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Preface

This book is designed to present the major topics in control engineering and is intended for use
as a lext at the undcrgraduale e'lgmeenng level as there is very lmle demarcation between
electrical, electronics, h dustrial, I and chemical engineering in control
syslm practices. It offers a basic yet prehensive of both continuous-time and

time | with an emphasis on i time sy . A chapter each is
devoted to in-depth nna]ysu and design of nonli control sy , control system devices

which form an important segment of control technology, and optimal control theory. The book
also introduces students to the modern concepts of neural fuzzy systems and adaptive learning
systems. Written in a readable manner, it also contains many solved examples to reinforce
understanding of the theory.

The text is organized into 16 chaplers and an appendix. Chapter 1 elucidates the concept of
a control system with examples drawn from several disciplines. Models of control systems with
the help of differential equations, block diagrams and signal flow graphs are explained. Chapter 2
reviews some mathematical tools, with an application-oriented approach, used in control systems
theory for system modelling, such as Laplace wransforms, Z-transforms, eigenvalues and
eigenvectors, and calculus of variations. Chapter 3 gives transient response analysis of first- and
second-order systems and discusses ‘types’ of feedback control sy with ples. Chapter 4
is devoted to analysis of control systems in state space. The concepts of controllability and
observability are defined and illustrated with examples. Chapter 5 presents the basic concepts of
stability of linear control systems. This chapter also discusses Hurwitz stability criterion and
Routh’s stability criterion in detail. Chapter 6 discusses the root-locus analysis. Chapters 7 and 8
deal with the frequency-response analysis of control systems. Bode plots, polar plots, and Nyquist
stability criterion are discussed in these chapters. Chapter 9 explains the need of compensation in
control systems. The design and characteristics of lead, lag, and lag-lead compensators are
discussed.

Chapter 10 provides in-depth coverage of nonlinear systems. It begins with Liapunov
stability analysis and also treats at length the phase plane and describing function methods of
nonlinear analysis. Different examples of nonlinear systems involving saturation, friction,
backlash, deal zone, and relay are described. Chapter 11 introduces students to the constituents of
sampled-data control systems. The sampling procedure is described in detail. The Jury's stability
and Schiicohn-stability tests are explained with examples. Analysis of stability with the help of
bilinear transformation is also discussed.

The principles of operation of control system devices and components are described in

Chapter 12. The devices di d include potenti s, synchros, differential transformers,
servomotors, tachog tors, magnetic amplifiers, stepper motors, and gyroscopes. In Chapler 13,
I ical proced for optimal control design are fully explained. Chapter 14 provides a

brief description of recent advances in control systems, namely adaptive control, neural network
control, and fuzzy logic control.
xi
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The entire text is pr d in a lucid so that the students acquire a
thorough understanding of the subject matter discussed. The book contains a lot of solved
examples within the chapters. Typical solved examples of greater analytical nature (including
some requiring use of MATLAB) objective type questi and exercises and included in
concluding Chapters 15 and 16 constitute a few of the outstanding features that distinguish this
book from other undergraduate control system books.
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support and constant encouragement was the major driving force for the birth of this book.

I would also like to express my decp respect to my beloved mother Late Smt. Susoma
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Last and the most, I am deeply grateful to my wife Ila and son Soumendra for their loving
understanding throughout the countless hours spent working on the manuscript.

Manabendra Nath Bandyopadhyay



Chapter  Imtroduction

1.1 CONCEPT OF CONTROL SYSTEMS

A control system is a system by virtue of which any quantity or condition {called controlled
variable) of i of a b h or equipment can be controlled as per desire.
Usually, the system has a e signal applied at the input and the controlled variable
exhibited at the output. For example, the force applied on to an accelerator pedal causes the speed
of the engine vehicle to increase. Here, force is the command signal and the speed of the engine

is the controlled variable.

1.1.1 Closed-loop and Open-loop Control

Figure 1.1 shows the schematic diagram of the automatic closed-loop control system. The
controlled output is compared with the reference input in the error detector. The controlled output
is passed through the feedback elements before it is compared with the reference or desired inpur.
The difference of the two (i.e. the error signal) is used to control the output. As a closed loop (or
feedback loop) is formed in the controlled system, it is termed closed-loop control system or
Sfeedback control system.

Error
Control | © lied b
Reference Erroror | clements | or plant | Controlled
input actuating output
signal

Fig. 1.1 Closed-loop control system.

The open-loop control system is that system where the output remains constant for a
constant input signal provided the conditions external to the system remain unchanged. Though
output in this system may be changed to any required value by changing the input signal
accordingly, the main problem in this system is that the variations in the external conditions or

1




2 Control Engineering: Theory and Practice

internal parameters of the system may cause, in an uncontrolled manner, unwanted variations of
the output from the required value.

1.1.2 Examples of Closed-loop Control Systems

Figure 1.2 is an example of a closed-loop (feedback) control system. In this system, the different
devices shown operate in the following manner:

Float is the feedback path element.

Patentiometer is the error detector.

Height /i, of the liquid is the reference input.

Slider P of the potenti is positioned as per the liquid level h,.

Motor drive with the mechanical link and valve T; is the controlled member.

b,

E ————— Ll L Leiild ﬁ
| A1
i Potentiometer Dashpot
i N
T3 Fellr
P k[hz Liquid
er
amplifier # + é_'l‘l

Fig. 1.2 Control system to maintain tank level.

Any variation in the desired liquid level h; (say, from h; to h;) appears as an error voliage
to the input of the power amplifier. The output of the amplifier drives the motor which is
connected mechanically to valve T;. The movement of the valve automatically adjusts the height
of level of liquid such that the height &, comes back to the desired height h,. )

Servomechanism is one of the ples of the feedback control system where the controlled
variable is mechanical position or time derivative of position, for example, velocity or
acceleration. Figure 1.3 is a schematic diagram of a position control system. This is nothing but a
servo system. In this system, 8, and 8, are the output and reference positions respectively. When
there is a difference between 8 and @, it acts as an error in the angular position and the same is
converted to an equivalent error voliage by the potentiometer. The error voltage is amplified and
changes the field current of the dc generator. It ultimately changes the speed of the motor. The
motor moves the load through the gear mechanism such that the output position 8, becomes
equal 1o the reference position 8y

A missile Jaunching and guidance system is a very important application of the closed-loop
control system,
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Amplifier
* I![cunsum field current)
'E -
Vel l 1 8 v hemmmmmeane
1 Motor — Geur train
DC generator /
Load
—3 -0
Q
emt Br: L_J
Fig. 1.3 Example of a position control system.
Figure |.4Ii!n I ic diag of a missile 1 hing and guidance The radar

detects the presence of the target aircraft through its rotating antenna and passes the detection
signal to the launch computer indicating the velocity and position of the target. The computer
calculates the firing angle which is the launch command signal. This command signal is passed to
the launcher, i.e. the drive motor, through the power amplifier. The launcher angular position is
fed back to the launch computer and the missile is fired at the moment when the difference

Target

Power
Launch ampifier

Fig. 1.4 Use of control system in missile launching.
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between the launch command signal and the missile firing angle becomes zero. After the missile is
launched, the guiding signal is from the radar beam itself as the radar antenna is locked on to the
target and it continuously tracks the target. The missile after being launched comes under the
guidance of the radar beam. The control system available within the missile now obtains the
guidance signal from the beam which automatically adjusts the control surfaces of the missile in
such a manner that the missile moves along the beam. Finally, the target will be hit.

Automatic frequency control in the radio communication system is also another example of
a closed-loop control system. Figure 1.5 shows a schematic diagram of a superheterodyne receiver
with the automatic frequency control system. Here, the discriminator is a frequency modulating
detector. The output of the intermediate frequency amplifier (IF amplifier) drives the discriminator.
The automatic frequency control (AFC) voltage from the discriminator is applied across the
varactor diode {(reactance lube) as reverse bias. The diode is « d across the tank
circuit of the local oscillator of the AFC voltage. The change of polarity of capacitor will, of
course, depend upon the AFC control voltage. Thus the frequency of local oscillator will be
changed in magnitude and direction in such a way that the exact intermediate frequency is
obtained.

Loudspeaker

rﬁ;}}% _.i Mixer H IF amplifier I_..l Second I_.I ﬁi‘i‘;ﬂ ‘.._m

Discriminator

Automatic frequency
control circuit

Fig. 1.5 Use of control system in automatic frequency control.

The automatic frequency control in the line-of-sight microwave links is another example of
the closed-loop control system. Figure 1.6 shows the block diagram of a microwave line-of-sight
transmitter. Different voice signals and other signals are formed into a baseband signal. This
baseband signal is then used to modulate a microwave transmitter signal. Here the control part of
the transmitting system is the auwtomatic frequency control circuit which compares the
intermediate frequency (IF) signal produced by the transmitting circuit with the reference
oscillator output in a limiter diserimi circuit followed by the synchronous detector. The
resulting de output, proportional to the frequency difference between the two signals, is passed on
1o the reflector of the beat reflex klystron for effecting frequency correction in order to make the
IF signal exactly oqual 1o 70 MHz and thus tliminatc any frequency error.

The self-balancing servo potenti is another example of the closed- lDOp
feedback control system. Figure 1. ) shows a schematic diagram of a self-balancing servo-

E ¥
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6  Control Engineering: Theory and Practice

potentiometer. Figure 1.8 is the block diagram of the same. Here, the automatic balancing is
provided by an ac servomotor as shown in Fig. 1.7. The servomotor drives the tapping point of
the potentiometer, the writing mechanism, and the pointer for indication. The motor comes to rest

when the unbalance voltage b zero. The output displacement and voltage feedback are
related by the calibration ¢ of the p iometer wire. The amplifier is tuned to 50 Hz, and
has high gain.

AC
supply
Fig. 1.7 Self-balancing servo-operated potentiometer.

Fig. 1.8 Block diagram of Fig. 1.7.

Figures 1.9 and 1.10 show an el ic bal and a beam balance system

-l Y
Aok

respectively. The beam balance system is a fi measuring sy used for comparison of the
moments of two forces from which one physical quantity is converted into another physical
quantity. Two physical quantities are needed to set up forces proportional to them. Figure 1.9
shows the scheme of an electromagnetic balance in which the beam takes the horizontal position
when the moments on account of the unknown and standard masses are equal. The horizontality
of the beam is found out by the photo-electric cell and d by the p gnet moving
coil system. The output of the photo cell is processed by the amphﬁer which in turn drives the
current [, through the moving coil. By adjusting the initial coil position and the gain of the
amplifier, the system is made to take the null position when the two masses are equal. Whenever
there is any difference in the two masses, then the horizontality of the beam is disturbed. It can
only be restored by the torque produced by the moving coil on account of change in [,. The
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Photo

L

Supply
Fig. 1.9 Electromagnetic balance system.

Py —
LVDT —o Amplifier
ay and
. o demodulator
I} " 1. ' X
F, 3 ! I 2 1F
4  Beam 1y
JO
nl
N
S
TR
P — j R, J
vﬂ

Fig. 1.10  Beam balance system.
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change in I, will be proportional to the difference in the two masses. In Fig. 1.10 the comparison
of moments on account of two forces is shown. These two forces are as follows:
(i) One force F; is on account of the error between the reference and the measured pressures,
i.e. (pe = Pa)-
(i)} The other force Fy is on account of the electromagnetic force servo when carrying an
output current [,
In the feedback system of Fig. 1.10 the gain of the amplifier is kept high such that the
moments are balanced when the beam is horizontal. The block diagram is illustrated in Fig. 1.11.
The relationship at null position will be

@r - pmayly = Kjll’n

Fig. 111 Block diagram of Fig. 1.10.

Merits and demerits of closed- and open-loop control systems

Although the closed-loop control system provides effective control of the system, it develops the
possibility of undesirable system oscillations, i.e. hunting. The open-loop control is found o be
satisfactory only when the fluctuations in external conditions or internal parameters of the system
can be tolerated, or when the design of system components is made in such a way that it limits
the variations in parameters and environmental conditions. No doubt that the open-loop systems
are by far the simplest and most economic type of control systems, but these are generally
inaccurate and unreliable and usually not preferred.

1.1.3 Stages of Development of Control Systems
The stages of development of control systems can be classified into the following four categories:
(i) Open-loop system
(ii) Closed-loop system
(iii) Utilization of adaptive controller in the closed-loop system
(iv) Learning system

The adaptive controller in the closed-loop system helps the control system to adapt ltse[f
to the changing external conditions. The learning system is ble of recognizing new si
on the basis of its past experience and finally provides dec.'lsmns and then acts accordingly.
Figures 1.12, 1.13, 1.14, and 1.15 describe the four stages of development of control systems in
block diagram forms.
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Disturbance

Fig. 112 Open-loop system.

Input Qutput

Disturbance

Fig. 113 Closed-loop system.

Adaptive
controller,

!

Disturbance

'
e

—= Output

Fig. 1.14  Adaptive controller.

Disturbance

Leaming
controller

Leaming
automation

| e [

Fig. 1.15 Learning system.

Multivariable control system

When a number of variables are controlled in a system, then
multivariable control system. Figure 1.16 shows a block diagram
system,

ey B

——= Qutput

that system is called the
of a multivariable control
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Radio command
signal
(from ground)

Radio
receiver Vehicle
motion

Digital Vehicle

dynamics

Analog

digital
converter

Fig. 1.16 Example of a multivariable control system.

It is nothing but an autopilot system. This system steers a rocket vehicle with the help of a
radio command signal. The velocity and acceleration of motion of the vehicle are the feedback
signals controlled by motion sensors, i.e. gyros and accelerometers respectively. The position
pick-off feeds the information about the angular displ of the engine. Thus, the direction in
which the vehicle is moving is also controlled. On receiving commands from the ground, the
onboard computer develops a signal that controls the hydraulic actuator, and the rocket moves
giving the proper closed-loop feedback signals about the vehicle’s motion,

1.2 MODELS OF THE CONTROL SYSTEM

The following three basic representations of physical components and systems are widely used in
the study of control systems:

(i) Differential equations and other mathematical relations
(ii) Block diagrams
(iii) Signal flow graphs

1.3 BLOCK DIAGRAM
Figure 1.17 shows the armature controlled dc motor. The air-gap fAux
¢=Kl
where Iy is the field current. The torque developed by the motor
Ty =K K,

where [, is the armature current. In the case of an armature controlled dc motor, the field current
is constant. Therefore,
T = Kila
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Fig. 1.17 DC motor with armature control.

where Ky is the torque constant. The motor back emf is proportional to the speed and is denoted
by

da
ey = Kb.? (L1

where K, is the back emf constant. The differential equation of the armature circuit is
dl

Ld:+Rf,+e, =e (1.2)
The torque equation is
de _de
J—+F— =T, =K¢/ 1.3
pE + & m =Ky (1.3)

where
J = equivalent moment of inertia of motor and load referred to the motor shaft
F = cquivalent viscous friction coefficient of motor and load referred 1o the motor shaft.

Taking Laplace transforms of (1.1), {1.2), and (1.3), we get

E(5) = K;58(5) (14)
(Ls + R),(s) = E(s) - Ey(s) (1.5)
(U + F5)0(s) = Tuyls) = Krl(s) (1.6)

The transfer function of the system %can thus be determined as follows:

_E»
&s) = Kys

E(s) - (Ls + R)I, (s)

Kys

2
E(s) - (Ls + R)M
= T
K},I

8(s)
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or

2
8(s) - Kys = E(s) - (Ls+ R)(Js" + Fs) 0(s)
T

K
or
2
o [ PR CEY TS m] CE®
Ky
or
86 _ Ky

E(s)  S(R+Ls)}Js+ F)+ KK,

Figure 1.18 has been developed as the block diagram of the armature controlled dc motor.
As E, = K,58(5) is nothing but E, = K,8(s), this block diagram can be modified as shown in
Fig. 1.19.

E(s) 1 L) [ 6(s)
Ls+R s{Js + F)
Eyls)
1 Kyls)
| I
Fig. 1.18 Block diagram of Fig. 1.17.
Lk PO e e
Li+R | | | | Bs+F | [
L~ ]

Fig. 1.19 Modified block diagram.

The block diagram of a closed-loop system can also be developed by the following
generalized approach. Suppose a negalive feedback system is being developed in a closed-loop
system. Let

Ris) be the reference input.

O(s) be the output signal.

fi5) be the feedback signal.

E(s) be the actuating signal.

Then,
Os)

G(s) = —— = forward path transfer function.
E(s)
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H(s) = transfer function of the feedback elements = %
I
and
fis) .
= — =1
G($)H(s) Els) oop transfer function

.?Is) = @ = closed-loop transfer function
R(s)

O(s) = G(s)E(s)
E(s) = R(s) - f(s)
= R(s) - G(s)H(5)E(5)

= Ry~ 26
= R(s) E{S)H(:)E(s)

= R(s) - O(5)H(s)
Therefore,

O _ rrey = pray_

o) - E(s) = R(s) - O(s)H(s)
or

Os) = G(s)R(s) - G(s)O(s) H(s)
or

O()1 + G(s)H(5)] = Gs)R(s)

oG _
R(s) 1+G(HH(s)

T(s) = G
1+ G(s)H(s)
Hence the generalized block diagrams will be as shown in Figs. 1.20 and 1.21.

R(s) Es) | G o)

fis)

His) ||

Fig. 1.20 Generalized form of the block diagram of a closed-loop system.
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Gis)
R) T+ COAG 0ts)
Fig. 121 Equivalent block diagram of the closed-loop.

1.3.1 Block Diagram of Multiple Input and Muitiple output
Systems

Multiple input and multiple output systems mean that the system consists of a number of inputs
and outputs. When multiple inputs are present in a linear system, then each input can be treated
independently of the others. Finally, the complete output of the system is obtained by
superposition. In other words, the outputs corresponding to each input are added together to
obtain the net output. For example,

r
Ofs)= L G;(s)R;(s), i=12 .n
=i
The above relation indicates that Ry(s) is the jth input and G(s) is the transfer function

between the ith output and the jth input considering all other inputs having been reduced to zero.
Let us take an example of a two-input system as shown in Fig. 1.22.

Ner e o)

IH{]

L
Fig. 1.22 Two-input system.

Here the two inputs are R(s) and U(s). If R(s} and U{s) are taken individually, then the two
block diagrams will be as shown in Figs. 1.23 and 1.24, respectively.

R(s} ,-?\ ‘W" '-_Il |—G’{;)—| Oyls)

1 His) Ll

Fig. 1.23  System of Fig. 1.22 with R(s) input.
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Uts) I_E;(_:Tj Oyls)

Fig. 1.24  System of Fig. 1.22 with U(s) input.

For Fig. 1.23, the output will be

=G,(5) Gy(s)

) = 12619 Goto) H)

Ris)

For Fig. 1.24, the output will be

Gy(s) U(s)

%) = G (9 G HG)

Hence, the total output will be
O5) = Opls) + Oyl5)

G,(5)

* TG G Hin OO R+ U]

1.5.2 Sensitivity of the Control System

The main objective of the feedback system is to reduce the sensitivity of the system to parameter
variations. The parameter variations may occur, for example, due to aging, environmental change,
etc. Therefore, the sensitivity measures how effective the feedback system is for reducing the
effect of parameter variations on system performance. It may be noted that for improving the

sensitivity, the gain of the system has to be reduced.
In the case of the open-loop system, as shown in Fig. 1.25

O(s) = G(s)R(s)

R{s) oo | Ofs)

Fig. 1.25  Open-loop system.

Suppose on account of parameter variation G(s) is changed to [G(s) + AG(s)], where IG(s) >>

IAG(s)l. The output of the open-loop system then changes to

O(s) + AO(s) = [G(s) + AG(3)IR(s)
Hence, AC(s) = AG(s)R(s).
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In the case of the closed-loop system, as shown in Fig. 1.26, the output

G(s)

T GOAG @

o) =

Ris) < r—-aa)——] O(s)
| Itk |

]I H(s) [I

Fig. 1.26 Closed-loop system.

On account of the similar variation as mentioned above

[G(s5) + AG()]R(s)
00) + 80() = TG A () + AGEHE)
Therefore,
A0s) = IG(s) + AG(s)IR(s) _ _ _ G(s)R(s)

1+ G(s)H(5) + AG()H(5) 1+ G(s)H(s)

_ [6() + AGWIRG) __Go)R(s)
1+GWHE) 1+ GWHE

AG(s)R(s)
1+ G(s)H(s)

The term sensitivity is generally defined quantitatively as

Per h in the fer function of the closed-loop system

Percentage change in the forward path transfer function

Here the closed loop transfer function is T(s) = % and the forward path transfer function is
5|

G(s). Hence the sensitivity is

STGYTC) _ 6T() G(s)
8G(s)/G(s) ~ 6Gls) T(s)
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§ (G ] G(s)

" 3G\ 1+ GH(s) G(s)
1+ G(s)H(s)
1+ G(s)H(s) ~ G(s)H(s)
= A e N+ Gs) H
1+ GOAGE [1+ G(s) H(5)]
I S
1+ G(s)H(s)

1
1+ G(s)H(s)

In the case of the open-loop system, the sensitivity is one, since T(s) is equal to Gis).
Thus, it is observed that in the case of the closed-loop system, the sensitivity is reduced by

Therefore, the sensitivity of the closed-loop system is

1
a factor Tvon compared to the open-loop system. On the other hand, the gain of the closed-

loop system is reduced by the same factor. The sensitivity with respect to feedback is expressed as

Percentage change in the transfer function of the closed-loop system
Percentage change in the transfer function of the feedback elements

8T(s)
_T0 0T HE

T 8H(s)  SH(s) T(s)
H(s)

5 (6 J H(s)

SH(s){ 1+ G(5)H(s) G(s)
1+ G(s)H(s)
__ Gl(s) - G(s 1+ G(s)H(s) H(s)
1+ G()H(s)] G(s)
_ _=G(s)H(s)
T 1+ G(9)H(s)

From the above it is clear that if G(s)H(s) >> 1, then the sensitivity of the feedback system
with respect to H tends to one. Therefore, the changes in H(s) affect the system output. That is
why, it is essential to utilize the feedback elements which will not vary with the change of
external conditions. G(s) is developed mainly from power elements, whereas H(s) is developed
from measuring elements. The measuring elements operate at low power level. Therefore, the cost
of making use of accurate measuring elements is much less than that of the G(s) elemenis.
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1.3.3 Improvement of System Dynamics by Feedback
Figure 1.27 shows the unity feedback system, the closed-loop transfer function of which is
K

@_ s+a
R(s)

K
1+ ——
i+a

K
__S+ta K

T s+a+K  s+K+a
s+a

Ris) [ & ] ] o(s)

s+a

Fig. 1.27  Unity feedback system.

If there is no feedback, then 26) _ K
R(s) s+a

If the input Ris) = 1 (in the case of the impulse input, the value of R(s) = 1), then the output
of the non-feedback system will be

K
o) = s+a
or
olt) = Ke ™
For unity feedback, the output is
06) = s+a+ K

o(f) = Kela + K

It is quite clear from above that the time constant for the non-feedback system is l/a and
that for the unity feedback system is 1/a + K).

Hence, for a positive value of K, the time constant for the feedback system is less than that
‘of the non-feedback system. This indicates that with the increase in value of K, the system
dynamics becomes faster. In other words, the transient response decays more quickly. Thus, it is
proved that the feedback is a powerful technique for the control of system dynamics. The
disturbance signal is also reduced with the help of the closed-loop feedback system. In Fig. 1.28,
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Tols)
R
Y 5 G ¥ oo
- | L=
I g 1
1 H(s) I

Fig. 1.28 Closed-loop system with disturbance signal.

Tols) is the disturbance signal. The output due to the disturbance signal can be calculated as
follows (see Fig. 1.29).

O(s) _ =Gy(s)

Tols) 1+ G(s)H(5)G,4(5)
or

- =G(9)
%O = GG e o
If G(5)Gy(s)H(s) >> 1, then
1
Oy(s) = "G OR® Tp(s)

Hence, the output due to a disturbance signal in a closed-loop system is reduced 1o a great extent,

Tpts) 1
s !O\ Gils)

1 G | 0,(s)

Fig. 1.29 Block diagram showing O\(s) as the outpur due to disurbance signal.

1.4 SIGNAL FLOW GRAPH

The signal flow graph is the gr 1 ion of the relationships between the variables of
a group of linear algebraic e:quatwns The signal flow graph can be derived from the block
diagram of the closed-loop sy in the followi

Figure 1.31 is the signal flow graph of the block diagram shown in Fig. 1.30. Here R is
termed the input node and O the output node. The input node of the signal flow graph will have
only outgoing branches whereas the output node of the signal flow graph will have only
incoming branches. Forward path is the path from the input node to the output node.
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For example in Fig. 1.31, RECO is the forward path. Loop is the path which originates and
terminates at the same node. The forward path gain is the product of the branch gains encountered
in traversing the forward path. In Fig. 1.31, itis, 1.G.1 = G.

)
i 29 66 ] 06)

I| H(s) ||

Fig. 1.30 Closed-loop system.

. F
Fig. 1.31 Signal flow graph of Fig. 1.30.

The loop gain is the product of the branch gains d in traversing the loop. For
example, in Fig. 1.31, it is G.H.(-1) = - GH.
1.4.1 Signal Flow Graph Developed From Equations

Let x; and x5 be the input and the output variables and the system be described by the following
equations. !

x3= Apaxy + Apxy + Apxg + Asxs (i)
x3= Anxa (i)
Xg= Asgy + Auty (iii)
X3 = Ayexy + Agexy (iv)

The first equation describes the signal flow graph as shown in Fig. 1.32.

Fig. 1.32 Signal flow graph of Eq. (i).



The second equation describes the signal flow graph as shown in Fig. 1.33,

W et}
* Asy s

Fig. 1.33  Signal flow graph of Eq. (ii).
The third equation describes the signal flow graph as shown in Fig. 1.34.

Ay

'\w
A

3 P
Fig. 1.34  Signal flow graph of Eq. (iii).

The fourth equation describes the signal flow graph as shown in Fig. 1.35.

Xy X3 Ass A5

~__/

15
Fig. 1.35 Signal flow graph of Eq. {iv).

If all of the above signal flow graphs are combined, then the signal flow graph of the whole
system will be developed as shown in Fig. 1.36.

Ay

Fig. 1.36  Signal flow graph of the system.

1.4.2 Mason’'s Gain Formula

Mathematical modelling of a signal flow graph can be easily dealt with by the Mason's gain
formula. The application part of the Mason's gain formula is described in this book. The reader
interested to know the mathematical proof of this formula may consult books on advanced
mathematics.

Mason’s gain formula states that

1
T=—IPA
!l_K K

where
T'= overall gain of the system
Py = path gain of the Kth forward path.
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Here forward is nothing but the path from the input node to the output node.

A is termed the determinant of the graph = | — (sum of the loop gains of all individual
loops) + (sum of the gain products of all the possible combinations of two non-touching loops) -
(sum of the gain products of all the possible combinations of three non-touching loops ) + - -

Ay is the value of A for that part of the graph not touching the Kih forward path.

In this example, there are two forward paths.

Py = ApAndsdyg

Py= ApAndas
Individual loop gain products are:

Py= Apdy

Py = ApAsdp
Py = Ay

Py = ApAydgsds
Py = ApAyedsy

Gain products of all the possible combinations of two non-touching loops are:
(Loops are termed non-touching if they do not possess any common node)

P = ApAndy

Py = ApAzsdndy
Therefore,

A =1 - (Apdy + Apdudn + Apdndididds + Andisln) + (Andndy + Andssdada)

Again, Ay - the value of A for that part of the graph not touching the first forward path = 1
Similarly,
Ay=1- Ay
Therefore,
PAy + Pidy = AppAnAsgAgs + Ajp AnAss(l = Agy)

Hence, the overall gain

X5 A Ay Az Ays + AppAndss (1- Ay)

N 1= Andy - Apdydg - Ay - ApAyAcAs — Ay A + AnApAy + ApAsAnAg

If the above gain is calcuiated algebraically, then the result will be determined as follows.

(L.7)

X5 = Ashy + Agsty

A
= AssAyaty + Ags _“‘ '

1

= AzgAnrg + A«lsl_%’qnxs

(7 X3 = Agyxy and xg = Aggxy + Ayry)
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Therefore,
Xy = K:[“"ss A+ Ay ‘_“‘:: -"13j|
Again,
Apx) = X3 — Asaxy — Ay — Asaés
or

Aty = x3 = Apdpx; -

A
- *“s:["‘ss"‘el s T _i; ﬂ::]-‘:
44

ar

X =x U _Andy  AuAudn  ApAuds  AsdAsAudy :|
Az Ap o U=Ay)A, A (1= A4,

xs _ Asghyatyys + A AgsAns(l = Ags)
B 1= Ay = ApAn(l = Ay) = ApAydn = Asadysias (1= Ay = AgsAsa Ay Ans

- AnAnAyAs + ApdnAss(l - Ay)
1' ""n-"‘u = ApAuAg — Ay — AndydisAs = Apndysdn + AnAndy + AndisAs Ay

(1.8)

Equations (1.7) and (1.8) give the same result. But the algebraic solution becomes more and
more tiresome as we proceed to solve more complicated networks. That is why the Mason’s gain
formula is being utilized for the solution of the signal flow graph.

1.4.3 Development of Signal Flow Graph From the
Practical Example

Figure 1.37 shows the example of the closed-loop controlled drive of a de motor.

Fig. 1.37 Closed-loop control drive.
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V, is the reference voltage
Ey is the feedback vollage
V is the actuating voltage applied to the control element, ie. the power amplifier.
The controlled member is the de motor connecled to the load.
The feedback clement is the tachogenerator having permanent magnet excitation. Here
E; = Kipo = K;0
since ¢ is constant on account of permanenlt magnet excitation. The voltage applied at the
armature terminals
Va= KuV - Ep
Also the armature circuit voltage

dl,
Vo=LR+L d: + Kao

where K; is the back emf constant, R and L are the resistance and inductance of the armature
winding. For constant field current, the torque developed by the motor is

Tv =K,
where
da
Tu=Ty+J—+Fo
M [ p
with
T, = load torque

J = moment of inertia
F = viscous friction coefficient

Taking the Laplace transforms of the above equations developed, we get
E(s) = Kyans)
Vats) = KalVils) - Eq(s)]
Vals) = 1()R + Lsl,(s) + Kyo(s)
Kyl (5) = Tyls) = Jsaxs) + Fes) + Ty(s)

w{s)

Fig. 1.38 Block diagram of Fig. 1.37.
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Tuls) ~ Tils) = UUs + Flaxs)

The signal flow graph of the block diagram (shown in Fig. 1.38) is described in Fig. 1.39.
The Mason’s gain formula can easily be applied on the signal flow graph shown in Fig. 1.39
to determine the overall gain.

T8
1 -1 |
Visy Ka R+Ls K, T+ F wls) 1
. < wls)
Fig. 1.39  Signal flow graph of Fig. 1.37.
The forward path gain
o KaKe
"7 s+ F)R+LY)
The individual loops with loop gains
pow KoK
U7 s+ FXR+ Ls)
—Kn KKy
P T o
(R+ Ls)(Js+ F)
There are no combinations of non-touching loops. Hence,
Ao “KKy KKK,
- (R+sL)YJs+F) (R+Ls)}Js+F)
The forward path is in touch with both the loops, hence 4 = 1.
If T1(s5) is not considered, then
KyK,
wis) (R+Ls)}{(Js+ F)
Viis) " KKy + KAK Ky
(R+Ls)Js+F) (R+Ls)(Js+F)
KaKy (19)

T R+ L)Us + F) + K;K, + KKK,



26  Control Engineering: Theory and Practice

If Ti(s) is considered as input and @(s) as output, and V.(s) is not considered, then
_ 1
ofs) _ Js+ F
1. I- 1 -K,K, . 1 KKK,
(Js+F)(R+Ls) (Js+F) (R+Ls)

1
B Js+ F
= R+ LUs + F) 4 KoKy + K KaK,
(R+Ls)(Js+ F)

Js+ F e KaKe | KKuKy
R+Ls R+lLs

Therefore, considering both the inputs, the actual w(s) will be

o) = K KV, (5) ~ Ti(s)
(R+ Ls)(ds + F) + K3Ky + Ky KK, (J,+F)+£JK_4+EIKJ£
R+Ls R+1Ls

The open-loop transfer function of the above system can also be determined from Eg. (1.9)
by putting X, equal to zero. Moreover, if the load torque is zero, the open-loop transfer function
will be

as) _ KuKy
Vi)  (R+Ls)(Js+F)+ KK,
~ KnK,
R([ +%5] s+ F)+ KK,

Since the electrical time constant is much small ¢

pared to the hanical one, we get

os) _ KKy
V()  R(Js+ F)+ KK,

~ KKy
" RIs+RF + KK,

KaKy
RF + K{K,
Rls
—_—t]
RF + KK,
K

Ts+1
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where
_ KK,
RF + KK,
R}
T= ———
RF + KK,

1.4.4 Methods of Solving Problems of Block Diagram and
Signal Flow Graph

1. How do you reduce the block diagram (shown in Fig. 1.40) to canonical form?

{6}
R 4 L7 W - I o ! */L* 2
= +\|/ L] L2 L2 -/
TH, |
Lo
{# |
Fig. 140
First step
R+ + 2]
T_ +ﬁ { GG, | { G1+ G|
{2 |
Fig. 1.41
Second step
R+ GG, o] 0
e 1-GGyH, | I
L™ ]

Il
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Third step

R+ GG4(Gy + Gy)
1= GG H,

Fig. 143

The block developed in the third step (i.e. Fig. 1.43) is the canonical form. From this block,
the transfer function can be easily determined.

2, How do you reduce the block diagram (shown in Fig. 1.44) to open-loop form.

First step
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Second step

[

GG @
1+ Gy,

+

Third step

[ A
LG |

I
3
G, |
L
Fig. 1.47

-

Fourth step

R HN GGG, T
% 1+ Gy + GGty +

(G, |
G |
Fig. 1.48
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Fifth step

G
R 1+ GoHy + GyGyHy + o
- Ay +

1+ Gyl + GyG3Hy) Gy

Sixth step

R G,G4Gy N o
1+ Gyl + GyG3H, — GLGiH) +

II Gy ]l

Fig. 1.50
Figure 1.51 describes the block diagram reduced to open-loop form.
Seventh step

R G, + G,GoH, + G,G,GH, - G,G,G H, + GGG, 0
1+ GyH, + G,GH, - GG H,

Fig. 1.51

3. Develop the signal flow graph of the circuit shown in Fig. 1.52. Also calculate vgfv,.

T 2 n T2
+ A2 AN A—2 AAS
v EL T 2r 2, v
! ) £ ) [y D N ) 3] H]
i T i is T T

Fig. 1.52 Circuit diagram.

From the circuit shown in Fig. 1.52, the following equations are developed.

1 1 , .
=W =W V3= gl = Iyly
i i

El=
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. . N VyoVy
Vi =r3h - Rl = ===
LIt
. w Vq ; .
[P S § Vg = Fyiy ~ Ry
R n
’ 1 1
fg= —Vy——vg
n n
Vs = Faly

With the above equations the signal flow graph is drawn as shown in Fig. 1.53.

! -y =iy -1y -y -, ~liry
LN Y N Y Y
v Me Bpory v Uiy oy vy Yy iy ory vy U 0y g v vy

Fig. 1.53  Signal flow graph of Fig. 1.52.

The transfer function can be obtained by applying the Mason's gain formula.
The gains of the seven individual loops are:

i = _h
Py=-= Py=-=
i 2
, r
Py = — Py=-=
n n
i) i)
Py = -— Pg = —
h 5]
Ny
Py=-=
n

For two non-touching loops, the of e tions will be °C; since, two non-
touching loops, for a particular loop, will be -all except its adjacent one. That is why the
combinations will be 8C, instead of 7C,. Now,

o 6! 6x5=

T TR
nn ny nY
Pa= . Py = 3 ¢+ Pyp=1—=
nn 4l h
Pyo= Ao, Pa= ", py=nh
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2

) 1
n " nr
Pyp=—, Pga={—=1. P9:=_:
nh n n
L) iy
Proa=—. Pua= =5
2 2

2
I nry
Pip= [—‘L] , Py = =,

n nn

2
] Iy
Plag=—, Pysy= —
fify fifz

Similarly for three non-touching loops, the number of combinations will be 3Cy. Now

!C3-"- — =10
32
rirg Hry
Pp= 5 Py = 3
(6] nn
2 2
Py = =2 Pyy= -0
33 7 43 3
hn nn
2 2
Peoy= __rir-l P= _f3 i
53 = 63 -
hn hh
b1 1
po= 00 P = -0
» rrd ' 8 rr?
in 2
2
R nr
Py = =, Py = - 5
nn nr

For four non-touching loops, the number of combinations will be *Cy = 1. That is,

2

R
Py = PyPyPyPyy = [H]
hfy

Therefore,

7 15 10
A= l_lzlﬁl "‘F-]ﬂz - _zlﬂs + R



As all the loops touch the forward path, &, = |

Introduction _5_3

Therefore, .
2
(ryry)
5
vs _ BA (rim)”
=T - B 5 Bl
v A LS LR Ll U brry, +2r 41 Rr +r LHE i+
2 2
nn n n
2
(ryry)

(rlr,)? + arlz(ﬁ2 +r + By + Ry R ) + rf + Ry + RE )+ GnRnn +2r33r|r1 +nnrg

4. Draw the signal flow graph of the electrical network shown in Fig. 1.54. Also calculate

vifvy.
Y
o/
'Y
aiy
———W———r——o
s +
) i ry V3
o

Fig. 1.54 Electrical network.

The equations of the circuit shown in Fig. 1.54 are:

=)

vy = (i = iny

vy — W ’ . " .
e Savke § Faip =0y -0y + 0
n

V3= hry

Utilizing the above equations, the signal Mlow graph is developed as in Fig. 1.55.

=liry -ry =liry

¥y

Fig. 1.55 Signal flow graph of Fig. 1.54.

Y3
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Forward path
1 1
Py= —n—n
hn
Ar=1
1
Py= —a-n
A
ﬂz=
R n r -
A=1-f-B B f 0 B.Ch
nonon A LI
r L Iy 17
=140 0 B DL
hoR n L
Therefore,
nry | ar
RELC L
i o_ nn o h
v B iR+ Rn nn g —anh nn
in

nyry +anr

Ky + hny 4 AT+ e —ann

5. Figure 1.56 shows a schematic diagram of a liquid-level control system. The flow of

liquid in the tank is c lled by the p P, and valve opening V,. Linearized liquid level
is described by the following equation.

AQ, = KjAP + KAV,

Valve opening
V, + AV, AQp
“Liquid flows (Disturt
at a pressure flow)
P,+AP
Q;+AQ;
H,+AH Tank
—= (,+40,
(Liquid outflow)

Fig. 1.56 Liquid-level control system.
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AQ,(s)

Vo with
)
pressure remaining constant. Consider that the tank and output pipe have liquid capacitance C

and flow resistance R respectively.

Develop the block diagram and determine the transfer function

The liquid-level control system can be described by the block diagram shown in Fig. 1.57.

AQp
AV, (5) r—x-—1 m I_L-—l AQ ()
2 1 5C | L7 ]
(]
AP(s)

Fig. 1.57 Block diagram of Fig. 1.56.

We know that
d

—AH
dt

AQ; - AQ,=C -

where C is the liquid capacitance. Now,
K\AP + KAV, = AQ;

AH
A":__
0 R

where R is the flow resistance. Therefore, taking the Laplace transforms
AQ(s) - AQ,(5) = sCAH(s)
AH(s)
Al = —
Q.(s) 3
AQi(s) = KAV (5)
when the pressure remains constant. Therefore,
AQ(s) _
AV, (5)

2

AQ,(5)+ 5C AH(s)
A .
AV, (5)

or

AQ (s} +sC AQ,(5) _ K
AV, (5) oo
or

AQ,(5)

1+3sCR) = K,
M’,(s)( +3Ch) -
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or
AQ (5) _ K,
AVi(s) 1+sCR
Jhviously the above relation is possible only when AQp = 0. Therefore,

AQ,(5) K,
AV, (s5) 1+3sCR

Q=0

6. Find the outputs @) and O, of the signal flow graph shown in Fig. 1.58.

Ry

Fig. 1.58 Signal flow graph,

First of all. input R, is considered and outputs @) and O, are calculated separately. Then,
input R, is considered and outputs @, and O, are calculated separately.
Then the results are superimposed o get the actual values of 0y and O,.

A= 1=~ (HG, + HiGy + Gy + Gy, + G \H\GoHy + HyGH\GY) + HyG H,Gy + GH\GaH,
when R, is the input and O, is the output. Then
P = Gyl - GaHy)
.P;ﬁ; = G;h'.‘G.;' 1
when R, is the input and O, is the output. Then,
Pia) = Gyl = GHy)
Pydy = GoHyGy - L.
Therefore, the output @} will be
= %[[Gﬂ' = GoHy) + G3H G4l Ry + R2{Gy(1 = G3Hy) + GaHyGL )

where A has already been calculated.
Similarly, the output O3 can be calculated.
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7. Calculate the transfer function X(s)/U(s) from the following equations and develop the
block diagram.

X=X+ o
Xy = —ax + Xy 4 G
Xy = —ayxy + oqu

Taking the Laplace transforms of the given equations, we get (considering the initial value
to be zero)

X(5) = X\(5) + aalU(5) (1.10)
5Xi(8) = - a,X,(5) + Xols) + eqlis) (L.11)
Xo(5) = = aXy(5) + e, Uls) (1.12)

Multiplying Eq. (1.11) by s
SX\(5) + asX,(5) = 5Xo(5) + sU(s)

or
slets) + a15X(5) = = @ X (5) + oqu(s) + salU(s)
or
)ﬁ',[s)[s2 + ays + az} = o U(s) + egslis)
or
X\) = a.li(s] + a,sU(s) (1.13)
S hasta
Now,
X(s) = X,(s) + ali(s)
Hence,
X(s) = a.b;{s)ﬂx;su{x} + a4U(s)
S rastay
or

X(s) - ;‘!"“3" ‘e
Uls) s +as+a,

2
O + 0,5+ 0(5" + a5+ ay)

S+ as+ay
Figure 1.59 shows the block diagram of the above example.

U(s) X(s)

’2 +artay

Fig. 1.59 Block diagram.
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SUMMARY

The concept of control systems is introduced. The closed-loop and open-loop control systems are
described with examples of position control, missile launching, automatic frequency control,
microwave c ication, and electromagnetic balance. The merits and demerits of open-loop
and closed-loop control are discussed. Ideas of learning system and multivariable control are
given. Models of control systems with the help of differential equations, block diagrams and
signal flow graphs are explained. Methods of simplying block diagrams in the case of multiple
input and multiple output systems are also explained. Idea is glven of the sensitivity of control
systems. Idea is also given of the improvement of dy by feedback. On signal flow
graphs, the Mason’s gain formula is described. Methods of solving problems of block diagram and
signal flow graph are lained with exampl

QUESTIONS

How do you differentiate between open-loop control and closed-loop control?

Describe an example of a closed-loop control system. What is a servomechanism?

What are the merits and demerits of the closed-loop and open-loop control systems?
What do you mean by a multivariable control system? Explain with an example.

How do you rep a control system by the block diagram? Explain with an example.
What do you mean by the sensitivity of the control system? How do you calculate the
sensilivity of the closed-loop and open-loop control systems?

How do you improve the system dynamics by feedback? Explain with an example.
What is signal flow graph? What is its necessity in control systems?

Describe the Mason's gain formula with an example.

LIRS o o

o,

10. What do you understand by the transfer function of a system? State its properties. Find
the transfer function of the lag-lead compensator network shown in the figure below.

R
+ +
G
v G v,

11. The transfer function of the block diagram shown below is
6o(s) GGG, +G, H,
8.-(.\‘) - ]+H| G: GJ G4

State whether it is ‘correct” or ‘incorrect’. Give a brief justification for your answer.
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12. Determine the transfer function C(s)/R(s) of the system shown in the following figure.

Ris)

+
,® = - ll G.(SJ_}

13. Determine the transfer function of the following two systems and explain why these
transfer functions are different (not merely by the factor K but even otherwise).

R Ry

Isolating [ [ I |
C. e, (N

[« amplifier C; el efn [

ef0) 1
‘ [ | gk Ty T i

14. Use the following signal flow graph to obtain the transfer function C(s)MR(s).

15. The signal flow graph of a system is shown in the figure below. The internal nodes x;, x3,
Xy, Xy, and xq represent variables of the system and branch gains are indicated next to the

branches.
=1
—b
1 1 a a ay
R x 1:\:_/& x 1 ¢

(a) By appropriate elimination of the nodes, determine the overall system gain C/R.

{b) State the Mason's gain formula and explain the terms used. Use this formula to

calculate the overall gain C/R of the system shown in the above figure.




Chapter  Review of Some
2 Mathematical Tools

2.1 THE LAPLACE TRANSFORM

Bdnn going to detailed analysis of the control system, we will review here the Laplace

ion that we studied in math ics. Laplace transformation is wtilized to solve linear
differential equations. In the Laplace transform method, the differential equation in the time
domain is transformed into s-plane, where the solution needs some simple algebraic operations.
The Laplace transform F(s) of a function f(r) is expressed as

Fo) = 2@l = [fio e dr
1]

where 5 is a complex variable o + jw which makes F(s) convergent. The inverse Laplace transform
operation is expressed as

c+im

- _
£ = 2R = o [ Fsyeras

c=iw

where ¢ is a real constant and the same is greater than the real part of any of the singularities of
Fis).

2.1.1 Laplace Transforms of Some Important Functions
Unit-step function. Consider the unit-step function

S0y = ulr)
with wy=0 fort<0
=] fortz0

The Laplace transform of the above function
F(s) = Laplace transform of f(r)

= T[ u(r)é‘” dr = ]- le™ dr
L] o
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__l(,*“ - = _1((] -1y = !
s K K

Exponential function. Consider the exponential function
fly=¢e"
The Laplace transform

L

Fis) = qje”e"'dl: Ie“""df
1] o

_ e(a-:)t "__ 1 - 1
- a-5 - ﬂ"'S_J-ﬂ

Sinusoidal functions. Consider the sinusoidal function

S0 = sin ar
Now,

sin at = — (e — &)
2j

Therefore,

Fis) = Isin at e di = IZLj(‘jm eIy gy
0 0

1 1 1 .«
T 2j|ls-ja s+ja| sea?
Ramp function. Consider the ramp function

finy=1 fort>0

=0 forr<0

The Laplace transform

Fisy= j.' e dt

o

= |:.r I:'" dr — I[ je_" dr)dl]: (integration by parts)
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= m
re'lf e‘l’
= [ ] - j' di
-5 -5
o

]

- |
- (‘°+°)“[5T] =-20-n=+
s, 5 s
Translated function. If fi(1) = fit - 1p) where 1 > 1ty

=0 where 1 < 1,

the Laplace transform will be

n

j ity e dr
/]

J'f(r-r.,}e“""‘v' e dt
f
Putting t — 1 = t, we have

g =1 or dt = dt
dr

Therefore,

Fis) = ¢ J'f{r)e’“dr = &% F(s)
fa
where F(s) is the Laplace transform of f{r).

Unit pulse functi Consider the pulse function of unity height and width T, denoted by f(1, T)
and as shown in the figure below:

o
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The Laplace transform of f(¢, T) is found by superposition of two step functions as shown in the
preceding figure. Thus,

(6. Ty = £ [un] - £ [u(t - ]

1 e—rl"

5 5

“La-em
5

Unit impulse function. The unit impulse function is the pulse of height -;—; and width T starting

at t = 0 and considering T approaching zero. That is,

o1
8 = lim T ) - utt = 1)

Therefore,
1=
£16(0] = lim — ———=
(o] rl-vu?' 5
. 5 .
= lim — By L'Hospital's rull
rl-m p (By ospital's rule)

Some Useful Laplace Transforms

f() F(s)
8(n 1
ufr) 1
s
z"ﬂ'f l
S+a
'ul 1
s-a
in ar @
5l
12 + ﬂ)z
cos @t £
s+ o
. ®
e sin wt —_—
(s+a)y +o
€ cos et 24

(s+a) +o° ’
Conrd.
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Some Useful Laplace Transforms (Contd.)

fin) F(s)
[ 1
n! s_n-»l
.I""I 1
(n=1)! 5"
cosh at e jaz
sinh at g fa’
eﬂi‘l-I 1
(n-1" (s—a)
. b
e sin bt m
& cos bt ——i-:;a——!-
(s—a) +b
t sin at L
(s* +a*)?
s*-a*
t cos ar m

1.
——(sin af-a[cusw) U —
24" (s> +a*)

EXAMPLE 2.1 Solve the following differential equation
dy
4—=+3y =10, y0) =1
x Y ¥(0)

Solution Taking the Laplace transform of the differential equation, we have

¥ [4%] + £ 3yl =£[10)

or
4[sY(5) - ¥0)] + 3¥(s) = %

or

(45 + 3)¥(s) = % +4 [ 0)=1]
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or
¥ _L_'_ 4
®= sds+3) 4s5+3
10 4

= —1 +_“
4:[:+‘—] -1[s+‘—]
4, 4

Taking the Laplace inverse of both the sides, we get

10 +u!

e

£ = £

Now ' — 3 can be evaluated as follows:
[s+l]s
4
10 1 10| A R
EY AT
[s-t-‘—): 5+ —
4
Thus,
As + B[J-}L] =]
Then,
A+B=0 and B= =1
or
4 4
B== A=-—
3 3
Hence,
a4
£ 10 1 - f-:lg i 3
4 [ 3] 4 3 s
5| 5E= F+—
4 4
J10 4 e 10 4 10 g 10

4 3 4 3 3 3
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Therefore,
10
W) = £ |+ !
3
4l s+—1s
(3)
- _]_Q;unr +£+!-(3nu
3 3
Hence,
7 -oeay 10
= —=—£ +—
=-3 3
EXAMPLE 2.2 Find the Laplace inverse of
s+6
Fs)= 4————
P s+ 10
Solution
1| s+1+5 1
()= £ —
f [(:+l}2 +3

5

- | St +£
[(;+1)2+32_

3

=&’ cos&t+%,‘f"

| (s+1)? +3

e cosdt+ % e sin ¥

2.1.2 Properties of Laplace Transform
(1) Prove that the Laplace transform of (1), that is,

L1f(0) = -%F(s)

where F(s)=4 [,f(l)}:
Proof

=1
[(s+1)z +3

|

)

d d ¥ d
—F(5) = — Rl = — (e
o () Z 5{}'(:]: dt !f{l) 2 (e™")dr

== ]:_,f(r)e"' dr
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d L]
——F(s) = T
—F©) jgr(f)e dr = £ [tin)]
0
L . d
Hence it is proved that the Laplace transform of 1f(1) is - EF(’J' From the above, the
general property is described as
\ L} d"
L1f0] = (-1 —F(s)
ds
From the above relation, we can now get the following resuits:

Laplace transform of () = Lz
5

Laplace transform of 1™ = ———
(5+a)

(2) Prove that the Laplace transform of ¢ f{1), that is,

£1e” fin] = Fs - a)
where F(s) = £ [f(1)].

Proof
# [eF0)] = Je“’ f(Oe " dt = If(:}e"""” dt
0 0
= Fi{z-a)
(3) Convolution property

The Laplace transform of

[fe-0smds = £ £0 = R6FE
o

where Fi(s) = L[fi(1)] and Fils) = L£1f:(n).
(4) Initial-value theorem

If f{r) and f*(z) have Laplace transforms and ILI':I‘ sF(s) exists, then
Ls

lim sF(s) = lim f(1)
Eanacd 1—+0*
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EXAMPLE 2.3 Detemine the initial value of f{r) from the corresponding Fis) which is as
follows:

I5+2

F(5) =
) (s 445+ 5)
Solution Applying the initial-value theorem, we get

£O) = Tim £()
0"

= lim sF(s)
som

. 3s+2 . I5+2
= lims- 3 = lim 3
oo g(5T +4545) w5t 44545

3 2
_,+___,2_
= lim——o0>S _ _
= lim—7"5 =0
1-|-—+—2
5 ¥

45+ 1

EXAMPLE 2.4 Calculate f(07) and f7(0*) for the function Fis) = _—
s(s* +45+5)

Solution Here,
L IN) = sFi(s) = fl0%) = 3—4£L -0 (= £f(0*) = 0 from the initial-value theorem)
s(s* +45+5)
Again as per the initial-value theorem,
L e 4541 . 4f 4
W0 = lim £() = lims£1f (0] = & = lim —
e r—»o"r i d S(* +4545) soos’ 14545
4+-57
= lim £ =4
sme 45
| =t
L

Similarly,

£01 = F(s) - f(0°) - f1(0)

I PR L
T os(s? 445+ 5) T sl 4d5+5
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457 +5-45 ~165-20  -155-20
B 5 #4545 TSP +45+5
_ =(155+20)

T #4545

Hence,

o)

lim f*(r) = lim s [f"(0)
140" o

.| =(155 +20) . =155 =205
= lims = lim
st ads+5 swe ¢f p 455

Iy

_15-20
. H g _
= Jm—g—5 =1
T+—+—
X 5:

(5} Final-value theorem

If f{#) and f(r) have Laplace transforms and if all the poles of sFis) lie inside the left-half 5 plane,
then

lim f(1) = lim sF(s)
1—san s-»)
The need for restriction on sF(s) that all its poles lie inside the lefi-half plane confirms that

Sy will approach zero asymptotically as ¢ approaches infinity. The reason of this restriction is for
the proof of the final-value theorem.

Br+5

EXAMPLE 2.5 The Laplace transform of a function is ———F————
s(s+1)(s° +45+5)

. Determine its

final value.

Br+5
Solution Since the poles of sF(s) | = S‘—Sz‘— lie in the left-half plane, the final
i s(s +1)(s* +4s+35)

value of the function will be
lim f(r) = lim sf(s)
§—aa -0

85+ 5 5
= |.IITI— =
=0 (s+ 1) (57 +45+5) 5
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5
EXAMPLE 2.6 Calculate the final value of f(r) if F(s) = —5——.
5(s° +49)
Solution Since

Fi(s) =
sk = 2 449

it has poles on the imaginary axis. Hence f{(r) has no final value.
(6) Method of finding the Laplace inverse of F(s) that has a large number of same poles. That is

Als)
(.t-l-.'.",)"‘I (s+5)...(s+5,)

Fis) =

Fis) can be expanded by the method of partial fractions. Thus,

= K

F(s) = 4 +A—’,+...+ A~N+ !

S48 (s+5) (s+5)" 3 5+5;

The procedure for determination of coefficients is:
Ki=(s+8) F(9)] 5oy,
Ay=(s+ <'1)NFI-‘” 1]
d
An_1= I(.\Up 5 )"'.‘7{.1")],_._'I
1 gt
M= T e ) YFS), .,

EXAMPLE 2.7 Calculate the Laplace inverse of F(s) = --1-(——*{-)-
S5+

4“} K,
= _+ —i
o) = 5t s+l

.2
=(s+ DF@E)| 5oy = ,]_I.?l:z- =2

A= (FG) | o= I““'"_ =12

d od 2
A= ESIF[J}L_"] = 11-“5;';{3_;_1']
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= litré{—2(3+l)'2] =-2

Hence,
fiNn=-24+2t+ 2"

(7) Real integration theorem

If fir) is of exponential order, then the Laplace transform of ]f(.r]dr exists and is given by

[Iﬂ”d'} F{s) FA)]

5
where F(s) = 7[f(1)] and f~'(0) = [ fir)dy, being evaluated at 1 = 0.
Proof

[Ifmdr] = Uf(f)dr]e"* dr

[ | ﬂ:)df] ’

I
[ Te—

=5t

If(r)— dr

l -
- d)
sjftr) t

1 [ ar
s [

f=0

-1
- 10, Fs)
s s
Hence the theorem is proved,

2.2 THE Z-TRANSFORM

The Z-transform is a mathematical tool used for dealing with the discrete-time control systems. In
the case of discrete-time onti time 1 is usually replaced by the discrete time n. The

Z-transform of the same is descnbed as

X@) = Z(fn)] = Z ®nz™"

Since the Z-transform is an infinite power series, it exists for those values of z for which the
series converges. The region of convergence is termed ROC. Tt is the set of all values of z for

which X{z) attains a finite value.
The Z-transform of the finite expression x(n) = [1,2,5,7,0, 1] is

XD =1+2"+57 4 7234 73

The region of convergence will be on entire values of the z-plane except a1 z = 0.
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EXAMPLE 2.8 Find the Z-transform of the signal

xin)= (%J uiny

Solution  Since u(n) is the unit-step input, its value is zero for n < 0. Hence the Z-transform of
x(n) will be

where uin) is the unit-siep input,

X@z)= i: (%]. umz " = i [-;-]. "

LERL =l

1 . S 1Y

If {31 ’} is less than one, i.c. |2z 'l <1, then [Ez ') will be zero as n — o,
Therefore,

1

X@)= 1
1~=¢"
2
. R 1

where the region of convergence is Ez <lorlzl> 7

EXAMPLE 2.9 Find the Z-transtorm of x(n) = a"u(n) + b"u(—n - 1), where | b1 > lal.
Solution Here,

X2

i au(n)z™" + i Bu(-n-1)z""

nw— A=

- =1
Z a"uln)z™" + Z b u(—n - 1)z™" (. u(n) =0 when n < 0)
=t

n=—m

= i a"r" + _zl b

n=0 nm—
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Now,
=1

3 bt = Y b

n=-m

Since m is an arbitrary number,

Am—m

Therefore,

n=0

1
(Letn=-m)

m=m@
me

=) b

-1 A==

3 =y b

X(2) = i a"r " +i bgn

a=0 A=l
= i a7 + i ')
n=0 n=l

- _ 1
E ity 1-az™!

where region of convergence (ROC) is laz™'l < 1 or Iz > lal.

Again,
>y =b e 07 R
n=1
b'z)
1-b7"2 ROC
where |b7z] <1 or |2] < |bl.
Hence the solution will be A ill
=1
1 . bz
1-az”' 1-b7'z

_1=bre b -az!)
(l-az”"Y1-b7"2)

=

1=b"z4b 'z =ab™
1-b"'z2-az" +ab”

1

Fig. 2.1 Region of convergence (ROC)

NE-3 -

==
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b-a
b
b-z-ab: ' +a
b

-—t=8

T a+b-z—ab:”

As per Fig. 2.1, the shaded portion is the “region of convegence™ The region of covergence will
be la| < |z| < |b].

2.2.1 Inverse of zZ-transform
The inverse of the Z-transform is the procedure for transforming from the z-domain to the time-domain.

EXAMPLE 2,10 Find the inverse Z-transform of
1
1-az™!
Solution  As per Cauchy residue theorem, if f(z) be a function of the complex variable z and ¢ be
df(z)

a closed path in the z-plane and the derivative D exists on and inside the contour ¢ and if
Z

X() = [z]>la]

f(2) has no poles at z = z;, then

! f@a , flzg) if g isinside ¢
Mie it ) 0 if z, is outside ¢
Again,

X@= Yy, aky

k=

Now, integrating both sides by multiplying with z*!, we get

@X(Z)z“'ldz = § i *(k)z" Ay

€ kmoee

where ¢ denotes the closed contour in the ROC of X(z), being taken in the counterclockwise
direction. Now,

X(z)z""'dz = ) kg dz
$ = ¥«

kme
As per Cauchy's integral theorem,
1 . |, fork=n
‘—‘#Z‘ Ity =
2mj 0, fork#n
Hence,

1 - — 3 1 m=l-
E?X[:): ld: = ;E x(k]m ?z e

—

=x(n) - 1 + 0= x(n)
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Therefore,
1 g 1

x(n) = —@ — - ———dz
as X(z) —l—al| |>]a]
O M ’
Thus,
ZN

1
L )
= onp dz=a™

when n 2 0 and f{z) has only zeros and no poles inside ¢. The only pole inside ¢ will be the a.
Hence, as per Cauchy’s residue theorem stated at the beginning of this example, x(n) =
flzg) = (a)" when n 2 0. When n < 0, f{z) = 2" has nth order pole at z = 0, which is also inside the

contour ¢.
When n = -1
1 1
a-1)= —- dz,
2rj < Hz—a)
=—l +i =-—+L-0
i-a =0 z:-a a
When n = -2
1 1
D) = —
=2 27jd 2 z-a)
1 1 1 _:
== * i[ ] —-(z-a)?
Tl |delz-alfj . a =0
1 a1 1 1 1
TECrE e e

Similarly, we will get for all other values of n < 0, x(n) = 0.

Hence it can be concluded that x(n) = @%u(n), whose inverse Z-transform of X(2) = 1;'

where | z]| > a.
An inverse of the Z-transform can be obtained by two other methods:

1. Power series expansion
2. Partial fraction expansion

Inversion by power series expansion
EXAMPLE 2.11 Given the Z-transform

2

X = e——
@ 2-371 42
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where ROC is 1z1 > |, determine by the power series expansion its inverse when ROC is 1z1> |
and when ROC is Iz1 < %

Solution When the region of convergence is the exterior of a circle, i.e. 121 > 1), we have to
develop power series expansion in negative powers of z. Thus,

X= —————
@= et

3 .7 2 15 5 31
1 += = =T — L T
zz 4&. Z 1 Z

7
L, ___2_1:-3 +lz"'

4 8 8

15 5 7.4
8. 8

15 3 45 4 15 5

8- "16° 16
315
16 16

EZA_E -5+2_ -6
16 2 32

63 s 31
e et 4

2° T}
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Hence x(n) will be

15
8

w

PN

L3,
2

|

When the ROC is 1z! < 142, it means that the ROC is the interior of a circle. The power
series expansion will be in positive powers of z. Thus,

272 4 62 + 1424 + 305 + 625 + ...

-3 2| 2

2 -6z +42°
6z - 47
6z — 1827 + 127
1422 - 127
1422 - 427° + 287
307 - 28;*
307" - 90z* + 607°
627" - 607

62z - 1862° + 1242
1262° - 1247°

X(z) =22+ 620 + 142 + 307 + 625° + ..
Hence,

a(n) =

...62,30,14,6,2,0,0
g
Inversion by partial fraction method
EXAMPLE 2.12 Given the Z-transform
1
-z +z™h
determine by the partial fraction method its inverse transform.

X(z) =

Solution
3
4
x = ———
&= e
or
X(2) z

T (z-D*z+))
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Now,

X _ A B C
z 2+l (z-1 (z-1)

2

A= lim éa-l-
=el(z-1° 4

2

N & |
= lim—— ==
C= T 72

df 2
=li — =
B :'-l:}dz o+l

_,t
B= lim ZGD-
= (z+])

Therefore,

Now,

| —

= is the Z-transform of i-(—l)'n(n).

1+z
3

= is the Z-transform of %u(n).
=

We know that the Z-transform of w(n) is 1 ! -
-1
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That means

where x{n) = u(n). Now,

Again,

Therefore,

1
X(z) = =
—d‘:‘iﬂ =71 -y
dX(z) -t —1y-2
J—— = 1-~
7 (1 -
dXiz) 7! z

Tdr - -y

X@= Y xmz”

LEE]

dX(z) _ -n=l
= - Z x(m[-nz""""}

nm—m

==z [Z-transform of [nx(n)]]

Hence, the Z-transform of au(n) is

when x(n) = u(n).

—z@ = Z-transform of nx(n)
dz
(60 I
dz (-1

Therefore, the x(n) of the whole problem is

% (1" u(n) + %u(n) + % nufn)

2.2.2 Properties of =Z-Transform

Linearity

If the Z-transform of x;(n) and x,(n) are X,(z) and X5(z) respectively, then the Z-transform of
ax(n) + axxa(n) will be @,X,(2) + @:X5(z). This is the lincarity property of Z-transform.
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Time-shifting

If the Z-transform of x(n) is X (z). then the Z-transform of x(n - k) is z* X(z). The ROC of z*X(2)
will be the same as X(z), except forz=0ifk>0und z= = if k< 0.
Suppose the Z-transform of x(n) is

=

X@= Y am"

n=
then the Z-transform of x(n - &) is

Z x(n—kyz™"

=—
Letn — k= m. Now, when n =eo, m = s, when n = —oce, m = — oo,

Thus the Z-transform of x(n - &) becomes

@

Z A(myz or z* z x(m)z™" or  *X(2)

=—m
L m=—u

Scaling of the z-domain
If the Z-transform of x(n) is X(z) at the ROC, r; < 1z < ry, then Z-transform of a"x(n) 1s

- =
Z ax(mz"  or z xma’'D™  or  X@'z)
Am=-m A==
The ROC of X(z) is r; < 1z < ry, the ROC of X(a™'z) will be
n<lalzl<n or lalny <lzl<laln

This property is termed the scaling, where a may be any constant real or complex.

Time reversal

If the Z-transform of x(n) is X(z), having ROC, ry < 1zl < ry, then the Z-transform of x (- n) is

X(z™') with the region of convergence L <lzl < L This is termed the time reversal property.
n n

Now,

Zl-ml= Y x(-mz™"

Let m = —n, then

Zlx(-n)] = i x(m)z™ = i xm)H™

M- M

=X
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The ROC of X(z™) is
1 1

<rp or —>|z|>—
A )

n<|lzl<n o <

Convolution of two sequences

If the Z-transform of xy(n) is X(z) and the Z-transform of xy(n) is X5(z), then the Z-transform of
x{n) = xy(n) is X(2), that is, equal to X,(z) X,(z). Here x;(n) * x;(n) means the convolution of the
WO sequences.

) =x() = 1 =Y, K xyln k)

L=—=

Hence,
X@@)= i x(mz™"
= 2 [ 5“ ;,(k)x,{n—k)]z"‘
Ao k=
= i x (k) i x;(n*k}.‘,‘"]
k- = ——
Now,
Z xyn-k)z™" = E x(m)z ™ = X (2)

(By putting n — k = m, when n = oo, m = eo, and when n = — o0, m = = 20
Therefore,

X@= Y nkz* Xy =X Xi(2)

e

Multiplication of two systems
If the Z-transforms of x,{n) and x,(n) are X,(z) and X,(z) respectively, then the Z-transform of

xy(n)xs(n) is
1 -
i??x'(v]xz[ﬂv @

where ¢ is a closed contour which encloses the origin and lies within the common region of
convergence of X,(v) and Xy(1/v).
The inverse Z-transform says

U SV
xy{n) = erj?xl(v)v dv
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The Z-transform of x(n), that is, xy(n)xs(n) is

- 1 2 -
= — P X, (W' dv-Xa(n)z
.,.2_:. 2xj ? :

2‘%} $x, (v}[ 3 x;(n)[%]-n] vl

Therefore,

1 ) ‘
X() = Kjgﬂxl(v)x,[;]v dv

For obtaining the ROC of X(2), it is understood that if X,(v) converges for ry;, < | v| < ryy and
Xi(z) converges for ry, < | z| < rag, then the ROC of Xy(z/v) is

L < < ray

v
Therefore, the ROC for X(z) will be
nry < |zl < nyny

Parseval's relation
If xy(n) and xy(n) are complex-valued sequences, then

n=

Y xmxm = 2%§x,(v)x;[vl,]v-‘dv

1f ryp ry < 1 < ryy ray where ryy < | 2| < ryyand rag | 2| < ryy are the regions of convergence
of Xi(z} and X;(z), we know that

1 -1
X(z) = —2}-1-_§x1(v)x,{—v—]v dv
If xy(n) and x,(n) are complex-valued sequences, then the Z-transform of x;(n) x;(n) is
xS )
X(@) = thﬁx.(v)xg[;-.-]v dv
When z =1,
1 1) 4
X(2) = Egc-’xl(v)xz[v—,]v dv

Initial-value theorem

If x(n) is causal (i.e. x(n) = 0 for n < 0), then

XO0) = lini X(2)
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X2 = Z x(mz™"

=x(0) + x(Dz" + 12zt + ...
Hence, for z = o=, 27" = 01

One-sided Z-transform
The one-sided or unilateral Z-transform of a signal x(n) is defined as follows:

X2 = Zx{n):"
n=0

The results of the different properties of the Z-transform will be changed as follows by the
one-sided Z-transform.
Shifting property. The Z-transform of x(n - &) is

X(@@) = 2 x(n-k)z™"

nal
Let, n — k = m. Then,
X@= Y xtmH = Y xme et
m=-k m=-k

o |

= Z x(myz™"zt + Z x(m)z™"t

m=0 m=-k

-1
= XN + Z x(m)z"

m=-k

Let, m = = 1. Then,

k
X@ =% + 3 x(-bhe'z

fal

L
= X+ * {z xt—f)l":|

i=1

Hence the general result will be

K
Xy =zt |:X'(Z) + Zx(—n]z'] (replacing ! by n)
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Final-value theorem. If the one-sided Z-transform of x(n) is X*(z), then
lim x(n) = ]in‘II(:. -NX*(2)
The above limit exists, if the ROC of (z - 1)X* (z) includes the unit circle. Here is the proof of the
final-value theorem.
Proof

n
One-sided Z-transform of [x(n + 1) = x(n}] = lim Z [x(n + 1) = x{m)]z™"

We know that x(n + 1) has the following Z-transform:

-

Z x(n+Nz "

n=

Putting n + 1 = m, the above Z-transform reduces 1o

Zx(m)z"""” = ix(mz"“z

mwl me=l

-

= D xmz ™z - x(0)z 3 2 X*() - 2x(0)

m=0
Therefore, the Z-transform of [x(n + 1) = x(n)] is
X*(2) - 2x(0) - X*(@)
One-sided Z-transform of [x(n + 1) - x(n)] is
2XH(2) = 2x(0) = X*(2) = (z = DX*(2) - zx(0)

Hence,
(z- DX"2) - 2x(0) = :ﬂi [x(n + 1) = x(n))z™"
or "
I:im(z—- 1}X+(Z)-li_lz‘llv(0) = 11_[!} :Lﬂlg [x(n + 1) — x(n)Jz™"
or

Iirr:(z =DX*(2) = x(0) + lim
1= n—am

D xln+ l)-x(n)]
n=0



Review of Some Mathematical Tools 65

or

I_i_r_r;(z— DX*(2) = x(0) + x(1) + X(2) + x(3)+ ... + 2@ + 1) = (0) = x(1} = x(2) = x(3) = -+ = x{x)

or
liml(z =DX*(2) = x(ec+1) = x(20)
=+

= lim x(nm)

2.3 CORRELATION OF TWO SEQUENCES

Correlation closely resembles convolution. The correlation measures the degree to which the two
signals are similar. Suppose, we have two sequences x(n) and y(n). Each of them has finite energy.

The cross-correlation of x(n) and ¥(n) is a sequence roff), which is defined as

o

rall) = Z x(n)yyin=0

ne=—m

I=0,21,2£2..,
or

roh= Y xn+D)yn)

A==

I=0,21,%2...
If the role of x(n) and y(n) is reversed, then

raly= z wn) xln-10)

o-—

)= Y yn+1x(n)

Am—=

If (2.1) is compared with (2.4), and (2.2) is compared with (2.3), it can be concluded that

I = 1=

@an

22)

23

(24)

Hence, r,(l) is the folded version of r(l), where folding is done with respect to ! = 0.
Therefore, r,,(/) provides exactly the same information as r,(f) about the similarity of x(n) 10 y(n).

"

The Z-transform of r(l) = Z x(nyy(n = 1), will be X(z) ¥(z™").

The proof of the above statement is as follows.
o) = x(D) ® -1
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Applying the convolution and time reversal properties, the above Z-transform will be
X(2)Y(z™"). Where y(n) = x(n), the above correlation is termed the auto-correlation. Thus,

rad= Y x(myx(n -1

A=—a

-

ryll) = Z x(n + 1) x(n)

Hence the Z-transform of the auto-correlation sequence will be X(z2)X(™ h,

2.4 EIGENVALUES AND EIGENVECTORS

We know that a system H is linear if and only if H [ayx,(n) + axwin)] = ayH [xy(n)] + a;.l [xn)]
for arbitrary input sequences x,(n) and x;(n) and any arbitrary constants a, and a,. The system H
will be time-invariant when it is excited by an input signal x(n) and that will produce an output
signal y(n) (Fig. 2.2). Thus,

yin) = Hix(n)]

If an output signal is delayed by k units of time to yield x(n — k), and again applied to the
system, the characteristics of the system do not change with time, the output will be y(n - k). This
is the time-invariant system.

The input-output equation for the system is y(n) = Hlx(n)] = nx(n). The response of the
system 1o x(n) is, ¥(n, k) = nx{n — k).

If we delay ¥(n) by k units of time, we obtain M) £ yn)=m(n)
M- k)= (0 - k(e - k) <
= nx(n - k) - kx(n - k) "
Hence,
¥ k) # ¥n = k) Fig. 2.2

Therefore the system is time-variant.
Suppose a linear time-invariant system is described by the following differential equation
d"y) d" 'y dy(r) p, 470 d™u(n) dum
—_——d,  ———— .t —— + 1 —_—t b, ..t + byult

T d! - de! =g b

where n > m.
¢ _ dt
Utilizing the operator S{S = o k=12..n| weget

" +a,_ S+ v a S+ ad VS = (byS" + by 5"V 4+ byS + by) u(S)

where the relation 8" + a, _,S"~' + ...+ a5 + ap = 0, is termed the characteristic equation of the
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system. If the transfer function of the system is described by
BS™ 4 by S™ .+ bS + by
S +a, S 4.+ S+a,

G(S) =

the characteristic equation is obtained by equating the denominator polynomial of the transfer
function to zero.

1
Suppose A = [: ] is a matrix, and the transfer function of the system is
0

CISi~A'B+D
where C, B, D are the other matrices. Then the transfer function will be

Adjoint (5] - A)
181 = Al

B+D

_ C-{Adjoint of(SI ~ A))B +1SI - AID
- 181-Al

Therefore the characteristic equation is | 5/ - A | = 0. The roots of the characteristic equation
are termed the eigenvalues of the matrix A, usually denoted by the symbal A. Therefore,

IAI-Al=0
or
A0 1 =1
- =0
0 A 0 -1
or
A-1 1
=0
0 A+l
ar
(A+1A-1)=0
or
A=lor-1
The eigenvector is defined as
[ -Alp=0

where p is termed the eigenvector. When 4 = 1 in the above example,

v
135
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=[]

Therefore, the characteristic equation [Af - A]p = 0 for 4 = | becomes

o 2]

Let

P =0

2py =0

Therefore, pyy = 0, and py; may be any arbitrary number which may be assumed equal 1o 1.
Similarly for A = - 1, the equation [Af - A]lp = 0 becomes

Fo o 2]
o olm]-lo

“2p+pn=0
In the above case, we have to assume arbitrarily that one value, say py; = 1, then pyy = 2.
‘Therefore, the two cigenvectors are
1 1
0 2

Thus, from the above example, it is.clear that any nonzero vector p; that satisfies the matrix
equation {4/ - A)p; = 0 is termed the eigenvector where A; are the eigenvalues of A.

or

or

0 6 -5]
Suppose the matrix A is [1 0 2 |, then its eigenvalues can be found owt from
13 2 4]
1A -Al=0
or

A0 0] Jos -5

0 A 0|-j) 0O 2(=0

[V VI § 3 2 4




or

or

Factorizing, we get

Review of Some Mathematical Tools
A -6 5
-1 4 =2|=0
-3 =2 (A-4)

MAA-4) -4 +6(-A+4-6) +5(2+3) =0
A -ar+s51-2=0

A-2A-1A-1=0

For 4 = 2, the eigenvector will be determined as follows:

Let us take p;; = 2, as an arbitrary number. Therefore, subtracting (2.7) from (2.6), we get

1 0 0] [o 6 -5 [p, 0
200 1 ol={1 0 2| py|=]o0
00 1] |32 aflp,] |o
200] [06 -5N[p,] [0
o zo|-[1 o z2l|l|p|=]o
002 [32 4ff|py] |0

2 -6 5|[p,] [0]

-1 2 =2||py =0

-3 -2 -2||{py) |O]

2p1 = 6py + Spy =0
= pu* 2pn - 2pu=0
=3py - 2py - 2py =0
2py +4py =0 or  py+2py=0

2=-12py or pn=-1

Substituting for py, in Eq. (2.5)

Hence,

4+ 6=-5py or py=-12

P 2
Py =]l
{ond 122

2.5
(2.6)
@7
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P2
For 4 = 1, the cigenvector is assumed | p;, |, then
Pz
1 00] [oe6 -5|[p.] [0
110 1 0f=[1 0 2 |¢ipaz|=|0
001 32 4 Pa 0
or
1 -6 5|[m] [0
1.1 1 -2||pal=]0
-3 -2 -3||py| |[O
or
P12 = 6pn + Spu=0 28)
-Pz+tpPn=-2pn=0 29
=3pi2 - 2pn - 3p=0 (2.10)
Let py; be taken arbitrarily as 1, multiplying (2.9) by 3 and (2.10) by 2, we get
-3p+Ipn-Gpp=10 (211
=6piz = 4pp - 6pp = 0 2.12)
Subtracting (2.12) from (2.11),
i+ Tpa=0
or
e P |
Pn = 3 P2 7
Putting p; = 1, py = ~(3/7) in Eq. (2.8), we get,
18 5
|"";+5Pn=0 or  pp=-3

Therefore,

P2 |3
Pn 7
Py
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Pi3
For the next eigenvalue 4 = 1, the eigenvector | py; | will be determined as follows:

P33

~5 Pia =P
Pa|=|=Pn
4| 1Lrs =P

- o
1

o o— o

[ =T -
(&)

I o0
1o t
00

1 -6 5|{ps
=1 1 =2{{pu|=
-3 -2 -3||py

a3 we

P13 = 6pyy + Spu=-1

3
AR i

=3pia - 2pn - Iy =
Multiplying (2.14) by 3 and (2.15) by 2, we gel

~3 |t

9
=3p13 + 3pn - bpsz = ?

10
=6pi3 ~ 4pn - bpy= o
Subtracting (2.17) from (2.16), we get

9 10 -1
pu+dpn= -7 ==

Taking p,; = 1 arbitrarily

1 2 .2
3+7p2,-—~,? or Tpy = 7 or pn——"-é-
Putting the values of pyy and pyy in Eq. (2.13), we get
l+-l-§-2—'+l=-5p,3 or pu.—__—46

49 49

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)
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Therefore,

Pi3 _|- 22
Fas 49
Pl |_a6

49

Note: When the eigenvalues are of multiple-order type, then
ai"_"")pn-qo 1=0
{A:I ’A)Pn—qfi = =Pu-g+1

where
n = number of eigenvalues

g = number of distinct eigenvalues.

For example, when the eigenvalues are 2, 1, 1, the number of eigenvalues will be 3 and the
number of distinci eigenvalues will be 2. '
That is why, for the second and third eigenvalues of 1, the equation of eigenveclor stands as

(ol =AY ps_341=0 where ;=1
(Bl-Dpm_a2=-pra1=-m

or
(Aaf = A)py = —p, where 4, =1

2.5 HERMITIAN FORM

If X is a complex n-vector and P is a Hermitian matrix, then the complex quadratic form is called
the Hermitian form. For example, consider the quadratic form

V(x) = 10x] +4x] +x3 + 25,0 - 250X, - 4xx,
which can be written as

101 -2][x
Vi =XPX=[x x, )| 1 4 =1flx
-2 -1 1|

where P is the Hermitian matrix. It is written with the help of following relation:
" L
X'px = Z Z axx;
i=l f=l

[a; = a;]
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Say, n = 3. Then,
i3
X'PX = Z Z ayxx;
iml jal
3
= z lanxpxy + agxxz + apxx]
i=1
= dp XXy + a4ty + apnag +dy X+ anfafy 4 dniofy + ayfal 4 il b dpig
= 2 2
= ayXyp + (dyp + oy + (@ + ayley + apxs + (ap + andion + anx;
_ 1 2 - P
= apxy + 2apxx; + 2apxxy + ants + 2apn + apts (Y oa; = ag)
Hence,
app =10
i =dan = 1
a3 =ay=-2
ap = dp= =1
a; =4
a3 = 1
Therefore,

ay @y a5 w1 -2
P= |ay ap an|=| 1 4 -1
a3y 3 an -2 -1 1

Again, if it is to be shown that V(x) is positive definite, then all the minors of the matrix P
are positive. This is also called the Sylvester's criterion, That means, in the above example:

0 10 1 -2
10>0 |]l ‘: >0 1 4 -1|>0
-2 -1 1

The rules for positive and negative definiteness are as follows:

(a)
®

()

@ V= xf+2x} is not positive d

If V= xi +x3, then it is positive definite in a two-dimensional state space of x, and x5,

Hvs=- a'l,\'l2 —azxg —a,x}, then it is negative definite in a three-dimensional state
space of x;, x, and x;.

If V = ay(x; + 47 + ay(xs ~ 3)* with @, > 0, a, > 0, then it is not positive definite in a
two-dimensional state space.

P

in a three-di ional state space of x;, x; and xy.

(&) If V= (x; + x,)°, then it is not positive definile in a two-dimensional state space because

V has zero value at all points in V which statisfies x; = - x;.
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That means V has zero value not only at the origin but also at other points. That is why, it is
termed positive semi-definite. Similarly, x,l +2x3 is positive semi-definile in a three-dimensional
state space. This is because it is not only zero al x; = x; = x3 = 0 but also at all other points on

the x; axis.

2.6 CALCULUS OF VARIATIONS

The calculus of variations is a powerful technique for solving the problems of control systems.
The subject primarily concerns with finding maximum or minimum valve of a definite integral

involving a certain function. It is 2 beyond finding stationary values of a given function,
An integral which assumes a definite valve for functions is termed functional. For example,

7 ES
If(x. ¥, ¥)dx is called functional. The necessary condition for [ = j.f(x. ¥, ¥)dx to be an
x) a

extremum is that

where ¥ e

This condition 1s called the Euler’s equation. We give below the proof of it

Suppose ¥ = y(x) be the curve joining the points A(x;, v,), B(x;, ¥;) which-makes an
extremum. Let

¥ = yx) + £nix) (2.18)
be a neighbouring curve joining these points so that, y=3(0) + En(x)
at A, n(x,) = 0 and at B, n(x;) = 0 (2.19)  A=Gy) < >B=(ny)
y=yx)
The value of I along the curve (2.19) is Y
Fig. 2.3
n
1= [flx 00+ en(o, ¥ + en'(nl de (2.20)
N
This being a function of &, is a maximum or minimum for £ = 0, when
ﬁ=|I'.‘at£=i] (2.21)
de
2f(x, a)

Differentiating under the integral sign by thes Leibnitz’s rule, if f(x, &) and be

dx
continuous functions of x and e, then

b L)
d _ [éftx @)
'd—x[:![f{l. a)d.l} = !de
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where a, b are constants independent of a. Therefore,

de T

dl af ox of dv, of &
of ox o] oy 22
J[ax e 3y o oy as]“{’r 222)

Since £ is independent of x, dx = 0.
de
oy’ f
Again from (2.20), g—i = n(x), i = ni(x),

Substituting these values in (2.22), we get

a. j[ & ey + gfﬂ(x)}
de ;

Integrating the second term on the right by parts, we have

g Yoo o {5

de
X
af _dfar Lodr , o _dfofll_g
= ].[ay dx[dy ]]l’j( Ydx % = (), for any value of nix), |:6y o 6,\

The above is called the Euler's equation.

e = 4
.[-1'1()- ix ]

l'l

Taylor's Series
If f(Z) is analytic inside a circle C with centre at g, then for Z inside C,

f ) 2 ffa)

fiZ) = fla) + flalZ - a) + —a) + .4 —(L-a)" +
SUMMARY
The Laplace transform used for the solution of linear ordinary differential equations is described
in detail with different examples of fi ions. The Z- form used for the swdy of discrete

control systems is also described in detail with different examples of Z-transformations. The
region of convergence of Z-transforms is explained as well. The inverse Laplace and Z-ttransforms
are also discussed with examples. The properties of Z-transform are covered too. The idea of one-
sided Z-transform is also given. The final-value theorem is also explained. In addition, the
correlation of two sequences is © d. Eig lues and eig are pi d in detail. The
Hermitian form is explained with an example. The idea of calculus of variations is given as well.
The Euler's equation and Taylor's series are reviewed.
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QUESTIONS

1. Find the Laplace transforms of the following functions.

3 20352 +4)
in* Ans, ————=
(a) rsin“r [ ns ‘1(:2 +4)z
cos 2t —cos 1 s +9)]
ettt Ans. =1
® ' [ " “g[ﬁu]
(c) ﬁ' [Am‘. log["_l]
I 5 i
(d) t sinh at [Am -(,2—2_‘52?
2, Find the inverse Laplace transforms of the following functions.
(a) - [ﬁ.ns Lsin at sinh at]
st +d4a* "2
5 2 1 1
—_— Ans, —=sin| =t [sin| =+/3
(b) I [ ns Jimn[21)5|n[zfr)]
() L |:.4M l(I—t:mili'}:|
s(s* +4) 4
s

) [Am. %[sin t- rc")]

s+ D2+ 1)

3. Find the Z-transforms of the following sequences.

® %':; o ]: Ans. E«rz"-n]

I_a2 ]

. ans, £238 142
- -1

Z sin@ 1

i Ans, —————

© sia(n+ 16 [ zzwzzcosaﬂ_

A |
(d) (cos 0 + i sin )" s (z-€%)
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E the i Z forms of following functions.
i
(a) logL [Am, u, = 0forn=0, & otherwise
z+1 n
® (Ans. n)
82 - 3
© ﬁ [Ans. (n* + Tn + 44"~

State whether the following statement is true or false: “If the Laplace transform of f{r) is
F(s) and *a’ is a real number, then the Laplace transform of €™t — 1) is M".
Give a brief justification for your answer.

What is the relation between a unit-step function and impulse function and from
Laplace transform of unit-step function, how do you find the Laplace transform of
impulse function?

&



Chapter  Transient and Steady
State Behaviour of
Systems

3.1 INTRODUCTION

The transient and steady-state behaviour of a system is usually termed the time response of the
system. To analyze this behaviour, a mathematical model is developed. This chapter describes the
time response of the first-order and second-order systems.

3.2 THE FIRST-ORDER SYSTEM

Figure 3.1 shows the block diagram of a first-order system. Here

- 1 _ Ris) 11 0(s)
IR(s) - 0(s)] 7= = O(s) %) +
R(s) _ 1
Ts O(”[] * Ts] Fig. 3.1 First-onder system.
or

Ofs) _ l Ts 1
Ris) Ts Ts+1 Ts+1
Depending on the type of input and initial conditions, the system response will be
described. Suppose the input is a unit-step input and the initial conditions are zero.
- . 1 .
For a unit-input step input, R(s) = 5 and the output response will be

_1 T
TWTs4D) s Ts4l
Taking the inverse Laplace transform,

oln=1-¢""
Figure 3.2 shows the graphical representation of unit-step response of a first-order system. Now,

dolt) _ _le-:rr 1
d T |y T

Ots)

78
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From the preceding expression, it is
clear that at ¢ = 0, the gradient of the output
with respect to time will be /T,

That means the base of the gradient at
time ¢ = 0 is the time constant for the steady-
state value to reach uwnity, which is the
steady-state value theoretically as 1 tends to
infinity. From this it is clear that a large time
constant will take more time to attain
steady-state value and the system will be
termed sluggish.

Figure 3.3 describes two systems [ and
II. Since the time constant of system I (T)) is
less than the time constant of system II (T5),
the system I reaches its steady-state value
much earlier than the system II does, as per
mathematical interpretation.

When the unit-ramp input is provided,

olf)

T r—-— L}

olf)

= T t

L

Fig. 3.3 Comparison of iwo first-order systems.

L
&

S(Ts+1) - Tsz[.Hl)
T

then
R(s) =
and
1
Ols) =
Now,
1
Aset
T
where
A= limdfs—1
s=0 ds 1[ 1
s s+ —
T
B=lim =T
=30
L

C= lim ~ =72

P
T
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Therefore,

1 1| r 71
R R R
T 5s+— L
D) o
Ly, _r.r.m
sT 5 1 s £ Ts+l

L S

5 Ts+l

Taking the inverse Laplace of the above equation, we get
o) =1-T -
The input was ramp input, i.e. r(f) = . The output becomes o(f) = t = T(1 — 7).

Thus, it may be observed that when the input is unit-step input, i.e. the steady-state value is

1, then the transient response becomes | — ¢, and when the input is unit-ramp input, i.e. the

steady-state value is ¢, then the transient response becomes ¢ — T(1 - ey,
The error response is the difference between the input and the output. That means, in the
case of unit-step input, the error response of the system will be

1-(1-eMy=¢"T
And in the case of unit-ramp input, the error response of the system will be
t~[t=T( - e

=T(l - ™)

The steady-state error in the case of unit-step input is T

LU}
olt)
7z

lim (error response) _ lime™™ =0
[ =]

The steady-stale error in the case of unit-ramp inpul is

" —e Ty =
,li.nlf(l =T Fig. 3.4 Unit-ramp response of

[first-order system
Figure 3.4 describes the unit-ramp response of a
first-order system where the steady-state ervor is T.

3.3 THE SECOND-ORDER SYSTEM

Figure 3.5 shows a position control system. This is nothing but a second-order system. When the
error exists, then the motor develops a torque to rotate the output load in order to reduce the error
lo zero.



Transient and Steady State Behaviour of Systems 81

Input . Output
potentiometer potentiometer

Input
device

—i|I—

Amplifier
Fig. 3.5 Example of a second-order system.

For constant field current, the torque T developed by the motor is

T=K-i (where { is the armature current)
Therefore,

2
199 L fd8 4 ki
dr? dt
or
I5°8(s) + Fs8(s) = KI(s) = T(s)

We assume that the gear ratio is made such that the oulput shafi rotales n times for each
revolution of the motor shaft. Thus,

O(s) = n8(s)
Also,
[R(s) - O(IK, = E(s)
where
K, = voltage/angular displacement

Eis) = error signal.
Now, E(s)K; = volt_age applied to the motor where K5 is the amplifier gain. Therefore,
K,E(s) = Ey(s) + IsXr + Ls)
where Ey(s) is the back emf. Now,
E,y(s) = K;[Laplace transform of @(:J}
= K358(s)
Therefore, the block diagram will be as shown in Fig. 3.6.
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Ris)

Fig. 3.6 Block diagram of Fig. 3.5.

From Fig. 3.6, the block diagram is converted to Fig. 3.7, where
[
r+Ls Js+ F
LI B
r+ls Js+F

Gys) =

1+ K

K
(r+Ls)(Js+ F)
_r+ Ls)Is+ F)+ KK,
T+ Ls)Us+F)

K
T (r+Ls)Us+F)+ KK,

e ELO
L

Fig. 3.7 Simplified block diagram of Fig. 3.6.

The final form of the block diagram will be as shown in Fig. 3.8.

R(s) O(s)

KyKyGy(s) Ln

Fig. 3.8 Final form of the block diagram of Fig. 3.6.
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Since the efect of Ly is small compared to mechanical system inertia, the same can be ignored.
Therefore,

K

GO = TR T kK,

Forward path transfer function,

|
Gls) = K,K,Gﬂé‘];"

X
K,K;Kn _ r
slriJs+F)+ KKy~ strlds + F) + KKy
r
X
—r
EEPRGELISN
r
where K* = K,K,Kn. Putting,
p=frekb e K
r r
L
xF k"
o) = sIs+Fy (7 s(ts+ 1)
K ?s-l-l

Lk ad 1s

T~

The above transfer function is that of the standard second-order system as shown in Fig. 3.9,

R(s) K Ofs)
sm+1) o

Fig. 3.9 Overall transfer function of the second-order system.

Therefore, the overall transfer function of the second-order system (Fig. 3.9) is

o
@ __s(zs+ 1) - K" ) s(rs+1)
R(s) [ s(ts+1) [s(ts+ D+ K™

1+
s(ts+ 1)
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e

K
15+ s+ K™

K"

2. 5 K
5 —
T T

The transfer function of a standard second-order system is expressed as
0is) _ o;
R(s) 5 +2es+ol
where
{'= damping factor (or damping ratio)
, = undamped natural frequency.
Comparing the transfer function of Fig. 3.9 with that of the standard second-order system, we have

-1 K7
2w, = p and w; = "
or
K" 1
i e
or
(ol L VP
zlir“'s 2K
= JF = F"
K" 2JK"J
and

The equation 5° + 2{a,s + s* = 0 is called the characteristic equation because the time
response of any system is characterized by the roots of the denominator, which are the poles of the
transfer function. Now the response of the second-order system to the unit-step function is
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1 o
Ofs) =

s 5+ 26w, + o}

w?

) s[5+ ¢@, - joni-¢? ]"[ucf»,, + jo1-¢*)

Because, s* + 2{@,s + @ = 0. The roots are

e -2, +4l’0? - 40
=-fo,+ 0,0 -1 = ~{o,  jo,I-0*

‘Therefore,
2420wy + o = (5 + Ca, - jo 1 -8 (s + Lo, + ja\1-¢7)

and { < | indicates the underdamped condition. Now,

ofs) = A + B + B
i I+§0}‘ -ja},,\ll-;z :+gmn +jwn‘l-§2
Hence
2
A= %E =]
_ w} - o st
#= s(qu. +jmn\(1—;2] here £ = o o=
w;
(e, jouni-¢)(2j01-8)
- @
B 20),'“1—42 [—m»\ll—cr _jcmn)
1
2W1-8 (- + j¢)
Similarly,

T e X

8
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Therefore,
1
¢ (ﬁ vie) - (i-¢ -

o= 3~ +0o, - jo1-C  s+{o, + jo1-C

Hence,
e_{;..,_m, " e(-;n..-jm.‘ﬁ]r
e ie k) Hhe (e -x)
PR Mﬁ &St m.\'r_'

e R We R

€St l( el'ﬂuﬂrl_\':" -J"’o\'rl-\. ' ]

rﬁl Iy ey

([ ) (T )
-0 +02
o J___ - z J]._
ZJ_[( 1-¢ 15 'co;(m [4 .r+_;5|n(n) [4 )l:|
+(ﬁ+j§) lcos(m'ﬁ]r—jsin(mnﬁ)l}]
= |_%{2ﬁcns% ﬁr + 2§sin(a},ﬁ)r}
=1- j:% [ﬁ cosm,.ji_-g_zr + Csinn}_ﬁr]
Now, let
A sin o= ﬁ

Then,

Acos a={

Alsin® a+ Aol @ =1 -2+ 2= 1
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A=1

sina !gl—gz
tan = =

cos 4

Therefore,

[3

i

J]L"z sin (0,1 ¢ 1 +a

1- e"““-’z sin mﬂ\il-gzn-mn"—'lggz]

alty= 1=

[dsinacmm, 1-8 1+ Acos a sin @, /1 = &7 IZI

1-

=z

The steady-state value of the output will be
04 = limo(t) = 1
1—»=

We know that in the underdamped condition the value of £ will be less than one. The unit-
step response of the underdamped second-order system will be as shown in Fig. 3.10.

e~—§wﬂ:

..... i

Fig. 3.10  Unit-step response of the second-order system.

The definitions of some terms specifying time response are (Fig. 3.11)

Delay time. The delay time f; is the time required for the step response to reach 50 per cent of
its final value in the first attempt, as indicated in Fig. 3.11.

Rise time. It is the time 1, required for the step response to rise from 0 to 100 per cent of its final
value for underdamped systems, as shown in Fig. 3.11. But in the case of overdamped systems, the
time required for the step response to rise from 10 per cent to 90 per cent of its final value is
termed rise time.

Peak time. It is the time needed for the step response to reach its peak overshoot. It is denoted
by t, as shown in Fig. 3.11
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Peak overshoot

]
f P~

oft)

I

Fig. 3.11 Typical unit-step response of a control system.

Peak overshoot. This is the normalized diffe b the peak overshoot and the steady
output. The peak overshoot M, in percentage

_ ot o)

A pre 100%

where
o(fp) = output at peak time f,.
o(=0) = output at steady state. The ‘e’ indicates the theoretical concept of attaining steady
value at the mathematical value of time infinity.

Settling time. It is the time needed for the step response to reach and stay within a specified
tolerance band. This is generally 2 to 5 per cent of the final value. It is shown in the Fig. 3.11
as f,.

Calculation of rise time

=Gt ' -
o(t)y= 1- ° sin m"\}l—§2f+mn“']—c;i]

1-¢2

5

Hence,

d"“"ji%s"“ “’n\”';zly+tnn']—ul;';1] .
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or
ef sin| @, 1 - 3f,,+lan"——-—']_g1 =0
N-2 ¢
or
sin [m,, Ji-81, +tan™ |;gf ] =sinm
or
@, 1-¢* 1, +tan™ I;é': =x
or
o1~ = x-tan™ "l;;z
or
1 i_'§2
7 -tan
1, = 6
w,J1-8°

Calculation of peak time

% = 0 at peak time.
olt) = I—vj%sin[m"\h_—-?f+tan"‘h;?]
$=Jlﬂ‘_€ c"""’5111[¢a:| J—gf-um. ‘[.:—]
j;c_%ﬂ’.mws[%ﬁfﬂm"lh—?ﬁ =0
or

Lo, sin| 0,1~ 1+ tan” ——'w]—m J1- cos[m 2+ tan™!

1=
e

]=ﬂ
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ar

L, sin| @, y1-& r+1an

- "lggz :| - 1= cos[m,,\}l—;: r+|a|-|"———-——-—'||;g1 =

Let

Acos@=¢ and Asin@= J1-0°
Therefore,

Alcos? @+ A'sinf 0=+ 1-%=1 o A=1
Also,
Ji-¢ Ni-
I.an8=—g or 6=tun"—g
9 ¢

Therefore,

sin[m,,\ll -t +tan” legz ]cnsﬂ—sin ecos[a}ﬂjl—f t+ um"—"l_;‘:!] =

or

[
sin[w,‘h—gzrﬂan" l;C —9}:

or
r‘ _n
sin[a) Ji-¢ r+tan™! —mn' l{": ]:0
or
sin @, 1= r=0=sin0° = sin 7= sin 2r=sin 3= ...
or
w1-Ct=n
Therefore,

n
I, =

' w,1-¢?

Calculation of peak overshoot
The peak overshoot is

M, = oft,) - 1
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]_1

1- :‘f_]i% sln[w,,\}ll - 1, +tan”! |;g"

=~ j:j% sin[w,‘\jl - Cll',, +tan”! @J

gz [ou:',w 1-& o ]_g2+l z ]

- h-z2
¢ sin{t;m"-—-—-—; ]

]

= —
yi-g ¢
Now, let
J1-2
tan™! =8
(4
ar
1-&  sing . 3
tan 8 = ) or  sin @@= 41-0
or
8 =sin1-¢2
Therefore,

Thus, the percentage overshoot

Calculation: of settling time
If the tolerance band is considered 2 per cent, then the envelope of the time response curve, i.c.

oS

=g

will be 0.02. Therefore,

where 1, is the settling time.
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For low values of £
S = 0,02

For wlerance band of § per cent, the time constant will be approximately ‘C% or 37,

Steady-state error calculation
The steady-state error is represented by

- : R 3 J\I=
lim [1 - e(n] = Ilm{l—l»r-j_-.:smlw, I—C’Hmn ! H =10
1= =T I_c! g

3.4 STEADY-STATE ERROR OF FEEDBACK CONTROL SYSTEM
AND ITS TYPES

The unity feedback system shown in Fig. 3.12 is represented by

o) _ G
1+G
R(s) +G(s) R(s) E(s) 6] 0ls)
or L]
O(s) = R(s) N G(s)=1-G(s)
R(x) 1+Gis)
or Fig. 312 Unity feedback system.
-E(s) - -1
R(5) 1+ G(5)
or
E(s) = R(s)
1+ Gis)

The steady-state error is represented by the final-value theorem,

ey, = lime(t) = Iirra sE(s)

. sR(s)
- !I-'RJ 1+ G(5)
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When the input r{(r) = u(t), then

G =

R(s) =

Therefore,

i
= sE(s) = li
ew= B = I 2 T TaG0)

1+K,
where KP = G(0) is termed the position-error constant.
dr(t
When the input is unit-ramp, then r(f) = 1. Since % = |, this ramp input is also termed

the velocity input, which is just like the unit:step input. The Laplace transform of r(r) = r is R(s)
1 . .

=-. In this case, the steady-state error is
¥

1
5

- ]jmﬂ - Iim—f—

5 501+ G(s) | 0 1+ Gls)

= lim ; = lim ;
s=+0 54+ 5G(5) 10 3G(5)
1

K,
where lirré 5G(s) = K, is termed the velocity-error constant.
=

T
‘When the input is unit-parabolic then Hr) = ‘? ‘Therefore,

a2 drn _,
dt 2 d? -
0] : o £ . N
Since e =1, the unit-parabolic input 7 is termed unit-acceleration input. The
t
2
Laplace transform of s s’l Hence R(s) = ei The steady-state error in the case of unit-
parabolic input will be )
. sR(s)
€= :Ill:; 1+ Gl(s)
o
R N S
201+G(s) & +5°G(s)
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= |i
0 SGls K,

where lirrsszG(s) is termed the acceleration-error constant.

Here we have developed the following error constants during our study of steady-state error
with different inputs on a unity feedback system.

Input Error constant
Unit-step input Position-error constant, K, = G(0)
Unit-ramp or velocity input Velocity-error constant, K, = Iina 5G(3)
33l
Unit-parabolic or acceleration input Acceleration-error constant, K, = ]irrml’s2 G(s)
=

Type of feedback control systems

The open-loop transfer function G(s) of the unity feedback system shown in Fig. 3.12 is expressed
either in the time constant form or in the polar form:

K(Tys 4 D(Tps + 1)... ‘
= —_—— constant fi
o) M Tps+ D(Tys +1) .. (Tisae-constant forin)

G(s) = M (Pole-zero form)

s+ p)s+py)...

The term 5" in the denominator of both the above equations indicates the number of time
integrations to be made. When n = 0, then the system is termed “type 0 system. When n = 1, then
the system is termed “type 1" system. When n = 2, the system is termed “type 2" system.

Suppose, G(s) = ﬁ in the case of a unity feedback control system, then the system is a

“type 0" system,
1 1
Os) _ _Ts+l _ Ts+l
R(s) 14t Ts+2
Ts+1 Ts+1
L
Ts+2

indicates that it is a first-order system. Hence the above system is termed the first-order type 0
system.

If G(s) = — !

ra in a unity feedback system, then the system is a type 1 system, whereas
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1
O(s) _ s(s+a) _ 1
Ry 1 S +sa+l
sis+a)
indicates that the system will be of second-order type.
The steady-state errors of the type 0, type | and type 2 systems are tabulated below:
System Steady-state error Steady-state error Steady-state error for
SJor unit-step input Sfor unit-ramp input  unit-parabolic input
Type 0 system ! - lim =0 m-]——-w
1+G(0)  1+K, -0 5G(5) i $G(s)
Type 1 system ! =—l—=0 lim - lim--]—=uo
1+G(0) 1+ »05G(s) K, 10 $2G(5)
1 1 . 1 1 1 1
—_— =0 =—= =—
Type 2 system 14GO) 1+ it L il 3

For non-unity feedback systems, the steady-state error can be calculated in the following

manner.
First of all, the acluating error signal is delermined from Fig. 3.13.

E(s)
Ris) S 3 el 0(3}__

Fig. 313 Non-unity feedback system.

Now,
G(s
Ofs) = #‘r;ﬁ(ﬂ Ris)
or
o) _ G(s)
R(s) 1+ G(s)H(s)
Therefore,

E(5) = R(s) = O(s)H(s)

G(s)H(s)

= R(5) - ——-—
1 + G(s)H(s)

R(s)
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_ R+ Gls)H(s) - G(s)H ()]

1+ G(s)H(s)
ar
B = RS TG oHe)
The steady-state error will be
sR(s)

By =

lim ————
=0 1 + G{s)H(s)

Now the error constants can be determined in the same manner as it was done in the case of
the unity feedback system by replacing G(s) by G(s)H(s).

EXAMPLE 3.1 What type of systems are the following block diagrams?

2
Fi 3.14 has th -loop transfer function, G(5) = —5———
(a) Figure e open-loop transfer function, G(s) 2512
Ris) +— 2 os)
-~ 5342542
[
s
Fig. 3.14
Since here one integration is being observed, it is a type 1 system.
5

b) Fi 3.15 has th -loop transfer function, S S ——
(b) Figure e open-loop serlunconG(s) iR a0 3)

R(s) + 5 s)
(s+2}s2+25+3)

Fig. 3.15

Since here no integration is being observed, it is a type 0 sysiem.
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)

1
Figure 3.16 has the open-loop transfer function, G(s) = %Jr—*
55 (s+2)
R(s) 47 s+1 0(s)
/ s3s+2)
Fig. 3.16

Since here double integration is being observed, it is a type 2 system.

SUMMARY

The time response of a first-order system has been dealt with in this chapter. The effects of unit-
.step input and ramp input {unit-velocity input) on the first-order system are explained. A second-
order system example is taken and the effect of unit-step input is explained in detail. Delay time,
rise time, peak time, peak-overshoot are defined. Calculations of rise time, peak time, peak
overshoot and steady-state errors are shown. Steady-state errors of feedback control systems and
their types are explained. Types of feedback control systems are explained with examples.

1.

[

5.

QUESTIONS
What do you mean by step input, ramp input, and impulse input? How do you represent
the impulse function graphically?
Determine the step-input response of a second-order system. -
Define “settling time®, “rise time’, and ‘peak overshoot® of a control system.
The block diagram of a position control system with velocity feedback is shown below.

R(s) +~ 10 0Ois)
s(5+2)

Determine the value of « so that the step response has maximum overshoot of
10 per cent. What is the steady-state emror?

What is the difference between order and type of control systems? Explain clearly.

(a) Sketch the time domain response cff) of a typical underdamped, second-order
system to a step input r(f). On the sketch, indicate the following time domain
specifications:

(i) Maximum peak overshoot, M
(i} Rise time, ¢,
(iii)  Settling time, ¢,
(iv) Steady-state error e, due to step input
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(b) Derive expressions for (i) M, and (ii) #, for a unity feedback, second-order system
whose open-loop transfer function is given as

wz

s(s+2¢ w,)
(¢) For the above system determine the values of (i) the damping ratio £ and (ii) the
undamped natural frequency @, so that the system responds to a step input with
5 per cent peak overshoot and a settling time of 2 seconds.
(d) What is the steady-state error e, of the above system to a unit ramp input.
7. Define the steady-state error and error constants with respect to unit-step, unit-velocity
and unit-acceleration inputs. How can the steady-state error be reduced?
8. An ac-dc servo system is shown in the figure below. The transfer function of the

demodulator is given as K, (dc volts/ac volts/ac volts). The sensitivity of the synchro-
error detector is K, (volts/radian), the gain of the dc generator is K (volts/field ampere).

G(s)=

The dc motor is separately excited and has a f of K, volts per radian/second

and a torque K7 (newton. fampere). The rotor inertia and friction are

negligible.

(a) Draw the block diagram of the sy indicating the fer function of each
block.

(b} Find the steady-state error for a velocity input 6, or | radian/second given that the
system paramelers are:

K, =30, Ka=4, Ky=5 K,=100
Ky =1, Kr=05

R.=200Q, L.=2H

R,=05Q, Jy=05kgm?

fi = 1 newton-metre per radian/second and Ny/N; = | = gear ratio coupling motor to
load.




9.

10.

11.

12.

13.
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A servomechanism is used to control the angular position 8, of a mass through a
command signal 8. The moment of inertia of the moving parts referred to the load shaft
is 200kg-m? and the motor torque at the load is 6.88 x 10* N-m per rad of error. The
damping torque coefficient referred to the load shaft is 5 x 10° N-m per rad/s.

(a) Find the time response of the servomechanism to a step input of 1 rad and
determine the frequency of transient oscillation, the time to rise o the peak
overshoot and the value of the peak overshoot.

(b) Determine the steady-state error when the command signal is a constant angular
velocity of 1 rev/min.

(c) Determine the steady-state error which would exist when a steady torque of
1200 N-m is applied at the load shaft.

Find the type and order of the system with

15 12
G(s) = e and  H(s) = 7

The closed-loop transfer function of a system is

25K
s +(5+500K,)s + 25K

Find the values of K and X, so that the maximum overshoot of the output is
approximately 20 per cent and the rise time is 0.05 s.

(a) A second-order servo system has poles at -1 + j2 and a zero at =1 + j0. Its steady-
state output for a unit step input is 2. Determine its transfer function. What is its
peak overshoot for a unit step input?

(b) Define Type 0, 1, and 2 systems. Determine the type, order of the system shown in
the figure below. Determine the steady-state value of the error signal ¢ for the
following input:

Vin=0 for t<0

VW=2+3 for 120,

10(s5+2)
s(s+1)

A second-order servo system has poles at =1 + /2 and a zero at -1, Its steady-state
output for a unit step input is 3. Determine its tronsfer function. What is its peak
overshoot for a unit-step input?
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4.1 INTRODUCTION

We have so far modelled the physical system by the transfer function approach. Although the
transfer function model provides us with simple and powerful analysis and design techniques, its
demerit is that it is defined under zero initial conditions. Moreover, the transfer function approach
is used to model only the linear time-invariant systems, The transfer [unction approach for
ltiple-input and multiple-output systems is really troublesome. To speak the truth, the wansfer
funcuon modelling does not give any information regarding the internal state of the system. Even
for a stable output system, it may so happen that some of the system elements may exceed their
specified rating. Hence, information regarding the internal state of the system is really essential.
The above points are the main reasons for the development of the state-variable approach. It
is mothing but a direct time-domain approach leading towards system optimization. Usually, we
are familiar with two types of variables, e.g. input and output variables. In the case of state model,
we have o deal with three types of variables—input, output, and state variables. For example, the
displacement at any time can be determined if the applied force, initial velocity, and initial
displacement are known. The displacement at any time in this case will be the output variable, the
applied force at that tme will be the input variable, and the initial velocity and the initial
displacement will be the state of the system. The state of the system at any time is expressed by
state variables. We know that the motion of a simple mechanical system is expressed
mathematically by the equations

d 1 d
Iv(l'} = FF(:) and Ix(r) = W)
Thus,

!
W) = %‘[ Feydt

o '
ﬁ[ F(t)dt + ﬁ ;!' F(tydt

i

1
|
Vi) + o IF{:M’ @.1)
L]

100
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Here vitg) is the initial velocity and F(1) is the input variable, that is, the force from 1 = 1, onwards.
Thus,

xn = ]v(r]df = f]'v(r}d'r + ]’mm

—m fo

r '
1
Alfp) + J- V(Io)+vaIF(I)df dt

o L]

1 L
= X{tg) + Vo)1 — 1) + ﬁ _[dr IF{r)dr 4.2)
fy o
Thus it may be observed that the output x(1) can only be described if the states x(ry) and
vitg) are known in detail along with the input force variable.
All the above variables are usually represented by vectors termed input vector wif), output
vector ¥(r), and state vector x(r). Thus,

(1) »l x(n

0 2
u(e) = u2:(") Py = h:{ s x(t) = I':m
Hig, (1) yp() X (1)

From Eqs. (4.1) and (4.2), 1t is clear that their solution will give two state variables vw(r) and
a(t) of the system. Hence, for an nth-order system, the state variable representations are arranged in
the form of n first-order differential equations,

dx;

I = fildg Xy ooy Xy by Uy )
dx,, -

o = flXgs Xae o ooy Xy My, By ooy Hly)

and the integration of the above equation gives

Ly +(¥) L,
' 0T T
x(1) = x{ty) + jff(xl,x:,...,x,,,u,,uz,“..u_)d.' ) _I_ )
o gt iy —-|—C iy n
wherei=1,2,...,n S -

Now we illustrate the method of state space
representation with a system shown in Fig. 4.1. Fig. 4.1
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From Fig. 4.1, we get

di,
e-v=in +L,d—:

diy .
v= th?-Hzr;

L dv
!1=|2+C‘;}‘
Let
V=X, =X, h=x
LA RIS FUNI PRI I
a S ceh C'z— 17ch
dip 1. 1
i ---El-i,q+—l:(¢-v)
1 1 1
= -k +t—e-—x (v ip=x3and v=1x)
L
B e e iy = 252
o Iq(" i) = L L

Here e is nothing but the input voltage u(f). Thus, we have

1 1
,tl=Ex2—E-x3
1 ]
I1=—31‘ﬁ‘x3
or

1 1

0 - =
& ¢ ¢ X 0
; 1 4 u(r)
Ll=l-— -+ 0 ||x|+|—
. L g NEE
3 1o, n 3 0

L, L
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or
1 1
] Z =
V]
I : C C 5
i | =]-— L ¢ —
| = x|+ u(r)
, L L L
Ty 3
s 0 _h 4]
L, 2

The output can also be expressed as follows,
Let voltage across r; and current through r, be the outputs y; and y;, then

Rl
[yl ] ) [0 o rz} x
= 2
¥2 001 =
since y; = iyry and y; = iy

As another example, we find the state space representation of the circuit shown in Fig. 4.2.

Here,
di
N=ir+L— + Ko
vty = ir 7 b
T = Torque = Ki
re 40, pdo
dr* dt
‘Therefore,

Vs) = i(s)r + Lsi(s) + Ky @(s)
Tis) = Ki(s) = J5*8(s) + Fs8(s)

di de
=i —+ Ky —
vit) .|r+LdI+ B
. J d*8 F de
)= ——+—-—
K dr K dt
Letx; = @, x; = @, x3 = i. Then,
v=ul)
,i'|=x2
d6 d6 F K
Xy = = = = —mm Xy b — X,y
&t dr J

. _ K, r
iy = }— = —H(.’)-—Iz —EXJ
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Therefore,
0 1 0
X F oK X 0
\"2 = (0 -'T 7 X |+ 0 |ulr).
Xy X3 1
o Ko _r !
L L

4.2 STATE MODEL OF LINEAR TIME-INVARIANT SYSTEM

A system is linear if and only if
Hiayuuy() + agus(1)] = a Hluy(1)] + aH{uy(n]
for arbitrary input sequences uy(r) and wy(r) and any arbitrary constants a; and a,.
When a system H is excited by an input signal #(r) and produces an output signal y{r), then
W) = Hlu(n)]

If an input signal is delayed by K units of time to yield u(r ~ K), and is applied 1o the same
system, and if the characteristics of the system do not change with the time, the output will be
y(t = K). Such a system is termed time-invariant system.

Suppose the system 1o be dealt with is as shown in Fig. 4.3

The input-output equation for the system is (1) = H{(u(1)] =
tu(f). The response of the above system for input u(r — K) will be

tu(t ~ k). But in the case of a tme-invariant system. it should be 0 ROLL 0]
¥t = Ky = (¢ - Kyu(t - K.
Hence the system shown in Fig. 4.3 is time variant. Usually, !
for a linear time-invariant system the stale equations are
Fig. 43
represented by
% = Ax(t) + Bu(t) + Ew(r) (4.3)
where
-xlm-
X5(1)
x(r) = State vector = z: (nx1)
s matrix
5,0
[y (1) ]
u, (1)
uiry = Input vector = 2 (px1)
: matrix
[ 4p00)
_Wl(‘ )
()
wi(t) = Disturbance vector = mz: (vxl)
: matrix
L w, (1)
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The output equations are represented by

where

)
)= .1:2;(-')
L%a (1)

_ul(!')_
i
u(t) = "2.( )

4]

()]

= | "2

[, (1)

y(1) = Cx(t) + Du(t) + Hw(D)

(nx1)

matrin

(p=1)

matrix

(vx_l)

matrix

The state equation coefficients are the matrices

A = [n x n] matrix
B = [n x p] matrix
C = [g x n) matrix
D = [g x p] matrix
E = [n x v] matrix

H = [g x v] matrix

The Ax(r) is the horﬁogeneous part of the state Eq. (4.3) and u(r) and w(r} are the forcing functions
of the state equations.
The state-transition matrix is defined as the matrix which satisfies the linear homogeneous

state equation

20 - axw

dr

(4.4)

If ¢(1) is the m X n matrix that represents the state-transition matrix, then it must satisfy the

equation

dx(t)

do(r)
—= = Ad(r
&t $(1)

The solution of “n Ax(1) can be found out as follows. Let

a0 = ce™
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Then,

eme™ = Ace™
or

m=4A
Therefore,
x1) = eV

Now, at t = 0, if x(r) = x(0), then

N=x(0)=¢
Therefore, the solution of Eq. (4.4) is

x(n) = x(0)eV
Suppose (1) = ¢V, then it must satisfy the equation

d@(:) - AKD
because i{?ﬂ = %(8") = Ae™ | Again, as per assumption, Ag()) = AeM

Therefore, the solution (4.5) already deduced, can also be written as
x(1) = ¢()x(0)
By applying the Laplace transform to Eq. (4.4), we can write
3X(5) — x(0) = AX(5)

X(s) = (s] - A)"'x(0)

(4.5)

(4.6)

4.7

Since the above expressions are written in matrix form, in place of s, s/ is to be taken where [ is

the unit matrix.
Taking the inverse Laplace transform of Eg. (4.7) yields

2y = L7 (sl =AY x(0)
By comparing Eq. (4.6) with Eq. (4.8), the state-transition matrix is
o) = £7(sl - A)!

1 1
where (1) = e =1 + At + ;Azr’ +-3—|»1.3|‘3 +

4.2.1 Properties of the State-transition Matrix
The properties of the state-transition matrix are:
o) =1
¢ = $t-n)
otz — 1)t ~ tg) = 9ty — 1) for any fy, 1, and 1
19(* = ¢(Kn  for K = positive integers

(4.8)
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Proof of the properties

| 1
We know, ¢(1) = 1 + Af + Fa‘rz +?4313 I

Whent= 0, ¢(0) =1 (Hence the first property is proved.)
Now,

¢ ="
or
pnetM=et. M=
or
=97l
¢(-r) = """ = ¢ = $~'(r)  (Hence the second property is proved.)
Also,
@U‘: 1) ¢(f| _ ru) = eJlu:—fl}eA(n—mJ
= M AnSAR - AR
- ed(l;—l'u)
=@ty - 1y} {Hence the third property is proved.)
Lastly,

1gnF=e"-ev. ..M (Kiterms)

= e = (K1)  (Hence the fourth property is proved.)

4.3 STATE-TRANSITION EQUATION

The state-transition equation is the solution of the linear state equation. The linear time-invariant

state equation is

% = Ax(t) + Bu(t) + Ew(r).
Taking the Laplace transform of both sides, we get

sX(s) - x(0) = AX(s) + BU(s) + EW(s)
X(s)sl - A) = x(0) + BU(s) + EW(s)

X(s) = [s/ = AY' X(0) + [/ - AY BU(s) + [sT - A]'EW(s)
Taking the Laplace inverse of the above equation, we get
x(0) = £7M(sl - A)7'X0) + £ 7((s] - A [BU(s) + EW(s))

i [
x(t) = ¢(Nx(0) + I ¢t — D(Bu(t) + Ew(Dldt [ F(s)Fys) = z[!ﬁ{r)ﬁ(r -7) dr]
] ]
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EXAMPLE 4.1 If a state equation is expressed by

dx (1}
dt 0 x| {0
dry(0) [-z ~a][x:m}+[1]"‘“
dt
then
0 1 0
SEE N
and
for u(t) = 1 120
Therefore,
ﬂ_“[s 0]_[ 0 1}[: -1]
0 s -2 -3 2 5+3
and

(sf—a’t)"=;[”3 1
S +3s+2] -2 &

The state-transition matrix will be
(2e™! _c—lr) (e - 8'2') :|

0 =¢(sf- A" =
o) = 27(sf - A" [(_h_,+ 2T (o 2 26)

Therefore,
_ J {h—{r—:) _'!-Ju-:)) (e-(:-r} _e-]ll-l]) 0
() = $() x(0) + J[(_w-.-” petu-ny  mn 4 ey [ 1]7°
or

(2e” - (e —e¥) 05-¢" + 0.5
1= o+ tz0
X [(_2‘-: +2€-2f) (_e-l + ze—l.r) O ~t =2t

€' -¢
Now, #'[(s! = AY')BU(s) can also be calculated as follows:

e | b [s+3 djfol1
LT - A)'BU(s) = £ [,2+3‘,+2 -2 s5]|lys

a v
L4342

—_t | —

05-¢" +05e7Y
= whent 20
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A state model can also be represented by a block diagram. Let us consider that the
disturbance vector is zero, Then,

dx(1)
e Ax(r) + Bu(t)
) = Cx(r) + Duln)

Figure 4.4 shows the block diagram representation of the state model of a linear multi-input

multi-output system.
u v

Integration

ERvi

D}
| I

Fig. 44 Block diagram of the state model of a linear system.

The state diagram can also be developed by signal flow graph. The following illustration is
given to develop the signal flow graph. Suppose, the state equation is

NG _ 0 1| xin . 0 W)
X(r) =2 =3|{x(1) 1

When u(f) = 1 for 1 2 0, we have
X(s) = (s = AY'x(0) + (s] — AY" BU(5)

(sF = A)"! ; s+3 1
S 3s+2 -2 5

where

It

s+3
e
22

2
i

l[r"(l + 1:'1) :“"]

1 2
ry [Let A=1+35" + 2577

(] e
e M=

A -257* 57!
Now,

Xi(s)

= - Ay! — Ayt
X;(s)] (sf = A" x(0) + (5] - A}~ BU(s)

Xis) = 1:
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s ta+37h ] 1sTa+3y 5?0
iy Ay U(s)
Al -~ SHlm(O) Al 28 sl
Therefore,
=1 ]+3.i‘_| ‘—I -2
Xy = ) oy ‘sz(m +‘TU(s)
= 5! 5!
§) = ———x, (0) + — —
Xyls) y x,(0) + A x(0)+ x U(s)

Again, if we draw, from the following equation, the signal flow graph will be as shown in
Fig. 4.5.

dx,(1)

ol [5 Sllel{T
dxy (1) =2 =3|| x1) 1
dt

or
i I B
(1) =2x,(1) = 3x,(1)

Therefore,

u(r)

(1) = xy(1) or SXy(5) = Xals) + x(0)
(1) = 20,00 = 3xt) + (D)
or

5X5(8) = — 2X,(5) — 3Xy(s) + U(5) + x,(0)
Using the Mason’s gain formula,

SUs) | s7n0) 50+
X = 2 0
1G] 2 + A + A X0
-1 -2 =1
Xo(s) = SU)  2577x(0) L5 ()
A A
where A = 1 4 357 + 250

A
Thus, both from the state transition matrix and the signal flow diagram, the same result is
achieved.

J’z(o) x|(0}
Fiy = 5Xyfs) - 2p(0) ,
e
1 \ 5!

:—I
X}(-’)
Us)

X,(s)
e
-3

-2
Fig. 4.5 Signal flow graph.
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4.4 DEFINITION OF TRANSFER FUNCTION AND
CHARACTERISTIC EQUATION

dx(r)
dt
W) = Cx(ny + Dulry + Hwir)

X(s) = (sf - AY'x(0) + (s - A)! [BU(s) + EW(s))
Yis) = CX(5) + DU(s) + HW(5)
= C(sl = AY"'x(0) + C(sT - A" [BU(s) + EW(s)] + DU(s) + HW(x)

We know that

= Ax(1) + Bu(r) + Ew(r)

Therelore,

Yis) = [Clsl — Ay B+ D\U(s) + [C(sT - AY'E + HIW(s) [+ x(0) = 0}

Since the definition of a transfer function requires that the initial conditions be set to zero,
the transfer function matrix between w(f) and y(r) when w(1) = 0, is

Gis)=ClsI-A" B+ D
The transfer function matrix between w(r) and ¥(r) when u(t) = 0 is

G 5)=Clsl -A) E+ H
Therefore,
Y(s) = GAsYU(s) + G, (5) W(s)

A linear time-invariant system is described by the following differential equation,

m-p m+<“+ d){ﬂ
drm T !

==+ agylr)

=5 THO L,
dr"

m=1
d™ i) . r}u{f]

pr= + by —— + bguin) when n > m
T

Utilizing the operator s
(" 4+ 7 b s o+ G)V(S) = (D™ o+ By 5" e+ bys + by)U(s)

Here 5" + a,_1s" "' + ... + ais + ap = 0 is termed the characteristic equation. If the transfer
function of the system is described by

boys™ 4 by ™ e by + by
S ha, T et

Gisy=

the characleristic equation is obtained by equating the d i polynomial of the transfer
function 1o zero. The characleristic equation from the stale equations will be determined as
follows.

Gs)=C(sI-A)'B+ D

Adj(s] - A) B
Isf—- Al

+D
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CIAdj(sI - A)} B+|sI - A|D
- |5t - A]

Hence, the characteristic equation will be 1s/ - Al = 0.

4.5 TRANSFORMATION FROM ONE SET OF DYNAMIC EQUATIONS
TO ANOTHER SET OF DYNAMIC EQUATIONS

Consider the dynamic equations,

dx(t)
e Ax(1) + Bu(r)
Wi) = Cxin) + Dulry

Let the above dynamic equations be transformed into another set of equations with the help of the
following transformations.

) = FX(1)
T o= P'xn
The transformed dynamic equations will then be written as
dx(t)
dt
¥ = Cx(0) + Duur)

= AT+ Bulr)

Again,

B prr BO  pot gy + P Butr)
dt dt
= PIAPT() + P Bu()
In the transformed dynamic equations, therefore,
Ay = P'AP

B, =P8
Also,

¥(1) = CX(1) + Dyule)
= CP7'x(1) + Dyu(t)
If y(r) and ¥(r) are compared and made the same, then
C=CP! oo CP=C, and Dy=D

The transformation described here is also called similarity transformation.
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4.6 DEFINITION OF CONTROLLABILITY AND OBSERVABILITY

A system is said to be completely state controllable if it is possible 1o transfer the system state
from any initial state (o any other desired state in a specified finite time by a control vector u(r).

Knowing the output vector for a finite length of time, we can determine the initial state of
the system. A system is said to be observable if every state can be completely identified by
measurements of the output ¥(f) over a finite time interval.

4.6.1 cControllability in Canonical Form
Suppose the dynamic equations of a system are expressed by

¥(1) = Cx(r) + Dul(r)

and the characteristic equation of A is |sf = A | = 5" + @,_;5""" + -+ + a5 + ag = 0, then the dynamic
equations are transformed into the controllability canonical form by the following relation.

P=5M
where S = [B AB A’B ... A™'B). The matrix § must have a valid inverse.
Also,
4 a oy 1
a4 ay 1 0
M=
[ .| 0
1 0 0

Finally, A will be transformed to A, and B to B, by the following relations:

A = PTAP

B =P'B
The matrix M will always have inverse because its determinant can never be equal to zero
whatever may be the value of n. The result of the determinant will be either +1 or —1 according
to the value of n.

This controllability in canonical form is termed CCF in short form. The result of the CCF
always comes 1o a standard shape.

0 1 0 0
0 0 1 0
A= i
0 0 0 1
—gy —a —@4y Ty
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Example of the controliability canonical form (CCF)
Suppose the coefficient matrices of the stale equation are:

121 1
A=(0 1 3 B=|0
111 1

Then,
1 00 121
Ist-Al=s5(0 1 O|-]0 1 3
001 11
s=1 =2 -1
= 0 =1 -3
-1 =1 s-1

(5-INF =25+ 1-3) =16 +5-1)
=5 -3f-5-3

Now the characteristic equation 157 - Al = & = 35 = s — 3 = 0 is of the form 5* + a,5* + a;5 +
ag = 0. Hence, a; = -3, a; = - 1, ag = — 3. Therefore,

The controllability matrix is

S=[B AB A'B]
where

1.2 11 Ix1+2x0+1x1 2
AB=10 1 3|10|({=|0x1+1x0+3x1|{=|3
Lo Ixl+1x0+1x] 2



N _Sga_.l"e Va_ll:iqb_{r_ Arm.l':!sis _1_15
2 11 2 1]
A*B=[0 1 3|0 1 3|0
ol o)
5 811 10
= 4 6||0|=|9
4 5|1 7
Therefore,
1 210
S=[B AB AB]=|0 3 9
: 12 7
Since the determinant of § is not zero, it is non-singular. Hence the contre lability ¢ ical
form can be determined as follows:
1 2 10][-1 -3 1 3 -1
P=SM=|0 3 9(|-3 1 0{={0 3 0
12 7(11 0 0 0 -1 1
Therefore,
Ay=Pl AP
3 0 -3}[1 2 1][3 -1 1
=%0 3 0ollo 1 3]0 30
10 3 9]l1 1 1jj0 =11
1'0 3 03 -1 1
=§0 3 9({lo 3 0
(9 12 18]{0 -1 &
[0 9 0] [o 1 0]
=% 00 9/={o 01
|27 9 27| {3 1 3
and
30 -3][1 o 0
B.:P"B=%l} 3 oflo =%o =|o
03 9|1 K 1
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Thus, A, = P~'AP comes into the form

0 1 0
0 0 i
~Gy —8 —&

and B, = P~'B appears into the form

4.6.2 Observability in Canonical Form

The observability canonical form (OCF) is the dual form of CCF. Suppose the system is described
by the equations

dx(r)
& = Ax(t) + Bu(r)

W) = Cx(1) + Du(y)
where

The observability matrix is

a  ay a,_; 1
a ay 1 0
M= H
a,_, 1 o 0
1 0 00

The OCF model of the system is described by
A=0'A0 ¢ =C2 B =0'8
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When V is non-singular, then only the above transformation is possible. Now,

C=[1 1 0]
1 21
CA=[1 1 o0 1 3|=[1 3 4]
11
12 11 21 25 8
CA2=IIIU]UI1011=[I 1 0113 4 6[=[5 9 14]
11 111 2 45
Therefore,
[ ¢ 110
V=|CA|=|1 3 4
CA? 59 14
Now Q = (MV)™!, where
a a 1] =1 -3 1
M=|a 1 0[=]-3 10
I ool {1 00
-1 =3 1j]jt 1 0 1 -1 2
Mv=|-3 1 0y1 3 4|=|-2 0
1 0 0|5 9 14 1
Therefore,
111
S A
= e ——| 4 -2 - === - =
Q= (MV)y 2 2 -8 > & 3
I BRI
6 6 6

The cofactor arrangement of the matrix Q will be
'[L_z B (LI N 0 SO I U T R
36 18 18 18 18 36; 735 75 36
[ 1 1] [1 1 [1 P 3
- r—_——-— —_—-— - ——— .= ) e
6 I8 18 18 18 36, 6 36

(&%) 63 Gw)] s 0




3 3
36 36
- 3
Adjoint of Q0 = ﬁ
3 3
"3 36
_L
12
Inverse of @ = Q' = -i— !
121 6
L
12
-1
12
1 1
= I E
12 _-L
12

Thus,

where | Q1 is the determinant of Q.

1 -1 2

-2 0 4

I +1 0
1 -4 2 -4
3 [--]—] 4 -2 -8

12

1 2 -2 -2
2 -4 -22
-2 -8 -14

2 -2 ~14
]
—a
—a,

since Isl ~Al=s" =37 ~s-3=0givesaqg=-3,a,=~1, ay = -3.
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-4 2 -4
C,=CQ=1(1 1 0] [—%] 4 -2 -8
-2 -2 -2

1
—-E[[) 0 -12]=[0 O 1

1 -1 2][1] |3
B=0"'8=|-2 0 4]lo]=]2
1«1 0j[1] |1

Thus, it is observed that B, does not conform to any particular form in OCF, whereas A, and C,
are of the OCF form of standard shapes:

=]
(=]
=

—a
1o - 0 -g

Ar=101 N
00 « = 1 =-a_,

C=[0 0 0 --. 1]

Thus it can be concluded that in the case of CCF, s must be non-singular and in the case of
OCF, V must be non-singular. For CCF, the matrices A; and 8, will come to a standard form and
for OCF the matrices A; and C; will come to a standard form.

4.7 DIAGONAL CANONICAL FORM

If the state and the output equations are written in the form
dx(1)

dt

¥ = Cx(f) + Du(t)

and A has distinct eigenvalues, then there is the possibility of non-singular transformation.
With the transformation, x(r) = Tx,(r). the dynamic equations will be transformed 1o
dx(r)
dr

F() = CX() + Dyu(t)

= Ax(r) + Bu(r)

= AT() + Bu(t)

where
Ay=TYAT, B,=T"'B, C=CT, D=D
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The matrix A; will be the diagonal matrix,

A 0 0 0
0 4 0 0
A=10 0 A 0
00 0 - 4

"

where 4;, A3, Ay, ..., A, are the n-distinct cigenvalues. The coefficients B, C;, Dy will not follow
any particular form.

EXAMPLE 4.2 The diagonal canonical transformation matrix T will be
T=lpi P2 Pr...pal

where pi, p3, P, - . ., P, are the eig rs for the eigenvalues 4, A3, 43, ..., 4,
We know that
(Af-Ap;=0 o Ap=Ap
Thus,
(Apr Aopy ... Apd=[Apy Apy ... ApJ=Alpy pz ... pl
Again,
4 0 0 0
04 0 0
LI L 2 o =P Apr .. Apl=Alpy P2 ... pa
0 0 0 2,
or
v P2 ... pJA=AlP P2 oo pil
or
TA, = AT
or
A =TTAT

It may also be observed that if A is of the controllability canonical form and it has distinet
eigenvalues, then T will be

i 1 1o 1
A A K o A
TElA B A A
L LR L 1

The matrix T is also termed the Vandermode matrix.
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EXAMPLE 4.3 Suppose

[0 1 0
A=| 0 0 1
|~6 ~11 —6]

and | A - Al = 0 is the characteristic equation. Then,

trooj o 1 0

A0 1 0= 0O O 1|=AJI-A
00 1f |-6 -11 -6]
ar
A -1 V]
Al-A=[0 A -1
6 11 A+6
Now the determinant of A7 — A, that is,
A -1 0
IMI-Al=0=|0 A -1
6 11 A+6

or
AAML+6)+ 111+ 1(B)=0
or
A+62+11A+6=0
ar
A+ 1XA+2)A+3)=0

Since A = -1, =2, =3 are the distinct eigenvalues and the matrix A is of controllability canonical

form, therefore, the Vandermode matrix will be

Aok k=T
A A4
where
M=l A=-2 A4=-3
Thus,
1 11
r=1|-1 -2 -3
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Hence the diagonal canonical form will be

Ay =TIAT
where T-' can be calculated as follows:

-6 6 -2

Cofactor arrangement= |-5 8§ -3

-1 2 -1
-6 -5 -1
Adjoimmof T=| 6 § 2
-2 -3 -l

Determinant of 7= 1(-18 + 12) = I(<9 + 3) + 1(-4 + 2)
=-ﬁ+ 6-2=-2

l-ﬁ -5 -1
Inverse of 7, thatis, 7' = -~ 6 8§ 2
B I |
Therefore,
-6 -5 <1 0 1t o] v 1 1
T"AT:—% 6 & 21l 0 o 1f-1 -2 -3
-2 -3 -1)[-6 -1l 6] 1 4 9
-6 -5 -1][-1 -2 -3
=~% 6 8 2|1 4 9
-2 -3 -1[-1 -8 -27
2 0 0] [-1 0 0
=—%0 4 0/={0-2 o0
0 0 6] [0 0 -3
4 0 0
=0 '12 0
0 0 A

It can also be shown that
1 1
T=|4 4 L=l p2 pil
SR
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where py, p2, py are eigenvectors for the eigenvalues 4,, A5, and Ay, that is,

[ 1 1 1
p=lA p=lh LA

A a3 A3
Since [4; 1 - A] [p] = [0], for &4y = — 1, we have

100 o 1 o)|fp.] foO
=110 1 0|-| O 0 1 Pu|=10
00 1f |=6 =11 =6]|py| [0
oar
-1 =1 0} py 0
0 -1 =1f|py|={0
6 11 5| py 0
or
-pn-pn=0
-pu=-pu=0

6py + Vpy + 5py =0

Let us assume py, = 1. Then,

Py =-py=-l
pn=—py =+l
Hence,
Pu 1
p=|py|=|-1
LPJI 1

This satisfies the equation
6piy + 1lpy + 5py =0
where
LHS = 6pyy + 11py; + 5p3; = 6~ 11 + 5 = 0 = RHS
Again for 4; = - 2, we get
10 0 1 0l||pa

0
“2t0 1 0/-l 0o o illpnl=
00 I

= o o

-6 -11 =6]||ps

123
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or
2 -1 0l[pa] [0
0 -2 -1||py]=|0
6 11 4flpnl |o
or
~2p2 - p2=0
~2pn - p=0

6pj2 + 1lpy + 4pyy =0
If py; is assumed 1, then py; = -2 and py; = -2py; = 4. Therefore,

P 1
pr=|pn|=|-2
Pa 4

The third equation 6py; + 11pyn + 4py; = 0 is also satisfied by the above values of py;, py, and
Paz- That is,

LHS =6(1) + 11(=2) + 4(4) =6 - 22 + 16 = 0 = RHS

When A = -3,
too]fo 1 o]fm] [o
-3l0 1 0l-l o o tllfpsl=]0
00 1| [-6 -11 -6]|ips]| |0
ar
-3 -1 0][p;] [O
0 =3 =-1{|ps|=]|0
6 11 3||pa| [0
or
=3pi - pn=0
=3p - pu=0
6p;y + lpy + 3py=0
If pyy = 1, then

Pn=-3p3=-3
pu=-3pn=9

The equation, 6pyy + 11pyy + 3psy = 0 is also satisfied with the above values of py3, pas, and ps,.
That is,

LHS = 6py + 11py + 3pz =6 X | + 11(=3) + 3 x (9) = 6 — 33 + 27 = 0 = RHS



‘Therefore,

Py
Pi=|Pn
P33

Thus it is proved by example that
oot
T=|4 A4 A4
Ao A

4.8 JORDAN CANONICAL FORM
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When the eigenvalues of A are not distinet, i.e. they are of multiple order, the diagonal matrix
transformation is not possible. When the matrix A cannot be transformed into a diagonal matrix,
then it can be transformed into almost diagonal and that is called the Jordan canonical form. This

form is as follows:

A 1
0 A
A=l0 0
0 0
00

oo™ —=c

oM~ o oo
HMTrooco o

where Ihe mgenvn]ues are A, 4y, A, A, and Ay It means that the matrix A has a third-order

B = L

Example of Jordan canonical form

[0 6 -5
Suppose the given matrix, A= 1 0 2
32 4

de A4; and distinct eigenvalues 4; and A;.

Fhe characteristic equation is, | Af - A | = 0. Therefore,

-3 -2 A-4

A0 O] [06
0 1 0(=j1 0
00 A 32

-5
2l=0
4
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or
MMA-4)~4] +6[-A+4-6]+52+34 =0

or
Poar+51-2=0

or

(A-2)A-I}A-1)=0

Therefore the matrix A has eigenvalues 2, 1, and 1.

7]
For A = 2, the eigenvector | p,; | will be determined as follows:
P3
1 00 06 =5|||py 0
200 1 Of=|1 O 2|t/ py|={0
001 32 4]||pn 0
or
20 0] [o6 -5][p,] [0
02 0|-i1 0 Pul=
002 3 2 Py ]
or
2 -6 5 p,] [0]
=1 2 =2llpn]|=|0
-3 =2 =2||py 0]
or
2pyy ~ 6py + Spy =0 4.9
=Pu 203 = 2pn =0 (4.10)
=3pn - 2pn - 2pn =0 @11
Let us take pyy = 2, as an arbitrary number, then subtracting (4.11) from (4.10), we get
pu=-1
Substituting for pyy in (4.9), we get
pn=-2
Hence,
Pn 2
==t

Pyl -2
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P2
Similarly, for 4 = 1, the eigenvector | pyy | is given by
Pz
t o 0] [o 6 -5[p.] [0
Ho 1 0j=11 0 2| ppni=|0
001 32 4| pnl 0
or
1 -6 5|[p,y] [0]
=1 1 =2|ipy|=|0
-3 -2 -3j[pn] |O]
or

P12 = 6py + S5pn=0
—Piz+ P - 2pp=0
=3pi2 - 2pn - Ipn=0
When p,, is arbitrarily taken as 1, solving Egs. (4.12) 1o (4.14), we gel

3 5
e —-= and = —-=
P 7 Pn 7

Therefore,
- i
P2 3
Pr=Pn|= —?
-pJZJ 5
7
]
For the next eigenvalue A = |, the eigenvector | py, | is given by
L P33 |
100} fo 6 -5]|[ps P
1o 1 0f=-|1 0 2ftlpyl=-|pn
00 1| |32 P P2

127

(4.12)
(4.13)
(4.14)
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v 3w

or
1 -6 5 ilps
-1 1 -2f|pnl=
-3 -2 -3llpn

or
Pz - 6py + Spy= -1
—Pi3t Pn - 2pn =

=3piy = 2pn - 3pn =

Assuming pyy = 1, arbitrarily, and solving Egs. (4.15) to (4.17), we get

=~~2}~ and .
=% Pa ="
Therefore,
1
- Pi3 . »
Pi= | Pn a9
P33 46
)
Hence,
2 1 1
3 2
T= =-] -= -=
P P2 Pl 7 "®
p 34
7 49
The inverse of T will be calculated as follows:
228 2 1
343 49 7
Cofactor arrangement = LA .
49 49 7

1 5

I
49 49 7

W =W

7

(4.15)

(4.16)

(4.17)
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Therefore,

138 110 46 44 5 6 1
Determinant of T = 2[———]— 1(—-—]+ l[—-—] = ——

3 343) @ 9 7777 e
ERSTY
33 49 49| .4 ;1
Iverseof T= —L_ |2 8 51 1, ¢ s

1| 749 39 49

w1 a1 7 28 -7
7 71 7
Ay =TAT
4 -1 1)fo 6 -s}{ > ' !
=] 2 -6 5102-1-%_%
L7 zs-?_sz-a_z_z_E
7 49
8 -2 2|2 P!
=9zz-z—|-$_%
| 7 28'?-__2_2
7 49
2 0 0
=011
0 0 1

The above form is the Jordan canonical form.

4.9 SENSITIVITY ANALYSIS

It is necessary to study the deviation of a system from ils nominal behaviour on account of the
changes in its parameters. That is why sensitivity analysis is very important. Three types of
sensitivities have been developed.
(a) Eigenvalue sensitivity
{b) Performance sensitivity
(c) Trajectory sensitivity
The ‘eigenvalue sensitivity’ is nol so impressive from the point of view of direct measurement of
system performance. In the case of ‘performance sensitivity, the important variations in system
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behaviour caused by plant parameter changes may not be reflected in the performance index. The
‘trajectory sensitivity” on the other hand is a very important measure of sensitivily.

4.9.1 Trajectory Sensitivity

Suppose the parameters of a system are represented by a vector, K = (K, K,, . . ., K,)7. The state of
the system is expressed as follows:

¥ = f(x, K, t,u)

where x(ro) is equal to, by definition, x°. The nominal parameter is K;. The parameter of the actual
system is K = K + AK.
Let us assume that parameter variation AK from the nominal value does not affect the order
of the system. Say x = x(t, K) is the solution of * = f(x, K, ¢, ) and x(tp) = x°
The parameter change of the vector may provide the following outcome:
Ax(t, K) = x(r, K) - x(t, Ko)
According to Taylor series,
§x Sx
1, K} = — AK) + —AK; + -
Axt ) 5K, ' 8K,
where all the derivatives are taken at the nominal value of Ky Hence

o Ox
Ax(,K)= Y, —| AKX,
Z 5K,
Ko=[Kio Ko Ku ... Kol
ax(1, Ky| . . L .
where K is called the trajectory sensitivity vector and is denoted by o;(r, Kp).
LS
Again,
X =flx, K, 1, u)
Therefore,
Br _8f ox  Of
6K; ©ox OK; &K
and
E=(fl (- x(tg) = x%)
3K,
l=L2...1
or
. af af
;== oj+——
Ox [y, 3K, o
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and
o)(0)=0 for j=1,2,...r.

The above equation is termed the trajectory sensitivity equation. Suppose solving the above
equation, we get

o, Koy=loy o2 ... gl
Then this is called the trajectory sensitivity matrix.
Ax(t, K) = a(r, Kg)AK

The above represents the parameter induced change of trajectory.
The sensitivity functions for the output can be obtained in the following manner. Suppose

y=glx, 1, u, k)
The seasitivity equation will be
Sy og g
M= = = == IRdrra
oK, " Ox [, 8K -

In the case of linear time-invariant system,
X = Ax + Bu
y=Cx+ Du
and
x(tg) = x°
where
. x = [n x 1] matrix
u = [p x 1] matrix
v = [g x 1] matrix
A = A(K) = [n x n] matrix
B = B(K) = [n x p] matrix
C = C(K) = [g % n] matrix
D = D(K) = [g % p] matrix

The following outcome will be found

& 5A éB
— =g, = AlK, ; b — K, _— 3
5?(;. 1 (Kglo; + ISK; |Ku x(r, Kg)+ 5&’1 N ul(t)
where g{ty)) =0, j=1,2,...,r
Sy &C aD
»“j= —_— = C{Ko)g-_+_ x(r',\’u).p_ u(r)
5!{1 - ! 3.’(}- % 5KJ &,
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EXAMPLE 44 A linear system is expressed as follows:

¥ =Ax+Bu, x0)=0
y:l.’.‘x
where
0o 1 0 [1}
A={ 0 0 1 B={0o| C=[10 0]
~-K, -Ky -Ky 1
000 2 0 00 p 0
;T“‘= 000 -a-'\if-= 0 00 3—3= 0
"lo1 00 * Jo -10 P lo
0
S8 _ 388 6B |,
5K, &K, 68K, 0
8C 8C 8C
— = =—=0 0 0
5K, 6K, oK, [ ]
Now, we know
. SA SB
G; = AlKp)oj + —| x(t. Kg)+——] ul®)
3K, 8K
Ko 7y
(!I}(!g}:(] i=4L2,...,r
aC
= C(KQ)O'J; + E xlr, K°)+6_Kj u(f)
Xy Ko
‘o,1 [ 0 1 0 Yfou]1 [0 0 0]x]
gl =] 0 0 1 {lopl+| 0 0 0of|x
(6] |~Kio ~Kuo -Kwllonl [-1 0 0]{x]
[64] [ © 1 0 fen] To 0 0)fx]
Gya|=| 0 0 1 |loni+l0 0 0||x
T =Ko —Ky —Kypf{on] [0 -1 0| x|
foy,] [ © 1 0 fou] [0 0 0][x]
gynl=1 0 0 bollag |40 0 0)|x
163u] |[-Kg ~Kn -Kpllos] [0 0 -1f|g]
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Therefore,
oy = 0)p
Oy = Opy
613 = = Koo — KnOi2 = Knoiy - 0
Oy = 0On
On =0p
Oy = = Kyp0y - KO - K0y - xz
Oy = O3
Oy = Oy
O3y = — K00y — K00 — KyOys — 53
[on]
m=[1 0 0]lo,|=0y
LT3 ]
o]
m=[10 0]lon|=0y
02 |
o]
Hs = [' 0 D] Oy | = Oy
| T3
X 0 1 0 x 0
Hi=l 0 0 1 [[x|+|ofu
] -Ko -Kp -Kypjin] |}
or

X=X kh=x

By =~ Kioxy — Kaovz — Kyors +

The signal flow graph of the sensitivity model will be as shown in Fig. 4.6.
The block diagram of the sensitivity model can also be developed with the equations
already established (see Fig. 4.7). Now

3 5A
G = A(Kp)o; +— ulr)
oK;
Ko

8B
afn Ky)+ ‘Ek—;—
Ky
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1 1
-1 7 053501350,

pr il =0y,

/1-"9
" X [ },\0

=

1 11
- s Ty 5 %5 0y
Hy=0y

Fig. 4.6 Signal flow graph.

oftg)=0, j=1,2,..,r

xr, K.,)+5—D ult)

5K, |,

Ko

\%—-ﬁ

Hj

Fig. 4.7 Block diagram of the sensitivity model.



4.10 CONTROLLABLE COMPANION FORM

If a system in the state form is controllable/observable, it can be reduced through a non-singular
transformation to an equivalent controllable observable system in a certain structured form which
can be termed a controllable companion form/observable companion form. Suppose a system is
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i=Ax+Bu
where
1 00 10
A=|0 2 0 B=10 1l=1[h &)
00 3 11

The system is found controllable, The reason of controllability is already discussed. Hence
the controllability matrix
u=[8 AB A’ B|
10101 0
=01 020 4
113399

Let us find out three linearly independent columns of the » matrix. That means, we have to
select the inputs which are mutually independent. Let these inputs be designated as

1 01

w*=10 10

113

Now, this matrix «* is to be arranged in the form

b A"Nb ATby)
where v; and v, are the controllability indices. In this example, the form of the linearly
independent columns maitrix will be

[by Aby byl

where v; = 2, v; = 1 and b; and b; are the first and second columns of B. Now, we have to define
another term oy, where

K
Oy = Zv,- when K= 1,2, ..., p (pis the number of inputs)
i=1
Since, 8 = 2 % 2 matrix, therefore, u will be also a 2 x | matrix. That means, p = 2. The moditied
u* matrix will be after arranging as per order [b, Ab, b,]

Hm=E=v+=2+1=3
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For the transformation matrix P which will be equal to

4
nA
P2

py will be the oyth row of ;," (inverse of &, ) and p, will be the gyth row of ;," (inverse of &, ).
Determinant of i, is
=H0-3)-10-1)=-2

Co-factor arrangement of & is

-3 1
-1 1 =2
1 -1

Re-arrangement of the co-factor, i.c. transposition is

-3 -1 1
1 1 -1
L 0 -2 0]
Hence the inverse of u; will be
-3 -1 1 1.5 05 -05
-3 1 1 -1]=|-05 -05 o5
0 -2 0 0 1 0

Therefore, p; = ajth row, i.e. the second row is
=[-05 -05 05]
and p; = ayth row i.e. the third row is

=[0 1 0]
Hence the transformation matrix
) -0.5 -0.5 05
P=|pAl=|-05 -1 15
P 0 1 0

since

100
pA=[-05 -05 05][{0 2 0Of|=[-05 -1 15]
00 3
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If ¥=AT+ Bu is the companion form of % = Ax + Bu, then

A = pAp!
B =PB
-05 -05 05][t 0 0][-05 -05 057"
A=[-05 -1 15/lo 2 of|-05 -1 15
0 1 ofloo3lo 1 o0
Now,
05 -05 05]" ~1.5 0.5 -025
05 -1 15 =m 0 0 05
o 1 o T0SCLIHO0S0I| o5 o5 025
-3 1 -05
=l oo 1
-1 1 05
Therefore,

[-0.5 -05 05]f1 0 0][-3 1 -05
2=[-05 -1 15){0 2 0f] 0 0 1
L 0 1 o {lo o 3/|-1 1 o5

[-05 -1 15][-3 1 -05
=|-05 -2 45|l 0 0 1
| 0 2 0 -1 1 o5

o1 0
=(-3 4 05
[ 00 2

F=(-05 -1 Lsf|o

[-0.5 -05 05][1 0
1
| 0 1 0|1 1

(0 0
=1 05
0 1

This companion form will help us to design a linear state variable having the specified

closed loop poles. For example, we want the closed loop poles at -1, =2, -3,
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If we take the characteristic equation of the calculated companion form, we get

Ist- A]=0
or
1 00 0o 1 0
5i0 1 0/-|-3 4 05|i=0
001 0o 0 2
or
s =1 0
3 s-4 -05|=0
0 0 s-2
ar
s{s-4)s~2))+ 1[3(s-2)] =0
or

P64+ 1ls-6=0

This equation clearly indicates that the system is unstable since the signs are +, -, +. Moreover if
we write the Routh’s criterion, it will be

$ 111
£ -6 -6
s 10 0
-6

Hence, in the first column, there are changes of signs. But if the characteristic equation is taken,
S+65+1s+6=0 o (s+Ds+Ns+2)=0

we get our desired poles and the system is found to be stable.
Therefore some modification needs to be made 1o A . Practically, we have to provide some
" feedback input with the actual input.
Now, to get the characteristic equation s* + 65* + 11s + 6 = 0, the matrix A will have to be

0 1 0
0o 0o 1
-6 -1l -6

because then |[sf - A]| will be
00 0 1 0 s =1 0
s 0|-| 0O 0 1j=j0 s -1
0 s -6 =11 -6 6 11 s+6

=52+ 65+ 1D +6=5+67+1ls+6
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0 1 0
Ifwesay, Ay=| 0 0 1| then, A= A+M
-6 =11 -6

where M will be matrix developed due to the feedback input.
That means, M = BN, where N is the feedback matrix. Now,

0 0
B=|1 05
o 1

N

[ﬁll N ﬁu]

Ny Ny Ny

Now & will be a (2 x 3) matrix because B is a (3 x 2) matrix. Therefore, from M = A, - A, we
get

Ooqﬁﬁﬁ o 1 o]Jo 1 o 0o 0 o
1 05 [ﬁ“ ﬁ'z E'-‘} 0 0 1|-|-3 4 05|=| 3 -4 05
0 1 |V TR TR e -1 -6 [ 00 2] [-6 -11 -8
or
0 0 0 0o 0 o
Ny +0.5Ny Ny +05N; N3 +05N,[=| 3 -4 05
| Ny Ny, Ny -6 -11 -8
or
Nyy = =6, Ny = =11, Nyy = -8
Ny +05Ny, =3, Ny +0.5N, = -4
Ny3 405N, =05
or
Ny=3+3=6 Nj,=-4+55=15 Nj3=05+4=45
Therefore,

W= 6 1.5 45
-6 -11 -8
The value of N corresponding to the actual system

X = Ax+ Bu
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will be
N= NP
6 1s as]| 05 “05 05
=[ p ‘” —.s] -05 -1 15
- 0 1 0

_[-375 0 525
|l 85 6 -19.5

4.11 STATE FEEDBACK DECOUPLING

In linear multivariable systems, a change in any input will, in general, result in changes in all
output variables. Such systems are characterized by coupling or interaction. In certain applications
such interactions between controls are not desirable. The design of multivariable systems should
be such that they become noninteracting or decoupled. The design objective of noninteracting or
decoupled systems is to obtain a system in which cach input affects only one output. The main
advantage of such a design is that once noninteraction is achieved, the system is reduced to a
number of single input/single output subsystems.

Suppose u(t) = Fx(f) + Gw(r) where w{¢) is the new control input and F is the state feedback
matrix. The main state equation is ¥ = Ax + Bu and the output equation is y = Cx. The block
diagram will be as shown in Fig. 4.8.

Fig. 4.8 Block diagram.

Let the differential equations of a linear multivariable system that is decoupled into first-
order subsystems be expressed as

) = My(r) + Kw(t) = MCx(t) + Kw(1)

L
where K is a diagonal [v;] matrix such that Jl'[l v; = 0 where m is the number of subsystems. Here,
M is also a diagonal matrix. Now

sY(s) = MY(s) + KW(s)
¥(s) [s] = M) = KW(s)

or

or

Y(s) = [s ~ M]™" KW(s)
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or

AD; (sl - M]

Y = ==

- KW(s)

where | s/ - M| is the characteristic polynomial of the decoupled system. Again,

Also,

‘Therefore,
or

or

Also,

or

Now suppose,

Therefore,

Therefore,

¥ = Cir)

= ClAX() + Bu(t)]
ClAx(t) + B{Fx(t) + Gwi()}]
ClA + BF)x(1) + CBGw(1).

1) = MCx(D) + Kw(r)
MC = C(A + BF) = CA + CBF
CBF = MC - CA
F = (CBY" (MC - CA)
K=CBG
G=(CB'K
1o 11

1
My = |0 =2 0jx@)+|=1 1]u)
0 1 3 =11

1 00
wo=[2 2 Yo

1

1 00
[CB}=|: ]—ll
001 11

11 -1
CBI™ = —
I8 2[1 1]

G=[CBI''K

Caft =1w 01w -w
T2l tflo v 2w ow
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Thus,
F = (CB)Y{MC - CA)
11 -1]
- — MC - CA
Al _t )]
11 -1] 0100100']0
o | P F R
2[1 l_[ﬂ my |0 0 1 0010 | 3

[}
r 1
1
—__
e,

)
2

1t —1fmy -1 -1 0
T2l yp 0o =1 my -3

1fmy =1 0 ~(mgy-3)
2{mg -1 -2 (myp-3)
If the values of F and G are made as shown above, then automatically it is found that

RRR e TE
¥2(1) 0 my {0 0 vy [{w(D

or
Fit) = mgyy() + vgywy(r)
Fa(1)= mogyalr) + Voawa(r)
Thus ¥ (1) is totally decoupled with y(f) and w(r) and y,(f) is totally decoupled with y,(r)
and wylr).

SUMMARY

The concept of stale variable is explained. The state model of a linear time-invariant system is
derived. The properties of the state transition matrix are then enumerated. The state transition
equation, the transfer function, and the characteristic equation are defined. Transformation from
one set of dynamic equations to another set of dynamic equations is then dealt with.
Controllability and observability are defined and illustrated with examples. “The diagonal
canenical form is explained with examples. The Jordan canonical form is also elucidated with an

example. Trajectory sensitivity and controllable campanion form are explained with ex

The idea of state feedback decoupling is also given with an example.
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QUESTIONS

What is the utility of state variable characterization of a system?
2. The transfer function of a control system is given by

—

cw 6ty
R(s) s(s+2)(s+3)

Draw the state diagram and obtain the state equation.

3. Write the differential equations characterizing the network shown in the figure below
and hence obtain the state equation ¥ = Ax + Bu and the output equation y = Cx + Du.
Take the voltages across the capacitors Vy(r) and Vs(f) as the two state variables and the
current through the 2 x 10° Q resistor as the output variable.

A

AWAA—> 2
10°Q 2% 10°Q

Vi) 1 gF Vith "~ osyF

4. For the system described by

H]_[o 1~
P B =1 | B
Determine the state transition matrix.
5. Write the state equations for a system described by the differential equation.

3
LAGOIN 66""{') +5c(0) = ()
dr
6. Outline the Laplace transform method of determining the state transition matrix that is
required in the solution of the state equation.

7. Obtain the state transition matrix of the system represented by the following state
equations and using the same, determine the time response for 1t 2 0.

i 0 1
MEEE EEHE
The initial conditins are x;(0) = 1 and x,(0) = -1 and the input r(#) is a unit-step function
atr=0.

8. Obtain the solution of a state equation i(f) = Ax{r) + Bu(r) in the state transition matrix.
9. Explain the controllability and observability of a system.
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10. Predict the controllability and observability for the system
&) = Ax{f) + Bulr) and y(f) = Cx(1)

where
0 1 0 fo
A= 0 0 1 B=|o| C=[4 5 1]
-6 -11 -6 1

11. Obtain the response of the following system using (i) the canonical transformation
method and (i) the Laplace transform method.

R WA

where wnn=0 forr<0
=e' fort20
with 0)=x(0)=0

12. What do you mean by controllable companion form?
13. What do you mean by a multivariable control system? Explain with suitable examples.

14. Explain the decoupling of the multivariable control systems. In which respect is
decoupling useful?

15. For a given system, find the plant transfer function matrix and the system poles. Also
discuss the decoupling of this system. Given that:

0 1] 0 1 [1 2
A= B= C=
[3 2] 11 0] 0 l]
16. Obtain the equivalent system in controllable companion form given that:

100 0 1]
A=[0 2 0 B=|10
00 3 I

r
L



Chapter  Stability of Linear
Control Systems

5.1 INTRODUCTION

This chapter describes the stability of a linear time-invariant system. In general, a stable system
means that there will not be a large change in the system output when there occurs a small change
in the system input, in initial conditions, or in system parameters. Usuvally, a linear time-invariant
system is stable if the following conditions are satisfied:

{a) When the system is excited by a bounded input, the output is bounded.
(b} If the input does not exist, then the output tends towards zero irrespective of initial
conditions. This is also termed asymptotic siability.

Suppose we take a function Ae®, where a is positive. Then it is clear that the function
tends lo zero as f tends to infinity. This is a clear case of asymptotic stability.
The curve shown in Fig. 5.1 (i.e. Ae™) is also a bounded curve. If we take the Laplace

A
transform of Ae™®, it will be Pt The characteristic equation is 5 + @ = 0. The root of the
characteristic equation is 5 = —a.
Function

Ae ™

| 7
Fig. 5.1 Example of a bounded system.
Suppose the transfer function in the time response is % = Ae™™, where o(1) is the output
and r(f) the input. If the input r{r) is the unit impulse input, then
ot} = Ae™™ (1)
The Laplace transform of the above relation is

A
s+a
145

O{S) =
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Thus, with the help of Laplace transformation, we arrive at a very common rule of stability,
that is, if all the roots of the characteristic equation have negative real parts then the impulse
response is bounded and decreases to zero. The system is termed bounded input with bounded
stable output, and the asymptotic stability is maintained.

If, on the other hand, the function is Ae™ where a is a Ae™
positive integer, then the function tends to infinity as ¢ tends
to infinity. This is totally an unstable system as shown in
Fig. 5.2. The Laplace transform of % = A¢®™ with unit

impulse input will be O(s) = . The characteristic Fig. 5.2 Example of an

s-a unbounded system
equation is s — a = 0, or s = a is the positive root. Therefore,
a system with the root of the characteristic equation having a positive real part is unbounded and
unstable.
If the impulse response of the system is
A

ls—(-a+ jb)}{s - (~a- jb))

- 4 . A
s—(-a+jb) s-(-a-jb)

0 =

o(t) = Agel™® * N 4 pel-o -0
= Aye™™ (cos bt + j sin bt) + Ae™™ (cos bt — j sin br)

Figure 5.3 will be the curve of the above function o(f). Obviously this system is bounded input,
bounded output, and asymptotically stable. It is also clear that the roots of the characteristic
equations are — a + jb and —a — jb, when a and b are positive integers. The negative real parts of
the roots of the characteristic equation indicate a stable system. On the other hand, if

= A = A‘ + 42
{s—(a+ jb)Hs—(a-jb)} s-(a+jb) s—(a-jb)

O(s)

olf)

-

Fig: 5.3 Example of an asymprtotically stable system.

then,
olt) = ""1““ by Az&" - jb)r

= Aye™(cos bt + j sin br) + A;¢™(cos bt — j sin bi)
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and the system is unstable. Figure 5.4 clearly indicates that the system is unbounded and
unstable. When

o(s) - 1

R(s) 5" +d*

all)

Fig. 5.4 Example of an unbounded and wnsiable svstem.

and
r(r)y= é(1)
then
Ofs) = !
ERNp
1 A A
T (s+ja)s-ja) s+ja s—ja
Therefore, )
of) = A 4+ Ayl
= A\(cos at — j sin at) + Aj(cos at + j sin ar)
= (A; + Aj) cos ar + j(A; — A,) sin at
A lim ! !
'Tsaches—ja  -2ja
1
= 1 = —
A2 ssjas+ ja  2ja
Thus,

o(t) = j[ﬁ + ?};Jsin ar = &sin at

1 . - .
Figure 5.5 shows the curve of o(1) = ;sln ar . From the curve it is quite clear that o(r) does

not tend 10 zero as ¢ — o for impulse input response, although to make the system asymptotically
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olf)

ANVANVA\
\VAAVAAVER

Fig. 5.5 Example of a marginally stable system.

stable, oft) should tend towards zero in the absence of the input. On the other hand, it is also
quite clear that the output is bounded. Now therein lies a dilemma whether the sysiem is
acceptable or not from the point of view of stability. This case is termed marginally stable.

Suppose now,
o 1
R(s) (& +a*)
where
() = 8(1)
then
o) = :
T (s + ja)s - ja)(s+ ja)(s - ja)
- .--fl_._ + .....'I‘_h.'— + ._.f}.-... + ,_.i.__
s+ja s+ja s—ja s-ja
or

o(t) = -2%3-(sin at = at ¢os at)

In this case, the roots of the characteristic equation are, ja, ja, —ja, —fa. Thus it is a case of
repeated roots. Figure 5.6 is the curve of the above equation. It is totally unbounded and hence
the system is unstable.

off)

Fig. 5.6 Example of an unbounded and unstable system.

Now in the case of o) = 4 with r{r) = 8(1), we have
5

R(s)
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A
Ols) = ? or o()=A

The root of the characteristic equation is zero and the curve o(r) will be as shown in
Fig. 5.7.

The system is found bounded but not oD
asymptotic since off) does not tend to zero as ¢
tends to infinity in the absence of input. Since the

asymptotic stability fition is not satisfied but
the bounded output condition is, this system is Af '
termed not asymptolically stable but marginally
stable. Fig. 5.7 Example of a marginally stable system.

If we know that a sysiem is stable, then that
generally does not serve our purpose fully. We have also to know how fast the transients die out
in the system. The settling time of a pair of complex conjugate poles is inversely proportional to
the real part (negative) of the roots. In other words, in the s-plane, the root of the charactenistic
equation moves further away from the imaginary axis towards the left-hand side and the relative
stability of the system improves.

5.2 METHODS OF DETERMINING STABILITY BY STUDYING THE
ROOTS OF THE CHARACTERISTIC EQUATION

Suppose the characteristic equation is aps” + @,8" "' + ay"* + ... + 4, ;s + a, = 0.

Sometimes it is really very difficult to find out the roots from large complicated algebraic
equations. That is why the following methods have been developed for studying the stability of
linear control systems.

1. If any of the coefficients of the characteristic equation is absent or if any of the
coefficients of the characteristic equation is negative with the value of a; > 0, then it is
observed that the system is either unstable or marginally stable.

2. The positiveness of the coefficients of the characteristic equation is the necessary and
sufficient condition for stability of systems of first and second orders.

3. In the case of the characteristic equation having a higher degree than the second, it is
not possible 10 predict the system stability when all the coefficients of the characteristic
equation are positive.

A. Hurwitz and EJ. Routh have independently developed the necessary and sufficient
conditions of stability of the system. The Hurwitz criterion is based on determinants and the
Routh criterion is based on array formulation.

5.2.1 Hurwitz Stability Criterion

Suppose the characteristic equation of the nth order sysiem is

aps" + a4 a5+ a,=0
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The Hurwitz determinant is

4 a 0 0 0 0 - 0 O
ay iy @ a4 0 0 - o o
as 4 a4 @ 4 a4 - 0 0
e I R A

Here the coefficients with indices larger than n are taken zero. Similarly, the coefficients
with negative indices are replaced with zeros.

The condition of the stability is that the n determinants formed from the principal minors of
the Hurwitz determinant will be greater than zero. That is,

Ay=a; >0

4 G
a 4

Ay = >0

a a 0
A= |ay a a >0
as 4, a3

a4 G
a

PR o
B B o
2 oo
- f oo
=)

(=]

A, =] ay ay

Tn-t Gpu-z gy Tt gy Gy

Moreover, when A,_, = 0, the system is marginally stable.
EXAMPLE 5.1 Suppose a fourth-order system has the characteristic equation
S48+ 187 + 165+ 4 =0
That is,
ag* +a)P +ayt +raw +a,=0
where
a=1a =8, a=18,a;,=16,a,=4
Therefore, the Hurwitz determinant is

K

£ B pE
& &R o
&8 E o
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The minors of the Hurwitz determinant are:
1'1[ =4y = 8>0

A=

2= a,
oy
Ay = fay
as

L]
]

P
@

ay

1]
L]

a

8

16 18

ll= 144-16 = 128>0

8 1 0
16 18 8
0 4 16

= 8(288 - 32) - (256 - 0) = 1792 > 0

o

=4[16 18 8| = 4{8(288 - 32) - 1(356)} = (4 x 7 X 256) > 0
0 4

Hence the system is stable.

ag
9
a,
ag

I
18
4
0

1

0
a4
a3
ag

0

Iy

K

ay

V]
1
18
4

0

16

5.2.2 Routh Stability Criterion

The Routh stability criterion is based on ordering the coefficients of the characteristic equation in
the form of an array called the Routh’s array. Let the characteristic equation be

ap" +as"" v ay P+ va, s+a,=0

The Routh’s array is:

'S
Jn—l

ay
a
b
G
dt

L]
A

a
ay
b,
2

dy

i,

a, a4 ~ =
a - - -
b - - -
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The coefficients : 5

aa, -
by = 00~ Ot
&

b, = 1% = ods
y =
&

In this way, the coefficients of the third row are developed until the last coefficient of the
same row is zero.
Similarly, the coefficients of the fourth, fifth , ..., nth and (n + I)th rows are evaluated as:

o= bl“!;!“ib)
o= bnﬁ_l;'“lbs
3=
b
d’|=r - e
l
dy = by — by

G
Arranging the array in the above pattern, the stability of the system is defined as follows.
For a system to be stable, it is necessary and sufficient that each term of the first column of the
Routh’s array of the characteristic equation be positive when ap > 0. Moreover, if the system is
unstable, then the number of sign changes of the terms of the first column of the Routh’s array
represents the number of the roots of the characteristic equation in the right-half of the s-plane.

5.2.3 Relation between the Routh and Hurwitz Criteria

In the case of the Routh criterion, ag > 0,a,> 0, by >0, ¢,>0,d >0, ...

& ﬂo|
by = GG — Gyay _|& %
a a
Again, in the case of the Hurwitz eriterion,
[
a, >0, i Y

From the Routh criterion, we also observe that b, > 0 and a, > 0. Therefore,

@
o
4

biz >0
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since
@y
a3 @y

This is also true for ¢, dy for the Routh eriterion. Hence, the Hurwitz criterion and the
Routh criterion are basically the same and draw the same conclusion.

a; >0, >0

EXAMPLE 5.2 Let the characteristic equation be

I+ 108+ 57+ 55+ 1=0
The Routh array is:

s 3 5 1
s 10 5
2 50_15:3.5 iOxI—SxO:]
10 10
§ 3.5x5-1x10 7.5
35 is
57 1

Since all the coefficients in the first column are positive, the system is stable. Usually, in

any row if there is any common multiple it should be withdrawn for avoiding the computational

plications. For ple, in the above example, the integer 5 is the common multiple in the
second row. The problem can therefore also be solved as follows:

5 3 5 1
5 2 1
&2 2><5~l><3=3‘5 ‘lev—U:[
2 2
o 35x1-2x1 1.5
3.5 35
N 1

Here, too, it is observed that each term of the first column is positve. Hence the system is
stable.

Critical examples
The following special cases are generally encountered while applying the Routh stability
criterion:
1. 1t may so happen that the first term of any row of the Routh array is zero, then in that
case the method of studying the Routh criterion is as follows.
A very small positive number £ is used in place of zero and the process is continued as per
the wsual procedure.
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Let us consider the characteristic equation

P20+ 258445+ 6=0
The Routh’s array is:

5 1 2 4
st 1 2 6
5 £ -2
§ 2e+2 6
E

g -4 -4 - 6¢°

2e+2
50 6
—de -4 —6g*

In the fifth row, the first term is st Aq ¢ -5 0, it will be 2.

2e+2

Hence the sysiem is unstable because there are two changes of sign. One from the fourth row
to the fifth row and the other from the fifth row to the sixth row. From this, it can also be
concluded there will be two poles in the right-half of the s-plane. .

2. It may so happen that all the elements of any one row of the Routh array are zero. We

illustrate this through an example:
F+20 465+ 127+ 85+ 16=0

The Routh’s array is:

L VI PR N
0 = =

= o

o oo

o
-]

Here in the third row all the terms are zero. The auxiliary polynomial is formed from the (3 - 1)
i.e. the second row. That is,

Pis)=s*+657+8
The above polynomial is differentiated with respect to 5. Thus,

- . d:(:)=4s’+l?_x

The zeros in the third row are replaced by 4 12, 0or 1 3.
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Hence the Routh’s array will be:

£ 1 68
s 1 6 8
£ 13
$ 3 8
3%0
8

Since there is no change in the sign in the first column, it can be demanded that there will
be no root which has positive real part. But if all the terms are zero in one row, it will indicate
that the roots lie on the imaginary axis which can be calculated by making

P(5)=0 or s'+65+8=0

oo 262\36-32  -ex2

2 2

That is,

Thus,

s=% jJ.Z. or  xj2
Two pairs of roots lying on the imaginary axis will indicate a marginal stable system when
there is no other root which has positive real part. The reason behind this is as follows:

1
Supp PERVCIEIE is the fer function of a system shere a and b are greater

than zero and a # b. For unit impulse input, the output will be

1
(5 +@)s + b))

1 _ A + B
(P +@NP +b) (P +ad) (P +bD)

1 1 1 i
(@ - b*) (s* +a%) * (@ -b*) (s +b)

1 . 1 .
sinar + sin bt
a(a® - b%) Ba* - b%)
When ¢ — eo, the above value will not tend to infinity as a # b. Thu'efmﬂ!esyslem will be
marginally stable. ~
3. If the first term of any row becomes zero, then there is the t‘ollow:ng aliernative method
for assessing stability.
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Suppose the characteristic equation is

S+t + 28+ 27 +354+5=0
The Routh's array is:

S 1 2 3
sf1 2 5
s 0 =2
SZ

5

(%)
-]

1
The first term of the third row is zero. Let us replace s by ; . Thus, we get

GG A e

T+p+2pt+ 2 +3p* + 5p° =0

ar

SpPe3pt+ 2+ 2p 4 pr =0
The Routh’s array is:

P52
o3 2
v _4 2
LA T
1
- 1
p22
P2
A

Thus there are two p roots which are in the right-hand side of the p-plane. Automatically, the
two s roots will be in the right-hand side of the s-plane since 5 was replaced by i Hence, the

system is unstable.

4. If zeros are obtained in the first column twice, then the method of solution will be as
follows:
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The first zero is replaced by a very small number € and the procedure is repeated. Again, if
a zero is obtained as £ — 0, then the auxiliary equation in the second case is determined and the
original polynomial of the characteristic equation is divided by the auxiliary polynomial of the
auxiliary equation to get rid of the above problem and the rest of the polynomial is then tested by
the Routh’s array. As an example, let the characteristic equation be:

25 4+27 435 437 + 28 454 1 =0
The Routh's array is:

5 2 3 21
5 2 3
5! £ 11
3e-2 £E-2
E =2
£ £
a2
o2 5e-2-¢
k-2
—2¢ - g2
52~ ¢
5 1

As £ — 0, in the sixth row, the first term becomes zero again. Therefore, the auxiliary
equation in the 5% row will be s* + 1 = 0.

Dividing the main polynomial of the characteristic equation by the auxiliary polynomial
£+1, we get

20 427 w5 ]
Lr1| 2 +28+3% 43P+ 2% 45+ 1

2%+ 424
25 +5 +38 42 s+
25 +25
P oS 284541
5t + 5
£ P45+
5 +s
£+ 1
F+1
x

Now, the Routh’s array is developed on: 25* + 25 + & + 5 + 1 = 0. Thus, we have
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5 2 11

$ 2 10

£ e 10

58;200
€

s 1 00

-7
As E— 0, E--

= l—g will be negative. Therefore there are (wo sign changes, i.e. from
€

the third row (s* row) to the fourth row (s-row) and from the fourth row to the fifth row (s° row).
This indicates that the sysiem is unstable since there are two roots in the right-half s-plane.

5.2.4 Applications of the Routh-stability Criterion

EXAMPLE 5.3 In the linear feedback system as shown in Fig. 5.8, determine the value of K for
which the system is stable.

R(s) K Ols)
Hrles+ )5+ 3)

Fig. 5.8 Example 5.3,

Solution For the given system:

[R(s) - O(s)] PEFYTTIYREY =0(s)
or
K
R(s)—————— = fp—
(S}s(:2+.r+l}(s+3) 0(.;)[ TR
or
R(HK = O(5)[s(s* + 5 + 1)}(s + 3) + K]
or

ow___ Kk
R(s) s +s+1)(s+D+K
Therefore the characteristic equation is AP +s+ s +3)+K=0

or
(F+st+)s+)+K=0
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or
straf + 48 I+ K=0
The Routh’s array is:

5t 1 K
5 4
5 E K
4
% -4K
M
4
s° K
Z-a 39
To make the system stable, -iﬁ— > 0 and K > 0. Thus, il 4K >0 and K = 0.
39 39
—3—2>4K:mdx>0 or — >Kand K> 0 or —>K>0
4 16 16
. . 39
The system will therefore be stable when the value of K lies between 0 and TR When
39
K= 16" the system will be marginally stable and at the time of the marginal stable condition, we
have
-1—332+£=0 or s’+§=0 or x=i_.i—\JE
4 16 4 2

EXAMPLE 5.4 In the characteristic equation s* + 85° + 265 + 40 = 0, determine whether all the

roots have real parts more negative than ~1.

Solution Let us consider a plane p where the p-plane axis is

on the left-side of the s-plane axis and the horizontal distance p-plane s-plane

between the axes is 1. axis axis
Hence compared to s-plane, the origin of the p-plane

will be (-1, 0). If the origin is shified from the s-plane 10 the

p-plane, the value of p willbe s + l,ors=p - 1. 1
Hence the given characteristic equation will be changed

lo

-1 +8p-17+26(p-1)+40=0
or Fig. 5.9 Example 5.4.
P+5pt+13p+21=0
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The Routh’s array is:

A I
P52
]
P
P21

Since all the terms of the first column are positive, all the roots have real parts more negative than
-1. This is an example of analysis of relative stability.

EXAMPLE 5.5 How many roots with positive real parts, does each of the following
polynominal possess?

@ f+5£-5+1
b -5 -25+2
Solution The Routh’s array for the polynomial 5 + 5* = 5 + 1 is:

£ 1 -1
£ 11
$ -2
201

Since there are two changes of sign from the, ‘second row first term’ to the ‘third row first
term, and ‘third row first term’ to the ‘fourth row first term’, there are two roots with positive real

The Routh array for the polynomial s* - 2 =25 +2 or s+ 05 -2 =25+ 2 is:

s 1 -1 2
Iy £ -2
g cEx2 5
£
26-4-26"
2-¢
s 2

where € is a very small positive number which tends towards zero.
As g tends 1o zero

e+2 2e-4-27
2-¢
Therefore, there are two sign changes from the ‘third row first term” to the ‘fourth row first
term’ (+ to =) and from the ‘fourth row first term’ to the *fifth row first term’ (- to +). Hence, there
are two roots with positive real parts.

=—1+%tmdsr.o+u and tends to -2.
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EXAMPLE 5.6 Determine for what positive value of K does the polynomial 5* + 8s* + 2457 +
325 + K have roots with zero real parts.

Solution The Routh's array is:

5 1 24 K
& B 32
e 20 K
,  640-8K
g —
20
s° K
If 640 -8K =0, then the s' row will have zero as the first term for K = 80, for s = = j2,
Hence for K = 80, the polynomial will have roots with zero real parts.
SUMMARY
In this chapter, the definitions of stable sy are | d. The hods of deter g the

stability criterion by studying the roots of the characteristic equation are described. The Hurwitz
stability criterion and Routh stability criterion are explained in detail. The relation between the
Routh and the Hurwitz criterion is also explained. Different examples are solved. The application
of Routh-stability criterion is also shown.

QUESTIONS

1. What are the necessary and the sufficient conditions of stability for linear time-invariant
systems? For what class of systems, the necessary conditions are also the sufficient
ones?

2. The output angle, 8,, of a position control system is given by
[+ (4 - )s* + (U + 6)s + 9)8, = 96,

where @ is the input angle. Find the necessary and sufficient conditions on the range(s)
of values of y for which the system is stable.

3. The output angle of a position control servo system is given by the equation
[D* + (4 = W)D* + (1 + 6)D + 918, = 96,
Determine the necessary and sufficient conditions on the ranges of values of u for which
the system is stable.
4, Determine if the system with the following characteristic equation represents a stable
system: ¥(s) = s* + 85" + 185° + 165 + 5.

5. Determine the value(s) of the parameter K such that the unity feedback system having
the open-loop transfer function
4
5+ Ks? o+ (K +4)s + (K + 3)s
will have sustained oscillations.

G(s) =
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6. State the limitations of Routh’s criteria of stability.

7. What do you understand by absolute stability and relative stability? Which method
indicates what type of stability?

8. The characteristic equation for a feedback control system is given by
5+ 20K + 55+ 105+ 15=0
Determine the range of values of K for which the system is stable,

9. In the system shown in the figure below, find the value of K that just resulis in
ir.stability.

R(s) K
(52+54+2) )

10. A feedback system has the open-loop transfer fJncliun of

Ke’

G(s) + H(s) = —————
s(s* + 55+ 10)

Find the limiting value of K for maintaining stability.

11. A system shown in the figure below oscillates with frequency @, if it has poles at
= + jw and no poles in the right-half s-plane, determine the values of K and a so that
the system shown in the figure oscillates at a frequency of 2 rad/s,

E(s) K(s+1)
Praste2s+ ]

= (C(5)

12. The open-loop transfer function of a unity feedback control system is given by

_ K

T (s+2)(s +4)(s* +65+25)

By applying the Routh-Hurwitz criterion, determine

(a) the range of K for which the closed-loop system will be stable

(b) the values of K which will cause sustained oscillations in the closed-loop system.

Gis)

What are the corresponding oscillation frequencies?
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13. A unity feedback control system has the open-loop transfer function

14.

G(s) = K

S Hs+s-3

(a) Determine the range of values of K for which
(i) the open-loop system is stable
(ii) the closed-loop system is stable

Comment on the results obtained.

{b) Find the roots of the characteristic equation of the system corresponding to the
limiting values of K determined in (a) above.

163

The figure below shows a closed-loop position control system. The armature of the dc
motor is fed from a constant current source and develops a torque Ty = K, which is
applied to the load through a speed-reduction gear of ratio n : 1. The effective moment
of inertia and the viscous friction damping constant of the load (including the effect of
the motor and gears) are J and B, respectively. The following data are given:

; 2
L
Amplifier K, V/rad

DC motor

Oy

4 Constant

I current
source

J =6 kg-m®

B =6 N-m/rad per second
K,=2Virad

Ry=80Q

L;=8H

K, = 20 N-m/amp

n=350
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16.

{a} Obtain the open-loop and the closed-loop transfer functions of the position control

scheme.

Calculate the steady-state errors in the closed-loop scheme for (i) a step<input of

| radian (ii) constant angular velocity input of | radian/second.

(c) Whal are the effects on the performance of the closed-loop system, if the amplifier
gain K, is varied, keeping the other parameters as specified earlier? For what range
of values of K, is the syslem stable?

®

=

The open-loop transfer function of a unity feedback system is given by

K

GO = Svsty +s15)

Using the Routh-Hurwitz criterion, determine the necessary conditions for the system to
be stable.

By means of the Routh criterion, determine the stability of the systems represented by
the following characteristic equations. Wherever necessary, find the number of roots in
the right-half of s-plane and on the imaginary axis.

@ £f+5+37 497+ 165+ 10=0
(i) P+3° +55'+ 02 + 82 + 65 +4 =0



Chapier  Study of the Locus of the
Roots of Characteristic
Equation

6.1 INTRODUCTION

The determination of the roots of a characteristic equation is a tiresome job, if the degree of the
characteristic polynomial is three or higher. That is why, a simple technique, i.e. the root locus
technique as established by W.R. Evans is most widely used. This method is nothing but a
graphical method of plotting the locus of the roots in the s-plane as the system parameter is varied
over the complete range of values starting from zero to infinity.

6.2 FUNDAMENTAL IDEA OF THE ROOT LOCUS

In Fig. 6.1, the open-loop transfer function of the second-order system is

K
0= G

RO K 0t
e s(s +b)

Fig. 6.1 Second-order system.
The closed-loop transfer function of the system is calculated as follows:

[R(s) - O(J)] = 0(s)

K s(s+ b))+ K
[R(” ] o [ w] - O“’[ b ]

165
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or
oo ___ K K
Ris) s(s+B)+K S +bs+ K

Hence the characteristic equation is s* + bs + K = 0, whose roots arc

N 2 2
M_ or _£+ E -K and _E_ -b. =K
2 2 2 2 2

‘The system parameters are b and K which depend on natural frequency e, and damping
coefficient ¢ since @ = K and 2{@, = b.
From the above roots, the following observations can be made:

2
(a) For0 = K = bT , the roots are real and distinct.

When K = 0, the roots are (0 and —b. Again 0 and —b are the open-loop poles of the system

since the open-loop transfer function is and the open-loop characteristic equation is

K
s(s+8)
sis+ b)y=0.

2
(b) For bT < K < o, the roots are complex conjugate with real part ~%.

From the above data, a root locus can be drawn as shown in Fig. 6.2.

4oa
(i
2
K>b_
4
N
gt , K=0 e
]
k=0 x=£'_
' 4
:-—b‘l'z—--—b,"z—-l
2
K:-b—
4

Fig. 6.2 Root locus.

N . b
The root locus starts from two points, i.e. 0 and - b and approaches towards “E on the

horizontal axis.



Study of the Locus of the Roots of Characteristic Equation 167

Since the roots during this time lie on the real axis, the system is termed overdamped. When

the two roots meet at -% on the real axis, the system 1s critically damped. From here, one of the

roots will move upwards towards + oo on the imaginary axis and the other downwards towards — e
on the imaginary axis maintaining their real value constant.

E

6.2.1 Correlation with Mason’s Gain Formula

From the Mason’s gain formula, the overall system gain is defined as

D P
T=K
A
where
Py = path gain of the Kth forward path
A = determinant of the graph
=1 - (sum of the loop gains of all individual loops) + (sum of the gain products of all
possible combinations of two non-touching loops) — (sum of the gain products of all
possible combination of three non-touching loops) + . ..
When the above is represented in Laplace transformation, A{s) = 0 will be the characteristic
equation.
If in the generalized form, P, is taken as the gain product of the mth possible combinations
of r non-touching loops of the signal flow graph, then

AS)= 1= D Pt D Pua= D Pyt
m m m

=1+Plx)=0
or

P(5) = G(s) H(s) [+ Als) = 1 + G(s) H(s)

. Gs) .
in the case of T(s) = T GWH® for a single-loop feedback system.]
Therefore,
P(s)=-1
Again 5 is nothing but a complex variable, therefore,
IP(s)l=1
and
ZP(s)=x180°2g + 1)
where

g=0,1,2,..., et
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6.2.2 Method of Drawing the Root Locus
Let us consider a single-loop feedback system as shown in Fig. 6.3.

R(s) ,O\ Gz = Kst o) O(s)

ss+d)

]] His)=1 II

Fig. 6.3 Single-loop feedback conirol system.

The characteristic equation is

1+G(x)=0
or
K(s+¢) _
sis+d)
Therefore,
K(s+¢) _
sis+d) |
and
K(s+c)
Ll=——=|= ° , =0,1,2,...
[s{s+d)} + 180°(2g + 1), where g =0, 1, 2
Since K is constant,
Z| B | 180029 + 1), where g =0, 1,2
o) | = (2g + 1), g=012 ...

We know that s = ¢ + jw. Therefore,
O+ jw+c )
————| =z 180° 1
I:(cr+jw)(a+jw+d}:| g+ 1D
Let us assume

e -
! —tan”' = - 1an™’

tan”
o o+d

= -7

1 1

= 7+ tan”

L@ -
tan™ — + tan
o
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o w
a0 o+d
O
o o+d

)
tan =m+tan —
c+c

or

20 +d)
si__O@+d) -1
o’ +do -o* ey

o(o +d)

tan

Applying ‘tan’ on both the sides, we get
w2o+d) _
o +do-a' O+c

or
20 +d _ 1
ol +do-a® O+c
or :
20° + 20c + do + ¢d = & + do - o
or
F+r20c+cd+ af =0
or
P +20c+ - red+ =0
or

o+l +at=ct-cd

The above is the equation of a circle (Fig. 6.4) with centre (—c, 0) and radius \}cz —ed
when the x-axis is o and the y-axis is jo.

jol

s-plane

(-, 0) { 4

Fig. 6.4
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Again, we know that the standard form of the characteristic equation for a second-order
system is
£+ 2ws +wl=0
where s, 53 = ~{@, £ jo,J1-{ ? with cos 8= L(damping coefficient),

Hence the minimum value of the damping coefficient in Fig 6.4 will be

Jc’—(c}—cd) _E_JE
c T ¢ Ve

Lpin = €05 6 =
From the above example, it is understood that the roots of the characteristic equation of any

system will certainly describe a locus.
In general, if we take

Kﬁ(s-l-:*)

GOH(s) = ———

n(’* Pj)
j=i

where _]:[J(s+ Z) means (s + s + 23) ... (s + 2,) and Jr1:II(1‘-1- P;) means (s + py)s + pa) ...

(s + py,), then 2y, 25, . . ., Zn Will be the zeros and py, py. .. .. p, will be the poles of the loop transfer

function. Therefore,
K l_Il 5+ g I
[ -

H[HM

1
and

i=1

Y As+z) =Y Ls+p) = £2q+x
=

whereg=0,1,2,....
L]

[Tso+r

i=1

H|’n+4|

From the above equation, it is clear that K =

L] L)
where s is the solution point when ‘ZI L5 +2) ~ ZI Z(sq + p;) = £(2g + D will be satisfied.
- =

Obviously, this will throw us 1o a trial and error graphical method. But for coming to a
quicker solution, some rules have been framed for determining an approximate sketch of the root
locus.
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Rules for the construction of root locus

{a) Since the roots of the characteristic equation are either real or complex conjugate or a
combination of both, the locus must be symmetrical about the ¢-axis of the s-plane.

(b) Since the characteristic equation can be writien as

]i[{s+p))+KI:[(s+z,-)=0

i=1 i=l

the root locus originates from the open-loop pole with K = 0 and terminates either on an open-
loop zero or on infinity with K = e, Hence, the number of branches terminating on infinity is
equal to the difference between the open-loop poles and zeros. When K = 0,

[Te+pp=0 (=L2..n
=1

" and the rool locus branches start at the open-loop poles. Again,

] n m
?ﬂ(s+pj}+ﬂ(s+:i)=0

Therefore, when K tends to infinity,

ﬁ (5+z)=0
=1

Hence the roots are located at —z;(f = 1, 2, ..., m). Therefore, the m branches of the root

locus terminate on the open-loop zeros.
If n > m, then it can be proved as follows that (n — m) zeros will be at infinity. We know that

fI(H:,-l

inl

f[ (s+ p;)

i=1

L
K

As K =3 s, if we put s —= = ¢/*, then the left-hand side and the right-hand side will be equal.
Suppose :

a
I+=
or —_— =

[I +£)(s+r.‘)
s

) 1
As K — e, RHS — 0. As 5 = = ¢* LHS — T= — (. Hence, LHS = RHS.

(c) The locus will describe any point on the real axis when the sum of the numbers of the
open-loop poles and zeros on the real axis to that point is odd.

s+a _ _]_
(s+b)s+c) K

|-
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This can be proved very easily in the following manner:

ﬁ(su,—)

LGWH) = Lt =, -n) 180° =2 Qg+ ), g=0,1,2
H(H-m]

n
=t

since the poles and zeros m, and n, on the real axis will make an angle of 180° to the right of the

point.

In Fig. 6.5, P is a pole on the real axis and A is a point. Here P is on the right of A. Hence
P will describe an angle 180° a1 A.

Jjw
A P
f [
Point  Fole
Fig. 6.5

Since (m, —n)a=2 g+ Da(forg=0,1,2,...), (m, —n) is an odd number. When
(m, = n,) is an odd number, obviously (m, + n,) is also odd.
Suppose the loop fer function of a system is

Kis+1)(s+2)

COHE) = 36+ 8

The poles are at O, C and D positions (Fig. 6.6). The zeros are at A and B positions. On the
right-side of A, the number of poles and zeros is only one, i.e. one pole at O. This being an odd

jw

Fig. 6.6

number, the root locus will lie on the real axis OA. Hence the path of the root locus will be from
the pole at O to zero at A. Again, to the right-side of pole C, the sum of the number of poles and
zeros is 3, therefore, the root locus will lie on CB. That means from pole C the root locus will
reach 1o the zero B.

To the right-side of pole D, the number of poles and zeros is four; it is an even number;
therefore, the root locus will not lie on DC, rather the root locus will be on the left-side of D. The
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pole at D will move towards infinity through the real axis line DE as shown by the arrow. Thus,
here it is very much clear that the Inumbcr of branches of the root locus which will move towards
infinity is equal to (n — m) where 'n is the number of poles and m is the number of zeros.

{d) Usually the number of branches of the root locus which tend to infinity are described
along straight line asymptotes whose angles are expressed as

_(2g+x
B n-m

The centroids of the asymptotes will be given by |

04 g=0,1,2,...,(n=-m=1)

X real parts of poles — X real parts of zeros
number of poles = number of zeros

Kis+1)is+2)

For example, in the case of G(s)H(s) = s Do)

, the centroid of the asymptote will be

~3-4-(-1-2) _
3-2

-4

that is, the point D in Fig. 6.6,
The angles of the asymptotes will be

(2g +1)180°

35 = 180°, withg=0 (vn-m-1=3-2-1)

() The points at which the muliiple roots of the characteristic equation exist are termed

dK
breakaway points. The solution of e 0 are the breakaway points. [K is the parameter of the

loop transfer function G(s)H(s).]
For example, if the characteristic equation 1 + G(s) H(s) = 0 has a multiple root at 5 = - a of
multiplicity r, then 1 + G{s) H(s) = (s + a)" A(s) where A(s) does not contain the factor (s + a). Now,

)+ GOHE = r(s + )~ As) + (s + ay 20
ds ds
=(s+a)’! [n‘n(s}+ (s +a) d’%’—l}

At 5 = - a, the nght-hand side 1s zero. Therefore,

d
Z[G(I]H{E)] =0 at s=-a

Again, when we put s = - a in the equation
1 + G(s)H(s) = (s + a)" A(s)
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then | + Gis)H(s) becomes equal to zero, and we get the characteristic equation. Suppose

- B _
1+G(s)H(s) =1+ K <6) 0
then,
= g B
G(s)H(s) = K o
Therefore,
d KIB'(s) - C(s) - C'(s)B(s)]
25 (GH() = COF
or
B(s)C(s) - C(5)B(s) = 0
Again
B(s)
1+ K—=0
T
or
C(s)
K=-=2
B(s)

From the above equation, it is also observed that the value of K changes with the change in

dK
the value of s and this change can be found by evaluating e as

ds [B(s)?
Now in the case of multiple roots, we have already proved that

B'(s)C(s) - C'(s)B(s) = 0

K _ _[C’(s)am - s’(:)r:(s)]

'Ihmfm.%=0isﬁnomdiﬁmforthehenkawnypoim.!iumtbruhwlypo{mm

the real axis is define: as that point on the real axis where two or more branches of the root locus
depart from or arrive at the real axis. Figures 6.7 and 6.8 explain this by showing o, as the
breakaway point.

jo jo

Fig. 6.7 Fig. 6.8
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EXAMPLE 6.1 Show that the breakaway point o, on the real axis satisfies

> o

O+ p; i=1

=l

Solution Suppose the open-loop gain of a system is expressed as
(5+yNs+2)...(s+2,) - KP-'—

s+ p s+ p).(s+p,) D

Therefore the characteristic equation will be

N N D
1+K5 =0 o Ko=-1 o K=-3
At the breakaway point,
£=o=i (s+p)s+p)..(5+p,)
ds ds| (s+2)(s+23)...(5+ 2,)

ar
[-:—s-(ﬁp.)(w Pa)ee(s+ p,)][(.H s +23) o (54 25)]

[s+ p)(s+ py) (s + po)]

g—{.H- s+ ). (54 2,)
s =0

[(s+ )5+ 7). (s + 2,)F

‘We know from calculus,

2

d
Tl wl = w ) PR

‘Therefore, % = 0 reduces to

Hs+2) Hs +z,)

s+ p) Bls+py) 5(s:+p,|) s +2)
NDl—8 __,_ 8 . . & | pN—F _, 8 _, , 0
s+ py s+ py 5+ P s+ s+, S+ 2,
N!
or
N-Dl+l +I]—DN{]+1++I]=0
S+ S+n s+,
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Since the breakaway point is on the real axis at 0y, then the above can be wrilten as follows.

LIRS S I+l+...+l -
Gty O+ ay + p, O,+z Oy+2 O, + 2,

or

L l L 1
Z = Z . Proved.
i Tth T Oty
EXAMPLE 6.2 Determine the breakaway point of the system whose open-loop transfer function

i His) = —.
s Gl)H(s) s(s+3)?

Solution  Since there is no zero in the open-loop transfer function,

1
i Tt P

=0

where oy, is the breakaway point on the real axis. All the poles of the open-loop transfer function,
that is, 0, =3, =3 are on the real axis and, therefore, the breakaway point will also be on the real
axis, Now,

1 ! 1

— + =0
0, O,+3 0O,+3
or
1 2
_—— or o, = -1
a, oy +3

EXAMPLE 6.3 Determine the root locus of the system having open-loop gain
Kis+2)
s+ 14 j3)s +1- j3)

Solution Poles of the open-loop gain are -1+ j\ﬁ and -1 —‘Nri .

The zero of the open-loop gain is = -2,
=1-1-(=2) _

The centroid of the asympiote = 31 0
+1
The angle of the asymplotic line = (Zg ])x =1 (vg=n-m-1=2-1-1=0)
The characteristic equation is
K(s+2)

1 =0
NPT YRR o3
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or
Ks+2D=-[(s+1)+3] or x=~ﬂ
s+2
or
dK 25+2 2)-s5*-25-4
_._=o=(~~‘+“’+)z o 520 o -4
¥ (5s+2)

The root locus will exist on the right-side of the
zeror (ie. — 2) on account of the existence of an odd o,
number of poles and zeros on the real axis, 1.e. one.
Therefore, the breakaway point will be - 4. Of course 4

e L. -4 -2 -1 0 o

we are always considering K as a positive number,
starting from zero and approaching towards e, Hence
the root locus will be as shown in the Fig. 6.9.

EXAMPLE 6.4 Show whether the root locus for the Fig. 6.9 Example 6.3.
Example 6.3 will be changed when the parameter K is
negative.

Solution 1f the value of K is negative, then the root locus will be changed. The reason is as
follows.
The characteristic equation of the system as shown in Example 6.3 is
K(s+2)
I+ - - =0
G+ 1+ j3)s+1- j43)

or
14 2K(:+2) -0
F+25+1+3
or

S+K+2D+4+2K=0
Applying Routh’s criterion, we get

£ 4+2K
s K+2 0
O 442K

When the value of K is positive, K + 2 and 4 + 2K will be positive. Hence the root locus
will not intersect the je-axis. That is why, the breakaway point which was taken — 4 is absolutely
correct. But, if K is negative, then at the value of K = - 2, the root locus will touch or intersect
the jaw-axis.

In other words at K = -2,

F+@+2=0 or £=0 or 5=0,0.
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Hence the root locus will touch the je-axis at the

origin. The breakaway point will be at zero

instead of - 4. Therefore, the root locus will be as

shown in Fig. 6.10. —_—
At K = -3, obviously from the Routh's -2

criterion, it is clear that the system will be

unstable. That means the root locus will move to

the right-side of jw-axis. Fig. 610 Example 6.4.

EXAMPLE 6.5 Determine the root locus of the system whose open-loop gain is

K

) = N w45+ 20)
Solution The poles of the open-loop gain are 0, -4, -2 + j4, -2 - j4.

The centroid of the asymptotes = E:_f_;___?_:z = —--g- =~2

The angles of the asymplotes are:

= w wihg=0,1,23 (vn-m-1=4-0-1=3)

= 45°, 135°, 225°, 315°

Again
K ==s5(s + 4)(s* + 45 + 20)

= ~(s* + 85 + 365 + 80s)

and
%-~(4r‘+24.r2+727+80)=0

or

S+62+185+20=0
or

+20(?+4s5+10)=0

Therefore, the breakaway points will be -2 or -2 % J6

Figure 6.11 shows the root locus. The intersection points of the rool locus on the jwm-axis
can also be found from the Routh's criterion.
The characteristic equation is

ss+4)N?+45+ 200+ K=0 or 5 +85+365% +805s+ K=0
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2 . jw
Q o L
-2+jl6
Pole Pole
4 -2 0 2
Q
/:': i
Fig. 6.11 Example 6.5.
The Routh’s criterion is
41 36 K
El 10
P K
260 - K 0
5
26
s K
When m;; K~ 0, the locus will intersect at K = 260.

The value of s at that time will be
267 +260=0 or s=zji0
Hence the intersecting points on the jw-axis will be j |0 and - j /10 -

EXAMPLE 6.6 Determine the root locus of the system whose open-loop transfer function is

K(s+2)

(S-I-l):

Solution Poles and zeros of the open-loop gain are:
Pole=-1,-1
Zeros= -2

G(s)H(s) =

For the breakaway point

K _-dls+) |
ds ds| s+2
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or
4 £ +25+1 -0
ds| s+2
or
f+ds+3=0
or

s=-3 or -1
For the asymptote:
=1-1-(-2) _
2-1

2g+ b
2-1

Centroid = 0

Angle = with g =0

Oy + Py i=1 Op + 5

n
If we apply the formula, Z . we gel

=l
1 1 1

+ = or oy =-3
G, +1 g+l 0, +2

Hence g, = =3 must be the breakaway point.

The root locus will be as shown in Fig. 6.12. The locus will start from the poles (-1, - 1)
and reach the breakaway point at - 3. Then one path will go towards the zero at - 2 and the other
path to infinity.

Fig. 612 Example 6.6.

6.3 CONSTRUCTION OF ROOT CONTOUR

So far, we have studied the root locus of the closed-loop feedback system when the open-loop
gain parameter K is varying. Suppose that both the gain parameter K and the poles vary, then the
root locus plots obtained are termed root contours. For example, say, the characteristic equation is

5% + as + K = 0, where both a and X are varying. Therefore,

K K
1 =10 1+ =
+ or prrpy
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where both K and the pole - a are

K
Here in the open-loop, the transfer function is Cra)

varying. From the characteristic equation
as

Sras+K=0 or I+ =0
s+ K
it can be casily assumed, as if the a is the gain parameter, where
_(51+K]
B s

Now for determining the breakaway point,

5lE

P (C+K) | _255-(s +h)
T T s s s

2-2-K=0 o s=zxJK
Applying the Routh's criterion, we can also calculate the intersection point of the locus with
the jw-axis.

£ 1K
s a 0
£ K

When a = 0, the intersection point will be found by the following equation:
=jJK

, the poles are s = = j /K , and the zero is s = 0, for different values of K,

S+K=0 or K]

Since in =
S+ K

one path of the root locus will approach zero, i.e. the origin in this example and the other path

will be towards e and the breakaway point will be JK on the real axis. Figure 6.13 shows the

root contour.
K=Kya=0
K=Kya=0

K=K ,a=0

™

[

‘_'?"‘_ a =0 at origin

at infing

infinity K=K, a=0
K=Kya=0
K=Ky a=0

Fig. 6.13 Root comtour:
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EXAMPLE 6.7 If the open-loop transfer function is where both K and f are

— Kk __
s(s+ Dis+ By
varying, find the root contour of the feedback control system.
Solution The characteristic equation of the system is
K
4 ———— = EiE =0
+-‘(~¥+|)(5+.3) 0 or s+ DNis+ P+ K

or
As+ D+ Pls+ Ds+K=0
or

L
S+ +K
In this problem, first of all § is 1o be assumed 0, then the characteristic equation will be
S+ 1)+ K=0

K
+ 3 =
s(s+1)

The poles of the open-loop transfer function are 0, 0 and -1.

1
Centroid = - —
nirm 3

Angle of asymplote = EE;—”;: withg=0,1,2

= 60°, 180°, 300°
For the breakaway point
dK d
ds ds [+ D=0
or
{3+ 2)=0
i.e.

s=0 or 5= 2
3

It is very clear that the breakaway point will be zero since between 0 and -1 no root locus
will exist on the real axis as the number of poles and zeros on the right-side of the pole -1 are
even, i.e. 2 poles.

) . 2
Hence the breakaway point will be at 0, not at - 3 Figure 6.14 shows the root locus for

B=0.
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Fig. 6.14 Example 6.7: Root locus for f§ = 0.

Now, the root contours are drawn by increasing the value of 8 from 0 to e,
If the Routh's criterion is applied to the characteristic equation,

S+ +Pss+ D+ K=0

the point of intersection on the jw-axis for each value of K can be determined.
From the characteristic equation 5° + 5°(1 + ) + S5 + K = 0, the Routh’s criterion is

$ ! p
7 1+ K
a+pp-K
1+ 0
50 K
Thus,
WBBK o o poporeo
or
-1t J1+4K
br——

Taking £ as positive, i.e. f = ks ;+4K.wcgel from sl + )+ K=0,5s=%j —K-—.whtch

1+
=1+l +4K

will be the intersection point on the ja-axis at the value f =

2
The breakaway point on the real axis will be determined as follows:
—[sz(.w D+ K]
)

dp _-d Ss+ )+ K
ds  ds| ss+1D)
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Jar

Bincreasing

B increasing =l

pow K=Ky K=Ky K=K,

AN

Fig. 6.15 Example 6.7: Root contour.
or
S22+ -BK-K=0

For different values of X, the factorization is made to get the value of 5 on the real axis.
Suppose for X = 1, it is o. Then,

F+28+F-20-1=0

y=o'+20+ o -20-1

Draw a curve ¥ vs. & and find out from the curve at what value of @, y is zero. This will be
the breakaway point. The graphical method is better when normal factorization is cubersome.
Finally, the shape of the root contour will be as shown in Fig. 6.15.

Say

SUMMARY

The importance of the root locus method for the control system theory is emphasized. Its
correlation with the Mason’s gain formula is shown. The method of drawing the root locus is
described. The minimum value of the damping coefficient is determined. The rules for the
construction of the root locus are given. The construction process of root contour is also
described.

QUESTIONS
1. Explain the usefulness of root locus diagram in the design of feedback control systems.
2. Skeich the root locus of the system whose open-loop transfer function is
K(s+1)
s(s - 1)(s” + 45 + 16)
Find the range of X for which the closed-loop system is stable.

Gis)H(s) =
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9
10.

The open-loop transfer function of a unity feedback control system is given by

Kis+4)

Gs) = sis+1)

Sketch the root locus plot of the system and determine the value of the gain K so that
the system is critically damped.

The open-loop transfer function of a control system with positive feedback is given by
__K

s(s® + 45+ 4)

Sketch the root locus diagram of the system as a function of K.

G(s) =

Sketch the root locus plots and briefly explain qualitatively the improvements in
systemn performance (stability and steady-state error) that are obtainable by introducing
a compensating zero (s + 3) to the unity feedback system whose open-loop transfer
function is

9= Gra6+6

Construct the root locus diagram of the system of which the poles and zeros of G(s)H(s)
are: poles at 0, 0, -~ 2, -2 and a zero at - 4,

The open-loop transfer function of a unity feedback system is given by
K
5+ s+ (s +25+2)

Gls) =

In the root locus diagram for this system:

(i) Determine the number of branches of root loci.

(1) Determine the locations at which these branches start.

(i) Determine the locations at which these branches terminate.

(iv) Find the angles of the asymptotes and the point at which the asymptotes intersect
the real axis.

(v) Find the breakaway point.

(vi) Find the points where the root loci cross the imaginary axis.

Also, plot the root loci.

Sketch the root locus diagram for the closed-loop system having a loop transfer

function given by

Kis+2)

Gls)H(s) = s(s+1)

as K varies from zero to infinity.
Define breakaway point in the root locus diagram.

What is root contour? When is the construction of root contour required? Explain
clearly.
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11.

12,

13,

14,

15.

16.

Sketch the root locus of a unity feedback system having

2(s + @)
ss+2)(s+10)
Prove that the following closed-loop unity feedback system has a damping factor
greater than 0.5 when K = 1

Gis)

G(s) =

_ K(s+13)
s(s+3)s+ T
Determine the real root of the following characteristic equation
-3 +45-5=0
The signal flow graph of a control system is shown in the figure below. With the switch
closed, draw the root locus plot of the sysiem with @ as a varying parameter. Show that
the complex root branches are part of a circle. From the root locus plot, determine the

value of @ such that the resulting system has a damping ratio of 0.5. For the value of &,
find the overall transfer function in factored form.

L
Pl
K=1 K
-0

Switch

R(s)

Sketch the root locus diagram for the system having open-loop transfer function G(s)
with unity feedback. The value of G(s) is given by

K

G = o +5T ) (1+5T,)

where K, 7;, and 7, have positive values. Show how the root locus gets modified with
the addition of (i) a pole (ii) a zero. Discuss the effect of each on the performance of the
system, if the system is already stable before the addition.

Consider the open-loop transfer function of a unity feedback system
K(s+3)
s(s*+ 25 +2) (s +5) (s +6)
In the root locus diagram for this system:
() Determine the number of branches of root loci.
(ii) Determine the locations at which these branches start.
(ili) Determine the locations at which these branches terminate.
{iv) Is s = —10 + jO a point on the root locus (give valid reasons)?
{v) At what points is the imaginary axis crossed by the root loci and what is the
corresponding value of gain K?

G(s) =




Study of the Locus of the Roots of Characteristic Equation 187

17. What are the effects of adding a first-order factor, namely (s + 6) in the denominator of
a certain G(s) for which the root locus is given in the following figure. Skeich roughly
the ensuing root-loci.

s-plane
-2



Chaper  Analysis of Frequency
Response

7.1 INTRODUCTION

The frequency response is defined as the magnitude and phase relationship between the sinusoidal
input and the steady-state output of the system.

Suppose the input is A, sin @t and the output is A, sin (@r + 6). The frequency response test
on a system or component is generally made by maintaining the amplitude A, fixed and finding
out A; and 8 for a suitable range of freq ies. The freq y response is calculated from the
sinusoidal transfer function that is obtained by substituting jw in place of 5 in the system transfer
function.

Suppose the second-order system is

Ois) _ ol

)= R () +2Las) +op

where @, is the undamped natural frequency of oscillations and ¢ is the damping factor.
The frequency response transfer function will be

2

o

T o ——— s

v () +20w,(jo) + o}
o}

- +2jww, + o)
-
- 202

w, »

1
B ———
=y +2jlv+]

where v = @/w, and is termed the normalized driving signal frequency. Therefore,

1
| T jan| =
: :?(1 — ) 4l

188
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and

2y

1%

£1T(jo)] = - tan™

The steady-state oulput of the system is

ofn) = ! sin[am —tan™! zcvz]
:’i(l-v:)z-l-#c:vz l-v

When v = 0, the magnitude |7(jw)| = 1 and the phase angle ZT( jw) = 0°.
1
When v =1, | T(jw)| = % and the phase angle £T( jw) = -%.

When v — o, |T(jw)| =0 and £T(jw) = - m

For the maximum value of | T jw) l, di:[l T(jo |:[ = (. That is,

. N S ]:o
or
1 [201 =) - (=2v) + 8L ?y] -0
22 J0- AR 44202 (1 - ) + 400
* —dv+ 4+ 8=0 o V=1-20
or

1
[ﬂ] =1-2£7 or wi=\f1'2;2 or @ = w,1-20*

o, L]

Hence the maximum value of |T( jw]| is

B JU=3) +agh?

i 1

} Jo-1:207 ralta-20  2AI-0

The frequency where |T(_,"m)| is maximum is termed the resonant frequency.




190  Control Engineering: Theory and Practice

The phase angle at the resonant frequency will be

Wy
LT(jw) = —tan"l ;\2

Lo V122
1-1+287 e

The nature of the frequency response curves for magnitude and phase angle of the second-
order system against the lized fi y v is shown in Figs. 7.1 and 7.2 respectively.

= ~lan

£<0.707

0 v {(normalized frequency)
Fig. 7.1 Frequency response characteristics of magnitude of the second-order system.

0
=
=3
E]
2
2
=
~180% 0 v (normalized frequency) 2
Fig. 7.2 Freq v res| h ristic of phase angle of the second-order system.

Bandwidth and cut-off frequency
1
The range of frequencies over which the |T(jm}| is equal 1o or greater than E is defined as the

bandwidth. The frequency at which ITU’&J)[ is é is termed the cur-off frequency (Fig. 7.3).
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I T
1.0
0307 ==
Bandwidth \
i
;
\ Frequency
Cut-off
frequency

Fig. 7.3 Frequency response of a feedback control system.
In Fig. 7.3, the bandwidth for the control system can be obtained from the equality,
|1"( jw)l = % due to similarity with low pass filters. Hence, in this case the bandwidth is equal
to the cut-off frequency satisfying the relation

([T Uy S——

Jo-vrisany 2

(=P +@20P=2 o V-201-200-1=0

e 21-22%) + 401 - 207) + 4

2

ci-2ps Tl

or

Therefore,

v=.!l—2§=+\(2—4§2+4§‘ (v v>0)

Therefore, the bandwidth will be equal to \(I -2 +J2 -8t v agt .

7.2 METHODS OF DESCRIBING FREQUENCY RESPONSE

The polar plot is one of the methods of describing the frequency response. For the RC filter circuit
shown in Fig. 7.4, we have

E()
_EW 1 _ G
M= TG RGaT

Cs Cs
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R
o f‘gés = IE_:_(:_)‘ - (1= RC = time constant) T A . 1 °
Therefore, E; =cC E,
Ey(s) _ 1 l L
E(s) T+ Fig. 74 RC filter
or
T = l+71s

For frequency response, s = jw. Therefore,

T(je) = 1+ jor
That is,
| T = e and
1+ w*c?
When
=0, |TGwl=1 and
When
1 1
w=—, |T{‘w)|=——- and
T / V2
When

W= oo,

|T(jm)i =0 and

£T(jw) = £Z-tan" ot

£T(jw) = -tan™' 0 = 0°

ZT(jo) = —tan™ 1 = - %

£ITGa)| = ~tan! oo =~ -’21

If we draw the polar plot with the above data, we get, for w=0, w= % and @ = e, the points as
plotted in Fig. 7.5, at B, C, and A respectively. The triangle ABC is developed from trigonometry.

Now,
1
oA ABZ+AC‘2-BC’=HE-BC1
2AB-AC o1t
r
or
1 3-8 1
—_at BC = —
22 2

1
Since AC = BC = —5. LCAB = ZCBA = 45°, hence ZACB = 90°, and the polar plot is a circle.
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1
T

Clw= 1/

Fig. 7.5 Polar plot of the transfer function of RC filter

1
If the transfer function is T(jw) = m it may be rearranged as follows:

jo(l - jot) __jod-jo)
jo(l+ jo1) jol - jut)  -w'(l+e’®)

T(jw) =

__jere’t  _ +o’t v @
~o'(l+0’'f) —0'(+e’t) T -o'(+a’th)

or
_ J
(1+@'c) o+t

Tjw) =

When @ =0, T(jo) = - T~ joo = w2 £ —90°
When @ = o, T(jw) =~ 0 - j0 =0 £~ 180°
The polar plot with the above data will be as shown in Fig. 7.6.

f
i

/(l’[llcm!mg

oo

Fig. 7.6  Polar plot of m .

Similarly, the polar plot of ——--]———— will be as shown in Fig. 7.7.
{1+ jaty )l + jort,)

193
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Imaginary

- 1 w=0
8= Real

/ @ Increasing

1
Fig. 7.7 Polar plot of ——————.
(I+ jor)(l+ jor,)

‘The polar plot of - will be as shown in Fig. 7.8.

Jjol+ jor)( + joty)

Imaginary
I [

o, —
T 4T,

:
)
)
i
]
)
)
:
:
:
)
]
i

{m:ﬂ

i

. 7.8 Polar pl T ————
e  ploe of Jo(l + jor )1+ jor,)

The polar plot of - ' - will be as shown in Fig. 7.9.
(1+ jor )l + jot)(l+ jwty)

Imaginary

1
Fig. 7.9 Polar plot o .
A Pl Jor( + @+ jwry
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1
oy (1+ jor)(1+ jot,)

The polar plot of will be as shown in Fig. 7.10.

Imaginary

Fig. 7.10  Polar plot of ————————
(oY (1 + jot)(1+ jot,)

1
(o (1+ jot))(1 +jo,)(1 + joTs)

The polar plot of will be as shown in Fig. 7.11.

Imaginary ]
© :E/";// '—\
o= Real

Fig. 7.11  Polar plot of .
b plot of (jaY (1 + jot)(l + jwt,)(1+ jat,)

Inverse polar plot

The inverse polar plot is the curve of vs. @. For example:

1
T(jw)
. 1 1 ; [ 2.2 -1
T = — —_—=] = 41 £
If T(jw) l+jm'“mn ) + joor + 0T tan”' @1

The curve is shown in Fig. 7.12.
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Imaginary
n=es
T @ Increasing
w=0
0 1 Real

Fig. 7.12  Invers: r plot of ———.
ig. nverse polar plot of 1+ jor

7.3 BODE PLOT

The Bode plots, developed by H.W. Bode, consist of two graphs—the magnitude of the frequency
response and the phase angle of the frequency response of the transfer function plotted against the
frequency in logarithmic scale. Logarithmic scales are used for Bode plots since they simplify
construction, manipulation, interpretation and help w develop graphs over a wide range of
frequencies. In many cases, the graphs come as straight lines. The magnitude of the iransfer
function for any value of @ is plotted in decibel units, that is, as 20 log |T(j|‘n) I, where the base
of the logorithm is 10. For example, if |T(jm)|= 10, then the magnitude is 20 log 10 = 20 dB.

The plot of decibel magnitude versus log @ is termed the Bode magnitude plot and the plot
of phase angle versus log @ is termed the Bode phase angle plot. The curves are usually drawn on
a semilog paper using the log scale for frequency and the linear scale for the magnitude in
decibels and the phase angle in degrees.

Suppose, T(jw) = —tan! @, then the log magnitude is

i
—_—
(+a?)?

20 log | TG | = 20 1og(1 + 0?2 = ~ 10 log(l + 1)

If the frequency @ << l then the log magnitude will be:
T
20 log | T(j»)|=-10 log 1 = 0 dB
If > 1 , then the log magnitude will be
T

20 log | T(jw)| = -20 log @t =-20 log @ - 20 log ©

Thus, it is observed that 20 log | T(jw) | versus log @ will provide a straight line graph
having a slope -20 dB per unit change in log @. A unit change in log @ indicates

w,
log [——] =1 or ay = 10ay
ay

This change is called a decade. If @), = 2w, then the change is called the octave. Therefore,
~-201log 2 = ~6 dB. -



Analysis of Frequency Response 197

Now, the log magnitude versus the log frequency curve of may be approximated

1+ jor

by two straight line asympiotes. One straight line will be at 0 dB for the frequency range 0 < w < 1
T
and the other will be a straight line with a slope ‘-~ 20 dB/decade’ for the freq y range

— £ < =, From the above analysis, another definition is important. This is termed the corner
T

frequency or break frequency. The corner frequency is the meeting point of two asymplotes.
Hence after drawing the asymptotic curves, we can evaluate the error and apply cormections over
the approximate curve.

Now the error in log magnitude for 0 < w < L is provided by
T
—10log (1 + @’T) + 10 log 1

1 .
Hence at the corner frequency @ = —, the error is
T

~10log (1 + 1) + 10 log 1 = -3dB

. 1 .
Similarly the error at m = % is

—lDIog[l-l- %)\» 10log 1 -lﬂlog[%)i- 1010g1

~101log 5+ 10 log 4 + 10 log |
=-1dB

In this way, the errors can be calculated at any point between w =0 1to w = 1
T

Whea 1 < @ < oo, the error magnitude can be determined from the following expression
T
10 log (1 + @*t?) + 20 log ot
since the log magnitude was approximated as - 20 log wr.
When @ = l, the error is
T

-10log (1 + 1) +201log 1 =-3 dR

This matches with our previous calculaied value at the lower frequency range end point. Similarly

2
when @ = T’ the emror will be
10 log(l +4) + 20 log 2 =-1 dB
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For the sccond-order system, the Bode plot can be drawn as follows. Suppose
1
T(jo) = ———
(o) 1+ j2vl —v*

Therefore,

| T¢jw)| = 20 log

1+ j28v -2
S
V=P + 207

=120 log 1 - 20 log J(1- V)2 +(200)> == 20 logl(1 — )2 + (242

= =10 log [(1 = v} + 4004
If v << |, the | T(japl is given by: 10 log 1 = 0

= 201log

If v>> 1, the | T(jaw)| is given by: —10 log v* = — 40 log v

Hence the log magnilude curve will be two straight line asymptoles—one will be a
horizontal line at O dB for v << 1 and the other will be a slope of - 40 dB/decade for v >> 1. The
two asymplotes will meet on the 0 dB line at v = 1, i.e. at the corner frequency of the plot. The
error between the actual magnitude and this asymplotic approximation is as follows.

For 0 < v £ 1, the error will be found as

~10tog [(1 = v} + 4% + 10 log 1
For | < v < oo, the error will stand as
=10[(1 =v*)* + 48 + 40 log v

7.3.1 Method of Plotting the Bode Plot
Let us take an example and explain the procedure of plotting the Bode plot. Suppose
1001 + jw)

2
U'w)’{l +ji:3—($] ]

T(jw) =

The log magnitude is

20 log T(jw)l = 20 log 10 + 20 log 1 (1 + jmw)! + 20 log +20log

(o)’

Now,

20 logl(1 + ja)) = 20 log 1+’ =101log (1+ a*)
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When @ << 1, then
2000g 11 + joy] =0
When w >> 1, then
20 log [(1 + jw)| = 10 log &* ="20 log ®

It means that the slope is 20. Hence the approximate value of the above expression will
be O up 1o w =1 and then at @ = 1, it will be a straight line with a slope of 20 dB per decade
(see Graph 1, Fig. 7.13).

.

Graph |__—<__ Stope

20 dB/decade

dB magnitude
<

2
20 log [—1—] =20 iogL: =20log1-40logw = -40log @
Jo [

1
When @ = 0.1, the dB value is — 40 log ﬁ = 40. When @ = 1, the dB value is 0. Here the slope
is —40 dB/decade and the curve is a straight line (see Graph 2, Fig. 7.14).

dB magnitude

0.1

Fig. 7.14
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Now,

Here v = %.thecomcrt’mqucncywillbcalv:l: % or w=4,

Hence the curve will be as per Graph 3 (Fig. 7.15).

Graph 3
[H] P >
'
3 H
E ;
] :
E !
g H
- "
|
i

0.1 4 ©
Fig. 7.15
ﬁinally,
20 logyy 10 = 20

It will have a constant 20 dB magnitude and the curve will be as shown in Graph 4 (Fig. 7.16).

Graph 4
20 L
3
:
8
0.1 ®

Fig. 7.16
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The combination of all the Graphs 1-4 (Figs. 7.13 = 7.16) will be the Bode plot of the
complete transfer function with asymplotic approximation (see Fig. 7.17).

Graph |
Graph 4
0 Graph 3
' {
] 1
E ! :
- ) i
) E :
£ i i
g i i
i : Graph 2
s |
! :
: :
01 1 i -

Fig. 7.17 Bode plot.

Instead of adding point by point all the graphs, there is another way of solving the problem,
which is explained below.
81422
2

Let us take an example,
(] L] ?
Jo(l+2jo)| 1+ ﬂM[E] -[E]

Tjo) =

Now the log magnitude is

20 log |njm)! =120 log JT‘, + 20 log [l-f-%)‘ - 20 log i(l + ij)i -
[ [ :
201 1+ j0d4—-|—
ot [ ¢ joa [a]]
Now,
8
—_—] = —_—= 2 -
20 log jm| ZOIogw 0 log 8 - 20 log @
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It is a straight line in Bode plot with magnitude of 20 log,q 8 (= 60 log,e 2 = 60 x 0.3 = 18) at
w = 1. Also,

201og = 201og

1
l+;'2m| 1+ 40?

=201logl-20 |og,}|+4m’ =-10 log (1 + 4a7)
When 4o << 1 or ©* << %, the dB value is 0. When 40° >> | or @® >> %, the dB value is
- 10 log 4@® = ~ 10 log 4 - 20 log ® with the slope as — 20 dB/decade.

At w= % the dB value is

-Il’.)]agd-?.ﬂlog-é—=-201032-10103I+201032=-2l}log!=[)
Therefore, the corner frequency is at @ = —;-
Now,
20[10g[ 1+ J2)| = 201081+ % = 10108[ 1425
{3 a'z = og n £ 2

.,

ot . o’ :
For T << 1, the dB value is 0. For T >> |, the dB value is

2
mlog“"T =10loga? - 10logd = 20 log2 — 10 log4  (where @ = 2)

=20log2 -20log2=0

Hence the slope is 20 dB/decade and @ = 2 is the corner frequency.
Now,

! = 20 log !

20log |[—————sr B
1+ j0.4%,--—[5’-] 1+ JXO‘ZJE—[EJ

8 8 18

w . . .
Here v = R since v = 1 is the corner frequency condition. Therefore, w = 8 is the corner

frequency and the slope is, —40 dB/decade. Here, the corner frequency is @ = § and the slope is
=40 dB/decade.
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Thus, the complete data for drawing the final curve is as follows:

Item Corner frequency Details of the curve
8
j_w None Slope - 20 dB/decade. Passing through 18 dB at

w = 1. At @ = 0.8, the log magnitude is 20 dB.

1+ 20 0.5 Slope is — 20 dB/decade.

1+ j% 2 Slope is +20 dB/decade
1 )

8 Slope is — 40 dB/decade

The Bode plot of the above data drawn on the semi-log paper is shown in Fig. 7.18.

=20 dB/decade
A \(3
18 Sz

-20 dB/decade

~60 dB/decade

dB

]
1
1
'
'
'
'
'
'
'
1
'
i
]
1
i
i
I
1
1
1
'
1
1
1
1
Il
1
1
2

04 05 1

Fig. 7.18 Bode plot.

In the curve shown in Fig. 7.18, the slope of the curve at point A is - 20 db/decade and this

8
is for ';; As soon as point B, ie. @ = 0.5 (the next corner frequency) is reached, the slope is

changed 1o - 40 dB/decade = (= (-20 - 20)). This slope will continue up 1o point C until the next

corner frequency @ = 2 is reached. The portion BC is on account of . The slope CD

1
1+ j2e
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becomes — 20 dB/decade (=(-40 + 20)) on account of ]+j‘t—:-. The slope DE becomes
1

S —
a o
1+j42 (2
% (8]

This is the method of drawing all the asymptotic curves.
Now we have to apply the emror to derive the actual curve.

~ 60 dB/decade (= (-20 - 40)) on account of

For 20 log

1 3 . . 1.
1+j2ml = =10 log (1 + 4w"), the error in log magnitude for 0 < @ S 3 is
~10 log (1 + 4ar) + 10 log 1

1
Hence, the error at the comer frequency @ = 3 is

-10log(l +1)+0=-10log2=-3dB.

Themofatw:i—is
~10 log []+4-l—l(;]+lﬂlngl - -1010;[%]+0 =10 log5 + 10 log4 = — 1 dB

The error in log magnitude for % S w<=is

- 10 log(l + 40%) + 10 log 40?

Atw=

| =

Error=-10log2 + 10 log 1 = -3 dB
Atw=1
Error=-101log 5 + 10 log 4 = -1 dB

Hence on the asymptotic curves the above values need to be incorporated to get the actual
curve.

Now, for ]+j%,when0<m52

2
Error = + 10 log ["'NTJ ~1010g 1
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At the corner frequency, @ = 2
Error = 10 log 2 = 3 dB
When 2 € @ < oo

2 2

oy oy

= 10log| 1+— |-101log —
Error 08[ 4] 0g 3

At the corner frequency @ = 2

Error = 10 log 2 = 3 dB

A
P

; C
; N =
i ' '
! ! i
E i : Asymptotic H T
1 1
: : i curve E E

I s

o I T =
: : i !
| : : |
i ' ' |
1 ] : :
i i i i
i ] : ]
! i : !
i | ; ;
: : : i

0.5 1 2 B o

Fig. 7.19  Actual and asymptotic curves.

Figure 7.19 shows both the actual and the asymptotic curves. The error at @ = 0.5 is found
to be BM which is equal to — 3 dB. The error at @ = 1 is found to be SN which is equal to - 1 dB.
Similarly, the errors at different points are calculated and the actual curve is obtained.

The Bode plot is not complete until the phase angle plot is also made on the same semi-log
paper because the transfer function can be fully identified only by both its magnitude and phase
angle.

. L 1 . .
For example, if the transfer function is gl the magnitude is —_— and the
+ jor 1+ 0t
phase angle is — tan™ @t. When @ = l. the phase angle is - tan™ | = - 45°, When @ = Z_Ir the

LI

phase angle is —tan™ —;— When @ = =, the phase angle is - tan™ % t=-tan"' 2.
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For different values of frequency @ on the horizontal axis, the phase angle is determined
and plotied on the same semi-log paper.

SUMMARY

The frequency response of the system is defined. Methods of describing the frequency response
are enumerated. The polar ploi of frequency response is explained. The Bode plot of frequency
response is also explained. Examples of how to plot the Bode plot are described. Asymptotic
approximation of the Bode plot is first illustrated through examples. Then the error is
incorporated and the actual magnitude curve of the Bode plot is drawn, The method of drawing
the frequency plot of phase of the transfer function is also explained.

QUESTIONS
1. Write a short note on polar plots,
2. Construct the Bode plot for the following transfer [unctions:
100

G(s) =
@ “) :z{l + 0.055)(1 + 0.085)(1 + 0.1255)
10{s + 10)
® G9= T 56"
3. Draw the Bode diagram for the system whose open-loop transfer function is
10(s + 50)
G(s)H(s) = LS

Apply the corrections as well.

4. The open-loop gain of a servomechanism is plotted in the figure below against frequency
using the Bode plot. Assuming that all the elements are of first-order type, write down the
open-loop transfer function of the system and plot its open-loop phase against frequency
on the same scale. State any assumption made.

Y

20 20 dB/decade

Gain (dB)
1 e

20k

-40-

-60

[ S —

|
I
|
I
I
|
1
|
|
I
I
|
i
2

02 05 1 10 20 Frequency (rad/s)



Chapier  Stability in Frequency
Response Systems

8.1 INTRODUCTION

The first and foremost requirement of stability is that the roots of the characteristic equation must

not lie in the right-half of the s-plane or on the imaginary axis because that will produce

instability or cause sustained oscillations of the system. In frequency domain analysis, the Nyquist

stability criterion is one of the very important tools used to determine the stability of the system.
Suppose a function f(x) is expressed as follows.

(G-a)s-a)-(s~ay)
(s=B)s-b)-(s-b,)

fis) =

We know that s = 0 + jm Let
fls) =A +jB

For every point s in the s-plane (as shown in Fig. 8.1) at which f{s) is analytic, a corresponding
point in the f(s) plane (as shown in Fig. 8.2) will be observed. On the other hand, it can be said
that for a contour in the s-plane, which does not go through any singular point, there will be a
contour in the f(s) plane. Now,

Lfil=Ls-a)+L(5-a)+ =L -b)-L(s-b) =

. » S{s)-plane
® :Pimg flsy)
o )
; )
54 .
S
Fig. 8.1 s-plane contour: Fig. 8.2 [f(s)-plane contour.

In Fig. 8.3, if the point s describes the contour in the clockwise direction, then the phasor 5 — a;
will develop a net angle — 27 since the root a; is inside the contour. But the other roots a,, a1, ...

207
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b,

Fig. 8.3 s-plane contour enclosing a zero of f(s).

and by, by, ... will develop zero net angle. Hence the f(s) phasor develops a net phase angle
change of -2x (Fig. 8.4). Thus it can be said that the tip of the fi(s) vector will describe a
closed contour about the origin of the f(s) in the clockwise direction. To speak the truth, the exact
shape of the closed contour in the f(s)-plane is not the main important point, rather it is
essential to know that this contour encircles the origin once. Thus it can be said that for each zero
of f(s) enclosed by the s-plane contour, the f(s)-plane contour encircles the origin once in
the clockwise direction. Again, in the case of poles, i.e. by, by, ... if any pole is encircled by the
s-plane in the clockwise direction, the f(s)-plane contour will encircle the origin in the
counterclockwise direction since the pole is in the denominator of f(s). The angle described
will be - ( - 27) = + 2m.

fis)-plane

/
C

_/ u

Fig. 84 f(s)-plane contour corresponding to Fig. 8.3.

8.2 NYQUIST STABILITY CRITERION

We know that the closed-loop control system provides the characteristic equation equal to
1 + G(s)H (5) = 0, where

K(s+g)(s+5)-(s+z,)

G H =
) = P 6+ P55 p)

withm s n
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Therefore,

ﬁ i Kis+z)(s+2)-(5+2,)

J&)=1+GnHHs =1+ G+P)G+p) P,
- (S+p)E+p)(s+p)+K(s+2)(s+25)(s+2,)
(s+p)s+p)-(s+p,)
- (s+z)(s+23) - (s+2,) -
s+ p)s+pgd(s+p,)

or

s+ )s+ 23) ... (s+ 2,)=0

We know that the roots of the characteristic equation should lie in the lefi-half of the s-plane.
Here the roots of the characteristic equation are nothing but the zeros of the f(s). From this it can
be concluded that even if the open-loop system is unstable, the closed-loop system may be stable.

Now, for determining the presence of any zeros of f{(s) = 1 + G(s)H(s) in the right-half
s-plane, a contour is chosen that completely encloses the right-half of the the s-plane. This
contour is termed the Nyquist contour.

Figure 8.5 describes the Nyquist contour. The points A and B are at infinity on the + jo and
- jo axes, respectively, and the arc is of radius r tending towards infinity. Therefore, the whole
contour drawn in the clockwise direction describes the right-half of the s-plane. Now let us
consider that M zeros and N poles of f{s) are in the right-hand side of s-plane. If s moves along
the Nyquist contour in the s-plane, a closed contour can be developed in the f(s5)-plane which will
enclose the origin N — M times in the counterclockwise direction. We have already seen that, to
make a closed-loop system stable, there must not be any zero in the right-half s-plane. Hence
M=0.

oo 4@ s-plane
A
C
e 1?
r— e
-
(e}
B

Fig. 8.5 Nyquist contour.

Hence, for a stable system, the following will be the criterion. If 5 moves along the Nyguist
contour in the s-plane, a closed contour can be developed in the f(s)-plane which will enclose the
origin N times in the counterclockwise direction. This ‘N times' is nothing but the right-half
s-plane poles of the open-loop transfer function G(s)H(s). Again it can be writlen

G(s)H(s) = [1 + G(9)H(z)] - ]
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Now the contour of G(s)#H(s) corresponding to the Nyquist contour is the same as the contour of
1 + G(s)H(s) drawn from the point (=1 + j0). Therefore, it can be said that the encirclement of the
origin by the contour of 1 + G(s)H(s) is equivalent to the encirclement of the point ( - 1 + f0) by
the contour G(s)H(s). This is shown in Fig. 8.6.

v

fis)-contour

Fig. 8.6 Nyquist criterion.

Therefore the Nyquist criterion can be stated as follows:

If the contour of the open-loop transfer function G(s)H(s) corresponding to the Nyquist
contour in the s-plane encircles the point ( - 1 + j0) in the counterclockwise direction as
many times as the number of right-half s-plane poles of G(s)H(s), then the closed-loop
system is stable. It means that if both the open-loop and the closed-loop systems are to be
stable, the net encirclement would have to be zero.

1

EXAMPLE 8.1 Apply the Nyquist criterion 1o find out the stability of G(s)H(s) = GiD’
s(s+

Solution Since in G(s)H(s) =

. one pole is at the origin, there will be a slight
s(s+1)

modification to the Nyquist contour. Figure 8.7 describes the Nyquist contour.
Since there is one pole at the origin, a circle re/® is drawn taking origin as the centre
assuming r = 0.

5= f:e_: (¢ varies from — 90° to + 90° via 0°)
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b "y

Jjo

c -+ o

B Rtw

R—e= -
A red®
r—pos
D

Fig. 8.7 Example 8.1: Nyquist contour.

" 1
lim| ——
r-l][s(sd- l)]

1
= [m”(re” +1)}

I
']‘n“;[re” ]
The value of G(s)H(s) will approach e as r tends to zero and —¢ will vary from +90° w0

-90° via 0° as s moves from A to B in Fig. 8.7.
Figure 8.8 shows the locus along the curve PQ in the clockwise direction, where both P and

Q are at infinity.

Now,

w=-0 Imaginary axis
M\ +j= b p

fe— 1 - = @
N Real axis

z -
~|Q
Fig. 8.8 Example 8.1.
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When s moves from B to C (see Fig. 8.7), the G(s)H(s) = This is nothing but

1
Jjo (1+ jw)”
the polar plot ZW, where Z will meet Q at infinity when the value of @ is 0 and the polar plot will
be at W, when the value of @ is infinity. )

When s will move from C to D along the curve in Fig. 8.7, the value of s = Re'®, and when
R — e and @ varies from +90° 10 - 90°, we get

, 1
G(n)H(s) = AI_'E, Re® (Re® +1)

1

lim

Rw R 4 Rel?
1

R 210

= lim T]
Ry 1+—PJ
R0

lim L _ 0 i
— =0 ¢
R+ Rl" e];ﬁ

That is, the value of G(s)H(s) is zero and 8 varies from —180° Lo + 180° via 0°.

When s will move from D o A in Fig. 8.7, the G(s)H(s) = the polar plot WM

1
—jo (- jo)’
will occur. M will meet P at infinity at @ = - 0, and at W the value of @ will be = e,

EXAMPLE 8.2 Develop the Nyquist plot of the feedback system whose open-loop transfer
function is
K
His) = ———————
GO = e e 7 D)
and find out whether the system is stable or not
1

Solution We have already studied the polar plot of ————————  (See Fig. 8.9.)
Y PO Pt O s Jor (1 + Jjory) ¢

Imaginary axis

@ = oo ee—— ] —-la}wo

( Real axis

@ Increasing

Fig. 89 Example 8.2: Polar plo: of open-loop transfer function.
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Now if we have to develop the closed-loop contour, then we have to draw the plots, ie.

from 0 to e and ~ e to - 0. Hence the complete polar plot of is shown in

Fig. 8.10.
The plot of Fig. 8.10 clearly indicates that it has not encircled the point =1 + jO. Hence
both the open-loop system and the closed-loop system are stable.

(147 jw )l + Ty j)

Imaginary axis

Real axis

Fig. 8.10  Example 8.2: Polar plot of closed-loop transfer function.

EXAMPLE 8.3 Find the stability of both the open-loop and the closed-loop systems, when the

I s+3
open-loop transfer function is G(9)H(s) = T
3
Solation Since G(s)H(x) = m (see Fig. 8.11), one of the poles of the open-loop transter

function is in the right-half s-plane. Hence the open-loop system is unstable. Now let us draw the

Imaginary axis
3
@w=-0 W= e Realaxis
w=+0 -1 +j0 ERE

Fig. 8.11 Example 8.3.

locus of G jw)H{jw) and find out with the help of the Nyquist criterion whether or not the closed
loop system is stable. Thus,
Jjo+3

Gl jw)H(jw) = o+ Do -1



214 Control Engineering: Theory and Practice

3
When w =0, GljarH(jo)) = m ==3
Jo? +9
When @ = o, (GUOH(jo) | = —7=

9
@ ]"-—1
= ; o ] =0
o /l+—o/l-—
w® o’
(1]
£ GUjoH(ja) = tan' 2 - an™ = - tan™ =
a-X
2
When @ = - e
[
@ ! @ gyt

£ GjoH(ja) = tan! 2.

= E-
2
. Ji3
When @ = 2, | G{je)H(jw) | =
;5;3
Therefore,

2
£ G(jopH(jw) = tan™ 3 - tan”! 2 - tan™'(=2)

=337° - 635" - 116.5°
=~ 146.3°
Hence this point will be in the third quadrant.

As @ increases from 0 to ‘+ ', the locus will move in the anticlockwise direction and
enclose —1 + j0 once in the anticlockwise direction. Now, in the open-loop transfer function,

I o+l
GUGH®) = T 1y jw - 1)

one of the poles is in the right-hand side of the s-plane. But it satisfies the Nyquist criterion by
enclosing once in its contour the point (-1 + j0) in the anticlockwise direction. Therefore, the
closed-loop system is stable.
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8.2.1 Nyquist contour with Open-loop Poles on the jo-AXis

Suppose there are three poles on the jw-axis, one at the origin and the others at + jo, and —jw,.
In this case, the Nyquist contour needs to be drawn as shown in Fig. 8.12. At the origin, the circle
will be expressed mathematically as re’® where r — 0. At 2jay, the circles will be represented by

jwy + e and — jo, + re* /%, respectively, where r; — 0.
Jy + Jay

Jjo

Jay .

Fig. 812 Nyquist contour with epen-loop poles on the jeo-axis.

8.3 STUDY OF RELATIVE STABILITY

From the Nyquist criterion, it is very much clear that the stability criterion totally depends on the
encirclement of the point (=1 + j0) by the open-loop transfer function contour. Hence, it can be
concluded in another way that if the polar plot of open-loop transfer function approaches closer to
the point (=1 + j0), the system tends towards instability.

From Figs. 8.13 and 8.14, it is quite clear that the system in Fig. 8.13 is more stable than the
system in Fig. 8.14. For Fig. 8.13, the polar plot is drawn in Fig. 8.15. For Fig. 8.14, the polar plot
is drawn in Fig. 8.16. In Fig. 8.16, it may be observed that the polar plot is much nearer to the
point (-1 + j0).

jo jo

g

q
TRt EE TR 3
Q

Fig. 813 Fig. 8.14
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Imaginary axis

Imaginary axis
~14j0 -1+j0
Gljo) H(jw)
locus
Gija) H(jw)
locus
Fig. 8.15

8.4 GAIN MARGIN AND PHASE MARGIN

Suppose A is the locus of the open-loop transfer function G(jw)H(jw) of a system (Fig. 8.17). Let
us draw a umit circle taking its centre at the origin. The locus of G(jw)H(jw) crosses the real axis
at a frequency @ making an intercept x on the real axis. The locus intersects the unit circle at a
frequency my and the phase angle at this intersecting point is 8. If the value of x approaches unity
and the phase angle @ tends to zero, the relative stability of the system is reduced. Hence, the
relative stability can be measured in terms of the intercept x and the phase angle 6. The above
concepts are used to define gain margin and phase margin for practical measurement of relative

stability.

Imaginary axis

Real axis /r”— Real axis

Fig. 8.16

Real axis

Fig. 8.17 Locus of the open-loop transfer function G jelH( ja).

We know that the polar plot of

Gis)H(s) =

N S
Ay s+ Dirys+ 1)

will be as shown in Fig. 8.18 for different values of K.
The point of intersection of the polar plot with the negative real axis can be found out by
making the imaginary part of G(jw)H(jw) equal to zero. Now,

K

K{l - jeor)l -

joty)j

jotjor, + Djat, + 1) o+ ettt +e's)
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Imaginary axis

Ky
X
X

Real axis

K

Fig. 8.18 Polar plot of ——0——— .
sitys+ IT,s+ 1)

_ =K(j+on)l-jor)  ~-K(j+er, +or, - jo'nr)
a(l+ o't +w'td) o(l+ et +w’td)
~ K (1, + 13) . Kt -1)

o+ ) 1+07)) o+ o)l +a't)
Putting the imaginary part of G(jw)H(jw) equal to zero, we have

Ko'tt, - 1) _
w(l + 0*11)(1 + 0’t)

The magnitude of the real part will be

- Ka(t) +15) — K(T, +T3)

12 2.2y
a(l+ @'l )(1+ o’t}) [H;ff)[“Lﬁz]
nn

_ - K(1;) +7;) - - Kir, +145)
[“1._][“1_;] [fz+f,J[f,+f,}
7 T, T, T

-Knrn
T o+

Now, for the system to be stable,
Kty

T +T, <1
or
T +7T;

K< T
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8.4.1 Gain Margin

Gain margin (GM) is the factor by which the system gain can be increased to drive it to the verge
of stability. In Fig. 8.17, it is observed that at = @, the phase angle of G(jw)H(jw) is 180° and

1
the magnitude | G(j@)H{jw) | is x. If the gain of the system is increased by the factor L then

| GCjanH{ jer | will become x - r_ 1 at @ = a,. Then the polar plot of G{jw)H{jw) will pass
x

through the point (-1 + j0) making the system to move towards instability. Hence the gain margin
can be defined as the reciprocal of the gain at the frequency at which the phase angle becomes
180°. The frequency at which the phase angle becomes 180° is termed the phase cross-over

[frequency. Therefore, GM = 1 , where x = | G(jw) H(jw) | at @ = . In decibel, the gain margin

x
will be expressed as
GM = -20 log x dB.

8.4.2 Phase Margin

The frequency at which | G{je)H(jw) | = 1 is termed the gain cross-over frequency. It is found by
the intersection of G(ja)H(jw) and the unit circle drawn with centre as the origin. At this
frequency (ay) the phase angle of G{jay)H(jay) is (- + @). If an additional phase lag equal o @
is applied at the gain cross-over frequency, the phase angle of G{jay)H(jay) will change to
~180°, and the magnitude will remain unity.

The system will approach the door of instability. That is why, this phase lag @ is defined as
the phase margin (PM). In other words, the phase margin is termed the amount of additional phase
lag at the gain cross-over frequency needed to take the system towards instability.

Hence, the phase margin can be expressed as

PM = [£G(jo)H(jow) when @ = an] + 180°
where ay is the gain cross-over frequency.
EXAMPLE 8.4 Determine the relationship between the phase margin and the damping factor.

Solution Let us consider the open-loop transfer function
K o
GlH(s) = sts+1) s(s + 2Aw,)

Now,
LS
K K K T
= 3 = =
stts+1) 15t +s n[”l] :[”l]
T T
Since,

K o}
stts+1) T s(s+2w,)
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we get
K i X 1
2
= or = |— and =2
T w, 0, - T {w,

ar
,K 1 1
26 ?=? 0r2{:|fx=__r..

or
1
£=20ke
At the gain cross-over frequency @ = ay, the magnitude | G(jadH(jw) | = 1. That is,

5

w,

wof +45%o]
or
o} = w@] +4%})
or
o = of (o] +4%0)

or
of +4 %00 -0} =0

Therefore,
_ -4l D160} + 40

2

=20k rwlJagt +1
or
o?
_lz' =-20%s .JI4§‘+I

@y,

&,

is a positive number,

2
a)_; = Jagt ey -2
or
W = {J4§‘+1-2§’]mm.
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Again, phase margin (PM)
8= [£G(jw) H{jw) for w= ay] + 180°

=-90° - an”! P+ 180°

ngn
= 90° - tan™! -z-cu-:-,—;—
or
12
=90 - tan™! [?'C—(,h;‘ 1 —2;’) ]
tan (90° — @) = tan mn"[z—lg[.f@" + —2{’]"1]
1 a— 2 12
o 0= {1227
* y2
1
tan =2 | ———
(]
Therefore,

112
- 1

Method of calculating the open-loop gain if the gain margin is provided
and the open-loop transfer function is given as

K

GO = D@+

There are two methods of solving this probl (a) graphical method and (b) analytical method.
Graphical method. Let us K = 1. Then,

CUe = @+ D je + D

1
| Glja) | =~
w1+ 1ie? |l + o,
ZG(jo)=-90° - an™ go-an’! ne
We have to draw the polar plot of G(je). (See Fig. 8.19)
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[maginiry axis

Real axis

Fig. 819 Polar plot of G{je).

Suppose the gain margin obtained is
y=20log 1 and phase margin = 6
x

Now to obtain the given gain margin Z, the Nyquist plot should intersect the negative real
axis, say, at b. Therefore,

1 1 Y4
20Iog;=2 or log;:—

20
or
o _ ) _ 1
10? = ; or b= ][)W
Now to achieve b, the system gain is to be increased by the factor 2 Hence the value of K = é.
x x

Therefore,
1

loum x

K=

1

Analytical method. We have already calculated, b = o7

The plot of G(jw) intersects the real axis where the imaginary part is equal to zero, That
means the imaginary part of G(jw) = 0. Therefore,

K
Imaginary part of —————— =10
¢ pa Jo(r jo + 1)1, jo+1)

From the above, @ can be determined. Say, the value is @ = w;.
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Therefore,
N I
|Gl | at =y =b= W
From the above, the value of K can be found out.

Method of calculating the open-loop gain if the phase margin is provided
and the open-loop transfer function is given as

K

GO = e s+ D)

Graphical method. Suppose the phase margin is @. The polar plot of

1

GUa = o+ Dryje + 1)

is redrawn as shown in Fig. 8.20.

M L
Fig. 8.20 Polar plot of G(jw).

A circle drawn with the centre O intersects the polar plot at the point M. The angle « is
drawn and that intersects the polar plot and the circle at P and P, respectively. Now, to make a as
the phase margin, the point P is to be shifted to P; Hence the system gain needs to be increased

oP, . op
by a factor El; Therefore, the value of K will be oP"
Analytical method. Suppose @ = @, is the gain cross-over frequency. Then from
K
Glfety = Jjozyjo + 1)ty jo + 1)
we get
£G(jo) = - 90° - an™! [ - tan”! @
Thercfore,

ZG(jw) + 180° = a
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+90° —tan”! o, - tan”! o, = @
From the above @ can be calculated. Therefore,
. K
|G(;ﬂ)]|ﬂ_m'= - = =1
o1+ e 1+ (00 )

Putting the value of ay, we can find the value of K.

Method of determining the gain margin and phase margin with the help
of Bode plot

. K . L
Suppose the open-loop transfer function is ————————. The polar plot of this function is
- > srseDmse P

drawn again in Fig. 8.21. The gain margin is 20 log 1.. 20 log x.
x

K
Fig. 821 Polar plot of prrrCTeTTS

Since x is less than one, — 20 log x is a positive number. At the point A, the phase angle is
- 180°. Corresponding 1o this — 180°, the decibel observed in the Bode plot will be 20 log x and
applying a negative sign, we will get the gain margin with the help of the Bode plot.

Figure 8.22 shows how the gain margin is calculated. Corresponding to the phase angle
curve, the phase angle — 1807 is 1o be located, say it is at N. Now, corresponding to the point N,
OM is the value of frequency. Corresponding to the point M, Q will be the point on the
magnitude (decibel) curve. The y-axis value of the point Q will be 20 log x and, therefore,
- 20 log x will represent the gain margin.

For phase margin, we know that | G(je) | = 1. Hence 20 log | G(jw) | = 0.

Suppose, in the Bode plot, the value of 20 log | G(jw) ! = 0, is at S. Corresponding to the
point S, the point Z will be the phase angle of £G(jm). The angle WZ in degrees plus 180° will
be the phase margin.

It is also possible to adjust the system gain for a specified GM or PM with the help of the
Bode plot. Suppose the gain margin found in the Bode plot is x, and it is to be increased to x,,
then we have to determine how the open-loop gain is to be changed. That means x, — x; will be
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decibel (dB)

Magnitude

curve

Phase angle
curve

Frequency
(semilog scale)

Fig. 822 Bode plot to calculate gain margin and phase margin,

a positive number. Therefore, the system gain is to be reduced by - (x; - x;) dB or by the factor
¥ where
oy B |

20

Wlogy=x-x or log y =

or

y = Jol5-n)0

That means if the gain factor was K, it will now be =,
¥

Suppose we have to reduce the phase margin. Say, the phase margin found in the Bode plot
is 6y, now we have to make it . For the &, phase margin, the phase angle in the Bode plot will
be (8, - 180°). Corresponding to (6 - 180°) phase angle in the Bode plot, the frequency is read
from the horizontal axis of the Bode plot. Corresponding to that frequency, the magnitude of
G(jaw) is found out from the Bode plot. If the angle &, is to be made the phase margin, the above
magnitude is made zero because 20 log 1 = 0 and at the phase margin, | G(jw) | = 1.0, If this value
is found less than zero by some amount p dB, then the system gain is 1o be raised upwards by
p dB. Tt means that the system gain is to be increased K| times, where

Wlog Ky =p
If the gain of the system was earlier K, it would now be KK,.
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8.5 CONSTANT-M CIRCLES
The closed-loop frequency response of a system can be expressed as

. O(jw)
W) = ——
o) R( jar)
where O(jw) and R(jw) are the output and the inpul, respectively, in terms of the frequency
response. If G(jw) is the open-loop frequency response, then in a closed-loop unily-feedback
system the transfer function will be

OGw) __GUw) _ _x+jy

im) = = = = iB
T = Ziay = T4GGw) ~ Texsjy = Me
Therefore, the magnitude M of T{jw) is given by
_ dxe gl \‘11+)’1
11+ x+ jyl J(l+x)’+y3
or
2 .\'2 +yz
M = (+x)° +y*
Rearranging this equation yields
BM -+ LM+ YM - 1D+ M =0
or
Ay ML M, (dividing throughout by M? - 1)
M -1 MEog
or

2 2
2xM? M M? M’
e + — - 5 + v+ — =0 adding and subiracting the
M =1 M= -1 M7 -1 M -1
M ]
lerm

M* -1
or
2
M MY - M - M*
x+ +y + =10
[ M’—]} 7 M? -1y
or
2 2
X+ L ey |M
7Y B PYo
( m
This is the equation of a circle with the centre at L-— e I.U and with radius FYae
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Thus for various values of M, a large ber of c M circles can be drawn.
Figure 8.23 shows the different constant-M circles drawn for some values of M.

My>My> M,

M > M3 > M}

/‘

M<]

S~

Fig. 823 Constant-M circles.

Now:

(i) For M > 1, as M increases, the radius of the M-circle reduces and the cenire located on the
negative real axis proceeds towards (=1 + j0). For, M = oo, radius = —5— = —M_ _o and the
centre | = - ——=———=-11{ is at ( -1, 0).

M -M
(i) For M = L, radius = 7Y I ke centre [ﬁ zm] is at ( - oo, 0). Therefore, for M = 1,

the centre is at infinity and the radius is infinity. This indicates that it is a straight line paralle] to
the y-axis.
Now we know that,

2 : T w
L = ——
’ [‘ M- :] M-I
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A line parallel to the y-axis means that x = K. The intercept on the x-axis by this line is
(K, 0). Substituting x = K, y = 0 in the preceding equation, we have

M ) M
K+—m—=>1| o ———
[ M’-I] Tt -y

M M
MEI-1 T MP-

M M? -M

M-1" M*-1 M+l

K=

1
Now, when M = 1, we get K = -3 Hence the intercept on the x-axis will be at [--;-'-,U] for

the straight line (M = 1).
(iii) For M < 1, as M decreases, the radius of the M-circle reduces and the centre located on the

positive real axis approaches towards the origin. For M = 0, radius = =0, and the

M
M -1

M‘.I
centre | =733~ = 0 | will be at (0, 0).

8.6 CONSTANT-N CIRCLES
The phase angle of the closed-loop transfer function T(jw) is given by

X+ iy
=L —
b [l+x+iy]
. .y
= 2 —Lan"lL = tant 21X
x +x 142
xl4x
= tan™ Y
x+xt+y?
or
lﬂ.l'l.ﬁ: }.——‘
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or
N= % where N is the phase angle in degrees.
X+x"+y
or
.2_l=0
X+ x+y N
or
2 2 2
2e28 4 [L) (L +¥o2 Y L) o] =0
2 2 2 2N 2N
or
[x+l]2 [y-L]z 11 A
2) *UTN) Tt N T
or

The centres of the circles described by the above equation will be at (-%ﬁ] with radius
of value L N+,
Then for different values of §, a large number of N-circles can be drawn. These circles pass

2 1
. . . 1 1 1 I, .
through (0, 0) since the circle equation | x+—] + |¥y——| = —+—= is satisfied.
gh 0.0 4 [ 2] [) :w] FRTYE

Im

Rl

Fig. 8.24 Constant-N circles.
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1

Figure 8.24 shows a large number of N circles. The circles

( 1]2 ( 1]’ 1 N+l
T4= y-—| = —
2 2N 22 N7

also pass through (-1, () since

1y 1Y 1 1
LHS. = (—1+—] + [—) = — 4+ — =RHS.
2 N 1N

8.7 METHOD OF DETERMINING CLOSED-LOOP FREQUENCY
RESPONSE FOR NONUNITY FEEDBACK SYSTEMS

We know that the closed-loop transfer function of a nonunity feedback system is expressed as

G(jw)

o) = TG Ge) Hya)

where H{jw) is the nonunity feedback path transfer function. Now, by modification

G(jo) H(jo)
H{jw) | 1+ G(jw) H( jw)

Tja) =
1 G,(jo) I .
= = Ti(jo
HUﬂJ}]:I+G|(jm]] HGay )
where G,(jo) = G(jo)H(jo) and T,(jo) = —CLUL)_
+ Gy { jo)
Hence co M and N circles can be found out for the unity feedback transfer

function Ty(jw), and the nonunity feedback transfer function T(jew) can then be determined by

1
ltipl T by —
multiplying Ty(jw) by HGo)

This procedure can be casily applied by Bode plot. With the help of the Bode plot, T\(jw)
and H(jw) are drawn and the log magnitude and phase angle of H(jw) can be subtracted from
those of T)(jw) to get the log magnitude and phase angle of T (jw). The result will therefore be the
Bode plot for the closed-loop frequency response Tijw).

8.8 NICHOLS CHART

For ease in design work, N.B. Nichols transformed the ¢ M and ¢ N circles in polar
di to log magnitude and phase angle coordinates. The rc%ultmg chart is known as the
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Nichols chart. The Nichols chart is therefore a decibel magnitude-phase angle plot of the loci of

constant dB magnitude and phase angle of %Um). graphed as | G(jw) | versus ZG(jw). Now,

Lo Gw)  1Gje)l £ég
Tjo) = 1+G(jw) — 1+1G(jo)! £¢g;
B 1G(jw)| £é;
T 1+1G(jw) lcos ¢g + j1G(jw)sin ¢
Therefore,
., 4| 1G(j@)isin ¢
Zz = L§g - tan” | ———
Ty} = £4g - tan [l+|G(jm)|ms¢o}
or

tan [£T{jw)] = Lanl:% - lan"ﬁ%} =N

G sin ¢
N= an 9 1+Gcosgg
1+tan gg.—25 0
1+G cos g

sin ¢ G sin ¢
_ cus&-l+f3cos¢a
sing; Gsingg
cosde 1+Gcosdg

1+

_'sin%(l+6cos¢5)-(}sin¢cco\s¢¢ __singg
T cos@g(1+Geosgg)+Gsin® g  cosgg +G

or

G+cos¢a-i’l"$9—=o

That means,

1
IG{jm}I+ms¢G—FsinﬂG=0 (8.1)
For a fixed value of N, the locus can therefore be drawn in the following manner:
(a) Take the value of ¢
(b) Calculate | G(jaw) | from Eq. (8.1).
(c) Plot the value of 20 log)q | G(jw) | versus phase angle ¢g.
Figure 8.25 shows the dB magnitude vs. the phase angle curve for a constant, N = - tan 60°

=-Ji .
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Phase angle 0
210 -180 150 -120\_-90 60 -30
F -6
E
51 r =12
g
LTjas) = - 60° =L
1 F =24
Fig. 825 dB magnitude vs. phase angle plot for N = —tan 60°.
Again
OGjw)  _1G(jw)l £¢g
Rijo) ~ 1+1G(jo) £¢;
_ 1G(jw){cos ¢ + jsin ¢;]
1+1G(jw) cos §; + jIG(jw)!sin ¢g
_ 1G(jw)!
JU +1G(j@) i cos ) + (1G(j) 1sin 95 )?
or
M= 1G(jw)|
J1+21G(jw) | cos ¢ +1Glje) P
or
M = 1G(jw) P
1+ 21G(jw) lcos ¢ +1G(je) I
or
1G(jw) P (M* = 1) + 2M* 1 G(jw) | cos ¢ + M* =0
or
2 2
i 2 i -
16U P + —5— 1G(@) ] cos 96 + —5— =0

For a fixed value of M, the locus can therefore be drawn in the following manner:

(a) Find out numerical values of | G(jw) .

(8.2)

(b) Solve the resultant equation for ¢g, excluding values | G(jw) | for which Icos ¢gl > 1,

from Eqg. (8.2).

(c) Plot the dB magnitude versus phase angle, that is, 20 log | G(jm) | versus phase angle.
Figure 8.26 is the dB magnitude versus the phase angle plot for constant M = /7, that

means, 20 log | T(jm) | = 20 log /2 =3 dB.

Now Fig. 8.26 and Fig. 8.25 are shown in the combined form in Nichols chart for different

constant values of M and N (see Fig. 8.27).
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j§’- -12
gl-6
. . -180 . {
210 \-210 _Ay-m 50 -60 [0
- \ =i
Phasq angle 3dB
=12

Fig. 8.26 dB magnitude vs. phase angle plot for M = J‘I

0.25d8
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3dB
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Fig. 8.27 Nicholos chari.
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SUMMARY

The fundamental concept of stability in frequency response systems is discussed. The Nyquist
contour is defined. The Nyquist stability criterion is explained. Examples to apply the Nyquist
criterion are taken and solved. Study of relative stability is made. Gain margin and phase margin
are defined. The method of determining open-loop gain, if the gain margin is given as data, is
explained. The method of calculating the open-loop gain, if the phase margin is provided, is
shown. The method of determining the gain margin and the phase margin with the help of the
Bode plots is described. Procedures for determining constant-M circles and constant-N circles in
the case of the closed-loop frequency response of a system are explained. The procedure of
drawing the Nichols chart is shown.

QUESTIONS

1. Draw the complete Nyquist plot for the system with the open-loop transfer function
K
G(s)H(s) = m Comment on the closed-loop stability of the system.

2. Comment, using the Nyquist criterion, on the closed-loop stability of the system whose
open-loop transfer function is

(0.5)(1 + 55)
GOHO= 21 0.55)

Find also the gain margin and the phase margin.
3. State the Nyquist stability criterion and investigate the stability of the closed-loop
system with the following open-loop transfer function
Gls)H(s) = 2s+3)
s(s=1)

by drawing the Nyquist plot. Wherever the Nyquist plot crosses the real or imaginary
axis, determine the frequency and the intercept value.
4. Sketch the Nyquist plot for the control system whose loop transfer function is given by
1

GO HS) = (039 1+ 059
Determine the gain margin and comment on the stability of the system.

5. Illustrate with suitable Nyquist diagrams the distinguishing features of a control system
which has absolute stability and a system having conditional stability.

6. What do you mean by “Constant-M circles” and “Constant-N circles™?

7. How do you calculate the closed-loop frequency response for nonunity feedback
systems? Explain clearly.

8. Describe Nichols Chart. Discuss its importance in finding the freq y response of
systems?




234  Control Engineering: Theory and Practice

9.

10.

11.

12.

13.

14,

15.

State and explain the Nyquist stability eriterion. How do you study relative stability
from the Nyquist criterion?

Define gain margin, phase margin, phase cross-over frequency, and gain cross-over
frequency.

Consider a feedback system having the characteristic equation

K
4 =
(s+1)(s+ L5)(s +2)

It is desired that all the roots of the characteristic equation should have real parts less
than =1. Extend the Nyquist stability criterion to find the largest value of K, satisfying
this condition.

(a) Make a rough skeich of the Nyquist’s plot for a system whose open-loop transfer:

5

s{1+025)(1+5)°

{b) Is the above system stable?

{c) Define the “gain margin” (G.M.) of a system and determine the G.M. of the system
specified in (a).

(d) Define the “phase margin” ($) of a system and indicate how can this be determined
from the Nyquist plot?

{a) State and explain the frequency domain specifications for a control system,

(b) Sketch the Nyquist plot for

function is G{(s) H(s) =

GH(s) = p>0

ss+py’
Give the relative advantages and disadvantages of the two graphical methods used in

the control systems, namely the Nyquist plot and the Bode plot. State with reasons
which method would you choose for design purposes.

Sketch the Bode-plot, on a plain paper, for the following function and give the
approximate values of the gain margin and phase margin

10+
W= LT e G10)
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9.1 INTRODUCTION
Let us first of all study what compensation is and why is it required in control systems. To explain
this we take an example of an open-loop transfer function

60K

GO = 616

We know that the velocity error constant, K,, for unit-ramp input is

lim g = lim 560K

10 =0 Ssisee) oK

Therefore, the sieady-stale error = # If K is 1, then the steady-state error is 0.2. Suppose
60K =350r K 3 Th
=35 or K = ¢ Then,

35

0= G266

The characteristic equation is

s(s+20s+6)+35=0

or

P87+ 1254+ 35=0
or

(s+T*+5+5)=0
That is,

s==T7 or s=¢
The centroid of the asymptotes is
28 L
3 =2
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The angles of the asymptotes are

(2q + )180°

3 = 60°, 180°, 300° withg=0, 1, 2.

For breakaway point

idi:_ =-g;[:(s+2)(s+6}]=0
or
..."_JJ 852 -
d.r( + +129)=0
or
3P+ 165+ 12=0
That is,

oo 220 o006, - sa26

Therefore, the breakaway point will be at -0.906 since the value - 4,426 will have an even

number of poles, i.e. 2.
“1+ 19 =1- 19
2 2
Similarly, when K = 1, we will get two conjugate roots: -0.3 + j2.8 and -0.3 - j2.8. These
roots are usually called the dominant pair of roots.

The 60K is nothing but the system gain. From Fig. 9.1, it is clear that when the system gain
is 60, the undamped natural frequency

0A = @, = \J{0.3) +(2.8)" =285

cos 8= { = damping coefficient
= cos 84° = 0.105

35
Now, when K = E' we got three roots, that is: -7,

jo
A-— Root locus
At the point A

60K = 60 OB
OA

6 2 ) =

Fig. 9.1
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Usually the value of £ is 0.6 and the settling time is less than 4 s. So, cos & = 0.6 or
@ = cos™ 0.6. We now draw the angle . If we draw (o = cos™ 0.6), we will find OB = @, = 1.26.
Therefore,

. 4
Settling time = ————— =535
0.6x%1.26
60K = 10.5

The value of 60K will be found from | s(s + 2)(s + 6)| = 60K. The value of 5 will be found
from the coordinates of the point B. Now,

105 105

~lim "2 =
K.= "0 ss(s+2]{s+6) 2 0.875
1
- = —— = L14
Steady-state error 0875

Thus, it is observed that to get the required value of the damping coefficient, the steady-
state error increases and the settling time improves. Hence by changing the gain 60K, all the
requirements are not fulfilled.

Now from the point of view of iy ical experi ion, we insert one zero in the
expression for the open-loop transfer function. That is, we make the open-loop transfer function
60K (s + 3
G(S) = {7:)
sz +2)(s+6)
The centroid of asymptotes is
~2-6+3 5 __ 25
3-1 2
The angles of asymptotes are
+ .
Qatbr X 3% Gihg=0,1

3-1 2" 2

For breakaway point:
s{s + 2)(s + 6) + 60K(s + 3) = 0

or
_ Hs+ (s +6) -
60(s + 3)
Therefore,
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or

41206+ | o

ds (s+3) -
or

dis+88 +12s| o

ds 5+3
or

(3s° +165+ 12)(5s+ 3~ 5" -85 — 125
(s+3) =

or

25+ 175° + 485 + 36 = 0

The breakaway point will have a real value and that can be determined very easily by the
graphical method. Say, the value is o. Then,

y =20+ 170° + 480 + 36

We draw the curve graphically and find the value o when y = 0. The root locus is shown in
Fig. 9.2.

N

-6 =3

Fig. 9.2

Again we draw 8 where cos 8 = (.6 (considering damping coefficient { = 0.6). Calculate OA,
that is, @, and it will be found to be 3.4. The value 60K = | s(s + 2}(s + 6) |, where 5 is equal 1o
the coordinate of point A and it will be found that:

60K = 16
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Now,
K = lim ,_OOKG+3) _ 60Kx3
0 Ts(s+2)(s+6)  2x6
. . 4
Seuling time = 2.4 . 1.96 s
{w, 0.6x3.4
1
The settling time is well below 4 s, The steady state error = KL == 0.25.
N
Thus it 15 observed that incorporn:ion of one zero improves the system. This is the
Sfund ! ing of compensation. We have now understood compensation from the

mnlhemauca] vncwpo:nL Let us see how to make it happen practically. Naturally, we have to take
the help of some electrical circuits.

The compensation is usually classified as follows:

(a) Series compensation or cascade camp:nsanon

(b) Feedback comy ion or parallel comy

(c) State ﬁ.'cdback cumpcnsalinn

9.2 TYPES OF COMPENSATION
9.2.1 Series Compensation or Cascade Compensation

This is the most commonly used system where the controller is placed in series with the
controlled process. Figure 9.3 shows the series compensation.

process

) A pe— Controlled ot
1

Fig. 9.3 Series compensation.

9.2.2 Feedback Compensation or Parallel Compensation
This is the system where the controller is placed in the minor feedback path as shown in Fig. 9.4,

rn elr) Y C ed 0(:'_]_
+\_r process
Y
f C P
L= |

Fig. 9.4 Feedback 1p fon or | comyp
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9.2.3 State Feedback Compensation

This is a system which generates the control signal by feeding back the state variables through
constant real gains. The scheme is termed state feedback. Tt is shown in Fig. 9.5,

) [ . Controlled | 00}
’9‘ | Ci p s ™
K
| S

Fig. 9.5  Siate feedback compensation.

The compensation schemes shown in Figs. 9.3, 94, and 9.5 have one degree of freedom, since
there is only one controller in each system. The demerit with one degree of freedom controllers is
that the performance criteria that can be realized are limited. That is why there are compensation
schemes which have two degree freedoms, such as:

(a) Series-feedback compensation

(b) Feedforward compensation

9.2.4 Series-Feedback Compensation

Series-feedback compensation is the scheme for which a series controller and a feedback controller
are used. Figure 9.6 shows the series-feedback compensation scheme.

'Y I Controller 1 N\ Controlled olf)
¥ 1 ] AN process
T -
L1

Fig, 9.6 Series-feedback compensation.

9.2.5 Feedforward Compensation

The feedforward controller is placed in series with the closed-loop system which has a controller
in the forward path (Fig. 9.7). In Fig. 9.8, the feedforward-controller is placed in parallel with the
controller in the forward path. )

The commonly used controllers in the above- ioned ion sc
described in the section below.

'

arc now
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LU} el lied
P N e  pp—— Ci o __
\ Bl process

Fig. 9.7 Feedforward controller in series with the closed-loop system.
| G 1
| E——|

+
N N I_r'—-_-] Controlled o(1)
/1 N/ process
Fig. 9.8 Feedforward ¢ ller in parallel with the ¢ ller in the forward path.

9.3 LEAD COMPENSATOR

It has a zero and a pole with zero closer to the origin. The general form of the transfer function of

the lead compensator is

Gl = —
.!"I'E
where < | and 7> 0. Thus,
_ Bits+ 1)
Gl = Brs+1
When 5 = jor
. plrjo+])
Gljo) = B Prijwm+1

Since B < 1, £G(jw) is leading in nature.

Figure 9.9 is the example of a lead compensator. Let us find out, why it is s0?
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o

E, 2R, E

| |

Fig. 9.9 Lead compensator.

Ry
Rk, + 22
E,(s) R, Mt s

E() 1 R 1
RxmtR| R 4]  RR +—(R +Ry)
'sz"- 2[1 Cs 1 Cs(l 2

R,-l-L
Cs

CsRR, + R,
CsRRy +R +R,

___ R(CsR+1)

- CsR,R,
(R + .'t,:a[———--RI ry 1]

_ Ry CRyis+1
) [R, +Rz](%”)
R+ R,
Substituting
CR\R,
Ry + R,
we can see that the above transfer function tallies with

T= CR|; ﬂf = (v r= CR|)

s+ 1
G=P pervt

Moreover, 5, being R ?Rz , is less than one; and 7, being CR,, is greater than zero. Thus,
1
Fig 9.9 is an example of lead compensator.
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9.4 LAG COMPENSATOR

It has a zero and a pole with the zero situated on the left of the pole on the negative real axis.
The general form of the transfer function of the lag compensator is

1

T als+l)
17 ars+i

5+

G(J) =
5+

where @ > 1, 7> 0. Therefore, the frequency response of the above transfer function will be

a(tjo +1)

Glo) = atjw+ 1

Since @ > 1, the £G(jw) will be lagging in nature,
Figure 9.10 shows an example of a lag compensator. Here,

E (s) = —E%(RJ + CL]
R+ R +— 5
Cs
or Ry
R. +—]- Ry
E,(s) PG Efs) Ef5)
=T 1 c
EG)  poar, +é .,_}—_F_J
Fig. 9.10 Lag compensaior.
__ RGs+1
TR+ Ry)Cs+1
1
RCls+——
[ ch]
N 1
R +R)C| 5+ ——
(R + Ry) ( +(R,+R2)C]
$4— [s+—l]
__ R "REC R R,C
(R, + Ry) [” 1 ] (R, +Ry) [H R, ]
(R, + R,)C (R, + Ry)R,C
Now, comparing with
1
F+—
G(s) = ‘]'
54—

at
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we get
V.t ___ R
TTRCT  ar (R +RIRC
or
1.k _1 [..LL]
ar  (R+R)T "t RC
or
R +R,y
=T
Therefore,
1
E)_1°'%
E() a , 1
ot
Since, o = R‘;R’.anandsinoe T=RC. 1> 0.

2

1
Thus, Fig. 9.10 is the lag compensator. Only one multiplying factor  Appears, but that
does not interact with the phase relationship.

9.5 LAG-LEAD COMPENSATOR

The lag-lead compensator is the combination of a lag compensator and a lead compensator. The
lag-section is provided with one real pole and one real zero, the pole being to the right of zero,
whereas the lead section has one real pole and one real zero with the zero being to the right of the

pole.
The wansfer function of the lag-lead compensator will be

1 1
54— 5 +— C,
T T,
Gis) = 1 1
s+— || 54—
Hrl ﬁTZ n| R
2
where > 1, B< 1. Es) c EJs)
Figure 9.11 shows the lag-lead network, where 2
Fig. 9.11 Lag-lead compensator.
Efs) = &) (Rz + L]
R, x L 5Cy
$G; +R, + L
R + L “CZ
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(SO R +1) 5CR, + 1)
5C, 5C,

R (RBsG+D) (RisG +)
3G 5C, sC,

(1 +sC|R|)(I +sC=R:]
SCG
RisC, + RysC, + 1+ RR,5°CLC, + RisC,
£,y

_ (14 5C,R )1+ sC,R;)
PRRCC, + S(RC, + RyCy) +1+ RisC,y

1 1
Gk GR,y| s+ +
* G 2[ iR, ](‘ C:Rz]

1 ] 1 1
RRCC| 5 +{—m 4 — +—— ———
e 2[’ +{R:Cz +Ricl +chl}s+RlﬂzC1CJ

e+[;+;+_z_]“_l_
RC  RG RG R GG

If the above transfer function is compared with

then,
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EEE SO S S
ar, B,  RC  RG
'
affinr,  RRGG
17 = C\Ry
;= 1Ry

afnn = RiRGCG

1

RG

or
afiC\R\CaRy = RiR,C\C
or
1
=1 -
ﬂﬁ or ﬁ = p
Therefore,
1
s+— [ s+—
| T
G(s) = where > 1
1 a
s+ ——h s+ —
oy T
and
1 1 1 1
— p —  — o —— 4 —
RC, RCG RG  ar

9.6 CONTROLLERS

9.6.1 Pl Controller

At ideal condition, the circuit shown in Figure 9.12 will

R his is termed
R,

P-controller (Proportional controller). Here, the output
voltage is proportional to the input voltage. Since there
is no time constant in the circuit, the response of the
circuit is very fast.

The P-controller has the disadvantage of a
permanent error between the desired and the actual
output voltage. Figure 9.13 shows the example of an
integ.al controller. The current in the capacitor will be
equal to the current in the resistor in the case of an
ideal condition. If the current in the resistor is i; and

Eﬂ

have a magnitude

E
o

R,

Operational

ifier

o

o

Fig. 9.12  P-controller.

G

E;

E,
{ !

Fig. 9.13  lutegral controller.



that in the capacitor is i3, then Ir"l = L'JI = % . Now,
1

J’lf:ld-' 1
!Eal = ?2-— = Ej’[Ede

Hence the output voliage is equal to # (integration of the input voliage).
142

If Laplace transform is taken,
|E(n)f
E, (5)} = ——
[E, ) RC,
or

Transfer function, E() el
E(s) sR,C,

Figure 9.14 shows the combination of P and I controllers. That is why, it is called
proportional plus integral controller. This is a controller which produces an output signal
consisting of two terms, one proportional to the actuating signal and the other proportional to its

integral.
g G g,

Ry

E, E,

o

i = 4

Fig. 9.14 P and I controller.

Let the current {; in the resistance R; be equal to the current iy in the resistance R, and

capacitance C,. Therefore, under the ideal condition

. |
|‘|!-|*:|- R,

b|d
|E,| = [ia] ks + -{H i

E E,jdr
= L= | Ry + _-"_ll_..

R RC,
Taking Laplace transforms,

R |E(5)]
ol = e ) + 2
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or
£, ()] [ﬁ}[n 1 ] Ry sRCy +1
|Es)] SR, G, R sR,Cy
or

(1+ sR5C,)
|£,(s) = _z._.{é..zc_qs(s}l

Pigure 9.15 shows the combination of a P controller and an error detector. The —E; and E; are the
reference and feedback signals, respectively. Since the point A is the virtual ground,

g Ei

(R LA
E =~ [%Ii:ﬁ-tm;]
[l

E, = ——_[(E E'Jduﬁuz -E)
Taking Laplace transforms

B L EO-EG i:[ﬁ‘.(s)—ﬂ(ﬂl

RC

1
= [— TZJ[E;(-'} E{(5)]

2

l+—R-;—E—][E (5) - Ej()]
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) - Eqe) = [ BE g
) -E© =2\ ®es+1) 5O

Figure 9.16 shows the combination of a PI controller, a limiter, and an error detector,

e [

Z D,
e P} e
—— o ——f——
R, D, Zy
-E‘ DA ]

R. .
E;,,_Wa_T_D—_e e,

Fig. 9.16 Pl controller, limiter, and crror detector.
Zener diode Z; and diode Dy place the limitation on the maximum positive voltage. Zener

diode Z; and diode D, place the limitation on the maximum negative vollage since it is known
from the circuit of Fig. 9.17. Figure 9.18 is the waveform of the output voltage.

Vt’
(V4 V) s

™

h | ! v vi
¥ v v, :
L T 4

Fig. 9.17 Fig. 9.18

In Fig. 9.18, V; is the breakdown voltage of the zener diode, and V, is the barrier polential
of the diode.

9.6.2 PD Controller

Figure 9.19 shows the circuit diagram of the PD controller.

Ry
AI‘I,"V .n'l‘l.A'
lRl
R
E
! l— +E ; L o
c £,

Fig. 9.19 PD controller
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Now,
“E)(s) _ _Es)
& R, x_[
sC
Py
- sC
ar
E;(s) E.(5)
Efs)=-R . =-R -
1 .fi. 2 R,
sC SCR; +1
SCR, +1
sC
o RaCR D o
R
Again
E(5) __ E)
R R
or
Eyfs) = - Ei(s)
Therefore,
EJ5) =+ %l(sc‘k, + 1E;(s)
1
or
E,(9) = & + sCR,
Ef(s) R,

Here Ry/R, is the constant portion and sCR; is the differential portion. Therefore, it is termed
PD controller.
Figure 9.20 shows another circuit diagram of the PD (proportional and derivative) controller.

Ry
E; . R
+ B

Fig. 8.20 PD coniroller.

-1

ot
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Figure 9.21 being the same circuit shows the input voliage separately.

and

and

E() _ _E
Ry Ry
E® __EW
4 R
sC

- E](r)%: = E'(s)

- SCE{s)Ry = E"(5)

From the above expressions, the circuit of Fig. 921 is modified 10 Fig. 9.22.

Ry R
~E(5) R | E»
B, | sem, oy ~
E"(s)y + _E
Fig. 9.22
Again,
E R __ 1
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and
E® __R_
E"(s) R
Now,
E 5) = E' {5) + E'(s5) = -E'(s5) - E"(s)
R,
= E{s5}| = +5CR.
= E,(s)[ R, 3:|
or
E,(s) _ E;_ :
E(» R + 5CR

Thus it is proved that Fig. 9.20 is also a PD controller.

9.6.3 PID Controller

The PID controller is frequently used in industrial control systems. Figure 9.23 shows the circuit
diagram of a PID contoller.

c
€ —-ﬁ»—[ i ‘R‘

Ry

Efs) R, E(s) —o
E (%)

Fig. 923 PID Controller

Here,

or

RysC +1 o RysCy
1+ 5C,R, (1+ RCs)(1+ sGRy)
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Also,

ES) _ E)

R TR
ar
R
E(s) = - L E[(s)
R, .

Now,

E) __ RisCy

E(s) (1+ 5C,R (1 + 5C,Ry)
or

£ __ RisCy
-flso(s) (14 5C R + 5C3Ry)
Ry

or

E(s) _ Ry RysC,

E(s) R, (14 sCR)(1+sCoRy)
or .

E,(5) _ Ry(1+sCR)(1+5C,Ry)

E(s) RyRsC,

_ RRy(1+sCR )L+ 5CiRy)
- RyR RysC,

_ R.R, [1 +SCR, +5C,Ry + S CORR, ]

T R:R sRyC,

=R,R;|:C']R1+C,R2+ 1 HR‘C‘]

R Ry RyC: sRG
_ RAGR +GRy) 1 +RGRG
RyR,C (RC, + RCa)s | R, + RoCy

From the above expression, it is clear that in the transfer function, proportional, integral and
derivative parts exist. Therefore, Fig. 9.23 is a PID controller.

SUMMARY

The need of comp ion in control sy is explained. Comparison of the control systems is
made by inserting one zero in the open-loop transfer function. The different schemes of
compensation are described, that is, series compensation or cascade compensation,” feedback
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comp ion and state fi k comp ion. Lead comp or, lag comp and lag-lead
compensator are described with the help of circuits and their mathematical expressions. The
controller circuits are explained in detail, for example, the Pl controller, the PI controller with

limiter and error detector, the PD controller, and the PID controller.

QUESTIONS
1. What is the need of compensators? Describe the different types of compensation
schemes.
2. Write short notes on: (a) Lag compensator (b) Lead compensator (c) Lag-lead
compensator.
3. Explain P1, PD, and PID controllers.
4. Explain the “Lead comp r is visualized as a combination of a network

and an amplifier”.



Chapter  Nonlinear Control

1 O Systems

10.1 LIAPUNOV’'S METHOD FOR STABILITY STUDY

Liapunov's method is a too] for determining the stability characteristics of nonlinear systems. This
is the most general method for nonlinear systems. Of course, there are some limitations. The
Liapunov’s method is also applied to linear systems. Before we discuss the details of the
Liapunov's method, we have to remember the following definitions which are very important for
studying the Liapunov's method of stability.

If W is a real scalar function of the state variable x, i.e. W= Wix) = V(x,, x3, x5, ...) and the
function W has always a posilive or negative sign in a given region about the origin, except only
at the origin, where the same is zero, then the function W is termed positive or negative definite.

Suppose W = x{ + x3, then it is a positive definile in a two-dimensional state according to
the above definition.

Suppose W = —myx{ — myx# — max?, then it is a negative definite in a three-dimensional
stale space, if my, m,, and my are greater than zero.

Similarly, if W = my(x, + 4)% + my(x, - 4)* with m; > 0, m, > 0, then it is not positive
definite in a two-dimensional state space.

Again, if W = x} + x7 is not positive in a three-dimensional state space, then at any value
of xy it is zero if x; and x, are zero. Hence, it is not zero at the origin only in a three-dimensional
state space.

The function W = (x, + x,)? is not also positive definite in a two-dimensional space.
Suppose x; = 2, and at that time x; = =2, then V becomes zero at (x; = 2, x5 = -2), which is not
obviously the origin.

A function is termed positive (or negative) semi-definite in a region when V has a positive
(or negative) sign throughout that region except at certain points including the origin where it is
zero. For example, W = (x, + x,)° is positive semi-definite in a two-di ional state space since
it is zero at all points in W where x; = -x,.

10.1.1 Application of the Liapunov’'s Method

Figure 10.1 shows an autonomous system with a mass-dashpot-spring arrangement, where the mass is
M, the frictional coefficient is F, and the spring constant is K. Let us assume that the initial position
x is 1 and the velocity * is 1. The differential equation of the system will then be

255
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Z Spring constant Mass

K

TO000 R x
F (friction) +—

Fig. 10.1 Mass-dashpot-spring arr

Mi+Fi +Ke=0
with
x(0) =1 and im=1

Let us assume that the state variables are, x; = x and x; = x. Therefore, we have
X =13
Miy + Fxy + Kx; = 0
Xy =x;
. K
X3 = -Hﬁ - -E-xz
00 =1 and x(0=1
The above relations in matrix form can be expressed as

; 0 1
i L]
. K F

u MM LJ

< = "]

1

Let us now consider M = 1, F=2, and K = 2. Then,

2] -1 L)

) [ =4[]
e 2]

Taking the Laplace transform of the above, we get
5X(s) — x(0) = AX(s)



AL

fi Control Systems

or
sX(s) - AX(s5) = x{0)
or
(s - A)X(5) = x(0)
or
X(s) = [sI - A" x(0)
Now,

aa= M2
o 32
]

[

Now, let us find the inverse of [s] - A].

2 -2
First step: [‘HI' ]
s
s+2 1
Second step: 2
-2 3
Third ste 1 s+2 1
ird step: P eme
P s(s+2)+2| -2 s
_ 1 s+2 1
T f+2s+2] -2 s
5+2 1
_ S +25+2 £ +25+2
-2 5

sP+25+2 42542

Thus,
X(s) = [s/ - A" x(0)
s+2 1
£ 42542 S +2542
-2 5

S 2542 P 42542

i

257
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5+3
sTa2542
B 5-2
s 42542
Now,
s+3 s+3 __ A . B i
s:+2,+2“{s+1—j}(s+l+j} s+l—=j s+l+j
where
- g s+3 =l+j+3 2+
P e ro e T vy Rl
=05~
and
. 5+3 ~1-j+3 2-j
B= = = —
Pk ey gy St D e g S
=05+j
Therefore,
$+43 05— 05+
P +25+2 s+l-j s+l+]
and
g §+3 o ~(1-]) A -{1+)
gt (05 j)e D r(0.5+ jle
S 2542 ( i) ( )
Again,
s-2 A . B
4242 s+l—j s4l+j
where
A= lim S22 o ZlHi=2 _j-3
sa=lsj 5+ 1+ =1+j+l+j 2j
=05+ 15j
and
. s-2 1-j-2  -3-j
B= 1 =
e iy gy Jh i ey S ¥
=05-15j
Thus, -
g1 5=2

S = (054 1.57)e 0N 4 (0.5-1.55)e (s
¥ 5
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Therefore, ¥ ' X(s) = x(f)

(0.5- j)e_{""]r +(05+ j]e'(“j]!
(0515 Dy (0.5-1.55)e 4y

T [(05+1.55)e e + (0.5-1.57)e e

~ [(0.5 - j)eed 4 (0.5+ j)ee ]

-(D.S—j}e"{cosr +jsint)+ (0.5+ j)e" (cos ¢ — jsin 1)
[(0.5+1.5f)¢ (cost + jsinr) + (0.5~1.5])e™ (cost - jsin 1)

—(D.Scos:+0.5jsinr—jcust+sinf+ll5cnsr-05jsin:+jcusf+sin t)e!
" [(0.5cost+0.5jsint+1.5jcosr—1.5sint+0.5cost—0.5jsint - 1.5jcost - 1.5sint)e”
-(cus:+25im]e"
" | {cost - 3sint)e™
Now,
cos f+ 2sinf=Asin acosi+ A cos asint
where
Asina=1, Acosax=2
1 1
A=V5, ma=- oo  a=tan”' =
2 2
Thus,
cos? + 2 sint = \Esin {r+ a)
Similarly,
cost—3 sint=A"sintcost+ A" cos asint
where
A'sina=1, A cosa=-3
1
A =o, tanu:—-lj or a:lan'l[—g]
Therefore,

V5sin {; + lm—%]
== J10sin [: +tan™! [_ é)]



260  Control Engineering: Theory and Practice

From the above result, it is not difficult to understand that the system is asymptotically
stable. Now, let us analyze the condition of the stored energy and how the same behaves with
time.

The kinetic energy stored in the system will be (1/2)mi°.
Now,
X=X and Xy = &

Thus, the kinetic energy will be (1/2)Mxf. The potential energy stored in the spring will
be = (1/2)Kx* = (1/2)Kx>. Hence, the total stored energy will be

W= %(Kx.’ + Mx$)

The rate of change of stored energy will be

dW . .
v = Kxjx + Mxyxy
Now, we know
HEESE
151 K F
X —E —F Xy
X =1
. K F
RETghN TR
Then,
dw K F
v = Krjxq + Mx;[--ﬁ- xn- Fx2:|
= Kx;x; - Kxjxy - Fxi
= - Fx}
Now, in the problem, we have considered: M =1, F=2, and K = 2.
Therefore,
1
W= E(fo +x§]
ERL
= X +E x3
Again,
x(0)] _
. x(0) !
Therefore,

W) = x3(0) + %:2’(0)

=1+

r| -
3|



and
W = -Fxf = -2x3
If the constant W curves are drawn in the phase space with x; and x; as the coordinate axes,
the trajectory will remain always on constant W ellipses (Fig. 10.2).
If W reduces to zero, both x; and x; will be zero.

Isoclines (ellipse)

e
/W’(ﬂ}:m

(1.1) Trajectory

Fig. 10.2  Constant W curves.

When x, =0 and x; = 0, we have

Since & =Axr,weget ¥ =0
This indicates that the mechanical system will have neither any velocity nor any
acceleration after W attains the zero level. Hence the system is asymptotically stable. Since

W= xf+%x§ and W= -2x3

it can be said that for the asymptotically stable condition, W is positive definite and W is
negative definite. Even, it can be shown that for a system having positive definite W and a

negative i-definite W, the sy is stable. Of course, in that case asymptotic stability may
not be certain.

Hence the Liapunov's first theorem can be described as follows:

If for an autonomous system with & = f(x), there exists a scalar function W(x) which is real,
continous with continuous first partial derivatives and with

) W) =0
(i) W) >0 for all x# 0, and
(ii1) &(x} <0 forall x# 0

dr
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then the system is asymptotically stable in the neighbourhood of the origin. If the derivative
dW(x)dr = 0, the system is still stable, but asymptotic stability cannot be assured. The function
W(x) is termed the Liapunov’s function.

The success of the Liapunov’s method totally depends on finding out or generating a
suitable Liapunov's function.

In the case of linear systems, the direct methods for determining the suitable Liapunov's
lunctions are available. But in the case of nonli hod i it is really difficult to
determine the Liapunov’s function and therefore the stability.

EXAMPLE 10.1 An autonomous system is expressed as follows:
% =x
Xy = -mxy - mx,
Study the stability of the system using the Liapunov's method and considering the Liapunov’s

function as
W=xi+x}

Solution Since W = x} + x, it is positive definite. Therefore,

Wi =0
MEH
Wi(x) > 0 for all except at =
X, 0
Now,
dw AW ax, oW ax,

dar T o ot om ot
=2k + 234,
= 2% + 2n(-mxy - max)) (2 &y = —myxg = maxy)
=2xxy + 2x(-mx; = maxy) (2 & =x37)
= XXy = QXM X7 — 2XMMX,
= (2x - 2myxy — 2max )xy
= [2xy(1 - mg) - Zmyx;)x;

Now, for my =1 and m, > 0
d_W = -2m,x§

Hence, it can be said that for any value of x;, dW/dt = 0 when x; = 0. The value of dW/dr
is negative semi-definite. From this, one conclusion that can be drawn is that the sysiem is stable
for my= 1 and m; > 0.

The method of calculation which we have just discussed is very much conservative. The
reason will be understood shortly after calculation of the problem by the Liapunov's second
method.
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10.1.2 Liapunov's Second Method

Let us consider P a positive definite matrix such that

Now,

Since

Then,

Wix) = x7 Px

SW(x)

Tl i Px+x"Pi

i=Ax, i =xTAT

W
_[x} =xTAT Px + X"PAx
St
=xT(ATP + PA)x
L=—(ATP + PA)

SW(x)

5 = W(x) = -x"Lx

Now, our approach will be to select arbitrarily a positive definite or positive semi-definite
matrix for L and solve the problem. For asymptotic stability, the necessary and sufficient
condition is that the matrix P must be positive definite.

We know that any matrix is positive ¢

dafin

We may consider L as a symmetric matrix. Now,

1

1
2

(4P +PA)+ % (PTA+ A‘"P’)] [+ LT = = (PTA + ATPT))

(e (5

T
Let §= ZP . where § is symmetric. Therefore,

L=-[A"S + SA]

if its sy ic comp is positive defini

Now if we apply this Liapunov's second method of calculation to the system of

Example 10.1, that is,

i =x;

Xy = =myxy = max,
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we get
s I [
II = . =
X2 —my —=m il
= Ax
Let us consider
L =1 (unit matrix)
then,
ATS + SA = -1
or
0 -my |5 82 +-5:1| Si2 0 1 - -1 0
1 o=my | |5 Sp [S2 Sall-m -m 0 -1
or

[ =#iySy ‘"&3:;}+[‘m15|2 Siu 'm|S|2:| _ [-1 0] '
Sip-mSiz Sz —mSy -mySyn Sz -mSy 0 -l
From the above, we get the following equations:
=2myS;y = -1
S = mySyz = mySpn=0
253 = 2m Sy = -1
From the above equations, we have

m} +m3 +my

Su= 2my my

i +
o mtl

2my  2my
1
Si1= -2—'"2-—
+1
S22= 2my my
‘Therefore,
m?+ m% +my 1
Se 2m, my 2m,
1 my +1
2m, 2my my

To make § positive definite

5 = my  mptl >0
W 2my, T 2m,

SuSn-S3 >0



()

2y 2my J\ 2oy my ) am]
or
mL+’“z_:”’+&z"l,n
or ¢ ml mlmg

1
_z[ml2 +(my + I)z} >0
My my

mi +(my +1)
Hence, to make the above true, my > 0 and ——————— s alrcady greater than zero as
my
per its mathematical structure.
Again from the condition

my o omy
Su = 2my,  2my 0
we gel
2 2
my +mj; +my
2my my >0
or

m+m?+m,

my my

>0

Since we have already considered my > 0, m, is to be made greater than zero to make §
positive definite. Hence, the condition of stability from the Liapunov's second method is found
my >0 and my> 0. Whereas in the case of the Liapunov’s first method, the resutl was m, = 1 and
my > 0. Thus it is observed that the Liapunov's first method is highly conservative. The
Liapunov's second method provides much better information.

EXAMPLE 10.2 Determine the stability range for the gain m of the system shown below:

& 0 1 0][x] [o
Bl=] 0 =2 1||x|+|0u
iy -m 0 —=1||x m

where u is the input.

Solution For determining the stability range for m, the input  is assumed to be zero, Thus,

X 0 1 0y

Hli=] 0 -2 1If|x

Xy -m 0 =1]ji{x
X =x

Xy = =2x3 4 X3

Xy =—mx; - x3
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Let us assume a positive semi-definite real symmetric matrix
000

L={0 00
001

The above choice is permissible since W(x) = —x” Lx cannot be identically equal to zero
except at the origin.

00 0||x
Wx) = -[qxax3][0 0 0|fxy| =-x3F
00 1)|x
MNow, we know as per Liapunov's second method
000 00 0
A'S+SA=-0 0 O|=-L=|0 0 0O
001 00 -1
Now, as per the data
X 0 1 0f|x
nl=l 0 =2 1|ix
X3 -m 0 =1||x
Hence,
0 1 0
A=] 0 -2 1
-m 0 -1
Therefore,

0 0 -m][S S Ss] [Su S: Ss][ 0 1 0] Joo
I =2 0{|82 Sy Sul|+|S52 S» Su|] 0 -2 1|=|0 0
0 1 -1]|8: Su Syl |Ss Sp Sull-m o0 -1 |00

The § matrix is symmetric, that is why 83 = §j3 and 853, = 5.
From the above matrix arrangement, we will get six equations and six unknowns

—2mSp =0
—mSp + Sy - 25320
“mSy + Sy Sy =0
Si2 - 25=0

S+ Sp-3n=0

Sn - Sn=-
Hence S, 512, 513, 5220 55, and S,; can be found out.

T
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Therefore,
m* +12m 6im 0
12-2m 12-2m
S= fm Im m
Tl 12-2m 12-2m 12-2m
m 6

0 12-2m 12-2m

Now to make § positive definite, it is essential that
12-2m >0 and m>0
Therefore 0 < m < 6 will be the range of values of m for stability.

EXAMPLE 103 How do you show a quadratic form positive definite?

Solution  Any quadratic form can be represented by

n L
MAx= Z Zq—i X x;
i=1 j=1
Suppose,
Wix) = 9xf + 423 + 3§ + 2005 = 260y = 41
The matrix A will be

9 1 -2
1 4 -
-2 -1 1

According to Sylvester’s criterion, W(x) will be positive definite if

91
9>0, [l ]>0

4
and
9 1 =2
1 4 -1|>0
=2 -1 1
9 1
[l 4}:36—]:35:0
9 1 =2
I 4 <1{=9@+1)-1(1-2)=-2-1+8)
-2 -1 1

=45+1-14=32>0
Hence Wix) is positive definite.
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EXAMPLE 10.4 A system is described as follows:
BP+Kip+K(pP+p=0

Ky = 0 and K, > 0. Study the stability by the Liapunov’s method.
Selution let x;=p and x;= p.
Therefore,

X =X
Again from j + K, p + K3(p) + p =0, we get

% ==K - Kxd - x

Let us choose W = x} + x} as the Liapunov's function.
There is no conventional procedure for selecting the Liapunov’s function, but it is usually
chosen from experience. Now

dw s .
? = 2.X|I1 +2x3.t’3

= 253 + 2n(-Kix - Kaxd - x)
= ZX|X1 - 2K|.\'22 - ZKZ.\‘;‘ - 2X1X|
= -2(Kx§ + Kaxd)

This will be negative semi-definite and therefore the system is stable.

10.2 PHASE PLANE METHOD

This is one of the methods of solution of nonli control sy . As we have already seen, the
linear conirol systems can be easily studied from their pole-zero configuration. To speak the truth,
all the physical practical systems are hardly linear in reality. Hence, a generalized approach for the
study of nonlinear systems is essential. In fact, there are no such general methods for the analysis
and synthesis of nonlinear control systems. The nonlinear systems are simplified with certain
approximations to a nonlinear second-order system. Graphical representation of phase trajectory
can be easily applied to the above nonlinear second-order system for the study of the same. In
other words, in the phase plane method, a general and convenient graphical method is adopted by
utilizing the isoclines,

10.2.1 Method of Determining the Phase Trajectory for a
Second-order System

A second-order system is described as follows.
B +hlpp)p +hppp =5
where fi(p, p) and fo(p, p) are functions of p and p, respectively. Now putting x; = p and
X; = p, we can write
i =x

Ty = =filxy, x)x - folxy, 1)z + §
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Therefore,

du B _ ey 5,5
ax % Al x) = fAilx, ) F + .

The above is the expression of the slope of trajectory at the point (x,, x;). Let

ax
dx, - ™"
When m is a constant, then the curve ¢(x, x1) = m
where
: N
Bx. %) = ~fi(x). %) - folgy, 1) kg 2
XX

will describe a curve so that any trajectory crossing the curve will perform the same at a slope m.
This type of curve is termed isocline.

10.2.2 Method of Developing Isocline and Trajectory

If the initial values of the variable and the derivatives are provided, the same is represented by the
point on the phase plane. If the point is in the upper-half of the phase plane, the derivative has a
positive value since x; > 0,

Hence, the increment of the variable x; will be positive for the positive increment in time. In
the same way, when the initial point is in the lower-half of the phase plane, the increment of the
variable will be negative for the positive increment in time. The above fact actually helps in
understanding the direction of the movement of the solution point. Therefore, to draw the
trajectory with a given set of initial conditions, the corresponding initial point is first located in
the phase plane and then the solution point starts moving from this point onwards in a proper
direction and crosses isoclines at the slope corresponding to the respective isocline.

First of all, let us consider a lincar system and apply the above method o acquaint
ourselves as to how the phase plane method is utilized. Then, we will apply this method to the
nonlinear control system.

Let us say that a linear system is represented by the block diagram shown in Fig. 10.3.

mit) & 5 i
V, sls+2)

Fig. 10.3 Linear second-order control sysiem.

It is a linear second-order control system with m(r) input and q(f) output. Suppose
m(f) = 2u(r) and the initial conditions are:

q0) = -1
gy =20
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From the above data, we can write

[M(s)~ets)]ﬁ -0

or
s(s+2)
M(s) - Q(s) = Q(s) 5
or
s(s+2)
M@ =0 [1+——5—
or
o(s) _ 1 - 5
M(s) s(s+2)  s*+25+5
14—t
5
or
(5 + 25 + 5)Q(5) = 5M(s)

Now taking the Laplace inverse of the above equation, we have
g +24 +5¢=5%x2=10 (v m(n) = 2u(n)

Let
q=x
g=x
Therefore,
X =x2

iy = =22 - 5x; + 10
We have already indicated in our general approach

X =X
Xy = =filxy, X, = folxy, 9);y + 5
Hence
filxy, x3) =2
filx, x) =5
s=10
5 g A, 10
dx, Xy Xy
or
m=-2 -5+
B X

Therefore, the equation of the family of isoclines will be

5x, 10
=_28 , "
2 m+2 mt2
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The above equation indicates a family of straight lines. The slope of those lines will be

__5
m+2

m =
The lines intersect the xj-axis at the point (Fig. 10.4) which can be determined as follows.

5z, 10
0=-—L
m+2+m+2

=2
Hence it is clear that all the isoclines will pass through the point x; = 2, x; = 0.
When m = 0, the equation of the isoclines can be expressed as

x;=——;~x,+5

Similarly for different values of m, the isoclines can be drawn. (See Fig. 10.4.)

T’z

Fig. 104 Isoclines and trajectory for a second-order control system.

Now on each isocline, a series of parallel slopes are drawn having the value of gradient
equal to the value of m for that particular isocline. For example, on isocline m = -2, parallel lines
are drawn having slope tan @ = -2 and the parallel lines are drawn considering x, as the x-axis
and x; as the y-axis since deydx; = m.

These parallel lines are drawn only to guide the trajectory about its direction.
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The initial point is Q(0) = =1 and Q(0) = 0. That means x(0) = =1 and x,(0) = 0.
Hence the trajectory will start from the point (-1, 0). Now, we have
m=-2-55. 10
X3 X
Al the point (-1, 0)

(-1
m:_z_%.ﬁ% ==2 4 00

Hence, m is +ve and that is why the trajectory will move upwards.
The trajectory is drawn as shown in Fig. 10.4. The accuracy of this trajectory totally
depends on the number of isoclines that have been drawn.

10.2.3 Phase Plane Trajectory for the Nonlinear System

We have just shown how the phase trajectory is drawn for a linear system. Now we will discuss the
nature of the phase plane trajectory for a nonlinear system by applying the same principle of the
phase plane method. For the nonlinear system, we will get a family of trajectories. That is why,
such a diagram is also called phase portrait.

Let us take a nonlinear circuit as shown in Fig. 10.5, where r is a nonlinear resistance. The
voltage and current characteristic of the nonlinear resistance r is described by the following
relationship:

i=-AV + BV?
di
E-v=L%
dt

"

where i =i + i

d s
LE{I -i'l)

"

d 3 dv
LAV + BY L
Ld:[.& +BV'+C d:]

dv 2 dV d*v
~AL— +3LBVI — -
AL +3LBV? 4 LC yx

or

dv N 4*V
=V — - — —
E=v+ S [3LBV AL]+ Le=s

° TRTO—
: FI

1. v
(o= r l

o

Fig. 10.5 Nonlinear circuit,
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r
Let us assume 7= —==. Thus,
JILC

—_— =
? t LC
and
av _afav 1] dfav 1 Ja
2 dt|drt fic| dr|dr Jic|dt
_V
T dr? Jic Juc  LC af?
or
v gy
L— = —
'3 1'1
Again,
. dv 2 dv
E=V+ F[auw —AL]+LCJ7
av 1 4V
= — vi- —
Vo de[SLB AL]*—er
_ 4V _dvi AL 3LBV? ).
Tar dr| e Yic
&V dv JI JTA 2
= mm———— —_ - ==V
— dr[ﬂ ¢ BV Y
Let
L
oo fE
and
3B
b=
Therefore,
v _dvio 3BVl
il = a A a
dv av )
_F-—E[a—bv a]+l-"

%z-;--j—r-[a(l -—bV’]]+ v
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Now, we have to develop the isoclines of the above nonlinear equation.
Let us develop the state equations by assuming
x(D=V(D and x(D= V(D

For developing the isoclines, lel us assume some standard values of a and b, say, a = 0.2
and b = 1. Now,

.‘i’ =X
For making the solution easier, let the forcing function E be assumed to be zero. Hence the
equation

d*’v  dv N
E e——— - bV Vv
E= g [a(l b )]+
is changed to

:%;-‘:——%1:—[0,2[1—?2)]+V

Since x = Vand x, = V, we have

0= i — x,[o,z(l —xf)}-_r,
or
& = 02(1 - x{m - xy

Since &, = x,, we have

2
& 0.2(1-x})x; - x
X‘1 - X
or

% = D.2(I—xf)—;—:

Thus the slope of the trajectory at the point (x), x;) is given be

di; 2y X
= 2=02{1-x7)-L
m dx [ oL X3

Hence the equation of the isoclines will be as follows:
1 2 .{L
m=g (l xl) )
or
X - xx] -5x,
m=s ——(/—————
512
or
Sxm = xp - Xpx7 ~ 53y
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5x
Xy =
z (l - SM) —xf
- . 5x
When m = 0, the isocline will be x; = 1—2
-}
The isoclines are drawn for various values of m, for example, m =0, 0.5, 1, 1.5, 2, 2.5, 3,
-05, -1, -1.5, -2, -2.5, -3, and so on (Fig. 10.6).

9"”& L

ies for a nonli system.

Fig. 10.6 [Isoclines and traj
Let us take the following two points from which the trajectories are to be developed.

@ VO =-4 ad V@O=3

(i) V(0)=05 and vioy=0

Hence both the initial points are x5(0) = 3, x;(0) = -4 and x3(0) = 0, x,(0) = 0.5

First of all, the series of m gradients are drawn on the isoclines and the trajectories are drawn
from the above two initial points deciding the direction of movement of the irajectories according

to the principle already described.
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It is being observed that both the trajectories are trapped in a closed curve as shown in
Fig. 10.6 by the thick line. This indicates that a steady-state condition with zero velocity can
never be oblained. Rather, it can be concluded that a stable steady state oscillation becomes the
outcome with the voltage oscillating with fixed amplitude. This oscillation is termed the limit
cycle oscillation. ’

10.2.4 Solution of Time

The time increases on the trajectory in the direction in which the solution point moves.
Sometimes, it is required to determine the time between the two given points on the trajectory or
to find out an explicit time solution. Now since,
dx
X = = =L
Xy =X 2=
therefore,

= .I-x]_zdxl

This clearly indicates that the time may be obtained for a given phase trajectory by a simple
graphical integration.

10.3 DESCRIBING FUNCTIONS

The nonlinear control system can also be dealt with by use of the describing function. This
method is used for finding out the stability of a nonlinear system. Of course, the describing
function approach is not based upon a solid mathematical basis. It is usually applicable to
systems which have low-pass filter properties because the assumption of low-pass filter properties
helps us to ignore the effect of harmonics in the system. The describing function approach is
essentially a frequency resg hod. Let us take a nonli control system and try to
implement the describing function approach.

Figure 10.7 shows a nonlinear control system, where A is a nonlinear device whose input R,
and the output C, are related as follows:

Ci=f(Ry)

Let the input R; be given by
Ry = R, sin ant

Fig. 10.7 Nonlinear control sysiem.

The output of the nonlinear device A is given by
' C, = f(R, sin wt)
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The preceding equation can be solved by Fourier series. The system B has low-pass filter
properties. Hence the effects of higher harmonics in the output C; will be attenvated by B at its
output C. Hence R, is assumed to remain unaffected by it

Usually, the output of A will be of the form

C, = R, sin @t + R," cos ot + R," sin 2wt + R," cos 2w1 + -
Eliminating the higher harmonics,

C, =~ R, sin ar + R, cos wr

Thus we have developed the harmonically linearized system. Our next approach in the
describing function method is to find out the gain of the ‘harmonically linearized’ system. This
harmonically linearized system is in the complex form. Usuvally, the general vector notations of K,
and C; can be narrated as follows.

Ry = R} £0°

Cy= R £0° + R £90°
€ RZ0°+R;£90°
R " R Z0°

Ry Ry
LU

R IR

=K +jky

=K, 26

K= JKP+K2

K
K

6= tan

The describing function thus provides the
ratio of the output to the input of the nonlinear
device and is expressed in the vector form.
Therefore, K, and @ describe the describing
function,

Now that we have an idea about the p
describing function approach, why not we apply \/
it to a practical field problem?

Let us therefore find the describing
function for an on-off system. The on-off system
is described by a sinusoidal input e = ¢ sin w1, Fig. 10.8  Sinusoidal input.

(Fig. 10.8).

The output C of the on-off device will develop a square wave with amplitudes + C,, at the

same frequency as that of the sinusoidal input,

e sin o




The nonlinear device characteristic is shown in Fig. 10.9.
C

+C

~y

=, |

Fig. 10.9 Nonlinear characteristic.

From Figs. 10.8 and 10.9, it is very clear that the output voltage vs. wr curve will develop

a square wave as shown in Fig. 10.10.
C

+C,,
ol

_Cm

Fig. 10.10 Square wave.
Now applying Fourier analysis on the output waveform, we get
4 . .
C= -—Cl[smmu-]-sm 3wr+---]
] 3

Hence the describing function can be approximated to the following expression by

eliminating harmonics
4C, .
C= —"sinax
n
and represented as
Cy
=40
€

From the above illustration, it is also clear thal an on-off system may work as a controller.
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Let us now find out the solution of an open-loop system with an on-off controller. Assume that an
on-off controller drives a system having a transfer function 1/s. As we know the output of the

on-off controller is
C= G sinmr+lsin 3mr+lsin St +---
Cor 3 5

Now if we apply the above output to the system having transfer function 1/5%, then the final

output will be the double integration of C. Therefore:

The final output = ICdl dt
= ﬂﬁ [sinm: +lsin 3ot + lzain Swr + :| dt dt
.4 3 5
- ‘r’ft’.‘m _coswt 1cos3mr 1cosSmr dt
b4 @ 3 e 5 S
. _ 4G, | _siner _1sin3wt 1sinSwr
o o 3 9%’ 5 25°
__AC, sinm:+sin3m:+sin5@.f+“_
P 27 125

Thus it is observed that the third harmonic is 3.7% and the fifth harmonic C.8%.
ion of eliminating the third

Now, from the above illustration, it is also clear that the p
Thus, the transfer function 1/s® is acting like a filter in the above system. The above is also

and fifth harmonics is quite justified.

an example of the describing function.
Instead of an ideal on-off controller, if an on-off controller with dead zone is used
{Fig. 10.11), then the describing function can be determined in the following manner.

Fig. 10.11  On-off controller with dead zone.

Let us assume that e = ¢ sin @r is the sinusoidal input. On account of the dead-zone in the

controller, the output will be zero for the angle ¢. In other words, when the input voltage is less
than v, no output will be observed. Figure 10.12 describes the input and output of the describing

function.
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e .
&, sin @1
" (AW
H HE i
PN
- P
1 I 1
' Vot H
] [ '
H “‘ZIO“ H
+C, H H
; ;
>lel< 8
~-C,

Fig. 10.12  Input and owtput of the describing function.

Applying Fourier series and considering the fundamental component at the output, we get
the output as
=2

% | Cusinade %[—cosﬂ]:u
¢

4C,
= Ty cose
Now, ¢, sin ¢ = v, therefore, sin ¢ = v/e, or cos §= \f1-v7/e]
Thereflore,
4C, o
Oulput = - l‘-g
and
4C, 2
Describing function = —= I~“—1
g €]

We now find the value of ¢, for which the describing function will be maximum. Thus,
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or
1 11 20%e?
-G I r—s=== =0
€ ef al v’
l-—
- fl
or
| fed-v* 1 o
£ € £ lef-v
2
€]
or
2
1 1ef—-v 1
-S| |+ =0
€] £y €y
or
-ef +v? 407
: =
€
or

wr=el or e =20
Hence, at ¢ = ﬁ v, the describing function will be maximum. The maximum value of the
describing function is thus given by

4C, l_i_ 4G [, 0 _26C,
ney ef xﬁu 27 o

For different values of ¢, if the magnitude of the describing function is plotted, then the outcome
will be as shown in Fig. 10.13.

r

Describing function

Fig. 10.13 Plot of the describing function versus e.

10.3.1 Application of the Describing Function Techniques

The describing function can be utilized 1o determine the system stability, both in the case of the
closed-loop frequency resp and transient resp The describing function describes the
nonlinearity and then the stability can be casily assessed by the Nyquist diagram.
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Suppose Dy jw) and Dyf jew) indicate the linear part of the system and Dyfe, jow) indicates
the describing function of the nonlinear system (Fig. 10.14)

(Do (Do | ,
, jo) 10(-») |——-—
R(jo B L= | L2 Cljw

Fig. 10.14 Describing function of nonli Fystem.

The describing function Dy(e, jw) is the function of both the voltage and frequency. The
transfer function of the closed-loop system is expressed as follows.

C(jo) __Di(jo) Dy (e jo) Dy (o)
R(jo) - T+ Dy(jo) Dy (¢.ja) D; (0]
Obviously, the characleristic equation to be examined for stability is
Dy(jw) Dy (e, jo)Ds ( jw) = -1

The normal method will be to draw a polar plot with varying frequency. That means, the
polar plot of Dy(jw)Dy (e, ja)Dyjw) is to be drawn. As per the Nyquist criterion, =1 + jO will be
the critical point for the stability analysis.

Since the describing function Dy (e, jw) is not only frequency dependent but also amplitude

¢ dependent, a modification to the above procedure is desired.
We can write  Dy{jadDy (e, jedDy(jw) = -1 as

3 . -1
Dy(jo)Dy(jay) = m

Thus we are making the left-hand side of the above equation amplitude independent. The stability
in this case can be analyzed in the following manner.

(a) If there are no intersections between the curves of - m and D\ (jw)D;(je) and
also if the curve of — -—--]-— is completely enclosed by the Dy(jw)D,(je@) curve, then
the system is totally ﬁ:t(a;lim) - ’ ol

(b) If there are no intersections between the curves of -m and Dy(jw)Dy(jw) and
the curve D, (jw)D,( jw) does not enclose the - E(_:TJ;)' curve, then the system, in the

case, is' termed absolutely stable,

1
{c) If there are intersections between the curves D,{ jw)D,( jw) and — ————, then in that
1(janDy(j DN(G,_JEJ)

case, various possibilities exist from the poim of view of stability.
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Suppose, an on-off controller without dead zone is connected with the system having

. K . -
transfer function (oa)(s0) and the system is made closed loop as shown in Fig. 10.15.

Ic
¢ K

o —
s+ a)(s+b)

‘*@"T —|TC"': -

Fig. 10.15 System with on-off controller without dead zone.

We have already proved that the describing function of the on-off controller without dead
, where input is ¢ = ¢, sin @t and C,, is the output of the describing function.

zone is
e
K e
Clﬂ

jo(jor+a)(jw+b) =3

Cy
Now, according to the stability analysis in the modified method,
are made for three different values of K, say K, Ka,

The point of i tion of
value ¢; = ¢/ (Fig. 10.16) is now analysed as follows. Any tendency for the oscillation amplitude )
to increase will certainly indicate the movement of the point on the negative real axis away to the
will not encl T at that u
enclose — - ime.

K
Now the polar plots of W
re,
K;. The plot of - E will lie on the real negative-axis only since it possesses the variable real
value of amplitude and no imaginary component.
K e, .
jm{jm +a){jm +b) an —za. i.c. M comresponding to the

left from the point M. That means ;
jo(jo +a)(jw +b) ™
Im

\
For K <K<Kk,
k=K f<di<e

Fig. 10.16 Polar plots and plot of describing function for the system of Fig. 10.15.
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In other words, the system will not enclose (~1 + jO) at that condition and thus be termed stable.
Similarly, for other values of K (i.e. K = K; and K3 = K;), the stability can be explained.

10.4 EXAMPLES OF NONLINEAR SYSTEMS

The nonlinearities are generally classified into two calegories:

(a) Incidental
(b Intentional

Incidental nonlinearities are those which are present in the system. For example, saturation,
dead zone, coulomb friction, stiction, backlash, and so forth. The intentional nonlinearitics, on the
other hand, are those which are deliberately inserted in the system for modifying the system
characteristics. A relay is the most important example of this.

Saturation. Saturation occurs due to the limitations of physical capabilities of the components.
For example, amplifiers have output proportional to the input within a particular range of input
signals. Figure 10.17 shows an example of the saturation nonlinearity.

Qutput

Input

Fig. 10.17 Saturation.

Friction. The friction in a system has several components. The torque on the system
experiencing the different types of friction is expressed as follows at the time of the start of
rotation,

dw,

T=T, .
L+ J T

+Ty
where
Ti = Tiscous tretion + Teoutomb friction + Tyusdsiitt + Twindage

Figure 10.18 describes the torque diagrammatically. At the stationary condition, i.e. at
standstill, the torque is termed stiction

Torque

Fig. 10.18 Stiction lorque.



Nonlinear Control Systems 285

Figure 10.19 describes the speed-torque characteristics for coulomb friction, viscous friction
and standstill friction. Besides, there is also windage torque which is proportional to the square of
the angular speed. Thus it is observed that the rotational motion in the presence of friction and
windage provides a large nonlinearity.

mﬂ
Coulomb
friction
A\ Torque
Standstill o
friction
X
Viscous friction

Fig. 10.19 Speed-torque characteristic in presence of torques.

Backlash. We have already studied magnetic hysteresis. But this term is also used in mechanical
transmission system. Mechanical hysterisis is somewhat different from the magnetic one. It is
termed backlash.

Figures 10.20 and 10.21 show the example of gear transmission. Here P is one of the teeth
of the drive gear and Q is one of the slots of the driven gear. The tooth P of the drive gear is
placed in between the two teeth R and S of the driven gear just at the middle position.

8 6

S
e

Fig. 10.20 Gear transmission. Fig. 10.21 Gear transmission.

Figure 10.22 describes the input and output motion characteristics for mechanical
transmission.
8,

/a b
-dn2 /d.fz 9

I &
Fig. 10.22 Backlash.

(4
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The tooth P is driven clockwise from the position shown in Fig. 10.21. Until the tooth P
touches the tooth S of the driven gear after traversing a distance d/2, no output motion will occur.
That is why ab will be the locus of the input-cutput characteristics. As soon as the tooth P
contacts the tooth S the driven gear starts rotating in the anticlockwise direction and the locus in
Fig 10.22 will be bc. The slope of the line be will depend on the gear ratio. If the ratio is one,
then the angle will be 45°. Now the contact between P and S is lost and the driven gear will
become stationary immediately.

Of course, if it is considered that the load is friction controlled with negligible inertia,
then the above phenomenon will occur. Hence the output motion will remain zero ull a distance
(df2) + (di2) = d is traversed in the reverse direction by the tooth P. Hence the locus will be ce.

As s00n as the tooth P touches the tooth R, the driven gear starts moving in the clockwise
direction and the locus will be ef. Again, the similar phenomenon will start, the input motion will
be reversed and the locus will be fg. Thus, a complele cycle of the output motion will be the
outcome. The width of the input-output curve is equal to the total backlash 4.

This type of nonlincarity may produce sustained oscillations or the chattering phenomenon.
Backlash is usually eliminated in the following

() By using high quality gears
(b) By using spring-loaded split gear as the driven gear.

Dead zone. If the input is provided to the system but the system remains non-responsive, that
means there is no output. The particular zone where this phenomenon occurs is termed dedd zone.
For example, when gears with backlash drive a torsional spring load, the driven gear will not
move in a particular region since the spring remains untwisted (as shown in Fig. 10.23).

) &\ oo
/ / 2
. o Spring

-dr2 /
/\__,.,_t__./drz )

dead zone

Fig. 1023 Dead zone.

Relay. A relay is a nonlinear power amplifier. It is used intentionally in the control system.
Usually a relay controlled system can be switched between several discrete states, for example, off,
full forward, full reverse. A relay servosystem is the example.

From Fig. 10.24, it is quite clear that any ermor in the alignment of the load is fed back to
the amplifier and the output of the amplifier is fed to the solenoid of the relay and that moves the

contact in one direction or the other. The servo motor will then rotate in the desired direction as ~

required for proper load alignment. But the transmission mechanism cannot be treated ideal
because of the following reasons:
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:\./rnp!iﬁﬂ'

M Relay

+

)__’ N

Mator

Fig. 10.24 Relay servosystem.

1. The relay has a definite amount of dead zone because the relay coil requires a finite
amount of current to actuate the relay.

2. The relay characteristic also exhibits hysteresis because a larger value of coil current is
needed 1o close the relay than the value of current at which the relay drops out. That is

why several types of nonlinearity relay characteristics may appear as shown in
Figs. 10.25(b), 10.26, and 10.27.

e
H i
3 ]
8 S
Input laput
]
{a) Relay at ideal condition. (b} Relay having dead zone.

Fig. 10.25 Relay.
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H

=

= 5
=
3
=]

Input l Input
Fig. 10.26 Relay having hysteresis. Fig. 10.27 Relay having both dead zone and hysteresis.
SUMMARY
The Liapunov’s method for stability study is explained with an ple. The Liapunov's second

method is also described with an example. The phase plane method of solution of nonlinear
control systems is given too. The method for determining the phase trajectory of a second-order

¥ is then explained with examples from both linear and nonlinear systems. Isoclines are
clearly defined. How to deal with nonlinear control systems by describing functions is also
explained with examples. Application of the describing function techniques for determining

system stability study is also discussed. Different examples of nonlinear systems involving
saturation, friction, backlash, dead zone, and relay are described.

QUESTIONS
1. A system is described by the following equation:
F+i+x’ =0
Its initial conditions are x(0) = 1, x(0) = 0. Construct its trajectory on the phase-plane
diagram.
2. Explain the limit cycle in the analysis of a nonlinear control system.
3. Describe the stability analysis of nonlinear systems using the describing function.
4. Explain the Liapunov's method for equilibrium states.
5. Delermine the stability of the origin of the following system:
j:| =Xz
B o=-x -1
6. Explain backlash with an example.

7. Give certain practical examples of nonlinearities in systems.



Chapter

1 Digital Control Systems

11.1 INTRODUCTION

With the develop of comj technology, the digital computer is now utilized to design the
controller. So far, we have dealt with the closed-loop and the open-loop control systems which
used the analog controller. With the increasing complexity of the control systems, the digital
controller is becoming the demand of the day. Microcomputers which use a 16-bi) word or a 32-
bit word with a speed as high as 300 MHz, can handle a large amount of data in any complex
control process. That is why, a digital controller is an ideal choice for use in complex control
systems. Since the computers have the capacity to receive and manipulate several inputs, a digital
computer control system can even be a multivariable system.

Figure 11.1 shows the block diagram of a system with a digital controller. This system is
also termed a sampled data control system.

o Digital
! s s to analog
Input and analog Digital  lconverterand| s | Plam  |OUPU

to digital [~ compter

converier hold circuit

Fig. I11.1  Sampled data control system.

11.2 SAMPLED DATA CONTROL SYSTEM

The devices shown in Figure 11.1 serve the following purposes:

(a) Sampler. It is needed to convert the continuous time signal into a sequence of pulses.

(b) Analog to digital converter (ADC). The very purpose of the ADC is to transform the analog
signal to digital. The digital signal is expressed in numerical code, e.g. binary code.

(c) Digital computer. All soris of desired manipulations on the input signal are performed
by the digital computer. These computations can even be made online as per requirement.
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Digital to analog converter. Numerically coded output of the digital computer is decoded to
continnous time signals by the digital-to-analog converter.

Hold circuit. It holds a signal for a desired time by utilizing a proper circuit.

Plant. The plant is controlled by the continuous time signal that is finally developed by the
sampled data control system.

The implementation of a digital control system is not necessarily essential. It is used where
a resolution of low value, say, 1/10°, is required. For example, if in the case of movement of table
of a drilling machine, an accuracy of 0.015 mm over a total distance ol 1 melre is required, then
for a resolution of value 0.015/10° (= 1.5 x 107%) the use of a digital controller is essential,
converting the syslem into a sampled data control sysiem.

11.3 SAMPLING

Sampling means that the signal at the output end of the sampler is in the form of short-duration
pulses where each pulse is followed by a skip period during which no signal is observed and the
control system operates as open loop during the skip period. The advantage of signal sampling is
that it reduces the power demand made on the signal and is thereby helpful for signals of weak
power origin. Hence, the sampling operation is sometimes purposely introduced. But sometimes,
however, the signals are received in sampled form. Radar is one such example.

Usually, the uniform periodic type of sampling is applied, that means sampling is made at
regular intervals of time. If the sampling period 7, is made very large, the sampling frequency
/T, would be too small and the information contained in the input signal may be lost in the
output. That is why, the sampling rate must have a right value which will take care of the above.

Figures 11.2 and 11.3 describe how the uniform periodic sampling is made by a switching
circuit in the sampler. Besides uniform periodic sampling, there exist multi-order sampling,
multiple-rate sampling and random sampling. But, we will now concentrate on uniform periodic
sampling.

Voltage
r Original signal
ginal si
N o <
put
Input Sampler \g@ Time
Fig. 11.2 Sampler. Fig. 11.3  Uniform periodic sampling.

The sampled signals are usvally generated from the original signal by multiplying the
original signal by a period pulse train already generated. Then only, the uniform periodic
sampling is possible from an original signal.

Similarly, impul pling is also p
original signal by the train of impulse pulses.

sy

from the original signal by multiplying the
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Figures 11.4 and 11.5 show the original signal and the resulting train of impulses,
respectively. Both these signals are passed through the multiplier (Fig. 11.6). The multiplier value
will be the same as m(f) when the train of pulses occurs, otherwise the multiplier output will be
zero (Fig. 11.7).

m1) 501
—t T |4- I
Fig. 114 Original signal. Fig. IL5 A train of impulses.
sOm(n)
mis) s(1) miz) m
g - NI
Fig. 11.6  Multiplier Fig. 1L7  Mulriplier outpu.

Now, s(f) can be represented by Fourier serics analysis as

1) = £+£ cost—+cos4xL+
W=7 T, 7,

For example, the dc component is given by

dr

1 dt
dc component = ?! F,
where 7, is the time period of the pulse and dr is the width of the pulse, with the value of

T, = 172f,, where f,, is the original signal frequency. Now,
s(8) m(r) = %m(!) +$[2m (1) cos 21(2, )t + 2m(r) cos 2x(4 £, )t + -]
i L]

From the above equation, it is clear that the spectrum of the first term extends from 0 to f,
and the spectrum of the second term extends from (2f, - fu) to (2, + f,). Figure 11.8 shows the
magnitude of the spectral density of signal and Fig. 11.9 shows the amplitude of spectrum of the
sampled signal. From Fig. 11.9 it is quite clear that, if the value of the sampling frequency is
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greater than 2f,, the sampled signal can be recovered exactly. On the other hand, if the sampling
frequency is less than 2f,, there will occur an overlap of the double sideband suppressed carrier
signal with the exact sampled signal. Thus, it is proved that if the sampling rate in any system
exceeds twice the maximum signal frequency, the original signal can be developed with minimal
distortion. This is also termed the sampling theorem.

E
R
- E'J
$3
83
=

0 F, Frequency

Fig. 11.8 Magnitude of spectral density of signal.

E I
=5 I
g5 |
-2 |
T3 !

a I
if !
=w ]
E' 3 I |
< | |

o Fun 2F,, 3F,, 4F,, sF, Frequency

Fig. 11.9  Amplitude of spectrum of sampled signal.

11.4 SIGNAL RECONSTRUCTION

After the modification of the sampled-data signal by the digital controller or after the completion
of tr ission of the pled data signal through a cl l, it is ial 1o it 10 analog
form for the utilization of the same in the continuous part of the system. This is usually done by
different types of hold circuits. These hold circuits are also called extrapolators, The simpl
hold circuit is termed zero-order hold (ZOH).

Zero-order hold means that the reconstructed signal has the same value as the last received
sample of the entire sampling period.

Figure 11.10 shows the sampler with zero-order hold.

Figure 11.11 shows the output of the sampler after taking the sample from the original
signal.

Figure 11.12 shows the output of the zero-order hold.
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Ongmnj signal

(=3
\\T g g Snmpled signal
— [ zon | g2
T Reconstructed < B
. signal 2 /
ST Zero-order hold
Time
Fig. 1110 Sampler with zero-order hold. Fig. 1111 Outpwt of the sampler
.
= Dngmal signal
g E Samp!ed signal
=g
=

-

‘.!\L Time

-3
Q
s ATk Reconstructed
s - BCOnst
il £ N
] N
S N
5
~l Time
S
Original signal

Fig. 11.12  Output of the zero-order hold.

11.5 LINEAR DISCRETE SYSTEM
We know that unit impulse response is represented by
SK-m=1, K=m
=0 K#m
An input sequence r(K) is represented by the following series
r(K) = rl(0)8(K) + r()S(K = 1) + r()BK - 2) + ...
Hence the system response to nth impulse r(n)8(K - n) is
co(K) = rinjh(K - n)

where the output sequence is represented by oK) for the input sequencer r(K) and the system is
usually characterized by its response A(K) to unit discrete impulse. Therefore,
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K=Y, c,(K)

- gr(n)&(K—m)

The above sum is termed discrete convolution and is defined as

o(K) = r(K) - I{(K)
‘When the system is causal

K
oK) = Er(n)h{x—n) (*+ h(K = n) = 0 for n > K when the system is causal)

Let a=0
i=K-n
then,
oK) = i r(K -i)h(i)
oK) = gn(;)r(x -i)
Therefore,

¢(K) = r(K) - MK) = h(K) - (K}
Hence the convolution sum is also commutative.
Again the Z-transform of c(K) is

Clz) = i_" e(k)™*

o = zr(n)bfx—n)

The Ztranstorm of 3" r(n) (K ~n) is

3| S ax- ,.)r{n)]z“*

KelQ | n=0

Now interchanging the order of summation, we get

) = i r(n) i h(k -n) 2%

nel K=0
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Substituting § = K — n, we have

)= i r(n) i h(i)zi "

= % r(n)z™" g h(i) '

Since the system is causal, the impulse response h{i) = 0 for negative values of i. Therefore,

C(2) = R)HE)
Hence the block diagram of a linear discrete time system in z-domain will be as shown in
Fig. 11.13
k) Hiz) _yi

Fig. 11.13  Block representation of a linear discrele time system.

11.6 EQUIVALENT REPRESENTATION OF PULSE SAMPLER
AND ZOH

Figure 11.14 describes the circuit of the pulse sampler with zero-order hold.
Figure 11.15 shows the ZOH input or the sampler output.
Figure 11.16 depicts the ZOH output.

) —_ | ]
L ZOH j e
Fig. I1.14 Pulse sampler with ZOH.
r(nT)
A r{nT)
AT  (n+ DT nT (n+ T
Fig. 1115 ZOH input.. Fig. 11.16 ZOH outpur.

The ZOH output pulse observed at the nT instant can be written as follows:

r{nT}[u{r —nT) - u(r - n_-i-lT}]
At t = aT, the ZOH output will be

r(ﬂT}{u(O) - u[n?— ﬁr]]
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11.7 IMPULSE SAMPLING

We have studied that a pulse sampler with ZOH can be replaced by an impul pler and
=T

. 1-
transfer function

Now, let us consider that a linear continuous signal r(r) is passed through an impulse
sampler as shown in Fig. 11.18(a). That is,
&1}
- {3 N0
e = E y(n‘!‘)é(r—-n‘.") 4l /° L

n=0

Fig. 11.18(a) Impulse sampler

The impulse response of the linear continuous system is h(s). Therefore, the output as
shown in Fig. 11.18(b) is

e(t) = 2 r(nT).‘l(r - nT)

=0 Fig. 11.18(b)

re{n oln)

hiry

The output signal ¢{(r) is read off at discrete synchronous sampling instants (K7) with the
help of a mathematical sampler. Therefore,

olKT) = E r(nT)h(KT —nT) (as shown in Fig. 11.19)

nul
an AP (KT

Fig. 11.19  Synchronous mathematical sampler

Again, when the above relation is expressed in Laplace transformation, it becomes
C(s) = H(s)R"(s) (as shown in Fig. 11.20)

- -

Fig. 11.20

where the Laplace inverse of H(s) is h{r).

Thus, we have already proved that in the case of Z-transform

Cl2) = R(2)H(2)
where H(z) = Z-transform of A{nT)
= Z-rransform of Laplace inverse of H(s) when i = nT.

Hence the procedure of transformation of Laplace to Z-transform will be:

1. Take the Laplace inverse of H(s) to find,

hir) = £ H(s)
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2. Determine hi(nT).

3. Then take the Z-transform of h{nT) 1o get H(z).

This is therefore the procedure of deriving the Z-transform of His).

Tuble 11.1 Laplace and Z-transform pairs

ding to time functions

Time funciion Laplace transform Z-transform
. 1 z
Unit step 3 =i
' 1 L
s ¢
(z-1)
P 1 Tz(z+1)
2 s 2(z-1)
L L i C 20 [ 2
n! pCa a-0 1! gar|z-e®
1 z
i
¢ S+a 2=
| Tz’—-!’
e — it
[s +a}2 (" € ]
-l
. ) (1-e):
- s(: +a} (Z'I){Z'eﬁr)
sin o ] z sin al
s+’ 2! =2zcosal +1
~aT _:
e sin an ° —_———— z:ﬂ, sin o 2
(,“,].‘4‘“,3 2 ~22e™ cosal +e
s z!z*cosaﬂ'!
e cos o 7
Eat " =2zcoswT +1
2_ -l
s+a P — - z L: cosml'—h
(,“,)’H»I -2z cos Wl +e

EXAMPLE 11.1 If we are interested to read the values of the continuous output at sampling
instants when the system is continuous and the input is continuous, then the same can be
represented as shown in Figs. 11.21, 11.22, and 11.23.

M) M) _ |
n His | clr) /.\,‘-(nﬂ &n el anh
(s} His) Ris) —_—
L

Fig. 11.21 Fig. 11.22
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81) mf)\
'l / Il H(s) R(s) || v . cnT)

Fig. 11.23

where

r(f) = continuous input

e{t) = continuous output

H(s) = continuous system

TIM) = synchronous mathematical sampler

&) = impulse sampler

&(f) = impulse signal.

Solution Since
C(z) = R(2)H(z)
and
C(z) = Z[H(s) R(s)] Z(6(K)]
and
Z[8K) = Y, 8(K)* =1
K=0
Thus,
Cl(z) = HR(z)
Cis) = H(s)R(s)
C(z) = HR(2)

The Z-transform of [H{s)R(s)] = HR(2).
Again, the following two block diagrams shown in Figs. 11.24 and 11.25 are not the same.

Gilt) M
Fig. 11.24

&) 80 T
W ' I Hi(s) l 7, I Hy(s) I . onT)
L L

2

Fig. 11.25
For Fig. 11.24, the outcome of Z-transform is Fig. 11.25(a). Hence, H(z) = H\H,(z) [as shown in

Fig. 11.25(a)]
Riz) Ci
HHD o2

Fig. 11.25(a)
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But in the case of Fig. 11.25 where the blocks H,(s) and Hy(s) are separated by an impulse sampler,

Hiz) = Hy(2)H(2)
Therefore,
HHy(z) # Hi(2)HA2)

11.8 APPLICATION OF =-TRANSFORM TO SAMPLED DATA
SYSTEMS

Let us consider an open-loop system. The input is r(f). The transfer function is G(s). The feeding
to G(s) is done by a pulse sampler and a zero-order hold. The output «(r) is passed through the
mathematical synchronous sampler to have the output ¢(nT). Figure 11.25(b) describes this
system. The equivalent sampled system for Fig. 11.25(b} will be that as shown in Fig. 11.26.

Pulse T(M)
rir) sampler n

—{ ZOH Gis) ! ——— c(nT)

Fig. 11.25(%)
\51{ ) \T(M]

LU 1= elr)

—-(G i) = e s G(1) —p—/l—n- c{nl)

Fig. 11.26

_ T
Now the Z-transform of Gy(s)G(s) will be equal to the Z-transform of [l £ G(s}]

5

TG (s)
5

G(s)

Suppose the Laplace inverse of |:—s—] = fi(r) and the Laplace inverse of [

] =fit=D.
Therefore,
I:e"rG(s}:I
|| = ZLAKT -]
= Z7 ZUf(KT)
G(f)]

=z z[—
5
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(z —l)(l -e‘"] L= e T
= (z- l)(z _e—b‘.") —
Now let us consider a closed-loop system as shown in Fig. 11.29.

Figure 11.29 can be transferred 1o Fig. 11.30 by replacing the pulse sampler by the impulse
sampler.

Pulse

sampler
udl b /\ ZOH ]—o—| Gis) Q

Fig. 11.29

Brlr)
T - S T
FU]

=

Fig. 11.30
Now,
z) = [ Z-transform of Gy(s)G{(s)]E(2)
Flz) = [ Z-transform of Gy(s)G(s)H(s)]E(z)
en) = rin - fin
In case of sampling ¢ = nT, i.e. e(nT) = r(nT) - finT}
Taking the Z-transform of the above,
E(z) = R(z) - F(2)
or
E(2) = R(2) - Z[Gy(s)H(H(5)E(Z)
or
E2) (1 + Z{Gy(s)G(s)H(5)}] = R(z)
Again,

0(2) = Z[Go(s)G(s)]Elz)

or

E(z) = O(z)
2[Go(5)6(5)]
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&'— s)Gis)H s)p =
Tapoml  ZaEcER}-RE
0(z) ___ 2[Go(s)6(s)]
R(z) = 1+ 2[Go (5)G(s)H()

GoG(z)

If the pulse sampler and the zero-order hold are applied in the feedback path of the closed-
loop system, then the Z-transform analysis of the sampled data system will be as explained below.

Figure 11.31 shows that the pulse sampler with zero-order hold is applied in the feedback
circuit. The equivalent circuit with impulse sampler is shown in Fig. 11.32.

His) Pulse sampler

Fig. 11.32

Now,

Ris) - F(5) = E(s5)
Again,

F(s) H(s)

o) = Gyls)H(s
or

F(5) = Gy()H(5)0"(s)

Therefore,

E(5) = =Gyls)H(s)0"(5) + R(s)
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where 0"(s5) — sampled output O(s).

Again,

o(s)

F‘) = G(s)
or

0O(s) = E(5)G(s)

Multiplying E(s) = =Gy()H(5)0"(5) + R(s) by G(s), we get
E(s)G(s) = - G()Go(s)H(s)O"(s) + G(s)R(5)
0(s) = —Go($)G(H($O'(5) + G(HR(s)
Applying Z-transform, we get
O(z) = Z-transform of [- Go(s)G()H(5)0"(s) ] + Z-transform of [G(s)R(5)]

Therefore,
(2 = Z[-Gols)GIH()]O(2) + Z[R()G(5))
(- The Z-transform of sampled O(s) will be equal to O(z))
or
O2) [1 + GeHG(2)] = RG(2)
or
RG(z
00 = TTGHG()

EXAMPLE 11.2 A closed-loop control system is described in Fig. 11.33. Determine the output
in discrete form when a unit step is applied to the input.

Solution Figure 11.33 can be transformed to Fig. 11.34 where the impulse sampler is provided.

Sampler with
i /\Tn]’ l ZOH I I _l_—l o)
el 1 | L+t |
[ _] I
L= |
Fig. 11.33

[T ]
L s |

Fig. 11.34
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Now. we know that for a closed-loop system,

0(z)  Z-transform of [Gy(5)G(5))
R(z) = 1+ Z-wansformof [ Gs)G(s)H(s)]

1-¢! .
1

e

1+ elz—2e7 41
(z- i](z-e“}
(1-¢")=z-1)

P-z+l-e
Since the input is a unit-step input,

R(z) = 5

=

Hence,
R (I-e“'}{z-l}

B z(l—-e")

Putting the value of e, we will get the complex conjugate roots, say, a + jb and a - jb.
Thus,
Az Bz
)= — + -
o) z—(a+jb) z-(a-jb)

where A and B are the coefficients.
Therefore, in discrete form by taking the Z-inverse, we will get

O(n) = A - (a + jb)" + Bla - jb)*

EXAMPLE 11.3 Find the output voltage in discrete form of the RC circuit as shown in
Fig. 11.35 when the input vollage is applied as follows.

e(ty=enT) wherenT<tr<(n+1)Tand T =15

10
ell) 1F )

Fig. 11.35
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Since in this problem T = | s, we have

Now,

Therefore,

or

or

where

e(nT}=n

Vo) = (—:-:::—:)-E(z]

e(nT)=n

Z-transform of e(nT) = Z-transform of n

_ Tz -
T (== (2-1)
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N : O, . . . . .
Hence, the section —;—2-5— -0—[*.1 "53”] on the jawr-axis describes on the z-domain a unit

circle in the anticlockwise direction by indicating the angle as -x, -m'2, 0, &2, &
When

then

4
n
1]
=
2
—_
1
~
|
-
R

[}

o
=
—_——
<.
]

s
e

= =1/s-n
Hence. the angle is -&. Similarly, the other angles are determined when the value on the

.k Non
Jjor-axis varies from -}—zi to +j—-
Figures 11.37 and 11.38 show the graphical representation in the s- and z-domains

respectively.

jol o Imaginary
+j
2
s-plane z-plane
(8] 1
o / Real
L0
b /3
Fig. 11.37 Fig. 11.38

11.9 STABILITY ANALYSIS OF DISCRETE SYSTEMS
A discrele system is generally described by the following Z-transform.
O(2) = G)R(z)
where O(2) is the output, R(z) is the input, and G(z) is the transfer function.
Suppose the input is impulse. Then the R(z) = 1. Therefore,
0@ = G() = Z—T‘;+z—’f§;~++~'ff,r
The discrete time sequence of the above will be

OnT) = myla)" =" + my (a)" " + ...+ my (ag) !
where n 2 1.
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Now, from the above, it is very clear that if lajf < | for j = 1, 2, ... n, then the system
response decays to zero. Thus it can be concluded that the poles of the system Z-transfer function
will be within the unit circle.

11.9.1 Methods of Stability Analysis of Discrete Systems
Jury’'s stability test

The procedure of Jury's stability analysis is as follows:
The characteristic polynomial needs to be found out first of all. That is,

F)=a +ay,_ @ V4o +ay=0, a,>0

The first test for Jury's stability test will be the test for necessity. If the necessity test is
satisfied, then the sufficient condition tests need to be performed.
The necessary conditions for stability are the following:

F(1y>0: (-1 F(-1)>0

If the above conditions are satisfied, then the sufficient conditions are tested by two
methods.

Description of the first method for sufficient condition

Develop a table of coefficients of the charactenistic polynomial as follows:

Row 2 z = ok A1 -
1 g ay az [ a, . a,
2 a, [ .1 ay a, ag
3 by by by - by
4 ﬁn-l bn-Z bi]
5 L] (4] C3 [
6 €n_2 Cpos co
2n-5
2n -4
-3 Po P P2
where
f -
b= |70 Bk
ay a4
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Hence P, is positive innerwise.

Also,
Pr=M-N
-8 1 11
=|-s [3] 6
-1 0 4

Hence 3 > 0 and

-8 1 11
-5 3 6] =-1(6-33) +4[-8(3) + 5] = -49 < 0
-1 0 4

Thus, P, is not positive innerwise; hence the system is unstable.

11.9.2 Analysis of Stability with the Help of Bilinear
Transformation

518

We have just studied that to determine the stability in the z-domain, the roots of the characteristic
equation should lie within the unit circle. Of course, the standard method of Routh and Nyquist
criteria can also be applied if a complex transformation can be made so that the interior of the
unit circle of the z-plane can be transferred to the lefi-half of a new plane. This transformation is

termed the bilinear transformation. If the new plane is termed the r-plane, then

P el
Tzl
or
.= l+r
T -r
With z = &/ (where 8 is varying from —x to +x via 0 in the anticlockwise direction), we have
el? -1
r=
e 41

cosB+ jsin@ -1
cos @+ jsin@+1

.8 8
cos@ -1 +,‘Zsm—2-cos—2-

[ .8 8
2 8 8 .2
2cos 2+;25m 2cos 2

. 20 .8 0
- 2_ i — —
2sin 2 + j2sin 3 cos 3

8 [ .8
ZcOSE[cos-i + fsin E]
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25i1’|E —sing+ ‘u‘:{)s2
3 7T

) Zcuse cosﬂ+ 'sing
\“*7

[—sin 8 + jcos E]
o\ "277773)

. 2 2
lan o
Jtanz

=]

—sin£+'r.‘os2
3 TIe0%3

= jtan—
When
f=-x
r=-jtanZ=-
==J 2 =
When
a=0
r=0
When
f=+n

r= 'lnnE- o
=1 7 7

Hence r varies from —ee to = via 0 when @ varies from ~x to & via 0°, The shaded portions
of Figs. 11.39 and 11.40 explain this.

Imaginary jo, B
z-plane replame
U /|
—r Real ///// a,
Fig. 11.39 Fig. 11.40

Therefore the characteristic equation in the z-domain is to be determined, first of all. Say,
that is
a + b +cz+d=0
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1+r 05'” +2.49[ 17 ] 0496 = 0
T=r = =

3579 252 +05r+25=0

The changes of the sign in the characteristic equation indicate that the system is unstable.
|Even if we apply the Routh’s criterion, the same result will appear. Thus,

jor

r 35 0.5
P -25 2.5
r 4 o
~ 25

The above Routh's criterion clearly indicates that the system is unstable. Whereas, if we
check the stability as per a lincar continuous system, we will find that the system is stable. The
characteristic equation of the linear continuous system is

1+G(x)=0
or
5
Y e 0
or

S 4342 +5=0
Applying the Routh’s criterion, we get

5 1 2
5 3 5
5t 173 0
50 5

Hence the system is stable.

Thus, it is proved that in some cases, if sampling and ZOH are applied to a stable linear
continuous system, the sampled system may be stable or may not be stable. That is why, there is
immense importance of bilinear transformation to check the stability of the sampled sysitem by
Routh’s criterion.

11.9.3 Schiircohn Stability Test

Schitrcohn stability test is another method of testing the of stability of discrete systems. Suppose
the transfer function in the z-domain is

1
7

4

G(z) = - TS

Now, we have to study whether the system is stable or not. Let

A I
Ay =1 3t 2z.
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Let the coefficient of 2™ be assumed Kj; then Ky = —(1/2). We have to develop the reverse
polynomial of the above, that is,

g L T, 2
Biz) = 3 41 +z
Now,
A (z) - KsBy (2)
A = 7
1-k}
SNCETIR - ¥ B IS B
1-—z 3¢ +2[ 5=30 *2 ]
= T
1
—1-1
=1 21

The coefficient of 7™ is assumed K,. Hence K, = —(7/2).

Since |Ky| = 1, the system will be unstable. That means the magnitude of the coefficient of
the highest inverse power in z in all the polynomial arrangements will be less than one, if the
system is stable as a discrete system. Here [K3| < | because K; = —(1/2), but || > 1, because
K, = ~(712).

That is why the system is unstable. This in a nut shell is the Schiircohn stability test for
discrete systems. The generalized form of the Schilrcohn stability test will be follows.

If the denominator polynomial of a transfer function is expressed as

A= Y au(K)* a0 =1
Kw0
then B,(2), i.e. the reverse polynomial B,(z) will be
B =" Aglz™h

L)
=" E a, (K)z*
k=0
= Z a-(x}z[-nﬁx)
K=0
"
= $ o (k)
K=0
Let m-K=n, then K=m-n
When K=0, n=m

When K=m, n=0
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Thus,
1]

Bnf2) = 2 a, (m—-n)"

n=m

= i dy(m=n)z"

LEL]

Since n is an arbitrary number, n can also be expressed as K. Thus
m
B.z) = E a, (m- K)Z'K

K=0

Now, in the Schiircohn stability test, the polynomial A(z) should have all its roots inside the
unit circle and for this we have to compute a set of coefficients termed reflection coefficients, K,
Kj, ..., Ky, from the polynomials A,(z).

For lower degree polynomials, A,(z), m = N, N - 1, N - 2, ..., I, then according to the

recursive equation
Ay - il2) = 71 - K,i

where the coefficients K, are expressed as
K, = a,(m)

The Schiircohn stability finally narrates that the polynomial A(z) will have all the roots
inside the unit circle if and only if the coefficients K, satisfy the condition |K,,| < 1 for all m = 1,
2, .. N.

SUMMARY

The constituents of a sampled data control system such as sampler, analog to digital converter,
digital computer, digital to analog converter, hold circuit, and plant are explained. The sampling
procedure is described in detail. The signal reconstruction procedure is also explained. The idea
of linear discrete systems is also provided. The equivalent representation of pulse sampler and
zero-order hold is shown. The impulse sampling is explained. The Laplace and Z-transform pairs
corresponding 1o several time functions are tabulated. Application of the Z-transform to sampled
data systems is shown. Illustrative examples are also provided. Stability analysis in the discrete
system is explained. The Jury’s stability test is explained with examples. Analysis of stability with
the help of bilinear transformation is discussed. Schiircohn-stability test is also described with an
example.
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QUESTIONS

1. Explain sample and hold. Obtain the frequency response of zero-order hold.
2. Obtain the unit-step response of the system shown below.

zero-order | 1 C(s)
T=1 hald s(s+1)

3. Define the stability of discrete control systems. Explain the Jury's test of stability.
4. Solve the following difference equation using the Z-transform method.
XK +2)+ 3K+ 1)+ 2(K) =0
H)=0, k(D)=L
5. Find the Z-transform of f(f) when
Ofort <0
fn= sinwt forr =2 0
6. Find the characteristic equation of z-domain for the sample data system shown in the
following figure and state whether the system is stable or not.

S (T=15

e X

i)

1
ss+D(s+2)




Chapter
2 Control System Devices

12.1

INTRODUCTION

Control system devices which make changes from one form to another are termed transducers.
Actually, the control system devices convert process variables in one form into variables in
another form. Suppose a potentiometer converis the angular position of a shaflt to an output
voltage, then the potentiometer will be termed transducer. Some of the devices that work as
transducers are listed below:

(a)
(b)
(c)
(d)
(e)
0]
(=)
(h)
()

12.2

Potentiometer

Synchro

Differential transformer
DC servomator
Tachogenerator
Gyroscope

Power amplifier
Magnetic amplifier
Stepper motor

POTENTIOMETERS

Potentiometers can be used as transducers for converting displacement or angular rotation into an
output voltage. Figures 12.1 and 12.2 show the examples of linear potentiometers where linear
displacement or angular position of a shaft is converted 1o a proportional voltage.

v= ¥ v= (. o
x 3 -
4 |p=kx v =k0
Fig. 12.1 G ion of linear displ Fig. 12.2  Conversion of ungulur displacement

to vohage. to voltage.

323
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Wire-wound potentiometer

Wire-wound polentiometers are used quite frequently in control systems. Here the wiper of the
potentiometer moves from the top of one turn o the top of the c ive turn by jumping. As
a result the voltage does not change linearly, rather it provides a staircase type change as shown
in Figs. 12.3 and 12.4, Thus, the output remains insensilive to variations of the wiper
displacement between two consecutive steps. The measurement normally used is termed
reselution. The resolution is defined as the minimum change AE in the output voliage in per cent
of the total voltage found by rotating the shaft. For example, if there are N wrns in the wire-
wound potentiometer, then according 1o this definition,

Turns of wire
D T —
xor B
Fig. 12.3  Wire-wound potentiometer. Fig. 12.4 Staircase nype change in voltage.

E
. AE N _ 100
Resolution = = =100 = =100 = y pereent
For wire-wound poh.nnomelcrs‘ the resolution obtainable generally lies between 0.001 to

0.5 per cent. Linear wire i ters are also used as error sensors. Figure 12.5 shows
an arrangement of the error wnsmg transducer.

]
L £ {
v— Y D
e e
Reference Controlled
input ourput
Fig. 12.5  Error sensing transducer.
Here the two p iometers are ged in a differential or bridge form. The output voltage

E corresponds to the difference between the two angular input positions 8, and 8, at the wiper
shafts. The error voltage £ is, therefore, given by
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of laminated silicon steel and is slotted for accommodating a balanced three-phase winding which
is generally of concentric coil type and is star connected. The rotor is of dumb-bell construction
and is wound with a concentric coil. The ac voltage is applied to the rotor winding through the
slip rings.

Figure 12.7 shows the constructional features of the synchro. The rotor is laminated. The
brushes for the sliprings are metallic. The rotor may be of non-saliem type structure, too,
depending on the req

The synchros are generally used for:

(a) Data transmission
(b) Error detection

AC
supply
Stator
winding

Fig. 12.7 Constructional features of synchro.

synchros for data transmission
For data transmission, two synchros are used. Figure 12.8 depicts the same.
e ————— O —— —
E Synchro | ! E Synchro 2 E
I
i - a
AC ' ! \ ]
supply 9 H a i 1 i
1}
| | |
' H i
1
L O S y 2 B

Fig. 12.8 Synchros for data transmission.

The synchro 1 is terined the transmitter. The synchro 2 is termed the repeater. The angular
displacement of the rotor of one of the synchros produces an equal angular displacement of the
rotor of the other synchro.
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This type of synchronization takes place within one revolution. Such a system is termed the
direct data transmission type synchro system. When ac supply is provided to the rotor of the first
synchro, a pulsating magnetic field is developed. A voltage is induced in the stator coil of
synchro 1 (transmitter) and current flows through the stator winding of synchro 2 since the stator
windings of synchro 1 are connected with the stator windings of synchro 2. Again, the rotor
winding of synchro 2 is connected 1o the ac supply. The flux developed by the currents flowing
through the stator windings of synhro 2, will be in the same axis of the reference frame of
synchro 2 as it is in synchro 1, but only in the reverse direction since the currents in the stator
windings of both the synchros are equal. Thus the reference flux direction of synchro 2 is fixed.
If there is misalignment of the rotor of synchro 2, then the flux developed by the rotor winding of
synchro 2 due to the current flow in the rotor on account of the same ac supply, will not be in the
reference frame. Hence a torque will be developed for proper alignment of the rotor of synchro 2.
Thus any misalignment will be immediately rectified. For the data transmission, usually the rotors
of both the transmitter and repeater are made salient. For preventing oscillations of the repeater,
additional damping is also provided. Figure 12.9 describes the above scheme.

Synchro 2

Synchro 1 é

Direction of A
(Misalignment
r?ll'cur:r;c . with reference
AC o flux &)
supply

s F
F |

Fig. 12.9 Direct data transmission 1ype synchro system.

synchros for error detection

Figure 12.10 describes the synchro error detector. Here synchro | is termed the synchro transmitter
and synchro 2 is termed the econrrol transformer. When ac supply is connected to the rotor of
synchrol, of voltage will be induced in the stator windings.

Synchro 1 Synchro 2

A
AC
supply 0
c,
C B

Fig. 12,10 Synchros for error detection.




Control System Devices 331

Figure 12.16 shows an example of a differential transformer. With the movement of the core,
the reluctance of the magnetic circuit will vary. This is the clear case of variable reluctance
transformer.

Figure 12.17 shows another method of varying the reluctance of the differential transformer.

A e
= c:i? = I :gé____,___E,
« l q

VS — s o—

supply O— supply 0—————

[4-—— m—o0

Fig. 12.16 Differential rransformer as variable Fig. 12.17 Variable reluctance transformer.
reluctance transformer.

It is also possible to develop a modulated wave at the output using a differential transformer
if a high frequency carrier waveform is supplied to the primary, and the movable core is made o
oscillate about the null position in a sinusoidal manner. The graphical representations are shown
in Fig. 12,18,

N R
N

Input
| voltage

Time

Output
voltage

Fig. 12.18 Modulated wave ai the output of a variable reluctance transformer.
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Microsyn

This is a rotary differential transformer. Here both the stator and the rotor are made of iron
laminations,

Figure 12.19 describes the mircosyn. Usually, there are four poles, each of which is provided
with a coil for the primary winding and the other for the secondary winding. The rotor is made
of a special shape as shown in Fig. 12.19. As a result, the reluctance of the magnetic circuit
can be varied. The primary coils are connected in such a manner that for a particular direction of
the primary current, the flux in poles A and B is inwards and that in poles C and D is outwards.
The secondary coils are so arranged that the voltages induced in the secondary coils of poles A
and C are in phase and oppose the voltages induced in the secondary coils of poles B and D.
At the neutral position of the rotor, no output voltage will be produced. If the displacement of the
rotor takes place from its neutral position in the clockwise direction, the reluctance in the
poles A and C will increase while that in B and D will decrease. The outcome will be the
development of voltage across the secondary terminals and that voltage will be pmpnmonal o
the small angular displacement of the rotor. The range of is g Ly li o 107 to
have a linear characteristic. When the angular displacement is trnnsfnrmed to voltage signal, the
transducer is termed microsyn. In some cases, the change in alignment of the magnetic ficld is
made for the difference in currents in the control winding. The device is then termed torgue
microsyn.

Figure 12.20 shows the schematic diagram of the torque microsyn.

L l s
Fig. 12.19 Microsyn. Fig. 12.20 Torque microsyn.

12.4 SERVOMOTORS

The power devices which are generally utilized in elecirical control systems are ac and de
servomotors. Servomotors are constructed covering a wide range of power from fraction of a wart
to kilowatts. The basic requirements of the control motors are as follows:

(a) The moment of inertia of the rotor should be small.

(b) The slope of the speed-torque curve should be negative and also not vary over the
entire range of volug: regulation.

(c) Freq g should be withstood by the motor.
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Figure 12.22 describes the block diagram rep ion of a field lled dc servomotor.

Figure 12.23 describes the armature-controlled de servomotor. Here, the field is excited by a
constant field current /; and the input vollage is V. The following assumptions are made.
(a) The field current is constant.

(b) The armature reaction is e¢liminated and the developed torque is expressed as, Ty = K1,
{¢) The armature inductance is neglected.

[ L,

v K o 1 I J
St s+ )53 +1) ‘i :] ""E)s'"'w

Fig. 12.22  Block diagram of a field-controlled Fig. 12.23 A led dc ser
dc servemotor,

The back emf developed due to rotation of the armature is Ey(s) = K), 58 (s), where K} is the
constant of proportionality. Thus,

V(s) = rly(s) + Ky 56 (s)
Again,

2
n‘8+Fd'8

Ta= Iom+F g

Taking the Laplace transform of the above,
T(s) = J5*6 (s) + F58(s)

= (J& + F5)8(s)
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One of the input windings is excited by a fixed line voltage V, and is termed the reference
winding. The second winding is placed in quadrature with the first one and it is connected to the
control voltage from the source via a servo amplifier. The reference winding is usually fed with a
voltage having an approximate phase shift of 90” with respect to the contro] voltage.

The voltages applied to the windings are not bal 1. The direction of rotation of the
motor reverses when the control phase voltage and hence the voltage signal input of the servo
amplifier changes sign.

Figure 12.26 compares the speed-torque characteristics of the conventional induction motor
with the ac servomotor. Curves 1 and 2 are the speed-torque characteristics of the conventional
induction motors. Curves 3 and 4 are the speed-torque characteristics of induction motors for
servo operation. The X/R ratio of servomotor is usually small compared 1o that of the conventional
induction motor. Curve | is the speed-torque characteristic of a conventional induction motor and
curve 2 is the speed-torque characteristic of a conventional induction motor at reduced voltage.
Now for the conventional motor, the stable operation can only occur when the speed lies between
@, to @. For stability, it is essential that 8778w should be negative for all control voltages. Hence,
to increase the stable zone, it is essential to construct a motor having X/R ratio that is small
enough for utilization as an ac servomotor.

N

3
=~
e

Speed , ]

Fig. 12.26 Speed-torque characteristics of induction motor.

Figure 12.27 describes the speed-torque characteristic curves of an ac two-phase servomotor
for various control voltages. The negative sign of the control voltage indicates the characteristic
of the control signal with reversed phase. The curves are usually nonlinear. The general equation
for the torque developed in a two-phase motor can be obtained from lmcar malysts by
approximating the characteristic curve into a linear form. The following are i
made:

Vey Ve, Ve > Ve > Ve > =V, > =V 2=V, > =V,

Speed (w = @)

Fig. 12.27 Speed-torque characteristics of an ac two-phase servomotor.
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Since ?0% = K, is negative inherently for siable operation, this in wm, develops additional

damping. This additional damping is known as the electrical damping. When K, is positive, then
F — K, will be negative for some K, tending 10 make the operalion unsiable.

The inertia of a squirrel cage motor is made small by providing the drag cup rotor since the
servomotor needs to have very small inertia. Here, a metallic cup is used as the rotor as shown in
Fig. 12.29. A stationary iron core, like a plug inside the cup, completes the magnetic circuit.

The principal disadvantage of the two-phase control motor is the inherent inefficiency of a
squirre] cage induction motor running at a large slip.

«— Stator
Drgewp 77777773
rotor ~—al4
— Stationary
f ; rotor core
St (77777777
Stator

Fig. 12.29 Servomotor with drag cup rotor.

12.5 TACHOGENERATORS :

The purpose of the tachogenerator is to transform the mechanical angular speed into a directly

dependent voltage signal. Tachogenerators are used for instrumentation in the control process, for

computers, and for many other purposes. The operating principle of the tachogenerator is that its
ic flux is ¢ and the emf induced is proportional to the angular speed.
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DC tachogenerator

A dc tachogenerator is a separalely ited machine. § i the per magnet is also
used. The demerit of the permanent magnetic field is that it deteriorates with aging, mechanical
jolis, and shocks. If magnetic materials such as Alnico, Magnico are used, the aging can be
avoided to a greal extent,

The design of the armature of a de tachogenerator is similar to that of a conventional dc
machine. The generators are usually provided with more than two poles (even number) for a
smooth output, A low-pass filter is sometimes connected 1o reduce high frequency noise. For
reducing the voltage drop across the brushes, metal brushes with silver tips are generallty used.
Figure 12.30 shows a dc tachog with per field.

&

AN

L)

Fig. 12.30 DC rachogenerator.

AC tachogenerator

In ac tachogenerators, provision of three-phase windings is the usual practice. The number of
poles are generally more than two. The output of the tachogenerator is connected to a three-phase
bridge rectifier. The reasons for use of polyphase 1achogenerators are the following:

q

{a) More power output per unit weight of the tachog or is ob
(b) Ripple content is decreased and the frequency is increased.

Figures 12.31 and 12.32 show the single-phase and the three-phase tachogenerator

respectively.
Y
; -
A
@ 7

Fig. 12.31 Single-phase 1achogenerator. Fig. 12.32 Tihree-phase iachogenerator.

Ry

Figure 12.33 shows the ac tachometer. Here two stator field coils are mounted at quadrature.
The tachometer rotor is usually a thin aluminium cup that rotates in an air-gap between a fixed
magnetic structure. The light inertia rotor of highly conducting material provides a uniformly
short-circuited secondary current. Suppose the voltage is applicd to the reference coil and it is
V, cos .. The Nux which will be produced on the coil is @, sin @.7. Let the speed be expressed
mathematically as
0y = 6, cos Kat
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Figure 12.36 shows the external characteristics of a cross-field generator for various dcg;mes
of compensation. Here, a indicates the fraction of the d-axis ar mmf comp or
neutralized.

$a = KINp Ip = Nol {1 - a)]

a=1

O<a<l

Load voltage

Load current, I,

Fig. 12.36 External characieristics of the cross-field generator.
where ¢ is the flux in the direct axis. Ny and N, arc the effective turns of the control field coils
and armature respectively. Therefore, finally, the voltage induced in the quadrature axis will be
e, = Kenlp = (1 — a)Knly.
where n is the rpm of the machine. Thus,
L= K[nff -1 —a)K!rxJ'd

q Rq

where R, is the resi e of the quad axis.
Flux in the guadrature axis will be

6= Ky N, I,

Therefore, induced emf
=Kinl,

1
= Jr‘,m[-E{Jli",,mrJr -- a)anI‘}]

LYLY K4K
= ——E;—vrlzf)«—' ‘*'f‘(l - 0‘} Hzf‘
At no load, {; = 0. Therefore,

KKy )

KaK, 2 V¢ ( \/ ]
=t e ol ==
R, "R, 1R,

€45
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e KKt P
Hence the voltage amplification is % at no load. Let the amplification on no-load

L
be G, then
e;= GV, - K(l - a)ly
where
K,K KK
K= ;'..3 and G = =Lt
q 9R)‘

If the armature resistance drop is considered, then

Vi=eq- Rily
where R, is the armature resistance including the resistance of the compensating winding. Thus,
Va=es~ Rily

=GVy— K(1 - aMly - R,
=GV, - [R, + K(1 - a)li,
If the load resistance is Ry, then V, = Ry I Thus,

V= R 1, =GV, -| R, +XeKa 2y I
a= Ryly =UVy = Ky +—¢ n(l-a)|l,
'l
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Figure 12.37 shows the load current I; vs. the speed characteristics of an uncompensated
cross-field generator for various values of the load resistance, i.e. ry . iy and ry,, where ry, < r,
< ry, and the current I is kept constant.

v i
i,

Ly
Iy = constant

Load current, iy

Speed, n
Fig. 12.37

Figure 12.38 shows the external characteristics of a cross-field generator for various degrees
of compensation and at constant speed n. .

€

Load voltage, V,

Load current, [y

Fig. 12.38 .

12.7 MAGNETIC AMPLIFIERS

A magnetic amplifier is a device for obtaining power amplification. In this device a saturable
reactor is used. Static magnetic amplifiers have a time constant ranging from a few tens of
milliseconds for low power applications to a few seconds for higher powers. Magnetic amplifiers
are used in industrial control drives and in airborne applications such as guided missiles.

The merits of a magnetic amplifier are the following:

(a) Its reliability is high.
(b) Its life is long.
{c) It has high overload capacity.

{d) Its impedance can be matched to a wider range of values and the mixing of different
signals is casy, pariicularly on account of the ease with which such signals arc isolated.



Control System Deuviees 385

(e} Tts gain is relatively high,
(f) The vulity of the magnetic amplifier increases with increase in supply frequency since
the voltage drop across the reactor depends directly on its frequency of operation.

Saturable core reactors

The fundamental element of the magnetic amplifier is the saturable reactor. It consists of a
laminated core of some magnetic material. The performance of satrable reactors depends on the
oroperties of the cores. It is imperative to design the hysteresis loop of the reactor core as narrow
ind steep as possible. In other words, it is necessary o keep the coercive He as small as possible.

Figure 12.39 shows the hysteresis loop. The value of H is of the order of | w 10 AT/metre.
The retentivity B, is very near to the saturation flux density.

B

Fig. 12.39 Hysteresis loop.

Figure 12.40 shows the schematic diagram of a saturable core reactor. The iron core carries
he following two windings as shown in this figure.

lae lae
q
q D
P -
Ve <—-—-> Nﬂc D N.: Vt
Ch_._) <___.->

Fig. 12.40 Saturable care reactor.

{a) An ac winding of N, s excited by an ac source voltage V.
(b) A dc winding of Ny turns excited by a dc source voltage V.

The main objective of the de supply is to develop a control mmf that will produce a flux, in
rder to vary the degree of saturation. The effective permeability decreases with a higher degree of
aturation in a magnetic circuit.

From Fig. 12,41, it is very much clear that for a change in B in the satration region, the
hange in H is very high in comparison to the similar changes in the linear region of the B-H
arve, Since AB/AH = p, pg, with the increase in AH in the saturation region, the effective relative



346  Control Engineering: Theory and Practice

permeability g, decreases. The decrease in effective permeability means that the effective
reactance of the winding decreases. The supply voltage v,. as shown in Fig. 12.40 is also termed
the gate voltage. Here,

vx=i,cr+NxA-j—f

AN
N

i

Y

Fig. 1241

where
r = resistance of the ac or gate winding
A = cross-sectional area of the magnetic core
B = flux density in the core
If r is small, then

dB
Yie = Noch -
Again, if the dc excitation is present, then
B= Bt + 8‘
If the gate voltage v = W, sin o, then flux density B,. will also be sinusoidal. Therefore,

B = By + B, sin ax
and

Vie = N,ckg‘-(B& + By, sin @)

= Ny.A B, @ cos ox
The rms value of V. will be
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N..AB_2rnf

V2

V2K Ny A B, f =4.44f Ny AB,

1]

Again, the maximum amplitude of the magnetizing force

where

o= 3 Ml

I = mean magnetic path in metres
I = the rms current in the ac winding.

Therefore, equivalent reactance,

‘- fﬂ_ﬁxmu;ﬁ;a&_
= T, i H,
V2x4.44f N2 A 6.28f N2 A
= 1 Her = I el

where . is the effective permeability.

Demerits of the ordinary saturable core reactor
The saturable core reactor shown in Fig. 12.40 has the fellowing disadvantages:

(a)

(b)

A high voliage is induced in the control winding due to transformer action. Therefore,
proper insulation is ded for pr ing this winding from such overvoltage. This
voltage may circulate current in the de circuit and that is why, a high inductance is
placed in series with the control winding. Automatically, the response of the control
system will become slow.

The harmonic content also becomes very high in the ac waveform as even harmonic
distortion is present.

For the above reasons, the design and construction of the saturable core reactor are modified

as in the case of magnetic amplifiers.
Figures 12,42 and 12.43 show how the design and construction of two saturable core
reactors have been modified to act as magnetic amplifiers.

L':EFI ?—D:J,sz’“‘

Fig. 12.42 Two saturable core reactors connected as a magnetic amplifier.
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Fig. 12.48 Three-stack variable reluctance stepper motor.

The inductance of the stator winding can be expressed in two parts. One part is fixed and
the other part depends on the angular mo of the rotor. For example, the phase a will have
L, = Ly + L cos T8 where T is the number of teeth and @ is the mechanical angle. Again, the
lorgue is equal to the rate of change of energy. Therefore,

41,2 1pdL,
Torque = 53 hla = 3075

= _-;..'3 TLsin T

Figure 12.49 shows the relative angular displacement of the stator phases for the movement of
the rotor. Suppose the positions of the staior phase a, phase b, phase ¢ with respect to the rotor are
as shown in the Fig. 12.49. That means the stator phase ¢ teeth are totally aligned with the teeth of
the rotor. Now, if a pulse is applied to phase a of stator, the 1eeth of the stator phase a will be aligned
with the rotor teeth. It means that a progressive angular displacement of the rotor will take place
which will be equal to (360/KT)" where K is the number of stacks and T is the number of teeth,

—t
LT LT LS LT L L L Rer
: Phase ¢
!Illllll”[{ll Phase a

1

=t

360 360

IxT 3IxT

Fig. 12,49 Relative angular displacement of the stator phases with respect to the rotor.
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The arrangement of the system is made such that the angular difference of the alignment of
each phase will be (360/KT). Therefore, any pulse to any phase will shift that stack by an angle
(360/KT) and align the system with the rotor and the corresponding phase. The motor will again
stop. It means that any positional error will develop a pulse which will set right the alignment
again. Similarly, for pulse excitation 1o the phase b, the rotor will shift 2 x 360/KT in the forward
direction to have itself aligned with phase b. On account of the inertia of the driven mechanism,
the motor will exhibit oscillatory behaviour at each step of movement and that is suppressed to an
acceptable value by providing additional mechanical or electrical damping. In the case of aligned
position, special precaution needs 10 be taken so that no load torque may develop on the motor
shaft as that would create alignment error unnecessarily. The direction of movement will change
(i.e. become anticlockwise) if the pulsing is ch d from abc to ach.

If the two phases are excited slmultane.ously. then a more powerful system will be
developed. It means that the sequence will be ab, be, ca instead of abe. In this case, the torque
expression will be as follows.

Lo=Ly+LcosTO
360
L,,::Lo-l-Lcos[TG—ﬁ-]
ld(L +1L) 2
2 de

1 d 360 2
-I--d—E[LcusT8+Lcos[Tﬂ~-Er—]+ZLo:|a

Tab =

- % TLi*sinTO -%TL:‘Z sin[T - @)

- -;—TL:" [sin T9+sin[TB - l‘ﬂ]]

u

KT
Te+re—@ re—rmﬂ
== Yy irain KT . KT
2 2 2
o —LPTsl _180) 180
= —-Li Tsm(]"ﬂ KT)CD X7

From the above expression, it is clear that the rotor movement will be 180/KT, that is, half
of the angle, which was 36(/KT, for abc or ach pulse sequence.

Figure 12.50 shows the characteristic of torque vs. pulse rate of stepper molor.

The slew range is that in which the load velocity follows the pulse rate without loosing
steps, bul cannot start, stop, or reverse on command. The start range is that in which the load
position follows the pulses without loosing steps. The maximum torque point is the maximum
holding torque of the excited motor to a steady load. As the stepping rate is increased, the motor
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provides less torque since the rotor has less time 1o drive the load from one position to the next
because of the stator winding current pattern having been shifted.

Max torque

Torque

» Puise rate steps
d B per second

Maximum Maximum

pull-in rate  pull-out rate

Fig. 12.50 Torque vs. pulse rate of stepper motor.

Permanent magnet stepper motor

Figures 12.51 and 12.52 show the two-phase four-pole permanent magnet stepper motor.
Figure 12.51 is for phase a and Fig. 12.52 for phase b. The rotor is made of ferrite material. It is
permanently magnetized. The stator stack of phase b is electrically at quadrature with that of
phase a. When phase a is excited by a pulse, the rotor will be aligned with phase a as shown in
Fig. 12.51. When the phase b is also excited, the effective stator poles will be shifted
anticlockwise by an angle 221/2°. Obviously, the rotor will move 221/2° anticlockwise for
aligning with the effective magnetic axis. If the excitation of phase a is withdrawn, the rotor will
shift another 221/2° anticlockwise to align itself with the new effective magnetic axis which is the
magnetic axis of the phase b only. Now, if the phase a is the reverse excited, then the rotor will
move another 221/2° in the anticlockwise direction.

Fig. 12.51 Two-phase four-pole permanent Fig. 12.52 Two-phase four-pole permanent
magnet stepper motor—phase a. stepper motor—phase b.
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Fig. 12.55 \Vertical gyroscope

Figure 12.56 shows the pitch, roll and yaw motions of the aeroplane.

Y 4  Yaw
A

Fig. 12.56

In the gyroscope, the spinning wheel rotates in bearings located in the inner gimbal. The
inner gimbal is free 1o rotate in bearings placed in the outer gimbal which in the long run can
rotate in the frame to which the gyro is fixed. The gyro wheel is brought to spinning condition
with the help of a synchronous motor whose rotor is mounted on the axis of the spinning wheel.
When the spinning axis is in the horizontal position, the gyroscope is termed directional gyro.
When the axis is in the vertical position, it is termed vertical gyro. Directional and vertical gyros
are used to measure the three rotational motions of the aeroplane. Pilch is the rotational motion
about thé lateral or Z-axis, roll is the about the longitudinal or X-axis and yaw is the rotational
motion about the normal or Y-axis. A vertical gyro measures the pitch and roll. A directional gyro
measures yaw. If the electrical signals are needed, then pitch, roll and yaw scales are replaced by

synchros.
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Now to determine the torque, the torque needed for accelerating the wheel about the Z-axi
is given by
2 -
r=-ﬂa+f,“'—f=-na+f,ﬁ
de
where f§ is the angle through which the wheel turns about the Z-axis.
An undesired disturbance torque may be present at the Y-axis, i.e. the output axis. The gyn
response Lo this torque can be found independently as follows when the angular movements of th

spin-axis are small. Thus,
AH = TiAt

tan AB= =2=-LAr  (SeeFig. 12.59)

AH
‘ﬂ‘ 2 X-axis

H = Jiey

Fig. 12.59

d|
2.

=N

T,= Hf
With the moment of inertia, the above equation will turn to

. da
Ty = H'8+J-;;2_

= Hfi+Jé

where @ is the angle through which the wheel moves about the Y-axis.
If damping and spring restoring torques are considered, then

Ty = HB+Jd +Fo+Ka

where F is the damping coefficient and K is the spring constant. Therefore, finally we get two
equations

T= —Ha+ 1B
T, = HB+Jd+Fa+Ka
Taking the Laplace transform of the above equations, we get
Tts) = —sHer(s) + 21, B(s) m
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When the disturbing torque Ty(s) does not exist, then

H
- -jI—T[I)

ais) = —H’
:[J'.rz +Fs+ K+ f_]
1

or
.
als) _ I
T(s) 2
) s[h’+Fs+K+—f§-—]
I
Free Gyro

In the case of free gyro, the values of J, F, K and 7\(s) will be zero because there will be no
restraining force in any direction. Hence at the time of application of the input torque T(s), the
disturbance torque Ty(s) will be zero. Therefore,

_IET(:)
o(s) = T
5 T
1
= '——T(S]x—l
h sH?
—)
T sH
or
]
safs) = H
or
da T
d ~ H

Similarly, at the time of calculation of disturbance Ty(s) at the output Y-axis, the input torque
T(s) will be zero. Over and above, for free gyro, the restraining torque will not be present, hence
J, F and K will also be zero. Therefore, J, F, K and T(s) arc to be made zero in the preceding
relation for f(s). Thus,
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T(n"hz +:"s+ xl+ SHT(s)

Bis) = e
JZI:J:2+FJ+K+I—:|
]

SH
TT.(S)
1

4B _ T,
dt

x|~

Rate gyro

‘When the disturbance torque is zero and the spring constant is very large in the output axis, the
gyro system is termed rate gyro. The rate gyro is used for the purpose of providing rate feedback
from roll, pitch or yaw for damping out vehicle ascillations about these axes.

Therefore, Ti(s), J and F are to be put zero in the mathematical cxpmssmn of Ty(s) =

SHB(s) + (J5* + Fs + K)ya(s), i.e.
0 = sHP(s) + Ka(s)

or
sHf(s) = -Kafs)
or
als) = - %sﬁ(s)
Therefore,
- -HdB

K @

Restrained gyro

The restrained gyro has a single degree of freedom with respect o the frame when only one axis
is free to move. In this case, T, = 0 and K will be negligible in parison to the damj
coefficient F. Hence putting these in the expression of T(s) = sHB(s) + (J5* + Fs + K)eds), we get
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= sHB(s) + (Js* + Fs)a(s)
(J5* + Fs)als) = ~sHP(s)

sHP(s)
s(Js+ F)

___HB®

s

a(s) = %ﬂ(:}

a(s) = -

Since F is very large, %—yo‘ Therefore,

a= :Fiﬂ

This gyro is also called the integrating gyro, since « is proportional to the integral of the
rate of f.

Accuracy
The free gyro provides an inertial frame of relatively low accuracy. The rate gyro has low accuracy
as well. The restrained or intergrating gyro is very rugged and extremely accurate.

Potentiometers, synchros, difierential transformers, servomotors, tachogeneralors, magnetic
amplifiers, stepper motors and gyroscopes are described in this Chapter. )

The wire wound potentiometer is explained. The merits and demerits of potentiometers are
also discussed. The use of synchro is presented both for data transmission and error detection. The
operation of the differential synchro is also discussed. The principle of operation of the
differential transformer is also explained. Microsyn is also covered. DC servomotor, ac servomotor
are explained with diagrams. The principles of dc tachogenerator and ac tachogenerator are
explained. The principles of metadyne and amplidyne are described with diagrams. Magnetic
amplifier is described with saturable reactor. The operation of variable reluctance stepper motor
and permanent magnel stepper motors is also explained.

The principle of operation of the gyroscope is explained. Pitch, roll and yaw are discussed
with diagrams. The mathematical analysis of gyro is made. Free gyro, rmgym.lndrmuned
gyro are explained with mathematical deductions.
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QUESTIONS

1. What are the merits and demerits of using the potentiometer as a control device?

N e

b

10.

Describe the principle of operation of synchro,

What is differential transformer? Explain its operation as a control device.
What are the uses of the servomotor?

Describe the principle of operation of the tachogenerator.

Explain the principle of operation of the rotating amplifier.

‘What is magnetic amplifier? What are the merits of using the magnetic amplifier as a
control device?

Where do you use the stepper motor? Explain its principle of operation.
Describe the principle of operation of the gyroscope.
What are free gyro, rate gyro, and restrained gyro?



Chapter  Optimal Control
13 Theory

13.1 INTRODUCTION

Before proceeding to know what the optimal control theory is, we will start from mathematics and
gradually move towards the control system problem. Suppose two curves shown in Fig. 13.1 are
respectively designated by C + AC = f(x + Ax, Ay) and C = f(x, y).

A
Cc

Fig. 13.1 Curves C and C + AC.

Now AC is the change in the value of the function for all small increments in x and y. Let
AB, which is the shortest distance between the points A and B, be divided into components Ax
and Ay along the coordinate axes.

Accordingly, PP = (Ax)? + (4-3)-‘]2 should be minimum, where P is the magnitude of the
vector AB. Now AC = f(x + Ax, y + Ay) - f(x, ¥) = (§C/6x)Ax + (6C/Sy)Ay for very small value
of AC, the stecpest distance between the two curves may be taken to be a straight line. Now,
8C/8x andSC/8y will remain constant according to the principle of calculus. If we want to move
from C 1o C + AC by the shortest path, then 8p/8x = 0 and 8p/Sy = 0, since P denotes the
distance. Therefore,

(P = (Ax)* + (Ay) (13.1)
&6C 6C
AC= 6xﬁx+5yay (13.2)
Thus,
22

.ﬁC-EEAx

_ ] dx
P = [(Ax)" 4y —p—

8y
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2 s
Jcax)’[ac] sact-2% s +[‘5—C ax]

By dx Ox
P= o
(&)
. op
Now, as per the theory already discussed, o =0.
Therefore,
scY (oY 8¢
2 — =~ —_=
Aax) [[ Sx] +[ 8y J 28C &x 0
or
scY (6cY 5C
2Ax [[-5.;] 'I-[E;] ] = 2ﬂc$
Since ég and & are constant, Ax e -E—C
dx 8y Ox

8C

Similarly, we can show Ay e« —<.,
8y

This is also called the gradient method. If the function C is to be minimized, then the
procedure of optimization is also termed optimization by the steepest descent method. The
function C to be optimized is also called the objective function.

13.2 OPTIMIZATION BY STEEPEST DESCENT METHOD

Suppose there are a large number of independent variables and C is the objective function of the
independent variables x), xa, ..., X, that is, the function is C(x,, X3, ..., x,} then

éc éc éC
ac=glax‘ +3.€A(2+...+Emn (13.3)

If the distance from the multidimensional surface C to the multidimensional surface C + AC
is P, then

PP = A +AG 4o+ A (13.4)
Differentiating Eqgs. (13.3) and (13.4), we get

&6C 6C ac

and
2PdP = 2Axd{Ax)) + 2Ax.d(Axy) + -+ + 2Ax,d(Ax,) (13.6)
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As per the minimum-maximum theorem of calculus, when optimization is done,

dP =0
or
2Ax,d(Ax)) + 2Axy(Axs) + - + 2AAx)d(Ax,) = 0 (13.7)
Again AC being constant, d(AC) = 0. Thus,
oC 8C éC
a—xld(nx])+ EJ(A:1)+"-+E¢1(A:,,) =0 (13.8)

From Egs. (13.7) and (13.8), we get

6C 8C éC
Axy e E. Axy *E.,...ﬁxn “JT

Since x,, x3, ..., x, are independent variables, hence

&8C
- Ks_x,
wheren= 1,2,3,....n
In the case of minimization,
&C
5%, (13.9)

where n = 1, 2, ..., n, because C will gradually reduce as x|, x5, .. ., X, increase.

Since the independent variables are being changed in proportion to the gradient of the
objective function with respect to the said independent variables, the technique of optimizatien is
termed gradient technique. Over and above, the steepest path is followed for optimization and
that is why it is termed the steepest descent method. The principle of optimization by the gradient
method can be understood graphically by referring to Fig. 13.2.

G

G G
Fig. 13.2  Steepest descent method.

Here G is the value of the function to be optimized at the starting point Py. In the first step,
the gradients of the function at the point Py, with respect to the independent variables are
determined. Then the independ iables are changed according to Eg. (13.9) and a new point
P, is obtained where PyP, shows the direction of the gradieni. The valve of the function at this
pmm Py is Cy. In the next step, the gradlent at P, is determined and similarly a new point Py is

ined. This procedure is inued 1ill the function is minimized. In principle, the steepest
descent method will not reach an optimum point in a finite number of steps. The steps are
progressively shortened through each iteration.
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Partical approach of gradient method

When the values of §C/6x,, 8CIdx,, ... 8C/8x, are widely varying, it is not wise 1o take the
value of the constant of proportionality the same for all the independent variables although the
mathematical analysis desires that. We have to slightly deviate from the principle of ideal
mathematics for obtaining the global optimum point (or ideal optimum point) quickly. We have to
determine all the gradients, §C/dx,, 6Cléx,, ..., §C/6x,; then according to the absolute values of
the gradients, we choose the values of K. In this case, the values of K are different from one
another, but to provide proper weightage to each variable, we make the deviation by not
accepting the minimum-most value of X for all the independent variables. Of course, now, there is
every probability to reach local optimum instead of global optimum. But, the same cane be taken
care of when the local optimum is achieved. Once the local optimum is obtained, the values of K
are taken equal to the minimum-most. Then the same procedure of optimization is followed to
approach towards the global optimum.

When optimization is being done on a system, then the zone at which the optimization is to
be made is also specified and that is termed feasible zone. The unspecified zone is termed
infeasible zone. The feasible zone is identified by the constraints. The constraints are broadly
classified into two types.

fa) Equality constraint

(b) Inequality constraint

Suppose a constraint T, a function of xy, xy, and x; is given by, T = 5x + 3x, + 4x;, then T
is called the equality constraint. But, if T 2 5x; + 3x3 + 4xy, then the constraint T is called the
inequality constraint.

13.3 OPTIMIZATION WITH CONSTRAINT BY GRADIENT METHOD

Equation (13.9) shows the method of optimization of a function € where there is no imposition of
any constraint. When there exists any constraint having certain limiting value, the method is to be
modified. Let T(x, x5, ... , x,) be a constraint whose value does not cross a limiting magnitude
Thma O in other words, the value of T is not allowed to increase after it reaches Ty, This means
that AT is to be made zero. That is,

8T 8T 8T
AT -5—Ilﬁxl+31—1:1x2 +‘--+3;:Axn =0

If there are six independent variables, then the equation will take the form

&T or or
Ri\x, + EM: +‘"+Eﬁ1‘6 =0
or
8T ST
e o -{—Zmr; +“.+-(§6_M6]
" ar
ox

Thus x; is now changed to a dependent variable because the change in the variable x;
depend on the values of x;, x5, xy, x5, and x, when T becomes a constant. The general equation
will take the form
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(b) The r ining el in the resol t column (the sth column) remain unchanged.
(¢) The remaining elements in the resolvement row (the rih row) change sign.
(d) The “ordinary clements™ by(i # r, j # 5) (i.e. the elements that do not belong either to the

resolvement row or to the column) are given by the formula
by = aya,, — ayay,

All the entries in the new matrix are divided by the element a,,.

Proof of the elimination technique

It will be shown that the marices (13.10) and (13.11) are identical.
From matrix (13.10), it is found that

Yi =4y b dpky b o d ol b+ gy, (13.12)
From matrix (13.11), it is found that
by b By o bisany by,
N = DA h DRy e X,y Xy bt .
N a, X a, X2 a, T a, Yr a, Faany d, X (|3' 13}

We have to prove that y, in Eq. (13.12) is equal to y, in Eq. (13.13).

Since by = aya,, — did,, we get

by = aya,; - aya,
or
a - a,,a,
ELL,:] 3( 1 ~ 4, ”]5;
a" ﬂﬂ
e
=apk -~
. . aﬂ
Similarly,

b X a
2L = a0 - —Lax
a’l aﬂ

Equation (13.13) will take the form,

a a a, a
V= @ b dpky b SRy e bty = —Ragy - —any - o =5 gy, (13.14)
afl ﬂ', aﬂ an
From matrix (13.11), it is found that
S L - SR IR.. '}
X, = X Xy ek X,
‘ afl I af{ 2 af! aﬂ "
Multiplying the above equation by a,,, we have
S T 13 SO . T3
Ay, %, = a, ) Xy a, AaXp ot a, Ye a, A Xy

Incorporating the above equation in the right-hand side of Eq. (13.14), we get

Y= anky bty b o F g ol

Thus it is proved that y, in Eq. (13.12) is equal to y, in Eq. (13.13). Similarly, a generalized
conclusion can be made for vy, ¥ . . . Ve
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13.4 MINIMIZATION OF FUNCTIONS BY NUMERICAL METHODS

We have already studied the gradient technique, This is nothing but one of the numerical methods
of minimization. The pest descent method is the simplest example of the gradient technique.
In the steepest descent method, the scarch direction for minimization is made by guessing an
initial value of the independent variable.

Suppose the initial value of the independent variable is x'%, then the next value of the

independent variable will be
= 0 K,[_g_f]
L3

where K* the constant of proportionality is also called the optimum step size which is greater than
zero. The K* will satisfy

f[xml i [_%JMJ-A“’] ® j[xw] * K[_g_{lu-f"]

Usually, for fast operation of the pest descent method, the value of K is taken such that
there will be a 1% change of the function. The value of K; is made to change in doubling fashion till
the function decreases. But this method creates a problem when the function is elongated valley
type. Then some modified form of the numerical method is applied for minimization that is called
the Fleicher-Powell method. This is one of the best methods for unconstrained optimization.

13.4.1 Fletcher-Powell Method

In the Fletcher-Powell method, a positive definite matrix H is used to find the search direction.
Here,

XV = O 4 Ko (-m(ﬁ]

ox
In general,
. 5f
i+ I} UI
* eken(g)
when

8f ) 5f
f|: ki H'](a’t]a:x-("‘] ® f[-‘ +K'(_Hi)[glu.r"ji

Over and above, the matrix H; is also improved. That is,
Hi,y=H+ A+ B
where

A= K]

[TANET
ox atesa™ bx
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Lol s 5f A
‘| ox o= 0x pr=y’ E:x-r"" ox =" '

a
3f _8f uléf _of
B |y OX g | 0K e O,

13.4.2 Newton-Raphson Method

This 1s unother numerical method for error minimization. Usually, in the control system, the error
fromn the desired value is minimized using the feedback principle. See Fig. 13.3. Suppose there is
a sct of nonlincar equations,

filxy, %3 . x) = 3

Sl xa X)) =0

Solxrs Xz, o X)) = ¥,
and the initial estimate for the independent variables are x®, £®, ..., x,©.
Now Axy, Axy, ..., Ax, are the corrections required. Hence,

[+ Ax, X+ Axy, P+ AX) =

f;(xm’ +Ax, x” +Axy,ox + Ax) = ¥,y

LG8 4 Ax, 20 + Axy o x® +AX) =y,
Applying the Taylor's Theorem,
A+ Ax, 2P + Axy, . P + Ax,y)

+ .&ng—‘ﬁ-l‘ +---+.ﬁx,,g|-|(
e X3 |om "

[
- fl(xml x;ﬂ)’ 'l|0!}+AxI5_-’::_

Neglecting higher powers of Ax,, Axj, .. ., Ax,, we obtain

f(x“" le. lDl}+Axlg_fL +Ax, afL et Ax, =L Jf

xl rl.. 1 -'m " 5»\',, ,:l
Similarly,
yr= LG M) Ay, —fl +Ax,6—fl FER Ax,,'s—fl
- |. - - é e dx, o

and so on.
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ASSUME 1,
H,i=0

!

Calculate Py = - H, —fl

Develop K’ such that
G 4 K Pi) S i + KP)

I 1“'“:.6'74-.&',-'.",- I

!
T

HDDTH]
DTH,D,

B=-

i=i+]

[]

H.,.,=H+A + B

]

5f
Proy=-Hiy
31,

f

-———ND—{ 0P, 1< n ]
l‘ Yes

F(-‘“”'] _Mﬂ)si ° ‘

No ‘
NOTE:

H'Pivln: (EI:IE i—t]

|£ is a positive definite matrix]

Fig. 13.3

.i Yes
[ PRINT x* = 29+ 9 ]

Flow chart of the Fletcher-Fowell method.
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or
2P-Q=2
or
0 _
P- 5= 1
or
Q
P+ — =1 (which represents straight line)
Let us assume the initial point P? = 1 and @'® = 1. Therefore,
[PO, M =P _40-4=1+4-4=1
AP, 0% =2P-0-2
=2+1-2=1
Sh 8fi _
7 Sl
81, Sf,
25 2 = _ _
5P -2 a0 =7
Therefore,
[P, Q<°>)+ap o +AQ§—£'-
or
1 +AP2)+ AQ(-4)=0
or
1+2AP-4A0=0 (13.15)
Again,
1P, Q) + AP 85 me%
or
1+AP(2)-AQ=0
or
1+2AP-AQ =0 (13.16)

From Egs. (13.15) and (13.16), we get
=3A0=0 or AQ=0
Putting AQ = 0 in Eq. (13.15), we get

1 +2AP =0 or aP:-l

The new set of values of P and @ will be 2
PU= PO L AP =1-05=05
0V=0%+A0=-1+0=-1

The above process is repeated with the new set of values of P and Q'Y

APD, Q=P -40 -4
=025+4-4=025
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AP0 =2P -0 -2
=2(05)+1-2=0

§f, 5f
] I = = = o
5P W=2x05=1, 5@ 4

8 . 6h
=% 30 =7

Therefore, the equations developed are as follows:

[P, Q‘")mpa—fng—f =0

or
0.25 + AP - 4A0 = 0 (13.17)
or
Sf; éf
P O L Aplhs -
LY, M)+ AP 3P ”mag 0
or

0+ AP(2) + AQ(-1) = 0
AP -AQ =0 (13.18)
Solving Eqgs. (13.17) and (13.18), we get

AQ = % = 0.07143

AP = (.03571
Thus, the new set of values of P and Q will be
PO = p) 4 AP = 0.5 + 003571 = 0.53571
0% = o 4+ AQ = -1 + 0.07143 = —0.92857

Therefore,
APD, QM =P -40 -4

= (0.53571)* - 4(-0.92857) - 4
= 0.28699 + 3.71428 - 4 = 0.00127
PP g =2p-0Q-2
= 2(0.53571) + 0.92857 - 2
= - 0.00001
Ihe same procedure is repeated.

éf, &f;
2 1 1 -
fil P2, Qﬂ=)+u’6 +AQ =0
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stale vector, u(r) is the p x | input vector, and f is a vector-valued function. In the problem of
control system, we have to specify properly the objective function which is to be optimized.

‘The objective function to be optimized in control systems is termed performance index. A
number of performance indices are used in practice. Those are as follows:

(a) Integral square error (ISE)

_(b) Integral time absolute error (ITAE).
(c) Integral of the absolute magnitude of error (IAE)
(d) Integral time-square error (ITSE)

The error signal in a closed-loop control system is the difference between the input signal
and the feedback signal. The objective of the control system is to reduce the absolute value of the
error. That is why, the error signal in this different form is taken as the performance index which
is to be optimized. The integral square error is

ISE = je’{:}dr

a
and

T

ITAE = jl]e{l}{d’r
0

(Performance index for a specified period from 0 to time T)

T

ITSE = ju’(i) dt
(1]

T
IAE = Ile(l)ld.'
o

We know that a control system is usually described by the block diagram as shown in
Fig. 13.5.

Control Controlled output
(S

Error
detector

"Fig. 13.5 Block diagram of the conrol system.
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Hence for the solution of an optimal control problem, we have to perform the following:

(a) An optimum function U/ that will act upon the plant is to be found out.

(b) The optimum control function U is to be realized by the controller.
Hence, the question of optimum design of the controller arises. The design of the optimum
controller depends on the following factors:

(a) Characteristics of the plant

(b) Requirements of the plant

(c) Data of the plant received by the controller

135.5.1 Characteristics of the Plant

This actually describes the limitations of the system comp On of the limi
there will be constraints on state variables and control variables. For example, the plant inputs
uy(t), uslt), . .., u(r) would have some restricted values,

Thus an admissible control is defined as the control which satisfies the control constraints
during the entire control interval from #, to ;. In general, the admissible control is denoted by the
capital letier U. Then input u(r} will belong to the admissible control capital /. Similarly, the state
trajectory which satisfies the state variable constraints from f; and f; is termed admissible
trajectory.

13.5.2 Requirements of the Plant

It is usally expressed by the performance index. To optimize mathematically, the performance
index means that the plant requirements are fulfilled. In other words, we are to design a control
system that would run perfectly in optimum condition. Therefore, the proper choice of the
performance index according to the need of the system is the main factor for optimiulion Hence,
selection ol’ the proper performance index according to need of the problem is the main criterion.
The I probl can therefore be visualized as follows.

(a) Minimum time problem

(b) Minimum energy problem

(¢) Minimum fuel problem

(d) Minimum regulator problem

(e) State regulator problem

() Output regulator problem

(g) Servomechanism or tracking problem

Minimum time problem

The objective of the minimum time problem is to transfer a system from its initial state to the
specified target in the minimum time. The interception of attacking aircraft and missiles is an
example of such a control problem. Mathematically, It is expressed as

Pl = jidr
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Pl = }[Z {x,{r)}z}dr

. Li=t

The matrix form is
Y
Pl = I[Xr(r}X{f}]d:
5
and the generalized form is
5
Pl = [XT0GX)dr
t
where G is the real symmetric positive semi-definite matrix. The positive semi-definite matrix
means that X’GX 2 0, with

G, 0 0
0 G 0
G=l: :
0 i G

n
as a diagonal matrix.
For minimizing the deviation of the final state X(t,) of the system from the desired state, the
performance index is additionally modified by incorporating the final state as well. That means,

PL = XTaLX () + [IXWGX()dr

where L is also a positive semi-definite, real symmetric, constant matrix. A more practically
feasible performance index is obtained by incorporating the input which is added as the penalty
term for the physical constraints on it. Therefore, the final form of the performance index is

Pl = %xf(r. WX(1) + -;-[I[XT{:)GXU) + UT(OFU()de }

When the state regulator problem becomes that of infinite time,

Pl = %[J’[x"moxm + UTWFU)d ]
[

Output regulator problem

When the output regulator problem is considered, X will be replaced by Y. The performance index
will then be
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I,
Pl = 3V 0)LY@0) +5 {J’ YOG + U FU)dr
f

Servomechanism or tracking probiem

The servomechanism or tracking problem keeps the system state x(f) very near to the desired state
in a particular interval of time.

Suppose the desired state is 4(r). Then the error is e(r) = [x(r) — d(r)] and the performance
index will be

1,
Pl = %J(q) Le(t) + % j' (" () Gelr) + UT(VFU())ds
y

The main objective of servomechanism or tracking problem is to maintain the error small.

EXAMPLE 13.2 Suppose in a control system a parameter is to be optimized. The block diagram
of the system is shown in Fig. 13.6.

Now,
R(s) - O(s) = E(s)
1
Ra =3 & E(s) ots)
Fig. 13.6 Example 13.2.
or
10
[R(s) - O()] . 0(s)
100K
14—
5
which gives the block diagram as shown in Fig. 13.7.
1 100
Re)=< E(s) ra os)
1+ 100K

F

Fig. 13.7 Modified block diagram of Fig. 13.6.
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or
1

K=E

Also,
d*(PD - 200K -200K? - 400K(100K* - 1) ] S
dK? (200 K%)* (200K

(" K is positive)

Some important formulae used in derivation of PI

[a sin (bx + ¢) - b cos (bx + ¢)]

. I
Ie“*sm(bx+c)d.l s

je"ws{bn:]dx = [a cos (bx + ¢)+ bsin (bx + )]

&
a+¥
b

Laplace transform of & sin bf = ———v—
P (s—ay + b

F=a

Laplace trasform of ¢ cos bt = m—

To derive PI, in Example 13.2 we have seen that

5 +100K ¥
E(s) = ————— and Pl = | &ydr
5* +100Ks +100 !
Therefore,
5+ 100K e 5+ 100K

e = E@E=2+"

I o, 7_ ]
5 +2-5-50K + (50K) - (50K +I00 (.!+50K)2 (JICI}—.K!)

or
5+ 50K 50K
e(f)= 7! 7
(s+50K)* + (,}100 zsmx’) (nsox)%(,}:oo-zs{mx’)
= €5 05100~ 2500K7 1 + ——o0K &K 5in [100 - 2500K° 1
Jloo-zsoox’
Therefore,

2500, 2
) = €% cos? \[100 - 2500k 1+ ——2 LSS L Jtm 2500K% 1t +

100 - 2500k

50K

2¢7 100K -sinJlOﬂ— 2500K% ¢ x cosJIOO —2500K% 1 x
Jioo-zsoox’
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=c_,m,c,[]+cosz‘}]w-25005"r]+ 2500K° ‘_,m,,{l»cmz,jimnzsmxh]

2 100 - 2500k 2

+ & 108 gin z‘limwzsoox‘ t 0K

;hm -2500K?
=100Kr = 100K:

2 1 ~100Kr
=L + £ 082,100 - 2500K2 1 + — 220K -100m _ 1250K” ¢ x
2 2 100 - 2500k 100 - 2500k 2

cos 2,}100 ~2500K7 r+ ¢ 5in 2,]100 - 2500K> K
1!loo—zson.ir2

1 2
D el B T e

100 — 25007 27 100 - 2500K°

& 1K gin z‘jloo~2soox’ R S—
,hou-zsoox’

Now to determine I e’ (1)dt, we proceed step-by-step as below:
o

Now,
—lo)x:d e—lwh
Jerora = Saw
and
_ at Y (—a) e ™ (+sin br) .
I= Ic cos br di= + & 5 I—b dt
_€vsinbt ar _u..
1-—-—b—~+3.|'¢ sin bt dr
e “sinbt  al|l _,(-cosht —ar | —COS bt
o). o2
or !
. 1
I=e™ slnbbi‘ -% e cosbr—:—z_[e‘“ cosbt dt (where [ = Ie“" cos bt dt)
Therefore,

.f|:l+§] = %[sinbr—%mﬁh]



Optimal Control Theory

385

1 K-50K% K
= + =+ =
200K(1-25k%) 8-200k° 4

1 K-50K K
= + + —_
200K(1 - 25K%) 8(1-25k%) 4

_ 14257 - 1250K* + 50K*(1 - 25K7)
200K(1 - 25K%)

1+25K* - 1250K* + 50K ~ 1250K*
200K(1 - 25K%)

_ L+ 75K* - 2500K*
T 200K(1-25K%)

1 I'{l—zsxz)uﬂomt’)] _ 14100k

= 200!({_ (1-25K%) 200K
Therefore,
1+100K?
pl= 200K
Alternatively,
T 1 'F
Pl= Ie'(:)d: = 3 _[ E(s) E(-s)ds
0 ol
where
5 + 100k
E6) = 3 T0oks + 100

NS Utk Nis + N
D"+ D, 1s" 4+ Dis + Dy
So Pl can be written as

General form of E(s) =

Pl =L T NONC)
2rj 4 D(s)D(-s)
il
& - s+ 100K
D(s)  5* +100Ks + 100
the values of Pl integral {calculated by using the Hurwitz determinants) are

As E(s) = is a second-order system, n being 2,

n=1 Pl =

(A)
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NIDy + N}
n=2; Pf; = %
w3 pro NIDOD: + (NP -2NN)DD; + NiD;Ds
) ! 2Dy Dy(=DyDy + DyDy)
100K
Since E(s) = m , comparing with (A), we get
Dy = 100, D, = 100K; Dy = 1, Ny = 100K, Ny = 1
Therefore,
pr, = X100+ 10°K? x1
27 2x100x 100K x 1
10°K? +100
2x10°K
Hence,
1+100K*
Pl= —%0x

13.5.3 Plant Data Supplied to the Controller

Suppose the system is closed-loop control. The ¢ ller obtains information by way of feedback
lines on the actual state x(r) of the process. If the functional relationship for the optimal contro] at
lime 1 is

Us(r) = fix(n), 1)

then the optimal control will be the closed-loop control, whereas if the optimal control is found as
function of time for a specified initial state value, then the optimal control will be the open-loop
control. For example, U*(t) = flx(tg), ).

Thus, it can be understood whether an open-loop controller or a closed-loop controller is
required. The closed-loop controller can store information about the plant during its operation and
reduce the effects of disturbance and p for the variati in plant parameters. The
open-loop controller has no way to know any information about the plant except for that which is
available at the time the control starts.

13.6 MATHEMATICAL PROCEDURES FOR OPTIMAL CONTROL
DESIGN

The following mathematical procedures are widely used in the design of optimal control systems.

(a) Calculus of variations

(b) Pontryagin's mini fmaxi principl
{c) Minimum time problems

(d) Hamilton—Jacobi approach

(e) Dynamic programming




Optimal Control Theory 387

13.6.1 Calculus of Variations

Before studying the calculus of variations, we have to know clearly what is the main difference
between a function and a functional. A functional is a kind of function whose independent
variable is a function rather than a number or a set of numbers. For example, the performance
index (PI) is a functional. The calculus of variations actually deals with the functional that
extremises in order to find out its maximum or minimum value. In calculus, the maximum or
minimum value of the function is determined by making dy/dx = 0, when y is the function havin,
an independent variable and the maximum or minimum value is further tested by finding dylde,
i.e. whether negative or positive. But in the case of calculus of variations, generally the necessary
condition is tested but the sufficient condition is not tested.

Calculus of wvariations is usually applied to the two-point boundary-value problem.
Sometimes it is termed the TPBVP problem

The TPBVP is generally classified as follows:

(a) Fixed-end problem

(b) Variable-end point problem

Before studying the above in detail, let us go back to some mathematical concepts
necessary to have a clear view of calculus of variations.

From our study of calculus and matrix, we know that if f{x) is continuous for all x and its
gradient vector

CA
ax,
I
o _ dx,
ox
¥
-axn
is continuous for all x, and
PR T axox,
?f S *f
Tf _|ogm o dnox,
ax? ) A i
A S S |
ox,dx, dx,0x; ox?

is continuous for all x, then the Taylor's series says
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& f

1
(x-x HE('\' —-x) o

- 8f
Jx) = flx)) + 3 i

(x=x)+--
X,

and the necessary condition for vector x; to be minimum is

81

Sx ,'=0

2

The sufficient condition is that % is positive definite. It means that all the values of the

K]

o]

matrix will be greater than zero.
Let us take a simple case,

Af(x, Ax) = ﬁ_fol +5—f Axy

In case of extremum condition, Af{x, Ax) as per definition is
8 . _
EM‘Z - 0

8T 8T
Suppose, the constraint equation is AT = 3-—- Axy +—— Ex
If the constraint is not allowed to increase, then

Ax + £AJ:: =0

6_.11 dx,
Two equations are therefore obtained:
8f 5f
§I&:|+6 Ax; =0
T 28
E Axy +de, =0
or
S
An 05
Ay, Of
ox
.
Ay | 8y
Av; oL
ox

This is the condition for the inlerior extremum, that means the maximum or minimum value
within certain boundary at which the function is defined.
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The Ar/Ax; is nothing but the proportionality constant which is also called the Lagrange

multiplier. It is usually denoted by A.
The Lagrangian is defined by

Lix, &) = f(x) + AT(x)
aL _ 8f(x}+l¢ST(x)

ox ox ox
If the constraint equation
Tx}y=0

then

L

5 Tx)=0
If x* is a constrained extremum, then A* will be the optimum value such that

o o

F s, 20

5L

= =0

L] P
Proof
Suppose,

diL(x, 1) = dfix) + 1dT(x)
5f of 6T 8T
= 3 Ax, + o5 Axy +A o Ax; +Jl.‘§-\-2 Axy
Now,
_8f)
4y __ox
Ax,  8f(x)
8x,
or
5f(x) Sfx)) _
a:,[ % J+6:I( o ) 0
Similarly,
8T (x) 8T (x)
A Al' =
S T 0

Hence,

dlx, 1) =0
Again, for extremum condition dL(x, 4) = 0

8L 5L

2l 7 S
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or

Again from (13.23)
or

From (13.22)

ar

or

Now from (13.23)
or

or

ar

Therefore,

or

Therefore,

Since

Therefore,

n-x=-x=I

N +X+a=1
=12 or  m=1
uhm+d-xn=0
xx+4-1=0

XX = -3
n+xm+x=l
n+xn+l=I1

xn+x=0

X ==Xy

Xy = -3
—x§ =-3
n=%.3
n=3V3

either x, = J§.12=—Ji,x,=]
and x=-3,0=3,n=1

A=
- A +A=0
2-24+4=0

L=0

Use of calculus of variations in three standard forms

Calculus of variations is usally applied to the two-point boundary value problems in the
following three standard forms.
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t,

Pl= jb(x. u, 1) dt

fs

PI= [Geun]/

+
Pl= IL(X. u, )dt +| G{x, u, r)l:
f

First of all let us concentrale on

fy
Pl= Ii.(:,n,r)df
This form is called the Lagrange problem. Hence, t; and f; are the initial and final time
respectively,
Lagrange fixed end problem
Since &= Ax(t) + Bu(r), the PI can be defined as follows.

4
Pi= [Lix), i), ndr
3
The end points ¢ = t, and 1 = t; are fixed. Say x(lg) = xo. x(f)) = x. Hence,
Ax(tg) = 0
Ax(t) =0
If PI is denoted by J, then

Y ¥

Al = IL{x+Ax,A"+M,:)d:— IL{x.x.:)dr
L Iy
[

= _r[L(x +Ax, &+ Ak, 1) - L(x, £, ))dt

Applying Taylor's theorem, approximately, we can write

Ul
Al = I [-‘;%(x. I DAx+ g—i'(x- .i.ndk] dt

%

dt

t I,
8L . 8L . .
= [I gx-(x. x.:]ax] dt +{IE(,\-. X 1DAx
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i

1
dr+ [J—L (x, X, :)ax]

T

,
Al = j[‘s—f‘-ia—"]m dr+|:£ﬂx}’

dr &k

é

1
8L, .
= [’j T(x.x. HAx
or
y
I —(x, &, Axdr
or
dx
Since

Ax(r) =0, Axuna =0

For optimum value of J, AJ = 0. Thus,

SL_d 5L
ox dr 5;]‘“""

d 8L

8L
I{E;_E_S;}&d' =0

That means,

6L d 8L

e

sk

for any arbitrary value of x. The above eguation is termed the Euler's eguation.

An example related to Euler's equation

I

,I

J=I 1+ di

with boundary condition x(f;) =
be determined as follows.
As per Euler's equation,

Bx

8L d [6.{,]

m and x(t}) = n, then the optimal curve, that is, the extremal can

b&x

In this problem, L = 1+ 4* . As x and & are separately dealt with in the Lagrange problem,

8L
&x

= 0 (L does not contain any x term)
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d (6L
4%

% = K (K = constant)

or
% 1482 =K
or
1 -1
E(1+x’)='2,i:=.'r
or
. =2
x X 2
—X g =K
(1+3H"? P
aor
2= K
1-K?
or
j=7£=—2==xl or %.:Kl
1-K
o
.'(.Kﬂ'i'xz

This is nothing but the equation of a straight line.
Now, n = Kty + Kz m = Kty + K3

Hence K, and K, can be calculated.

EXAMPLE 133 Determine the optimal integral curves when the performance index is expressed
as follows
x12

J= J- (j," + i +2x,xz)d.'t
0

The boundary conditions are, x,(0) = 0, x5(0) = 0, x(7/2) = -1, and x3(%x/2) = 1
Solution Since there are two variables, x, and x,

6L df 8L 6L df 8L
aT,'E[aTl]-“ and a—x,‘a(g)‘“
where L = i} + i3 + 2x,x,. Therefore

L
5 =2
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d(8LY d,... ..
E[ﬁ_x.] = E‘le) = 2%

Therefore,
2x,-2%, =0 or i =x
Also,
8L
e
Therefore,
SL d ... .
aloe) = e =2
-2i, =0 or xn =i
or

1 d! dz d! d-l
X {Xq] drz( X)) = ?[F(xt)] = F(A]}

Pulting x; = ae™, we have
am'e™ = ae™
mi=1 or (M +1)m'-1)=0
m=zl,m=zxj
Xy =aye + aye' + ay sin t + a, cost t
Again,

. d* .
x;= X o  x= ?(a,e’-l-aze"i-a;smli-a‘mr)

=ae' + aye™ - a3 sin t - ay cos ¢
Now, x,(0) = 0, x(0) = 0, x,(m/2) = -1, x5(n/2) = 1. Therefore, we obtain

O=ay +ay +a [4)}
—1=a,e™ + ae™ + ay (2)
O=a +a;-a, 3)
1= aie™ + ae™ - ay @
(N +(3): 2a; +a)=0 or ay+a;=0 or ay = —d;
(-3 2a,=0 or ag=10
(2) -4 -2 = 2ay or  ay=-l

From (2), we get
-1 = g;e™* - g™ (" ay =-ayg)
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Thus,
1
648_(\[‘|+12)=K o ra+)Tos=k
X 2
or
i K o R =KiKR
1+ i
or
K
i= =K dx _
Joer o w =k
or
X=Kﬂ+xz

When t = 0, x = 0, therefore, K3 = 0. Thus,

x= K]f

Now,
... 8L . .
L+(y- ‘)3}' =0 (transversality condition)
tlt‘.

ar

. . 6L

22 — el =
JI+: +(y 1)65‘ - 0

Now,

W=3-1 3 =-1
x=Kyt & =K,

E'i l+i‘2=l L3 = x = X
6k b 2 fi+ 22 :}14-&2 Ji k2

Thus, the transversality condition reduces to

\}(! +x,’}+(-1-x‘}-—xl—: =0

\,11+K,
f—(“ﬁ)_x(nx} -0
1+ K}

(+K}) - K(1 +K) =0

or
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ar
1- Kl =0 or K| =1
Therefore, the solution is

xNn=Kp=1

E)
EXAMPLE 13.5 Optimize _[[i’(r) +2x(1)£ () + 2x*()]dr , such that x(0) = 1 and x(3) = free.
o

3
Solution Since the performance index is I [#2(r) + 2x(e) & (1) + 2x*(r))dr , Lagrangian L will be
0

L= & +2xi+20*

According to the Euler-Lagrange equation,

oL _ddL
Sx didx
ar
. [
(2x+4x)-—-;f-(2x+2x) =0
or
2k +4x=28-2% =0
or
i=2x
Say, x = Ae™. Then, & = Ame™
or
d "
Iu;-me"") = 2Ae™ (rF=2x)
or
A m? &M = 2Ae™
or
m =2 o m=z[7
Hence

) = 4l 4 ae
Now, x{0) = 1; thus, 1 = 4, + A,.
Again, at the other end r = 3, x(r) is free and r is fixed at the end point, That is,

L

i

h=3
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or

Now,

Therefore,

(2E+2%),.5 = 0

(E+x)y =0

& =2 ARl - J2ae

[VEA‘e‘ﬁ' —\5433"6’ + A v A 2') =0

When t = 3, we have

or

[A.e‘E' (J‘E + |) + A V(- Ji)l_:

t=3

=0

AP (V2 1)+ e (1-42) = 0

a -Az)e:'"ﬁ(ﬁ+l)+44=e"‘6(l—ﬁ) =0 (v A =14y

or

or

or

Therefore,

Hence, the oulcome is

(1= A)e™? %2414 + 4™ x(<0.414) = 0

A (—e""ﬁ x0.414 - 2.414:’5] =-24148"

A 2414642
2414 £ 041462
V1
A 2.414¢°

0.4146 7

2.4146™? 404142

xr) = Ay e‘ﬁ’ + .‘tzz'ﬁ'

041462 G,

= ]—.—-—Jz,_—-—-——_
24146 + 041402

2414832

241462 4+ 0,414

-
241462 40414622

N
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EXAMPLE 13.7 Optimize the following performance index
3 2 2
J zj % dt
° dr

HO)=1, (=0
$0)=1, §3)=0

when the equality constraints are

Solution Let us consider

. d*¢
Y = =99
o) = 0 = 5
then,
3
J= I W (n)dr
°
Let
() = §n
x(t) = ¢

(1) = x,(8)
B() = §e) = ul)
According to the stale space equation,
.‘r;(t) - 0 1} x(n . [1] ()
X(r) 0 0f|x(n] [1
X = AX + Bu

The modified performance index (optimization with constraints)

r= j [60)+ A7 {AX + Bu - i} ar
o

Now
AT[AX + Bu - x]
0 1|lx 0 x
geit (Y MEHEEH
=i, «u[“]
= Alxy &)+ Alu-3,)
Therefore,

I = | W0+ Ag -5+ Aylu- xy)de

St
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The modified Lagrangian is
L =10 + A{xy = &) + Mol = %)

Utilizing the Euler-Lagrange equations, we get

w_da |
8x, dt 8%
s
bx, i ok -
sL _doL _,
Su dt Su

Equation (1) provides the following outcome
d .
—E(—l.) =0 o 4 =0

Equation (2) provides the following outcome.

A.-%(-%):D oo A+i =0 o

Equation (3) provides the following outcome.
2u+ A, =0  or u=-4

Since A‘.‘ = (0, we get
Ay = K; (where K, is a constant)

Since /12 =-A; = =-K,, we get
A=K+ K
Since 2u = - 4,, we get
2u =Kt - K,
or
= Lki-ky
u= s 2
Since u(r) = ¢ (1) and $(1) = &y(1), we get
(1) = lK:—lK
2 _2 I F] 2

1 1
= EK.:’ -kt + K3
Since xy(t) = ¥(1), we get

. 1 I
(N = le:’ -5kt + Ky

m

2)

@

@)
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3
If the performance index = I(nf +u3)dt, find the optimum value of the same when X7(0) = (1, 1]
[

and X(3) = 0.
Solution Since

HER M

X =X+ or X, +u -X, =0

we have

and

X; = or =X, =0

3
When the performance index is, J = j(u,’ + u§)dr. then the modified performance index will be
o

J= ]‘[(,,? )+ AT (AX+ Bu- X0 dr
1]

Now,
. ) 01X|+IUHL_X|
ATAX + Bu— X0 = (& m{[o UM [o ,][.J H}
X7 [w X '
G WM
_ Xy + uy - X,
= 12][ %'xz ]
= (X +uy = X))+ Ay - X;)
Thus,

3
J= j [0 + 1)+ A, +y = X,)+ Ay = )
0
Applying the Euler-Langrange equation,
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8L d 8L
E"EE =0 2)
sU_dsu .
u, i oy - &
s _dsr
Su, dr by - @
Here
L= w4 + 20K +u - X)) + A - X))
From (1)
—(—A,) = or A=0 5)
From (2)
d :
A[“Z(-AQ)=D or Aj+4d; =0
or
iy = -4 (6)
From (3)
2uy+ 4 =0 or "l=_£12. ()]
From (4)
Qus + A =0 or 1.:;:—%l (8)
From (5)
R] =K,
From (6)
A==+ Ky=-K + K, (A =Kp
From (7)
-K
uy = —~2'
From (8)
e (—Kp+K;) K=K,
Ty 2 T2
Ky K.
% =t
Therefore,
1
xom K2 _Kat e
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K Kt K
)&',:-—I‘2 —-1—4 +I(3r-—2|-r+l{4

!! I Kfz
= —— | +4
= KI[]Z 3 +K]l

MNow, X,(0) = 1, X5(0) = 1, X,(3) = 0, Hence
1=Ky (2 X(0)=1)
1=Ky (v XA0)=1)
Since X,(3) = 0, we get

3 9
0= K|(E—E]—ng+3\x3+x4

9
=K,[ 12 ]-K:I+3+l

or

3 9
-4= K'Z_Kri
or
-16 = 3K, - 9K,
Since at t = 3, 1 is Nixed and X is free
8L’
E =0 atr=3

-d=0 atr=3 or A(3)=0

Again,

A =-Kit+ K,

0=-R'|x3+K2 or K2=3K|
Therefore,

-16 = 3K, - 9K, = K; - 9K, = 8K,
or

K;=2

Thus,

(]

K2=2=3K| or Kl=§
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T 4oL _ i&f
[.Hlx odfﬁx 0, & 3% —0nndfandLarenotthefuncuonofX}

L + ATf is defined by the new function H and is termed the state function of Pontryagin, Thus,
H(X, u, A, 1) = L(X, u, ) + ATAX, u, )

From ;E[L+).rf]+l=0.wehave

—H+l=0 or = —g—’;
Again,
SNTRYLTES S NV O
or
-;%[Ld-lrf]:ﬂ or fs—‘:=n
Now,
% ‘%‘“fmh X fXwn=X)
Hence the following three equations have been determined:
8H
L 5x+1 =0
SH
2. 7 =0
. _OH
. X=%1

With the above three equations, the optimal control problem can be solved in the following
manner.

1. First of all, solve %}—f =0 and determine the solution of u in terms of X, A, and r. Say

the solution is «® = (X, A, 1).
2. Now apply this result to the Pontryagin’s function. The optimal P‘nntryagm function

will be
HY(X, A1) = H(X (X, 4.0, A1)
3. Now apply
. SH" T
X=Z A=

The optimat X°() and A(z) are found by solving the above equations with the boundary
conditions which are given as the data.
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3
EXAMPLE 139 The performance index of the system is, J = j (x{ +u*)dr . The system is
o

described by X, =u - X;, X;(0) = 1. Find u(1) to minimize the system considering the above two-
point boundary value problem (TPBVF).

Solution Let us define a state variable as

Xo = X} +u® and X,(0) = 0

Therefore,
3 3
= [ wdyde = [Xodr =[%];
1) o
= Xo(3) = Xol0)
Now, Xy(0) = 0 (already defined). Therefore,
J = Xp(3)

When J = X;(3) is to be minimized, J = ~Xy(3) is to be maximized.
. OH - .
Since F7N = f, we can write in summation form

1
HX Aun= Y Lf =kfo+ Mfi

n=0

Since there are two state variables, one is X, and the other one is X, which is defined, we have

H= X, + 1%,
and
oH - ; :
m'—'xcp:fn [+ Xy = fo. Xy = f and X = f(X,u,1)]
Thus,
H= 15(X2 +u®)+ A~ X,) m
Let us consider the terminal conditions:
o) =Gy
AB)y=-C,
J= CoXpf3) + C1X,(3)
Here,

GCo=1LC=0 (= J=X(3)
Again for optimal condition

1=—%£;— and %:0
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Now,
SH ¢
ax, = ho =0 (fromEq. (1)
A3 ==1 v 2g3)=-Coand Cy=1
From
oH . &H
3%, = h wd 5 =2Xdg-4  (romEq. (1)
we have
_il =2Xdg -4 or 11 =4, =-2X2
Now,
oH
4)=-6=0, =0
and
SH

E'U 2uly + A (From Egq. (1))

At the end terminal, Ay(3) = -1,

Again
A
udg+ 4 =0  or U= ——
wlo + 4y %
Hence u(f) at the terminal when 7 = 3 will be
w=—b A
-1 2
Again
X|=al—x| or X,:%—xl
and
Xom=1
and
i‘l =4 - 24
=24 +2X; [ at the end terminal Ag(3) = —1]
A4(3)=0

Taking the Laplace transform of X, = %L - X,, we get

sXy(s) = X,(0) = ﬂ - Xi(s)
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or

Xn= —[um{%ﬂ( Ve J'-) _J_jtl[,r J‘r)} -

B

A0y~ vr l_J", J_'I-IJ-I; J_—l - \EHJE,} GJ'+£J‘,
' 2 Y W2

! -—JE:"E’ + ! JEe‘E' = A4(0) ﬁ_le'ﬁ’+£+leﬁ' + le"E'— L i
& & )

—
V2
Now putting the value of A,(0), X,(r) can be determined.
Since both the 4;(r) and X(r) are calculated at the optimum condition, u(f) can be
determined from the formula
- AG
2

1 c_ﬁ._%,ﬁ,}

13.6.3 Bang-Bang Control

Suppose, we have to find out a control input for ferring a dynamical from a given
initial state X, at time fy to a required final state X; in minimum time. Ovcr and above, the
magnitude of the control inputs are within certain non-equality constraints. For example, the input
u(r) which is to be found out may lie between M, and M,, that means M; < u(r) € M,. If the
number of inpuls are more, the generalized form is

My < ufe) S M

wherej=1,2,....n

Let us consider that the system is linear, time-invariant dynamic system.
The performance index will be

Here the end terminal time # is free, but the f nal state X(tp) is fixed.
The dynamic LT1 system is

X = AX + Bu
Now, X = f. Therefore,

H=L+ATf=L+ ATAX + Bu)

Here L = 1, since

I,
J= j 1-dt
I3

H=1+ AT(AX + Bu)



@18  Control Engineering: Theory and Practice

This H is also termed ‘Hamiltonian® function. According to Pontryagin’s optimal policy,
X0 = AX®+ BL

paB

(The suffix 0 indicates optimal value.)

We also know, gffnx = ATA.

Let us consider that the optimum value of the input is «° and at that time H(X°, u°, A% will
be minimum. That means mathematically, we can say

HXC, 10, 2% < HXC, 1, 19
Putting the vale of H, we can write
ATAX® + A9Bu® < A°TAX® + ATBu

A8y < 298y

Again if the matrix B is considered as, B = byby, ..., by, that means, B is of n vectors, we can
then write

2By = i A% b,

i=]

The input vectors uy, ua, ..., #, are independent of one another. Hence to minimize A% Bu, all
values of l“rbj uj for j = 1 to n are to be minimized. If the coefficient of ugs) is positive, we have
to select, uj(l') the smallest one, that means, as pu the constraint it would be M;,, whereas if the
coefficient u(t) is negative, we have to select, uJ(r) the largest one, that means, according to the
constraint it would be M;;. Thus,

M, for 2b, <0
M, for A7b,>0
indeterminable for A%'b; = 0

We usually assume that A”7 b; # 0 for finite interval of time. This time the optimal problem

is termed bang-bang in nature. The optimal control input will be either of the constraint limits.

To find optimal trajectories
Suppose a system is described as follows:

ufin =

X’, = X;
X, =u
0] S N

We have to find out the optimal control input u’(s) which will transfer the system state from
a specified initial state Xg to a specified final state X, i a minimum time.
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Since X, =X

The Hamiltonian function,
H=L+ AT(AX + Bu)

For minimum time problem
L=1
Therefore,
H=1+2TAX + Bu)

ot LN
o]

=1+ )1|X2 + ;-gld’
According to Pontryagin’s optimal principle, we have

6H
ﬁ“xl
X|=X2
SH .
o - h
or
u= X,
Again
. SH
A == 5%,
A=0  (vH=14+4X+Aw
: SH
3'.-=-‘5"f:'
or »
==
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If the optimal values are expressed as A7, A3, %, X% then we have already shown
ATAXD 4 ABu® < ATAX® + A°TBu

or
7810 < A7By
Now,
0
ATgd = [1{'1‘;][1]“" =A%’
" Therefore,

A< A%u

When A3 &® < 23w and [u(r)] £ N, then the case can be described in terms of the Signum
function in the following manner.

u’(f) = - N Sgn [A%(1)]

+1  for Ad(n>0
Sgn[A@1={ -1 for A3(<0
undefind for A3(1)=0

Al the optimum condition J‘I = (); that means, i‘l’ =0

or
Ai=c
Similarly for optimum condition, 1, =~
That means, 13 = -A%
or
i =
or
Ao =—ct+d

where ¢ and d are arbitrary constants.

From A(r) = —ct + d, it is clear that the sign of A3(r) will be changed only once when ¢
varies on the real line.

Now the optimal trajectories can be determined in the following manner. Let us take some
value of N. Say, for example, the value of N is one. The final state at which we have to reach in
minimum time is considered, say, the origin.

When u(f) = 1,

X;n=1
Integrating
Xdn =1+ K, (13.26)
Again,
Xl = X;
or

X =t+ K
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Integrating
2
Xin= 5 +Kit+ K,
where K and K are constants. Squaring (13.26), we obtain

=107+ 2K, + K§
f! 2
=2 T+K"+K2 -2K; +Kj

=2X,+ Ky (where K3 = K% - 2K3)

The above equation is the equation of a series of parabolas for different values of K.

Figure 13.10 shows the trajectories indicating the direction of increasing ¢ by arrows. Hence,
if the state point is to reach the origin with the application u(f) = 1, it can come only through the

trajectory PO. Suppose,
X

L~

[~~~

Fig. 13.10 Trajectories.
u(f) = -1

X: =-1, ie. Xz=-1+K,

Again,
Xl =X; or Xl =-t+ K,
or
2
X|=—-2-+K4r+k',
Now,

X3=17 - 2K+ K3

?
=_z[—?+x4r+x,]+ 2Ks + K3 =-2X, + K,

where Ky is a constant.

Figure 13.11 shows the curve X; versus X, for different values of K. These are all parabolas.
The arrows indicate the direction of the movement of the trajectories with the increasing value of
time. QO will be the trajectory for proceeding towards the origin since the optimal control input
occurs on values at either of the constraint limits specified, the optimal control input u(f) will

provide in this problem either +1 or -1.
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Saya

Fig. 13.11

N\
]

Figure 13.12 shows the series of the time optimal trajectories. Even if the initial state is not
on PO or QO, the initial input will be such that it will transfer the trajectory either 10 PO or to QO
curve. Thus the input will switch from +1 to -1 or vice versa and the final state will be at the
origin.

Xa(1)

\\ S X0
u =+l

Fig. 13.12 Time optimal trajectories

EXAMPLE 13.10 Apply the calculus of variations and Pontryagin's optimum policy on the
following system and show that the optimal input will be the same in both the cases.

2
I= [CCrmydr
0
X=X+m
where m is the input.

Solution The modified performance index will be in calculus of variations,

J= f[[(th’)u(—.nm- x)]m
1]
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Using the Euler-Lagrange equation, we get

8L’ _d 8L
8X dt X
o _dov
ém dt ém
where L’= X2+ m? + A (=X + m = X).
From
s _d ol o
8X dt 86X
we get
®-a-Lin-=o0
dt
or
W-A+d=0
From
8L _d 3L _
dm dr 6m
we get
2m+A=0 or A=-2m
Now,
2X-A+ A=0 m
2Zm+A=0 (2)
X=-X+m . (3)
Thus,
A +2m+ A =0
A== (m=X+X or m=X+X)
or
A= 2X+X)
Therefore, from (1)
X +2(X+X)-2(X+X) =0 or X -2X=0
or
2
%—-2.’( =0
dr
Let
X =Ae™
Therefore,
AmPe™ - 2A¢™ =0 or m*-2=0
or
m= 2
Therefore,

X= Ae '+)’12e“ﬁ'
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Let
N
a(,n= XTROX = [ (XTQX + UTPU)dt
]

where R(r) is a positive-definite matrix.
When r = N, R(t) = 0 since the right-hand side integration will be zero. Now,

oa
X = Va=2R(nX

us= —%P"BTZR(r)X =-P'BTR(NX
ba_ .
5= X'RinX
Putting the above values into (13.27), we get

&

[2R() X)T AX -} (2R XV BP™BT2ROX + XTQX + 2

XTRHX =0

or {
2XTRAX-XTROBP BTRDX + XTOX + XTRDX=0
—
[ %‘} = XTROX. \A;I;ErcVﬂ=2R(l']X]
or

XT[2ROA-R) BP'B R+ Q+ RIX =0
If 2R(t) A is symmetric, then
r
WA= 2 RN A +24 R(r)
=R(OA + AT R()

XT(RA+ATR(O) =R BP' BTR(H+ Q0+ R(NX=0

The above equation is termed Matrix-Riccati equation.
When the upper limit N tends to e, R(r) will be constant (Say R). Therefore.

R(=0
Hence, the Matrix-Riccati equation becomes
A'R+RA-RBP'B'R+ Q=0

EXAMPLE 13.11 Determine the optimum input when the performance index is

T 10 10
Ix"[ }x+MT[ ]Mdt
27 o 01

where M is the input and the system equation is
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Thus, we get
~@+bY)+1=0 o d+b=1

a—(ab+bc)=0 or a=b(a+c)

P+ A +1+26=0 o F+cf=1+2b
Now, (1} - (3)
a-F=-26 o (a+cMa-c)=-2b

or
a a
s(a—c)-——lb [ from(Z},aﬁ-r—E]
or
25
—-C= =—
a
Again
a
a+c=;
Adding (4) and (5), we get
26° a . 2
2a= -—+E or a —m
Since
a+ b=
we have
2 2 _ 2 =
g th =1 or Ba2b-1=0

or
b= —1%2 = 0.414,-2.414

Since b = 0.414 (a positive number) and a® + 5% = 1, we have

a*=1-(0414° or a=091
Also
a 0.91
a-t-c—s or 0.9]+c—m
or
c=129

Now the optimal input will be
M= P BRX

' o[ 0901 0414
= - X
o 1] [0 1][0414 129
1 1 0f] 091 0414
= - XD
0 ] 0 1]{0414 1.29

1 0] [0,91 0.4|4] [0,91 0,414]
= - X = - X
|lo414 129 0.414 129

-

-

=

(=]

0
(2)
(3)

@)

(5)

()
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Table 13.1
From state To state wfrequired) Xfaverage) A = (X; + 2u)Ar

a a 0 5 5

a b -1 45 25
a c -2 4.0 0

b a +1 4.5 6.5
b b 0 4.0 4.0
b c -1 35 1.5
b d -2 30 =10
¢ a +2 4.0 8.0
c b +1 35 55
¢ c 0 3.0 3.0
c d -1 25 0.5
¢ e =2 20 -2.0
d b +2 3.0 7.0
d ¢ +1 25 4.5
d d 0 2.0 2.0
d € -1 1.5 ~0.5
e c +2 2.0 6.0
e d +1 15 35
e e 0 1.0 1.0

Hence the minimum value of the objective function

=0-2+1+1+35=35

Basic equations of dynamic programming can be derived in the following manner. First of
all, we have to take the performance index leaving the final decision.
That means
N=1
J= Y X Sg)
K=0

where X is the present state, u is the input and § is the possible state. Since one stage is left, the
performance index ilable for optimization will be J; = fy _ (X _ 1y - 10 Sy - 1)
Let us assume UJ_, which optimizes the perf index. That is,

Uk o1 =W (Xy_p Sy-p)

According to the imbedding principle, U§ _ | is found out by all the possible values of
Xy -1 The value of Xy _, is unknown because the optimal policy over the interval 0 to (N — 2) has
not yet been found out. Therefore,

I =150 -0
Now let us consider the case where two stages remain before the end of the process. That is,
Jo=fuoaXyoa Upo 2o Sy-2) + fyoy Xy Unoys Suoy)

=fu-2+fu-1
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According to the theory of optimality, the control policy Uy . ; will be optimal. Hence the
above relation may be writlen as
Jo=fyoa+ X0

Again Xy _, is the function of Xy _; and Uy _ ,, therefore the value of optimal input U% _,
will be
UR_2= Wy 22 Sy-2)

In this way, the process is continued till the initial time is reached.
The result of this optimal closed-loop control is

Uk = ylXx, Sp)-
where the stage K lies between O to N = 1.
EXAMPLE 13.12 The given system is described by
X,(0) = 0.4X,(1) + Xa(1) + u(r)
Xalt) = 0.6Xa(1) + 0.5u(r)

The performance index is as follows:

J=

(S

é— [X0+ X+ u’c:)] dt

How do you make the system optimal in the form of summation of discretization values?

Solution The above system is to be transferred to difference equation.
Let the initial time be O and final time #. Divide the time interval 0 < 7 < 4 into N equal

inc of time duration T.

X, (t+T) = X;(0)
T

== 0.4X)(1) + Xa(0) + u(r)

or
X\t 4+ T) = Xy)(D) = - 04TX (1) + Txo(0) + Tulr)
Let ¢t = T, then
Xy(nT + T) - X,(nT) = - 0.4 TX,(nT) + TX+nT) + Tu(nT)
or
X (nT+ T) = X)(nT) — 0.4TX,(nT) + TXy(nT) + TulnT)
Let us assume T = 1, then
Xin + 1) = X, ({1 - 0.4) + Xo(n) + uln)
or
Xiln + 1) = 0.6 X (n) + Xz(n) + u(n)
Similarly, from
Xo() = — 0.6Xx(1) + 0.5u(r)
we get

Xaln + 1) = 0.4X5(n) + 0.5u(n)
If T= 1, then n = 5 since 1 = nT and the upper limit is 5 seconds.
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If any value of J5(X(2)) is required for a value of X(2) which is in between 0 and 0.5, then
the same can be found by interpolation.

Now, the next step is to choose an allowable value of X(1) and then X(2) for each allowable
control value of w(1). For example,

Xh=0 X(1)=05 X(l)=1

Take X(1) = 0, the allowable values of u(1) are -1, 0.5, 0, 0.5, 1

Applying the equation
X(n + 1) = X(n) + uin)

we have
X(2) = X(1) + u(l)
XD=0-1=-1
X(2)=0-05=-05
X2=0+0=0
X)=0+05=05
X2)=0+1=10
Now, .
JUXD), u(1)) = 3P () + J3[X(2)])
When,
X()=0,u(l)=0
Then,
X2)=0
At X2)=0, JHX2N=0
Therefore,

JyX(1), u(l)) =0
In this way Table 13.2 can be developed.

Table 13.2
X() u(l) X(2) J3X(2) J(X(1), X(2))
0 -1 -1 — —
=05 -0.5 - —
0 0 0 0
0.5 05 0.25 1.0
1.0 1.0 1 4.0
05 -1 =05 — -
=05 0.0 0.0 0.75
0 0.5 0.25 0.25
0.5 1.0 1.0 175
1 L5 —_ -
Lo -1 0 0 3
-0.5 05 0.25 1.0
0 1.0 1.0 1.0
0.5 1.5 - _

1.0 2.0 —




438  Control Engincering: Theory and Practice

Thus, it can be concluded, that if X(0) = 0.5, u*(0) = 0, «*(1) = 0. the performance index is
then 0.25. In this way for different values of X{(0), the optimal input, i.e. control values can be
calculated.

13.7 STATE REGULATOR PROBLEM

From the dynamic programming analysis, we came to know that the control problem is a
multistage decision problem. Here the calculations of optimal decisions proceed from the last
decision back to the first decision.

Let us consider a state regulator problem and apply dynamic programming for obtaining the
optimal solution.

We will consider discrete time systems and formulate the state regulator problem in the
following manner. The perfc index is 1 as follows.

lor L [yr T
J= EX (N)HX(N)+EKE.°[X (K)QX(K)+u (K)Ric(n\')]

where the initial state X(0) = X
According to dynamic programming principle, the first step is

Sy (XN = 1), (N = 1))

%x’wm XN) + %lx’m “DOX(N ~ 1)+ u"(N — DRu(N — 1)

% [AX(N ~1) + Bu(N - )Y M(O)[AX(N = 1) + Bu(N - 1))

+ %[X'[N-—l]QX(N—IH"T(N—l]Ru(N—l]l

where H = M(0). and X=AX(N) + Bu(N) in a discrete form is generally represented by
X(N)y = AX(N - 1) + BuiN - 1).
We know that the necessary condition for minimization is

a-"nhl
duy =0
Ru(N = 1) + BT M(0) [AX(N - 1) + Bu(N - 1)] = 0
L odixTaxy
[- e 1“"‘]
or
Ru(N = 1) + BT M(0) AX(N = 1) + BTM(0) Bu(N - 1) = 0
or
wlN = D[R + BT M(0) B] = -B" M{0) AX(N - 1)
or

w(N = 1) = =[R + B" M(0) BI"" B"M(0) AX(N - 1)
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Now, the minimum value of Jy . » will be given by

y_y
du N-2 -
That is,
0= Ru(N - 2) + BTM(1)[AX(N - 2) + Bu(N - 2)]
or
0 = Ru(N - 2) + B'M(DAX(N - 2) + B"M(1)Bu(N - 2)
or
[R + BTM(DBIu(N - 2) = ~-BTM{DAX(N - 2)
or

(N = 2) = =[R + B'M(1)B]"' BTM{1)AX(N - 2) = E(N - 2)X(N - 2)
Therefore the minimum value of Jy_ 1 is
Jy -2 (XN =2)

% XIN-2DQX(IN-2)+ %x’w —2ET(N-2)RE(N-2)X(N-2)

+ %[AX(N ~2)4 BE(N -2) X(N = 2)]” MO)[AX(N ~2) + BE(N -2) X(N - 2)]

%XT(N [0+ E"(N=2) RE(N =2)+ [A+ BE(N = 2))" M() [A+ BE(N =2)) | XN -2)
- ; X' (N -2)M@2) X(N -2)

Similarly,

1}

Iai= % XT(N i) M(G) X(N - i)
wWN=D=EN-XN=-1
E(N - D=~ [R + B"M(i - DB BT™M(i - DA
Mi)=[A+BEN=-)"Mi-1)[A+BEN-)+EWN-DREN=-)+0Q
EXAMPLE 13.14 A second-order linear system is described by
X0 = = 03Xy(1) + Xo(0) + (1)

X,(1) = — 0.4X,3(1) + 0.5u(n)

5
The performance index to be minimized is J = J- [X:.'{r) + X +o° {.r)] dr . Determine the
)

L]
2
optimal control policy.
Solution From the above system equations, the difference equation will be
Xiln + 1) = 07X (n) + Xan) + wlm)
Xsln + 1) = 0.6X5(n) + 0.5u(n)

The performance index will be transferred to the approximate summation form
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e O R

=-[1+125]T"1 05][ ][ﬂ 05] ~[2257'1 "-5][0(':r (:6]

"25

=—==[0.7 1.3]

- (0311 0.578)

In the same manner, E(2), E(1), E(0) can be calculated.
Hence the opumum policy is decided, since

(N — i) = E(N - i) X(N - i)

State regulator problem for continuous time system
In the case of continuous time problem,

I

= Ex”u,mxu,n I [xT@x+uTRu]dr

Let u(7) be the optimum value.

JXtg), 1 (D)= Xr(flJHX(l.H—-I[Xr(:)QX(rHur(t)ku(rlld’:

ST,

To find out optimum value u(1)

Therefore

J(X{ro), 1) =

Now,
[

I 0= 3 [ (X0 QX0+ T Rutt) dr + JX(to). 1) +

|

T+ AL,

HX(o). 19) = j [X" X0 +u" @) Rutt) | ar

1
2

+ Al

L

SJ(X(to)te) T

1
1 1
+3 | [Xwexw+u o run]dr+ 3 X @) HXW,)

T8

1, + Al
I [XT(0) @ X(0) + w' (1) Rul) ) dt + J(X(1g + Aty), 1y + Aty)

Iy

SJ(x(fn)-fnlm
8ty

5% ] [X (1p + Aty) - X(fo)] (This is as per Taylor's theorem)
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oar
f, + A,
_l' ’ ¥ 8{X(15).15) SHX ()t | .
=3 J' (XT(r) @ X(r) + W) Ru(t))dr + et 3o X(ry) At
f
o X(tg + Aty) ~ X(t)
[. X(tg) = Y — ]
or
6.!‘ ]:,+al.
g X)t0) By = 2 | (Xwexm+u’® Ruw)dr
b

ul
+ {&—(ZE;‘;)—"’)] [AX(r) + Bulrg)] Arg
Since Arg is a very small value, we can write
-%r—(xu.,) 10)8tp = %[x’(:o)oxuu}w’(ro) Ruttg) | Aty

57 "
[—X (X(tg), :‘,)} [AX(ty) + Bu(ry)] Aty

or
”ST"“'“’ t0) = 5[ X700 @Xto) + 7 (y) Ruttg) |+ [fﬂﬁ’—‘ﬂ-]' [AX () + Bulty)]

Now, differentiating the above w.rt. w, we can determine the condition for minimization. That is,

0= Ru(a‘]+87—()&'[rn).ru)
1 OJ
ulte) = ~ R™BT = (X(to). 1)

Hence, at the minimum value of J, u(ty) = = R g7 g—; (X(l'o) l'o]

Therefore,

87 (X(rg). 1)
T by

T
1 1o 84 (X(tg)u 1) 1o 80 (X(eg)aty)
= E' :D)Qx{:u)+[k' B X RRT'BT X

81(Xte).10) T or 81 (X))

1{ 81(X(z,), fn]' BR'BT 8 (X(r5). 10 )
3 X

= —XT(I.,)QX{ro)+ [ Y
T T
[6)()((:0).:.,)] AXG“)_[SJ(X(:;).:@)] BR_,B,.SJ(X(;?).:O) 1328,
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EXAMPLE 13.15 A system is defined as follows:

X (0) = 3X(r) + 1)
If the following performance index is to be minimized, determine the control law.

J= %f[ax’ +-;-u2]dl
'

where ; = 2 second.

Solution
X = 3X(t) + uit)
A=3,B=1

-1]‘ 2 1
.i'-2 {4)&' +§u]dr

1
2=4, R'E and H=0= M)
Applying the Matrix-Riccati equation,

M(1) + 0 = M(1) BR'BTM(1) + M)A + ATM(H) = 0

we get . 5
M(r) + 4 = SM=(t) + 3IM(r) + IM(1) =0
or
M) + 4 = SMY(5) + 6M(1) = 0
ar
M(r) = SM*(r) - 6M(r) — 4
or
) SM(t) - 6M(r) - 4
dr
or
1,
...__M_.__. = fd:
/ SMA()-6M(r) -4 :
or
] dM(e) —}m
) (M(1)-1.677) (M(1) + 0477) B )
or
1, A BI [
] =
! [H(r)—l.ﬁ?? * M{:)+o,47?}“'m" .!. a
or

A 5, -
I[M(:)-l.mw"mm &4?1]“‘” = [
[/ h
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or
[A log(M(D) - 1.677) + B, log(M (1) +0.4TD)] =1 -1

ar

log(M(r) - 1.677) -

log(M(1) +0,47?]I =1-14

1
[2 is4 2.154

or
1 M@ -1677
2.154 EM@n+0477 N

or
M) -1.677

log S T 0.477

=2.154(t - 1)

or
M) -1.677 _ aisig-ry
M) +0.477

or
M) - 1.677 = e~'50=1) [M(1) + 0.477)
or

M1 =50 = 1677 + 0477 213k

or
0.477 #1040 41 677

M) = = 2101

0.477 215402 41 677
M) = 12 imu-2

The control policy will be
< u() =-R"'B"M(®1)

= —SM(I')
-5 [0.471 Q21S0-D) 1.67ﬂ
1 e215u-1

13.8 PARAMETER OPTIMIZATION

The method of the solution of the optimal regulator problem has already been studied. Now in the
parameter oplimization, we will solve the control problem where the elements of the feedback
matrix of K are considered. Suppose the system is represented by

X = AX + Bu
The performance index is

7= %T{ XTQX +u" Ru) dr
1]
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where @ is o positive semi-definite, real, symmetric’ constant matrix and R is a positive definite,
real symmetric constant matrix. Now,

u = KX(1)
where K is the constant matrix. Also,
X is n x 1 state vector matrix
uis m % 1 control vector matrix
A is n % n constant matrix
B is n % m constant matrix
K is m x n constant matrix

We know
X =AX + Bu=AX + BKX = (A + BK)X
Therefore, the performance index

J= j(xfgx + XTKTRKX)dt
0

z j X0 + KTRK)X di
0

2

Let us assume

XT(Q + K'RK)X = ~%(xfmx) = XTMX - XMX

when M is a real symmetric positive-definite matrix.

Thus,
X7 (0 + K'RK)X = -X"[(A + BK)'™M + M(A + BK)]X
or
XT[Q + K'RK + (A + BKY'M + M(A + BK)] X = 0
Therefore,
Q + KTRK + (A + BK)'M + M(A + BK)=0
Now,

1T o ar - - Lyt
.r_zé[ XM dr = 2xmrL

= - % X7 (@) MX () +% XT(0) MX(0)

At the final time — s, X(e=) — 0, for optimal system to be stable, therefore,

J= %x"(u)mm)
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EXAMPLE 13.16 Determine the optimum damping coefficient which minimizes the following
performance index

J= _[E’mdr
L]

where E is the error.
The initial conditions are
8()=2, 8(0)=0
where @ is the output.

Solution Let us consider a second-order system as shown in Fig. 13.15, where { is the damping
coefficient.

< 1| B(s)
Ris) E(s) I sis + 20) I
Fig. 13.15

Now, s
1

[R(s) - 8(5)] SG 20 = 8(s)

Simplifying, we get
R(s)
) = S+ 2s+1

or
$20(s) + 2L50(s) + 8(s) = R(s)

If the input is taken 0, then
52 B(s) + 2L50(s) + B(s) = 0
Taking the inverse Laplace transform,

8 +206 +8=0
Let
=X, 6 =X,
Then
X, = 8 =X2
Again,
6 +200 +0=0
or .
X, + 20X, ¥X, =0
or K

X,=-20X: - X;
The signal flow graph of the above system is shown in Fig. 13.16
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A 4

Fig. 13.16 Signal flow graph of Fig. 1315,
Since there is no external input, the optimum policy 1 will be

w=-2(X,-X,. Henceu= X,.

Therefore,
X, =X
X’: =N
X o 1[x,7 fo
. = + i
X, 0 0jlX; 1
Since

g=2, BHOH=0
X(=2 XA0)=0

or
-0
The performance index

J= ]'f—:’m dt = ‘]m ~ )% ds
0 1]

r 3 r 3 I ¥ 2
= j&-d.- = J'X; di = 3 IZX; dt
[ (] o
Therefore,
2% = XTox
X,
=[x, X:]Q[xj
20
e-[; o]

(A+BKYM+MA +BK)+ Q=0

Hence,

We already know that
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we get
1
My=20+ f
Therefore,
1
WU+=—= 1
M= %
1
'z
Now the optimal value of the performance index is
7= 3 XT© MX(O)
2§+-l—- 1
s 2 X0
= = X7(0)
2 1 || X,(0)
X
Wt
- lxoxon % X
g e || x50

28

- '[(zp ! )x,mnx,{m x,(on-'—x,m)M

w3

2z 2

X,(0)
X, ()

] —

1 ’ 1
H[z; + f] X (0) + xz(n)] X(0)+ { X,(0) +f Xz(ﬂ)} Xg{ﬂ)]

Now, X,(0) = 2, X5(0) = 0. Thus,

or

{%(4& n}c-mﬁ 1)
‘;2

80-L-at-1
I -
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or

48%=1  or §=%=O.S
Again
VR N T
_ 8L -20@E -1
= a
3 _ g3 2
_BCEC_‘*K:F%, for £= 0.5

The damping coefficient will therefore be 0.5 and at this value the performance index is
minimum,

SUMMARY

Optimization of objective functions by the steepest descent method is explained. Optimization
with constraint by the gradient method is covered next. Jordan's elimination technique is
described. Minimization of functions by a numerical method is also described. The Fletcher—
Powell method is explained. The Newton-Raphson method for error minimization is also shown.
Performance indices such as ISE, ITAE, TAE, and ITSE are defined. Characieristics of the plant,
requirements of the plant and the data of the plant received by the controller are described.
Minimum time problem, minimum energy problem, minimum fuel problem, state regulator
problem, output regul problem, servomechanism or tracking problem, are all fully dealt with.

Mathematical procedures for optimal control design are described one by one. Calculus of
variations is utilized for solving two-point boundary value problems (TPBVPs). Both fixed-end
problems and variable-end point problem are discussed.

The method of determination of optimal value of state and Lagrangian multiplier is shown
with an example.

An example related to Euler's equation is solved. An example related to Euler-Lagrange
equation is also solved. Pontryagin’s optimum policy is described with an example. Bang-bang
control is explained. The procedure of determining optimal trajectories is explained. Hamilton-
Jacobi principle for solving optimization problems is explained. Matrix—Ricatti equation is also
established. On dynamic prog ing, both the imbedding principle and the optimality principle
are presented.

Examples of dynamic programming are solved. State regulator problem is solved with the
principle of dynamic programming. Parameter optimization is discussed with the help of an
example.
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11.
12.
13.

14.

15.

16.

Find the optimal control law using the Hamilton-Jacobi equation that minimizes the
performance index

)
1= [oeeutyar
0
where t; is specified.
Explain the gradient technique to solve optimal control problems.

What is maximum principle? How do you implement control and state constraints?

Consider a simple open-loop system that consists of an integration and an amplifier
having a gain of 2. Tt is desired to control the state of this system between X(0) and X(T)
in order to minimize,

.
S= j(dx’(f)+2u’m1 dt
]

Using the calculus of variations, find the optimal control #%(f) that can acﬁileve this.
Given the system
X, | =X,

X, =-2X;-4X; +u
and

lu(M s U

find the control u(f) such that the system is taken from the initial state c(fp) to the
equilibrium state ¢() = 0 in the shortest period of time.

Determine the optimal control policy «°(r) using dynamic programming for the system
¢ +4¢ + 3c=6u
to minimize
]
S= | dt
o

such that
~1su(ns 1.

Determine the optimal control law for the system
. 01
X= [ ]x N [“]
00 1
1 0
Y= X
I

such that the following performance index is minimized

-
J= (07 +v3 s
(1]



Introduction to Neural

WP Fuzzy Systems and Adaptive
4 Learning Systems

14.1 INTRODUCTION

Fuzzy logic is based on the way the brain deals with inexact information, while neural networks
are modelled after the physical architecture of the brain. To a certain extent, both these systems
and their technigues have been sug fully applied to a variety of control systems and devices in
order to improve their intelligence. Fuzzy systems combine fuzzy sets with fuzzy rules to produce
overall complex nonlinear behaviour. Neural networks, on the other hand, are trainable dynamical
systems whose learning, noise, and generalization abilities grow out of their connectionist
struclures, their dynamics and their distributed data representation. Neural networks provide fuzzy
systems with learning abilities and fuzzy systems provide neural networks with a structural
framework. Fuzzy logic and neural networks are constituents of an emerging rescarch area, called
soft computing, a term coined by Lotfi Zadeh (the father of fuzzy logic). In the partnership of
fuzzy logic neural networks and probabilistic reasoning, fuzzy logic is concerned in the main with
imprecision and approximate reasoning; neural networks, on the other hand, are concerned with
learning and probabilistic reasoning with uncertainty. Since fuzzy logic, neural networks and
probabilistic reasoning are complementary rather than competitive, it is frequently advantageous
to employ them in combination.

14.1.1 Fuzzy Systems

Fuzzy sets are introduced as a mathematical way to represent vag in linguistics. In a
nonfuzzy set. an element of the universe either belongs to or does not belong to the set. It is
either yes (in the set) or no (not in the set). A fuzzy set is a generalization of an ordinary set in
that it allows the degree of bership for each el to range over the interval [0, 1]. A fuzzy
set has an infinite ber of bership functi that may represent it. Fuzziness is often
confused with probability. The fundamental difference between these two phenomena is that
fuzziness deals with deterministic plausibility, while probability concerns the likelihood of
nondeterministic, stochastic events. Fuzziness is one aspect of uncertainty. It is the vagueness
found in the definition of a concept or the meaning of a term such as ‘young person’ or ‘large
room'. However, the uncertainty of probability generally relates to the occurrence of phenomena,
as symbolized by the concept of rande For example, the such as: “There is a
50-50 chance that he will be there”, “it will rain tomorrow™, “Roll the dice and get a four”, have
the uncertainty of randomness. The fuzzy logic is appropriate to use in the following cases.

ass
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{a) When the process is concerned with continuous phenomena that are not easily broken
down into discrete segments.

(b} When a mathematical model of the process does nol exist or if it exists, it is too
difficult to encode or is too complex 1o be evaluated fast enough for real time operation
or involves too much y on the designated chip architecture.

{c) When high ambient noise levels must be dealt with, or when it is important to use
inexpensive sensors andf/or low-precision microcontrollers.

(d) When the process involves human interaction.

(¢) When an expert is available who can specify the rules underlying the system behaviour
and the fuzzy sets that represent the characteristic of each variable.

Fuzzy logic techniques find their application in the following arcas:
(a) Control

(b) Pattern recognition {Image, audio signal processing)

() Quantitative analysis (operations research, management)

id

Inference (expert systems for diagnosis, planning, and prediction, natural language
processing, intelligent interface, intelligent robots, software engineering).

(e} Information retrieval (databases)

14.2 NEURAL NETWORKS

Neural networks are a new generation of information processing systems that are deliberately
constructed 1o make use of some of the organizational principles that characterize the human
brain. The neural networks have a large number of highly interconnected processing elements
{nodes) that usually operate in parallel. Models of networks are based on three basig entities,

(a) Models of the processing elements themselves
(b) Models of interconnections and structures
(c) Learning rules

Each node in a neural collects the values from all its input connections, performs a
predefined mathematical operation and produces a single output value,

In a neural network, each node output is connected through weights to other nodes or to
isell. Hence the structure that organizes these nodes and the connection geometry among them
should be specified for a neural network.

There are two kinds of learning in neural networks—parameter learning and structure
learning. Parameter learning concerns the updating of the connection weights and structure
learning focuses on the change in the network structure. Each kind of leaming can be further
classified into three categories—supervised learning, reinforcement learning, and unsupervised
learning. Neural networks offer the following salient characteristics and properties.

1. Newral networks are able to learn arbitrary nonlinear input-output mapping directly from
the training data.
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2.

Meural networks can sensibly interpolate input patterns that are new to the network.
From a statistical point of view, neural networks can fit the desired function in such a
way that they have the ability to generalize situations that are different from the
collected training data.

Neural networks can automatically adjust their connection weights or even network
structures to optimize their behaviour as controllers, predictors, pattern recognizers,
decision makers, and so on.

The performance of a neural network is degraded gracefully under faulty conditions
such as damaged nodes or connections.

The following are some of the uses of the neural networks.

(a)
(b)

()

14.3

For nonlinear mapping, such as robot control and noise removal.

When only a few decisions are required from a massive amount of data, such as speech
recognition and fault prediction.

When a near-optimal solution to a combinatorial optimization problem is reguired in a
short time, such as airline scheduling and network routing.

FUZZY-NEURAL INTEGRATED SYSTEM

This is a promising approach for reaping the benefits of both the fuzzy systems and the neural
networks by merging or fusing them into an integrated system. The fusion of these two different
technologies can be realized in three directions, resulting in systems with different characteristics,

(a)
(b)
©)

Neural-fuzzy systems—use of neural networks as a tool in fuzzy models
Fuzzy-neural networks—~fuzzification of conventional neural network models

Fuzzy-neural-hybrid systems—Incorporation of fuzzy logic technology and neural
networks into hybrid systems

14.3.1 Comparison of Fuzzy Systems, Neural Networks, and

Conventional Control Theory

Fuzzy system Newral network Control theory

Mathematical model Slightly good Bad Good
Learning ability Bad Good Bad
Knowledge representation Good Bad Slightly bad
Expert knowledge Good Bad Slightly bad
Nonlinearity Good Good Bad
Optimization ability Bad Slightly Good Slightly bad
Fault tolerance Good Good Bad
Uncenainty tolerance Good Good Bad

Real time operation Good Slightly Good Good
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14.4 APPLICATION OF FUZZY CONTROLLERS

Over the past decade, we have witnessed a very significant increase in the number of application
of fuzzy logic-based techniques to various commercial and industrial products and system,
especially in controlling nonlinear, time-varying, ill-defined systems and in managing complex
systems with mulliple independent decision making processes. Fuzzy logic conirol-based systems
have proved to be superior in performance when pared to conventional control

The cement kiln control system was the first successful industrial application of a fuzzy
logic control. In contrast to previous analog fuzzy logic controllers which were designed based on
a continuous state space model, a discrete-event fuzzy controller was designed for airport control.
Fuzzy control has also been successfully applied to automatic train operation systems. Fuzzy
logic control systems have also found application in household appliances such as air-
conditioners, washing machines, video recorders, television auto contrast and brightness control
cameras, auto focusing and jitter control, vacuum cleaners, microwave ovens, palmtop computers,
and so forth.

14.5 DIFFERENCES BETWEEN CLASSICAL SET AND FUZZY SET

The differences between classical set and fuzzy set are explained with an example.
Suppose, there exists the real line and classical set that rep “real bers’ greater than
and equal to 5. Then the characteristic function of the classical set will be as shown in Fig. 14.].

Halx)

[ 5 xep
Fig. 14.1

Let fuzzy set A represent ‘real numbers close to 5'; it would then be as shown in Fig. 14.2,
The classical set will be expressed mathematically as

Halx)

Fig. 14.2
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Error sum

K
InK)= Y ri-1)
im0
Control change

Ac(K) = c(K) - (K= 1)

Hence the control law

Ac(K) = fir(K), Ar(K))
oK) = (K - 1) + Ac(K)

Example of the rules base of fuzzy logic control

1. IF the error AK) is positive AND the change of the error Ar(K) is approximately zero,
THEN the change of the control Ac(K) is positive.

ALSO

2. IF the error r(K) is negative AND the change of the error Ar(K) is approximately zero,
THEN the change of the control Ac{K} is negative.

ALSO

3. IF the error r(K) is approximately zero AND the change of the error ArK) is
approximately zero, THEN the change of the control Ac(K) is approximately zero.
ALSO

4. [IF the error r(K) is approximately zero AND the change of the error An(K) is positive,
THEN the change of the control Ac(K) is positive.

ALSO

5. IF the error r(K) is approximately zero AND the change of the error Ar(K) is negative,
THEN the change of the control Ac(K) is negative.

Relationship between Pl and fuzzy control

The fuzzy logic control narrates with the help of fuzzy IF-THEN rules the relationship between
the change of control Ac(K) = ¢(K) — (K - 1) and at the same time the error A(K) and its change
Ar(K) = (K) = (K = 1). That is,

Ac(K) = f(r(K), Ar(K))

If we just compare this with the Pf controller, it is observed that in the case of the PI
controller,

Ac(K) = Kp Ar(K) + Ky r(K)

where Kp and K; are the parameters of the Pl-controller. Hence, it can be concluded that both the
control laws provide a relationship between the variables r{K) and Ar(K) with Ac{K). The main
difference is that the case of the P/ controller, the relationship is linear whereas in the case of
fuzzy logic control it is nonlinear.
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control system also accommodates moderate engineering design errors or uncertainties. It
compensates the falure of the minor system components and increases system reliability.

Adaption 1s a basic characteristic of living organisms because they try 1o maintain
physiological equilibrium in the midst of changing environmental conditions. Similarly, an
adaptive control system is one that conti ly and ically the dynamic
characteristics of the plant, compares them with the required dynamic characteristics and utilizes
the difference 10 vary the adjustable parameters or 1o generale an actuating signal. As a result, the
optimal performance can be maintained even with the environmental change. Otherwise, the
system may continuously -measure its own performance as per the given performance index and
develop 1ts own parameters for maintaining optimal performance even with the environmental
changes. In other words, there must be some self-organizing scheme.

An adaptive controller consists of the following three functions:

(a) Identification of the dynamic characteristics of the plant
(by Decision making based on the identification of the plant
(c) Modification or actuation based on the decision made

Figure 14.4 shows the block diagram representation of the adaptive control system.

Identification
or P

Decision

Input Output

Environmental
effects

Fig. 144  Block diagram of the adaptive control system.

14.7.1 Identification of the Dynamic Characteristics of
the Plant

The dynamic characteristics of the plant are measured and identified continuously, without
affecting the normal operation of the system. Identification is made from normal operating data of
the plant or by utilizing the test signals, for example, sinusoidal signals of small amplitude or
various stochastic signals of small amplitude. Stochastic signals are quite impressive in some
cases. The outpul is analyzed as a function of the stochastic input for determining the response
characteristics. The identification time should be sufficiently short compared with the rate of
change of environment. But during a short time of identification, it may be difficult to identify
the plant completely. That is why, partial identification is appropriate. Where the plant
identification is very different, the performance index is measured directly and an adaptive
controller based on it is built.




SUMMARY

The fuzzy system is defined. The cases in which fuzzy logic can be used are explained. The areas
of application of fuzzy logic are described.

The neural network is defined. The salient characteristics and properties of neural networks
are described. The uses of the neural network are also stated.

The fuzzy-neural integrated system is also explained.

A comparison of fuzzy systems, neural networks and conventional control theory is
tabulated,

The applications of fuzzy controllers arc also described.

The difference between the classical set and the fuzzy set is discussed. The fuzzy logic
control system is defined. An example of the rules base of the fuzzy logic control is also shown.
Relationships of PI, PD, and PID controllers with fuzzy logic control are dealt with..

An idea of the adaptive control system is given. Three main functions of an adaptive
system, i.e. identification of the dynamic characteristics of the plant, decision making and
modification are explained.

The principle of learning systems is explained.

QUESTIONS
Explain the concept of fuzzy systems. What are the areas of their application?

2, What are neural networks? What are the salient characteristics and properties of neural
networks? What are the uses of neural networks?

3. What is a fuzzy-neural integrated system?
4. Compare fuzzy systems, neural networks, and conventional control theory.

—

5. What are the applications of fuzzy controllers?
Describe the differences between the classical set and the fuzzy set.

7. Explain the principle of the fuzzy logic controller. Give an example of the rules base of
the fuzzy logic control.

8. Compare PI, PD, and PID Controllers with the fuzzy logic controller.
9. What is an adaptive control system? Explain with the help of a block diagram.
10. Give an idea about ‘Learning System’.
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15 Problems

PROBLEM 15.1 Draw the block diagram for the speed control system shown in Fig. 15.1.

mover
Potentiometer
/ 11

Amplifier Generator Motor

Fig. 15.1 Speed control system.

Solution Figure 15.2 depicts the block diagram of the speed control system shown in Fig. 15.1.

Here the | is the refe e. The amplifier and the g w are the controller. The
motor is the plant. The tachometer is the feedback element.
Controller lant
Potentiometer "
—— Amplifier Generator [-=—  Maotor
Velocity {Reference)
(rad/s) v
Feedback element

Fig. 15.2 Block diagram of the system in Fig. 15.1.
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PROBLEM 15.2 Determine the damping ratio, the undamped natural frequency, the domped
natural frequency, the damping coefficient, and the time constant for the following second-order
system.

Solution We know that the second-order system is represented h:r d 2

+2§m,,— +@ly = @ix
where

¢ = damping ratio

|

w, = undamped natural frequency.
Therefore,
20w, =2, ﬂJln =2
or
@, =1 w, = 2
or

Damped natural frequency

Wy = b, l—;:
=Vifi-L 2
2

Damping coefficient, {@, = 1

. 1
Time constant of the system, Tw, =1
"

PROBLEM 153 Prove that the Laplace transform of the unit-impulse function is one.

Solution

0_[ b(r)ye"dr = v

I
Qe
B
L3
~—

u(:)-m-m]e.,,m

]
=
4
-1
| e |
B |-
I
“| g
| S

(. the Laplace transform of u(s) = 1 and thn't..a.plwe transform of f(r = T) = €*TF(s))
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Now
. 2 . 3
£ l-m”{mz:) ‘(m;)
Laplace ransform of &(r)
oo @Ants @n'st
= J.'l’.‘om[s P TR T
. (A (Ans®
= fm st Ty

=1

PROBLEM 154 Find the transfer function of the gyroscopic system shown in Fig. 15.3
considering @ as the output and @ as the input.

Output axis
B

/
—-em\. Input axis

cf_ﬁ‘ Wheel spins at
constant velocity

Fig. 15.3 Gyroscope.

Solution In the case of gyroscope, the differential equation is

1
ﬁ+ Bd—8+!¢'9 = Ha
it dr

where J is the moment of inertia, B is the viscous friction coefficient, and H is the angular
momentum stored in the spinning wheel.
Taking the Laplace transform of the above equation, we get
(Us* + Bs + K)0(s) = Hols)

where the initial condition is assumed zero.
Therefore,

o(s) _ H

os)  Js'+Bs+K
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PROBLEM 15.5 Determine the type of the closed-loop system shown in Fig. 15.4.

r Y & s+1 ] o

(s +4)7 £5+3)

Prs+l
s(s+3)

Fig. 154 Closed-loop system.

Solution The open-loop transfer function of the system is

sSHs+N(S+s+1) s+ +s+1)

Ol R ar G SG+a G

From the open-loop transfer function, it is clear that the given system is a type-2 system.

PROBLEM 15.6 Compare the sensitivities of the two systems, shown in Fig. 15.5 and Fig. 15.6
with respect to the parameter K” for nominal values X" = K” = 100 and also compare the transfer
functions of the two sysiems.

Fig. I5.5 Fig. 15.6

Solution The transfer function of Fig. 15.5 is

poG KK

T 5 T 1+0.0099 K'K”
_ (100)(100) = 100
T 14 (0.0099)(100)(100)

The wransfer function of Fig. 15.6 is

oG X' K
T n 1+0.09 K" ]| 1+0.09 K"




Miscell Solved Problems 869

100 100
= [l+0‘09x100](I +0.09x100] = 100

Hence, both the wansfer functions are equal. The sensitivity of the transfer function T, with
respect to K is

8n
4 8K
K T KT,
K
_ K'(1+0.0099 K'K") - K'K"(0.0099 K*) K’
- (1+0.0099 K'K")? K'K*

1+0.0099 K'K*

1 1
T (1+0.0099K'K") T 1+(0.0099) (100) (100)

0.01

Again for the second system, the sensitivity of the transfer function T, with respect to K is

25}
L _LK
oK T SK'T,
K
5 K' K K
=18 (1+omx'][1+n.ogx'] KK

(1+0.09K) (1 +0.09K")

K"(1+0.09K") (1 +0.09 K") - K'K"[0.09(1+ 0.09 K] K'(1+0.09K') (1+0.09K")
(1 +0.09K")%(1 + 0.09K"y KK

1 1
T 1+0.09K"  1+0.09x100

Hence, it is observed that the sensitivity of 7, with respect to X" is 0.01 and the sensitivity
of Ty with respect to K is 0.1,

Therefore the second system shown in Fig. 15.6 is 10 times more sensitive than the first
system shown in Fig. 15.5 with respect to variations in K"

0.1

PROBLEM 15.7 Determine the bandwidth of the system whose transfer function is J—i]—

Solution In Fig. 15.7, o(r) is the output and r(r) is the inpul and |%(jo))| is the magnitude of

the transfer function in the frequency domain.
o) _ 1
R(5) s+1

(in Laplace transform), then
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%
y o Jeuer2ae,)
" JaGa+ Loy
A L
= m (after simplification)
or
M= m—:
(@} -0y +40%0} o
Now,
dim M? =0  (for maximum value of the frequency response)
ar
-0}[2(0} - 0?) (-20) + 40%0} 20| = 0
ar
a=+ r.u,"l -2¢* (after simplification)
Al
o= ta,fl-20°
" = @,
(@} —el (1-200))P+ 40} 1-287)
- __
44*1-¢%
or
M= —2

2®\1-¢
Hence the maximum value of frequency response is

1
qN-¢

PROBLEM 15.11 If ax, = aX; + bXy, 4% =cX; + dX;
dr dt

Determine the sufficient conditions on a, b, ¢, and d so that the asymptotically stable condition
can be achicved.
Let us choose a function W = X7 + X? to apply the Liapunov theory. Now,

aw dXx, dx.
— = 2X,—Lls2X,—1
dt v HER T
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Damping ratio, = % %

3x107 | 1

T2 {55x107x(107) K

~ 3xa07 1
T2 5.5%107°K

=3
= % (Damping ratio as a function of K)

{c) At critically damped condition, § = |

Therefore,
-3
‘/% =1 or K=409x10"®N.m/rad
(dyand (e
Dambi i ¢ 4.09%107° 0.522
amping rato, = " =l
ping 15x10°

' K
atural i . TR L
Natural frequency, w, = 10 33
3 [1.5x1072
=10 —55 = 52.2 rad/s

, 7
Frequency of damped oscillation = -2—;- 1=

52.2 F)
= mx,ﬂl =(0.522)" =7 rad/s

=0.14
frequency of damped oscillation 01435

Period of damped oscillation =

1
= o - e - ——— g
522 3
S35 V1-(0522)

PROBLEM 15.14 The servomotor of a position servo (Fig. 15.10) drives the load with the help
of a 20: | reduction gear and a tachogenerator with the help of a 2: 1 step-up gear. The load
inertia is 20 x 107 ® kg - m® and the inertia of the servomotor and the tachogenerator armature are
045 x 107 % kg - m* and 0.35 x 10” % kg - m%, respectively. Determine the inertia referred to the

motor shaft. Also calculate the inertia referred to the load.
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Gear

Load Tachogenerator

Motor

Fig. 15.10 FPosition servo

Motor inertia referred to the load side
=(200x 045 x 107 %= 1.8 x 107 *kg- m?

The transformation ratio of gear trains between the load shaft and the tachogenerator
=20 % 2 = 40. Hence the tachogenerator inertia referred to the load side will be

=400 x 035 x 100% =56 % 107 *kg- m?
Hence, the total inertia referred to the load end

=20 10°+ 1.8 x 107 + 5.6 x 107
=760 x 10 kg - m*
_ . 7 B 2
Therefore, the inertia referred to the motor side = % kg -m*
PROBLEM 15.15 A dc motor drive has fixed excitation. Its moment of inertia is 6.5 x 107% kg - m*
and the friction of the motor is 3.5 x 107 N - m/rad/s. The motor drives a load which has an inertia
of 420 kg - m? and friction of 220 N - m/rad/s through a 100 : | reduction gear. If the armature current
of 0.5 amp is required to produce a torque of 1 N - m at the motor shaft, find the response of the
output speed at the load end when a step input of 1 ampere is fed to the armature from a constant
current generator. Also, determine the steady-state output speed in rpm. See Fig. 15.11.

Jy = 6.5 % 107 kg - m?
Fy = 3.5 x 107 2N - m/radfs

1 amp
Fp =220 N - mirad/s

A ay,
Gear ratio Ji.= 420 kg - m
1:100

Fig. 15.11 DC motor drive.

Solution Transferring the load moment of inertia and the friction on the motor side, the total
moment of inertia J and friction F will be as follows.

J=JM + RZJ']_
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5.7
2 ==
[ —  —
5.7%107? [ ¢ ] radss
Now,
oy (1) = 27Ny
where Ny is the rps (revolutions per second) of the motor.
Therefore,
0]
M=
Thus, motor speed in rpm
= m;::) ® 60
Load speed will be
Loy
=100 25 o0 om

=57

1L 60 2 | %
100 27 57107
Steady output speed
-3

1 60 2 —
lim—22 £ |j_pt07
(5% 100 27 57107 [ ¢

160 2
100 2r 5.7x107

=335 pm

PROBLEM 15.16 Figure 15.12 is a device by virtue of which the liquid level in a tank is
controlled. The input valve closes completely when the level of water in the tank attains the
height H,. The fluid level in the tank is H at a particular time. The valve gap opening x is
controlled with the help of float F and level L. The value of discharge Q; is proportional to the
gate opening x. The output (J is proportional to head H. Determine the signal flow graph.

Fig. 15.12 Control of liquid level in a tank.
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Soluti If the cross ional area of the tank is A, then
H
Q= ﬂ-—;‘+K|H (" Qpe H)
%. Now the work done in the right-hand side
will be equal in magnitude to the work done in the lefi-hand side. Therefore,

R
From Fig. 15.13, we get Fia = Fzb or }1 =

Fig. 15.13
FII=F1(Hr‘H)
or
By
x= 7 (H, -H)
or
x= %(H,.—H)

Again it is mentioned
@ = Kx when K is constant
dH

QE =4 ? + KIH
Taking Laplace transform
Q4s) = AsH(s) + K,H(s)
or
0]
HO = 755K,
Qs) = KX(s)

X() = 5 (HLs) - H))

Hence the signal flow graph will be as shown in Fig. 15.14.

a
H,(5) 3 K As+ K,

1
— > H(s)
1 Xis) Qd=)

-1
Fig. 15.14
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PROBLEM 15.17 Determine the signal flow graph and the transfer function of the cathode
follower circuit shown in Fig. 15.15.

1—? "
|

Solution From Fig. 15.15, we have the relations:
Ej=e +E,

E,=iry

Fig. 15.15  Cathode follower circuit.

Heg =i, + irg = ir, + E,
Taking Laplace transform of the above equations, we get
Efs) = e (s) + E ()
E(3) = i(s)ry
Heyls) = ils)ry + E(s)
The signal flow graph is shown in Fls.' 15.16.
1

Efs) 1 H A e

E (5}

=1
=1
Fig. 15.16 Signal flow graph of Fig. i15.15.
According to Mason’s gain formula,

E,(5) - Hixlr, - M
E(s) I‘-(*rxa"r,)-(——j.tr;fr,) ry gl + )

PROBLEM 15.18 Determine the signal flow graph and the transfer function of the speed control
system shown in Fig. 15.17. Assume that the resistance and inductance of both the exciter and the
generator are negligibly small.
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l}, L Main generator
+¥e y W‘—O
E é‘_
k.
(smd

Fig. 15.17 Speed control system.

i

-

Solution The following mathematical relati are to obtained after taking the Laplace
transforms.
E((s) = E{s) - E(s)
E](’}
)= ry + 5Ly

E($)gacirer = Kip (5)
1) gnciner = ,E_(iyﬂﬂ_

R+sL
E() = Kl(SVacier
Figure 15.18 describes the signal flow graph applying the Mason's gain formula; the transfer
function can be found as follows.

1 1
1 sl K R+sL K, 1
Ed9) - > Ef3)

-1
Fig. 1518 Signal flow graph of Fig. 15.17.

1
[r! +sLy ]{K}(R-l- sL](Kl}

E(s) ™ 1
- 4L, lm[k+:[.)(x']( D

KK,
= Uy +sL R +3L) + KK,
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PROBLEM 15.19 Determine the transfer function of the control system shown in Fig. 15.19

with the help of the signal flow graph.

Fig. 15.19 Control system.

Solution Figure 15.20 describes the signal flow graph of Fig. 15.19.

Hy G;

R Gi Gi H; Gi o]
=1

Fig. 1520 Signal flow graph of Fig. 15.19.

As per Mason's gain formula, the transfer function will be
O _ PBA +PA,
R A
- GGG +GiG;
" 1-(-G|G:G3 + G| Gy H{ + G3G1 Hy + Gy Hy - G,G})

Therefore,
) G|G,G, + GG,
T 1+G|GGy -GGy H| - G, Gy Hy — Gy Hy + G, G,

|

PROBLEM 15.20 Find the wransfer function of the control system shown in Fig. 15.21,

Fig. 15.21 Control system.



482  Control Engimeering: Theory and Practice

Solution Figure 15.21 can be converted to Fig, 15.22 as follows:

1 (RG; - CHY

Fig. 15.22  Simplified block diagram of Fig. 15.21.

Therefore,
[R-Gy+(RGy-CH)IG, = C
or
RG|Gy+ RGyG,-CH3G; = C
or )
C(1+ H,G3) = R(G|Gy+G3yGy)
or

Cc GG +Gy)

R - 1+GH;

PROBLEM 15.21 What do you mean by the principle of causality in dynamic programming?
Solution If in dynamic programming the future state'is determined by the present state, then the

principle followed is termed the principle of causality. With the help of this principle, the initial
state x(0) and the control sequence u[0, N - 1] uniquely determine the trajectory

x(1, M= [x(1), x(2), ..., x(N)}
Figure 15.23 describes the schematic diagram of the same.

x(0) all) 2)
- S0(0), w(0), O f ), i), 1) --
_..| i._,_1 |__. ,I

Tui®) Tull) i
it T it Rt d et et e i -
| XN - XN-j+ 1)
[ St 7V T VI N Y S

| | = .
e Mw¥=p ]
i
(N = N-1
S v -2, uN -2, ¥ -2 P v = b wv- 1, N - 1) =0
Tun-2 Tuv-1

Fig. 15.23 Schematic diagram of the principle of causality.

PROBLEM 1522 What are the rules for simplifying the complex block diagram configurations
of control systems?

Solution The rules for simplifying the complex block diag figurations are the following:
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PROBLEM 15.23 How do you find the closed-loop frequency response from the inverse polar
plot?

Soluti Let us consider a unity feedback sy The fer function of the unity feedback
system is
Lo GUw)
o) = 6 Gay = Me”

The inverse transfer function of the unity feedback system is
1 l_“:_,,-,,= 1 + G(jw)

TGw) = M Gl

=1 +;
G jew)

Suppose the polar plot of 1/G(jw) is as shown in Fig. 15.30.
iy

Polar plot of m B

R
-1 + f0 x

Constant /M
contour

™\ Constant
=@ contour

Fig. 15.30 Polar plot 1/G(jw).

Let us consider the point B on the polar plot, where the frequency is @;. The vector OB will
represent 1/G(jax).

Again,
RB=0B - OR
where R is at -1 + 0. Therefore,
1
RB= ——— (-]
GGap Y
= .__l__+]
T Gliw)
Since
LI !
wE = 1+ Gl (already defined)
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] ] -,h
I "
Glje,) M, ¢
or
RB = L‘_‘hl
=%

Hence, the circle with radius RB and centre R will be the constant 1/M circle. The contours
of constant values of —a are radial lines passing through -1 + jO. This is the method of finding
out the closed-loop frequency response from the inverse polar plot.

PROBLEM 15.24 Develop the state equation and the output equation of the circuit shown in
Fig. 15.31. L

Fig. 15.31 Circuit diagram.

Solution From Fig. 15.31, the following equation can be developed.
U= g +L % +e
. di.
e=hn+l, ?f-

de

i,=Cdr+i,
Let

e=x, h=Xx3 h=x5
‘Then,

v=xn + L +x

=+ ok

x;=f.'.i',+x,
‘Therefore,

X, —-I-x -lx

1= ERTER

i __L_‘ _r_l +£

RETLNTLRL
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1 r
S by A
Writing in matrix form, we have
1 1
o0 - -
X ¢ ¢ X 0
hl=|-L -4 o |+ Lo (1)
P L L N L
3 1 0~ N 3 0
e L

Let us consider that the outputs are iyr; and iy Therefore,
Y1 = in and y2=ia

Y1 = X and Y2=1x3

[y 00 A

l] ) [ r’] - @
= 2

Y 001 %

Here equation (1) is the state equation and equation (2) is the output equation.

PROBLEM 15.25 Find out the state equation and the output equation of the electric drive

shown in Fig. 1532 r i L
U
v Motor
.
Y
Y z

Fig. 15.32 Electric drive.

Solution In the drive shown, the field current [, is constant. Here

. di d8
V= fl+L'Zr'+K'E'
Torque = T= K,i
2
T= f—de+Fda

di, " dr
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where
J = moment of inertia
F = viscous friction coefficient.

Let
9=X|. 3 = X3 |‘=1:
Thus,
¥ o=x
V=rx; + L.'ll:’ + Kxy
T= KH” = sz + FI;
Therefore,
i =x
. K
e -fnekiy
. K r |4
Xy = —qu-rx3+z
In matrix form, therefore, the state equation is
0 1 0
% oK X ]
k| =0 “F -fl' X [+| 0|V
%3 -K r LT 1
0o =~ L
L L L

With ¥ = 8 = x, as the output, the output equation is
X
y=[10 0]ix

Xy

PROBLEM 15.26 Find the stability or the system whose system matrix is given by

5 -6 =12
-1 1 2
5 -6 -l11

Solution The characteristic equation for the system will be

list - Al =0
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The matrix with two rows and two columns has the minor = 1 x 1 - 1 x 1 = 0. Therefore, the
matrix does not have rank 2.

A system will be rcachable if and only if the matrix Wc has rank a of nth order system.
Therefore, the given system is not termed reachable.
PROBLEM 15.28 A discrete system has the characteristic equation

F+62+8-04=0

Determine whether the system is stable or not.
Solution Apply the bilinear transformation over the system characteristic equation by putting

r+l
r-1

3 2
L) P A2 R I L) PR
r=1 r—1 r—1
1467 + 227 - 122r+ 34 =0
Applying the Routh’s criterion,

I=
Therefore,

Simplifying, we obtain

7146 -122
2 22 34

r =34.76
r 34
As there are two sign changes in the first col the is bl

PROBLEM 15.29 Find the transfer function of the circuit shown in Fig. 15.33 with the help of
the signal flow graph.
Ry e+ b

0
+
C
+
G L ™
' K
Yz o2 h
- -
Un RG:: ::RK I
_ >~ I -

Fig. 1533 Circuir diagram.

Solution The signal flow graph of the circuit shown in Fig. 15.33 is described in Fig. 15.34.
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Fig. 15.34 Signal flow graph of Fig. 15.33.

Applying the Mason’s gain formula, we gel the transfer function as

1
v B R
Y ccry o HCRx) T
! [‘C( Rt R R, TR AR RP]]

- —uRy,
(Rg + R,_)R,Cs+(;t+ DRy + RP + Ry

Note. The mathematical modelling of the above is
Vin = Vgx + LRy

Dga = Mgy + (I + )R

L= Ry + R,

Vour = ~12R),

the following

PROBLEM 1530 How do you
2

d’y
"d—:-z'-‘i')'COS}’ =x

to a linear system when x =0, y = 07

Solution
d—z'r-l-ycnsy =x
dr? B
or
dl
I

differential system
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The d d | frequency is therefore V312 radisecond.

2
5

The time constant = =04s

M| —

5
Dampil tio = —=
amping ratio 2

Und d natural freq ,=ﬁmd-‘s

L

PROBLEM 15.32 Find the free response of the system

2
t’%—h%}+2y =0

with the initial conditions

dy d’y
y(0)=0,—' =1.——| =0
d"'n dr? r=0

Solution Putting 1 = ¢, i.e. x = log 1, we have

dy _ dy dx

dr dx dr
&1
Tdxt

or

(S _ A

dr dx

gy _d[(dy

dit dr \dr
=4 (ldy
Todt \rdx
__Lldy 1d(dy
T 2dx tdtlde
o _Lldy 1d(dy)ds
T Pdx tdxldx)d
L_ldy 1dyd
T Rdx rglt
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1 _£z+d_’z]

A A
or
d'y dy d’y
2 = - — —_—
T T2
Therefore, the differential equation
d’ d
18’y ¥
37-2:E+2y=0
can be written as
-dy d’y _dy _
o +d.r1 de+2y-0
or
d’y ., dy
e 3d.t+2y 0

With ¥ = A¢™, the differential equation becomes
AnPe™ - 3Ame™ + 2Ae™ = 0

or
m-3Im+2=0
or
m=2 or |
Therefore,
y=A|e"‘+A;e‘
= Ayt 4 AgeiR!
= A7 4 A8t
=A|f1+.ﬂ.1l
dy
W0y =0, % =1
d:llIﬂ
d
Tk + Ay
‘When
=0,
rfyl
— =I=Az
dr -d
Again,

2
d—;l =0‘-“M|0Tﬂl'0
dt =0

Therefore, y = ¢ is the free response of the system.
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PROBLEM 15.33 What is singular point? What is Liapunov's stability criterion? Determine
whether the following system is stable or not:

d2 dx‘l' £3+x_0
G dr | dr -

Solution If a system is described by

de
then a single equation is developed by eliminating the independent variable time 1, such as:
dx, Silx,x)
RS

The solution of the above equation will describe a trajectory in the phase plane. The point
(¥1, x5} in the phase plane, which will satisfy the two equations fi(x, x,) = 0 and fa(x;, x,) = 0, is
termed the singular point.
Liapunov’s stability criterion can be described as follows:
If the origin is a singular point. then it is stable if a function Wx;. x5) can be found such
that:
{a) Wir,, x;) is positive for all values of x, and x; except that it may be zero for
n=x=0
(b} dVidt is never positive. If dV/dr is never zero except at the origin, then the origin is
asymptotically stable.

The given system is

2 3
d' dx [dx]+x=0

de* n‘f dt
Let
dx
=x,0= —-, th
Xy =X, X3 @ €n
jl =X = X3
Therefore,

B A x () +x =0
% =x=filx, x)

jz = =X) - X3 — (52}3=f2(x|-x1)

Here, (x), x3) has the singular point at (0, 0) because fi(x;, x;) = 0 and fa(xy, x3) = 0 av(0, 0).
Let us consider V = x{ + x3 which is positive for all x; and x, except x; = x; = Q.
Again,

=25 + 25 [- 5 - X - (0)7]
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= %(a“ -1
Therefore,
X + B) = Ma(ak) + 7 (€ - Dunh)
where h is the period of periodic sampling.
PROBLEM 15.36 Find the impulse response of

25
0= T+ 25

with the help of MATLAB.
Solution

num= [0 0 25];
den= [1 4 25];
Impulse (num, den)

The plot of the impulse response generated by MATLAB is shown in Fig. 15.36.

0 0.5 1 1.5 2 25 3
Time (s}
Fig. 15.36 Impulse response of G(s) = 2545 + ds + 25).



Miscellaneous Solved Problems

497

PROBLEM 1537 Find the step response of

25
G(s)

T v a5
with the help of MATLAB.

Solution

num = [0 0 25];

den = [1 4 25);

step (num, den)

The plot of the step response generated by MATLAB is shown in Fig. 15.37.

Time (s)
Fig. 1537 Unit step response of G{s) = 2545° + 4s + 25).

1
0 0.5 1 L5 2 25 3
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PROBLEM 15.38 How do you find the roots of the characteristic equation
S22+ 7 -2-1=0

wilh the help of MATLAB?

Solution

p=1[(121-2-1]

roots (p)

> pwd

ans =

C:\MATLAB\bin

>> cd

>> ban7

-1.2071 + 0.9783i
-1.2071 - 0.9783i
0.8832
-0.4690

>
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PROBLEM 1540 Develop the Nyquist diagram of the following unity feedback system
1

0= T o1

with the help of MATLAB.
Solution

num = [0 0 1];

den = (1 .8 1);
nyquist (num, den)

The Nyquist plot generated by MATLAB is shown in Fig. 15.39.

Imaginary axis
e
T

i i i i i N ; ; : i

-1 08 -06 -04 -02 0 02 04 06 08 1
Real axis

Fig. 1539 Nyquist plot of G(s) = 1/(s* + 0.85 + 1).
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PROBLEM 15.41 Develop the Nyquist diagram of the unity feedback system

5+2
G0 = 356D
with the help of MATLAB.
Solution
num = [0 1 2];

den = [10 -1];
nyguist (num, den})

Real axis

Fig. 1540 Nyquist plot of G(s) = (s + 2As + s ~ 1)
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a6 =5

PROBLEM 1543 Determine the eigenvalues of A = |1 0 2 |by MATLAB.
32 4

Solution

A = [0 6 -5 10 2; 3 2 4]

B = eigla)

To get started, type one of these: helpwin, helpdesk, or demo.
For product information, type tour or wvisit www.mathworks.com.

>> pwd
ans =
C:\MATLAB\bin .
>> cd ..
>> ban7
A =
0 6 -5
1 0 2
3 2 4
B =
2.0000
1.0000 + 0.00004
1.0000 - 0.00004
>>

PROBLEM 1544 Using MATLAB, find the state space realization of an LTI system,
d ius an SISO s5ystem, where

A=[_g _;} a=m; C=[11]; b=0; E=0.

Solution The state space realization of the LTI system is expressed by the system matrix as
follows:

A+ HE-I1) B na
(o D o
0 0 —Inf
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1 00

PROBLEM 15.45 Calculate the covariant matrix of |0 2 0| with the help of MATLAB.
00 3

Solution

A = [1 0 0; 0 2 0; 0 0 3]

cov(a)

To get started, type one of these: helpwin, helpdesk, or demo.

For product information, type tour
>> pwd
ans =
C:\MATLAB\bin
>> ecd ..
>> ban7
A =
1 0 0
0 2 0
0 0 3
ans =
0.3333 -0.3333 -0.5000
=0.3333 1.3333 -1.0000
-0.5000 -1.0000 3.0000

>

or wvisit www.mathworks.com.

PROBLEM 15.46 Find the transfer function (TF) of the system whose signal flow graph is

shown in Fig. 15.42.

ayz
Fig. 1542 Signal flow graph.

an
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Solution By applying r.hc well-known principles of physics, we find that the variables are related
as follows:

m¥, + b + Ky + by () - 4,) + Ky(n -x;) =0
and

myiy + by =5} + Ky(x; - x) =0
which gives the second-order differential equation model of the system.

PROBLEM 1548 Develop the mathematical model of the system shown in Fig. 15.44.

AL

K; tj B,

M

kS Lin
N

Fig. 1544 Mathematical model.
Solution
At node x;:

Fiy = M% + B (h - 5)+ Ki(x - x)
At node x;:

Maky + Byiy + KyXy = Bi(%) = %) + Ky (x; = x3)
The above two equations give the second-order differential equation model of the system.
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Problem 1549 Sketch the root locus of the system

K
1+ e
s(s +3)(s* 4+ 25+ 2)
with the help of MATLAB.

Solution
num = [0 0 0 O 1};

den = [1 5 8 6 0);

rlocus (num, den)

Imaginary axis

-4 1 1 i
-4 -3 -2 -1 ] 1 2
Real axis

Fig. 1545 Root locus of | + [Kfs(s + 3N + 25 + 2)).
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PROBLEM 15.50 Construct the Bode plot for

e 16(5+2)
T s(s+0.5) (s> + 3.2 + 64)

‘with the help of MATLAB.

Solution

num = [0 0 0 16 32];
den = [2 7.4 131.2 64 0);
bode (num, den)

T T T
0 - e e : o . ‘ - . -
§ T .
‘E
T T S, S -
=
-B0 | e -
~100 - ; | ;
.@n =150
]
£ -200
=250
1 1 1
10t gy 10° 10! 107
Frequency (rad/s)

Fig. 1546 Bode Plot for Gis) = 16(s + 2)/s(s + 0.5)(s* + 3.25 + 64).

PROBLEM 15.51 A first-order system is described by the differential equation
i) = ult), x(0)=x,

Find the optimal law using the Hamilton-Jacobi equation that minimizes the performance
index

%
J= J‘(:.:2 + )t
1]

where #; is specified.
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L= tx(n) + &1

we have
8L d 8L
TR TR =0 (As per Eulers equation)
or
0- E“'?(Hzx(n} =0
or
1+2i(N=0
or
2i=-1
or
dx_ 1
d? 2
or
dx 1
a =K
or
12
..\'ﬂ -ET'I-KI"#K;
Now, x(0) = 1, therefore, K, = 1. Since x(2) is free,
L Lo
ox -
or
(r+286)), ., =0
or
[;+2[-l:+x)] =0
2
1=
or
2K=0
Therefore,
xz—%:’ﬂ

Hence the equation of the curve is x = -%12 +1.

PROBLEM 15.53 Find the state model for a system characterized by the differential equation

3 2
d_y+.6d_y+M+ﬁy =i

it gt dt
Solution The transfer function is
_ Y I
9= Ty £+657+11s+6
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I
TGN+ (5+3)
A B C

= J+l+:+2+:+3

. 1
= M S The

1
2

B= lIm 5 eve =

L1
- :l—‘anfs(s+ll(s+2] 2

Therefore,

I

V 1 3 Uis)+ —2U(sj

2
Yis) = m U(S) -

s+ 543

X;{s) = ':—i%i' U(s)

1

Xis) = Ts+2

Uls)

X0) = = U(s)
Therefore,
sXi(5) + Xy(s) = %U(s)
5X3(5) + 2Xa(s) = =U(s)
5Xi3(5) + 3X3(5) = %U{s)

Taking Laplace inverse of the above equation, we have

X o=-x+ %u
Xy =-2-u
. 1
Xy= -3+ 7
Since
Yis) = Xﬂ;} + Xals) + Xi(s)
we get

YEx 44
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For stability, % <l oo K<2
Matlab plotting of the problem is obtained from the program:

num = [0 0 0 2];
den = [1 2 2 0);
nyquist (num, den)

1 ] 1 1 ] 1 T T T T
100 |- << i
BO = -
60 - wd
du - -
E 0 _
g
A\
E‘ 0 =
£
~20 -
40 - -
—60 - .
—80 -
-0 B -
1 1 1 1 1 1 1 [ 1 1
-1 -9 - -0.7 =06 -05 =04 =03 -0.2 -0.1

Real axis
Fig. 15.49 Nvquint diagrams.

PROBLEM 1555 In the mechanical system shown in Fig. 15.50, determine the
Xy(s)F(s) where x,(f) and f(r) are displacement and force respectively.

B
K
K
x (N
LN
) x3 (1)
—4 |

Fig. 15.50 Mechanical system.

K

value of
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Solution The equation of the mechanical system will be:
At node x;:
f= Bli, — &)+ K(x, - x;) + Kx,
At node xy:
0= Bli;, — i)+ K(x; —x) ) + Kx,

Taking the Laplace transform of the above relations, we have

F(s) = BsX;(5) = BsXa(s) + KX (5) = KXo(5) + KX,(5) (i)
and
0 = BsXy(s) ~ BsX,(s) + KXa(s) - KX,(5) + KXy(5) (ii)
From Egq. (ii), we have
_ (Bs+2K)
Xy(s) = m X;(s)

From Eg. (i), we have
Fs) = (Bs + 2K)X,(5) — (Bs + K)X(s)

or
_ (Bs + 2K) _
F(s) = (Bs + 2K) -—-—~—-—{B: K X1(8) = (Bs + K)X,(5)
On simplification, we obtain
X,(5} Bs+ K

F(s) ~ 2BsK +3K?

PROBLEM 1556 Write the differential equati for the hanical system shown in

Fig. 15.51. Obtain an analogus electrical circuit based on force current analogy.

|_. x I-b-\'z

Fig. 15.51 Mechanical sysiem.

Solution The diffe ial equations for the hanical system will be as follows:
myky + bk + Kyxy + by (% — %) = F)
my ¥y +byxy + by - X))+ Kyxy =0

The mechanical network will be as shown in Fig. 15.52.
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T lbn
| I nll 1
Foy L ) ‘s
~~ . L 1 . £
1Oy w8 (L) [am [Om[t] &8
\ =y = Sl - =
- & by by P
L
Fig. 15.52 Mechanical nerwork.
The electrical analogus circuit is shown in Fig. 15.53.
At the voltage node v;:
1
R o=
i ' by L]
* YATAAYAYS o
in
1 1 Ci(= my) Cyl= mj)
=— = 1 = J_
Fig. 15.53 Electrical anal Jor the hanical system of Fig. 15.52.

—=

L
du, -
_L 2
l(f)—[Ll Iv|di']+ +0 ?l—
At the voltage node v

0= —"—.—|-+l.'.‘,‘“Iz +3’*+-—Iv,dr

Hence
L

it0 = K, Iv,dr+b,v, +m %+bu(v| -1y

L
dv.
0= by(vy -—v,)+m:—&-‘-2-+b;0= +K; j vyt
From the above equations, it is clear that an analogus circuit based on force and current
analogy has been developed.
PROBLEM 15.57 A feedback system has derivative feedback as shown in Fig. 15.54.

(2) If Ky = 0, find the damping ratio, undamped natural frequency w, of the system. What
is the steady-state error to a unil step input?
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1
(6+ WI-5) 2j0, 107
1
{e-a-h-2i6-ciei-¢

1
fet-1-2i\i-2hajo fi-¢
1

) 2[;‘(251- um,,,}i =%+ 220 —§1)m,,]

1 1
2, [xu-cznj(zc‘-n i-cz]

! 1
T 2o 1-C [z;‘h-;z +j(z;2-1)]

1

1
D=C*=
201-¢° ]chl—c‘—;czc’—nl

Therefore,
S - 4
52(52+2§m,x+mf) TP 0,
1
a0 |2 i e g o][s-(-¢o.+ joni-27)]
1
i C [ -G08 0] (o o0

Taking Laplace inverse, the output

o= ;-3{ . r-{w.rvja.ﬁ-
O 20,i- {2 - 0w jog-b)
e—c-.-—m.«'l—_':

+
20,1- [2;J|—;’ - jee- t)]
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or
o= tan™ 2§J1 &
Therefi ;2 '
ore,
o(:)::——+ [Zsinﬂmsm, 1-8%r+2cos@sinw, 1-;2:]
W, 2@, h_;l
o i
=:-w£+'l—¢zsin[m,,qh-§z:+8:|
L] wﬂ —
. . -lx‘jl-gz

207 -1
PROBLEM 15.59 A servo system is represented by the signal flow graph shown in Fig. 15.56.
The variable T is the torque and E is the error. Determine:

(a) The overall transfer function if K; = 1, K; =5, and K3 =5
(b) The sensitivity of the system to changes in K; for @ = 0.

-K;

-1
Fig. 15.56 Signal flow graph.
Solution (a) Overall transfer function

1 1
K, —— s —
30
T= 1 1+s5 §* l
1-| KK A Kk —L
T rs f{ AT (znn‘(s)]
- K3K;
45+ KK, + KKyt +5
5
= v K=1LK=5K=5
S+ +5+455% +5 R : 3=9

.
5 +65° +10
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- . 8T K,
b) Sensitivity of the system to changes in Ky, = — - —
(b} nsitivity o system to changes in K, oK, T
Substituting, s = ja
5K, 5K,
T= s ! ] = ! (v w=0)
() + (o) + 5K, +5K,(jw)y +5 5K +5

5T Ky 5[ 5K, ] K

K, T 8K, |SK +5) 5K
5K, +5

(after differentiation and simplification)

K +1

1
=m=0.5 (- Kp=1)

PROBLEM 15.60 The open-loop transfer function of a unity feedback system is given by

s + )

G = G +10)

Sketch the root locus with & varying from O to ee. Find the angle and real axis intercept of the
asymplotes, breakaway point and the points crossing imaginary axis, if any.

Solution Here,
2(s + @)
G = Gt D +10)
The characteristic equation is
2s +a) -
s+ (s +10)
or
S+ 1257+ 254 2a=0
ar
2a
. I+ —————— =10
' S+ 125" +225
or

1+L=0 l
S5 +125+22)
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The roots of 5* + 125 + 22 = 0 are -2.26, -9.74,

0-226-974 _ 12

Asymptotic centroid = 3 3= -4
+ D
Asymptotic angle = @% wg=01,2
_x 5
T3 3
For breakaway point,
-
s(s+2.26)(s +9.74)
or
2a = —s(s + 2.26)(s + 9.74)
or
da _ _Md s indingl=0
ds 2| ds
or
37+ 245 +22=0
or

—24 +,/576-264
5= —% - -1.06, -6.94

Hence the breakaway point is -1.06.

-9.74

Fig. 15.57 Root locus diagram.
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The characteristic equation is

s(is+ay+ 1 =0
or
Srsa+1=0
or
sa
1+ w—— =0
S+1
The roots are s> + 1 = 0 or 5 =)
Breakaway point:
2+l
o=~
5
or
da _ d s +1 -0
ds ds| s
or
25-5-(s*+1)=0
or

s==%1

Hence the breakaway point is at —1. The root locus will be as shown in Fig. 15.59.

]
-1 Pole
Fig. 15.59 Root locus plot of Fig. 15.58.

Therefore the root locus will be a circle, Now,
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When the damping ratio is 0.5

cos 8= 0.5, cos 60° = 0.5
The coordinate will be

0.5 +jsin60“=0.5+j%
Therefore,
3 2
[05+ 2] Z+211£-§+1
o= =1
0.5+ 0.5+;§

The characteristic equation is

S+l+s=0 or s-—%ij%

The overall transfer function in the factored form is

1
sis+ 1) 1 1

I " Fas+1
T A




Chapter

6 Objective Type Questions

1. A thermostat-controlled room heater is an example of
(@) a continuous system (b) a discontinuous system
(¢) a continuous dynamic system (d) none of the above

2. The strip gauge control in a continuous rolling mill as shown in the figure below is an
example of

—
O
O Main r\;)rive

{a) a single input single output system (b} a multivariable control
fc) a multilevel stochastic control {(d} none of the above
3. A nonlinear system is that system
(a) which obeys the principle of superposition
(b) which does not obey the principle of superposition
(c) which is dynamic in nature
(d) which is none of the above

4. The voltage regulabing system shown in the following figure is
(a) an open-loop system (b} a closed-loop positive feedback system
{c) a closed-loop negative feedback system (d) none of the above

529
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voltage source)

Baf

Mechanical energy

Amplifier supply

-

voltage =

(A stabilized

)

AANAA
VWYY
"’Ij

The system described by & = f(x) is

(a) an autonomous system
(c) a time dependent system

(b) a static system
(d) none of the above

Load

When a system satisfies the properties of homogeneity and additivity, it is termed:

(a) nonlinear
(c) nonlinear dynamic

When a function is described as follows,

it is termed
(a) ramp function
(c) step function

(b) Iine_qr
{d) none of the above

ut) =0 forr<0

ut) =1

fort>0

(b) impulse function
(d) none of the above

The Laplace transform of the impulse function is

(a) zero
(c) greater than one

The stochastic inputs are based on

(a) probability distribution

(c) sinusoidal inputs

(b) one
(d) none of the above

(b} deterministic approach
(d) none of the above

For the critically damped condition, the damping ratio is

(a) zero

(c) any value greater than zero

In the pulse width modulation

(b) equal to one
(d) none of the above

(a) the amplitudes of the pulses are kept fixed
(b) the times of the pulses are kept fixed
(c) both the time and amplitudes of the pulses are kept fixed

(d) none of the above
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15.

In the pulse amplitude modulation system

(a) the amplitudes of the pulses are kept varying

{b) the times of the pulses are kept varying

(c) both the amplitudes and the time of pulses are kept fixed
(d) none of the above

In the pulse frequency modulation

(a} the amplitudes of the pulses are kept varying

(b} the pulses of constant magnitude are produced at the rate which is a function of the
magnitude of the input signal

{c) pulses of variable magnitude are produced at the rate which is a function of the
magnitude of the input signal

(d) none of the above

. The device which converts a continuous signal into a sequence of pulses is termed

(a) synchro (b) amplifier
c) sampler (d) none of the above
The circuit shown below is termed

c
,—-I —
o—AVWA > °
R
(a) differentiating unit (b} integrating unit
(c) adder (d) none of the above
. The circuit shown below is termed
R
o—| | :
c =
(a) integrating unit (b) differentiating unit
(c) adder (d) none of the above

If we have a matrix A of order n having the following characteristic equation

f(l):l"+a|?L"'+---+a.=0
then
fA) =A"+ @ A" "' 4 o pa =0
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is according to
{a) the Mason’s theorem (b) the Cayley-Hamilton's theorem
{c) the Jordan's canonical theorem (d) none of the above

18. If the eigenvalues A(i = 1, 2, ...) of an n x n matrix A are distinct, and if f(A) is any
polynomial in A then,

c " (A=Al
=73 f(m,l}l( "]

et Ker 1’ A(
is according to
(a) the Cayley-Hamilton’s theorem (b) the Sylvesters’ theorem
(¢} the Mason's theorem (d) none of the above

19. IT A is any matrix of order n and X"BX = XTAX, X'CX = 0, then
(a) B is symmetric and C is the skew-symmetric of A
(b) B is skew-symmetric and C is symmetric of A
(¢} B and C are both skew symmetric of A
(d) none of the above

20. The matrix shown below is

4 4 2
-4 5 -2
2 -2 1
(a) positive definite (b} positive semi-definite
(¢} negative definte (d) none of the above

21, If the quadratic form of the matrix A is II].n:f + 4:,2 + x§ + 2xypxy — 2agxy — dayxs, the
mairix A is given by

Mo 1 -2 1 -2

(a) o4 -l by -1 4 -I
-2 -1 1 =2 -1 -1
1o 1 2]

© |-1 4 -1 (d) none of the above.
-2 -1 1

22, A synchro is very similar to
{a) a rotating amplifier
(b} an induction motor
{c) a miniature three-phase star-connected synchronous motor
(dy rnone of the above
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31, If fit) and f°(1) have Laplace transforms, and lin':’ sF(s) exists, then
lim sF(s) = lim_f(1)
Fepm =0

The above phenomenon is termed
(a) convolution property (b} final-value theorem
(c) initial-value theorem (d} none of the above

32. The accuracy of the tachogenerator utilized in the compuler application is

(a) a nonlinearity of 2-4 per cent (b) a nonlinearity of 0.3-0.4 per cent
(c) a nonlinearity of zero per cent (d) none of the above
33. The synchro is
(a) an electromagnetic transducer (b} a static transducer
(c* basically an induction machine (d) none of the above

34. The rotor of a synchro transmitter has

{a) a distributed winding (b) a concentric winding

{c) a bar and an end ring (d) none of the above
35. The output of a synchro-error detector is usually

(a) a sinusoidal waveform (b) a modulated signal

(c) a square waveform (d) none of the above

36. The type of modulation that occurs in a synchro transmitter is
(a) suppressed carrier modulation
(b) single sideband suppressed carrier modulation
(c) double sideband suppressed carrier modulation
(d) none of the above
37. In the case of a synchro error detector system, the rotor of which synchro is required to be
made cylindrical .
{a) synchro transmilter (b} synchro control transformer
(c) synchro generator (d) none of the above
38. ‘The rotor of the differential synchro is usually
(@) delia connected (b) star connected
(c) zig-zag connected (d) none of the above
39. The differential transformer produces an electrical output proportional to the
(a) displacement of the movable core
(b) product of the number of primary and secondary turns
(c) flux density
(d) none of the above
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40,

41,

42,

45,

The advantage of the differential transformer over the synchro is that

(a) there is no requirement of brushes and slip rings

(b) it is entirely a static device

{c) it can be used over an unlimited range of input positions

(d) it has none of the above features

In the case of the variable reluctance differential transformer, the output voltage will not be
shown zero, even though it may be theoretically zero, due 10 the fact that
(a) a quadrature voltage is developed

(b) the two secondary windings are not identical

(c) there occurs error in the mechanical alignment of the movable pant
{d} none of the above may be true

Microsyn is essentially

(a) a rotary differential transformer (b) an induction motor

{c) a reluctance motor (d) none of the above

In the case of a servomotor

(a) the speed-torque curve should have a positive slope

(b) it should be able to withstand frequent starting operations
(c) the rotor should have a high moment of inertia

(d) none of the above may be true

The following figure is

prsms
v

g

(a) the schematic arrangement to reduce quadrature voltage in a differential transformer
(b) the schematic arrangement to maintain quadrature voltage in a differential transformer
(c) the schematic arrangement for tuning the circuit of differential transformer

(d) none of the above .

The advantage of the drag-cup rotor in a two-phase control motor is

(a) 10 minimize the inertia (b} to minimize arcing

(c) to minimize noise (d) none of the above
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46. The principal disadvantage of the two-phase control motor is
(a) the inherent inefficiency of a squirrel cage induction motor running at a large slip
(b) the increase in cost
(c) the vibrations of the motor
(d) none of the above

47. The following figure is

Pulse
generator Stepper motor

!
—)—I Gate l—.—ILogicdrivcr Gear train

Synchros

= )}

6 |

(a) an open-loop control system
(b) a closed-loop control system
() not a control system
(d) none of the above
48. The stepper motor is
(a) an analog device
(b) a digital device
{c) a conventional motor
(d) none of the above
49. The hybrid stepper motor is
(a) entirely a permanent magnet stepper molor
(b) entirely a variable reluctance type stepper motor

{c) a permanent magnel stepper motor having similarity with the variable reluctance
motor from the construction point of view

(d) none of the above
50. The following figure is the schematic view of a two-phase four-pole
(a) variable reluctance stepper motor (b) per

we pper motor
(c) hybrid stepper motor (d) none of the above
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58.

59.

61.

62.

63.

65.

A moulded position p i has the following most important advantage over
the wire-wound potentiometer,

(a) It has finite resolution (b) It has infinite resolution

(c) It is cheap (d) None of the above

The resolution (per rn voltage) of the wire-wound potentiometer is usually
(a) infinite (b) from 0.06% to 0.4%

(€) from 0.6% to 4% (d) none of the above

The chmic range of ceramic potentiometers usually lies between

(a) 5 and 50 k2 (b} 1 k£2 and 100 kQ

(©) 500 Q and 2 MQ (d) none of the above

The linearity of the conductive plastic potentiometer is

(a) from = 0.25% to + 0.5% (b) from = 0.025% to + 0.05%
©) from = 2.5% 10 + 5% (d) none of the above
Wire-wound potentiometers are not used as feedback elements because of their
(a) poor linearity (b} high resistance

(c) noise and finite resolution (d) low maximum power rating

If in a potentiometer position feedback system, the reference voltage of the potentiometer
is made more than the reference voltage of an analog 1o digital converter, then

{a) the potentiometer will be damaged

(b) the analog-to-digital converter will be damaged

(c) the buffer will be damaged

(d) none of the above will be damaged

Optical encoders may be used in a control system for

(a) amplifying the signal

(b) converting linear or rotary displacement into digitial code or pulse signal
(c) isolating the low-power system from the high-power system

(d) none of the above

The type of sensor used in the incremental optical encoder is

(a) LED (b) photo diode

(c) rotating disc (d) stationary mask

For incremental optical encoder, the value of the maximum resolution is
(a) thousands of increments/revolution

(b) hundreds of in frevolution

(c) ten th ds of i frevolution

(d) none of the above
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67.

69.

70.

71.

The following figure is

Channel |

Channel 11

e
ITTTTTTA T T IO Rl T e

(a) the digitial processing of two-channel incremental optical encoder

(b) the analog simulation of two-channel incremental optical encoder
absolute optical encoder

(c) the analog si ion of two-ch
(d) none of the above

The servomotors used in position control systems have the ratio of stall torque and no-load
speed in the low-speed region that is approximately

(a) one-fourth of that at rated vollage

(b) one-half of that at rated voltage

{c) the same as that at rated voltage

(d) none of the above

In a servomotor, the slope of the torque-speed characteristic reduces as the control phase
voltage

(a) increases (b) decreases

(c) remains constant (d) nonc of the above

The drag-cup rotor of ac tachometers is usually made of

{a) copper {b) aluminium

(c) iron {d) none of the above

In order to have a highly stable dc coupled amplification in the feedback mode and ease

in implementation of analog filtering in the forward path of a control system, the dc servo
system needs

(a) a synchro (b) an OPAMP
(c) a stepper motor (c) none of the above
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72,

73.

74,

75.

76.

77.

78.

An ac amplifier compared to a dc amplifier in a control system is

(2) more stable (b) less stable

{c) same from the stability point of view (d) none of the above

An ac control system is preferred to a dc control system in an aircraft system due to the
advantage gained in

(a) stability {b) weight and size

(c) sensitivity (d) none of the above

For large power applications like heavy drives, the dc system is ideal on account of the
advantage gained in

(a) availability of rugged high power amplification by rotating and static amplifiers

(b) low cost

(c) stability

(d) none of the above

A hybrid control system uses

(a) dc components only (b) ac components only

(c) both de and ac components (d) none of the above components

Type 1 system means that the open-loop transfer function has a number of integrations
equal to

(a) zero (b) one

(e) two (d) none of the above

The standard second-order system indicates

{a) one forward path integration {b) two forward path integrations
(c) none forward path integration (d) none of the above

The system shown below is

+ I s+1 Output
Input (s+3)° Ms+2) g
ses+l
s(s+2)
(a) a Type O system (b) a Type I system

(c) a Type 2 system (d) none of the above
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79.

80.

81.

82.

83.

84,

The type of a system which has G =

(a) a Type O system
(c) a Type 2 system

The acceleration error constant of the block diagram shown in the following figure is

42545

and H=s+5is

(b} a Type 1 system
(d} none of the above

+ s+2 4 0‘"“‘“__
Input s+4 s(s+1)
(@ 2 (b) e
0 0 (d) none of the above

The rise time for e(f} = 1 - 7" is
(a) 2.198 s

{c) 2302 s

1
® Fgg S
(d) none of the above

The number of octaves between 200 Hz and 800 Hz is

@ 2
€ 3

If the output in response to a unit-step function input for a particular control system is

() = 1 — €', then the delay time will be

1
@ Tog.2
© 1

(by 4
(d) none of the above

(b) 0.693

(d) none of the above

The transfer function of the network shown in the figure below is

WA
L

% 1

1
Ry +—
@ ——Ci_

1
R,+R._.+a
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92.

93,

95.

The Lagrangian mechanics is defined as
(a) the difference between the kinetic energy and the potential energy

(b) the difference between the mechanical rotational system and the mechanical

translational system
(c) the difference between the thermal system and the pneumatic system
(d) none of the above

The sinusoidal transfer function of the transfer function H—.\J is
Ms*+ Fs+ K
- o

@ —— ) ——

m’+£ja:+£ —m’+£j¢n+£

M M M M
o
(c) —F & {d) noane of the above
2 F. R

@+ M Jjo+ o
For low-speed high-torque applications, the actuators which are preferred are
(a) chemical (b) pneumatic
(c) hydraulic (d) none of the above
The output of a sensor is invariably in the form of
(a) a velocity signal (b} an acceleration signal
(c) an electrical signal (d) none of the above

. The steady-state error of unit-ramp input in the Type 2 system is

@ = b o
) 1 (d) none of the above
The steady-state error of unit-parabolic input in the Type O system is
(@ 0 (b) e
© 1 (d) none of the above

The circuit diagnm shown below is

AAAAA
VWY

i

7
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545

102.

103.

104.

105.

106.

107.

(a) that of a phase-lag network
(c) that of a lag-lead compensator

The circuit diagram shown below is

G,
oA

(b) that of a phase-lead network
(d) none of the above

R’y

—& °

(a) that of a lag-lead compensator
{c) that of a lead compensator

(b} that of a lag compensator
(d) none of the above

The digital controller having the Z-transfer function is not realized in one of the following

ways:
(a) Pulse data RC-network
{c) Digital processor

The eigenvalues of matrix

(b) Computer program
(d) None of the above

0 1 0
A= 3 0 2 are
-12 -7 -6
(@ 1,2,3 by -1,2, -3
€y -1,-2,-3 (d) none of the above
Hysleresis in mechanical transmission is termed

(a) backlash
(c) damping

(b) dead zone
(d) none of the above

Compared to coulomb frictional force, the force of stiction

(a) is always greater
(c) is always less

(b) is always equal
(d) is none of the above

The relay has definite amount of dead zone in the control system on account of the fact

that

(a) the relay coil requires a finite amount of current to actuate the relay

(b) the relay is not much sensitive
(c) the relay is of rotating type
(d) none of the above may be true
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114.

115.

116.

117.

118.

{a) has both the eigenvalues real and negative
(b) has both the cigenvalues real and positive
{c) has stable nodal point
(d) has none of the above

The phase portrait of the second-order system shown below in the y,, y; plane has

»
»n
(a) stable focus (b) unstable focus
(c) stable nodal point (d) none of the above
If the eigenvalues are on the imaginary axis, the phase portrait has
(a) closed path trajectories (b) spiral trajectories focusing at the origin

(c) trajectories converging to the origin (d) none of the above

A forced system will be stable

(a) with zero input and arbitrary initial conditions if the resulting trajectory tends
towards the equilibrium state

(b) if with bounded input, the system output is bounded

(c) if the trajectory passes through the origin

(d) if none of the above are true

The stability of a system which approaches the origin as time tends to infinity is termed

(a) asympiotically stable (b) limitedly stable
(c) oscillating in nature (d) none of the above
If the traj ies of a nonli control system are eventually trapped into the closed

curve, then it can be concluded that

() a stable steady-state oscillation will never be attained

(b) a stable state oscillation results with the voltage oscillating with fixed amplitude
(c) asymptotic stability has been attained

{d) none of the above are true
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122,

123.

124.

125.

In the figure below:

Imaginary

(a) A has unstable limit cycle and B has stable limit cycle
(b) A has stable limit cycle and B has unstable limit cycle
(c) both A and B have unstable limit cycles

(d) none of the above are true

Is there any universal method for selecting Liag w functi ?
(2) Yes (b) No
() Yes, but with certain limitations (dy None of the above
The block diagram shown in the figure below is
! Pa
“1 adjustment
’j—'ﬂ
Set point [
> > ! Plant P——-—I-
N
Controller
(a) for a PI controller (b) for a PID controller
(c) for an adaptive controller (d) for none of the above controllers

% = -KE-g—i. where p is the adjustable parameter of the controller, E is the error, and K
is a constant of proportionality. The above equation is termed

(2) MIT rule (b) model reference adaptive control rule
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126.

127.

128.

129.

130.

If a scalar function W(x, t) satisfies the following conditiogs,

(1) Wix, 1) is lower bounded
(ii) W (x, 1) is negative semi-definite
(i) W (x, 1) is uniformly continuous in time
then W(x, 1) > Dast— 0.
The above theory is termed

(a) Liapunov theory (b)
(c) Gradient theory (d)
Self-tuning control is mostly utilized in

(a) continuous time (b
() non- sive least sq imation (d)
The block diagram shown below is

Barabalal’s lemma
none of the above

discrete lime
none of the above

Performance objective
Parameter
Design criterion (modelling)
Set poi
et point /'\ - Phan OQutput

O3

{a) for a self-tuning controller (b)
(c) for a fuzzy logic-based conirol system (d)
The fuzzy rules are

(a) “If-then" rules (b)
(c) “GO TO" rules )
The standard formula for the performance index

for a model reference adaptive controller
for none of the above

MIT rules
none of the above

I3
= % YT HY (1) + 21 j'[r’(rmr(r) +u” (1) Ru(t)) dt
[

is for the followi blem of optimal | system.

¥

{a) State regulator problem (b)
{c) Servomechanism problem (@

Output regulator problem
None of the above
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131.

132.

133

135.

136.

The standard formula for the performance index
h

J= % XT@)HX (1) + % I[x’(n OX (1) +u” (1) Ru(n)) dr
Iy

is for the following problem of optimal control system.

{a) State regulator problem {b) Output regulator problem
{c) Tracking problem {d) None of the above
The standard formula for the performance index

t
J= % (1) He () + % [t 0 ety + ™ () Ruto d
[

where e(r) = [X(r) — ()] is for the following problem of optimal control system

{a) State regulator problem (b) Output regulator problem
{c) Tracking problem (d) None of the above
T -

J':e’(:)dr, (where e(1) is the error) is termed

o

(@) ITAE (b) ITSE

(©) ISE (d) none of the above
T

[tle]ar is termea

V]

(a) ITAE (b) ITSE

() ISE (d) none of the above

Iez(:)d.r is termed
1]

(a) ISE (b ITSE
(c) ITAE (d) nonc of the above

The integral square error of the second-order system with unit-step input having damping

coefficient { and undamped natural frequency m,, is

1 1 1 1
® 7 [z—c'”} ® H[f”g)
() 4; z (d) none of the above
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137. The integral time square error of the second-order system with step input having damping
coefficient ¢ and undamped natural frequency a, is

1 1 1
(a) E[?“z‘::] (b) m2[4;1 cz]

()

! (d) none of the above
Im

138. The following quadratic form
W(X) = 10X} + 4X3 + X} + 2X,X; — 2X:X; — 4X) X3
(a) is positive definite (b) is negative definite
(¢) is negative semi-definite (d) is none of the above

~Ts
139. The Nyquist stability plot for :+ —. a > 0 will be:

(a) (b)

d f the abo
() —~ (d) none of the above

140. The Nyquist stability plot for GH = . a, b > 0 will be:

.H-b)

MWYL Imaginary
) ] ”"'f_ ® £ Jab
Real
\_-, — ;‘ E)
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©

A
\. t\fab
, Real

(d) none of the above
]

K, e*TJ
141. The Nyquist stability plot for GH = —L

is

s{s+1)
Imaginary 4
@ () 2 _
Real
Imaginary 4
(©) (d) none of the above
U/ Real

142. 1Is there any need of compensation to find a maximum overshoot of 20 per cent for the
system defined by GH = ﬂ
s (s +100)

{a) Yes, lag-lead compensator

(b) No compensation
(c) Yes, lag compensator

(d) None of the above
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2 -

(a) Because of positive feedback, no conclusion about the system stability can be drawn
from the given Nyquist plot.
(b) The system is stable.
(c) The system is unstable.
(d} The system has a limited stability.
9. The open-loop transfer function of a control system is given by

K(l + sT,)

Gis) =
) s*(1 + sTy)

The Nyquist plot of the system will be as shown below, if

Imaginary
Glja)
=1, j
(-1,J0) _ .
0w @ = Real
(@ Ty=0 ) T;<T
© Tu=T @ Ty>T
10. The transfer function of a unity feedback system is given by
G(s) = =

s +2)
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where K = 25. For this sy , the most suitable comp ion would be
{a) phase-lag network

(b) phase-lead network

(c) tachometer feedback

(d} tachometer plus high-pass filter feedback.

11. A linear system is given by

i o=x

j] =X + 13

The state transilion matrix is

e o ' e 0
@ L" M"] ® [re" e’i]
¢ 0 e 0
d
© [l‘" e'] @ [z' le']

12. The state equations of a system are given by

-3 10 0
X = 0 -3 0Olx+|0]u

0 0 -1 1
y=[1 0 1]x

The system is

(a) controllable and observable

(b} controllable but not completely observable
©) ither controllable nor letely observable

v

{d) not completely controllable but observable.

13. The piece-wise linear approximation for the magnitude response in dB of a rational
function is shown below. The rational function has

20 logy IHI
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(a) three zeros and one pole (b) two zeros and two poles

(c) one zero and three poles (d) no zero and four poles

The figure below shows a liquid heating systcm the liquid flow rate being constant. The
block diagram of the sy for incr hanges will be (where R is the thermal

resistance and C the thermal capacitance)

\P Mixer

Liquid in I
—

temperature 6,

Liquid out
—

temperature £

Ady(s)

(a) AH(s) (E‘i} R Af(s)
RCs + 1

A8,(s)
AH(5) 1 AB(s)
b). —_— R + TTRGs P
AH(s)
ABy(s) 1 1 A8(s)
© T F® RCs + 1
AB(s)
AH(s) 1 AB(s)
d, —_
@ R 3T RC
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19. The system shown below has a unit-step input.

20.

21,

K [
(s + D(0.Ls + 1)

In order that the steady-state error is 0.1, the value of K required should be

@ o1 : ) 09
€) 1.0 ) 9.0
Consider the following ding the adv ges of the closed-loop negative

feedback control system over the upe;—loop system,
1. The overall reliability of the closed-loop system is more than that of the open-loop
system.
2. The transient response in the closed-loop system decays more quickly than that in the
open-loop system.
3. In an open-loop system, closing of the loop increases the overall gain of the system.
4. In the closed-loop system, the effect on the performance of the system due 1o
variations in component parameters is very much reduced.

Of these statements:

(2) 1 and 3 are correct (b} 1 and 2 are correct
(c) 2 and 4 are correct (d) 3 and 4 are correct
. K
The Nyquist locus of a transfer function G(s)H(s) = T+sT is shown below. The locus is
1

modified as shown on addition of a pole or poles to the original function G(s)H(s).

jw 4 Imaginary
G(5)H(s) Modified locus
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27.

jw
(h) ¥ * >
a
Jaw
(c) - X ]'
1‘ o
Je
(d) e * \ >
o

The open-loop transfer function of a control system is given by
Kis +10)
s(s+2)(s + a)
The smallest possible value of a for which the system is stable in the closed loop for all
positive values of K is
(@) 0 M 8
() 10 ) 12

The figure below shows the root locus of the open-loop transfer function of a control
syStem.

o
PQ=PQ =26
PR=14

0 - OR=20
0Q=0Q =14
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28.

29.

30.

3L

32.

The value of the forward path gain K at the point P is

() 02 by 14
) 34 (d) 4.8
The open-loop transfer function of a unity negative feedback control system is given by
_ K(s+2)
=TG-

For K > 6, the stability characteristics of the open-loop and closed-loop configurations of
the system are, respectively,

(a) stable and stable (b) unstable and stable
(c) stable and unstable (d) unstable and unstable
A phase-lag compensation will

(a) improve the relative stability

(b) increase the speed of response

(¢) increase the bandwidth

(d) increase the overshoot

The maximum phase shift that can be obtained by using a lead compensator with transfer
function

_ 41 +0.155)
0= 005

is equal to

(n) 15° (by 30°

(c) 45° ) 60°

Consider the following slatements regarding a first-order system with a proportional (P)
controlier which exhibits an offset to step input. In order to reduce the offset, it is
necessary o

1. increase the gain of the P-controller

2. add a derivative mode

3. add an integral mode
Of these statements

(a) 1,2, and 3 are correct (b) 1 and 2 are correct
(c) 2 and 3 are correct (d) 1 and 3 are correct

The state model of the system shown in the figure below is given by

o [o)-Lo R E o ] -1 TRC)
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o Lal-ls <lel-Bl o [&)-Le SR

U | (S 1 X 1 X,

wi
-

33. A system is described by the slate equation

34,

35.

- le )L

The state transition matrix of the system is

e!! 0 [ e—z: 0
b)
@ [0 elr:l ® 0 e_"'jl

e 1 .e'z' 1
(c) |:1 fn] (d) - e"’]

An effect of phase-lag compensation on a servo system performance is that

(a) for a given relative stability, the velocity constant is increased
(b) the bandwidth of the system is increased

(c) the time response is made faster

(d) none of the above is true.

aft)y = [; ::| x(r) + [:}u(:)

Consider the system
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oy =[d, dy]xl0)

The condition for complete state controllability and complete observability is
(@) dy >0, b;>0, & and d; can be anything
by d, > 0,dy >0, by and by can be anything
(€) by >0, by >0, d; and d, can be anything
(dy by >0, dy >0, b; and d; can be anything
36, Canonical decomposition of a linear time-invariant system is given by

-3 0 -8 6 0
X={0 -5 -12|X+|0 6u
0o 0 -t 00
00 -4
Y:
i

Itis

(2) completely controllable and observable

{b) completely controllable but unobservable

(c) uncontrollable but observable

(d) neither completely controllable nor observable

37. The transfer function of a multi-input multi-output system, with the siate space
representation of

X =AX + Bu
Y=CX+Du
where X represents the state, ¥ the output and  the input vector, will be given by
@) C(sl-AY'B (b) CsT-AY'B+D
© W-A'B+D d (sI-A'B

38. What will be the closed-loop transfer function of a wnity feedback control system whose
step response is given by
o(f) = K [1 = 1.66 ™ sin (s + 37°)]

100K K
{a) —_— RS
s+ 165 + 100 ® s + 165 + 100
(©) L S— (d) None of the above

52+ 85 + 10
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39. The overall transfer function C/R is given by

R c 10
&)—{] ? (o f—1 -
l_! 10
H, G; =
| | s+ 1
F_| Hy =5+3
H, I
;J H: =1
10
@ —2 ® — 0
115° + 315 + 10 115° + 315 + 100
100
€ —— (d) none of the above
11s* + 315

40. The signal flow graph of a system is shown below.

TS

R(s) C(s)

In this graph the number of three non-touching loops is
(@ 0 ) 1
) 2 3

41. The sum of the gain products of all the possible combinations of two non-touching loops
in the signal flow graph shown below, is
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(@) talg + gy (b) fatiy + fala
©) Ity + tuls + Iy (d) fagtaatsz + ltay

42, The closed-loop gain of the system shown below, is

Ri(s) bz‘ n )

[T
Lz |
9 6
(a) -3 (b) -3
6 9
(c) 3 (d) 3
43, The response c(f) of a system to an input r(r) is given by the following differential
equation:
d’e(t) | , de(t) _
TJ}?— +3 di + Sc(t) =5r1)
The transfer function of the system is given by
5 1
(@) Gls)s 5———— b) G)= 5¥———
) £+35+5 s +35+5
3s s+3
c = — d) Gis)= ————
€ G S +35+5 @ ¢ S+ 35+5
44, For the RC circuit shown below, V; and V, are the input and the output of the system
respectlively.
o T A ©
R

5o ~d
>
e T

The block diagram of the system is represented by

(b Vils) R Vls) >
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45,

46,

47,

48,

49,

50.

The transfer function of a control system is given as

S S
S +as+ K

where K is the gain of the system in rad/amp.
For this system to be critically damped, the value of K should be

@ 1 ® 2
© 3 ) 4

A linear system initially at rest, is subjected to an input signal
M=1-¢" (20

The response of the system for ¢ 2 0 is given by
n=1-e%

The transfer function of the system is

T(s) =

5+ 2 s+1
@ s+1 ® s+ 2
2(s+ 1) 1s+1
© s+ 2 @ 2s5+2

If the time response of a system is given by the following equation

=3t

y(©) =5 + 3 sin (@ + &) + ™ sin (wr + &) +

then the steady-state part of the above response is given by

(a) 5+ 3sin (o + &) (b) 5+ 3sin (@ + &) + e sin (w1 + &)
© 5+e¥ @ 5
The impulse response of a system is 5¢'%. Its step response is equal to
(@) 0.5 (b) 5(1 - &%
© 05(1 - '™ @ 100 - &',
The fer function of a sy is 10/(1 + 5). When operated as a unity feedback system,
the steady-state error 1o a unit-step input will be
{a) zero ) .1/11
{c) 10 (d) infinity
The open-loop transfer function of a system is given by
G(s)= K

s(s+ (s + 4)
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28

40
(©) m (d) 8
55. Which of the following propertics are associated with the state transition matrix ¢(r)?
L ¢n=¢"'m

2. pini) =) 7t
3. 9l -1 =9(-1) $(1)

Select the correct answer using the codes given below.

(@ 1,2,and 3 M I and 2
(€) 2and 3 (d) 1land3
56. Given KK, = 99; 5 = jl rad/s, the sensitivity of the closed-loop system, shown below, to
variation in p K Is approximately,
_K
EG s+l W)
1 T
-1 K,
(a) 0.01 ®) 0.1
€ 10 @ 10

57. The transfer function C/R of the system, shown below, is

G, H. G H,
® H0+606H) ® Ta+ GG Hy)
H, G, H,

© A +GGHy @ H+GGHy)
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58. The Nyquist plot for a control system is shown below.

=i +j0

Imaginary

w=0

The Bode plot for the same system will be as in

161 —20 dBidec
(a)
IGI
-20 dB/dec
- V'
(®)
ay \ g
-40 dB/dec
h
161
- 40 dBidec
(c)

\4—-v60d'BMec
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62. For the Nyquist plot of the open-loop transfer function G{(s)H(s) shown below:

Imaginary
‘\\:GH plane
N _ @ = —u“'.
-1 +j0) @ = 4o Real
A ’
i

(a) The open-loop system is unstable but the closed-loop system is stable
(b} Both the open-loop and the closed-loop systems are unstable

(c) The open-loop system is stable but the closed-loop system is unstable
(d) Both the open-loop and the closed-loop systems are stable.

63. In the control system shown below, the controller which can give zero steady-state error to
a ramp input, with K = 9 is of

+ X
Controller "G+ D
(a) proportional type (b) integral type
(c) derivative type (d) proportional plus derivative type

64. The gain cross-over frequency and bandwidth of a control system are @, and @y,
respectively. A phase-lag network is employed for comy ing the system. If the gain
cross-over frequency and bandwidth of the cnmpemat:d system are @), and @y,
respectively, then
(@) @ < Wy Oy < Dy (b) G > a O < Oy
€) @ < Wyt Wiy > Dy ) Q> Gy Wy > Wy

65. The transfer function of a certain system is

o  ____t
Uls)  s*+57+75°+ 65+ 3
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575

The A, B matrix pair of the equivalent state space model will be

0o 1 0 0}fj0 o 1 0 o0}jo
® 0 1 ofl0 b) o 0 1 0]i0
Y 1o o o 1ffo ® 1o 0 o 1fo
-3 -6 =7 =5]|1] -3 =5 -6 -T7]|1]
[0 1 0 o][1] 1 0o o o]fo]
0 0 1 0]j0 o 1 0 o0]j0
) (d)
0o 0 o0 1]]0 0o 0 1 0]|0
-5 -7 =6 -3]|0] -3 -6 -7 =5]|1]
A linear system is described by the stale equations
L Xz 1 1]l X; 1
C=Xz
where R and C are the input and the output respectively. The transfer function is
1 1
b) ——
(a) T3 (b) T
1
© d) —s
SR @ (s -1}
If the state equation of a dynamic system is given by
X (1) = AX(1)
-1 1 0 0 0
0o-1 1 0 0
where A= 0 0 -1 0 0
0 0 0 -3 4
0 0 0 -4 -3
the eig: | of the sy would be
(a) real non-repeated only {b) real non-repeated and complex
{(c) real repeated (d) real repeated and complex

A simple electric heater is shown below. The system can be modelled by

(a) a first-order differential equation {b) a second-order differential equation

(c) a third-order differential equation {d) an algebraic equation




Objective Type Questions 577

72.

73

74.

75.

76.

The system given above is
(a) controllable and observable (b) uncontrollable and observable

(c) unc le and bservable (d) controllable and unobservable

Which of the following systems is an open-loop sysiem?

(a) The respiratory system of a human being

(b) A system for controlling the movement of the slide of a copying milling machine
{c) A theromostatic control

(d) Traffic light control

For the signal flow graph shown below, the overall transfer function of the system will be

-H, -H;
R G ¢
c c_ G
@ ®=C ® FETw,
c. 6 _ <. G
© REUTH)+ H) @ R=T+H+H

A linear second-order system with the transfer function

49
Gis)s ——
© 5* + 165 + 49

is initially at rest and is subjected to a step-input signal. The response of the system will
exhibit a peak overshoot of

(a) 16% b) 9%
() 2% (d) zero

A system has the following transfer function

100 (s + 5)(s + 50)
sts + 10)(5° + 35 + 10)

Gis) =

The type and order of the system are respectively
{(a) 4 and 9 (b) 4 and 7
() Sand7 (d) 7and5

The open-loop transfer function of a unity feedback control system is

K(s + 10) (s + 20)

Gls) =
“) s+ 2)
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579

80. A closed-loop nonlinear system is shown below.

L]
¢

D=

The phase plane plot in the e-¢ plane is

(a)

©

£

e
-

/]
L=

v

LY

(d) none of the above.
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A.1 FINITE SUMMATIONS

n I_alnl
L EJ: ——  (whereaw 1)

ia _ _ sl
2 L sl e M) @k D)
3 Y id -a——[(l-m)-(“l) e @2 - D™ - ™Y @2 D)
i=0

4 Z i =n(n2+ 1)

i=0

i e n(n+1)(2n+1)

& 6

6. il! = 2——("*‘1)2

A.2 LAPLACE TRANSFORMS

Time function, xft} Laplace transform, X{(s)
x(1), where x(r) = 0 for ¢ < 0 X(s) = _|' ) dr
[\]
1 a4 e
o =1 o — -
27 = 5 J}_ Xis)eds = x(1) X(s)
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Time function, x(1) Laplace transform, X(s)
xy(1) [ X,(s)
! X;(s
0 = let ) Xo) = 3‘( )
.00 | Xa08)
Sl Sty - ful0) [fa®) fial®) - fia()
)= fn’(’} fn.w f;..m A = fn.(‘) fu.(-'} fz-.(')
Sty Lualt) 0 funlD) L fo1(3) fua(8) - fonls)
ax(t) + by(n) aX(s) + b¥(s)
d ,
E:m = i1} 1X(5) = x(0)
d" _ . d dn-! Q‘"-I
il £X(s) - s"'x{0) - 5 =Exw;- s g al0) = x(0)
t X(s
J st s
0
(1) (unit impulse at 1 = 0) 1
it - @ X(s)e @
[
[ soye-nar X()¥(s)
(1]
x(t} = 1 (unit step) 1
4
" 1
! o
i 1
€ st
(g 1
—e —
nl (s+a)*!
= 2 a
-« s ta
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Time function, x{t)

Laplace transform, X(s)

sin wt <
s+’
I
cos e P
. @
& sin ar Gray+w
€™ cos ant H—,ﬂ,
(s+a)y +w
A.3 Z-TRANSFORMS
Time function, x(n) Z-transform, X{(z)

x(n), where x(n) = 0 for n < 0

FUX@) = 57“;‘[ X(@e"dz = x(n)

[ x,(m)
Xy(m)
xn) =
L *a(m)
[faln) fam) o fyln)
oy = fn‘(") fn:('l) fuj(ﬂ)
L) fua(n) - fru(n)
ax(n) + by(n)
xn + 1)
xin + K)

x(n - K)

X@) = Y, xmz"

X@@)
[ X,(2)
x;[?.]
X(z) = .
| Xa(2)
[ fnld)  fa@ = ful@
Fo) = .F":tz} fr.-:{:) fn:(:)
| (D) fual2) - fal2)
aX(z) + b¥(z)
X(2) - zx(0)

k-1
XX - 3, XD

% X(2)
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Time function, x(1) Z-transform, X(z)
L
2, n= iy XY
j=0
u(n) = unit pulse at n =0 1
z
an) =1 Xy = —7
z
n {: - ])3
o Hz+ D
-1
a =
i-a
1
-1 —_
a t~a
ml—l z
(z~a)!
et z{z +a)
(z-ay’
. zsin @
sin wn S p—
o =2zcosw+1
cos @n ; z(z — cos @)
T -2zcosw+1
A.4 MATRIX
ay &y v G
Gy O3 v gy
L A=lay=

i Gmz " Oy
[m x n rectangular matrix]
2. When m = n, the matrix A is a square matrix.
3. A" = Transpose of A = [a;]. It is obtained by interchanging rows and columns.

A = Conjugate of A. It is obtained by
conjugate.

placing every el in A by its complex
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42,

43.

45.
46.
47.
48.
49.
50.
51.
52.
53.

54.

det A™' = m

det P~ AP = det A

tr(A") = ir(A)

tr{A + B) = tr(A) + te(B)

tr(AB) = tr(BA) [I(AB) # tr(A) tu(8)]

tr(PIAP) = tr(A)

P(A) = P(4)

P(A) S min (m, n): A is an m X n matrix.

P(AB) < min (P(A), P(B))

P(A) = n if and only if det ATA # O (for a real m X n matrix A).
P(A) = m if and only if det AAT # O (for a real m X n matrix A).

A square real matrix A can be expressed as the sum of a symmetric matrix A, and a skew
symmetric matrix A

A=A1+H‘2
A lmmf}
)

A—lm AT
=54~ )

Integration and differentiation of vectors and matrices.

x(r )]
xy(1)
x(t) =

%,(1) ]

ay( Y]
de(ny %)

dr :
X, (1) |
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59. Differentiation of scalar/vector with respect to a vector

Silx) = floxy, Xy oy X))

5 |

8x,0x,

&f
dx,8x,

&y

X,) is

84
bx,
5f
=2
6,;(.»\') =g = 8x,
31
| 6x, |
where g,(x) is termed the gradient of f(x).
[ £ 06 X300 X,)
60 fin= | B
_fn(ll-"z L ‘tu}
DA
ox, dx, 8x,
3 3 . o
S _ Jx) = | Ox  Ox bz,
bx
St fn . Olm
| 0x Ox dx, |
where J(x) = f {XJ is termed the Jacobian matrix of f with respect to x.
61. The second denvallvr. of scalar valued function f(x) = fix;, x5, -,
B &
5xf  Oxdx,
& f &F
8if re)
5 = H(x) = | 6x:0%,  6x3
8 f &
| Ox,0x;  Ox,0x,

where H(x) is called the Hessian matrix.

Sxn’
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68.

70.

71.

72

73.

74.

75.

76.

78.
79.

8 T
—[tr{Ax)] = A
Sx[( 0l

f—[rr(x’@xn =@+0QNx
X

For f= fix) and g = g(x)

ﬁxg ﬁxf

&

&(f g)
-;;(xr(r)Qx(t)l =x"Q" + Q)i
i[l'r(.‘l(I)C)] = tr[a—AC]‘, C is a constant.
&r &t

-;—[u(a"(:)C)] = -[u[4'1ﬁ4'1C]]; C is a constant.
t &t

[
3A (r(AB)]

6 Tl
_— B
A tr{A'B")

&
= —r{BTAT
EAB( )

8

= — tr(BA) = BT

5Atfi ]
dixT
:r}=l; xis an n x 1 vector.
d(x"b) b bi 1
o isann Vector.
i—(:ﬁt):ix
T
% = 2Ax; A is an n X n symmetric matrix.

If A is an n % n matrix, the characteristics equation will be
A-Al=2+aq "'+ -+ a,d+a,=0
The Cayley-Hamilton theorem states that
A"+ @A™ 4 v a A+ ald=0
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A.5 MATLAB

Functions

color Color control models
datafun Data analysis

plotxy 2-D graphics

elemat Matrix manipulation
funfun Function functions
general General commands

lang Language constructs
specmat Special matrices

General Purpose Command

path Control MATLAB's path
which Locate functions and files
save Save workspace variables
size Size of matrix

load Retrieve variable

dir Directory listing

Language Constructs

function
for

if
return
while
input

Add new functions

Repeat statements
Conditional execution
Return to invoking function
Repeat conditionally
Prompt for user input

Matrix and Math Functions

eye Identity matrix

rand Random number

abs Absolute value

exp Exponential

log Natural logarithm
cos Cosine

sqrt Square root

det Determinant of matrix
norm Matrix or vector norm
rrefl Row-reduced form
cross Vector cross product
Graphic Functions

plot Linear plot

hist Histogram plot

ops
plotxyz

graphics
specfun

clear
length

break
else
elseil

acos
angle

bar
title

Matrix functions
Operators

3-D graphics

Polynomial function
Sparse matrix functions
Graphics functions
Specialized math functions
Character string functions

Display M-file contents
Clear memory

Length of vector

List variables

Change working directory
Terminate MATLAB

Terminate execution loop
used with if

used with if

Terminate loops
Generate menu

‘Wait for user response

Ones matrix

Zeros matrix
Inverse cosine
Phase angle

Sine

Complex conjugate
Remainder after division
L1 rows or cols
Matrix inverse
Orthogonalization
Vector dot product

Bar graph
Graph title
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Acceleration error constant, 94
Adaptive controller, 8 9, 462, 549
Admissible trajectory, 377
Amplidyne, 340

circuit diagram, 341
Amplifier, 2. 4, 5, 6. 7. 8,

power, 3. 121
Analog to digital converter, 289
Asymptotes, 178, 197, 198, 204, 205, 578

angles of, 236, 237

centroid of, 235, 237
Auto-correlation, 66
Automatic frequency control, 4
Autonomous system, 261
Autosyn, 325

Bandwidth, 190, 198, 191
Bang-Bang control, 417
Beam balance system, 6, 7
Bilinear transformation, 115
Bode plot, 196, 572
actual curve, 205
asymptotic curve, 205
comer (or break frequency), 196
gain margin, 223, 224
magnitude plot, 196
methods of plotting, 198
phase angle plot, 196
phase margin, 223, 224
Bounded system, 145

Companion form, 135, 137
Compensation, 2, 35, 239 .
feedback (or parallel), 239, 240
feedforward, 240, 241
series (or cascade), 239
state feedback, 239, 240
Compensators, 235
Control systems
block diagrams, 10, 12, 13, 14,
hods of solving probl
closed-loop, 1. &
examples of, 2, 3. 4, 5.6, 7
merits and demerits of, 8
concept of, |
models of, 10
block diagram, 10
differential equations, 10
signal flow graph, 10, 192
multiple input and multiple outpat, 14
open-loop, 1, 8
merits and demerits of,
stages of development, 8
Control transformer, 127
electrical zero, 128
Controllability, 113, 114, 566
in canonical form (CCF), 113, 115, 116
example of, 114
indices, 135
matrix, 114, 135
Controlled variable, 1
Controllers, 235, 465, 574

27
21

Breakaway point, 174, 175, 176, 179, |80, 181, 182, integral, 246

236, 238, 533

Calculus of variations, 74, 386, 187
three standard forms, 391

Cayley-Hamilton's theorem, 532

CCF, 113, 534

Characteristic equation, 66, 84, L11. 112
roots of, 163

PD, 249, 250, 461, 544

PI, 246, 247, 248, 249, 460, 544, 549

PID, 252, 460, 544, 549

proportional (P), 246, 248
Convolution, 61

property, 534




596  Iudex

Cross-field generator, 341, 342
external characteristics of, 342, 344
Cut-off frequency, 190, 191

Damping coefficient, 170
DC servomotor, 323
Dead zone, 279, 283, 286, 545
Decibel, 218
Decoupling, 140
Delay time, 87
Describing function, 276, 277, 279, 548
application of, 281
input and output of, 280
nonlinear system, 282
Diagonal canonical form, 119
Diagonal matrix, 120
Difference equation, 307
Differential synchro, 130, 534
Differential transformer, 323, 330, 331, 533, 535
Digital control system, 289
Digital to analog converter, 290
Discrete convolution, 294
Dynamic equations, 112, 119
Dynamic programming, 386, 430, 431, 433, 438

Eigenvalues, 66, 67, 68, 72,
Eigenvectors, 66, 67, 69, 70, 71, 72, 126
Electrical damping, 338
Electromagnetic balance system, 6. 7
Error constants, 94
Error detector, |

potentiometer, 2

synchro, 327
Euler’s equation, 74, 393

Feedback control systems, types of, 94
Feedback elements, |
Final-value theorem, 49, 64
Finite summation, 581
First-order system. 18
unit-ramp response of, &0
unit-step response of, 79
Frequency response, 188
methods of describing, 191
nonunity feedback systems, 229
normalized driving signal frequency, 188
second-order system, 190
stability in, 207
Functions, minimization of, 369

controller, 458, 459
logic, 435, 460, 461
neural networks, 457
rules, 460

set, 455, 458
system, 455

Gain cross-over frequency, 218, 219, 222
Gain margin, 216, 218, 220, 221, 223

Gradient method, 364, 365
Gyroscope, 323, 353, 467
accuracy, 360
free gyro, 358, 537
integrating gyro, 360
mathematical analysis of, 355

positional (or directional), 353, 154

rate gyro, 359, 537
restrained, 359, 537
vertical gyro, 354

Hamilton-Jacobi
principle, 186, 424
equation, 425
Hamiltonian function, 418
Hermitian form, 72
Hessian matrix, 561
Hold circuit, 290
extrapolators, 292
Hurwitz
determinant, 150
minors of, 151
stability criteria, 149, 152, 153
Hysterisis, 287, 288, 345, 345

Imbedding principle, 430, 433
Impulse sampling, 297
Impulse signal, 299
Initial-value theorem, 47, 62
Inverse polar plot, 195
Isocline, 269, 274

for a nonlinear system, 275

for a second-order system, 271

Jacobian matrix, 589

Jordon canonical form, 125
example of, 125

Jordon's elimination technigue, 367

Jury's stability test, 311



Index

597

Lag compensator, 243, 545, 553, 564
Lag-lead compensator, 244, 345, 553
Lagrange fixed end problem, 392
Lagrangian
mechanics, 343
multiplier, 390
Laplace transforms, 40, 298, 576, 581
convolution property, 47
exponential function, 41
final-value theorem, 49
initial-value theorem, 47
inverse of, 50
properties of, 46
ramp function, 41
real integration theorem, 51
sinusoidal function, 41
some useful functions, 43
translated function, 42
unit-impulse function, 43
unit-pulse function, 42
unit-step function, 40
Lead compensator, 241, 242, 545, 560
Leaming system, 8, 9, 463
Liapunov’s method, 255, 494
application of, 255
first theorem, 261, 265
function, 262
second method, 262, 263, 265, 266
Limit cycle oscillation, 216
Linear discrete system, 293

Magnetic amplifier, 323, 344, 347, 348, 533
with feedback, 149
transfer characteristics, 148
Mason's gain formula, 21, 23, 167, 506, 554
Matlab, 496-505, 508, 509, 516, 592
M-circles, 225, 226, 229, 562

Matrix, 584
Matrix-Riccati equation, 427, 428
Metadyne, 340

Microsyn, 332, 515

Microwave communication, control system in a, 2. 5

Minimum
energy problem, 377, 378
fuel problem, 377, 378
regulator problem, 377
time problem, 377, 386
Missile launching and guidance system, 3
Motor drive, 2
Multivariable control system, 9. 10
block diagrams, 14
example of, 10

N-circles, 227, 228, 229
MNegative definiteness, rules for, 73
Neural-fuzzy systems, 457
Neural networks, 455, 456, 457
Nichols chart, 229, 230, 231, 232
Nonlinear systems, 255, 184
Nonlinearities
backlash, 285, 286
characteristic, 278
dead zone, 279, 283, 286
friction, 284
incidental, 284
intentional, 284
relay, 286, 287
with dead zone, 287
with hysteresis, 288
with hysteresis and dead zone, 288
ideal, 287
saturation, 284
Non-touching loops, 567
Non-unity feedback system, 95
closed-loop frequency response, 229
Normalized frequency, 188, 190
Numerical methods for minimization, 369
Fletcher-Powell method, 369
flow chart of, 371
Newton-Raphson method, 370
Nyquist contour, 209, 210, 211, 215

Nyquist plot, 221, 552, 553, 556, 557, 572, 574

Nyquist stability criterion, 207, 208, 210, 213

Objective function, 363
Observability, 113, 116, 566
in canonical form (OCF), 116
matrix, L16
On-off controller, 279, 283
Optical encoder, 338, 539
Optimal control, 362, 386, 551
mathematical procedures for design, 186
problem, 375
design of, 377
solution of, 377
Optimal trajectories, 418, 420, 422
Optimality principle, 430, 431
Optimization, 363
with constraint, 165
feasible zone, 165
gradi hnique (method), 364, 365
infeasible zone, 165
steepest descent method, 363, 364
unconstrained, 369
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Optimum step size, 369
Output regulator problem, 377, 179, 446, 530

Parameter optimization, 446
Parseval's relation, 62
Peak overshoot, 88
calculation of, 20
Peak time, 87
calculation of, 89
Performance index, 376, 377, 378, 379
1AE, 376, 551
ISE, 376, 551
ITAE, 316, 551
ITSE, 376, 551
in Lagrangian form, 390
Phase cross-over frequency, 218
Phase margin, 216, 218, 220, 222, 223
Phase plane method, 268
Phase plane trajectory
nonlinear sysiem, 272
second-order systems, 268
Phase portrait, 272, 546, 547, 578
Phase trajectory, 268, 548
Polar plot, 191, 192, 193, 194, 195
Pontryagin's
function, 412
optimum policy, 411, 418, 422, 433
Position-error constant, 93, 94
Positive definiteness, rules for, 73
Potentiometer, 2, 323, 324, 325, 538
servo-operated, 6
Precession, 353, 355
Principle of causality, 482

Reachable, 488, 489
Real integration theorem, 51
Resonant frequency, 189
Rise time, 87
caleulation of, 88
Root contour, 1RO
Root locus, 165, 166, 556
methods of drawing, 168
rules for construction, 171
second-order system, 165
Routh's array, 151, 152, 153, 154,
Routh’s stability criteria, 151, 152,
applications of, 158

155, 157
153, 138, 177

Sampler, 289, 290, 296

output of, 293

pulse, 295

with zero-order hold, 293
Sampling, 290

frequency, 2491

impulse, 297

theorem, 292

uniform periodic, 290
Saturable core reactors, 345, 347

demerits of, 347

as a magnetic amplifier, 347, 348

Schilrcohn-stability test, 319, 320
Second-order system, 80
characteristic equation of, 84
an example of, &1
overall transfer function, 83
unit-step response of, 87
Self-tuning control, 454
Selsyn, 325
Sensitivity, 15, 129
of the closed system, 17
definition, 16
model
block diagram, 134
signal fMlow graph, 134
Sensitivity analysis
eigenvalue, 129
performance, 129
trajectory, 129, 130
matrix, 131
vector, 130
Sensitivity model, 133, 134

Servomechanism problem, 377, 380, 550

Servomotor, 332, 539
ac, 335
characteristics, 336, 337
de, 333

armature-controlled, 10, 334

field-controlled, 333, 334
Settling time, 88
calculation of, 91
steady-state eror, 92

Signal flow graph, 10, 19, 20, 21, 27, 554, 560, §77

from equations, 20

methods of solving problems, 27

from practical examples, 23
Signal reconstruction, 292
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Signum function, 420
Similanity transformation, 112
Singularities, 40
Stable limit cycle, 548
Stability, 149, 145
analysis of discrete systems, 310
method of, 311, 312
asymptotic, 145, 260, 261, 263
example of, 146
marginally stable, 148, 150, 155, 159
example of, 149
methods of, 149
relative, 149
study of, 215
State equations, 104
State feedback decoupling, 140
State model, of a linear system, 109
State regulator problem, 377, 178, 438, 500
for continuous time system, 442
State-transition equation, 107, 558, 565
State-transition matrix, 105, 106, 110, 558, 565, 571
properties of, 106
State variable analysis, 100
characteristic equation, 111
transfer function, 111
Steady-state error
calculation, 92
of control system, 92
unit-parabolic input, 93, 95
unit-ramp input, 95
unit-step input, 95
Steepest descent method, 363
Stepper motor, 323, 349, 536, 537
hybrid, 516
permanen!t magnet, 349, 352, 536
variable reluctance, 349, 350, 536
Stochastic inputs, 530
Superheterodyne receiver, as closed-loop
control system, 4
Sylvester's criterion, 73, 267
Synchro, 323, 325, 532
constructional features, 126
for data transmission, 326, 327
for error detection, 327, 328, 534
transmitter, 318, 534
Synch b ical ler, 297

System dynamics, 1§
disturbance signal, 19

Tachogenerator, 323, 338, 475, 534
ac, 339
de, 339
Taylor's series, 75, 370
Time-invariant system, stable model of, 104
Time response, I8
Transducers, 323
error sensing, 124, 325
sensitivity of, 325
Transfer function, 111
Transversality condition, 399
Type 0 system, 94, 95, 540, 541
Type | system, 94, 95, 540, 541
Type 2 system, 94, 95, 340, 541

Unbound system, 146, 147, 148
Unity feedback system, 18, 92, 96

Variable end point problem, 196
Vorriobt e+t 11

Velocity-error constant, 93, 94
W-ellipses, 261

Zero-order hold, 292, 393, 295, 296, 300, 317, 319
Z-transform, 31, 298, 299, 583
pplication o sampled data systems, 300
auto-cotrelation sequence, 66
final-value theorem, 64
initial-value theorem, 62
inverse of, 54
by partial fraction method, 57
by power series expansion, 35
linearity, 59
one-sided, 63
properties of, 39
region of convergence (ROC), 5L, 53, 56
scaling, 60
time reversal, 60
time-shifting, 60
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