MEASUREMENT AND
DETECTIONOFRADIATION

Second Edition






MEASUREMENT AND
DETECTION OF RADIATION

Second Edition

Nicholas Tsoulfanidis
University of Missouri-Rolla

)

Taylor &Francis

Publishers since |79




1995

USA Publishing Office: Taylor & Francis
1101 Vermont Avenue, N.W.
Suite 200
Washington, DC 200053521
Tel: (202) 289-2174
Fax (202) 289-3665

Distribution Center: Taylor & Francis
1900 Frost Road
Suite 101
Bristol, PA  19007-1598
Tel: (215) 7855800
Fax (215) 785-5515

UK Taylor & FrancisLtd.
4 John St.
London WCIN 2ET
Tel: 071405 2237
Fax 071 8312035

MEASUREMENT AND DETECTION OF RADIATION, Second Edition

Copyright ©® 1995, 1983 Taylor & Francis. All rights reserved. Printed in the United
States of America. Except as permitted under the United States Copyright Act of 1976,
no part of this publication may be reproduced or distributed in any form or by any

means, or stored in a database or retrieval system, without the prior written permission of
the publisher.

1234567890BRBR 98765

This book was set in Times Roman by Technical Typesetting Inc. The editors were
Christine E. Williams and Carol Edwards. Cover design by Michelle M. Fleitz. Printing
and hinding by Braun-Brumfield, Inc.

A CIP catalog record for this book is available from the British Library.
(@) The paper in this publication meets the requirements of the ANSI Standard
739.48-1984 (Permanence of Paper)

Library of Congress Cataloging-in-Publication Data

Tsoulfanidis, Nicholas
M easurement and detection of radiation/Nicholas Tsoulfanidis.—
2nd ed.
p. cm.

1. Radiation-Measurement. 2. Nuclear counters. |. Title.
QC795.42.T78 1995
539.77—dc20 94-24270
CIP

ISBN 56032-317-5



To Zizeta






CONTENTS

1.1
12
13
1.4
1.5

21
22
23
2.4

Preface to the First Edition
Preface to the Second Edition

INTRODUCTION TO RADIATION MEASUREMENTS

What is Meant by Radiation?

Statistical Nature of Radiation Emission

The Errors and Accuracy and Precision of Measurements
Types of Errors

Nuclear Instrumentation

1.51 Introduction

1.5.2 The Detector

1.53 The NIM Concept

1.5.4 The High-Voltage Power Supply

1.5.5 The Preamplifier

1.5.6 The Amplifier

1.5.7 The Oscilloscope

1.5.8 The Discriminator or Single-Channel Analyzer (SCA)
1.5.9 The Scaler

1.5.10 The Timer

1.5.11 The Multichannel Analyzer

Bibliography

Reference

STATISTICAL ERRORS OF RADIATION COUNTING

Introduction

Definition of Probability

Basic Probability Theorems

Probability Distributions and Random Variables

N=IV-EEN o S VRV S NS

23

23
23
25
28

vii




viii CONTENTS

2.5
2.6
27
2.8
2.9
2.10

211
212
2.13
2.14
2.15

2.16
217
2.18

2.19

2.20
221

3.1
3.2
33
34
35
3.6
37

38

Location Indexes (Mode, Median, Mean)
Dispersion Indexes, Variance, and Standard Deviation
Covariance and Correlation
The Binomial Distribution
The Poisson Distribution
The Normal (Gaussian) Distribution
2.10.1 The Standard Normal Distribution
2.10.2 Importance of the Gaussian Distribution for
Radiation Measurements
The Lorentzian Distribution
The Standard, Probable, and Other Errors
The Arithmetic Mean and Its Standard Error
Confidence Limits
Propagation of Errors
2.15.1 Calculation of the Average and Its Standard Deviation
2.15.2 Examples of Error Propagation—Uncorrelated Variables
Goodness of Data—y? Criterion—Rejection of Data
The Statistical Error of Radiation Measurements
The Standard Error of Counting Rates
2.18.1 Combining Counting Rates
Methods of Error Reduction
2.19.1 The Background Is Constant and There Is No Time Limit
for Its Measurement
2.19.2 There Is a Fixed Time T Available for Counting
Both Background and Gross Count
2.19.3 Calculation of the Counting Time Necessary to Measure a
Counting Rate with a Predetermined Statistical Error
2.19.4 Relative Importance of Error Components
Minimum Detectable Activity
Counter Dead-Time Correction and Measurement of Dead Time
Problems
Bibliography
References

REVIEW OF ATOMIC AND NUCLEAR PHYSICS

Introduction

Elements of Relativistic Kinematics
Atoms

Nuclei

Nuclear Binding Energy

Nuclear Energy Levels

Energetics of Nuclear Decays

3.7.1 Gamma Decay

3.7.2 Alpha Decay

3.7.3 Beta Decay

3.7.4 Particles, Antiparticles, and Electron-Positron Annihilation
3.7.5 Complex Decay Schemes
The Radioactive Decay Law

30
33
33
35
37
39
43

45
46
48
49
52
55
55
56
58
62
64
67
68

68

69

69
70
71
73
76
78
78

79

79
79
83
86
88
91
92
94
96
97
102
103
103




39

3.10

4.1
42

4.3
4.4
4.5
4.6

4.7

4.8

49

5.1
52
53

CONTENTS ix

Nuclear Reactions 107
39.1 General Remarks 107
3.9.2 Kinematics of Nuclear Reactions 109
Fission 113
Problems 117
Bibliography 119
References 119

ENERGY LOSS AND PENETRATION OF RADIATION

THROUGH MATTER 121
Introduction 121
Mechanisms of Charged-Particle Energy Loss 122
4.2.1 Coulomb Interactions 122
422 Emission of Electromagnetic Radiation (Bremsstrahlung) 123
Stopping Power Due to Ionization and Excitation 124
Energy Loss Due to Bremsstrahlung Emission 129
Calculation of dE /dx for a Compound or Mixture 131
Range of Charged Particles 132
4.6.1 Range of Heavy Charged Particles (p, d, f, a;1 <4 < 4) 133
4.6.2 Range of Electrons and Positrons 138
4.6.3 Transmission of Beta Particles 142
4.6.4 Energy Loss after Traversing a Material of Thickness ¢ < R 143
Stopping Power and Range of Heavy lons (Z > 2, 4 > 4) 144
47.1 Introduction 144
4.7.2 The dE /dx Calculation 145
47.3 Range of Heavy lons 149
Interactions of Photons with Matter 150
4.8.1 The Photoelectric Effect 153
4.8.2 Compton Scattering or Compton Effect 154
4.8.3 Pair Production 157
4.8.4 Total Photon Attenuation Coefficient 158
4.8.5 Photon Energy Absorption Coefficient 161
4.8.6 Buildup Factors 162
Interactions of Neutrons with Matter 166
4.9.1 Types of Neutron Interactions 166
492 Neutron Reaction Cross Sections 166
4.9.3 The Neutron Flux 17
4.9.4 Interaction Rates of Polyenergetic Neutrons 172
Problems 173
Bibliography 174
References 175
GAS-FILLED DETECTORS 177
Introduction 177
Relationship Between High Voltage and Charge Collected 179

Different Types of Gas-Filled Detectors 180



x CONTENTS

54

5.5

5.6
57

58
5.9

6.1
6.2

6.3

6.4
6.5

6.6

6.7
6.8
6.9
6.10

Ionization Chambers

5.4.1 Pulse Formation in an Ionization Chamber

5.4.2 Current lonization Chambers

Proportional Counters

5.5.1 Gas Multiplication in Proportional Counters

5.5.2 The Pulse Shape of a Proportional Counter

5.5.3 The Change of Counting Rate with High Voltage—The
High-Voltage Plateau

Geiger-Miiller Counters

5.6.1 Operation of a GM Counter and Quenching of the Discharge

5.6.2 The Pulse Shape and the Dead Time of 2 GM Counter

Gas-Flow Counters

5.7.1 The Long-Range Alpha Detector (LRAD)

5.7.2 Internal Gas Counting

Rate Meters

General Comments about Construction of Gas-Filled Detectors

Problems

Bibliography

References

SCINTILLATION DETECTORS

Introduction

Inorganic (Crystal) Scintillators

6.2.1 The Mechanism of the Scintillation Process

6.2.2 Time Dependence of Photon Emission

6.2.3 Important Properties of Certain Inorganic Scintillators
Organic Scintillators

6.3.1 The Mechanism of the Scintillation Process

6.3.2 Organic Crystal Scintillators

6.3.3 Organic Liquid Scintillators

6.3.4 Plastic Scintillators

Gaseous Scintillators

The Relationship Between Pulse Height and Energy and
Type of Incident Particle

6.5.1 The Response of Inorganic Scintillators

6.5.2 The Response of Organic Scintillators

The Photomultiplier Tube

6.6.1 General Description

6.6.2 Electron Multiplication in a Photomultiplier
Assembly of a Scintillation Counter and the Role of Light Pipes
Dead Time of Scintillation Counters

Sources of Background in a Scintillation Counter

The Phoswich Detector

Problems

Bibliography

References

183
183
187
189
189
194

195
199
199
200
201
204
205
206
208
209
209
210

211

211
212
212
215
216
218
218
220
220
221
222

222
222
223
224
224
227
228
230
231
232
233
233
234



7.1
72

7.3

7.4

75

1.6

8.1
8.2

8.3

8.4

CONTENTS xi

SEMICONDUCTOR DETECTORS

Introduction

Electrical Classification of Solids

7.2.1 Electronic States in Solids—The Fermi Distribution Function
7.2.2 Insulators

7.2.3 Conductors

Semiconductors

7.3.1 The Change of the Energy Gap with Temperature
7.3.2  Conductivity of Semiconductors

7.3.3 Extrinsic and Intrinsic Semiconductors—The Role of Impurities
The p-n Junction

7.4.1 The Formation of a p-n Junction

7.4.2 The p-n Junction Operating as a Detector

The Different Types of Semiconductor Detectors

7.5.1 Surface-Barrier Detectors

7.5.2 Diffused-Junction Detectors

7.5.3 Silicon Lithium-Drifted [Si(Li] Detectors

7.54 Germanium Lithium-Drifted [Ge(Li)] Detectors
7.5.5 Germanium (Ge) Detectors

7.5.6 CdTe and Hgl, Detectors

Radiation Damage to Semiconductor Detectors
Problems

Bibliography

References

RELATIVE AND ABSOLUTE MEASUREMENTS

Introduction

Geaometry Effects

8.2.1 The Effect of the Medium between Source and Detector

8.2.2 The Solid Angle—General Definition

8.2.3 The Solid Angle for a Point Isotropic Source and a
Detector with a Circular Aperture

8.2.4 The Solid Angle for a Disk Source Parallel to a Detector
with a Circular Aperture

8.2.5 The Solid Angle for a Point Isotropic Source and a Detector
with a Rectangular Aperture

8.2.6 The Solid Angle for a Disk Source and a Detector
with a Rectangular Aperture

8.2.7 The Use of the Monte Carlo Method for the Calculation
of the Solid Angle

Source Effects

8.3.1 Source Self-Absorption Factor (f,)

8.3.2 Source Backscattering Factor (f,)

Detector Effects

8.4.1 Scattering and Absorption Due to the Window of the Detector

8.42 Detector Efficiency (€)

235

235
236
236
238
238
239
241
243
245
246
246
250
252
252
252
254
258
258
259
260
261
262
262

265

265
267
267
268

269

273

274

274

276
277
277
279
282
282
283



xii CONTENTS

85

9.1
9.2
9.3
9.4

9.5

9.6

9.7
9.8
9.9
9.10

10

10.1
10.2
103
104
10.5
10.6
10.7

10.8
10.9
10.10
10.11
10.12
10.13

8.43 Determination of Detector Efficiency

Relationship Between Counting Rate and Source Strength
Problems

References

INTRODUCTION TO SPECTROSCOPY

Introduction

Definition of Energy Spectra

Measurement of an Integral Spectrum with a Single-Channel Analyzer
Measurement of a Differential Spectrum with a Single-Channel
Analyzer (SCA)

The Relationship Between Pulse-Height Distribution and

Energy Spectrum

Energy Resolution of a Detection System

9.6.1 The Effect of Statistical Fluctuations: The Fano Factor
9.6.2 The Effect of Electronic Noise on Energy Resolution

9.6.3 The Effect of Incomplete Charge Collection

9.6.4 The Total Width I'

Determination of the Energy Resolution—The Response Function
The Importance of Good Energy Resolution

Brief Description of a Multichannel Analyzer (MCA)

Calibration of a Multichannel Analyzer

Problems

References

ELECTRONICS

Introduction

Resistance, Capacitance, Inductance, and Impedance
A Differentiating Circuit

An Integrating Circuit

Delay Lines

Pulse Shaping

Timing

10.7.1 The Leading-Edge Timing Method
10.7.2 The Zero-Crossing Timing Method
10.7.3 The Constant-Fraction Timing Method
Coincidence-Anticoincidence Measurements
Pulse-Shape Discrimination

Preamplifiers

Ambplifiers

Analog-to-Digital Converters (ADC)
Multiparameter Analyzers

Problems

Bibliography

References

285
287
289
291

293

293
293
295

296

298
300
301
303
303
304
304
305
307
310
314
315

317

317
317
321
324
325
326
328
329
330
331
331
337
339
342
344
347
349
350
350



11
111
11.2

11.3
114

11.5

11.6

12

12.1
12.2

123
124

12.5
12.6
12.7

12.8
12.9
12.10

13

13.1
13.2

DATA ANALYSIS METHODS

Introduction

Curve Fitting

Interpolation Schemes

Least-Squares Fitting

11.41 Least-Squares Fit of a Straight Line
11.4.2 Least-Squares Fit of General Functions
Folding and Unfolding

11.5.1 Examples of Folding

11.5.2 The General Method of Unfolding
11.5.3 An Iteration Method of Unfolding
11.5.4 Least-Squares Unfolding

Data Smoothing

Problems

Bibliography

References

PHOTON (GAMMA-RAY AND X-RAY) SPECTROSCOPY

Introduction

Modes of Energy Deposition in the Detector

12.2.1 Energy Deposition by Photons with E < 1.022 MeV
12.2.2 Energy Deposition by Photons with E > 1.022 MeV
Efficiency of X-Ray and Gamma-Ray Detectors: Definitions
Detection of Photons with NaI(Tl) Scintillation Counters
12.4.1 Efficiency of Nal(T1) Detectors

12.4.2 Analysis of Scintillation Detector Energy Spectra
Detection of Gammas with an NE 213 Organic Scintillator
Detection of X-Rays with a Proportional Counter

Detection of Gammas with Ge Detectors

12.7.1 Efficiency of Ge Detectors

12.7.2 Energy Resolution of Ge Detectors

12.7.3 Analysis of Ge Detector Energy Spectra

12.7.4 Timing Characteristics of the Pulse

CdTe and Hgl, Detectors as Gamma Spectrometers
Detection of X-Rays with a Si(Li) Detector

Detection of X-Rays with a Crystal Spectrometer

12.10.1 Types of Crystal Spectrometers

12.10.2 Energy Resolution of Crystal Spectrometers
Problems

Bibliography

References

CHARGED-PARTICLE SPECTROSCOPY

Introduction
Energy Straggling

CONTENTS xiii

353

353
353
355
359
360
361
364
365
368
371
372
373
377
378
378

381

381
381
382
385
389
392
392
395
398
399
400
401
411
412
418
419
420
421
426
428
430
431
431

433

433
434



xiv CONTENTS

13.3

134

13.5

13.6
13.7
13.8
139
13.10

14

14.1
14.2

14.3
14.4

14.5

14.6

14.7

Electron Spectroscopy

13.3.1 Electron Backscattering

13.3.2 Energy Resolution and Response Function of Electron Detectors
13.3.3 Energy Calibration of Electron Spectrometers
13.3.4 Electron Source Preparation

Alpha, Proton, Deuteron, and Triton Spectroscopy
13.4.1 Energy Resolution and Response Function of Alpha Detectors
13.4.2 Energy Calibration

13.4.3 Source Preparation

Heavy-Ion (Z > 2) Spectroscopy

13.5.1 The Pulse-Height Defect

13.5.2 Energy Calibration: The Schmitt Method
13.5.3 Calibration Sources

13.5.4 Fission Foil Preparation

The Time-of-Flight Spectrometer

Detector Telescopes (E dE /dx Detectors)

Magnetic Spectrometers

Electrostatic Spectrometers

Position-Sensitive Detectors

13.10.1 Position-Sensitive Semiconductor Detectors
13.10.2 Multiwire Proportional Chambers

Problems

Bibliography

References

NEUTRON DETECTION AND SPECTROSCOPY

Introduction

Neutron Detection by (n, Charged Particle) Reaction

142.1 The BF; Counter

14.2.2 Boron-Lined Counters

14.2.3 SLi Counters

14.2.4 *He Counters

Fission Chambers

Neutron Detection by Foil Activation

14.4.1 Basic Equations

14.42 Determination of the Neutron Flux by Counting the Foil Activity
Measurement of a Neutron Energy Spectrum by Proton Recoil
14.5.1 Differentiation Unfolding of Proton Recoil Spectra

14.5.2 The FERDOR Unfolding Method

14.5.3 Proportional Counters Used as Fast-Neutron Spectrometers
14.5.4 Organic Scintillators Used as Fast-Neutron Spectrometers
Detection of Fast Neutrons Using Threshold Activation Reactions
14.6.1 The Code SAND-II

14.6.2 The Code SPECTRA

14.6.3 The Relative Deviation Minimization Method (RDMM)
14.6.4 The LSL-M2 Unfolding Code

Neutron Energy Measurement with a Crystal Spectrometer

439
439
441
442
444
445
446
446
446
447
447
450
452
452
453
455
456
458
459
459
461
462
463
463

467

467
468
469
473
474
475
476
478
478
482
484
487
488
489
494
496
501
502
502
503
503



14.8

149
14.10

14.11

15

151
15.2
153
15.4

155
15.6
15.7
158
159
15.10

16

16.1
16.2
16.3
16.4

16.5

16.6
16.7

The Time-of-Flight Method

14.8.1 The Neutron Velocity Selector (Neutron Chopper)
14.8.2 Pulsed-lon Beams

Compensated Ion Chambers
Self-Powered Neutron Detectors (SPND)
14.10.1 SPNDs with Delayed Response
14.10.2 SPNDs with Prompt Response
Concluding Remarks

Problems

Bibliography

References

ACTIVATION ANALYSIS

Introduction

Selection of the Optimum Nuclear Reaction
Preparation of the Sample for Irradiation
Sources of Radiation

15.4.1 Sources of Neutrons

15.4.2 Sources of Charged Particles

15.4.3 Sources of Photons

Irradiation of the Sample

Counting of the Sample

Analysis of the Results

Sensitivity of Activation Analysis
Interference Reactions

Advantages and Disadvantages of the Activation Analysis Method
Problems

Bibliography

References

HEALTH PHYSICS FUNDAMENTALS

Introduction

Units of Exposure and Absorbed Dose

The Relative Biological Effectiveness—The Dose Equivalent
Dosimetry for Radiation External to the Body

16.4.1 Dose Due to Charged Particles

16.4.2 Dose Due to Photons

16.4.3 Dose Due to Neutrons

Dosimetry for Radiation Inside the Body

16.5.1 Dose from a Source of Charged Particles Inside the Body
16.5.2 Dose from a Photon Source Inside the Body

Internal Dose Time Dependence—Biological Half-Life
Biological Effects of Radiation

16.7.1 Basic Description of the Human Cell

16.7.2 Stochastic and Nonstochastic Effects

CONTENTS xv

505
508
509
510
511
512
517
518
519
520
520

523

523
524
526
528
528
529
529
530
531
532
534
536
537
537
538
538

541

541
542
544
547
547
549
552
555
555
556
558
562
563
564



xvi CONTENTS

16.8
169

16.10

moaw»

Radiation Protection Guides and Exposure Limits
Health Physics Instruments

16.9.1 Survey Instruments

16.9.2 Thermoluminescent Dosimeters

16.9.3 Solid-State Track Recorders (SSTRs)
16.9.4 The Bonner Sphere (the Rem Ball)

16.9.5 The Neutron Bubble Detector

16.9.6 The Electronic Personal Dosimeter

16.9.7 Foil Activation Used for Neutron Dosimetry
Proper Use of Radiation

Problems

Bibliography

References

APPENDIXES

Useful Constants and Conversion Factors

Atomic Masses and Other Properties of Isotopes
Alpha, Beta, and Gamma Sources Commonly Used
Tables of Photon Attenuation Coefficients

Table of Buildup Factor Constants

INDEX

567
570
571
572
576
579
580
581
582
582
585
587
587

589

589
591
595
599
605

607



PREFACE TO THE FIRST EDITION

The material in this book, which is the result of a 10-year experience obtained in
teaching courses related to radiation measurements at the University of Mis-
souri-Rolla, is intended to provide an introductory text on the subject. It
includes not only what I believe the beginner ought to be taught but also some
of the background material that people involved in radiation measurements
should have. The subject matter is addressed to upper-level undergraduates and
first-year graduate students. It is assumed that the students have had courses in
calculus and differential equations and in basic atomic and nuclear physics. The
book should be useful to students in nuclear, mechanical, and electrical engi-
neering, physics, chemistry (for radiochemistry), nuclear medicine, and health
physics; to engineers and scientists in laboratories using radiation sources; and
to personnel in nuclear power plants.

The structure and the contents of the book are such that the person who
masters the material will be able to

1 Select the proper detector given the energy and type of particle to be counted
and the purpose of the measurement.

2 Analyze the results of counting experiments, i.e., calculate errors, smooth
results, unfold energy spectra, fit results with a function, etc.

3 Perform radiation measurements following proper health physics procedures.

The first chapter defines the energy range of the different types of radiation
for which instruments and methods of measurement are considered; it gives a
brief discussion of errors that emphasizes their importance; and, finally, it
presents a very general description of the components of a counting system. This
last part of the chapter is necessary because a course on radiation measure-
ments involves laboratory work, and for this reason the students should be
familiar from the very beginning with the general features and functions of
radiation instruments.
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The second chapter addresses the very important subject of errors. Since all
experimental results have errors, and results reported without their correspond-
ing errors are meaningless, this chapter is fundamental for a book such as this
one. Further discussion of errors caused by the analysis of the results is
presented in Chap. 11.

Chapters 3 and 4 constitute a quick review of material that should have
been covered in previous courses. My experience has been that students need
this review of atomic and nuclear physics and of penetration of radiation
through matter. These two chapters can be omitted if the instructor feels that
the students know the subject.

Chapters 5-7 describe the different types of radiation detectors. Full
chapters have been devoted to gas-filled counters, scintillation detectors, and
semiconductor detectors. Detectors with “special” functions are discussed in
Chap. 17.

The subject of relative and absolute measurements is presented in Chap. 8.
The solid angle (geometry factor) between source and detector and effects due
to the source and the detector, such as efficiency, backscattering, and source
self-absorption are all discussed in detail.

Chapter 9 is an introduction to spectroscopy. It introduces and defines the
concepts used in the next four chapters. Chapter 10 discusses the features of the
electronic components of a counting system that are important in spectroscopy.
Its objective is not to make the reader an expert in electronics but to show how
the characteristics of the instruments may influence the measurements.

Chapter 11 presents methods of analysis of experimental data. Methods of
curve fitting, of interpolation, and of least-squares fitting are discussed concisely
but clearly. A general discussion of folding, unfolding, and data smoothing,
which are necessary tools in analysis of spectroscopic measurements, occupies
the second half of this chapter. Special methods of unfolding for photons,
charged particles, and neutrons are further discussed in Chaps. 12 through 14,
which also cover spectroscopy. Individual chapters are devoted to photons,
charged particles, and neutrons. All the factors that affect spectroscopic mea-
surements and the methods of analysis of the results are discussed in detail.

Chapter 15 is devoted to activation analysis, a field with wide-ranging
applications. Health physics is discussed in Chap. 16. I feel that every person
who handles radiation should know at least something about the effects of
radiation, radiation units, and regulations related to radiation protection. This
chapter may be omitted if the reader has already studied the subject.

Chapter 17 deals with special detectors and spectrometers that have found
applications in many different fields but do not fit in any of the previous
chapters. Examples are the self-powered detectors, which may be gamma or
neutron detectors, fission track detectors, thermoluminescent dosimeters, photo-
graphic emulsions, and others.

The problems at the end of each chapter should help the student under-
stand the concepts presented in the text. They are arranged not according to
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difficulty but in the order of presentation of the material needed for their
solution.

The appendixes at the end of the book provide useful information to the
reader.

I use the SI (metric) units with the exception of some well-established
nonmetric units, which, it seems, are here to stay. Examples are MeV, keV, and
eV for energy; the barn for cross sections; the curie; and the rem. These units
are given in parentheses along with their SI counterparts.

Writing a book is a tremendous undertaking, a task too big for any single
person. I was fortunate to have been helped by many individuals, and it gives me
great pleasure to recognize them here. First and foremost, I thank all the former
students who struggled through my typed notes when they took the radiation
measurements course at the University of Missouri-Rolla. Their numerous
critical comments are deeply appreciated. I thank my colleagues, Dr. D. Ray
Edwards for his continuous support, Dr. G. E. Mueller for his many useful
suggestions, and Drs. A. E. Bolon and T. J. Dolan for many helpful discussions
over the last 10 years. I also thank Dr. R. H. Johnson of Purdue University for
reviewing certain chapters. 1 especially thank my dear friend Professor B. W.
Wehring of the University of Illinois for numerous lengthy discussions following
his detailed critical review of most of the chapters. I am grateful to Mrs. Susan
Elizagary for expertly typing most of the manuscript and to Mrs. Betty Volosin
for helping in the final stages of typing.

No single word or expression of appreciation can adequately reflect my
gratitude to my wife Zizeta for her moral support and understanding during the
last three painstaking years, and to my children Steve and Lena for providing
pleasant and comforting distraction.

Nicholas Tsoulfanidis






PREFACE TO THE SECOND EDITION

For an author it is very gratifying to discover that a technical book is still
relevant more than ten years after it was first published. This is the case with
this book because it addresses the fundamentals of nuclear radiation counting,
which have not significantly changed during that period of time. Like the first
edition, this book is written for persons who have no prior knowledge of
radiation counting. These include undergraduate students in nuclear science
and engineering; first-year graduate students who enter this field from another
discipline; health physicists and health physics technicians; nuclear medicine
technical personnel; and scientists, engineers, and technicians in laboratories
where atomic and nuclear radiation are used. In addition, according to com-
ments from former students and colleagues, the book has proven to be an
excellent reference.

The second edition follows the same guidelines as the first—namely simplic-
ity in writing and use of many examples. The main structural change is the
elimination of Chap. 17 (Special Detectors and Spectrometers) and the reloca-
tion of the material in appropriate chapters. For example, rate meters and
gas-filled detectors are now discussed in Chap. 5. Self-powered detectors are
now included in Chap. 14 along with other neutron detectors. Chapter 16 deals
with solid-state track recorders and thermoluminescent dosimeters.

As should be expected, all chapters have been corrected for errors, revised
for clarification, and new examples have been added as needed. The more
substantive revisions were made in the following chapters: In Chap. 2 there is
now a better explanation of the x? procedure and the minimum detectable
activity (MDA). In Chap. 4, relative to the stopping power of charged particles,
there is a more detailed discussion and presentation of the latest formulas of
gamma-ray build-up factors. The Long Range Alpha Detector (LRAD), a clever
new counter of alpha radiation, is introduced in Chap. 5. In Chap. 7, pure
germanium detectors, which are prominent devices for the detection of gamma

xxi
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rays, are introduced. In Chap. 12 the latest information about Ge detectors is
presented. Magnetic and electrostatic spectrometers and the position-sensitive
detectors are included in Chap. 13. In Chap. 14, the LSL-M2 unfolding code is
introduced as well as compensated ion chambers and self-powered neutron
detectors. Chapter 16 is almost completely rewritten. There is an improved
presentation in the dose rate calculation, detailed discussion of the new protec-
tion guides and exposure limits, and an expanded list of dosimeters.

I am grateful to Dr. Eiji Sakai who translated the First Edition into
Japanese and in doing so discovered several typos and, more importantly,
offered many suggestions that are incorporated into the Second Edition and
make it better.

Nicholas Tsoulfanidis



CHAPTER

ONE

INTRODUCTION TO
RADIATION MEASUREMENTS

1.1 WHAT IS MEANT BY RADIATION?

The word radiation was used until about 1900 to describe electromagnetic
waves. Around the turn of the century, electrons, X-rays, and natural radioactiv-
ity were discovered and were also included under the umbrella of the term
radiation. The newly discovered radiation showed characteristics of particles, in
contrast to the electromagnetic radiation, which was treated as a wave. In the
1920s, DeBroglie developed his theory of the duality of matter, which was soon
afterward proved correct by electron diffraction experiments, and the distinction
between particles and waves ceased to be important. Today, radiation refers to
the whole electromagnetic spectrum as well as to all the atomic and subatomic
particles that have been discovered.

One of the many ways in which different types of radiation are grouped
together is in terms of ionizing and nonionizing radiation. The word ionizing
refers to the ability of the radiation to ionize an atom or a molecule of the
medium it traverses.

Nonionizing radiation is electromagnetic radiation with wavelength A of
about 10 nm or longer. That part of the electromagnetic spectrum includes
radiowaves, microwaves, visible light (A = 770-390 nm), and ultraviolet light
(A = 390-10 nm).

Ionizing radiation includes the rest of the electromagnetic spectrum (X-rays,
A = 0.01-10 nm) and y-rays with wavelength shorter than that of X-rays. It also

1



2 MEASUREMENT AND DETECTION OF RADIATION

includes all the atomic and subatomic particles, such as electrons, positrons,
protons, alphas, neutrons, heavy ions, and mesons.

The material in this text refers only to ionizing radiation. Specifically, it
deals with detection instruments and methods, experimental techniques, and
analysis of results for radiation in the energy range shown in Table 1.1. Particles
with energies listed in Table 1.1 are encountered around nuclear reactors,
around installations involving production or use of natural or manufactured
radioisotopes, and also around low-energy accelerators. Not included in Table
1.1 are cosmic rays and particles produced by high-energy accelerators (GeV
energy range).

1.2 STATISTICAL NATURE OF RADIATION EMISSION

Radiation emission is nothing more than release of energy by a system as it
moves from one state to another. According to classical physics, exchange or
release of energy takes place on a continuous basis; i.e., any amount of energy,
no matter how small, may be exchanged as long as the exchange is consistent
with conservation laws. The fate of a system is exactly determined if initial
conditions and forces acting upon it are given. One may say that classical physics
prescribed a “deterministic” view of the world.

Quantum theory changed all that. According to quantum theory, energy can
be exchanged only in discrete amounts when a system moves from one state to
another. The fact that conservation laws are satisfied is a necessary but not
a sufficient condition for the change of a system. The fate of the system is
not determined exactly if initial conditions and forces are known. One can only
talk about the probability that the system will do something or do nothing.
Thus, with the introduction of quantum theory, the study of the physical world
changed from “deterministic” to “probabilistic.”

The emission of atomic and nuclear radiation obeys the rules of quantum
theory. As a result of this, one can only talk about the probability that a reaction
will take place or that a particle will be emitted. If one attempts to measure the
number of particles emitted by a nuclear reaction, that number is not constant
in time; it has a statistical uncertainty because of the probabilistic nature of the
phenomenon under study.

Table 1.1 Maximum Energy Considered

Particle Energy (MeV)
a 20
B 10
Y 20
n 20
Heavy ions 100
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Consider a radioactive source emitting electrons and assume that one
attempts to measure the number of electrons per unit time emitted by the
source. For every atom of the source there is a probability, not a certainty, that
an electron will be emitted during the next unit of time. One can never measure
the “exact” number. The number of particles emitted per unit time is different
for successive units of time. Therefore, one can only determine the average
number of particles emitted. That average, like any average, carries with it an
uncertainty, an error. The determination of this error is an integral part of any
radiation measurement.

1.3 THE ERRORS AND ACCURACY AND PRECISION
OF MEASUREMENTS

A measurement is an attempt to determine the value of a certain parameter or
quantity. Anyone attempting a measurement should keep in mind the following
two axioms regarding the result of the measurement:

Axiom I No measurement yields a result without an error.
Axiom 2 The result of a measurement is almost worthless unless the error
associated with that result is also reported.

The term error is used to define the following concept:
Error = (measured or computed value of quantity Q) — (true value of Q)
or
Error = estimated uncertainty of the measured or computed value of Q.

Related to the error of a measurement are the terms accuracy and preci-
sion. The dictionary gives essentially the same meaning for both accuracy and
precision, but in experimental work they have different meanings.

The accuracy of an experiment tells us how close the result of the measure-
ment is to the true value of the measured quantity. The precision of an
experiment is a measure of the exactness of the result. As an example, consider
the measurement of the speed of light, which is known, from measurements, to
be equal to 2.997930 x 10® m/s.

Assume that a measurement gave the result 2.9998 X 10% m/s. The differ-
ence between these two numbers is an estimate of the accuracy of the measure-
ment. On the other hand, the precision of the measurement is related to the
number of significant figures' representing the result. The number 2.9998 x 108
indicates that the result has been determined to be between 2.9997 and 2.9999
or, equivalently, that it is known to 1 part in 30,000 (1,/29998).

'As an example of the number of significant figures, each of the following numbers has five
significant figures: 2.9998. 29998. 20009. .0029998, 2.9880 x 108,
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If the measurement is repeated and the new result is 2.9999 X 10% m/s, the
accuracy has changed but not the precision. If, on the other hand, the result
of the measurement is 2.99985 X 10 m/s, both precision and accuracy have
changed.

Another way to look at the accuracy and precision of a measurement is in
terms of the distribution of the data obtained (Fig. 1.1). To improve the error of
a measurement, the process is repeated many times, if practical. The results
recorded, after repeated identical tries, are not identical. Instead, the data
follow a distribution, almost Gaussian in most cases (see Chap. 2 for more
details), and the measured value reported is an average based on the shape of
the distribution of data. The width of the distribution of individual results is a
measure of the precision of the measurement; the distance of the average of the
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distribution from the true value is a measure of the accuracy of the measure-
ment.

Every experimenter should consider accuracy and precision simultaneously.
It would be a waste of effort to try to improve the precision of a measurement if
it is known that the result is inaccurate. On the other hand, it is almost useless
to try to achieve very high accuracy if the precision of the measurement is low.

Limitations in the accuracy and precision of measurements result from
many causes. Among the most important are

1. Incorrectly calibrated instruments.

2. Algebraic or reading errors of the observer.

3. Uncontrolled changes in environmental conditions, such as temperature,
pressure, and humidity.

4. Inability to construct arbitrarily small measuring meter-sticks, rods, pointers,
clocks, apertures, lenses, etc.

5. A natural limit of sensitivity for any real measuring instrument detecting

individual effects of atoms, electrons, molecules, and protons.

. Imperfect method of measurement in most cases.

7. Unknown exact initial state of the system. Or, even if the initial state is
known, it is impossible to follow the evolution of the system. For example, to
determine the state of a gas in a container, one should know the exact
position and velocity of every molecule at ¢ = 0. Even if this is known, how
practical is it to follow 10 atoms or molecules moving in a box?

8. Statistical nature of some processes, e.g., radioactive decay. There is a
probability that an atom of a radioactive isotope will decay in the next 10 s,
and this is as much information as one can report on this matter. The
probability can be calculated, but it is still a probability, never a certainty.

=5

1.4 TYPES OF ERRORS

There are many types of errors, but they are usually grouped into two broad
categories: systematic and random.

Systematic (or determinate) errors are those that affect all the results in the
same way. Examples of systematic errors are

1. Errors from badly calibrated instruments
2. Personal errors (algebraic, wrong readings, etc.)
3. Imperfect technique

Systematic errors introduce uncertainties that do not obey a particular law
and cannot be estimated by repeating the measurement. The experimenter
should make every reasonable effort to minimize or, better yet, eliminate
systematic errors. Once a systematic error is identified, all results are corrected
appropriately. For example, if a measurement of temperature is made and it is
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discovered that the thermocouple used overestimates the temperature by 10%,
all temperatures measured are decreased by 10%.

Random (or statistical) errors can either decrease or increase the results of
a measurement, but in a nonreproducible way. Most of the random errors
cannot be eliminated. They can be reduced, however, by either improving the
experimental apparatus, improving the technique, and /or repeating the experi-
ment many times. Examples of random errors are

1. Errors resulting from experimental apparatus (reading of instruments, elec-
tronic noise, etc.)

2. Errors from uncontrolled change in condition such as voltage, temperature,
Or pressure

3. Probabilistic nature of the phenomenon under study

The determination of error associated with the measurement is a very
important task. It is probably as important as the measurement. Technical
journals and scientific reports never report results of experiments without the
error corresponding to these results. A measurement reported without an error
is almost worthless. For this reason, the study of errors is a topic of great
importance for scientists and engineers.

This text does not give a complete theory of error. Only the fundamentals
needed for a basic understanding of the statistical analysis of errors are
presented. The objective is to present methods that provide an estimate of the
error of a certain measurement or a series of measurements and procedures
that minimize the error.

Only random errors are discussed from here on. In every measurement,
systematic and random errors should be treated separately. Systematic and
random errors should never be combined using the methods discussed in Chap.
2. Those methods apply to random errors only.

1.5 NUCLEAR INSTRUMENTATION

1.5.1 Introduction

This section is addressed to the person who has not seen or used radiation
instruments.! Its purpose is to present a general description of the physical
appearance and operation of the basic components of a radiation counting
system. Every component is treated like a “black box,” i.e., input and output are
discussed without any details about how the output is obtained. Details about
the construction and operation of individual units are given in later chapters.

"The term radiation instruments refers to instruments used for the detection of ionizing
radiation as explained in Sec. 1.1
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Detectors are discussed in Chaps. 5 through 7, and the rest of the electronics is
discussed in Chap. 10.

Counting systems are classified into two types, according to the method of
operation:

1. Pulse-type systems. The output consists of voltage pulses, one pulse per
particle detected.
2. Current-type systems. The output is an average value, resulting from the

detection of many particles.

A basic pulse-type system consists of the instruments shown in Fig. 1.2. The
function of each component is discussed in later sections of this chapter.

A current-type system (e.g., an electrometer or a rate meter) is simpler than
the pulse-type system. Such systems are discussed in Chap. 5. The remainder of
this chapter concerns only pulse-type counting systems.

1.5.2 The Detector|

The function of the detector is to produce a signal for every particle entering
into it. Every detector works by using some interaction of particles with matter.
Following is a list of the most common detector types.

. Gas-filled counters (ionization, proportional, Geiger-Muller counters)
. Scintillation detectors

. Semiconductor detectors

. Spark chambers
. Bubble chambers
. Photographic emulsions
Thermoluminescent dosimeters (TEDs)
Cerenkov counters

. Self-powered neutron detectors

(used with high energy particles)

VNN A WD~

The signal at the output of most detectors is a voltage pulse, such as the one

Multichannel

_—
( Source analyzer

° Detector Preamplifier = Amplifier ::;?\I/ez:ranna | Scaler
| R e—
High-voltage i R
power supply Oscilloscope Timer

Figure 1.2 A basic pulse-type detection system.
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Voltage, mV
F -
1

N

Figure 1.3 A typical pulse-type detector
Time signal.

[=}

shown in Fig. 1.3. For others, the signal may be a change in color (emulsions) or
some trace that can be photographed (bubble or spark chambers)
The ideal pulse-type counter should satisfy the following requirements:

1. Every particle entering the detector should produce a pulse at the exit of the
counter, which is higher than the electronic noise level of the unit that
accepts it (usually this unit is the preamplifier). In such a case, every particle
entering the detector will be detected, and the detector efficiency, defined as
the ratio of the number of particles detected to the number of particles
entering the counter, will be equal to 100 percent (for more details on
efficiency, see Chap. 8).

2. The duration of the pulse should be short, so that particles coming in one
after the other in quick succession produce separate pulses. The duration of
the pulse is a measure of the dead time of the counter (see Sec. 2.21) and
may result in loss of counts in the case of high counting rates.

3. If the energy of the particle is to be measured, the height of the pulse should
have some known fixed relationship to the energy of the particle. To achieve
this, it is important that the size of the counter is such that the particle
deposits all its energy (or a known fraction) in it.

4. If two or more particles deposit the same energy in the detector, the
corresponding pulses should have the same height. This requirement is
expressed in terms of the energy resolution of the detector (see Chap. 9).
Good energy resolution is extremely important if the radiation field consists
of particles with different energies and the objective of the measurement is to
identify (resolve) these energies. Figure 1.4 shows an example of good and
bad energy resolution.

There is no detector that satisfies all these requirements. Few detectors
have 100 percent efficiency. In practice, it is not feasible for gamma and neutron
detectors to have all the energy of the particle deposited in the counter. Because
of statistical effects, there is no detector with ideal energy resolution. What
should one do?

"Electronic noise is any type of interference that tends to “mask” the quantity to be observed.
It is usually the result of the thermal motion of charge carriers in the components of the detection
system (cables, resistors, the detector itself, etc.) and manifests itself as a large number of low-level
pulses. Electronic noise should be distinguished from background pulses resulting from radiation
sources that are always present, €.g., cosmic rays.
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In practice, the experimenter selects a detector that satisfies as many of
these properties as possible to the highest degree possible and, depending on
the objective of the measurement, applies appropriate corrections to the mea-
sured data.

1.5.3 The NIM Concept

Most of the commercially available instruments that are used in radiation
measurements conform to the standards on nuclear instrument modules (NIM)
developed by the U.S. Atomic Energy Commission (now the Nuclear Regulatory
Commission) and now dictated by the Department of Energy.!

The objective of the NIM standard is the design of commercial modules that
are interchangeable physically and electrically. The electrical interchangeability
is confined to the supply of power to the modules and in general does not cover
the design of the internal circuits.

The size of the smallest, called a single-width, NIM is 0.222 m X 0.035 m
(8.71 in X 1.35 in). Multiple-width NIMs are also made. The standard NIM bin
will accommodate 12 single-width NIMs or any combination of them having the
same total equivalent width. Figure 1.5 is a photograph of the front and back
sides of a commercial standard bin. Figure 1.6 is a photograph of the bin filled
with NIMs of different widths, made by different manufacturers.

1.5.4 The High-Voltage Power Supply

The high-voltage power supply (HVPS) provides a positive or negative voltage
necessary for the operation of the detector. Most detectors need positive high
voltage (HV). Typical HVs for common detectors are given in Table 1.2. The
HVPS is constructed in such a way that the HV at the output changes very little
even though the input voltage (110 V, ac) may fluctuate.
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(a)

(b)

Figure 1.5 Photographs of the (a) front and (b) back sides of a commercial NIM bin (from Canberra
1979-1980 catalog).
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Figure 1.6 A typical bin filled with a combination of NIMs made by different manufacturers.'

A typical commercial HVPS is shown in Fig. 1.7. The front panel has an
indicator light that shows whether the unit is on or off and, if it is on, whether
the output is positive or negative voltage. There are two knobs for voltage
adjustment, one for coarse changes of 500-V intervals, the other for changes of
0.1 V. The output is at the rear of the unit.

1.5.5 The Preamplifier

The primary purpose of the preamplifier is to provide an optimized coupling
between the output of the detector and the rest of the counting system. The

preamplifier is also necessary to minimize any sources of noise that may change
the signal.

Table 1.2 High Voltage Needed for Certain Common Detectors

Detector High voltage (V)
lonization counters HV < 1000
Proportional counters 500 < HV < 1500
GM counters 500 < HV < 1500
Semiconductor detectors

Surface-barrier HV <100

Lidrifted 100 < HV < 3000




pue eirdque) £q

opewr) rogrdue

@

(9) “Aiddns 1omod AH (7) SWIN

“(99[ouud T,
[erorourwod [esidLy, L7 danSig

12



|(93]3UUR, PUE BIIOqUED) AQ SpRUI) oW (2) ‘JA[RdS (p) ‘I9zA[eUe [SUURYI-S[EUIS () (pantitio)) SWIN [RIOIWWOD eodK1, £°7 aanSig

(9)

[N

onons L asaea ﬁ

o mst

® @

LN It

witon - @
zuE:\muE:oo.,

13



14 MEASUREMENT AND DETECTION OF RADIATION

The signal that comes out of the detector is very weak, in the millivolt (mV)
range (Fig. 1.3). Before it can be recorded, it will have to be amplified by a
factor of a thousand or more. To achieve this, the signal will have to be
transmitted through a cable to the next instrument of the counting system,
which is the amplifier. Transmission of any signal through a cable attenuates it
to a certain extent. If it is weak at the output of the detector, it might be lost in
the electronic noise that accompanies the transmission. This is avoided by
placing the preamplifier as close to the detector as possible. The preamplifier
shapes the signal and reduces its attenuation by matching the impedance of the
detector with that of the amplifier. After going through the preamplifier, the
signal may be safely transmitted to the amplifier, which may be located at a
considerable distance away. Although some preamplifiers amplify the signal
slightly, their primary function is that of providing electronic matching between
the output of the detector and the input of the amplifier.

There are many types of commercial preamplifiers, two of which are shown
in Fig. 1.8. In most cases, the HV is fed to the detector through the preamplifier.

1.5.6 The Amplifier

The main amplification unit is the amplifier. It increases the signal by as many
as 1000 times or more. Modern commercial amplifiers produce a maximum
signal of 10 V, regardless of the input and the amplification. For example,
consider a preamplifier that gives at its output three pulses with heights 50 mV,
100 mV, and 150 mV. Assume that the amplifier is set to 100. At the output of
the unit, the three pulses will be

50X 1072 X 100 =5V
100 X 1072 X 100 = 10V
150 X 107° X 100 = 10V

Note that the third value should be 15 V, but since the amplifier produces a
maximum signal of 10 V, the three different input pulses will show, erroneously,
as two different pulses at the output. If only the number of particles is
measured, there is no error introduced—but if the energy of the particles is
measured, then the error is very serious. In the example given above, if gammas
of three different energies produce the pulses at the output of the preamplifier,
the pulses at the output of the amplifier will be attributed erroneously to
gammas of two different energies. To avoid such an error, an observer should
follow this rule:

Before any measurement of particle energy, make certain that the highest pulse of the
spectrum to be measured is less than 10 V" at the output of the amplifier.

In addition to signal amplification, an equally important function of the
amplifier is to convert the signal at the output of the preamplifier into a form
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Figure 1.8 Two typical commercial preamplifiers: () type used with a photomultiplier tube (made
by Harshaw), and (b) type used with semiconductor detectors (made by Canberra).
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suitable for the measurement desired. More details on this subject are given in
Chap. 10. The front panel of a typical commercial amplifier is shown in Fig. 1.7.
Commercial amplifiers have two dials for adjusting the amplification.

1. Coarse gain: This dial adjusts the amplification in steps. Each step is a
fraction of the maximum amplification. For example, the dial may show the
numbers 1, 2, 4, 8, 16. If the maximum amplification is 100, then the coarse
gain on 16 will give a maximum of 100, the coarse gain on 8 will give 50, etc.

Some amplifiers have the numbers =, 3, 3, 3, 1, and some newer ones have

1, 10, 100, 1000, etc.

2. Fine gain: This dial adjusts the amplification continuously within each step of
the coarse gain. The numbers, in most units, go from 0 to 10. The highest
number provides the maximum amplification indicated by the coarse gain. As
an example, consider the maximum amplification to be 100. If the coarse gain
is 8 (highest number 16) and the fine gain 5 (highest number 10), the
amplification will be 100 X } (coarse gain) X 3 (fine gain) = 25.

Most commercial amplifiers provide at the output two types of pulses, called
unipolar and bipolar (Fig. 1.9).

1.5.7 The Oscilloscope

The oscilloscope is an instrument that permits the study of rapidly changing
phenomena, such as a sinusoidal voltage or the pulse of a counter. The
phenomenon is observed on a fluorescent screen as shown in Fig. 1.10. The
horizontal axis of the screen measures time. The vertical axis gives volts.

In radiation measurements the oscilloscope is used to check the quality of
the signal as well as the level and type of the electronic noise. It is always a good
practice before any measurement is attempted to examine the signal at the
output of the amplifier. A few examples of good and bad pulses are shown in
Fig. 1.11. In Fig. 1.11, a and b represent good pulses, and Fig. 1.11c is probably

o
T

Pulse height, V
N B O ®
T
Puise height, V

Time Time \_/

(a) (b)

Figure 1.9 The pulse at the output of the amplifier: (@) unipolar pulse and () bipolar pulse.
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Figure 1.10 Two commercial oscilloscopes: a) a Tektronix 2212 oscilloscope (Copyright © 1994 by
Tektronix, Inc. All rights reserved. Reproduced by permission.); and b) a Philips PM3394A
autoranging combiscope (Reproduced with permission).

an electrical discharge, not good for counting. Figure 1.11d is no good either,
because a high-frequency signal is “riding” on the output of the preamplifier. If
the pulse is not good, the observer should not proceed with the measurement
unless the source of noise is identified and eliminated.

Modern oscilloscopes provide analog as well as digital signals.

1.5.8 The Discriminator or Single-Channel Analyzer (SCA)

The SCA is used to eliminate the electronic noise and, in general, to reject
unwanted pulses. When a pulse is amplified, the electronic noise that is always
present in a circuit is also amplified. If one attempts to count all the pulses
present, the counting rate may be exceedingly high. But electronic noise is a
nuisance and it should not be counted.
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(a) (b}
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M

(c) (o)

Figure 1.11 Samples of good (¢ and b) and bad (¢ and d) pulses as seen on the screen of the
oscilloscope.

In some cases, one may want to count only pulses above a certain height,
i.e., particles with energy above certain threshold energy. Pulses lower than that
height should be rejected. The discriminator or SCA is the unit that can make
the selection of the desired pulses. Figure 1.7c shows the front panel of a typical
commercial SCA. Modern SCAs work in the following way.

There are two dials on the front panel of the unit. One is marked E, for
energy, or LLD, for lower-level dial; the other is marked AE or ULD/AE, for
upper-level dial /AE. There is also a two-position switch with INT (integral) and
DIFF (differential) positions. In the INT position, only the E dial operates, and
the unit functions as a discriminator. In the DIFF position, both E and AE
operate, and the unit is then a single-channel analyzer.

In some other commercial models, instead of INT and DIFF positions, the
instrument has special connectors for the desired output.

The discriminator (switch position: INT). The dial E (for energy) may be
changed continuously from 0 to 100. Of course, the discriminator works with
voltage pulses, but there is a one-to-one correspondence between a pulse height
and the energy of a particle. Assume that the discriminator is set to E = 2.00 V
(the 2 V may also correspond to 2 MeV of energy). Only pulses with height
greater than 2 V will pass through the discriminator. Pulses lower than 2 V will
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Figure 1.14 An energy spectrum shown on the screen of an MCA.

be rejected. For every pulse that is larger than 2 V, the discriminator will
provide at the output a rectangular pulse with height equal to 10 V (Fig. 1.12)
regardless of the actual height of the input pulse. The output pulse of the
discriminator is a pulse that triggers the unit (scaler), which counts individual
pulses and tells it, “a pulse with height bigger than 2 V has arrived; count 1.”
Thus, the discriminator eliminates all pulses below E and allows only pulses that
are higher than E to be counted.

The single-channel analyzer (switch position: DIFF). Both E and AE dials
operate. Only pulses with heights between E and E + AE are counted (Fig.
1.13). The two dials form a “channel”; hence the name single-channel analyzer.
If the E dial is changed to E,, then pulses with heights between E; and
E, + AE will be counted. In other words, the width AE, or window, of the
channel is always added to E.

1.5.9 The Scaler

The scaler is a recorder of pulses. For every pulse entering the scaler, a count of
1 is added to the previous total. At the end of the counting period, the total
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number of pulses recorded is displayed. Figure 1.7d shows the front panel of a
typical commercial scaler.

1.5.10 The Timer

The timer is connected to the scaler, and its purpose is to start and stop the
scaler at desired counting time intervals. The front panel of a typical timer is
shown in Fig. 1.7e. Some models combine the timer with the scaler in one
module.

1.5.11 The Multichannel Analyzer

The multichannel analyzer (MCA) records and stores pulses according to their
height. Each storage unit is called a channel.

The height of the pulse has some known relationship—usually proportional
—to the energy of the particle that enters into the detector. Each pulse is
in turn stored in a particular channel corresponding to a certain energy. The
distribution of pulses in the channels is an image of the distribution of the
energies of the particles. At the end of a counting period, the spectrum that was
recorded may be displayed on the screen of the MCA (Fig. 1.14). The horizontal
axis is a channel number, or particle energy. The vertical axis is a number of
particles recorded per channel. More details about the MCA and its use are
given in Chaps. 9 and 10.
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CHAPTER

TWO

STATISTICAL ERRORS OF
RADIATION COUNTING

2.1 INTRODUCTION

This chapter discusses statistics at the level needed for radiation measurements
and analysis of their results. People who perform experiments need statistics for
analysis of experiments that are statistical in nature, treatment of errors, and
fitting a function to the experimental data. The first two uses are presented in
this chapter. Data fitting is discussed in Chap. 11.

2.2 DEFINITION OF PROBABILITY

Assume that one repeats an experiment many times and observes whether or
not a certain event x is the outcome. The event is a certain observable result
defined by the experimenter. If the experiment was performed N times, and n

results were of type x, the probability P(x) that any single event will be of type x
is equal to

n
P = lim — 2.1
x) Jim - Q.1n

The ratio n/N is sometimes called the relative frequency of occurrence of x in
the first N trials.

23
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There is an obvious difficulty with the definition given by Eq. 2.1—the
requirement of an infinite number of trials. Clearly, it is impossible to perform
an infinite number of experiments. Instead, the experiment is repeated N times,
and if the event x occurs n times out of N, the probability P(x) is

n
P(x) N (2.2)
Equation 2.2 will not make a mathematician happy, but it is extensively used in
practice because it is in accord with the idea behind Eq. 2.1 and gives useful
results.
As an illustration of the use of Eq. 2.2, consider the experiment of tossing a
coin 100 times and recording how many times the result is “heads” and how
many it is “tails.” Assume that the result is

Heads: 48 times

Tails: 52 times
On the basis of Eq. 2.2, the probability of getting heads or tails if the coin is
tossed once more is

P(heads) ¥ 0.48
cads) = 7o = 0.

P(tails) 2 0.52
tails) = — = 0.
aus 100

For this simple experiment, the correct result is known to be

P(tails) = P(heads) = 0.5
and one expects to approach the correct result as the number of trials increases.
That is, Eq. 2.2 does not give the correct probability, but as N — «, Eq. 2.2

approaches Eq. 2.1.
Since both n and N are positive numbers, 0 < n/N < 1, therefore,

0<Px) <1

that is, the probability is measured on a scale from 0 to 1.

If the event x occurs every time the experiment is performed, then n = N
and P(x) = 1. Thus the probability of a certain (sure) event is equal to 1.

If the event x never occurs, then » =0 and P(x) = 0. In this case the
probability of an impossible event is 0.

If the result of a measurement has N possible outcomes, each having equal
probability, then the probability for the individual event x; to occur is

1
Px;) = — [ =1,...,N
(x;) v

For example, in the case of coin tossing there are two events of equal probabil-
ity; therefore

1
P(heads) = P(tails) = 3
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2.3 BASIC PROBABILITY THEOREMS

In the language of probability, an “event” is an outcome of one or more
experiments or trials and is defined by the experimenter. Some examples of
events are

. Tossing a coin once

. Tossing a coin twice and getting heads both times

. Tossing a coin 10 times and getting heads for the first five times and tails for

the other five

Picking up one card from a deck of cards and that card being red

Picking up 10 cards from a deck and all of them being hearts

Watching the street for 10 min and observing two cyclists pass by

Counting a radioactive sample for 10 s and recording 100 counts

. Inspecting all the fuel rods in a nuclear reactor and finding faults in two of
them.

W N =

% N o

Given enough information, one can calculate the probability that any one of
these events will occur. In some cases, an event may consist of simpler compo-
nents and one would like to know how to calculate the probability of the
complex event from the probabilities of its components.

Consider two events x and y and a series of N trials. The result of each trial
will be only one of the following four possibilities:

1. x occurred but not y

2. y occurred but not x

3. Both x and y occurred

4. Neither x nor y occurred

Let n,, n,, n,, n, be the number of times in the N observations that the
respective possibilities occurred. Then,

ni+n,+n;+n,=N (2.3)
The following probabilities are defined with respect to the events x and y:

P(x) = probability that x occurred
P(y) = probability that y occurred
P(x + y) = probability that either x or y occurred
P(xy) = probability that both x and y occurred
P(xly) = conditional probability of x given y
= probability of x occurring given that y has occurred
P(ykx) = conditional probability of y given x
= probability of y occurring given that x has occurred
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Using Eq. 2.2, these probabilities are

n1+n3

PG = = @2.4)
P(y) = nz;n3 2.5)
Px+y)= u}\;_ﬂi (2.6)
P(xy) = '1’—;- Q@7
P(xly) = nz'_':ns 28
P(yk) = nl'_’jns 2.9

For the six probabilities given by Egs. 2.4 to 2.9, the following two relations
hold:

P(x +y) =P + P(y) — P(xy) (2.10)
P(xy) = P(x) P(yk) = P(y) P(xly) (2.11)

Equation 2.10 is called the addition law of probability. Equation 2.11 is called the
multiplication law of probability.

Example 2.1 Consider two well-shuffled decks of cards. What is the proba-
bility of drawing one card from each deck with both of them being the ace of
spades?

Answer The events of interest are
Event x = event y = (drawing one card and that card being ace of spades)
Since each deck has only one ace of spades,
P(x) = P(y) = P(ace of spades) = 35
The conditional probability is
P(xly) = P(1st card ace of spades when 2nd card is ace of spades) = =

In this case, P(xly) = P(x) because the two events are independent. The fact

that the first card from the first deck is the ace of spades has no influence on

what the first card from the second deck is going to be. Similarly, P(y[x) = P(y).
Therefore, using Eq. 2.11, one has

P(xy) = P(x)P(y) = (3;)(5;) = 0.00037
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Example 2.2 Consider two well-shuffled decks of cards and assume one card
is drawn from each of them. What is the probability of one of the two cards
being the ace of spades?

Answer Using Eq. 2.10,
Px+y) =%+ — (F)NE) =0.038

Under certain conditions, the addition and multiplication laws expressed by
Egs. 2.10 and 2.11 are simplified.

If the events x and y are mutually exclusive—i.e., they cannot occur
simultaneously—then P(xy) = 0 and the addition law becomes

P(x +y) = P(x) + P(y) (2.12)

If the probability that x occurs is independent of whether or not y occurs,
and vice versa, then as shown in Ex. 2.1,

P(yk) = P(y)
P(xly) = P(x)

In that case, the events x and y are called stochastically independent and the
multiplication law takes the form

P(xy) = P(x)P(y) (2.13)

Equations 2.12 and 2.13 are also known as the addition and multiplication laws
of probability, but the reader should keep in mind that Eqs. 2.12 and 2.13 are
special cases of Eqs. 2.10 and 2.11.

Example 2.3 What is the probability that a single throw of a die will result
in either 2 or 5?

Answer

PQ)=5 P =
P2+ 5) =PQ2) + P(5)

A=

A=

+

N
W=

Example 2.4 Consider two well-shuffled decks of cards and assume one card
is drawn from each deck. What is the probability of both cards being spades?

Answer
P(one spade) = 2
P[(spade)(spade)] = (E)(&) = &
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Equations 2.12 and 2.13 hold for any number of events, provided the events
are mutually exclusive or stochastically independent. Thus, if we have N such

events X,,_1 . n

P(x; + X, + =+ +x5) = P(x;) + P(x,) + -+ +P(xy) (2.14)
P(x;x, *Xy) = P(x)P(x,) - P(xy) (2.15)

2.4 PROBABILITY DISTRIBUTIONS AND RANDOM VARIABLES

When an experiment is repeated many times under identical conditions, the
results of the measurement will not necessarily be identical. In fact, as a rule
rather than as an exception, the results will be different. Therefore, it is very
desirable to know if there is a law that governs the individual outcomes of the
experiment. Such a law, if it exists and is known, would be helpful in two ways.
First, from a small number of measurements, the experimenter may obtain
information about expected results of subsequent measurements. Second, a
series of measurements may be checked for faults. If it is known that the results
of an experiment obey a certain law and a given series of outcomes of such an
experiment does not follow that law, then that series of outcomes is suspect and
should be thoroughly investigated before it becomes acceptable.

There are many such laws governing different types of measurements. The
three most frequently used will be discussed in later sections of this chapter, but
first some general definitions and the concept of the random variable are
introduced.

A quantity x that can be determined quantitatively and that in successive
but similar experiments can assume different values is called a random variable.
Examples of random variables are the result of drawing one card from a deck of
cards, the result of the throw of a die, the result of measuring the length of a
nuclear fuel rod, and the result of counting the radioactivity of a sample. There
are two types of random variables, discrete and continuous.

A discrete random variable takes one of a set of discrete values. Discrete
random variables are especially useful in representing results that take integer
values—for example, number of persons, number of defective batteries, or
number of counts recorded in a scaler.

A continuous random variable can take any value within a certain interval
—for example, weight or height of people, the length of a rod, or the tempera-
ture of the water coming out of a reactor.

For every random variable x, one may define a function f(x) as follows:

Discrete random variables
f(x;) = probability that the value of the random variable is x;, {=1,2,...,N

where N = number of possible (discrete) values of x. Since x takes only one
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value at a time, the events represented by the probabilities f(x;) are mutually
exclusive; therefore, using Eq. 2.14,

N

Y fx) =1 (2.16)

i=1

Continuous random variables. Assume that a random variable may take any
value between @ and b (a < x < b). Then

f(x) dx = probability that the value of x lies between x and x + dx

One should notice that for a continuous variable what is important is not
the probability that x will take a specific value, but only the probability that x
falls within an interval defined by two values of x. The equation corresponding
to Eq. 2.16 is now

[rde=1 2.17)

Equations 2.16 and 2.17 give the probability of a sure event, because x will
certainly have one of the values x,, x,,..., x5 and will certainly have a value
between a and b.

The function f(x) is called the probability density function’ (pdf).

Consider now the following function:
i
F(x) = ['f(x) d¥ (2.18)
a

For a discrete variable,
j
F(x) = ) f(x) (2.19)
i=1
Thus,

F(x;) = probability that the value of x is less than or equal to x;

The function F(x) is called the cumulative distribution function* (cdf). The cdf
has the following properties:

Fxy) =1 (2.20)
F(a) =0 .21
F(b) =1 2.22)

The cdf is a positive monotonously increasing function, i.e., F(b) > F(a), if
b > a. There is a relationship between the cdf and the pdf obtained from Eq.

"It has also been called the frequency function.
*It has also been called the integral or total distribution function.
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2.18, namely,

f(x) = 2.23)

2.5 LOCATION INDEXES (MODE, MEDIAN, MEAN)

If the distribution function F(x) or f(x) is known, a great deal of information
can be obtained about the values of the random variable x. Conversely, if F(x)
or f(x) is not completely known, certain values of x provide valuable informa-
tion about the distribution functions. In most practical applications the impor-
tant values of x are clustered within a relatively narrow interval. To obtain a
rough idea about the whole distribution, it is often adequate to indicate the
position of this interval by “location indexes” providing typical values of x.

In theory, an infinite number of location indexes’ may be constructed, but
in practice the following three are most frequently used: the mode, the median,
and the mean of a distribution. Their definitions and physical meanings will be
presented with the help of an example.

Consider the continuous pdf shown in Fig. 2.1. The function f(x) satisfies
Eq. 2.17, ie., the total area under the curve of Fig. 2.1 is equal to 1, with
a= —xand b= +ox.

The mode is defined as the most probable value of x. Therefore, the mode
x, is that x for which f(x) is maximum and is obtained from

d
If(x) _o

e (2.24)

*Measure of location is another name for location indexes.

f{x)

el L et

0

x

X, F3

Figure 2.1 The mode (x;), the median (x,), and the mean (m) for a continuous probability
distribution function.
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The median is the value x, for which

1

Flx) = [ fnydx = 5 (2.25)

i.e., the probability of x taking a value less than x, is equal to the probability of
x taking a value greater than x,.

The mean, also known as the “average” or the “expectation value” of x, is
defined by the equation

f=m= /_°° o (x) dx (2.26)

An expression more general than Eq. 2.26 that gives the mean or average of
any function g(x), regardless of whether or not f(x) satisfies Eq. 2.17, is

[ Wi
glx) = — 27
ff(x)dx

For a discontinuous pdf, the location indexes are defined in a similar way. If
the pdf satisfies Eq. 2.16, the mean is given by

3

Il

=t

il
=z

x,f(x;) (2.28)

i=1

Equation 2.28 is an approximation because the true mean can only be deter-
mined with an infinite number of measurements. But, in practice, it is always a
finite number of measurements that is available, and the average X instead of
the true m is determined. Equation 2.28 is analogous to Eq. 2.2, which defines
the probability based on a finite number of events.

The general expression for the average of a discontinuous pdf, equivalent to
Eq. 2.27, is

N
Z g(x)f(x)
g(x) = Lint S

o (2.29)
Zf(xi)
i=1

Which of these or some other location indexes one uses is a matter of
personal choice and convenience, depending on the type of problem studied.
The mean is by far the most frequently used index, and for this reason, only the
mean will be discussed further.
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Some elementary but useful properties of the mean that can be easily
proven using Eqgs. 2.26 or 2.28 are

ax = ax = am a = constant

a+x=a+ti=a+m (2.30)

81(x) +g(x) + ... +g(x) =g (x) +g,(x) + ... +g,(x)

Example 2.5 Calculation of the mean. The probability that a radioactive
nucleus will not decay for time ¢ is equal to

f(t) = Ae M

where A is a constant. What is the mean life of such a nucleus?

Answer Using Eq. 2.26, the mean life f is

o 1
= —At = —
t j(; tAe M dt 3

Example 2.6 Consider the throw of a die. The probability of getting any
number between 1 and 6 is 3. What is the average number?

Answer Using Eq. 2.29,

) 1 15 [1)\6(6+1)
m=x=IZ(l)-6—=g.Zl=(g)—2—=35

Example 2.7 Consider an experiment repeated N times giving the results
x;li=1,..., ~- What is the average of the results?

Answer Since the experiments were identical, all the results have the same
probability of occurring, a probability that is equal to 1/N. Therefore, the
mean is

1
¥=m= ):xi(—) (2.31)

Equation 2.31 defines the so-called arithmetic mean of a series of N random
variables. It is used extensively when the results of several measurements of the
same variable are combined.

An extension of Eq. 2.31 is the calculation of the “means of means.”
Assume that one has obtained the averages X;, ¥,,..., X%, by performing a
series of M measurements, each involving N;, N,, ..., Nj, events, respectively.
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The arithmetic mean of all the measurements, X, is

_ X Xt Ty
X= 2.
i (2.32)

where

]
=
Ko

ji=1,....M

\
Il
"
=Z|

2.6 DISPERSION INDEXES, VARIANCE, AND
STANDARD DEVIATION

A pdf or cdf is determined only approximately by any location index. For
practical purposes it is sufficient to know the value of one location index—e.g.,
the mean—together with a measure indicating how the probability density is
distributed around the chosen location index. There are several such measures
called dispersion indexes. The dispersion index most commonly used and the only
one to be discussed here is the variance V(x) and its square root, which is called
the standard deviation o.

The variance of a pdf is defined as shown by Eqgs. 2.33 and 2.34. For
continuous distributions,

V(x) =0c%= fm (x — m)’ f(x) dx (2.33)

For discrete distributions,
N
V(x)=a2= Y (x, — m)f(x,) (2.34)
i=1

It is assumed that f(x) satisfies Eq. 2.16 or 2.17 and N is a large number. It is
worth noting that the variance is nothing more than the average of (x — m)>.
The variance of a linear function of x,a + bx, is

V(a + bx) = b2V(x) (2.39)
where a and b are constants.

2.7 COVARIANCE AND CORRELATION

Consider the random variables X, X,,..., X, with means m, m,, ..., m, and
variances o2, 07,...,0%. A question that arises frequently is, what is the
average and the variance of the linear function

Q=a, X +a,X,+ " +ayX, (2.36a)

where the values of a,|;—; . are constants?

.....
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The average is simply (using Eq. 2.28)

M
Q =am; + a,m, + - +aymy = Y. am; (2.36b)
i=1

The variance is

- M 2
Q) =02=(Q -0 =| Lai(x, - m,.)]
i=1
M M M
= Y alo? + 23 ¥ aa(X; — m)(X; —m)) (2.37)
i=1
j>i

The quantity (X; — m)(X; —m;) is called the “covariance” between X,
and X:
J

cov(X;, X)) = (X; — m)(X; — m)) (2.38)

The covariance, as defined by Eq. 2.38, suffers from the serious drawback that
its value changes with the units used for the measurement of X;, X;. To
eliminate this effect, the covariance is divided by the product of the standard
deviations o;, 0;, and the resulting ratio is called the correlation coefficient
p(X;, X)). Thus,

cov(X;, X;)

0;0;

p,'j = P(X,', X]) = (2-39)

Using Eq. 2.39, the variance of O becomes

M M M M
cl=V(Q) = V( Za,.X,.) = Y ajo? +2Y Y a,a;p,00;  (2.40)
i=1 i=1

j>i

Random variables for which p;; = 0 are said to be uncorrelated.
If the X,’s are mutually uncorrelated, Eq. 2.40 takes the simpler form

M M
gl = V( Y a,.X,.) = ) alo? (2.41)
i=1 i=1
Consider now a second linear function of the variables X, X,, X3,..., X},

namely, R = b, X, + --- +b,, X),. The average of R is

M
R =bm, +bymy+ - +bymy, = Y bm,
i=1
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The covariance of Q, R is

cov(Q,R) = Za(X m)”Zb(X )]

ab,c? + 3 5" ab 2.42)
0o+ Y ¥ ab;p;0;0; ‘

i#+j

I
™Mx

-
[
—

If all the X’s are mutually uncorrelated, then p,;; = 0 and
M
cov(Q,R) = ) a;b,07 (2.43)
i=1
If all the X’s have the same variance o2,

M
cov(Q,R) = 0% ) a,b, (2.44)
i=1

Equations 2.40-2.44 will be applied in Sec. 2.15 for the calculation of the
propagation of errors.

2.8 THE BINOMIAL DISTRIBUTION

The binomial distribution is a pdf that applies under the following conditions:

1. The experiment has two possible outcomes, A and B.

2. The probability that any given observation results in an outcome of type A or
B is constant, independent of the number of observations.

3. The occurrence of a type A event in any given observation does not affect the
probability that the event A or B will occur again in subsequent observations.

Examples of such experiments are tossing a coin (heads or tails is the outcome),
inspecting a number of similar items for defects (items are defective or not), and
picking up objects from a box containing two types of objects.

The binomial distribution will be introduced with the help of the following
experiment.

Suppose that a box contains a large number of two types of objects, type A
and type B. Let

= probability that an object selected at random from this box is type A
1 — p = probability that the randomly selected object is type B
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An experimenter selects N objects at random.” The binomial distribution,
giving the probability P, that n out of the N objects are of type A, is
N!

P

° n N-n
TN =-mm? 1 -p) (2.45)

Example 2.8 A box contains a total of 10,000 small metallic spheres, of
which 2000 are painted white and the rest are painted black. A person removes
100 spheres from the box one at a time at random. What is the probability that
10 of these spheres are white?

Answer The probability of picking one white sphere is
20
p = P(white) = ———— =02

10,000

The probability that 10 out of 100 selected spheres will be white is, according to
Eq. 2.45,
100!

= — 10 9 _
= 100 = 10)110! (0.2)°(0.8)" = 0.0034

PlO

Example 2.9 A coin is tossed three times. What is the probability that the
result will be heads in all three tosses?

Answer The probability of getting heads in one throw is 0.5. The probability
of tossing the coin three times (N = 3) and getting heads in all three tosses
(n=23)is

3!

(3 —3)13!

Of course, the same result could have been obtained in this simple case by using
the multiplication law, Eq. 2.13:

P(heads three times) = (0.5)(0.5)(0.5) = 0.125
It is easy to show that the binomial distribution satisfies

P, = 0.5 - 0577 =0.125

N N N! N
P, = ———p"(1—-p) " =1 2.46
n§0 § nz=:o (N=mnt” -p 249
The mean m is equal to
N
m=n= Y nP,=pN (2.47)
n=0

"It is assumed that the box has an extremely large number of objects so that the removal of N
of them does not change their number appreciably, or, after an object is selected and its type
recorded, it is thrown back into the box. If the total number of objects is small, instead of Eq. 2.45,
the hypergeometric density function should be used (see Johnson & Leone and Jaech).
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The variance V(n) is

N
Vin)=(m—n)= Y. (m —n)’P, =m(1 —p) = pN(1 — p) (2.48)

n=0

The standard deviation o is

o= VV(n) = ym( —p) =/p( —pIN (2.49)

Figure 2.2 shows three binomial distributions for N = 10 and p = 0.1, 0.4, and
0.8. Notice that as p — 0.5, the distribution tends to be symmetric around the
mean.

2.9 THE POISSON DISTRIBUTION

The Poisson distribution applies to events whose probability of occurrence is
small and constant. It can be derived from the binomial distribution by letting

N - x
p—0

in such a way that the value of the average m = Np stays constant. It is left as
an exercise for the reader to show that under the conditions mentioned above,
the binomial distribution takes the form known as the Poisson distribution,

n

m
P,=—e" (2.50)
n!
where P, is the probability of observing the outcome n when the average for a
large number of trials is m.

The Poisson distribution has wide applications in many diverse fields, such
as decay of nuclei, persons killed by lightning, number of telephone calls
received in a switchboard, emission of photons by excited nuclei, and appear-
ance of cosmic rays.

Example 2.10 A radiation detector is used to count the particles emitted by
a radioisotopic source. If it is known that the average counting rate is 20
counts/ min, what is the probability that the next trial will give 18 counts/min?

Answer The probability of decay of radioactive atoms follows the Poisson
distribution. Therefore, using Eq. 2.50,

2018
18!

That is, if one performs 10,000 measurements, 844 of them are expected to give
the result 18 counts/min.

e 2 =0.0844 = 8%

Py =
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Example 2.11 In a certain city with relatively constant population, the
average number of people killed per year in automobile accidents is 75. What is
the probability of having 80 auto-accident fatalities during the coming year?

Answer The Poisson distribution applies. Therefore, using Eq. 2.50,

7580

Py = g7 = 0.038 = 4%
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The Poisson distribution satisfies

Y F=1 (2.51)
n=0
The mean m is equal to
m=n= Y nP,=m (2.52)
n=0
The variance is
Viny=(m —n)’= ¥ (m-nl’P,=m (2.53)
n=0

The standard deviation o is

a=VV(n) =Vm (2.54)

Figure 2.3 shows the Poisson distribution for three different means. It should be
pointed out that as the mean increases, the Poisson distribution becomes
symmetric around the mean. For m = 20, the distribution is already for all
practical purposes symmetric around the mean, and it resembles the normal
distribution, which is discussed next.

2,10 THE NORMAL (GAUSSIAN) DISTRIBUTION

Both the binomial and Poisson distributions apply to discrete variables, whereas
most of the random variables involved in experiments are continuous. In
addition, the use of discrete distributions necessitates the use of long or infinite
series for the calculation of such parameters as the mean and the standard
deviation (see Egs. 2.47, 2.48, 2.52, 2.53). It would be desirable, therefore, to
have a pdf that applies to continuous variables. Such a distribution is the normal
or Gaussian distribution.
The normal distribution G(x) is given by

(x - m)zl
G(x)dx = — | dx (2.55)

1
V2m)o CXP[_ 202

where G(x) dx = probability that the value of x lies between x and x + dx
m = average of the distribution
o ? = variance of the distribution
Notice that this distribution, shown in Fig. 2.4, has a maximum at x = m, is
symmetric around m, is defined uniquely by the two parameters ¢ and m, and
extends from x = —o to x = +. Equation 2.55 represents the shaded area
under the curve of Fig. 2.4. In general, the probability of finding the value of x
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Pn

Figure 2.3 Three Poisson distributions: (a) m = 5, (b) m = 10, (c) m = 20.
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3

X

Figure 2.4 A normal (Gaussian) distribution.

between any two limits x; and x, is given by

G(x, <x<x,) = fsz(x) dx (2.56)

The Gaussian given by Eq. 2.55 satisfies

/ TG de=1 (2.57)

The average of the distribution is

J‘c=m=fwxG(x)dx=m (2.58)

The variance is

V(x) = j_°° (x — mPG(x) dx = o2 (2.59)

The standard deviation is

o=VV(x) (2.60)

Three very important items associated with the Gaussian distribution are

the following.

1. The cumulative normal distribution function, defined by

E(x) = fij(x’) dx' = /_"

(x' —m)’

1
m'(“m CXp[*T’ dx (2.61)
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The function E(x) is very useful and is generally known as the error function
(see also Sec. 2.10.1). Graphically, the function E(x) (Eq. 2.61) is equal to the
shaded area of Fig. 2.5. The function is sketched in Fig. 2.6.

2. The area under the curve of Fig. 24 from x =m — o to x =m + o,
given by

4,- " 6(x) dx = 0.683 (2.62)

o
m-—ao

Equation 2.62 indicates that 68.3 percent of the total area under the Gaussian is
included between m — o and m + o. Another way of expressing this statement
is to say that if a series of events follows the normal distribution, then it should
be expected that 68.3 percent of the events will be located between m — ¢ and
m + o. As discussed later in Sec. 2.13, Eq. 2.62 is the basis for the definition of
the “standard” error.

3. The full width at half maximum (FWHM). The FWHM, usually denoted
by the symbol T, is the width of the Gaussian distribution at the position of half
of its maximum. The width T is slightly wider than 2o (Fig. 2.4). The correct

G(x')

Figure 2.5 The cumulative

normal distribution is equal to

the shaded area under the
x'  Gaussian curve.

) S

x Figure 2.6 The error function.
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relationship between the two is obtained from Eq. 2.55 by writing

G L G L . G(m)
=)ol 5]
Solving this equation for I" gives
I'=(2v2In2)o = 2350 (2.63)

The width I' is an extremely important parameter in measurements of the
energy distribution of particles.

| 2.10.1 The Standard Normal Distribution |

The evaluation of integrals involving the Gaussian distribution, such as those of
Eqgs. 2.56, 2.61, and 2.62, requires tedious numerical integration. The result of
such integrations is a function of m and o. Therefore, the calculation should be
repeated every time m or o changes. To avoid this repetition, the normal
distribution is rewritten in such as way that

m=0 and o=1
The resulting function is called the standard normal distribution. Integrals
involving the Gaussian distribution, such as that of Eq. 2.61, have been tabu-
lated based on the standard normal distribution for a wide range of x values,
With the help of a simple transformation, it is very easy to obtain the integrals
for any value of m and o.
The standard normal distribution is obtained by defining the new variable.

xX—m
t = (2.64)
g
Substituting into Eq. 2.55, one obtains
1 2
G(t) dt = —/2 4t 2.65
() me (2.65)

It is very easy to show that the Gaussian given by Eq. 2.65 has mean

2=m=f°°tG(t)dt=0

and variance
V(t) = 0% = f t2’G(dt =1

The cumulative standard normal distribution function, Eq. 2.61, is now written
as

X X 1
E(x)=f G(:)dt=f ﬁe—'zﬂdt (2.66)
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or, in terms of the error function that is tabulated

E()—ll rfx
X—E( + e ﬁ)

X 2 X
erg—= =\ — —2 g
&2 Wfoe

Example 2.12 The uranium fuel of light-water reactors is enclosed in
metallic tubes with an average outside diameter (OD) equal to 20 mm. It is
assumed that the OD is normally distributed around this average with a
standard deviation o = 0.5 mm. For safety reasons, no tube should be used with
OD > 21.5 mm or OD < 18.5 mm. If 10,000 tubes are manufactured, how many
of them are expected to be discarded because they do not satisfy the require-
ments given above?

where

Answer The probability that the OD of a tube is going to be less than 18.5
mm or greater than 21.5 mm is

dx —20)*
G(x < 18.5) + G(x > 21.5) = f18-5 [ (x — 20) ]

2705 P T T 0s)

N © dx (x - 20)2
le.s 2705 P 2(0.5)°

Graphically, the sum of these two probabilities is equal to the two shaded areas
shown in Fig. 2.7.

In terms of the standard normal distribution and also because the two
integrals are equal, one obtains

1 2
G(x < 18.5) + G(x > 21.5) = 2[1 - f Te_t /2 dt]
—c0 o
where
x—20
0.5

This last integral is tabulated in many books, handbooks, and mathematical
tables (see bibliography of this chapter). From such tables, one obtains

t =

e /2 dt = 0.99865

3 1
| .=
which gives
G(x < 18.5) + G(x > 21.5) = 0.0027
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L L L | | Figure 2.7 The shaded areas rep-
185 19 20 21 215 resent the fraction of defective
X rods, Ex. 2.12.

Therefore, it should be expected that under the manufacturing conditions of this
example, 27 tubes out of 10,000 would be rejected.

2.10.2 Importance of the Gaussian Distribution for
Radiation Measurements

The normal distribution is the most important distribution for applications in
measurements. It is extremely useful because for almost any type of measure-
ment that has been taken many times, the frequency with which individual
results occur forms, to a very good approximation, a Gaussian distribution
centered around the average value of the results. The greater the number of
trials, the better their representation by a Gaussian. Furthermore, statistical
theory shows that even if the original population of the results under study does
not follow a normal distribution, their average does. That is, if a series of
measurements of the variable x;/;—;, . ~ is repeated M times, the average
values Xy|y-1,... » follow a normal distribution even though the x;’s may not.
This result is known as the central limit theorem and holds for any random
sample of variables with finite standard deviation.

In reality, no distribution of experimental data can be exactly Gaussian,
since the Gaussian extends from —o to + . But for all practical purposes, the
approximation is good and it is widely used because it leads to excellent results.

It is worth reminding the reader that both the binomial (Fig. 2.2) and the
Poisson (Fig. 2.3) distributions resemble a Gaussian under certain conditions.
This observation is particularly important in radiation measurements.

The results of radiation measurements are, in most cases, expressed as the
number of counts recorded in a scaler. These counts indicate that particles have
interacted with a detector and produced a pulse that has been recorded. The
particles, in turn, have been produced either by the decay of a radioisotope or as
a result of a nuclear reaction. In either case, the emission of the particle is
statistical in nature and follows the Poisson distribution. However, as indicated
in Sec. 2.9, if the average of the number of counts involved is more than about
20, the Poisson approaches the Gaussian distribution. For this reason, the
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individual results of such radiation measurements are treated as members of a
normal distribution.

Consider now a Poisson and a Gaussian distribution having the same
average, m = 25. Obviously, there is an infinite number of Gaussians with that
average but with different standard deviations. The question one may ask is:
“What is the standard deviation of the Gaussian that may represent the Poisson
distribution with the same average?” The answer is that the Gaussian with o
= ym = 5 is almost identical with the Poisson. Table 2.1 presents values of the
two distributions, and Fig. 2.8 shows them plotted.

The following very important conclusion is drawn from this result:

The outcomes of a series of radiation measurements are members of a Poisson distribution.
They may be treated as members of a Gaussian distribution if the average result is more than
m = 20. The standard deviation of that Gaussian distribution is o = ym .

Use of this conclusion is made in Sec. 2.17, which discusses statistics of
radiation counting,

2.11 THE LORENTZIAN DISTRIBUTIONl

The Lorentzian distribution, which describes the resonances of nuclear reactions
—in particular how the probability of interaction (cross section, see Chap. 4)

Table 2.1 Comparison between a Poisson and a Gaussian
Distribution Having the Same Mean (m = 25)

G(n) (Gaussian)

n P,, (Poisson) g=35

10 0.0004 0.0009
12 0.0017 0.0027
14 0.0059 0.0071
16 0.0154 0.0168
18 0.0316 0.0299
20 0.0519 0.0484
22 0.0702 0.0666
24 0.0795 0.0782
25 0.0795 0.0798
26 0.0765 0.0782
28 0.0632 0.0666
30 0.0454 0.0484
32 0.0286 0.0299
34 0.0159 0.0168
36 0.0079 0.0071

38 0.0035 0.0027
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changes as a function of particle energy—is given by

1 r/2
L(x)Ydx = — /

2.67
7T (x —m) +T2/4 267

where L(x) dx is the probability that the value of x lies between x and x + dx.
The Lorentzian is a symmetric function (Fig. 2.9) centered around the value
x = m. It can be easily shown that

f:L(x) de=1

and that

X= f—wa(x)dx=m

Thus, the mean is given by the parameter m as expected from the symmetry of
the function. One peculiar characteristic of the Lorentzian is the fact that its
variance cannot be calculated. Indeed, the integral

o? = V(x) = j°° (x — m* L(x) dx

does not converge, which is the result of the slow decrease of the function away
from the peak.
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Figure 2.9 A Lorentzian distribution peaking at x = 25 and having a FWHM at equal to 5.

In the absence of a standard deviation, the parameter I' is used for the
description of the Lorentzian. The parameter I' is equal to the FWHM of the
function.

2.12 THE STANDARD, PROBABLE, AND OTHER ERRORS

Consider a measurement or series of measurements that gave the result R and
its estimated error E. The experimenter reports the result as

R+ FE (2.68)
in which case E is the absolute error (R and E have the same units), or as

R+ e% (2.69)

where € = (E/R)100 = relative error (dimensionless). In most cases, the rela-
tive rather than the absolute error is reported.

Whether either Eq. 2.68 or 2.69 is used, the important thing to understand
is that R + E does not mean that the correct result has been bracketed between
R — E and R + E. It means only that there is a probability that the correct result
has a value between R — E and R + E. What is the value of this probability?
There is no unanimous agreement on this matter, and different people use
different values. However, over the years, two probability values have been used
more frequently than others and have led to the definition to two corresponding
errors, the standard and the probable error.
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The standard error. If the result of a measurement is reported as R + E_ and
E, is the standard error, then there is a 68.3 percent chance for the true result
to have a value between R — E  and R + E,.

The probable error. By definition, the probable error is equally likely to be
exceeded or not. Therefore, if the result of a measurement is R + E, and Ep is
the probable error, then there is a 50 percent chance for the true result to have
a value between R — E, and R + E,.

Both standard and probable errors are based on a Gaussian distribution.
That is, it is assumed that the result R is the average of individual outcomes
that belong to a normal distribution. This does not introduce any limitation in
practice because, as stated in Sec. 2.10.2, the individual outcomes of a long
series of any type of measurement are members of a Gaussian distribution.
With the Gaussian distribution in mind, it is obvious that the definition of the
standard error is based on Eq. 2.62. If a result is R and the standard error is E,
then E, = 0.

R+E, 1 (x —R)
e dx = 0.683
'/;z—ES V27)o exp 207

Correspondingly, the probable error E, satisfies

fR+Ep 1 (x - R)2 05

————exp| - ————— = 0.
r-£, (V2m)o P 20
It can be shown that
E, = 0.6745E, (2.70)

The standard and probable errors are the most commonly used in reporting
experimental results. Individual researchers may define other errors that repre-
sent a different percentage of the Gaussian. For example, the 95 percent error,
E,s, is that which gives a 95 percent chance to have the true result bracketed
between R — E4 and R + E,. It turns out that Eqs = 1.6450 (see Table 2.2).

2.13 THE ARITHMETIC MEAN AND ITS STANDARD ERROR

Although the true value of a quantity can never be determined, the error of the
measurement can be reduced if the experiment is repeated many times.
Consider an experiment that has been repeated N times, where N is a large
number, and produced the individual outcomes »n,l;—1,. . ~. Let the frequency
of occurrence of n; be Pn,-‘i If one plots P, versus n,, the resulting curve

"Exception: Radiation counting measurements with m < 20 obey the Poisson distribution.
¥If N = 1000 and », has occurred 15 times, P, = 15/1000.
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resembles a Gaussian distribution as shown in Fig. 2.10. The larger the value of
N, the more the histogram of Fig. 2.10 coincides with a normal distribution.
Assume that the dashed line of Fig. 2.10 is an acceptable representation of the
experimental results. Under these circumstances, how should the result of the
measurement be reported and what is its standard error?
The result of the measurement is reported as the arithmetic average defined
by
n+ny+ -

_ ny N
n= =Yy
N i=1

X

d (2.71)

z|

This equation is the same as Eq. 2.31. As N increases, a better estimate of the
true value of n is obtained—i.e., the error of the measurement becomes
smaller. The true value of n, which is also called the true mean, can only be
obtained with an infinite number of measurements. Since it is impossible to
perform an infinite number of trials, n is always calculated from Eq. 2.71.

The error of 7i depends on the way the individual measurements are
distributed around 7i—i.e., it depends on the width of the Gaussian of Fig. 2.10.
As the width becomes smaller, the error gets smaller, and therefore the
measurement is better. The standard error of 7 is defined in terms of the
standard deviation of the distribution. Using Eq. 2.34 and setting f(x,) = 1/N,
the standard deviation of the distribution becomes

N (n — )
ol=Y M 2.72)

With a finite number of measurements at our disposal, this equation for ¢ has
to be modified in two ways. First, because the true mean m is never known, it is
replaced by its best estimate, which is 77 (Eq. 2.71). Second, it can be generally

J"\
/
/ 1 \
/ \
/ \ Gaussian
! \ /
/
/ \
Y~ \
N /
/ \
/ \\
/ \
/ \\ Figure 2.10 The distribution of
/ \ the frequency of occurrence of
individual results of a series of
_§ I N identical measurements tends to

n follow a Gaussian distribution.
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shown that the best estimate of the standard deviation of N measurements is
given by the following equation:

oL ¥ 7)? 2.73)
(e _N—lig(ni_n) (-

The differences between Eq. 2.72 and Eq. 2.73 are the use of 7 instead of m
and the use of N — 1 in the denominator instead of N. For a large number of
measurements, it does not make any practical difference if one divides by N or
N — 1. But it makes a difference for small values of N. Using the extreme value
of N =1, one can show that division by N gives the wrong result. Indeed,
dividing by N, one obtains
1 1 0
0'2= I—V-Z(nl —ﬁ)2= TZ(nl —n1)2= T =0

Zero o means zero error, which is obviously wrong. The error is never zero,
certainly not in the case of one measurement. Division by N — 1, on the other
hand, gives

1 , 0
_12(”1_’11) -0

o=

N

which, being indeterminate, is a more realistic value of the error based on a
single measurement.

Since the N results are distributed as shown in Fig. 2.10, 68.3 percent of the
outcomes fall between 1 — o and 1 + o (see Eq. 2.62). Therefore, one addi-
tional measurement has a 68.3 percent chance of providing a result within
fi + o. For this reason, ¢ is called the standard deviation or the standard error
of a single measurement. Is this equal to the standard error of 7i? No, and here is
why.

According to the definition of the standard error, if o; is the standard error
of 7, it ought to have such a value that a new average 7 would have a 68.3
percent chance of falling between 7 — o; and 7 + ;. To obtain the standard
error of 71, consider Eq. 2.71 as a special case of Eq. 2.36a. The quantity 7 is a
linear function of the uncorrelated random variables n,,n,,...,ny, each with
standard deviation ¢. Therefore

N
li

N Mz
)
=

*The factor N — 1 is equal to the “degrees of freedom” or the number of independent data or
equations provided by the results. The N independent outcomes constitute, originally, N indepen-
dent data. However, after 7 is calculated, only N — 1 independent data are left for the calculation
of o.
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where a; = 1/N. Using Eq. 2.41, the standard deviation of 7 is'

N ) N 1 o
. = N .2 = — 2 = T 2.74
o; i=1a,o, ig ek i~ 2.7

If the series of N measurements is repeated, the new average will probably be
different from 7, but it has a 68.3 percent chance of having a value between
n — o; and n + o;. The result of the N measurements is

a
nto=0t— (2.75)
VN
When a series of measurements is performed, it would be desirable to
calculate the result in such a way that the error is a minimum. It can be shown
that the average 7 as defined by Eq. 2.71 minimizes the quantity

N
Y (7-n)
i=1

which is proportional to the standard error. Finally, Eq. 2.75 shows that the
error is reduced if the number of trials increases. However, that reduction is
proportional to 1/ VN, which means that the number of measurements should
be increased by a factor of 100 to be able to reduce the error by a factor of 10.

2.14 CONFIDENCE LIMITS

Consider a variable x; that represents the value of the ith sample of a large
population of specimens. The variable x; may be the diameter of a sphere or the
thickness of the cladding of a fuel rod or the length of the fuel rod. A designer
may desire a certain diameter of the sphere or a certain thickness of the fuel
cladding or a certain length of the fuel rod. What happens during actual
fabrication is that the individual units are not exactly the same. The person who
examines individual units as they are constructed, machined, or fabricated will
find that there is a distribution of values for the quantity being examined. The
average value is equal to that specified in the blueprints and is called the
nominal value. Individual specimens, however, have values of x distributed
around the nominal value x, according to a Gaussian distribution,

1 B (x —x,,)2
(\/E)UCXP 202

where x, = nominal value of x = average value of x
o = standard deviation of the distribution

G(x) =

¥If the population of the events n; is finite in size, then it can be shown that o = [(M —
N)/(M - D]o?/N, where M = total number of n,’s (see Jaech).
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The manufacturer of any product would like to know what the probability is
that any one item will deviate from the nominal value by a certain amount. Or,
setting some acceptable value of x, call it x,, the manufacturer would like to
know what is the probability that x will be bigger than x,. Questions of this type
come under the subject of “quality control.”

The probability that x will exceed x, is given by

Psxy = [ () (2.76)
>x,) = — .
X2 % [ca (V27)o %P 202
The acceptable value of x is usually expressed as
x,=x, +ko Q.77

i.e., the extreme acceptable vaue of x, x,, is allowed to be k standard deviations
different from x,,.
In terms of the standard normal distribution, Eq. 2.76 takes the form

P>k = [ —e 2 (2.78)
) '[k 27
where
x—x,
t= 2.79)
ag
and

P(t > k) = probability that x will exceed x, by k standard deviations

Table 2.2 gives values of P(¢ > k) for several values of k. The values in Table
2.2 are interpreted as follows:

Consider k = 1. The probability that x will exceed x, where x, =x, + o
is 15.9 percent. If x is some property of a manufactured product, it is said that
the confidence limit is, in this case, 1 — 0.159 = 0.841 or 84.1 percent, i.e., 84.1
percent of the specimens will have x < x, (Fig. 2.11). If k = 2, the probability

Table 2.2 Probability Values and Confidence Limits

Number of

standard Confidence
deviations (k) P(x > x,) limit

0 0.500 50.0

1.0 0.159 84.1

1.285 0.100 90.0

1.5 0.067 933

1.645 0.050 95.0

2.0 0.023 97.7

2.5 0.006 99.4

3.0 0.0013 99.87
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Gix)

Figure 2.11 The probability that x
will exceed x,, where x, =x, +
o, is 15.9 percent (shaded arca).
n Xg=Xp + 0 The confidence limit is 1 — 0.159,
or 84.1 percent.

b SR 3 U e S S

that x will exceed x, is equal to 2.3 percent; therefore, the confidence limit is
97.7 percent.

In actual construction or fabrication of an item, the Gaussian distribution is
determined by checking the variable x for a large number of specimens. An
average value of x is calculated,

X = X;

™M=z

1
N ;

I
-

and a standard deviation

is obtained. The average ¥ should be almost equal to the nominal value of x. A
Gaussian distribution for this sample peaks at ¥ and has a standard deviation o-.
Knowing o, the value of x, is calculated from Eq. 2.77 after the confidence
limit—the value of k—has been decided upon.

The use of the concept of confidence limits is widespread in industry. As a
specific example, let us assume that x is the thickness of the cladding of a
reactor fuel rod. The average (nominal) thickness is x,. The reactor designer
would like to be certain that a certain fraction of fuel rods will always have
thickness within prescribed limits. Let us say that the designer desires a
confidence limit of 99.87 percent. This means that no more than 13 rods out of
10,000 will be expected to have cladding thickness exceeding the nominal value
by more than three standard deviations (Table 2.2).
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2.15 PROPAGATION OF ERRORS

[2.15.1 Calculation of the Average and Its Standard Deviation |

Sometimes an investigator has to determine a quantity that is a function of more
than one random variable. In such cases, it is very important to know how to
calculate the error of the complex quantity in terms of the errors of the
individual random variables. This procedure is generally known as propagation
of errors and is described in this section.

Consider the function f(x, x,,...,x,), which depends on the random
variables x,, x,,..., x,,. Generally, the values of x,x,,...,x, are deter-
mined experimentally and then the value of f(x, x,,..., x,,) is calculated. For
example,

fGyy %) =% £ 1,

fGey, xy) = x1x,

[y, x3) = x1 /%,

flxy, x,) = In(x; +x,)
f(x) =x*

fCxy, x5, 003) = (x) +x5) /%5

Sk wn =

It has already been mentioned that the x;’s are determined experimentally,
which means that average values X, X,, X3,..., X, are determined along with
their standard errors oy, o,..., gy. TWo questions arise:

1. What is the value of f(x,,..., x,,) that should be reported?
2. What is the standard error of f(x,,..., x,)?

It is assumed that the function f(x,,..., x,) can be expanded in a Taylor
series around the averages X;li—1,  m:

o ; il _\of 2
F(xpy Xy Xpg) = F(Ry, By X)) + 2 (x; —x,-)g + O(x; — %)
i=1 i
The notation used is that
of  of
9%, x|, _;
The term O(x; — ¥,)? includes all the terms of order higher than first, and it will
be ignored. Thus, the function is written

o , il _\ 9f
F(xX, %00y Xag) =f(R1, Xy X)) + 2 (x; —x,-)g (2.80)
i=1 i
Equation 2.80 is a special case of Eq. 2.36a. The average value of f(x,,..., xy),
which is the value to be reported, is

F=f(3, %0, %) (2.81)
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The variance of f(x,,...,x,) is given by Eq. 2.40:

uo( oy of \( of
=V(f)=i=21(£)0' +ZZZ( )(}—g)pijoyoy (2.82)
j>i

where p;; is the correlation coefficient given by Eq. 2.39.

The standard error of f(x,,..., x,) is equal to the standard deviation
Mo ogf\? MM [\ of
- 7 249 — |l — .00 2.83
7 igl(aii) 7 139> (‘9’_‘:') o, | P 289
i>i

Equations 2.81 and 2.83 are the answers to questions 1 and 2 stated
previously. They indicate, first, that the average of the function is calculated
using the average values of the random variables and, second, that its standard
error is given by Eq. 2.83. Equation 2.83 looks complicated, but fortunately, in
most practical cases, the random variables are uncorrelated—i.e., p;; = 0, and
Eq. 2.83 reduces to

M J f 2
= - 2 2.84
Unless otherwise specified, the discussion in the rest of this chapter will concern
only uncorrelated variables. Therefore, Eqs. 2.81 and 2.84 will be used. The
reader, however, should always keep in mind the assumption under which Eq.
2.84 is valid.

2.15.2 Examples of Error Propagation—Uncorrelated Variables

Examples of error propagation formulas for many common functions are given
in this section. In all cases, uncorrelated variables are assumed.

Example 2.13 f(x, x,) = a,x, *+ a,x,, where a, and a, are constants

f=ax +a)X,

of \* of \* o
0}" = M(E‘) 0'12 + (E 0'22 = a120'12 + a%a'zz (285)
1 2

If a;, = a, = 1, this example applies to the very common case of summation
or difference of two variables.

Example 2.14 f(x,,x,) = ax,x,, where a is a constant

f= ax,x,
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Example 2.15 f(x,, x,) = ax,/x,

_ X,
f=a—
X
1 %7
or=a\l =0l + — o}t
f f% 1 2421 2

The standard error for Examples 2.14 and 2.15 takes a simpler and easy-to-
remember form for both the product and the quotient if it is expressed as the
relative error. It is trivial to show that

) 2 2
i_f=\/($) +($) (2.86)
f X1 X,

Thus, the relative error of the product ax,x, or the quotient ax, /x, is equal to
the square root of the sum of the squares of the relative errors of the variables
x; and x,.

Example 2.16 f(x) = x™, where m is some real number

f=®"
J
af—(aﬁ)a =m(x)" o,
or
o7 O
—.Ji =m—_—
f x
Example 2.17 f(x) = e**
f" = 9%
9f
O'f' 0x oy = = ae’ 0'—
or
o
L/
f

There is another very important use of Eq. 2.84, which has to do with the
calculation of the variation of a function in terms of changes of the independent

variables. Consider again the function f(x, x,,...,x,,) and assume that the
variables x,, x,,..., x,, have changed by the amounts Ax, Ax,,...,Ax,,. The
variation or change of f(x,,...,x,), Af, is given by

Z ( o ) (2.87)
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Equation 2.87 should not be used if it is specified what the change of
variable is, i.e., if the change is a decrease or an ‘increase. If the change is
known, one should calculate the function f(x,, x,,..., x,,) using the new values
of the x’s and obtain Af by subtracting the new from the old value.

Example 2.18 The speed of sound is obtained by measuring the time it takes
for a certain sound signal to travel a certain distance. What is the speed
of sound and its standard error if it takes the sound 2.5 + 0.125 s to travel
850 + 5 m?

Answer
85
2.

=

Il

x
flx,x)=v = i 340 m/s

W

To calculate the error, use Eq. 2.86:

o, (o’x 2 g\ \/ 51\2  [0.125)\? 0.05 = 592
——=‘/ = + (2] =y l=] +|=—| =o005=
v x) (t) (850) (2.5) 7

The result is 340 + 17 m/s.

Example 2.19 A beam of photons going through a material of thickness x is
attenuated in such a way that the fraction of photons traversing the material is
e **, where the constant u is called the attenuation coefficient. If the thickness
of the material changes by 10 percent, by how much will the emerging fraction
of photons change? Take x = 0.0l m and g = 15 m™ .

Answer This is a case requiring the use of Eq. 2.87.
flx) =e™#*
A o A THIA
f= a_x) X = —pe X

Af Ax
= - mbr- - ,Lx(T) — —(15)(0.01)(0.10) = —0.015

Therefore, if the thickness increases by 10 percent, the fraction of emerging
photons decreases by 1.5 percent.

2.16 GOODNESS OF DATA—x? CRITERION—REJECTION
OF DATA

It is desirable when data are obtained during an experiment to be able to
determine if the recording system works well or not. The experimenter should
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ask the question: Are all the obtained data true (due to the phenomenon
studied), or are some or all due to extraneous disturbances that have nothing to
do with the measurement? A number of tests have been devised for the purpose
of checking how reliable the results are, i.e., checking the “goodness of data.”

Before any tests are applied, an investigator should use common sense and
try to avoid erroneous data. First of all, a good observer will never rely on a
single measurement. He or she should repeat the experiment as many times as is
feasible (but at least twice) and observe whether the results are reproducible or
not. Second, the observer should check the results to see how they deviate from
their average value. Too large or too small deviations are suspicious. The good
investigator should be alert and should check such data very carefully. For
example, if for identical, consecutive measurements one gets the following
counts in a scaler:

10,000 10,000 10,000 10,002 9999 9998

the apparatus is not necessarily very accurate; it is probably faulty. In any event,
a thorough check of the whole measuring setup should be performed.

The test that is used more frequently than any other to check the goodness
of data is the x? criterion (chi square), or Pearson’s y’ test. The x?2 test is
based on the quantity

xi=t— (2.88)

where n,|;_;
average.

To apply the x? test, one first calculates x> using Eq. 2.88. Then, using
Table 2.3, the corresponding probability is obtained. The meaning of the
probability values listed in Table 2.3 is the following. If the set of measurements
is repeated, the value of x? gives the probability to obtain a new y? that is
larger or smaller than the first value. For example, assume that N = 15 and
x? = 4.66. From the table, the probability is 0.99, meaning that the probability
for a new set of measurements to give a 2 < 4.66 is less than 1 — 0.99, i.e., less
than 1%. What this implies is that the data are clustered around the mean much
closer than one would expect. Assume next that N = 15 and x? = 29.14. Again,
from the table, the probability to get x? > 29.14 is only 1% or less. In this case,
the data are scattered in a pattern around the mean that is wider than one
might expect. Finally, consider N = 15 and x? = 13.34. The probability is then
0.5, which means that, from a new set of measurements, it is equally probable to
get a value of x? that is smaller or larger than 13.34. Notice that the probability
is close to 0.5 when 2 ~ N — 1. In practice, a range of acceptable x? values
is selected in advance; then a set of data is accepted if y? falls within this
preselected range. For more details about y2, see Johnson & Leone, Jaech, and
Smith.

~ represents the results of N measurements with 7 being the

.....
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Table 2.3 Probability Table for x? Criterion’

Degrees of Probability

freedomt

Ww-1 0.99 0.95 0.90 0.50 0.10 0.05 0.01
2 0.020 0.103 0.211 1.386 4.605 5.991 9.210
3 0.115 0.352 0.584 2.366 6.251 7.815 11.345
4 0.297 0.711 1.064 3.357 7.779 9.488 13.277

5 0.554 1.145 1.610 4.351 9.236 11.070 15.086
6 0.872 1.635 2.204 5.348 10.645 12.592 16.812
7 1.239 2.167 2.833 6.346 12.017 14.067 18.475
8 1.646 2.733 3.490 7.344 13.362 15.507 20.090
9 2.088 3.325 4.168 8.343 14.684 16.919 21.666

10 2.558 3.940 4.865 9.342  15.987 18.307 23.209
11 3.053 4.575 5.578 10.341 17.275 19.675 24.725
12 2.571 5.226 6.304 11.340 18.549 21.026 26.217
13 4.107 5.892 7.042 12.340 19.812 22.363 27.688
14 4.660 6.571 7.790 13.339  21.064 23.685 29.141
15 5.229 7.261 8.547 14.339  22.307 24.996 30.578
16 5.812 7.962 9.312 15.338 23542 26.296 32.000
17 6.408 8.672 10.085 16.338  24.769 27.587 33.409
18 7.015 9.390 10.865 17.338 25.989 28.869 34.805
19 7.633 10.117 11.651 18.338 27.204 30.144 36.191
20 8.260 10.851 12.443 19337 28412 31.410 37.566
21 8.897 11591 13.240 20.337 29.615 32.671 38.932
22 9.542 12.338 14.041 21.337 30.813 33.924 40.289
23 10.196  13.091 14.848 22.337 32.007 35.172 41.638
24 10.856  13.848 15.659 23.337 33.196 36.415 42.980
25 11.534 14.611 16.473 24.337 34.382 37.382 44314
26 12.198 15.379 17.292 25.336  35.563 38.885 45.642
27 12.879 16.151 18.114 26.336  36.741 40.113 46.963
28 13.565 16.928 18.939 27.336 37916 41.337 48.278
29 14.256 17.708 19.768 28.336  39.087 42.557 49.588

tCalculated values of x* will be equal to or greater than the values given in the table.
See footnote on p.- 51

What should one do if the data fail the test? Should all, some, or none of
the data be rejected? The answer to these questions is not unique, but rather
depends on the criteria set by the observer and the type of measurement. If the
data fail the test, the experimenter should be on the lookout for trouble. Some-
possible reasons for trouble are the following;

1. Unstable equipment may give inconsistent results, e.g., spurious counts
generated by a faulty component of an instrument.
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. External signals may be picked up by the apparatus and be “recorded.”

Sparks, radio signals, welding machines, etc., produce signals that may be
recorded by a pulse-type counting system.

. If a number of samples are involved, widely scattered results may be caused

by lack of sample uniformity.

A large x? may result from one or two measurements that fall far away from
the average. Such results are called the “outliers.” Since the results are
governed by the normal distribution, which extends from —% to +, in

theory, at least, all results are possible. In practice, it is somewhat disturbing
to have a few results that seem to be way out of line.

Should the outliers be rejected? And by what criterion? One should be

conservative when rejecting data for three reasons:

1.

2.

The results are random variables following the Gaussian distribution. There-
fore, outliers are possible. ’

As the number of measurements increases, the probability of an outlier
increases.

. In a large number of measurements, the rejection of an outlier has small

effect on the average, although it makes the data look better by decreasing
the dispersion.

One of the criteria used for data rejection is Chauvenet’s criterion, stated as

follows:

A reading or outcome may be rejected if it has a deviation from the mean greater than that
corresponding to the 1 — 1/2N error, where N is the number of measurements.

Data used with Chauvenet’s criterion are given in Table 2.4. For example, in

a series of 10 measurements, 1 — 1/2N =1 —1/20 = 0.95. If n;, — n exceeds
the 95 percent error (1.960 ), then that reading could be rejected. In that case,
a new mean should be calculated without this measurement and also a new
standard deviation.

Table 2.4 Data for Chauvenet’s Criterion

Number of standard

Number of deviations away
measurements from average
2 1.15
3 1.38
4 1.54
5 1.65
10 1.96
15 2.13
25 2.33
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The use of Chauvenet’s, or any other, criterion is not mandatory. It is up to
the observer to decide if a result should be rejected or not.

2.17 THE STATISTICAL ERROR OF
RADIATION MEASUREMENTS

Radioactive decay is a truly random process that obeys the Poisson distribution,
according to which the standard deviation of the true mean m is vm . However,
the true mean is never known and can never be found from a finite number of
measurements. But is there a need for a large number of measurements?

Suppose one performs only one measurement and the result is n counts.
The best estimate of the true mean, as a result of this single measurement, is
this number n. If one takes this to be the mean, its standard deviation will be V7 .

Indeed, this is what is done in practice. The result of a single count n is
reported as n + vn , which implies that

1. The outcome n is considered the true mean.
2. The standard deviation is reported as the standard error of n.

The relative standard error of the count »n is

L (2.89)
n n Vn
which shows that the relative error decreases if the number of counts obtained
in the scaler increases. Table 2.5 gives several values of n and the corresponding
percent standard error. To increase the number s, one either counts for a long
time or repeats the measurement many times and combines the results. Repeti-
tion of the measurement is preferable to one single long count because by
performing the experiment many times, the reproducibility of the results is
checked.
Consider now a series of N counting measurements with the individual
results n;_1 . It is assumed that the counts n; were obtained under

Table 2.5 Percent Standard Error of

n Counts
% Standard
n error of n
100 10
1,000 3.16
10,000 1
100,000 0.316

1,000,000 0.1
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identical conditions and for the same counting time; thus, their differences are
solely due to the statistical nature of radiation measurements. Each number n,
has a standard deviation g; = y/n,. The average of this series of measurements

is, using Eq. 2.31,

1
— ; 231
N n; (2.31")

n=

T Mz

The standard error of 7 can be calculated in two ways:

1. The average n is the best estimate of a Poisson distribution of which the
outcomes n;l;_;,. . n are members. The standard deviation of the Poisson
distribution is (see Sec. 2.9) ¢ = Vm = V7 . The standard error of the average
is (see Eq. 2.75)

= 2 (2.90)
O = —F/— = - .
" VN N

2. The average © may be considered a linear function of the independent

variables n;, each with standard error \/_ Then, using Eq. 2.84, one obtains

i Bl - B

(2.91)

where
Ry = 1y + n, + -+ +ny = total number of counts obtained from N

measurements
It is not difficult to show that Eqgs. 2.90 and 2.91 are identical.

In certain cases, the observer needs to combine results of counting experi-
ments with quite different statistical uncertainties. For example, one may have
to combine the results of a long and short counting measurement. Then the
average should be calculated by weighting the individual results according to
their standard deviations (see Bevington and Eadie et al.). The equation for the
average Is

N
Y n/a’

A= (2.92)

Z 1/a?

i=1

Example 2.20 Table 2.6 presents typical results of 10 counting measure-
ments. Using these data, the average count and its standard error will be
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Table 2.6 Typical Results of a Counting Experiment}

Number of counts Square of
obtained in the deviation,
Observation, i scaler, n; (n; —n)?
1 197 81
2 210 16
3 200 36
4 198 64
5 205 1
6 195 121
7 190 256
8 220 196
9 215 81
10 230 576
Totals 2060 1428

TOne could use Eqs. 2.73 and 2.74 for the calculation of o and
op. The result is

For radiation measurements, use of Eqgs. 2.90 and 2.91 is preferred.

calculated using Eqgs. 2.31, 2.90, and 2.91. The average is
1 ¥ 2060
n=— ;= ——— = 2006
T

Using Eq. 2.90 or Eq. 2.91, the standard error of 7% is

206 V2060
o = ‘/ - —45
10 10

2.18 THE STANDARD ERROR OF COUNTING RATES

In practice, the number of counts is usually recorded in a scaler, but what is
reported is the counting rate, i.e., counts recorded per unit time. The following
symbols and definitions will be used for counting rates.

G = number of counts recorded by the scaler in time ¢; with the sample present
= gross count
B = number of counts recorded by the scaler in time ¢, without the sample

background count
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G
g = — = gross counting rate
G
b= P background counting rate
B
. G B
r = net counting rate’ = — — — =g —b (2.93)
lc g

The standard error of the net counting rate can be calculated based on Eq.
2.84 and by realizing that r is a function of four independent variables G, ¢, B,

and tg:
ar \* ) or \* ) ar \* )
g, = —|os+|\— o+ |—] o5+
’ aG) ¢ \otg) o \oB] ®
The electronic equipment available today is such that the error in the measure-
ment of time is, in almost all practical cases, much smaller than the error in

the measurement of G and B.* Unless otherwise specified, o,; and o,; will be
taken as zero. Then Eq. 2.94 takes the form

ar \? 5 ar \? 5
g, = \/(E) o; + (a—B‘) gg (295)
The standard errors of G and B are
oo =VG az=1VB

Using Eqgs. 2.93 and 2.95, one obtains for the standard error of the net counting
rate,

ar \*
—) a? (294)
dtg ] s

G B
g, = - + -5 (296)
Ic 1

It is important to notice that in the equation for the net counting rate, the
quantities G, B, f;, and t; are the independent variables, not g and b. The
error of r will be calculated from the error in G, B, ¢, and tg. It is very helpful
to remember the following rule: The statistical error of a certain count is
determined from the number recorded by the scaler. That number is G and B, not
the rates g and b.

Example 2.21 A radioactive sample gave the following counts:
G = 1000 t; = 2min B =500 tg = 10 min

"When the counting rate is extremely high, the counter may be missing some counts. Then a
“dead time” correction is necessary, in addition to background subtraction; see Sec. 2.21.

*The errors a,, and o, may become important in experiments where very accurate counting
time is paramount for the measurement.
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What is the net counting rate and its standard error?
Answer

r=—— — =-—— — — =500 — 50 = 450 counts/min

22 22 " 10
r =450+ 16 = 450 + 3.5%
A common error is that, since r = g — b, one is tempted to write

o,=yolt+a} =y (\/(§)2+(\/b_)2 =yg+b =v500+50 =23 counts/min

This result, g, = 23, is wrong because

G B 1000 500
(r,=\/ + =\/—+——5 = y250 + 5 = 16 counts/min

o, # yg§ and o, # Vb

The correct way to calculate the standard error based on g and b is to use

VG V1000 vB V500
%", T 2 %= T T 10

Then

G B
o =4a}+a = ‘/ z + i 16 counts /min

Usually, one determines G and B, in which case g, is calculated from Eq.
2.96. However, sometimes the background counting rate and its error have been
determined earlier. In such a case, o, is calculated as shown in Ex. 2.22.

Example 2.22 A radioactive sample gave G = 1000 counts in 2 min. The
background rate of the counting system is known to be b = 100 + 6 counts/min.
What is the net counting rate and its standard error?

Answer
G 1000

r=— — b= —— — 100 = 400 counts /min
tg 2

ar \? ar\? G 1000
o e (- i - e

= 17 counts/min

In this problem, b and o, are given, not B and t;. The standard error of the
background rate has been determined by an earlier measurement. Obviously, b
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was not determined by counting for 1 min, because in that case, one would have

B =100 tg = 1 min b = 100 counts /min

vB V100
Ub=-t_=_1..=1()
B

2.18.1 Combining Counting Rates

If the experiment is performed N times with results
G.,G,,G;,...,Gy B,,B,,...,By
for gross and background counts, the average net counting rate is

;B

tg, s

~
II

1 N
—-Zri=—2
N5

In most cases, ¢, and ¢ are kept constant for all N measurements. That is,

tg, =g and tp = tg. Then
1({G B
=—(———) (297

where
N
G=Y)YG, and B= ) B
i=1 i=1

The standard error of the average counting rate is, using Eqgs. 2.84 and 2.96,

/ | N B
121 a,’ =Z tG tB - + g (2.98)

A special case. Sometimes the background rate is negligible compared to the
gross counting rate. Then, Eq. 2.98 becomes

1 \/_
o, =
TNt
The relative standard error is

- QA/NWG st 1

G/Nt, VG

This is the same as Eq. 2.89. Therefore, if the background is negligible, the
relative standard error is the same for either the total count or the counting
rate.

)

‘lll



68 MEASUREMENT AND DETECTION OF RADIATION

2.19 METHODS OF ERROR REDUCTION

In every radiation measurement it is extremely important to perform it in such a
way that the result is determined with the minimum possible error. In general,
the first task of the investigator is to improve the counting apparatus by
reducing the background as much as possible. Actually, the important quantity is
the ratio b/g or b/r and not the absolute value of the background. Assuming
that all possible improvements of background have been achieved, there is a
procedure that, if followed, will result in a smaller error. Two such procedures
will be discussed below. In addition, a method will be presented for the
calculation of the counting time necessary to measure a counting rate with a
desired degree of accuracy.

2.19.1 The Background Is Constant and There Is No Time Limit for
Its Measurement

In this case, the background is measured for a long period of time to minimize
the error introduced by it, i.e., 5 is so long that

G B G
= —_ 4+ — = —
Ve g Va

Example 2.23 Suppose one obtains the following data:
G = 400 t; = 5 min
B =100 ty = 2.5 min

Then
400 100 .
r= S T 25 - 40 counts /min
400 .
%=\ 5 + 75 " 5.65 counts/min
o 5.5
~ =0 =0.14 = 14%

If the background is constant, this result can be improved by counting back-
ground for a long period of time, e.g., 250 min. In that case, the result is

100
B = >3 X 250 = 10,000 counts tg = 250 min
400 10,000 )
r= S T 7250 = 40 counts /min
400 10,000
g, = ?+W=V16+0.1 =

% _ 24 o
ro 40 v
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2.19.2 There Is a Fixed Time T Available for Counting Both Background
and Gross Count

In this case, the question is, What is the optimum time to be used for gross and
background counting? Optimum time results in minimum statistical error for
the net counting rate. The optimum time is determined as follows.

An estimate of the counting rates at the time of the measurement is
obtained with a short count (not the final one). Assume that one obtained the
approximate counting rates

G b B
8= ° T,
Then, from Eq. 2.96 and also using G = gt;, B = btg,
b
ot b
lc g

The best times f; and ¢, are those that minimize o, or (o,)? subject to the
constraint
tg +t; = T = constant (2.99)

Considering o, as a function of t; and t;, the minimum will be found by

differentiating (0;)* and setting the differential equal to zero:

b
d(a)’ = —%dtc— iy =0
G B

Differentiating the constraint, Eq. 2.99, one finds
dtg = —dty
Substituting this value of dt; into d(ao;)? gives

ty b

g g

Therefore, if there is a fixed time T for the measurement, the optimum counting
times are determined from the two equations

to+tyg=T
t b
B _ — (2.100)
e g

2.19.3 Calculation of the Counting Time Necessary to Measure a
Counting Rate with a Predetermined Statistical Error

Assume that the net counting rate of a radioactive sample should be measured
with an accuracy of a percent, i.e., g,/r =a percent. Also assume that a
counting system is provided with a background counting rate b and standard
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error g,. Both b and o, have been reduced as much as possible for this system
and have been determined earlier. The task is to determine the counting time ¢
necessary to result in a percent standard error for the net counting rate. The
time ¢ is calculated as follows.

The net counting rate and its standard error are

G G
r=2 b g= 2t ap (2.101)
tg IG

Therefore

o, a VG/1E + o} \/g/tG + oy

r 100  G/tg—b =

Equation 2.101 solved for ¢, gives

8

- 2.102
(g — b)(a/100)° — o ( )

e

It is assumed that an approximate gross counting rate is known.

Example 2.24 How long should a sample be counted to obtain the net
counting rate with an accuracy of 1 percent? It is given that the background for
the counting system is 100 + 2 counts/min.

Answer The first step is to obtain an approximate gross counting rate.
Assume that the sample gave 800 counts in 2 min. Then g = 800/2 = 400
counts/ min and, using Eq. 2.102,

400

= = 80 min
(400 — 100)%(0.01)* — 22

g

Indeed, if one counts for 80 min, the error of r is going to be

[ 400
: §-+0'b2= — +22 =3
te 80
3

% =001 = 1%

Q
I

\l,‘q

2.19.4 Relative Importance of Error Components

In every measurement, the observer tries to reduce the experimental error as
much as possible. If the quantity of interest depends on many variables, each
with its own error, the effort to reduce the error should be directed toward the
variable with the largest contribution to the final error.
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Consider the quantity Q =x +y — z and assume x = 3, y = 2, and z = 1.
Also assume that the corresponding standard errors are

g =01 o, =0.23 o, = 0.05

The standard error of Q is

ap = o + ol +a? = V0.2 + 0237 + 005

= v0.01 + 0.0529 + 0.0025 = 0.26

From the relative magnitude of the errors, one can see that if it is necessary to

reduce the error further, the effort should be directed toward reduction of o,
first, o, second, and ¢, third. In fact, there is no need to reduce o, further

before o, and o, reach the same magnitude as o,.

2.20 MINIMUM DETECTABLE ACTIVITYl

The minimum detectable activity (MDA) is the smallest net count that can be
reported with a certain degree of confidence that represents a true activity from
a sample and is not a statistical variation of the background. The term MDA is
not universally acceptable. In the general case, in measurements not necessarily
involving radioactivity, other terms such as lowest detection limit have been
used. Here, the notation and applications will be presented with the measure-
ment of a radioactive sample in mind.

Obviously, MDA is related to low count rates. In such cases of low count
rates, the person who performs the experiment faces two possible errors.

TYPE I error: To state that the true activity is greater than zero when, in fact, it
is zero. If this is a suspected contaminated item, the person doing the
measurement will report that the item is indeed contaminated when, in fact,
it is not. This error is called false positive.

TYPE II error: To state that the true activity is zero when, in fact, it is not.
Using the previous example, the person doing the measurement reports that
the item is clean when, in fact, it is contaminated. This error is called false
negative.

The outcomes of radiation measurements follow Poisson statistics, which
become, essentially, Gaussian when the average is greater than about 20 (see
Sec. 2.10.2). For this reason, the rest of this discussion will assume that the
results of individual measurements follow a normal distribution and the confi-
dence limits set will be interpreted with that distribution in mind. Following the



72 MEASUREMENT AND DETECTION OF RADIATION

notation used earlier,

B = background with standard deviation o

G = gross signal with standard deviation o
. . - 1/2
n = G — B = net signal with standard deviation o, = (o2 + o)

When the net signal is zero (and has a standard deviation o, = ), a
critical detection limit (CDL) is defined in terms of o, with the following
meaning:

1. A signal lower than CDL is not worth reporting.

2. The decision that there is nothing to report has a confidence limit of 1 — «,
where « is a certain fraction of the normalized Gaussian distribution (Fig.
2.12). Take as an example a = 0.05. Then

CDL = k0, (2.103)

with k_ = 1.645 (see Table 2.2). If n < CDL, one decides that the sample is
not contaminated, and this decision has a 95% confidence limit.

The MDA should obviously be greater than the CDL. Keeping in mind that
the possible MDA values also follow a normal distribution, a fraction B is

0 CDL MDA

Figure 2.12 The meaning of the critical detection limit (CDL) and minimum detectable activity
(MDA) in terms of the confidence limits defined by « and B.
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established, meaning that a signal equal to MDA is reported as a correct/true
signal with a confidence limit 1 — B. The value of MDA is given by

MDA = CDL + kg0, (2.104)

where o, is the standard deviation of MDA (Fig. 2.12). Again, if g = 0.05,
kg = 1.645.

In most cases, in practice, @ = 8 = 0.05; then the CDL and MDA are
defined with a 95% confidence limit. For radioactivity specifically, remember
that

o =0+ of = (o} + 0f) + o3 (2.105)

and for n =0, g, =Vn =0 and o = 0, = y/o + 0 = V2 5. Then, if the
95% confidence limit is applied (e = B = 0.05), CDL = 1.6450, = 2.32605.
The value of MDA turns out to be (see Prob. 2.24)

MDA = k* + 2CDL = 2.71 + 4.6530y (2.106)

Example 2.25 Consider the data of a single measurement to be G = 465
counts/min, B = 400/min. Assume that from previous measurements in that
counting system it has been determined that oz = 10/min. The assumption is
made that the background is constant. What does one report in this case?

Answer The net count rate is n = 465 — 400 = 65 counts/min. The mini-
mum detectable activity is, from Eq. 2.106, MDA = 2.71 + 4.653 X 10 = 49.2.
Since MDA < 65, one reports, with a 95% confidence limit, that this sample is
radioactive.

In most cases, the second term of Eq. 2.106 is much larger than the first,
and the MDA is taken as

MDA = 4.6530, (2.107)

In using Eq. 2.106 or 2.107, the user should keep in mind the underlying
assumption of the 95% confidence limit. The numerical factors will change if
one chooses a different confidence limit.

2.21 COUNTER DEAD-TIME CORRECTION AND
MEASUREMENT OF DEAD TIME

Dead time, or resolving time, of a counting system is defined as the minimum
time that can elapse between the arrival of two successive particles at the
detector and the recording of two distinct pulses. The components of dead time
consist of the time it takes for the formation of the pulse in the detector itself
and for the processing of the detector signal through the preamplifier-amplifi-
er-discriminator-scaler (or preamplifier-amplifier-MCA). With modern electron-
ics, the longest component of dead time is that of the detector, and for this
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reason, the term “dead time” means the dead time of the detector. The
dead-time component of the preamplifier-amplifier-discriminator-scaler can be
ignored with any type of detector.

Because of counter dead time, the possibility exists that some particles will
not be recorded since the counter will not produce pulses for them. Pulses will
not be produced because the counter will be “occupied” with the formation of
the signal generated by particles arriving earlier. The counting loss of particles is
particularly important in the case of high counting rates. Obviously, the ob-
served counting rate should be corrected for the loss of counts due to counter
dead time. The rest of this section presents the method for correction as well as
a method for the measurement of the dead time.

Suppose 7 is the dead time of the system and g the observed counting rate.
The fraction of time during which the system is insensitive is gr. If n is the true
counting rate, the number of counts lost is n(g7). Therefore

n=g+ngr
and

n-—2 (2.108)

1-—gr

Equation 2.108 corrects the observed gross counting rate g for the loss of
counts due to the dead time of the counter.

Example 2.26 Suppose 7 = 200 us and g = 30,000 counts/min. What frac-
tion of counts is lost because of dead time? What is the true counting rate?

Answer The true counting rate is

g 30,000,/60
T 1—gr 1-(30,000/60)(200 x 10-°)

n

or
n = 555.5 counts/s

Therefore, dead time is responsible for loss of

555 — 500 55

T = % = 10% of the counts

Notice that the product gr = 0.10, i.e., the product of the dead time and the
gross counting rate, is a good indicator of the fraction of counts lost because of
dead time.

The dead time is measured with the “two-source” method as follows. Let
ny,n,, ny, be the true gross counting rates from the first source only, from the
second source only, and from both sources, respectively, and let n, be the true
background rate. Let the corresponding observed counting rates be g,, £,, 812, b
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The following equation holds:

True net True net _ [ True net
counting rate |, * | counting rate |, | counting rate a2

(ny—ny) + (np—n) = (ny-ny)

or
n,+n,=n,+n,
Using Eq. 2.108,
81 82 8 b

+ = + 2.109
1—g7 1-—g,7 1 g7 1-b7r ( )

It will be assumed now that bt < 1, in which case,

b
1—br

(If br is not much less than 1, the instruments should be thoroughly checked for
possible malfunction before proceeding with the measurement.)

The dead time 7 can be determined from Eq. 2.109 after g,, g5, 815, and b
are measured. This is achieved by counting radioactive source 1, then sources 1
and 2 together, then only source 2, and finally the background after removing
both sources. Equation 2.109 can be rearranged to give:

(8182812 + 81820 — 818120 — 828120)77 — 2818, — g1pb)T
+8 +8 —8,-b=0 (2.110)
Equation 2.110 is a second-degree algebraic equation that can be solved for 7. It

was derived without any approximations.
If the background is negligible, Eq. 2.110 takes the form

£182812T° — 28187+ 81 + 8 — 8, =0 (2.111)
Solving for 7,
=—|1- ‘/ Sz (g +82 —812) (2.112)
812 8182

When dead-time correction is necessary, the net counting rate, called “true
net counting rate,” is given by

(2.113)
It is assumed that the true background rate has been determined earlier with
the standard error o,. The standard error of r, g, is calculated from Eq. 2.113
using Eq. 2.84. If the only sources of error are the gross count G and the
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background, the standard error of r is

= —————-——1 G 2 2.114)
= 1= (G/tG)T % + Oy ( .

g,

If there is an error due to dead-time determination, a third term consisting
of that error will appear under the radical of Eq. 2.114.

PROBLEMS

2.1 What is the probability when throwing a die three times of getting a four in any of the throws?
2.2 What is the probability when drawing one card from each of three decks of cards that all three
cards will be diamonds?

2.3 A box contains 2000 computer cards. If five faulty cards are expected to be found in the box,
what is the probability of finding two faulty cards in a sample of 250?

2.4 Calculate the average and the standard deviation of the probability density function f(x) =
1/(b — a) when a < x < b. (This pdf is used for the calculation to round off errors.)

2.5 The energy distribution of thermal (slow) neutrons in a light-wave reactor follows very closely
the Maxwell-Boltzmann distribution:

N(E)dE = AVE e E/*T 4E
where N(E)dE = number of neutrons with kinetic energy between E and E + dE
k = Boltzmann constant = 1.380662 X 10723J/° K
T = temperature, K
A = constant
Show that
(a) The mode of this distribution is E = 3kT.
(b) The mean is E = 3kT.
2.6 If the average for a large number of counting measurements is 15, what is the probability that a
single measurement will produce the result 20?

2.7 For the binomial distribution, prove

N
@ Y P®=1 (® na=pN (© ol=md-p)

n=0

2.8 For the Poisson distribution, prove
o
@ YP=1 (b A=m () o’=m
n=0
2.9 For the normal distribution, show

(a) fw P(x)dx=1 b) x=m (c) the variance is o2

2.10 If n,,n,,...,n, are mutually uncorrelated random variables with a common variance o2,

show that
N-1

(n, — )" = ~ o2
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2.11 Show that in a series of N measurements, the result R that minimizes the quantity

N
0=Y®R-n)
i=1
is R = n, where 7 is given by Eq. 2.31.
2.12 Prove Eq. 2.62 using tables of the error function.

2.13 As part of a quality control experiment, the lengths of 10 nuclear fuel rods have been measured
with the following results in meters:

2.60 2.62 2.65 2.58 2.61
2.62 2.59 2.59 2.60 2.63

What is the average length? What is the standard deviation of this series of measurements?

2.14 At a uranjum pellet fabrication plant the average pellet density is 17 X 10° kg/m® with a
standard deviation equal to 10° kg/m>. What is the probability that a given pellet has a density less
than 14 X 10 kg/m>?

2.15 A radioactive sample was counted once and gave 500 counts in 1 min. The corresponding
number for the background is 480 counts. Is the sample radioactive or not? What should one report
based on this measurement alone?

2.16 A radioactive sample gave 750 counts in 5 min. When the sample was removed, the scaler
recorded 1000 counts in 10 min. What is the net counting rate and its standard percent error?

2.17 Calculate the average net counting rate and its standard error from the data given below:

G tg(min) B t g(min)
355 5 120 10
385 5 130 10
365 5 132 10

2.18 A counting experiment has to be performed in 5 min. The approximate gross and background
counting rates are 200 counts/min and 50 counts/min, respectively.

(a) Determine the optimum gross and background counting times.

(b) Based on the times obtained in (a), what is the standard percent error of the net counting
rate?
2.19 The strength of a radioactive source was measured with a 2 percent standard error by taking a
gross count for time ¢+ min and a background for time 2¢ min. Calculate the time ¢ if it is given that
the background is 300 counts/min and the gross count 45,000 counts/min.
2.20 The strength of radioactive source is to be measured with a counter that has a background of
120 + 8 counts/min. The approximate gross counting rate is 360 counts /min. How long should one
count if the net counting rate is to be measured with an error of 2 percent?
2.21 The buckling B? of a cylindrical reactor is given by
where R = reactor radius

. 2.405\° (T 2
"\ R (H)
H = reactor height

If the radius changes by 2 percent and the height by 8 percent, by what percent will B?
change? Take R=1m, H =2 m.
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2.22 Using Chauvenet’s criterion, should any of the scaler readings listed below be rejected?

115 121 103 151

121 105 75 103

105 107 100 108

113 110 101 97

110 109 103 101
2.23 Using the data of Prob. 2.13, what is the value of accepted length x, if the confidence limit is
99.4 percent?
2.24 Prove that for radioactivity measurements the value of MDA is given by the equation
MDA = k? + 2CDL, if k, = k, = k. Hint: when n = MDA, the variance 0% = MDA + o§.
2.25 A sample was counted for 5 min and gave 2250 counts; the background, also recorded for 5
min, gave 2050 counts. Is this sample radioactive? Assume confidence limits of both 95% and 90%.
2.26 Determine the dead time of a counter based on the following data obtained with the
two-source method:

g1 = 14,000 counts /min 812 = 26,000 counts /min
g2 = 15,000 counts /min b = 50 counts /min
2.27 X the dead time of a counter is 100 us, what is the observed counting rate if the loss of counts
due to dead time is equal to 5 percent?
2.28 Calculate the true net activity and its standard percent error for a sample that gave 70,000
counts in 2 min. The dead time of the counter is 200 us. The background is known to be 100 + 1
counts /min.
2.29 Calculate the true net activity and its standard error based on the following data:
G = 100,000 counts  obtained in 10 min
B = 10,000 counts obtained in 100 min
The dead time of the counter is 150 us.
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CHAPTER

THREE

|REVIEW OF ATOMIC AND NUCLEAR PHYSICS|

3.1 INTRODUCTION

This chapter reviews the concepts of atomic and nuclear physics relevant to
radiation measurements. It should not be considered a comprehensive discus-
sion of any of the subjects presented. For in-depth study, the reader should
consult the references listed at the end of the chapter. If a person has studied

and understood this material, this chapter could be skipped without loss of
continuity.

This review is not presented from the historical point of view. Atomic and
nuclear behavior and the theory and experiments backing it are discussed as we
understand them today. Emphasis is given to the fact that the current “picture”
of atoms, nuclei, and subatomic particles is only a model that represents our
best current theoretical and experimental evidence. This model may change in
the future if new evidence is obtained pointing to discrepancies between theory
and experiment.

3.2 ELEMENTS OF RELATIVISTIC KINEMATICS

The special theory of relativity developed by Einstein in 1905 is based on two
simple postulates.

79
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FIRST POSTULATE The laws of nature and the results of all experiments
performed in a given frame of reference (system of coordinates) are inde-
pendent of the translational motion of the system as a whole.

SECOND POSTULATE The speed of light in vacuum is independent of the
motion of its source.

These two postulates, simple as they are, predict consequences that were
unthinkable at that time. The most famous predictions of the special theory of
relativity are

1. The mass of a body changes when its speed changes.
2. Mass and energy are equivalent (E = mc?).

Einstein’s predictions were verified by experiment a few years later, and they are
still believed to be correct today.
The main results of the special theory of relativity will be presented here
without proof, using the following notations:
M = rest mass of a particle (or body)
M* = mass of a particle in motion
v = speed of the particle
¢ = speed of light in vacuum = 3 X 10® m/s
T = kinetic energy of the particle
E = total energy of the particle

According to the theory of relativity, the mass of a moving particle (or body)
changes with its speed according to the equation

M M

M* — = 3.1
\/1—(0/0)2 V1 - B2
or
M* = yM (3.2)
where
v
B=— 3.3)
c
and
1
(3.4

s

Equation 3.1 shows that

1. As the speed of a moving particle increases, its mass also increases, thus
making additional increase of its speed more and more difficult.



REVIEW OF ATOMIC AND NUCLEAR PHYSICS 81

2. It is impossible for any mass to reach a speed equal to or greater than the
speed of light in vacuum.?

The total energy of a particle of mass M* is
E = M*¢? (3.5)
Equation 3.5 expresses the very important concept of equivalence of mass and

energy. Since the total energy E consists of the rest mass energy plus the kinetic
energy, Eq. 3.5 may be rewritten as

E =M*c? =T + Mc? (3.6)
Combining Egs. 3.2 and 3.6, one obtains the relativistic equation for the kinetic
energy

T=(y— 1Mc? 3.7

The quantity vy, which is defined by Eq. 3.4 (y = M*c?/Mc?), indicates how
many times the mass of the particle has increased, relative to its rest mass,
because of its motion. For large moving masses, the relativistic mass increase is
too small to measure. Thus, without the availability of subatomic particles such
as electrons and protons, it would be extremely difficult to verify this part of
Einstein’s theory.

The equation that relates the linear momentum and the total energy of a
particle is

E* = (Mc?) + (pc)’ (3.8
where
p=M*'v=yMv (3.9
is the linear momentum. Combining Eqs. 3.6 and 3.8, one obtains
T = V(M) + (pe)* — Mc? (3.10)
or
1
p=—VT?+ 2TMc? (3.11)
c

Equation 3.10 is used for the determination of the kinetic energy if the
momentum is known, while Eq. 3.11 gives the momentum if the kinetic energy is
known.

For small values of B (Eq. 3.3)—that is, for small speeds—the equations of
relativity reduce to the equations of Newtonian (classical) mechanics. In classi-
cal mechanics, the mass is constant, and 7 and p are given by

T = 1Mv? (3.12)
p=Mv (3.13)

"The speed of light in a medium with index of refraction n is ¢/n; thus, it is possible for
particles to move faster than with ¢/n in certain media (see Cerencov radiation, Evans).
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If the kinetic energy of a particle is a considerable fraction of its rest mass
energy, Eqgs. 3.7 and 3.9 should be used for the determination of T and p. Then
the particle is relativistic. If, on the other hand, B < 1, the particle is nonrela-
tivistic, and Eqgs. 3.12 and 3.13 may be used.

Example 3.1 What is the mass increase of a bullet weighing 0.010 kg and
traveling at twice the speed of sound?

Answer The speed of the bullet is v = 700 m/s. Using Eqgs. 3.2 and 3.4,

M* 1 o la g L(_T0
—_— = = —_—— o +— = [—
M7 2P 3 x 10°

V1 - B2 2

The mass increase is

2
) =1+272x10"1

M*—M=272X10"""M =272 x 10" kg
which is almost impossible to detect.

Example 3.2 An electron has a kinetic energy of 200 keV. (a) What is its
speed? (b) What is its new mass relative to its rest mass?

Answer The rest mass energy of the electron is 511 keV. Since T/mc? =
200/511 = 0.391, relativistic equations should be used. (a) The speed of the
electron is obtained with the help of Eqs. 3.7 and 3.4. Equation 3.7 gives

T
y=1+— =1+02391
mc

and from Eq. 3.4 one obtains
1
B=1/1-— =0.695
Y

v = Bc = (0.695)(3 x 10® m/s) = 2.085 X 10° m/s

Therefore

(b) The new mass relative to the rest mass has already been determined because

*CZ

y=—5 = 1391
mc

i.e., the mass of this electron increased 39.1 percent.
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It is instructive to calculate the speed of this electron using the classical
method of Eq. 3.12 to see the difference:

_ 2T [ 2Tc? [2T 2(200) 0.885
v= m mc? mc? €= 511 ¢ =180

Thus, the classical equation determines the speed with an error
Vg — Uy 0.885¢ — 0.695¢

= = o

Usel 0.695¢

Example 3.3 What is the kinetic energy of a neutron with speed 6 X 10’
m/s? What is its mass increase?

Answer For this particle,

v 6x107
B=— =5 =
¢ 3x10
Using Egs. 3.4 and 3.7,
T=(y—- DM = ;—1 Mc? = (—1——1)Mc2
V1-82 V1 — 0.22

= (1.021 — 1)Mc? = 0.021Mc? + (0.021)939.55 MeV = 19.73 MeV
=3.16 X 10712
The mass increase is M*/M = y = 1.021, i.e,, a 2.1 percent mass increase.

3.3 ATOMS

To the best of our knowledge today, every atom consists of a central positively
charged nucleus around which negative electrons revolve in stable orbits.
Considered as a sphere, the atom has a radius of the order of 107'° m and the
nucleus has a radius of the order of 10™'* m. The number of electrons is equal
to the number of positive charges of the nucleus; thus the atom is electrically
neutral (in its normal state).

The number of positive elementary charges in the nucleus is called the
atomic number and is indicated by Z. The atomic number identifies the chemical
element. All atoms of an element have the same chemical properties.

The atomic electrons move around the nucleus as a result of the attractive
electrostatic Coulomb force between the positive nucleus and the negative
charge of the electron. According to classical electrodynamics, the revolving
electrons ought to continuously radiate part of their energy, follow a spiral orbit,
and eventually be captured by the nucleus. Obviously, this does not happen:
atoms exist and are stable.
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The available experimental evidence points toward the following facts

regarding the motion of atomic electrons:

1.

My
Min

M

Lin

Ln

L

Bound atomic electrons revolve around the nucleus in stable orbits without
radiating energy. Every orbit corresponds to a certain electron energy and is
called an energy state.

. Only certain orbits (only certain energies) are allowed. That is, the energy

states of the bound electrons form a discrete spectrum, as shown in Fig. 3.1.
This phenomenon is called quantization.

. If an electron moves from an orbit (state) of energy E; to another of energy

E;, then (and only then) electromagnetic radiation, an X-ray, is emitted with
frequency » such that

E. - E
i !
= 7 3.14
v h 3.19)
where £ is Planck’s constant.
My
My
L“x LB: L°‘z
{

1 , |8 |Ks

Figure 3.1 An atomic energy level
diagram showing X-ray nomencla-
ture (not drawn to scale). E, =
E, lowest energy state = ground state.
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The energy of the X-ray depends on the atomic number:
E,=hv=E —E =k(Z-a) (3.15)

where k and a are constants. X-ray energies range from a few eV for the light
elements to a few hundreds of keV for the heaviest elements.

Every atom emits characteristic X-rays with discrete energies that identify
the atom like fingerprints. For every atom, the, the X-rays are identified
according to the final state of the electron transition that produced them.
Historically, the energy states of atomic electrons are characterized by the
letters K,L, M, N, etc. The K state or K orbit or K shell is the lowest energy
state, also called the ground state. The X-rays that are emitted as a result of
electronic transitions to the K state, from any other initial state, are called K
X-rays (Fig. 3.1). Transitions to the L state give rise to L X-rays and so on. K,
and K X-rays indicate transitions from L to K and M to K states, respectively.

A bound atomic electron may receive energy and move from a state of
energy E, to another of higher energy E,. This phenomenon is called excitation
of the atom (Fig. 3.2). An excited atom moves preferentially to the lowest
possible energy state. In times of the order of 1078 s, the electron that jumped
to E, or another from another state will fall to £, and an X-ray will be emitted.

An atomic electron may receive enough energy to leave the atom and
become a free particle. This phenomenon is called ionization, and the positive
entity left behind is called an ion. The energy necessary to cause ionization is
the ionization potential. The ionization potential is not the same for all the
electrons of the same atom because the electrons move at different distances
from the nucleus. The closer the electron is to the nucleus, the more tightly
bound it is and the greater its ionization potential becomes. Table 3.1 lists
ionization potentials of the least bound electron for certain elements.

When two or more atoms join together and form a molecule, their common
electrons are bound to the molecule. The energy spectrum of the molecule is
also discrete, but more complicated than that shown in Fig. 3.1.

E‘
E3
E2
[}
]
1
]
1 x-ray
'
Electron moves 1
to excited state \ Ex=E,—E,
i E, L
Excitation Deexcitation

Figure 3.2 Excitation and deexcitation of the atom.
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Table 3.1 Ionization Potential for the Least Bound Electron of
Certain Elements

Ionization Ionization

Element potential (eV) Element potential (eV)
H 13.6 Ne 21.56

He 24.56 Na 5.14

Li 54 A 15.76

Be 9.32 Fe 7.63

B 8.28 Pb 7.42

C 11.27 §) 4.0

3.4 NUCLEI

At the present time, all experimental evidence indicates that nuclei consist of
neutrons and protons, which are particles known as nucleons. Nuclei then
consist of nucleons. Some of the properties of a neutron, a proton, and an
electron, for comparison, are listed in Table 3.2. A free proton—outside the
nucleus—will eventually pick up an electron and become a hydrogen atom, or it
may be absorbed by a nucleus. A free neutron either will be absorbed by a
nucleus or will decay according to the equation
nopt+e +7v

i.e., it will be transformed into a proton by emitting an electron and another
particle called an antineutrino.

A nucleus consists of A4 particles,

A=N+2Z
where A = mass number
N = number of neutrons
Z = number of protons = atomic number of the element
A nuclear species X is indicated as
27X
where X = chemical symbol of the element. For example,
lg o)
Isobars are nuclides that have the same A.

Table 3.2 Neutron-Proton Properties

Electron Neutron Proton
Rest mass
kg 9.109558 x 10~3! 1.674928 x 1077 1.672622 X 107
MeV 0.511 939.552 938.258
u 1.008665 1.007276

Charge —e 0 +e
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Isotopes are nuclides that have the same Z. They are nuclei of the same
chemical element. They have the same chemical but slightly different physical
properties, due to their difference in mass. The nuclear properties change
drastically from isotope to isotope.

Isotones are nuclides that have the same N, ie., the same number of
neutrons.

Isomers are two different energy states of the same nucleus.

The different atomic species are the result of different combinations of one
type of particle—the electron. There are 92 natural elements. Since 1940, 15
more have been artificially produced for a total of 107 elements. The different
nuclides, on the other hand, are the result of different combinations of two
kinds of particles, neutrons and protons, and so there are many more possibili-
ties. There are more than 700 known nuclides.

Experiments have determined that nuclei are almost spherical, with
a volume proportional to the mass number 4 and a radius approximately
equal to’

R = 1.3 x 107134173 in meters (3.16)

The mass of the nucleus with mass number 4 and atomic number Z,
indicated as My(A4, Z), is equal to

My(A,Z) = ZM, + NM, — B(A, Z)c? .17

where M, = mass of the proton
M, = mass of the neutron
B(A, Z) = binding energy of the nucleus.

The binding energy is equal to the energy that was released when the N
neutrons and Z protons formed the nucleus. More details about the binding
energy are given in the next section.

The unit used for the measurement of nuclear mass is equal to 5 of the
mass of the isotope '3C. Its symbol is u (formerly amu for atomic mass unit):

1u = 5(mass of ';C) = 1.660540 x 10~?"kg = 931.481 MeV

In many experiments, what is normally measured is the atomic, not the
nuclear, mass. To obtain the atomic mass, one adds thc mass of all the atomic
electrons (see next section). A table of atomic masses of many isotopes is given
in App. B. The mass may be given in any of the following three ways:

1. Units of u
2. Kilograms

3. Energy units (MeV or J), in view of the equivalence of mass and energy

For nonspherical nuclei, the radius given by Eq. 3.16 is an average.
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8.5 NUCLEAR BINDING ENERGY|

The mass of a nucleus is given by Eq. 3.18 in terms of the masses of its
constituents. That same equation also defines the binding energy of the nucleus:

B(A,Z) = [ZM, + NM, — M\ (A, Z)]c? (3.18)

The factor ¢2, which multiplies the mass to transform it into energy, will be

omitted from now on. It will always be implied that multiplication or division by
c? is necessary to obtain energy from mass or vice versa. Thus, Eq. 3.18 is
rewritten as

B(A,Z) = ZM, + NM, — M\(A,Z) (3.19

The meaning of B(A, Z) may be expressed in two equivalent ways:

1. The binding energy B(A, Z) of a nucleus is equal to the mass transformed
into energy when the Z protons and the N = 4 — Z neutrons got together
and formed the nucleus. An amount of energy equal to the binding energy
was released when the nucleus was formed.

2. The binding energy B(A, Z) is equal to the energy necessary to break the
nucleus apart into its constituents, Z free protons and N free neutrons.

As mentioned in Section 3.4, atomic masses rather than nuclear masses are
measured in most cases. For this reason, Eq. 3.19 will be expressed in terms of
atomic masses by adding the appropriate masses of atomic electrons. If one adds
and subtracts Zm in Eq. 3.19,

B(A,Z) = ZM, + Zm + NM, — My(A,Z) — Zm
= Z(M, + m) + NM, — [My(A,Z) + Zm] (3.20)

M, = mass of the hydrogen atom
B, = binding energy of the electron in the hydrogen atom

B,(A4, Z) = binding energy of all the electrons of the atom whose nucleus
has mass M, (A4, Z)
M(A, Z) = mass of the atom with nuclear mass equal to My (A4, Z)
Then
My=M,+m—-B, (3.21)
M(A,Z) =My (A,Z) + Zm — B,(A,Z) (3.22)
Combining Egs. 3.20, 3.21, and 3.22, one obtains
B(A,Z) =ZMy + NM,, — M(A,Z) - B,(A,Z) + ZB, (3.23)
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Unless extremely accurate calculations are involved, the last two terms of
Eq. 3.23 are neglected. The error introduced by doing so is insignificant because
ZB, and B,(A, Z) are less than a few keV and they tend to cancel each other,
while B(A,Z) is of the order of MeV. Equation 3.23 is, therefore, usually
written as

B(A,Z) = ZM, + NM, — M(A,Z) (3.24)
Example 3.4 What is the total binding energy of 5 He?

Answer Using Eq. 3.24 and data from App. b,
B(4,2) = 2My + 2M, — M(4,2)
= [2(1.00782522) + 2(1.00866544) — 4.00260361] u
= 0.03037771u = (0.0303771 u)931.478 MeV /u

= 28.296 MeV = 4.53 X 10712J

Example 3.5 What is the binding energy of the nucleus %55 U?

Answer

B(238,92) = [92(1.00782522) + 146(1.00866544) — 238.05076] u
= 1.93431448 u = (1.93431448 u)931.478 MeV /u

= 1801.771 MeV = 2.886 x 10 1]

The energy necessary to remove one particle from the nucleus is the
separation or binding energy of that particle for that particular nuclide. A
“particle” may be a neutron, a proton, an alpha particle, a deuteron, etc. The
separation or binding energy of a nuclear particle is analogous to the ionization
potential of an electron. If a particle enters the nucleus, an amount of energy
equal to its separation energy is released.

The separation or binding energy of a neutron (B,) is defined by the
equation

B, =M[(4-1,Z]+M,—M(A,Z) (3.25)
Using Eq. 3.24, Eq. 3.25 is written
B,=B(A,Z) - B[(4A-1),Z] (3.26)

which shows that the binding energy of the last neutron is equal to the
difference between the binding energies of the two nuclei involved. Typical
values of B, are a few MeV (less than 10 MeV).

The separation or binding energy of a proton is

B,=M(A~-1,Z—-1)+ My —M(A4,2) (3.27)
or, using Eq. 3.24,
B,=B(A,Z) -B(4-1,Z-1) (3.28)
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The separation energy for an alpha particle is
B,=M(A—4,Z —2) + My, — M(A,Z) (3.29)
or, using Eq. 3.24,
B,=B(A,Z) - B(A —4,Z - 2) — B(4,2) (3.30)

Example 3.6 What is the separation energy of the last neutron of the sHe
nucleus?

Answer Using data from App. B and Eq. 3.25, one obtains
B, =M(3,2) + M, — M(4,2)
= [(3.016030 + 1.008665 — 4.002604) u]931.478 MeV /u
= 0.022091(931.478 MeV) = 20.58 MeV = 3.3 X 10712 J
If the average binding energy per nucleon,
B(A,Z)
—

is plotted as a function of A, one obtains the result shown in Fig. 3.3. The

b(A,Z) = (3.31)

B/A MeV/nucleon

2 el | | | \ ) )
04 8 12162024 30 60 90 120 150 180 210 240
Mass number A

Figure 3.3 The change of the average binding energy per nucleon with mass number 4. Notice the
change in scale after 4 = 30. (From The Atomic Nucleus by R. D. Evans. Copyright © 1972 by
McGraw-Hill. Used with the permission of McGraw-Hill Book Company.)
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average binding energy changes relatively little, especially for A > 30. Notice
that Fig. 3.3 has a different scale for A < 30.

Figure 3.3 is very important because it reveals the processes by which energy
may be released in nuclear reactions. If one starts with a very heavy nucleus
(A = 240) and breaks it into two medium-size nuclei (fission), energy will be
released because the average binding energy per nucleon is larger for nuclides
in the middle of the periodic table than it is for heavy nuclides. On the other
hand, if one takes two very small nuclei (4 = 2,3) and fuses them into a larger
one, energy is again released due to similar increase in the average binding
energy per nucleon.

3.6 NUCLEAR ENERGY LEVELS

Neutrons and protons are held together in the nucleus by nuclear forces.
Although the exact nature of nuclear forces is not known, scientists have
successfully predicted many characteristics of nuclear behavior by assuming a
certain form for the force and constructing nuclear models based on that form.
The success of these models is measured by how well their predicted results
agree with the experiment. Many nuclear models have been proposed, each of
them explaining certain features of the nucleus; but as of today, no model exists
that explains all the facts about all the known nuclides.

All the nuclear models assume that the nucleus, like the atom, can exist
only in certain discrete energy states. Depending on the model, the energy states
may be assigned to the nucleons—neutrons and protons—or the nucleus as a
whole. The present discussion of nuclear energy levels will be based on the
second approach.

The lowest possible energy state of a nucleus is called the ground state (Fig.
3.4). In Fig. 3.4, the ground state is shown as having negative energy to indicate
a bound state. The ground state and all the excited states below the zero energy
level are called bound states. If the nucleus finds itself in any of the bound

———— .(- ------- % Virtual ievels
Zeroenergy — g ey T T —
.---_(2_) ........ g Unoccupied
(1) Bound

levels
Partially or fully
occupied

Ground state

Figure 3.4 Bound and virtual nuclear energy levels.
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states, it deexcites after a time of the order of 1072 to 10 ~'° s by dropping to a
lower state. Deexcitation is accompanied by the emission of a photon with
energy equal to the difference between the energies of the initial and final
states. Energy states located above the zero energy level are called virtual
energy levels. If the nucleus obtains enough energy to be raised to a virtual
level, it may deexcite either by falling to one of the bound levels or by emitting a
nucleon.

Studies of the energy levels of all the known nuclides reveal the following:

1. The distance between nuclear energy levels is of the order of keV to MeV.
By contrast, the distance between atomic levels is of the order of eV.

2. The distance between levels decreases as the excitation energy increases (Fig.
3.5). For very high excitation energies, the density of levels becomes so high
that it is difficult to distinguish individual energy levels.

3. As the mass number A4 increases, the number of levels increases; i.e., heavier
nuclei have more energy levels than lighter nuclei (in general—there may be
exceptions).

4, As A increases, the energy of the first excited state decreases (again, in
general—exceptions exist). For example,

°Be: first excited state is at 1.68 MeV
®Fe: first excited state is at 0.847 MeV
28U:  first excited state is at 0.044 MeV

3.7 ENERGETICS OF NUCLEAR DECAYSl

This section discusses the energetics of «, 8, and y decay, demonstrating how
the kinetic energies of the products of the decay can be calculated from the
masses of the particles involved. In all cases, it will be assumed that the original
unstable nucleus is at rest—i.e., it has zero kinetic energy and linear momen-
tum. This assumption is very realistic because the actual kinetic energies of
nuclei due to thermal motion are of the order of kT (of the order of V), where
k is the Boltzmann constant and T the temperature (Kelvin), while the energy
released in most decays is of the order of MeV.

In writing the equation representing the decay, the following notation will
be used:

M = atomic mass (or Mc? = rest mass energy)
E, = energy of a photon
T. = kinetic energy of a particle type i

P, = linear momentum of a particle type i



REVIEW OF ATOMIC AND NUCLEAR PHYSICS 93
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in (3He,n), 8 in (1%0,%4C).

T
g 9+ (1) 191 gue
7
o2,
[ D | e A
s nm || L4 St
8+ _={¥=<7.a__ ***
0+ 129 e
— | V7 - M
Yy § o VAT T
- —_— 2
[ W73,
r J‘*_\\ J—& oan
s [esr ™,
r ——\_L o J 1,334 oa
- ——— "\-liz—- [
[ JR— |'\.Aza oa ©
[ pu— A (A7
[ ez ° L
5 — X5
‘ |._§.!Zl .
- T — 5,490 .,
4
: S8 e
+
P —— e i
[ + 3,952
3 e —31=<5024 o o
[ 0.05 ps-2+ —2701 ouu o
Figure 3.5 The energy levels of ggNi. In this diagram
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show the energy of each level in MeV (Ref. 4, p. 163).
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3.7.1 Gamma Decay

In y decay, a nucleus goes from an excited state to a state of lower energy and
the energy difference between the two states is released in the form of a photon.
Gamma decay is represented by

72X >4 X +y

where 4 X* indicates the excited nucleus.
Applying conservation of energy and momentum for the states before and
after the decay, we have'

Conservation of energy:

M*(A,Z) =M(A,Z)+ T,, + E (3.32)
M Y

Conservation of momentum:
0=P,+Py (3.33)

Using these two equations and the nonrelativistic form of the kinetic energy of
the nucleus,
1 P  P? E?

T zMV 2M  2M  2Mc?

(3.34)

Use has been made of the relationship E, = P, ¢ (the photon rest mass is zero).
Equation 3.34 gives the kinetic energy of the nucleus after the emission of a
photon of energy E. . This energy is called the recoil energy.

The recoil energy is small. Consider a typical photon of 1 MeV emitted by a
nucleus with 4 = 50. Then, from Eq. 3.34,

- 12 (MeV)?
M= 2(50)(932)(MeV)

=~ 11eV

Most of the time, this energy is neglected and the gamma energy is written as
E,=M*(A,Z) - M(A,2)

However, there are cases where the recoil energy may be important, e.g., in
radiation damage studies.

Sometimes the excitation energy of the nucleus is given to an atomic
electron instead of being released in the form of a photon. This type of nuclear
transition is called internal conversion (IC), and the ejected atomic electron is
called an internal conversion electron.

TEquations in this chapter are written in terms of atomic, not nuclear, masses. This notation
introduces a slight error because the binding energy of the atomic electrons is not taken into
account (see Sec. 3.5).
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Let T; be the kinetic energy of an electron ejected from shell i and B, be
the binding energy of an electron in shell i. Equation 3.32 now takes the form

M*(A,Z) =M(A,Z)+ T, + B, + T, (3.35)
Even though the electron has some nonzero rest mass energy, it is so much

lighter than the nucleus that T,, < T;. Consequently, T,, is neglected and Eq.
3.35 is written as

T,=M*(A,Z) - M(A,Z) - B, (3.36)
If Q =M*(A,Z) — M(A, Z) = energy released during the transition, then
I,=0Q -8B

When internal conversion occurs, there is a probability than an electron
from the K shell, L shell, or another shell, may be emitted. The corresponding
equations for the electron kinetic energies are

Ty =0 - By
T, =Q—-B_ (3.37
Ty =Q — By etc.

Therefore, a nucleus that undergoes internal conversion is a source of groups of
monoenergetic electrons with energies given by Egs. 3.37. A typical internal
conversion electron spectrum is shown in Fig. 3.6. The two peaks correspond to
K and L electrons. The diagram on the right (Fig. 3.6) shows the transition

2000 |-
363 keV
W "Isn (T=1154d)
5 1500~ iEC (electron capture)
£ 0.392 MeV
g M3 { 0
g
«» 1000 |-
€
3
o
)
387 keV
500 i~
) i 1 1 1
50 100 150 200

Channel number (or energy)

Figure 3.6 The internal conversion spectrum of '>Sn. The two peaks correspond to K electrons (363
keV) and L electrons (387 keV).
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energy to be 392 keV. The K-shell energy is then By = 392 — 363 = 29 keV
and the L-shell binding energy is B; = 392 — 387 = 5 keV. Let:

A, = probability that internal conversion will occur
A, = probability that a photon will be emitted

A; = probability that an electron from shell { will be emitted

3

A = total probability for y decay

Then'
A, =Ag F AL+ Ay + - (3.38)
and
A=A+ A, (3.39)

For most nuclei, A, = 0, but there is no y-decaying nucleus for which A, = 0.
This means radioisotopes that internally convert, emit gammas as well as
electrons. After an atomic electron is emitted, the empty state that was created
will quickly be filled by another electron that “falls in” from the outer shells. As
a result of such a transition, an X-ray is emitted. Therefore, internally convert-
ing nuclei emit y-rays, electrons, and X-rays.

Radioisotopes that undergo internal conversion are the only sources of
monoenergetic electrons, except for accelerators. They are very useful as instru-
?017ent calibration sources. Three isotopes frequently used are '*Sn, *’Cs, and

Bi.

3.7.2 Alpha Decay

Alpha decay is represented by the equation
7X > 223X +3He
Applying conservation of energy and momentum,
M(A,Z)=M(A-4,Z-2)+ MG, + T, + T, (3.40)
and
0=P,+P, (3.41)

The energy that becomes available as a result of the emission of the alpha
particle is called the decay energy Q,, defined by

Q, = (mass of parent) — (mass of decay products)

(3.42)
Q,=M(A,Z) —M(A —-4,Z -2) — M(4,2)

"Tables of isotopes usually give, not the values of the different A’s, but the so-called IC
coefficients, which are the ratios Ag/A,, A /A, etc. (see Ref. 4).
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Obviously, for a decay to occur, Q, should be greater than zero. Therefore,
a decay is possible only when
M(A,Z)>M(A—-4,Z-2)+MH4,2) (3.43)
If the daughter nucleus is left in its ground state, after the emission of the alpha,
the kinetic energy of the two products is (from Eq. 3.40),
Ty +T,=Q, (3.44)

In many cases, the daughter nucleus is left in an excited state of energy E,,
where i indicates the energy level. Then, Eq. 3.44 becomes

TM + Ta = Qa - Ei (3-45)

which shows that the available energy (Q,) is decreased by the amount E,.

The kinetic energies T, and T,, can be calculated from Egs. 3.41 and 3.44.
The result is

T M(A—-4,Z —2)
" M(A-4,Z—2)+M(4,2)
M

o

T M(A-4,Z —2) + M@4,2)

A-4
(Q, —E) = —A—(Q“ - E) (3.46)

4
Ty (Q,—E) = Z(Qa - E) (3.47)

Example 3.7 What are the kinetic energies of the alphas emitted by U

Answer The decay scheme of %3 U is shown in Fig. 3.7. After the alpha is
emitted, the daughter nucleus, 23 Th, may be left in one of the two excited states
at 0.16 MeV and 0.048 MeV or go to the ground state.

The decay energy Q, is (Eq. 3.42)

Q, = M(238,92) — M(234,90) — M(4,2)

= 238.050786 — 234.043594 — 4.002603
= 0.00458%9 u = 0.004589 X 931.481 MeV = 4.27 MeV

Depending on the final state of %o Th, the energy of the alpha particle is
T, = 20, = 420 MeV

a

T, = 24(Q, — 0.048) = 4.15 MeV

o

T, = 24(Q, - 0.16) = 4.04 MeV

o

3.7.3 Beta Decay

In B decay, a nucleus emits an electron or a positron and is transformed into a
new element. In addition to the electron or the positron, a neutral particle with
rest mass zero is also emitted. There are two types of B decay, B~ and B*.
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238
92 Y

0.23%
Energy (MeV) 0.16

23%
Energy (MeV) 0.048 :%
Figure 3.7 The alpha decay scheme of ~®U. The

77%
C/ percentage values give the probability of decay
through the corresponding level (from Ref. 4).

34 Th

B~ Decay. This type of decay is represented by
X >, AX+ B+

where B~ = negative beta particle = electron
v = antineutrino
Historically, the name B particle has been given to electrons that are
emitted by nuclei undergoing beta decay. The antineutrino (») is a neutral
particle with rest mass so small that it is taken equal to zero.
The energy equation of B~ decay is

My(A,Z) =My(A,Z+ D) +m+ T+ T, + Ty, (3.48)

where M, (A, Z) is the nuclear mass and m is the electron rest mass. Using
atomic masses, Eq. 3.48 becomes (see Sec. 3.5)

M(A,Z) =M(A,Z+ D)+ T+ T,+ Ty (3.49)
The momentum equation is
0=P,+P-+P, (3.50)
The B~ decay energy, Qg-, is defined as
Qp=M(A,Z) —-M(A,Z+ 1) (3.51)
The condition for B~ decay to be possible is
M(A,Z) —M(A,Z+1)>0 (3.52)
In terms of Qg-, Eq. 3.49 is rewritten in the form
Ty + T, + Ty = Qp- (3.53)

Equations 3.50 and 3.53 show that three particles, the nucleus, the electron,
and the antineutrino, share the energy Qg-, and their total momentum is zero.
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There is an infinite number of combinations of kinetic energies and momenta
that satisfy these two equations and as a result, the energy spectrum of the betas
is continuous.

In Eq. 3.53, the energy of the nucleus, Ty, is much smaller than either 7;-
or T, because the nuclear mass is huge compared to that of the electron or the
antineutrino. For all practical purposes, T), can be neglected and Eq. 3.53 takes
the form

T+ T, = Qp (3.54)

As in the case of a decay, the daughter nucleus may be left in an excited
state after the emission of the B~ particle. Then, the energy available to
become kinetic energy of the emitted particles is less. If the nucleus is left in the
ith excited state E,;, Eq. 3.54 takes the form

T+ Ty = Qy — E; = Epyy (3.55)

According to Eq. 3.54, the electron and the antineutrino share the energy Q-
(or E_,,) and there is a certain probability that either particle may have an
energy within the limits

0 < Ty <E,, (3.56)
E >0 (3.57)

max 2

which means that the beta particles have a continuous energy spectrum. Let
B(T)dT be the number of beta particles with kinetic energy between T and
T + dT. The function B(T) has the general shape shown in Fig. 3.8. The energy
spectrum of the antineutrinos is the complement of that shown in Fig. 3.8,
consistent with Eq. 3.57. The continuous energy spectrum of B~ particles
should be contrasted with the energy spectrum of internal conversion electrons
shown by Fig. 3.6.

As stated earlier, beta particles are electrons. The practical difference
between the terms electrons and betas is this: A beam of electrons of energy T
consists of electrons each of which has the kinetic energy 7. A beam of beta
particles with energy E,_, consists of electrons that have a continuous energy
spectrum (Fig 3.8) ranging from zero up to a maximum kinetic energy E,,,.

Figure 3.9 shows the 8~ decay scheme of the isotope 13{Cs. For an example
of a Op- calculation, consider the decay of 1gng:

Qp-= M(55,137) — M(56,137) = (136.90682 — 136.90556 u = 0.00126 u
= 0.0012625(931.478 MeV) = 1.1760 MeV = 1.36 X 10713 ]

If the '3 Ba is left in the 0.6616-MeV state (which happens 93.5 percent of the
time), the available energy is

E,,. = 1.1760 — 0.6616 = 0.5144 MeV
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Figure 3.8 A typical beta energy spectrum (shows shape only; does not mean that 8~ is more
intense than g*).

For many calculations it is necessary to use the average energy of the beta

particles, Eg-. An accurate equation for Eg- has been developed,! but in
practice the average energy is taken to be

B* Decay. The expression representing B* decay is
y Xp P g y
IX >, AX + BT+ v

where B*= positron
v = neutrino

137 CS
205 300y, e
g 0.90

0.6616 This level undergoes
93.5% «s— internal conversion

/ 3 Energy
Probability for % / levels
transition \ __0181_

6.5% ~

_L(.)— -«+— Ground state
137
B3

Figure 3.9 The decay scheme of 137Cs. The Q value of the B~ decay is —1.176 MeV (from Ref. 4).
Probability for each transition is given in percent.
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The energy equation of B* decay is
My(A,2) =My(A,Z -1 +m + Tpet+ T, + Ty, (3.58)
Using atomic masses, Eq. 3.58 becomes

M(A,2) = M(A4,Z — 1) +2m + T+ T, + Ty, (3.59)

The momentum equation is
0=P, + P+ P, (3.60)
The B* decay energy is
Qp=M(A,Z) -M(A,Z -1) —2m (3.61)
The condition for B decay to be possible is

M(A,Z) —M(A,Z-1) —-2m >0 (3.62)

A comparison of Egs. 3.52 and 3.62 shows that 8~ decay is possible if the
mass of the parent is just bigger than the mass of the daughter nucleus, while
B* decay is possible only if the parent and daughter nuclear masses differ by at
least 2mc? = 1.022 MeV.

The energy spectrum of B* particles is continuous, for the same reasons
the B~ spectrum is, and similar to that of B~ decay (Fig. 3.8). The average
energy of the positrons from g% decay, EB*’ is also taken to be equal to E,,, /3
unless extremely accurate values are needed, in which case the equation given in
Ref. 1 should be used.

A typical B* decay scheme is shown in Fig. 3.10.

Electron Capture. In some cases, an atomic electron is captured by the nucleus
and a neutrino is emitted according to the equation

My(A,Z) + m =M (A,Z - 1) + T, + B, (3.63)
22Na
- 26y
1.275
—_— T B* 90%
Q,=2.842 EC 9.5%
\a+ 0.05%
1 Na

Figure 3.10 The decay scheme of 2 Na. Notice that it is Qg that is plotted, not Qg+ (from Ref. 4).
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In Eq. 3.63 all the symbols have been defined before except B,, binding energy
of the electron captured by the nucleus. This transformation is called electron
capture (EC). In terms of atomic masses, Eq. 3.63 takes the form

M(A,Z)=M(A,Z-1 +T, (3.64)

The energy Qg released during EC is
Qpc =M(A,Z2) -M(A,Z - 1) (3.65)

The condition for EC to be possible is
M(A,Z) —-M(A,Z-1 >0 (3.66)

Electron capture is an alternative to B* decay. Comparison of Egs. 3.61 and
3.66 shows that nuclei that cannot experience 8% decay can undergo EC, since
a smaller mass difference is required for the latter process. Of course, EC is
always possible if B* decay is. For example, **Na (Fig. 3.10) decays both by g*
and EC.

After EC, there is a vacancy left behind that is filled by an electron falling
in from a higher orbit. Assuming that a K electron was captured, an L electron
may fill the empty state left behind. When this happens, an energy approxi-
mately equal to By — B, becomes available (where By and B, are the binding
energy of a K or L electron, respectively). The energy By — B; may be emitted
as a K X-ray called fluorescent radiation, or it may be given to another atomic
electron. If this energy is given to an L electron, that particle will be emitted
with kinetic energy equal to (Bx — B) — B, = Bx — 2B_. Atomic electrons
emitted in this way are called Auger electrons.

Whenever an atomic electron is removed and the vacancy left behind is
filled by an electron from a higher orbit, there is a competition between the
emission of Auger electrons and fluorescent radiation. The number of X-rays
emitted per vacancy in a given shell is the fluorescent yield. The fluorescent yield
increases with atomic number.

3.7.4 Particles, Antiparticles, and Electron-Positron Annihilation

Every known subatomic particle has a counterpart called the antiparticle. A
charged particle and an antiparticle have the same mass, and opposite charge. If
a particle is neutral—for example, the neutron—its antiparticle is still neutral.
Then their difference is due to some other property, such as magnetic moment.
Some particles, like the photon, are identical with their own antiparticles. An
antiparticle cannot exist together with the corresponding particle: when an
antiparticle meets a particle, the two react and new particles appear.

Consider the example of the electron and the “antielectron,” which is the
positron. The electron and the positron are identical particles except for their
charge, which is equal to e but negative and positive, respectively. The rest mass
of either particle is equal to 0.511 MeV. A positron moving in a medium loses
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energy continuously, as a result of collisions with atomic electrons (see Chap. 4).
Close to the end of its track, the positron combines with an atomic electron, the
two annihilate, and photons appear with a total energy equal to 2mc?. At least
two photons should be emitted for conservation of energy and momentum to be
satisfied (Fig. 3.11). Most of the time, two photons, each with energy 0.511 MeV,
are emitted. As a result, every positron emitter is also a source of 0.511-MeV
annihilation gammas.

3.7.5 Complex Decay Schemes

For many nuclei, more than one mode of decay is positive. Users of radioiso-
topic sources need information about particles emitted, energies, and probabili-
ties of emission. Many books on atomic and nuclear physics contain such
information, and the most comprehensive collection of data on this subject can
be found in the Table of Isotopes by Lederer and Shirley.* Figure 3.12 shows an
example of a complex decay scheme taken from that book.

3.8 THE RADIOACTIVE DECAY LAW

Radioactive decay is spontaneous change of a nucleus. The change may result in
a new nuclide or simply change the energy of the nucleus. If there is a certain
amount of a radioisotope at hand, there is no certainty that in the next second
“so many nuclei will decay” or “none will decay.” One can talk of the probabil-
ity that a nucleus will decay in a certain period of time.

The probability that a given nucleus will decay per unit time is called the
decay constant and is indicated by the letter A. For a certain species, A is

1. The same for all the nuclei
2. Constant, independent of the number of nuclei present
3. Independent of the age of the nucleus

Consider a certain mass m of a certain radioisotope with decay constant A.
The number of atoms (or nuclei) in the mass m is equal to

N N (3.67)
= m7 .

where N, = 6.022 X 10 = Avogadro’s number
A = atomic weight of the isotope

N\ P N \N\NN~- Fi 3.11 Electron-posi i
_ . E. = 0'511 MeV gure J. ectron: p051tron anni
E,=0511 MeV Y hilation.

e"'
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(3/2—)

2+7
5710 2.429 S
759% 7 | (2+1T 1.67 4 0"
25% 3/2_._
5Be
Qgc = 1.068
Ground state Q, =—1.665 Qp, =0.185

Figure 3.12 A complex decay scheme. For complete explanation of all the symbols and numbers see
Ref. 4. Half-life is given for each element’s ground state, and energy of each level is given at
intermediate states. Q, is the neutron separation energy. Transition probabilities are indicated as
percentages (from Ref. 4).

This number of atoms decreases with time, due to the decay according to
Decrease per unit time = decay per unit time

or mathematically,

dN(t)
- = AN(t) (3.68)
dt
The solution of this equation is
N(t) = N(Q)e ™ (3.69)

where N(0) = number of atoms at ¢ = 0.
The probability that a nucleus will not decay in time t—i.e., it will survive
time t— is given by the ratio of

atoms not decaying in time ¢  N(0)e %

= =e M 3.70
atomsat t =0 N(0) ¢ ( )
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The probability that the nucleus will decay between ¢ and ¢ + dt is
p(1) dt = (probability to survive to time ¢)(probablility to decay in dt) = e~ *' A dt

The average lifetime ¢ of the nucleus is given by

fwtp(t)dt fwte'“dt )
0 =2 =— (3.71)

f:p(t) dt f:e‘“dt A

i:

One concept used extensively with radioisotopes in the half-life T, defined

as the time it takes for half of a certain number of nuclei to decay. Thus, using
Eq. 3.69,

ND 1
N(@O) 2
which then gives the relationship between A and T
In2
T=— (3.72)

For a sample of N(¢) nuclei at time ¢, each having decay constant A, the
expected number of nuclei decaying per unit time is

A(t) = AN() 3.73)

where A(#) = activity of the sample at time ¢.
The units of activity are the Becquerel (Bq), equal to 1 decay/s, or the
Curie (Ci) equal to 3.7 X 10" Bq. The Becquerel is the SI unit defined in 1977.
The term specific activity (SA) is used frequently. It may have one of the two
following meanings:

1. For solids,

activity .
SA = p—— (Bq/kgor Ci/g)
2. For gases or liquids,
activity s ] s
SA = voluma (Bg/m’ or Ci/cm’)

Example 3.8 What is the SA of 0Co?

Answer The SA is
SA A AN In2 N, (In 2)(6.022 x 10%)
“m T m Tm A (52y)(3.16 X 107 s/y)(0.060 kg)

= 4.23 X 10' Bq/kg = 1.14 X 10° Ci/g
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Example 3.9 What is the SA of a liquid sample of 10™* m?® containing 10~°
kg of **P?

Answer The SA is

SA A AN In2 N, (In 2)(10~°kg)(6.022 X 10%)
TV TV T ™4 T 077 m®)(14.3 d)(86400 5,/d)(0.032 kg)

1.05 X 10 Bq/m> = 0.285 Ci/cm?

There are isotopes that decay by more than one mode. Consider such an
isotope decaying by the modes 1,2,3,...,i (e.g., alpha, beta, gamma, etc.,
decay), and let

A; = probability per unit time that the nucleus will decay by the ith mode
The total probability of decay (total decay constant) is
)\=A1 +A2+ +Ai+ (374)

If the sample contains N(¢) atoms at time ¢, the number of decays per unit time
by the ith mode is

A1) = A,N(t) = A,N()e (3.73a)

The term partial half-life is sometimes used to indicate a different decay mode.
If T; is the partial half-life for the ith decay mode, using Eqs. 3.72 and 3.74, one
obtains

1 1 1 1 1

T A (3.75)
T T, T, T, T,

It should be pointed out that it is the total decay constant that is used by Eqs.
3.69 and 3.734, and not the partial decay constants.

Example 3.10 The isotope B2cf decays by alpha decay and by spontaneous
fission. The total half-life is 2.646 years and the half-life for alpha decay is 2.731
years. What is the number of spontaneous fissions per second per 1073 kg (1 g)
of ““Cf?

Answer The spontaneous fission activity is

The spontaneous fission half-life is, using Eq. 3.75,

TT (2.646 x 2.731)

a

T,—-T, 2731 —2.646

a

T, = = 85y = 2.68 X 10° s
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Therefore,

In2 6.022 X 10%

= T x 1005 07 ko) — atoms/kg = 6.17 X 10" sf/s

Ay T IETEE
252 X 10

Sometimes the daughter of a radioactive nucleus may also be radioactive
and decay to a third radioactive nucleus. Thus, a radioactive chain

N, - N, » N; - etc.

is generated. An example of a well-known series is that of U, which through
combined « and B~ decays ends up as an isotope of lead. The general equation
giving the number of atoms of the ith isotope, at time ¢ in terms of the decay
constants of all the other isotopes in the chain was developed by Bateman.? If
N,(0) is the number of atoms of the ith isotope of the series at time ¢ = 0 and

NO =0 i>1
then the Bateman equation takes the form

—Ajt

e
—_— 3.76
I_Ik¢j(Ak - AJ) ( )

N(8) = 34, = A N(O) B
, i=1

Example 3.11 Apply the Bateman equation for the second and third isotope
in a series.

Answer

(e M — g~ hat)

@ NAO = AN e M e M! AN (0)
A N =MNO  T, —

-yt e~ Mt

(A, — A)D(A5 — 1) - A = (A5 = Ay)

e~ Mt
T, - wl

b) N;(¢) = AlAle(O)[

3.9 NUCLEAR REACTIONS |

3.9.1 General Remarks|

A nuclear reaction is an interaction between two particles, a fast bombarding
particle, called the projectile, and a slower or stationary target. The products of
the reaction may be two or more particles. For the energies considered here
(< 20 MeV), the products are also two particles (with the exception of fission,
which is discussed in the next section).
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If x,, X, are the colliding particles and x,, X, are the products, the reaction
is indicated as
éixl +§§X2 “’gfxs +‘}:X4
or
X,(x1,%5)X,
The particles in parentheses are the light particles, x; being the projectile.
Another representation for the reason is based on the light particles only, in

which case the reaction shown above is indicated as an (x;,x3) reaction. For
example, the reaction

on +19B — $He +]Li

may also be indicated as 'YB(n, a)]Li or simply as an (n, a) reaction.

Certain quantities are conserved when a nuclear reaction takes place. Four
are considered here. For the reaction shown above, the following quantities are
conserved:

Charge:

Z,+2Z,=2Z,+ 2,
Mass number:
A +A,=A4,+ A4,
Total energy:
E, +E,=E; + E, (restmass plus kinetic energy)

Linear momentum:

Many nuclear reactions proceed through the formation of a compound
nucleus. The compound nucleus, formed after particle x, collides with X, is
highly excited and lives for a time of the order of 10712 to 10~ !* s before it
decays to x, and X,. A compound nucleus may be formed in more than one way

and may decay by more than one mode that does not depend on the mode of
formation. Consider the example of the compound nucleus 3N:

Formation Compound nucleus Decay
§He+‘gB\ /5”+13N
2 12 1 13

H + §C + B C
1 6 \1; N/ 1 p 6
%C+1H::;;7 Q::::3M+@B
an+ 9N TH+C

The modes of formation and decay of '*N are shown in the form of an
energy-level diagram in Fig. 3.13. No matter how the compound nucleus is
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[ av———
$He + '9B

i
> ! Excitation energy
2 6 ! f compound nucle
= etc. | of compou ucleus
1
4 ( Excited states of the

[~ If the compound nucleus -
de-excites to any of these compound nucleus

levels, it will stay as **N.

It will go to the ground

state by emitting one or

more gammas.

ol __ _ _ o ___2> Y

' . .
Formation of compound nucleus ! BN Dissociation of compound nucleus
'

Figure 3.13 Different modes of formation and decay of the component nucleus. For clarity, the
diagram shows that the compound nucleus has the same excitation energy regardless of the way it is
formed. This is not necessarily the case.

formed, it has an excitation energy equal to the separation energy of the
projectile (a, n, p, etc.) plus a fraction of the kinetic energy of the two particles.
Since the separation energy is of the order of MeV, it is obvious that the
compound nucleus has considerable excitation energy even if the projectile and
the target have zero kinetic energy.

Exactly what happens inside the compound nucleus is not known. It is
believed—and experiment does not contradict this idea—that the excitation
energy of the compound nucleus is shared quickly by all the nucleons (A, + A4,).
There is continuous exchange of energy among all the nucleons until one of
them (or a cluster of them) obtains energy greater than its separation energy
and is able to leave the compound nucleus, becoming a free particle.

3.9.2 Kinematics of Nuclear Reactions

In this section, two questions will be answered:

1. Given the masses m,, M,, m;, M,, and the Kinetic energies of the projectile
(m,) and the target (M,), how can one calculate the kinetic energies of the
products with masses m, and M,?
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2. What is the minimum kinetic energy the particles with masses m,, M, ought
to have to be able to initiate the reaction?

The discussion will be limited to the case of a stationary target, the most
commonly encountered in practice.

Consider a particle of mass m, having speed v, (kinetic energy 7)) hitting a
stationary particle of Mass M,. The particles m;, M, are produced as a result of
this reaction with speeds v, v, (kinetic energies T, T,), as shown in Figure 3.14.
Applying conservation of energy and linear momentum, one has

Energy:
m +Ty+M,=my;+T,+ M, + T, 3.77
Momentum, x axis:
mqv,; = myuscos 8 + M,v,cos ¢ (3.78)
Momentum, y axis:
msv,sin @ = M,v,sin ¢ (3.79)
The quantity
Q=m +M,—m,— M, (3.80)

is called the Q value of the reaction. If Q > 0, the reaction is called exothermic
or exoergic. If Q < 0, the reaction is called endothermic or endoergic.

Assuming nonrelativistic kinematics, in which case T = 3mv?, Egs. 3.77 to
3.79 take the form

T, +Q=T,+T, (3.81)
V2m,T, = y2m,T; cos 6 + /2M,T, cos ¢ (3.82)

v2m,T; sin 6 = /2M,T, sin ¢ (3.83)

Equations 3.81 to 3.83 have four unknowns T3, T,, ¢, and 6, so they cannot be
solved to give a unique answer for any single unknown. In practice, one
expresses a single unknown in terms of a second one—e.g., T; as a function of

before collision after collision

Figure 3.14 The kinematics of the reaction M,(m;, m;)M,.
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8, after eliminating 7, and ¢. Such an expression, although straightforward, is
complicated. Two cases of special interest are the following.

Case 1: 8 = 0, ¢ = 180°. In this case, the particles m; and M, are emitted
along the direction of motion of the bombarding particle (Fig. 3.15). Equations
3.81 and 3.82 take the form

T,+Q=T,+T, (3.84)
ymT, =m,T, —/M,T, (3.85)

and they can be solved for T, and 7,. These values of 7, and T, give the
maximum and minimum kinetic energies of particles m; and M,.

Example 3.12 Consider the reaction
(l)n +;4N —>;He +;1B

with the nitrogen being at rest and the neutron having energy 2 MeV. What is
the maximum kinetic energy of the alpha particle?

Answer The Q value of the reaction is

QO = (14.003074 + 1.008665 — 4.002603 — 11.009306) X 931.481 MeV
= —0.158 MeV

Solving Eqgs. 3.84 and 3.85 for T}, one obtains a quadratic equation for 7, (7 in
MeV),

T —2.577T, + 1.482 =0
which gives two values of T;:
T; , = 1.710 MeV T; , = 0.866 MeV
The corresponding values of 7, are
T, , = 0.132 MeV T, , =0.976 MeV

The two pairs of values correspond to the alpha being emitted at 6 =0
(T; = 1.709 MeV = max. kin. energy) or § = 180° (T, = 0.865 MeV = min. kin.
energy). Correspondingly, the boron nucleus is emitted at ¢ = 180° or ¢ = 0°.
One can use the momentum balance equation (Eq. 3.85) to verify this conclu-
sion.

Case 2: 6 = 90°. In this case, the reaction looks as shown in Fig. 3.16. The
momentum vectors form a right triangle as shown on the right of Fig. 3.16.

—_ - my — -
m, m, ?
V, =0
<__L_ Figure 3.15 A case where the reaction

M, products are emitted 180° apart.
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m, Vv,

Figure 3.16 A case where the reaction products are emitted 90° apart.

Therefore, Eqs. 3.81 and 3.82 take the form
T,+Q0=T,+T, (3.86)
m,T, + m;T, = M,T, (3.87)
Again, one can solve for T, and T,. The value of T} is

(M, - m)DT, + M,Q

T; = 3.88
} my+ M, (3.88)

Example 3.13 What is the energy of the alpha particle in the reaction
on +4N > {He +1}

if it is emitted at 90°? Use T, = 2 MeV, the same as in Example 3.12.

Answer Using Eq. 3.88,

(11 — 12 + 11(—0.163)

3 = 15 MeV = 1.214 MeV

The value of the minimum (threshold)energy necessary to initiate a reaction
can be understood with the help of Fig. 3.17. When the particle m; enters
the target nucleus M,, a compound nucleus is formed with excitation energy
equal to

M,

B, + ———T 3.89)
™ m+ M, ! (
where B,, = binding energy of particle m,
M,T,/(m, + Mz) = part of the incident particle kinetic energy available as
excitation energy of the compound nucleus
Only a fraction of the kinetic energy 7, is available as excitation energy,
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Excited state of
compound nucleus

Endothermic reaction

~,

- - ——

Exothermic reaction

8m

Ground state of compound nucleus

) /

Figure 3.17 Energy-level diagram for endothermic and exothermic reactions. For endothermic
reactions, the threshold energy is equal to [(m; + M,)/M,]IQI.

because the part

my

[ Tl

m, +M,
becomes kinetic energy of the compound nucleus (see Evans or any other book
on nuclear physics), and as such is not available for excitation.

If the reaction is exothermic (Q > 0), it is energetically possible for the

compound nucleus to deexcite by going to the state (m, + M,) (Fig. 3.17), even
if T, = 0. For an endothermic reaction, however, energy at least equal to |Q]

should become available (from the kinetic energy of the projectile). Therefore,
the kinetic energy T, should be such that

M,
—r;l_l+—]\’12Tl > |0l (3.90)
or the threshold kinetic energy for the reaction is
m, + M,
T = T|Q| 3.9

3.10 FISSION

Fission is the reaction in which a heavy nucleus splits into two heavy fragments.
In the fission process, net energy is released, because the heavy nucleus has less
binding energy per nucleon that the fission fragments, which belong to the
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middle of the periodic table. In fact, for 4 > 85 the binding energy per nucleon
decreases (Fig. 3.3); therefore any nucleus with 4 > 85 would go to a more
stable configuration by fissioning. Such “spontaneous” fission is possible but
very improbable. Only very heavy nuclei (Z > 92) undergo spontaneous fission
at a considerable rate.

For many heavy nuclei (Z > 90), fission takes place if an amount of energy
at least equal to a critical energy E, is provided in some way, as by neutron or
gamma absorption. Consider, as an example, the nucleus 2> U (Fig. 3.18). If a
neutron with kinetic energy 7, is absorbed, the compound-nucleus 56U has
excitation energy equal to (Eq. 3.89)

T,

B +
" A+1"

If B, + AT,/(A + 1) > E_, fission may occur and the final state is the one
shown as fission products in Fig. 3.18. For 2°U, E, = 5.3 MeV and B, = 6.4
MeV. Therefore, even a neutron with zero kinetic energy may induce fission, if
it is absorbed. For 2°U, which is formed when a neutron is absorbed by B8y,
B, = 49 MeV and E_, = 5.5 MeV. Therefore, fission cannot take place unless
the neutron kinetic energy satisfies

A+1
T, >

239
2> —(E.—B) = —2(55 - 4.9) = 0.6 MeV

238

The fission fragments are nuclei in extremely excited states with mass
numbers in the middle of the periodic system. They have a positive charge of
about 20e and they are neutron-rich. This happens because the heavy nuclei
have a much higher neutron-proton ratio than nuclei in the middle of the
periodic table.

MU +n

236 U

Fission products

Figure 3.18 The fission of ®*U induced by neutron absorption.
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Consider as an example 2°*U (Fig. 3.19). Assume that it splits into two
fragments as follows:

Z, =48 N, =80 A, =128
Z,=44 N,=64 A,=108

The two fission fragments have a neutron-proton ratio higher than what stability
requires for their atomic mass. They get rid of the extra neutron cither by
directly emitting neutrons or by B~ decay.

A nucleus does not always split in the same fashion. There is a probability
that each fission fragment (A4, Z) will be emitted, a process called fission yield.
Figure 3.20 shows the fission yield for 25U fission. For thermal neutrons, the
“asymmetric” fission is favored. It can be shown that asymmetric fission yields
more energy. As the neutron energy increases, the excitation energy of the
compound nucleus increases. The possibilities for fission are such that it does
not make much difference, from an energy point of view, whether the fission is
symmetric or asymmetric. Therefore, the probability of symmetric fission in-
creases.

The fission fragments deexcite by emitting neutrons, betas, and gammas,
and most of the fragments stay radioactive long after the fission takes place. The
important characteristics of the particles emitted by fission fragments are:

1. Betas. About six 8~ particles are emitted per fission, carrying a total average
energy of 7 MeV.

2. Gammas. About seven gammas are emitted at the time of fission. These are
called prompt gammas. At later times, about seven to eight more gammas are
released, called delayed gammas. Photons carry a total of about 15 MeV per
fission.

Line of stable

nuclei
MM e = =~ : Y

,

“
o
(]
1 1]
' i Figure 3.19 The fission frag-
"o ments FF, and FF, from By
: ! fission are neutron-rich. They
it reduce their neutron number
44 48 92

either by beta decay or by
4 neutron emission.
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10
15
BQ -
T
B 0.1 e
> E
0.01H Thermal neutrons
L Figure 3.20 Z°U fission yield for thermal
r neutron induced fission. Data from Ref.
0.001 L 1 1 L L L L 1 3. The dashed line indicates the yield
80 100 120 140 160  when the fission is induced by 14-MeV
Mass number A neutrons.

3. Neutrons. The number of neutrons per fission caused by thermal neutrons is
between two and three. This number increases linearly with the kinetic
energy of the neutron inducing the fission. The average energy of a neutron
emitted in fission is about 2 MeV. More than 99 percent of the neutrons are
emitted at the time of fission and are called prompt neutrons. A very small
fraction is emitted as delayed neutrons. Delayed neutrons are very important
for the control of nuclear reactors.

4. Neutrinos. About 11 MeV are taken away by neutrinos, which are also
emitted during fission. This energy is the only part of the fission energy yield
that completely escapes. It represents about 5 percent of the total fission
energy.

Table 3.3 summarizes the particles and energies involved in fission."

Tritium is sometimes produced in fission, In reactors fueled with 2°U, it is produced at the
rate of 8.7 X 1079 tritons per fission. The most probable kinetic energy of the tritons is about 7.5
MeV.

Table 3.3 Fission Products

Particle Number/fission MeV/fission
Fission fragments 2 160 to 170
Neutrons 2t03 S
Gammas (prompt) 7 8
Gammas (delayed) 7 7

Betas 6 7
Neutrinos 6 11

Total 198 to 208
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PROBLEMS

3.1 What is the speed of a 10-MeV electron? What is its total mass, relative to its rest mass?
3.2 What is the speed of a proton with a total mass equal to 2Mc?? (M is the proton rest mass).

3.3 What is the kinetic energy of a neutron that will result in 1 percent error difference between
relativistic and classical calculation of its speed?

3.4 What is the mass of an astronaut traveling with speed v = 0.8¢? Mass at rest is 70 kg.

3.5 What is the kinetic energy of an alpha particle with a total mass 10 percent greater than its rest
mass?

3.6 What would the density of graphite be if the atomic radius were 1013 m? [Atomic radius (now)
10~ 1%m; density of graphite (now) 1600 kg/m>.]

3.7 Calculate the binding energy of the deuteron. [M('H) = 1.007825 u; M(*H) = 2.01410 u]

3.8 Calculate the separation energy of the last neutron of *'Pu. [M(**°Pu) = 240.053809 u;
M(*!1Pu) = 241.056847 u.]

3.9 Assume that the average binding energy per nucleon (in some new galaxy) changes with A as
shown in the following figure:

blA,Z) (MeV)
N A D ®
T—T

g A

0 A

(a) Would fission or fusion or both release energy in such a world?

(b) How much energy would be released if a tritium (*H) nucleus and a helium (*He) nucleus
combined to form a lithium nucleus? [M(CH) = 3.016050 u; M(*He) = 4.002603 u; M('Li) =
7.016004 u.]

3.10 A simplified diagram of the Bics decay is shown in the figure below. What is the recoil energy
of the nucleus when the 0.6616-MeV gamma is emitted?

137
55Cs

6"

0.6616 MeV

137
s Ba

3.11 The isotope Zpu decays by alpha emissions to 25U as shown in the following figure.
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239
24 Pu

0.771 MeV /// 3rd
0.225 MeV / / 2nd
0.013 MeV 7 st

0

Ground state

235 U
92

(a) What is Q_?

(b) What is the kinetic energy of the alphas if the “”U nucleus is left in the third excited state?
What is the kinetic energy of the alphas if the 2°U nucleus is left in the ground state?
[M(®5U) = 235.043926 u; M(ZPu) = 239.052159 u.]

3.12 Consider the isotopes %Zn and ®Cu. Is g* decay possible? Is EC possible? What is Qg+?
What is Qec? [M(®Cu) = 62.929597 u: M(%*Zn) = 62.933212 u.}

3.13 The isotope }Be decays to 'IB. What are the maximum and average kinetic energy of the
betas? [M("' Be) = 11.021658 u; M(''B) = 11.009306 u.]

3.14 Natural uranium contains the isotopes B 4U, BSU, and 238U, with abundances and half-lives as
shown below:

235

Half-life (years) Abundance (%)
By 247 x 10% 0.0057
35y 7.10 x 108 0.71
3y 4.51x 10° 99.284

(a) What is the alpha specific activity of natural uranium?

(b) What fraction of the activity is contributed by each isotope?
3.15 The isotope A0pg generates 140,000 W /kg thermal power due to alpha decay. What is the
energy of the alpha particle? (7, = 1384 d.)
3.16 How many years ago did the isotope 35U make up 3 percent of natural uranium?
3.17 What is the specific alpha activity of Z*Pu? (For ®°Pu: T; = 5.5 x 10" y, T,,, = 2.44 x 10
y.)
3.18 Consider the reaction ,Li(p, n);Be. What is the Q value for this reaction? If a neutron is

emitted at 90° (in LS) with kinetic energy 2 MeV, what is the energy of the incident proton?
[M(Li) = 7.016004 u; M("Be) = 7.016929 u.]

3.19 What is the necessary minimum kinetic energy of a proton to make the reaction $He(p, d3H
possible? (*He at rest.)

3.20 A 1-MeV neutron collides with a stationary ‘3N nucleus. What is the maximum kinetic energy
of the emerging proton?

3.21 What is the threshold gamma energy for the reaction

y+12C 5 3(:He)
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3.22 What is the energy expected to be released as a result of a thermal neutron induced fission in
B9Pu if the two fission fragments have masses M, = 142 u and M, = 95 u?
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CHAPTER

FOUR

ENERGY LOSS AND PENETRATION OF
RADIATION THROUGH MATTER

4.1 INTRODUCTION

This chapter discusses the mechanisms by which ionizing radiation interacts and
loses energy as it moves through matter. The study of this subject is extremely
important for radiation measurements because the detection of radiation is
based on its interactions and the energy deposited in the material of which the
detector is made. Therefore, to be able to build detectors and interpret the
results of the measurement, we need to know how radiation interacts and what
the consequences are of the various interactions.

The topics presented here should be considered only an introduction to this
extensive subject. Emphasis is given to that material considered important for
radiation measurements. The range of energies considered is shown in Table
1.1.

For the discussion that follows, ionizing radiation is divided into three
groups:

1. Charges particles: electrons (e ), positrons (e*), protons (p), deuterons (d),
alphas (), heavy ions (4 > 4)

2. Photons: gammas (y) or X-rays

3. Neutrons (n)

The division into three groups is convenient because each group has its own
characteristic properties and can be studied separately.

121



122 MEASUREMENT AND DETECTION OF RADIATION

A charged particle moving through a material interacts, primarily, through
Coulomb forces, with the negative electrons and the positive nuclei that consti-
tute the atoms of that material. As a result of these interactions, the charged
particle loses energy continuously and finally stops after traversing a finite
distance, called the range. The range depends on the type and energy of the
particle and on the material through which the particle moves. The probability
of a charged particle going through a piece of material without an interaction is
practically zero. This fact is very important for the operation of charged-particle
detectors.

Neutrons and gammas have no charge. They interact with matter in ways
that will be discussed below, but there is a finite nonzero probability that a
neutron or a y-ray may go through any thickness of any material without hav-
ing an interaction. As a result, no finite range can be defined for neutrons or
gammas.

4.2 MECHANISMS OF CHARGED-PARTICLE ENERGY LOSS

Charged particles traveling through matter lose energy in the following ways:

1. In Coulomb interactions with electrons and nuclei

2. By emission of electromagnetic radiation (bremsstrahlung)
3. In nuclear interactions

4. By emission of Cerenkov radiation

For charged particles with kinetic energies considered here, nuclear interac-
tions may be neglected, except for heavy ions (A4 > 4) (see Sec.4.7).

Cerenkov radiation constitutes a very small fraction of the energy loss. It is
important only because it has a particle application in the operation of Cerenkov
counters (see Evans). Cerenkov radiation is visible electromagnetic radiation
emitted by particles traveling in a medium, with speed greater than the speed of
light in that medium.

4.2.1. Coulomb Interactions

Consider a charged particle traveling through a certain material, and consider
an atom of that material. As shown in Fig. 4.1, the fast charged particle may
interact with the atomic electrons or the nucleus of the atom. Since the radius of
the nucleus is approximately 10~!* m and the radius of the atom is 107!° m, one
might expect that

Number of interactions with electrons (R?) atom (10~ 19)? .

number of interactions with nuclei ~ (R?) nucleus (10~ 14) -

This simplified argument indicates that collisions with atomic electrons are more
important than with nuclei. Nuclear collisions will not be considered here.
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V.M, ze P
Charged Particle
.Nucleus
E +ze*?
Electron ~

Looking at Fig. 4.1, at a certain point in time the particle is at point P and
the electron at E. If the distance between them is r, the coulomb force is
F = k(ze?/r?), where ze is the charge of the particle and k is a constant that
depends on the units. The action of this force on the electron, over a period of
time, may result in the transfer of energy from the moving charged particle to
the bound electron. Since a bound atomic electron is in a quantized state, the
result of the passage of the charged particle may be ionization or excitation.

Ionization occurs when the electron obtains enough energy to leave the
atom and become a free particle with kinetic energy equal to

Figure 4.1 A fast charged particle of mass
M and charge ze interacts with the elec-
trons of an atom.

(KE). = (energy given by particle) — (ionization potential)

The electron freed from the atom acts like any other moving charged
particle. It may cause ionization of another atom if its energy is high enough. It
will interact with matter, lose its kinetic energy, and finally stop. Fast electrons
produced by ionizing collisions are called 6 rays.

The ionization leaves behind a positive ion, which is a massive particle
compared to an electron. If an ion and an electron move in a gas, the ion will
move much slower than the electron. Eventually, the ion will pick up an electron
from somewhere and will become a neutral atom again.

Excitation takes place when the electron acquires enough energy to move to
an empty state in another orbit of higher energy. The electron is still bound, but
it has moved from a state with energy E, to one with E,, thus producing an
excited atom. In a short period of time, of the order of 1078 to 10719 s, the
electron will move to a lower energy state, provided there is one empty. If the
electron falls from E, to E,, the energy E, — E, is emitted in the form of an
X-ray with frequency v = (E, — E|) /h.

Collisions that result in ionization or excitation are called inelastic collisions.
A charged particle moving through matter may also have elastic collisions with
nuclei or atomic electrons. In such a case, the incident particle loses the energy
required for conservation of kinetic energy and linear momentum. Elastic
collisions are not important for charged-particle energy loss and detection.

4.2.2 Emission of Electromagnetic Radiation (Bremsstrahlung) |

Every free charged particle that accelerates or decelerates loses part of its
kinetic energy by emitting electromagnetic radiation. This radiation is called
bremsstrahlung, which in German means braking radiation. Bremsstrahlung is
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not a monoenergetic radiation. It consists of photons with energies from zero up
to a maximum equal to the kinetic energy of the particle.

Emission of bremsstrahlung is predicted not only by quantum mechanics but
also by classical physics. Theory predicts that a charge that is accelerated
radiates energy with intensity proportional to the square of its acceleration.
Consider a charged particle with charge ze and mass M moving in a certain
material of atomic number Z. The Coulomb force between the particle and a
nucleus of the material is F ~ zeZe/r?, where r = distance between the two
charges. The acceleration of the incident charged particle is a = F/M ~
2Ze* /M. Therefore the intensity of the emitted radiation I is
2 2ze

M2

4.1

lad zZe?
axa %

This expression indicates that

1. For two particles traveling in the same medium, the lighter particle will emit
a much greater amount of bremsstrahlung than the heavier particle (other
things being equal).

2. More bremsstrahlung is emitted if a particle travels in a medium with high
atomic number Z than in one with low atomic number.

For charged particles with energies considered here, the kinetic energy lost
as bremsstrahlung might be important for electrons only. Even for electrons, it
is important for high-Z materials like lead (Z = 82). For more detailed treat-
ment of the emission of bremsstrahlung, the reader should consult the refer-
ences listed at the end of the chapter.

4.3 STOPPING POWER DUE TO IONIZATION AND EXCITATIONI

A charged particle moving through a material exerts Coulomb forces on many
atoms simultaneously. Every atom has many electrons with different ionization
and excitation potentials. As a result of this, the moving charged particle
interacts with a tremendous number of electrons—millions. Each interaction
has its own probability for occurrence and for a certain energy loss. It is
impossible to calculate the energy loss by studying individual collisions. Instead,
an average energy loss is calculated per unit distance traveled. The calculation is
slightly different for electrons or positrons than for heavier charged particles
like p, d, and «, for the following reason.

It was mentioned earlier that most of the interactions of a charged particle
involve the particle and atomic electrons. If the mass of the electron is taken as
1, then the masses of the other common heavy' charged particles are the

In this discussion, “heavy” particles are all charged particles except electrons and positrons.
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following:
® Electron mass = 1
Proton mass = 1840
Deuteron mass = 2(1840)
Alpha mass = 4(1840)

If the incoming charged particle is an electron or a positron, it may collide with
an atomic electron and lose all its energy in a single collision because the
collision involves two particles of the same mass. Hence, incident electrons or
positrons may lose a large fraction of their kinetic energy in one collision. They
may also be easily scattered to large angles, as a result of which their trajectory
is zig-zag (Fig. 4.2). Heavy charged particles, on the other hand, behave differ-
ently. On the average, they lose smaller amounts of energy per collision. They
are hardly deflected by atomic electrons, and their trajectory is almost a straight
line.

Assuming that all the atoms and their atomic electrons act independently,
and considering only energy lost to excitation and ionization, the average energy
loss' per unit distance traveled by the particle is given by Egs. 4.2, 4.3, and 4.4.
(For their derivation, see the chapter bibliography: Evans, Segré, and Roy and
Reed.)

Stopping power due to ionization-excitation for p,d,t, «.

dE : , ch2 2mc? - )
—(Zx—(MeV/m) = 4mriz E NZ|In 7 B®*| - B 4.2)

Stopping power due to ionization-excitation for electrons.

(BYV7~1 2) 1 [(v—l)2

dE 2m02
E(MCV/HI) = 47770?NZ 1 3

+1— (y2+2y— l)ln2]} (4.3)
Stopping power due to ionization-excitation for positrons.

Jy— 1 2 14
ln(m+mcz) A 23 +

24 v+ 1

dE ) mc?
—sz—(MeV/m) = 4771’0 ?NZ

10 4
+ 2 + 3
(y+1) (y+1)

In2 4.4)
+ ——2—‘ .

Since E = T + Mc? and Mc? = constant, dE /dx = dT/dx; thus, Eqs. 4.2 to 4.4 express the
kinetic as well as the total energy loss per unit distance.
*In SI units, the result would be J/m; 1 MeV = 1.602 X 1071 J.
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W Electron or positron
trajectory Figure 4.2 Possible electron and

P ————ee Heavy particle trajectory  heavy particle trajectories.

where 7, = e*/mc? = 2.818 X 107!° m = classical electron radius
drr =998 X 107 m? = 1072 m? = 1072* c¢m?
mc? = rest mass energy of the electron = 0.511 MeV
y=(T + Mc*)/Mc* =1/1 — B?
T = kinetic energy = (y — 1)Mc?
M = rest mass of the particle
B=uv/c ¢ = speed of light in vacuum = 2.997930 X 10® m/s =
3 X108 m/s
N = number of atoms/m* in the material through which the particle
moves
N = p(N,/A4) N, = Avogadro’s number = 6.022 X 102 atoms/mol
A = atomic weight
Z = atomic number of the material
z = charge of the incident particle (z = 1 for e, e*, p,d; z = 2 for a)
I = mean excitation potential of the material
An approximate equation for I, which gives good results for Z > 12,! is

I(eV) = (9.76 + 58.8Z2"119) 7 4.5)

Table 4.1 gives values of I for many common elements.
Many different names have been used for the quantity dE /dx: names like
energy loss, specific energy loss, differential energy loss, or stopping power. In

Table 4.1 Values of Mean Excitation Potentials for
Common Elements and Compounds’

Element 1(eV) Element 1(eV)
H 204 Fe 281*
He 38.5 Ni 303*
Li 57.2 Cu 321*
Be 65.2 Ge 280.6
B 70.3 Zr 380.9
C 73.8 I 491
N 97.8 Cs 488
(0] 115.7 Ag 469*
Na 149 Au 771*
Al 160* Pb 818.8
Si 174.5 U 839*

"Values of I with * are from experimental results of refs. 2
and 3. Others are from refs. 4 and 5.
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this text, the term stopping power will be used for dE /dx given by Eq. 4.2 to 4.4,
as well as for a similar equation for heavier charged particles presented in Sec.

4.7.2.
It should be noted that the stopping power

1. Is independent of the mass of the particle

2. Is proportional to z? [(charge)?] of particle

3. Depends on the speed v of particle

4. Ts proportional to the density of the material (N)

For low kinetic energies, dE /dx is almost proportional to 1/v2. For relativistic
energies, the term in brackets predominates and dE /dx increases with kinetic
energy. Figure 4.3 shows the general behavior of dE /dx as a function of kinetic
energy. For all particles, dE /dx exhibits a minimum that occurs approximately
at y = 3. For electrons, y = 3 corresponds to T = 1 MeV; for alphas, y =3
corresponds to T = 7452 MeV,; for protons, y = 3 corresponds to T = 1876
MeV. Therefore, for the energies considered here (see Table 1.1), the dE /dx
for protons and alphas will always increase, as the kinetic energy of the particle
decreases (Fig. 4.3, always on the left of the curve minimum); for electrons,
depending on the initial kinetic energy, dE /dx may increase or decrease as the
electron slows down.

Equations 4.3 and 4.4, giving the stopping power for electrons and positrons,
respectively, are essentially the same. Their difference is due to the second term
in the bracket, which is always much smaller than the logarithmic term. For an
electron and positron with the same kinetic energy, Eqs. 4.3 and 4.4 provide
results that are different by about 10 percent or less. For low kinetic energies,
dE /dx for positrons is larger than that for electrons; at about 2000 keV, the
energy loss is the same; for higher kinetic energies, dE /dx for positron is less
than that for electrons.

As stated earlier, Eqgs. 4.2 to 4.4 disregard the effect of forces between
atoms and atomic electrons of the attenuating medium. A correction for this
density effect®” has been made, but it is small and it will be neglected here. The
density effect reduces the stopping power slightly.

In (dE/dx)

1 1 1
Y- 1) = T/Mc?
1 10 100 ( )

Figure 4.3 Change of stopping power with the kinetic energy of the particle.
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Equations 4.2-4.4 are not valid for very low energies. In the case of Eq. 4.2,
a nuclear shell correction is applied (see Ziegler), which appears in the brackets
as a negative term and becomes important at low energies (T < 100 keV). Even
without this correction, the value in brackets takes a negative value when
(2mc?B*?)/I < 1. The value of this term depends on the medium because of
the presence of the ionization potential I. As an example, for oxygen (I = 89
eV) this term becomes less than 1 for T < 40 keV.

For electrons of very low kinetic energy, Eq. 4.3, takes the form (see Roy &
Reed)

dE mc? mcB? [2.7182
—_— = 47rr§—2NZ In
B T 8

= ) IB<1 (4.5a)

Again for oxygen, the argument of the logarithm becomes less than 1 for
electron kinetic energy T < 76 eV. For positrons, the low-energy limit of the
validity of Eq. 4.4 is equal to the positron energy for which the whole value
within brackets is less than zero.

Example 4.1 What is the stopping power for a 5-MeV alpha particle moving
in silicon?

Answer For silicon, A = 28, Z = 14, p = 2.33 kg/m’,

5 + 4(931.5) 100134 2_ 1 - X _ 0068
YT T35 pr=l-7=0
dE a2 OS5 06022 102
— =107% x 33X 10 ————
0.00268 28 X 10-3
2(0.511)(0.00268)(1.00134)*
4{1n — — 0.00268
172 x 10

— 1.48 X 10° MeV/m = 2.37 X 10~* J /m = 0.148 MeV/um
Or, in terms of MeV /(g/cm?),

dE /dx = 1.48 X 10° MeV/m = 1480 MeV /cm /(2.33g/cm?)
= 635.2 MeV /(g/cm?)

Example 4.2 What is the stopping power for a 5-MeV electron moving in
silicon?
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Answer For an electron,

>+ 051 10.785 1 ! 0.9957 2 =0.9914
YT o5 Y F=yl-3 =0 Fm=0

dE 10-25 0.511 533 1030.6022 X 10%
_— - . X _—
dx 0.9914 28 X 1073
0.9957(10.785)v9.785 (0.511) 1
14|In — + 3
172 X 10 2 X 10.785
9.785%

X

+1—(10.785* + 2 X 10.785 — 1) In 2)]

= 403.5 MeV/m = 4.035MeV/cm = 6.46 X 10" J/m

In Ex. 4.2, the stopping power for the 5-MeV electron is, in terms of MeV /
(g/cm?),

4.035 MeV /cm

— 2
233 g /o’ 1.73 MeV /(g/cm*)

Notice the huge difference in the value of stopping power for an alpha
versus an electron of the same kinetic energy traversing the same material.

Tables of dE /dx values are usually given in units of MeV /(g/cm?) [or in SI
units of J/(kg/m?)]. The advantage of giving the stopping power in these units
is the elimination of the need to define the density of the stopping medium that
is necessary, particularly for gases. The following simple equation gives the
relationship between the two types of units:

—dE(MV )—dE[MV ( ) (4.6)
p(g/cm3)E eV /cm = I eV/(g/cm .

4.4 ENERGY LOSS DUE TO BREMSSTRAHLUNG EMISSION

The calculation of energy loss due to emission of bremsstrahlung is more
involved than the calculation of energy loss due to ionization and excitation.
Here, an approximate equation will be given for electrons or positrons only,
because it is for these particles that energy loss due to emission of radiation may
be important.

For electrons or positrons with kinetic energy 7 (MeV) moving in a
material with atomic number Z, the energy loss due to bremsstrahlung emission,
(dE /dx),,4, is given in terms of the ionization and excitation energy loss by Eq.
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4.7 (see Evans).

dE ZT (MeV) ( dE
%) - S S 4
rad ion

dx 750 dx

where (dE /dx)
4.4).

is the stopping power due to ionization-excitation (Eq. 4.3 or

ion

Example 4.3 Consider an electron with 7 = 5 MeV. What fraction of its
energy is lost as bremsstrahlung as it starts moving (a) in aluminum and (b) in
lead?

Answer (a) If it travels in aluminum (Z = 13),

dE 13(5) ( dE 0.09 dE
(E)rad_ 750 (E)ion_ . (E)ion

That is, the rate of energy loss due to radiation is about 9 percent of (dE /dx);,,,.
(b) For the same electron moving in lead (Z = 82),

dE 82(5) (dE 0.55 dE
( dx )rad B 750 (E)ion o ( dx )ion

In this case, the rate of radiation energy loss is 55 percent of (dE /dx);,,.

Equation 4.7, relating radiation to ionization energy loss, is a function of the
kinetic energy of the particle. As the particle slows down, T decreases and
(dE/dx),,q also decreases. The total energy radiated as bremsstrahlung is
approximately equal in MeV to’

T,

I

W =4.0x1074ZT1*? 4.8)
Example 4.4 What is the total energy radiated by the electron of Ex. 4.3?
Answer Using Eq. 4.8,

(@) In aluminum: 7, , = (4.0 X 107*X13)5% = 0.130 MeV

(b) In lead: T,,; = (4.0 X 107*)X(82)5% = 0.820 MeV

The total stopping power for electrons or positrons is given by the sum of
Eqs. 4.3 or 4.4 and 4.7:

(dE) dE) (dE) 1 ZT \(dE (4.9)
—| == +=| =11+=]|l- .
dx tot dx ion dx rad ( 750 )( dx )ion

If the particle moves in a compound or a mixture, instead of a pure element,
an effective atomic number Z, should be used in Eqs. 4.7 and 4.8. The value of

"The coefficient 4.0 x 10~* used in Eq. 4.8 is not universally accepted (see Evans).
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Z; is given by Eq. 4.10.

(wi/A)Z}

N
e,
I
-

(4.10)

=i M~

(w;/A)Z,

]
—_

where L = number of elements in the compound or mixture

w, = weight fraction of ith element

A; = atomic weight of ith element

Z; = atomic number of ith element
For a compound with molecular weight M, the weight fraction is given by

Al (4.11)
W, = ——— .
! M

where N, is the number of atoms of the ith element in the compound.

4.5 CALCULATION OF dE /dx FOR A COMPOUND
OR MIXTURE

Equations 4.2-4.4 give the result of the stopping power calculation if the
particle moves in a pure element. If the particle travels in a compound or a
mixture of several elements, the stopping power is given by

(ldE) > 1(dE) (4.12)
—-— =) w—|— .

p dx compound i pi dx i

where p = density of compound or mixture

p; = density of the ith element
1/p(dE /dx); = stopping power in MeV /(kg/m?) for the ith element, as calcu-
lated using Eqs. 4.2—-4.4 and 4.6.

Example 4.5 What is the stopping power for a 10-MeV electron moving in
air? Assume that air consists of 21 percent oxygen and 79 percent nitrogen.

Answer Equation 4.12 will be used, but first dE /dx will have to be calcu-
lated for the two pure gases. Using Eq. 4.3,

T + mc? 10 + 0.511
YT T T T o5
v -1
= — =09988 B =09976
’Y .

= 20.569
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For oxygen,
l(dE) - _23( 0.511 )0.6022 x 10%
plax /o 0.9976 | 16 x 1073
0.9988(20.569)v19.569 (0.511) 1 19.5692
x[“ 115.7 x 10~° * 2(20.569)2( 8

+1 — [(20.569)* + 2(20.569) — 1] In 2)] = 0.194 MeV /(kg/m?)

=3.10 X 1071 J /(kg/m?) = 1.94 MeV /(g/cm?)

For nitrogen,

1 (dE) _28( 0.511 )0.6022 X 10%
plar )y 0.9976) 14 x 1073
| 0.9988(20.569)v19.569 (0.511) 1 19.569?
X +
! 97.8 X 10°° 220569 | 8
+1 — [(20.569)" + 2(20.569) — 1]In 2)} — 0.196 MeV /(kg/m?)
=3.14 X 107'* J /(kg/m?) = 1.96 MeV /(g/cm?)
For air,
(ldE) 021(1dE 07 ldE)
—— | =021{—-——]| +079——
P dx air p dx O p N

=[0.21(3.10 X 107'*) + 0.79(3.14 X 107'*)] J/(kg/m?)
=3.14 X 107! J(kg/m?) = 1.96 MeV /(g/cm?)

dE
(Zx_) =314 10~ J /(kg/m?)(1.29 kg /m*)

= 4.05 X 107" J/m = 0.253 MeV/m

4.6 RANGE OF CHARGED PARTICLES

A charged particle moving through a certain material loses its kinetic energy
through interactions with the electrons and nuclei of the material. Eventually,
the particle will stop, pick up the necessary number of electrons from the
surrounding matter, and become neutral. For example,

p*+ e~ — hydrogen atom

a?t + 2¢~— He atom
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The total distance traveled by the particle is called the pathlength. The path-
length S, shown in Fig. 4.4, is equal to the sum of all the partial pathlengths S,.
The thickness of material that just stops a particle of kinetic energy T, mass M,
and charge z is called the range R of the particle in that material. It is obvious
that R < S. For electrons, which have a zig-zag path, R < S. For heavy charged
particles, which are very slightly deflected, R = §.

Range is distance, and its basic dimension is length (m). In addition to
meters, another common unit used for range is kg/m? (or g/cm?). The
relationship between the two is

R(kg/m?) = [R(m)][ p(kg/m>)] (4.13)

where p is the density of the material in which the particle travels. The range
measured in kg/m? is independent of the state of matter. That is, a particle will
have the same range in kg/m? whether it moves in ice, water, or stream. Of
course, the range measured in meters will be different.

The range is an average quantity. Particles of the same type with the same
kinetic energy moving in the same medium will not stop after traveling exactly
the same thickness R. Their pathlength will not be the same either. What
actually happens is that the end points of the pathlengths will be distributed
around an average thickness called the range. To make this point more clear,
two experiments will be discussed dealing with transmission of charged particles.
Heavy particles and electrons-positrons will be treated separately.

|4.6.1 Range of Heavy Charged Particles (p,d,t,a;1 < A4 < 4)|

Consider a parallel beam of heavy charged particles all having the same energy
and impinging upon a certain material (Fig. 4.5). The thickness of the material
may be changed at will. On the other side of the material, a detector records the
particles that traverse it. It is assumed that the particle direction does not
change and that the detector will record all particles that go through the
material, no matter how low their energy is. The number of particles N(z)
traversing the thickness ¢ changes, as shown in Fig. 4.6.

Particles

m stop here
Particles - 1
enter here /\/\r\_—\/\/\.s

Figure 4.4 Pathlength ($) and range (R). The end points of the pathlengths are distributed around
an average thickness that is the range.
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.

Incident —a
= (oot
beam

—

Detector /
“shied 7 . .
Stopping Zrs20202/277777;  Figure 4.5 Particle transmission ex-
material periment.

In the beginning, N(¢) stays constant, even though ¢ changes. Beyond a
certain thickness, N(¢) starts decreasing and eventually goes to zero. The
thickness for which N(¢) drops to half its initial value is called the mean range R.
The thickness for which N(¢) is practically zero is called the extrapolated range
R,. The difference between R and R, is about 5 percent or less. Unless
otherwise specified, when range is used, it is the mean range R.

Semiempirical formulas have been developed that give the range as a
function of particle kinetic energy. For alpha particles, the range in air at
normal temperature and pressure is given by

R(mm) = exp [1.61VT(MeV) | 1<T<4MeV
R(mm) = (0.05T + 2.85)T%/2 (MeV) 4 <T <15MeV

where T = kinetic energy of the particle in MeV. Figure 4.7 gives the range of
alphas in silicon.

If the range is known for one material, it can be determined for any other
by applying the Bragg-Kleeman rule:

(4.14)

B[4 4.15)
R, PV A, .

where p;, and A; are the density and atomic weight, respectively, of material i.
For a compound or mixture, an effective molecular weight is used, obtained

"The Bragg-Kleeman rule does not hold for electron or positron ranges.

NO
N2 =~ e e m e - = =
!
!
1
: Figure 4.6 The number of heavy charged
] particles (a, p,d,t) transmitted through
0 R Re t thickness t.
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Figure 4.7 Range-energy curve for alpha particles in silicon (Ref. 8).

from the equation
-1

(4.16)

- £

i=1
where the quantities w;, A,;, and L have the same meaning as in Eq. 4.10.

Example 4.6 What is the effective molecular weight for water? What is it
for air?

Answer For H,0 (11% H, 89% O),

011 0.89)\°!
= Aef = 9

VA = | — + =
ef ( ‘/T ‘/ﬁ
For air (22.9% 0O, 74.5% N, 2.6% Ar),

i 0229 0.745 0.026
= + +
of V16 V14 Va0

Using the Bragg-Kleeman rule (Eq. 4.15), with air at normal temperature
and pressure as one of the materials (p = 1.29 kg/m’, VA = 3.84), one

-1
) =384 A, =14.74
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obtains

A
H R, (mm) “4.17

R (mm) = (3.36 X 10 )p (g /) it

There are two ways to obtain the range of alphas in a material other than
air and silicon:

1. The range in air should be obtained first, using Eq. 4.14, and then the range
in the material of interest should be calculated using Eq. 4.17.

2. The range in silicon could be read from Fig. 4.7, and then the range in the
material of interest should be calculated using Eq. 4.15.

Example 4.7 What is the range of a 3-MeV alpha particle in gold?

Answer The range of this alpha in silicon is (Fig. 4.7) R = 12.5 um = 12.5
X 107% m. Using Eq. 4.15, the range in gold is

233 x10® [197

R, =(125x1078)———y/ —
aw = )19.32><103 28

=4X10"°m =4 um
Or, using Egs. 4.14 and 4.17,

Ry, =(3B2x10"") exp(1.61v3) = 3.8 X 107? mm = 3.8 um

19.32 x 10°

Example 4.8 What is the range of a 10-MeV alpha particle in aluminum?

Answer From Fig. 4.7, the range in silicon is R =72 um = 7.2 X 107° m.
Using Eq. 4.15, the range in aluminum is

233 x10° [27
Ry = (72 pm)—————1/ 5 = 60.7 um

Or, using Egs. 4.14 and 4.17,

V27
Ry = (3.36 X 1071)-———-30.05(10) + 2.85]10*2 mm

x 103
=6.85X 1073 m = 68.5 Lm

The difference of 8 um is within the range of accuracy of the Bragg-Kleeman
rule and the ability to read a log-log graph.
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The range of protons in aluminum has been measured by Bichsel.” His
results are represented very well by the following two equations:

R(pm) = 1421T'5¥* 1 MeV < T < 2.7 MeV (4.18)
2

R(um) = 10. 27MeV < T < 20MeV  (4.19
(um) =105 T 27 MeV =T <20Mev (419

For other materials, Eq. 4.15 should be used after the range in aluminum is
determined from Egs. 4.18 and 4.19. A very comprehensive paper dealing with
proton stopping power, as well as range, for many materials is that of Janni.*

The range of protons and deuterons can be calculated from the range of an
alpha particle of the same speed using the formula

M(p,d) .
R(p,d) = 4—M—-Ra — 2 (mm, air) (4.20)

a

where R, = range in air of an alpha particle having the same speed as the
deuteron or the proton
M =mass of the particle (1 for proton, 2 for deuteron)
M, =mass of alpha particle = 4
For materials other than air, the Bragg-Kleeman rule (Eq. 4.17) should be
used.
The fact that the alpha and proton or deuteron ranges are related by the
same speed rather than the same kinetic energy is due to the dependence of
dE /dx on the speed of the particle.

Example 4.9 What is the range of the 5-MeV deuteron in air?

Answer Equation 4.20 will be used, but first the range of an alpha particle
with speed equal to that of a 5-MeV deuteron will have to be calculated. The
kinetic energy of an alpha particle with the same speed as that of the deuteron
will be found using the corresponding equations for the kinetic energy. Since
T = IMV'? for these nonrelativistic particles.

Ma
T.= 310 = 2T~ 10 MeV

The range of a 10-MeV alpha particle (in air) is (Eq. 4.14)

R, = (0.05T + 2.85)T*?% = 106 mm = 0.106 m
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The range of the 5-MeV deuteron (in air) is then (Eq. 4.20)
Ry;=2R,—-2=210mm =021 m
Example 4.10 What is the range of a 5-MeV deuteron in aluminum?

Answer Using the Bragg-Kleeman rule (Eq. 4.17) and the result of the
previous example,

R,(AD) = (336 X 1071) 210 mm = 0.136 mm = 136 um

2.7 X 10°

4.6.2 Range of Electrons and Positronsl

Electrons and positrons behave in essentially the same way with regard to
energy loss, slowing down, and penetration through matter. Small differences
exist; one was indicated when dE /dx was discussed in Sec. 4.3. Small differences
in the values of the range between electrons and positrons should also be
expected, and indeed this is the case. Most of the range measurements have
been performed with electrons because electrons are used much more fre-
quently than positrons in radiation measurements. For this reason, from this
point on, only electrons will be discussed. The reader should be aware that the
results are equally applicable for positrons, to a first approximation, but for very
accurate results the references listed at the end of this chapter should be
consulted.

If the experiment shown in Fig. 4.5 and discussed in Sec. 4.6.1 is repeated
with the incident beam consisting of monoenergetic electrons, the result will
look as shown in Fig. 4.8. For electrons, the transmission curve does not have a
flat part. It decreases gradually to a level which is the background. The range' is
equal to the thickness of the material, which is defined by the point where the
linear extrapolation of the transmission curve meets the background.

In many texts, this is called the “extrapolated” range. Since only one type of range is used,
there is no need to carry along the world “extrapolated.”

N(t)

Background

Figure 4.8 The number of elec-
trons transmitted through thick-
ness ¢. Experiment setup shown in
Fig. 4.5.

p— ]
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The semiempirical equation giving the range of electrons for the energy
range 0.3 keV to 30 MeV has been developed by Tabata, Ito, and Okabe,"
based on the experimental results available until 1972. This equation, indicated
from now on as the TIO equation, has the following form:

In[1 + a,(y — 1] a,(y—1)
R(kg/m?) = a, 2y - Y - (4.21)
a, 1+ay-1
where
2.335A4 i
a, = —EW a; = 0.9891 — (3.01 X 107*Z)
a,=178x107%Z a, = 1.468 — (1.180 X 10722) 4.22)
1.232
as = W

A, Z, and y have been defined in Sec. 4.3.

Figures 4.9 and 4.10 show results based on Eq. 4.21, as well as experimental
points.

In the case of absorbers that are mixtures or compounds, the atomic
number Z and atomic weight A4 to be used in Eq. 4.22 are given by

L
i
L Z. -1
Aef = Zef( Zwi_l) (424)
T A
where w; is the weight fraction of element with atomic number Z; and atomic

weight A,.

Example 4.11 What is the range of 1-MeV electrons in gold? (Z = 79,
A =197)

Answer Using Egs. 4.21 and 4.22,

2.335(197)
a = 291209
a, = (1.78 X 107*)(79) = 0.01406

a;, = 0.9891 — (3.01 X 107%)(79) = 0.965
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107! 1 10 10?

10 10'2
4
1 —10-°3
« -
E
L
< 10 -4
o« 10 '1:10
1072 —-10°%
Al T
10-3 L1l il Lt qo-s
10-4 10-3 10-2 107!

T, MeV

Figure 4.9 The range of electrons as a function of their kinetic energy as obtained by using Eq. 4.21.
The solid circles are experimental data for Al; the open circles are for Cu (from Ref. 10).

a, = 1.468 — (1.180 x 1072)(79) = 0.5358
1.232
as = W = (.765
1.511
Y= gapg = 297
In(1+ 0.0275)  1.8885
R =2336 - = 2.18 kg/m? = 0.218 g/cm?

0.01406 1.895
Since the density of gold is 19.3 X 10* kg/m?, the range in um is

2.18 kg/m?
© 193 x 10° kg/m’

=113 X 107* m = 113 um
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Figure 4.10 The range of electrons as a function of their kinetic energy as obtained by using Eq.
4.21. The solid circles are experimental data for Ag; the open circles are for Au (from Ref. 10).

Example 4.12 What is the range of 1-MeV electrons in aluminum? (Z = 13,
A=27)

Answer Again, using Eq. 4.21 and 4.22,

2.335(27)
a, = —IW = 2.837
a, = (1.78 x 107*)(13) = 2.314 x 107°
a; = 0.9891 — (3.01 x 10~*)(13) = 0.985
a, = 1.468 — (1.180 x 1072)(13) = 1.3146
1.232
as = 0.9315

= 130109
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In (1.0045)
0.00231

1.928
3457

R =2.837 ) = 3.93 kg/m? = 0.393 g/cm?

Since the density of aluminum is 2.7 X 10® kg/m?, the range in pm is

3.93 kg/m?
2.7 % 10° kg/m®

=1.46 X 107 m = 1460 um

4.6.3 Transmission of Beta Particlesl

Beta particles have a continuous energy spectrum extending from zero energy
up to maximum kinetic energy E,,, (see Sec. 3.7.3). If the transmission experi-
ment shown in Fig. 4.5 is repeated with an incident beam of B particles, the
result will look as shown in Fig. 4.11. The number of betas N(¢) transmitted
through a thickness ¢ is very closely represented by

N(t) = N(0)e ! (4.25)

where u is called the mass absorption coefficient.
The value of u has been determined experimentally as a function of the
maximum beta energy and is given by

p (m?/kg) = 1.7E 1 (4.26)

1000

« Electron beam
\\(monoenergetic)
AN

\
Beta beam .

100

Beam intensity (relative units)

10

1 1 1 L

100 200
Absorber thickness (relative units)

300

Figure 4.11 Transmission of betas. A
corresponding curve for monoener-
getic electrons is also shown with
E, =E

mono max*
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where E,,, is in MeV. Notice that y is given in units of m?/kg; therefore the
thickness ¢ in the exponent of Eq. 4.25 should be in kg/m?. The exponential
transmission law represented by Eq. 4.25 is the result of experimental observa-
tion. There is no theory predicting it. The range of B particles is calculated
using Eq. 4.21 for kinetic energy equal to E_,,.

Example 4.13 What fraction of 2-MeV betas will go through a single Al foil
of thickness 0.1 mm?

Answer The mass absorption coefficient is, using Eq. 4.26.

p=1.7x2""14 = 07714 m?/kg

The fraction transmitted is, using Eq. 4.25,

—— =¢7# =exp[—0.7714 m? /kg(0.1 X 1073 m)(2.7 X 10> kg/m?)]
— exp(—0.208) = 0.81

Therefore, 81 percent of the betas will go through this foil.

|4.6.4 Energy Loss after Traversing a Material of Thickness ¢ < R

One is often required to calculate the energy loss of a charged particle after it
traverses a material of thickness ¢. The first step in solving such a problem is to
calculate the range of the particle in that medium. If the range is R <, the
particle stopped in the medium and the total energy lost is equal to the initial
energy of the particle. If R > ¢, the energy loss AE is given by

[ dE
AE = fo(ix') dx 4.27)

where dE /dx is the total stopping power (ionization-excitation plus radiation
loss). If ¢+ < R, one may take dE /dx as constant and obtain

AE aE R (4.28)
= (E)Ot I < .

where (dE /dx), is the stopping power calculated for the initial energy of the
particle.

If the thickness ¢ is a considerable fraction of the range, dE /dx cannot be
considered constant. Then, Eq. 4.27 should be integrated using the appropriate
form of dE/dx. Since the stopping power is a complicated expression, the
integration cannot be carried out by hand. A numerical integration can be
performed by a computer. In most cases, however, the following approach gives
adequate results.
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The thickness ¢ is divided into N segments of length Ax;, where

N
Y Ax; =t
i=1
Equation 4.27 takes the form
N (dE
AE = — | Ax; 4.29
3 ( d )i 5 42

where (dE /dx); is the stopping power calculated for the kinetic energy of the
particle at the beginning of the segment Ax,.

There is no general rule as to the best value of the number of segments N.
Obviously, N should be such that (dE /dx), changes by a small but acceptable
amount as the particle travels the segment Ax;.

Example 4.14 What is the energy loss of a 10-MeV electron going through
15 mm of aluminum?

Answer Using Eq. 4.21 or Fig. 4.9, the range of a 10-MeV electron in
aluminum is R = 20.4 mm. The particle will emerge, but the thickness of the
absorber is a considerable fraction of the range. Therefore, one should use Eq.
4.29.

If one chooses N = 5 and equal segments, Eq. 4.29 takes the form

5 (dE
AE = Z(E) Ax; Ax;=3mm

The table below shows how the calculation proceeds.

i=1

i T; MeV) dE/dx (MeV/mm) (AE); (MeV) Tit, = Ti— (8E);
1 10 0.605 1.815 8.185
2 8.185 0.568 1.704 6.481
3 6.481 0.530 1.590 4.891
4 4.891 0.492 1.476 3415
5 3.415 0457 1373 2.042

Total energy loss is 7.958 MeV. Using (dE /dx);, the energy loss would have
been equal to (.605 MeV/mm X 15mm = 9.075 MeV, which is overestimated
by about 14%.

4.7 STOPPING POWER AND RANGE OF HEAVY IONS
(Z>2,4>4)

4.7.1 Introduction |

The equations presented in Secs. 4.3-4.6 for energy loss and range of charged
particles were derived with the assumption that the charge of the particle does
not change as the particle traverses the medium. This assumption is certainly
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valid for electrons, positrons, protons, and deuterons (Z = 1). It holds well for
alphas too (Z = 2). However, for Z > 2, the charge of the particle cannot be
assumed constant, and for this reason the energy loss and range calculations
require special treatment.

Consider an atom or an ion with speed greater than the orbital velocity of
its own electrons. If this particle enters a certain medium, the atomic electrons
will be quickly removed from the atom or ion, leaving behind a bare nucleus.
The nucleus will keep moving through the medium, continuously losing energy
in collisions with the electrons of the medium.” It is probable that the ion will
capture an electron in one of these collisions. It is also probable that the
electron will be lost in another collision. As the ion slows down and its speed
becomes of the same order of magnitude as the orbital speeds of the atomic
electrons, the probability for electron capture increases, while the probability for
electron loss decreases. When the ion slows down even farther and is slower
than the orbiting electrons, the probability of losing an electron becomes
essentially zero, while the probability of capturing one becomes significant. As
the speed of the ion continues to decrease, a third electron is captured, then a
fourth, and so on. At the end, the ion is slower than the least bound electron. By
that time, it is a neutral atom. What is left of its kinetic energy is exchanged
through nuclear and not electronic collisions. The neutral atom is considered as
stopped when it either combines chemically with one of the atoms of the
material or is in thermal equilibrium with the medium.

4.7.2 The dE / dx Calculation

The qualitative discussion of Sec. 4.7.1 showed how the charge of a heavy ion
changes as the ion slows down in the medium. It is this variation of the charge
that makes the energy loss calculation very difficult. There is no single equation
given dE /dx for all heavy ions and for all stopping materials. Instead, dE /dx is

calculated differently, depending on the speed of the ion relative to the speed of
the orbital electrons.

The stopping power is written, in general, as the sum of two terms:

dE (dE\  (dE 30
(7). (&) -

where (dE /dx), = electronic energy loss

(dE /dx), = nuclear energy loss
An excellent review of the subject is presented by Northcliffe' and Lindhard,
Scharff, and Schiott.'”* The results are usually presented as universal curves in
terms of two dimensionless quantities, the distance s and the energy e, first

fCollisions with nuclei are not important if the particle moves much faster than the atomic
electrons.
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introduced by Lindhard et al.'° and defined as follows:

M M,x
s = dma’N——"_ (4.31)
(M, + M,)
2 M, d (4.32)
¢ o\ ZZ,(M, + M) | mc :

where' a = 0.8853a,(Z%% + Z¥/*)~/?
x = actual distance traveled
ay = h*/me* = Bohr radius = 529 X 10! m
Z,, M, = charge and mass of incident particle
Z,, M, = charge and mass of stopping material
The parameters N, ry, and mc? have been defined in Sec. 4.3.

At high ion velocities, v » vy Z7/3, where v, = e?/# = orbital velocity of
the electron in the hydrogen atom, the nuclear energy loss is negligible. The
particle has an effective charge equal to Z;, and the energy loss is given by an
equation of the form

dE 7?7, | 2mu?
—_— Y ——————— n
dc 04, I

(4.33)

which is similar to Eq. 4.2.

At velocities of the order of v = v,Z?/?, the ion starts picking up electrons
and its charge keeps decreasing. The energy loss through nuclear collisions is
still negligible.

In the velocity region v < v,Z#/?, the electronic energy loss equation takes
the form!°

de
d_p =ke" (4.34)
where
0.0793Z,Z,(A, + A,)"?
e 3/4
(Z373 + 237%)"" 43°AY?

—~ 1/6
§e~Z1/

and n has a value very close to 1.'>'* The constant & depends on Z and A4 only,

not on energy, and its value is less than 1. Some typical values are given in Table
4.2.

Table 4.3 shows the kinetic energy per unit atomic mass, as well as the
kinetic energy, of several ions for v = v, Z?/>.

The electronic stopping power for different ions and stopping materials is
obtained by using the following semiempirical approach.

"The number 0.8853 = (972)'/3 /2773 is called the Thomas-Fermi constant.
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Table 4.2 Values of k Used in Eq. 4.34

Z, A, z, A, k

10 50 13 27 0.085
20 60 79 197 0.022
92 238 79 197 0.162

The ratio of stopping power for two ions having the same velocity and
traveling in the same medium is given by (using Eq. 4.33):

(dE/dx)T1Z1A1 _ le

—_— == 4.35)
(dE/dx)TzzzAz 222 (

The application of Eq. 4.35 to heavy ions should take into account the change of
the charge Z, as the ion slows down. This is accomplished by replacing Z, with
an effective charge,

Zye = 2,

where 7 is a parameter that depends on energy. The second particle in Eq. 4.35
is taken to be the proton (Z, = A, = 1), thus leading to the form'*~'®

(dE/dx)ZlA1T1 _ 772212
(dE/dX)pr 7];

(4.36)
where the effective proton charge 7, is given by Eq. 4.37, reported by Booth &
Grant", and T, is the proton kinetic energy in MeV:

n?2 = [1 — exp (—150T,)] exp (—0.835¢~'**"») 4.37)

Table 4.3 The Kinetic Energy of Heavy Ions for Several
Values of v = v, Z2/?

voz¥/3

(x 10-") g
Ion Z, (m/s) (x 10%) T/A, T (MeV)
C 6 0.72 24 0.27 33
Al 13 1.2 4.04 0.76 20.7
Ni 28 2.0 6.7 2.13 126
Br 35 2.3 7.8 2.87 230
Ag 47 2.8 9.5 4.27 461
I 53 3.1 10.3 5.02 638
Au 79 4.0 134 8.6 1694

U 92 4.5 14.9 10.57 2515




148 MEASUREMENT AND DETECTION OF RADIATION

Equations giving the value of 1 have been reported by many investigators.' !’
The most recent equation reported by Forster et al.'? valid for 8 < Z, < 20 and
for v/vy > 21is

v
n=1-A(Z)exp (—0.879—2{0'65) (4.38)
Dy

with
A(Z)) =1.035 — 0.4exp(—0.16Z,)

The proton stopping power is known.'® Brown!® has developed an equation of
the form

dE )
ln(_d‘x—),, =q +blnTp+C(lnTp) (4.39)

by least squares fitting the data of Northcliffe and Schilling.”® The most recent
data are those of Janni.*

The experimental determination of dE /dx is achieved by passing ions of
known initial energy through a thin layer of a stopping material and measuring
the energy loss. The thickness Ax of the material should be small enough that
dE /dx = AE /Ax. Unfortunately, such a value of Ax is so small, especially for
very heavy ions, that the precision of measuring Ax is questionable and the
uniformity of the layer has an effect on the measurement. Typical experimental
results of stopping power are presented in Fig. 4.12. The data of Fig. 4.12 come
from Ref. 13. The solid line is based on the following empirical equation
proposed by Bridwell and Bucy® and Bridwell and Moak?':

dEMV (kg m?)] 2064.5 [TA,Z, (4.40)
E[ eV/(kgm?®)] = 4, 2 .

where T is the kinetic energy of the ion in MeV.
For a compound or mixture, dE /dx can be obtained by using Eq. 4.12 with
(dE /dx); obtained from Eq. 4.36 or Eq. 4.40.
At velocities v < v,Z}/?, the energy loss through nuclear elastic collisions
becomes important. The so-called nuclear stopping power is given by the follow-
ing approximate expression'’:
de ! In (1.294¢) (4.41)
— = —1In(l. .
dp|, 2e €

While the electronic stopping power (de/d p), continuously decreases as the ion

speed v decreases, the nuclear stopping power increases as v decreases, goes
through a maximum, and then decreases again (Fig. 4.13).
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10°

Energy loss, MeV/kg - m?

102 l 1 1 1 1
20 40 60 80 100 (MeV)

Energy

Figure 4.12 Energy loss of iodine ions in several absorbers (Ref. 13). The curves are based on Eq.
4.40.

4.7.3 Range of Heavy Ions

The range of heavy ions has been measured and calculated for many ions and
for different absorbers. But there is no single equation—either theoretical or
empirical—giving the range in all cases. Heavy ions are hardly deflected along
their path, except very close to the end of their track, where nuclear collisions
become important. Thus the range R, which is defined as the depth of penetra-
tion along the direction of incidence, will be almost equal to the pathlength, the
actual distance traveled by the ion. With this observation in mind, the range is
given by the equation

R= (" 4E (4.42)
B fo (dE /dx), + (dE /dx), '
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06 S
05| //\(de)

Figure 4.13 The electronic and
nuclear energy loss as a func-
tion of the dimensionless en-
ergy o (Ref. 12).

Results of calculations based on Eq. 4.42 are given by many authors. Based on
calculations described in Ref. 12, Siffert and Coche? present universal graphs
for several heavy ions in silicon (Figs. 4.14 and 4.15).

The range of a heavy ion in a compound or mixture is calculated from the
range in pure elements by using the equation®-2*

-1
w;
R(kg/m?) = (Z E) (4.43)
i
where R; = range, in kg/m?, in element i
w; = weight fraction of ith element

4.8 INTERACTIONS OF PHOTONS WITH MATTER

Photons, also called X-rays or y-rays, are electromagnetic radiation. Considered
as particles, they travel with the speed of light ¢ and they have zero rest mass
and charge. The relationship between the energy of a photon, its wavelength A,
and frequency is

C
E=hv=h~ (4.49)

There is no clear distinction between X-rays and y-rays. The term X-rays is
applied generally to photons with £ < 1 MeV. Gammas are the photons with
E > 1 MeV. In what follows, the terms photon, y, and X-ray will be used
interchangeably.

X-rays are generally produced by atomic transitions such as excitation and
ionization. Gamma rays are emitted in nuclear transitions. Photons are also
produced as bremsstrahlung, by accelerating or decelerating charged particles.
X-rays and y-rays emitted by atoms and nuclei are monoenergetic. Bremsstrah-
lung has a continuous energy spectrum.
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Figure 4.15 Universal range-energy plot for € > 1. It allows determination of range in silicon for many heavy ions (Ref. 22).
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There is a long list of possible interactions of photons, but only the three
most important ones will be discussed here: the photoelectric effect, Compton
scattering, and pair production.

4.8.1 The Photoelectric Effect

The photoelectric effect is an interaction between a photon and a bound atomic
electron. As a result of the interaction, the photon disappears and one of the
atomic electrons is ejected as a free electron, called the photoelectron (Fig. 4.16).
The kinetic energy of the electron is

T=E, — B, (4.45)

where E, = energy of the photon
B, = binding energy of the electron
The probability of this interaction occurring is called the photoelectric cross
section or photoelectric coefficient. Its calculation is beyond the scope of this
book, but it is important to discuss the dependence of this coefficient on
parameters such as E , Z, and A. The equation giving the photoelectric
coefficient may be written as
Z"
7 (m™!) = aN (1 - 0(2)] (4.46)

v

where 7 = probability for photoelectric effect to occur per unit distance traveled
by the photon
a = constant, independent of Z and E,
m, n = constants with a value of 3 to 5 (their value depends on E_; see
Evans)
N, Z have been defined in Sec. 4.3.
The second term in brackets indicates correction terms of the first order in Z.
Figure 4.17 shows how the photoelectric coefficient changes as a function of E,
and Z. Fig. 417 and Eq. 4.46 show that the photoelectric effect is more
important for high-Z material, i.e., more probable in lead (Z = 82) than in Al
(Z = 13). It is also more important for E, = 10 keV than E, = 500 keV (for the
same material). Using Eq. 4.46, one can obtain an estimate of the photoelectric
coefficient of one element in terms of that of another. If one takes the ratio of 7
for two elements, the result for photons of the same energy is

n
Py [ Ay Z,
D= —=— 1= 4.47
mm) Tlpl(Az)(Zl) “4n
e oS ——o[ Positive + e-
Photon ion

Figure 4.16 The photoelectric effect.
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where p, and A; are density and atomic weight, respectively, of the two
elements, and 7, and 7, are given in m~'. If 7, and 7, are given in m?/kg, Eq.
4.47 takes the form

Al ZZ !
Ty (mz/kg) = TIA_2(Z) (447(1)

|4.8.2 Compton Scattering or Compton Effectl

The Compton effect is a collision between a photon and a free electron. Of
course, under normal circumstances, all the electrons in a medium are not free
but bound. If the energy of the photon, however, is of the order of keV or more,
while the binding energy of the electron is of the order of eV, the electron may
be considered free.

The photon does not disappear after a Compton scattering. Only its direc-
tion of motion and energy change (Fig. 4.18). The photon energy is reduced by a
certain amount that is given to the electron. Therefore, conservation of energy
gives (assuming the electron is stationary before the collision):

T=E,-E, (4.48)

If Eq. 4.48 is used along with the conservation of momentum equations, the
energy of the scattered photon as a function of the scattering angle 8 can be
calculated. The result is (see Evans)

E by (4.49)
¥ 1+ - cos §)E,/mc? ’

Using Eqs. 4.48 and 4.49, one obtains the kinetic energy of the electron:
(1 — cos 8)E, /mc? E
1+ —cos)E,/mc?

(4.50)

A matter of great importance for radiation measurement is the maximum
and minimum energy of the photon and the electron after the collision. The
minimum energy of the scattered photon is obtained when 6 = =. This, of
course, corresponds to the maximum energy of the electron. From Eq. 4.49,

E £y 4.51)
LAL N [T 2E7/mc2 )

Figure 4.17 Dependence of the
| photoelectric cross section on (a)

£y z photon energy and (b) atomic
(a) b) number of the material.
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e,T «—— freed electron

Photon
+e” —» ———-

i

Y, Ey <—— scattered photon

Figure 4.18 The Compton effect.

and
2E /mc?

T =—— 4.52
maxo 1+ 2an/mc2 Y ¢ )

The maximum energy of the scattered photon is obtained for # = 0, which
essentially means that the collision did not take place. From Eqgs. 4.49 and 4.50,

E/ =E

y', max v

Tmin =0

The conclusion to be drawn from Eq. 4.51 is that the minimum energy of the
scattered photon is greater than zero. Therefore, in Compton scattering, it is
impossible for all the energy of the incident photon to be given to the electron. The
energy given to the electron will be dissipated in the material within a distance
equal to the range of the electron. The scattered photon may escape.

Example 4.15 A 3-MeV photon interacts by Compton scattering. (a) What is
the energy of the photon and the electron if the scattering angle of the photon is
90°? (b) What if the angle of scattering is 180°?

Answer (a) Using Eq. 4.49,
3
E., =
Y 14+(1-0)3/0511
T =3 —0.437 = 2.563 MeV
(b) Using Eq. 4.51,

= 0.437 MeV

3
E, min = 3 1 (72 /0 <141
v 1+ (2)3/0511

T =3 — 0.235 = 2.765 MeV

= 0.235 MeV

Example 4.16 What is the minimum energy of the y-ray after Compton
scattering if the original photon energy is 0.511 MeV, 5 MeV, 10 MeV, or 100
MeV?
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Answer The results are shown in the table below (Eq. 4.51 has been used).

E, (Ey)min T
0.511 0.170 0.341
5 0.243 4.757
10 025 9.75
100 0.25 99.75

The probability that Compton scattering will occur is called the Compton
coefficient or the Compton cross section. It is a complicated function of the
photon energy, but it may be written in the form

o(m™") = NZf(E,) (4.53)

where ¢ = probability for Compton interaction to occur per unit distance
f(E,) = a function of E,
If one writes the atom density N explicitly, Eq. 4.53 takes the form

NA NA A NA
o~ p;Zf(E‘y) ~ p(j) Ef(Ey) ~ pr(Ey) (4.54)

In deriving Eq. 4.54, use has been made of the fact that for most materials,
except hydrogen, 4 = 2Z to A = 2.6Z. According to Eq. 4.54, the probability
for Compton scattering to occur is almost independent of the atomic number of
the material. Figure 4.19 shows how o changes as a function of E, and Z. If the
Compton cross section is known for one element, it can be calculated for any

other by using Eq. 4.53 (for photons of the same energy):

Sy g P2 A) [ 22
o,(m )—a'l(pl)(Az)(Zl) (4.55)

where o, and o, are given in m~'. If o, and o, are given in m*/kg, Eq. 4.55
takes the form

A4,\(Z
o,(m?/kg) = ol(;é) (7?) (4.55a)
—

Figure 4.19 Dependence of the
Compton cross section on (a)

Ey Z  photon energy and (b) atomic
(a) (b) number of the material.
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|4.8.3 Pair Production|

Pair production is an interaction between a photon and a nucleus. As a result of
the interaction, the photon disappears and an electron-positron pair appears
(Fig. 4.20). Although the nucleus does not undergo any change as a result of this
interaction, its presence is necessary for pair production to occur. A y-ray will
not disappear in empty space by producing an electron-positron pair.

Conservation of energy gives the following equation for the kinetic energy
of the electron and the positron:

T,+ T,.= E, — (mc?)e- —(mc*)e = E, — 1.022MeV  (4.56)

The available kinetic energy is equal to the energy of the photon minus 1.022
MeV, which is necessary for the production of the two rest masses. Electron and
positron share, for all practical purposes, the available kinetic energy, i.e.,

T,-=T,.= 3(E, — 1.022 MeV) 4.57)

e

Pair production eliminates the original photon, but two photons are created
when the positron annihilates (see Sec. 3.7.4). These annihilation gammas are
important in constructing a shield for a positron source as well as for the
detection of gammas (see Chap. 12).

The probability for pair production to occur, called the pair production
coefficient or cross section is a complicated function of E, and Z (see Evans and
Roy & Reed). It may be written in the form

k (m™') = NZ2f(E,, Z) (4.58)

where « is the probability for pair production to occur per unit distance traveled
and f(E, Z) is a function that changes slightly with Z and increases with E,.

Figure 4.21 shows how « changes with E, and Z. It is important to note
that « has a threshold at 1.022 MeV and increases with E, and Z. Of the three
coefficients (7 and o being the other two), « is the only one increasing with the
energy of the photon.

¥ Pair production may take place in the field of an electron. The probability for that to happen
is much smaller and the threshold for the gamma energy is 4mc? = 2.04 MeV.

0.511 MeV
Y e-
AARRART- | ‘-—»‘ + v

£, =0.511 MeV

Figure 4.20 Pair production. The gamma disappears and a positron-electron pair is created. Two
0.511-MeV photons are produced when the positron annihilates.
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If the pair production cross section is known for one element, an estimate of
its value can be obtained for any other element by using Eq. 4.58 (for photons of

the same energy).
2
p2\[ AL\ Z2
K (m'1)=K(—)(—)(—) (4.59)
2 ! p1/\A42 ]\ Z,

where k, and k, are given in m~'. If x, and «, are given in m*/kg, Eq. 4.59
takes the form

2 Al ZZ 2
Kk, (m*/kg) = Kl(z) (Z_1) (4.59a)

4.8.4 Total Photon Attenuation Coefficient |

When a photon travels through matter, it may interact through any of the three
major ways discussed earlier. (For pair production, E, > 1.022 MeV.) There are
other interactions, but they are not mentioned here because they are not
important in the detection of gammas.

Figure 4.22 shows the relative importance of the three interactions as E,
and Z change. Consider a photon with £ = 0.1 MeV. If this particle travels in
carbon (Z = 6), the Compton effect is the predominant mechanism by which
this photon interacts. If the same photon travels in iodine (Z = 53), the
photoelectric interaction prevails. For a y of 1 MeV, the Compton effect
predominates regardless of Z. If a photon of 10 MeV travels in carbon, it will
interact mostly through Compton scattering. The same photon moving in iodine
will interact mainly through pair production.

The total probability for interaction wu, called the total linear attenuation
coefficient, is equal to the sum of the three probabilities:

pmY=7+0+« (4.60)

Physically, u is the probability of interaction per unit distance.
There are tables that give u for all the elements, for many photon energies.’

TTables of mass attenuation coefficients are given in App. D.

K K
Figure 4.21 Dependence of the
0 } E

) Z  Dpair production cross section on
1.022Mev | (a) photon energy and (b) atomic
(a) b) number of the material.
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-
80 Pair production
- is predominant
60 Photoelectric
§ effect is
z = predominant
40— Compton effect
- is predominant
20 |-
1 1 L
.01 0.1 1 10 100
E,y, MeV

Figure 4.22 The relative importance of the three major gamma interactions (from The Atomic
Nucleus by R. D. Evans. Copyright©1972 by McGraw-Hill. Used with the permission of McGraw-Hill
Book Company).

Most of the tables provide u in units of m?/kg (or cm?/g), because in these
units the density of the material does not have to be specified. If u is given in
m?/kg (or cm?/g), it is called the total mass attenuation coefficient. The relation-
ship between linear and mass coefficients is

p(m™1)

> (ke/m) (4.61)

p (m?/kg) =

Figure 4.23 shows the individual coefficients as well as the total mass
attenuation coefficient for lead, as a function of photon energy. The total mass
attenuation coefficient shows a minimum because as E increases, 7 decreases, k
increases, and o does not change appreciably. However, the minimum of u
does not fall at the same energy for all elements. For lead, . shows a minimum
at E, ~ 3.5 MeV; for aluminum, the minimum is at 20 MeV; and for Nal, the
minimum is at 5 MeV.

If a parallel beam of monoenergetic photons with intensity /(0) strikes a
target of thickness ¢ (Fig. 4.24), the number of photons, 1(¢), emerging without
having interacted in the target is given by

I(¢) = I(0)e (4.62)
The probability that a photon will traverse thickness ¢ without an interaction is

number transmitted ~ 7(0)e ™ ** o
- —e

number incident  I(0)
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10 T T
Photoelectric (7}
1.0 _
107 | .
o
=
€ Total mass attenuation
"~ coefficient
102 | .\.\_\' N /==
Compton (o) N
N\ . 0."' \ Pair
Y. . production
10° v () -
N '~
\ °~
SN N,
& M Photo N
: \( N
. AN 9
10+ 1 1s N
0.01 0.1 1 10 100

Ey, MeV

Figure 4.23 Mass attenuation coefficients for lead (Z = 82, p = 11.35 X 10® kg/m?).

Based on this probability, the average distance between two successive
interactions, called the mean free path (mfp) (A), is given by

wxe"“‘dx
A(m) = o0

o

1
— (4.63)
f e " dx K
0

Thus, the mean free path is simply the inverse of the total linear attenuation
coefficient. If x = 10 m~! for a certain y-ray traveling in a certain medium,
then the distance between two successive interactions of this gamma in that
mediumis A=1/u=1/10m = 0.10 m.

The total mass attenuation coefficient for a compound or a mixture is
calculated by the same method used for (dE /dx), in Sec. 4.5. It is easy to show
(see Prob. 4.15) that

pe (m’/kg) = Yow, p; (m’/kg) (4.64)
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where u, = total mass attenuation coefficient for a compound or a mixture
w; = weight fraction of ith element in the compound
u; = total mass attenuation coefficient of ith element

Example 4.17 What is the total mass attenuation coefficient for 1.25-MeV
gammas in Nal?

Answer For this compound, the following data apply:

Na: = 000546 m*/kg w=5=0.153
L p—000502m?/kg w=1Z=0847

Using Eq. 4.64,
w (Nal) = 0.00546(0.153) + 0.00502(0.847) = 0.00509 m?/kg = 0.0509 cm?/g
The density of Nal is 3.67 X 10* kg/m>; hence,

 (m~1) = 0.00509 m* /kg(3.67 X 10° kg /m®) = 18.567m™' = 0.187 cm™"

|4.8.5 Photon Energy Absorption Coefficient |

When a photon has an interaction, only part of its energy is absorbed by the
medium at the point where the interaction took place. Energy given by the
photon to electrons and positrons is considered absorbed at the point of
interaction because the range of these charged particles is short. However,
X-rays, Compton-scattered photons, or annihilation gammas may escape. The
fraction of photon energy that escapes is important when one wants to calculate
heat generated due to gamma absorption in shielding materials or gamma
radiation dose to humans (see Chap. 16). The gamma energy deposited in any
material is calculated with the help of an energy absorption coefficient defined
in the following way.

The gamma energy absorption coefficient is, in general, that part of the total
attenuation coefficient that, when multiplied by the gamma energy, will give the
energy deposited at the point of interaction. Equation 4.60 gives the total
attenuation coefficient. The energy absorption coefficient u, is'

T,
R, =T+ —0+ K (4.65)
E,

A more detailed definition of the energy absorption coefficient is given by Chilton et al.

———t]
Incident ——=
g::r:‘on J—t t 1e) =1, e ¥t Figure 4.24 The intensity of the
1 _ . transmitted beam (only particles that
— did not interact) decreases exponen-
tially with material thickness.
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where T,, is the average energy of the Compton electron and u, may be a
linear or mass energy absorption coefficient, depending on the units (see Sec.
4.8.4).

In writing Eq. 4.65, it is assumed that

1. If photoelectric effect or pair production takes place, all the energy of the
gamma is deposited there.

2. If Compton scattering occurs, only the energy of the electron is absorbed.
The Compton-scattered gamma escapes.

In the case of photoelectric effect, assumption (1) is valid. For pair produc-
tion, however, it is questionable because only the energy E, — 1.022 MeV is
given to the electron-positron pair. The rest of the energy, equal to 1.022 MeV,
is taken by the two annihilation gammas, and it may not be deposited in the
medium. There are cases when Eq. 4.65 is modified to account for this effect.”
Gamma absorption coefficients, as defined by Eq. 4.65, are given in App. D.

Example 4.18 A 1Ci ’Cs source is kept in a large water vessel. What is the
energy deposited by the gammas in H,O at a distance 0.05 m from the source?

Answer “Cs emits a 0.662-MeV gamma. The mass absorption coefficient
for this photon in water is (App. D) 0.00327 m?/kg. The total mass attenuation
coefficient is 0.00862 m?/kg. The energy deposited at a distance of 0.05 m from
the source is (E; = ¢u,E,)

MeV 3 S o y ,
E”( (kg s)) = w2t ((mz S)) [ k.(m?/kg)] [E(MeV /y)]

37x10° s
= W(e— 008620107005y 00327(0.662)
aa .

1.66 X 10° MeV/(kgs) = 2.65 X 107 J /(kg s)

4.8.6 Buildup Factors|

Consider a point isotropic monoenergetic gamma source at a distance r from a
detector, as shown in Fig. 4.25, with a shield of thickness ¢ between source and
detector. The total gamma beam hitting the detector consists of two compo-
nents.

1. The unscattered beam (¢,) consists of those photons that go through the
shield without any interaction. If the source strength is S(y/s), the intensity
of the unscattered beam or the unscattered photon flux is given by the simple
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Compton-scattered
photon

}\;

Source Detector

Unscattered photon

Pair production

Annihilation photon

/ t—
Figure 4.25 If a point isotropic source is placed behind a shield of thickness ¢, both scattered and
unscattered photons will hit the detector.

and exact expression

¢ (y/m?s) = e (4.66)

4qrr?

2. The scattered beam (¢,) consists of scattered incident photons and others
generated through interactions in the shield (e.g., X-rays and annihilation
gammas). The calculation of the scattered beam is not trivial, and there is no
simple expression like Eq. 4.62 representing it.

The total flux hitting the detector is
¢t0t = ¢u + d)s (4-67)

Obviously, for the calculation of the correct energy deposition by gammas,
either for the determination of heating rate in a certain material or the dose
rate to individuals, the total flux should be used. Experience has shown that
rather than calculating the total flux using Eq. 4.67, there are advantages to
writing the total flux in the form

¢ = Bo, (4.68)

where B is a buildup factor, defined and computed in such a way that Eq. 4.68
gives the correct total flux. Combining Egs. 4.67 and 4.68, one obtains

¢t0t d)s

B = =14+—-—2>1 (4.69)

¢u ¢u
How will B be determined? Equation 4.69 will be used, of course, but that
means one has to determine the scattered flux. Then where is the advantage of
using B? The advantage comes from the fact that B values for a relatively small
number of cases can be computed and tabulated and then, by interpolation, one
can obtain the total flux using Eq. 4.68 for several other problems. In other
words, the use of the buildup factor proceeds in two steps.
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1. Buildup factor values are tabulated for many cases.
2. The appropriate value of B that applies to a case under study is chosen and
used in Eq. 4.68 to obtain the total flux.

In general, the buildup factor depends on the energy of the photon, on the mean
free paths traveled by the photon in the shield, on the geometry of the source
(parallel beam or point isotropic), and on the geometry of the attenuating
medium (finite, infinite, slab, etc.).

The formal definition of B upon which its calculation is based is

quantity of interest due to total flux
B(E, ur) =

quantity of interest due to unscattered flux

Quantities of interest and corresponding buildup factors are shown in Table 4.4
The mathematical formulas for the buildup factors are (assuming a monoen-

ergetic, E,, point isotropic source) as follows:

Number buildup factor:

Fog (r,E)dE

By (E,, = 4.70
v (Eq, ur) S /Amre P (4.70)
Energy deposition buildup factor:
*$uoelr, EVEUZ(E) dE
B, (E =2 4.71
E( 07,-1"‘) (S/477-r2)e ur med(EO)EO ( )

Dose buildup factor:

Bog (r, EYEuS*(E) dE

By(E,, pr) = =2 4.72

D( 0 Mr) (S/47rr2)e wr, ns(EO)EO ( )

In Egs. 4.70-4.72, the photon flux ¢(r, E) is a function of space r and

energy E, even though all photons start from the same point with the same

energy E,. Since B(E, ur) expresses the effect of scattering as the photons

travel the distance r, it should not be surprising to expect B(E, ur) — 1 as
pur — 0.

Table 4.4 Types of Buildup Factors

Quantity of interest Corresponding buildup factor
Flux ¢ Number buildup factor
Energy deposited in medium Energy deposition buildup factor

Dose (absorbed) Dose buildup factor
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Note that the only difference between energy and dose buildup factors is
the type of gamma absorption coefficient used. For energy deposition, one uses
the absorption coefficient for the medium in which energy deposition is calcu-
lated; for dose calculations, one uses the absorption coefficient in tissue.

Extensive calculations of buildup factors have been performed,? 3! and the
results have been tabulated for several gamma energies, media, and distances.
In addition, attempts have been made to derive empirical analytic equations.
Two of the most useful formulas are as follows:

Berger formula:
B(E, ur) =1 + a(E) pure®®wr (4.73)
Taylor formula:

B(E, ur) = A(E)e B 1 [1 — A(E)]e AEwr (4.74)

The constants a(E), b(E), A(E), a,(E), a,(E) have been determined by fitting
the results of calculations to these analytic expressions. Appendix E provides
some values for the Berger formula constants. The best equations for the
gamma buildup factor representation are based on the so-called “geometric
progression” (G-P)*? form. The G-P function has the form

B(E,x)=1+B-1(K*-1)/(K-1) K=#1

=14+(Mh-Dx K=1 (4.75)
tanh[(x/X,) — 2] — tanh(-2)
= oy 4.76
K(x)=cx"+d T @ah(—2) (4.76)
where x = pr = distance traveled in mean free paths

b =value of B for x =1

K = multiplication factor per mean free paths
a,b,c,d, X, = parameters that depend on E
Extensive tables of these constants are given in Ref. 31. The use of the buildup
factor is shown in Ex. 4.19. More examples are provided in Chap. 16 in
connection with dose-rate calculations.

Example 4.19 A 1-Ci P’Cs source is kept in a large water tank. What is the
energy deposition by the Cs gammas at a distance of 0.5 m from the source?

Answer Using the data of Ex. 4.18, the distance traveled by the 0.662-MeV
photons in water is ur = (0.00862 m? /kg)X0.5 m)10°® kg/m*) = 4.31 mean free
path. From Ref. 32, the energy deposition buildup factor is B(0.662,4.31) = 13.5.
The energy deposition is

MeV 3.7 X 101°
’ - —e+31(0.00327)(0.662)13.5 = 4.62 X 10° MeV /(kg s)
47(0.5)

=74%10771/(kgs)

kgs
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4.9 INTERACTIONS OF NEUTRONS WITH MATTER |

Neutrons, with protons, are the constituents of nuclei (see Sec. 3.4). Since a
neutron has no charge, it interacts with nuclei only through nuclear forces.
When it approaches a nucleus, it does not have to go through a Coulomb
barrier, as a charged particle does. As a result, the probability (cross section) for
nuclear interactions is higher for neutrons than for charged particles. This
section discusses the important characteristics of neutron interactions, with
emphasis given to neutron cross sections and calculation of interaction rates.

4.9.1 Types of Neutron Interactions

The interactions of neutrons with nuclei are divided into two categories:
scattering and absorption.

Scattering. In this type of interaction, the neutron interacts with a nucleus, but
both particles reappear after the reaction. A scattering collision is indicated as
an (n, n) reaction or as

n+iX->4X+n

Scattering may be elastic or inelastic. In elastic scattering, the total kinetic
energy of the two colliding particles is conserved. The kinetic energy is simply
redistributed between the two particles. In inelastic scattering, part of the
kinetic energy is given to the nucleus as an excitation energy. After the collision,
the excited nucleus will return to the ground state by emitting one or more
y-rays.

Scattering reactions are responsible for neutron’s slowing down in reactors.
Neutrons emitted in fission have an average energy of about 2 MeV. The
probability that neutrons will induce fission is much higher if the neutrons are
very slow—*“thermal”’—with kinetic energies of the order of eV. The fast
neutrons lose their kinetic energy as a result of scattering collisions with nuclei
of a “moderating” material, which is usually water or graphite.

Absorption. If the interaction is an absorption, the neutron disappears, but one
or more other particles appear after the reaction takes place. Table 4.5 illus-
trates some examples of absorptive reactions.

4.9.2 Neutron Reaction Cross Sections

Consider a monoenergetic parallel beam of neutrons hitting a thin target’ of
thickness ¢ (Fig. 4.26). The number of reactions per second, R, taking place in

YA thin target is one that does not appreciably attenuate the neutron beam (see Eq. 4.80).
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Table 4.5 Absorptive Reactions

Reaction Name

h+ éx - z-—AlY +p (n, p) reaction

n+ ‘}X "‘.%::Y + 3He (n, a) reaction

n+ ‘%X - A“}x +2n (n, 2n) reaction

ngX—=AT X 4y (n, ) reaction
A A A .

n+zx—>Z:Y,+Z:Y,+n+n+--- fission

this target may be written as

2
R (reactions/s) = ( neutrons per m- s ) ( targets exposed)

hitting the target to the beam

v probability of interaction
per n/m? per nucleus

or
R =1 [n/(m? s)][N (nuclei/m*)][a (m®)][t (m)][o (m*)] (4.77)

where I, a, and t are shown in Fig. 4.26. The parameter o, called the cross
section, has the following physical meaning:

o (m?) = probability that an interaction will occur per target nucleus

per neutron per m* hitting the target
The unit of o is the barn (b).
1b=10"%cm? = 107%% m?

Since the nuclear radius is approximately 107! to 10~'* m, 1 b is approximately
equal to the cross-sectional area of a nucleus.

Target (4, 2)
-
%
a

—=r=""T71"7 -
B |
——ly
—
s .11
1, n/(m%s) LL,-/ Figure 4.26 A parallel neutron beam
hitting a thin target: @ = area of target
—y | r-——

struck by the beam.
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Neutron cross sections are defined separately for each type of reaction and
isotope. For the reactions discussed in Sec. 4.9.1, one defines, for example,

g5

elastic scattering cross section

o, = inelastic scattering cross section

g, = absorption cross section

Il

o, = capture cross section

.,
fission cross section

i

The total cross section—i.e., the total probability that a reaction of any type will
take place—is equal to the sum of all the o’s:

O =0, + 0, + 0, + 05 + - (4.78)

In the notation used here, g, = o, + o;.

Neutron cross sections depend strongly on the energy of the neutron as well
as on the atomic weight and atomic number of the target nucleus.

Figures 4.27 and 4.28 show the total cross section for two isotopes over the
same neutron energy range. Notice the vast difference between the two o’s,
both in terms of their variation with energy and their value in barns. [All
available information about cross sections as a function of energy for all
isotopes is contained in the Evaluated Nuclear Data Files (known as ENDF)
stored at the Brookhaven National Laboratory, Upton, NY.]

3[11[] 1 1 lITllll 1 1 LOIL

2 -
LA, AL & o a - - -
°v'°°° ©00Q, o 0 % o Y 70 8 U'ovoooooo"cnro ° ]
10— —
9k -
8 —
¢ 7b .
E 6 —
~ 65 -
o
4 —
3F -
2- —
0.1 Lllll 1 1 L.l Illll 1 | L1
56 78910 2 3 4 506 789100 2 3 4 5 6
E,ev

Figure 4.27 The total neutron cross section of *’Al from 5 eV to 600 eV (from BNL-325).
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Figure 4.28 The total cross section of 28U from 5 eV to 600 eV (from BNL-325).

The cross section o (b) is called the microscopic cross section. Another
form of the cross section, also frequently used, is the macroscopic cross section

3 (m™"), defined by the equation
3, (m™") = N (nuclei/m*)[ g; (m?)] 4.79)
and having the following physical meaning;

2, =probability that an interaction of type i will take place per unit
distance of travel of a neutron moving in a medium that has N nuclei/m?
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The macroscopic cross section is analogous to the linear attenuation coeffi-
cient of y-rays (Sec. 4.8.4). If a parallel beam of monoenergetic neutrons with
intensity I(0) impinges upon a material of thickness ¢, the number of neutrons
that emerges without having interacted in the material is (see Fig. 4.24)

I(¢) = I(0)e ™ (4.80)
where 3, =3+ 3, + 3, + --- = total macroscopic neutron cross section.
As with y-rays,
e~ = probability that the neutron will travel distance ¢ without an interaction
The average distance between two successive interactions, the mean free path A,
is
f xe 3 dx
A=-0  _

pe (4.81)
f e dx
0

M| =

Example 4.20 What are the macroscopic cross sections 2, %,, and 3, for
thermal neutrons in graphite? The scattering cross section is o, = 4.8 b and the
absorption cross section is o, = 0.0034 b. What is the mean free path?

Answer For graphite, p = 1.6 X 10° kg/m> and A = 12. Therefore,

0.6023 x 10*

X100 0.0803 x 10%* atoms/m’

N
N = pf = (1.6 X 10%)

Using Eq. 4.79,
3, = (0.0803 x 10%*)(4.8 X 1072%) =38.5m™! = 0.385cm™*
3, = (0.0803 x 10%)(0.0034 X 10~2%) = 0.027 m~! = 0.00027 cm ™"
3, =3,+3%,=3853m! =0.3853cm™!

The mean free path is

1
A=—=—=0.0259m=259cm
2,
For a mixture of several isotopes, the macroscopic cross section 2, is
calculated by

3, = Y Noy; (4.82)
j

where o;; = microscopic cross section of isotope j for reaction type i
N; =w;pN, /4,
w; = weight fraction of jth isotope in the mixture
p = density of mixture
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Equation 4.82 assumes that all the isotopes act independently, i.e., that the

chemical-crystal binding forces are negligible. In certain cases, especially for
thermal neutrons, these binding forces play an important role and cannot be
neglected. In those cases, Eq. 4.82 does not apply.

Example 4.21 What is the total macroscopic absorption cross section of
natural uranium? Natural uranium consists of 0.711 percent 2°U, and the rest
is, essentially, 2**U. For thermal neutrons, the absorption cross sections are o,
(®5U) = 678 b and g, (P¥U) = 2.73 b.

Answer The density of uranium is 19.1 X 10* kg/m?’. Therefore, using Eq.
4.82,
0.6023 x 10%
235X 1073
+ 0.99289(19.1 X 103)M(2 73 X 1072)
’ ’ 238 x 1073 ’

=(236+13.D)m ' =367m ' =0.367cm™!

3, (U) = 0.00711(19.1 x 10%) (678 x 10~ 28)

4.9.3 The Neutron Flux

The neutron flux is a scalar quantity that is used for the calculation of neutron
reaction rates. In most practical cases, the neutron source does not consist of a
parallel beam of neutrons hitting a target. Instead, neutrons travel in all
directions and have an energy (or speed) distribution. A case in point is the
neutron environment inside the core of a nuclear reactor. Neutron reaction
rates are calculated as follows in such cases.

Consider a medium that contains neutrons of the same speed v, but moving
in all directions. Assume that at some point in space the neutron density is n
(neutrons/m?). If a target is placed at that point, the interaction rate R
[reactions /(m? s)] will be equal to

distance traveled by all | { probability of interaction per unit
neutrons in 1 m> distance traveled by one neutron

or

R = [n (neutrons/m*)v (m/s)][S (m~1)] = nv3 [reaction/(m? s)]

The product nv, which has the units of neutrons/(m? s) and represents the
total pathlength traveled per second by all the neutrons in 1 m?, is called the
neutron flux ¢:

¢ = nv[n/(m? s)] (4.83)

Although the units of neutron flux are n/(m? s), the value of the flux ¢(r)
at a particular point r does not represent the number of neutrons that would



172 MEASUREMENT AND DETECTION OF RADIATION

cross 1 m? placed at point r. The neutron flux is equal to the number of
neutrons crossing 1 m? in 1 s, only in the case of a parallel beam of neutrons.
Using Eq. 4.83, the expression for the reaction rate becomes

R, = ¢3 [(reactions of type i) /(m? s)] (4.84)

Example 4.22 What is the fission rate at a certain point inside a nuclear
reactor where the neutron flux is known to be ¢ = 2.5 X 10 neutrons/(m? s),
if a thin foil of Z°U is placed there? The fission cross section for 2°U is
oy = 577 b.

Answer The macroscopic fission cross section is
0.6023 x 10%

235 x 1073
=2824m ' =2824cm™!

3, = Noy = (19.1 X 10%) (577 X 10-2)

and
R;= ¢3,=(2.5X 10')2824 = 7.06 x 10" fissions/(m> s)

= 7.06 X 10" fissions/(cm® s)

Another quantity related to the flux and used in radiation exposure calcula-
tions is the neutron fluence F, defined by

F(n/m?) = f (1) dt (4.85)

with the limits of integration taken over the time of exposure to the flux ¢(¢).

4.9.4 Interaction Rates of Polyenergetic Neutronsl

Equation 4.84 gives the reaction rate for the case of monoenergetic neutrons. In
practice, and especially for neutrons produced in a reactor, the flux consists of
neutrons that have an energy spectrum extending from E = 0 up to some
maximum energy E ... In such a case, the reaction rate is written in terms of an
average cross section. Let

¢(E) dE = neutron flux consisting of neutrons with kinetic energy between
E and E + dE
o;(E) = cross section for reaction type i for neutrons with kinetic energy E

N = number of targets per m® (stationary targets)

The reaction rate is
R [(reactions/(m? s)] = j dE ¢(EYNo(E) (4.86)

where the integration extends over the neutron energies of interest. The total
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flux is
¢ = [$(E)dE (4.87)

In practice, an average cross section is defined in such a way that, when is
multiplied by the total flux, it gives the reaction rate of Eq. 4.86, i.c.,

R = f dE $(E)No,(E) = ¢3, = $NT, (4.88)
E
from which the definition of the average cross section is
J dE $(E)o(E)
5, = (4.89)
f ¢(E) dE

The calculation of average cross sections is beyond the scope of this text. The
reader should consult the proper books on reactor physics. The main purpose of
this short discussion is to alert the reader to the fact that when polyenergetic
neutrons are involved, an appropriate average cross section should be used for
the calculation of reaction rates.

PROBLEMS

4.1 Calculate the stopping power due to ionization and excitation of a 2-MeV electron moving in
water. What is the radiation energy loss rate of this particle? What is the total energy radiated?
4.2 Calculate the stopping power in aluminum for a 6-MeV alpha particle.

4.3 The window of a Geiger-Muller counter is made of mica and has a thickness of 0.02 kg/m?
(p = 2.6 X 10° kg/m>). For mica composition, use NaAl,Si,O,,(OH),.

(a) What is the minimum electron energy that will just penetrate this window?

(b) What is the energy loss, in MeV /mm, of an electron with the kinetic energy determined in
(a) moving in mica?

(c) What is the energy loss, in MeV /mm, of a 6-MeV alpha particle moving in mica?

(d) Will a 6-MeV alpha particle penetrate this mica window?
4.4 Beta particles emitted by *2P(E,,, = 1.7 MeV) are counted by a gas counter. Assuming that the
window of the counter causes negligible energy loss, what gas pressure is necessary to stop all the
betas inside the counter if the length of the detector is 100 mm? Assume that the gas is argon.
4.5 What is the kinetic energy of an alpha particle that will just penetrate the human skin? For the
skin, assume ¢ = 1 mm; p = 10° kg/m?; 65 percent O, 18 percent C, 10 percent H, 7 percent N.
4.6 Repeat Prob. 4.5 with an electron.

4.7 Assuming that a charged particle loses energy linearly with distance, derive the function
T = T(x), where T(x) = kinetic energy of the particle after going through thickness x. The initial
kinetic energy is 7, and the range is R.

4.8 A beam of 6-MeV alpha particles strikes a gold foil with thickness equal to one-third of the
alpha range. What is the total energy loss of the alpha as it goes through this foil?

4.9 What is the energy deposited in a piece of paper by a beam of 1.5-MeV electrons? Assume that
the paper has the composition CH,, thickness 0.1 mm, and density 800 kg,/m>. The incident parallel
electron beam consists of 10% electrons /(m? s). Give your result in MeV /(cm? s) and J /(m? s).

4.10 What is the range of 10-MeV proton in air at 1 atm? What is the range at 10 atm?



174 MEASUREMENT AND DETECTION OF RADIATION

4.11 What is the range of a 4-MeV deuteron in gold?

4.12 A 1.5-MeV gamma undergoes Compton scattering. What is the maximum energy the Compton
electron can have? What is the minimum energy of the scattered photon?

4.13 The energy of a Compton photon scattered to an angle of 180° is 0.8 MeV. What is the energy
of the incident photon?

4.14 Prove that a gamma scattered by 180°, as a result of a Compton collision, cannot have energy
greater than mc?/2, where mc? = 0.511 MeV is the rest mass energy of the electron.

4.15 Prove that the attenuation coefficient of gammas for a compound or a mixture can be writ-
ten as

H
w(m?/kg) = ‘§1 w; u;(m?/kg)

where w; = weight fraction of ith element
p; = total mass attenuation coefficient of ith element

4.16 A 1.75-MeV vy-ray hits a 25-mm-thick Nal crystal. What fraction of the interactions of this
photon will be photoelectric? What is the average distance traveled before the first interaction
occurs? (r = 1.34 X 10~ 3cm?/g.)
4.17 A parallel beam of gammas impinges upon a multiple shield consisting of successive layers of
concrete, Fe, and Pb, each layer having thickness 100 mm. Calculate the fraction of gammas
traversing this shield. The total attenuation coefficients are u(concrete) = 0.002 m?/kg, u(Fe) =
0.004 m? /kg, and p(Pb) = 0.006 m? /Kg; Peoncrere = 2.3 X 10° kg,/m’.
4.18 Assume that a parallel beam of 3-MeV gammas and a parallel beam of 2-MeV neutrons
impinge upon a piece of lead 50 mm thick. What fraction of y’s and what fraction of neutrons will
emerge on the other side of this shield without any interaction? Based on your result, what can you
say about the effectiveness of lead as a shield for y’s or neutrons? [o(2 MeV) = 3.5 b.]
4,19 What are the capture, fission, and total macroscopic cross section of uranium enriched to 90
percent in 2°U for thermal neutrons? (p = 19.1 X 10° kg/m>)

®y: a,=101b  o;=577b o, =83b

U e,=27b o=0 o =8b
4.20 What is the average distance a thermal neutron will travel in 90 percent enriched uranium (see
Prob. 4.19) before it has an interaction?

4.21 The water in a pressurized-water reactor contains dissolved boron. If the boron concentration
is 800 parts per million, what is the mean free path of thermal neutrons? The microscopic cross
sections are

H,0: o, =103b g, =065b

Boron: o, =4b o,=759b
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CHAPTER

FIVE

GAS-FILLED DETECTORS

5.1 INTRODUCTION

Gas-filled detectors operate by utilizing the ionization produced by radiation as
it passes through a gas. Typically, such a counter consists of two electrodes to
which a certain electrical potential is applied. The space between the electrodes
is filled with a gas (Fig. 5.1). Ionizing radiation, passing through the space
between the electrodes, dissipates part or all of its energy by generating
electron-ion pairs. Both electrons and ions are charge carriers that move under
the influence of the electrical field. Their motion induces a current on the
electrodes, which may be measured (Fig. 5.1a4). Or, through appropriate elec-
tronics, the charge produced by the radiation may be transformed into a pulse,
in which case particles are counted individually (Fig. 5.1b). The first type of
counter (Fig. 5.1a) is called current or integrating chamber; the second type (Fig.
5.1b) is called pulse chamber. To get an idea of what charges and currents one
might expect to measure, consider this representative example.

For most gases, the average energy required to produce an electron-ion pair
is about 30 eV. This number takes into account all collisions, including those
that lead to excitation. If a 3-MeV alpha and beta particle deposits all its energy
in the counter, it will produce, on the average,

3 x 10°
30

= 10° electron-ion pairs

177
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Figure 5.1 A typical gas-filled detector: (a) the direct current produced in the circuit is measured;
(b) individual pulses are detected.

A typical gas counter’ has a capacitance of about 50 pF, and the charge will be
collected in a time of the order of 1 us. If all the charge created by the 3-MeV
particle is collected, the voltage and current expected are of the order of

10° X 1.6 X 107! C/el
Q / = 05X 1073V = 05mV

I
U

C 50 X 10712 F
Q0 10°x16x1071
i=—= s A~16x%10"%4

In an ionized gas without an electric field, electrons and positive ions will
move at random with an average kinetic energy equal to kT, where k =
Boltzmann’s constant and T = temperature of the gas (Kelvin). When an
electric field is present, both electrons and positive ions acquire a net velocity
component along the lines of the electric field. Electrons move toward the
positive electrode, positive ions toward the negative one. The force on either
charge carrier is the same and equal to F = Ee, where E = electric field
intensity, but the acceleration is quite different. The acceleration a is equal to
F/M, where M is the mass of the ion or electron. Therefore, the acceleration of
an electron will be thousands of times larger than the acceleration of an ion.
The time it takes the electrons to reach the positive electrode of a typical
counter is about 1 us. The corresponding time for the positive ions is about 1
ms, a thousand times longer.

The discussion up to this point has been limited to the effects of the
ionization produced directly by the incident particle. This is called primary
ionization. There are types of gas counters in which the electric field is so strong
that the electrons of the primary ionization acquire enough kinetic energy
between collisions to produce new electron-ion pairs. These new charges consti-
tute the secondary ionization. Primary and secondary ionization are generated
within such a short period of time that they contribute to one and the same
pulse.

TAlthough the correct term is gas-filled detector or counter, the short term gas counter is
frequently used.
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5.2 RELATIONSHIP BETWEEN HIGH VOLTAGE AND
CHARGE COLLECTED

Assume that the following experiment is performed (Fig. 5.2). A radioactive
source of constant intensity is placed at a fixed distance from a gas counter. The
high voltage (HV) applied to the counter may be varied with the help of a
potentiometer. An appropriate meter measures the charge collected per unit
time. If the HV applied to the counter is steadily increased, the charge collected
per unit time changes as shown in Fig. 5.3. The curve of Fig. 5.3 is divided into
five regions, which are explained as follows.

Region 1. When the voltage is very low, the electric field in the counter is not
strong, electrons and ions move with relatively slow speeds, and their recombi-
nation rate is considerable. As V' increases, the field becomes stronger, the
carriers move faster, and their recombination rate decreases up to the point
where it becomes zero. Then, all the charge created by the ionizing radiation is
being collected (V' = V7). Region I is called the recombination region.

Region II. In region II, the charge collected stays constant despite a change in
the voltage because the recombination rate is zero and no new charge is
produced. This is called the ionization region.

Region III. In this region, the collected charge starts increasing because the
electrons produce secondary ionization that results in charge multiplication. The
electric field is so strong, in a certain fraction of the counter volume, that
electrons from the primary ionization acquire enough energy between collisions
to produce additional ionization. The gas multiplication factor—i.e., the ratio of
the total ionization produced divided by the primary ionization—is, for a given
voltage, independent of the primary ionization. Thus the output of the counter is
proportional to the primary ionization. The pulse height at the output is
proportional to the energy dissipated inside the counter; therefore particle

Source
Q—o/ Gas-filled detector Meter of charge
/ N collected

High voltage

Figure 5.2 Experimental setup
for the study of the relation-
| 1 ship between high voltage ap-
'l | It plied and charge collected.
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Figure 5.3 The relationship between voltage applied to the counter and charge collected.

identification and energy measurement are possible. This region is, appropri-
ately enough, called the proportional region.

Region IV. In this region, the electric field inside the counter is so strong that a
single electron-ion pair generated in the chamber is enough to initiate an
avalanche of electron-ion pairs. This avalanche will produce a strong signal with
shape and height independent of the primary ionization and the type of particle,
a signal that depends only on the electronics of the counter. Region IV is called
the Geiger-Miiller (GM) region.

Region V. If the applied voltage is raised beyond the value V7, a single ionizing
event initiates a continuous discharge in the gas, and the device is not a particle
detector anymore. No gas counter should operate with voltage V' > V.

If the graph discussed above is obtained using an «, B, or vy source, the
results will be as shown in Fig. 5.4.

5.3 DIFFERENT TYPES OF GAS-FILLED DETECTORS

Gas counters take their name from the voltage region ion which they operate.
No counter operates in region I of Fig. 5.3, because a slight change in voltage
will change the signal.
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Figure 5.4 The relationship between charge collected and applied voltage for three different types of
particles. In region IV, the curve increases slightly but is the same for all particles.

Ionization chambers operate in region II. No charge multiplication takes
place. The output signal is proportional to the particle energy dissipated in the
detector; therefore measurement of particle energy is possible. Since the signal
from an ionization chamber is not large, only strongly ionizing particles such as
alphas, protons, fission fragments, and other heavy ions are detected by such
counters. The voltage applied is less than 1000 V.

Proportional counters operate in region III. Charge multiplication takes
place, but the output signal is still proportional to the energy deposited in the
counter. Measurement of particle energy is possible. Proportional counters may
be used for the detection of any charged particle.

Identification of the type of particle is possible with both ionization and
proportional counters. An alpha particle and an electron having the same
energy and entering either of the counters, will give a different signal. The alpha
particle signal will be bigger than the electron signal. The voltage applied to
proportional counters ranges between 800 and 2000 V.

GM counters operate in region IV. GM counters are very useful because
their operation is simple and they provide a very strong signal, so strong that a
preamplifier is not necessary. They can be used with any kind of ionizing
radiation (with different levels of efficiency). The disadvantage of GM counters
is that their signal is independent of the particle type and its energy. Therefore, a
GM counter provides information only about the number of particles. Another
minor disadvantage is their relatively long dead time (200 to 300 us). (For more
details about dead time, see Sec. 5.6.2.) The voltage applied to GM counters
ranges from 500 to 2000 V.
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-
(a) (b) (c)

Figure 5.5 The different geometries of gas-filled detectors: (a) parallel plate; (b) cylindrical; (c)
spherical.

Gas counters may be constructed in any of three basic geometries: parallel
plate, cylindrical, or spherical (Fig. 5.5). In a parallel-plate chamber, the electric
field (neglecting edge effects) is uniform, with strength equal to

-2 5.1
- .

In the cylindrical chamber, the voltage is applied to a very thin wire, a few
mills of an inch in diameter, stretched axially at the center of the cylinder. The
cylinder wall is usually grounded. The electric field is, in this case,

v, 1

E(r) = In(b/a) r

(5.2)

where a = radius of the central wire

b = radius of the counter

r = distance from the center of the counter
It is obvious from Eq. 5.2 that very strong electric fields can be maintained
inside a cylindrical counter close to the central wire. Charge multiplication is
achieved more easily in a cylindrical than in a plate-type gas counter. For this
reason, proportional and GM counters are manufactured with cylindrical geom-
etry.

In a spherical counter, the voltage is applied to a small sphere located at the
center of the counter. The wall of the counter is usually grounded. The electric
field is

) = vy (5.3)
ry=V,—— .
% —ar?
where a, b, and r have the same meaning as in cylindrical geometry. Strong
fields may be produced in a spherical counter, but this type of geometry is not
popular because of construction difficulties.

A counter filled with a gas at a certain pressure may operate in any of the

regions I-IV discussed earlier, depending on a combination of the following
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parameters:

Size of the counter

Size of wire (in cylindrical counters)
. Gas type

. Gas pressure

. Level of high voltage

Normally, gas counters are manufactured to operate in one region only. The
user buys an ionization counter, a proportional counter, or a GM counter. The
manufacturer has selected the combination of variables 1-4 listed above that
results in the desired type of gas counter. The last variable, the high voltage
applied, is not a fixed number, but a range of values. The range is specified by
the manufacturer, but the user decides on the best possible value of HV.

The rest of this chapter discusses the special characteristics of the three
types of gas counters.

5.4 IONIZATION CHAMBERS

5.4.1 Pulse Formation in an Ionization Chamber

The formation and shape of the signal in an ionization chamber will be analyzed
for a parallel-plate counter as shown in Fig. 5.1b. The analysis is similar for a
cylindrical or a spherical chamber.

Consider the ionization chamber shown in Fig. 5.6. The two parallel plates
make a capacitor with capacitance C, and with the resistor R an RC circuit is
formed. A constant voltage V; is applied on the plates. The time-dependent

Collecting
electrode

\ ]
i
d -}.-__?é Capacitance C R V(t) = signal out

Grounded
electrode

Figure 5.6 The electronic circuit of a parallel-plate ionization chamber.
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voltage V(¢) across the resistor R represents the signal. The objective of this
section is to obtain the function V(¢).

Assume that one electron-ion pair has been formed at a distance x, from
the collecting plate (collector). The electron and the ion start moving in the
electric field, and they acquire kinetic energy at the expense of the electrostatic
energy stored in the capacitance of the chamber. If the charge moves a distance
dx, conservation of energy requires that

(Work on charges) = (change in electrostatic energy)

eE(dxt+dx ) =d Q—2 = ngz V,(dQ~+ dQ™*) (5.4)
2C C 0 ’

where E = electric field intensity

Q = charge on chamber plates
dQ™,dQ~ = changes in positive, negative charge, respectively
It is assumed that the change in the charge (dQ) is so small that the voltage V
stays essentially constant. The voltage V(¢) across the resistor R is the result of
this change in the charge and is given by

V(t) = l tdQ(t) = l t(dQ++ dQ™) (5.5)
- cfo B cfo '
Substituting in Eq. 5.5 the value of dQ from Eq. 5.4, one obtains

V() = ~ (£ E(art— dx) (5.6)
0= gl B |

w* = drift velocity of positive ions
w™ = drift velocity of electrons

In general, the drift velocity is a function of the reduced field strength E /p, where
p is the gas pressure in the chamber.

The derivation up to this point is independent of the chamber geometry. To
proceed further requires substitution of the value of the electric field from
either Eq. 5.1, 5.2, or 5.3. For a plate-type ionization chamber the field is
constant (Eq. 5.1), independent of x, and so is the drift velocity. Therefore, Eq.
5.6 becomes

e 6o, -~ e _ N
V(t)=aj;(w +w)dt=—a(wt+wt) (5.7)

The drift velocity of the electron is a few thousand times more than the velocity
of the ion,’ which means the electron will reach the collector plate before the

" Typical values of drift velocities are w*= 10 m/s, w™= 10* — 10° m/s.
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ion has hardly moved. Let

T = time it takes for an ion to reach the cathode
T¢) = time it takes for an électron to reach the collector (anode)

Typical values of these times are
T = ms TC) = us

Equation 5.7 shows that for ¢t < T¢7), the voltage V(¢) changes linearly with
time (Fig. 5.7):

e
V) = -—a(w_-F wtit 0<t<TO) (5.8)
For T > T7), the signal is
e
- — + -)
V(t) Cd(xo +wht) t>T (5.9

Finally, after ¢+ = T(*), the ion reaches the grounded cathode and the signal
reaches its maximum (negative) value, which is

V(T*) = —éxo £> T (5.10)
If N electron-ion pairs are produced, the final voltage will be
V(T*) = — ifoo t=T (5.11)
Ccd

For ¢t > T*), the pulse decays with decay constant RC (see Sec. 10.3).

The pulse profile of Fig. 5.7 was derived under the assumption that all ion
pairs were produced at x = x,. Actually, the ionization is produced along the
track traveled by the incident particle. The final pulse will be the result of the
superposition of many pulses with different 7¢~) values. Because of this effect,
the sharp change in slope at ¢ = T¢") will disappear and the pulse will be
smoother.

The pulse of Fig. 5.7 is not suitable for counting individual particles because
it does not decay quickly enough. A pulse-type counter should produce a signal
that decays faster than the average time between the arrival of two successive
particles. For example, if the counting rate is 1000 counts /min, a particle arrives
at the counter, on the average, every 1,/1000 min (60 ms).

In Fig. 5.7, the pulse could be stopped at time ¢ = T'*) by electronic means.
Such a technique would produce pulses with height proportional to the total
charge generated in the detector, but with a duration of a few hundreds of
microseconds, which is unacceptably long. The method used in practice is to
“chop off” the pulse at time ¢ = T, which amounts to stopping the pulse after
only the electrons are collected. The signal is then fed into an RC circuit that,
as described in Chap. 10, changes the pulse as shown in Fig. 5.8.
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Figure 5.7 The voltage pulse
\/‘ generated by an ionization
Ti-) 7i*) chamber.
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Let V() be the signal at the output of the detector that is used as an input
to an RC circuit. From Eq. 5.8,

e .
VD) = =+ Wt = ke (5.80)

Using this signal as an input, the output voltage across the resistor R, is (see
Secs. 10.3 and 10.4), for 0 <t < T (Fig. 5.7),

Vy(£) = kCyRy(1 — e7*/CoRa) (5.12)
For t > T(7), V(¢) is essentially constant, and
Vy(t) = kCyRy(1 — 77/ CoRa)g=t/RuCy (5.13)
The signal V,(¢) is shown in Fig. 5.8b. Usually, the RC circuit is the first stage of
the preamplifier, which accepts the signal of the ionization chamber.
The disadvantage of the signal in Fig. 5.8b is that its maximum value

depends on the position where the ionization was produced. Indeed, from Eq.
5.12, one obtains for t = T(7) (noting that k = —e(w™ + w*)/Cd = —ew™ /Cd,

| L
{ LB T
c, A

i(8) Ro S V,lin)

<

v, (t)

Time

0 i)
(a) b)

Figure 5.8 (a) The signal ¥(¢) is fed into the RC circuit. () The output of the RC circuit decays
quickly with a decay constant R,C,.
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since w » w', TC) < CyRy, and T = xy/w™)
V(T) = —(ew™ /Cd)CyRy(1 — e T/ C0R0) = —(ex,/Cd) (5.14)

Thus the peak value of the pulse in Fig. 5.8b depends on x,. This disadvantage
can be corrected in several ways. One is by placing a grid between the two plates
and keeping it at an intermediate voltage V,(0 < V, < V). For more details
about the “gridded” ionization chamber, the reader should consult the refer-
ences at the end of this chapter.

The analysis of the pulse formation in a cylindrical or a spherical counter
follows the same approach. The results are slightly different because the electric
field is not constant (see Egs. 5.2 and 5.3), but the general shape of the signal is
that shown in Fig. 5.7. (See Franzen & Cochran and Kowalski for detailed
calculations of the pulse shapes for the three geometries of gas-filled chambers.)

5.4.2 Current Ionization Chambers

An ionization chamber of the current type measures the average ionization
produced by many incoming particles. This is achieved by measuring directly the
electrical current generated in the chamber, using either a sensitive galvanome-
ter for currents of 10~® A or higher (Fig. 5.9), or an electrometer (sometimes
with an amplifier) for currents less than 1078 A. In the case of the electrometer,
as shown in Fig. 5.10, the current is determined by measuring the voltage drop
across the known resistance R. The voltage drop may be measured by the
electrometer directly or after some amplification.

For current ionization chambers, it is very important to know the relation-
ship between applied voltage and output current (for a constant radiation
source). This relationship, which is shown in Fig. 5.11, consists of regions I and
IT of the graph of Fig. 5.3. The proper operating voltage of the ionization
chamber is that for which all the ionization produced by the incident radiation is
measured. If this is the case, a slight increase of the applied voltage will result in
negligible change of the measured current. The voltage is then called the
saturation voltage (V,), and the corresponding current is called saturation
current. The value of the saturation current depends on the intensity and type of
the radiation source (Fig. 5.11). It also depends, for the same radiation source,
on the size and geometry of the chamber as well as on the type and pressure of
the gas used. If one considers different gases, other things being equal, the
highest current will be produced by the gas with the lowest average energy
needed for the production of one electron-ion pair. Typical energies for com-
mon gases are given in Table 5.1.

During measurements of the ionization current with an electrometer, one
would like to know the response of the measuring instrument if the signal from
the ionization chamber changes. Assume that the current of the chamber
changes suddenly from a value of i, to i,. The response of the electrometer is
obtained by considering the equivalent electronic circuit of Fig. 5.10, shown in
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lonization i
chamber |
V()

Galvanometer

Figure 5.9 Measurement of the cur-
rent produced by an ionization
chamber by using a galvanometer.

Fig. 5.12. The capacitor C represents the combined capacitance of the chamber
and everything else. The resistor R represents a corresponding total resistance
for the circuit. The signal to be measured is the voltage V(¢), where for t <0,

V,=ixR=iR (5.15)

At the ¢ = 0, the current changes instantaneously from i, to i,, and the voltage
will eventually become

V,=i,R (5.16)
During the transition period, Kirchhoff’s first law gives

dQ(s) V(t)_ av(s) V()
&« TR = "R

iy=1Ictig=

or

av(t) 1 _ice .
= + R—CV(t)—z2/ (5.17)

The solution of this differential equation, with the initial condition given by Eq.
5.15, is

V(t) =i,R + R(i; — iz)e“/RC (5.18)
lonization
chamber ji
R ——
Ve To electrometer
or amplifier

Figure 5.10 Measurements of the current produced by an ionization chamber by using an electrome-
ter.
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High-intensity source

Low-intensity source

/ Figure 5.11 The ionization cham-
/ ber current as a function of ap-
v plied voltage.

The function given by Eq. 5.18 is shown in Fig. 5.13. The response of the
electrometer is exponential with a rate of change determined by the time
constant RC. For fast response, the time constant should be as short as
practically possible.

| 5.5 PROPORTIONAL COUNTERSl

5.5.1 Gas Multiplication in Proportional Counters|

When the electric field strength inside a gas counter exceeds a certain value, the
electrons that move in such a field acquire, between collisions, sufficient energy
to produce new ions. Thus, more electrons will be liberated, which in turn will
produce more ions. The net effect of this process is multiplication of the primary
ionization. The phenomenon is called gas multiplication.” To achieve the high
field intensity needed for gas multiplication without excessive applied voltage,
chambers operating in this mode are usually cylindrical with a very thin wire
stretched axially at the center of the counter (Fig. 5.14). The wall of the counter
is normally grounded and a positive voltage is applied to the central wire. In

TAlso called gas gain or gas amplification.

Table 5.1 Average Energy Needed for
Production of One Electron-Ion Pair’

Gas Energy per pair (eV)
H 36.3

He 423

A 26.4

Air 34

Cco, 329

C,H, (ethane) 24.8

CH, 27.3

tFrom Franzen and Cochran.
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V(t)  to electrometer

Figure 5.12 The equivalent elec-
' tronic circuit of Fig. 5.10.
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Figure 5.13 Response of an elec-
Time (rometer to a step change of the
ionization current.
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Figure 5.14 (a) A cylindrical gas-filled detector. (b) Cross section of the detector at AA.
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such a geometry, the electrostatic field inside the chamber is radial and its
intensity is

En =G

(5.2)

The field intensity increases rapidly as the wire is approached. Since the radius
a of the wire is a few mills of an inch and thousands of times smaller than the
radius b of the counter, an extremely strong electric field is produced in a
fraction of the chamber’s volume. This volume is so small that the probability
that the incident radiation will produce an electron ion pair in it is negligible.

In addition to the secondary electrons produced by collisions, electrons are
also produced by two other processes:

1. Photoelectric interactions
2. Bombardment of the cathode surface by positive ions

The photoelectric interactions are caused by photons that are produced in the
counter as a result of the ionization and excitation of the atoms and molecules
of the gas. If the chamber is filled with a monatomic gas, these photons produce
photoelectrons only when they strike the cathode (wall of cylinder) because they
do not have enough energy to ionize the atoms of the gas. If the counter is filled
with a gas mixture, however, photons emitted by molecules of one gas may
ionize molecules of another.

Electrons are also emitted when the positive ions, which are produced in the
chamber, reach the end of their journey and strike the cathode. The significance
of this effect depends on the type of material covering the surface of the
cathode and, more important, on the type of the gas filling the chamber.

The production of electrons by these processes results in the generation of
successive avalanches of ionization because all the electrons, no matter how they
are produced, migrate in the direction of the intense electric field and initiate
additional ionization. The gas multiplication factor M, which is equal to the fotal
number of free electrons produced in the counter when one pair is produced by
the incident radiation, is calculated as follows. Let

N = total number of electrons set free per primary electron-ion pair
6 = average number of photoelectrons produced per ion pair generated
in the counter (& < 1)
The initial avalanche of N electrons will produce SN photoelectrons. Each
photoelectron produces a new avalanche of N new eclectrons; therefore the
second avalanche consists of 8N? electrons. The third avalanche will have §N*

electrons, and so on. The total number of electrons per initial ion pair produced
is then

M =N+ 8N*+ 8N> + -
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The magnitude of 8N depends on the applied voltage. If 6N < 1, the gas
multiplication factor is

M= (5.19)

It should be noted that

1. If 8N <=1, the photoelectric effect is negligible and M = N = initial gas
multiplication (first avalanche).

2. If 6N < 1, M can become much larger than N.

3. If 8N = 1, M — o, which means that a self-supporting discharge occurs in
the counter.

The gas multiplication factor M is a function of the ratio V;/In(b/a) and
the product Pa, where P is the pressure of the gas in the counter (Rossi &
Staub). Experimental results of M values for two gases are shown in Figs. 5.15
and 5.16. Diethorn' has obtained the equation

Vin2 | 4

" AV (b/a) In KPaln (b /a) (520

In

where AV and K are constants of the gas. Equation 5.20 has been tested and
found to be valid.?~* As Figs. 5.15 and 5.16 show, M increases almost exponen-
tially with applied voltage.

One method by which the strong dependence of M on applied voltage is
reduced is by adding a small amount of a polyatomic organic gas in the gas of
the counter. One popular mixture is 10 percent CH, and 90 percent argon. The
organic gases, called “quenching” gases, stabilize the operation of the counter
by reducing the effect of the secondary processes. They achieve this because

500 T T T
- 40 cm Hg
[ 10cm Hg
100 &
[
= |
10
E
b
4 []
1 ! b Figure 5.15 Gas multiplication M versus voltage. Gas is
500 1000 1500 93.6 percent pure argon (a = 0.005 in, b = 0.435 in, at

Volts two different pressures) (from Rossi and Staub).
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Figure 5.16 Gas multiplication M versus voltage. Gas

1 $ 1 is BF;. (A) @ = 0.005 in, b = 0.75 in, P = 10 cmHg. (B)
600 1200 1800 2400 3000 a = 0.005 in, b = 0.78 in, P = 80.4 cmHg (from Rossi
Volts and Staub).

organic polyatomic molecules

=

dissociate rather than produce electrons when they hit the cathode
dissociate when they absorb a photon

have lower ionization potential than the molecules of the main gas; as a
result, they are ionized in collisions with ions of the main gas and thus
prevent the ions from reaching the cathode

W

The total charge produced in a proportional counter is
AE
Q = MNe = Mve (5.21)

where AE = energy of the incident particle dissipated in the counter

w = average energy required for production of one electron-ion pair
Equation 5.21 indicates that Q (output) is proportional to the energy deposited
in the counter (AE). This is the reason why such counters are called propor-
tional. The proportionality holds, however, only if the gas multiplication factor
M is constant, independent of the primary ionization. The question then arises,
under what conditions is this true?

A proportional counter is strictly proportional as long as the space charge
due to the positive ions does not modify too much the electric field around the
wire. The magnitude of the space charge is a function of the primary ionization
and the gas multiplication. If the primary ionization is very small, the value of M
may be 10° to 10 before the space charge affects the proportionality. On the
other hand, if the primary ionization is too strong, the critical value of M is
smaller. It has been reported® that there is a critical maximum value of the
charge produced by the multiplication process beyond which proportionality
does not hold. That number, obviously, depends on the counter (size, types of
gas, etc.).
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The events that produce the avalanches of electrons in a proportional
counter are statistical in nature. The final multiplication factor M will not be
constant but will show statistical fluctuations. The probability that the multipli-
cation will have the value M is, according to Snyder,® equal to

1 M
P(M) = ﬁexp(—ﬁ) (5.22)
where M = mean multiplication factor. The variance of M is, from Eq. 5.22,
g2 =M? (5.23)

5.5.2 The Pulse Shape of a Proportional Counterl

The shape of the pulse of a proportional counter is understood as one follows
the events that lead to the formation of the pulse. A cylindrical counter will be
considered, such as that shown in Fig. 5.14.

Assume that the incident particle generated N electron-ion pairs at a
certain point inside the counter. The electrons start moving toward the wire
(anode). As soon as they reach the region of the strong field close to the wire,
they produce secondary ionization. Since all the secondary ionization is pro-
duced in the small volume surrounding the wire, the amplitude of the output
pulse is independent of the position of the primary ionization. The electrons of
the secondary ionization are collected quickly by the wire, before the ions have
moved appreciably. The ion contribution to the pulse is negligible because the
ions cross only a very small fraction of the potential difference on their way to
the anode. The pulse developed in the central wire is almost entirely due to the
motion of the ions. As the ions move toward the cathode, the voltage pulse on
the wire begins to rise: quickly at first, when the ions are crossing the region of
the intense electric field, and slower later, when the ions move into the region of
low-intensity field. The voltage pulse as a function of time is given by (Kowalski)

V(t) =

—_—]
2CIn(b/a) " a® t,

b? ¢
1+ —— (5.24)

where Q is given by Eq. 5.21
C = capacitance of the counter
ti,n = time it takes the ions to reach the cathode

The equation for ¢, is (Kowalski)
Plin(b/a)
Lion = (b —r?) (5.25)
2I/O Hion

where P = gas pressure
Mion = ion mobility in the field of the counter?
r = point where the ion was produced

"The ion mobility is the proportionality constant between the drift velocity and the reduced
field; thus w* = u* (E/P).
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Figure 5.17 The voltage pulse of a proportional counter.

The pulse V() is shown by the solid line of Fig. 5.17. The pulse rises quickly and
reaches half of its maximum in time of the order of microseconds. Then it bends
and rises at a much slower rate, until about a millisecond later it reaches its
final value, Q/C.

The pulse of Fig. 5.17 was derived under the assumption that all the ions
were produced at the same point. In reality, the ions are produced along the
track of the incident particle. This modifies the shape of the pulse during its
initial rise but it leaves it virtually unaffected during the later period.

The pulse of Fig. 5.17 is unacceptably long, even for a modest counting rate.
As in the case of the ionization chamber, the pulse is “chopped off” at some
convenient time with the help of a differentiating circuit (Chap. 10). The result
will be a pulse shown by the dashed line in Fig. 5.17.

5.5.3 The Change of Counting Rate with High Voltage—
The High-Voltage Plateau

When a detector is used for the study of a phenomenon involving counting of
particles, the investigator would like to be certain that changes in the counting
rate are due to changes in the phenomenon under study and not due to changes
of the environment such as atmospheric pressure, temperature, humidity, or
voltage. For most radiation measurements, all these factors may be neglected
except voltage changes.

Consider a gas-filled counter. For its operation, it is necessary to apply HV,
usually positive, which may range from +300 to +3000 V, depending on the
counter. For the specific counter used in an experiment, the observer would like
to know by what fraction the counting rate will change if the HV changes by a
certain amount. It is highly desirable to have a system for which the change in
the counting rate is negligible, when the HV changes for a reason beyond the
control of the investigator (e.g., change in the 110 V provided by the outlet on
the wall, which may, in turn, cause a fluctuation in the output of the HV power
supply). For this reason, the response of a counting system to such variations
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ought to be known. This information is provided by the HV plateau of the
counter. The determination of the HV plateau will be discussed below for a
proportional counter. However, the experiment and the results are equally
applicable for a GM counter.

The HYV plateau is obtained by performing the experiment sketched in Fig.
5.18. A radioactive source, emitting a certain type of particles, is placed at a
fixed distance from the counter. The signal from the detector is amplified with
the help of a preamplifier and an amplifier. It is then fed through a discrimina-
tor, and pulses above the discriminator level are counted by the scaler. The
counting rate of the scaler is recorded as a function of the HV, the only variable
changed. The result of the experiment is shown in Fig. 5.19 (lower curve). Also
shown in Fig. 5.19 (upper curve) is a part of the graph of Fig. 5.3 from regions II
(ionization) and III (proportional) with the ordinate now shown as pulse height,
which is, of course, proportional to the number of ions collected per unit time.
The dashed line represents the discriminator level. The shape of the HV plateau
is explained as follows.

For very low voltage (V < V) the counting rate is zero. The source is there,
ionization is produced in the counter, pulses are fed into the amplifier and the
discriminator, but the scaler does not receive any signal because all the pulses
are below the discriminator level. Hence, the counting rate is zero. As the HV
increase beyond V,, more ionization is produced in the counter, some pulse
heights generated in it are above the discriminator level and the counting rate
starts increasing. The counting rate keeps increasing with HV, since more and
more pulses are produced with a height above the discriminator level. This
continues up to the point when V' = V. For V > Vj, the ionization is still
increasing, the pulse height is also increasing, but all the pulses are now above
the discriminator level. Since all the pulses are counted, each pulse being
recorded as one regardless of its height, the counting rate does not change. This
continues up to V' = V. Beyond that point, the counting rate will start increas-
ing again because the HV is so high that spurious and double pulses may be
generated. The counter should not be operated beyond V' = V..

The region of the graph between V; and V. is called the HV plateau. It
represents the operational range of the counter. Although the manufacturer of
the detector provides this information to the investigator, it is standard (and
safe) practice to determine the plateau of a newly purchased counter before it is
used in an actual measurement for the first time.

Source
*

Preamplifier j—{ Amplifier Discriminator —  Scaler

Oscilloscope

Figure 5.18 Experimental arrangement for the determination of the HV plateau.

Counter
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Figure 5.19 The HV plateau (lower curve).

The plateau of Fig. 5.19 is shown as completely flat. For most counters, the
plateau has a positive slope that may be due to spurious counts or to increasing
efficiency of the counter, or to both of these effects. Investigation of propor-
tional counters’ showed that the positive slope is the result of an increase in
detector efficiency. For GM counters, on the other hand, the slope of the
plateau is due to the production of more spurious counts.

The performance of a counter is expressed in terms of the slope of the
plateau given in the form

Ar/r
AV

Plateau slope = (5.26)

where Ar/r is the relative change of the counting rate r for the corresponding
change in voltage AV. Frequently, Eq. 5.26 is expressed in percent change of the
counting rate per 100 V change of the high voltage, i.e.,

100(Ar/r) Ar/r
Plateau slope = —/—(100) = 10* /

—_ 5.2
AV AV 5.27)

Example 5.1 What is the change of counting rate per 100 V of the plateau
for a counter having the plateau shown in Fig. 5.20?
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Figure 5.20 The HV plateau used in Example 5.1.

Answer The plateau extends from about 700 to 1500 V. The slope over that
region is (using Eq. 5.27),

104(r, — r))/r,  10*(3800 — 3000) /3000
v,-V, 1500 — 700

= 3.3% per 100V

The location of the plateau of a proportional counter depends on the type
of particles being detected. If a source emits two types of particles with
significantly different primary ionization, two separate plateaus will be obtained,
with the plateau corresponding to the more ionizing particles appearing first.
Figure 5.21 shows such a plateau for a proportional counter detecting alpha and
beta particles. The existence of two plateaus is a consequence of the fact that in
the proportional region, differentiation of the ionization produced by different
types of particles is still possible (see region III in Fig. 5.4). In the GM region
this distinction is lost, and for this reason GM counters have only one HV
plateau regardless of the type of incident radiation (region IV of Fig. 5.4).

B-Plateau

Counting
rate

a-Plateau

HV

Figure 5.21 Alpha and beta plateaus of a proportional counter.
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5.6 GEIGER-MULLER COUNTERS |

|5.6.1 Operation of a GM Counter and Quenching of the Discharge

A GM counter is a gas counter that operates in region IV of Fig. 5.3. Its
construction and operation are in many ways similar to those of a proportional
counter. The GM counter is usually cylindrical in shape, like most of the
proportional counters. The electric field close to the central wire is so strong
that N8 = 1 (see Sec. 5.5.1) and the gas multiplication factor M is extremely
high. In a GM counter, a single primary electron-ion pair triggers a great
number of successive avalanches. Therefore, the output signal is independent of
the primary ionization.

The operation of the GM counter is much more complicated than that of
the proportional counter. When the electrons are accelerated in the strong field
surrounding the wire, they produce, in addition to a new avalanche of electrons,
considerable excitation of the atoms and molecules of the gas. These excited
atoms and molecules produce photons when they deexcite. The photons, in turn,
produce photoelectrons in other parts of the counter. Thus the avalanche, which
was originally located close to the wire, spreads quickly in most of the counter
volume. During all this time, the electrons are continuously collected by the
anode wire, while the much slower moving positive ions are still in the counter
and form a positive sheath around the anode. When the electrons have been
collected, this positive sheath, acting as an electrostatic screen, reduces the field
to such an extent that the discharge should stop. However, this is not the case
because the positive ions eject electrons when they finally strike the cathode,
and since by that time the field has been restored to its original high value, a
new avalanche starts and the process just described is repeated. Clearly, some
means are needed by which the discharge is permanently stopped or “quenched.”
Without quenching, a GM tube would undergo repetitive discharging. There are
two general methods of quenching the discharge.

In external quenching, the operating voltage of the counter is decreased,
after the start of the discharge until the ions reach the cathode, to a value for
which the gas multiplication factor is negligible. The decrease is achieved by a
properly chosen RC circuit as shown in Fig. 5.22. The resistance R is so high
that the voltage drop across it due to the current generated by the discharge (i)
reduces the voltage of the counter below the threshold needed for the discharge
to start (the net voltage is V,; — i, R). The time constant RC, where C repre-
sents the capacitance between anode and ground, is much longer than the time
needed for the collection of the ions. As a result, the counter is inoperative for
an unacceptably long period of time. Or, in other words, its dead time is too
long.

The self-quenching method is accomplished by adding to the main gas of the
counter a small amount of a polyatomic organic gas or a halogen gas.

The organic gas molecules, when ionized, lose their energy by dissociation
rather than by photoelectric processes. Thus, the number of photoelectrons,
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Figure 5.22 The circuit used for external quenching of a GM counter.

which would spread and continue the avalanche, is greatly reduced. In addition,
when the organic ions strike the surface of the cathode, they dissociate instead
of causing the ejection of new electrons. Therefore, new avalanches do not start.

GM counters using an organic gas as a quenching agent have a finite
lifetime because of the dissociation of the organic molecules. Usually, the GM
counters last for 10% to 10° counts. The lifetime of a GM detector increases
considerably if a halogen gas is used as the quenching agent. The halogen
molecules also dissociate during the quenching process, but there is a certain
degree of regeneration of the molecules, which greatly extends the useful
lifetime of the counter.

5.6.2 The Pulse Shape and the Dead Time of a GM Counter

The signal of a GM counter is formed in essentially the same way as the signal
. of a proportional counter and is given by the same equation, Eq. 5.24. For GM
counters the signal is the result of the sum of the contributions from all the
positive ion avalanches produced throughout the volume of the counter. The
final pulse is similar in shape to that shown in Fig. 5.17, except that the pulse
rises much slower. The shape and height of GM counter pulses are not very
important because the pulse is only used to signal the presence of the particle
and nothing else. However, how one pulse affects the formation of the next one
is important.

As discussed in Sec. 5.6.1, during the formation of a pulse, the electric field
in the counter is greatly reduced because of the presence of the positive ions
around the anode. If a particle arrives during that period, no pulse will be
formed because the counter is insensitive. The insensitivity lasts for a certain
time, called the dead time of the counter. Then, the detector slowly recovers,
with the pulse height growing exponentially during the recovery period. This is
illustrated in Fig. 5.23, which shows the change of the voltage and pulse for a
typical GM counter. Typical values of dead time are from 100 to 300 us. If the
dead time is 100 us and the counting rate is 500 counts /s, there is going to be a
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5 percent loss of counts due to dead time. Correction for dead time is described
in Sec. 2.21.

5.7 GAS-FLOW COUNTERS

The gas counters described so far are all sealed. That is, the counter is a closed
volume filled with a gas at a certain pressure. The radiation source is placed
outside the detector; therefore, the particles have to penetrate the wall of the
counter to be counted. In doing so, some particles may be absorbed by the wall
and some may be backscattered; in the case of charged particles, they will all
lose a certain fraction of their energy. To minimize these effects, most commer-
cial gas counters have a thin window through which the radiation enters the
counter. The window may still be too thick for some alpha and low-energy beta
particles. For this reason, counters have been developed with the capability of
having the source placed inside the chamber.

Gas counters of this type are called gas-flow counters. Their name comes
from the fact that the gas flows continuously through the counter during
operation. This is necessary because the detector cannot be sealed if the source
is placed inside the chamber.
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Gas-flow counters come in different geometries. Probably the most common
one is that of the hemispherical detector as shown in Fig. 5.24. The high voltage
is applied to a wire attached to the top of the hemisphere. The gas flows slowly
through the counter, the flow rate being controlled by a regulator. At the exit,
the gas goes through a liquid (e.g., some oil) and forms bubbles as it comes out.
The formation of the bubbles indicates that the gas is flowing, and the rate of
bubble formation gives an idea of the gas-flow rate.

Counting with gas-flow counters involves the following steps:

1. The chamber is opened and the sample is placed in its designated location
inside the chamber.

2. The chamber is closed.

3. Gas from the gas tank is allowed to flow rapidly through the volume of the
counter and purge it (for a few minutes).

4. After the counter is purged, the gas-flow rate is considerably reduced, to a
couple of bubbles per second, and counting begins.

There are two advantages in placing the sample inside the detector:

1. The particles do not have to penetrate the window of the counter, where they
might be absorbed, scattered out of the detector, or lose energy.

2. Close to 50 percent of the particles emitted by the source have a chance to be
recorded in a hemispherical counter, or close to 100 percent in a spherical
counter. If the source is placed outside the detector, there are always less
than 50 percent of the particles entering the detector.

A hemispherical counter is also called a 27 counter, while a spherical
counter with the source located at its center is called a 47 counter. Figure 5.24
shows a 27 counter.

Gas flow
regulator

Bubbles

Sample in sample well
Gas tank

Figure 5.24 A hemispherical (27) gas-flow counter.
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Gas-flow counters may operate as proportional or GM counters. In fact,
there are commercial models that may operate in one or the other region
depending on the voltage applied and the gas used. In a proportional gas-flow
counter, the gas is usually methane or a mixture of argon and methane. In the
GM region, the gas is a mixture of argon and isobutane.

In some gas-flow counter models, there is provision for placing a very thin
window between the sample and the sensitive volume of the counter to reduce
the effects of slight contamination of the sample well or of static charges that
interfere with the measurement. In the counter of Fig. 5.24, the thin window will
be placed on top of the sample well. A different arrangement is shown in Fig.
5.25.

Gas-flow counters are used as low-background alpha-beta detection systems.
Requirements for low-background measurements arise in cases where the level
of activity from the sample is very low, compared to background. Examples of
such cases are samples that monitor contamination of water supplies or of air or
ground.

There are commercially available systems that have a background counting
rate of less than 1 count/min for betas and a considerably lower rate for alphas.
Such a low background is achieved by shielding the counter properly (surround-
ing it with lead) and using electronic means to reject most of the background
radiation. A system offered by one of the manufacturers uses two detectors. The
first is the gas-flow counter and the second is a cosmic-ray detector (Fig. 5.26).
The two detectors are operated in anticoincidence (see Sec. 10.8), which means
that events due to particles going through both detectors (e.g., cosmic rays or
other radiation from the environment) will not be counted. Only pulses pro-
duced by the activity of the sample in the gas-flow counter will be recorded.

Discrimination between alphas and betas can be achieved in many ways.
The two methods most frequently used with gas-flow counters are based on
range and energy differences. Before these methods are discussed, the reader

Gas in Gas out

7

Removable thin
window
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&

§\\’\\\\\\\\\\\\\\\\\

Source

Figure 5.25 A gas-flow counter
with removable thin window and
movable source holder.
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Figure 5.26 A low-background alpha-beta counting system utilizing two counters and anticoinci-
dence. The anticoincidence output gates the scaler to count only pulses from the gas-flow counter.

should recall that the maximum energy of most beta emitters is less than 2 MeV
while the energy of alphas from most alpha emitters is 5-6 MeV.

Because the range of alphas is much shorter than that of betas, a sample
can be analyzed for alpha and beta activity by counting it twice: once with a thin
foil covering it to stop the alphas, and a second time without the foil to record
alphas and betas.

Energy discrimination is based on the difference in pulse height produced
by the two types of particles: the alphas, being more energetic, produce higher
pulses; thus a simple discriminator at an appropriate level can reject the beta
pulses.

5.7.1 The Long-Range Alpha Detector (LRAD)

A variation of the gas-flow counter has been developed®® for the detection of
alpha contamination. Common alpha particle detectors are limited by the short
range of alphas in air. For example, the range of a 6-MeV alpha in air at normal
temperature and pressure is about 46 mm. To circumvent this limitation, the
LRAD does not measure the alphas directly. Instead, as shown schematically in
Fig. 5.27, the ions created by the alphas in air are transported, with the help of
airflow, and directed into an ion chamber. There, the current created by the ions
is measured by an electrometer. Since the number of ions produced is propor-
tional to the strength of the alpha source, the signal of the electrometer is also
proportional to the alpha source strength.

In principle, a similar detector could be developed for any particle that
produces ions. However, particles like electrons, gammas, and neutrons generate
a much smaller number of ions than alpha particles do, traveling over the same
distance. For this reason, an LRAD-type detector would have a smaller sensitiv-
ity for these other particles than for alphas. Of course, an LRAD-type detector
would operate satisfactorily for the detection of protons, deuterons, and other
heavy ions.
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Figure 5.27 The LRAD detects ions generated by alphas in air with the help of an ion chamber and
an electrometer.

5.7.2 Internal Gas Counting

An alternative to the gas-flow counter is internal gas counting, which is used with
low-energy B-emitters. In internal gas counting, a gaseous form of the radioiso-
tope is introduced into the counter (usually a proportional counter) along with
the counting gas. As with gas-flow counters, by having the source inside the
counter, losses in the window are avoided and an increase in efficiency is
achieved by utilizing a 47 geometry.

Internal gas counting requires that corrections be made for wall and end
effects and for the decrease in electric field intensity at the ends.””'* One way
to reduce the end effect is to use a spherical proportional counter,” in which
the anode wire is stretched along a diameter and the cathode is, of course,
spherical. The electric field inside the sphere is

|4 1

E= In(b/a) r

5.2)

At a certain distance r from the anode, the electric field becomes stronger at
the ends of the anode because b, the radius of the cathode, gets smaller.
However, the supports of the wire tend to reduce the field. By property
adjusting the supports, one may make the field uniform. In cylindrical counters,
corrections for end effects are applied by a length-compensation method."

Internal gas counting is used for the production of standards. Using this
technique, the National Bureau of Standards produced standards of *H, "C,
37A, SSK, 131mXe’ and 133XC.
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5.8 RATE METERS

A rate meter is a device that measures the average rate of incoming pulses. Rate
meters are used for continuous monitoring' of an event, where the average
counting rate versus time rather than the instantaneous counting rate is needed.
The basic operation of a rate meter is to feed a known charge per pulse into
a capacitor that is shunted by a resistor (Fig. 5.28). Let
r = counting rate (pulses/s)
g = charge per pulse
V = voltage across capacitor
R = resistance
Q = capacitor charge

The net rate of change of Q with respect to time is given by

= (charge fed by pulses/s) — (charge flowing through resistor)

dr
or
aQ Q
— =rq - ——= 5.28
a7 RC (5:28)
The solution of this differential equation with the initial condition Q(0) = 0 is
(1) = rgRC(1 — ™'/ %) (5.29)
or, if one writes the result in terms of the output voltage,
(1)
V() = QF_ =rgR(1 — e™!/RC) (5.30)

For time ¢ » RC, equilibrium is reached and the value of the voltage is
V., = rgR (5.31)

The signal of a rate meter is the voltage V,, given by Eq. 5.31. Notice that V, is
independent of the capacitance C and proportional to the counting rate r. The
voltage V,, is measured with an appropriate voltmeter.

If a pulse-type detector is used, the counts accumulated in the scaler have a
statistical uncertainty that is calculated as shown in Chap. 2. If a rate meter is
used, what is the uncertainty of the measurement? To obtain the uncertainty,
one starts with Eq. 5.29, which gives the charge of the capacitor C. It is
important to note that the charge changes exponentially with time. Thus, the
contribution of the charge from a pulse arriving at ¢ = 0 is not instantaneous
but continues for a period of time.

Consider an observation point ¢, (Fig. 5.29). The standard deviation o, of
the charge collected at ¢ = ¢, is the result of contributions from pulses having
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Figure 5.28 The circuit of a rate
meter.

Input
P (
—_ c R \J/ (output)

arrived earlier. If the counting rate is r, the number of pulses in a time interval
At is, on the average, r At. The statistical uncertainty of this number is + Vrat,
or the uncertainty of the charge is +¢vr Az. One can show that a single pulse
arriving at time ¢ contributes to the signal at time ¢ = t;, an amount of charge
equal to gexp[—(¢, — t)/RC]. Therefore, the variance of the charge at time
t=1,is

o5 = /to(q rdi e (=0/RCY? (5.32)
0

Integration of Eq. 5.32 gives the result
o4 = 0.5¢’rRC(1 — e™2"/RC) (5.33)
For t, » RC, Eq. 5.33 takes the form

r(RC)
op =4 > (5.34)

At equilibrium, Q = rgRC (from Eq. 5.29); therefore,

70 Y ’ (5.35)
T grC ~ V2RC '
G, 1
- =V 3rer (5.36)

The quantity RC is the time constant of the circuit shown in Fig. 5.28. Equation
5.36 states that any instantaneous reading on a rate meter has a relative
standard error equal to that of a total number of counts obtained by counting
for a time equal to 2RC (assuming the background is negligible).

and

1 l
¥ T t

L J—
| H
0 t t + At t,

Figure 5.29 Pulses arriving during Az, and at ¢, contribute to g, at £ = f,.
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5.9 GENERAL COMMENTS ABOUT CONSTRUCTION OF
GAS-FILLED DETECTORS

This section summarizes the important characteristics of gas counters.

Geometry. Parallel-plate counters are almost exclusively ionization chambers.
The intense fields needed for gas multiplication can be produced only in
cylindrical or spherical geometry.

In the cylindrical geometry, which is the most frequently used, the strong
electric field exists close to the central wire. The wire is usually made of
tungsten or platinum. It has a diameter of 25100 um (few mills of an inch); it
must be uniform in radius, without any bends or kinks, and be placed concentri-
cally with the outer cylinder. Of particular importance is the smoothness of the
central wire. Any kinks or tiny specks of material attached to its surface amount
to pointed tips where very high electric fields are generated. Such a high field is
a source of spurious discharges that interfere with counting.

Gases and pressures used. For ionization chambers, almost any gas or pressure
may be used. Even atmospheric air has been used.

For proportional or GM counters, the noble gases—argon in particular—are
normally used. A small percentage of additional gases is also used for quenching
purposes. In proportional counters, methane is frequently added to the main
gas. The so-called P-10 mixture, consisting of 90 percent argon and 10 percent
methane, is extensively used. Another mixture is 4 percent isobutane and 96
percent helium. Several gas pressures have been used. As Figs. 5.15 and 5.16
show, the gas multiplication depends on the pressure. Usually the pressure is
less than 1 atm. Of course, gas-flow counters operate at ambient pressure.

As discussed in Sec. 5.6.1, the quenching gas in a GM counter is either an
organic polyatomic molecule such as ethyl alcohol, or a halogen such as bromine
or chlorine. A typical mixture is 0.1 percent chlorine in neon. The gas pressure
in a GM counter is, in most cases, less than 1 atm. The pressure affects the
operating voltage.

Counter window. When the source is placed outside the counter, it is very
important for the radiation to enter the counter after traversing as thin a wall
material as possible. Any material in the path of radiation may scatter, absorb,
or cause energy loss. This is particularly critical in the measurement of alphas
and low-energy betas, which have a very short range. It is not important for
neutron and gamma counters.

All counters have walls as thin as possible (or practical), but in addition,
many commercial designs have an area on the surface of the counter designated
as the “window,” consisting of a very thin material. In cylindrical counters, the
window is usually the front end of the cylinder (the other end houses electrical
connectors). There are some cylindrical counters with windows located on the
cylindrical surface.
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Materials and thicknesses of windows are

Glass, down to 0.30-0.40 kg/m? (100um)
Aluminum, 0.25-0.30 kg/m? (100 xm)

Steel, 0.60-0.80 kg/m? (80 wm)

Mica, 0.01 kg/m? (3 wm)

. Mylar (plain or aluminized), 0.01 kg/m?

Special ultrathin membranes or foils, ~ 1077 kg/m?

R N

PROBLEMS

5.1 Sketch the HV plateau of a counter, if all the pulses out of the amplifier have exactly the same
height.

5.2 How would the sketch of Prob. 5.1 change if there are two groups of pulses out of the amplifier
(two groups, two different pulse heights)?

5.3 Sketch counting rate versus discriminator threshold, assuming that the electronic noise consists
of pulses in the range 0 < IV < 0.1 V and all the pulses due to the source have height equal to 1.5 V.
5.4 In a cylindrical gas counter with a central wire radius equal to 25 pm (0.001 in), outer radius 25
mm (~ 1 in), and 1000 V applied between anode and cathode, what is the distance from the center
of the counter at which an electron gains enough energy in 1 mm of travel to ionize helium gas?
(Take 23 eV as the ionization potential of helium.)

5.5 A GM counter with a mica window is to be used for measurement of *C activity. What should
the thickness of the window be if it is required that at least 90 percent of the “C betas enter the
counter?

5.6 What is the minimum pressure required to stop 6-MeV alphas inside the argon atmosphere of a
spherical gas counter with a 25-mm radius? Assume the alpha source is located at the center of the
counter.

5.7 What is the ratio of the saturation ionization currents for a chamber filled with He versus one
filled with CH, (other things being equal)?

5.8 Show that the variance of M is equal to M? if the probability distribution is given by Eq. 5.22.
5.9 Calculate the maximum value of the positive ion time given by Eq. 5.25 for a cylindrical counter
with a cathode radius equal to 19 mm (~ 0.75 in) and a central anode wire with a radius of 25 um
(~ 0.001 in ). The high voltage applied is 1000 V; the pressure of the gas is 13.3 kPa (10 cmHg), and
the mobility of the ions is 13.34 Pa m?/(V s).

5.10 The observed counting rate of a counter is 22,000 counts/min. What is the error in the true
counting rate if the dead time is 300 s and no dead-time correction is applied?
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CHAPTER

SIX

SCINTILLATION DETECTORS

|6.1 INTRODUCTION |

Scintillators are materials—solids, liquids, gases—that produce sparks or scintil-
lations of light when ionizing radiation passes through them. The first solid
material to be used as a particle detector was a scintillator. It was used by
Rutherford, in 1910, in his alpha-scattering experiments. In Rutherford’s experi-
mental setup, alpha particles hit a zinc sulfide screen and produced scintilla-
tions, which were counted with or without the help of a microscope—a very
inefficient process, inaccurate and time consuming. The method was abandoned
for about 30 years and was remembered again when advanced electronics made
possible amplification of the light produced in the scintillator.

The amount of light produced in the scintillator is very small. It must be
amplified before it can be recorded as a pulse or in any other way. The
amplification or multiplication of the scintillator’s light is achieved with a device
known as the photomultiplier tube (or phototube). Its name denotes its function:
it accepts a small amount of light, amplifies it many times, and delivers a strong
pulse at its output. Amplifications of the order of 10° are common for many
commercial photomultiplier tubes. Apart from the phototube, a detection sys-
tem that uses a scintillator is no different from any other (Fig. 6.1).

The operation of a scintillation counter may be divided into two broad steps:

1. Absorption of incident radiation energy by the scintillator and production of
photons in the visible part of the electromagnetic spectrum

211
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Figure 6.1 A detection system using a scintillator.

2. Amplification of the light by the photomultiplier tube and production of the
output pulse

The sections that follow analyze these two steps in detail. The different types of
scintillators are divided, for the present discussion, into three groups:

1. Inorganic scintillators
2. Organic scintillators
3. Gaseous scintillators

k.2 INORGANIC (CRYSTAL) SCINTILLATORS

Most of the inorganic scintillators are crystals of the alkali metals, in particular
alkali iodides, that contain a small concentration of an impurity. Examples are
Nal(TD, CsK(T1), Cal(Na), Lil(Eu), and CaF,(Eu). The element in parentheses is
the impurity or activator. Although the activator has a relatively small concen-
tration—e.g., thallium in NaI(TI) is 10> on a per mole basis—it is the agent
that is responsible for the luminescence of the crystal.

6.2.1 The Mechanism of the Scintillation Process

The luminescence of inorganic scintillators can be understood in terms of the
allowed and forbidden energy bands of a crystal. The electronic energy states of
an atom are discrete energy levels, which in an energy-level diagram are
represented as discrete lines. In a crystal, the allowed energy states widen into
bands (Fig. 6.2). In the ground state of the crystal, the uppermost allowed band
that contains electrons is completely filled. This is called the valence band. The
next allowed band is empty (in the ground state) and is called the conduction
band. An electron may obtain enough energy from incident radiation to move
from the valence to the conduction band. Once there, the electron is free to
move anywhere in the lattice. The removed electron leaves behind a hole in the
valence band, which can also move. Sometimes, the energy given to the electron
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is not sufficient to raise it to the conduction band. Instead, the electron remains
electrostatically bound to the hole in the valence band. The electron-hole pair
thus formed is called an exciton. In terms of energy states, the exciton corre-
sponds to elevation of the electron to a state higher than the valence but lower
than the conduction band. Thus, the exciton states form a thin band, with the
upper level coinciding with the lower level of the conduction band (Fig. 6.2). The
width of the exciton band is of the order of 1 eV, whereas the gap between
valence and conduction bands is of the order of 8 eV.

In addition to the exciton band, energy states may be created between
valence and conduction bands because of crystal imperfections or impurities.
Particularly important are the states created by the activator atoms such as
thallium. The activator atom may exist in the ground state or in one of its
excited states. Elevation to an excited state may be the result of a photon
absorption, or of the capture of an exciton, or of the successive capture of an
electron and a hole. The transition of the impurity atom from the excited to the
ground state, if allowed, results in the emission of a photon in times of the order
of 1078 s. If this photon has a wavelength in the visible part of the electromag-
netic spectrum, it contributes to a scintillation. Thus, production of a scintilla-
tion is the result of the occurrence of these events:

—

Ionizing radiation passes through the crystal.
Electrons are raised to the conduction band.
. Holes are created in the valence band.

W

-——— Conduction band
/ Electrons {normally empty)

2 Electron <+—— Exciton band

Excited states of
—— activator center

Exciton

~

Other forbidden and
ailowed energy bands

Energy —»

—— Ground state of
activator center

-«+——— Valence band
{(normally full)

Figure 6.2 Allowed and forbidden energy bands of a crystal
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Figure 6.3 Emission spectra of Nal(T1), CsI(TI), CsI(Na), and anthracene, compared to the spectral
response of two photocathode materials. PMT, photomultiplier tube (from Harshaw Research
Laboratory Report, Harshaw Chemical Company, 1978).

4. Excitons are formed.

5. Activation centers are raised to the excited states by absorbing electrons,
holes, and excitons.

6. Deexcitation is followed by the emission of a photon.

The light emitted by a scintillator is primarily the result of transitions of the
activator atoms, and not of the crystal. Since most of the incident energy goes to
the lattice of the crystal—eventually becoming heat—the appearance of lumi-
nescence produced by the activator atoms means that energy is transferred from
the host crystal to the impurity. For NaI(T) scintillators, about 12 percent of the
incident energy appears as thallium luminescence.!

The magnitude of light output and the wavelength of the emitted light are
two of the most important properties of any scintillator. The light output affects
the number of photoelectrons generated at the input of the photomultiplier tube
(see Sec. 6.5), which in turn affects the pulse height produced at the output of
the counting system. Information about the wavelength is necessary in order to
match the scintillator with the proper photomultiplier tube. Emission spectra of
NalI(T1), CsI(Na), and CsI(T1) are shown in Fig. 6.3. Also shown in Fig. 6.3 are
the responses of two phototube cathode materials. Table 6.1 gives the most
important properties of some inorganic scintillators.

The light output of the scintillators depends on temperature. Figure 6.4
shows the temperature response of NaI(T1), Cs(Tl), and CsI(Na).
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Table 6.1 Properties of Certain Inorganic Scintillators

Wavelength Scintillation Decay

of maximum efficiency time Density
Material emission (nm) (relative, %) (us) (10% kg/m?®)
Nal(T1) 410 100 0.23 3.67
CaF, (Eu) 435 50 0.94 3.18
CsI(Na) 420 80 0.63 4.51
CsI(T1) 565 45 1.00 4.51
Bi, Ge,O,, 480 8 0.30 7.13
CdWO, 530 20 0.90 7.90
S Lil(Eu) 470 30 0.94 3.49

6.2.2 Time Dependence of Photon Emission

Since the photons are emitted as a result of decays of excited states, the time of
their emission depends on the decay constants of the different states involved.

Experiments show that the emission of light follows an exponential decay law of
the form

N(t) = Nye /T (6.1)

where N(¢) = number of photons emitted at time ¢
T = decay time of the scintillator (see Table 6.1)

Most of the excited states in a scintillator have essentially the same lifetime
T. There are, however, some states with longer lifetimes contributing a slow
component in the decay of the scintillator known as afterglow. It is present to
some extent in all inorganic scintillators and may be important in certain
measurements where the integrated output of the phototube is used. Two
scintillators with negligible afterglow are CaF,(Eu) and Bi,Ge;O,;, (bismuth
orthogermanate).
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Figure 6.4 Temperature dependence
N L 1 L y of light output of NaI(TI), CsI(TD),
100 —60 —20 0+20 +60 +100 +140 and CsI(Na) (from Harshaw Research

Crystal temperature, °C Laboratory Report).
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In a counting system using a scintillator, the light produced by the crystal is
amplified by a photomultiplier tube and is transformed into an electric current
having the exponential behavior given by Eq. 6.1. This current is fed into an RC
circuit as shown in Fig. 6.5, and a voltage pulse is produced of the form

V(t) = V(e /RC — e /T) (6.2)

In practice, the value of RC is selected to be of the order of a few hundreds
of microseconds. Thus, for short times—i.e., { < RC, which is the time span of
interest—Eq. 6.2 takes the form

Vi) =V,(1—-e"/T) (6.2a)

Notice that the rate at which the pulse rises (risetime) is determined by the
decay time T. In certain measurements, e.g., coincidence-anticoincidence mea-
surements (Chap. 10), the timing characteristics of the pulse are extremely
important.

6.2.3 Important Properties of Certain Inorganic Scintillators

Nal(TD). NaI(TD) is the most commonly used scintillator for gamma rays. It has
been produced in single crystals of up to 0.75 m (~ 30 in) in diameter and of
considerable thickness (0.25 m =~ 10 in). Its relatively high density (3.67 X 10>
kg/m*) and high atomic number combined with the large volume make it a

i= io e't/T
Phototube _l_ vi(t) To preamplifier
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T ime

(b)

Figure 6.5 (a) A voltage pulse results from the exponential current. (b) The shape of the pulse for
RC» T.



SCINTILLATION DETECTORS 217

v-ray detector with very high efficiency. Although semiconductor detectors
(Chap. 7 and 12) have better energy resolution, they cannot replace the Nal(TD
in experiments where large detector volumes are needed.

The emission spectrum of NaI(T1) peaks at 410 nm, and the light-conversion
efficiency is the highest of all the inorganic scintillators (Table 6.1). As a
material, Nal(T1) has many undesirable properties. It is brittle and sensitive to
temperature gradients and thermal shocks. It is also so hygroscopic that it
should be kept encapsulated at all times. Nal always contains a small amount of
potassium, which creates a certain background because of the radioactive *K.

CsI(TD. CsI(TI) has a higher density (4.51 X 10 kg/m®) and higher atomic
number than Nal; therefore its efficiency for gamma detection is higher. The
light-conversion efficiency of CsI(T1) is about 45 percent of that for Nal(Tl) at
room temperature. At liquid nitrogen temperatures (77K), pure CsI has a light
output equal to that of NaI(Tl) at room temperature and a decay constant equal
to 108 5.2 The emission spectrum of CsI(TI) extends from 420 to about 600 nm.
Csl is not hygroscopic. Being softer and more plastic than Nal, it can
withstand severe shocks, acceleration, and vibration, as well as large tempera-
ture gradients and sudden temperature changes. These properties make it
suitable for space experiments. Finally, CsI does not contain potassium.

CsI(Na). The density and atomic number of CsI(Na) are the same as those of
CsI(TD. The light-conversion efficiency is about 85 percent of that for NaI(T).
Its emission spectrum extends from 320 to 540 nm (see Fig. 6.3). CsI(Na) is
slightly hygroscopic.

CaF,(Eu). CaF,(Eu) consists of low-atomic-number materials, and for this rea-
son makes an efficient detector for B particles® and X-rays* with low gamma
sensitivity. It is similar to Pyrex and can be shaped to any geometry by grinding
and polishing. Its insolubility and inertness make it suitable for measurements
involving liquid radioisotopes. The light-conversion efficiency of CaF,(Eu) is
about 50 percent of that for NaI(T1). The emission spectrum extends from about
405 to 490 nm.

Lil(Ew). LiI(Eu) is an efficient thermal-neutron detector through the reaction
SLi(n, a)}H. The alpha particle and the triton, both charged particles, produce
the scintillations. Lil has a density of 4.06 X 10° kg/m?, decay time of about 1.1
us, and emission spectrum peaking at 470 nm. Its conversion efficiency is about
one-third of that for Nal. It is very hygroscopic and is subject to radiation
damage as a result of exposure to neutrons.

Other inorganic scintillators. Many other scintillators have been developed for
special applications. Examples are Bi,Ge;0,,, CAWO,, and more recently’
MEF,:UF;:CeF;, where M stands for one of the following: Ca, Sr, Ba. This last
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scintillator, containing 2 percent UF, and using Ce as the fluorescing agent, has
been used for detection of fission fragments.

6.3 ORGANIC SCINTILLATORS

The materials that are efficient organic scintillators belong to the class of
aromatic compounds. They consist of planar molecules made up of benzenoid
rings. Two examples are toluene and anthracene, having the structures shown in
Fig. 6.6.

Organic scintillators are formed by combining appropriate compounds. They
are classified as unitary, binary, ternary, and so on, depending on the number of
compounds in the mixture. The substance with the highest concentration is
called the solvent. The others are called solutes. A binary scintillator consists of
a solvent and a solute, while a ternary scintillator is made of a solvent, a primary
solute, and a secondary solute. Table 6.2 lists the most common compounds
used.

6.3.1 The Mechanism of the Scintillation Process

The production of light in organic scintillators is the result of molecular
transitions. Consider the energy-level diagram of Fig. 6.7, which shows how the
potential energy of a molecule changes with interatomic distance. The ground
state of the molecule is at point A, which coincides with the minimum of the
potential energy. Ionizing radiation passing through the scintillator may give
energy to the molecule and raise it to an excited state, i.e., the transition
Ay = A, may occur. The position A4, is not the point of minimum energy. The
molecule will release energy through lattice vibrations (that energy is eventually
dissipated as heat) and move to point B,. The point B, is still an excited state
and, in some cases, the molecule will undergo the transition B, — B, accompa-
nied by the emission of the photon with energy equal to E; — Eg . This
transition, if allowed, takes place at times of the order of 1078 s. It should be
noted that the energy of the emitted photon (Ep — Ejp ) is less than the energy
that caused the excitation (E, — E, ). This difference is very important be-
cause otherwise the emission spectrum of the scintillator would completely
coincide with its absorption spectrum and no scintillations would be produced. A
more detailed description of the scintillation process is given in the references
(see Birks and Ref. 6).

Figure 6.6 Molecular structure of (a)
(a) (b} toluene and (b) anthracene.
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Table 6.2 Organic Scintillator Compounds’

Compound Formula Application ¥

Benzene

Toluene

p-Xylene

1,2,4-Trimethylbenzene (pseudocumene)
Hexamethylbenzene

Styrene monomer

Vinyltoluene monomer

Naphthalene

Anthracene

Biphenyl

p-Terphenyl

p-Quaterphenyl

trans-Stilbene

Diphenylacetylene

1,1' 4 ,4'-Tetraphenylbutadiene

Diphenylstilbene

PPO (2,5-diphenyloxazole)

a-NPO [2-(1-Naphthyl)-5-phenyloxazole]

PBD [2-Phenyl,5-(4-biphenylyl)-1,3,4-oxadiazole]
BBO [2,5-Di(4-biphenylyl)-oxazole]

POPOP {1,4-Bis[2-(5-phenyloxazolyl)] -benzene}
TOPOT {1,4-Di-[2-(5-p-tolyloxazolyl)] -benzene}
DiMePOPOP {1,4-Di[2-(4-methyl-5-phenyloxazolyl)] -benzene }
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One of the important differences between inorganic and organic scintilla-
tors is in the response time, which is less than 10 ns for the latter (response time
of inorganic scintillators is ~ 1 us; see Table 6.1) and makes them suitable for
fast timing measurements (see Chap. 10). Table 6.3 lists important properties of
some organic scintillators.

6.3.2 Organic Crystal Scintillators

No activator is needed to enhance the luminescence of organic crystals. In fact,
any impurities are undesirable because their presence reduces the light output,
and for this reason, the material used to make the crystal is purified. Two of the
most common organic crystal scintillators are anthracene and trans-stilbene.

Anthracene has a density of 1.25 X 10° kg/m’® and the highest light
conversion efficiency of all organic scintillators (see Table 6.3)—which is still
only about one-third of the light conversion efficiency of NaI(TI). Its decay time
(~ 30 ns) is much shorter than that of inorganic crystals. Anthracene can be
obtained in different shapes and sizes.

trans-Stilbene has a density of 1.15 X 10® kg/m’ and a short decay time
(4-8 ns). Its conversion efficiency is about half of that for anthracene. It can be
obtained as a clear, colorless, single crystal with a size up to several millimeters.
Stilbene crystals are sensitive to thermal and mechanical shock.

6.3.3 Organic Liquid Scintillators

The organic liquid scintillators consist of a mixture of a solvent with one or
more solutes. Compounds that have been used successfully as solvents include
xylene, toluene, and hexamethylbenzene (see Table 6.2). Satisfactory solutes
include p-terphenyl, PBD, and POPOP.

In a binary scintillator, the incident radiation deposits almost all of its
energy in the solvent but the luminescence is due almost entirely to the solute.
Thus, as in the case of inorganic scintillators, an efficient energy transfer is

Table 6.3 Properties of Certain Organic Scintillators

Wavelength Relative Decay

of maximum scintillation time Density
Material emission (nm) efficiency (%) (ns) (10? kg/m?®)
Anthracene 445 100 ~30 1.25
trans-Stilbene 385 ~60 4-8 1.16
NE 102 350-450 ~65 2 1.06
NE 110 350-450 60 3 1.06
NE 213 (liquid) 350-450 ~60 2 0.867
PILOT B 350-450 68 2 1.06
PILOTY 350-450 64 ~3 1.06
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taking place from the bulk of the phosphor to the material with the small
concentration (activator in inorganic scintillators, solute in organic ones). If a
second solute is added, it acts as a wavelength shifter, i.e., it increases the
wavelength of the light emitted by the first solute, so that the emitted radiation
is better matched with the characteristics of the cathode of the photomultiplier
tube.

Liquid scintillators are very useful for measurements where a detector with
large volume is needed to increase efficiency. Examples are counting of low-ac-
tivity B-emitters (*H and '*C in particular), detection of cosmic rays, and
measurement of the energy spectrum of neutrons in the MeV range (see Chap.
14) using the scintillator NE 213. The liquid scintillators are well suited for such
measurements because they can be obtained and used in large quantities
(kiloliters) and can form a detector of desirable size and shape by utilizing a
proper container.

In certain cases, the radioisotope to be counted is dissolved in the scintilla-
tor, thus providing 47 geometry and, therefore, high detection efficiency. In
others, an extra element or compound is added to the scintillator to enhance its
detection efficiency without causing significant deterioration of the lumines-
cence. Boron, cadmium, or gadolinium,””® used as additives, cause an increase
in neutron detection efficiency. On the other hand, fluorine-loaded scintillators
consist of compounds in which fluorine has replaced hydrogen, thus producing a
phosphor with a low neutron sensitivity.

6.3.4 Plastic Scintillators

The plastic scintillators may be considered as solid solutions of organic scintilla-
tors. They have properties similar to those of liquid organic scintillators (Table
6.3), but they have the added advantage, compared to liquids, that they do not
need a container. Plastic scintillators can be machined into almost any desirable
shape and size, ranging from thin fibers to thin sheets. They are inert to water,
air, and many chemicals, and for this reason they can be used in direct contact
with the radioactive sample.

Plastic scintillators are also mixtures of a solvent and one or more solutes.
The most frequently used solvents are polysterene and polyvinyltoluene. Satis-
factory solutes include p-terphenyl and POPOP. The exact compositions of
some plastic scintillators are given in Ref. 10.

Plastic scintillators have a density of about 10° kg/m?>. Their light output is
lower than that of anthracene (Table 6.3). Their decay time is short, and the
wavelength corresponding to the maximum intensity of their emission spectrum
is between 350 and 450 nm. Trade names of commonly used plastic scintillators
are Pilot B, Pilot Y, NE 102, and NE 110. The characteristics of these phosphors
are discussed in Refs. 11-13. Plastic scintillators loaded with tin and lead have
been tried as X-ray detectors in the 5-100 keV range.'* !> Thin plastic scintilla-
tor films (as thin as 20 X 107> kg/m? = 20 ug/cm?) have proven to be useful
detectors in time-of-flight measurements!¢ 1% (see Chap. 13).
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6.4 GASEOUS SCINTILLATORS

Gaseous scintillators are mixtures of noble gases.!”?® The scintillations are

produced as a result of atomic transitions. Since the light emitted by noble gases

belongs to the ultraviolet region, other gases, such as nitrogen, are added to the

main gas to act as wavelength shifters. Thin layers of fluorescent materials used

for coating the inner walls of the gas container achieve the same effect.
Gaseous scintillators exhibit the following features:

1. Very short decay time

2. Light output per MeV deposited in the gas depending very little on the
charge and mass of the particle being detected

3. Very low efficiency for gamma detection

These properties make the gaseous scintillators suitable for the energy measure-
ment of heavy charged particles (alphas, fission fragments, other heavy ions).

6.5 THE RELATIONSHIP BETWEEN PULSE HEIGHT AND
ENERGY AND TYPE OF INCIDENT PARTICLE

To measure the energy of the incident particle with a scintillator, the relation-
ship between the pulse height and the energy deposited in the scintillator must
be known. Because the pulse height is proportional to the output of the
photomultiplier, which output is in turn proportional to the light produced by
the scintillator, it is necessary to know the light-conversion efficiency of the
scintillator as a function of type and energy of incident radiation. The rest of
this section presents experimental results for several cases of interest.

6.5.1 The Response of Inorganic Scintillators |

Photons. The response of Nal(Tl) to gammas is linear, except for energies
below 400 keV, where a slight nonlinearity is present. Experimental results are
shown in Fig. 6.8.*' More details about the NaI(TI) response to gammas are
given in Chap. 12.

Charged particles. For protons and deuterons, the response of the scintillator is
proportional to the particle energy, at least for E > 1 MeV. For alpha particles,
the proportionality begins at about 15 MeV (Fig. 6.9).22 Theoretical aspects of
the response have been studied extensively.”~26 Today, inorganic scintillators
are seldom used for detection of charged particles.

Neutrons. Because neutrons are detected indirectly through charged particles
produced as a result of nuclear reactions, to find the response to neutrons, one
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Figure 6.8 Pulse height versus energy for a Nal(Tl) crystal. The region below 300 keV has been
expanded in curve B to show the nonlinearity (from Ref. 21).

looks at the response to alphas and protons. Lil(Eu), which is the crystal used
for neutron detection, has essentially the same response as Nal(TD) (Fig. 6.9).

|6.5.2 The Response of Organic Scintillators|

Charged particles. Experiments have shown that organic crystal scintillators
(e.g., anthracene) exhibit a direction-dependent response to alphas®’ and pro-
tons.”® An adequate explanation of the direction-dependent characteristics of
the response does not exist at present. The user should be aware of the
phenomenon to avoid errors.

The response of plastic and liquid scintillators to electrons, protons, and
alphas is shown in Figs. 6.10, 6.11, and 6.12.° %! Notice that the response is not
linear, especially for heavier ions. The response has been studied theoretically
by many investigators (Birks and Refs. 32-35).

Photons and neutrons. Organic scintillators are not normally used for detection
of gammas because of their low efficiency. The liquid scintillators NE 213 is
being used for y detection in mixed neutron-gamma fields®* because of its

*NE 213 consists of xylene, activators, and POPOP as the wavelength shifter. Naphthalene is
added to enhance the slow components of light emission. The composition of NE 213 is given as
CH, ,, and its density as 0.867 x 10° kg /cm’.
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ability to discriminate against neutrons. Neutrons are detected by NE 213
through the proton-recoil method. More details about the use of the NE 213
scintillator and its response function are given in Chaps. 12 and 14.

|6.6 THE PHOTOMULTIPLIER TUBE

|6.6.1 General Descriptior*

The photomultiplier tube or phototube is an integral part of a scintillation
counter. Without the amplification produced by the photomultiplier, a scintilla-
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tor is useless as a radiation detector. The photomultiplier is essentially a fast
amplifier, which in times of 10™° s amplifies an incident pulse of visible light by
a factor of 10° or more.

A photomultiplier consists of an evacuated glass tube with a photocathode
at its entrance and several dynodes in the interior (Fig. 6.13). The anode, located
at the end of a series of dynodes serves as the collector of electrons. The
photons produced in the scintillator enter the phototube and hit the photocath-
ode, which is made of a material that emits electrons when light strikes it. The
electrons emitted by the photocathode are guided, with the help of an electric
field, toward the first dynode, which is coated with a substance that emits
secondary electrons, if electrons impinge upon it. The secondary electrons from
the first dynode move toward the second, from there toward the third, and so
on. Typical commercial phototubes may have up to 15 dynodes. The production
of secondary electrons by the successive dynodes results in a final amplification
of the number of electrons as shown in the next section.

The electric field between dynodes is established by applying a successively
increasing positive high voltage to each dynode. The voltage difference between
two successive dynodes is of the order of 80-120 V (see Sec. 6.6.2).

The photocathode material used in most commercial phototubes is a com-
pound of cesium and antimony (Cs-Sb). The material used to coat the dynodes is
either Cs-Sb or silver-magnesium (Ag-Mg). The secondary emission rate of the
dynodes depends not only on the type of surface but also on the voltage applied.

A very important parameter of every photomultiplier tube is the spectral
sensitivity of its photocathode. For best results, the spectrum of the scintillator
should match the sensitivity of the photocathode. The Cs-Sb surface has a
maximum sensitivity at 440 nm, which agrees well with the spectral response of
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most scintillators (Tables 6.1 and 6.3). Such a response, called S-11, is shown in
Fig. 6.3. Other responses of commercial phototubes are known as S-13, S-20, etc.

Another important parameter of a phototube is the magnitude of its dark
current. The dark current consists mainly of electrons emitted by the cathode
after thermal energy is absorbed. This process is called thermionic emission, and
a 50-mm-diameter photocathode may release in the dark as many as 10°
electrons /s at room temperature. Cooling of the cathode reduces this source of
noise by a factor of about 2 per 10-15°C reduction in temperature. Thermionic
emission may also take place from the dynodes and the glass wall of the tube,
but this contribution is small. Electrons may be released from the photocathode
as a result of its bombardment by positive ions coming from ionization of the
residual gas in the tube. Finally, light emitted as a result of ion recombination
may release electrons upon hitting the cathode or the dynodes. Obviously, the
magnitude of the dark current is important in cases where the radiation source
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Figure 6.13 Schematic diagram of the interior of a photomultiplier tube.
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is very weak. Both the dark current and the spectral response should be
considered when a phototube is to be purchased.

Recall that the electrons are guided from one dynode to the next by an
electric field. If a magnetic field is present, it may deflect the electrons in such a
way that not all of them hit the next dynode, and the amplification is reduced.
Even the earth’s weak magnetic field may sometimes cause this undesirable
effect. The influence of the magnetic field may be minimized by surrounding the
photomultiplier tube with a cylindrical sheet of metal, called wu-metal. The
u-metal is commercially available in various shapes and sizes.

Commercial photomultiplier tubes are made with the variety of geometrical
arrangements of photocathode and dynodes. In general, the photocathode is
deposited as a semitransparent layer on the inner surface of the end window of
the phototube (Fig. 6.14). The external surface of the window is, in most
phototubes, flat for easier optical coupling with the scintillator (see Sec. 6.7).
Two different geometries for the dynodes are shown in Fig. 6.14.

6.6.2 Electron Multiplication in a Photomultiplier |

The electron multiplication M in a photomultiplier can be written as
M = (0151)(6252)"'(0,,6”) (6.3)
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Figure 6.14 Two dynode arrangements in commercial phototubes: (a) Model 6342 RCA, 1-10 are
dynodes, 11 is anode; (b) Model 6292 DuMont.
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where
n = number of dynodes

number of electrons collected by ith dynode

€, =

number of electrons emitted by (i — 1)th dynode

number of electrons emitted by ith dynode

* " number of electrons impinging upon ith dynode

If 6, and ¢; are constant for all dynodes, then

M = (6€)" (6.4)
The quantity € depends on the geometry. The quantity ¢ depends on the
voltage between two successive dynodes and on the material of which the
dynode is made. The dependence of 6 on voltage is of the form
6 =kVe 6.5)
where V =V, — V,_, = potential difference between two successive dynodes,
assumed the same for all dynode pairs
k, a = constants (the value of a is about 0.7)
Using Eq. 6.5, the multiplication M becomes

M = e"(kV*)" = cyen (6.6)
where C = (k)" = constant, independent of the voltage.

Equation 6.6 indicates that the value of M increases with the voltage } and
the number of stages n. The number of dynodes is limited, because as n
increases, the charge density between two dynodes distorts the electric field and
hinders the emission of electrons from the previous dynode with the lower
voltage. In commercial photomultipliers, the number of dynodes is 10 or more.
If one takes n = 10 and €@ = 4, typical value, the value of M becomes equal
to 10°.

To apply the electric field to the dynodes, a power supply provides a voltage
adequate for all the dynodes. A voltage divider, usually an integral part of the
preamplifier, distributes the voltage to the individual dynodes. When reference
is made to phototube voltage, one means the total voltage applied. For example,
if 1100 V are applied to a phototube with 10 dynodes, the voltage between any
two dynodes is 100 V.

6.7 ASSEMBLY OF A SCINTILLATION COUNTER AND THE
ROLE OF LIGHT PIPES

A scintillation counter consists of the scintillator and the photomultiplier tube.
It is extremely important that these two components be coupled in such a way
that a maximum amount of light enters the phototube and strikes the photocath-
ode. This section presents a brief discussion of the problems encountered during
the assembly of a scintillation counter, with some of the methods used to solve
them.
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A solid scintillator is coupled to the photomultiplier through the end
window of the tube (Fig. 6.15). During the transfer from the scintillator to the
photocathode, light may be lost by leaving through the sides and front face of
the scintillator, or by being reflected back to the scintillator when it hits the
window of the phototube.

To avoid loss of light through the sides and front face, the scintillator is
painted with a material that reflects toward the crystal the light that would
otherwise escape. Examples of reflecting materials commercially available are
alpha alumina and Al,O,.

To avoid reflection of light from the end window of the phototube, a
transparent viscous fluid (such as Dow-Corning 200 Silicone fluid) is placed
between the scintillator and the phototube (Fig. 6.15). The optical fluid mini-
mizes reflection because it reduces the change of the index of refraction during
the passage of light from the scintillator to the phototube. A sharp change in the
index of refraction results in a small critical angle of reflection, which in turn
increases total reflection.

In certain experiments, the scintillator has to be a certain distance away
from the photocathode. Such is the case if the phototube should be protected
from the radiation impinging upon the scintillator or from a magnetic field.
Then a light pipe is interposed between the scintillator and the phototube. The
light pipe is made of a material transparent to the light of the scintillator.
Lucite, quartz, plexiglas, and glass have been used in many applications to form
light pipes of different lengths and shapes. Light pipes of several feet—some-
times with bends—have been used with success. The optical coupling of the
light pipe at both ends is accomplished by the same methods used to couple the
scintillator directly to the phototube.

One of the major reasons for using scintillators is their availability in large
sizes. In fact, commercially available scintillators are larger than the biggest
commercial photomultipliers. In cases where the scintillator is too large, multi-
ple phototubes are coupled to the same crystal. Figure 6.16 shows a Nal(TD
crystal coupled to six photomultipliers.

Optical coupling fluid Light-tight metallic cover

s

=

Light may be --J Photomultiplier tube

lost through “
sides or front
face

-
Light reflected

Figure 6.15 Assembly of a scintillation counter.
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Figure 6.16 A special 30-in (0.762-m) diameter scintillator crystal coupled to six photomultiplier
tubes (from Harshaw Chemical Company).

When a liquid scintillator is used, the phototube is optically coupled to the
scintillator through a window of the vessel containing the liquid scintillator. The
efficiency of such a counting system increases by using a large volume of liquid
and more than one photomultiplier tube (Fig. 6.17).

6.8 DEAD TIME OF SCINTILLATION COUNTERS |

The dead time or resolving time is the minimum time that can elapse after the
arrival of two successive particles and still result in two separate pulses (see Sec.
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Photomultiplier

Liquid
scintillator

Photomultiplier

Figure 6.17 A counting system using a liquid
scintillator and four photomultiplier tubes.

2.21). For a scintillation counter this time is equal to the sum of three time
intervals:

1. Time it takes to produce the scintillation, essentially equal to the decay time
of the scintillator (see Eq. 6.1 and Tables 6.1 and 6.3).

2. Time it takes for electron multiplication in the phototube, of the order of
20-40 ns.

3. Time it takes to amplify the signal and record it by a scaler. The resolving
‘time of commercial scalers is of the order of 1 us. The time taken for
amplification and discrimination is negligible.

By adding the three above components, the resulting dead time of a
scintillation counter is of the order of 1-5 us. This is much shorter than the
dead time of gas-filled counters, which is of the order of tens to hundreds of
microseconds.

Scintillators are detectors with fast response. As seen in Tables 6.1 and 6.3,
the risetime of the pulse is very short for all of them. Short risetime is important

in measurements that depend on the time of arrival of the particle (see Chap.
10).

6.9 SOURCES OF BACKGROUND IN A
SCINTILLATION COUNTER

One of the major sources of background in a scintillation counter is the dark
current of the phototube (see Sec. 6.6.1). Other background sources are natu-
rally occurring radioisotopes, cosmic rays, and phosphorescing substances.

The holder of a liquid scintillator may contain small amounts of naturally
occurring isotopes. In particular, YK is always present (isotopic abundance of
“K is 0.01 percent). Another isotope, *C, is a constituent of contemporary
organic materials. Solvents, however, may be obtained from petroleum, consist-
ing of hydrocarbons without "*C.



232 MEASUREMENT AND DETECTION OF RADIATION

The term phosphorescence refers to delayed emission of light as a result of
deexcitation of atoms or molecules. Phosphorescent half-lives may extend to
hours. This source of background may originate in phosphorescent substances
contained in the glass of the phototube, the walls of the sample holder, or the
sample itself.

Cosmic rays, which are highly energetic charged particles, produce back-
ground in all types of detectors, and scintillators are no exception. The effect of
cosmic-ray background, as well as that of the other sources mentioned earlier,
will be reduced if two counters are used in coincidence or anticoincidence.

6.10 THE PHOSWICH DETECTOR

The phoswich detector is used for the detection of low-level radiation in the
presence of considerable background. It consists of two different scintillators
coupled together and mounted on a single photomultiplier tube.! By utilizing
the difference in the decay constants of the two phosphors, differentiation
between events taking place in the two detectors is possible. The combination of
crystals used depends on the types of particles present in the radiation field
under investigation.>’-3#

The basic structure of a phoswich detector is shown in Fig. 6.18. A thin
scintillator (scintillator A) is coupled to a larger crystal (scintillator B), which in
turn is coupled to the cathode of a single phototube. Two examples of scintilla-
tors used are these:

1. NaI(TD) is the thin scintillator (A) and CsI(TD) is the thick one (B). Pulses
originating in the two crystals are differentiated based on the difference
between the 0.25-us decay constant of the NaI(Tl) and the 1-us decay
constant of the CsI(T1). Slow pulses come from particles losing energy in the
CsK(TD) or in both crystals simultaneously. In a mixed low-energy-high-energy
photon field, the relatively fast pulses of the NaI(T1) will come from the soft

Low background
housing [stainless steel]

Magnetic shield
l Low-background
Itage-divi e
(Beryllium) voltage-divider bas
Entrance window
LLow-noise
[CsH(TN)] N\ photomultiplier
Scintillator B
{Nal{T1)]
Scintillator A Low-background

optical window

Figure 6.18 A Phoswich detector (from Harshaw Chemical Company).
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component of the radiation. [Soft photons will not reach the CsI(TI).] Phoswich
detectors of this type have been used in X-ray and v-ray astronomy, in
detection of plutonium in the environment, and in other cases of mixed-radi-
ation fields.

2. CaF,(Eu) is the thin scintillator (A) and Nal(T1) is the thick one (B). This
combination is used for measurements of low-energy beta particles in the
presence of a gamma background. The thin (0.1 mm) CaF,(Eu) crystal detects
the betas, but is essentially transparent to gammas because of its relatively
low atomic number and thickness. A quartz window is usually placed between
the two scintillators to stop the betas that did not deposit all their energy in
the CaF,(Eu). The fast pulses of the Nal(Tl), which are due to gammas, are
time-discriminated against the slower pulses from the CaF,(Eu) (T = 0.94
ws). Thus, the background due to gammas is reduced.

PROBLEMS

6.1 If the dead time of a detection system using a scintillator is 1 us, what is the gross counting rate
that will result in a loss of 2 percent of the counts?

6.2 A typical dead time for a scintillation detector is 5 us. For a gas counter, the corresponding
number is 200 us. If a sample counted with a gas counter results in 8 percent loss of gross counts
due to dead time, what is the corresponding loss in a scintillation counter that records the same
gross counting rate?

6.3 A parallel beam of 1.5-MeV gammas strikes a 25-mm-thick Nal crystal. What fraction of these
gammas will have at least one interaction in the crystal (u = 0.0047 m? /kg)?

6.4 What is the range of 2-MeV electrons in a plastic scintillator? Assume that the composition of
the scintillator is C;yHy; (p = 1.02 X 10° kg/m?).

6.5 Consider two electrons, one with kinetic energy 1 MeV, the other with 10 MeV. Which electron
will lose more energy going through a 1-mm-thick plastic scintillator? Consider both ionization and
radiation loss. Composition of the scintillator is given in Prob. 6.4. For radiation loss, use

5 NyZ% + N Z2

N NyZy + NeZe
6.6 A phoswich detector consists of a 1-mm-thick NaI(TD) scintillator coupled to a 25-mm-thick
CsI(TD) scintillator. A 0.1-mm-thick beryllium window protects the NaI(TI) crystal. If the detector is

exposed to a thin parallel beam of 150-keV X-rays and 1.5-MeV v rays, what are the fractions of
interactions of each type of photon in each scintillator?

BIBLIOGRAPHY

Birks, J. B., The Theory and Practice of Scintillation Counting, McMillan Co., New York, 1964,

Eichholz, G. G, and Poston, J. W., Nuclear Radiation Detection, Lewis Publishers, Chelsea, Michigan
198s5.

Fenyves, E., and Haiman, O., The Physical Principles of Nuclear Radiation Measurements, Academic
Press, New York, 1969.

Knoll, G. F., Radiation Detection and Measurement, 2nd ed., Wiley, New York, 1989.



234 MEASUREMENT AND DETECTION OF RADIATION

Price, W. J., Nuclear Radiation Detection, McGraw-Hill, New York, 1964.
Ross, H., Noakes, J. E., and Spaulding, J. D., Liquid Scintillation Counting and Organic Scintillators,

Lewis Publishers, Chelsea, Michigan, 1991.

Snell, A. H. (ed.), Nuclear Instruments and Their Uses, Wiley, New York, 1962.
Tait, W. H., Radiation Detection, Butterworth, London, 1980.

REFERENCES

[ 3]

N

O 00 1 &N

17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
217.
28.
29.

30.
31.
32.
33.
34.
35.
36.
37.

38.

. Heath, R. L., Hofstadter, R., and Hughes, E. B., Nucl. Instrum. Meth. 162:431 (1979). (Review

article listing 127 references.)

. Aliaga-Kelly, D., and Nicoll, D. R., Nucl. Instrum. Meth. 43:110 (1966).
. Colmenares, C., Shapiro, E. G., Barry, P. E., and Prevo, C. T., Nucl. Instrum. Meth. 114:277

(1974).

. Campbell, M., Ledingham, K. W. D., Baillie, A. D., and Lynch, J. G., Nucl. Instrum. Meth.

137:235 (1976).

. Catalano, E., and Czirr, J. B., Nucl. Instrum. Meth. 143:61 (1977).

. Brooks, F. D., Nucl. Instrum. Meth. 162:477 (1979). (Review article listing 274 references.)
. Bollinger, L. M., and Thomas, G. E., Rev. Sci. Instrum. 28:489 (1957).

. Hellstrom, J., and Beshai, S., Nucl. Instrum. Meth. 101:267 (1972).

. Bergere, R., Beil, H., and Veyssiere, A., Nucl. Phys. A121:463 (1968).

. Swank, R. K., Annu. Rev. Nucl.Sci. 4:111 (1954).

11.
12.
13.
14.
15.
16.

Walker, J. K., Nucl. Instrum. Meth. 68:131 (1969).

Moszynski, M., and Bengtson, B., Nucl. Instrum. Meth. 142:417 (1977).

Moszynski, M., and Bengtson, B., Nucl. Instrum. Meth. 158:1 (1979).

Eriksson, L. A., Tsai, C. M., Cho, Z. H., and Hurlbut, C. R., Nucl. Instrum. Meth. 122:373 (1974).
Becker, J., Eriksson, L., Monberg, L. C., and Cho, Z. H., Nucl. Instrum. Meth. 123:199 (1975).
Muga, M. L., Burnsed, D. J., Steeger, W. E., and Taylor, H. E., Nucl. Instrum. Meth. 83:135
(1970).

Muga, M. L., Nucl. Instrum. Meth. 95:349 (1971).

Batra, R. K., and Shotter, A. C., Nucl. Instrum. Meth. 124:101 (1975).

Policarpo, A. J. P. L., Conde, C. A. N,, and Alves, M. A. F., Nucl. Instrum. Meth. 58:151 (1968).
Morgan, G. L., and Walter, R. L., Nucl. Instrum. Meth. 58:277 (1968).

Engelkemeir, B., Rev. Sci. Instrum. 27:989 (1956).

Eby, F. S., and Jentschke, W. K., Phys. Rev. 96:911 (1954).

Murray, R. B,, and Meyer, A., Phys. Rev. 122:815 (1961).

Meyer, A., and Murray, R. B., Phys. Rev. 128:98 (1962).

Prescott, J. R., and Narayan, G. H., Nucl. Instrum. Meth. 75:51(1969).

Hill, R., and Collinson, A. J. L., Nucl. Instrum. Meth. 44:245 (1966).

Brand, W., Dobrin, R., Jack, H., Aubert, R. L., and Roth, S., Con. J. Phys. 46:537 (1968).
Brooks, F. D., and Jones, D. T. L., Nucl. Instrum. Meth., 121:69 (1974).

Fiynn, K. F., Glendenin, C. E., Steinberg, E. P., and Wright, P. M., Nucl. Instrum. Meth. 27:13
(1964).

Craun, R. L., and Smith, D. L., Nucl. Instrum. Meth. 80:239 (1970).

Becchetti, F. D., Thorn, C. E., and Levine, M. S., Nucl. Instrum. Meth. 138:93 (1976).

Chou, C. N., Phys. Rev. 87:376, 904 (1952).

Wright, G. T., Phys. Rev. 91:1282 (1953).

Voltz, R., Lopes da Silva, J., Laustriat, G., and Coche, A., J. Chem. Phys. 45:3306 (1966).
Voltz, R., du Pont, H., and Laustriat, G., J. Physique 29:297 (1968).

Ingersoll, D. T., and Wehring, B. W., Nucl. Instrum. Meth. 147:551 (1977).

Pastor, C., Benrachi, F., Chambon, B., Cheynis, B., Drain, D., Dauchy, A., Giorni, A., and
Morand, C., Nucl. Instrum. Meth. 227:87 (1984).

Pouliot, J., Chan, Y., Dacal, A,, Harmon, A., Knop, R., Ortiz, M. E., Plagnol, E., and Stokstad,
R. G., Nucl. Instrum. Meth. 270:69 (1988).



CHAPTER

SEVEN

SEMICONDUCTOR DETECTORS

7.1 INTRODUCTION

Semiconductor detectors are solid-state devices that operate essentially like
ionization chambers. The charge carriers in semiconductors are not electrons
and ions, as in the gas counters, but electrons and “holes.”"? At present, the
most successful semiconductor detectors are made of silicon and germanium.
Other materials have been tried, however, with some success, e.g., CdTe and
Hgl,.

The most important advantage of the semiconductor detectors, compared to
other types of radiation counters, is their superior energy resolution: the ability to
resolve the energy of particles out of a polyenergetic energy spectrum (energy
resolution and its importance are discussed in Chaps. 9, 12-14). Other advan-
tages are

1. Linear response (pulse height versus particle energy) over a wide energy
range

2. Higher efficiency for a given size, because of the high density of a solid
relative to that of a gas

. Possibility for special geometric configurations

. Fast pulse risetime (relative to gas counters)

. Ability to operate in vacuum

. Insensitivity to magnetic fields

N W

The characteristics of a semiconductor detector depend not only on the type
of material used—e.g., Si or Ge—but also on the way the semiconductor is

235
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shaped and treated. The type, size, shape, and treatment of the crystal play a
role in the operation and performance of a semiconductor detector.

This chapter first discusses the fundamentals of energy states in crystals, a
subject necessary for understanding the creation and movement of electrons and
holes in a solid. The properties of semiconductors are discussed next, with
special emphasis given to the properties of silicon and germanium. The principle
of construction and operation is accompanied by a description of the different
types of detectors available in the market. Future prospects in this field are also
discussed.

7.2 ELECTRICAL CLASSIFICATION OF SOLIDS

Solids are divided according to their electrical conductivity into three groups:
conductors, insulators, and semiconductors. If a piece of solid material is placed
in an electric field, whether or not current will flow depends on the type of
material. If current flows, the material is a conductor. If current is zero at low
temperatures but larger than zero at higher temperatures, the material is a
semiconductor. If current is zero at all temperatures, the material is an insulator.

Conductivity and electric current mean motion of electrons, and according to
the results of this simple experiment,

1. In conductors, electrons can move freely at any voltage different than zero.

2. In insulators, electrons cannot move under any voltage (except, of course,
when the voltage is so high that an electrical discharge occurs).

3. In semiconductors, electrons cannot move at low temperatures (close to
absolute zero) under any voltage. As the temperature of a semiconductor
increases, however, electrons can move and electric current will flow at
moderate voltages.

These properties can be explained by examining the electronic structure of
crystals.

| 7.2.1 Electronic States in Solids—The Fermi Distribution Functionl

In a free atom the electrons are allowed to exist only in certain discrete energy
states (Fig. 7.1a). In solids, the energy states widen into energy bands. Electrons
can exist only in bands 1, 3, and 5, but not in bands 2 and 4 (Fig. 7.1b). An
electron can move from band 1 to band 3 if

1. The electron acquires the energy E, necessary to cross the forbidden gap
2. There is an empty state in band 3, which the jumping electron can occupy’

"This constraint is due to the Pauli principle, which forbids two or more electrons to be in the
same state.
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Figure 7.1 (a) The atomic energy levels are discrete lines. (b) In a solid, the allowed energy states
become energy bands.

The energy distribution of electronic states is described in terms of the following
quantities:
N(E)dE = number of electrons per unit volume with energy between
Eand E +dE
S(E)dE = number of allowed electronic energy states, per unit volume,
in the energy interval between E and E + dE
P(E) = probability that a state of energy E is occupied
= Fermi distribution function
Then
N(E) dE = P(E)[S(E) dE] (7.1
The form of P(E) is given by

P(E) = (7.2)

where E, = Fermi energy

k = Boltzmann constant

T = temperature, Kelvin
The Fermi energy E; is a constant that does not depend on temperature but it
does depend on the purity of the solid. The function P(E) is a universal
function applying to all solids and having these properties (Fig. 7.2):

1L At T =0,
P(E)=1 E<E
P(E)=0 E>E
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3. For T > 0, the function P(E) extends beyond E,. If E—E;» KT, P(E)
takes the form

1 E-E,
P(E) = - (—

+ e E-Ep/kT ~ o E-Ep/kT €xXp ©T ) (7.3)

which resembles the classical Boltzmann distribution.

Notice that at T = 0 (Fig. 7.2), all the states are occupied for E < E; but all the
states are empty for E > E,.

7.2.2 Insulators

In insulators, the highest allowed band, called the valence band, is completely
occupied (Fig. 7.3). The next allowed band, called the conduction band, is
completely empty. As Fig. 7.3 shows, the gap is so wide that the number of
occupied states in the conduction band is always zero. No electric field or
temperature rise can provide enough energy for electrons to cross the gap and
reach the conduction band. Thus, insulators are insulators because it is impossi-
ble for electrons to be found in the conduction band, where under the influence
of an electric field, they would move and generate an electric current.

7.2.3 Conductors

In conductors, the conduction band is partially occupied (Fig. 7.4). An electron
close to the top of the filled part of this band (point A, Fig. 7.4) will be able to
move to the empty part (part B) under the influence of any electric field other
than zero. Thus, because of the lack of a forbidden gap, there is no threshold of
electric field intensity below which electrons cannot move. Motion of the charge
carriers and, consequently, conductivity are always possible for any voltage
applied, no matter how small.
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Figure 7.3 All the energy states in the conduction band of an insulator are empty. Since there are no
charge carriers, the conductivity is zero.

7.3 SEMICONDUCTORS

In semiconductors, the valence band is full and the conduction band is empty,
but the energy gap between these two bands is very small. At very low
temperatures, close to T = 0, the conductivity of the semiconductors is zero and
the energy-band picture looks like that of an insulator (Fig. 7.3). As temperature
increases, however, the “tail” of the Fermi distribution brings some electrons
into the conduction band and conductivity increases (Fig. 7.5). That is, as
temperature increases, some electrons obtain enough energy to cross over to the
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Figure 7.4 In conductors, the conduction band is partially occupied. If an electric field is applied,
the electrons move and conductivity is not zero.
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Figure 7.5 In semiconductors, the energy gap is relatively narrow. As temperature increases, some
electrons have enough energy to be able to move to the conduction band and conductivity appears.
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conduction band. Once there, they will move under the influence of an electric
field for the same reason that electrons of conductors move.

When an electron moves to the conduction band, an empty state is left in
the valence band. This is called a hole. A hole is the absence of an electron.
When the electron moves in one direction, the hole moves in the opposite
direction (Fig. 7.6). Holes are treated as particles with positive charges: —(—e)
= +e. They contribute to the conductivity in the same way electrons do (see
Sec. 7.3.2). In a pure and electrically neutral semiconductor, the number of
electrons is always equal to the number of holes.

Heat—i.e., temperature increase-—is not the only way energy may be given
to an electron. Absorption of radiation or collision with an energetic charged
particle may produce the same effect. The interaction of ionizing radiation with
a semiconductor is a complex process and there is no agreement upon a
common model explaining it. One simplified model is the following.

An energetic incident charged particle collides with electrons of the semi-
conductor and lifts them, not only from the valence to the conduction band but
also from deeper lying occupied bands to the conduction band, as shown in Fig.
7.7a. Electrons appear in normally empty bands and holes appear in normally
fully occupied bands. However, this configuration does not last long. In times of
the order of 107!2 s, the interaction between electrons and holes makes the
electrons concentrate at the bottom of the lowest lying unoccupied (conduction)
band. The holes, on the other hand, concentrate near the top of the highest full
(valence) band. During this deexcitation process, many more electrons and holes
are generated. Because of this multistep process, the average energy necessary
for the creation of one electron-hole pair is much larger than the energy gap E,.
For example, for silicon at room temperature, E, = 1.106 eV, and the average
energy for the production of one electron-hole pair is 3.66 eV.

In the absence of an electric field, the final step of the deexcitation process
is the recombination of electrons and holes and the return of the crystal to its
neutral state.
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Hole motion Figure 7.6 Electrons and holes move in opposite direc-
eecece ecee tions. A hole behaves like a positively charged carrier.

7.3.1 The Change of the Energy Gap with Temperature

The value of the energy gap E, (Fig. 7.5) is not constant, but it changes with
temperature as shown in Fig. 7.8. For silicon and germanium, E, initially
increases linearly as temperature decreases; but at very low temperatures, E,
reaches a constant value.

The average energy needed to create an electron-hole pair follows a similar
change with temperature (Fig. 7.9).

~ Q
0 D

% 747577

Figure 7.7 (a) Collisions with an ener-
getic charged particle raise electrons to
the conduction bands. (b) After times of
the order of 10712 s, electrons and holes
tend to deexcite to the upper part of the
z L valence band and lower part of the
{a) (b) conduction band, respectively.
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Figure 7.8 The variation of £, with temperature: (a) for silicon; (b) for germanium (from Chap.
1.1.1 of Bertolini & Coche).
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|7.3.2 Conductivity of Semiconductors
Conductivity o is the inverse of resistivity and is defined by

j=0E 7.4

where j = current density (A /m?)
o = conductivity [A /(V m)]
E = electric field (V/m)
Another expression for the current density is

j=eNv (7.5)

where N = number of charge carriers/m?
v = speed of carriers
Using Eqgs. 7.4 and 7.5, one obtains the following equation:

v
=eN— 7.6
o=eNp (7.6)
The ratio v/E is given a new name, mobility of the carrier:
w=1{(v/E) (1.7

All the types of charge carriers present in a medium contribute to the
conductivity. In the case of semiconductors, both electrons and holes should be
taken into account when conductivity is calculated, and the expression for the
conductivity becomes (using Eqs. 7.6 and 7.7).

o=e(N,p, + N,p,) (7.8)

where N, and N, are charge carrier concentrations and w, and w, are
mobilities of electrons and holes, respectively. According to Eq. 7.8, the conduc-
tivity changes if the mobility of the carriers or their concentration or both
change.

The mobilities of electrons and holes are independent of the electric field
over a wide range of carrier velocities, but they change with temperature. If the
temperature decreases, the mobility of both carriers increases. The mobility of
electrons and holes in pure germanium as a function of temperature is shown in
Fig. 7.10.* The mobility changes at u ~ 7-¢ with a = 1.5, for T < 80 K. For
T > 80 K, the value of a is somewhat larger. It is worth noting that for 7 < 80
K, n, = np

In a pure semiconductor, N, = N, and each one of these quantities is given
by the equation

15 E,
N, =N, =AT >exp | — ST (7.9

where A is a constant independent of T.

The motion of the carriers in a semiconductor is also affected by the
presence of impurities and defects of the crystal. A small amount of impurities is
always present, although impurities are usually introduced deliberately to make
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Figure 7.10 (a) Electron mobility versus temperature for n-type germanium. (b)) Hole mobility
versus temperature for p-type germanium (from Ref. 4).

the properties of the crystal more appropriate for radiation detection (see Sec.
7.3.3). Crystal defects are present too. Even if one starts with a perfect crystal,
defects are produced by the incident particles (this is called radiation damage).
In the language of energy bands, impurities and defects represent new energy
states that may trap the carriers. Trapping is, of course, undesirable because it
means loss of part of the charge generated by the incident particle.

For semiconductors, the probability that an electron will move from the
valence to the conduction level is proportional to the factor (Eq. 7.3)

Eg
exp (— 2kT) (7.10)

(E; is located in the middle of the gap; thus E — E; = E,/2.) Because of the
exponential form of Eq. 7.10, there are always some electrons in the conduction
band. These electrons produce a leakage current. Obviously, a successful detec-
tor should have as low a leakage current as possible to be able to detect the
ionization produced by the incident radiation. The leakage current decreases
with temperature, and for two different materials it will be smaller for the
material with the larger energy gap.
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7.3.3 Extrinsic and Intrinsic Semiconductors—The Role of Impurities

The properties of a pure semiconductor change if impurities are introduced.
With impurities present, new states are created and the semiconductor obtains
extra electrons or extra holes, which increase the conductivity of the material.

Actually, pure semiconductors are not available. All materials contain some
impurities and for this reason they are called impure or extrinsic, in contrast to a
pure semiconductor, which is called intrinsic. In most cases, controlled amounts
of impurities are introduced purposely by a process called doping, which
increases the conductivity of the material by orders of magnitude.

Doping works in the following way. Consider silicon (Si), which has four
valence electrons. In a pure Si crystal, every valence electron makes a covalent
bond with a neighboring atom (Fig. 7.11a). Assume now that one of the atoms is
replaced by an atom of arsenic (As), which has five valence electrons (Fig.
7.11b). Four of the valence electrons form covalent bonds with four neighboring
Si atoms, but the fifth electron does not belong to any chemical bond. It is
bound very weakly and only a small amount of energy is necessary to free it, i.e.,
to move it to the conduction band. In terms of the energy-band model, this fifth
electron belongs to an energy state located very close to the conduction band.
Such states are called donor states (Fig. 7.12), and impurity atoms that create
them are called donor atoms. The semiconductor with donor atoms has a large
number of electrons and a small number of holes. Its conductivity will be due
mainly to electrons, and it is called an n-type semiconductor (n is for negative).

If a gallium atom is the impurity, three valence electrons are available; thus
only three Si bonds will be matched (Fig. 7.13). Electrons from other Si atoms
can attach themselves to the gallium atom, leaving behind a hole. The gallium
atom will behave like a negative ion after it accepts the extra electron. In terms
of the energy-band theory, the presence of the gallium atom creates new states
very close to the valence band (Fig. 7.14). These are called acceptor states. The
impurity is called an acceptor atom. For every electron that moves to the
acceptor states, a hole is left behind. The acceptor impurity atoms create holes.
The charge carriers are essentially positive, and the semiconductor is called

p-ype.

(a) (b)

Figure 7.11 (a) Pure (intrinsic) silicon. (b) Silicon doped with arsenic. The fifth electron of the
arsenic atom is not tightly bound, and little energy is needed to move it to the conduction band.
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Figure 7.12 (a) Intrinsic and (b) n-type semiconductor. New electron states (donor states) are
created close to the conduction band.

Interstitial atoms can act as donors or acceptors. Lithium, as an interstitial
in either silicon or germanium, creates donor states very close to the conduction
band. Copper and nickel introduce donor states midway between the valence
and conduction bands. Gold may act as either an acceptor or donor, depending
on its position on the lattice.

For every atom of n-type or p-type impurity, an electron or hole is located at
the donor or acceptor state, respectively. The material is still neutral, but when
conductivity appears,

Electrons are the major carriers for n-type semiconductors.
Holes are the major carriers for p-type semiconductors.

Since the addition of impurities creates new states that facilitate the
movement of the carriers, it should be expected that the conductivity of a
semiconductor increases with impurity concentration. Figures 7.15 and 7.16
show how the resistivity of germanium and silicon changes with impurity
concentration.

The energy gap E, depends on temperature, as shown in Fig. 7.8, and on
the number of impurities and defects of the crystal. With increasing tempera-
tures, if E, is small as in germanium, the electrical conduction is dominated by
electron-hole pairs created by thermal excitation and not by the presence of the
impurity atoms. Therefore, at high enough temperatures, any semiconductor can
be considered as intrinsic.

Table 7.1 presents the most important physical and electrical properties of
silicon and germanium, the two most widely used semiconductors.

7.4 THE p-n JUNCTION

7.4.1 The Formation of a p-n Junction

As stated in the introduction to this chapter, semiconductor detectors operate
like ionization counters. In ionization counters (see Chap. 5), the charges
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produced by the incident radiation are collected with the help of an electric field
from an external voltage. In semiconductor detectors, the electric field is
established by a process more complicated than in gas counters, a process that
depends on the properties of n- and p-type semiconductors. The phenomena
involved will be better understood with a brief discussion of the so-called p-n
junction.

An n-type semiconductor has an excess of electron carriers. A p-type has
excess holes. If a p-type and an n-type semiconductor join together, electrons
and holes move for two reasons:

1. Both electrons and holes will move from areas of high concentration to areas
of low concentration. This is simply diffusion, the same as neutron diffusion
or diffusion of gas molecules.

2. Under the influence of an electric field, both electrons and holes will move,
but in opposite directions because their charge is negative and positive,
respectively.

Consider two semiconductors, one p-type, the other n-type, in contact,
without an external electric field (Fig. 7.17). The n-type semiconductor has a
high electron concentration; the p-type has a high hole concentration. Electrons
will diffuse from the n- to the p-type; holes will diffuse in the opposite direction.
This diffusion will produce an equilibrium of electron and hole concentrations,
but it will upset the original charge equilibrium. Originally, both p- and n-type
semiconductors were electrically neutral, but as a result of the diffusion, the
n-type region will be positively charged, while the p-type region will be nega-
tively charged. After equilibrium is established, a potential difference exists
between the two regions. This combination of p- and n-type semiconductor with
a potential difference between the two types constitutes a p-n junction.

The potential ¥, (Fig. 7.17a) depends on electron-hole concentrations and is
of the order of 0.5 V. If an external voltage ¥V, is applied with the positive pole
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Table 7.1 Properties of Si and Ge (from Fenvres and Haiman and Ref. 2)

Property Si Ge
Atomic number 14 32
Atomic weight 28.1 72.6
Density (300K) 2.33 X 10? kg/m? 5.33 X 10® kg/m?
Energy gap (Ej), 300K 1.106 eV 0.67 eV
Energy gap (Eg), 0K 1.165 eV 0.75eV
Average energy per electron-hole

pair, 77K 37eV 296 eV
Average energy per electron-hole

pair, 300K 3.65eV -
Diffusion voltage (V) 0.7V 04V
Atomic concentration 5% 10%® m-2 45%x10®* m-*
Intrinsic carrier concentration (300K) 1.5 X 10'®* m~? 24 % 10" m-?
Intrinsic resistivity (300 K) 2.3x 10® Qem 047 Qem
Intrinsic resistivity (77 K) o §%X10% Q'm
Electron mobility (300 K) 0.1350 m?/V.s 0.3900 m?/V.s

Hole mobility (300K)
Electron mobility (77 K)
Hole mobility (77 K)
Dielectric constant

0.0480 m?/V.s
4.0-7.0 m?/V-s
2.0-3.5m?*/V-s

12

0.1900 m*/V.s
3.5-5.5m?/V.s
4.0-7.0m?/V.s
16

connected to the n side, the total potential across the junction becomes V;, + V,,.
This is called reverse bias. Such external voltage tends to make the motion of
both electrons and holes more difficult. In the region of the changing potential,
there is an electric field E = — ¥V /dx. The length X, of the region where the
potential and the electric field exist increases with reverse bias. Calculation

+
+
|
+ + + +
|
!

(a)

©

+ + +
-+ +
+ -+
+ 4+ +
—+ 4+
+—+

R p——

(b}

Figure 7.17 (a) A p-n junction without external voltage. (b) If a reverse voltage is applied externally,
the potential across the junction increases, and so does the depth x, along which an electric field

exists.
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shows that

Xo =, p(Vy + V) for p-type semiconductor (7.11a)

and

Xy = u, p(Vy + V) for n-type semiconductor (7.11b)

where p({)-m) is the resistivity of the crystal. Application of a negative
potential on the n side will have the opposite effect. The total potential
difference will be V,, — V,. This is called forward bias. For a successful detector,
reverse bias is applied. Since, usually, V, > V), X, ~ 1/71; .

In practice, a p-n junction is not made by bringing two pieces of semicon-
ductor into contact. Instead, one starts with a semiconductor of one type (say,
n-type) and then transforms one end of it into the other type (p-type).

|7.4.2 The p-n Junction Operating as a Detector |

The operation of a semiconductor detector is based, essentially, on the proper-
ties of the p-n junction with reverse bias (Fig. 7.18). Radiation incident upon the
junction produces electron-hole pairs as it passes through it. For example, if a
5-MeV alpha particle impinges upon the detector and deposits all its energy
there, it will create about

5% 10% eV

SV pair ~ 1.7 x 10° electron-hole pairs

Electrons and holes are swept away under the influence of the electric field and,
with proper electronics, the charge collected produces a pulse that can be
recorded.

The performance of a semiconductor detector depends on the region of the
p-n junction where the electric field exists (region of width X, Fig. 7.18).
Electrons and holes produced in that region find themselves in an environment
similar to what electrons and ions see in a plate ionization chamber (see Sec.
5.4). There are some differences, however, between these two types of detectors.

Figure 7.18 A p-n junction with reverse
bias operating as a detector.

r~—Electric field—
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In a gas counter, the electron mobility is thousands of times bigger than that
of the ions. In semiconductors, the electron mobility is only about two to three
times bigger than that of the holes. The time it takes to collect all the charge
produced in a gas counter is of the order of milliseconds. In semiconductors, the
sensitive region of the counter is only a few millimeters, and the speed of
electrons and holes is such that the charge carriers can traverse the sensitive
region and be collected in times of the order of 1077 s.

It is always the objective in either an ionizatin or a semiconductor detector
to collect all the charges produced by the incident particle. This is achieved by
establishing an electric field in the detector such that there is zero recombina-
tion of electrons and ions (or holes) before they are collected. In a semiconduc-
tor detector, even if recombination is zero, some charge carriers may be lost in
“trapping” centers of the crystal, such as lattice imperfections, vacancies and
dislocations. The incident radiation creates crystal defects that cause deteriora-
tion of the detector performance and, thus, reduce its lifetime (see Sec. 7.6).

The capacitance of p-n junction is important because it affects the energy
resolution of the detector. For a detector such as that shown in Fig. 7.18, the
capacitance C is given by

A

C=c¢€
47X,

(7.12)

where € = dielectric constant of the material
A = surface area of the detector
X, = depletion depth (detector thickness)
Combining Egs. 7.11 and 7.12,

1

N

To summarize, a material that will be used for the construction of a detector
should have certain properties, the most important of which are the following:

C ~

1. High resistivity. This is essential, since otherwise current will flow under the
influence of the electric field, and the charge produced by the particles will
result in a pulse that may be masked by the steadily flowing current.

2. High carrier mobility. Electrons and holes should be able to move quickly and
be collected before they have a chance to recombine or be trapped. High
mobility is in conflict with property (1) because in high-resistivity materials,
carrier mobility is low. Semiconductor materials doped with impurities have
proven to have the proper resistivity-carrier mobility combination.

3. Capability of supporting strong electric fields. This property is related to
property (1). Its importance stems from the fact that the stronger the field,
the better and faster the charge collection becomes. Also, as the electric field
increases, so does the depth of the sensitive region (Eq. 7.11a) for certain
detectors.
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4. Perfect crystal lattice. Apart from externally injected impurities, the semicon-
ductor detector material should consist of a perfect crystal lattice without any
defects, missing atoms, or interstitial atoms. Any such defect may act as a
“trap” for the moving charges.

7.5 THE DIFFERENT TYPES OF SEMICONDUCTOR DETECTORS

The several types of semiconductor detectors that exist today differ from one
another because of the material used for their construction or the method by
which that material is treated. The rest of this section describes briefly the
method of construction and the characteristics of the most successful detectors
—made of silicon or germanium—and two promising ones made of CdTe and
Hgl,.

| 7.5.1 Surface-Barrier Detectors|

Silicon of high purity, usually n-type, is cut, ground, polished, and etched until a
thin wafer with a high-grade surface is obtained. The silicon is then left exposed
to air or to another oxidizing agent for several days. As a result of surface
oxidization, surface energy states are produced that induce a high density of
holes and form, essentially, a p-type layer on the surface (Fig. 7.19). A very thin
layer of gold evaporated on the surface serves as the electrical contact that will
lead the signal to the preamplifier. In Fig. 7.19, X, is the depth of the sensitive
region, ¢ is the total silicon thickness, and D is the diameter of the detector.
The size of the detector is the length (or depth) X,.

7.5.2 Diffused-Junction Detectorsl

Silicon of high purity, normally p-type, is the basic material for this detector
type. As with surface-barrier detectors, the silicon piece has the shape of a thin
wafer. A thin layer of n-type silicon is formed on the front face of the wafer by
applying a phosphorus compound to the surface and then heating the assembly
to temperatures as high as 800-1000° C for less than an hour. The phosphorus
diffuses into the silicon and “dopes” it with donors (Fig. 7.20). The n-type silicon
in front and the p-type behind it form the p-n junction.

Both surface-barrier and diffused-junction detectors are used for the detec-
tion of charged particles. To be able to measure the energy of the incident
radiation, the size X, of the detector should be at least equal to the range of the
incident particle in silicon. The value of X, depends on the resistivity of the
material (which in turn, depends on impurity concentration) and on the applied
voltage, as shown by Eq. 7.11. Blankenship and Borkowski have designed a
nomogram relating all these quantities.” Figure 7.21 shows a simplified version
of the nomogram, and Ex. 7.1 explains its use.
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Figure 7.19 A typical surface barrier detec-
tor: (a) a schematic representation; (b) pho-
tograph of a commercial detector (repro-
duced from Instruments for Research and
: e "+ Applied Science by permission of EG&G
(b) ORTEC, Oak Ridge, Tennessee).

EXAMPLE 7.1 What is the bias needed for a surface-barrier detector made
of p-type silicon with resistivity 1.5 k) cm, used for the detection of 10-MeV
alpha particles?

ANSWER The bias is found by following these steps:

1. Find the range of a 10-MeV alpha particle in silicon. From Sec. 4.6, one
obtains R = 65 um (point A in Fig. 7.21).

2. Define point B on the resistivity scale for p-type silicon.

Draw the straight line defined by points A and B.

4. The required bias (point C) is the intersection of the line AB with the bias
scale (V, = 35 V).

W



254 MEASUREMENT AND DETECTION OF RADIATION

% + V, Bias voltage (typically 10 to 500 V)

R
To 5'9.’.‘3' Depleted region
amplifier -—
Motionof |+ + +++**+
[l -
electrons ! | + o+ +
+ I + + o+
- '+ + + -
4 - S~y S T
J+ = 1 - +
e (ol " + + o+ - +
- — + + + o+ o+
11 Motion of LN + +
71  holes te 4+ 0+ 4
z t - 4 + o+
\(\d - : + + o+ + o+
Direction of {
electric field p-type single crystal
of silicon

Extremely thin n-type region
(typical ~0.1 um thick)

Figure 7.20 A diffused-junction detector.

The nomogram of Fig. 7.21 also gives the capacitance of the detector. Of
course, the capacitance can also be calculated using Eq. 7.11.

7.5.3 Silicon Lithium-Drifted [Si(Li)] Detectors

For both surface-barrier and diffused-junction detectors, the sensitive
region—i.e., the actual size of the detector—has an upper limit of about 2000
pm. This limitation affects the maximum energy of a charged particle that can
be measured. For electrons in Si, the range of 2000 wm corresponds to an
energy of about 1.2 MeV; for protons the corresponding number is about 18
MeV; for alphas, it is about 72 MeV. The length of the sensitive region can be
increased if lithium ions are left to diffuse from the surface of the detector
toward the other side. This process has been used successfully with silicon and
germanium and has produced the so-called Si(Li) (pronounced silly) and Ge(Li)
(pronounced jelly) semiconductor detectors. Lithium-drifted detectors have been
produced with depth up to 5 mm in the case of Si(Li) detectors and up to 12 mm
in the case of Ge(Li) detectors.

The lithium drifting process, developed by Pell,%” consists of two major
steps: (1) formation of an n-p junction by lithium diffusion, and (2) increase of
the depletion depth by ion drifting.

The n-p junction is formed by letting lithium diffuse into a p-type silicon.
The diffusion can be accomplished by several methods.®"!! Probably the sim-
plest method consists of painting a lithium-in-oil suspension onto the surface
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Figure 7.22 (a) During the diffusion of lithium,

1 Yo the donor concentration changes with depth as

| x shown. (b) During drifting (at elevated tempera-

Xj ture and under reverse bias), and almost intrinsic
b) region is formed with thickness x,.

from which drifting is to begin. Other methods are lithium deposition under
vacuum, or electrodeposition. After the lithium is applied on the surface, the
silicon wafer is heated at 250-400° C for 3—10 min in an inert atmosphere, such
as argon or helium.

Lithium is an n-type impurity (donor atom) with high mobility in silicon (and
germanium; see next section). When the diffusion begins, the acceptor concen-
tration (N,) is constant throughout the silicon crystal (Fig. 7.22a), while the
donor concentration (N,) is high on the surface and zero everywhere else. As
the diffusion proceeds, the donor concentration changes with depth, as shown in
Fig. 7.22a. At the depth x; where

N,(x;) =N,

and n-p junction has been formed (Fig. 7.22b).

After the diffusion is completed, the crystal is left to cool, the excess lithium
is removed, and ohmic contacts are put on the n and p sides of the junction. The
contact on the p side is usually formed by evaporating aluminum or gold doped
with boron. The contact on the n side can be formed by using pure gold or
antimony-doped gold.
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Drifting is accomplished by heating the junction to 120-150° C while apply-
ing a reverse bias that may range from 25 V up to about 1000 V. In general, the
higher the temperature and the voltage are, the faster the drifting proceeds.
Depending on the special method used, the semiconductor may be under
vacuum or in air or be placed in a liquid bath (e.g., silicon oil or fluorocarbon).
The electric field established by the reverse bias tends to move the n-type atoms
(lithium) toward the p side of the junction. As a result, the concentration of
lithium atoms becomes lower for x < x; (Fig. 7.22a) and higher for x > x,. For
x <x, N, cannot become less than Np because then a local electric field would
appear pushing the lithium atoms toward the n side. Similarly, for x > x;, N,
cannot increase very much because the local electric field works against such a
concentration. Thus, a region is created that looks like an intrinsic semiconduc-
tor because N, = N,. For long drifting times, the thickness of the intrinsic
region X,(¢) as a function of time is given by

X,(t) = {2Vt (7.13)

where V = applied voltage

wr; = mobility of Li ions in silicon at the drifting temperature
The mobility of lithium, which increases with temperature,'* has a value of
about 5 X 107'* m?/V s at T = 150° C. Drifting is a long process. Depending
on the desired thickness, drifting may take days and sometimes weeks.

EXAMPLE 7.2 How long will it take to obtain an intrinsic region of 1.5 mm
in a silicon wafer drifted at 150° C under a reverse bias of 500 V?

ANSWER Using Eq. 7.13 with g;; = 5 X 107 '* m?/V s, one obtains

X2(1) (1.5 X 1073)" m?
' s 2500V x 10 ¥ m?/(Vs)]

=45x10*s=125h

After drifting is completed, the Si(Li) detector is mounted on a cryostat,
since the best results are obtained if the detector is operated at a very low
temperature. Usually, this temperature is 77K, the temperature of liquid nitro-
gen. Si(Li) detectors may be stored at room temperature for a short period of
time without catastrophic results, but for longer periods it is advisable to keep
the detector cooled at all times. The low temperature is necessary to keep the
lithium drifting at a “frozen” stage. At room temperature, the mobility of
lithium is such that its continuous diffusion and precipitation'? will ruin the
detector.

Si(Li) detectors are used for detection of charged particles and especially
X-rays. Their characteristics with respect to energy measurements are described
in Chaps. 12 and 13.
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|7.5.4 Germanium Lithium-Drifted [Ge(Li)] Detectors

Ge(Li) detectors are not made anymore; they have been replaced by pure
germanium crystals. Historically, Ge(Li) detectors dominated the gamma detec-
tion field for about 15 years (until about 1985). Since there may still be some
Ge(Li)’s operating, a brief discussion is presented in this section.

Ge(Li) detectors are made from horizontally grown or pulled single crystals
of germanium. As the crystal is grown, it is doped with acceptor impurities such
as indium, gallium, or boron, and becomes a p-type semiconductor. Germanium
crystals may be cut to length and shaped by a variety of means, including the use
of diamond wheels or band saws. In these mechanical operations, great care
must be taken not to fracture the brittle material.

Lithium drifting in germanium follows the same approach as in silicon. The
deposition and diffusion of lithium are accomplished by one of the methods
discussed in the previous section. The ohmic contacts are made by electrolytic
deposition of gold,” by using gallium-indium!* or mercury-indium,'*> or by ion
implantation.’® The drifting process itself takes place at a lower temperature
(< 60° C) than for silicon, with the germanium diode in air!’ or immersed in a
liquid maintained at its boiling point.'8

After the drifting process has been completed, the detector is mounted on a
cryostat and is always kept at a low temperature (liquid nitrogen temperature
~ 77 K). Keeping the Ge(Li) detector at a low temperature is much more
critical than for a Si(Li) detector. The mobility of the lithium atoms in germa-
nium is so high at room temperature that the detector will be ruined if brought
to room temperature even for a short period of time. If this happens, the
detector may be redrifted, but at a considerable cost.

r7.5.5 Germanium (Ge) Detectorsl

The production of high-purity germanium (HPGe) with an impurity concentra-
tion of 10'® atoms/cm® or less has made possible the construction of detectors
without lithium drifting.”~' These detectors are now designated as Ge, not
HPGe, and are simply formed by applying a voltage across a piece of germa-
nium. The sensitive depth of the detector depends on the impurity concentration
and the voltage applied, as shown in Fig. 7.23.

The major advantage of Ge versus Ge(Li) detectors is that the former can
be stored at room temperature and cooled to liquid nitrogen temperature (77 K)
only when in use. Cooling the detector, when in use, is necessary because
germanium has a relatively narrow energy gap, and at room or higher tempera-
tures a leakage current due to thermally generated charge carriers induces such
noise that the energy resolution of the device is destroyed.

Germanium detectors are fabricated in many different geometries, thus
offering devices that can be tailored to the specific needs of the measurement.
Two examples, the coaxial and the well-type detector, are shown in Fig. 7.24.
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Figure 7.23 Depletion depth as a function of impurity concentration and applied voltage for planar
diodes of high-purity germanium (from Ref. 21).

More details about these detectors are presented in Chap. 12 in connection with
y-ray spectroscopy.

I7.5.6 CdTe and Hgl, Detectors

The major disadvantage of lithium-drifted detectors is the requirement for
continuous cooling. In the case of Ge detectors, the requirement for cooling

incident

radiation
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5([ radiation "‘ Digvmegter
' ) [ Sl )

Z P+ Col
N+ Contact ntact
/J., AL fJ.a AL

(a) (b)

Figure 7.24 Two examples of geometries used for Ge Detectors; (@) coaxial; (b) well type (from
Canberra Nuclear, Edition Nine Instruments Catalog).



260 MEASUREMENT AND DETECTION OF RADIATION

during operation is also a disadvantage. Cooling requires a cryostat, which
makes the counter bulky and thus impossible to use in cases where only a small
space is available; another disadvantage is the cost of continuously buying liquid
nitrogen. There is a great incentive, therefore, to develop semiconductor detec-
tors that can be stored and operated at room temperature. Two materials that
have been studied and show great promise for the construction of such detectors
are CdTe and Hgl,.”2"% A comprehensive review of the state-of-the-art (until
1978) for both materials can be found in Ref. 36.

Successful detectors using CdTe or Hgl, have been constructed with
thickness up to 0.7 mm and area 100 mm? (as of 1978).*' These detectors are
small in size, compared to Si(Li) or Ge(Li) detectors, but the required detector
volume depends on the application. For CdTe and Hgl,, the favored applica-
tions are those that require a small detector volume: monitoring in space,”’
measurement of activity in nuclear power plants,® medical portable scanning,®
or medical imaging devices.*® Although the detector volume is small, efficiency is
considerable because of the high atomic number of the elements involved
(Table 7.2). The energy needed for the production of an electron-hole pair is
larger for CdTe and Hgl, than it is for Si and Ge; as a result, the energy
resolution of the former is inferior to that of the latter (see also Chap. 12). But
CdTe and Hgl, detectors are used in measurements where their energy resolu-
tion is adequate while, at the same time, their small volume and, in particular,
their room-temperature operation offers a distinct advantage over Si(Li) and
Ge(Li) detectors.

|7.6 RADIATION DAMAGE TO SEMICONDUCTOR DETECTORSl

The fabrication and operation of a semiconductor detector are based on the
premise that one starts with a perfect crystal containing a known amount of
impurities. Even if this is true at the beginning, a semiconductor detector will
suffer damage after being exposed to radiation. The principal type of radiation
damage is caused by the collision of an incident particle with an atom. As a
result of the collision, the atom may be displaced into an interstitial position,
thus creating an interstitial-vacancy pair known as the Frenkel defect. A recoiling

Table 7.2 Properties of Si, Ge, CdTe, and Hgl,

Energy needed

Atomic Energy to form the
Material number gap (eV) pair (eV)
Si 14 1.106 (300K) 3.65 (300K)
Ge 32 0.67 (77K) 2.96 (77K)
CdTe 48 and 52 1.47 (300K) 4.43 (300K)

Hgl, 80 and 53 2.13 (300K) 4.22 (300K)
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Table 7.3 Particle Fluence That Causes Significant Radiation Damage

Heavy ions Alphas Fast neutrons
(particles /m?) (a/m?) (n/m?)
Junction detectors 10% 10
Si(Li) 10'2 10"
Ge(Li) or Ge 1083-10%

atom may have enough energy to displace other atoms; therefore an incident
particle may produce many Frenkel defects.

Crystal defects affect the performance of the detector because they may act
as trapping centers for electrons and holes or they may create new donor or
acceptor states. New trapping centers and new energy states change the charge
collection efficiency, the leakage current, the pulse risetime, the energy resolu-
tion, and other properties of the detector. The changes are gradual, but the final
result is shortening of the detector lifetime.

Electrons and photons cause negligible radiation damage compared to
charged particles and neutrons. Heavier and more energetic charged particles
cause more damage than lighter and less energetic particles.>?! Also, the
damage is not the same for all detector types. Table 7.3 gives the fluences that
cause considerable radiation damage for different detectors and bombarding
particles.

Ge detectors are not affected by gammas, but they are damaged by the
neutrons in a mixed n-y field.

PROBLEMS

7.1 What is the probability that an electron energy state in Ge will be occupied at temperature
T = 300 K if the energy state is greater than the Fermi energy by 2 eV?

7.2 Repeat Prob. 7.1 for T = 77 K.

7.3 The energy gap for diamond is 7 eV. What temperature will provide thermal energy (kT) equal
to that amount?

7.4 What should be the maximum thickness of the gold layer covering the front face of a surface
barrier detector used for the measurement of 10-MeV alphas, if the energy loss of the alphas
traversing the layer should be less than 0.1 percent of the kinetic energy?

7.5 Repeat Prob. 7.4 for 6-MeV electrons.

7.6 The thickness of the gold layer covering the front face of a semiconductor detector may be
measured by detecting - particles entering the detector at two different angles. Calculate that
thickness if alphas that enter in a direction perpendicular to the front face register as having energy
4.98 MeV, but those that enter at a 45° angle register as having energy 4.92 MeV.

7.7 What is the average distance traveled in Si by a 50-KeV gamma before it has an interaction?
What is the corresponding distance in Ge?

7.8 Lithium has been drifted in germanijum at 50° C under a reverse bias of 500 V for 2 weeks. What
is your estimate of the drifting depth? [ u; = 1.5 X 1073 m?2/(V 5)]
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7.9 A parallel beam of 0.5-MeV gammas is normally incident upon 2-mm-thick-crystals of Si, Ge,
CdTe, and Hgl,. What fraction of photons will interact at least once in each crystal?
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CHAPTER

EIGHT

RELATIVE AND ABSOLUTE MEASUREMENTS

8.1 INTRODUCTION

An absolute measurement is one in which the exact number of particles emitted
or the exact number of events taking place is determined, for example,

1.

[

Determination of the activity of a radioactive source, i.e., measurement of the
number of particles emitted by the source per second

. Determination of the neutron flux (neutrons per square meter per second) at

a certain point in a reactor

. Measurement of the number of neutrons emitted per fission
. Measurement of the first cross section for a nuclear interaction

A relative measurement is one in which the exact number of particles

emitted or the exact number of events taking place is not determined. Instead, a
“relative” number of particles or events is measured, a number that has a fixed,
but not necessarily known, relationship to the exact number, for example,

1.

Determination of the G-M plateau. The relative change of the number of
particles counted versus HV is measured. The exact number of particles
emitted by the source is not determined; in fact, it is not needed.
Determination of half-life by counting the decaying activity of an isotope.
The relative change of the number of atoms versus time is measured. The
exact number of nuclei decaying per second is not needed.

265
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3. Measurement of the fission cross section for *°Pu, based on the known
fission cross section for 25U.

4. Determination of the variation of the neutron flux along the axis of a
cylindrical reactor. The relative change of the flux from point to point along
the axis of the reactor is measured, and not the exact number of neutrons per
square meter per second.

Relative measurements are, in most cases, easier than absolute measure-
ments. For this reason, investigators tend to perform the very minimum of
absolute measurements and use their results in subsequent relative measure-
ments. One of the most characteristic examples is the determination of the
value of nuclear cross sections. Absolute measurements have been performed
for very few cross sections. After certain cross sections have been measured,
most of the others may be determined relative to the known ones.

This chapter discusses the factors that should be taken into account in
performing relative and absolute measurements. Assume that there is a source
of particles placed a certain distance away from a detector (Fig. 8.1) and that the
detector is connected to a pulse-type counting system. The source may be
located outside the detector as shown in Fig. 8.1, or it may be inside the detector
(e.g., liquid-scintillation counting and internal-gas counting), and may be isotropic
(e.g., particles emitted with equal probability in all directions) or anisotropic
(e.g., parallel beam of particles). Both cases will be examined. Let

S = number of particles per second emitted by the source
r = number of particles per second recorded by the scaler
It is assumed that the counting rate r has been corrected for dead time and

background, if such corrections are necessary. The measured rate r is related to
S by

r=fifofs o 1S (8.1)

where the f factors represent the effects of the experimental setup on the
measurement. These factors may be grouped into three categories, to be
discussed in detail in the following sections.

\SOurce

\./ Pulse-type
e

'// \\‘ ﬂ o I

Detector aperture
or window

Figure 8.1 A point isotropic source counted by a pulse-type counting system.
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1. Geometry effects. The term geometry refers to size and shape of source (point,
parallel beam, disk, rectangular), size and shape of detector aperture (cylin-
drical, rectangular, etc.), and distance between source and detector.

2. Source effects. The size and, in particular, the way the source is made may
have an effect on the measurement. Whether the source is a solid material or
a thin deposit evaporated on a metal foil may make a difference. The effect
of source thickness is different on charged particles, gammas, and neutrons.

3. Detector effects. The detector may affect the measurement in two ways. First,
the size and thickness of the detector window (Fig. 8.1) determine how many
particles enter the detector and how much energy they lose, as they traverse
the window. Second, particles entering the detector will not necessarily be
counted. The fraction of particles that is recorded depends on the efficiency
of the detector (see Sec. 8.4.2).

8.2 GEOMETRY EFFECTS |

The geometry may affect the measurement in two ways. First, the medium
between the source and the detector may scatter and may also absorb some
particles. Second, the size and shape of the source and the detector and the
distance between them determine what fraction of particles will enter the
detector and have a chance to be counted.

|8.2.1 The Effect of the Medium between Source and Detector |

Consider a source and a detector separated by a distance d (Fig. 8.2). Normally,
the medium between the source and detector is air, a medium of low density.
For measurements of photons and neutrons, the air has no effect. If the source
emits charged particles, however, all the particles suffer some energy loss, and
some of them may be scattered in or out of the detector (Fig. 8.2). If this effect

- T __________ @ =+— Source
d

Detector
Figure 8.2 The medium between the source and the
detector may scatter and/or absorb particles emitted by
the source.
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is important for the measurement, it can be eliminated by placing the source
and the detector inside an evacuated chamber. If the use of an evacuated
chamber is precluded by the conditions of the measurement, then appropriate
corrections should be applied to the results.

8.2.2 The Solid Angle—General Definition

To illustrate the concept of solid angle, consider a point isotropic source at a
certain distance from a detector as shown in Fig. 8.3. Sinc