursive relation Pc(m, n)
with the intuitive meaning “m is the G.R. of a proof of the formula whose G.R. is

n. We call the corresponding recursion formula Proofc[xo, yo] (i.e
Proofc[f"™0, f"0] is provable when Pc(m, n) is true, and its negation is

176 | Alan Turing

provable otherwise). We can now explain what is the relation of a system C’ to its
predecessor C. The set of axioms which we adjoin to P to obtain C' consists of
those adjoined in obtaining C, together with all formulae of the form

(3x) Proofc[xy, f™0] D F, (8.7)

where m is the G.R. of §.

We want to show that a contradiction can be obtained by assuming C’ to be
invalid but C to be valid. Let us suppose that a set of formulae of the form (8.4) is
provable in C'. Let Uj, s, ..., A be those axioms of C’' of the form (8.7)
which are used in the proof of (3xy)®B[xy]. We may suppose that none of them is
provable in C. Then by the deduction theorem we see that

(A1 . Ay ... Ag) D (Foxo) B xo] (8.8)

is provable in C. Let ; be (3xy) Proofc[xp, f"0] D ;. Then from (8.8) we
find that

(3x0) Proofc[xp, f™0] v...v (3x9) Proofc[xp, f™0] v (3xp) Bxo]

is provable in C. It follows from a result which we have just proved that
either B[f90] is provable for some natural number ¢ or else
Proofc[f™0, f")0] is provable in C for some natural number u and some
I,1 <1< k: but this would mean that ; is provable in C (this is one of the
points where we assume the validity of C) and therefore also in C', contrary to
hypothesis. Thus B[f(?0] must be provable in C’; but we are also assuming
~ B[f'90] to be provable in C'. There is therefore a contradiction in C'. Let us
suppose that the axioms A/, ..., A, of the form (8.7), when adjoined to Care
sufficient to obtain the contradiction and that none of these axioms is that
provable in C. Then

~ AV~ Wy v~ A
is provable in C, and if ;" is (Ixp) Proofc[xo,f(’”l/)O] O %/ then
(3x0) Proofc[xo,f(m1/>0] v...v (3x) Proof[xo,f(mk’/)O]

is provable in C. But, by repetition of a previous argument, this means that ;' is
provable for some I,1 <[< K/, contrary to hypothesis. This is the required
contradiction.

We may now construct an ordinal logic in the manner described on pp. [171-
3]. We shall, however, carry out the construction in rather more detail, and with
some modifications appropriate to the particular case. Each system C of our set
Wmay be described by means of a W.EE. M which enumerates the G.R’s of the
axioms of C. There is a W.EFE. E such that, if a is the G.R. of some proposition ,
then E(Mc, a) is convertible to the G.R. of

Systems of Logic Based on Ordinals | 177

(3x0) Proofc[xp, V0] O F.

If a is not the G.R. of any proposition in B, then E(Mc,a) is to be convertible to
the G.R. of 0 = 0. From E we obtain a W.EF. K such that K(Mc,2n + 1) conv
Mc(n), K(Mc, 2n) conv E(Mc, n). The successor system C’ is defined by K(Mc¢)
conv M¢'. Let us choose a formula G such that G(Mc, A) conv 2 if and only if the
number-theoretic theorem equivalent to “A is dual” is provable in C. Then we
define Ap by

Ap — Mwa . T'(\y. G(Ck(Tn(w, y), \mn. m(w(2, n), w(3, n)), K, Mp)), a).

This is an ordinal logic provided that P is valid.

Another ordinal logic of this type has in effect been introduced by Church.2°
Superficially this ordinal logic seems to have no more in common with Ap than
that they both arise by the method which we have described, which uses C-K
ordinal formulae. The initial systems are entirely different. However, in the
relation between C and C’ there is an interesting analogy. In Church’s method
the step from C to C' is performed by means of subsidiary axioms of which the
most important (Church [2], p. 88, 1,,) is almost a direct translation into his
symbolism of the rule that we may take any formula of the form (8.4) as an
axiom. There are other extra axioms, however, in Church’s system, and it is
therefore not unlikely that it is in some respects more complete than Ap.

There are other types of ordinal logic, apparently quite unrelated to the type
that we have so far considered. I have in mind two types of ordinal logic, both of
which can be best described directly in terms of ordinal formulae without any
reference to C-K ordinal formulae. I shall describe here a specimen Ay of one of
these types of ordinal logic. Ordinal logics of this kind were first considered by
Hilbert (Hilbert [1], 183ff.), and have also been used by Tarski (Tarski [1],
3951f.); see also Godel [1], foot-note 48°.

Suppose that we have selected a particular ordinal formula Q. We shall
construct a modification Pg of the system P of Godel (see foot-note [16] on
p- [173]. We shall say that a natural number # is a type if it is either even or
2p — 1, where Q(p, p) conv 3. The definition of a variable in P is to be modified
by the condition that the only admissible subscripts are to be the types in our
sense. Elementary expressions are then defined as in P: in particular the defini-
tion of an elementary expression of type 0 is unchanged. An elementary formula
is defined to be a sequence of symbols of the form 2,,2(,, where 2,,, [, are
elementary expressions of types m, n satisfying one of the conditions (a), (b), (c).

(a) m and n are both even and m exceeds n,
(b) mis odd and n is even,
(o m=2p—1,n=2q— 1, and Q(p,q) conv 2.

20 In outline Church [1], 279-280. In greater detail Church [2], Chap. X.

178 | Alan Turing

With these modifications the formal development of Py, is the same as that of
P We want, however, to have a method of associating number-theoretic the-
orems with certain of the formulae of Pg. We cannot take over directly the
association which we used in P. Suppose that G is a formula in P interpretable as
a number-theoretic theorem in the way described in the course of constructing
Ap (p. [174]). Then, if every type suffix in G is doubled, we shall obtain a
formula in Pg which is to be interpreted as the same number-theoretic theorem.
By the method of §6 we can now obtain from Py a formula Ly which is a logic
formula if Pg is valid; in fact, given €2 there is a method of obtaining Lg, so that
there is a formula Ay such that Ag(€Q) conv L for each ordinal formula .

Having now familiarized ourselves with ordinal logics by means of these
examples we may begin to consider general questions concerning them.

9. Completeness questions

The purpose of introducing ordinal logics was to avoid as far as possible the
effects of Godel’s theorem. It is a consequence of this theorem, suitably modified,
that it is impossible to obtain a complete logic formula, or (roughly speaking
now) a complete system of logic. We were able, however, from a given system to
obtain a more complete one by the adjunction as axioms of formulae, seen
intuitively to be correct, but which the Gddel theorem shows are unprovable in
the original system; from this we obtained a yet more complete system by a
repetition of the process, and so on.2! We found that the repetition of the process
gave us a new system for each C-K ordinal formula. We should like to know
whether this process suffices, or whether the system should be extended in other
ways as well. If it were possible to determine about a W.EE in normal form
whether it was an ordinal formula, we should know for certain that it was
necessary to make extensions in other ways. In fact for any ordinal formula A
it would then be possible to find a single logic formula L such that, if A(Q,A)
conv 2 for some ordinal formula €2, then L(A) conv 2. Since L must be
incomplete, there must be formulae A for which A(€2, A) is not convertible to
2 for any ordinal formula . However, in view of the fact, proved in §7, that
there is no method of determining about a formula in normal form whether it is
an ordinal formula, the case does not arise, and there is still a possibility that
some ordinal logics may be complete in some sense. There is a quite natural way
of defining completeness.

Definition of completeness of an ordinal logic. We say that an ordinal logic A is
complete if corresponding to each dual formula A there is an ordinal formula Q4
such that A(Q4,A) conv 2.

21 In the case of P we adjoined all of the axioms (3xy) Proof [X(],f(m>0] O &, where m is the G.R. of ; the
Godel theorem shows that some of them are unprovable in P

Systems of Logic Based on Ordinals | 179

As has been explained in §2, the reference in the definition to the existence of
QO for each A is to be understood in the same naive way as any reference to
existence in mathematics.

There is room for modification in this definition: we might require that there
is a formula X such that X(A) conv 4, X(A) being an ordinal formula whenever
A is dual. There is no need, however, to discuss the relative merits of these two
definitions, because in all cases in which we prove an ordinal logic to be complete
we shall prove it to be complete even in the modified sense; but in cases in which
we prove an ordinal logic to be incomplete, we use the definition as it stands.

In the terminology of §6, A is complete if the class of logics A(£2) is complete
when € runs through all ordinal formulae.

There is another completeness property which is related to this one. Let us for
the moment describe an ordinal logic A as all inclusive if to each logic formula L
there corresponds an ordinal formula €)1 such that A(£2) is as complete as L.
Clearly every all inclusive ordinal logic is complete; for, if A is dual, then 8(A) is a
logic with A in its extent. But, if A is complete and

Al — New .T'(Nra . 8(4,3(2, k(w, V(Nm(7)))) + 8(2, Nm(r, a)))),

then Ai(A) is an all inclusive ordinal logic. For, if A is in the extent of A(€),) for
each A, and we put Q) — Qy(), then I say that, if B is in the extent of L, it
must be in the extent of Ai(A,€()). In fact, we see that Ai(A, Qy),B) is
convertible to

I'(\ra.d(4,8(2, A(Qy), V(Nm(r)))) + 8(2,Nm(r,a))), B).
For suitable n, Nm(n) conv L and then
A(Qvw), V(Nm(n))) conv 2,
Nm(n, B) conv 2,
and therefore, by the properties of I' and &
Ai(A, Qy), B) conv 2.

Conversely Ai(A, Qy),B) can be convertible to 2 only if both Nm(n, B) and
A(Qyr), V(Nm(n))) are convertible to 2 for some positive integer #; but, if
A(Qy), V(Nm(n))) conv 2, then Nm(n) must be a logic, and, since Nm(n, B)
conv 2, B must be dual.

It should be noticed that our definitions of completeness refer only to
number-theoretic theorems. Although it would be possible to introduce formu-
lae analogous to ordinal logics which would prove more general theorems than
number-theoretic ones, and have a corresponding definition of completeness,
yet, if our theorems are too general, we shall find that our (modified) ordinal
logics are never complete. This follows from the argument of §4. If our “oracle”

180 | Alan Turing

tells us, not whether any given number-theoretic statement is true, but whether a
given formula is an ordinal formula, the argument still applies, and we find that
there are classes of problem which cannot be solved by a uniform process even
with the help of this oracle. This is equivalent to saying that there is no ordinal
logic of the proposed modified type which is complete with respect to these
problems. This situation becomes more definite if we take formulae satisfying
conditions (a)—(e), (f') (as described at the end of §12) instead of ordinal
formulae; it is then not possible for the ordinal logic to be complete with respect
to any class of problems more extensive than the number-theoretic problems.

We might hope to obtain some intellectually satisfying system of logical
inference (for the proof of number-theoretic theorems) with some ordinal
logic. Godel’s theorem shows that such a system cannot be wholly mechanical; but
with a complete ordinal logic we should be able to confine the non-mechanical
steps entirely to verifications that particular formulae are ordinal formulae.

We might also expect to obtain an interesting classification of number-
theoretic theorems according to “depth”. A theorem which required an ordinal
a to prove it would be deeper than one which could be proved by the use of an
ordinal {3 less than o. However, this presupposes more than is justified. We now
define

Invariance of ordinal logics. An ordinal logic A is said to be invariant up to
an ordinal « if, whenever ©, Q' are ordinal formulae representing the same
ordinal less than «, the extent of A(€) is identical with the extent of A(Q).
An ordinal logic is invariant if it is invariant up to each ordinal represented by an
ordinal formula.

Clearly the classification into depths presupposes that the ordinal logic used is
invariant.

Among the questions that we should now like to ask are

(a) Are there any complete ordinal logics?
(b) Are there any complete invariant ordinal logics?

To these we might have added “are all ordinal logics complete?”; but this is
trivial; in fact, there are ordinal logics which do not suffice to prove any number-
theoretic theorems whatever.

We shall now show that (a) must be answered affirmatively. In fact, we can
write down a complete ordinal logic at once. Put

0Od — a. {Nmn.Dt(f(m), f(n))}(\s. P(\r.r(I, a(s)), 1, 5)))

and Comp — Awa.d(w, Od(a)).

I shall show that Comp is a complete ordinal logic.
For if, Comp(£2, A) conv 2, then

Systems of Logic Based on Ordinals | 181
Q conv Od (A)
conv Amn . Dt(P(\r. r(I, A(m)), 1, m), P(\r.r(I, A(n)), 1, n))).
Q(m,n) has a normal form if € is an ordinal formula, so that then
P(\r.r(I, A(m)), 1)

has a normal form; this means that r(I, A(m)) conv 2 some 7, i.e. A(m) conv 2.
Thus, if Comp(€2, A) conv 2 and) is an ordinal formula, then A is dual. Comp
is therefore an ordinal logic. Now suppose conversely that A is dual. I shall show
that Od(A) is an ordinal formula representing the ordinal w. For

P(\r.r(I, A(m)), 1, m) conv @ (Ar.r(1, 2), 1, m)
conv 1(m) conv m,
Od(A, m, n) conv Dt(m, n),

i.e. Od(A) is an ordinal formula representing the same ordinal as Dt. But
Comp(Od(A), A) conv 8(0Od(A), Od(A)) conv 2.

This proves the completeness of Comp.

Of course Comp is not the kind of complete ordinal logic that we should really
wish to use. The use of Comp does not make it any easier to see that A is dual. In
fact, if we really want to use an ordinal logic, a proof of completeness for that
particular ordinal logic will be of little value; the ordinals given by the complete-
ness proof will not be ones which can easily be seen intuitively to be ordinals. The
only value in a completeness proof of this kind would be to show that, if any
objection is to be raised against an ordinal logic, it must be on account of
something more subtle than incompleteness.

The theorem of completeness is also unexpected in that the ordinal formulae
used are all formulae representing w. This is contrary to our intentions in
constructing Ap for instance; implicitly we had in mind large ordinals expressed
in a simple manner. Here we have small ordinals expressed in a very complex and
artificial way.

Before trying to solve the problem (b), let us see how far Ap and Ay are
invariant. We should certainly not expect Ap to be invariant, since the extent of
Ap(Q) will depend on whether € is convertible to a formula of the form H(A):
but suppose that we call an ordinal logic A “C-K invariant up to o” if the extent
of A(H(A)) is the same as the extent of A(H(B)) whenever A and B are C-K
ordinal formulae representing the same ordinal less than a. How far is Ap C-K
invariant? It is not difficult to see that it is C-K invariant up to any finite ordinal,
that is to say up to w. It is also C-K invariant up to w + 1, as follows from the fact
that the extent of

Ap(H(Aufx. u(R)))

182 | Alan Turing

is the set-theoretic sum of the extents of
Ap(H(Aufx.R(1))), Ap(H(Aufx.R(2))), ...

However, there is no obvious reason for believing that it is C-K invariant up to
o + 2, and in fact it is demonstrable that this is not the case (see the end of this
section). Let us find out what happens if we try to prove that the extent of

Ap(H(Suc (Aufx. u(Ry))))
is the same as the extent of
Ap(H(Suc (Aufx . u(Ry)))),

where hufx . u(Ry) and hufx . u(R,) are two C-K ordinal formulae representing w.
We should have to prove that a formula interpretable as a number-theoretic
theorem is provable in C[Suc (Aufx.u(R;))] if, and only if, it is provable
in C[Suc (Aufx.u(Ry))]. Now C[Suc(Aufx.u(R;))] is obtained from
C[Aufx . u(Ry)] by adjoining all axioms of the form

(3x0) Proof cinuse. u(ry) [0, F70] D &, (9.1)

where m is the G.R. of %, and C[Suc (Aufx.u(R;))] is obtained from
C[Aufx . u(Rz)] by adjoining all axioms of the form

(3x0) Proof cpnugs. u(re) X0, £70] D . (9.2)

The axioms which must be adjoined to P to obtain C[Aufx. u(R;)] are essentially
the same as those which must be adjoined to obtain the system C[hufx. u(R;)]:
however the rules of procedure which have to be applied before these axioms can
be written down are in general quite different in the two cases. Consequently (9.1)
and (9.2) are quite different axioms, and there is no reason to expect their
consequences to be the same. A proper understanding of this will make our
treatment of question (b) much more intelligible. See also footnote [17] on
page [173].

Now let us turn to Ap. This ordinal logic is invariant. Suppose that Q, Q'
represent the same ordinal, and suppose that we have a proof of a number-
theoretic theorem G in Pg. The formula expressing the number-theoretic the-
orem does not involve any odd types. Now there is a one—one correspondence
between the odd types such that if 2m — 1 corresponds to 2m’ — 1 and 2n — 1 to
21’ — 1 then Q(m, n) conv 2 implies £'(m’, n’) conv 2. Let us modify the odd
type-subscripts occurring in the proof of G, replacing each by its mate in the
one-one correspondence. There results a proof in P, with the same end formula
G. That is to say that if G is provable in Pq it is provable in P.y. Ay is invariant.

The question (b) must be answered negatively. Much more can be proved, but
we shall first prove an even weaker result which can be established very quickly,
in order to illustrate the method.

Systems of Logic Based on Ordinals | 183

I shall prove that an ordinal logic A cannot be invariant and have the property
that the extent of A(Q) is a strictly increasing function of the ordinal represented
by €. Suppose that A has these properties; then we shall obtain a contradiction.
Let A be a W.EE in normal form and without free variables, and consider the
process of carrying out conversions on A(1) until we have shown it convertible to
2, then converting A(2) to 2, then A(3) and so on: suppose that after r steps we
are still performing the conversion on A(m,). There is a formula Jh such that
Jh(A, r) conv m, for each positive integer . Now let Z be a formula such that, for
each positive integer #n, Z(n) is an ordinal formula representing w", and suppose
B to be a member of the extent of A(Suc(Lim(Z))) but not of the extent of
A(Lim(Z)). Put

K* — Na. A(Suc (Lim(Ar. Z(Jh(a, 1)))), B);
then K* is a complete logic. For, if A is dual, then
Suc (Lim(Ar. Z(Jh(A, 1))))

represents the ordinal w® + 1, and therefore K*(A) conv 2; but, if A(c) is not
convertible to 2, then

Suc (Lim(Ar. Z(Jh(A, 1))))

represents an ordinal not exceeding w¢ 4 1, and K*(A) is therefore not convert-
ible to 2. Since there are no complete logic formulae, this proves our assertion.
We may now prove more powerful results.

Incompleteness theorems. (A) If an ordinal logic A is invariant up to an
ordinal «, then for any ordinal formula € representing an ordinal B, B < «,
the extent of A(€) is contained in the (set-theoretic) sum of the extents of the
logics A(P), where P is finite.

(B) If an ordinal logic A is C-K invariant up to an ordinal a, then for any C-K
ordinal formula A representing an ordinal B, B < «, the extent of A(H(A)) is
contained in the (set-theoretic) sum of the extents of the logics A(H(F)), where
F is a C-K ordinal formula representing an ordinal less than w’.

Proof of (A). It is sufficient to prove that, if € represents an ordinal
v, ® <y < a, then the extent of A({2) is contained in the set-theoretic sum
of the extents of the logics A(Q), where O represents an ordinal less than +y.
The ordinal y must be of the form v, + p, where p is finite and represented by P
say, and 1y, is not the successor of any ordinal and is not less than w. There are
two cases to consider; y, = w and vy, = 2w. In each of them we shall obtain a
contradiction from the assumption that there is a W.EF. B such that A(£2, B)
conv 2 whenever € represents v, but is not convertible to 2 if £} represents a
smaller ordinal. Let us take first the case vy, = 2w. Suppose that vy, = o + vy,

184 | Alan Turing

and that €, is an ordinal formula representing v,. Let A be any W.EE. with a
normal form and no free variables, and let Zbe the class of those positive integers
which are exceeded by all integers # for which A(n) is not convertible to 2. Let E
be the class of integers 2p such that {(p,n) conv 2 for some n belonging to Z.
The class E, together with the class Q of all odd integers, is constructively
enumerable. It is evident that the class can be enumerated with repetitions,
and since it is infinite the required enumeration can be obtained by striking
out the repetitions. There is, therefore, a formula En such that En(€2, A, r) runs
through the formulae of the class E + Q without repetitions as r runs through
the positive integers. We define

Rt — Awamn.Sum(Dt, w, En(w, a, m), En(w, a, n)).

Then Rt(€2;, A) is an ordinal formula which represents v, if A is dual, but a
smaller ordinal otherwise. In fact

Rt(Q4, A, m, n) conv {Sum(Dt, Q;)}(En(€Q;, A, m), En(Q,, A, n)).
Now, if A is dual, E 4+ Q includes all integers 1 for which
{Sum(Dt, €4)}(m, m) conv 3.

(This depends on the particular form that we have chosen for the formula Sum.)
Putting “En(€, A, p) conv q” for M(p, q), we see that condition (7.4) is
satisfied, so that Rt(€2y, A) is an ordinal formula representing vy,. But, if A is
not dual, the set E + Q consists of all integers m for which

{Sum(Dt, ,)}(m, r) conv 2,

where r depends only on A. In this case Rt(€2;, A) is an ordinal formula
representing the same ordinal as Inf(Sum(Dt, €);), r), and this is smaller than
Yo- Now consider K:

K — Na.A(Sum(Rt(£,, A), P), B).

If A is dual, K(A) is convertible to 2 since Sum(Rt(€;, A), P) represents v. But,
if A is not dual, it is not convertible to 2, since Sum(Rt(£;, A), P) then
represents an ordinal smaller than vy. In K we therefore have a complete logic
formula, which is impossible.

Now we take the case vy, = w. We introduce a W.EE. Mg such that if # is the
D.N. of a computing machine ¢, and if by the m-th complete configuration of
M the figure 0 has been printed, then Mg(n, m) is convertible to A\pq.Al
(4(P, 2p +29),3,4) (which is an ordinal formula representing the ordinal 1),
but if 0 has not been printed it is convertible to Apq . p(q, I, 4) (which represents
0). Now consider

M — An. A(Sum(Lim(Mg(n)), P), B).

Systems of Logic Based on Ordinals | 185

If the machine never prints 0, then Lim(Ar. Mg(n,r)) represents w and
Sum(Lim(Mg(n)), P) represents y. This means that M(n) is convertible to 2.
If, however, M never prints 0, Sum(Lim(Mg(n)), P) represents a finite ordinal
and M(n) is not convertible to 2. In M we therefore have means of determining
about a machine whether it ever prints 0, which is impossible (Turing [1], §8).22
This completes the proof of (A).

Proof of (B). It is sufficient to prove that, if C represents an ordinal
¥, w? <y < a, then the extent of A(H(C)) is included in the set-theoretic sum
of the extents of A(H(G)), where G represents an ordinal less than . We obtain a
contradiction from the assumption that there is a formula B which is in the extent of
A(H(G))if Grepresents-y, but not if it represents any smaller ordinal. The ordinal y
is of the form & + w? + &, where ¢ < w?. Let D be a C-K ordinal formula repre-
senting & and Aufx. Q(u,f, A(u, f,x)) one representing o + ¢ whenever A
represents a.

We now define a formula Hg. Suppose that A is a W.EE in normal form and
without free variables; consider the process of carrying out conversions on A(1)
until it is brought into the form 2, then converting A(2) to 2, then A(3), and so
on. Suppose that at the r-th step of this process we are doing the n,-th step in the
conversion of A(m,). Thus, for instance, if A is not convertible to 2, #1, can never
exceed 3. Then Hg(A, r) is to be convertible to \f . f(m,,n,) for each positive
integer r. Put

Sq — Ndmn. n(Suc, m(Naufx . u(\y . y(Suc, a(u, f, x))), d(u, f, x))),
M — Naufx. Q(u, f, u(\y . Hg(a, y,Sq(D)))),
K; — Aa. A(M(a),B),

then I say that K; is a complete logic formula. Sq(D, m, n) is a C-K ordinal
formula representing & 4+ mw + n, and therefore Hg(A, r, Sq(D)) represents an
ordinal {, which increases steadily with increasing r, and tends to the limit
d + ? if A is dual. Further

Hg(A,1,Sq(D)) < Hg(A, S(r), Sq(D))

for each positive integer r. Therefore Nufx.u(\y.Hg(A,y,Sq(D))) is a C-K
ordinal formula and represents the limit of the sequence (;,{,,{s, ... This is
8 + w? if A is dual, but a smaller ordinal otherwise. Likewise M(A) represents vy if
A is dual, but is a smaller ordinal otherwise. The formula B therefore belongs to
the extent of A(H(M(A))) if and only if A is dual, and this implies that K; is a
complete logic formula, as was asserted. But this is impossible and we have the
required contradiction.

22 This part of the argument can equally well be based on the impossibility of determining about two
W.EE. whether they are interconvertible. (Church [3], 363.)

186 | Alan Turing

As a corollary to (A) we see that Ay is incomplete and in fact that the extent of
Ag(Dt) contains the extent of Ag(£2) for any ordinal formula Q. This result,
suggested to me first by the solution of question (), may also be obtained more
directly. In fact, if a number-theoretic theorem can be proved in any particular
Pq, it can also be proved in Py, m(n,1,4). The formulae describing number-
theoretic theorems in P do not involve more than a finite number of types, type 3
being the highest necessary. The formulae describing the number-theoretic
theorems in any P will be obtained by doubling the type subscripts. Now
suppose that we have a proof of a number-theoretic theorem G in Pg and that
the types occurring in the proof are among 0, 2, 4, 6, 1, &, 13, . .. We may suppose
that they have been arranged with all the even types preceding all the odd types,
the even types in order of magnitude, and the type 2m — 1 preceding 2n — 1 if
Q(m,n) conv 2. Now let each ¢, be replaced by 10 4 2r throughout the proof of
G. We thus obtain a proof of G in Py (n,1,4)-

As with problem (a), the solution of problem (b) does not require the use of
high ordinals [e.g. if we make the assumption that the extent of A(£2) is a
steadily increasing function of the ordinal represented by 2 we do not have to
consider ordinals higher than w + 2]. However, if we restrict what we are to call
ordinal formulae in some way, we shall have corresponding modified problems
(a) and (b); the solutions will presumably be essentially the same, but will involve
higher ordinals. Suppose, for example, that Prod is a W.EE. with the property
that Prod(€2;, €2,) is an ordinal formula representing a;o; when €, €, are
ordinal formulae representing o, a, respectively, and suppose that we call a
W.EEFE. a l-ordinal formula when it is convertible to the form Sum
(Prod(Q, Dt),P), where Q,P are ordinal formulae of which P represents a
finite ordinal. We may define 1-ordinal logics, 1-completeness and 1-invariance
in an obvious way, and obtain a solution of problem (b) which differs from the
solution in the ordinary case in that the ordinals less than w? take the place of the
finite ordinals. More generally the cases that I have in mind are covered by the
following theorem.

Suppose that we have a class V of formulae representing ordinals in some
manner which we do not propose to specify definitely, and a subset U of the class
V such that:

(i) There is a formula @ such that if T enumerates a sequence of members of
Urepresenting an increasing sequence of ordinals, then ®(T) is a member
of U representing the limit of the sequence.2?

(ii) There is a formula E such that E(m, n) is a member of U for each pair of
positive integers m, n and, if it represents €, ,, then €, , < €7, v if either
m<morm=m,n<n.

23 The subset U wholly supersedes V in what follows. The introduction of V serves to emphasise the fact
that the set of ordinals represented by members of U may have gaps.

Systems of Logic Based on Ordinals | 187

(iii) There is a formula G such that, if A is a member of U, then G(A) is a
member of U representing a larger ordinal than does A, and such that
G(E(m, n)) always represents an ordinal not larger than €,,, ;4.

We define a V-ordinal logic to be a W.EF. A such that A(A) is a logic whenever
A belongs to V. A is V-invariant if the extent of A(A) depends only on the
ordinal represented by A. Then it is not possible for a V-ordinal logic A to be V-
invariant and have the property that, if C; represents a greater ordinal than C,
(Cy and C, both being members of U), then the extent of A(C,) is greater than
the extent of A(C,).

We suppose the contrary. Let B be a formula belonging to the extent of
A((®(\r.E(r,1)))) but not to the extent of A(®(\r.E(r,1))),

and let

K — \a.A(G(®(\r.Hg(a,r,E)),B).
Then K’ is a complete logic. For
Hg(A,r,E) conv E(m,,n,).

E(m,,n,) is a sequence of V-ordinal formulae representing an increasing se-
quence of ordinals. Their limit is represented by @(\r.Hg(A, 1, E)); let us see
what this limit is. First suppose that A is dual: then m, tends to infinity as r tends
to infinity, and ®(\r.Hg(A,r,E)) therefore represents the same ordinal as
®(\r.E(r,1)). In this case we must have

K'(A) conv 2.

Now suppose that A is not dual: m, is eventually equal to some constant number,
a say, and @(\r.Hg(A, ,E)) represents the same ordinal as ®(Ar.E(a,r)),
which is smaller than that represented by ®(\r.E(r,1)). B cannot therefore
belong to the extent of A(G(®(\r.Hg(A,r,E)))), and K'(A) is not convertible
to 2. We have proved that K’ is a complete logic, which is impossible.

This theorem can no doubt be improved in many ways. However, it is
sufficiently general to show that, with almost any reasonable notation for ordin-
als, completeness is incompatible with invariance.

We can still give a certain meaning to the classification into depths with highly
restricted kinds of ordinals. Suppose that we take a particular ordinal logic A and
a particular ordinal formula W representing the ordinal a say (preferably a large
one), and that we restrict ourselves to ordinal formulae of the form Inf(W,a).
We then have a classification into depths, but the extents of all the logics which
we so obtain are contained in the extent of a single logic.

We now attempt a problem of a rather different character, that of the complete-
ness of Ap. It is to be expected that this ordinal logic is complete. I cannot at
present give a proof of this, but I can give a proof that it is complete as regards a

188 | Alan Turing

simpler type of theorem than the number-theoretic theorems, viz. those of form
“O(x) vanishes identically”, where 0(x) is primitive recursive. The proof will have to
be much abbreviated since we do not wish to go into the formal details of the system
P Also thereisa certain lack of definiteness in the problem as at present stated, owing
to the fact that the formulae G, E, Mp were not completely defined. Our attitude here
is thatitis open to the sceptical reader to give detailed definitions for these formulae
and then verify that the remaining details of the proof can be filled in, using his
definition. It is not asserted that these details can be filled in whatever be the
definitions of G, E, Mp consistent with the properties already required of them,
only that they can be filled in with the more natural definitions.

I shall prove the completeness theorem in the following form. If B[x,] is a
recursion formula and if B[0],B[f0], ... are all provable in B, then there is a C-
K ordinal formula A such that (x))8[x] is provable in the system PA of logic
obtained from P by adjoining as axioms all formulae whose G.R’s are of the form

A(Amn.m(w(2,n),w(3,n)), K, Mp,r)

(provided they represent propositions).

First let us define the formula A. Suppose that D is a W.EF. with the property
that D(n) conv 2 if B [f"~10] is provable in B, but D(n) conv 1if ~B[f"~D0]
is provable in P (P is being assumed consistent). Let @ be defined by

O — {Mvu.u(v(v, w) v u(v(v, u))),
and let Vi be a formula with the properties
Vi(2) conv Au. u(Suc, U),
Vi(1) conv Au. u(I, O(Suc)).

The existence of such a formula is established in Kleene [1], corollary on p. 220.
Now put

A" = hufx. u(hy.Vi(D(y), y, u, f, x)),

A — Suc (AY).

I assert that A*, A are C-K ordinal formulae whenever it is true that ®8[0], B[f0],
. are all provable in P, For in this case A* is Aufx . u(R), where

R — \y.Vi(D(y),y, 4 f, %),
and then
Aufx . R(n) conv hufx.Vi(D(n),n, u, f; x)
conv hufx.Vi(2,n, u, f, x)
conv hufx . {An.n(Suc, U)}(n, u, f, x)

conv Aufx.n(Suc, U, 4 f, x), which is a C-K ordinal formula,

Systems of Logic Based on Ordinals | 189

and
Aufx . S(n, Suc, U, u, f, x) conv Suc (Aufx.n(Suc, U, u, f, x)).

These relations hold for an arbitrary positive integer n and therefore A* is a C-K
ordinal formula [condition (9) p. [163]]: it follows immediately that A is also a
C-K ordinal formula. It remains to prove that (xy)%[xo] is provable in PA. To do
this it is necessary to examine the structure of A* in the case in which (xy)B[xo]
is false. Let us suppose that ~ B[f@~10] is true, so that D(a) conv 1, and let us
consider B where

B — \ufx.Vi(D(a), a, u, f, x).

If A* was a C-K ordinal formula, then B would be a member of its fundamental
sequence; but

B conv Aufx.Vi(l, a, 4, f, x)
conv Aufx . {\u . u(I, O(Suc))}(a, u, f, x)
conv Aufx. O(Suc, u, f, x)
conv hufx. {\u . u(®@(u))}(Suc, u, f, x)
conv Aufx . Suc (O(Suc), u, f,x)
conv Suc (Aufx . O(Suc, u, f, x))
conv Suc (B). (9.3)
This, of course, implies that B < B and therefore that B is no C-K ordinal
formula. This, although fundamental in the possibility of proving our complete-
ness theorem, does not form an actual step in the argument. Roughly speaking,
our argument amounts to this. The relation (9.3) implies that the system P is
inconsistent and therefore that PA" is inconsistent and indeed we can prove in P
(and a fortiori in P*) that ~ (x))B[xy] implies the inconsistency of PA. On the
other hand in PA we can prove the consistency of P*. The inconsistency of PP is
proved by the Godel argument. Let us return to the details.
The axioms in PP are those whose G.R.s are of the form

B(Amn. m(w(2, n), w(3, n)), K, Mp, r).
When we replace B, by Suc (B), this becomes

Suc (B, Amn. m(w(2, n), w(3, n)), K, Mp, r)
conv K(B(Amn.m(w(2, n), w(3,n)), K, Mp, r))
conv BOA\mn. m(w(2, n), w(3,n)), K, Mp, p)

if r conv 2p + 1,
conv E(B(Amn. m(w(2, n), w(3,n)), K, Mp), p)

if r conv 2p.

190 | Alan Turing

When we remember the essential property of the formula E, we see that the
axioms of P? include all formulae of the form

(3x)) Proofp[xp, f 0] D F,

where g is the G.R. of the formula .
Let b be the G.R. of the formula 2.

~ (Ix0)(Fyo) {Proofp: [Xo, yol . Sblzo, 2o, yol}. ()

Sb(xo, ¥, 20] is a particular recursion formula such that Sb[fP0, f(™0, f("0]
holds if and only if 7 is the G.R. of the result of substituting ™0 for z in the for-
mula whose G.R. is at all points where z is free. Let p be the G.R. of the formula €.

~ (3x0) (Fy0){Proof p: [x, 3o . SBIF0, f0, y,]} ©)
Then we have as an axiom in P
(3x0)Proof p» [xo, f(P)O] oG,
and we can prove in PA
(%){Sb[f"0, f*0, x9] = x = fP0}, (9:4)
since © is the result of substituting f(?0 for z, in ; hence
~ (3yo)Proof ps [y, fP0] (9.5)

is provable in P. Using (9.4) again, we see that € can be proved in PB. But, if we
can prove € in P®, then we can prove its provability in P®, the proof being in P;
i.e. We can prove

(3x0)Proof p» [xp, f7
in P (since p is the G.R. of €). But this contradicts (9.5), so that, if
~ B[f“ o

is true, we can prove a contradiction in P® or in PA", Now I assert that the whole
argument up to this point can be carried through formally in the system P, in
fact, that, if ¢ is the G.R. of ~ (0 = 0), then

~ (x0)Bx] D (Fwy)Proof . [, f190] (9.6)

is provable in P I shall not attempt to give any more detailed proof of this
assertion.
The formula

(3x0)Proof - [x0, F90] D ~ (0 = 0) (9.7)

is an axiom in PA. Combining (9.6), (9.7) we obtain (x))B[xp] in PA.

Systems of Logic Based on Ordinals | 191

This completeness theorem as usual is of no value. Although it shows, for
instance, that it is possible to prove Fermat’s last theorem with Ap (if it is true)
yet the truth of the theorem would really be assumed by taking a certain formula
as an ordinal formula.

That Ap is not invariant may be proved easily by our general theorem;
alternatively it follows from the fact that, in proving our partial completeness
theorem, we never used ordinals higher than w + 1. This fact can also be used to
prove that Ap is not C-K invariant up to w + 2.

10. The continuum hypothesis. A digression

The methods of §9 may be applied to problems which are constructive analogues
of the continuum hypothesis problem. The continuum hypothesis asserts that
2% = N, in other words that, if ; is the smallest ordinal greater than w such
that a series with order type a cannot be put into one—one correspondence with
the positive integers, then the ordinals less than w; can be put into one—one
correspondence with the subsets of the positive integers. To obtain a constructive
analogue of this proposition we may replace the ordinals less than w; either by
the ordinal formulae, or by the ordinals represented by them; we may replace the
subsets of the positive integers either by the computable sequences of figures 0, 1,
or by the description numbers of the machines which compute these sequences.
In the manner in which the correspondence is to be set up there is also more than
one possibility. Thus, even when we use only one kind of ordinal formula, there
is still great ambiguity concerning what the constructive analogue of the con-
tinuum hypothesis should be. I shall prove a single result in this connection.*
A number of others may be proved in the same way.

We ask “Is it possible to find a computable function of ordinal formulae
determining a one-one correspondence between the ordinals represented by
ordinal formulae and the computable sequences of figures 0, 1?” More accurately,
“Is there a formula F such that if is an ordinal formula and n a positive integer
then F(Q, n) is convertible to 1 or to 2, and such that F(€2, n) conv F(Q/, n) for
each positive integer , if and only if and ' represent the same ordinal?” The
answer is “No”, as will be seen to be a consequence of the following argument:
there is no formula F such that F(2) enumerates one sequence of integers (each
being 1 or 2) when £ represents w and enumerates another sequence when
represents 0. If there is such an F, then there is an a such that F(€2, a) conv (Dt,
a) if) represents w but F(£2, a) and F(Dt, a) are convertible to different integers
(1 or 2) if represents 0. To obtain a contradiction from this we introduce

24 A suggestion to consider this problem came to me indirectly from F. Bernstein. A related problem was
suggested by P. Bernays.

192 | Alan Turing

a W.EE. Gm not unlike Mg. If the machine 97 whose D.N. is n has printed 0 by
the time the m-th complete configuration is reached then

Gm(n, m) conv A\mn.m(n, I, 4);

otherwise Gm(n, m) conv Apq.Al(4(P, 2p + 29), 3, 4). Now consider F(Dt, a)
and F(Lim(Gm(n)), a). If 9 never prints 0, Lim(Gm(n)) represents the ordinal
. Otherwise it represents 0. Consequently these two formulae are convertible to
one another if and only if 970 never prints 0. This gives us a means of determin-
ing about any machine whether it ever prints 0, which is impossible.

Results of this kind have of course no real relevance for the classical con-
tinuum hypothesis.

11. The purpose of ordinal logics

Mathematical reasoning may be regarded rather schematically as the exercise of a
combination of two faculties, which we may call intuition and ingenuity.2> The
activity of the intuition consists in making spontaneous judgments which are not
the result of conscious trains of reasoning. These judgments are often but by no
means invariably correct (leaving aside the question what is meant by “correct”).
Often it is possible to find some other way of verifying the correctness of an
intuitive judgment. We may, for instance, judge that all positive integers are
uniquely factorizable into primes; a detailed mathematical argument leads to the
same result. This argument will also involve intuitive judgments, but they will be
less open to criticism than the original judgment about factorization. I shall not
attempt to explain this idea of “intuition” any more explicitly.

The exercise of ingenuity in mathematics consists in aiding the intuition
through suitable arrangements of propositions, and perhaps geometrical figures
or drawings. It is intended that when these are really well arranged the validity of
the intuitive steps which are required cannot seriously be doubted.

The parts played by these two faculties differ of course from occasion to
occasion, and from mathematician to mathematician. This arbitrariness can be
removed by the introduction of a formal logic. The necessity for using the
intuition is then greatly reduced by setting down formal rules for carrying out
inferences which are always intuitively valid. When working with a formal logic,
the idea of ingenuity takes a more definite shape. In general a formal logic, will
be framed so as to admit a considerable variety of possible steps in any stage in a
proof. Ingenuity will then determine which steps are the more profitable for the
purpose of proving a particular proposition. In pre-Godel times it was thought

25 We are leaving out of account that most important faculty which distinguishes topics of interest from
others; in fact, we are regarding the function of the mathematician as simply to determine the truth or falsity
of propositions.

Systems of Logic Based on Ordinals | 193

by some that it would probably be possible to carry this programme to such a
point that all the intuitive judgments of mathematics could be replaced by a
finite number of these rules. The necessity for intuition would then be entirely
eliminated.

In our discussions, however, we have gone to the opposite extreme and
eliminated not intuition but ingenuity, and this in spite of the fact that our
aim has been in much the same direction. We have been trying to see how far it is
possible to eliminate intuition, and leave only ingenuity. We do not mind how
much ingenuity is required, and therefore assume it to be available in unlimited
supply. In our metamathematical discussions we actually express this assumption
rather differently. We are always able to obtain from the rules of a formal logic a
method of enumerating the propositions proved by its means. We then imagine
that all proofs take the form of a search through this enumeration for the
theorem for which a proof is desired. In this way ingenuity is replaced by
patience. In these heuristic discussions, however, it is better not to make this
reduction.

In consequence of the impossibility of finding a formal logic which wholly
eliminates the necessity of using intuition, we naturally turn to “non-construct-
ive” systems of logic with which not all the steps in a proof are mechanical, some
being intuitive. An example of a non-constructive logic is afforded by any ordinal
logic. When we have an ordinal logic, we are in a position to prove number-
theoretic theorems by the intuitive steps of recognizing formulae as ordinal
formulae, and the mechanical steps of carrying out conversions. What properties
do we desire a non-constructive logic to have if we are to make use of it for the
expression of mathematical proofs? We want it to show quite clearly when a step
makes use of intuition, and when it is purely formal. The strain put on the
intuition should be a minimum. Most important of all, it must be beyond all
reasonable doubt that the logic leads to correct results whenever the intuitive
steps are correct.26 It is also desirable that the logic shall be adequate for the
expression of number-theoretic theorems, in order that it may be used in
metamathematical discussions (cf. §5).

Of the particular ordinal logics that we have discussed, Ay and Ap certainly
will not satisfy us. In the case of Ay we are in no better position than with a
constructive logic. In the case of Ap (and for that matter also Ay) we are by no
means certain that we shall never obtain any but true results, because we do not
know whether all the number-theoretic theorems provable in the system P are
true. To take Ap as a fundamental non-constructive logic for metamathematical

26 This requirement is very vague. It is not of course intended that the criterion of the correctness of the
intuitive steps be the correctness of the final result. The meaning becomes clearer if each intuitive step is
regarded as a judgment that a particular proposition is true. In the case of an ordinal logic it is always a
judgment that a formula is an ordinal formula, and this is equivalent to judging that a number-theoretic
proposition is true. In this case then the requirement is that the reputed ordinal logic is an ordinal logic.

194 | Alan Turing

arguments would be most unsound. There remains the system of Church which
is free from these objections. It is probably complete (although this would not
necessarily mean much) and it is beyond reasonable doubt that it always leads to
correct results.?” In the next section I propose to describe another ordinal
logic, of a very different type, which is suggested by the work of Gentzen and
which should also be adequate for the formalization of number-theoretic
theorems. In particular it should be suitable for proofs of metamathema-
tical theorems (cf. §5).

12. Gentzen type ordinal logics

In proving the consistency of a certain system of formal logic Gentzen (Gentzen
[1]) has made use of the principle of transfinite induction for ordinals less than
€0, and has suggested that it is to be expected that transfinite induction carried
sufficiently far would suffice to solve all problems of consistency. Another
suggestion of basing systems of logic on transfinite induction has been made
by Zermelo (Zermelo [1]). In this section I propose to show how this method of
proof may be put into the form of a formal (non-constructive) logic, and
afterwards to obtain from it an ordinal logic.

We can express the Gentzen method of proof formally in this way. Let us take
the system P and adjoin to it an axiom g with the intuitive meaning that the
W.EE. Q is an ordinal formula, whenever we feel certain that) is an ordinal
formula. This is a non-constructive system of logic which may easily be put into
the form of an ordinal logic. By the method of §6 we make correspond to the
system of logic consisting of P with the axiom g adjoined a logic formula
Lg: Lg is an effectively calculable function of €, and there is therefore a formula
Ag' such that Ag'(Q) conv Lq for each formula . Ag' is certainly not an
ordinal logic unless P is valid, and therefore consistent. This formalization of
Gentzen’s idea would therefore not be applicable for the problem with which
Gentzen himself was concerned, for he was proving the consistency of a system
weaker than P. However, there are other ways in which the Gentzen method of
proof can be formalized. I shall explain one, beginning by describing a certain
logical calculus.

The symbols of the calculus are f, x,',1,0, S, R, I, A, E, |, ®, 1, (,), =, and
the comma . For clarity we shall use various sizes of brackets (,) in the
following. We use capital German letters to stand for variable or undetermined
sequences of these symbols.

27 This ordinal logic arises from a certain system Cy in essentially the same way as Ap arose from P. By
an argument similar to one occurring in §8 we can show that the ordinal logic leads to correct results if
and only if C is valid; the validity of Cy is proved in Church [1], making use of the results of Church and
Rosser [1].

Systems of Logic Based on Ordinals | 195

It is to be understood that the relations that we are about to define hold only
when compelled to do so by the conditions that we lay down. The conditions
should be taken together as a simultaneous inductive definition of all the
relations involved.

Suffixes
1 is a suffix. If © is a suffix then &, is a suffix.

Indices

. . . . 1. .
'is an index. If ¥ is an index then I is an index.

Numerical variables

If © is a suffix then x& is a numerical variable.

Functional variables

If © is a suffix and 3 is an index, then f&S is a functional variable of index .

Arguments

(,) is an argument of index . If (2() is an argument of index J and ¥ is a term,
then (2Z,) is an argument of index 3!

Numerals

0 is a numeral.

If 9t is a numeral, then S(, 9t,) is a numeral.

In metamathematical statements we shall denote the numeral in which S
occurs r times by S (, 0,).

Expressions of a given index

A functional variable of index S is an expression of index 3.

R, S are expressions of index ''!,!! respectively.

If N is a numeral, then it is also an expression of index '.

Suppose that G is an expression of index 3, £ one of index J' and & one of
index 3'""; then (I'®) and (A®) are expressions of index J, while (E(®$) and

(G|9D) and (& © &) and (G 1H ! &) are expressions of index RS

Function constants

An expression of index J in which no functional variable occurs is a function
constant of index 3. If in addition R does not occur, the expression is called a
primitive function constant.

Terms

0 is a term.
Every numerical variable is a term.

196 | Alan Turing

If & is an expression of index J and () is an argument of index J, then

& () is a term.

Equations

If T and I are terms, then T = T’ is an equation.

Provable equations

We define what is meant by the provable equations relative to a given set of

equations as axioms.

(a)

(b)

(¢)

(d)

(e)

)
(9

The provable equations include all the axioms. The axioms are of the form
of equations in which the symbols I', A, E, |, ®, ! do not appear.

1

If & is an expression of index 3" and (2) is an argument of index S, then
(I‘@)(%ley X11>) = @(%[xll) X1»)

is a provable equation.
If ® is an expression of index 3! and (20) is an argument of index S, then

(A®)(Axy,) = G x A)

is a provable equation.
If ® is an expression of index J, and () is an argument of index <, then

(E®)(Axy,) = G(A)

is a provable equation.
If & is an expression of index I and § is one of index X' and (20) is an
argument of index <, then

(@19 = o (AsE,)

is a provable equation.

If 0 is an expression of index !, then J(,) = N is a provable equation.
If & is an expression of index J and & one of index S and () an
argument of index "31, then

(G o &)QA0,) = GA)
and (6 ©§) (A x,),) =512, 6 1., (6 © (),)

are provable equations. If in addition § is an expression of index J! and

R(,@(%{S(,)) X1) —0

is provable, then
(G1&1H)(A0,) = GA)

and

Systems of Logic Based on Ordinals | 197
((S ' ‘“ ' @) (QIS(> X1)r)
=51 (OAUSL, .).), S), (61919 (UD(AST, .,).),)

are provable.

(h) If T =3 and I = 1’ are provable, where T, T, Il and 1’ are terms,
then ' = 11 and the result of substituting 11" for 1l at any particular
occurrence in & = ' are provable equations.

(i) The result of substituting any term for a particular numerical variable
throughout a provable equation is provable.

(j) Suppose that &, &' are expressions of index J', that () is an argument

of index J not containing the numerical variable X and that
G(A0,) = &'(A0,) is provable. Also suppose that, if we add

GAX,) = G'(AX,)

to the axioms and restrict (i) so that it can never be applied to the
numerical variable X, then

s(us; x,),) =o' (us(, %),)

becomes a provable equation; in the hypothetical proof of this equation
this rule (j) itself may be used provided that a different variable is chosen
to take the part of X.
Under these conditions G(AX,) = &'(AX,) is a provable equation.
(k) Suppose that &, &', § are expressions of index J', that () is an
argument of index J not containing the numerical variable X and that

®(2A0,) = ®'(A0,) and R(,@(?IS(, x),), G, 36,),>o

are provable equations. Suppose also that, if we add

6] <91g>(915(, %))) @ (91@(915(, %)))

to the axioms, and again restrict (i) so that it does not apply to X, then
GAAX,) = &' (AX,) (12.1)

becomes a provable equation; in the hypothetical proof of (12.1) the rule
(k) may be used if a different variable takes the part of X.
Under these conditions (12.1) is a provable equation.

We have now completed the definition of a provable equation relative to a
given set of axioms. Next we shall show how to obtain an ordinal logic from this
calculus. The first step is to set up a correspondence between some of the
equations and number-theoretic theorems, in other words to show how they

198 | Alan Turing

can be interpreted as number-theoretic theorems. Let (& be a primitive function
constant of index ', (% describes a certain primitive recursive function ¢(m, n),
determined by the condition that, for all natural numbers m, n, the equation

©(, 5™ 0,), 57(0,),) = s, 0,)

is provable without using the axioms (a). Suppose also that £ is an expression of
index 3. Then to the equation

(55(, x1, 96 xl,),) =0

we make correspond the number-theoretic theorem which asserts that for each
natural number m there is a natural number n such that ¢(m, n) = 0. (The
circumstance that there is more than one equation to represent each number-
theoretic theorem could be avoided by a trivial but inconvenient modification of
the calculus.)

Now let us suppose that some definite method is chosen for describing the sets of
axioms by means of positive integers, the null set of axioms being described by the
integer 1. By an argument used in §6 there is a W.EE. 3 such that, if r is the integer
describing a set A of axioms, then 2(r) is a logic formula enabling us to prove
just those number-theoretic theorems which are associated with equations
provable with the above described calculus, the axioms being those described by
the number r.

I explain two ways in which the construction of the ordinal logic may be
completed.

In the first method we make use of the theory of general recursive functions
(Kleene [2]). Let us consider all equations of the form

R(, 5™ 0,), 87 0,),) = s7(, 0,) (12.2)

which are obtainable from the axioms by the use of rules (4), (i). It is a conse-
quence of the theorem of equivalence of A-definable and general recursive func-
tions (Kleene [3]) that, if r(m, n) is any A-definable function of two variables, then
we can choose the axioms so that (12.2) with p = r(m, n) is obtainable in this way
for each pair of natural numbers m, n, and no equation of the form

S"(, 0,) =8"(,0,) (m+#n) (12.3)
is obtainable. In particular, this is the case if r(m, n) is defined by the condition that

Q(m, n) conv S(p) implies p = r(m, n),
r(0, n) =1, alln>0,r(0,0) =2,

where €2 is an ordinal formula. There is a method for obtaining the axioms given
the ordinal formula, and consequently a formula Rec such that, for any ordinal

Systems of Logic Based on Ordinals | 199

formula Q, Rec () conv m, where m is the integer describing the set of axioms
corresponding to . Then the formula

At —)\W.E((Rec (W))

is an ordinal logic. Let us leave the proof of this aside for the present.

Our second ordinal logic is to be constructed by a method not unlike the one
which we used in constructing Ap. We begin by assigning ordinal formulae to all
sets of axioms satisfying certain conditions. For this purpose we again consider
that part of the calculus which is obtained by restricting “expressions” to be
functional variables or R or S and restricting the meaning of “term” accordingly;
the new provable equations are given by conditions (a), (h), (i), together with an
extra condition (/).

(I) The equation

R(, 0,50 %,),) =0

is provable.

We could design a machine which would obtain all equations of the form
(12.2), with m # n, provable in this sense, and all of the form (12.3), except that
it would cease to obtain any more equations when it had once obtained one of
the latter “contradictory” equations. From the description of the machine we
obtain a formula € such that

Q(m, n) conv 2 if R(, stm=1¢ 0,), S, 0,),) =0
is obtained by the machine,
Q(m, n) conv 1 if R(, st 0,), S, 0,),) =0
is obtained by the machine, and
Q(m, m) conv 3 always.

The formula € is an effectively calculable function of the set of axioms, and
therefore also of m: consequently there is a formula M such that M(m) conv Q
when m describes the set of axioms. Now let Cm be a formula such that, if b is the
G.R. of a formula M(m), then Cm(b) conv m, but otherwise Cm(b) conv 1. Let

A — Awa.T()\n.E(Cm(Tn(w, n)), a>.

Then Ag® (Q, A) conv 2 if and only if conv M(m), where m describes a set of
axioms which, taken with our calculus, suffices to prove the equation which is,
roughly speaking, equivalent to “A is dual”. To prove that A’ is an ordinal logic, it
is sufficient to prove that the calculus with the axioms described by m proves only
true number-theoretic theorems when € is an ordinal formula. This condition on

200 | Alan Turing

m may also be expressed in this way. Let us put m < n if we can prove
R(, $7,0,), $(,0,),) =0 with (), (h), (), (D: the condition is that
m < n is a well ordering of the natural numbers and that no contradictory
equation (12.3) is provable with the same rules (a), (h), (i), (). Let us say that
such a set of axioms is admissible. A is an ordinal logic if the calculus leads to
none but true number-theoretic theorems when an admissible set of axioms is
used.

In the case of Ag?, Rec (Q) describes an admissible set of axioms whenever Q
is an ordinal formula. Ag* therefore is an ordinal logic if the calculus leads to
correct results when admissible axioms are used.

To prove that admissible axioms have the required property, I do not attempt
to do more than show how interpretations can be given to the equations of the
calculus so that the rules of inference (a)—(k) become intuitively valid methods of
deduction, and so that the interpretation agrees with our convention regarding
number-theoretic theorems.

Each expression is the name of a function, which may be only partially
defined. The expression S corresponds simply to the successor function. If ® is
either R or a functional variable and has p 4 1 symbols in its index, then it
corresponds to a function g of p natural numbers defined as follows. If

S(, 570, $76,0,), ...,57(0,),) = 57, 0,)

is provable by the use of (a), (h), (i), (]) only, then g(ry, r, ..., 1) has the value
p. It may not be defined for all arguments, but its value is always unique, for
otherwise we could prove a “contradictory” equation and M(m) would then not
be an ordinal formula. The functions corresponding to the other expressions are
essentially defined by (b)—(f). For example, if gis the function corresponding to
& and ¢’ that corresponding to (I'®), then

g/(rb 125 - . rp; l; m) = g(rlﬁ 125 .. rp; m, l)

The values of the functions are clearly unique (when defined at all) if given by one
of (b)—(e). The case (f) is less obvious since the function defined appears also in the
definiens. I do not treat the case of (& © &), since this is the well-known definition
by primitive recursion, but I shall show that the values of the function correspond-
ingto (& ! & ! H) are unique. Without loss of generality we may suppose that ()
in (f) is of index!. We have then to show that, if h(m) is the function corres-
ponding to and r(m, n) that corresponding to R, and k(u, v, w) is a given
function and a a given natural number, then the equations

I(0) = a, (o)

Km+U:k@MHJLm+LKMm+UD B)

Systems of Logic Based on Ordinals | 201

do not ever assign two different values for the function I(m). Consider those
values of r for which we obtain more than one value of I(r), and suppose that
there is at least one such. Clearly 0 is not one, for I(0) can be defined only by (a).
Since the relation < is a well ordering, there is an integer 7, such that
10 > 0, I(rp) is not unique, and if s # ry and I(s) is not unique then ry < 5. We

may put s = h(rp), for, if l(h(ro)) were unique, then I(ry), defined by (B),
would be unique. But r(h(ro), ro) =0 i.e. s < rg. There is, therefore, no inte-

ger r for which we obtain more than one value for the function I(r).

Our interpretation of expressions as functions gives us an immediate inter-
pretation for equations with no numerical variables. In general we interpret an
equation with numerical variables as the (infinite) conjunction of all equations
obtainable by replacing the variables by numerals. With this interpretation (h),
(i) are seen to be valid methods of proof. In (j) the provability of

G (As6x,),) = ' (Ustx,),)

when &(Ux,) = &'(Ax;,) is assumed to be interpreted as meaning that the
implication between these equations holds for all substitutions of numerals for
x1. To justify this, one should satisfy oneself that these implications always hold
when the hypothetical proof can be carried out. The rule of procedure (j) is now
seen to be simply mathematical induction. The rule (k) is a form of transfinite
induction. In proving the validity of (k) we may again suppose () is of index!.
Let r(m, n),g(m), g1(m), h(n) be the functions corresponding respectively to
R, &, &', . We shall prove that, if g(0) = ¢’(0) and r(h(n), n) = 0 for each
positive integer n and if g(n+1) =g (n+1) whenever g(h(n+1)

=g\ h(n+1)), then g(n) = ¢'(n) for each natural number n. We consider
the class of natural numbers for which g(n) = ¢’'(n) is not true. If the class is
not void it has a positive member 7y which precedes all other members in the
well ordering <. But h(#ny) is another member of the class, for otherwise we

should have
g(hn)) = ¢ (h(m))

and therefore g(ny) = ¢'(ny), i.e. nyp would not be in the class. This implies

ny < h(ng) contrary to r(h(no), no) = 0. The class is therefore void.

It should be noticed that we do not really need to make use of the fact that
is an ordinal formula. It suffices that € should satisfy conditions (a)—(e)
(p. [162]) for ordinal formulae, and in place of (f) satisfy (f').

(f") There is no formula T such that T(n) is convertible to a formula repre-
senting a positive integer for each positive integer n, and such that Q(T(n), n
conv 2, for each positive integer n for which €2(n, n) conv 3.

The problem whether a formula satisfies conditions (a)—(e), (f') is number-
theoretic. If we use formulae satisfying these conditions instead of ordinal

202 | Alan Turing

formulae with A2 or Ag®, we have a non-constructive logic with certain
advantages over ordinal logics. The intuitive judgments that must be made are
all judgments of the truth of number-theoretic theorems. We have seen in §9 that
the connection of ordinal logics with the classical theory of ordinals is quite
superficial. There seem to be good reasons, therefore, for giving attention to
ordinal formulae in this modified sense.

The ordinal logic A’ appears to be adequate for most purposes. It should, for
instance, be possible to carry out Gentzen’s proof of consistency of number
theory, or the proof of the uniqueness of the normal form of a well-formed
formula (Church and Rosser [1]) with our calculus and a fairly simple set of
axioms. How far this is the case can, of course, only be determined by experi-
ment.

One would prefer a non-constructive system of logic based on transfinite
induction rather simpler than the system which we have described. In particular,
it would seem that it should be possible to eliminate the necessity of stating
explicitly the validity of definitions by primitive recursions, since this principle
itself can be shown to be valid by transfinite induction. It is possible to make
such modifications in the system, even in such a way that the resulting system is
still complete, but no real advantage is gained by doing so. The effect is always, so
far as I know, to restrict the class of formulae provable with a given set of axioms,
so that we obtain no theorems but trivial restatements of the axioms. We have
therefore to compromise between simplicity and comprehensiveness.

Index of definitions

No attempt is being made to list heavy type formulae since their meanings are
not always constant throughout the paper. Abbreviations for definite well-
formed formulae are listed alphabetically.

Page
Al 179
Al 169
Bd..oooviiiiiiiin, 169
(O TP 173
Cm.oooviiiiiiniienn. 199
Comp..cevueinenninnnns 180
Dt 151
Eooori 176
form....c..cocuvennnen. 150
G 177

Systems of Logic Based on Ordinals | 203

SUM .ueiveiineinnnn. 169 D CUTTTTRR 158 AG e, 199
SQrreneeriiieeeneaian 185 Zooeeiieeeeen 183 Af i, 178
Th e, 173 Apevieeiiiiiiiinnn. 177
Ug oo, 169 Lo, 160 Lo SRR 151
Ve 160 S 147 D N 198
Vi, 188 O 188 1,2, 3, 148
Wi, 159 AGY o 194 D 15428
Wi, 159 AG oo 199

Bibliography

Alonzo Church, [1]. “A proof of freedom from contradiction”, Proc. Nat. Acad. Sci. 21
(1935), 275-281.

—— [2]. Mathematical logic, Lectures at Princeton University (1935-6), mimeographed,
113 pp.

——[3]. “An unsolvable problem of elementary number theory”, American J. of Math. 58
(1936), 345-363.

——[4]. “The constructive second number class”, Bull. American Math. Soc. 44 (1938),
224-238.

G. Gentzen, [1]. “Die Widerspruchsfreiheit der reinen Zahlentheorie”, Math. Annalen, 112
(1936), 493-565.

K. Godel, [1]. “Uber formal unentscheidbare Sitze der Principia Mathematica und
verwandter Systeme, I”, Monatshefte fiir Math. und Phys. 38 (1931), 173-189.

——[2]. On undecidable propositions of formal mathematical systems, Lectures at the
Institute for Advanced Study, Princeton, N.J., 1934, mimeographed, 30 pp.

D. Hilbert, [1]. “Uber das Unendliche”, Math. Annalen, 95 (1926), 161-190.

S. C. Kleene, [1]. “A theory of positive integers in formal logic”, American J. of Math. 57
(1935), 153—173 and 219-244.

—[2]. “General recursive functions of natural numbers”, Math. Annalen, 112 (1935-6),
727-742.

——[3]. “N-definability and recursiveness”, Duke Math. Jour. 2 (1936), 340-353.

E. L. Post, [1]. “Finite combinatory processes—formulation 17, Journal Symbolic Logic,
1 (1936), 103-105.

J. B. Rosser, [1]. “Godel theorems for non-constructive logics”, Journal Symbolic Logic, 2
(1937), 129-137.

A. Tarski, [1]. “Der Wahrheitsbegriff in den formalisierten Sprachen”, Studia Philosophica,
1 (1936), 261-405 (translation from the original paper in Polish dated 1933).

A. M. Turing, [1]. “On computable numbers, with an application to the Entscheidungs-
problem”. [Chapter 1].

——[2]. “Computability and N-definability”, Journal Symbolic Logic, 2 (1937), 153-163.

28 Editor’s note. The remainder of Turing’s index has been incorporated into the general index at the rear
of the book.

204 | Alan Turing

E. Zermelo, [1]. “Grundlagen einer allgemeiner Theorie der mathematischen Satzsysteme,
1, Fund. Math. 25 (1935), 136-146.

Alonzo Church and S. C. Kleene, [1]. “Formal definitions in the theory of ordinal
numbers”, Fund. Math. 28 (1936), 11-21.

Alonzo Church and J. B. Rosser, [1]. “Some properties of conversion”, Trans. American
Math. Soc. 39 (1936), 472—482.

D. Hilbert and W. Ackermann, [1]. Grundziige der theoretischen Logik (2nd edition revised,
Berlin, 1938), 130 pp.

A. N. Whitehead and Bertrand Russell, [1]. Principia Mathematica (2nd edition, Cam-
bridge, 1925-1927), 3 vols.

[Received 31 May, 1938.—Read 16 June, 1938.]

CHAPTER 4

Letters on Logic to Max Newman (c.7940)

Alan Turing

Introduction
Jack Copeland

At the outbreak of war with Germany in September 1939, Turing left Cambridge
to take up work as a codebreaker at Bletchley Park, the wartime headquarters of
the Government Code and Cypher School (see ‘Enigma), below). In the early
months of 1940, Turing received a letter from the Cambridge mathematician
M. H. A. Newman, his teacher, colleague, and friend. Turing replied on 23
March, writing from his lodgings at the Crown Inn (situated in the small village
of Shenley Brook End): ‘Dear Newman, Very glad to get your letter, as I needed
some stimulus to make me start thinking about logic. This was to be the first of
five letters that Turing wrote to Newman during the seventeen months before
Newman too left Cambridge for Bletchley Park.

In his first letter Turing agreed (presumably at Newman’s request—Newman’s
letters seem not to have been preserved) to ‘let [Newman] in on...the tricks of
the conversion calculus. The conversion calculus, or ‘A-calculus’, is due to
Alonzo Church, with whom Turing studied in Princeton from 1936 to 1938
(see the introduction to Chapter 3).! Turing’s letters consist for the most part of
detailed remarks on the conversion calculus, often elucidating material from
what Turing calls ‘Church’s notes’—a substantial typescript entitled ‘Mathemat-
ical Logic’ which was in circulation at Princeton and elsewhere and which
Newman was evidently reading.2

Their correspondence on Church’s work issued in their joint paper ‘A Formal
Theorem in Church’s Theory of Types’, which was submitted to Church’s Journal

! Turing and Church also corresponded at this time. A letter from Church addressed to Turing at the
Crown is dated 15 May 1940 and replies to Turing’s of 15 April. I am grateful to Alonzo Church’s son,
Alonzo Church Jnr, for sending me a copy of Church’s letter.

2 The title page reads: ‘MATHEMATICAL LOGIC Lectures by Alonzo Church Princeton University,
October 1935-January 1936. (Notes by F. A. Ficken, H. G. Landau, H. Ruja, R. R. Singleton, N. E. Steenrod,
J. H. Sweer, F. J. Weyl). I am grateful to Alonzo Church Jnr for information concerning this typescript.

206 | Jack Copeland

of Symbolic Logic in May 1941 and published in March 1942.3 The paper was
written while Turing played a leading role in the battle to break Naval Enigma
(see ‘Enigma’ and Chapters 5-8). Turing would spend his occasional nights off
duty ‘coming in as usual..., doing his own mathematical research at night, in
the warmth and light of the office, without interrupting the routine of daytime
sleep’.4

The two most interesting items of the correspondence, which are printed here,
contain substantial passages in which Turing departs from his commentary on
Church’s work and expounds his own views. These elegant passages provide
information about Turing’s thoughts on the logical foundations of mathematics
which is not to be found elsewhere in his writings.

Of particular importance are the sections headed ‘Intuition. Inspiration.
Ingenuity, in which he discusses the unsolvability and incompleteness results
in logic and explains the basic idea underlying his ordinal logics (Chapter 3);
‘Ingenuity and Intuition’ discussing the extent to which provability by Turing
machine approximates mathematical truth; ‘The Completeness Theorem’, con-
cerning the completeness theorem established in Chapter 3; and ‘Consequences,
in which two notions of logical consequence are compared. These sections
contain occasional formulae of the conversion calculus, but the formulae are
not necessary to Turing’s points, and readers unfamiliar with the notation of the
calculus should not be deterred.

M. H. A. Newman: Mathematician, Codebreaker,
and Computer Pioneer

Max Newman played an important part in Turing’s intellectual life over many
years. It was Newman who, in a lecture in Cambridge in 1935, launched Turing
on the research that led to the universal Turing machine:

I believe it all started because he attended a lecture of mine on foundations of mathemat-
ics and logic ... I think I said in the course of this lecture that what is meant by saying that
[a] process is constructive is that it’s a purely mechanical machine—and I may even have
said, a machine can do it.

And this of course led [Turing] to the next challenge, what sort of machine, and this
inspired him to try and say what one would mean by a perfectly general computing
machine.>

3 M. H. A. Newman and A. M. Turing, ‘A Formal Theorem in Church’s Theory of Types) Journal of
Symbolic Logic, 7 (1942), 28-33.

4 J. Murray, ‘Hut 8 and Naval Enigma, Part I, in H. Hinsley and A. Stripp (eds.), Codebreakers: The Inside
Story of Bletchley Park (Oxford: Oxford University Press, 1993), 117.

5 Newman in interview with Christopher Evans (‘The Pioneers of Computing: An Oral History of
Computing’ (London: Science Museum)).

Letters on Logic to Max Newman | 207

In April 1936, Turing presented Newman with the draft typescript of ‘On
Computable Numbers’.¢ Not long after, an offprint of Church’s paper proving
the undecidability of first-order predicate calculus arrived in Cambridge.” New-
man proved a staunch ally at what must have been a painful time for Turing. On
29 May 1936 Turing wrote in a letter to his mother:

Meanwhile a paper has appeared in America, written by Alonzo Church, doing the same
things in a different way. Mr Newman and I have decided however that the method is
sufficiently different to warrant the publication of my paper too.

It was clear to Newman that ‘Turing’s “machine” had a significance going far
beyond this particular application [the Entscheidungsproblem]’.? Turing’s paper
contained (in Newman’s words) ‘this extraordinary definition of a perfectly
general ... computable function, thus giving the first idea... of a perfectly gen-
eral computing machine.’® Newman advised Turing during the final stages of
preparation of ‘On Computable Numbers), and he wrote to the Secretary of the
London Mathematical Society saying that Church’s prior publication should not
stand in the way of Turing’s paper appearing in the Proceedings.!!

In 1942 Newman received a letter from Frank Adcock, another Cambridge man
and a veteran of Room 40 (the forerunner of the Government Code and Cypher
School): ‘Dear Newman, There is some work going at a government institution
which would I think interest you and which is certainly important for the War
....12 Newman wrote to the Master of St John’s to request leave of absence and at
the end of August 1942 he joined the Research Section at Bletchley Park.

The Research Section was attempting to break the German cipher machine
they nicknamed ‘Tunny’. Used mainly by the German Army, Tunny was one of
three types of German machine—collectively referred to as ‘Fish’ by the British—
for enciphering the binary teleprinter alphabet (the other two were ‘Sturgeon’,
used mainly by the German Air Force, and ‘Thrasher’). From the autumn of 1942
Tunny was used in preference to Enigma for the encryption of messages between
the German High Command and the various Army Group commanders in the
field—intelligence of the highest grade.

6 A. Hodges, Alan Turing: The Enigma (London: Vintage, 1992), 109.

7 M. H. A. Newman, ‘Alan Mathison Turing, 1912-1954’, Biographical Memoirs of Fellows of the Royal
Society, 1 (1955), 253—63 (258). On the paper by Church, ‘A Note on the Entscheidungsproblem) see
‘Computable Numbers: A Guide’.

8 The letter is among the Turing Papers in the Modern Archive Centre, King’s College Library,
Cambridge (catalogue reference K 1).

9 Newman, ‘Alan Mathison Turing, 1912-1954’, 258.

10 Newman in interview with Christopher Evans (see n. 5).

11 See further ‘Max Newman: Mathematician, Codebreaker and Computer Pioneer’, by William Newman
(Max’s son), to appear in B. J. Copeland (ed.), Colossus: The First Electronic Computer (Oxford University
Press).

12 Quoted in W. Newman, ‘Max Newman: Mathematician, Codebreaker and Computer Pioneer’

208 | Jack Copeland

In November 1942 William Tutte found a way of breaking Tunny messages
known as the ‘Statistical Method’!*> The rub was that the method seemed
impractical, involving a very large amount of time-consuming work—basically,
the comparing of two streams of Os and 1s, counting the number of times that
each had 0 in the same position. If the comparing and counting were done by
hand, the intelligence in the message would be stale before the work was
completed. Tutte explained his method to Newman and Newman suggested
using electronic counters. It was a brilliant idea. In December 1942 Newman
was given the job of developing the necessary machinery.l* The electronic
counters were designed by C. E. Wynn-Williams at the Telecommunications
Research Establishment (TRE) in Malvern. Construction of the new machine
was carried out at the Post Office Research Station at Dollis Hill in London and
at TRE. In June 1943 the completed machine began work in the ‘Newmanry’, a
newly created section at Bletchley Park headed by Newman.

This first machine—known as ‘Heath Robinson) after a popular cartoonist
who drew bizarre contraptions—was relay-based, with some electronic circuits
for counting and for performing simple logical (i.e. boolean) operations. Heath
Robinson was unreliable and slow, and its high-speed paper tapes tended to
stretch and tear, but it proved the worth of Newman’s approach. Newman
ordered a dozen more Robinsons from the Post Office.

During the design phase of Heath Robinson there had been difficulties with
the logic unit—the ‘combining unit’ in the terminology of 1942. At Turing’s
suggestion Newman had approached the Post Office engineer Thomas H. Flowers
for help (Flowers had previously assisted Turing with the design of a machine for
use against Enigma).1> Flowers and his switching group at Dollis Hill successfully
redesigned the combining unit; but Flowers did not think much of the overall
design of the Robinson, and in February 1943 presented Newman with the
alternative of a fully electronic machine. This idea received little encouragement
from Bletchley Park, however, where opinion was that a machine containing as
many electronic valves (vacuum tubes) as Flowers was proposing—about
2,000—would not work reliably. Flowers, with over ten years’ experience of
electronic valves, knew better, and on his own initiative began building the
machine he could see was necessary, working independently at the Post Office
Research Station. Flowers has said that he was probably the only person in

13 W. T. Tutte, ‘At Bletchley Park’, to appear in Copeland (ed.), Colossus: The First Electronic Com-
puter.

14 Part 1 of ‘General Report on Tunny’. ‘General Report on Tunny’ was written in 1945 by Jack Good,
Donald Michie, and Geoffrey Timms, all members of Newman’s section at GC & CS. This document was
released by the British government in 2000 to the Public Record Office at Kew (document reference HW 25/
4, HW 25/5). A digital facsimile of the document is available in The Turing Archive for the History of
Computing <www.AlanTuring.net/tunny_report>.

15 Flowers in interview with Copeland (July 1996, July 1998).

www.AlanTuring.net/tunny_report

Letters on Logic to Max Newman | 209

Britain who understood at this time that electronic valves could be used in large
numbers for high-speed digital computing.16

Flowers” ‘Colossus), the first large-scale electronic digital computing machine,
was installed in the Newmanry on 8 December 1943 (see the introduction to
Chapter 9). By the end of the war, there were nine more Colossi working in the
Newmanry. The Colossi gave the Allies access to the most secret German radio
communications, including messages from Hitler to his front-line generals.
Intelligence obtained via Colossus was vital to the planning of the D-day
landings and played a major role in the subsequent defeat of Hitler.1?

In September 1945 Newman took up the Fielden Chair of Mathematics at the
University of Manchester. Five months later he wrote the following to the
Princeton mathematician and computer pioneer John von Neumann:

I am...hoping to embark on a computing machine section here, having got very
interested in electronic devices of this kind during the last two or three years. By about
eighteen months ago I had decided to try my hand at starting up a machine unit when I
got out. ... I am of course in close touch with Turing.!®

Newman lost no time in establishing the Royal Society Computing Machine
Laboratory at the University. He introduced the engineers Frederick Williams
and Thomas Kilburn—newly recruited to Manchester University from the Tele-
communications Research Establishment, where they had worked on radar (they
knew nothing of the top-secret Colossus)—to Turing’s idea of a stored-pro-
gramme computer and explained to them what facilities were necessary in a
computer (see the introduction to Chapter 9).1° It was in Newman’s Computing
Machine Laboratory that Kilburn and Williams built the world’s first electronic
stored-programme digital computer. Their prototype ran its first programme on
21 June 1948 (see further the introduction to Chapter 9).

That same year Newman recruited Turing to Manchester from the National
Physical Laboratory, appointing him Deputy Director of the Computing Ma-
chine Laboratory (see the introduction to Chapter 10). Turing remained at
Manchester until his death in 1954.

16 Flowers in interview with Copeland (July 1996).

17 E H. Hinsley et al., British Intelligence in the Second World War, vol. iii, part 2 (London: Her Majesty’s
Stationery Office, 1988), 53, 799.

18 Letter from Newman to von Neumann, 8 Feb. 1946 (in the von Neumann Archive at the Library of
Congress, Washington, DC; a digital facsimile is in The Turing Archive for the History of Computing
<www.AlanTuring.net/newman_vonneumann_8feb46>).

19 Williams in interview with Christopher Evans in 1976 (‘The Pioneers of Computing: An Oral History
of Computing’ (London: Science Museum)).

www.AlanTuring.net/newman_vonneumann_8feb46

210 | Jack Copeland

Further reading

Barendregt, H. P., The Lambda-Calculus, its Syntax and Semantics (Amsterdam: North-
Holland, 1984).

Church, A., ‘A Set of Postulates for the Foundation of Logic’, Annals of Mathematics, 33
(1932), 346-66.

—— An Unsolvable Problem of Elementary Number Theory’, American Journal of Math-
ematics, 58 (1936), 345-63.

——— The Calculi of Lambda-Conversion (Princeton: Princeton University Press, 1941).

Copeland, B. J., ‘Colossus and the Dawning of the Computer Age, in R. Erskine and
M. Smith (eds.), Action This Day (London: Bantam, 2001).

Lalement, R., Computation as Logic (Hemel Hempstead: Prentice Hall, 1993).

Provenance

What follows are transcriptions of Turing’s letters. The original letters are among
the Turing Papers in the Modern Archive Centre, King’s College Library, Cam-
bridge.2°

20 Catalogue reference D 2. The letters are published with the permission of the Estate of Alan Turing.

Letter from The Crown, Shenley Brook End

April 21 The Crown
Shenley Brook End
Bletchley

Dear Newman,

The 3-function. One certainly can manage without 8 for defining computable
functions. The purpose for which it is really brought in in Church’s notes is to
enable one to ‘describe the syntax of the system within itself’ i.e. at any rate to
define the formula Gr (or something like it) such that Gr(A) conv G.R of a
certain normal form of A (if there is one & if A has no free variables, otherwise
Gr(A) has no normal form)

Gr — Na.?2(1, Au.d(form(u), a) & Norm(u))!

where Norm(u) conv 2 if u is G.R of a formula in normal form
conv 1 otherwise

(form can be defined without d)

2&1convl
1&2convl
1&1convl
2 & 2 conv 2

I do not know that it has been proved that a Gr cannot be obtained without 8,
but at any rate defining Gr without 8 would be equivalent to defining a formula
without 8 which would have the properties of 8. I haven’t got Church’s notes
with me, but I think most of his bracket technique was in connection with his
‘metads’ (sort of G.Rs).2

There can be no very general picking out function, even using 8. The formulae
to be picked out must certainly have no free variables (if A, picks out first term
of two then A;(x, y) conv x and 1.h.s? has different free variables from right) but
also they must have normal forms, for a formula without normal form will
poison any formula in which it enters. If all the formulae involved have normal
forms one can pick out with 3 e.g. in this way —

Gr({A, B])is G.R of {A, B]

1 Editor’s note. See S. C. Kleene, ‘A Theory of Positive Integers in Formal Logic, Part II, American Journal
of Mathematics, 57 (1935), 219—44 (231-2).

2 Editor’s note. ‘Metad’ is defined in Kleene, ‘A Theory of Positive Integers in Formal Logic’, 233.

3 Editor’s note. Presumably ‘left-hand side’

212 | Alan Turing

there is a A-definable function (defined by D say) which gives G.R of A as
function of G.R of [A, B]

Then A conv form(D(Gr([A, B])))

Intuition. Inspiration. Ingenuity

I am not sure whether my use of the word ‘intuition’ is right or whether your
‘inspiration” would be better. I rather think that you are using ‘inspiration’ to
cover what I had called ‘ingenuity’. To give a concrete example of ingenuity,
suppose [want a formula © with the property

O(x) conv x(O(x))*

I can of course search through an enumeration of all formulae ® and perform
conversions on ®(x) (saving time over the possibly infinite conversion processes,
by the ‘diagonal process’), but if while I am doing this some bystander writes
down

O — Aw.w(w)} Avu.u(v(v, u)))

and says ‘try that’, I should say he had found a formula by ‘ingenuity’’ In such
cases there is no need to worry about how the formula is arrived at. That it is
right is verified by a simple conversion, or something equally uncontroversial.
Isn’t this what you would call inspiration?

The straightforward unsolvability or incompleteness results about systems of
logic amount to this

a) One cannot expect to be able to solve the Entscheidungsproblem for a
system

B) One cannot expect that a system will cover all possible methods of proof
(does not apply to ‘restricted function calculus’)

It seemed to me that in your account of what we want a system of logic to do
you had o) in mind but not B). I should agree with your point of view, in so far
as we can shut our eyes to 3) i.e. we do not really want to make proofs by
hunting through enumerations for them, but by hitting on one and then
checking up to see that it is right. However this method is always theoretically,
though not practically, replacable by the longer method if one has got a method
of checking up. The enumeration of proofs is for instance obtained from an
enumeration of all possible sequences of symbols by striking out those which do
not pass the test. When one takes B) into account one has to admit that not one
but many methods of checking up are needed. In writing about ordinal logics

4 Editor’s note. Presumably this should read: @(x) conv Ax.x(0(x)).

5 Editor’s note. Turing’s example concerns a formula that he himself found and published in his ‘The
p-Function in N-K-Conversion’ (Journal of Symbolic Logic, 2 (1937), 164). The published formula is
O — Mvu.uv(v, u)} AMvueu(v(v, u))).

Letters on Logic to Max Newman | 213

I had this kind of idea in mind.® In proofs there is actually an enormous amount
of sheer slogging, a certain amount of ingenuity, while in most cases the actual
‘methods of proof’ are quite well known. Cannot we make it clearer where the
slogging comes in, where there is ingenuity involved, and what are the methods
of proof? In fact can we not express quite shortly what is the status of each proof?
The ordinals were meant to give concise notations for the status of proofs.

The Completeness Theorem

The proof of my completeness theorem (P, etc) is of course completely useless
for the purpose of actually producing proofs. P, will only be a convincing logic if
A is rather simple, and easily recognized as an ordinal formula. The completeness
theorem was written from a rather different point of view from most of the rest,
and therefore tends to lead to confusion. I think that all this proof does is to
provide an insurance against certain sorts of ‘Godel incompleteness theorems’
being proved about the ordinal logic.

As soon as any question arises of having to prove that the formulae one is
using are ordinal formulae one is returning to the single logic point of view,
unless the kind of proof to be used is something different, being a kind of
propaganda rather than formal proof.

The exercise

I have no complaints at all about this. You have evidently got the tools necessary
for barging through anywhere where one can get through. I don’t remember,
even if I ever knew, what the standard way of doing this job is. I have toyed for
half an hour or so with trying to do it with things of form

[A,[B,[C, ...]]...]instead of [A, B, ...]

One might in that way avoid the trouble of looking after the number of variables.
One will need a ‘picking out function’ L which will satisfy

L({m, [n, ... }}) conv m

but I cannot find one independent of the number of variables.

Church tells me he is going to publish his form of Principia involving the use
of A, and simple theory of types. I am very glad of it, as the system makes things
much clearer than any other I know and is not too cumbrous to be used.

Godel’s paper has reached me at last. I am very suspicious of it now but will
have to swot up the Zermelo—v. Neumann system a bit before I can put objec-
tions down in black & white.

Yours sincerely
A. M. Turing

6 Editor’s note. Turing is referring to ‘Systems of Logic Based on Ordinals’ (Chapter 3).

Letter from King’s College, Cambridge

Sunday King’s College
Cambridge
Dear Newman,
Church’s notes certainly are rather a mouthful. I have never worked steadily
through them myself, but have taken them in much the same spirit as you are
doing. Fortunately I was able to go to the fountainhead for information.

i) Metads certainly are a form of ‘Godel representation’ which Ch. finds it
convenient to use in his system.

ii) Ithink the point of using the peculiar form of negation is that one wants Th 1,

2, 3 p 487 to hold in the form in which they stand. If one has ~— Ax.3 ——x (i.e.
~— \X+3 (p, X)), ~ A will have a normal form sometimes when A is not convert-
ible to 1 or 2 e.g. if A conv 3 (also incidentally, as there is no 0, 3——x has the value
1 in this case and this would be bad apart from the normal form difficulty, but this
is more easily corrected).

iii) Consequences. I think one wants here to distinguish two ideas a) ‘conse-
quences of an assumption’ (p. 82, 14)%, b) consequences of an assumption
relative to a set of rules of procedure. The first of these is an ‘intuitive’ idea
which one tries to approximate by the second with suitable sets of rules of
procedure. To get the idea of ‘consequences of an assumption’ imagine that the
underlined letters are admitted as parts of formulae in a new system. I will use
only letters for variable underlined letters, and variable formulae involving
underlined letters. Then if 2, B are such formulae involving underlined letters
X, 9, ..., 3, we say that ¥ is a consequence of ¥l if, for all substitutions of
formulae (in original sense, with 8) for X, ?), ..., 3 it happens that 8 conv 2
whenever 2 conv 2. This of course implies two different uses of underlined
letters from Chap X® onwards, but I think Church is really doing this. The idea of
consequences of an assumption relative to given rules of procedure I think
explains itself. One tries of course to make the rules of procedure such that the
consequences will be consequences in the sense a), but also to get as many
consequences as one can consistent with this. Of course one cannot get all
such with one set of rules.

iv) The Il,,’s. These certainly are much the same as my ordinal logics, that is
to say that the rule by which the Il,,’s are formed can easily be used to help
one construct an ordinal logic. They are better and better approximations by

7 Editor’s note. A reference to Church’s ‘Mathematical Logic’ (see p. 205 n. 2).
8 Editor’s note. A reference to Church’s ‘Mathematical Logic’
9 Editor’s note. Chapter X of Church’s ‘Mathematical Logic’ is entitled ‘The Universal Quantifier’.

Letters on Logic to Max Newman | 215

consequences of type b) above to the consequences of type a). The meaning of
the Il’s is this. One has defined the rules 1,,...7, and 1,...7, with r < m.
Taking all these and 1...63 we have a set of rules of procedure Procy, say. From
them we get I1,;, which is such that IT,,(F, G) conv 2 if and only if F and G are
metads of formulae 2, B such that *B is a consequence of 2 relative to Proc,.
(There is some confusion between underlined letters and ordinary variables in
this definition of the I1,,’s, as metads are names of formulae without underlined
letters. Probably you have to regard all the free variables in the formulae
described by the metads as replaced by underlined letters if we are to follow
my description under iii).)

v) Ingenuity and Intuition. I think you take a much more radically Hilbertian
attitude about mathematics than I do. You say ‘If all this whole formal outfit is
not about finding proofs which can be checked on a machine it’s difficult to
know what it is about” When you say ‘on a machine’ do you have in mind that
there is (or should be or could be, but has not been actually described anywhere)
some fixed machine on which proofs are to be checked, and that the formal outfit
is, as it were, about this machine. If you take this attitude (and it is this one that
seems to me so extreme Hilbertian) there is little more to be said: we simply have
to get used to the technique of this machine and resign ourselves to the fact that
there are some problems to which we can never get the answer. On these lines my
ordinal logics would make no sense. However I don’t think you really hold quite
this attitude because you admit that in the case of the Godel example one can
decide that the formula is true i.e. you admit that there is a fairly definite idea of
a true formula which is quite different from the idea of a provable one.
Throughout my paper on ordinal logics I have been assuming this too.'® It
mostly takes the form of talking about such things as a formula A such that
A(n) conv 2 for all pos. integers n.

If you think of various machines I don’t see your difficulty. One imagines
different machines allowing different sets of proofs, and by choosing a suitable
machine one can approximate ‘truth’ by ‘provability’ better than with a less
suitable machine, and can in a sense approximate it as well as you please. The
choice of a proof checking machine involves intuition, which is interchangeable

with the intuition required for finding an £} if one has an ordinal logic A, or as a
third alternative one may go straight for the proof and this again requires
intuition: or one may go for a proof finding machine. I am rather puzzled why
you draw this distinction between proof finders and proof checkers. It seems to
me rather unimportant as one can always get a proof finder from a proof checker,
and the converse is almost true: the converse fails if for instance one allows the
proof finder to go through a proof in the ordinary way, and then, rejecting the
steps, to write down the final formula as a ‘proof” of itself. One can easily think

10 Editor’s note. Turing is referring to ‘Systems of Logic Based on Ordinals’ (Chapter 3).

216 | Alan Turing

up suitable restrictions on the idea of proof which will make this converse true
and which agree well with our ideas of what a proof should be like.

I am afraid this may be more confusing to you than enlightening. If so I will try
again.
Yours sincerely
A. M. Turing

Enigma
Jack Copeland

Turing Joins the Government Code and Cypher School 217
The Enigma Machine 220

The Polish Contribution, 1932-1940 231

The Polish Bomba 235

The Bombe and the Spider 246

Naval Enigma 257

Turing Leaves Enigma 262

N o v W N =

1. Turing Joins the Government Code and Cypher School

Turing’s personal battle with the Enigma machine began some months before the
outbreak of the Second World War.! At this time there was no more than a handful
of people in Britain tackling the problem of Enigma. Turing worked largely in
isolation, paying occasional visits to the London office of the Government Code
and Cypher School (GC & CS) for discussions with Dillwyn Knox.2 In 1937, during
the Spanish Civil War, Knox had broken the type of Enigma machine used by the
Italian Navy.> However, the more complicated form of Enigma used by the German
military, containing the Steckerbrett or plug-board, was not so easily defeated.

On 4 September 1939, the day following Chamberlain’s announcement of war
with Germany, Turing took up residence at the new headquarters of the Govern-
ment Code and Cypher School, Bletchley Park.* GC & CS was a tiny organization

! Letters from Peter Twinn to Copeland (28 Jan. 2001, 21 Feb. 2001). Twinn himself joined the attack on
Enigma in February 1939. Turing was placed on Denniston’s ‘emergency list’ (see below) in March 1939,
according to ‘Staff and Establishment of G.C.C.S. (undated), held in the Public Record Office: National
Archives (PRO), Kew, Richmond, Surrey (document reference HW 3/82). (I am grateful to Ralph Erskine
for drawing my attention to this document.)

2 Letters from Twinn to Copeland (see n. 1).

3 M. Batey, ‘Breaking Italian Naval Enigma’, in R. Erskine and M. Smith (eds.), Action This Day (London:
Bantam, 2001), 98.

4 Letter from A. G. Denniston to T.]J. Wilson of the Foreign Office (7 Sept. 1939). PRO document
reference FO 366/1059.

218 | Jack Copeland

ill prepared for war. By 1942, however, Bletchley Park had become a veritable
factory, and with the help of the codebreaking machines called ‘bombes’—
designed by Turing, Gordon Welchman, and, on the engineering side, Harold
Keen—GC & CS was deciphering about 39,000 Enigma messages each month.>
By 1945 almost 9,000 people were employed at Bletchley Park.s It is estimated
that the breaking of Enigma—and in particular the breaking of Home Waters
Naval Enigma, in which Turing played the crucial role—may have shortened the
war in Europe by some two years.”

Figure 1. The Mansion, Bletchley Park.

Source: Bletchley Park Trust.

The Government Code and Cypher School had developed from the old ‘Room
40, established by the Admiralty during the First World War for the purpose of
reading enemy ciphers.® A branch of the Foreign Office, GC & CS was located in

5 E H. Hinsley et al., British Intelligence in the Second World War, vol. ii (London: Her Majesty’s
Stationery Office, 1981), 29.

6 F. H. Hinsley et al., British Intelligence in the Second World War, vol. iii, part 1 (London: Her Majesty’s
Stationery Office, 1984), 461.

7 This estimate was given by Hinsley, official historian of the British Secret Service, on p. 12 of his and
Alan Stripp’s edited volume Codebreakers: The Inside Story of Bletchley Park (Oxford: Oxford University
Press, 1993). If, wrote Hinsley, the achievements of GC & CS ‘had not prevented the U-boats from
dominating the Atlantic...it is not unreasonable to believe that...Overlord [the invasion of Normandy,
1944] would have had to be deferred till 1946’

8 The older spelling ‘cypher’ and the newer ‘cipher’ were both in use at GC & CS during 1939-45. Mahon
used ‘cypher’ in a 1945 document, part of which forms Chapter 5, and Turing used ‘cipher’ in a 1940
document, parts of which appear in Chapters 5 and 6.

Enigma | 219

Whitehall until the summer of 1939.° By the beginning of 1938 the Director of
Naval Intelligence, Admiral Hugh Sinclair, was looking for premises outside
London to which GC & CS could move in the event of war. Bletchley Park—a
large Victorian mansion with ample grounds situated in the town of Bletchley, a
major railway junction linking London, Oxford, and Cambridge—was pur-
chased in the spring of 1938 (out of Sinclair’s own pocket, it is said).

In the course of 1937 and 1938 Commander Alastair Denniston, Head of GC &
CS and a veteran of Room 40, supervised a clandestine programme of recruitment,
centred largely on Oxford and Cambridge. Denniston’s aim was to build up what
he described as an ‘emergency list [of] men of the Professor type’1®

At certain universities . .. there were men now in senior positions who had worked in our
ranks during 1914-18. These men knew the type required. Thus it fell out that our most
successful recruiting occurred from these universities. During 1937 and 1938 we were able
to arrange a series of courses to which we invited our recruits to give them even a dim idea
of what would be required of them...These men joined up in September 1939.1!

(Frank Adcock and Frank Birch, the two veterans of Room 40 who were most
active in recruitment as the new war approached, were both from the same
college as Turing, King’s.'2) In the days following the outbreak of war in
September 1939 a group of about thirty people assembled at Bletchley Park,
many of them—including Turing—drawn from Denniston’s ‘emergency list’13
An organizational structure rapidly began to emerge at Bletchley, newly formed
sections being known simply as ‘Hut 4, ‘Hut 6>, and so on. The ‘huts’ were single-
storey wooden structures hastily constructed in the grounds of the mansion. Here
dons worked among uniformed Naval and Army personnel. Military discipline
never took root among the ‘men of the Professor type” and parts of Bletchley Park
had something of the atmosphere of an Oxbridge college. There were some
notable eccentrics among the codebreakers. Dilly Knox, another fellow of King’s
and veteran of Room 40, liked to work in a hot bath. Once, at his lodgings, Knox

stayed so long in the bathroom that his fellow-lodgers at last forced the door. They found
him standing by the bath, a faint smile on his face, his gaze fixed on abstractions, both taps
full on and the plug out. What then was passing in his mind could possibly have solved a
problem that was to win a battle.14

9 Probably in August (R. Erskine, ‘GC and CS Mobilizes “Men of the Professor Type”’, Cryptologia, 10
(1986), 50-9 (50)).

10 Letter from Denniston to Wilson (3 Sept. 1939). PRO document reference FO 366/1059.

11 A. G. Denniston, ‘The Government Code and Cypher School between the Wars), in C. W. Andrew
(ed.), Codebreaking and Signals Intelligence (London: Cass, 1986), 52.

12 Andrew, Codebreaking and Signals Intelligence, 4.

13 S. Milner-Barry, ‘Hut 6: Early Days, in Hinsley and Stripp (eds.), Codebreakers, 90; ‘Staff and
Establishment of G.C.C.S.; Erskine, ‘GC and CS Mobilizes “Men of the Professor Type”’, 50.

14 E. R. Vincent, Unpublished Memoirs, Corpus Christi College Archives, Cambridge; quoted in C. W.
Andrew, Secret Service: The Making of the British Intelligence Community (London: Guild, 1985), 94.

220 | Jack Copeland

It was Knox’s Research Section that Turing joined upon his arrival at Bletchley
Park.

2. The Enigma Machine

The Enigma machine had something of the appearance of an old-fashioned
typewriter. Designed by the Berlin engineer Arthur Scherbius, Enigma was
marketed commercially from 1923.15 In 1926 the German Navy adopted Enigma,
followed by the German Army in 1928 and the German Air Force in 1935.1¢ At the
outbreak of war with Britain, Enigma was the Germans’ principal method for
protecting their military communications. In 1930, the German military had
considerably enhanced the security of the machine by adding the Steckerbrett or
plug-board (see Figure 4).17 It is this form of Enigma—German military, or
Wehrmacht, Enigma—that is dealt with here. Successive modifications were
made to the operating procedures of the military machine, resulting in substantial
variation both over time and from one branch of the armed services to another.

Battery powered and highly portable, the Wehrmacht Enigma machine could be
used from a general’s office in Berlin, an armoured vehicle, a submarine, or a
trench. The machine’s keyboard had twenty-six keys, each marked with a letter
(Figure 4). Instead of an arrangement for typing letters onto paper, the machine
had a lampboard consisting of twenty-six bulbs, each of which shone through a
stencil on which a letter of the alphabet was marked. The operator of the Enigma
machine would be handed a message in plain text. His job was to type the message
at the keyboard of the machine. Each time he pressed a key, a letter on the lamp-
board would light up. The operator’s assistant kept a note of which letters lit up on
the lampboard. This enciphered form of the message was then sent to its recipient,
if by radio then in Morse code. The sending radio operator would preface the
message with his radio call-sign, followed by that of the intended receiver. The
Germans also sent Enigma messages by land-lines; for these messages, Morse was
not used. (Land-lines are not mentioned further in this introduction, since
German message traffic sent in this way was not intercepted in Britain.)

Each time the operator pressed a key, one or more wheels turned inside
the machine, and each time a wheel moved it altered the wiring between the
keyboard and the lampboard. So if, for example, the operator repeatedly de-
pressed the O-key, the connections between the key and the lampboard would
change with each key press, resulting in a succession of different letters lighting
up, for example QM P WAJYR.

15 E L. Bauer, Decrypted Secrets: Methods and Maxims of Cryptology (Berlin: Springer-Verlag, 2nd edn.
2000), 107.

16 E. H. Hinsley et al. British Intelligence in the Second World War, vol. iii, part 2 (London: Her Majesty’s
Stationery Office, 1988), 946.

17 M. Rejewski, ‘Remarks on Appendix 1 to British Intelligence in the Second World War by E H.
Hinsley’, Cryptologia, 6 (1982), 75-83 (76).

Enigma | 221

Figure 2. A three-wheel Enigma with the plug-board (at the front of the machine)
exposed. The lampboard is behind the keyboard. The three wheel-slots are visible behind
the lampboard. Beside each wheel-slot is a window through which letters marked on the
wheels are visible to the operator.

Source: Science and Society Picture Library, National Museum of Science and Industry.

222 | Jack Copeland

Figure 3. Enigma machine with the three wheels exposed.

Source: Science and Society Picture Library, National Museum of Science and Industry.

The letter O itself would never appear in this succession of letters, however.
Because of the action of the reflector, a letter was never enciphered as itself (see
Figure 4). This rule was very useful to the codebreakers at Bletchley Park.

At the receiving end of the radio link, the message would be converted from
Morse into ordinary letters. This cipher text was then typed at the keyboard of
the recipient’s Enigma machine. The letters that lit up on the lampboard would
be the very same letters that the sender had keyed in—the plain text with which
the process had begun. The design of the Enigma machines was such that if a key
was pressed on one machine, say O, and the letter that lit up on the machine’s

Enigma | 223

middle wheel fast wheel
slow wheel

\ \1 ring\ Jl /wheel CO"® \vheel-adjuster

)

\
P

reflector
G E
>(F °
E (o)
D B
G A o entry plate
“«— 4 N
z X \
@0 000
e o c lampboard
000

9| ©o0
©|0g0
©|©p®
0|00

0®©||©

A
@
© 00 \'_SE
{ 00060000
@@@@@@@@@ 1 keyboard
\.(\ l
jeecseces

Figure 4. Path of electric current through the Enigma. Pressing a key at the keyboard
causes a letter to light up at the lampboard. The core of each wheel contains a maze of 26
insulated wires, with each wire joining one of 26 contacts on the right hand side of the
wheel to one of 26 contacts on the left-hand side. The wiring is different in each wheel.
Diagram by Dustin A. Barrett.

lampboard was keyed into a second machine, then—provided the two machines
had been set up in exactly the same way by their respective operators—the
second machine would light up O on its lampboard.

224 | Jack Copeland

Figure 5. View of the wheels with the case closed. The three wheel-adjusters protrude
through slots in the case. The windows allow the operator to see one letter from the ring
of each wheel. The ‘message setting’ is the triple of letters visible at the start of typing a
message.

Diagram by Dustin A. Barrett.

In a word, the letter-substitutions were reversible: if O produced Q (for
example) then, at the same machine-settings, Q produced O. This was the
basic principle of the Enigma system, hard-wired into the machine. Figure 4
indicates how this was achieved. If Q were pressed at the keyboard, current
would flow along a wire leading to Q at the plug-board, then across the plug-
board to Y and through the wheels in the reverse direction to that shown, exiting
the wheels at N, crossing the plug-board to O, and lighting O at the lampboard.

The Plug-Board (Steckerbrett) and Wheels

The operator could make various changes to the settings of his machine before
he began typing a message at the keyboard. The recipient would set up his own
machine in the same way in order to decode the message. How the recipient
knew which settings to use is explained in what follows.

The settings of the machine could be changed in the following ways. (See
Figure 4.)

1. The operator could make alterations to the plug-board (Steckerbrett) on the
front of the machine, pulling electrical leads out of sockets and plugging
them back into different sockets. This altered some of the connections
between the keyboard and the lampboard. (The plug-board was absent
from the commercial version of the machine.18)

18 The commercial model remained on sale after the German military adopted Enigma. The Germans
knew how to break the commercial model and from 1938 several hundred were sold to neutral Switzerland
by the German manufacturers. The commercial model was also sold by Germany to Hungary during the

war. Commercial model Enigmas sold to Spain were used during the Spanish Civil War. (I am grateful to
Frode Weierud for this information (personal communication).)

Enigma | 225

2. The operator could alter the positions of the rotating wheels inside the
machine (sometimes also called ‘rotors’) by turning them manually. Part of
the circumference of each wheel protruded through the case of the machine
enabling the operator to click the wheels round with his thumb or finger
(Figure 5). In the early years of the war there were three rotatable wheels
inside the machine; in 1941, the first Naval machines with a fourth rotat-
able wheel came into use (see the introduction to Chapter 8).1° (Another
two components of the Enigma are sometimes referred to as wheels or
rotors, the Umkehrwalze (described by Mahon on p. 269 of Chapter 5) and
the Eintrittwalze. In the forms of German military Enigma discussed here,
both these components were stationary, and they will be referred to as the
reflector and the entry plate respectively (Figure 4).)

3. The operator could open the case of the machine, lift out two or more of the
wheels, and replace them in a different order. For example, he might switch
the left- and right-hand wheels, leaving the centre wheel untouched. Each
wheel was wired differently inside. Since the electrical pathways from the
keyboard to the lampboard passed through the wheels, changing the order of
the wheels altered the pathways. Alternatively, rather than simply switching
the order of the wheels in the machine, the operator might replace one or
more of them with different wheels from a box that accompanied the ma-
chine. From December 1938 until about the beginning of the war, there were a
total of five wheels, numbered I-V, and any three of the five might be inside
the machine at any one time. For example, the wheels in use mightbe I, II, and
IV, in the order IV/I/IL. From 1940 (or possibly as early as 1939) Enigma
machines used by the German Navy were equipped with additional wheels
and the operator would select three from a total of eight (numbered I-VIII).

The wheels were somewhat analogous to the wheels of a combination lock,
turning through a number of discrete positions. Each wheel had a total of
twenty-six possible rotational positions, A—Z. The wheel on the right, the first
on the path from keyboard to lampboard, would always turn on one ‘click’ each
time a key was pressed. Hence the term ‘fast wheel’ (Figure 4). After a certain
number of clicks, this wheel would cause the centre wheel to turn one click.
Likewise, the centre wheel would at some point cause the wheel on the left—
the ‘slow whee'—to move one click. (An extra complication: when this
happened, the centre wheel would itself turn forward one click also.20)

19 The fourth wheel differed from the other three in that once the operator had set it to one of its twenty-
six positions, it remained stationary during the encipherment of the message. (That the fourth wheel came
into Naval use in 1941 is documented in R. Erskine, ‘Breaking German Naval Enigma on Both Sides of the
Atlantic’, in Erskine and Smith (eds.), Action this Day, 181.

20 H. Alexander, ‘Cryptographic History of Work on the German Naval Enigma’ (no date (¢.1945), PRO
document reference HW 25/1), 3; a digital facsimile of Alexander’s typescript is available in The Turing
Archive for the History of Computing <www.AlanTuring.net/alexander_naval_enigma>.

www.AlanTuring.net/alexander_naval_enigma

226 | Jack Copeland

b

1
m
[T
S|
m.
O
P
O]
m
2 |

o]
THE EMIGMA MACHINE ROTOR
A DISMANTLED ROTOR SHOWING THE MIRING BETHEEM THE
CONTACT STUDS AND THE SPRING LOADED CONTALTS

Figure 6. A dismantled wheel.

Source: Science and Society Picture Library, National Museum of Science and Industry.

Precisely when a wheel would cause its neighbour to turn was determined by the
position of a notch cut into the ring of the wheel. Since wheels I-V all had their
notches in different places, changing or rearranging wheels could affect the ‘turn-
overs’ (Bletchley’s term for the points at which wheels would cause their neigh-
bours to turn). The Naval wheels VI-VIII were slightly different. These had their
notches in the same places as one another, and moreover each had two notches (see
Pp- 268, 285 below). The extra notch meant that in the course of one revolution, the
doubly notched wheel would cause its neighbour to move twice.

Which letter lit up on the lampboard depended, therefore, not only on which
key was depressed, but also on how the plug-board was connected up, which of
the possible wheels were inside the machine, what order these wheels were
arranged in, and which of its twenty-six rotational positions each wheel occupied
at the time the key was pressed. In fact, by altering these variables, the operator
was able to set up a machine with a total of three wheels in excess of a thousand
million million different ways. The message remained protected even if the
enemy captured an Enigma machine of the type that the sender was using. In
order for a recipient to decipher the message, he or she needed to know which

of the astronomically many possible settings the sender had used to encipher
the text.

Enigma | 227

Enigma Keys

The sender and the (authorized) recipient were issued with printed tables of
settings so that they could set up their machines in the same way. A group of
Enigma-users operating with the same tables is called a network. A set of tables
covered a period of one month and specified how, on any given day, the members
of the network should set up their machines. Different networks used different
tables.

GC & CS referred to a network of Enigma-users as a ‘key’. Each key was given a
name—Yellow, Red, Green, Light Blue, Shark, Dolphin, Porpoise, Kestrel, Phoe-
nix, Locust, Snowdrop, etc. At the beginning of the war, the number of known
keys was small enough for GC & CS to be able to represent them on a chart by
means of coloured pencils, the colour used becoming the name of the key. As the
war progressed, the number of keys became much larger.

The term ‘network’ is perhaps clearer than ‘key’, especially since at Bletchley,
‘key’ was used ambiguously for a network of Enigma-users and in the term ‘daily
key’ (whose meaning is explained below). Some writers prefer ‘crypto-net’ to
‘network’, since the former term makes it clear that it is an Enigma network and
not a radio network that is being described.2! One and the same radio network
could carry the message traffic of several crypto-nets.

Wheel Order, Stecker, and Ringstellung

The wheel order for a particular day for a certain network or key might be III/1/
11, for example.

Stecker is short for Steckerverbindungen, meaning ‘plug connections’ The
Stecker, or plug-board configuration, for a particular day might be A/C, D/V,
F/M, H/W, L/X, R/1. Corresponding to each letter on the plug-board is a pair of
sockets, one for a cable leading to another letter, and one for a cable leading from
another letter (Figure 4). The operator would set up the plug-board by connecting
together the pair of sockets labelled ‘A’ and the pair of sockets labelled ‘C’ by means
of a short cable with a double plug at each end. Likewise for the ‘D’ sockets and the
V’ sockets, and so on. The Germans’ use of double plugs meant that if A is
steckered to C, then C is steckered to A—a fatal simplification, as we shall see.

Ringstellung means ‘ring position’. The ring is like a tyre mounted round the
core of each wheel. It is marked with the letters of the alphabet, one for each of
the twenty-six rotational positions of the wheel (Figure 4). (Sometimes the
numerals ‘01’ to 26" were used instead of letters.) The ring could be moved
around the wheel core to a selected position and then fixed in position with a
clip. The day’s ring position for a given wheel was specified by a single letter, say
X. The operator would turn the ring until the letter X was aligned against a fixed

21 See, for example, G. Welchman, The Hut Six Story: Breaking the Enigma Codes (Kidderminster: M. &
M. Baldwin, 2nd edn. 1997), 205.

228 | Jack Copeland

index mark embossed on the wheel and then would fix the ring in this position.
The complete Ringstellung for the day would consist of a trigram, say XYZ, one
letter for each wheel in the machine.

The Daily Key

The daily wheel order, Stecker, and Ringstellung for the machine were specified in
the tables issued to each Enigma network. Stecker, wheel order, and Ringstellung
were elements of the daily key, or basic settings for the day for a given network of
Enigma users.

The reason for changing the basic settings daily was to minimize the number
of messages encoded at the same settings. The Germans knew that security could
be compromised if too many messages were encoded at the same basic settings.
During the later years of the war, some networks changed the Stecker, wheel
order, and Ringstellung not daily but every eight hours.22

The Message Setting

Setting up the sender’s and recipient’s machines in accordance with the specified
Stecker, wheel order, and Ringstellung did not suffice to place the two machines
completely in register. There was also the question of the rotational positions of
the three wheels at the start of the message.

Once the ring position was set, the rotational position of a wheel could be
described by saying which of the letters on the ring was uppermost when the
wheel was in place inside the machine. The machine’s case was fitted with three
small windows, one above each wheel, so that the operator could see the
uppermost letter (Figure 5).

The positions occupied by the wheels at the start of typing a message were
specified by a trigram, for example QVZ, meaning that Q is visible in the window
over the left-hand wheel, V in the window over the middle wheel, and Z in the
window over the right-hand wheel. QVZ was known as the message setting.2?

Notice that knowing the message setting does not reveal the rotational pos-
itions of the wheels at the start of the message unless the Ringstellung is also
known—QVZ may specify any one of the 26 x 26 x 26 possible positions,
depending on which ring positions have been selected.

22 M. Rejewski, ‘Summary of our Methods for Reconstructing Enigma and Reconstructing Daily Keys,
and of German Efforts to Frustrate Those Methods, in W. Kozaczuk, Enigma: How the German Machine
Cipher Was Broken, and How It Was Read by the Allies in World War Two, trans. C. Kasparek (London: Arms
and Armour Press, 1984), 243.

23 Rejewski’s accounts of the work of the Polish cryptanalysts use ‘message key’ instead of the Bletchley
term ‘message setting’. See, for example, M. Rejewski, ‘Jak Matematycy polscy rozszyfrowali Enigme’ [How
the Polish Mathematicians Broke Enigma], Annals of the Polish Mathematical Society, Series II: Mathematical
News, 23 (1980), 1-28. (This article appears in an English translation by C. Kasparek as appendix D of
Kozaczuk, Enigma; another translation, by J. Stepenske, appears in Annals of the History of Computing, 3
(1981), 213-34, under the title ‘How Polish Mathematicians Deciphered the Enigma’)

Enigma | 229

Operating Procedures

In order to decode the message, a recipient needs the wheel order, the Stecker, the
Ringstellung, and the message setting. The most direct way to make the message
setting available to the authorized recipient would be to make it an element of
the daily key printed in the monthly tables. The operator would then simply look
up the specified trigram for the day in question, and ensure that it was visible in
the windows at the start of each message. This was the procedure used with the
commercial form of Enigma.2* But this method provided very weak security,
reducing the problem of breaking a day’s messages to that of solving a number of
substitution ciphers.

The substitution cipher is an ancient and simple form of cipher in which the
alphabet is paired with a ‘scrambled’ alphabet. For example:

A|B|C|D|E|F|G|H|I|]J|K|LIMIN[O|P|Q|R|S|T|U|VIW|X|Y|Z

Z|Y|XIW|V|U|T|S|R|Q|P|O|NM|L|K|J|I|H|G|F|E|D|C|B|A

THE ESSENTIAL TURING = GSV VHHVMGRZO GFIRMT

The great Polish cryptanalyst Marian Rejewski explained the weakness of en-
ciphering a day’s Enigma traffic at the same message setting:

the first letters of all the messages. .. constituted an ordinary substitution cipher, a very
primitive cipher easily soluable given sufficient material, and all the second letters of the
messages . .. constituted another substitution cipher, and so on. These are not merely
theoretical deliberations. It was in that very way that in France in 1940 we solved the Swiss
Enigma cipher machine.2%

The German armed forces employed more secure methods for making the
message setting known to the intended recipient. The method adopted varied
from service to service and from time to time, generally speaking with increasingly
secure methods being used as time went on. From 1937 the German Navy used a
particularly complicated method—although Turing did manage to break it. This
method is described by Patrick Mahon in Chapter 5, which is an extract from
Mahon’s previously unpublished ‘The History of Hut 8. (Written in 1945, Mahon’s
‘History’ was kept secret by the British and American governments until 1996.26)

From the autumn of 1938 until May 1940 the German Army and Air Force
used the following—as it turned out, highly insecure—method for sending the

24 Rejewski, ‘Remarks on Appendix 1 to British Intelligence in the Second World War by F. H. Hinsley,
79.

25 Rejewski, ‘How the Polish Mathematicians Broke Enigma) trans. Kasparek, 251.

26 Mahon’s ‘The History of Hut 8’ is in the US National Archives and Records Administration (NARA) in
Washington, DC (document reference: RG 457, Historic Cryptographic Collection, Box 1424, NR 4685) and
in the UK Public Record Office (document reference HW 25/2). A digital facsimile of the original typescript
is available in The Turing Archive for the History of Computing <www.AlanTuring.net/mahon_hut_8>.

www.AlanTuring.net/mahon_hut_8

230 | Jack Copeland

message setting to the recipient.2’” The sender would select two trigrams at
random, say RBG and VAK. RBG is the message setting. VAK specifies the
starting positions of the wheels that will be used not when encoding the message
itself but when encoding the message setting prior to broadcasting it to the
recipient. VAK would be broadcast to the recipient as part of an unencoded
preamble to the encoded message. (The preamble could also include, for
example, the time of origin of the message, the number of letters in the encoded
message, and a group of letters called a discriminant, identifying the Enigma
network to which the message belonged (e.g. Red).28 The preamble might also
contain an indication that the message was the second (or later) part of a two-
part or multi-part message; see Mahon’s discussion of ‘forts’ on pp. 278-9
below.)

The Indicator and Indicator Setting

Having selected the two trigrams, the sender would first set up VAK in the
windows of his machine. He would then type RBGRBG. The group of six letters
that lit up, say PRUKAG, is called the indicator. VAK is called the indicator setting
(or ‘Grundstellung’).?° The indicator would be broadcast immediately before the
enciphered message. The reason for sending the encipherment of RBGRBG,
rather than simply of RBG, was to provide the recipient with a check that the
message setting had been correctly received, radio reception sometimes being
poor.

Once the sender had enciphered the message setting to form the indicator, he
would set up RBG in the windows of his machine and type the plain text. Then
the whole thing would be sent off to the recipient—preamble, indicator, and
enciphered text.

The authorized recipient of the message would first rotate the wheels of his
machine (already set up in accordance with the daily key) until VAK appeared in
the windows. He would then type the indicator PRUKAC and the letters
RBGRBG would light up at the lampboard. Now equipped with the message
setting, he would set his wheels to RBG and retrieve the plain text by typing the
encoded message.

27 Rejewski, ‘How the Polish Mathematicians Broke Enigma), trans. Kasparek, 265-6; Hinsley, British
Intelligence in the Second World War, vol. iii, part 2, 949, 953.

28 G. Bloch and R. Erskine, ‘Enigma: The Dropping of the Double Encipherment’, Cryptologia, 10 (1986),
134-41.

29 The term ‘indicator’ is used by Mahon and Turing in the next chapter and is listed in ‘A Cryptographic
Dictionary, GC & CS (1944). (‘A Cryptographic Dictionary’ was declassified in 1996 (NARA document
reference: RG 457, Historic Cryptographic Collection, Box 1413, NR 4559); a digital facsimile is available in
The Turing Archive for the History of Computing <www.AlanTuring.net/crypt_dic_1944>.) However, the
term ‘indicator setting, which is from Welchman (The Hut Six Story, 36, 46) may not have been in use at
Bletchley Park, where the German term Grundstellung (or ‘Grund’) was used (see e.g. pp. 272-3, below), as it
was by the Poles (letter from Rejewski to Woytak, quoted on p. 237 of Kozaczuk, Enigma).

www.AlanTuring.net/crypt_dic_1944

Enigma | 231

The method just described of selecting and making known the message setting
is an example of what is called an indicator system.

3. The Polish Contribution, 1932-1940%*

Unknown to GC & CS, the Biuro Szyfrow—the Polish Cipher Bureau—had
already broken Wehrmacht Enigma, with assistance from the French secret
service. The Biuro read the message traffic of the German Army regularly from
1933 to the end of 1938, and at other times during this period read the message
traffic of other branches of the military, including the Air Force. Statistics
gathered by the Biuro early in 1938 showed that, at that time, about 75 per
cent of all intercepted Enigma material was being successfully decoded by the
Biuro Szyfrow.

Towards the end of 1932 Rejewski had devised a method for reconstructing a
day’s message settings from the indicators, given about sixty messages sent on the
day. He was helped by the fact that, in this early period, the indicator system was
simpler than the later system just described. The daily key included an indicator
setting for the day, e.g. VAK. The sender would choose his own message setting
for each message, e.g. RBG. With the wheels in the positions specified in the daily
key (VAK), he would type RBGRBG to produce the indicator. Then he would set
the wheels to RBG and type the plain text of the message. The encoded message
was sent prefaced by the preamble and the indicator—but, of course, there was
no need to send the indicator setting.

Using information obtained from his attack on the indicators, Rejewski
devised a method that enabled him to determine the internal wiring of wheels
I-II (in those early days there were no additional wheels). This was one of the
most far-reaching achievements in the history of cryptanalysis. Rejewski was
assisted by the French secret service, whose agent Hans-Thilo Schmidt, a German
employed in the cipher branch of the German Army, supplied photographs of
two tables setting out the daily keys—Stecker, wheel order, Ringstellung, and the
daily indicator setting—for September and October 1932. Rejewski describes this
material as the ‘decisive factor in breaking the machine’s secrets’3!

30 The sources for this section are: ‘A Conversation with Marian Rejewski’ (in Kozaczuk, Enigma),
Rejewski’s articles ‘How the Polish Mathematicians Broke Enigma’, ‘Summary of our Methods for Recon-
structing Enigma and Reconstructing Daily Keys, and of German Efforts to Frustrate Those Methods’, ‘“The
Mathematical Solution of the Enigma Cipher’ (in Kozaczuk, Enigma), and ‘Remarks on Appendix 1 to
British Intelligence in the Second World War by F. H. Hinsley, together with Hinsley, vol. iii, part 2,
appendix 30 ‘The Polish, French and British Contributions to the Breaking of the Enigma: A Revised
Account’. (Appendix 30 replaces the sometimes very inaccurate appendix 1, “The Polish, French and British
Contributions to the Breaking of the Enigma’, of Hinsley et al., British Intelligence in the Second World War,
vol. i (London: Her Majesty’s Stationery Office, 1979).

31 Rejewski, ‘How Polish Mathematicians Deciphered the Enigma), trans. Stepenske, 221.

232 | Jack Copeland

In 1931 the French had attempted to interest the British in documents
obtained by Schmidt, including operating manuals for German military Enigma.
It is said that the British showed little interest, however, and declined to help the
French meet the costs of obtaining them. It was not until 1936 that GC & CS
began to study Enigma seriously. By the middle of 1939, Knox had discovered
something like the Polish method for obtaining the message settings from the
indicators (for German Army traffic).32 However, he was unable to determine
the internal wiring of the wheels. Without the wiring, it was impossible to use the
method to decode the messages. GC & CS probably discovered a version of
the same method that Rejewski had used to determine the wiring of the wheels,
calling the method a ‘Saga’ (Mahon mentions it briefly on p. 278 of the next
chapter). Knox is said to have outlined a ‘more complicated version’ of the
Rejewski method at a meeting in Paris in January 1939.33 However, he was
never able to use this method to find the wiring of the wheels. This was because
he was never able to discover the pattern of fixed wiring leading from the plug-
board to the right-hand wheel via the entry plate (see Figure 4)—the
‘QWERTZU;, as he liked to call this unknown pattern, after the letters along
the top row of the Enigma keyboard. This entirely humdrum feature of the
military machine was what defeated Knox. Rejewski himself discovered the
pattern by a lucky guess.

Once Rejewski had worked out the internal wiring of the wheels, he attacked
the problem of how to determine the daily keys. This he solved early in 1933. At
this stage, Rejewski was joined by Henryk Zygalski and Jerzy Rozycki. Zygalski,
Rozycki, and Rejewski had graduated together from a course in cryptology that
the Biuro Szyfrow had given in 1928-9. (Rejewski said later that it could have
been the Biuro’s fruitless efforts to break Enigma during 1928—the year in which
the first messages were intercepted—that prompted the organization of the
course at which the three were recruited.34)

Now that the Polish cryptanalysts were able to find the daily keys on a regular
basis, they needed access to Enigma machines in order to decipher the daily
traffic. Using what Rejewski had found out concerning the wiring of the wheels,
copies of the Wehrmacht Enigma were built by a Warsaw factory. Initially about
half a dozen clerical staff were employed by the Biuro Szyfrow to operate the
replica Enigmas. The clerical staff were ‘put into a separate room, with the sole
assignment of deciphering the stream of messages, the daily keys to which we
soon began supplying’3> The number of replica Enigmas in use at the Biuro
increased to about a dozen by mid-1934.

32 Hinsley, British Intelligence in the Second World War, vol. iii, part 2, appendix 30, 951.

33 Ibid.

34 Letter from Rejewski to Richard Woytak, 15 Apr. 1979; the letter is printed in Kozaczuk, Enigma,
237-8.

35 Rejewski, ‘How the Polish Mathematicians Broke Enigma) trans. Kasparek, 261.

Enigma | 233

This state of affairs persisted until September 1938, when the German Army
and Air Force abandoned the indicator system that Rejewski had broken in 1932.
They switched to the indicator system described above: the indicator setting was
no longer supplied in the tables giving the daily key, but was made up by the
sender himself. Overnight the Poles’ methods for determining the daily keys and
message settings became useless. (In German Naval Enigma, the system broken
by Rejewski had been abandoned in May 1937, when the complicated indicator
system described by Mahon in the next chapter was adopted. Mahon outlines the
Polish work on Naval Enigma to 1937.)

Within a few weeks of the September change, however, the Poles had devised
two new methods of attack. One involved the use of perforated sheets of paper to
determine the daily key, starting from a sufficient number of messages whose
indicators displayed certain patterns of repeated letters. (Knox devised a similar
method and was planning to use marks on photographic film rather than
perforations, but was unable to put the method into practice without knowing
the internal wiring of the wheels.3¢) The Poles’” other method involved an electro-
mechanical apparatus, designed by Rejewski and (on the engineering side)
Antoni Palluth.?? This was the bomba (plural ‘bomby’), forerunner of the
Bletchley Park bombe. How the bomba worked is explained in the next section.
Six bomby were in operation by mid-November 1938.

The bomby and the perforated sheets depended on the fact that the indicator
was formed by enciphering the message setting twice (e.g. enciphering RGBRGB
rather than simply RGB). If the indicator system were changed so that the
message setting was enciphered only once, the bomby and the perforated sheets
would become unusable. This is precisely what was to happen in May 1940. Well
before this, however, the bomby became overwhelmed by other changes designed
to make Enigma more secure.

In December 1938 the Germans introduced the two extra wheels, IV and V.
The Poles were able to determine the internal wiring of the new wheels by
the method used in 1932 (thanks to the fact that one Enigma network—the
intelligence service of the Nazi party—had not adopted the indicator system that
came into force on other networks in September 1938 and was still using the
system that the Poles could break by their earlier methods). But the material
resources of the Biuro Szyfrow were insufficient to enable the Poles to cope with
the increase in the number of wheel orders that the two new wheels produced.
Where previously there had been only six possible wheel orders, there were now
sixty. In order to investigate the new wheel orders, at least thirty-six replicas
of each new wheel were required. The factory could not produce replicas fast
enough.

36 Hinsley, British Intelligence in the Second World War, vol. iii, part 2, appendix 30, 951.
37 Rejewski, ‘How the Polish Mathematicians Broke Enigma’, 267.

234 | Jack Copeland

Work with the perforated sheets was affected in the same way. The drawback
of the sheet method had always been that the manufacture of a single sheet
required the cutting of about 1,000 tiny perforations in exactly the right pos-
itions, with twenty-six sheets being required for each possible wheel order.
Suddenly a huge number of additional sheets was required.

The result of the addition of the new wheels was that the Poles were able to
read German Army and Air Force messages on only those days when it happened
that wheels I, II, and III were in the machine—on average one day in ten.

Pyry and After
In July 1939 the Poles invited members of the British and French intelligence
services to a meeting at Pyry near Warsaw. Denniston and Knox represented GC
& CS. At this meeting, Rejewski relates, ‘we told everything that we knew and
showed everything that we had’—a replica Enigma, the bomba, the perforated
sheets, and of course the all-important internal wiring of the wheels, which Knox
still had not been able to work out.?8 Without the Poles, Knox and Turing might
not have found out the wiring of the wheels until May 1940, when the British
captured several intact Enigma machines from the German Army in Norway.

Knox’s first question to the Poles was “‘What is the QWERTZU?’3® The answer
was almost a joke—the connections were in alphabetical order, with the A-socket
of the plug-board connected to the first terminal inside the entry plate, the B-
socket to the second, and so on. Knox was ecstatic to know the answer at last,
chanting in a shared taxi ‘Nous avons le QWERTZU, nous marchons ensemble’
(“We have the QWERTZU, we march along together’).40

At Pyry the Poles also undertook to supply their British and French allies with
two replica Enigma machines. The replica destined for GC & CS was couriered
from Paris to London on 16 August 1939 by two men, Gustave Bertrand, head of
the codebreaking section of the French Intelligence Service, and ‘Uncle Tom), a
diplomatic courier for the British Embassy in Paris. On the platform of Victoria
Station they handed the machine over to Admiral Sinclair’s deputy, Colonel
Stewart Menzies. Menzies, on his way to an evening engagement, was dressed in a
dinner jacket and he sported the rosette of the Légion d’Honneur in his button-
hole. Accueil triomphal—a triumphant welcome, Bertrand declared.4!

Following the invasion of Poland, Rejewski and his colleagues moved to
France. By January 1940 GC & CS, with its superior resources, had produced
two complete sets of perforated sheets. The Poles received one of the sets in
instalments. Turing delivered some of the sheets himself.

38 Ibid. 269.

9 Ibid. 257; P. Twinn, ‘The Abwehr Enigma), in Hinsley and Stripp (eds.), Codebreakers, 126.

0 Twinn, ‘The Abwehr Enigma), 126-7.

41 G. Bertrand, Enigma, ou la plus grande énigme de la guerre 1939—1945 (Paris: Plon, 1973), 60-1.

W

-

Enigma | 235

Rejewski recollected: ‘We treated [Turing] as a younger colleague who had
specialized in mathematical logic and was just starting out in cryptology.
Our discussions, if I remember correctly, pertained to the commutator [plug-
board] and plug connections (Steckerverbindungen) that were Enigma’s strong
point.#2 Little did Rejewski know that Turing had already devised the brilliant
method of dealing with the Steckerverbindungen on which the British bombe was
based.

For several months the British and the Poles worked in cooperation. The first
break of wartime traffic since September 1939 was achieved by the Poles in mid-
January 1940, followed a few days later by further breaks at GC & CS. During the
period of fruitful collaboration that ensued, the Poles with their lesser resources
were responsible for about 17 per cent of the daily keys broken.

Then, in May 1940, everything changed. The new indicator system introduced
by the German Army and Air Force on 1 May made the perforated sheets useless
for all networks except one, Yellow, which continued to employ the old system.
Even Yellow, an inter-services key in use during the Norway campaign, went out
of service on 14 May.** The change of indicator system and the German
occupation of France effectively ended the attack on Enigma by the exiled
Biuro Szyfrow.

The British were able to continue reading German Air Force messages (from
20 May) by means of methods developed at GC & CS which exploited the bad
habits of some German Enigma operators. One was the habit of enciphering the
message setting at the position that the wheels happened to be in at the end of
the previous message, or at a closely neighbouring position (obtained e.g. by
lazily turning only one wheel some small number of clicks).

From the summer of 1940 the codebreakers at GC & CS began to receive
assistance from Turing’s radically redesigned version of the Polish bomba.

4. The Polish Bomba

Origin of the Name ‘Bomba’

In Chapter 5, Mahon says that the British bombe ‘was so called because of the
ticking noise it made, supposedly similar to that made by an infernal machine
regulated by a clock’ (p. 291). This story was well entrenched among Blet-
chleyites. The need-to-know principle meant that few were aware of the Polish
bomba. Similarly, the explanation that circulated at Bletchley Park of why certain
patterns, involving repetitions of letters at the same places, were known as
‘females’ took no account of the fact that the terminology had been borrowed

42 Quoted in Kozaczuk, Enigma, 97. On Turing’s visit to the Poles, see ibid 96—7; Welchman, The Hut Six
Story, 220; and R. Erskine, ‘Breaking Air Force and Army Enigma), in Erskine and Smith, Action This Day, 54.
43 Erskine, ‘Breaking Air Force and Army Enigma), 55.

236 | Jack Copeland

from the Poles. The equivalent Polish term ‘samiczki, meaning ‘females’, was
quite likely the result of a play on words, ‘samiczki’ being used as short for a
Polish phrase meaning ‘the same places.*4

Why the Poles chose the name ‘bomba’ seems not to have been recorded.
Rejewski’s only comment was that the name was used ‘for lack of a better idea’45
As well as meaning ‘bomb’, ‘bomba’ is the Polish word for a type of ice-cream
dessert—>bombe in French. Tadeusz Lisicki, who corresponded with Rejewski
during the years before the latter’s death in 1980, is quoted as saying: ‘The
name “bomba” was given by Roézycki... [T]here was in Warsaw [an] ice-
cream called [a] bomba...[T]he idea [for] the machine came while they were
eating it.46

A different story is told in recently declassified American documents. As
explained later in this section, the bomba is required to stop immediately it
detects a certain feature. How this was achieved by the Polish engineers is not
known for sure. The American documents suggest that the stopping mechanism
involved the dropping of weights, and the claim is made that this is how the
name arose.

[A] bank of Enigma Machines now has the name ‘bombe’. This term was used by the Poles
and has its origin in the fact that on their device when the correct position was reached a
weight was dropped to give the indication.*”

When a possible solution was reached a part would fall off the machine onto the floor with
a loud noise. Hence the name ‘bombe’.48

It is not implausible that falling weights were used to disengage the bomba’s
drive mechanism (a printer designed by Babbage as part of his Difference Engine
used a similar idea). However, the two American documents in question were
written some years after Rejewski and his colleagues destroyed all six bomby in
19394 and neither cites a source for the claim quoted (the documents are dated
1943 and 1944). Moreover, both documents contain inaccurate claims concerning
the Polish attack on Enigma (for example, that the bomba was ‘hand operated;,
and that the military Enigma machine had no plug-board until ‘about 1938’).50
The sketch of the bomba that accompanies Rejewski’s “The Mathematical Solution

44 Kozaczuk, Enigma, 63.

45 Rejewski, ‘How the Polish Mathematicians Broke Enigma), 267.

46 Tadeusz Lisicki quoted in Kozaczuk, Enigma, 63.

7 Untitled typescript dated 11 Oct. 1943 (NARA, document reference RG 457, Historic Cryptographic
Collection, Box 705, NR 4584), 1.

48 ‘Operations of the 6312th Signal Security Detachment, ETOUSA, 1 Oct. 1944 (NARA, document
reference: RG 457, Historic Cryptographic Collection, Box 970, NR 2943), 5. (Thanks to Ralph Erskine for
drawing my attention to this quotation and to Frode Weierud for sending me a copy of the document.)

49 Rejewski, ‘Remarks on Appendix 1 to British Intelligence in the Second World War by E. H. Hinsley’, 81.

50 Untitled typescript dated 11 Oct. 1943, 2; ‘Operations of the 6312th Signal Security Detachment,
ETOUSA;, 5.

-

Enigma | 237

of the Enigma Cipher’ shows no system of falling weights—although nor is an
alternative system for stopping the bomba depicted.>!

Simple Enigma and a Mini Bomba

Let us suppose, for purposes of illustration, that we are dealing with an imagin-
ary, highly simplified, version of the Enigma machine called Simple Enigma.
Simple Enigma has one wheel rather than three and no plug-board; in other
respects it is the same as a full-scale Enigma.

Suppose that we have a message to decode beginning NYPN... Suppose
further that we have a crib. A crib is a series of letters or words that are thought
likely to occur in the plain language message that the cipher text encrypts. Say we
have good reason to believe that the first and fourth letters of the plain text are
both E (perhaps a prisoner gasped out the first four letters of the plain text before
he died, but his second and third gasps were inaudible). We will use a machine to
help us find the message setting—i.e. the rotational position of the wheel at
which the sender began typing the message.

Our code-breaking machine consists of two replicas of the Simple Enigma
machine plus some additional devices. There is a mechanism for holding down
any selected key at the keyboards of the replicas, thereby keeping the current
flowing from key to wheel. The wheel of each replica can be locked in step with
the other, and there is an electric motor that will click the wheels round in unison
through their twenty-six rotational positions, one position at a time. Additional
circuitry bridging the two lampboards detects whether a selected letter—E, for
example—lights up simultaneously at each lampboard. A switch or relay is wired
in such a way that if the selected letter does light simultaneously, the electric
motor is turned off, with the result that the wheels stop turning at exactly
the position that caused the simultaneous lighting of the letter. This is called
a ‘stop’

Assuming that the crib is correct, we know that if the intended recipient of the
message sets the wheel of Simple Enigma to the message setting and types the
first letter of the cipher text, N, the letter E will light up at the lampboard. The
recipient will then type the next two letters of the cipher text, YP, causing
unknown letters to light, followed by the fourth letter of the cipher text, N,
which will cause E to light up again. Each time the recipient presses a key at the
keyboard, the wheel advances one click. So the position of the wheel at which the
fourth letter of the cipher text decodes as E is three clicks on from the position at
which the first letter of the cipher text decodes as E. This is expressed by saying
that these two positions are at a distance of three from each other. What we want
our codebreaking machine to do is to search through the twenty-six possible
positions of the wheel, looking for a position p that satisfies these two conditions:

51 Kozaczuk, Enigma, figure E-8, 289.

238 | Jack Copeland

1. At position p, keying N causes E to light;
2. At position p + 3 (i.e. the position three on from p), keying N again causes
E to light.

We set up the codebreaking machine to perform this search by turning one of the
two identical wheels so that it is three positions ahead of the other. For example, we
might turn the wheel on the right so that, of the twenty-six letters marked around
its ring, Z is uppermost, and then position the wheel on the left three clicks further
on, i.e. with Cuppermost. The two wheels are then locked together so that they will
maintain their position relative to one another while the motor rotates them. The
locked wheels are described as being at an offset of three clicks.

Next we set up the additional circuitry at the lampboards so that the simul-
taneous lighting of the letter E at each board will produce a stop. Finally, we
clamp down the N-key at each of the two keyboards and start the electric motor.

The motor turns the wheels from position to position. If all goes well, a point
is reached where E lights at both boards and the machine stops. If at that stage
the wheels have not yet completed a full revolution, we note the position at
which the stop occurred and then start the motor again, since there might be
more than one position at which conditions 1 and 2 are jointly satisfied. (If, after
a complete revolution, there are no stops, our crib was incorrect.)

If a complete revolution brings only one stop, then the position of the right-
hand wheel of the pair must be the position at which the sender began encoding
the message. We pass this setting to a clerk sitting at another replica of the Simple
Enigma, who turns the wheel to that position and keys in the cipher text,
producing the plain text at the lampboard. If there were several stops, then the
clerk has to try each of the possible settings in turn until one is found that yields
German at the lampboard.

Notice that we have not discovered the actual message setting—the letter
visible in the window of the sender’s machine at the start of typing the message
(and enciphered to form the indicator). Which letter is visible in the window
depends on how the sender has positioned the ring around the ‘core’ of the
wheel. Leaving the core in one position, the operator could make any one of
the twenty-six letters appear in the window by twisting the ring around the core.
What we have found is the position of the wheel core at the start of the message.
At GC & CS this was called the ‘rod-position’ of the wheel. The rod-position is all
we need to be able to decipher the message.

Of course, with only twenty-six positions to search through, there is hardly
any need for the electric motor, the detector circuitry at the lampboards, and so
forth, because one could quite quickly conduct the search simply by turning the
wheels of two replica machines manually. However, the additional equipment is
certainly necessary when it is the full-scale Enigma machine that is being
attacked, since the existence of three wheels and six possible wheel orders

Enigma | 239

means that one must search through not 26 but 6 x 26 x 26 x 26 = 105, 456
possible positions. (This figure ignores the small complications introduced by
double-notching and by the extra movement of the middle wheel described
above.)

The Actual Bomba

The Polish bomba was a more complicated version of the mini bomba just
described. It consisted in effect of six replica Enigma machines, with six sets of
duplicates of wheels I, II, and [II—eighteen wheels in all. Each of the six replica
Enigmas in a single bomba was usually set up with the same wheel order, for
example III/I/II. The wheels used in a bomba had no rings (and so no notches for
producing a ‘turnover’ of the adjacent wheel).

The six replica Enigmas were linked in pairs to form three double-Enigmas—
just as in the example of the mini bomba, where two Simple Enigmas are linked
to form a double Simple Enigma. Each of these double-Enigmas included three
pairs of wheels and equipment equivalent to two keyboards and two lampboards.
The complete bomba consisted of the three double-Enigmas plus the electric
motor, a mechanism for detecting simultaneities and producing stops, and
arrangements for holding constant the letter going into each double-Enigma.

At this point it may be helpful to repeat that the first, or outermost, of the
three wheels in an Enigma machine—the wheel linked directly to the keyboard
and plug-board and which moved once with every key-stroke—was always the
right-hand member of the trio. For example, if the wheel order is I/II/I1I, it is
wheel III that is the outermost of the three wheels.

As in the mini bomba, the identical wheels of a double-Enigma were locked in
step, sometimes with one member of a pair a number of positions ahead of the
other member. For example, the two IIIs might be locked in step at an offset of
three clicks (as above), while the two IIs are locked in step with no offset, and
likewise the two Is.

The corresponding wheels of different double-Enigmas in the same bomba
were also locked in step with one another. For example, the locked pair of III
wheels of one double-Enigma might be locked in step (at an offset of twelve
clicks, say) with the locked pair of III wheels of another double-Enigma.

Once all the wheels were appropriately linked, the electric motor would be
started and the bomba’s six replica Enigmas would move in synchronization,
each passing through 26 x 26 x 26 positions. This took about two hours, each
outer wheel moving through 676 revolutions, each middle wheel through 26
revolutions, and each left-hand wheel through one revolution. In the space of
roughly two hours, the bomba could do the same work that would occupy a
human computer for about 200 hours.>2

52 See p. 40.

240 | Jack Copeland

The Indicator Method

In the previous example, we imagined using a mini bomba to discover wheel
positions consistent with a crib concerning the first and fourth letters of the
cipher text. The method employed by the Poles was different and did not involve
text-cribbing (although the method that Turing would later devise for the British
bombe did). The Poles focused on the indicator (to recapitulate: the six-letter
group preceding the cipher text and produced by enciphering the message setting
twice, at an indicator setting that the sender broadcast ‘in clear’ as part of the
preamble to the message).

In a proportion of the intercepted messages, the first and fourth letters of the
indicator would be the same, as for example in the indicator WAHWIK.>3 Since
an indicator is produced by typing a three-letter message setting twice, the first
and fourth letters of any indicator both encode the same letter as each other. This
is true also of the second and fifth letters of any indicator, and the third and
sixth. So both the occurrences of W in WAHWIK encode the same letter; and
moreover three clicks of the right-hand wheel separate the two positions at which
W encodes this unknown letter.

Let me use ‘pr’ when referring to a position of the Enigma’s right-hand wheel,
and similarly ‘py,” in the case of the middle wheel and ‘p;’ in the case of the left-
hand wheel. We could attempt to use the bomba to search for rod-positions
PrL> Pum> and pr such that at position pg and position pg + 3, W encodes the same
letter. As I will explain, this is not in fact an effective way to proceed, but in order
to get the feel of the bomba, let’s briefly consider how to carry out this search.

We select one of the double-Enigmas, pick a wheel order, say I/II/II1, and put
the three pairs of wheels into this order. We then lock the right-hand pair, the IIIs,
in step at an offset of three (just as in the example of the mini bomba). The
wheels in the middle pair (the IIs) are locked in step at the same position as
one another, and likewise the wheels in the left-hand pair (the Is). Finally, we set
the detector circuits to produce a stop whenever the same letter—any letter—
lights simultaneously in both Enigmas. (The remaining two double-Enigmas are
not needed for this search.) The motor is switched on and each replica Enigma
moves through its 26 X 26 x 26 positions. Any stops give pairs of positions,
three clicks of the right-hand wheel apart, at which typing W produces the same
letter at the lampboard. Another five runs of the bomba are required to explore
all six wheel orders. (Alternatively we might use all three double-Enigmas, each

53 The indicators and indicator settings used in this example are adapted from p. 266 of Kasparek’s
translation of Rejewski’s ‘Jak Matematycy polscy rozszyfrowali Enigme’ in Kozaczuk, Enigma. The present
description of the bomby has been reconstructed from Rejewski’s rather compressed account appearing on
that page. Unfortunately, Stepenske’s translation of these same paragraphs in the Annals of the History of
Computing is marred by an error that seriously affects the sense. The phrase that Stepenske translates ‘by
striking key W three times in a row, the same lamp would light’ (p. 226) should be translated ‘if key W is
struck the same lamp will light again after three more strokes’

Enigma | 241

with a different wheel order, so enabling the bomba to explore three wheel orders
simultaneously. In this case only two runs of the bomba are necessary to cover all
the possible wheel orders.)

Notice that an assumption is being made here concerning ‘turnovers. As
previously explained, the movement of the right-hand wheel of the Enigma
machine at some point causes the centre wheel to turn forward one click; and
the movement of the centre wheel at some point causes the left-hand wheel to
advance one click. The positions at which these turnovers occur are determined
by the Ringstellung. In locking the pair of II wheels (the middle wheels) of the
double-Enigma together in the same position as one another, we are assuming
that, as the sender’s machine lights up the letters WAHWIK, no movement of the
middle wheel occurs during the three clicks forward of the right-hand wheel that
lie between the production of the first and second occurrences of W. And in
locking the left-hand wheels of the double-Enigma together in the same position,
we are making the same assumption about the left-hand wheel of the sender’s
machine.

Of course, these assumptions might be wrong, in which case the search will
fail. This is no less true in the case of the full-blooded search described below
involving three indicators. However, the assumption that only the right-hand
wheel moves in the course of typing a group of six letters is true much more
often than not, and so searches based on this assumption will, other things being
equal, succeed much more often than not.

The problem with the method of searching just described is that it would
typically produce excessively many stops—many triples of positions pr, pu, pr
are liable to satisfy the rather mild constraint that W encodes the same letter at
both pr and pr + 3. It would take the clerk who tries out each stop by hand on a
further replica Enigma far, far too long to winnow out the correct wheel
positions. It is necessary to find additional indicators from the same day’s
traffic that can be used to narrow the focus of the bomba’s search. Here is
what the Poles actually did.

In order to put a bomba to work effectively, it is necessary to find in a single
day’s traffic (i.e. traffic encoded with the same wheel order and Stecker) three
messages whose indicators exhibit the following patterns of repetitions. One
indicator must display the pattern just discussed—the same letter repeated at the
first and fourth positions, as in the example

WAHWIK.

A second indicator must have the selfsame letter that is at positions 1 and 4 in the
first indicator at its second and fifth positions, as in

DWJMWR.

A third indicator must have that same letter at its third and sixth positions, as in

242 | Jack Copeland

RAWKTW.

The Poles called these patterns ‘females’ (see above). At Bletchley Park the
three patterns were referred to as a 1-4 female, a 2-5 female, and a 3-6 female
respectively. It is because this indicator system admits three types of female that
the bomba contains three double-Enigmas, each one utilizing the information
contained in one of the three females.

Let the position of the right-hand wheel when the first letter of the first
indicator was produced be pr and the position of the right-hand wheel when
the first letter of the second indicator was produced be gz, and likewise rg in the
case of the third indicator. We know from the patterns of repeated letters in
the indicators that:

Keying W produces a simultaneity at pg and pr + 3 (i.e. at pg and pg + 3 the
same letter lights). Keying W produces another simultaneity at gg + 1 and
qr + 4 (possibly involving a different letter at the lampboard). Keying W
produces a third simultaneity at rg + 2 and rg + 5.

In fact we know more than this. A rich source of information has not yet been
used—the indicator settings which appear in clear in the preambles to the
messages. Suppose these are as follows.

indicator setting indicator
RTJ WAHWIK
DQY DWJMWR
HPB RAWKTW

Without the wheel order and the Ringstellung for the day in question, which of
course we do not yet possess, the indicator setting cannot be used straightfor-
wardly to decode the indicator. Nevertheless, the indicator settings are far from
useless to us, because they contain information about the relative positions of the
wheels when the indicators were produced; and using this information, we can
deduce the relationship between pg, qr, and rg.

The right-hand letter of each indicator setting specifies the position of the
right-hand wheel when the encryption—or equivalently the decryption—of each
message setting begins. Similarly, the middle letter specifies the position of the
middle wheel when the encryption of the message setting begins, and the left-
hand letter the position of the left-hand wheel. Picture the letters of the alphabet
arranged evenly around the circumference of a circle, as on the ring of a wheel.
The right-hand letter of the second indicator setting, Y, is fifteen letters further
on than the right-hand letter of the first indicator setting, J. Therefore the
position of the right-hand wheel at which the first letter of the second indicator
was produced, g, is fifteen clicks on from the position at which the first letter of
the first indicator was produced, pg:

Enigma | 243
qr = pr +15

The right-hand letter of the third indicator setting, B, is eighteen letters on
from J (JKLMNOPQRSTUVWXYZAB). Therefore the position of the right-
hand wheel at which the first letter of the third indicator was produced, rg, is
eighteen clicks on from pg:

I‘RZPR+18

Inserting this additional information into the above statement about simulta-
neities gives:

Keying W produces a simultaneity at pr and pg + 3; another simultaneity at
(pr + 15)+1 and (pg + 15)+ 4; and a third simultaneity at (pr+18)+2 and
(pr+18) + 5.

Or more simply:

Keying W produces a simultaneity at pg and pg + 3; another simultaneity at
pr + 16 and pr + 19; and a third simultaneity at pg + 20 and pg + 23.

Now we have a much stronger constraint on pr and can use the bomba to
search for pr and the accompanying positions of the other wheels in the
expectation that the number of stops will be small enough to be manageable.

Using the Bomba

The bomba is set up for the search as follows. The stopping mechanism is
arranged to produce a stop whenever the eighteen wheels move into a configura-
tion that causes a simultaneity at each of the three double-Enigmas at once. The
three simultaneities need not involve the same lampboard letter as each other. W
is input continuously into the Enigmas.

One double-Enigma is set up as above: the wheel order is I/II/IIL, the III wheels
are locked together at an offset of three, and the other pairs of wheels are locked
with no offset (the assumption being, as before, that neither the middle nor the
left-hand wheel of the sender’s machine moved during the production of WAH-
WIK). Call this double-Enigma’s III wheels 1, and r; (for the left and right
members of the pair); r; is three clicks ahead of 1;.

The second double-Enigma is set up with the same wheel order. Call its III
wheels I, and r;. 1, is locked in step with I; at an offset of 16, and r; is locked in
step with I, at an offset of 3 (so r, is nineteen clicks ahead of 1}). As with the first
double-Enigma, the II wheels are locked in step with no offset, and likewise the
Is. The third double-Enigma is also set up with wheel order I/II/III. Its III wheels
are I3 and r3. 15 is locked in step with 1; at an offset of 20, and r3 is locked in step
with 13 at an offset of 3 (so r3 is twenty-three clicks ahead of 1;). Again, the II
wheels are locked in step with no offset, and the same for the Is.

Next, each double-Enigma must have its pair of II wheels suitably synchron-
ized with those of its neighbours, and similarly its I wheels. This is achieved as in

244 | Jack Copeland

the case of the III wheels by making use of the information contained in the
indicator settings about the relative positions of the wheels of the sender’s
machine when the indicators were produced.

The middle letter of the second indicator setting, Q, is twenty-three places
ahead of the middle letter of the first indicator setting, T. So the middle wheels of
the second double-Enigma—the IIs—are locked in step with the middle wheels
of the first at an offset of 23. The middle letter of the third indicator setting, P, is
twenty-five places ahead of the middle letter of the second indicator setting, Q,
so the middle wheels of the third double-Enigma are locked in step with the
middle wheels of the second at an offset of 25. The left-hand letter of the second
indicator setting, D, is twelve places ahead of the left hand letter of the first
indicator setting, R, so the left-hand wheels of the second double-Enigma—the
Is—are locked in step with the left-hand wheels of the first double-Enigma at an
offset of 12. Finally, the left-hand letter of the third indicator setting, H, is four
places ahead of the left-hand letter of the second indicator setting, D, so the left-
hand wheels of the third double-Enigma are locked in step with the left-hand
wheels of the second at an offset of 4.

The motor is switched on. As before, the stops that are produced during a run
through all 26 x 26 x 26 positions are noted and then tested by a clerk. If none
works, it is necessary to set up the bomba again with a different wheel order. Six
runs are required to search through all the wheel orders—approximately twelve
hours of bomba time in total. By running six bomby simultaneously, one
for each wheel order, the Poles reduced the search time to no more than two
hours.

The clerk at the replica Enigma tests the various positions at which the stops
occurred. He or she eventually finds one that deciphers each indicator into
something of the form XYZXYZ. The cryptanalysts now know the message
settings and the rod-positions of the wheels at which the message settings were
enciphered.

To use the message settings to decode the messages it is necessary to know
the Ringstellung (since a message setting XYZ could specify any one of the
26 X 26 x 26 positions, depending on the position of the ring). However, the
Ringstellung lies only a step away. It can be deduced by comparing the rod-
positions of the wheels at which the first letter of any of the indicators was
produced with the corresponding indicator setting.

For example, if the Ringstellung is set correctly, then what should appear in the
windows when the wheel cores lie in the positions at which the first W of
WAHWIK was produced is RTJ. Since these rod-positions are know, it is a simple
matter to take replicas of the wheels and to twist the rings until the letters R, T
and] are uppermost at these rod-positions. Once the rings are correctly pos-
itioned, a wheel’s ring setting is given by the position of the ring against the
embossed index mark on the wheel core: whatever letter lies against the index

Enigma | 245

marKk is the ring setting for that wheel. The complete Ringstellung is the trigram
consisting of the letter for each wheel arranged in the wheel order for the day.

Now the messages can be decoded on a replica Enigma, as can other inter-
cepted messages with the same wheel order and Ringstellung.

The Plug-Board Problem

It remains to explain how the permutations introduced by the plug-board were
dealt with. In the military Enigma machine, the plug-board or stecker-board lay
in the path both of current flowing from the keyboard to the wheels and of
current flowing from the wheels to the lampboard (see Figure 4). Not every
keyboard key was affected by the plug-board. When the bomba first came into
operation, the Germans were using the plug-board to scramble between ten and
sixteen of the twenty-six keys (in effect by swapping the output wires of pairs of
keys). The remaining keys were unaffected, being ‘self-steckered’.

It was specified in the daily key which (keyboard) keys were to be affected on
any given day and how the affected (keyboard) keys were to be paired up. For
example, suppose the daily key says that T and K are to be ‘steckered’. The
operator connects together the plug-board sockets labelled T and K (by means
of a cord with a plug at each end). The result of this extra twist is that pressing
the T-key at the keyboard produces the effect at the wheels which pressing the
K-key would have produced had there been no scrambling of the letters at
the plug-board. Likewise pressing the K-key produces the effect which
pressing the T-key would have produced in the unsteckered case.

The plug-board comes into play a second time, in between the wheels and the
lampboard. If K lights up in the steckered case, then the selfsame output from the
wheels would have caused T to light up had T been one of the letters unaffected
by the plug-board. Likewise if T lights up, the output would have caused K to
light up had K been unaffected by the plug-board.

The bomba took no account at all of Stecker. If the females in the chosen
indicators had been produced without interference from the plug-board (i.e. if
all the letters in the indicators were self-steckered), then the bomba could
produce the correct message setting. But if stecker-substitutions were involved,
the bomba would be looking for the wrong thing. Returning to the above
example, it would not be W that produces simultaneities at pr and pg + 3, and
so on, but the letter to which W happened to be steckered; and so the bomba’s
search would fail.

The success of the bomby depended on the fact that, with between ten and
sixteen letters unaffected by the plug-board, there was a reasonable chance of the
day’s traffic containing three indicators unpolluted by Stecker and displaying the
requisite females.

Once the wheel order and Ringstellung had been discovered, messages could be
deciphered using a replica Enigma on which all letters were self-steckered. The

246 | Jack Copeland

result would be German words peppered with incorrect letters produced by plug-
board substitutions. These incorrect letters gave away the plug-board connec-
tions of the sender’s machine.

On 1 January 1939 the Germans increased the number of letters affected by
Stecker (from between five and eight pairs of letters to between seven and ten
pairs). The effectiveness of the bomba—already severely compromised by the
introduction of wheels IV and V in December 1938—diminished still further.

5. The Bombe and the Spider

At Pyry, Knox observed that the indicator system exploited by the bomba might
‘at any moment be cancelled’—as did indeed happen in May 1940 (see above).>*
It was clear to Knox that even if the problems engendered by the increases in the
number of wheels and the number of steckered letters could be solved, the
modified bomba might become unusable overnight. After the Warsaw meeting
Knox and Turing considered the possibility of using a bomba-like machine to
attack not the indicators but the message text itself, via cribs.5> The decision was
taken to build a flexible machine that could be used both in the Polish manner
against the indicators and also with cribs.

Turing was responsible for the logical design of the machine—the ‘bombe’. He
passed his design to Harold ‘Doc’ Keen at the factory of the British Tabulating
Machine Company in Letchworth. Keen handled the engineering side of the
design. Notes dated 1 November 1939 signed by Knox, Turing, Twinn, and
Welchman refer to ‘the machine now being made at Letchworth, resembling
but far larger than the Bombe of the Poles (superbombe machine)’ and state: ‘A
large 30 enigma bomb [sic] machine, adapted to use for cribs, is on order and
parts are being made at the British Tabulating Company.5¢

Knox himself appears to have made little or no contribution to the design and
development of the bombe. His greatest achievements during the war were
breaking the versions of Enigma used by the Italian Navy and by the Abwehr,
the secret intelligence service of the German High Command.’” He died in
February 1943.

In its mature form the bombe contained thirty-six replica Enigmas. (The
replicas were made at Letchworth and in Chapter 6 Turing refers to them as
‘Letchworth Enigmas’.) The intricate bombe contained some ten miles of wire
and one million soldered connections. Enclosed in a cabinet, the bombe stood 6
feet 6% inches tall (5 feet 10 inches without its 82 inch castors), 7 feet 3% inches

54 Hinsley, British Intelligence in the Second World War, vol. iii, part 2, appendix 30, p. 954.

55 Ibid.

56 ‘Enigma—Position’ and ‘Naval Enigma Situation) notes dated 1 Nov. 1939 and signed by Knox, Twinn,
Welchman, and Turing. Both notes are in the Public Record Office (document reference HW 14/2).

57 Batey, ‘Breaking Italian Naval Enigma’; Twinn, ‘The Abwehr Enigma’

Enigma | 247

Figure 7. A Bletchley bombe.

Source: Science and Society Picture Library, National Museum of Science and Industry.

long, and 2 feet 7 inches deep.® From the front, nine rows of rotating drums
were visible. Each drum mimicked a single Enigma wheel.® The drums (which
were almost 5 inches in diameter and 13 inches deep) were removable and could
be arranged to correspond to different wheel orders. Colour-coding was used to
indicate which wheel, e.g. IV, a particular drum mimicked. The drums were
interconnected by means of a large panel at the rear of the bombe (a panel that
‘almost defies description—a mass of dangling plugs on rows of letters and
numbers), according to one WRN operator; Mahon says that when viewed
from the rear, the bombe appeared to consist ‘of coils of coloured wire, reminis-
cent of a Fair Isle sweater’ (p. 291, below)).60 The replica Enigmas in the bombe
could be connected together arbitrarily, according to the demands of whatever
crib was being run.

58 ‘Operations of the 6312th Signal Security Detachment, ETOUSA;, 60. (Thanks to John Harper for
additional information.)

59 ‘Operations of the 6312th Signal Security Detachment, ETOUSA, 67.

60 D. Payne, ‘The Bombes’, in Hinsley and Stripp (eds.), Codebreakers, 134. The coils of wire described by
Mahon were probably red in colour. Red wire and very rarely black wire were used by the Letchworth bombe
factory (letter from John Harper to Copeland (25 Feb. 2003), reporting interviews with engineers who
worked on the bombes at the Letchworth factory).

248 | Jack Copeland

o
£

i il il il i

e

oy j‘...:'. e e

A e

var

)

PO
=

X7

Figure 8. Rear panel of a bombe.

Source: Science and Society Picture Library, National Museum of Science and Industry.

Cribs

Cribs resulted both from the stereotyped nature of the messages sent by the
Germans and from the thoughtlessly insecure habits of some operators. For
example, weather stations regularly sent messages beginning in stereotyped ways,
such as ‘WETTER FUER DIE NACHT (‘Weather for the night’) and ‘zusTAND
OST WAERTIGER KANAL’ (‘Situation Eastern Channel’). In Chapter 5 Mahon
relates how a certain station transmitted the confirmation ‘FEUER BRANNTEN
WIE BEFOHLEN each evening (‘Beacons lit as ordered’).

The position of the cribbed phrase within the cipher text could often be
found by making use of the fact that the Enigma never encoded a letter as itself.
The cryptanalyst would slide a suspected fragment of plain text (e.g. ZUSTAND)
along the cipher text, looking for positions at which there were no matches.

In order to uncover cribs, a ‘cribster’ often had to read through large quan-
tities of decrypts, keeping meticulous records. As the war progressed, ‘cribbing’
developed to a fine art. The discovering of cribs presupposes that the message
traffic is already being read: the period of work from January 1940 with the
perforated sheets and other hand methods was an essential preliminary to th