
MEASUREMENT AND
DETECTION OF RADIATION

Second Edition





MEASUREMENT AND
DETECTION OF RADIATION

Second Edition

Nicholas Tsoulfanidis
University of Missouri-Rolla

Taylor &FrancisP,,hl,,shm  \,ncc  I798



U S A
1995

Publishing Office: Taylor & Francis
1101 Vermont Avenue , N.W.
Sui te  200
Washington, DC 200053521
Tel: (202) 289-2174
Fax: (202) 289-3665

Distr ibut ion Center: Taylor & Francis
1900 Fros t  Road
Suite 101
Bristol, PA 19007-1598
Tel: (215) 7855800
Fax: (215) 785-5515

UK Taylor & Francis Ltd.
4 John  S t .
London WClN  2ET
Tel: 071405 2237
Fax: 071 8312035

MEASUREMENT AND DETECTION OF RADIATION, Second Edition

Copyright 0 1995, 1983 Taylor & Francis. All rights reserved. Printed in the United
States of America. Except as permitted under the United States Copyright Act of 1976,
no part of this publication may be reproduced or distributed in any form or by any
means,  or  stored in a database or retr ieval  system, without the prior writ ten permission of
the publisher.

12 3 4 5 6 7 8 9 0 BRBR 9 8 7 6 5

This book was set in Times Roman by Technical Typesetting Inc. The editors were
Christine E. Williams and Carol Edwards. Cover design by Michelle M. Fleitz. Printing
and binding by Braun-Brumfield,  Inc.

A CIP catalog record for this book is available from the British Library.
@  The paper in this publication meets the requirements of the ANSI Standard
239.48-1984  (Permanence of Paper)

Library  o f  Congress  Cata log ing- in -Publ i ca t ion  Data

Tsoulfanidis,  Nicholas
Measurement and detection of radiation/Nicholas Tsoulfanidis.-

2nd ed .
p.  cm.

1. Radiation-Measurement. 2. Nuclear counters. I. Title.
QC795.42.T78 1995
539.7’7-dc20 94-24270

CIP

ISBN l-56032-317-5



To Zizeta 





CONTENTS 

Preface to the First Edition 
Preface to the Second Edition 

INTRODUCTION TO RADIATION MEASUREMENTS 

What is Meant by Radiation? 
Statistical Nature of Radiation Emission 
The Errors and Accuracy and Precision of Measurements 
Types of Errors 
Nuclear Instrumentation 
1.5.1 Introduction 
1.5.2 The Detector 
1.5.3 The NIM Concept 
1.5.4 The High-Voltage Power Supply 
1.5.5 The Preamplifier 
1.5.6 The Amplifier 
1 S.7 The Oscilloscope 
1.5.8 The Discriminator or Single-Channel Analyzer (SCA) 
1.5.9 The Scaler 
1.5.10 The Timer 
1.5.1 1 The Multichannel Analyzer 
Bibliography 
Reference 

STATISTICAL ERRORS OF RADIATION COUNTING 

Introduction 
Definition of Probabiliw 
Basic Probability  heo or ems 

2.4 Probability ~istributions and Random Variables 

xvii 
xxi 

vii 



viii CONTENTS 

Location Indexes (Mode, Median, Mean) 
Dispersion Indexes, Variance, and Standard Deviation 
Covariance and Correlation 
The Binomial Distribution 
The Poisson Distribution 
The Normal (Gaussian) Distribution 
2.10.1 The Standard Normal Distribution 
2.10.2 Importance of the Gaussian Distribution for 

Radiation Measurements 
The Lorentzian Distribution 
The Standard, Probable, and Other Errors 
The Arithmetic Mean and Its Standard Error 
Confidence Limits 
Propagation of Errors 
2.15.1 Calculation of the Average and Its Standard Deviation 
2.15.2 Examples of Error Propagation-Uncorrelated Variables 
Goodness of ~ a t a - ~ '  Criterion-Rejection of Data 
The Statistical Error of Radiation Measurements 
The Standard Error of Counting Rates 
2.18.1 Combining Counting Rates 
Methods of Error Reduction 
2.19.1 The Background Is Constant and There Is No Time Limit 

for Its Measurement 
2.19.2 There Is a Fixed Time T Available for Counting 

Both Background and Gross Count 
2.19.3 Calculation of the Counting Time Necessary to Measure a 

Counting Rate with a Predetermined Statistical Error 
2.19.4 Relative Importance of Error Components 
Minimum Detectable Activity 
Counter Dead-Time Correction and Measurement of Dead Time 
Problems 
Bibliography 
References 

REVIEW O F  ATOMIC AND NUCLEAR PHYSICS 

Introduction 
Elements of Relativistic Kinematics 
Atoms 
Nuclei 
Nuclear Binding Energy 
Nuclear Energy Levels 
Energetics of Nuclear Decays 
3.7.1 Gamma Decay 
3.7.2 Alpha Decay 
3.7.3 Beta Decay 
3.7.4 Particles, Antiparticles, and Electron-Positron Annihilation 
3.7.5 Complex Decay Schemes 
The Radioactive Decay Law 



3.9 Nuclear Reactions 
3.9.1 General Remarks 
3.9.2 Kinematics of Nuclear Reactions 

3.10 Fission 
Problems 
Bibliography 
References 

4 ENERGY LOSS AND PENETRATION OF RADIATION 
THROUGH MATTER 

Introduction 
Mechanisms of Charged-Particle Energy Loss 
4.2.1 Coulomb Interactions 
4.2.2 Emission of Electromagnetic Radiation (~remsstrahlung) 
Stopping Power Due to Ionization and Excitation 
Energy Loss Due to Bremsstrahlung Emission 
Calculation of d E / &  for a Compound or Mixture 
Range of Charged Particles 
4.6.1 Range of Heavy Charged Particles ( p ,  d, t ,  cr; 1 5 A 5 4) 
4.6.2 Range of Electrons and Positrons 
4.6.3 Transmission of Beta Particles 
4.6.4 Energy Loss after Traversing a Material of Thickness t < R 
Stopping Power and Range of Heavy Ions ( Z  > 2, A > 4) 
4.7.1 Introduction 
4.7.2 The d E / &  Calculation 
4.7.3 Range of Heavy Ions 
Interactions of Photons with Matter 
4.8.1 The Photoelectric Effect 
4.8.2 Compton Scattering or Compton Effect 
4.8.3 Pair Production 
4.8.4 Total Photon Attenuation Coefficient 
4.8.5 Photon Energy Absorption Coefficient 
4.8.6 Buildup Factors 
Interactions of Neutrons with Matter 
4.9.1 Types of Neutron Interactions 
4.9.2 Neutron Reaction Cross Sections 
4.9.3 The Neutron Flux 
4.9.4 Interaction Rates of Polyenergetic Neutrons 
Problems 
Bibliography 
References 

5 GAS-FILLED DETECTORS 

5.1 Introduction 
5.2 Relationship Between High Voltage and Charge Collected 
5.3 Different Types of Gas-Filled Detectors 

CONTENTS ix 

107 
107 
109 
113 
117 
119 
119 

121 

121 
122 
122 
123 
124 
129 
131 
132 
133 
138 
142 
143 
144 
144 
145 
149 
150 
153 
154 
157 
158 
161 
162 
166 
166 
166 
171 
172 
173 
174 
175 

177 

177 
179 
180 



x CONTENTS 

Ionization Chambers 
5.4.1 Pulse Formation in an Ionization Chamber 
5.4.2 Current Ionization Chambers 
Proportional Counters 
5.5.1 Gas Multiplication in Proportional Counters 
5.5.2 The Pulse Shape of a Proportional Counter 
5.5.3 The Change of Counting Rate with High Voltage-The 

High-Voltage Plateau 
Geiger-Miiller Counters 
5.6.1 Operation of a GM Counter and Quenching of the Discharge 
5.6.2 The Pulse Shape and the Dead Time of a GM Counter 
Gas-Flow Counters 
5.7.1 The Long-Range Alpha Detector (LRAD) 
5.7.2 Internal Gas Counting 
Rate Meters 
General Comments about Construction of Gas-Filled Detectors 
Problems 
Bibliography 
References 

SCINTILLATION DETECTORS 

Introduction 
Inorganic (Crystal) Scintillators 
6.2.1 The Mechanism of the Scintillation Process 
6.2.2 Time Dependence of Photon Emission 
6.2.3 Important Properties of Certain Inorganic Scintillators 
Organic Scintillators 
6.3.1 The Mechanism of the Scintillation Process 
6.3.2 Organic Crystal Scintillators 
6.3.3 Organic Liquid Scintillators 
6.3.4 Plastic Scintillators 
Gaseous Scintillators 
The Relationship Between Pulse Height and Energy and 
Type of Incident Particle 
6.5.1 The Response of Inorganic Scintillators 
6.5.2 The Response of Organic Scintillators 
The Photomultiplier Tube 
6.6.1 General Description 
6.6.2 Electron Multiplication in a Photomultiplier 
Assembly of a Scintillation Counter and the Role of Light Pipes 
Dead Time of Scintillation Counters 
Sources of Background in a Scintillation Counter 
The Phoswich Detector 
Problems 
Bibliography 
References 



CONTENTS xi 

SEMICONDUCTOR DETECTORS 

Introduction 
Electrical Classification of Solids 
7.2.1 Electronic States in Solids-The Fermi Distribution Function 
7.2.2 Insulators 
7.2.3 Conductors 
Semiconductors 
7.3.1 The Change of the Energy Gap with Temperature 
7.3.2 Conductivity of Semiconductors 
7.3.3 Extrinsic and Intrinsic Semiconductors-The Role of Impurities 
The p-n Junction 
7.4.1 The Formation of a p-n Junction 
7.4.2 The p-n Junction Operating as a Detector 
The Different Types of Semiconductor Detectors 
7.5.1 Surface-Barrier Detectors 
7.5.2 Diffused-Junction Detectors 
7.5.3 Silicon Lithium-Drifted [Si(Li)] Detectors 
7.5.4 Germanium Lithium-Drifted [Ge(Li)] Detectors 
7.5.5 Germanium (Ge) Detectors 
7.5.6 CdTe and HgI, Detectors 
Radiation Damage to Semiconductor Detectors 
Problems 
Bibliography 
References 

RELATIVE AND ABSOLUTE MEASUREMENTS 

Introduction 
Geometry Effects 
8.2.1 The Effect of the Medium between Source and Detector 
8.2.2 The Solid Angle-General Definition 
8.2.3 The Solid Angle for a Point Isotropic Source and a 

Detector with a Circular Aperture 
8.2.4 The Solid Angle for a Disk Source Parallel to a Detector 

with a Circular Aperture 
8.2.5 The Solid Angle for a Point Isotropic Source and a Detector 

with a Rectangular Aperture 
8.2.6 The Solid Angle for a Disk Source and a Detector 

with a Rectangular Aperture 
8.2.7 The Use of the Monte Carlo Method for the Calculation 

of the Solid Angle 
Source Effects 
8.3.1 Source Self-Absorption Factor ( f a )  
8.3.2 Source Backscattering Factor ( f , )  
Detector Effects 
8.4.1 Scattering and Absorption Due to the Window of the Detector 
8.4.2 Detector Efficiency ( E )  



xii CONTENTS 

8.4.3 Determination of Detector Efficiency 
Relationship Between Counting Rate and Source Strength 
Problems 
References 

INTRODUCTION TO SPECTROSCOPY 

Introduction 
Definition of Energy Spectra 
Measurement of an Integral Spectrum with a Single-Channel Analyzer 
Measurement of a Differential Spectrum with a Single-Channel 
Analyzer (SCA) 
The Relationship Between Pulse-Height Distribution and 
Energy Spectrum 
Energy Resolution of a Detection System 
9.6.1 The Effect of Statistical Fluctuations: The Fano Factor 
9.6.2 The Effect of Electronic Noise on Energy Resolution 
9.6.3 The Effect of Incomplete Charge Collection 
9.6.4 The Total Width T 
Determination of the Energy Resolution-The Response Function 
The Importance of Good Energy Resolution 
Brief Description of a Multichannel Analyzer (MCA) 
Calibration of a Multichannel Analyzer 
Problems 
References 

ELECTRONICS 

Introduction 
Resistance, Capacitance, Inductance, and Impedance 
A Differentiating Circuit 
An Integrating Circuit 
Delay Lines 
Pulse Shaping 
Timing 
10.7.1 The Leading-Edge Timing Method 
10.7.2 The Zero-Crossing Timing Method 
10.7.3 The Constant-Fraction Timing Method 
Coincidence-Anticoincidence Measurements 
Pulse-Shape Discrimination 
Preamplifiers 
Amplifiers 
Analog-to-Digital Converters (ADC) 
Multiparameter Analyzers 
Problems 
Bibliography 
References 



CONTENTS ~ i i i  

11 DATA ANALYSIS METHODS 

11.1 Introduction 
11.2 Curve Fitting 
11.3 Interpolation Schemes 
11.4 Least-Squares Fitting 

11.4.1 Least-Squares Fit of a Straight Line 
11.4.2 Least-Squares Fit of General Functions 

11.5 Folding and Unfolding 
11.5.1 Examples of Folding 
11.5.2 The General Method of Unfolding 
11.5.3 An Iteration Method of Unfolding 
11 S.4 Least-Squares Unfolding 

11.6 Data Smoothing 
Problems 
Bibliography 
References 

12 PHOTON (GAMMA-RAY AND X-RAY) SPECTROSCOPY 

12.1 Introduction 
12.2 Modes of Energy Deposition in the Detector 

12.2.1 Energy Deposition by Photons with E < 1.022 MeV 
12.2.2 Energy Deposition by Photons with E > 1.022 MeV 

12.3 Efficiency of X-Ray and Gamma-Ray Detectors: Definitions 
12.4 Detection of Photons with NaI(Tl) Scintillation Counters 

12.4.1 Efficiency of NaI(T1) Detectors 
12.4.2 Analysis of Scintillation Detector Energy Spectra 

12.5 Detection of Gammas with an NE 213 Organic Scintillator 
12.6 Detection of X-Rays with a Proportional Counter 
12.7 Detection of Gammas with Ge Detectors 

12.7.1 Efficiency of Ge Detectors 
12.7.2 Energy Resolution of Ge Detectors 
12.7.3 Analysis of Ge Detector Energy Spectra 
12.7.4 Timing Characteristics of the Pulse 

12.8 CdTe and HgI, Detectors as Gamma Spectrometers 
12.9 Detection of X-Rays with a Si(Li) Detector 
12.10 Detection of X-Rays with a Crystal Spectrometer 

12.10.1 Types of Crystal Spectrometers 
12.10.2 Energy Resolution of Crystal Spectrometers 
Problems 
Bibliography 
References 

13 CHARGED-PARTICLE SPECTROSCOPY 

13.1 Introduction 
13.2 Energy Straggling 



xiv CONTENTS 

Electron Spectroscopy 
13.3.1 Electron Backscattering 
13.3.2 Energy Resolution and Response Function of Electron Detectors 
13.3.3 Energy Calibration of Electron Spectrometers 
13.3.4 Electron Source Preparation 
Alpha, Proton, Deuteron, and Triton Spectroscopy 
13.4.1 Energy Resolution and Response Function of Alpha Detectors 
13.4.2 Energy Calibration 
13.4.3 Source Preparation 
Heavy-Ion ( Z  > 2) Spectroscopy 
13.5.1 The Pulse-Height Defect 
13.5.2 Energy Calibration: The Schmitt Method 
13.5.3 Calibration Sources 
13.5.4 Fission Foil Preparation 
The Time-of-Flight Spectrometer 
Detector Telescopes ( E  d E / h  Detectors) 
Magnetic Spectrometers 
Electrostatic Spectrometers 
Position-Sensitive Detectors 
13.10.1 Position-Sensitive Semiconductor Detectors 
13.10.2 Multiwire Proportional Chambers 
Problems 
Bibliography 
References 

NEUTRON DETECTION AND SPECTROSCOPY 

Introduction 
Neutron Detection by (n, Charged Particle) Reaction 
14.2.1 The BF, Counter 
14.2.2 Boron-Lined Counters 
14.2.3 6 ~ i  Counters 
14.2.4 3 ~ e  Counters 
Fission Chambers 
Neutron Detection by Foil Activation 
14.4.1 Basic Equations 
14.4.2 Determination of the Neutron Flux by Counting the Foil Activity 
Measurement of a Neutron Energy Spectrum by Proton Recoil 
14.5.1 Differentiation Unfolding of Proton Recoil Spectra 
14.5.2 The FERDOR Unfolding Method 
14.5.3 Proportional Counters Used as Fast-Neutron Spectrometers 
14.5.4 Organic Scintillators Used as Fast-Neutron Spectrometers 
Detection of Fast Neutrons Using Threshold Activation Reactions 
14.6.1 The Code SAND-I1 
14.6.2 The Code SPECTRA 
14.6.3 The Relative Deviation Minimization Method (RDMM) 
14.6.4 The LSL-M2 Unfolding Code 
Neutron Energy Measurement with a Crystal Spectrometer 



CONTENTS xv 

14.8 The Time-of-Flight Method 
14.8.1 The Neutron Velocity Selector (Neutron Chopper) 
14.8.2 Pulsed-Ion Beams 

14.9 Compensated Ion Chambers 
14.10 Self-Powered Neutron Detectors (SPND) 

14.10.1 SPNDs with Delayed Response 
14.10.2 SPNDs with Prompt Response 

14.1 1 Concluding Remarks 
Problems 
Bibliography 
References 

15 ACTIVATION ANALYSIS 

15.1 Introduction 
15.2 Selection of the Optimum Nuclear Reaction 
15.3 Preparation of the Sample for Irradiation 
15.4 Sources of Radiation 

15.4.1 Sources of Neutrons 
15.4.2 Sources of Charged Particles 
15.4.3 Sources of Photons 

15.5 Irradiation of the Sample 
15.6 Counting of the Sample 
15.7 Analysis of the Results 
15.8 Sensitivity of Activation Analysis 
15.9 Interference Reactions 
15.10 Advantages and Disadvantages of the Activation Analysis Method 

Problems 
Bibliography 
References 

16 HEALTH PHYSICS FUNDAMENTALS 

16.1 Introduction 
16.2 Units of Exposure and Absorbed Dose 
16.3 The Relative Biological Effectiveness-The Dose Equivalent 
16.4 Dosimetry for Radiation External to the Body 

16.4.1 Dose Due to Charged Particles 
16.4.2 Dose Due to Photons 
16.4.3 Dose Due to Neutrons 

16.5 Dosimetry for Radiation Inside the Body 
16.5.1 Dose from a Source of Charged Particles Inside the Body 
16.5.2 Dose from a Photon Source Inside the Body 

16.6 Internal Dose Time Dependence-Biological Half-Life 
16.7 Biological Effects of Radiation 

16.7.1 Basic Description of the Human Cell 
16.7.2 Stochastic and Nonstochastic Effects 



xvi CONTENTS 

16.8 Radiation Protection Guides and Exposure Limits 
16.9 Health Physics Instruments 

16.9.1 Survey Instruments 
16.9.2 Thermoluminescent Dosimeters 
16.9.3 Solid-state Track Recorders (SSTRs) 
16.9.4 The Bonner Sphere (the Rem Ball) 
16.9.5 The Neutron Bubble Detector 
16.9.6 The Electronic Personal Dosimeter 
16.9.7 Foil Activation Used for Neutron Dosimetry 

16.10 Proper Use of Radiation 
Problems 
Bibliography 
References 

APPENDIXES 

A Useful Constants and Conversion Factors 
B Atomic Masses and Other Properties of Isotopes 
C Alpha, Beta, and Gamma Sources Commonly Used 
D Tables of Photon Attenuation Coefficients 
E Table of Buildup Factor Constants 

INDEX 



PREFACE TO THE FIRST EDITION 

The material in this book, which is the result of a 10-year experience obtained in 
teaching courses related to radiation measurements at the University of Mis- 
souri-Rolla, is intended to provide an introductory text on the subject. It 
includes not only what I believe the beginner ought to be taught but also some 
of the background material that people involved in radiation measurements 
should have. The subject matter is addressed to upper-level undergraduates and 
first-year graduate students. It is assumed that the students have had courses in 
calculus and differential equations and in basic atomic and nuclear physics. The 
book should be useful to students in nuclear, mechanical, and electrical engi- 
neering, physics, chemistry (for radiochemistry), nuclear medicine, and health 
physics; to engineers and scientists in laboratories using radiation sources; and 
to personnel in nuclear power plants. 

The structure and the contents of the book are such that the person who 
masters the material will be able to 

1 Select the proper detector given the energy and type of particle to be counted 
and the purpose of the measurement. 

2 Analyze the results of counting experiments, i.e., calculate errors, smooth 
results, unfold energy spectra, fit results with a function, etc. 

3 Perform radiation measurements following proper health physics procedures. 

The first chapter defines the energy range of the different types of radiation 
for which instruments and methods of measurement are considered; it gives a 
brief discussion of errors that emphasizes their importance; and, finally, it 
presents a very general description of the components of a counting system. This 
last part of the chapter is necessary because a course on radiation measure- 
ments involves laboratory work, and for this reason the students should be 
familiar from the very beginning with the general features and functions of 
radiation instruments. 

xvii 
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The second chapter addresses the very important subject of errors. Since all 
experimental results have errors, and results reported without their correspond- 
ing errors are meaningless, this chapter is fundamental for a book such as this 
one. Further discussion of errors caused by the analysis of the results is 
presented in Chap. 11. 

Chapters 3 and 4 constitute a quick review of material that should have 
been covered in previous courses. My experience has been that students need 
this review of atomic and nuclear physics and of penetration of radiation 
through matter. These two chapters can be omitted if the instructor feels that 
the students know the subject. 

Chapters 5-7 describe the different types of radiation detectors. Full 
chapters have been devoted to gas-filled counters, scintillation detectors, and 
semiconductor detectors. Detectors with "special" functions are discussed in 
Chap. 17. 

The subject of relative and absolute measurements is presented in Chap. 8. 
The solid angle (geometry factor) between source and detector and effects due 
to the source and the detector, such as efficiency, backscattering, and source 
self-absorption are all discussed in detail. 

Chapter 9 is an introduction to spectroscopy. It introduces and defines the 
concepts used in the next four chapters. Chapter 10 discusses the features of the 
electronic components of a counting system that are important in spectroscopy. 
Its objective is not to make the reader an expert in electronics but to show how 
the characteristics of the instruments may influence the measurements. 

Chapter 11 presents methods of analysis of experimental data. Methods of 
curve fitting, of interpolation, and of least-squares fitting are discussed concisely 
but clearly. A general discussion of folding, unfolding, and data smoothing, 
which are necessary tools in analysis of spectroscopic measurements, occupies 
the second half of this chapter. Special methods of unfolding for photons, 
charged particles, and neutrons are further discussed in Chaps. 12 through 14, 
which also cover spectroscopy. Individual chapters are devoted to photons, 
charged particles, and neutrons. All the factors that affect spectroscopic mea- 
surements and the methods of analysis of the results are discussed in detail. 

Chapter 15 is devoted to activation analysis, a field with wide-ranging 
applications. Health physics is discussed in Chap. 16. I feel that every person 
who handles radiation should know at least something about the effects of 
radiation, radiation units, and regulations related to radiation protection. This 
chapter may be omitted if the reader has already studied the subject. 

Chapter 17 deals with special detectors and spectrometers that have found 
applications in many different fields but do not fit in any of the previous 
chapters. Examples are the self-powered detectors, which may be gamma or 
neutron detectors, fission track detectors, thermoluminescent dosimeters, photo- 
graphic emulsions, and others. 

The problems at the end of each chapter should help the student under- 
stand the concepts presented in the text. They are arranged not according to 
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difficulty but in the order of presentation of the material needed for their 
solution. 

The appendixes at the end of the book provide useful information to the 
reader. 

I use the SI (metric) units with the exception of some well-established 
nonmetric units, which, it seems, are here to stay. Examples are MeV, keV, and 
eV for energy; the barn for cross sections; the curie; and the rem. These units 
are given in parentheses along with their SI counterparts. 

Writing a book is a tremendous undertaking, a task too big for any single 
person. I was fortunate to have been helped by many individuals, and it gives me 
great pleasure to recognize them here. First and foremost, I thank all the former 
students who struggled through my typed notes when they took the radiation 
measurements course at the University of Missouri-Rolla. Their numerous 
critical comments are deeply appreciated. I thank my colleagues, Dr. D. Ray 
Edwards for his continuous support, Dr. G. E. Mueller for his many useful 
suggestions, and Drs. A. E. Bolon and T. J. Dolan for many helpful discussions 
over the last 10 years. I also thank Dr. R. H. Johnson of Purdue University for 
reviewing certain chapters. I especially thank my dear friend Professor B. W. 
Wehring of the University of Illinois for numerous lengthy discussions following 
his detailed critical review of most of the chapters. I am grateful to Mrs. Susan 
Elizagary for expertly typing most of the manuscript and to Mrs. Betty Volosin 
for helping in the final stages of typing. 

No single word or expression of appreciation can adequately reflect my 
gratitude to my wife Zizeta for her moral support and understanding during the 
last three painstaking years, and to my children Steve and Lena for providing 
pleasant and comforting distraction. 

Nicholas Tsoulfanidis 





PREFACE TO THE SECOND EDITION 

For an author it is very gratifying to discover that a technical book is still 
relevant more than ten years after it was first published. This is the case with 
this book because it addresses the fundamentals of nuclear radiation counting, 
which have not significantly changed during that period of time. Like the first 
edition, this book is written for persons who have no prior knowledge of 
radiation counting. These include undergraduate students in nuclear science 
and engineering; first-year graduate students who enter this field from another 
discipline; health physicists and health physics technicians; nuclear medicine 
technical personnel; and scientists, engineers, and technicians in laboratories 
where atomic and nuclear radiation are used. In addition, according to com- 
ments from former students and colleagues, the book has proven to be an 
excellent reference. 

The second edition follows the same guidelines as the first-namely simplic- 
ity in writing and use of many examples. The main structural change is the 
elimination of Chap. 17 (Special Detectors and Spectrometers) and the reloca- 
tion of the material in appropriate chapters. For example, rate meters and 
gas-filled detectors are now discussed in Chap. 5. Self-powered detectors are 
now included in Chap. 14 along with other neutron detectors. Chapter 16 deals 
with solid-state track recorders and thermoluminescent dosimeters. 

As should be expected, all chapters have been corrected for errors, revised 
for clarification, and new examples have been added as needed. The more 
substantive revisions were made in the following chapters: In Chap. 2 there is 
now a better explanation of the X 2  procedure and the minimum detectable 
activity (MDA). In Chap. 4, relative to the stopping power of charged particles, 
there is a more detailed discussion and presentation of the latest formulas of 
gamma-ray build-up factors. The Long Range Alpha Detector (LRAD), a clever 
new counter of alpha radiation, is introduced in Chap. 5. In Chap. 7, pure 
germanium detectors, which are prominent devices for the detection of gamma 
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rays, are introduced. In Chap. 12 the latest information about Ge detectors is 
presented. Magnetic and electrostatic spectrometers and the position-sensitive 
detectors are included in Chap. 13. In Chap. 14, the LSL-M2 unfolding code is 
introduced as well as compensated ion chambers and self-powered neutron 
detectors. Chapter 16 is almost completely rewritten. There is an improved 
presentation in the dose rate calculation, detailed discussion of the new protec- 
tion guides and exposure limits, and an expanded list of dosimeters. 

I am grateful to Dr. Eiji Sakai who translated the First Edition into 
Japanese and in doing so discovered several typos and, more importantly, 
offered many suggestions that are incorporated into the Second Edition and 
make it better. 

Nicholas Tsoulfanidis 



CHAPTER 

ONE 

INTRODUCTION TO 
RADIATION MEASUREMENTS 

1.1 WHAT IS MEANT BY RADIATION? 

The word radiation was used until about 1900 to describe electromagnetic 
waves. Around the turn of the century, electrons, X-rays, and natural radioactiv- 
ity were discovered and were also included under the umbrella of the term 
radiation. The newly discovered radiation showed characteristics of particles, in 
contrast to the electromagnetic radiation, which was treated as a wave. In the 
1920s, DeBroglie developed his theory of the duality of matter, which was soon 
afterward proved correct by electron diffraction experiments, and the distinction 
between particles and waves ceased to be important. Today, radiation refers to 
the whole electromagnetic spectrum as well as to all the atomic and subatomic 
particles that have been discovered. 

One of the many ways in which different types of radiation are grouped 
together is in terms of ionizing and nonionizing radiation. The word ionizing 
refers to the ability of the radiation to ionize an atom or a molecule of the 
medium it traverses. 

Nonionizing radiation is electromagnetic radiation with wavelength A of 
about 10 nm or longer. That part of the electromagnetic spectrum includes 
radiowaves, microwaves, visible light ( A  = 770-390 nm), and ultraviolet light 
( A  = 390-10 nm). 

Ionizing radiation includes the rest of the electromagnetic spectrum (X-rays, 
A = 0.01-10 nm) and y-rays with wavelength shorter than that of X-rays. It also 
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includes all the atomic and subatomic particles, such as electrons, positrons, 
protons, alphas, neutrons, heavy ions, and mesons. 

The material in this text refers only to ionizing radiation. Specifically, it 
deals with detection instruments and methods, experimental techniques, and 
analysis of results for radiation in the energy range shown in Table 1.1. Particles 
with energies listed in Table 1.1 are encountered around nuclear reactors, 
around installations involving production or use of natural or manufactured 
radioisotopes, and also around low-energy accelerators. Not included in Table 
1.1 are cosmic rays and particles produced by high-energy accelerators (GeV 
energy range). 

1.2 STATISTICAL NATURE OF RADIATION EMISSION 

Radiation emission is nothing more than release of energy by a system as it 
moves from one state to another. According to classical physics, exchange or 
release of energy takes place on a continuous basis; i.e., any amount of energy, 
no matter how small, may be exchanged as long as the exchange is consistent 
with conservation laws. The fate of a system is exactly determined if initial 
conditions and forces acting upon it are given. One may say that classical physics 
prescribed a "deterministic" view of the world. 

Quantum theory changed all that. According to quantum theory, energy can 
be exchanged only in discrete amounts when a system moves from one state to 
another. The fact that conservation laws are satisfied is a necessary but not 
a sufficient condition for the change of a system. The fate of the system is 
not determined exactly if initial conditions and forces are known. One can only 
talk about the probability that the system will do something or do nothing. 
Thus, with the introduction of quantum theory, the study of the physical world 
changed from "deterministic" to "probabilistic." 

The emission of atomic and nuclear radiation obeys the rules of quantum 
theory. As a result of this, one can only talk about the probability that a reaction 
will take place or that a particle will be emitted. If one attempts to measure the 
number of particles emitted by a nuclear reaction, that number is not constant 
in time; it has a statistical uncertainty because of the probabilistic nature of the 
phenomenon under study. 

Table 1.1 Maximum Energy Considered 

Particle Energy (MeV) 

a 20 
P 10 
Y 20 
n 20 
Heavy ions 100 
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Consider a radioactive source emitting electrons and assume that one 
attempts to measure the number of electrons per unit time emitted by the 
source. For eveq atom of the source there is a probability, not a certainty, that 
an electron will be emitted during the next unit of time. One can never measure 
the "exact" number. The number of particles emitted per unit time is different 
for successive units of time. Therefore, one can only determine the average 
number of particles emitted. That average, like any average, carries with it an 
uncertainty, an error. The determination of this error is an integral part of any 
radiation measurement. 

1.3 THE ERRORS AND ACCURACY AND PRECISION 
OF MEASUREMENTS 

A measurement is an attempt to determine the value of a certain parameter or 
quantity. Anyone attempting a measurement should keep in mind the following 
two axioms regarding the result of the measurement: 

Axiom 1 No measurement yields a result without an error. 
Axiom 2 The result of a measurement is almost worthless unless the error 

associated with that result is also reported. 

The term error is used to define the following concept: 

Error = (measured or computed value of quantity Q) - (true value of Q) 

Error = estimated uncertainty of the measured or computed value of Q. 

Related to the error of a measurement are the terms accuracy and preci- 
sion. The dictionary gives essentially the same meaning for both accuracy and 
precision, but in experimental work they have different meanings. 

The accuracy of an experiment tells us how close the result of the measure- 
ment is to the true value of the measured quantity. The precision of an 
experiment is a measure of the exactness of the result. As an example, consider 
the measurement of the speed of light, which is known, from measurements, to 
be equal to 2.997930 X lo8 m/s. 

Assume that a measurement gave the result 2.9998 X 10' m/s. The differ- 
ence between these two numbers is an estimate of the accuracy of the measure- 
ment. On the other hand, the precision of the measurement is related to the 
number of significant figurest representing the result. The number 2.9998 x lo8 
indicates that the result has been determined to be between 2.9997 and 2.9999 
or, equivalently, that it is known to 1 part in 30,000 (1/29998). 

'AS an example of the number of significant figures, each of the following numbers has five 
significant figures: 2.9998. 29998. 20009. ,0029998, 2.9880 x 10'. 
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If the measurement is repeated and the new result is 2.9999 x lo8 m/s, the 
accuracy has changed but not the precision. If, on the other hand, the result 
of the measurement is 2.99985 x lo8 m/s, both precision and accuracy have 
changed. 

Another way to look at the accuracy and precision of a measurement is in 
terms of the distribution of the data obtained (Fig. 1.1). To improve the error of 
a measurement, the process is repeated many times, if practical. The results 
recorded, after repeated identical tries, are not identical. Instead, the data 
follow a distribution, almost Gaussian in most cases (see Chap. 2 for more 
details), and the measured value reported is an average based on the shape of 
the distribution of data. The width of the distribution of individual results is a 
measure of the precision of the measurement; the distance of the average of the 

inaccurate-not precise 

inaccurate but precise accurate and precise 

Figure 1.1 Accuracy and precision of measurements; t ,  true value; m, measured value. 
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distribution from the true value is a measure of the accuracy of the measure- 
ment. 

Every experimenter should consider accuracy and precision simultaneously. 
It would be a waste of effort to try to improve the precision of a measurement if 
it is known that the result is inaccurate. On the other hand, it is almost useless 
to try to achieve very high accuracy if the precision of the measurement is low. 

Limitations in the accuracy and precision of measurements result from 
many causes. Among the most important are 

1. Incorrectly calibrated instruments. 
2. Algebraic or reading errors of the observer. 
3. Uncontrolled changes in environmental conditions, such as temperature, 

pressure, and humidity. 
4. Inability to construct arbitrarily small measuring meter-sticks, rods, pointers, 

clocks, apertures, lenses, etc. 
5. A natural limit of sensitivity for any real measuring instrument detecting 

individual effects of atoms, electrons, molecules, and protons. 
6. Imperfect method of measurement in most cases. 
7. Unknown exact initial state of the system. Or, even if the initial state is 

known, it is impossible to follow the evolution of the system. For example, to 
determine the state of a gas in a container, one should know the exact 
position and velocity of every molecule at t = 0. Even if this is known, how 
practical is it to follow loz0 atoms or molecules moving in a box? 

8. Statistical nature of some processes, e.g., radioactive decay. There is a 
probability that an atom of a radioactive isotope will decay in the next 10 s, 
and this is as much information as one can report on this matter. The 
probability can be calculated, but it is still a probability, never a certainty. 

1.4 TYPES OF ERRORS 

There are many types of errors, but they are usually grouped into two broad 
categories: systematic and random. 

Systematic (or determinate) errors are those that affect all the results in the 
same way. Examples of systematic errors are 

1. Errors from badly calibrated instruments 
2. Personal errors (algebraic, wrong readings, etc.) 
3. Imperfect technique 

Systematic errors introduce uncertainties that do not obey a particular law 
and cannot be estimated by repeating the measurement. The experimenter 
should make every reasonable effort to minimize or, better yet, eliminate 
systematic errors. Once a systematic error is identified, all results are corrected 
appropriately. For example, if a measurement of temperature is made and it is 
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discovered that the thermocouple used overestimates the temperature by lo%, 
all temperatures measured are decreased by 10%. 

Random (or statistical) errors can either decrease or increase the results of 
a measurement, but in a nonreproducible way. Most of the random errors 
cannot be eliminated. They can be reduced, however, by either improving the 
experimental apparatus, improving the technique, and/or repeating the experi- 
ment many times. Examples of random errors are 

Errors resulting from experimental apparatus (reading of instruments, elec- 
tronic noise, etc.) 
Errors from uncontrolled change in condition such as voltage, temperature, 
or pressure 
Probabilistic nature of the phenomenon under study 

The determination of error associated with the measurement is a very 
important task. It is probably as important as the measurement. ~echnical 
journals and scientific reports never report results of experiments without the 
error corresponding to these results. A measurement reported without an error 
is almost worthless. For this reason, the study of errors is a topic of great 
importance for scientists and engineers. 

This text does not give a complete theory of error. Only the fundamentals 
needed for a basic understanding of the statistical analysis of errors are 
presented. The objective is to present methods that provide an estimate of the 
error of a certain measurement or a series of measurements and procedures 
that minimize the error. 

Only random errors are discussed from here on. In every measurement, 
systematic and random errors should be treated separately. Systematic and 
random errors should never be combined using the methods discussed in Chap. 
2. Those methods apply to random errors only. 

1.5 NUCLEAR INSTRUMENTATION 

1.5.1 Introduction 

This section is addressed to the person who has not seen or used radiation 
instruments.+ Its purpose is to present a general description of the physical 
appearance and operation of the basic components of a radiation counting 
system. Every component is treated like a "black box," i.e., input and output are 
discussed without any details about how the output is obtained. Details about 
the construction and operation of individual units are given in later chapters. 

t ~ h e  term radiation imtmrnents refers to instruments used for the detection of ionizing 
radiation as explained in Sec. 1.1 
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Detectors are discussed in Chaps. 5 through 7, and the rest of the electronics is 
discussed in Chap. 10. 

Counting systems are classified into two types, according to the method of 
operation: 

1. Pulse-type systems. The output consists of voltage pulses, one pulse per 
particle detected. 

2. Current-type systems. The output is an average value, resulting from the 
detection of many particles. 

A basic pulse-type system consists of the instruments shown in Fig. 1.2. The 
function of each component is discussed in later sections of this chapter. 

A current-type system (e.g., an electrometer or a rate meter) is simpler than 
the pulse-type system. Such systems are discussed in Chap. 5. The remainder of 
this chapter concerns only pulse-type counting systems. 

1.5.2 The Detector 

The function of the detector is to produce a signal for every particle entering 
into it. Every detector works by using some interaction of particles with matter. 
Following is a list of the most common detector types. 

1. Gas-filled counters (ionization, proportional, Geiger-Muller counters) 
2. Scintillation detectors 
3. Semiconductor detectors 
4. Spark chambers 
5. Bubble chambers 

(used with high energy particles) 

6. Photographic emulsions 
7. Thermoluminescent dosimeters (TLDs) 
8. Cerenkov counters 
9. Self-powered neutron detectors 

The signal at the output of most detectors is a voltage pulse, such as the one 

r Source 

Single channel 
Detector 

analyzer 

power supply Oscilloscope 0 Timer cl 
Figure 1.2 A basic pulse-type detection system. 
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Figure 1.3 A typical pulse-type detector 
signal. 

shown in Fig. 1.3. For others, the signal may be a change in color (emulsions) or 
some trace that can be photographed (bubble or spark chambers) 

The ideal pulse-type counter should satisfy the following requirements: 

1. Every particle entering the detector should produce a pulse at the exit of the 
counter, which is higher than the electronic noiset level of the unit that 
accepts it (usually this unit is the preamplifier). In such a case, every particle 
entering the detector will be detected, and the detector efficiency, defined as 
the ratio of the number of particles detected to the number of particles 
entering the counter, will be equal to 100 percent (for more details on 
efficiency, see Chap. 8). 

2. The duration of the pulse should be short, so that particles coming in one 
after the other in quick succession produce separate pulses. The duration of 
the pulse is a measure of the dead time of the counter (see Sec. 2.21) and 
may result in loss of counts in the case of high counting rates. 

3. If the energy of the particle is to be measured, the height of the pulse should 
have some known fixed relationship to the energy of the particle. To achieve 
this, it is important that the size of the counter is such that the particle 
deposits all its energy (or a known fraction) in it. 

4. If two or more particles deposit the same energy in the detector, the 
corresponding pulses should have the same height. This requirement is 
expressed in terms of the energy resolution of the detector (see Chap. 9). 
Good energy resolution is extremely important if the radiation field consists 
of particles with different energies and the objective of the measurement is to 
identify (resolve) these energies. Figure 1.4 shows an example of good and 
bad energy resolution. 

There is no detector that satisfies all these requirements. Few detectors 
have 100 percent efficiency. In practice, it is not feasible for gamma and neutron 
detectors to have all the energy of the particle deposited in the counter. Because 
of statistical effects, there is no detector with ideal energy resolution. What 
should one do? 

'~lectronic noise is any type of interference that tends to "mask" the quantity to be observed. 
It is usually 'the result of the thermal motion of charge carriers in the components of the detection 
system (cables, resistors, the detector itself, etc.) and manifests itself as a large number of low-level 
pulses. Electronic noise should be distinguished from background pulses resulting from radiation 
sources that are always present, e.g., cosmic rays. 
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Good 

Figure 1.4 Good and bad energy 
Energy resolution. 

In practice, the experimenter selects a detector that satisfies as many of 
these properties as possible to the highest degree possible and, depending on 
the objective of the measurement, applies appropriate corrections to the mea- 
sured data. 

1.5.3 The NIM Concept 

Most of the commercially available instruments that are used in radiation 
measurements conform to the standards on nuclear instrument modules (NIM) 
developed by the U.S. Atomic Energy Commission (now the Nuclear Regulatory 
Commission) and now dictated by the Department of ~ n e r ~ ~ . '  

The objective of the NIM standard is the design of commercial modules that 
are interchangeable physically and electrically. The electrical interchangeability 
is confined to the supply of power to the modules and in general does not cover 
the design of the internal circuits. 

The size of the smallest, called a single-width, NIM is 0.222 m X 0.035 m 
(8.71 in X 1.35 in). Multiple-width NIMs are also made. The standard NIM bin 
will accommodate 12 single-width NIMs or any combination of them having the 
same total equivalent width. Figure 1.5 is a photograph of the front and back 
sides of a commercial standard bin. Figure 1.6 is a photograph of the bin filled 
with NIMs of different widths, made by different manufacturers. 

1.5.4 The High-Voltage Power Supply 

The high-voltage power supply (HVPS) provides a positive or negative voltage 
necessary for the operation of the detector. Most detectors need positive high 
voltage (HV). Typical HVs for common detectors are given in Table 1.2. The 
HVPS is constructed in such a way that the HV at the output changes very little 
even though the input voltage (110 V, ac) may fluctuate. 
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Figure 1.5 Photographs of the (a) front and ( b )  back sides of a commercial NIM bin (from Canberra 
1979-1980 catalog). 



INTRODUCTION TO RADIATION MEASUREMENTS 11 

Figure 1.6 A typical bin filled with a combination of NIMs made by different manufacturers.' 

A typical commercial HVPS is shown in Fig. 1.7. The front panel has an 
indicator light that shows whether the unit is on or off and, if it is on, whether 
the output is positive or negative voltage. There are two knobs for voltage 
adjustment, one for coarse changes of 500-V intervals, the other for changes of 
0.1 V. The output is at the rear of the unit. 

1.5.5 The Preamplifier 

The primary purpose of the preamplifier is to provide an optimized coupling 
between the output of the detector and the rest of the counting system. The 
preamplifier is also necessary to minimize any sources of noise that may change 
the signal. 

Table 1.2 High Voltage Needed for Certain Common Detectors 

Detector High voltage (V) 

Ionization counters HV < 1000 
Proportional counters 500 < HV < 1500 
GM counters 500 < HV < 1500 
Semiconductor detectors 

Surface-barrier HV < 100 
Lidrifted 100 < HV < 3000 
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The signal that comes out of the detector is very weak, in the millivolt (mV) 
range (Fig. 1.3). Before it can be recorded, it will have to be amplified by a 
factor of a thousand or more. To achieve this, the signal will have to be 
transmitted through a cable to the next instrument of the counting system, 
which is the amplifier. Transmission of any signal through a cable attenuates it 
to a certain extent. If it is weak at the output of the detector, it might be lost in 
the electronic noise 'that accompanies the transmission. This is avoided by 
placing the preamplifier as close to the detector as possible. The preamplifier 
shapes the signal and reduces its attenuation by matching the impedance of the 
detector with that of the amplifier. After going through the preamplifier, the 
signal may be safely transmitted to the amplifier, which may be located at a 
considerable distance away. Although some preamplifiers amplify the signal 
slightly, their primary function is that of providing electronic matching between 
the output of the detector and the input of the amplifier. 

There are many types of commercial preamplifiers, two of which are shown 
in Fig. 1.8. In most cases, the HV is fed to the detector through the preamplifier. 

1.5.6 The Amplifier 

The main amplification unit is the amplifier. It increases the signal by as many 
as 1000 times or more. Modern commercial amplifiers produce a maximum 
signal of 10 V, regardless of the input and the amplification. For example, 
consider a preamplifier that gives at its output three pulses with heights 50 mV, 
100 mV, and 150 mV. Assume that the amplifier is set to 100. At the output of 
the unit, the three pulses will be 

Note that the third value should be 15 V, but since the amplifier produces a 
maximum signal of 10 V, the three different input pulses will show, erroneously, 
as two different pulses at the output. If only the number of particles is 
measured, there is no error introduced-but if the energy of the particles is 
measured, then the error is very serious. In the example given above, if gammas 
of three different energies produce the pulses at the output of the preamplifier, 
the pulses at the output of the amplifier will be attributed erroneously to 
gammas of two different energies. To avoid such an error, an observer should 
follow this rule: 

Before any measurement of particle energy, make certain that the highest pulse of the 
spectrum to be measured is less than 10 V at the output of the amplifier. 

In addition to signal amplification, an equally important function of the 
amplifier is to convert the signal at the output of the preamplifier into a form 
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Figure 1.8 Two typical commercial preamplifiers: (a) type used with a photomultiplier tube (made 
by Harshaw), and ( b )  type used with semiconductor detectors (made by Canberra). 



16 MEASUREMENT AND DETECTION OF RADIATION 

suitable for the measurement desired. More details on this subject are given in 
Chap. 10. The front panel of a typical commercial amplifier is shown in Fig. 1.7. 

Commercial amplifiers have two dials for adjusting the amplification. 

1. Coarse gain: This dial adjusts the amplification in steps. Each step is a 
fraction of the maximum amplification. For example, the dial may show the 
numbers 1, 2, 4, 8, 16. If the maximum amplification is 100, then the coarse 
gain on 16 will give a maximum of 100, the coarse gain on 8 will give 50, etc. 
Some amplifiers have the numbers &, i, $, i, 1, and some newer ones have 
1, 10, 100, 1000, etc. 

2. Fine gain: This dial adjusts the amplification continuously within each step of 
the coarse gain. The numbers, in most units, go from 0 to 10. The highest 
number provides the maximum amplification indicated by the coarse gain. As 
an example, consider the maximum amplification to be 100. If the coarse gain 
is 8 (highest number 16) and the fine gain 5 (highest number lo), the 
amplification will be 100 x (coarse gain) x 3 (fine gain) = 25. 

Most commercial amplifiers provide at the output two types of pulses, called 
unipolar and bipolar (Fig. 1.9). 

1.5.7 The Oscilloscope 

The oscilloscope is an instrument that permits the study of rapidly changing 
phenomena, such as a sinusoidal voltage or the pulse of a counter. The 
phenomenon is observed on a fluorescent screen as shown in Fig. 1.10. The 
horizontal axis of the screen measures time. The vertical axis gives volts. 

In radiation measurements the oscilloscope is used to check the quality of 
the signal as well as the level and type of the electronic noise. It is always a good 
practice before any measurement is attempted to examine the signal at the 
output of the amplifier. A few examples of good and bad pulses are shown in 
Fig. 1.11. In Fig. 1.11, a and b represent good pulses, and Fig. 1.11~ is probably 

(a)  (6) 

Figure 1.9 The pulse at the output of the amplifier: ( a )  unipolar pulse and ( b )  bipolar pulse. 
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Figure 1.10 Two commercial oscilloscopes: a) a Tektronix 2212 oscilloscope (Copyright O 1994 by 
Tektronix, Inc. All rights resewed. Reproduced by permission.); and b )  a Philips PM3394A 
autoranging combiscope (Reproduced with permission). 

an electrical discharge, not good for counting. Figure l . l l d  is no good either, 
because a high-frequency signal is "riding" on the output of the preamplifier. If 
the pulse is not good, the observer should not proceed with the measurement 
unless the source of noise is identified and eliminated. 

Modern oscilloscopes provide analog as well as digital signals. 

1.5.8 The Discriminator or Single-Channel Analyzer (SCA) 

The SCA is used to eliminate the electronic noise and, in general, to reject 
unwanted pulses. When a pulse is amplified, the electronic noise that is always 
present in a circuit is also amplified. If one attempts to count all the pulses 
present, the counting rate may be exceedingly high. But electronic noise is a 
nuisance and it should not be counted. 
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Figure 1.11 Samples of good ( a  and b)  and bad (c and d )  pulses as seen on the screen of the 
oscilloscope. 

In some cases, one may want to count only pulses above a certain height, 
i.e., particles with energy above certain threshold energy. Pulses lower than that 
height should be rejected. The discriminator or SCA is the unit that can make 
the selection of the desired pulses. Figure 1 . 7 ~  shows the front panel of a typical 
commercial SCA. Modern SCAs work in the following way. 

There are two dials on the front panel of the unit. One is marked E, for 
energy, or LLD, for lower-level dial; the other is marked AE or ULD/AE, for 
upper-level dial/AE. There is also a two-position switch with INT (integral) and 
DIFF (differential) positions. In the INT position, only the E dial operates, and 
the unit functions as a discriminator. In the DIFF vosition. both E and AE 
operate, and the unit is then a single-channel analyzer. 

In some other commercial models, instead of INT and DIFF positions, the 
instrument has special connectors for the desired output. 

The discriminator (switch position: INTI. The dial E (for energy) may be 
changed continuously from 0 to 100. Of course, the discriminator works with 
voltage pulses, but there is a one-to-one correspondence between a pulse height 
and the energy of a particle. Assume that the discriminator is set to E = 2.00 V 
(the 2 V may also correspond to 2 MeV of energy). Only pulses with height 
greater than 2 V will pass through the discriminator. Pulses lower than 2 V will 
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Time I 

Figure 1.12 The pulse at the output of a discriminator. 

Upper level 
discriminator 

Lower level 
discriminator 

Single channel analyzer output 

Time 

Figure 1.13 The operation of a single-channel analyzer. 
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1200 

Channel Number 

Figure 1.14 An energy spectrum shown on the screen of an MCA. 

be rejected. For every pulse that is larger than 2 V, the discriminator will 
provide at the output a rectangular pulse with height equal to 10 V (Fig. 1.12) 
regardless of the actual height of the input pulse. The output pulse of the 
discriminator is a pulse that triggers the unit (scaler), which counts individual 
pulses and tells it, "a pulse with height bigger than 2 V has arrived; count 1." 
Thus, the discriminator eliminates all pulses below E and allows only pulses that 
are higher than E to be counted. 

The single-channel analyzer (switch position: DIFF). Both E and AE dials 
operate. Only pulses with heights between E and E + AE are counted (Fig. 
1.13). The two dials form a "channel"; hence the name single-channel analyzer. 
If the E dial is changed to El, then pulses with heights between E l  and 
E, + AE will be counted. In other words, the width AE, or window, of the 
channel is always added to E. 

1.5.9 The Scaler 

The scaler is a recorder of pulses. For every pulse entering the scaler, a count of 
1 is added to the previous total. At the end of the counting period, the total 
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number of pulses recorded is displayed. Figure 1.7d shows the front panel of a 
typical commercial scaler. 

1.5.10 The Timer 

The timer is connected to the scaler, and its purpose is to start and stop the 
scaler at desired counting time intervals. The front panel of a typical timer is 
shown in Fig. 1.7e. Some models combine the timer with the scaler in one 
module. 

1.5.11 The Multichannel Analyzer 

The multichannel analyzer (MCA) records and stores pulses according to their 
height. Each storage unit is called a channel. 

The height of the pulse has some known relationship-usually proportional 
-to the energy of the particle that enters into the detector. Each pulse is 
in turn stored in a particular channel corresponding to a certain energy. The 
distribution of pulses in the channels is an image of the distribution of the 
energies of the particles. At the end of a counting period, the spectrum that was 
recorded may be displayed on the screen of the MCA (Fig. 1.14). The horizontal 
axis is a channel number, or particle energy. The vertical axis is a number of 
particles recorded per channel. More details about the MCA and its use are 
given in Chaps. 9 and 10. 
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STATISTICAL ERRORS OF 
RADIATION COUNTING 

2.1 INTRODUCTION 

This chapter discusses statistics at the level needed for radiation measurements 
and analysis of their results. People who perform experiments need statistics for 
analysis of experiments that are statistical in nature, treatment of errors, and 
fitting a function to the experimental data. The first two uses are presented in 
this chapter. Data fitting is discussed in Chap. 11. 

2.2 DEFINITION OF PROBABILITY 

Assume that one repeats an experiment many times and observes whether or 
not a certain event x is the outcome. The event is a certain 0bSe~able result 
defined by the experimenter. If the experiment was performed N times, and n 
results were of type x, the probability P(x) that any single event will be of type x 
is equal to 

n 
P(x) = lim - 

N - m  N 

The ratio n/N is sometimes called the relative frequency of occurrence of x in 
the first N trials. 

23 
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There is an obvious difficulty with the definition given by Eq. 2.1-the 
requirement of an infinite number of trials. Clearly, it is impossible to perform 
an infinite number of experiments. Instead, the experiment is repeated N  times, 
and if the event x occurs n  times out of N, the probability P(x) is 

n  
P(x) = - 

N  
(2.2) 

Equation 2.2 will not make a mathematician happy, but it is extensively used in 
practice because it is in accord with the idea behind Eq. 2.1 and gives useful 
results. 

As an illustration of the use of Eq. 2.2, consider the experiment of tossing a 
coin 100 times and recording how many times the result is "heads" and how 
many it is "tails." Assume that the result is 

On the basis of Eq. 
tossed once more is 

Heads: 48 times 
Tails: 52 times 

2.2, the probability of getting heads or tails if the coin is 

For this simple experiment, the correct result is known to be 

P(tai1s) = P(heads) = 0.5 

and one expects to approach the correct result as the number of trials increases. 
That is, Eq. 2.2 does not give the correct probability, but as N  -t m, Eq. 2.2 
approaches Eq. 2.1. 

Since both n  and N  are positive numbers, 0 5 n / N  I 1, therefore, 

0 I P(x) I 1 
that is, the probability is measured on a scale from 0 to 1. 

If the event x occurs every time the experiment is performed, then n  = N 
and P(x) = 1. Thus the probability of a certain (sure) event is equal to 1. 

If the event x never occurs, then n  = 0 and P(x) = 0. In this case the 
probability of an impossible event is 0. 

If the result of a measurement has N  possible outcomes, each having equal 
probability, then the probability for the individual event xi to occur is 

For example, in the case of coin tossing there are two events of equal probabil- 
ity; therefore 
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2.3 BASIC PROBABILITY THEOREMS 

In the language of probability, an "event" is an outcome of one or more 
experiments or trials and is defined by the experimenter. Some examples of 
events are 

1. Tossing a coin once 
2. Tossing a coin twice and getting heads both times 
3. Tossing a coin 10 times and getting heads for the first five times and tails for 

the other five 
4. Picking up one card from a deck of cards and that card being red 
5. Picking up 10 cards from a deck and all of them being hearts 
6. Watching the street for 10 min and observing two cyclists pass by 
7. Counting a radioactive sample for 10 s and recording 100 counts 
8. Inspecting all the fuel rods in a nuclear reactor and finding faults in two of 

them. 

Given enough information, one can calculate the probability that any one of 
these events will occur. In some cases, an event may consist of simpler compo- 
nents and one would like to know how to calculate the probability of the 
complex event from the probabilities of its components. 

Consider two events x and y and a series of N trials. The result of each trial 
will be only one of the following four possibilities: 

1. x occurred but not y 
2. y occurred but not x 
3. Both x and y occurred 
4. Neither x nor y occurred 

Let n,, n,, n,, n, be the number of times in the N observations that the 
respective possibilities occurred. Then, 

n, + n, + n, + n, = N (2.3) 

The following probabilities are defined with respect to the events x and y: 

P(x) = probability that x occurred 

P(y) = probability that y occurred 

P(x + y) = probability that either x or y occurred 

P(xy) = probability that both x and y occurred 

P(xiy) = conditional probability of x given y 
= probability of x occurring given that y has occurred 

P(y br) = conditional probability of y given x 
= probability of y occurring given that x has occurred 
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Using Eq. 2.2, these probabilities are 

For the six probabilities given by Eqs. 2.4 to 2.9, the following two relations 
hold: 

P(x + y) = P(x) + P(y) - P h y )  (2.10) 

P(xy) = P(x)P(ybr) = P(y)P(xly) (2.11) 

Equation 2.10 is called the addition law ofprobability. Equation 2.11 is called the 
multiplication law of probability. 

Example 2.1 Consider two well-shuffled decks of cards. What is the proba- 
bility of drawing one card from each deck with both of them being the ace of 
spades? 

Answer The events of interest are 

Event x = event y = (drawing one card and that card being ace of spades) 

Since each deck has only one ace of spades, 

P(x) = P(y) = P(ace of spades) = 

The conditional probability is 

P(xly) = P(1st card ace of spades when 2nd card is ace of spades) = 

In this case, P(xly) = P(x) because the two events are independent. The fact 
that the first card from the first deck is the ace of spades has no influence on 
what the first card from the second deck is going to be. Similarly, P(yM = P(y). 

Therefore, using Eq. 2.11, one has 
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Example 2.2 Consider two well-shuffled decks of cards and assume one card 
is drawn from each of them. What is the probability of one of the two cards 
being the ace of spades? 

Answer Using Eq. 2.10, 

Under certain conditions, the addition and multiplication laws expressed by 
Eqs. 2.10 and 2.11 are simplified. 

If the events x and y are mutually exclusive-i.e., they cannot occur 
simultaneously-then P(xy) = 0 and the addition law becomes 

If the probability that x occurs is independent of whether or not y occurs, 
and vice versa, then as shown in Ex. 2.1, 

In that case, the events x and y are called stochastically independent and the 
multiplication law takes the form 

Equations 2.12 and 2.13 are also known as the addition and multiplication laws 
of probability, but the reader should keep in mind that Eqs. 2.12 and 2.13 are 
special cases of Eqs. 2.10 and 2.11. 

Example 2 3  What is the probability that a single throw of a die will result 
in either 2 or 5? 

Answer 

Example 2.4 Consider two well-shuffled decks of cards and assume one card 
is drawn from each deck. What is the probability of both cards being spades? 

Answer 

P(one spade) = $ 
P[(spade)(spade)l = (El(%) = 
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Equations 2.12 and 2.13 hold for any number of events, provided the events 
are mutually exclusive or stochastically independent. Thus, if we have N such 
events xnln=l ,..., N 

P(x, + x, + ... +xN)  = P(xl) + P(x,) + ... +P(xN) (2.14) 

P(x,x, ... x,) = P(x,)P(x,) ... P(xN) (2.15) 

2.4 PROBABILITY DISTRIBUTIONS AND RANDOM VARIABLES 

When an experiment is repeated many times under identical conditions, the 
results of the measurement will not necessarily be identical. In fact, as a rule 
rather than as an exception, the results will be different. Therefore, it is very 
desirable to know if there is a law that governs the individual outcomes of the 
experiment. Such a law, if it exists and is known, would be helpful in two ways. 
First, from a small number of measurements, the experimenter may obtain 
information about expected results of subsequent measurements. Second, a 
series of measurements may be checked for faults. If it is known that the results 
of an experiment obey a certain law and a given series of outcomes of such an 
experiment does not follow that law, then that series of outcomes is suspect and 
should be thoroughly investigated before it becomes acceptable. 

There are many such laws governing different types of measurements. The 
three most frequently used will be discussed in later sections of this chapter, but 
first some general definitions and the concept of the random variable are 
introduced. 

A quantity x that can be determined quantitatively and that in successive 
but similar experiments can assume different values is called a random variable. 
Examples of random variables are the result of drawing one card from a deck of 
cards, the result of the throw of a die, the result of measuring the length of a 
nuclear fuel rod, and the result of counting the radioactivity of a sample. There 
are two types of random variables, discrete and continuous. 

A discrete random variable takes one of a set of discrete values. Discrete 
random variables are especially useful in representing results that take integer 
values-for example, number of persons, number of defective batteries, or 
number of counts recorded in a scaler. 

A continuous random variable can take any value within a certain interval 
-for example, weight or height of people, the length of a rod, or the tempera- 
ture of the water coming out of a reactor. 

For every random variable x, one may define a function f(x) as follows: 

Discrete random variables 

f (xi) = probability that the value of the random variable is xi i = 1,2 , .  . . , N 

where N = number of possible (discrete) values of x. Since x takes only one 
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value at a time, the events represented by the probabilities f(xi) are mutually 
exclusive; therefore, using Eq. 2.14, 

Continuous random variables. Assume that a random variable may take any 
value between a and b (a I x s b). Then 

f (x)  dr = probability that the value of x lies between x and x + dr 

One should notice that for a continuous variable what is important is not 
the probability that x will take a specific value, but only the probability that x 
falls within an interval defined by two values of x. The equation corresponding 
to Eq. 2.16 is now 

Equations 2.16 and 2.17 give the probability of a sure event, because x will 
certainly have one of the values x,, x,, . . . , x, and will certainly have a value 
between a and b. 

The function f(x) is called the probability density functionf (pdf). 
Consider now the following function: 

For a discrete variable, 

Thus, 

F(x,) = probability that the value of x is less than or equal to xi 

The function F(x) is called the cumulative distribution function* (cdf). The cdf 
has the following properties: 

The cdf is a positive monotonously increasing function, i.e., F(b) > F(a), if 
b > a. There is a relationship between the cdf and the pdf obtained from Eq. 

?It has also been called the frequency function. 
'1t has also been called the integral or total distribution function. 
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2.18, namely, 

2.5 LOCATION INDEXES (MODE, MEDIAN, MEAN) 

If the distribution function F ( x )  or f ( x )  is known, a great deal of information 
can be obtained about the values of the random variable x. Conversely, if F ( x )  
or f ( x )  is not completely known, certain values of x  provide valuable informa- 
tion about the distribution functions. In most practical applications the impor- 
tant values of x  are clustered within a relatively narrow interval. To obtain a 
rough idea about the whole distribution, it is often adequate to indicate the 
position of this interval by "location indexes" providing typical values of x.  

In theory, an infinite number of location indexest may be constructed, but 
in practice the following three are most frequently used: the mode, the median, 
and the mean of a distribution. Their definitions and physical meanings will be 
presented with the help of an example. 

Consider the continuous pdf shown in Fig. 2.1. The function f ( x )  satisfies 
Eq. 2.17, i.e., the total area under the curve of Fig. 2.1 is equal to 1, with 
a =  - m a  nd b = +a). 

The mode is defined as the most probable value of x. Therefore, the mode 
x ,  is that x  for which f ( x )  is maximum and is obtained from 

'Measure of location is another name for location indexes. 

Figure 2.1 The mode ( x , ) ,  the median (x , ) ,  and the mean ( m )  for a continuous probability 
distribution function. 
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The median is the value x2 for which 

i.e., the probability of x taking a value less than x,  is equal to the probability of 
x taking a value greater than x,. 

The mean, also known as the "average" or the "expectation value" of x, is 
defined by the equation 

An expression more general than Eq. 2.26 that gives the mean or average of 
any function g ( x ) ,  regardless of whether or not f ( x )  satisfies Eq. 2.17, is 

For a discontinuous pdf, the location indexes are defined in a similar way. If 
the pdf satisfies Eq. 2.16, the mean is given by 

Equation 2.28 is an approximation because the true mean can only be deter- 
mined with an infinite number of measurements. But, in practice, it is always a 
finite number of measurements that is available, and the average ji. instead of 
the true m is determined. Equation 2.28 is analogous to Eq. 2.2, which defines 
the probability based on a finite number of events. 

The general expression for the average of a discontinuous pdf, equivalent to 
Eq. 2.27, is 

Which of these or some other location indexes one uses is a matter of 
personal choice and convenience, depending on the type of problem studied. 
The mean is by far the most frequently used index, and for this reason, only the 
mean will be discussed further. 
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Some elementary but useful properties of the mean that can be easily 
proven using Eqs. 2.26 or 2.28 are 

- 
A X = M =  - a m  a = constant 

Example 2.5 Calculation of the mean. The probability that a radioactive 
nucleus will not decay for time t is equal to 

where A is a constant. What is the mean life of such a nucleus? 

Answer Using Eq. 2.26, the mean life 2 is 

Example 2.6 Consider the throw of a die. The probability of getting any 
number between 1 and 6 is b. What is the average number? 

Answer Using Eq. 2.29, 

Example 2.7 Consider an experiment repeated N times giving the results 
x i I i = l , , , , , ~ .  What is the average of the results? 

Answer Since the experiments were identical, all the results have the same 
probability of occurring, a probability that is equal to 1/N. Therefore, the 
mean is 

Equation 2.31 defines the so-called arithmetic mean of a series of N random 
variables. It is used extensively when the results of several measurements of the 
same variable are combined. 

An extension of Eq. 2.31 is the calculation of the "means of means." 
Assume that one has obtained the averages Z,, f,, . . . , Z M  by performing a 
series of M measurements, each involving N,, N,, . . . , NM events, respectively. 
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The arithmetic mean of all the measurements, X, is 

where 

2.6 DISPERSION INDEXES, VARIANCE, AND 
STANDARD DEVIATION 

A pdf or cdf is determined only approximately by any location index. For 
practical purposes it is sufficient to know the value of one location index-e.g., 
the mean-together with a measure indicating how the probability density is 
distributed around the chosen location index. There are several such measures 
called dispersion indexes. The dispersion index most commonly used and the only 
one to be discussed here is the variance V(x) and its square root, which is called 
the standard deviation u. 

The variance of a pdf is defined as shown by Eqs. 2.33 and 2.34. For 
continuous distributions, 

For discrete distributions, 
N 

V(x) = u 2  = z (xi - m12f(xi) (2.34) 
i =  1 

It is assumed that f(x) satisfies Eq. 2.16 or 2.17 and N is a large number. It is 
worth noting that the variance is nothing more than the average of (x - mI2. 
The variance of a linear function of x, a + bx, is 

V(a + bx) = b2v(x )  (2.35) 

where a and b are constants. 

2.7 COVARIANCE AND CORRELATION 

Consider the random variables XI, X2, . . . , X, with means m,, m,, . . . , m, and 
variances u:, u;, . . . , ui .  A question that arises frequently is, what is the 
average and the variance of the linear function 

Q = a,X, + a2X2 + +aMXM ( 2 . 3 6 ~ )  

where the values of aili, , . , are constants? 
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The average is simply (using Eq. 2.28) 

The variance is 

The quantity (Xi - mi)(X, - m,) is called the "covariance" between Xi 
and X,: 

cov(Xi, X,) = (Xi - mi)(X, - m,) (2.38) 

The covariance, as defined by Eq. 2.38, suffers from the serious drawback that 
its value changes with the units used for the measurement of Xi, X,. To 
eliminate this effect, the covariance is divided by the product of the standard 
deviations ui, 9 ,  and the resulting ratio is called the correlation coefficient 
p(Xi, Xi). Thus, 

Using Eq. 2.39, the variance of Q becomes 

Random variables for which pij = 0 are said to be uncorrelated. 
If the Xi's are mutually uncorrelated, Eq. 2.40 takes the simpler form 

Consider now a second linear function of the variables XI, X2, X,, . . . , XM, 
namely, R = blXl + ... + bMXM. The average of R is 
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The covariance of Q, R is 

If all the X's are mutually uncorrelated, then pi, = 0 and 

If all the X's have the same variance a2, 

Equations 2.40-2.44 will be applied in Sec. 2.15 for the calculation of the 
propagation of errors. 

2.8 THE BINOMIAL DISTRIBUTION 

The binomial distribution is a pdf that applies under the following conditions: 

1. The experiment has two possible outcomes, A and B. 
2. The probability that any given observation results in an outcome of type A or 

B is constant, independent of the number of observations. 
3. The occurrence of a type A event in any given observation does not affect the 

probability that the event A or B will occur again in subsequent observations. 

Examples of such experiments are tossing a coin (heads or tails is the outcome), 
inspecting a number of similar items for defects (items are defective or not), and 
picking up objects from a box containing two types of objects. 

The binomial distribution will be introduced with the help of the following 
experiment. 

Suppose that a box contains a large number of two types of objects, type A 
and type B. Let 

p = probability that an object selected at random from this box is type A 

1 - p = probability that the randomly selected object is type B 
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An experimenter selects N objects at random.+ The binomial distribution, 
giving the probability Pn that n out of the N objects are of type A, is 

Example 2.8 A box contains a total of 10,000 small metallic spheres, of 
which 2000 are painted white and the rest are painted black. A person removes 
100 spheres from the box one at a time at random. What is the probability that 
10 of these spheres are white? 

Answer The probability of picking one white sphere is 

The probability that 10 out of 100 selected spheres will be white is, according to 
Eq. 2.45, 

Example 2.9 A coin is tossed three times. What is the probability that the 
result will be heads in all three tosses? 

Answer The probability of getting heads in one throw is 0.5. The probability 
of tossing the coin three times ( N  = 3) and getting heads in all three tosses 
( n  = 3) is 

Of course, the same result could have been obtained in this simple case by using 
the multiplication law, Eq. 2.13: 

P(heads three times) = (0.5)(0.5)(0.5) = 0.125 

It is easy to show that the binomial distribution satisfies 

The mean m is equal to 

'1t is assumed that the box has an extremely large number of objects so that the removal of N 
of them does not change their number appreciably, or, after an object is selected and its type 
recorded, it is thrown back into the box. If the total number of objects is small, instead of Eq. 2.45, 
the hypergeometric density function should be used (see Johnson & Leone and Jaech). 
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The variance V(n) is 

The standard deviation u is 

Figure 2.2 shows three binomial distributions for N  = 10 and p = 0.1, 0.4, and 
0.8. Notice that as p -+ 0.5, the distribution tends to be symmetric around the 
mean. 

2.9 THE POISSON DISTRIBUTION 

The Poisson distribution applies to events whose probability of occurrence is 
small and constant. It can be derived from the binomial distribution by letting 

N + m  

P + O  

in such a way that the value of the average m = Np stays constant. It is left as 
an exercise for the reader to show that under the conditions mentioned above, 
the binomial distribution takes the form known as the Poisson distribution, 

where Pn is the probability of observing the outcome n when the average for a 
large number of trials is m. 

The Poisson distribution has wide applications in many diverse fields, such 
as decay of nuclei, persons killed by lightning, number of telephone calls 
received in a switchboard, emission of photons by excited nuclei, and appear- 
ance of cosmic rays. 

Example 2.10 A radiation detector is used to count the particles emitted by 
a radioisotopic source. If it is known that the average counting rate is 20 
counts/ min, what is the probability that the next trial will give 18 counts/min? 

Answer The probability of decay of radioactive atoms follows the Poisson 
distribution. Therefore, using Eq. 2.50, 

That is, if one performs 10,000 measurements, 844 of them are expected to give 
the result 18 counts/min. 
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Figure 2.2 Three binomial distribu- 
tions with N = 10 and (a) p = 0.1, 
( b )  p = 0.4, and ( c )  p = 0.8. 

Example 2.11 In a certain city with relatively constant population, the 
average number of people killed per year in automobile accidents is 75. What is 
the probability of having 80 auto-accident fatalities during the coming year? 

Answer The Poisson distribution applies. Therefore, using Eq. 2.50, 

75,O 
P,, = - e-75 = 0.038 - 4% 

80! 
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The Poisson distribution satisfies 

The mean m is equal to 
m 

- m = n =  C nPn = m 
n = 0 

The variance is 

The standard deviation a is 

Figure 2.3 shows the Poisson distribution for three different means. It should be 
pointed out that as the mean increases, the Poisson distribution becomes 
symmetric around the mean. For m = 20, the distribution is already for all 
practical purposes symmetric around the mean, and it resembles the normal 
distribution, which is discussed next. 

2.10 THE NORMAL (GAUSSIAN) DISTRIBUTION 

Both the binomial and Poisson distributions apply to discrete variables, whereas 
most of the random variables involved in experiments are continuous. In 
addition, the use of discrete distributions necessitates the use of long or infinite 
series for the calculation of such parameters as the mean and the standard 
deviation (see Eqs. 2.47, 2.48, 2.52, 2.53). It would be desirable, therefore, to 
have a pdf that applies to continuous variables. Such a distribution is the normal 
or Gaussian distribution. 

The normal distribution G ( x )  is given by 

where G(x) dx = probability that the value of x lies between x and x + & 
m = average of the distribution 
a ' = variance of the distribution 

Notice that this distribution, shown in Fig. 2.4, has a maximum at x = m, is 
symmetric around m, is defined uniquely by the two parameters u and m, and 
extends from x = - m  to x = +m. Equation 2.55 represents the shaded area 
under the curve of Fig. 2.4. In general, the probability of finding the value of x 
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Figure 2 3  Three Poisson distributions: (a) rn = 5,  ( b )  rn = 10, ( c )  rn = 20. 
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0 m - o  m m + o  x x + d x  
X 

Figure 2.4 A normal (Gaussian) distribution. 

between any two limits x ,  and x2 is given by 

The 

The 

Gaussian given by Eq. 2.55 satisfies 

average of the distribution is 

The variance is 

The standard deviation is 

Three very important items associated with the Gaussian distribution are 
the following. 

1. The cumulative normal distribution function, defined by 

x 1 (x'  - m )  
E ( x )  = G ( x t )  dx' = 

-m 
 EX^[- 2 u 2  ] &' (2.61) 
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The function E(x) is very useful and is generally known as the error function 
(see also Sec. 2.10.1). Graphically, the function E(x) (Eq. 2.61) is equal to the 
shaded area of Fig. 2.5. The function is sketched in Fig. 2.6. 

2. The area under the curve of Fig. 2.4 from x = m - u to x = m + u ,  
given by 

Equation 2.62 indicates that 68.3 percent of the total area under the Gaussian is 
included between m - u and m + u .  Another way of expressing this statement 
is to say that if a series of events follows the normal distribution, then it should 
be expected that 68.3 percent of the events will be located between m - u and 
m + a. As discussed later in Sec. 2.13, Eq. 2.62 is the basis for the definition of 
the "standard" error. 

3. The full width at half maximum (FWHM). The FWHM,  usually denoted 
by the symbol r ,  is the width of the Gaussian distribution at the position of half 
of its maximum. The width r is slightly wider than 2 u  (Fig. 2.4). The correct 

Figure 2.5 The cumulative 
normal distribution is equal to 
the shaded area under the 

0 x m x' Gaussian curve. 
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relationship between the two is obtained from Eq. 2.55 by writing 

Solving this equation for r gives 

The width r is an extremely important parameter in measurements of the 
energy distribution of particles. 

2.10.1 The Standard Normal Distribution 

The evaluation of integrals involving the Gaussian distribution, such as those of 
Eqs. 2.56, 2.61, and 2.62, requires tedious numerical integration. The result of 
such integrations is a function of m and u. Therefore, the calculation should be 
repeated every time m or u changes. To avoid this repetition, the normal 
distribution is rewritten in such as way that 

m = O  and u = 1  

The resulting function is called the standard normal distribution. Integrals 
involving the Gaussian distribution, such as that of Eq. 2.61, have been tabu- 
lated based on the standard normal distribution for a wide range of x values. 
With the help of a simple transformation, it is very easy to obtain the integrals 
for any value of m  and u. 

The standard normal distribution is obtained by defining the new variable. 

x - m  
t = -  

u 

Substituting into Eq. 2.55, one obtains 

It is very easy to show that the Gaussian given by Eq. 2.65 has mean 

and variance 

The cumulative standard normal distribution function, Eq. 2.61, is now written 
as 
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or, in terms of the error function that is tabulated 

where 

Example 2.12 The uranium fuel of light-water reactors is enclosed in 
metallic tubes with an average outside diameter (OD) equal to 20 mm. It is 
assumed that the OD is normally distributed around this average with a 
standard deviation a = 0.5 mm. For safety reasons, no tube should be used with 
OD > 21.5 mm or OD < 18.5 mm. If 10,000 tubes are manufactured, how many 
of them are expected to be discarded because they do not satisfy the require- 
ments given above? 

Answer The probability that the OD of a tube is going to be less than 18.5 
mm or greater than 21.5 mm is 

Graphically, the sum of these two probabilities is equal to the two shaded areas 
shown in Fig. 2.7. 

In terms of the standard normal distribution and also because the two 
integrals are equal, one obtains 

where 
x - 20 

t = --- 
0.5 

This last integral is tabulated in many books, handbooks, and mathematical 
tables (see bibliography of this chapter). From such tables, one obtains 

which gives 

G(x < 18.5) + G(x > 21.5) = 0.0027 
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Figure 2.7 The shaded areas rep- 
resent the fraction of defective 
rods, Ex. 2.12. 

Therefore, it should be expected that under the manufacturing conditions of this 
example, 27 tubes out of 10,000 would be rejected. 

2.10.2 Importance of the Gaussian Distribution for 
Radiation Measurements 

The normal distribution is the most important distribution for applications in 
measurements. It is extremely useful because for almost any type of measure- 
ment that has been taken many times, the frequency with which individual 
results occur forms, to a very good approximation, a Gaussian distribution 
centered around the average value of the results. The greater the number of 
trials, the better their representation by a Gaussian. Furthermore, statistical 
theory shows that even if the original population of the results under study does 
not follow a normal distribution, their average does. That is, if a series of 
measurements of the variable xili= I , . . . ,  N is repeated M times, the average 
values Z N  I N =  . . , follow a normal distribution even though the xi's may not. 
This result is known as the central limit theorem and holds for any random 
sample of variables with finite standard deviation. 

In reality, no distribution of experimental data can be exactly Gaussian, 
since the Gaussian extends from - w to +m. But for all practical purposes, the 
approximation is good and it is widely used because it leads to excellent results. 

It is worth reminding the reader that both the binomial (Fig. 2.2) and the 
Poisson (Fig. 2.3) distributions resemble a Gaussian under certain conditions. 
This observation is particularly important in radiation measurements. 

The results of radiation measurements are, in most cases, expressed as the 
number of counts recorded in a scaler. These counts indicate that particles have 
interacted with a detector and produced a pulse that has been recorded. The 
particles, in turn, have been produced either by the decay of a radioisotope or as 
a result of a nuclear reaction. In either case, the emission of the particle is 
statistical in nature and follows the Poisson distribution. However, as indicated 
in Sec. 2.9, if the average of the number of counts involved is more than about 
20, the Poisson approaches the Gaussian distribution. For this reason, the 
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individual results of such radiation measurements are treated as members of a 
normal distribution. 

Consider now a Poisson and a Gaussian distribution having the same 
average, m = 25. Obviously, there is an infinite number of Gaussians with that 
average but with different standard deviations. The question one may ask is: 
"What is the standard deviation of the Gaussian that may represent the Poisson 
distribution with the same average?" The answer is that the Gaussian with a 
= dk = 5 is almost identical with the Poisson. Table 2.1 presents values of the 
two distributions, and Fig. 2.8 shows them plotted. 

The following very important conclusion is drawn from this result: 

The outcomes of a series of radiation measurements are members of a Poisson distribution. 
They may be treated as members of a Gaussian distribution if the avera e result is more than 
m = 20. The standard deviation of that Gaussian distribution is u = P m . 

Use of this conclusion is made in Sec. 2.17, which discusses statistics of 
radiation counting. 

2.11 THE LORENTZIAN DISTRIBUTION 

The Lorentzian distribution, which describes the resonances of nuclear reactions 
-in particular how the probability of interaction (cross section, see Chap. 4) 

Table 2.1 Comparison between a Poisson and a Gaussian 
Distribution Having the Same Mean (m = 25) 

G(n) (Gaussian) 
n P, (Poisson) o = 5 

10 0.0004 0.0009 
12 0.0017 0.0027 
14 0.00$.9 0.0071 
16 0.0154 0.0168 
18 0.03 16 0.0299 
20 0.0519 0.0484 
22 0.0702 0.0666 
24 0.0795 0.0782 
25 0.0795 0.0798 
26 0.0765 0.0782 
28 0.0632 0.0666 
30 0.0454 0.0484 
3 2 0.0286 0.0299 
34 0.0159 0.0168 
36 0.0079 0.0071 
3 8 0.0035 0.0027 
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Figure 2.8 Comparison be - 
tween a Poisson distribution 
with m = 25 and a Gaussian 
distribution with the same av- 
erage and standard deviation 

34 38 
a=&=5.  

changes as a function of particle energy-is given by 

where L ( x )  dx is the probability that the value of x  lies between x and x + dx. 
The Lorentzian is a symmetric function (Fig. 2.9) centered around the value 
x = m. It can be easily shown that 

and that 

Thus, the mean is given by the parameter m as expected from the symmetry of 
the function. One peculiar characteristic of the Lorentzian is the fact that its 
variance cannot be calculated. Indeed, the integral 

does not converge, which is the result of the slow decrease of the function away 
from the peak. 
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Figure 2.9 A Lorentzian distribution peaking at x = 25 and having a FWHM at equal to 5. 

In the absence of a standard deviation, the parameter r is used for the 
description of the Lorentzian. The parameter r is equal to the FWHM of the 
function. 

2.12 THE STANDARD, PROBABLE, AND OTHER ERRORS 

Consider a measurement or series of measurements that gave the result R and 
its estimated error E. The experimenter reports the result as 

R f E  (2.68) 

in which case E is the absolute error (R and E have the same units), or as 

where E = (E/R)100 = relative error (dimensionless). In most cases, the rela- 
tive rather than the absolute error is reported. 

Whether either Eq. 2.68 or 2.69 is used, the important thing to understand 
is that R f E does not mean that the correct result has been bracketed between 
R - E and R + E. It means only that there is a probability that the correct result 
has a value between R - E and R + E. What is the value of this probability? 
There is no unanimous agreement on this matter, and different people use 
different values. However, over the years, two probability values have been used 
more frequently than others and have led to the definition to two corresponding 
errors, the standard and the probable error. 
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The standard error. If the result of a measurement is reported as R k E, and 
E, is the standard error, then there is a 68.3 percent chance for the true result 
to have a value between R - E, and R + E,. 

The probable error. By definition, the probable error is equally likely to be 
exceeded or not. Therefore, if the result of a measurement is R f E, and E, is 
the probable error, then there is a 50 percent chance for the true result to have 
a value between R - Ep and R + Ep. 

Both standard and probable errors are based on a Gaussian distribution. 
That is, it is assumed that the result R is the average of individual outcomes 
that belong to a normal distribution. This does not introduce any limitation in 
practice because, as stated in Sec. 2.10.2, the individual outcomes of a long 
series of any type of measurement are members of a Gaussian distribution.+ 
With the Gaussian distribution in mind, it is obvious that the definition of the 
standard error is based on Eq. 2.62. If a result is R and the standard error is E,, 
then E, = u. 

Correspondingly, the probable error Ep satisfies 

It can be shown that 

Ep = 0.6745ES 

The standard and probable errors are the most commonly used in reporting 
experimental results. Individual researchers may define other errors that repre- 
sent a different percentage of the Gaussian. For example, the 95 percent error, 
E,,, is that which gives a 95 percent chance to have the true result bracketed 
between R - E,, and R + E,,. It turns out that E,, = 1.6450- (see Table 2.2). 

2.13 THE ARITHMETIC MEAN AND ITS STANDARD ERROR 

Although the true value of a quantity can never be determined, the error of the 
measurement can be reduced if the experiment is repeated many times. 

Consider an experiment that has been repeated N times, where N is a large 
number, and produced the individual outcomes ni l i =  ,, , , , , N .  Let the frequency 
of occurrence of ni be P,,.* If one plots P,, versus n,, the resulting curve 

'~xce~t ion :  Radiation counting measurements with rn < 20 obey the Poisson distribution. 
'1f N = 1000 and ni has occurred 15 times, P,, = 15/1000. 
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resembles a Gaussian distribution as shown in Fig. 2.10. The larger the value of 
N, the more the histogram of Fig. 2.10 coincides with a normal distribution. 
Assume that the dashed line of Fig. 2.10 is an acceptable representation of the 
experimental results. Under these circumstances, how should the result of the 
measurement be reported and what is its standard error? 

The result of the measurement is reported as the arithmetic average defined 
by 

This equation is the same as Eq. 2.31. As N increases, a better estimate of the 
true value of n is obtained-i.e., the error of the measurement becomes 
smaller. The true value of n, which is also called the true mean, can only be 
obtained with an infinite number of measurements. Since it is impossible to 
perform an infinite number of trials, n is always calculated from Eq. 2.71. 

The error of E depends on the way the individual measurements are 
distributed around 5-ie., it depends on the width of the Gaussian of Fig. 2.10. 
As the width becomes smaller, the error gets smaller, and therefore the 
measurement is better. The standard error of E is defined in terms of the 
standard deviation of the distribution. Using Eq. 2.34 and setting f(xi) = 1 / N ,  
the standard deviation of the distribution becomes 

With a finite number of measurements at our disposal, this equation for u has 
to be modified in two ways. First, because the true mean m is never known, it is 
replaced by its best estimate, which is ii (Eq. 2.71). Second, it can be generally 

/ 

\ 
\ 
\ 

Figure 2.10 The distribution of 

\ the frequency of occurrence of 
individual results of a series of 

\ 1, identical follow a Gaussian measurements distribution. tends to 
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shown that the best estimate of the standard deviation of N measurements is 
given by the following equation: 

The differences between Eq. 2.72 and Eq. 2.73 are the use of Ti instead of m 
and the use of N - 1 in the denominator instead of N.+ For a large number of 
measurements, it does not make any practical difference if one divides by N or 
N - 1. But it makes a difference for small values of N. Using the extreme value 
of N = 1, one can show that division by N gives the wrong result. Indeed, 
dividing by N, one obtains 

Zero a means zero error, which is obviously wrong. The error is never zero, 
certainly not in the case of one measurement. Division by N - 1, on the other 
hand, gives 

which, being indeterminate, is a more realistic value of the error based on a 
single measurement. 

Since the N results are distributed as shown in Fig. 2.10,68.3 percent of the 
outcomes fall between Z - a and Ti + a (see Eq. 2.62). Therefore, one addi- 
tional measurement has a 68.3 percent chance of providing a result within 
Ti + a.  For this reason, a is called the standard deviation or the standard error 
of a single measurement. Is this equal to the standard error of Z? No, and here is 
why. 

According to the definition of the standard error, if a, is the standard error 
of T i ,  it ought to have such a value that a new average 7i would have a 68.3 
percent chance of falling between Ti - uE and n + uE. To obtain the standard 
error of Z, consider Eq. 2.71 as a special case of Eq. 2 . 3 6 ~ .  The quantity Ti is a 
linear function of the uncorrelated random variables n, ,  n , ,  . . . , n,, each with 
standard deviation a. Therefore 

'The factor N - 1 is equal to the "degrees of freedom" or the number of independent data or 
equations provided by the results. The N independent outcomes constitute, originally, N indepen- 
dent data. However, after Ti is calculated, only N - 1 independent data are left for the calculation 
of u. 
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where ai = 1 /N .  Using Eq. 2.41, the standard deviation of iz ist 

If the series of N measurements is repeated, the new average will probably be 
different from E, but it has a 68.3 percent chance of having a value between 
iz - u, and iz + uz. The result of the N measurements is 

When a series of measurements is performed, it would be desirable to 
calculate the result in such a way that the error is a minimum. It can be shown 
that the average E as defined by Eq. 2.71 minimizes the quantity 

which is proportional to the standard error. Finally, Eq. 2.75 shows that the 
error is reduced if the number of trials increases. However, that reduction is 
proportional to 1/ fi, which means that the number of measurements should 
be increased by a factor of 100 to be able to reduce the error by a factor of 10. 

2.14 CONFIDENCE LIMITS 

Consider a variable xi  that represents the value of the ith sample of a large 
population of specimens. The variable xi  may be the diameter of a sphere or the 
thickness of the cladding of a fuel rod or the length of the fuel rod. A designer 
may desire a certain diameter of the sphere or a certain thickness of the fuel 
cladding or a certain length of the fuel rod. What happens during actual 
fabrication is that the individual units are not exactly the same. The person who 
examines individual units as they are constructed, machined, or fabricated will 
find that there is a distribution of values for the quantity being examined. The 
average value is equal to that specified in the blueprints and is called the 
nominal value. Individual specimens, however, have values of x distributed 
around the nominal value x,  according to a Gaussian distribution, 

where x, = nominal value of x = average value of x 
u = standard deviation of the distribution 

'1f the population of the events ni is finite in size, then it can be shown that %' = [ ( M  - 
N)/(M - l)lu2/N, where M = total number of ni's (see Jaech). 
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The manufacturer of any product would like to know what the probability is 
that any one item will deviate from the nominal value by a certain amount. Or, 
setting some acceptable value of x ,  call it x, ,  the manufacturer would like to 
know what is the probability that x will be bigger than x,. Questions of this type 
come under the subject of "quality control." 

The probability that x will exceed x ,  is given by 

The acceptable value of x is usually expressed as 

X ,  = X ,  + k u  

i.e., the extreme acceptable vaue of x ,  x, ,  is allowed to be k standard deviations 
different from x,. 

In terms of the standard normal distribution, Eq. 2.76 takes the form 

where 

and 

P ( t  > k )  = probability that x will exceed x ,  by k standard deviations 

Table 2.2 gives values of P(t > k )  for several values of k .  The values in Table 
2.2 are interpreted as follows: 

Consider k = 1. The probability that x will exceed x ,  where x ,  = x ,  + u 
is 15.9 percent. If x is some property of a manufactured product, it is said that 
the confidence limit is, in this case, 1 - 0.159 = 0.841 or 84.1 percent, i.e., 84.1 
percent of the specimens will have x < x, (Fig. 2.11). If k = 2, the probability 

Table 2.2 Probability Values and Confidence Limits 

Number of 
standard Confidence 
deviations ( k )  P ( x  > x , )  limit 
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Figure 2.11 The probability that x 
will exceed x,,  where x, = x, + 
u, is 15.9 percent (shaded area). 
The confidence limit is 1 - 0.159, 
or 84.1 percent. 

that x will exceed x ,  is equal to 2.3 percent; therefore, the confidence limit is 
97.7 percent. 

In actual construction or fabrication of an item, the Gaussian distribution is 
determined by checking the variable x for a large number of specimens. An 
average value of x is calculated, 

and a standard deviation 

is obtained. The average .T should be almost equal to the nominal value of x. A 
Gaussian distribution for this sample peaks at i and has a standard deviation a.  
Knowing u ,  the value of x,  is calculated from Eq. 2.77 after the confidence 
limit-the value of k-has been decided upon. 

The use of the concept of confidence limits is widespread in industry. As a 
specific example, let us assume that x is the thickness of the cladding of a 
reactor fuel rod. The average (nominal) thickness is x,. The reactor designer 
would like to be certain that a certain fraction of fuel rods will always have 
thickness within prescribed limits. Let us say that the designer desires a 
confidence limit of 99.87 percent. This means that no more than 13 rods out of 
10,000 will be expected to have cladding thickness exceeding the nominal value 
by more than three standard deviations (Table 2.2). 
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2.15 PROPAGATION OF ERRORS 

2.15.1 Calculation of the Average and Its Standard Deviation 

Sometimes an investigator has to determine a quantity that is a function of more 
than one random variable. In such cases, it is very important to know how to 
calculate the error of the complex quantity in terms of the errors of the 
individual random variables. This procedure is generally known as propagation 
of errors and is described in this section. 

Consider the function f(x,, x2, . . . , x,), which depends on the random 
variables x,, x,, . . . , x,. Generally, the values of x,, x,, . . . , x, are deter- 
mined experimentally and then the value of f(x,, x,, . . . , x,) is calculated. For 
example, 

It has already been mentioned that the xi's are determined experimentally, 
which means that average values Z,, f 2 ,  f,, . . . , Z, are determined along with 
their standard errors u,, u2, . . . , u,. Two questions arise: 

1. What is the value of f(x,, . . . , x,) that should be reported? 
2. What is the standard error of f(x,, . . . , x,)? 

It is assumed that the function f(x,, .  . . , x,) can be expanded in a Taylor 
series around the averages X i  l i =  . . , : 

The notation used is that 

f 
df dxi .,=,, 

The term O(x, - fi)' includes all the terms of order higher than first, and it will 
be ignored. Thus, the function is written 

Equation 2.80 is a special case of Eq. 2 . 3 6 ~ .  The average value of f(x,, . . . , x,), 
which is the value to be reported, is 

f = f (Z l , f2 ,  ..., ZM) (2.81) 
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The variance of f(x,, . . . , x,) is given by Eq. 2.40: 

where pij is the correlation coefficient given by Eq. 2.39. 
The standard error of f(xl,. . . , x,) is equal to the standard deviation 

Equations 2.81 and 2.83 are the answers to questions 1 and 2 stated 
previously. They indicate, first, that the average of the function is calculated 
using the average values of the random variables and, second, that its standard 
error is given by Eq. 2.83. Equation 2.83 looks complicated, but fortunately, in 
most practical cases, the random variables are uncorrelated-i.e., pij = 0, and 
Eq. 2.83 reduces to 

Unless otherwise specified, the discussion in the rest of this chapter will concern 
only uncorrelated variables. Therefore, Eqs. 2.81 and 2.84 will be used. The 
reader, however, should always keep in mind the assumption under which Eq. 
2.84 is valid. 

2.15.2 Examples of Error Propagation-Uncorrelated Variables 

Examples of error propagation formulas for many common functions are given 
in this section. In all cases, uncorrelated variables are assumed. 

Example 2.13 f(xl, x,) = alx, + a2x2, where a, and a, are constants 

j; = alxl f a , ~ ,  

If a, = a, = 1, this example applies to the very common case of summation 
or difference of two variables. 

Example 2.14 f(x,, x2) = ax,x,, where a is a constant 
f =  - -  

M l X 2  
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Example 2.15 f ( x , ,  x , )  = a x 1 / x 2  

The standard error for Examples 2.14 and 2.15 takes a simpler and easy-to- 
remember form for both the product and the quotient if it is expressed as the 
relative error. It is trivial to show that 

Thus, the relative error of the product ax1x2 or the quotient a x , / x ,  is equal to 
the square root of the sum of the squares of the relative errors of the variables 
x ,  and x , .  

Example 2.16 f ( x )  = x m ,  where m is some real number 

J' = ( x )"  

Example 2.17 f ( x )  = eaX 

J. = 

There is another very important use of Eq. 2.84, which has to do with the 
calculation of the variation of a function in terms of changes of the independent 
variables. Consider again the function f ( x , ,  x , ,  . . . , x,)  and assume that the 
variables x , ,  x , ,  . . . , x ,  have changed by the amounts Ax, ,  A x , ,  . . . , Ax,. The 
variation or change of f ( x l , .  . . , x,), A  f ,  is given by 
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Equation 2.87 should not be used if it is specified what the change of 
variable is, i.e., if the change is a decrease or an 'increase. If the change is 
known, one should calculate the function f(x,, x,, . . . , x,) using the new values 
of the x's and obtain Af by subtracting the new from the old value. 

Example 2.18 The speed of sound is obtained by measuring the time it takes 
for a certain sound signal to travel a certain distance. What is the speed 
of sound and its standard error if it takes the sound 2.5 + 0.125 s to travel 
850 + 5 m? 

Answer 

To calculate the error, use Eq. 2.86: 

The result is 340 f 17 m/s. 

Example 2.19 A beam of photons going through a material of thickness x is 
attenuated in such a way that the fraction of photons traversing the material is 
e-PX, where the constant p is called the attenuation coefficient. If the thickness 
of the material changes by 10 percent, by how much will the emerging fraction 
of photons change? Take x = 0.01 m and p = 15 m-'. 

Answer This is a case requiring the use of Eq. 2.87. 

f (x )  = e-Px 

Therefore, if the thickness increases by 10 percent, the fraction of emerging 
photons decreases by 1.5 percent. 

2.16 GOODNESS OF DATA-x CRITERION-REJECTION 
OF DATA 

It is desirable when data are obtained during an experiment to be able to 
determine if the recording system works well or not. The experimenter should 
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ask the question: Are all the obtained data true (due to the phenomenon 
studied), or are some or all due to extraneous disturbances that have nothing to 
do with the measurement? A number of tests have been devised for the purpose 
of checking how reliable the results are, i.e., checking the "goodness of data." 

Before any tests are applied, an investigator should use common sense and 
try to avoid erroneous data. First of all, a good observer will never rely on a 
single measurement. He or she should repeat the experiment as many times as is 
feasible (but at least twice) and observe whether the results are reproducible or 
not. Second, the observer should check the results to see how they deviate from 
their average value. Too large or too small deviations are suspicious. The good 
investigator should be alert and should check such data very carefully. For 
example, if for identical, consecutive measurements one gets the following 
counts in a scaler: 

the apparatus is not necessarily very accurate; it is probably faulty. In any event, 
a thorough check of the whole measuring setup should be performed. 

The test that is used more frequently than any other to check the goodness 
of data is the x 2  criterion (chi square), or Pearson's x 2  test. The X 2  test is 
based on the quantity 

where n i l i = l , , , . , N  represents the results of N measurements with E being the 
average. 

To apply the X 2  test, one first calculates X 2  using Eq. 2.88. Then, using 
Table 2.3, the corresponding probability is obtained. The meaning of the 
probability values listed in Table 2.3 is the following. If the set of measurements 
is repeated, the value of x 2  gives the probability to obtain a new X 2  that is 
larger or smaller than the first value. For example, assume that N = 15 and 
x 2  = 4.66. From the table, the probability is 0.99, meaning that the probability 
for a new set of measurements to give a x 2  < 4.66 is less than 1 - 0.99, i.e., less 
than 1%. What this implies is that the data are clustered around the mean much 
closer than one would expect. Assume next that N = 15 and X 2  = 29.14. Again, 
from the table, the probability to get X 2  > 29.14 is only 1% or less. In this case, 
the data are scattered in a pattern around the mean that is wider than one 
might expect. Finally, consider N = 15 and X 2  = 13.34. The probability is then 
0.5, which means that, from a new set of measurements, it is equally probable to 
get a value of x 2  that is smaller or larger than 13.34. Notice that the probability 
is close to 0.5 when x 2  N - 1. In practice, a range of acceptable X 2  values 
is selected in advance; then a set of data is accepted if x 2  falls within this 
preselected range. For more details about X 2 ,  see Johnson & Leone, Jaech, and 
Smith. 
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Table 2.3 Probability Table for x Criteriont 

Degrees of Probability 
freedom $ 
(N- 1) 0.99 0.95 0.90 0.50 0.10 0.05 0.01 

?calculated values of xa will be equal to or greater than the values given in the table. 
$see footnote on p. 5 1. 

What should one do if the data fail the test? Should all, some, or none of 
the data be rejected? The answer to these questions is not unique, but rather 
depends on the criteria set by the observer and the type of measurement. If the 
data fail the test, the experimenter should be on the lookout for trouble. Some 
possible reasons for trouble are the following: 

1. Unstable equipment may give inconsistent results, e.g., spurious counts 
generated by a faulty component of an instrument. 
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2. External signals may be picked up by the apparatus and be "recorded." 
Sparks, radio signals, welding machines, etc., produce signals that may be 
recorded by a pulse-type counting system. 

3. If a number of samples are involved, widely scattered results may be caused 
by lack of sample uniformity. 

4. A large X 2  may result from one or two measurements that fall far away from 
the average. Such results are called the "outliers." Since the results are 
governed by the normal distribution, which extends from -m to +m, in 
theory, at least, all results are possible. In practice, it is somewhat disturbing 
to have a few results that seem to be way out of line. 

Should the outliers be rejected? And by what criterion? One should be 
conservative when rejecting data for three reasons: 

1. The results are random variables following the Gaussian distribution. There- 
fore, outliers are possible. 

2. As the number of measurements increases, the probability of an outlier 
increases. 

3. In a large number of measurements, the rejection of an outlier has small 
effect on the average, although it makes the data look better by decreasing 
the dispersion. 

One of the criteria used for data rejection is Chauvenet's criterion, stated as 
follows: 

A reading or outcome may be rejected if it has a deviation from the mean greater than that 
corresponding to the 1 - 1 / 2 N  error, where N is the number of measurements. 

Data used with Chauvenet's criterion are given in Table 2.4. For example, in 
a series of 10 measurements, 1 - 1/2N = 1 - 1/20 = 0.95. If ni - Ti exceeds 
the 95 percent error (1.96a), then that reading could be rejected. In that case, 
a new mean should be calculated without this measurement and also a new 
standard deviation. 

Table 2.4 Data for Chauvenet's Criterion 

Number of standard 
Number of deviations away 
measurements from average 
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The use of Chauvenet's, or any other, criterion is not mandatory. It is up to 
the observer to decide if a result should be rejected or not. 

2.17 THE STATISTICAL ERROR OF 
RADIATION MEASUREMENTS 

Radioactive decay is a truly random process that obeys the Poisson distribution, 
according to which the standard deviation of the true mean m is 6. However, 
the true mean is never known and can never be found from a finite number of 
measurements. But is there a need for a large number of measurements? 

Suppose one performs only one measurement and the result is n counts. 
The best estimate of the true mean, as a result of this single measurement, is 
this number n. If one takes this to be the mean, its standard deviation will be 6. 

Indeed, this is what is done in practice. The result of a single count n is 
reported as n f 6 ,  which implies that 

1. The outcome n is considered the true mean. 
2. The standard deviation is reported as the standard error of n.  

The relative standard error of the count n is 

which shows that the relative error decreases if the number of counts obtained 
in the scaler increases. Table 2.5 gives several values of n and the corresponding 
percent standard error. To increase the number n,  one either counts for a long 
time or repeats the measurement many times and combines the results. Repeti- 
tion of the measurement is preferable to one single long count because by 
performing the experiment many times, the reproducibility of the results is 
checked. 

Consider now a series of N counting measurements with the individual 
results nili= It is assumed that the counts ni were obtained under 

Table 2.5 Percent Standard Error of 
n Counts 

% Standard 
error of n 
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identical conditions and for the same counting time; thus, their differences are 
solely due to the statistical nature of radiation measurements. Each number ni 
has a standard deviation ui = fi. The average of this series of measurements 
is, using Eq. 2.31, 

- 1 N 
n = -  C ni (2.31') 

N 

The standard error of 7i can be calculated in two ways: 

1. The average 7i is the best estimate of a Poisson distribution of which the 
outcomes nili= I , .  . . , N are members. The standard deviation of the Poisson 
distribution is (see Sec. 2.9) u = 6 = 6. The standard error of the average 
is (see Eq. 2.75) 

2. The average 7i may be considered a linear function of the independent 
variables ni, each with standard error 6. Then, using Eq. 2.84, one obtains 

where 

n,,, = n, + n, + ... +n, = total number of counts obtained from N 

measurements 
It is not difficult to show that Eqs. 2.90 and 2.91 are identical. 

In certain cases, the observer needs to combine results of counting experi- 
ments with quite different statistical uncertainties. For example, one may have 
to combine the results of a long and short counting measurement. Then the 
average should be calculated by weighting the individual results according to 
their standard deviations (see Bevington and Eadie et al.). The equation for the 
average is 

N 

C ni/ui2 

Example 2.20 Table 2.6 presents typical results of 10 counting measure- 
ments. Using these data, the average count and its standard error will be 
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Table 2.6 Typical Results of a Counting Experiment? 

Number of counts Square of 
obtained in the deviation, 

Observation, i scaler, ni (ni - ii)' 

Totals 

t o n e  could use Eqs. 2.73 and 2.74 for the calculation of o and 
on The result is 

For radiation measurements, use of Eqs. 2.90 and 2.91 is preferred. 

calculated using Eqs. 2.31, 2.90, and 2.91. The average is 

Using Eq. 2.90 or Eq. 2.91, the standard error of E is 

2.18 THE STANDARD ERROR OF COUNTING RATES 

In practice, the number of counts is usually recorded in a scaler, but what is 
reported is the counting rate, i.e., counts recorded per unit time. The following 
symbols and definitions will be used for counting rates. 

G = number of counts recorded by the scaler in time t ,  with the sample present 

= gross count 

B = number of counts recorded by the scaler in time t ,  without the sample 

= background count 
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G 
g =  - = gross counting rate 

t G 

B 
b = - = background counting rate 

t B 

r = net counting ratet = - - - = g - b  
tG t ,  

The standard error of the net counting rate can be calculated based on Eq. 
2.84 and by realizing that r is a function of four independent variables G ,  t,, B, 
and t,: 

The electronic equipment available today is such that the error in the measure- 
ment of time is, in almost all practical cases, much smaller than the error in 
the measurement of G and B.* Unless otherwise specified, ut, and ul, will be 
taken as zero. Then Eq. 2.94 takes the form 

The standard errors of G and B are 

u G = G  u B = @  

Using Eqs. 2.93 and 2.95, one obtains for the standard error of the net counting 
rate, 

It is important to notice that in the equation for the net counting rate, the 
quantities G ,  B, t,, and t ,  are the independent variables, not g and b. The 
error of r will be calculated from the error in G, B, t,, and t,. It is very helpful 
to remember the following rule: The statistical error of a certain count is 
determined from the number recorded by the scaler. That number is G and B, not 
the rates g and b. 

Example 2.21 A radioactive sample gave the following counts: 

G = 1000 t ,  = 2min B = 500 t ,  = 10 min 

'when the counting rate is extremely high, the counter may be missing some counts. Then a 
"dead time" correction is necessary, in addition to background subtraction; see Sec. 2.21. 

?he errors utG and utB may become important in experiments where very accurate counting 
time is paramount for the measurement. 
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What is the net counting rate and its standard error? 

Answer 

r = 450 f 16 = 450 f 3.5% 
A common error is that, since r = g - b, one is tempted to write 

This result, a, = 23, is wrong because 

u- # & and ub # 6' 
The correct way to calculate the standard error based on g and b is to use 

G m 
g = = -  

JB m - 
g 2 a , = - - -  

t ,  t B 10 
Then 

Usually, one determines G and B, in which case a, is calculated from Eq. 
2.96. However, sometimes the background counting rate and its error have been 
determined earlier. In such a case, a, is calculated as shown in Ex. 2.22. 

Example 2.22 A radioactive sample gave G = 1000 counts in 2 min. The 
background rate of the counting system is known to be b = 100 k 6 counts/min. 
What is the net counting rate and its standard error? 

Answer 

In this problem, b and a,, are given, not B and t,. The standard error of the 
background rate has been determined by an earlier measurement. Obviously, b 
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was not determined by counting for 1 min, because in that case, one would have 

B = 100 t ,  = 1 min b = 100 counts/min 

2.18.1 Combining Counting Rates 

If the experiment is performed N times with results 

G ~ , G , , G ~ , . . . , G N  B ~ , B ~ , . . . , B N  

for gross and background counts, the average net counting rate is 

In most cases, t,, and t,, are kept constant for all N measurements. That is, 
t,, = t ,  and t,, = t,. Then 

where 
N N 

G = C Gi and B = C Bi 

The standard error of the average counting rate is, using Eqs. 2.84 and 2.96, 

A special case. Sometimes the background rate is negligible compared to the 
gross counting rate. Then, Eq. 2.98 becomes 

1 a 
(T. = -- 

N t ,  

The relative standard error is 

This is the same as Eq. 2.89. Therefore, if the background is negligible, the 
relative standard error is the same for either the total count or the counting 
rate. 
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2.19 METHODS OF ERROR REDUCTION 

In every radiation measurement it is extremely important to perform it in such a 
way that the result is determined with the minimum possible error. In general, 
the first task of the investigator is to improve the counting apparatus by 
reducing the background as much as possible. Actually, the important quantity is 
the ratio b/g or b/r and not the absolute value of the background. Assuming 
that all possible improvements of background have been achieved, there is a 
procedure that, if followed, will result in a smaller error. Two such procedures 
will be discussed below. In addition, a method will be presented for the 
calculation of the counting time necessary to measure a counting rate with a 
desired degree of accuracy. 

2.19.1 The Background Is Constant and There Is No Time Limit for 
Its Measurement 

In this case, the background is measured for a long period of time to minimize 
the error introduced by it, i.e., t ,  is so long that 

Example 2.23 Suppose one obtains the following data: 
G = 400 t ,  = 5 min 

B = 100 t ,  = 2.5 min 
Then 

If the background is constant, this result can be improved by counting back- 
ground for a long period of time, e.g., 250 min. In that case, the result is 

100 
B = - X 250 = 10,000 counts t ,  = 250 min 

2.5 
400 10,000 

r = - - -  
5 250 

= 40 counts/min 
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2.19.2 There Is a Fixed Time T Available for Counting Both Background 
and Gross Count 

In this case, the question is, What is the optimum time to be used for gross and 
background counting? Optimum time results in minimum statistical error for 
the net counting rate. The optimum time is determined as follows. 

An estimate of the counting rates at the time of the measurement is 
obtained with a short count (not the final one). Assume that one obtained the 
approximate counting rates 

Then, from Eq. 2.96 and also using G = gt,, B = bt,, 

The best times t, and t, are those that minimize a, or (a,)2 subject to the 
constraint 

t ,  + t, = T = constant (2.99) 

Considering a,2 as a function of t ,  and t,, the minimum will be found by 
differentiating (a;I2 and setting the differential equal to zero: 

Differentiating the constraint, Eq. 2.99, one finds 

dt, = -dt, 

Substituting this value of dt, into d(a;)' gives 

Therefore, if there is a fixed time T for the measurement, the optimum counting 
times are determined from the two equations 

2.19.3 Calculation of the Counting Time Necessary to Measure a 
Counting Rate with a Predetermined Statistical Error 

Assume that the net counting rate of a radioactive sample should be measured 
with an accuracy of a percent, i.e., a;/r = a percent. Also assume that a 
counting system is provided with a background counting rate b and standard 
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error a,. Both b and a, have been reduced as much as possible for this system 
and have been determined earlier. The task is to determine the counting time t ,  
necessary to result in a percent standard error for the net counting rate. The 
time t ,  is calculated as follows. 

The net counting rate and its standard error are 

Therefore 

Equation 2.101 solved for t ,  gives 

It is assumed that an approximate gross counting rate is known. 

Example 2.24 How long should a sample be counted to obtain the net 
counting rate with an accuracy of 1 percent? It is given that the background for 
the counting system is 100 f 2 counts/min. 

Answer The first step is to obtain an approximate gross counting rate. 
Assume that the sample gave 800 counts in 2 min. Then g = 800/2 = 400 
counts/ min and, using Eq. 2.102, 

400 
t ,  = = 80 min 

(400 - 100)~(0.01)~ - 22 

Indeed, if one counts for 80 min, the error of r is going to be 

2.19.4 Relative Importance of Error Components 

In every measurement, the observer tries to reduce the experimental error as 
much as possible. If the quantity of interest depends on many variables, each 
with its own error, the effort to reduce the error should be directed toward the 
variable with the largest contribution to the final error. 
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Consider the quantity Q = x + y - z and assume x = 3, y = 2, and z = 1. 
Also assume that the corresponding standard errors are 

The standard error of Q is 

From the relative magnitude of the errors, one can see that if it is necessary to 
reduce the error further, the effort should be directed toward reduction of a; 
first, u, second, and uz third. In fact, there is no need to reduce u- further 
before a; and a, reach the same magnitude as a,. 

2.20 MINIMUM DETECTABLE ACTIVITY 

The minimum detectable activity (MDA) is the smallest net count that can be 
reported with a certain degree of confidence that represents a true activity from 
a sample and is not a statistical variation of the background. The term MDA is 
not universally acceptable. In the general case, in measurements not necessarily 
involving radioactivity, other terms such as lowest detection limit have been 
used. Here, the notation and applications will be presented with the measure- 
ment of a radioactive sample in mind. 

Obviously, MDA is related to low count rates. In such cases of low count 
rates, the person who performs the experiment faces two possible errors. 

W E  I error: To state that the true activity is greater than zero when, in fact, it 
is zero. If this is a suspected contaminated item, the person doing the 
measurement will report that the item is indeed contaminated when, in fact, 
it is not. This error is called false positive. 

TYPE 11 error: To state that the true activity is zero when, in fact, it is not. 
Using the previous example, the person doing the measurement reports that 
the item is clean when, in fact, it is contaminated. This error is called false 
negative. 

The outcomes of radiation measurements follow Poisson statistics, which 
become, essentially, Gaussian when the average is greater than about 20 (see 
Sec. 2.10.2). For this reason, the rest of this discussion will assume that the 
results of individual measurements follow a normal distribution and the confi- 
dence limits set will be interpreted with that distribution in mind. Following the 
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notation used earlier, 

B = background with standard deviation uB 

G = gross signal with standard deviation a, 

n = G - B = net signal with standard deviation an = (a: + a;) 1/2 

When the net signal is zero (and has a standard deviation un = uo), a 
critical detection limit (CDL) is defined in terms of uo with the following 
meaning: 

1. A signal lower than CDL is not worth reporting. 
2. The decision that there is nothing to report has a confidence limit of 1 - a, 

where a is a certain fraction of the normalized Gaussian distribution (Fig. 
2.12). Take as an example a = 0.05. Then 

CDL = k,uo (2.103) 

with k, = 1.645 (see Table 2.2). If n < CDL, one decides that the sample is 
not contaminated, and this decision has a 95% confidence limit. 

The MDA should obviously be greater than the CDL. Keeping in mind that 
the possible MDA values also follow a normal distribution, a fraction P is 

0 CDL 

0 CDL MDA 

Figure 2.12 The meaning of the critical detection limit (CDL) and minimum detectable activity 
(MDA) in terms of the confidence limits defined by a and P.  
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established, meaning that a signal equal to MDA is reported as a correct/true 
signal with a confidence limit 1 - P.  The value of MDA is given by 

MDA = CDL + kpuD (2.104) 

where a, is the standard deviation of MDA (Fig. 2.12). Again, if /3 = 0.05, 
k, = 1.645. 

In most cases, in practice, a = f l  = 0.05; then the CDL and MDA are 
defined with a 95% confidence limit. For radioactivity specifically, remember 
that 

u 2  = uz + u i  = (u: + u i )  + a; (2.105) 

and for n = 0, un = 6 = 0 and u = uo = d m  = A u B .  Then, if the 
95% confidence limit is applied (a = P = 0.05), CDL = 1 . 6 4 5 ~ ~  = 2 . 3 2 6 ~ ~ .  
The value of MDA turns out to be (see Prob. 2.24) 

MDA = k2 + 2CDL = 2.71 + 4 . 6 5 3 ~ ~  (2.106) 

Example 2.25 Consider the data of a single measurement to be G = 465 
counts/min, B = 400/min. Assume that from previous measurements in that 
counting system it has been determined that uB = lO/min. The assumption is 
made that the background is constant. What does one report in this case? 

Answer The net count rate is n = 465 - 400 = 65 counts/min. The mini- 
mum detectable activity is, from Eq. 2.106, MDA = 2.71 + 4.653 X 10 = 49.2. 
Since MDA < 65, one reports, with a 95% confidence limit, that this sample is 
radioactive. 

In most cases, the second term of Eq. 2.106 is much larger than the first, 
and the MDA is taken as 

MDA = 4 . 6 5 3 ~ ~  (2.107) 

In using Eq. 2.106 or 2.107, the user should keep in mind the underlying 
assumption of the 95% confidence limit. The numerical factors will change if 
one chooses a different confidence limit. 

2.21 COUNTER DEAD-TIME CORRECTION AND 
MEASUREMENT OF DEAD TIME 

Dead time, or resolving time, of a counting system is defined as the minimum 
time that can elapse between the arrival of two successive particles at the 
detector and the recording of two distinct pulses. The components of dead time 
consist of the time it takes for the formation of the pulse in the detector itself 
and for the processing of the detector signal through the preamplifier-amplifi- 
er-discriminator-scaler (or preamplifier-amplifier-MCA). With modern electron- 
ics, the longest component of dead time is that of the detector, and for this 
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reason, the term "dead time" means the dead time of the detector. The 
dead-time component of the preamplifier-amplifier-discriminator-scaler can be 
ignored with any type of detector. 

Because of counter dead time, the possibility exists that some particles will 
not be recorded since the counter will not produce pulses for them. Pulses will 
not be produced because the counter will be "occupied" with the formation of 
the signal generated by particles arriving earlier. The counting loss of particles is 
particularly important in the case of high counting rates. Obviously, the ob- 
served counting rate should be corrected for the loss of counts due to counter 
dead time. The rest of this section presents the method for correction as well as 
a method for the measurement of the dead time. 

Suppose 7 is the dead time of the system and g the observed counting rate. 
The fraction of time during which the system is insensitive is g7. If n is the true 
counting rate, the number of counts lost is n(g7). Therefore 

and 

Equation 2.108 corrects the observed gross counting rate g for the loss of 
counts due to the dead time of the counter. 

Example 2.26 Suppose 7 = 200 p s  and g = 30,000 counts/min. What frac- 
tion of counts is lost because of dead time? What is the true counting rate? 

Answer The true counting rate is 

Therefore, dead time is responsible for loss of 

555 - 500 55 - 
555 555 

- 10% of the counts 

Notice that the product g~ = 0.10, i.e., the product of the dead time and the 
gross counting rate, is a good indicator of the fraction of counts lost because of 
dead time. 

The dead time is measured with the "two-source" method as follows. Let 
n,,n,, n,, be the true gross counting rates from the first source only, from the 
second source only, and from both sources, respectively, and let n, be the true 
background rate. Let the corresponding observed counting rates be g,, g,, g,,, b. 
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The following equation holds: 

True net True net True net 
(counting rate) ,+ (counting rate) ,= (counting rate 

or 
n, + n, = n,, + n, 

Using Eq. 2.108, 

It will be assumed now that br  4 1, in which case, 

(If b~ is not much less than 1, the instruments should be thoroughly checked for 
possible malfunction before proceeding with the measurement.) 

The dead time T can be determined from Eq. 2.109 after g,, g,, g,,, and b 
are measured. This is achieved by counting radioactive source 1, then sources 1 
and 2 together, then only source 2, and finally the background after removing 
both sources. Equation 2.109 can be rearranged to give: 

Equation 2.110 is a second-degree algebraic equation that can be solved for T. It 
was derived without any approximations. 

If the background is negligible, Eq. 2.110 takes the form 

g l g 2 g l 2 ~ ~  - 2g1g27 + gl + g2 - g12 = 0 (2.111) 

Solving for T, 

When dead-time correction is necessary, the net counting rate, called "true 
net counting rate," is given by 

It is assumed that the true background rate has been determined earlier with 
the standard error ub. The standard error of r, a,, is calculated from Eq. 2.113 
using Eq. 2.84. If the only sources of error are the gross count G and the 
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background, the standard error of r is 

If there is an error due to dead-time determination, a third term consisting 
of that error will appear under the radical of Eq. 2.114. 

PROBLEMS 

2.1 What is the probability when throwing a die three times of getting a four in any of the throws? 

2.2 What is the probability when drawing one card from each of three decks of cards that all three 
cards will be diamonds? 

2.3 A box contains 2000 computer cards. If five faulty cards are expected to be found in the box, 
what is the probability of findiag two faulty cards in a sample of 250? 

2.4 Calculate the average and the standard deviation of the probability density function f(x) = 

l /(b - a) when a I x I b. (This pdf is used for the calculation to round off errors.) 
2.5 The energy distribution of thermal (slow) neutrons in a light-wave reactor follows very closely 
the Maxwell-Boltzmam distribution: 

N(E)  dE = ~ & e - ~ / ~ ~  d~ 
where N(E) dE = number of neutrons with kinetic energy between E and E + dE 

k  = Boltzmann constant = 1.380662 X 1 0 - 2 3 ~ / 0  K 
T = temperature, K 
A = constant 

Show that 
(a) The mode of this distribution is E = ikT.  
(b) The mean is E = + k ~ .  

2.6 If the average for a large number of counting measurements is 15, what is the probability that a 
single measurement will produce the result 20? 

2.7 For the binomial distribution, prove 

N 

(a) pi:), = 1 (b) 3 = p N  (c) u 2  = m(l - p )  
n = O  

2.8 For the Poisson distribution, prove 

2.9 For the normal distribution, show 

rn 

a P = 1 (b) i = m (c) the variance is o2 

2.10 If n,, n,, . . . , n, are mutually uncorrelated random variables with a common variance u2 ,  
show that 

N - 1  
(n i  - Ti) = - u 

N 
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2.11 Show that in a series of N measurements, the result R that minimizes the quantity 

is R = E, where 7i is given by Eq. 2.31. 

2.12 Prove Eq. 2.62 using tables of the error function. 

2.13 As part of a quality control experiment, the lengths of 10 nuclear fuel rods have been measured 
with the following results in meters: 

What is the average length? What is the standard deviation of this series of measurements? 

2.14 At a uranium pellet fabrication plant the average pellet density is 17 X lo3 kg/m3 with a 
standard deviation equal to lo3 kg/m3. What is the probability that a given pellet has a density less 
than 14 x lo3 kg/m3? 

2.15 A radioactive sample was counted once and gave 500 counts in 1 min. The corresponding 
number for the background is 480 counts. Is the sample radioactive or not? What should one report 
based on this measurement alone? 
2.16 A radioactive sample gave 750 counts in 5 min. When the sample was removed, the scaler 
recorded 1000 counts in 10 min. What is the net counting rate and its standard percent error? 
2.17 Calculate the average net counting rate and its standard error from the data given below: 

2.18 A counting experiment has to be performed in 5 min. The approximate gross and background 
counting rates are 200 counts/min and 50 counts/min, respectively. 

(a) Determine the optimum gross and background counting times. 
(b) Based on the times obtained in (a), what is the standard percent error of the net counting 

rate? 
2.19 The strength of a radioactive source was measured with a 2 percent standard error by taking a 
gross count for time t min and a background for time 2t min. Calculate the time t if it is given that 
the background is 300 counts/min and the gross count 45,000 counts/min. 
2.20 The strength of radioactive source is to be measured with a counter that has a background of 
120 f 8 counts/min. The approximate gross counting rate is 360 counts/min. How long should one 
count if the net counting rate is to be measured with an error of 2 percent? 
2.21 The buckling B 2  of a cylindrical reactor is given by 

where R = reactor radius 
H = reactor height 

If the radius changes by 2 percent and the height by 8 percent, by what percent will B 2  
change? Take R = 1 m, H = 2 m. 
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2.22 Using Chauvenet's criterion, should any of the scaler readings listed below be rejected? 

115 121 103 151 
121 105 75 103 
105 107 100 108 
113 110 101 97 
110 109 103 101 

2.23 Using the data of Prob. 2.13, what is the value of accepted length x ,  if the confidence limit is 
99.4 percent? 
2.24 Prove that for radioactivity measurements the value of MDA is given by the equation 
MDA = k2  + 2CDL, if k, = kS = k. Hint: when n = MDA, the variance u2 = MDA + a:. 
2.25 A sample was counted for 5 min and gave 2250 counts; the background, also recorded for 5 
min, gave 2050 counts. Is this sample radioactive? Assume confidence limits of both 95% and 90%. 
2.26 Determine the dead time of a counter based on the following data obtained with the 
two-source method: 

g l  = 14,000 counts/min g12  = 26,000 counts/min 

g2 = 15,000 counts/min b = 50 counts/min 

2.27 If the dead time of a counter is 100 ps, what is the observed counting rate if the loss of counts 
due to dead time is equal to 5 percent? 
2.28 Calculate the true net activity and its standard percent error for a sample that gave 70,000 
counts in 2 min. The dead time of the counter is 200 ps. The background is known to be 100 f 1 
counts/min. 
2.29 Calculate the true net activity and its standard error based on the following data: 

G = 100,000 counts obtained in 10 min 
B = 10,000 counts obtained in 100 min 

The dead time of the counter is 150 ps. 
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CHAPTER 

THREE 

REVIEW OF ATOMIC AND NUCLEAR PHYSICS 

3.1 INTRODUCTION 

This chapter reviews the concepts of atomic and nuclear physics relevant to 
radiation measurements. It should not be considered a comprehensive discus- 
sion of any of the subjects presented. For in-depth study, the reader should 
consult the references listed at the end of the chapter. If a person has studied 
and understood this material, this chapter could be skipped without loss of 
continuity. 

This review is not presented from the historical point of view. Atomic and 
nuclear behavior and the theory and experiments backing it are discussed as we 
understand them today. Emphasis is given to the fact that the current "picture" 
of atoms, nuclei, and subatomic particles is only a model that represents our 
best current theoretical and experimental evidence. This model may change in 
the future if new evidence is obtained pointing to discrepancies between theory 
and experiment. 

3.2 ELEMENTS OF RELATIVISTIC KINEMATICS 

The special theory of relativity developed by Einstein in 1905 is based on two 
simple postulates. 

79 
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FIRST POSTULATE The laws of nature and the results of all experiments 
performed in a given frame of reference (system of coordinates) are inde- 
pendent of the translational motion of the system as a whole. 

SECOND POSTULATE The speed of light in vacuum is independent of the 
motion of its source. 

These two postulates, simple as they are, predict consequences that were 
unthinkable at that time. The most famous predictions of the special theory of 
relativity are 

1. The mass of a body changes when its speed changes. 
2. Mass and energy are equivalent ( E  = mc2). 

Einstein's predictions were verified by experiment a few years later, and they are 
still believed to be correct today. 

The main results of the special theory of relativity will be presented here 
without proof, using the following notations: 

M = rest mass of a particle (or body) 
M* = mass of a particle in motion 

u = speed of the particle 

c = speed of light in vacuum = 3 x lo8 m/s 

T = kinetic energy of the particle 
E = total energy of the particle 

According to the theory of relativity, the mass of a moving particle (or body) 
changes with its speed according to the equation 

or 

where 

and 

Equation 3.1 shows that 

1. As the speed of a moving particle increases, its mass also increases, thus 
making additional increase of its speed more and more difficult. 
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2. It is impossible for any mass to reach a speed equal to or greater than the 
speed of light in vacuum.+ 

The total energy of a particle of mass M* is 

E = M*c2 (3.5) 

Equation 3.5 expresses the very important concept of equivalence of mass and 
energy. Since the total energy E consists of the rest mass energy plus the kinetic 
energy, Eq. 3.5 may be rewritten as 

E = M*C' = T + MC' (3.6) 
Combining Eqs. 3.2 and 3.6, one obtains the relativistic equation for the kinetic 
energy 

T = ( y -  1)Mc2 (3.7) 

The quantity y, which is defined by Eq. 3.4 = M*c2/Mc2), indicates how 
many times the mass of the particle has increased, relative to its rest mass, 
because of its motion. For large moving masses, the relativistic mass increase is 
too small to measure. Thus, without the availability of subatomic particles such 
as electrons and protons, it would be extremely difficult to verify this part of 
Einstein's theory. 

The equation that relates the linear momentum and the total energy of a 
particle is 

E~ = (Mc2) + (PC) 
2 

(3.8) 
where 

p = M * v =  yMv (3.9) 

is the linear momentum. Combining Eqs. 3.6 and 3.8, one obtains 

T =  4- -MC' (3.10) 
or 

Equation 3.10 is used for the determination of the kinetic energy if the 
momentum is known, while Eq. 3.11 gives the momentum if the kinetic energy is 
known. 

For small values of p (Eq. 3.3)-that is, for small speeds-the equations of 
relativity reduce to the equations of Newtonian (classical) mechanics. In classi- 
cal mechanics, the mass is constant, and T and p are given by 

"I'he speed of light in a medium with index of refraction n is c / n ;  thus, it is possible for 
particles to move faster than with c / n  in certain media (see Cerencov radiation, Evans). 



82 MEASUREMENT AND DETECTlON OF RADIATION 

If the kinetic energy of a particle is a considerable fraction of its rest mass 
energy, Eqs. 3.7 and 3.9 should be used for the determination of T and p. Then 
the particle is relativistic. If, on the other hand, P .c 1, the particle is nonrela- 
tivistic, and Eqs. 3.12 and 3.13 may be used. 

Example 3.1 What is the mass increase of a bullet weighing 0.010 kg and 
traveling at twice the speed of sound? 

Answer The speed of the bullet is u - 700 m/s. Using Eqs. 3.2 and 3.4, 

The mass increase is 

which is almost impossible to detect. 

Example 3.2 An electron has a kinetic energy of 200 keV. (a) What is its 
speed? (b) What is its new mass relative to its rest mass? 

Answer The rest mass energy of the electron is 511 keV. Since ~ / m c ~  = 
200/511 = 0.391, relativistic equations should be used. (a) The speed of the 
electron is obtained with the help of Eqs. 3.7 and 3.4. Equation 3.7 gives 

and from Eq. 3.4 one obtains 

Therefore 

(b) The new mass relative to the rest mass has already been determined because 

i.e., the mass of this electron increased 39.1 percent. 
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It is instructive to calculate the speed of this electron using the classical 
method of Eq. 3.12 to see the difference: 

Thus, the classical equation determines the speed with an error 

Example 3.3 What is the kinetic energy of a neutron with speed 6 X lo7 
m/s? What is its mass increase? 

Answer For this particle, 

Using Eqs. 3.4 and 3.7, 

= (1.021 - 1 ) ~ c ~  = 0 . 0 2 1 ~ ~ ~  + (0.021)939.55 MeV = 19.73 MeV 

= 3.16 x 10-l2 J 

The mass increase is M * / M  = y = 1.021, i.e., a 2.1 percent mass increase. 

3.3 ATOMS 

To the best of our knowledge today, every atom consists of a central positively 
charged nucleus around which negative electrons revolve in stable orbits. 
Considered as a sphere, the atom has a radius of the order of 10-lo m and the 
nucleus has a radius of the order of 10-l4 m. The number of electrons is equal 
to the number of positive charges of the nucleus; thus the atom is electrically 
neutral (in its normal state). 

The number of positive elementary charges in the nucleus is called the 
atomic number and is indicated by 2. The atomic number identifies the chemical 
element. All atoms of an element have the same chemical properties. 

The atomic electrons move around the nucleus as a result of the attractive 
electrostatic Coulomb force between the positive nucleus and the negative 
charge of the electron. According to classical electrodynamics, the revolving 
electrons ought to continuously radiate part of their energy, follow a spiral orbit, 
and eventually be captured by the nucleus. Obviously, this does not happen: 
atoms exist and are stable. 
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The available experimental evidence points toward the following facts 
regarding the motion of atomic electrons: 

1. Bound atomic electrons revolve around the nucleus in stable orbits without 
radiating energy. Every orbit corresponds to a certain electron energy and is 
called an energy state. 

2. Only certain orbits (only certain energies) are allowed. That is, the energy 
states of the bound electrons form a discrete spectrum, as shown in Fig. 3.1. 
This phenomenon is called quantization. 

3. If an electron moves from an orbit (state) of energy Ei to another of energy 
Ef, then (and only then) electromagnetic radiation, an X-ray, is emitted with 
frequency v such that 

where h is Planck's constant. 

Figure 3.1 An atomic energy level 
diagram showing X-ray nomencla- 
ture (not drawn to scale). E, = 
lowest energy state = ground state. 
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The energy of the X-ray depends on the atomic number: 

where k and a are constants. X-ray energies range from a few eV for the light 
elements to a few hundreds of keV for the heaviest elements. 

Every atom emits characteristic X-rays with discrete energies that identify 
the atom like fingerprints. For every atom, the, the X-rays are identified 
according to the final state of the electron transition that produced them. 
Historically, the energy states of atomic electrons are characterized by the 
letters K, L, M, N, etc. The K state or K orbit or K shell is the lowest energy 
state, also called the ground state. The X-rays that are emitted as a result of 
electronic transitions to the K state, from any other initial state, are called K 
X-rays (Fig. 3.1). Transitions to the L state give rise to L X-rays and so on. K, 
and Kp X-rays indicate transitions from L to K and M to K states, respectively. 

A bound atomic electron may receive energy and move from a state of 
energy E, to another of higher energy E,. This phenomenon is called excitation 
of the atom (Fig. 3.2). An excited atom moves preferentially to the lowest 
possible energy state. In times of the order of s, the electron that jumped 
to E, or another from another state will fall to E,  and an X-ray will be emitted. 

An atomic electron may receive enough energy to leave the atom and 
become a free particle. This phenomenon is called ionization, and the positive 
entity left behind is called an ion. The energy necessary to cause ionization is 
the ionization potential. The ionization potential is not the same for all the 
electrons of the same atom because the electrons move at different distances 
from the nucleus. The closer the electron is to the nucleus, the more tightly 
bound it is and the greater its ionization potential becomes. Table 3.1 lists 
ionization potentials of the least bound electron for certain elements. 

When two or more atoms join together and form a molecule, their common 
electrons are bound to the molecule. The energy spectrum of the molecule is 
also discrete, but more complicated than that shown in Fig. 3.1. 

'7 Electron moves " 7 
to excited state I Ex = EI - E,  

1 El I 

Excitation Deexcitation 

Figure 3.2 Excitation and deexcitation of the atom. 
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Table 3.1 Ionization Potential for the Least Bound Electron of 
Certain Elements 

Ionization Ionization 
Element potential (eV) Element potential (eV) 

3.4 NUCLEI 

At the present time, all experimental evidence indicates that nuclei consist of 
neutrons and protons, which are particles known as nucleons. Nuclei then 
consist of nucleons. Some of the properties of a neutron, a proton, and an 
electron, for comparison, are listed in Table 3.2. A free proton-outside the 
nucleus-will eventually pick up an electron and become a hydrogen atom, or it 
may be absorbed by a nucleus. A free neutron either will be absorbed by a 
nucleus or will decay according to the equation 

n + p + + e P +  F 
i.e., it will be transformed into a proton by emitting an electron and another 
particle called an antineutrino. 

A nucleus consists of A  particles, 
A = N + Z  

where A  = mass number 
N  = number of neutrons 
Z = number of protons = atomic number of the element 

A nuclear species X is indicated as 
A .x 

where X = chemical symbol of the element. For example, 

lgo 
Isobars are nuclides that have the same A. 

Table 3.2 Neutron-Proton Properties 

Electron Neutron Proton 

Rest mass 
kg 9.109558 X 1.674928 X l O W Z 7  1.672622 X 
MeV 0.511 939.552 938.258 
U 1.008665 1.007276 

Charge - e  0 + e  
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Isotopes are nuclides that have the same Z. They are nuclei of the same 
chemical element. They have the same chemical but slightly different physical 
properties, due to their difference in mass. The nuclear properties change 
drastically from isotope to isotope. 

Isotones are nuclides that have the same N, i.e., the same number of 
neutrons. 

Isomers are two different energy states of the same nucleus. 
The different atomic species are the result of different combinations of one 

type of particle-the electron. There are 92 natural elements. Since 1940, 15 
more have been artificially produced for a total of 107 elements. The different 
nuclides, on the other hand, are the result of different combinations of two 
kinds of particles, neutrons and protons, and so there are many more possibili- 
ties. There are more than 700 known nuclides. 

Experiments have determined that nuclei are almost spherical, with 
a volume proportional to the mass number A and a radius approximately 
equal tot 

R = 1.3 x IO-'~A'/~ in meters (3.16) 

The mass of the nucleus with mass number A and atomic number 2, 
indicated as M,(A, Z), is equal to 

M,(A, Z )  = ZM,, + NM, - B(A, Z ) c 2  (3.17) 

where M, = mass of the proton 
M, = mass of the neutron 

B(A, Z )  = binding energy of the nucleus. 
The binding energy is equal to the energy that was released when the N 
neutrons and Z protons formed the nucleus. More details about the binding 
energy are given in the next section. 

The unit used for the measurement of nuclear mass is equal to of the 
mass of the isotope ':c. Its symbol is u (formerly amu for atomic mass unit): 

1 u = &(mass of ':c) = 1.660540 X kg = 931.481 MeV 

In many experiments, what is normally measured is the atomic, not the 
nuclear, mass. To obtain the atomic mass, one adds thc mass of all the atomic 
electrons (see next section). A table of atomic masses of many isotopes is given 
in App. B. The mass may be given in any of the following three ways: 

1. Units of u 
2. Kilograms 
3. Energy units (MeV or J), in view of the equivalence of mass and energy 

 o or nonspherical nuclei, the radius given by Eq. 3.16 is an average. 
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3.5 NUCLEAR BINDING ENERGY 

The mass of a nucleus is given by Eq. 3.18 in terms of the masses of its 
constituents. That same equation also defines the binding energy of the nucleus: 

B(A, Z )  = [ZM, + NM, - MN(A, z ) ] c 2  (3.18) 

The factor c2, which multiplies the mass to transform it into energy, will be 
omitted from now on. It will always be implied that multiplication or division by 
c2 is necessary to obtain energy from mass or vice versa. Thus, Eq. 3.18 is 
rewritten as 

B(A, Z )  = ZM, + NM, - MN(A, Z )  (3.19) 

The meaning of B(A, Z )  may be expressed in two equivalent ways: 

1. The binding energy B(A, Z )  of a nucleus is equal to the mass transformed 
into energy when the Z protons and the N = A  - Z neutrons got together 
and formed the nucleus. An amount of energy equal to the binding energy 
was released when the nucleus was formed. 

2. The binding energy B(A, Z )  is equal to the energy necessary to break the 
nucleus apart into its constituents, Z free protons and N free neutrons. 

As mentioned in Section 3.4, atomic masses rather than nuclear masses are 
measured in most cases. For this reason, Eq. 3.19 will be expressed in terms of 
atomic masses by adding the appropriate masses of atomic electrons. If one adds 
and subtracts Zrn in Eq. 3.19, 

B(A,  Z )  = ZM, + Zrn + NM,, - MN(A, Z )  - Zrn 

= Z(M, + rn) + NM, - [MN(A, Z )  + Zrn] (3.20) 

Let 

MH = mass of the hydrogen atom 

Be = binding energy of the electron in the hydrogen atom 

B,(A, Z )  = binding energy of all the electrons of the atom whose nucleus 

has mass MN(A, Z )  

M(A, Z )  = mass of the atom with nuclear mass equal to MN( A,  Z )  

Then 

M H = M p + r n - B e  

Combining Eqs. 3.20, 3.21, and 3.22, one obtains 

B(A, Z )  ZMH + NM, - M(A, Z )  - B,(A, Z) + ZB, (3.23) 
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Unless extremely accurate calculations are involved, the last two terms of 
Eq. 3.23 are neglected. The error introduced by doing so is insignificant because 
ZB, and B,(A,  Z )  are less than a few keV and they tend to cancel each other, 
while B ( A ,  Z )  is of the order of MeV. Equation 3.23 is, therefore, usually 
written as 

B ( A ,  Z )  = ZMH + NM, - M ( A ,  Z )  (3.24) 

Example 3.4 What is the total binding energy of l ~ e ?  

Answer Using Eq. 3.24 and data from App. b, 

B ( 4 , 2 )  = 2MH + 2M, - M ( 4 , 2 )  

= [2(1.00782522) + 2(1.00866544) - 4.00260361] u 

= 0.03037771 u = (0.0303771 u)93l.478 MeV/u 

= 28.296 MeV = 4.53 X 10-l2 J 

Example 3.5 What is the binding energy of the nucleus ';;u? 

Answer 

B(238,92) = [%(I .OO782522) + l46( l  .OO866544) - 238.050761 u 

= 1 .!I3431448 u = (1.93431448 u)931.478 MeV/u 

= 1801.771 MeV = 2.886 x J 
The energy necessary to remove one particle from the nucleus is the 

separation or binding energy of that particle for that particular nuclide. A 
"particle" may be a neutron, a proton, an alpha particle, a deuteron, etc. The 
separation or binding energy of a nuclear particle is analogous to the ionization 
potential of an electron. If a particle enters the nucleus, an amount of energy 
equal to its separation energy is released. 

The separation or binding energy of a neutron ( B , )  is defined by the 
equation 

B, = M [ ( A  - I ) ,  Z ]  + M, - M ( A ,  Z )  (3.25) 

Using Eq. 3.24, Eq. 3.25 is written 

B, = B ( A ,  Z )  - B [ ( A  - I ) ,  Z ]  (3.26) 

which shows that the binding energy of the last neutron is equal to the 
difference between the binding energies of the two nuclei involved. Typical 
values of B, are a few MeV (less than 10 MeV). 

The separation or binding energy of a proton is 

B p = M ( A -  1 , Z -  l ) + M H - M ( A , Z )  (3.27) 

or, using Eq. 3.24, 

B p = B ( A , Z )  - B ( A  - 1 , Z -  1)  (3.28) 
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The separation energy for an alpha particle is 

B , = M ( A - 4 , Z - 2 ) + M H , - M ( A , Z )  (3.29) 

or, using Eq. 3.24, 

B, = B(A,Z)  - B(A - 4, Z - 2) - B(4,2) (3.30) 

Example 3.6 What is the separation energy of the last neutron of the i ~ e  
nucleus? 

Answer Using data from App. B and Eq. 3.25, one obtains 

Bn = M(3,2) + Mn - M(4,2) 

= [(3.016030 + 1.008665 - 4.002604) ~1931.478 MeV/u 

= 0.022091(931.478 MeV) = 20.58 MeV = 3.3 X lo-'' J 

If the average binding energy per nucleon, 

is plotted as a function of A, one obtains the result shown in Fig. 3.3. The 

0 4  8 1 2 1 6 2 0 2 4  30 60 90 120 150 180 210 240 

Mass number A 

Figure 3 3  The change of the average binding energy per nucleon with mass number A. Notice the 
change in scale after A = 30. (From The Atomic Nucleus by R. D. Evans. Copyright O 1972 by 
McGraw-Hill. Used with the permission of McGraw-Hill Book Company.) 
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average binding energy changes relatively little, especially for A > 30. Notice 
that Fig. 3.3 has a different scale for A < 30. 

Figure 3.3 is very important because it reveals the processes by which energy 
may be released in nuclear reactions. If one starts with a very heavy nucleus 
(A = 240) and breaks it into two medium-size nuclei (fission), energy will be 
released because the average binding energy per nucleon is larger for nuclides 
in the middle of the periodic table than it is for heavy nuclides. On the other 
hand, if one takes two very small nuclei (A = 2,3) and fuses them into a larger 
one, energy is again released due to similar increase in the average binding 
energy per nucleon. 

3.6 NUCLEAR ENERGY LEVELS 

Neutrons and protons are held together in the nucleus by nuclear forces. 
Although the exact nature of nuclear forces is not known, scientists have 
successfully predicted many characteristics of nuclear behavior by assuming a 
certain form for the force and constructing nuclear models based on that form. 
The success of these models is measured by how well their predicted results 
agree with the experiment. Many nuclear models have been proposed, each of 
them explaining certain features of the nucleus; but as of today, no model exists 
that explains all the facts about all the known nuclides. 

All the nuclear models assume that the nucleus, like the atom, can exist 
only in certain discrete energy states. Depending on the model, the energy states 
may be assigned to the nucleons-neutrons and protons-or the nucleus as a 
whole. The present discussion of nuclear energy levels will be based on the 
second approach. 

The lowest possible energy state of a nucleus is called the ground state (Fig. 
3.4). In Fig. 3.4, the ground state is shown as having negative energy to indicate 
a bound state. The ground state and all the excited states below the zero energy 
level are called bound states. If the nucleus finds itself in any of the bound 

levels 
Partially or fully 
occupied 

Ground state - - 
Figure 3.4 Bound and virtual nuclear energy levels. 
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states, it deexcites after a time of the order of lo-'' to 10 -lo s by dropping to a 
lower state. Deexcitation is accompanied by the emission of a photon with 
energy equal to the difference between the energies of the initial and final 
states. Energy states located above the zero energy level are called virtual 
energy levels. If the nucleus obtains enough energy to be raised to a virtual 
level, it may deexcite either by falling to one of the bound levels or by emitting a 
nucleon. 

Studies of the energy levels of all the known nuclides reveal the following: 

1. The distance between nuclear energy levels is of the order of keV to MeV. 
By contrast, the distance between atomic levels is of the order of eV. 

2. The distance between levels decreases as the excitation energy increases (Fig. 
3.5). For very high excitation energies, the density of levels becomes so high 
that it is difficult to distinguish individual energy levels. 

3. As the mass number A increases, the number of levels increases; i.e., heavier 
nuclei have more energy levels than lighter nuclei (in general-there may be 
exceptions). 

4. As A increases, the energy of the first excited state decreases (again, in 
general-exceptions exist). For example, 

9 ~ e :  first excited state is at 1.68 MeV 

5 6 ~ e :  first excited state is at 0.847 MeV 

2 3 8 ~ :  first excited state is at 0.044 MeV 

3.7 ENERGETICS OF NUCLEAR DECAYS 

This section discusses the energetics of a, P ,  and y decay, demonstrating how 
the kinetic energies of the products of the decay can be calculated from the 
masses of the particles involved. In all cases, it will be assumed that the original 
unstable nucleus is at rest-i.e., it has zero kinetic energy and linear momen- 
tum. This assumption is very realistic because the actual kinetic energies of 
nuclei due to thermal motion are of the order of kT (of the order of eV), where 
k is the Boltzmann constant and T the temperature (Kelvin), while the energy 
released in most decays is of the order of MeV. 

In writing the equation representing the decay, the following notation will 
be used: 

M = atomic mass (or MC' = rest mass energy) 
E, = energy of a photon 

T, = kinetic energy of a particle type i 

4. = linear momentum of a particle type i 
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-- 

urn the zero energy has been switched to the ground state 
of the nucleus. The numbers on the right-hand column 
show the energy of each level in MeV (Ref. 4, p. 163). 

Figure 3.5 The energy levels of : i~i.  In this diagram 
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3.7.1 Gamma Decay 

In y decay, a nucleus goes from an excited state to a state of lower energy and 
the energy difference between the two states is released in the form of a photon. 
Gamma decay is represented by 

where A, X* indicates the excited nucleus. 
Applying conservation of energy and momentum for the states before and 

after the decay, we havet 

Conservation of energy: 

Conservation of momentum: 

0 = PM + Py 
Using these two equations and the nonrelativistic form of the kinetic energy of 
the nucleus, 

Use has been made of the relationship Ey = Pyc (the photon rest mass is zero). 
Equation 3.34 gives the kinetic energy of the nucleus after the emission of a 
photon of energy Ey.  This energy is called the recoil energy. 

The recoil energy is small. Consider a typical photon of 1 MeV emitted by a 
nucleus with A = 50. Then, from Eq. 3.34, 

Most of the time, this energy is neglected and the gamma energy is written as 

However, there are cases where the recoil energy may be important, e.g., in 
radiation damage studies. 

Sometimes the excitation energy of the nucleus is given to an atomic 
electron instead of being released in the form of a photon. This type of nuclear 
transition is called internal conversion (IC), and the ejected atomic electron is 
called an internal conversion electron. 

' ~ ~ u a t i o n s  in this chapter are written in terms of atomic, not nuclear, masses. This notation 
introduces a slight error because the binding energy of the atomic electrons is not taken into 
account (see Sec. 3.5). 
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Let T, be the kinetic energy of an electron ejected from shell i and Bi be 
the binding energy of an electron in shell i. Equation 3.32 now takes the form 

M*(A, Z )  = M(A, Z )  + Ti + Bi + TM (3.35) 

Even though the electron has some nonzero rest mass energy, it is so much 
lighter than the nucleus that TM c T,. Consequently, TM is neglected and Eq. 
3.35 is written as 

T, = M*(A,Z)  - M ( A , Z )  - Bi (3.36) 

If Q  = M*(A, Z)  - M(A, Z )  = energy released during the transition, then 

T , = Q - B i  

When internal conversion occurs, there is a probability than an electron 
from the K shell, L shell, or another shell, may be emitted. The corresponding 
equations for the electron kinetic energies are 

TK = Q  - B ,  

TL = Q  - B ,  (3.37) 

T M = Q - B M  etc. 

Therefore, a nucleus that undergoes internal conversion is a source of groups of 
monoenergetic electrons with energies given by Eqs. 3.37. A typical internal 
conversion electron spectrum is shown in Fig. 3.6. The two peaks correspond to 
K and L electrons. The diagram on the right (Fig. 3.6) shows the transition 

I l 3 ~ n ( T =  115d) 
- 1500 - 
a, EC (electron capture) 
C 

5 0.392 MeV 
1 
0 
L 

n I , 
(U : 1000 - - 
C 
3 
0 
0 

500 - 

0 
50 100 150 200 

Channel number (or energy) 

Figure 3.6 The internal conversion spectrum of ' l 3 ~ n .  The two peaks correspond to K electrons (363 
keV) and L electrons (387 keV). 
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energy to be 392 keV. The K-shell energy is then B,  = 392 - 363 = 29 keV 
and the L-shell binding energy is BL = 392 - 387 = 5 keV. Let: 

A, = probability that internal conversion will occur 

A, = probability that a photon will be emitted 

A, = probability that an electron from shell i will be emitted 

A = total probability for y decay 

and 

A = A, + A, 

For most nuclei, A, = 0, but there is no y-decaying nucleus for which A, = 0. 
This means radioisotopes that internally convert, emit gammas as well as 
electrons. After an atomic electron is emitted, the empty state that was created 
will quickly be filled by another electron that "falls in" from the outer shells. As 
a result of such a transition, an X-ray is emitted. Therefore, internally convert- 
ing nuclei emit y-rays, electrons, and X-rays. 

Radioisotopes that undergo internal conversion are the only sources of 
monoenergetic electrons, except for accelerators. They are very useful as instru- 

113 137 ment calibration sources. Three isotopes frequently used are Sn, Cs, and 
207 Bi. 

3.7.2 Alpha Decay 

Alpha decay is represented by the equation 

Applying conservation of energy and momentum, 

M ( A , Z ) = M ( A - 4 , 2 - 2 ) + M ( 4 , 2 )  + T,+T, (3.40) 

and 

0 = Pa + P, 
The energy that becomes available as a result of the emission of the alpha 
particle is called the decay energy Q,, defined by 

Q, = (mass of parent) - (mass of decay products) 
(3.42) 

Q , = M ( A , Z ) - M ( A - 4 , Z - 2 )  -M(4,2) 

' ~ab le s  of isotopes usually give, not the values of the different A's, but the so-called IC 
coefficients, which are the ratios A,/A,, AJA,, etc. (see Ref. 4). 
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Obviously, for a decay to occur, Q,  should be greater than zero. Therefore, 
a decay is possible only when 

If the daughter nucleus is left in its ground state, after the emission of the alpha, 
the kinetic energy of the two products is (from Eq. 3.401, 

In many cases, the daughter nucleus is left in an excited state of energy Ei, 
where i indicates the energy level. Then, Eq. 3.44 becomes 

which shows that the available energy (Q,) is decreased by the amount Ei. 
The kinetic energies T, and TM can be calculated from Eqs. 3.41 and 3.44. 

The result is 

M ( A  - 4 , Z - 2 )  A - 4  
T, = ( Q ,  - E i )  s 7 ( Q ,  - Ei) (3.46) 

M ( A  - 4 ,  Z - 2 )  + M(4,2)  

Example 3.7 What are the kinetic energies of the alphas emitted by 2 3 8 ~ ?  

Answer The decay scheme of ' 3 9 ; ~  is shown in Fig. 3.7. After the alpha is 
emitted, the daughter nucleus, ' i i ~ h ,  may be left in one of the two excited states 
at 0.16 MeV and 0.048 MeV or go to the ground state. 

The decay energy Q,  is (Eq. 3.42) 

Q ,  = M(238,92) - M(234,90) - M(4 ,2 )  

= 238.050786 - 234.043594 - 4.002603 
= 0.004589 u = 0.004589 X 931 A81 MeV = 4.27 MeV 

Depending on the final state of ';;Th, the energy of the alpha particle is 

T, = EQ, = 4.20 MeV 

T, = z ( Q ,  - 0.048) = 4.15 MeV 

T, = %(Q,  - 0.16) = 4.04 MeV 

3.7.3 Beta Decay 

In p decay, a nucleus emits an electron or a positron and is transformed into a 
new element. In addition to the electron or the positron, a neutral particle with 
rest mass zero is also emitted. There are two types of P decay, P and P+. 
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Energy 

130 u 

0.23% 
(MeV) 

Energy (MeV) 4 1 23% 

77% Figure 3.7 The alpha decay scheme of 2 3 8 ~ .  The 

0 percentage values give the probability of decay 
'2 Th through the corresponding level (from Ref. 4). 

p - Decay. This type of decay is represented by 

where p = negative beta particle = electron - 
v = antineutrino 

Historically, the name p particle has been given to electrons that are 
emitted by nuclei undergoing beta decay. The antineutrino (F) is a neutral 
particle with rest mass so small that it is taken equal to zero. 

The energy equation of p- decay is 

MN(A, Z )  = MN(A,Z + 1) + m + Tp-+ + TM (3.48) 

where MN(A, Z) is the nuclear mass and m is the electron rest mass. Using 
atomic masses, Eq. 3.48 becomes (see Sec. 3.5) 

The momentum equation is 

0 = PM + Pp-+ PF (3.50) 

The p- decay energy, Qp- ,  is defined as 

Qp-= M(A, Z )  - M(A, Z + 1) (3.51) 

The condition for p- decay to be possible is 

M ( A , Z )  - M ( A , Z  + 1) > 0 

In terms of Qp-, Eq. 3.49 is rewritten in the form 

Tp-+ q, + TM = Qp-  

Equations 3.50 and 3.53 show that three particles, the nucleus, the electron, 
and the antineutrino, share the energy Q,-, and their total momentum is zero. 
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There is an infinite number of combinations of kinetic energies and momenta 
that satisfy these two equations and as a result, the energy spectrum of the betas 
is continuous. 

In Eq. 3.53, the energy of the nucleus, T M ,  is much smaller than either T,- 
or T, because the nuclear mass is huge compared to that of the electron or the 
antineutrino. For all practical purposes, TM can be neglected and Eq. 3.53 takes 
the form 

As in the case of a decay, the daughter nucleus may be left in an excited 
state after the emission of the p- particle. Then, the energy available to 
become kinetic energy of the emitted particles is less. If the nucleus is left in the 
ith excited state Ei, Eq. 3.54 takes the form 

According to Eq. 3.54, the electron and the antineutrino share the energy Qp- 
(or Emax) and there is a certain probability that either particle may have an 
energy within the limits 

which means that the beta particles have a continuous energy spectrum. Let 
P(T) dT be the number of beta particles with kinetic energy between T and 
T + dT. The function B(T) has the general shape shown in Fig. 3.8. The energy 
spectrum of the antineutrinos is the complement of that shown in Fig. 3.8, 
consistent with Eq. 3.57. The continuous energy spectrum of P particles 
should be contrasted with the energy spectrum of internal conversion electrons 
shown by Fig. 3.6. 

As stated earlier, beta particles are electrons. The practical difference 
between the terms electrons and betas is this: A beam of electrons of energy T 
consists of electrons each of which has the kinetic energy T .  A beam of beta 
particles with energy Emax consists of electrons that have a continuous energy 
spectrum (Fig 3.8) ranging from zero up to a maximum kinetic energy Em,,. 

Figure 3.9 shows the P- decay scheme of the isotope '::CS. For an example 
of a Qp- calculation, consider the decay of '35:~s: 

= 0.0012625(931.478 MeV) = 1.1760 MeV = 1.36 X 10-13 J 

If the ':;~a is left in the 0.6616-MeV state (which happens 93.5 percent of the 
time), the available energy is 

Emax = 1 .I760 - 0.6616 = 0.5144 MeV 
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Figure 3.8 A typical beta energy spectrum (shows shape only; does not mean that P- is more 
intense than P') .  

For many calculations it is necessary to use the average energy of the beta 
particles, &-. An accurate equation for q- has been developed: but in 
practice the average energy is taken to be 

- Em,, Ep-= - 
3 

p + Decay. The expression representing /3+ decay is 

where p+ = positron 
v = neutrino 

Probability for 
transition 

Figure 3.9 The decay scheme of 137~s .  The Q value of the P -  decay is - 1.176 MeV (from Ref. 4). 
Probability for each transition is given in percent. 
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The energy equation of P+ decay is 

Using atomic masses, Eq. 3.58 becomes 

The momentum equation is 

The P+ decay energy is 

The condition for P+ decay to be possible is 

A comparison of Eqs. 3.52 and 3.62 shows that P- decay is possible if the 
mass of the parent is just bigger than the mass of the daughter nucleus, while 
p+ decay is possible only if the parent and daughter nuclear masses differ by at 
least 2mc2 = 1.022 MeV. 

The energy spectrum of P+ particles is continuous, for the same reasons 
the p- spectrum is, and similar to that of p- decay (Fig. 3.8). The average 
energy of the positrons from pf decay, &+, is also taken to be equal to E,,,/3 
unless extremely accurate values are needed, in which case the equation given in 
Ref. 1 should be used. 

A typical P+ decay scheme is shown in Fig. 3.10. 

Electron Capture. In some cases, an atomic electron is captured by the nucleus 
and a neutrino is emitted according to the equation 

Figure 3.10 The decay scheme of " ~ a .  Notice that it is Q,, that is plotted, not QS+ (from Ref. 4). 
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In Eq. 3.63 all the symbols have been defined before except Be, binding energy 
of the electron captured by the nucleus. This transformation is called electron 
capture (EC). In terms of atomic masses, Eq. 3.63 takes the form 

The energy QEc released during EC is 

The condition for EC to be possible is 

Electron capture is an alternative to /3+ decay. Comparison of Eqs. 3.61 and 
3.66 shows that nuclei that cannot experience /3+ decay can undergo EC, since 
a smaller mass difference is required for the latter process. Of course, EC is 
always possible if /3+ decay is. For example, " ~ a  (Fig. 3.10) decays both by /3+ 
and EC. 

After EC, there is a vacancy left behind that is filled by an electron falling 
in from a higher orbit. Assuming that a K electron was captured, an L electron 
may fill the empty state left behind. When this happens, an energy approxi- 
mately equal to B, - B, becomes available (where B, and BL are the binding 
energy of a K or L electron, respectively). The energy BK - BL may be emitted 
as a K X-ray called fluorescent radiation, or it may be given to another atomic 
electron. If this energy is given to an L electron, that particle will be emitted 
with kinetic energy equal to (B, - B,) - BL = B, - 2BL. Atomic electrons 
emitted in this way are called Auger electrons. 

Whenever an atomic electron is removed and the vacancy left behind is 
filled by an electron from a higher orbit, there is a competition between the 
emission of Auger electrons and fluorescent radiation. The number of X-rays 
emitted per vacancy in a given shell is the fluorescent yield. The fluorescent yield 
increases with atomic number. 

3.7.4 Particles, Antiparticles, and Electron-Positron Annihilation 

Every known subatomic particle has a counterpart called the antiparticle. A 
charged particle and an antiparticle have the same mass, and opposite charge. If 
a particle is neutral-for example, the neutron-its antiparticle is still neutral. 
Then their difference is due to some other property, such as magnetic moment. 
Some particles, like the photon, are identical with their own antiparticles. An 
antiparticle cannot exist together with the corresponding particle: when an 
antiparticle meets a particle, the two react and new particles appear. 

Consider the example of the electron and the "antielectron," which is the 
positron. The electron and the positron are identical particles except for their 
charge, which is equal to e but negative and positive, respectively. The rest mass 
of either particle is equal to 0.511 MeV. A positron moving in a medium loses 
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energy continuously, as a result of collisions with atomic electrons (see Chap. 4). 
Close to the end of its track, the positron combines with an atomic electron, the 
two annihilate, and photons appear with a total energy equal to 2mc2. At least 
two photons should be emitted for conservation of energy and momentum to be 
satisfied (Fig. 3.11). Most of the time, two photons, each with energy 0.511 MeV, 
are emitted. As a result, every positron emitter is also a source of 0.511-MeV 
annihilation gammas. 

3.7.5 Complex Decay Schemes 

For many nuclei, more than one mode of decay is positive. Users of radioiso- 
topic sources need information about particles emitted, energies, and probabili- 
ties of emission. Many books on atomic and nuclear physics contain such 
information, and the most comprehensive collection of data on this subject can 
be found in the Table of Isotopes by Lederer and ~ h i r l e y . ~  Figure 3.12 shows an 
example of a complex decay scheme taken from that book. 

3.8 THE RADIOACTIVE DECAY LAW 

Radioactive decay is spontaneous change of a nucleus. The change may result in 
a new nuclide or simply change the energy of the nucleus. If there is a certain 
amount of a radioisotope at hand, there is no certainty that in the next second 
"so many nuclei will decay" or "none will decay." One can talk of the probabil- 
ity that a nucleus will decay in a certain period of time. 

The probability that a given nucleus will decay per unit time is called the 
decay constant and is indicated by the letter A. For a certain species, A is 

1. The same for all the nuclei 
2. Constant, independent of the number of nuclei present 
3. Independent of the age of the nucleus 

Consider a certain mass m of a certain radioisotope with decay constant A. 
The number of atoms (or nuclei) in the mass m is equal to 

where N, = 6.022 x loz3 = Avogadro's number 
A = atomic weight of the isotope 

: v7 = 0.51 Figure 3.11 Electron-positron anni- 
Ey = 0.51 1 MeV ,+ hilation. 
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Figure 3.12 A complex decay scheme. For complete explanation of all the symbols and numbers see 
Ref. 4. Half-life is given for each element's ground state, and energy of each level is given at 
intermediate states. Q, is the neutron separation energy. Transition probabilities are indicated as 
percentages (from Ref. 4). 

This number of atoms decreases with time, due to the decay according to 

Decrease per unit time = decay per unit time 

or mathematically, 

The solution of this equation is 

where N(0) = number of atoms at t = 0. 
The probability that a nucleus will not decay in time t-i.e., it will survive 

time t- is given by the ratio of 

atoms not decaying in time t N(0)e-At 
- - - - e - ~ t  (3.70) 

atoms at t = 0 N O )  
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The probability that the nucleus will decay between t and t + dt is 

p( t )  dt = (probability to survive to time t)(probablility to decay in dt) = ePA' A dt 

The average lifetime i of the nucleus is given by 

One concept used extensively with radioisotopes in the half-life T, defined 
as the time it takes for half of a certain number of nuclei to decay. Thus, using 
Eq. 3.69, 

N(T) 1 -A, 
-- - - 
NO) 2 

= e 

which then gives the relationship between A and T: 

For a sample of N(t) nuclei at time t ,  each having decay constant A, the 
expected number of nuclei decaying per unit time is 

where A(t) = activity of the sample at time t. 
The units of activity are the Becquerel (Bq), equal to 1 decay/s, or the 

Curie (Ci) equal to 3.7 x 10'' Bq. The Becquerel is the SI unit defined in 1977. 
The term specific activity (SA) is used frequently. It may have one of the two 

following meanings: 

1. For solids, 
activity 

SA = - 
mass 

(Bq/kg or Ci/g) 

2. For gases or liquids, 

activity 
SA = - (Bq/m3 or Ci/cm3) 

volume 

Example 3.8 What is the SA of 6 0 ~ o ?  

Answer The SA is 

A AN In2 N, 
S A = - = - = - m - =  

(In 2)(6.022 x loz3) 

m m Tm A (5.2 y)(3.16 X 10' s/y)(0.060 kg) 
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Example 3.9 What is the SA of a liquid sample of m3 containing 
kg of 3 2 ~ ?  I 

Answer The SA is 

A AN In2 NA 
S A = -  = - =-m-= 

(In 2)(1OP6 kgN6.022 x loz3) 

V V VT A m3)(14.3 d)(864OO s/d)(O.OX kg) 

There are isotopes that decay by more than one mode. Consider such an 
isotope decaying by the modes 1,2,3,. . . , i (e.g., alpha, beta, gamma, etc., 
decay), and let 

A, = probability per unit time that the nucleus will decay by the ith mode 

The total probability of decay (total decay constant) is 

A =  A, + A 2  + -.. + A i  + 0 . -  

If the sample contains N(t) atoms at time t, the number of decays per unit time 
by the ith mode is 

The term partial haZf-lz$e is sometimes used to indicate a different decay mode. 
If T, is the partial half-life for the ith decay mode, using Eqs. 3.72 and 3.74, one 
obtains 

It should be pointed out that it is the total decay constant that is used by Eqs. 
3.69 and 3.73a, and not the partial decay constants. 

Example 3.10 The isotope 2 5 2 ~ f  decays by alpha decay and by spontaneous 
fission. The total half-life is 2.646 years and the half-life for alpha decay is 2.731 
years. What is the number of spontaneous fissions per secondeper 10-' kg (1 g) 
of 252 ~ f ?  

Answer The spontaneous fission activity is 

The spontaneous fission half-life is, using Eq. 3.75, 
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Therefore, 

Sometimes the daughter of a radioactive nucleus may also be radioactive 
and decay to a third radioactive nucleus. Thus, a radioactive chain 

N, -, N2 -, N, -, etc. 

is generated. An example of a well-known series is that of 2 3 5 ~ ,  which through 
combined a and P- decays ends up as an isotope of lead. The general equation 
giving the number of atoms of the ith isotope, at time t in terms of the decay 
constants of all the other isotopes in the chain was developed by   at ern an.^ If 
&(O) is the number of atoms of the ith isotope of the series at time t = 0 and 

then the Bateman equation takes the form 

Example 3.11 Apply the Bateman equation for the second and third isotope 
in a series. 

Answer 

3.9 NUCLEAR REACTIONS 

3.9.1 General Remarks 

A nuclear reaction is an interaction between two particles, a fast bombarding 
particle, called the projectile, and a slower or stationary target. The products of 
the reaction may be two or more particles. For the energies considered here 
(<  20 MeV), the products are also two particles (with the exception of fission, 
which is discussed in the next section). 
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If x,, X, are the colliding particles and x,, X4 are the products, the reaction 
is indicated as 

The particles in parentheses are the light particles, xl being the projectile. 
Another representation for the reason is based on the light particles only, in 
which case the reaction shown above is indicated as an (xl,x3) reaction. For 
example, the reaction 

may also be indicated as ';B(n, a ) l ~ i  or simply as an (n, a )  reaction. 
Certain quantities are conserved when a nuclear reaction takes place. Four 

are considered here. For the reaction shown above, the following quantities are 
conserved: 
Charge: 

Z, + Z, = Z3 + Z4 

Mass number: 
A, + A 2  = A 3  + A 4  

Total energy: 

El + E, = E, + E4 (rest mass plus kinetic energy) 

Linear momentum: 

PI + P2 = P3 + P4 

Many nuclear reactions proceed through the formation of a compound 
nucleus. The compound nucleus, formed after particle x, collides with X,, is 
highly excited and lives for a time of the order of lo-'' to 10-l4 s before it 
decays to x, and X,. A compound nucleus may be formed in more than one way 
and may decay by more than one mode that does not depend on the mode of 
formation. Consider the example of the compound nucleus '$N: 

Formation Compound nucleus Decay 

The modes of formation and decay of 1 4 ~  are shown in the form of an 
energy-level diagram in Fig. 3.13. No matter how the compound nucleus is 
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I 

Excitation energy 
of compound nucleus 

Excited states of the 
If the compound nucleus compound nucleus 
de-excites to any of these 
levels, it will stay as l4 N. 
I t  will go to  the ground 
state by emitting one or 
more gammas. 

0 - - - - - - - - - - - - - ------------- ---- 
Formation of compound nucleus 1 '47 N I Dissociation of compound nucleus 

Figure 3.13 Different modes of  formation and decay of the component nucleus. For clarity, the 
diagram shows that the compound nucleus has the same excitation energy regardless of the way it is 
formed. This is not necessarily the case. 

formed, it has an excitation energy equal to the separation energy of the 
projectile ( a ,  n, p, etc.) plus a fraction of the kinetic energy of the two particles. 
Since the separation energy is of the order of MeV, it is obvious that the 
compound nucleus has considerable excitation energy even if the projectile and 
the target have zero kinetic energy. 

Exactly what happens inside the compound nucleus is not known. It is 
believed-and experiment does not contradict this idea-that the excitation 
energy of the compound nucleus is shared quickly by all the nucleons ( A ,  + A,).  
There is continuous exchange of energy among all the nucleons until one of 
them (or a cluster of them) obtains energy greater than its separation energy 
and is able to leave the compound nucleus, becoming a free particle. 

3.9.2 Kinematics of Nuclear Reactions 

In this section, two questions will be answered: 

1. Given the masses m,, M,, m,, M,, and the kinetic energies of the projectile 
(m,) and the target (M,), how can one calculate the kinetic energies of the 
products with masses m, and M,? 
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2. What is the minimum kinetic energy the particles with masses m,, M2 ought 
to have to be able to initiate the reaction? 

The discussion will be limited to the case of a stationary target, the most 
commonly encountered in practice. 

Consider a particle of mass m, having speed u, (kinetic energy TI) hitting a 
stationary particle of Mass M2. The particles m,, M4 are produced as a result of 
this reaction with speeds u,, v4 (kinetic energies T,, T4), as shown in Figure 3.14. 
Applying conservation of energy and linear momentum, one has 

Energy: 

m, + T, + M2 = m ,  + T, + M4 + T4 (3.77) 

Momentum, x axis: 

mlvl = m,u,cos 8 + M4v4cos C$ 

Momentum, y axis: 

m,u,sin 8 = M4v4sin 4 
The quantity 

Q = m ,  + M 2 - m , - M 4  

is called the Q value of the reaction. If Q > 0, the reaction is called exothermic 
or moergic. If Q < 0, the reaction is called endothermic or endoergic. 

Assuming nonrelativistic kinematics, in which case T = ;mu2, Eqs. 3.77 to 
3.79 take the form 

TI + Q = T3 + T4 (3.81) 

= d m  cos 8 + dm cos 4 (3.82) 

d w 2 m , T ,  sin 8 = sin 4 
Equations 3.81 to 3.83 have four unknowns T,, T4, 4, and 8, so they cannot be 
solved to give a unique answer for any single unknown. In practice, one 
expresses a single unknown in terms of a second one-e.g., T, as a function of 

before collision 

Figure 3.14 The kinematics of the reaction M,(m,, m,)M,. 
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8, after eliminating T4 and 4. Such an expression, although straightforward, is 
complicated. Two cases of special interest are the following. 

Case 1: 6 = 0, 4 = 180". In this case, the particles m,  and M, are emitted 
along the direction of motion of the bombarding particle (Fig. 3.15). Equations 
3.81 and 3.82 take the form 

and they can be solved for T, and T,. These values of T3 and T4 give the 
maximum and minimum kinetic energies of particles m, and M,. 

Example 3.12 Consider the reaction 

with the nitrogen being at rest and the neutron having energy 2 MeV. What is 
the maximum kinetic energy of the alpha particle? 

Answer The Q value of the reaction is 

Q = (14.003074 + 1.008665 - 4.002603 - 11.009306) X 931.481 MeV 

= -0.158 MeV 

Solving Eqs. 3.84 and 3.85 for T3, one obtains a quadratic equation for T, (T, in 
MeV), 

T: - 2.577T3 + 1.482 = 0 

which gives two values of T,: 

T,, , = 1.710 MeV T,, , = 0.866 MeV 

The corresponding values of T4 are 

T,, , = 0.132 MeV T,,, = 0.976 MeV 

The two pairs of values correspond to the alpha being emitted at 8 = 0 
(T, = 1.709 MeV = max. kin. energy) or 6 = 180" (T,  = 0.865 MeV = min. kin. 
energy). Correspondingly, the boron nucleus is emitted at C$ = 180" or 4 = 0". 
One can use the momentum balance equation (Eq. 3.85) to verify this conclu- 
sion. 

Case 2: 6 = 90". In this case, the reaction looks as shown in Fig. 3.16. The 
momentum vectors form a right triangle as shown on the right of Fig. 3.16. 

"I 
t' "73 

"3 

"'I 
* 

"'2 

V, = O  
v 4  Figure 3.15 A case where the reaction 

M, products are emitted 180" apart. 
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Figure 3.16 A case where the reaction products are emitted 90" apart. 

Therefore, Eqs. 3.81 and 3.82 take the form 

Again, one can solve for T3 and T,. The value of T, is 

Example 3.13 What is the energy of the alpha particle in the reaction 

if it is emitted at 90°? Use TI = 2 MeV, the same as in Example 3.12. 

Answer Using Eq. 3.88, 

(11 - 112 + 11(-0.163) 
T3 = 

15 
MeV = 1.214 MeV 

The value of the minimum (thresho1d)energy necessary to initiate a reaction 
can be understood with the help of Fig. 3.17. When the particle m1 enters 
the target nucleus M,, a compound nucleus is formed with excitation energy 
equal to 

where Bm, = binding energy of particle m, 
M2Tl/(m, + M2) = part of the incident particle kinetic energy available as 

excitation energy of the compound nucleus 
Only a fraction of the kinetic energy TI is available as excitation energy, 
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reaction 

I I '~xothermic reaction 

Ground state of compound nucleus 

Figure 3.17 Energy-level diagram for endothermic and exothermic reactions. For endothermic 
reactions, the threshold energy is equal to [ (m, + M2)/M2](Ql .  

because the part 

becomes kinetic energy of the compound nucleus (see Evans or any other book 
on nuclear physics), and as such is not available for excitation. 

If the reaction is exothermic (Q > 0), it is energetically possible for the 
compound nucleus to deexcite by going to the state (m, + M,) (Fig. 3.17), even 
if TI  = 0. For an endothermic reaction, however, energy at least equal to lQl 
should become available (from the kinetic energy of the projectile). Therefore, 
the kinetic energy TI should be such that 

or the threshold kinetic energy for the reaction is 

3.10 FISSION 

Fission is the reaction in which a heavy nucleus splits into two heavy fragments. 
In the fission process, net energy is released, because the heavy nucleus has less 
binding energy per nucleon that the fission fragments, which belong to the 
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middle of the periodic table. In fact, for A > 85 the binding energy per nucleon 
decreases (Fig. 3.3); therefore any nucleus with A > 85 would go to a more 
stable configuration by fissioning. Such "spontaneous" fission is possible but 
very improbable. Only very heavy nuclei ( Z  > 92) undergo spontaneous fission 
at a considerable rate. 

For many heavy nuclei ( Z  2 90), fission takes place if an amount of energy 
at least equal to a critical energy E, is provided in some wa , as by neutron or 
gamma absorption. Consider, as an example, the nucleus u'U (Fig. 3.18). If a 
neutron with kinetic energy T, is absorbed, the compound-nucleus 2 3 6 ~  has 
excitation energy equal to (Eq. 3.89) 

If B, + AT,/(A + 1) 2 E,, fission may occur and the final state is the one 
shown as fission products in Fig. 3.18. For 2 3 6 ~ ,  E, = 5.3 MeV and B,, = 6.4 
MeV. Therefore, even a neutron with zero kinetic energy may induce fission, if 
it is absorbed. For U 9 ~ ,  which is formed when a neutron is absorbed by 2 3 8 ~ ,  
B, = 4.9 MeV and E, = 5.5 MeV. Therefore, fission cannot take place unless 
the neutron kinetic energy satisfies 

A + l  239 
T, > - 

A 
(E, - B,) = ~ ( 5 . 5  - 4.9) = 0.6 MeV 

238 

The fission fragments are nuclei in extremely excited states with mass 
numbers in the middle of the periodic system. They have a positive charge of 
about 20e and they are neutron-rich. This happens because the heavy nuclei 
have a much higher neutron-proton ratio than nuclei in the middle of the 
periodic table. 

+ 
Fission products 

Figure 3.18 The fission of 2 3 5 ~  induced by neutron absorption. 
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23 6 Consider as an example U (Fig. 3.19). Assume that it splits into two 
fragments as follows: 

Z, = 48 N, = 80 A,  = 128 

Z2 = 44 N2 = 64 A, = 108 

The two fission fragments have a neutron-proton ratio higher than what stability 
requires for  their a tomic  mass .  T h e y  g e t  rid of t h e  extra neutron  e i ther  by 
directly emitting neutrons or by P decay. 

A nucleus does not always split in the same fashion. There is a probability 
that each fission fragment ( A ,  Z)  will be emitted, a process called fission yield. 
Figure 3.20 shows the fission yield for 2 3 5 ~  fission. For thermal neutrons, the 
"asymmetric" fission is favored. It can be shown that asymmetric fission yields 
more energy. As the neutron energy increases, the excitation energy of the 
compound nucleus increases. The possibilities for fission are such that it does 
not make much difference, from an energy point of view, whether the fission is 
symmetric or asymmetric. Therefore, the probability of symmetric fission in- 
creases. 

The fission fragments deexcite by emitting neutrons, betas, and gammas, 
and most of the fragments stay radioactive long after the fission takes place. The 
important characteristics of the particles emitted by fission fragments are: 

1. Betas. About six P- particles are emitted per fission, carrying a total average 
energy of 7 MeV. 

2. Gammas. About seven gammas are emitted at the time of fission. These are 
called prompt gammas. At later times, about seven to eight more gammas are 
released, called delayed gammas. Photons carry a total of about 15 MeV per 
fission. 

Figure 3.19 The fission frag- 
ments FF, and FF, from 2 3 6 ~  

fission are neutron-rich. They 
reduce their neutron number 
either by beta decay or by 
neutron emission. 
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10 

0.01 7 
Thermal neutrons 

0.001 I , , , , , ,  

80 100 120 140 160 

Mass number A 

Figure 3.20 U 5 ~  fission yield for thermal 
neutron induced fission. Data from Ref. 
3. The dashed line indicates the yield 
when the fission is induced by 14-MeV 
neutrons. 

3. Neutrons. The number of neutrons per fission caused by thermal neutrons is 
between two and three. This number increases linearly with the kinetic 
energy of the neutron inducing the fission. The average energy of a neutron 
emitted in fission is about 2 MeV. More than 99 percent of the neutrons are 
emitted at the time of fission and are called prompt neutrons. A very small 
fraction is emitted as delayed neutrons. Delayed neutrons are very important 
for the control of nuclear reactors. 

4. Neutrinos. About 11 MeV are taken away by neutrinos, which are also 
emitted during fission. This energy is the only part of the fission energy yield 
that completely escapes. It represents about 5 percent of the total fission 
energy. 

Table 3.3 summarizes the particles and energies involved in fission.? 

'~r i t ium is sometimes produced in fission. In reactors fueled with it is produced at the 
rate of 8.7 x tritons per fission. The most probable kinetic energy of the tritons is about 7.5 
MeV. 

Table 3.3 Fission Products 

Particle Numberlfission MeV/fission 

Fission fragments 2 
Neutrons 2 to 3 
Gammas (prompt) 7 
Gammas (delayed) 7 
Betas 6 
Neutrinos 6 

Total 
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PROBLEMS 

3.1 What is the speed of a 10-MeV electron? What is its total mass, relative to its rest mass? 

3.2 What is the speed of a proton with a total mass equal to 2Mc2? ( M  is the proton rest mass). 
3.3 What is the kinetic energy of a neutron that will result in 1 percent error difference between 
relativistic and classical calculation of its speed? 

3.4 What is the mass of an astronaut traveling with speed v = 0.8c? Mass at rest is 70 kg. 

3.5 What is the kinetic energy of an alpha particle with a total mass 10 percent greater than its rest 
mass? 
3.6 What would the density of graphite be if the atomic radius were 10-l3 m? [Atomic radius (now) 
10-'Om; density of graphite (now) 1600 kg/m3.] 
3.7 Calculate the binding energy of the deuteron. [M('H) = 1.007825 u; M('H) = 2.01410 u.] 

3.8 Calculate the separation energy of the last neutron of 2 4 1 ~ ~ .  [ M ( ~ ~ ~ P U )  = 240.053809 u; 
M ( ~ ~ ' P u )  = 241.056847 u.] 

3.9 Assume that the average binding energy per nucleon (in some new galaxy) changes with A as 
shown in the following figure: 

(a) Would fission or fusion or both release energy in such a world? 
(b) How much energy would be released if a tritium ( 3 ~ )  nucleus and a helium ( 4 ~ e )  nucleus 

combined to form a lithium nucleus? [ M ( ~ H )  = 3.016050 u; M ( 4 ~ e )  = 4.002603 u; M ( ~ L ~ )  = 

7.016004 u.] 
3.10 A simplified diagram of the ' 3 7 ~ s  decay is shown in the figure below. What is the recoil energy 
of the nucleus when the 0.6616-MeV gamma is emitted? 

3.11 The isotope 2 3 9 ~ ~  decays by alpha emissions to 2 3 5 ~  as shown in the following figure. 
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=;: Pu 

MeV // 1: 
0 Ground state 

1 3 s  " 
92 

(a) What is Q,? 
(b) What is the kinetic energy of the alphas if the 2 3 5 ~  nucleus is left in the third excited state? 

What is the kinetic energy of the alphas if the U 5 ~  nucleus is left in the ground state? 
[M(=~u) = 235.043926 u; M ( ' ~ ~ P u )  = 239.052159 u.] 
3.12 Consider the isotopes 6 3 ~ n  and 6 3 ~ ~ .  IS P+ decay possible? Is EC possible? What is Qp+? 
What is Q,,? [ M ( ~ ~ c u )  = 62.929597 u: M ( 6 3 ~ n )  = 62.933212 u.] 
3.13 The isotope ':Be decays to ':B. What are the maximum and average kinetic energy of the 
betas? [M(llBe) = 11.021658 u; M("B) = 11.009306 u.] 
3.14 Natural uranium contains the isotopes 2 3 4 ~ ,  u 5 ~ ,  and 2 3 8 ~ ,  with abundances and half-lives as 
shown below: 

Half-life (years) Abundance (%) 

(a) What is the alpha specific activity of natural uranium? 
(b) What fraction of the activity is contributed by each isotope? 

3.15 The isotope 2 1 0 ~ o  generates 140,000 W/kg thermal power due to alpha decay. What is the 
energy of the alpha particle? (T, = 138.4 d.) 

3.16 How many years ago did the isotope 2 3 5 ~  make up 3 percent of natural uranium? 
3.17 What is the specific alpha activity of 2 3 9 ~ u ?  (For 2 3 9 ~ ~ :  Cf = 5.5 X 1015 y, T,,, = 2.44 X lo4 
YJ 
3.18 Consider the reaction :Li(p, n);Be. What is the Q value for this reaction? If a neutron is 
emitted at 90" (in LS) with kinetic energy 2 MeV, what is the energy of the incident proton? 
[M('Li) = 7.016004 u; M ( 7 ~ e )  = 7.016929 u.] 
3.19 What is the necessary minimum kinetic energy of a proton to make the reaction ; ~ e ( p ,  d ) : ~  
possible? ( 4 ~ e  at rest.) 
3.20 A 1-MeV neutron collides with a stationary ';N nucleus. What is the maximum kinetic energy 
of the emerging proton? 
3.21 What is the threshold gamma energy for the reaction 

-y + ':c - 3 ( l ~ e )  
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3.22 What is the energy expected to be released as a result of a thermal neutron induced fission in 
23 9 Pu if the two fission fragments have masses M, = 142 u and M2 = 95 u? 
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CHAPTER 

FOUR 

ENERGY LOSS AND PENETRATION OF 
RADIATION THROUGH MATTER 

4.1 INTRODUCTION 

This chapter discusses the mechanisms by which ionizing radiation interacts and 
loses energy as it moves through matter. The study of this subject is extremely 
important for radiation measurements because the detection of radiation is 
based on its interactions and the energy deposited in the material of which the 
detector is made. Therefore, to be able to build detectors and interpret the 
results of the measurement, we need to know how radiation interacts and what 
the consequences are of the various interactions. 

The topics presented here should be considered only an introduction to this 
extensive subject. Emphasis is given to that material considered important for 
radiation measurements. The range of energies considered is shown in Table 
1.1. 

For the discussion that follows, ionizing radiation is divided into three 
groups: 

1. Charges particles: electrons (e-), positrons (e+), protons ( P ) ,  deuterons ( d ) ,  
alphas (a), heavy ions ( A  > 4) 

2. Photons: gammas ( Y )  or X-rays 
3. Neutrons (n) 

The division into three groups is convenient because each group has its own 
characteristic properties and can be studied separately. 
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A charged particle moving through a material interacts, primarily, through 
Coulomb forces, with the negative electrons and the positive nuclei that consti- 
tute the atoms of that material. As a result of these interactions, the charged 
particle loses energy continuously and finally stops after traversing a finite 
distance, called the range. The range depends on the type and energy of the 
particle and on the material through which the particle moves. The probability 
of a charged particle going through a piece of material without an interaction is 
practically zero. This fact is very important for the operation of charged-particle 
detectors. 

Neutrons and gammas have no charge. They interact with matter in ways 
that will be discussed below, but there is a finite nonzero probability that a 
neutron or a y-ray may go through any thickness of any material without hav- 
ing an interaction. As a result, no finite range can be defined for neutrons or 
gammas. 

4.2 MECHANISMS OF CHARGED-PARTICLE ENERGY LOSS 

Charged particles traveling through matter lose energy in the following ways: 

1. In Coulomb interactions with electrons and nuclei 
2. By emission of electromagnetic radiation (bremsstrahlung) 
3. In nuclear interactions 
4. By emission of Cerenkov radiation 

For charged particles with kinetic energies considered here, nuclear interac- 
tions may be neglected, except for heavy ions (A > 4) (see Sec.4.7). 

Cerenkov radiation constitutes a very small fraction of the energy loss. It is 
important only because it has a particle application in the operation of Cerenkov 
counters (see Evans). Cerenkov radiation is visible electromagnetic radiation 
emitted by particles traveling in a medium, with speed greater than the speed of 
light in that medium. 

4.2.1. Coulomb Interactions 

Consider a charged particle traveling through a certain material, and consider 
an atom of that material. As shown in Fig. 4.1, the fast charged particle may 
interact with the atomic electrons or the nucleus of the atom. Since the radius of 
the nucleus is approximately 10-l4 m and the radius of the atom is lo-'' m, one 
might expect that 

Number of interactions with electrons (R ' )  atom (10-lo)' 
- - - - = lo8 

number of interactions with nuclei ( R ~ )  nucleus 14)' 

This simplified argument indicates that collisions with atomic electrons are more 
important than with nuclei. Nuclear collisions will not be considered here. 
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Nucleus 
+zex2 

Figure 4.1 A fast charged particle of mass 
Electron M and charge ze interacts with the elec- 

trons of an atom. 

Looking at Fig. 4.1, at a certain point in time the particle is at point P and 
the electron at E. If the distance between them is r, the coulomb force is 
F = k(ze2/r2), where ze is the charge of the particle and k is a constant that 
depends on the units. The action of this force on the electron, over a period of 
time, may result in the transfer of energy from the moving charged particle to 
the bound electron. Since a bound atomic electron is in a quantized state, the 
result of the passage of the charged particle may be ionization or excitation. 

Ionization occurs when the electron obtains enough energy to leave the 
atom and become a free particle with kinetic energy equal to 

(KE)e = (energy given by particle) - (ionization potential) 

The electron freed from the atom acts like any other moving charged 
particle. It may cause ionization of another atom if its energy is high enough. It 
will interact with matter, lose its kinetic energy, and finally stop. Fast electrons 
produced by ionizing collisions are called 6 rays. 

The ionization leaves behind a positive ion, which is a massive particle 
compared to an electron. If an ion and an electron move in a gas, the ion will 
move much slower than the electron. Eventually, the ion will pick up an electron 
from somewhere and will become a neutral atom again. 

Excitation takes place when the electron acquires enough energy to move to 
an empty state in another orbit of higher energy. The electron is still bound, but 
it has moved from a state with energy El to one with E2,  thus producing an 
excited atom. In a short period of time, of the order of to lo-'' s, the 
electron will move to a lower energy state, provided there is one empty. If the 
electron falls from E, to E,, the energy E, - El is emitted in the form of an 
X-ray with frequency v = (E2 - E,)/h. 

Collisions that result in ionization or excitation are called inelastic collisions. 
A charged particle moving through matter may also have elastic collisions with 
nuclei or atomic electrons. In such a case, the incident particle loses the energy 
required for conservation of kinetic energy and linear momentum. Elastic 
collisions are not important for charged-particle energy loss and detection. 

4.2.2 Emission of Electromagnetic Radiation (Bremsstrahlung) 

Every free charged particle that accelerates or decelerates loses part of its 
kinetic energy by emitting electromagnetic radiation. This radiation is called 
bremsstrahlung, which in German means braking radiation. Bremsstrahlung is 
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not a monoenergetic radiation. It consists of photons with energies from zero up 
to a maximum equal to the kinetic energy of the particle. 

Emission of bremsstrahlung is predicted not only by quantum mechanics but 
also by classical physics. Theory predicts that a charge that is accelerated 
radiates energy with intensity proportional to the square of its acceleration. 
Consider a charged particle with charge ze and mass M moving in a certain 
material of atomic number Z. The Coulomb force between the particle and a 
nucleus of the material is F - zeZe/r2, where r = distance between the two 
charges. The acceleration of the incident charged particle is a = F/M - 
zze2/M. Therefore the intensity of the emitted radiation I is 

This expression indicates that 

1. For two particles traveling in the same medium, the lighter particle will emit 
a much greater amount of bremsstrahlung than the heavier particle (other 
things being equal). 

2. More bremsstrahlung is emitted if a particle travels in a medium with high 
atomic number Z than in one with low atomic number. 

For charged particles with energies considered here, the kinetic energy lost 
as bremsstrahlung might be important for electrons only. Even for electrons, it 
is important for high-Z materials like lead ( Z  = 82). For more detailed treat- 
ment of the emission of bremsstrahlung, the reader should consult the refer- 
ences listed at the end of the chapter. 

4.3 STOPPING POWER DUE TO IONIZATION AND EXCITATION 

A charged particle moving through a material exerts Coulomb forces on many 
atoms simultaneously. Every atom has many electrons with different ionization 
and excitation potentials. As a result of this, the moving charged particle 
interacts with a tremendous number of electrons-millions. Each interaction 
has its own probability for occurrence and for a certain energy loss. It is 
impossible to calculate the energy loss by studying individual collisions. Instead, 
an average energy loss is calculated per unit distance traveled. The calculation is 
slightly different for electrons or positrons than for heavier charged particles 
like p, d, and a, for the following reason. 

It was mentioned earlier that most of the interactions of a charged particle 
involve the particle and atomic electrons. If the mass of the electron is taken as 
1, then the masses of the other common heavyt charged particles are the 

'1n this discussion, "heavy" particles are all charged particles except electrons and positrons. 
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following: 
Electron mass = 1 

Proton mass = 1840 
Deuteron mass = 2(1840) 

Alpha mass = 4(1840) 

If the incoming charged particle is an electron or a positron, it may collide with 
an atomic electron and lose all its energy in a single collision because the 
collision involves two particles of the same mass. Hence, incident electrons or 
positrons may lose a large fraction of their kinetic energy in one collision. They 
may also be easily scattered to large angles, as a result of which their trajectory 
is zig-zag (Fig. 4.2). Heavy charged particles, on the other hand, behave differ- 
ently. On the average, they lose smaller amounts of energy per collision. They 
are hardly deflected by atomic electrons, and their trajectory is almost a straight 
line. 

Assuming that all the atoms and their atomic electrons act independently, 
and considering only energy lost to excitation and ionization, the average energy 
losst per unit distance traveled by the particle is given by Eqs. 4.2, 4.3, and 4.4. 
(For their derivation, see the chapter bibliography: Evans, Segr6, and Roy and 
Reed.) 

Stopping power due to ionization-excitation for p, d, t ,  a. 

Stopping power due to ionization-excitation for electrons. 

Stopping power due to ionization-excitation for positrons. 

'since E = T + Mc2 and Mc2 = constant, dE/dx = dT/dx; thus, Eqs. 4.2 to 4.4 express the 
kinetic as well as the total energy loss per unit distance. 

*1n SI units, the result would be J/m; 1 MeV = 1.602 X lo-" J.  
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Electron or positron 
trajectory Figure 4.2 Possible electron and 

-I-- Heavy particle trajectory heavy particle trajectories. 

where r, = 

4.rrr; = 

mc2 = 

Y= 

M =  
P = 

N =  

N =  

z = 

Z = 

I = 

e2/mc2 = 2.818 X 10-l5 m = classical electron radius 
9.98 x m2 .= m2 = cm2 
rest mass energy of the electron = 0.511 MeV 
(T + M C ~ ) / M C ~  = I/ 4- 
T = kinetic energy = (y  - 1)Mc2 
rest mass of the particle 
v/c c = speed of light in vacuum = 2.997930 X lo8 m/s = 
3 x lo8 m/s 
number of atoms/m3 in the material through which the particle 
moves 
p(NA/A) NA = Avogadro's number = 6.022 X atoms/mol 
A = atomic weight 
atomic number of the material 
charge of the incident particle ( z  = 1 for e-, e+,  p, d; z  = 2 for a) 
mean excitation potential of the material 

An approximate equation fo; I ,  which gives good results for Z > 12,' is 

Table 4.1 gives values of I for many common elements. 
Many different names have been used for the quantity dE/&: names like 

energy loss, specific energy loss, differential energy loss, or stopping power. In 

Table 4.1 Values of Mean Excitation Potentials for 
Common Elements and Compoundst 

Element I (eV) Element I (eV) 

H 20.4 Fe 281* 
He 38.5 Ni 303* 
Li 57.2 Cu 321* 
Be 65.2 Ge 280.6 
B 70.3 Zr 380.9 
C 73.8 I 491 
N 97.8 Cs 488 
0 115.7 Ag 469* 
Na 149 Au 771 * 
A1 160* Pb 818.8 
Si 174.5 U 839* 

'values of I with * are from experimental results of refs. 2 
and 3. Others are from refs. 4 and 5. 
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this text, the term stoppingpower will be used for d E / h  given by Eq. 4.2 to 4.4, 
as well as for a similar equation for heavier charged particles presented in Sec. 
4.7.2. 

It should be noted that the stopping power 

1. Is independent of the mass of the particle 
2. Is proportional to z 2  [(chargeI2] of particle 
3. Depends on the speed u of particle 
4. Is proportional to the density of the material ( N )  

For low kinetic energies, d E / h  is almost proportional to l / v 2 .  For relativistic 
energies, the term in brackets predominates and d E / h  increases with kinetic 
energy. Figure 4.3 shows the general behavior of d E / h  as a function of kinetic 
energy. For all particles, d E / h  exhibits a minimum that occurs approximately 
at y = 3. For electrons, y = 3 corresponds to T = 1 MeV; for alphas, y = 3 
corresponds to T - 7452 MeV; for protons, y = 3 corresponds to T z 1876 
MeV. Therefore, for the energies considered here (see Table 1.1), the d E / h  
for protons and alphas will always increase, as the kinetic energy of the particle 
decreases (Fig. 4.3, always on the left of the curve minimum); for electrons, 
depending on the initial kinetic energy, d E / h  may increase or decrease as the 
electron slows down. 

Equations 4.3 and 4.4, giving the stogping power for electrons and positrons, 
respectively, are essentially the same. Their difference is due to the second term 
in the bracket, which is always much smaller than the logarithmic term. For an 
electron and positron with the same kinetic energy, Eqs. 4.3 and 4.4 provide 
results that are different by about 10 percent or less. For low kinetic energies, 
d E / h  for positrons is larger than that for electrons; at about 2000 keV, the 
energy loss is the same; for higher kinetic energies, d E / h  for positron is less 
than that for electrons. 

As stated earlier, Eqs. 4.2 to 4.4 disregard the effect of forces between 
atoms and atomic electrons of the attenuating medium. A correction for this 
density effect6,' has been made, but it is small and it will be neglected here. The 
density effect reduces the stopping power slightly. 

Figure 4.3 Change of stopping power with the kinetic energy of the particle. 
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Equations 4.2-4.4 are not valid for very low energies. In the case of Eq. 4.2, 
a nuclear shell correction is applied (see Ziegler), which appears in the brackets 
as a negative term and becomes important at low energies (T I 100 keV). Even 
without this correction, the value in brackets takes a negative value when 
(2mc2p2y2)/11 1. The value of this term depends on the medium because of 
the presence of the ionization potential I. As an example, for oxygen ( I  = 89 
eV) this term becomes less than 1 for T < 40 keV. 

For electrons of very low kinetic energy, Eq. 4.3, takes the form (see Roy & 
Reed) 

Again for oxygen, the argument of the logarithm becomes less than 1 for 
electron kinetic energy T < 76 eV. For positrons, the low-energy limit of the 
validity of Eq. 4.4 is equal to the positron energy for which the whole value 
within brackets is less than zero. 

Example 4.1 What is the stopping power for a 5-MeV alpha particle moving 
in silicon? 

Answer For silicon, A = 28, Z = 14, p = 2.33 kg/m3, 

Or, in terms of ~ e v / ( ~ / c m ' ) ,  

Example 4.2 What is the stopping power for a 5-MeV electron moving in 
silicon? 
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Answer For an electron, 

In Ex. 4.2, the stopping power for the 5-MeV electron is, in terms of MeV/ 
(g/cm2), 

Notice the huge difference in the value of stopping power for an alpha 
versus an electron of the same kinetic energy traversing the same material. 

Tables of dE/& values are usually given in units of MeV/(g/cm2) [or in SI 
units of ~/ (k~/m') ] .  The advantage of giving the stopping power in these units 
is the elimination of the need to define the density of the stopping medium that 
is necessary, particularly for gases. The following simple equation gives the 
relationship between the two types of units: 

4.4 ENERGY LOSS DUE TO BREMSSTRAHLUNG EMISSION 

The calculation of energy loss due to emission of bremsstrahlung is more 
involved than the calculation of energy loss due to ionization and excitation. 
Here, an approximate equation will be given for electrons or positrons only, 
because it is for these particles that energy loss due to emission of radiation may 
be important. 

For electrons or positrons with kinetic energy T (MeV) moving in a 
material with atomic number Z, the energy loss due to bremsstrahlung emission, 
(dE/du),,,, is given in terms of the ionization and excitation energy loss by Eq. 
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4.7 (see Evans). 

where (dE/dx),, is the stopping power due to ionization-excitation (Eq. 4.3 or 
4.4). 

Example 4.3 Consider an electron with T = 5 MeV. What fraction of its 
energy is lost as bremsstrahlung as it starts moving (a) in aluminum and (b) in 
lead? 

Answer (a) If it travels in aluminum (Z = 13), 

That is, the rate of energy loss due to radiation is about 9 percent of (dE/dxIion. 
(b) For the same electron moving in lead ( Z  = 821, 

In this case, the rate of radiation energy loss is 55 percent of (dE/dxIion. 
Equation 4.7, relating radiation to ionization energy loss, is a function of the 

kinetic energy of the particle. As the particle slows down, T decreases and 
(dE/dx),,, also decreases. The total energy radiated as bremsstrahlung is 
approximately equal in MeV tot 

Example 4.4 What is the total energy radiated by the electron of Ex. 4.3? 

Answer Using Eq. 4.8, 
(a) In aluminum: TI,, = (4.0 X 10-4X13)52 = 0.130 MeV 
(b) In lead: TI,, = (4.0 X 10-~X82)5~ = 0.820 MeV 

The total stopping power for electrons or positrons is given by the sum of 
Eqs. 4.3 or 4.4 and 4.7: 

If the particle moves in a compound or a mixture, instead of a pure element, 
an effective atomic number Z,, should be used in Eqs. 4.7 and 4.8. The value of 

 h he coefficient 4.0 X used in Eq. 4.8 is not universally accepted (see Evans). 
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Zef is given by Eq. 4.10. 

where L = number of elements in the compound or mixture 
wi = weight fraction of ith element 
A, = atomic weight of ith element 
Zi = atomic number of ith element 

For a compound with molecular weight M, the weight fraction is given by 

where Ni is the number of atoms of the ith element in the compound. 

4.5 CALCULATION OF dE / du FOR A COMPOUND 
OR MIXTURE 

Equations 4.2-4.4 give the result of the stopping power calculation if the 
particle moves in a pure element. If the particle travels in a compound or a 
mixture of several elements, the stopping power is given by 

where p = density of compound or mixture 
pi = density of the ith element 

l/~,(dE/dlC), = stopping power in ~ e v / ( k ~ / r n ~ )  for the ith element, as calcu- 
lated using Eqs. 4.2-4.4 and 4.6. 

Example 4.5 What is the stopping power for a 10-MeV electron moving in 
air? Assume that air consists of 21 percent oxygen and 79 percent nitrogen. 

Answer Equation 4.12 will be used, but first dE/dx will have to be calcu- 
lated for the two pure gases. Using Eq. 4.3, 
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For oxygen, 

For nitrogen, 

= 3.14 X 10-l4 J/(kg/m2) = 1.96 M e ~ / ( ~ / c m ' )  

For air, 

4.6 RANGE OF CHARGED PARTICLES 

A charged particle moving through a certain material loses its kinetic energy 
through interactions with the electrons and nuclei of the material. Eventually, 
the particle will stop, pick up the necessary number of electrons from the 
surrounding matter, and become neutral. For example, 

p + + e  - + hydrogen atom 

a2++  2 e - +  He atom 
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The total distance traveled by the particle is called the pathlength. The path- 
length S, shown in Fig. 4.4, is equal to the sum of all the partial pathlengths Si. 
The thickness of material that just stops a particle of kinetic energy T, mass M, 
and charge z is called the range R of the particle in that material. It is obvious 
that R s S. For electrons, which have a zigzag path, R < S.  For heavy charged 
particles, which are very slightly deflected, R .= S.  

Range is distance, and its basic dimension is length (m). In addition to 
meters, another common unit used for range is kg/m2 (or g/cm2). The 
relationship between the two is 

where p is the density of the material in which the particle travels. The range 
measured in kg/m2 is independent of the state of matter. That is, a particle will 
have the same range in kg/m2 whether it moves in ice, water, or stream. Of 
course, the range measured in meters will be different. 

The range is an average quantity. Particles of the same type with the same 
kinetic energy moving in the same medium will not stop after traveling exactly 
the same thickness R. Their pathlength will not be the same either. What 
actually happens is that the end points of the pathlengths will be distributed 
around an average thickness called the range. To make this point more clear, 
two experiments will be discussed dealing with transmission of charged particles. 
Heavy particles and electrons-positrons will be treated separately. 

4.6.1 Range of Heavy Charged Particles ( p ,  d ,  t ,  a; 1 I A I 4) 

Consider a parallel beam of heavy charged particles all having the same energy 
and impinging upon a certain material (Fig. 4.5). The thickness of the material 
may be changed at will. On the other side of the material, a detector records the 
particles that traverse it. It is assumed that the particle direction does not 
change and that the detector will record all particles that go through the 
material, no matter how low their energy is. The number of particles N ( t )  
traversing the thickness t changes, as shown in Fig. 4.6. 

Particles 
stop here 

Particles - 
enter here 

Figure 4.4 Pathlength ( S )  and range (R) .  The end points of the pathlengths are distributed around 
an average thickness that is the range. 
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Incident = 
beam r 

stopping 
material 

(1 Detector v - 

shield D wc 4.5 particle transmission ex- 
periment. 

In the beginning, N(t) stays constant, even though t changes. Beyond a 
certain thickness, N(t) starts decreasing and eventually goes to zero. The 
thickness for which N ( t )  drops to half its initial value is called the mean range R. 
The thickness for which N(t) is practically zero is called the extrapolated range 
Re. The difference between R and Re is about 5 percent or less. Unless 
otherwise specified, when range is used, it is the mean range R. 

Semiempirical formulas have been developed that give the range as a 
function of particle kinetic energy. For alpha particles, the range in air at 
normal temperature and pressure is given by 

R(mm) = exp [1.61{T(MeV)] 

R(mm) = (0.05T + 2.85)T3I2 (MeV) 4 5 T 5 15 MeV 

where T = kinetic energy of the particle in MeV. Figure 4.7 gives the range of 
alphas in silicon. 

If the range is known for one material, it can be determined for any other 
by applying the Bragg-Kleeman rulet: 

where pi and A, are the density and atomic weight, respectively, of material i. 
For a compound or mixture, an effective molecular weight is used, obtained 

'The Bragg-Kleeman rule does not hold for electron or positron ranges. 

"'0 

Figure 4.6 The number of heavy charged 
particles (a, p, d, t )  transmitted through 

0 R Re t thickness t. 
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Range in silicon, pm 

Figure 4.7 Range-energy curve for alpha particles in silicon (Ref. 8). 

from the equation 

where the quantities wi, Ai,  and L have the same meaning as in Eq. 4.10. 

Example 4.6 What is the effective molecular weight for water? What is it 
for air? 

Answer For H,O (11% H, 89% O), 

For air (22.9% 0, 74.5% N, 2.6% Ad, 

Using the Bragg-Kleeman rule (Eq. 4.15), with air at normal temperature 
and pressure as one of the materials ( p  = 1.29 kg/m3, &= 3.84), one 
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obtains 

There are two ways to obtain the range of alphas in a material other than 
air and silicon: 

1. The range in air should be obtained first, using Eq. 4.14, and then the range 
in the material of interest should be calculated using Eq. 4.17. 

2. The range in silicon could be read from Fig. 4.7, and then the range in the 
material of interest should be calculated using Eq. 4.15. 

Example 4.7 What is the range of a 3-MeV alpha particle in gold? 

Answer The range of this alpha in silicon is (Fig. 4.7) R = 12.5 p m  = 12.5 
x m. Using Eq. 4.15, the range in gold is 

Or, using Eqs. 4.14 and 4.17, 

Example 4.8 What is the range of a 10-MeV alpha particle in aluminum? 

Answer From Fig. 4.7, the range in silicon is R = 72 p m  = 7.2 X lo-' m. 
Using Eq. 4.15, the range in aluminum is 

R, = (72 pm) ';: 1f33 = 60.7 p m  

Or, using Eqs. 4.14 and 4.17, 

The difference of 8 p m  is within the range of accuracy of the Bragg-Kleeman 
rule and the ability to read a log-log graph. 
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The range of protons in aluminum has been measured by ~ i c h s e l . ~  His 
results are represented very well by the following two equations: 

R( pm) = 14.21T1.5s74 1 MeV < T 5 2.7 MeV (4.18) 
T 2 

For other materials, Eq. 4.15 should be used after the range in aluminum is 
determined from Eqs. 4.18 and 4.19. A very comprehensive paper dealing with 
proton stopping power, as well as range, for many materials is that of ~ a n n i . ~  

The range of protons and deuterons can be calculated from the range of an 
alpha particle of the same speed using the formula 

M(p,  d )  
R(p ,  d )  = 4 R, - 2 (mm, air) 

Ma 

where R, = range in air of an alpha particle having the same speed as the 
deuteron or the proton 

M =mass of the particle (1 for proton, 2 for deuteron) 
M, =mass of alpha particle = 4 

For materials other than air, the Bragg-Kleeman rule (Eq. 4.17) should be 
used. 

The fact that the alpha and proton or deuteron ranges are related by the 
same speed rather than the same kinetic energy is due to the dependence of 
dE/& on the speed of the particle. 

Example 4.9 What is the range of the 5-MeV deuteron in air? 

Answer Equation 4.20 will be used, but first the range of an alpha particle 
with speed equal to that of a 5-MeV deuteron will have to be calculated. The 
kinetic energy of an alpha particle with the same speed as that of the deuteron 
will be found using the corresponding equations for the kinetic energy. Since 
T = iAW2 for these nonrelativistic particles. 

The range of a 10-MeV alpha particle (in air) is (Eq. 4.14) 
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The range of the 5-MeV deuteron (in air) is then (Eq. 4.20) 

Example 4.10 What is the range of a 5-MeV deuteron in aluminum? 

Answer Using the Bragg-Kleeman rule (Eq. 4.17) and the result of the 
previous example, 

4.6.2 Range of Electrons and Positrons 

Electrons and positrons behave in essentially the same way with regard to 
energy loss, slowing down, and penetration through matter. Small differences 
exist; one was indicated when d E / h  was discussed in Sec. 4.3. Small differences 
in the values of the range between electrons and positrons should also be 
expected, and indeed this is the case. Most of the range measurements have 
been performed with electrons because electrons are used much more fre- 
quently than positrons in radiation measurements. For this reason, from this 
point on, only electrons will be discussed. The reader should be aware that the 
results are equally applicable for positrons, to a first approximation, but for very 
accurate results the references listed at the end of this chapter should be 
consulted. 

If the experiment shown in Fig. 4.5 and discussed in Sec. 4.6.1 is repeated 
with the incident beam consisting of monoenergetic electrons, the result will 
look as shown in Fig. 4.8. For electrons, the transmission curve does not have a 
flat part. It decreases gradually to a level which is the background. The ranget is 
equal to the thickness of the material, which is defined by the point where the 
linear extrapolation of the transmission curve meets the background. 

'1n many texts, this is called the "extrapolated" range. Since only one type of range is used, 
there is no need to carry along the world "extrapolated." 

Figure 4.8 The number of elec- 
trons transmitted throub thick- - 
ness t. Experiment setup shown in 
Fig. 4.5. 
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The semiempirical equation giving the range of electrons for the energy 
range 0.3 keV to 30 MeV has been developed by Tabata, Ito, and Okabe,1° 
based on the experimental results available until 1972. This equation, indicated 
from now on as the T I 0  equation, has the following form: 

where 

A, Z, and y have been defined in Sec. 4.3. 
Figures 4.9 and 4.10 show results based on Eq. 4.21, as well as experimental 

points. 
In the case of absorbers that are mixtures or compounds, the atomic 

number Z and atomic weight A to be used in Eq. 4.22 are given by 

L 

z,, = C wizi 
i 

where wi is the weight fraction of element with atomic number Zi and atomic 
weight Ai. 

Example 4.11 What is the range of 1-MeV electrons in gold? (Z = 79, 
A = 197.) 

Answer Using Eqs. 4.21 and 4.22, 
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lo-' 1 10 10' 

T. MeV 

Figure 4.9 The range of electrons as a function of their kinetic energy as obtained by using Eq. 4.21. 
The solid circles are experimental data for Al; the open circles are for Cu (from Ref. 10). 

a4 = 

a5 = 

Y =  

R = 

Since the density of gold is 19.3 X lo3 kg/m3, the range in p m  is 
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T, MeV 

Figure 4.10 The range of electrons as a function of their kinetic energy as obtained by using Eq. 
4.21. The solid circles are experimental data for Ag; the open circles are for Au (from Ref. 10). 

Example 4.12 What is the range of 1-MeV electrons in aluminum? ( Z  = 13, 
A = 27.) 

Answer Again, using Eq. 4.21 and 4.22, 



142 MEASUREMENT AND DETECTION OF RADIATION 

Since the density of aluminum is 2.7 X lo3 kg/m3, the range in pm is 

4.6.3 Transmission of Beta Particles 

Beta particles have a continuous energy spectrum extending from zero energy 
up to maximum kinetic energy Em,, (see Sec. 3.7.3). If the transmission experi- 
ment shown in Fig. 4.5 is repeated with an incident beam of P particles, the 
result will look as shown in Fig. 4.11. The number of betas N(t) transmitted 
through a thickness t is very closely represented by 

N(t) = N(0)e-Wt (4.25) 

where p is called the mass absorption coefficient. 
The value of p has been determined experimentally as a function of the 

maximum beta energy and is given by 

\' , 
\ ', Electron beam 

\ ,(monoenergetic) 
\ 

Beta beam \, 

Absorber thickness (relative units) 

Figure 4.11 Transmission of betas. A 
corresponding curve for monoener- 
getic electrons is also shown with 
E m o n o  = E m a x .  
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where Em,, is in MeV. Notice that p is given in units of m2/kg; therefore the 
thickness t in the exponent of Eq. 4.25 should be in kg/m2. The exponential 
transmission law represented by Eq. 4.25 is the result of experimental observa- 
tion. There is no theory predicting it. The range of P particles is calculated 
using Eq. 4.21 for kinetic energy equal to Em,,. 

Example 4.13 What fraction of 2-MeV betas will go through a single A1 foil 
of thickness 0.1 mm? 

Answer The mass absorption coefficient is, using Eq. 4.26. 

The fraction transmitted is, using Eq. 4.25, 

N(t) 
- = e-p '  = exp [-0.7714 m2/kg(0.1 X ml(2.7 x lo3 kg/m3)1 
N(0) 

Therefore, 81 percent of the betas will go through this foil. 

4.6.4 Energy Loss after Traversing a Material of Thickness t < R 

One is often required to calculate the energy loss of a charged particle after it 
traverses a material of thickness t. The first step in solving such a problem is to 
calculate the range of the particle in that medium. If the range is R < t ,  the 
particle stopped in the medium and the total energy lost is equal to the initial 
energy of the particle. If R > t ,  the energy loss AE is given by 

where dE/& is the total stopping power (ionization-excitation plus radiation 
loss). If t t R, one may take dE/& as constant and obtain 

where (dE/dr), is the stopping power calculated for the initial energy of the 
particle. 

If the thickness t is a considerable fraction of the range, dE/& cannot be 
considered constant. Then, Eq. 4.27 should be integrated using the appropriate 
form of dE/&. Since the stopping power is a complicated expression, the 
integration cannot be carried out by hand. A numerical integration can be 
performed by a computer. In most cases, however, the following approach gives 
adequate results. 
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The thickness t is divided into N segments of length Axi, where 
N 

C A X ~  = t  
i =  1 

Equation 4.27 takes the form 

where ( d E / d ~ ) ~  is the stopping power calculated for the kinetic energy of the 
particle at the beginning of the segment Axi. 

There is no general rule as to the best value of the number of segments N. 
Obviously, N should be such that ( d E / d ~ ) ~  changes by a small but acceptable 
amount as the particle travels the segment Axi. 

Example 4.14 What is the energy loss of a 10-MeV electron going through 
15 mm of aluminum? 

Answer Using Eq. 4.21 or Fig. 4.9, the range of a 10-MeV electron in 
aluminum is R = 20.4 mm. The particle will emerge, but the thickness of the 
absorber is a considerable fraction of the range. Therefore, one should use Eq. 
4.29. 

If one chooses N = 5 and equal segments, Eq. 4.29 takes the form 

The table below shows how the calculation proceeds. 

Total energy loss is 7.958 MeV. Using (dE/cix),, the energy loss would have 
been equal to 0.605 MeV/mm x 15mm = 9.075 MeV, which is overestimated 
by about 14%. 

4.7 STOPPING POWER AND RANGE OF HEAVY IONS 
(Z > 2, A > 4) 

4.7.1 Introduction 

The equations presented in Secs. 4.3-4.6 for energy loss and range of charged 
particles were derived with the assumption that the charge of the particle does 
not change as the particle traverses the medium. This assumption is certainly 
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valid for electrons, positrons, protons, and deuterons ( Z  = 1). It holds well for 
alphas too ( Z  = 2). However, for Z > 2, the charge of the particle cannot be 
assumed constant, and for this reason the energy loss and range calculations 
require special treatment. 

Consider an atom or an ion with speed greater than the orbital velocity of 
its own electrons. If this particle enters a certain medium, the atomic electrons 
will be quickly removed from the atom or ion, leaving behind a bare nucleus. 
The nucleus will keep moving through the medium, continuously losing energy 
in collisions with the electrons of the medium.+ It is probable that the ion will 
capture an electron in one of these collisions. It is also probable that the 
electron will be lost in another collision. As the ion slows down and its speed 
becomes of the same order of magnitude as the orbital speeds of the atomic 
electrons, the probability for electron capture increases, while the probability for 
electron loss decreases. When the ion slows down even farther and is slower 
than the orbiting electrons, the probability of losing an electron becomes 
essentially zero, while the probability of capturing one becomes significant. As 
the speed of the ion continues to decrease, a third electron is captured, then a 
fourth, and so on. At the end, the ion is slower than the least bound electron. By 
that time, it is a neutral atom. What is left of its kinetic energy is exchanged 
through nuclear and not electronic collisions. The neutral atom is considered as 
stopped when it either combines chemically with one of the atoms of the 
material or is in thermal equilibrium with the medium. 

4.7.2 The dE / dr Calculation 

The qualitative discussion of Sec. 4.7.1 showed how the charge of a heavy ion 
changes as the ion slows down in the medium. It is this variation of the charge 
that makes the energy loss calculation very difficult. There is no single equation 
given d E / &  for all heavy ions and for all stopping materials. Instead, d E / &  is 
calculated differently, depending on the speed of the ion relative to the speed of 
the orbital electrons. 

The stopping power is written, in general, as the sum of two terms: 

where (dE/cix), = electronic energy loss 
(dE/dx) ,  = nuclear energy loss 

An excellent review of the subject is presented by Northcliffe" and Lindhard, 
Scharff, and Schiott." The results are usually presented as universal curves in 
terms of two dimensionless quantities, the distance s and the energy E ,  first 

t~ollisions with nuclei are not important if the particle moves much faster than the atomic 
electrons. 
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introduced by Lindhard et al.1° and defined as follows: 

wheret a = 0.8853a,(~:/~ + ~ , 2 / ~ ) - ' / ~  
x = actual distance traveled 

a, = h2/me2 = Bohr radius = 5.29 X lo-'' m 
Z,, MI = charge and mass of incident particle 
Z2, M2 = charge and mass of stopping material 

The parameters N, r,, and mc2 have been defined in Sec. 4.3. 
At high ion velocities, u * V,Z?/~,  where v, = e2/fi = orbital velocity of 

the electron in the hydrogen atom, the nuclear energy loss is negligible. The 
particle has an effective charge equal to Z,, and the energy loss is given by an 
equation of the form 

which is similar to Eq. 4.2. 
At velocities of the order of u = u,z:/~, the ion starts picking up electrons 

and its charge keeps decreasing. The energy loss through nuclear collisions is 
still negligible. 

In the velocity region v < U,Z?/~, the electronic energy loss equation takes 
the formlo 

where 

1 12.13 and n has a value very close to T .  The constant k depends on Z and A only, 
not on energy, and its value is less than 1. Some typical values are given in Table 
4.2. 

Table 4.3 shows the kinetic energy per unit atomic mass, as well as the 
kinetic energy, of several ions for u = v,Z:/~. 

The electronic stopping power for different ions and stopping materials is 
obtained by using the following semiempirical approach. 

se he number 0.8853 = (9.rr2)1/3/27/3 is called the Thomas-Fermi constant. 
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Table 4.2 Values of k Used in Eq. 4.34 

The ratio of stopping power for two ions having the same velocity and 
traveling in the same medium is given by (using Eq. 4.33): 

The application of Eq. 4.35 to heavy ions should take into account the change of 
the charge Z, as the ion slows down. This is accomplished by replacing Z, with 
an effective charge, 

Zeff = 7721 

where 77 is a parameter that depends on energy. The second particle in Eq. 4.35 
is taken to be the proton (Z, = A ,  = I), thus leading to the form14-l6 

where the effective proton charge 77, is given by Eq. 4.37, reported by Booth & 
  rant'^, and T, is the proton kinetic energy in MeV: 

77; = [I - exp ( -  150~,)] exp (-0.835e-'~.~'~) (4.37) 

Table 4.3 The Kinetic Energy of Heavy Ions for Several 
Values of v = U , , Z ~ / ~  

~- 

voZ:'= 
(X lo-') P 

Ion z1 ( 4 s )  (X 10') T/A T (MeV) 
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Equations giving the value of q have been reported by many  investigator^.'^-'^ 
The most recent equation reported by Forster et al.17 valid for 8 I Z ,  I 20 and 
for v/v, > 2 is 

q = 1 - A(Zl) exp 

with 

The proton stopping power is known.lg Brown19 has developed an equation of 
the form 

by least squares fitting the data of Northcliffe and   chilling." The most recent 
data are those of Janni4 

The experimental determination of d E / h  is achieved by passing ions of 
known initial energy through a thin layer of a stopping material and measuring 
the energy loss. The thickness Ax of the material should be small enough that 
d E / h  = AE/Ax. Unfortunately, such a value of Ax is so small, especially for 
very heavy ions, that the precision of measuring Ax is questionable and the 
uniformity of the layer has an effect on the measurement. Typical experimental 
results of stopping power are presented in Fig. 4.12. The data of Fig. 4.12 come 
from Ref. 13. The solid line is based on the following empirical equation 
proposed by Bridwell and B U C ~ "  and Bridwell and Moak2': 

where T is the kinetic energy of the ion in MeV. 
For a compound or mixture, d E / h  can be obtained by using Eq. 4.12 with 

( d E / d ~ ) ~  obtained from Eq. 4.36 or Eq. 4.40. 
At velocities v < v , z , ~ / ~ ,  the energy loss through nuclear elastic collisions 

becomes important. The so-called nuclear stoppingpower is given by the follow- 
ing approximate expressionlo : 

While the electronic stopping power ( d ~ / d p ) ,  continuously decreases as the ion 
speed v decreases, the nuclear stopping power increases as v decreases, goes 
through a maximum, and then decreases again (Fig. 4.13). 
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20 40 60 80 100 (MeV) 
Energy 

Figure 4.12 Energy loss of iodine ions in several absorbers (Ref. 13). The curves are based on Eq. 
4.40. 

4.7.3 Range of Heavy Ions 

The range of heavy ions has been measured and calculated for many ions and 
for different absorbers. But there is no single equation-either theoretical or 
empirical-giving the range in all cases. Heavy ions are hardly deflected along 
their path, except very close to the end of their track, where nuclear collisions 
become important. Thus the range R, which is defined as the depth of penetra- 
tion along the direction of incidence, will be almost equal to the pathlength, the 
actual distance traveled by the ion. With this observation in mind, the range is 
given by the equation 
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0.6 r / 

Figure 4.13 The electronic and 
nuclear energy loss as a func- .- 

I I I &1 tion of the dimensionless en- 
0 1 2 3 4 ergy (Ref. 12). 

Results of calculations based on Eq. 4.42 are given by many authors. Based on 
calculations described in Ref. 12, Siffert and ~ o c h e "  present universal graphs 
for several heavy ions in silicon (Figs. 4.14 and 4.15). 

The range of a heavy ion in a compound or mixture is calculated from the 
range in pure elements by using the e q u a t i ~ n ~ ~ , ~ ~  

where R, = range, in kg/m2, in element i 
wi = weight fraction of ith element 

4.8 INTERACTIONS OF PHOTONS WITH MATI'ER 

Photons, also called X-rays or y-rays, are electromagnetic radiation. Considered 
as particles, they travel with the speed of light c and they have zero rest mass 
and charge. The relationship between the energy of a photon, its wavelength A, 
and frequency is 

There is no clear distinction between X-rays and y-rays. The term X-rays is 
applied generally to photons with E < 1 MeV. Gammas are the photons with 
E > 1 MeV. In what follows, the terms photon, y, and X-ray will be used 
interchangeably. 

X-rays are generally produced by atomic transitions such as excitation and 
ionization. Gamma rays are emitted in nuclear transitions. Photons are also 
produced as bremsstrahlung, by accelerating or decelerating charged particles. 
X-rays and y-rays emitted by atoms and nuclei are monoenergetic. Bremsstrah- 
lung has a continuous energy spectrum. 
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There is a long list of possible interactions of photons, but only the three 
most important ones will be discussed here: the photoelectric effect, Compton 
scattering, and pair production. 

4.8.1 The Photoelectric Effect 

The photoelectric effect is an interaction between a photon and a bound atomic 
electron. As a result of the interaction, the photon disappears and one of the 
atomic electrons is ejected as a free electron, called the photoelectron (Fig. 4.16). 
The kinetic energy of the electron is 

T = E, - Be (4.45) 

where E, = energy of the photon 
Be = binding energy of the electron 

The probability of this interaction occurring is called the photoelectric cross 
section or photoelectric coeficient. Its calculation is beyond the scope of this 
book, but it is important to discuss the dependence of this coefficient on 
parameters such as E,, Z, and A. The equation giving the photoelectric 
coefficient may be written as 

zn 
T (m-') = aN-[I - O(Z)] (4.46) 

E," 

where T = probability for photoelectric effect to occur per unit distance traveled 
by the photon 

a = constant, independent of Z and E, 
m ,  n = constants with a value of 3 to 5 (their value depends on E,; see 

Evans) 
N, Z have been defined in Sec. 4.3. 

The second term in brackets indicates correction terms of the first order in Z. 
Figure 4.17 shows how the photoelectric coefficient changes as a function of E, 
and Z. Fig. 4.17 and Eq. 4.46 show that the photoelectric effect is more 
important for high-Z material, i.e., more probable in lead ( Z  = 82) than in Al 
(2 = 13). It is also more important for E, = 10 keV than E, = 500 keV (for the 
same material). Using Eq. 4.46, one can obtain an estimate of the photoelectric 
coefficient of one element in terms of that of another. If one takes the ratio of T 
for two elements, the result for photons of the same energy is 

Figure 4.16 The photoelectric effect. 
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where pi and A, are density and atomic weight, respectively, of the two 
elements, and T~ and 7, are given in m-'. If 7, and 7, are given in m2/kg, Eq. 
4.47 takes the form 

4.8.2 Compton Scattering or Compton Effect 

The Compton eflect is a collision between a photon and a free electron. Of 
course, under normal circumstances, all the electrons in a medium are not free 
but bound. If the energy of the photon, however, is of the order of keV or more, 
while the binding energy of the electron is of the order of eV, the electron may 
be considered free. 

The photon does not disappear after a Compton scattering. Only its direc- 
tion of motion and energy change (Fig. 4.18). The photon energy is reduced by a 
certain amount that is given to the electron. Therefore, conservation of energy 
gives (assuming the electron is stationary before the collision): 

If Eq. 4.48 is used along with the conservation of momentum equations, the 
energy of the scattered photon as a function of the scattering angle 0 can be 
calculated. The result is (see Evans) 

Using Eqs. 4.48 and 4.49, one obtains the kinetic energy of the electron: 

(1 - cos 6)Ey/mc2 
T =  E 

1 + (1 - c o s ~ ) ~ ~ / m c ~  

A matter of great importance for radiation measurement is the maximum 
and minimum energy of the photon and the electron after the collision. The 
minimum energy of the scattered photon is obtained when 8 = T. This, of 
course, corresponds to the maximum energy of the electron. From Eq. 4.49, 

Ey' ,  min = 
E Y  

1 + 2E,/mc2 

Z photon energy and ( b )  atomic 

(b)  number of the material. 
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e,T - freed electron 

Photon 

EY - +e--B--- 
Y ,  E j  - scattered photon 

Figure 4.18 The Compton effect. 

and 

The maximum energy of the scattered photon is obtained for 8 = 0, which 
essentially means that the collision did not take place. From Eqs. 4.49 and 4.50, 

The conclusion to be drawn from Eq. 4.51 is that the minimum energy of the 
scattered photon is greater than zero. Therefore, in Compton scattering, it is 
impossible for all the eneqy of the incident photon to be given to the electron. The 
energy given to the electron will be dissipated in the material within a distance 
equal to the range of the electron. The scattered photon may escape. 

Example 4.15 A 3-MeV photon interacts by Compton scattering. (a) What is 
the energy of the photon and the electron if the scattering angle of the photon is 
90"? (b) What if the angle of scattering is 180"? 

Answer (a) Using Eq. 4.49, 

E , =  = 0.437 MeV 
1 + (1 - 0)3/0.511 

T = 3 - 0.437 = 2.563 MeV 

(b) Using Eq. 4.51, 

J 

Eyl, min = = 0.235 MeV 
1 + (2)3/0.511 

T = 3 - 0.235 = 2.765 MeV 

Example 4.16 What is the minimum energy of the y-ray after Compton 
scattering if the original photon energy is 0.511 MeV, 5 MeV, 10 MeV, or 100 
MeV? 
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Answer The results are shown in the table below (Eq. 4.51 has been used). 

The probability that Compton scattering will occur is called the Compton 
coeficient or the Compton cross section. It is a complicated function of the 
photon energy, but it may be written in the form 

where u = probability for Compton interaction to occur per unit distance 
f (EJ = a function of E, 

If one writes the atom density N explicitly, Eq. 4.53 takes the form 

In deriving Eq. 4.54, use has been made of the fact that for most materials, 
except hydrogen, A .= 2 2  to A = 2.62. According to Eq. 4.54, the probability 
for Compton scattering to occur is almost independent of the atomic number of 
the material. Figure 4.19 shows how u changes as a function of E, and Z. If the 
Compton cross section is known for one element, it can be calculated for any 
other by using Eq. 4.53 (for photons of the same energy): 

where ul and a, are given in m-'. If a, and a, are given in m2/kg, Eq. 4.55 
takes the form 

Figure 4.19 Dependence of the 
Compton cross section on ( a )  
photon energy and ( b )  atomic 

(b) number of the material. 
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4.8.3 Pair Production 

Pair production is an interaction between a photon and a nucleus. As a result of 
the interaction, the photon disappears and an electron-positron pair appears 
(Fig. 4.20). Although the nucleus does not undergo any change as a result of this 
interaction, its presence is necessary for pair production to occur. A y-ray will 
not disappear in empty space by producing an electron-positron pair.+ 

Conservation of energy gives the following equation for the kinetic energy 
of the electron and the positron: 

T e +  T,+= E, - (mc21e- -(mc21e+ = E, - 1.022 MeV (4.56) 

The available kinetic energy is equal to the energy of the photon minus 1.022 
MeV, which is necessary for the production of the two rest masses. Electron and 
positron share, for all practical purposes, the available kinetic energy, i.e., 

Te-= Te+= +(E, - 1.022 MeV) (4.57) 

Pair production eliminates the original photon, but two photons are created 
when the positron annihilates (see Sec. 3.7.4). These annihilation gammas are 
important in constructing a shield for a positron source as well as for the 
detection of gammas (see Chap. 12). 

The probability for pair production to occur, called the pair production 
coeficient or cross section is a complicated function of E, and Z (see Evans and 
Roy & Reed). It may be written in the form 

where K is the probability for pair production to occur per unit distance traveled 
and f(  E,, Z)  is a function that changes slightly with Z and increases with E,. 

Figure 4.21 shows how K changes with E, and 2. It is important to note 
that K has a threshold at 1.022 MeV and increases with E, and Z. Of the three 
coefficients ( r  and a being the other two), K is the only one increasing with the 
energy of the photon. 

'pair production may take place in the field of an electron. The probability for that to happen 
is much smaller and the threshold for the gamma energy is 4mc2 = 2.04 MeV. 

E7 = 0.51 1 MeV 

Figure 4.20 Pair production. The gamma disappears and a positron-electron pair is created. Two 
0.511-MeV photons are produced when the positron annihilates. 
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If the pair production cross section is known for one element, an estimate of 
its value can be obtained for any other element by using Eq. 4.58 (for photons of 
the same energy). 

where K~ and K, are given in m-l. If K, and K, are given in m2/kg, Eq. 4.59 
takes the form 

4.8.4 Total Photon Attenuation Coefficient 

When a photon travels through matter, it may interact through any of the three 
major ways discussed earlier. (For pair production, E, > 1.022 MeV.) There are 
other interactions, but they are not mentioned here because they are not 
important in the detection of gammas. 

Figure 4.22 shows the relative importance of the three interactions as E, 
and Z change. Consider a photon with E = 0.1 MeV. If this particle travels in 
carbon ( Z  = 6), the Compton effect is the predominant mechanism by which 
this photon interacts. If the same photon travels in iodine ( Z  = 531, the 
photoelectric interaction prevails. For a y of 1 MeV, the Compton effect 
predominates regardless of Z. If a photon of 10 MeV travels in carbon, it will 
interact mostly through Compton scattering. The same photon moving in iodine 
will interact mainly through pair production. 

The total probability for interaction p ,  called the total linear attenuation 
coefficient, is equal to the sum of the three probabilities: 

Physically, p is the probability of interaction per unit distance. 
There are tables that give p for all the elements, for many photon energies.+ 

'~ables  of mass attenuation coefficients are given in App. D. 

Figure 4.21 Dependence of the 
pair production cross section on 

1.022 MeV (a) photon energy and ( b )  atomic 

(b )  number of the material. 
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Photoelectric 

predominant I 

E?, MeV 

Figure 4.22 The relative importance of the three major gamma interactions (from The Atomic 
Nucleus by R. D. Evans. CopyrightO1972 by McGraw-Hill. Used with the permission of McGraw-Hill 
Book Company). 

Most of the tables provide p in units of m2/kg (or cm2/g), because in these 
units the density of the material does not have to be specified. If p is given in 
m2/kg (or ~ m ~ / ~ ) ,  it is called the total mass attenuation coeficient. The relation- 
ship between linear and mass coefficients is 

Figure 4.23 shows the individual coefficients as well as the total mass 
attenuation coefficient for lead, as a function of photon energy. The total mass 
attenuation coefficient shows a minimum because as E increases, r decreases, K 

increases, and cr does not change appreciably. However, the minimum of p 
does not fall at the same energy for all elements. For lead, p shows a minimum 
at E, - 3.5 MeV; for aluminum, the minimum is at 20 MeV; and for NaI, the 
minimum is at 5 MeV. 

If a 'parallel beam of monoenergetic photons with intensity I(0) strikes a 
target of thickness t (Fig. 4.24), the number of photons, Z(t), emerging without 
having interacted in the target is given by 

The probability that a photon will traverse thickness t without an interaction is 

number transmitted I(0)e-fit 
- - = e p P t  

number incident I(0) 
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\ Total mass sttenuatior 
coefficient 

-. -. 
Compton ( 0 )  -. 

Pair 

\ .  
\' '. 
:' '. '. 
: , Photo '.. 

Ey, MeV 

Figure 4.23 Mass attenuation coefficients for lead ( Z  = 82, p = 11.35 X lo3 kg/m3). 

Based on this probability, the average distance between two successive 
interactions, called the mean free path (mfp) (A), is given by 

Thus, the mean free path is simply the inverse of the total linear attenuation 
coefficient. If p = 10 m-I for a certain y-ray traveling in a certain medium, 
then the distance between two successive interactions of this gamma in that 
medium is A = 1/p = 1/10 m = 0.10 m. 

The total mass attenuation coefficient for a compound or a mixture is 
calculated by the same method used for (dE/dx), in Sec. 4.5. It is easy to show 
(see Prob. 4.15) that 
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where p, = total mass attenuation coefficient for a compound or a mixture 
wi = weight fraction of ith element in the compound 
pi = total mass attenuation coefficient of ith element 

Example 4.17 What is the total mass attenuation coefficient for 1.25-MeV 
gammas in NaI? 

Answer For this compound, the following data apply: 

23 Na: p = 0.00546 m2/kg w = , = 0.153 

Using Eq. 4.64, 
p (NaI) = 0.00546(0.153) + 0.00502(0.847) = 0.00509 m2/kg = 0.0509 
The density of NaI is 3.67 x lo3 kg/m3; hence, 

p (m-') = 0.00509 m3/kg(3.67 x lo3 kg/m3) = 18.567 m-' = 0.187 cm-' 

4.8.5 Photon Energy Absorption Coefficient 

When a photon has an interaction, only part of its energy is absorbed by the 
medium at the point where the interaction took place. Energy given by the 
photon to electrons and positrons is considered absorbed at the point of 
interaction because the range of these charged particles is short. However, 
X-rays, Compton-scattered photons, or annihilation gammas may escape. The 
fraction of photon energy that escapes is important when one wants to calculate 
heat generated due to gamma absorption in shielding materials or gamma 
radiation dose to humans (see Chap. 16). The gamma energy deposited in any 
material is calculated with the help of an energy absorption coefficient defined 
in the following way. 

The gamma energy absorption coeficient is, in general, that part of the total 
attenuation coefficient that, when multiplied by the gamma energy, will give the 
energy deposited at the point of interaction. Equation 4.60 gives the total 
attenuation coefficient. The energy absorption coeficient pa ist 

'A more detailed definition of the energy absorption coefficient is given by Chilton et al. 

Incident 
photon 
beam 
' 0  

Figure 4.24 The intensity of the 
transmitted beam (only particles that 
did not interact) decreases exponen- 
tially with material thickness. 
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where T, is the average energy of the Compton electron and pa may be a 
linear or mass energy absorption coefficient, depending on the units (see Sec. 
4.8.4). 

In writing Eq. 4.65, it is assumed that 

1. If photoelectric effect or pair production takes place, all the energy of the 
gamma is deposited there. 

2. If Compton scattering occurs, only the energy of the electron is absorbed. 
The Compton-scattered gamma escapes. 

In the case of photoelectric effect, assumption (1) is valid. For pair produc- 
tion, however, it is questionable because only the energy E, - 1.022 MeV is 
given to the electron-positron pair. The rest of the energy, equal to 1.022 MeV, 
is taken by the two annihilation gammas, and it may not be deposited in the 
medium. There are cases when Eq. 4.65 is modified to account for this effect." 
Gamma absorption coefficients, as defined by Eq. 4.65, are given in App. D. 

Example 4.18 A 1Ci 1 3 7 ~ s  source is kept in a large water vessel. What is the 
energy deposited by the gammas in H 2 0  at a distance 0.05 m from the source? 

Answer 1 3 7 ~ s  emits a 0.662-MeV gamma. The mass absorption coefficient 
for this photon in water is (App. D) 0.00327 m2/kg. The total mass attenuation 
coefficient is 0.00862 m2/kg. The energy deposited at a distance of 0.05 m from 
the source is (Ed = 4p, E,) 

4.8.6 Buildup Factors 

Consider a point isotropic monoenergetic gamma source at a distance r from a 
detector, as shown in Fig. 4.25, with a shield of thickness t between source and 
detector. The total gamma beam hitting the detector consists of two compo- 
nents. 

1. The unscattered beam consists of those photons that go through the 
shield without any interaction. If the source strength is S(-y/s), the intensity 
of the unscattered beam or the unscattered photon flux is given by the simple 
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Source 

Pair 
Unscattered photon 

Annihilation photon 

Figure 4.25 If a point isotropic source is placed behind a shield of thickness t ,  both scattered and 
unscattered photons will hit the detector. 

and exact expression 

2. The scattered beam consists of scattered incident photons and others 
generated through interactions in the shield (e.g., X-rays and annihilation 
gammas). The calculation of the scattered beam is not trivial, and there is no 
simple expression like Eq. 4.62 representing it. 

The total flux hitting the detector is 

Obviously, for the calculation of the correct energy deposition by gammas, 
either for the determination of heating rate in a certain material or the dose 
rate to individuals, the total flux should be used. Experience has shown that 
rather than calculating the total flux using Eq. 4.67, there are advantages to 
writing the total flux in the form 

where B is a buildup factor, defined and computed in such a way that Eq. 4.68 
gives the correct total flux. Combining Eqs. 4.67 and 4.68, one obtains 

How will B be determined? Equation 4.69 will be used, of course, but that 
means one has to determine the scattered flux. Then where is the advantage of 
using B? The advantage comes from the fact that B values for a relatively small 
number of cases can be computed and tabulated and then, by interpolation, one 
can obtain the total flux using Eq. 4.68 for several other problems. In other 
words, the use of the buildup factor proceeds in two steps. 
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1. Buildup factor values are tabulated for many cases. 
2. The appropriate value of B that applies to a case under study is chosen and 

used in Eq. 4.68 to obtain the total flux. 

In general, the buildup factor depends on the energy of the photon, on the mean 
free paths traveled by the photon in the shield, on the geometry of the source 
(parallel beam or point isotropic), and on the geometry of the attenuating 
medium (finite, infinite, slab, etc.). 

The formal definition of B upon which its calculation is based is 

quantity of interest due to total flux 

B(E' pr) = quantity of interest due to unscattered flux 

Quantities of interest and corresponding buildup factors are shown in Table 4.4 
The mathematical formulas for the buildup factors are (assuming a monoen- 

ergetic, E,, point isotropic source) as follows: 

Number buildup factor: 

Energy deposition buildup factor: 

Dose buildup factor: 

In Eqs. 4.70-4.72, the photon flux +(r, E)  is a function of space r and 
energy E, even though all photons start from the same point with the same 
energy E,. Since B(E, p r )  expresses the effect of scattering as the photons 
travel the distance r, it should not be surprising to expect B(E, p r )  + 1 as 
p r  -+ 0. 

Table 4.4 Types of Buildup Factors 

Quantity of interest Corresponding buildup factor 

F lw  4 Number buildup factor 
Energy deposited in medium Energy deposition buildup factor 
Dose (absorbed) Dose buildup factor 
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Note that the only difference between energy and dose buildup factors is 
the type of gamma absorption coefficient used. For energy deposition, one uses 
the absorption coefficient for the medium in which energy deposition is calcu- 
lated; for dose calculations, one uses the absorption coefficient in tissue. 

Extensive calculations of buildup factors have been performed,26-31 and the 
results have been tabulated for several gamma energies, media, and distances. 
In addition, attempts have been made to derive empirical analytic equations. 
Two of the most useful formulas are as follows: 

Berger formula: 

B(E, p r )  = 1 + a ( ~ ) p r e ~ ( ~ ) ~ - ~ ~  

Taylor formula: 

The constants a(E), b(E), A(E), a,(E), a2(E) have been determined by fitting 
the results of calculations to these analytic expressions. Appendix E provides 
some values for the Berger formula constants. The best equations for the 
gamma buildup factor representation are based on the so-called "geometric 
progression" (G-P)32 form. The G-P function has the form 

B ( E ,  X) = 1 + ( b  - l ) (KX - 1)/(K - 1) K + 1 

= l + ( b - 1 ) x  K = 1  (4.75) 

tanh[(x/X,) - 21 - tanh(-2) 
K ( x )  = a" + d (4.76) 

1 - tanh( -2) 

where x = p r  = distance traveled in mean free paths 
b = value of B for x = 1 
K = multiplication factor per mean free paths 

a ,  b, c ,  d, X, = parameters that depend on E 
Extensive tables of these constants are given in Ref. 31. The use of the buildup 
factor is shown in Ex. 4.19. More examples are provided in Chap. 16 in 
connection with dose-rate calculations. 

Example 4.19 A 1-Ci 137Cs source is kept in a large water tank. What is the 
energy deposition by the Cs gammas at a distance of 0.5 m from the source? 

Answer Using the data of Ex. 4.18, the distance traveled by the 0.662-MeV 
photons in water is p r  = (0.00862 m2/kg)(0.5 mX103 kg/m3) = 4.31 mean free 
path. From Ref. 32, the energy deposition buildup factor is B(0.662,4.31) = 13.5. 
The energy deposition is 

MeV 3.7 x 10'' 

( kgs ) = 4 ~ ( 0 . 5 ) ~  
eC4.31(0.00327)(0.662)13.5 = 4.62 X lo6 MeV/(kg s) 



166 MEASUREMENT AND DETECIION OF RADIATION 

4.9 INTERACTIONS OF NEUTRONS WITH MATTER 

Neutrons, with protons, are the constituents of nuclei (see Sec. 3.4). Since a 
neutron has no charge, it interacts with nuclei only through nuclear forces. 
When it approaches a nucleus, it does not have to go through a Coulomb 
barrier, as a charged particle does. As a result, the probability (cross section) for 
nuclear interactions is higher for neutrons than for charged particles. This 
section discusses the important characteristics of neutron interactions, with 
emphasis given to neutron cross sections and calculation of interaction rates. 

4.9.1 Types of Neutron Interactions 

The interactions of neutrons with nuclei are divided into two categories: 
scattering and absorption. 

Scattering. In this type of interaction, the neutron interacts with a nucleus, but 
both particles reappear after the reaction. A scattering collision is indicated as 
an (n, n) reaction or as 

Scattering may be elastic or inelastic. In elastic scattering, the total kinetic 
energy of the two colliding particles is conserved. The kinetic energy is simply 
redistributed between the two particles. In inelastic scattering, part of the 
kinetic energy is given to the nucleus as an excitation energy. After the collision, 
the excited nucleus will return to the ground state by emitting one or more 
-prays. 

Scattering reactions are responsible for neutron's slowing down in reactors. 
Neutrons emitted in fission have an average energy of about 2 MeV. The 
probability that neutrons will induce fission is much higher if the neutrons are 
very slow-"thermal"-with kinetic energies of the order of eV. The fast 
neutrons lose their kinetic energy as a result of scattering collisions with nuclei 
of a "moderating" material, which is usually water or graphite. 

Absorption. If the interaction is an absorption, the neutron disappears, but one 
or more other particles appear after the reaction takes place. Table 4.5 illus- 
trates some examples of absorptive reactions. 

4.9.2 Neutron Reaction Cross Sections 

Consider a monoenergetic parallel beam of neutrons hitting a thin targett of 
thickness t (Fig. 4.26). The number of reactions per second, R, taking place in 

'A thin target is one that does not appreciably attenuate the neutron beam (see Eq. 4.80). 
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Table 4.5 Absorptive Reactions 

Reaction Name 

~ + ; X + ~ - ( Y  + P  (n, p )  reaction 

n + $X +$I:Y + :He (n, a) reaction 

n + $ x + ~ - ~ x +  ~n (n, 2n) reaction 

n + $ x + * + ; x + ~  (n , 7 )  reaction 

n + $ ~ + ~ l ~ ,  +*, + n + n + . . -  z, f k o n  

this target may be written as 

neutrons per m2 s 
R (reactions/s) = 

hitting the target 

probability of interaction 

per n/m2 per nucleus 

where I ,  a, and t are shown in Fig. 4.26. The parameter a ,  called the cross 
section, has the following physical meaning: 

a (m2) = probability that an interaction will occur per target nucleus 

per neutron per m2 hitting the target 

The unit of a is the barn (b). 

Since the nuclear radius is approximately 10-l5 to 10-l4 m, 1 b is approximately 
equal to the cross-sectional area of a nucleus. 

e Target (A,  Z) 

Figure 4.26 A parallel neutron beam 
hitting a thin target: a = area of target 
struck by the beam. 
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Neutron cross sections are defined separately for each type of reaction and 
isotope. For the reactions discussed in Sec. 4.9.1, one defines, for example, 

a, = elastic scattering cross section 

ui = inelastic scattering cross section 

a, = absorption cross section 

a- = capture cross section 

9 = fission cross section 

The total cross section-i.e., the total probability that a reaction of any type will 
take place-is equal to the sum of all the a's: 

In the notation used here, ua = a; + 9. 
Neutron cross sections depend strongly on the energy of the neutron as well 

as on the atomic weight and atomic number of the target nucleus. 
Figures 4.27 and 4.28 show the total cross section for two isotopes over the 

same neutron energy range. Notice the vast difference between the two a's, 
both in terms of their variation with energy and their value in barns. [All 
available information about cross sections as a function of energy for all 
isotopes is contained in the Evaluated Nuclear Data Files (known as ENDF) 
stored at the Brookhaven National Laboratory, Upton, NY.] 

E, ev 

Figure 4.27 The total neutron cross section of "AI from 5 eV to 600 eV (from BNL-325). 
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E, ev 

Figure 4.28 The total cross section of 2 3 8 ~  from 5 eV to 600 eV (from BNL-325). 

The cross section u (b) is called the microscopic cross section. Another 
form of the cross section, also frequently used, is the macroscopic cross section 
C (m-'1, defined by the equation 

and having the following physical meaning: 

Z, =probability that an interaction of type i will take place per unit 
distance of travel of a neutron moving in a medium that has N nuclei/m3 
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The macroscopic cross section is analogous to the linear attenuation coeffi- 
cient of y-rays (Sec. 4.8.4). If a parallel beam of monoenergetic neutrons with 
intensity I(0) impinges upon a material of thickness t, the number of neutrons 
that emerges without having interacted in the material is (see Fig. 4.24) 

I 

where 2 ,  = 2, + C i  + C ,  + ... = total macroscopic neutron cross section. 
As with y-rays, 

e-'~' = probability that the neutron will travel distance t without an interaction 

The average distance between two successive interactions, the mean free path A, 
is 

Example 4.20 What are the macroscopic cross sections Z , ,  Z , ,  and Z ,  for 
thermal neutrons in graphite? The scattering cross section is a, = 4.8 b and the 
absorption cross section is ua = 0.0034 b. What is the mean free path? 

Answer For graphite, p = 1.6 X lo3 kg/m3 and A = 12. Therefore, 

Using Eq. 4.79, 

The mean free path is 

For a mixture of several isotopes, the macroscopic cross section Xi is 
calculated by 

Zi = c N , u i ,  (4.82) 
i 

where mi, = microscopic cross section of isotope j for reaction type i 
= wj pNA/Aj 

wj = weight fraction of jth isotope in the mixture 
p = density of mixture 
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Equation 4.82 assumes that all the isotopes act independently, i.e., that the 
chemical-crystal binding forces are negligible. In certain cases, especially for 
thermal neutrons, these binding forces play an important role and cannot be 
neglected. In those cases, Eq. 4.82 does not apply. 

Example 4.21 What is the total macroscopic absorption cross section of 
natural uranium? Natural uranium consists of 0.711 percent 2 3 5 ~ ,  and the rest 

23 8 is, essentially, U. For thermal neutrons, the absorption cross sections are a, 
( 2 3 5 ~ )  = 678 b and a, ( 2 3 8 ~ )  = 2.73 b. 

Answer The density of uranium is 19.1 X lo3 kg/m3. Therefore, using Eq. 
4.82, 

4.9.3 The Neutron Flux 

The neutron flux is a scalar quantity that is used for the calculation of neutron 
reaction rates. In most practical cases, the neutron source does not consist of a 
parallel beam of neutrons hitting a target. Instead, neutrons travel in all 
directions and have an energy (or speed) distribution. A case in point is the 
neutron environment inside the core of a nuclear reactor. Neutron reaction 
rates are calculated as follows in such cases. 

Consider a medium that contains neutrons of the same speed v, but moving 
in all directions. Assume that at some point in space the neutron density is n 
(neutrons/m3). If a target is placed at that point, the interaction rate R 
[reactions/(m3 s)] will be equal to 

distance traveled by all probability of interaction per unit 
R = (  

neutrons in 1 m3 distance traveled by one neutron 1 
The product nu, which has the units of neutrons/(m2 s) and represents the 

total pathlength traveled per second by all the neutrons in 1 m3, is called the 
neutron flux 4: 

4 = nv[n/(m2 s)] (4.83) 

Although the units of neutron flux are n/(rn2 s), the value of the flux 4(r )  
at a particular point r does not represent the number of neutrons that would 
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cross 1 m2 placed at point r.  The neutron flux is equal to the number of 
neutrons crossing 1 m2 in 1 s, only in the case of a parallel beam of neutrons. 
Using Eq. 4.83, the expression for the reaction rate becomes 

Ri = +&[(reactions of type i)/(m3 s)] (4.84) 

Example 4.22 What is the fission rate at a certain point inside a nuclear 
reactor where the neutron flux is known to be + = 2.5 x loi4 neutrons/(m2 s), 
if a thin foil of 235U is placed there? The fission cross section for 2 3 5 ~  is 
Uf = 577 b. 

Answer The macroscopic fission cross section is 

= 2824 m-' = 28.24 cm-' 
and 

Another quantity related to the flux and used in radiation exposure calcula- 
tions is the neutron fluence F, defined by 

with the limits of integration taken over the time of exposure to the flux +(t). 

4.9.4 Interaction Rates of Polyenergetic Neutrons 

Equation 4.84 gives the reaction rate for the case of monoenergetic neutrons. In 
practice, and especially for neutrons produced in a reactor, the flux consists of 
neutrons that have an energy spectrum extending from E = 0 up to some 
maximum energy E,,,. In such a case, the reaction rate is written in terms of an 
average cross section. Let 

+(E)  dE = neutron flux consisting of neutrons with kinetic energy between 

E and E + dE 
ui(E) = cross section for reaction type i for neutrons with kinetic energy E 

N = number of targets per m3 (stationary targets) 

The reaction rate is 

where the integration extends over the neutron energies of interest. The total 
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flux is 

In practice, an average cross section is defined in such a way that, when is 
multiplied by the total flux, it gives the reaction rate of Eq. 4.86, i.e., 

from which the definition of the average cross section is 

The calculation of average cross sections is beyond the scope of this text. The 
reader should consult the proper books on reactor physics. The main purpose of 
this short discussion is to alert the reader to the fact that when polyenergetic 
neutrons are involved, an appropriate average cross section should be used for 
the calculation of reaction rates. 

PROBLEMS 

4.1 Calculate the stopping power due to ionization and excitation of a 2-MeV electron moving in 
water. What is the radiation energy loss rate of this particle? What is the total energy radiated? 
4.2 Calculate the stopping power in aluminum for a 6-MeV alpha particle. 

4 3  The window of a Geiger-Muller counter is made of mica and has a thickness of 0.02 kg/m2 
( p = 2.6 X lo3 kg/m3). For mica composition, use NaA13Si30,,(0H),. 

(a) What is the minimum electron energy that will just penetrate this window? 
(b) What is the energy loss, in MeV/mm, of an electron with the kinetic energy determined in 

(a) moving in mica? 
(c) What is the energy loss, in MeV/mm, of a 6-MeV alpha particle moving in mica? 
(d) Will a 6-MeV alpha particle penetrate this mica window? 

4.4 Beta particles emitted by 3 2 ~ ( ~ , , ,  = 1.7 MeV) are counted by a gas counter. Assuming that the 
window of the counter causes negligible energy loss, what gas pressure is necessary to stop all the 
betas inside the counter if the length of the detector is 100 mm? Assume that the gas is argon. 

4.5 What is the kinetic energy of an alpha particle that will just penetrate the human skin? For the 
skin, assume t = 1 mm; p = lo3 kg/m3; 65 percent 0, 18 percent C, 10 percent H, 7 percent N. 
4.6 Repeat Prob. 4.5 with an electron. 

4.7 Assuming that a charged particle loses energy linearly with distance, derive the function 
T = T(x), where T ( x )  = kinetic energy of the particle after going through thickness x.  The initial 
kinetic energy is To, and the range is R. 
4.8 A beam of 6-MeV alpha particles strikes a gold foil with thickness equal to one-third of the 
alpha range. What is the total energy loss of the alpha as it goes through this foil? 

4.9 What is the energy deposited in a piece of paper by a beam of 1.5-MeV electrons? Assume that 
the paper has the composition CH,, thickness 0.1 mm, and density 800 kg/m3. The incident parallel 
electron beam consists of 10' electrons/(m2 s). Give your result in ~ e ~ / ( c m '  s) and ~ / ( m '  s). 

4.10 What is the range of 10-MeV proton in air at 1 atm? What is the range at 10 atm? 
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4.11 What is the range of a 4-MeV deuteron in gold? 
4.12 A 1.5-MeV gamma undergoes Compton scattering. What is the maximum energy the Compton 
electron can have? What is the minimum energy of the scattered photon? 
4.13 The energy of a Compton photon scattered to an angle of 180" is 0.8 MeV. What is the energy 
of the incident photon? 
4.14 Prove that a gamma scattered by 180°, as a result of a Compton collision, cannot have energy 
greater than mc2/2, where mc2 = 0.511 MeV is the rest mass energy of the electron. 
4.15 Prove that the attenuation coefficient of gammas for a compound or a mixture can be writ- 
ten as 

where wi = weight fraction of ith element 
pi = total mass attenuation coefficient of ith element 

4.16 A 1.75-MeV y-ray hits a 25-mm-thick NaI crystal. What fraction of the interactions of this 
photon will be photoelectric? What is the average distance traveled before the first interaction 
occurs? (7 = 1.34 X 10-~cm~/g . )  
4.17 A parallel beam of gammas impinges upon a multiple shield consisting of successive layers of 
concrete, Fe, and Pb, each layer having thickness 100 mm. Calculate the fraction of gammas 
traversing this shield. The total attenuation coefficients are p(concrete) = 0.002 m2/kg, p(Fe) = 

0.004 m2/kg, and p(Pb) = 0.006 m2/kg; p ,,,,,,,, = 2.3 x lo3 kg/m3. 
4.18 Assume that a parallel beam of 3-MeV gammas and a parallel beam of 2-MeV neutrons 
impinge upon a piece of lead 50 mm thick. What fraction of y's and what fraction of neutrons will 
emerge on the other side of this shield without any interaction? Based on your result, what can you 
say about the effectiveness of lead as a shield for y's or neutrons? [u(2 MeV) = 3.5 b.] 
4.19 What are the capture, fission, and total macroscopic cross section of uranium enriched to 90 
percent in 235U for thermal neutrons? ( p = 19.1 X lo3 kg/m3.) 

2 3 5 ~ :  uy = 101 b 9 = 577 b q = 8.3 b 
2 3 8 ~ :  u7 = 2.7 b uf = 0 5 = 8 b 

4.20 What is the average distance a thermal neutron will travel in 90 percent enriched uranium (see 
Prob. 4.19) before it has an interaction? 
4.21 The water in a pressurized-water reactor contains dissolved boron. If the boron concentration 
is 800 parts per million, what is the mean free path of thermal neutrons? The microscopic cross 
sections are 

H 2 0 :  u3 = 103 b u, = 0.65 b 
Boron: a, = 4 b u, = 759 b 
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GAS-FILLED DETECTORS 

5.1 INTRODUCTION 

Gas-filled detectors operate by utilizing the ionization produced by radiation as 
it passes through a gas. Typically, such a counter consists of two electrodes to 
which a certain electrical potential is applied. The space between the electrodes 
is filled with a gas (Fig. 5.1). Ionizing radiation, passing through the space 
between the electrodes, dissipates part or all of its energy by generating 
electron-ion pairs. Both electrons and ions are charge carriers that move under 
the influence of the electrical field. Their motion induces a current on the 
electrodes, which may be measured (Fig. 5 . 1 ~ ) .  Or, through appropriate elec- 
tronics, the charge produced by the radiation may be transformed into a pulse, 
in which case particles are counted individually (Fig. 5.lb). The first type of 
counter (Fig. 5 . 1 ~ )  is called current or integrating chamber; the second type (Fig. 
5.lb) is called pulse chamber. To get an idea of what charges and currents one 
might expect to measure, consider this representative example. 

For most gases, the average energy required to produce an electron-ion pair 
is about 30 eV. This number takes into account all collisions, including those 
that lead to excitation. If a 3-MeV alpha and beta particle deposits all its energy 
in the counter, it will produce, on the average, 

3 x lo6 
-= lo5 electron-ion pairs 

30 
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I Detector 

Figure 5.1 A typical gas-filled detector: (a) the direct current produced in the circuit is measured; 
( b )  individual pulses are detected. 

A typical gas countert has a capacitance of about 50 pF, and the charge will be 
collected in a time of the order of 1 ps. If all the charge created by the 3-MeV 
particle is collected, the voltage and current expected are of the order of 

In an ionized gas without an electric field, electrons and positive ions will 
move at random with an average kinetic energy equal to $ k ~ ,  where k = 

Boltzmann's constant and T = temperature of the gas (Kelvin). When an 
electric field is present, both electrons and positive ions acquire a net velocity 
component along the lines of the electric field. Electrons move toward the 
positive electrode, positive ions toward the negative one. The force on either 
charge carrier is the same and equal to F = Ee, where E = electric field 
intensity, but the acceleration is quite different. The acceleration a is equal to 
F/M, where M is the mass of the ion or electron. Therefore, the acceleration of 
an electron will be thousands of times larger than the acceleration of an ion. 
The time it takes the electrons to reach the positive electrode of a typical 
counter is about 1 ps. The corresponding time for the positive ions is about 1 
ms, a thousand times longer. 

The discussion up to this point has been limited to the effects of the 
ionization produced directly by the incident particle. This is called primary 
ionization. There are types of gas counters in which the electric field is so strong 
that the electrons of the primary ionization acquire enough kinetic energy 
between collisions to produce new electron-ion pairs. These new charges consti- 
tute the secondary ionization. Primary and secondary ionization are generated 
within such a short period of time that they contribute to one and the same 

' ~ l t h o u ~ h  the correct term is gas-filed detector or counter, the short term gas counter is 
frequently used. 
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5.2 RELATIONSHIP BETWEEN HIGH VOLTAGE AND 
CHARGE COLLECTED 

Assume that the following experiment is performed (Fig. 5.2). A radioactive 
source of constant intensity is placed at a fixed distance from a gas counter. The 
high voltage (HV) applied to the counter may be varied with the help of a 
potentiometer. An appropriate meter measures the charge collected per unit 
time. If the HV applied to the counter is steadily increased, the charge collected 
per unit time changes as shown in Fig. 5.3. The curve of Fig. 5.3 is divided into 
five regions, which are explained as follows. 

Region 1. When the voltage is very low, the electric field in the counter is not 
strong, electrons and ions move with relatively slow speeds, and their recombi- 
nation rate is considerable. As V increases, the field becomes stronger, the 
carriers move faster, and their recombination rate decreases up to the point 
where it becomes zero. Then, all the charge created by the ionizing radiation is 
being collected (V  = VI). Region I is called the recombination region. 

Region 11. In region 11, the charge collected stays constant despite a change in 
the voltage because the recombination rate is zero and no new charge is 
produced. This is called the ionization region. 

Region 111. In this region, the collected charge starts increasing because the 
electrons produce secondary ionization that results in charge multiplication. The 
electric field is so strong, in a certain fraction of the counter volume, that 
electrons from the primary ionization acquire enough energy between collisions 
to produce additional ionization. The gas multiplication factorpie., the ratio of 
the total ionization produced divided by the primary ionization-is, for a given 
voltage, independent of the primary ionization. Thus the output of the counter is 
proportional to the primary ionization. The pulse height at the output is 
proportional to the energy dissipated inside the counter; therefore particle 

Source 

Meter of charge 
collected 

4 High voltage 

Figure 5.2 Experimental setup 
for the study of the relation- 
ship between high voltage ap- 
plied and charge collected. 



180 MEASUREMENT AND DETECTION OF RADIATION 

0 "I "I I "lll "I v 

Figure 5.3 The relationship between voltage applied to the counter and charge collected. 

identification and energy measurement are possible. This region is, appropri- 
ately enough, called the proportional region. 

Region IV. In this region, the electric field inside the counter is so strong that a 
single electron-ion pair generated in the chamber is enough to initiate an 
avalanche of electron-ion pairs. This avalanche will produce a strong signal with 
shape and height independent of the primary ionization and the type of particle, 
a signal that depends only on the electronics of the counter. Region IV is called 
the Geiger-Muller (GM) region. 

Region V. If the applied voltage is raised beyond the value VIv, a single ionizing 
event initiates a continuous discharge in the gas, and the device is not a particle 
detector anymore. No gas counter should operate with voltage V > VIv. 

If the graph discussed above is obtained using an a, j3, or y source, the 
results will be as shown in Fig. 5.4. 

5.3 DIF'F'ERENT TYPES OF GAS-FILLED DETECTORS 

Gas counters take their name from the voltage region ion which they operate. 
No counter operates in region I of Fig. 5.3, because a slight change in voltage 
will change the signal. 
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Figure 5.4 The relationship between charge collected and applied voltage for three different types of 
particles. In region IV, the curve increases slightly but is the same for all particles. 

Ionization chambers operate in region 11. No charge multiplication takes 
place. The output signal is proportional to the particle energy dissipated in the 
detector; therefore measurement of particle energy is possible. Since the signal 
from an ionization chamber is not large, only strongly ionizing particles such as 
alphas, protons, fission fragments, and other heavy ions are detected by such 
counters. The voltage applied is less than 1000 V. 

Proportional counters operate in region 111. Charge multiplication takes 
place, but the output signal is still proportional to the energy deposited in the 
counter. Measurement of particle energy is possible. Proportional counters may 
be used for the detection of any charged particle. 

Identification of the type of particle is possible with both ionization and 
proportional counters. An alpha particle and an electron having the same 
energy and entering either of the counters, will give a different signal. The alpha 
particle signal will be bigger than the electron signal. The voltage applied to 
proportional counters ranges between 800 and 2000 V. 

GM counters operate in region IV. GM counters are very useful because 
their operation is simple and they provide a very strong signal, so strong that a 
preamplifier is not necessary. They can be used with any kind of ionizing 
radiation (with different levels of efficiency). The disadvantage of GM counters 
is that their signal is independent of the particle type and its energy. Therefore, a 
GM counter provides information only about the number of particles. Another 
minor disadvantage is their relatively long dead time (200 to 300 ps). (For more 
details about dead time, see Sec. 5.6.2.) The voltage applied to GM counters 
ranges from 500 to 2000 V. 
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Figure 5.5 The different geometries of gas-filled detectors: (a) parallel plate; ( b )  cylindrical; ( c )  
spherical. 

Gas counters may be constructed in any of three basic geometries: parallel 
plate, cylindrical, or spherical (Fig. 5.5). In a parallel-plate chamber, the electric 
field (neglecting edge effects) is uniform, with strength equal to 

In the cylindrical chamber, the voltage is applied to a very thin wire, a few 
mills of an inch in diameter, stretched axially at the center of the cylinder. The 
cylinder wall is usually grounded. The electric field is, in this case, 

where a = radius of the central wire 
b = radius of the counter 
r = distance from the center of the counter 

It is obvious from Eq. 5.2 that very strong electric fields can be maintained 
inside a cylindrical counter close to the central wire. Charge multiplication is 
achieved more easily in a cylindrical than in a plate-type gas counter. For this 
reason, proportional and GM counters are manufactured with cylindrical geom- 
etry. 

In a spherical counter, the voltage is applied to a small sphere located at the 
center of the counter. The wall of the counter is usually grounded. The electric 
field is 

where a, b, and r have the same meaning as in cylindrical geometry. Strong 
fields may be produced in a spherical counter, but this type of geometry is not 
popular because of construction difficulties. 

A counter filled with a gas at a certain pressure may operate in any of the 
regions I-IV discussed earlier, depending on a combination of the following 
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parameters: 

1. Size of the counter 
2. Size of wire (in cylindrical counters) 
3. Gas type 
4. Gas pressure 
5. Level of high voltage 

Normally, gas counters are manufactured to operate in one region only. The 
user buys an ionization counter, a proportional counter, or a GM counter. The 
manufacturer has selected the combination of variables 1-4 listed above that 
results in the desired type of gas counter. The last variable, the high voltage 
applied, is not a fixed number, but a range of values. The range is specified by 
the manufacturer, but the user decides on the best possible value of HV. 

The rest of this chapter discusses the special characteristics of the three 
types of gas counters. 

5.4 IONIZATION CHAMBERS 

5.4.1 Pulse Formation in an Ionization Chamber 

The formation and shape of the signal in an ionization chamber will be analyzed 
for a parallel-plate counter as shown in Fig. 5.lb. The analysis is similar for a 
cylindrical or a spherical chamber. 

Consider the ionization chamber shown in Fig. 5.6. The two parallel plates 
make a capacitor with capacitance C, and with the resistor R an RC circuit is 
formed. A constant voltage Vo is applied on the plates. The time-dependent 

Collecting 
electrode '+ 1 $ I 

Capacitance C R V ( t )  = signal out 

Grounded 
electrode 

Z 

Figure 5.6 The electronic circuit of a parallel-plate ionization chamber. 
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voltage V(t) across the resistor R represents the signal. The objective of this 
section is to obtain the function V(t). 

Assume that one electron-ion pair has been formed at a distance x,  from 
the collecting plate (collector). The electron and the ion start moving in the 
electric field, and they acquire kinetic energy at the expense of the electrostatic 
energy stored in the capacitance of the chamber. If the charge moves a distance 
a!x, conservation of energy requires that 

(Work on charges) = (change in electrostatic energy) 

where E = electric field intensity 
Q = charge on chamber plates 

dQt, dQ-= changes in positive, negative charge, respectively 
It is assumed that the change in the charge (dQ) is so small that the voltage Vo 
stays essentially constant. The voltage V(t) across the resistor R is the result of 
this change in the charge and is given by 

Substituting in Eq. 5.5 the value of dQ from Eq. 5.4, one obtains 

Let 

w + = drift velocity of positive ions 

w- = drift velocity of electrons 

In general, the drift velocity is a function of the reducedfield strength E/p, where 
p is the gas pressure in the chamber. 

The derivation up to this point is independent of the chamber geometry. To 
proceed further requires substitution of the value of the electric field from 
either Eq. 5.1, 5.2, or 5.3. For a plate-type ionization chamber the field is 
constant (Eq. 5.0, independent of x ,  and so is the drift velocity. Therefore, Eq. 
5.6 becomes 

The drift velocity of the electron is a few thousand times more than the velocity 
of the ion,+ which means the electron will reach the collector plate before the 

' ~ ~ ~ i c a l  values of drift velocities are w + =  10 m/s, w-= lo4 - lo5 m/s. 
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ion has hardly moved. Let 

T(+)  = time it takes for an ion to reach the cathode 

T(-) = time it takes for an electron to reach the collector (anode) 

Typical values of these times are 

T(') - ms T(-) = 
P S  

Equation 5.7 shows that for t < T(-), the voltage V(t) changes linearly with 
time (Fig. 5.7): 

e 
V(t) = - -(w-+ w+)t 0 < t 5 T" 

Cd 

For T > T ( - ) ,  the signal is 

e 
V(t) = - -(xo + w't) t > T ( - )  

Cd 

Finally, after t = T(') ,  the ion reaches the grounded cathode 
reaches its maximum (negative) value, which is 

e 
V(T+) = - -x0 t > T'" 

Cd 

(5.9) 

and the signal 

If N electron-ion pairs are produced, the final voltage will be 

For t > T(+),  the pulse decays with decay constant RC (see Sec. 10.3). 
The pulse profile of Fig. 5.7 was derived under the assumption that all ion 

pairs were produced at x = x,. Actually, the ionization is produced along the 
track traveled by the incident particle. The final pulse will be the result of the 
superposition of many pulses with different T(-)  values. Because of this effect, 
the sharp change in slope at t = T(-) will disappear and the pulse will be 
smoother. 

The pulse of Fig. 5.7 is not suitable for counting individual particles because 
it does not decay quickly enough. A pulse-type counter should produce a signal 
that decays faster than the average time between the arrival of two successive 
particles. For example, if the counting rate is 1000 counts/min, a particle arrives 
at the counter, on the average, every 1/1000 min (60 ms). 

ic means. In Fig. 5.7, the pulse could be stopped at time t = T(+)  by electron' 
Such a technique would produce pulses with height proportional to the total 
charge generated in the detector, but with a duration of a few hundreds of 
microseconds, which is unacceptably long. The method used in practice is to 
"chop off' the pulse at time t = T(-), which amounts to stopping the pulse after 
only the electrons are collected. The signal is then fed into an RC circuit that, 
as described in Chap. 10, changes the pulse as shown in Fig. 5.8. 
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Figure 5.7 The voltage pulse 
generated by an ionization 
chamber. 

Let y( t )  be the signal at the output of the detector that is used as an input 
to an RC circuit. From Eq. 5.8, 

Using this signal as an input, the output voltage across the resistor R, is (see 
Secs. 10.3 and 10.4), for 0 5 t 5 T ( - )  (Fig. 5.71, 

For t > T(-1, K(t) is essentially constant, and 

The signal V,(t) is shown in Fig. 5.8b. Usually, the RC circuit is the first stage of 
the preamplifier, which accepts the signal of the ionization chamber. 

The disadvantage of the signal in Fig. 5.8b is that its maximum value 
depends on the position where the ionization was produced. Indeed, from Eq. 
5.12, one obtains for t = T ( - )  (noting that k = -e(w- + w +)/Cd = -ewP/Cd, 

Figure 5.8 (a) The signal v(t) is fed into the RC circuit. ( b )  The output of the RC circuit decays 
quickly with a decay constant ROCo. 
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since wp* w+, T(-) 4 CORO, and T ( - )  = xO/w-) 

Thus the peak value of the pulse in Fig. 5.8b depends on x,. This disadvantage 
can be corrected in several ways. One is by placing a grid between the two plates 
and keeping it at an intermediate voltage V,(O < V ,  < V,). For more details 
about the "gridded" ionization chamber, the reader should consult the refer- 
ences at the end of this chapter. 

The analysis of the pulse formation in a cylindrical or a spherical counter 
follows the same approach. The results are slightly different because the electric 
field is not constant (see Eqs. 5.2 and 5.3), but the general shape of the signal is 
that shown in Fig. 5.7. (See Franzen & Cochran and Kowalski for detailed 
calculations of the pulse shapes for the three geometries of gas-filled chambers.) 

5.4.2 Current Ionization Chambers 

An ionization chamber of the current type measures the average ionization 
produced by many incoming particles. This is achieved by measuring directly the 
electrical current generated in the chamber, using either a sensitive galvanome- 
ter for currents of A or higher (Fig. 5.9), or an electrometer (sometimes 
with an amplifier) for currents less than lo-' A. In the case of the electrometer, 
as shown in Fig. 5.10, the current is determined by measuring the voltage drop 
across the known resistance R. The voltage drop may be measured by the 
electrometer directly or after some amplification. 

For current ionization chambers, it is very important to know the relation- 
ship between applied voltage and output current (for a constant radiation 
source). This relationship, which is shown in Fig. 5.11, consists of regions I and 
I1 of the graph of Fig. 5.3. The proper operating voltage of the ionization 
chamber is that for which all the ionization produced by the incident radiation is 
measured. If this is the case, a slight increase of the applied voltage will result in 
negligible change of the measured current. The voltage is then called the 
saturation voltage (I/,), and the corresponding current is called saturation 
current. The value of the saturation current depends on the intensity and type of 
the radiation source (Fig. 5.11). It also depends, for the same radiation source, 
on the size and geometry of the chamber as well as on the type and pressure of 
the gas used. If one considers different gases, other things being equal, the 
highest current will be produced by the gas with the lowest average energy 
needed for the production of one electron-ion pair. Typical energies for com- 
mon gases are given in Table 5.1. 

During measurements of the ionization current with an electrometer, one 
would like to know the response of the measuring instrument if the signal from 
the ionization chamber changes. Assume that the current of the chamber 
changes suddenly from a value of i, to i,. The response of the electrometer is 
obtained by considering the equivalent electronic circuit of Fig. 5.10, shown in 
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Ionization 
chamber 

I 

" 0  

t 
Galvanometer Figure 5.9 Measurement of the cur- 

l 
- 

rent produced by an ionization 
chamber by using a galvanometer. 

Fig. 5.12. The capacitor C represents the combined capacitance of the chamber 
and everything else. The resistor R represents a corresponding total resistance 
for the circuit. The signal to be measured is the voltage V ( t ) ,  where for t I 0, 

Vl = i R R  = i , R  (5.15) 

At the t = 0, the current changes instantaneously from i, to i,, and the voltage 
will eventually become 

Vz = i ,R (5.16) 

During the transition period, Kirchhoff's first law gives 

The solution of this differential equation, with the initial condition given by Eq. 
5.15, is 

V ( t )  = i 2 R  + R ( i ,  - i 2 )e - ' /RC (5.18) 

Ionization 
chamber 

I 
To electrometer 

Figure 5.10 Measurements of the current produced by an ionization chamber by using an electrome- 
ter. 
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High-intensity source 

, -- - - , , - - - - Low-intensity source 

Figure 5.11 The ionization cham- 
ber current as a function of ap- 

V plied voltage. 

The function given by Eq. 5.18 is shown in Fig. 5.13. The response of the 
electrometer is exponential with a rate of change determined by the time 
constant RC. For fast response, the time constant should be as short as 
practically possible. 

5.5 PROPORTIONAL COUNTERS 

5.5.1 Gas Multiplication in Proportional Counters 
When the electric field strength inside a gas counter exceeds a certain value, the 
electrons that move in such a field acquire, between collisions, sufficient energy 
to produce new ions. Thus, more electrons will be liberated, which in turn will 
produce more ions. The net effect of this process is multiplication of the primary 
ionization. The phenomenon is called gas rn~lti~lication.~ To achieve the high 
field intensity needed for gas multiplication without excessive applied voltage, 
chambers operating in this mode are usually cylindrical with a very thin wire 
stretched axially at the center of the counter (Fig. 5.14). The wall of the counter 
is normally grounded and a positive voltage is applied to the central wire. In 

' ~ l s o  called gas gain or gas amplification. 

Table 5.1 Average Energy Needed for 
Production of One Electron-Ion pairt 

Gas Energy per pair (eV) 
-- 

H 36.3 
He 42.3 
A 26.4 
Air 34 
co2 32.9 
C, H, (ethane) 24.8 
CH4 27.3 

' f ~ r o m  Franzen and Cochran. 
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" 2 V ( t )  to electrometer 

I I 
Time 

I 

Figure 5.12 The equivalent elec- 
tronic circuit of Fig. 5.10. 

I I 
I 

Figure 5.13 Response of an elec- 
I ~ i , , , ~  trometer to a step change of the 

t = 0 ionization current. 

I 
I , insulator 

Figure 5.14 (a) A cylindrical gas-filled detector. ( b )  Cross section of the detector at AA. 
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such a geometry, the electrostatic field inside the chamber is radial and its 
intensity is 

The field intensity increases rapidly as the wire is approached. Since the radius 
a of the wire is a few mills of an inch and thousands of times smaller than the 
radius b of the counter, an extremely strong electric field is produced in a 
fraction of the chamber's volume. This volume is so small that the probability 
that the incident radiation will produce an electron ion pair in it is negligible. 

In addition to the secondary electrons produced by collisions, electrons are 
also produced by two other processes: 

1. Photoelectric interactions 
2. Bombardment of the cathode surface by positive ions 

The photoelectric interactions are caused by photons that are produced in the 
counter as a result of the ionization and excitation of the atoms and molecules 
of the gas. If the chamber is filled with a monatomic gas, these photons produce 
photoelectrons only when they strike the cathode (wall of cylinder) because they 
do not have enough energy to ionize the atoms of the gas. If the counter is filled 
with a gas mixture, however, photons emitted by molecules of one gas may 
ionize molecules of another. 

Electrons are also emitted when the positive ions, which are produced in the 
chamber, reach the end of their journey and strike the cathode. The significance 
of this effect depends on the type of material covering the surface of the 
cathode and, more important, on the type of the gas filling the chamber. 

The production of electrons by these processes results in the generation of 
successive avalanches of ionization because all the electrons, no matter how they 
are produced, migrate in the direction of the intense electric field and initiate 
additional ionization. The gas multiplication factor M, which is equal to the total 
number of free electrons produced in the counter when one pair is produced by 
the incident radiation, is calculated as follows. Let 

N = total number of electrons set free per primary electron-ion pair 

6  = average number of photoelectrons produced per ion pair generated 

in the counter ( 6  -s 1) 

The initial avalanche of N electrons will produce SN photoelectrons. Each 
photoelectron produces a new avalanche of N new electrons; therefore the 
second avalanche consists of 6~~  electrons. The third avalanche will have 6~~  
electrons, and so on. The total number of electrons per initial ion pair produced 
is then 
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The magnitude of SN depends on the applied voltage. If SN < 1, the gas 
multiplication factor is 

It should be noted that 

1. If SN 4 1, the photoelectric effect is negligible and M = N = initial gas 
multiplication (first avalanche). 

2. If SN < 1, M can become much larger than N. 
3. If SN 2 1, M -+ m, which means that a self-supporting discharge occurs in 

the counter. 

The gas multiplication factor M is a function of the ratio Vo/ln(b/a) and 
the product Pa, where P is the pressure of the gas in the counter (Rossi & 
Staub). Experimental results of M values for two gases are shown in Figs. 5.15 
and 5.16. Diethorn' has obtained the equation 

V In2 V 
l n M =  - In - 

AVln (b/a) KPa In (b/a) 

where TV and K are constants of the gas. Equation 5.20 has been tested and 
found to be ~ a l i d . ~ - ~  As Figs. 5.15 and 5.16 show, M increases almost exponen- 
tially with applied voltage. 

One method by which the strong dependence of M on applied voltage is 
reduced is by adding a small amount  of a polyatomic organic gas in the gas of 
the counter. One popular mixture is 10 percent CH, and 90 percent argon. The 
organic gases, called "quenching" gases, stabilize the operation of the counter 
by reducing the effect of the secondary processes. They achieve this because 

Figure 5.15 Gas multiplication M versus voltage. Gas is 
500 1000 1500 93.6 percent pure argon (a = 0.005 in, b = 0.435 in, at 

Volts two different pressures) (from Rossi and Staub). 
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Volts 

Figure 5.16 Gas multiplication M versus voltage. Gas 
is BF,. (A) a = 0.005 in, b = 0.75 in, P = 10 cmHg. (B) 
a = 0.005 in, b = 0.78 in, P = 80.4 cmHg (from Rossi 
and Staub). 

organic polyatomic molecules 

1. dissociate rather than produce electrons when they hit the cathode 
2. dissociate when they absorb a photon 
3. have lower ionization potential than the molecules of the main gas; as a 

result, they are ionized in collisions with ions of the main gas and thus 
prevent the ions from reaching the cathode 

The total charge produced in a proportional counter is 

where A E  = energy of the incident particle dissipated in the counter 
w = average energy required for production of one electron-ion pair 

Equation 5.21 indicates that Q (output) is proportional to the energy deposited 
in the counter ( A E ) .  This is the reason why such counters are called propor- 
tional. The proportionality holds, however, only if the gas multiplication factor 
M is constant, independent of the primary ionization. The question then arises, 
under what conditions is this true? 

A proportional counter is strictly proportional as long as the space charge 
due to the positive ions does not modify too much the electric field around the 
wire. The magnitude of the space charge is a function of the primary ionization 
and the gas multiplication. If the primary ionization is very small, the value of M 
may be lo5 to lo6 before the space charge affects the proportionality. On the 
other hand, if the primary ionization is too strong, the critical value of M is 
smaller. It has been reported5 that there is a critical maximum value of the 
charge produced by the multiplication process beyond which proportionality 
does not hold. That number, obviously, depends on the counter (size, types of 
gas, etc.). 
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The events that produce the avalanches of electrons in a proportional 
counter are statistical in nature. The final multiplication factor M will not be 
constant but will show statistical fluctuations. The probability that the multipli- 
cation will have the value M is, according to ~ n y d e r , ~  equal to 

1 
P ( M )  = = exp ( -  M) 

M M 
where = mean multiplication factor. The variance of M is, from Eq. 5.22, 

5.5.2 The Pulse Shape of a Proportional Counter 

The shape of the pulse of a proportional counter is understood as one follows 
the events that lead to the formation of the pulse. A cylindrical counter will be 
considered, such as that shown in Fig. 5.14. 

Assume that the incident particle generated N electron-ion pairs at a 
certain point inside the counter. The electrons start moving toward the wire 
(anode). As soon as they reach the region of the strong field close to the wire, 
they produce secondary ionization. Since all the secondary ionization is pro- 
duced in the small volume surrounding the wire, the amplitude of the output 
pulse is independent of the position of the primary ionization. The electrons of 
the secondary ionization are collected quickly by the wire, before the ions have 
moved appreciably. The ion contribution to the pulse is negligible because the 
ions cross only a very small fraction of the potential difference on their way to 
the anode. The pulse developed in the central wire is almost entirely due to the 
motion of the ions. As the ions move toward the cathode, the voltage pulse on 
the wire begins to rise: quickly at first, when the ions are crossing the region of 
the intense electric field, and slower later, when the ions move into the region of 
low-intensity field. The voltage pulse as a function of time is given by (Kowalski) 

where Q is given by Eq. 5.21 
C = capacitance of the counter 

tion = time it takes the ions to reach the cathode 
The equation for tion is (Kowalski) 

P In (b/a) 
'ion = (b2 - r 2 )  

~ V O  Pion 

where P = gas pressure 
pion = ion mobility in the field of the countert 

r = point where the ion was produced 

  he ion mobility is the proportionality constant between the drift velocity and the reduced 
field; thus w +  = p+ ( E / P ) .  
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Figure 5.17 The voltage pulse of a proportional counter. 

The pulse V ( t )  is shown by the solid line of Fig. 5.17. The pulse rises quickly and 
reaches half of its maximum in time of the order of microseconds. Then it bends 
and rises at a much slower rate, until about a millisecond later it reaches its 
final value, Q / C .  

The pulse of Fig. 5.17 was derived under the assumption that all the ions 
were produced at the same point. In reality, the ions are produced along the 
track of the incident particle. This modifies the shape of the pulse during its 
initial rise but it leaves it virtually unaffected during the later period. 

The pulse of Fig. 5.17 is unacceptably long, even for a modest counting rate. 
As in the case of the ionization chamber, the pulse is "chopped off' at some 
convenient time with the help of a differentiating circuit (Chap. 10). The result 
will be a pulse shown by the dashed line in Fig. 5.17. 

5.5.3 The Change of Counting Rate with High Voltage- 
The High-Voltage Plateau 

When a detector is used for the study of a phenomenon involving counting of 
particles, the investigator would like to be certain that changes in the counting 
rate are due to changes in the phenomenon under study and not due to changes 
of the environment such as atmospheric pressure, temperature, humidity, or 
voltage. For most radiation measurements, all these factors may be neglected 
except voltage changes. 

Consider a gas-filled counter. For its operation, it is necessary to apply HV, 
usually positive, which may range from +300 to +3000 V, depending on the 
counter. For the specific counter used in an experiment, the observer would like 
to know by what fraction the counting rate will change if the HV changes by a 
certain amount. It is highly desirable to have a system for which the change in 
the counting rate is negligible, when the HV changes for a reason beyond the 
control of the investigator (e.g., change in the 110 V provided by the outlet on 
the wall, which may, in turn, cause a fluctuation in the output of the HV power 
supply). For this reason, the response of a counting system to such variations 
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ought to be known. This information is provided by the HV plateau of the 
counter. The determination of the HV plateau will be discussed below for a 
proportional counter. However, the experiment and the results are equally 
applicable for a GM counter. 

The HV plateau is obtained by performing the experiment sketched in Fig. 
5.18. A radioactive source, emitting a certain type of particles, is placed at a 
fixed distance from the counter. The signal from the detector is amplified with 
the help of a preamplifier and an amplifier. It is then fed through a discrimina- 
tor, and pulses above the discriminator level are counted by the scaler. The 
counting rate of the scaler is recorded as a function of the HV, the only variable 
changed. The result of the experiment is shown in Fig. 5.19 (lower curve). Also 
shown in Fig. 5.19 (upper curve) is a part of the graph of Fig. 5.3 from regions I1 
(ionization) and I11 (proportional) with the ordinate now shown as pulse height, 
which is, of course, proportional to the number of ions collected per unit time. 
The dashed line represents the discriminator level. The shape of the HV plateau 
is explained as follows. 

For very low voltage (V < I/,) the counting rate is zero. The source is there, 
ionization is produced in the counter, pulses are fed into the amplifier and the 
discriminator, but the scaler does not receive any signal because all the pulses 
are below the discriminator level. Hence, the counting rate is zero. As the HV 
increase beyond VA, more ionization is produced in the counter, some pulse 
heights generated in it are above the discriminator level and the counting rate 
starts increasing. The counting rate keeps increasing with HV, since more and 
more pulses are produced with a height above the discriminator level. This 
continues up to the point when V - V,. For V > V,, the ionization is still 
increasing, the pulse height is also increasing, but all the pulses are now above 
the discriminator level. Since all the pulses are counted, each pulse being 
recorded as one regardless of its height, the counting rate does not change. This 
continues up to V - Vc. Beyond that point, the counting rate will start increas- 
ing again because the HV is so high that spurious and double pulses may be 
generated. The counter should not be operated beyond V = Vc. 

The region of the graph between V, and Vc is called the Wpla teau .  It 
represents the operational range of the counter. Although the manufacturer of 
the detector provides this information to the investigator, it is standard (and 
safe) practice to determine the plateau of a newly purchased counter before it is 
used in an actual measurement for the first time. 

Figure 5.18 Experimental arrangement for the determination of the HV plateau. 

Scaler S o y e  

7 
counter - Preamplifier - Amplifier Discriminator - 



GAS-FILLED DETECTORS 197 

- - - - - Discriminator 
level 

I 
I 
I 

Figure 5.19 The HV plateau (lower curve). 

The plateau of Fig. 5.19 is shown as completely flat. For most counters, the 
plateau has a positive slope that may be due to spurious counts or to increasing 
efficiency of the counter, or to both of these effects. Investigation of propor- 
tional counters7 showed that the positive slope is the result of an increase in 
detector efficiency. For GM counters, on the other hand, the slope of the 
plateau is due to the production of more spurious counts. 

The performance of a counter is expressed in terms of the slope of the 
plateau given in the form 

A r / r  
Plateau slope = - (5.26) 

AV 

where Ar/r  is the relative change of the counting rate r for the corresponding 
change in voltage AV. Frequently, Eq. 5.26 is expressed in percent change of the 
counting rate per 100 V change of the high voltage, i.e., 

100( A r / r )  A r / r  
Plateau slope = (100) = l o 4 -  

AV AV 

Example 5.1 What is the change of counting rate per 100 V of the plateau 
for a counter having the plateau shown in Fig. 5.20? 



198 MEASUREMENT AND DETECTION OF RADIATION 

500 700 1 100 1500 

Figure 5.20 The HV plateau used in Example 5.1. 

Answer The plateau extends from about 700 to 1500 V .  The slope over that 
region is (using Eq. 5.27), 

l o 4  - r r 1  104(3800 - 3000)/3000 - - = 3.3% per 100 V 
v2 - V I  1500 - 700 

The location of the plateau of a proportional counter depends on the type 
of particles being detected. If a source emits two types of particles with 
significantly different primary ionization, two separate plateaus will be obtained, 
with the plateau corresponding to the more ionizing particles appearing first. 
Figure 5.21 shows such a plateau for a proportional counter detecting alpha and 
beta particles. The existence of two plateaus is a consequence of the fact that in 
the proportional region, differentiation of the ionization produced by different 
types of particles is still possible (see region I11 in Fig. 5.4). In the GM region 
this distinction is lost, and for this reason GM counters have only one HV 
plateau regardless of the type of incident radiation (region IV of Fig. 5.4). 

Figure 5.21 Alpha and beta plateaus of a proportional counter. 
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5.6.1 Operation of a GM Counter and Quenching of the Discharge 
A GM counter is a gas counter that operates in region IV of Fig. 5.3. Its 
construction and operation are in many ways similar to those of a proportional 
counter. The GM counter is usually cylindrical in shape, like most of the 
proportional counters. The electric field close to the central wire is so strong 
that N6 = 1 (see Sec. 5.5.1) and the gas multiplication factor M is extremely 
high. In a GM counter, a single primary electron-ion pair triggers a great 
number of successive avalanches. Therefore, the output signal is independent of 
the primary ionization. 

The operation of the GM counter is much more complicated than that of 
the proportional counter. When the electrons are accelerated in the strong field 
surrounding the wire, they produce, in addition to a new avalanche of electrons, 
considerable excitation of the atoms and molecules of the gas. These excited 
atoms and molecules produce photons when they deexcite. The photons, in turn, 
produce photoelectrons in other parts of the counter. Thus the avalanche, which 
was originally located close to the wire, spreads quickly in most of the counter 
volume. During all this time, the electrons are continuously collected by the 
anode wire, while the much slower moving positive ions are still in the counter 
and form a positive sheath around the anode. When the electrons have been 
collected, this positive sheath, acting as an electrostatic screen, reduces the field 
to such an extent that the discharge should stop. However, this is not the case 
because the positive ions eject electrons when they finally strike the cathode, 
and since by that time the field has been restored to its original high value, a 
new avalanche starts and the process just described is repeated. Clearly, some 
means are needed by which the discharge is permanently stopped or "quenched." 
Without quenching, a GM tube would undergo repetitive discharging. There are 
two general methods of quenching the discharge. 

In external quenching, the operating voltage of the counter is decreased, 
after the start of the discharge until the ions reach the cathode, to a value for 
which the gas multiplication factor is negligible. The decrease is achieved by a 
properly chosen RC circuit as shown in Fig. 5.22. The resistance R is so high 
that the voltage drop across it due to the current generated by the discharge (id) 
reduces the voltage of the counter below the threshold needed for the discharge 
to start (the net voltage is Vo - i ,R) .  The time constant RC, where C repre- 
sents the capacitance between anode and ground, is much longer than the time 
needed for the collection of the ions. As a result, the counter is inoperative for 
an unacceptably long period of time. Or, in other words, its dead time is too 
long. 

The self-quenching method is accomplished by adding to the main gas of the 
counter a small amount of a polyatomic organic gas or a halogen gas. 

The organic gas molecules, when ionized, lose their energy by dissociation 
rather than by photoelectric processes. Thus, the number of photoelectrons, 
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Figure 5.22 The circuit used for external quenching of a GM counter. 

which would spread and continue the avalanche, is greatly reduced. In addition, 
when the organic ions strike the surface of the cathode, they dissociate instead 
of causing the ejection of new electrons. Therefore, new avalanches do not start. 

GM counters using an organic gas as a quenching agent have a finite 
lifetime because of the dissociation of the organic molecules. Usually, the GM 
counters last for 10' to lo9 counts. The lifetime of a GM detector increases 
considerably if a halogen gas is used as the quenching agent. The halogen 
molecules also dissociate during the quenching process, but there is a certain 
degree of regeneration of the molecules, which greatly extends the useful 
lifetime of the counter. 

5.6.2 The Pulse Shape and the Dead Time of a GM Counter 

The signal of a GM counter is formed in essentially the same way as the signal 
of a proportional counter and is given by the same equation, Eq. 5.24. For GM 
counters the signal is the result of the sum of the contributions from all the 
positive ion avalanches produced throughout the volume of the counter. The 
final pulse is similar in shape to that shown in Fig. 5.17, except that the pulse 
rises much slower. The shape and height of GM counter pulses are not very 
important because the pulse is only used to signal the presence of the particle 
and nothing else. However, how one pulse affects the formation of the next one 
is important. 

As discussed in Sec. 5.6.1, during the formation of a pulse, the electric field 
in the counter is greatly reduced because of the presence of the positive ions 
around the anode. If a particle arrives during that period, no pulse will be 
formed because the counter is insensitive. The insensitivity lasts for a certain 
time, called the dead time of the counter. Then, the detector slowly recovers, 
with the pulse height growing exponentially during the recovery period. This is 
illustrated in Fig. 5.23, which shows the change of the voltage and pulse for a 
typical GM counter. Typical values of dead time are from 100 to 300 ps. If the 
dead time is 100 p s  and the counting rate is 500 counts/s, there is going to be a 
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Figure 5.23 Dead time and recovery 
time for a GM counter. 

5 percent loss of counts due to dead time. Correction for dead time is described 
in Sec. 2.21. 

5.7 GAS-FLOW COUNTERS 

The gas counters described so far are all sealed. That is, the counter is a closed 
volume filled with a gas at a certain pressure. The radiation source is placed 
outside the detector; therefore, the particles have to penetrate the wall of the 
counter to be counted. In doing so, some particles may be absorbed by the wall 
and some may be backscattered; in the case of charged particles, they will all 
lose a certain fraction of their energy. To minimize these effects, most commer- 
cial gas counters have a thin window through which the radiation enters the 
counter. The window may still be too thick for some alpha and low-energy beta 
particles. For this reason, counters have been developed with the capability of 
having the source placed inside the chamber. 

Gas counters of this type are called gas-flow counters. Their name comes 
from the fact that the gas flows continuously through the counter during 
operation. This is necessary because the detector cannot be sealed if the source 
is placed inside the chamber. 
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Gas-flow counters come in different geometries. Probably the most common 
one is that of the hemispherical detector as shown in Fig. 5.24. The high voltage 
is applied to a wire attached to the top of the hemisphere. The gas flows slowly 
through the counter, the flow rate being controlled by a regulator. At the exit, 
the gas goes through a liquid (e.g., some oil) and forms bubbles as it comes out. 
The formation of the bubbles indicates that the gas is flowing, and the rate of 
bubble formation gives an idea of the gas-flow rate. 

Counting with gas-flow counters involves the following steps: 

1. The chamber is opened and the sample is placed in its designated location 
inside the chamber. 

2. The chamber is closed. 
3. Gas from the gas tank is allowed to flow rapidly through the volume of the 

counter and purge it (for a few minutes). 
4. After the counter is purged, the gas-flow rate is considerably reduced, to a 

couple of bubbles per second, and counting begins. 

There are two advantages in placing the sample inside the detector: 

1. The particles do not have to penetrate the window of the counter, where they 
might be absorbed, scattered out of the detector, or lose energy. 

2. Close to 50 percent of the particles emitted by the source have a chance to be 
recorded in a hemispherical counter, or close to 100 percent in a spherical 
counter. If the source is placed outside the detector, there are always less 
than 50 percent of the particles entering the detector. 

A hemispherical counter is also called a 2 7 ~  counter, while a spherical 
counter with the source located at its center is called a 47r counter. Figure 5.24 
shows a 2 7 ~  counter. 

Gas tank U 
Sample in sample well 

Figure 5.24 A hemispherical ( 2 ~ )  gas-flow counter. 
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Gas-flow counters may operate as proportional or GM counters. In fact, 
there are commercial models that may operate in one or the other region 
depending on the voltage applied and the gas used. In a proportional gas-flow 
counter, the gas is usually methane or a mixture of argon and methane. In the 
GM region, the gas is a mixture of argon and isobutane. 

In some gas-flow counter models, there is provision for placing a very thin 
window between the sample and the sensitive volume of the counter to reduce 
the effects of slight contamination of the sample well or of static charges that 
interfere with the measurement. In the counter of Fig. 5.24, the thin window will 
be placed on top of the sample well. A different arrangement is shown in Fig. 
5.25. 

Gas-flow counters are used as low-background alpha-beta detection systems. 
Requirements for low-background measurements arise in cases where the level 
of activity from the sample is very low, compared to background. Examples of 
such cases are samples that monitor contamination of water supplies or of air or 
ground. 

There are commercially available systems that have a background counting 
rate of less than 1 count/min for betas and a considerably lower rate for alphas. 
Such a low background is achieved by shielding the counter properly (surround- 
ing it with lead) and using electronic means to reject most of the background 
radiation. A system offered by one of the manufacturers uses two detectors. The 
first is the gas-flow counter and the second is a cosmic-ray detector (Fig. 5.26). 
The two detectors are operated in anticoincidence (see Sec. 10.81, which means 
that events due to particles going through both detectors (e.g., cosmic rays or 
other radiation from the environment) will not be counted. Only pulses pro- 
duced by the activity of the sample in the gas-flow counter will be recorded. 

Discrimination between alphas and betas can be achieved in many ways. 
The two methods most frequently used with gas-flow counters are based on 
range and energy differences. Before these methods are discussed, the reader 

Gas- i n Gas out 

Source holder 

thin 

Figure 5.25 A gas-flow counter 
with removable thin window and 
movable source holder. 
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Figure 5.26 A low-background alpha-beta counting system utilizing two counters and anticoinci- 
dence. The anticoincidence output gates the scaler to count only pulses from the gas-flow counter. 

should recall that the maximum energy of most beta emitters is less than 2 MeV 
while the energy of alphas from most alpha emitters is 5-6 MeV. 

Because the range of alphas is much shorter than that of betas, a sample 
can be analyzed for alpha and beta activity by counting it twice: once with a thin 
foil covering it to stop the alphas, and a second time without the foil to record 
alphas and betas. 

Energy discrimination is based on the difference in pulse height produced 
by the two types of particles: the alphas, being more energetic, produce higher 
pulses; thus a simple discriminator at an appropriate level can reject the beta 
pulses. 

5.7.1 The Long-Range Alpha Detector (LRAD) 

A variation of the gas-flow counter has been de~eloped',~ for the detection of 
alpha contamination. Common alpha particle detectors are limited by the short 
range of alphas in air. For example, the range of a 6-MeV alpha in air at normal 
temperature and pressure is about 46 mm. To circumvent this limitation, the 
LRAD does not measure the alphas directly. Instead, as shown schematically in 
Fig. 5.27, the ions created by the alphas in air are transported, with the help of 
airflow, and directed into an ion chamber. There, the current created by the ions 
is measured by an electrometer. Since the number of ions produced is propor- 
tional to the strength of the alpha source, the sigIra1 of the electrometer is also 
proportional to the alpha source strength. 

In principle, a similar detector could be developed for any particle that 
produces ions. However, particles like electrons, gammas, and neutrons generate 
a much smaller number of ions than alpha particles do, traveling over the same 
distance. For this reason, an LRAD-type detector would have a smaller sensitiv- 
ity for these other particles than for alphas. Of course, an LRAD-type detector 
would operate satisfactorily for the detection of protons, deuterons, and other 
heavy ions. 
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Figure 5.27 The LRAD detects ions generated by alphas in air with the help of an ion chamber and 
an electrometer. 

Al~ha-Particle 

5.7.2 Internal Gas Counting 

Electrometer 

An alternative to the gas-flow counter is internal gas counting, which is used with 
low-energy p-emitters. In internal gas counting, a gaseous form of the radioiso- 
tope is introduced into the counter (usually a proportional counter) along with 
the counting gas. As with gas-flow counters, by having the source inside the 
counter, losses in the window are avoided and an increase in efficiency is 
achieved by utilizing a 4 7 ~  geometry. 

Internal gas counting requires that corrections be made for wall and end 
effects and for the decrease in electric field intensity at the ends.''-l2 One way 
to reduce the end effect is to use a spherical proportional counter,13 in which 
the anode wire is stretched along a diameter and the cathode is, of course, 
spherical. The electric field inside the sphere is 

At a certain distance r from the anode, the electric field becomes stronger at 
the ends of the anode because b, the radius of the cathode, gets smaller. 
However, the supports of the wire tend to reduce the field. By property 
adjusting the supports, one may make the field uniform. In cylindrical counters, 
corrections for end effects are applied by a length-compensation method.'' 

Internal gas counting is used for the production of standards. Using this 
technique, the National Bureau of Standards produced standards of 3H, 14C, 
3 7 ~  8 5 ~  1 3 1 m x  , , e, and 133Xe. 
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5.8 RATE METERS 

A rate meter is a device that measures the average rate of incoming pulses. Rate 
meters are used for continuous monitoring' of an event, where the average 
counting rate versus time rather than the instantaneous counting rate is needed. 

The basic operation of a rate meter is to feed a known charge per pulse into 
a capacitor that is shunted by a resistor (Fig. 5.28). Let 

r = counting rate (pulses/s) 

q = charge per pulse 
V = voltage across capacitor 

R = resistance 
Q = capacitor charge 

The net rate of change of Q with respect to time is given by 

dQ - = (charge fed by pulses/s) - (charge flowing through resistor) 
dt 

The solution of this differential equation with the initial condition Q(0) = 0 is 

or, if one writes the result in terms of the output voltage, 

For time t * RC, equilibrium is reached and the value of the voltage is 

The signal of a rate meter is the voltage K given by Eq. 5.31. Notice that I/, is 
independent of the capacitance C and proportional to the counting rate r. The 
voltage K is measured with an appropriate voltmeter. 

If a pulse-type detector is used, the counts accumulated in the scaler have a 
statistical uncertainty that is calculated as shown in Chap. 2. If a rate meter is 
used, what is the uncertainty of the measurement? To obtain the uncertainty, 
one starts with Eq. 5.29, which gives the charge of the capacitor C. It is 
important to note that the charge changes exponentially with time. Thus, the 
contribution of the charge from a pulse arriving at t = 0 is not instantaneous 
but continues for a period of time. 

Consider an observation point to (Fig. 5.29). The standard deviation uQ of 
the charge collected at t = to is the result of contributions from pulses having 
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Figure 5.28 The circuit of a rate 
meter. 

arrived earlier. If the counting rate is r, the number of pulses in a time interval 
At is, on the average, r At.  The statistical uncertainty of this number is f a, 
or the uncertainty of the charge is + q m .  One can show that a single pulse 
arriving at time t contributes to the signal at time t = to, an amount of charge 
equal to q exp[-(to - t)/RC]. Therefore, the variance of the charge at time 
t = to is 

Integration of Eq. 5.32 gives the result 

- 0 S q 2 r ~ C ( 1  - e-2'0/RC) u~ - (5.33) 

For to s- RC, Eq. 5.33 takes the form 

At equilibrium, Q = rqRC (from Eq. 5.29); therefore, 

and 

The quantity RC is the time constant of the circuit shown in Fig. 5.28. Equation 
5.36 states that any instantaneous reading on a rate meter has a relative 
standard error equal to that of a total number of counts obtained by counting 
for a time equal to 2RC (assuming the background is negligible). 

Figure 5.29 Pulses arriving during At ,  and at t,  contribute to uQ at t = to. 
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5.9 GENERAL COMMENTS ABOUT CONSTRUCTION OF 
GAS-FILLED DETECTORS 

This section summarizes the important characteristics of gas counters. 

Geometry. Parallel-plate counters are almost exclusively ionization chambers. 
The intense fields needed for gas multiplication can be produced only in 
cylindrical or spherical geometry. 

In the cylindrical geometry, which is the most frequently used, the strong 
electric field exists close to the central wire. The wire is usually made of 
tungsten or platinum. It has a diameter of 25-100 pm (few mills of an inch); it 
must be uniform in radius, without any bends or kinks, and be placed concentri- 
cally with the outer cylinder. Of particular importance is the smoothness of the 
central wire. Any kinks or tiny specks of material attached to its surface amount 
to pointed tips where very high electric fields are generated. Such a high field is 
a source of spurious discharges that interfere with counting. 

Gases and pressures used. For ionization chambers, almost any gas or pressure 
may be used. Even atmospheric air has been used. 

For proportional or GM counters, the noble gases-argon in particular-are 
normally used. A small percentage of additional gases is also used for quenching 
purposes. In proportional counters, methane is frequently added to the main 
gas. The so-called P-10 mixture, consisting of 90 percent argon and 10 percent 
methane, is extensively used. Another mixture is 4 percent isobutane and 96 
percent helium. Several gas pressures have been used. As Figs. 5.15 and 5.16 
show, the gas multiplication depends on the pressure. Usually the pressure is 
less than 1 atm. Of course, gas-flow counters operate at ambient pressure. 

As discussed in Sec. 5.6.1, the quenching gas in a GM counter is either an 
organic polyatomic molecule such as ethyl alcohol, or a halogen such as bromine 
or chlorine. A typical mixture is 0.1 percent chlorine in neon. The gas pressure 
in a GM counter is, in most cases, less than 1 atm. The pressure affects the 
operating voltage. 

Counter window. When the source is placed outside the counter, it is very 
important for the radiation to enter the counter after traversing as thin a wall 
material as possible. Any material in the path of radiation may scatter, absorb, 
or cause energy loss. This is particularly critical in the measurement of alphas 
and low-energy betas, which have a very short range. It is not important for 
neutron and gamma counters. 

All counters have walls as thin as possible (or practical), but in addition, 
many commercial designs have an area on the surface of the counter designated 
as the "window," consisting of a very thin material. In cylindrical counters, the 
window is usually the front end of the cylinder (the other end houses electrical 
connectors). There are some cylindrical counters with windows located on the 
cylindrical surface. 



Materials and thicknesses of windows are 

GAS-FILLED DETECTORS 209 

1. Glass, down to 0.30-0.40 kg/m2 (lOOpm) 
2. Aluminum, 0.25-0.30 kg/m2 (100 Prn) 
3. Steel, 0.60-0.80 kg/m2 (80 Pm) 
4. Mica, 0.01 kg/m2 (3 pm) 
5. Mylar (plain or aluminized), 0.01 kg/m2 
6. Special ultrathin membranes or foils, - kg/m2 

PROBLEMS 

5.1 Sketch the HV plateau of a counter, if all the pulses out of the amplifier have exactly the same 
height. 

5.2 How would the sketch of Prob. 5.1 change if there are two groups of pulses out of the amplifier 
(two groups, two different pulse heights)? 
5 3  Sketch counting rate versus discriminator threshold, assuming that the electronic noise consists 
of pulses in the range 0 < V < 0.1 V and all the pulses due to the source have height equal to 1.5 V. 
5.4 In a cylindrical gas counter with a central wire radius equal to 25 p m  (0.001 in), outer radius 25 
mm ( -  1 in), and 1000 V applied between anode and cathode, what is the distance from the center 
of the counter at which an electron gains enough energy in 1 mm of travel to ionize helium gas? 
(Take 23 eV as the ionization potential of helium.) 

5.5 A GM counter with a mica window is to be used for measurement of I4c activity. What should 
the thickness of the window be if it is required that at least 90 percent of the 14C betas enter the 
counter? 

5.6 What is the minimum pressure required to stop 6-MeV alphas inside the argon atmosphere of a 
spherical gas counter with a 25-mm radius? Assume the alpha source is located at the center of the 
counter. 

5.7 What is the ratio of the saturation ionization currents for a chamber filled with He versus one 
filled with CH, (other things being equal)? 

5.8 Show that the variance of M is equal to M2 if the probability distribution is given by Eq. 5.22. 

5.9 Calculate the maximum value of the positive ion time given by Eq. 5.25 for a cylindrical counter 
with a cathode radius equal to 19 mm (- 0.75 in) and a central anode wire with a radius of 25 p m  
( -  0.001 in ). The high voltage applied is 1000 V; the pressure of the gas is 13.3 kPa (10 cmHg), and 
the mobility of the ions is 13.34 Pa m2/W s). 
5.10 The observed counting rate of a counter is 22,000 counts/min. What is the error in the true 
counting rate if the dead time is 300 ps  and no dead-time correction is applied? 
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CHAPTER 

SIX 

SCINTILLATION DETECTORS 

6.1 INTRODUCTION 

Scintillators are materials-solids, liquids, gases-that produce sparks or scintil- 
lations of light when ionizing radiation passes through them. The first solid 
material to be used as a particle detector was a scintillator. It was used by 
Rutherford, in 1910, in his alpha-scattering experiments. In Rutherford's experi- 
mental setup, alpha particles hit a zinc sulfide screen and produced scintilla- 
tions, which were counted with or without the help of a microscope-a very 
inefficient process, inaccurate and time consuming. The method was abandoned 
for about 30 years and was remembered again when advanced electronics made 
possible amplification of the light produced in the scintillator. 

The amount of light produced in the scintillator is very small. It must be 
amplified before it can be recorded as a pulse or in any other way. The 
amplification or multiplication of the scintillator's light is achieved with a device 
known as the photomultiplier tube (or phototube). Its name denotes its function: 
it accepts a small amount of light, amplifies it many times, and delivers a strong 
pulse at its output. Amplifications of the order of lo6 are common for many 
commercial photomultiplier tubes. Apart from the phototube, a detection sys- 
tem that uses a scintillator is no different from any other (Fig. 6.1). 

The operation of a scintillation counter may be divided into two broad steps: 

1. Absorption of incident radiation energy by the scintillator and production of 
photons in the visible part of the electromagnetic spectrum 
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Figure 6.1 A detection system using a scintillator. 

2. Amplification of the light by the photomultiplier tube and production of the 
output pulse 

The sections that follow analyze these two steps in detail. The different types of 
scintillators are divided, for the present discussion, into three groups: 

1. Inorganic scintillators 
2. Organic scintillators 
3. Gaseous scintillators 

6.2 INORGANIC (CRYSTAL) SCINTILLATORS 

Most of the inorganic scintillators are crystals of the alkali metals, in particular 
alkali iodides, that contain a small concentration of an impurity. Examples are 
NaI(Tl), CsI(Tl), CaI(Na), LiI(Eu), and CaF,(Eu). The element in parentheses is 
the impurity or activator. Although the activator has a relatively small concen- 
tration-e.g., thallium in NaI(T1) is on a per mole basis-it is the agent 
that is responsible for the luminescence of the crystal. 

6.2.1 The Mechanism of the Scintillation Process 

The luminescence of inorganic scintillators can be understood in terms of the 
allowed and forbidden energy bands of a crystal. The electronic energy states of 
an atom are discrete energy levels, which in an energy-level diagram are 
represented as discrete lines. In a crystal, the allowed energy states widen into 
bands (Fig. 6.2). In the ground state of the crystal, the uppermost allowed band 
that contains electrons is completely filled. This is called the valence band. The 
next allowed band is empty (in the ground state) and is called the conduction 
band. An electron may obtain enough energy from incident radiation to move 
from the valence to the conduction band. Once there, the electron is free to 
move anywhere in the lattice. The removed electron leaves behind a hole in the 
valence band, which can also move. Sometimes, the energy given to the electron 
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is not sufficient to raise it to the conduction band. Instead, the electron remains 
electrostatically bound to the hole in the valence band. The electron-hole pair 
thus formed is called an exciton. In terms of energy states, the exciton corre- 
sponds to elevation of the electron to a state higher than the valence but lower 
than the conduction band. Thus, the exciton states form a thin band, with the 
upper level coinciding with the lower level of the conduction band (Fig. 6.2). The 
width of the exciton band is of the order of 1 eV, whereas the gap between 
valence and conduction bands is of the order of 8 eV. 

In addition to the exciton band, energy states may be created between 
valence and conduction bands because of crystal imperfections or impurities. 
Particularly important are the states created by the activator atoms such as 
thallium. The activator atom may exist in the ground state or in one of its 
excited states. Elevation to an excited state may be the result of a photon 
absorption, or of the capture of an exciton, or of the successive capture of an 
electron and a hole. The transition of the impurity atom from the excited to the 
ground state, if allowed, results in the emission of a photon in times of the order 
of lops  s. If this photon has a wavelength in the visible part of the electromag- 
netic spectrum, it contributes to a scintillation. Thus, production of a scintilla- 
tion is the result of the occurrence of these events: 

1. Ionizing radiation passes through the crystal. 
2. Electrons are raised to the conduction band. 
3. Holes are created in the valence band. 

- Conduction band 
(normally empty) 

t Exciton band 

I I I - Excited states of 

1 \ activator center 

- Valence band 
(normally full) 

I + + + + +  
Other forbidden and 
allowed energy bands 

Figure 6.2 Allowed and forbidden energy bands of a crystal 
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Wavelength, nm 

Figure 6 3  Emission spectra of NaNTI), CsI(TI), CsNNa), and anthracene, compared to the spectral 
response of two photocathode materials. PMT, photomultiplier tube (from Harshaw Research 
Laboratory Report, Harshaw Chemical Company, 1978). 

4. Excitons are formed. 
5. Activation centers are raised to the excited states by absorbing electrons, 

holes, and excitons. 
6. Deexcitation is followed by the emission of a photon. 

The light emitted by a scintillator is primarily the result of transitions of the 
activator atoms, and not of the crystal. Since most of the incident energy goes to 
the lattice of the crystal-eventually becoming heat-the appearance of lumi- 
nescence produced by the activator atoms means that energy is transferred from 
the host crystal to the impurity. For NaI(T1) scintillators, about 12 percent of the 
incident energy appears as thallium luminescence.' 

The magnitude of light output and the wavelength of the emitted light are 
two of the most important properties of any scintillator. The light output affects 
the number of photoelectrons generated at the input of the photomultiplier tube 
(see Sec. 6.3, which in turn affects the pulse height produced at the output of 
the counting system. Information about the wavelength is necessary in order to 
match the scintillator with the proper photomultiplier tube. Emission spectra of 
NaI(T0, CsI(Na), and CsI(T1) are shown in Fig. 6.3. Also shown in Fig. 6.3 are 
the responses of two phototube cathode materials. Table 6.1 gives the most 
important properties of some inorganic scintillators. 

The light output of the scintillators depends on temperature. Figure 6.4 
shows the temperature response of NaI(Tl), Cs(Tl), and CsI(Na). 
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Table 6.1 Properties of Certain Inorganic Scintillators 

Material 

NaI(T1) 
CaF, (Eu) 
CsI(Na) 
csI(n)  
Bi,Ge,O,, 
CdWO, 

LiI(Eu) 

Wavelength Scintillation 
of maximum efficiency 
emission (nm) (relative, %) 

Decay 
time 
(w)  

Density 
( l o 3  kg/m') 

6.2.2 Time Dependence of Photon Emission 

Since the photons are emitted as a result of decays of excited states, the time of 
their emission depends on the decay constants of the different states involved. 
Experiments show that the emission of light follows an exponential decay law of 
the form 

where N(t) = number of photons emitted at time t 
T = decay time of the scintillator (see Table 6.1) 

Most of the excited states in a scintillator have essentially the same lifetime 
T. There are, however, some states with longer lifetimes contributing a slow 
component in the decay of the scintillator known as afterglow. It is present to 
some extent in all inorganic scintillators and may be important in certain 
measurements where the integrated output of the phototube is used. Two 
scintillators with negligible afterglow are CaF,(Eu) and Bi,Ge,O,, (bismuth 
orthogermanate). 

-100 4 0  -20 0 + 2 0  +60 +I00 +140 
Crystal temperature, OC 

Figure 6.4 Temperature dependence 
of light output of NaI(TI), CsI(TI), 
and CsI(Na) (from Harshaw Research 
Laboratory Report). 
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In a counting system using a scintillator, the light produced by the crystal is 
amplified by a photomultiplier tube and is transformed into an electric current 
having the exponential behavior given by Eq. 6.1. This current is fed into an RC 
circuit as shown in Fig. 6.5, and a voltage pulse is produced of the form 

In practice, the value of RC is selected to be of the order of a few hundreds 
of microseconds. Thus, for short times-i.e., t 4 RC, which is the time span of 
interest-Eq. 6.2 takes the form 

Notice that the rate at which the pulse rises (risetime) is determined by the 
decay time T. In certain measurements, e.g., coincidence-anticoincidence mea- 
surements (Chap. lo), the timing characteristics of the pulse are extremely 
important. 

6.2.3 Important Properties of Certain Inorganic Scintillators 

NaI(T1). NaI(Tl) is the most commonly used scintillator for gamma rays. It has 
been produced in single crystals of up to 0.75 m ( -  30 in) in diameter and of 
considerable thickness (0.25 m = 10 in). Its relatively high density (3.67 X lo3 
kg/m3) and high atomic number combined with the large volume make it a 

Phototube V ( t )  To preamplifier 

Figure 6.5 ( a )  A voltage pulse results from the exponential current. ( b )  The shape of the pulse for 
RC + T. 
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y-ray detector with very high efficiency. Although semiconductor detectors 
(Chap. 7 and 12) have better energy resolution, they cannot replace the NaI(T1) 
in experiments where large detector volumes are needed. 

The emission spectrum of NaI(T1) peaks at 410 nm, and the light-conversion 
efficiency is the highest of all the inorganic scintillators (Table 6.1). As a 
material, NaI(T1) has many undesirable properties. It is brittle and sensitive to 
temperature gradients and thermal shocks. It is also so hygroscopic that it 
should be kept encapsulated at all times. NaI always contains a small amount of 
potassium, which creates a certain background because of the radioactive 40K. 

CsI(T1). CsI(T1) has a higher density (4.51 x lo3 kg/m3) and higher atomic 
number than NaI; therefore its efficiency for gamma detection is higher. The 
light-conversion efficiency of CsI(TI) is about 45 percent of that for NaI(T1) at 
room temperature. At liquid nitrogen temperatures (77K), pure CsI has a light 
output equal to that of NaI(T1) at room temperature and a decay constant equal 
to lop8 s . ~  The emission spectrum of CsI(TI) extends from 420 to about 600 nm. 

CsI is not hygroscopic. Being softer and more plastic than NaI, it can 
withstand severe shocks, acceleration, and vibration, as well as large tempera- 
ture gradients and sudden temperature changes. These properties make it 
suitable for space experiments. Finally, CsI does not contain potassium. 

CsI(Na). The density and atomic number of CsI(Na) are the same as those of 
CsI(T1). The light-conversion efficiency is about 85 percent of that for NaI(T1). 
Its emission spectrum extends from 320 to 540 nm (see Fig. 6.3). CsI(Na) is 
slightly hygroscopic. 

CaF,(Eu). CaF2(Eu) consists of low-atomic-number materials, and for this rea- 
son makes an efficient detector for p particles3 and X-rays4 with low gamma 
sensitivity. It is similar to Pyrex and can be shaped to any geometry by grinding 
and polishing. Its insolubility and inertness make it suitable for measurements 
involving liquid radioisotopes. The light-conversion efficiency of CaF2(Eu) is 
about 50 percent of that for NaI(TI). The emission spectrum extends from about 
405 to 490 nm. 

LiI(Eu). LiI(Eu) is an efficient thermal-neutron detector through the reaction 
6 ,Li(n, a):H. The alpha particle and the triton, both charged particles, produce 
the scintillations. LiI has a density of 4.06 X lo3 kg/m3, decay time of about 1.1 
ps, and emission spectrum peaking at 470 nm. Its conversion efficiency is about 
one-third of that for NaI. It is very hygroscopic and is subject to radiation 
damage as a result of exposure to neutrons. 

Other inorganic scintillators. Many other scintillators have been developed for 
special applications. Examples are Bi4Ge,0,,,CdW04, and more recently5 
MF2:UF4:CeF3, where M stands for one of the following: Ca, Sr, Ba. This last 
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scintillator, containing 2 percent UF, and using Ce as the fluorescing agent, has 
been used for detection of fission fragments. 

6.3 ORGANIC SCINTILLATORS 

The materials that are efficient organic scintillators belong to the class of 
aromatic compounds. They consist of planar molecules made up of benzenoid 
rings. Two examples are toluene and anthracene, having the structures shown in 
Fig. 6.6. 

Organic scintillators are formed by combining appropriate compounds. They 
are classified as unitary, binary, ternary, and so on, depending on the number of 
compounds in the mixture. The substance with the highest concentration is 
called the solvent. The others are called solutes. A binary scintillator consists of 
a solvent and a solute, while a ternary scintillator is made of a solvent, a primary 
solute, and a secondary solute. Table 6.2 lists the most common compounds 
used. 

6.3.1 The Mechanism of the Scintillation Process 

The production of light in organic scintillators is the result of molecular 
transitions. Consider the energy-level diagram of Fig. 6.7, which shows how the 
potential energy of a molecule changes with interatomic distance. The ground 
state of the molecule is at point A,, which coincides with the minimum of the 
potential energy. Ionizing radiation passing through the scintillator may give 
energy to the molecule and raise it to an excited state, i.e., the transition 
A, + A ,  may occur. The position A ,  is not the point of minimum energy. The 
molecule will release energy through lattice vibrations (that energy is eventually 
dissipated as heat) and move to point B,. The point B, is still an excited state 
and, in some cases, the molecule will undergo the transition B, -+ B, accompa- 
nied by the emission of the photon with energy equal to EB1 - EBu. This 
transition, if allowed, takes place at times of the order of s. It should be 
noted that the energy of the emitted photon (EB1 - EBo) is less than the energy 
that caused the excitation (EA1 - EAo). This difference is very important be- 
cause otherwise the emission spectrum of the scintillator would completely 
coincide with its absorption spectrum and no scintillations would be produced. A 
more detailed description of the scintillation process is given in the references 
(see Birks and Ref. 6). 

Figure 6.6 Molecular structure of ( a )  

(b)  toluene and (6) anthracene. 
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Table 6.2 Organic Scintillator compoundst 
- 

Compound Formula ~ p ~ l i c a t i o n $  

Benzene C6 H, s 
Toluene '6 Hs  CH3 S 
p-Xy lene C, H, (CH,), S 
1,2,4-Trimethylbenzene (pseudocumene) c6 H3(CH3), S 
Hexamethylbenzene C6(CH3), S 
Styrene monomer C 6 H S C 2 H 3  s 
Vinyltoluene monomer C6H,CH3C2H3 S 
Naphthalene CIO % S', C 
Anthracene CI, HIO C 
Biphenyl C12 HIO S' 
p-Terphenyl '18 C, PS 
pQuaterpheny1 CU H I S  C 
tmns-Stilbene Cia HI, C 
Diphenylacetylene C14 40 C 
1,1',4,4'-Tetraphenylbutadiene Caa Ha, SS 
Diphenylstilbene C26 Hz, SS 
PPO (2,5diphenyloxazole) CIS HI, NO PS 
a-NPO [2-(1-Naphthy1)-5-phenyloxazole] C19 H13 NO PS 
PBD [2-Pheny1,S-(4-biphenyly1)-l,3,4-oxadiazole] C10 H14 NzO PS 
BBO [2,5-Di(4-biphenyly1)-oxazole] C W H I ~ N O  SS 
POPOP {1,4-Bis[2-(5-phenyloxazolyl)] -benzene) C14 H I ~ N z O ~  SS 
TOPOT {1,4-Di-[2-(5-p-tolyloxazolyl)] -benzene) C26 Hz0 NZ 0 2  SS 
DiMePOPOP {1,4-~i[2-(4-methyl-5-phenyloxazolyl)] -benzene) C,, H,, N, 0, SS 

t ~ r o m  6 .  

z ~ - ~ r i m a r ~  solvent; Sf-secondary solvent; PS-primary solute; SS-secondary solute; C-crystal scin- 
tillator. 

Figure 6.7 A typical (simplified) 
energy diagram of a molecule. Interatomic distance 
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One of the important differences between inorganic and organic scintilla- 
tors is in the response time, which is less than 10 ns for the latter (response time 
of inorganic scintillators is - 1 ps; see Table 6.1) and makes them suitable for 
fast timing measurements (see Chap. 10). Table 6.3 lists important properties of 
some organic scintillators. 

6.3.2 Organic Crystal Scintillators 

No activator is needed to enhance the luminescence of organic crystals. In fact, 
any impurities are undesirable because their presence reduces the light output, 
and for this reason, the material used to make the crystal is purified. Two of the 
most common organic crystal scintillators are anthracene and trans-stilbene. 

Anthracene has a density of 1.25 x lo3 kg/m3 and the highest light 
conversion efficiency of all organic scintillators (see Table 6.3)-which is still 
only about one-third of the light conversion efficiency of NaI(Tl). Its decay time 
(- 30 ns) is much shorter than that of inorganic crystals. Anthracene can be 
obtained in different shapes and sizes. 

trans-Stilbene has a density of 1.15 x lo3 kg/m3 and a short decay time 
(4-8 ns). Its conversion efficiency is about half of that for anthracene. It can be 
obtained as a clear, colorless, single crystal with a size up to several millimeters. 
Stilbene crystals are sensitive to thermal and mechanical shock. 

6.3.3 Organic Liquid Scintillators 

The organic liquid scintillators consist of a mixture of a solvent with one or 
more solutes. Compounds that have been used successfully as solvents include 
xylene, toluene, and hexamethylbenzene (see Table 6.2). Satisfactory solutes 
include p-terphenyl, PBD, and POPOP. 

In a binary scintillator, the incident radiation deposits almost all of its 
energy in the solvent but the luminescence is due almost entirely to the solute. 
Thus, as in the case of inorganic scintillators, an efficient energy transfer is 

Table 6.3 Properties of Certain Organic Scintillators 

Wavelength Relative Decay 
of maximum scintillation time Density 

Material emission (nm) efficiency (%) (ns) (10' kg/m3) 
p- - - 

An thracene 
trans-Stilbene 
NE 102 
NE 110 
NE 213 (liquid) 
PILOT B 
PILOT Y 
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taking place from the bulk of the phosphor to the material with the small 
concentration (activator in inorganic scintillators, solute in organic ones). If a 
second solute is added, it acts as a wavelength shifter, i.e., it increases the 
wavelength of the light emitted by the first solute, so that the emitted radiation 
is better matched with the characteristics of the cathode of the photomultiplier 
tube. 

Liquid scintillators are very useful for measurements where a detector with 
large volume is needed to increase efficiency. Examples are counting of low-ac- 
tivity p-emitters (3H and 14c in particular), detection of cosmic rays, and 
measurement of the energy spectrum of neutrons in the MeV range (see Chap. 
14) using the scintillator NE 213. The liquid scintillators are well suited for such 
measurements because they can be obtained and used in large quantities 
(kiloliters) and can form a detector of desirable size and shape by utilizing a 
proper container. 

In certain cases, the radioisotope to be counted is dissolved in the scintilla- 
tor, thus providing 4.rr geometry and, therefore, high detection efficiency. In 
others, an extra element or compound is added to the scintillator to enhance its 
detection efficiency without causing significant deterioration of the lumines- 
cence. Boron, cadmium, or gadolinium,7-9 used as additives, cause an increase 
in neutron detection efficiency. On the other hand, fluorine-loaded scintillators 
consist of compounds in which fluorine has replaced hydrogen, thus producing a 
phosphor with a low neutron sensitivity. 

6.3.4 Plastic Scintillators 

The plastic scintillators may be considered as solid solutions of organic scintilla- 
tors. They have properties similar to those of liquid organic scintillators (Table 
6.3), but they have the added advantage, compared to liquids, that they do not 
need a container. Plastic scintillators can be machined into almost any desirable 
shape and size, ranging from thin fibers to thin sheets. They are inert to water, 
air, and many chemicals, and for this reason they can be used in direct contact 
with the radioactive sample. 

Plastic scintillators are also mixtures of a solvent and one or more solutes. 
The most frequently used solvents are polysterene and polyvinyltoluene. Satis- 
factory solutes include p-terphenyl and POPOP. The exact compositions of 
some plastic scintillators are given in Ref. 10. 

Plastic scintillators have a density of about lo3 kg/m3. Their light output is 
lower than that of anthracene (Table 6.3). Their decay time is short, and the 
wavelength corresponding to the maximum intensity of their emission spectrum 
is between 350 and 450 nm. Trade names of commonly used plastic scintillators 
are Pilot B, Pilot Y, NE 102, and NE 110. The characteristics of these phosphors 
are discussed in Refs. 11-13. Plastic scintillators loaded with tin and lead have 
been tried as X-ray detectors in the 5-100 keV r a ~ ~ g e . ' ~ ? ' ~  Thin plastic scintilla- 
tor films (as thin as 20 X lop5 kg/m2 = 20 pg/cm2) have proven to be useful 
detectors in time-of-flight  measurement^'^-'^ (see Chap. 13). 
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6.4 GASEOUS SCINTILLATORS 

Gaseous scintillators are mixtures of noble g a ~ e s . ' ~ . ~ ~  The scintillations are 
produced as a result of atomic transitions. Since the light emitted by noble gases 
belongs to the ultraviolet region, other gases, such as nitrogen, are added to the 
main gas to act as wavelength shifters. Thin layers of fluorescent materials used 
for coating the inner walls of the gas container achieve the same effect. 

Gaseous scintillators exhibit the following features: 

1. Very short decay time 
2. Light output per MeV deposited in the gas depending very little on the 

charge and mass of the particle being detected 
3. Very low efficiency for gamma detection 

These properties make the gaseous scintillators suitable for the energy measure- 
I ment of heavy charged particles (alphas, fission fragments, other heavy ions). 

1 6.5 THE RELATIONSHIP BETWEEN PULSE HEIGHT AND 
ENERGY AND TYPE OF INCIDENT PARTICLE 

To measure the energy of the incident particle with a scintillator, the relation- 
ship between the pulse height and the energy deposited in the scintillator must 
be known. Because the pulse height is proportional to the output of the 
photomultiplier, which output is in turn proportional to the light produced by 
the scintillator, it is necessary to know the light-conversion efficiency of the 
scintillator as a function of type and energy of incident radiation. The rest of 
this section presents experimental results for several cases of interest. 

6.5.1 The Response of Inorganic Scintillators 

Photons. The response of NaI(T1) to gammas is linear, except for energies 
below 400 keV, where a slight nonlinearity is present. Experimental results are 
shown in Fig. 6.8.21 More details about the NaI(T1) response to gammas are 
given in Chap. 12. 

Charged particles. For protons and deuterons, the response of the scintillator is 
proportional to the particle energy, at least for E > 1 MeV. For alpha particles, 
the proportionality begins at about 15 MeV (Fig. 6.9).22 Theoretical aspects of 
the response have been studied e x t e n ~ i v e l y . ~ ~ - ~ ~  Today, inorganic scintillators 
are seldom used for detection of charged particles. 

Neutrons. Because neutrons are detected indirectly through charged particles 
produced as a result of nuclear reactions, to find the response to neutrons, one 
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Figure 6.8 Pulse height versus energy for a NaI(TI) crystal. The region below 300 keV has been 
expanded in curve B to show the nonlinearity (from Ref. 21). 

looks at the response to alphas and protons. LiI(Eu), which is the crystal used 
for neutron detection, has essentially the same response as NaI(Tl) (Fig. 6.9). 

6.5.2 The Response of Organic Scintillators 

Charged particles. Experiments have shown that organic crystal scintillators 
(e.g., anthracene) exhibit a direction-dependent response to alphas2' and pro- 
t o n ~ . ~ ~  An adequate explanation of the direction-dependent characteristics of 
the response does not exist at present. The user should be aware of the 
phenomenon to avoid errors. 

The response of plastic and liquid scintillators to electrons, protons, and 
alphas is shown in Figs. 6.10, 6.11, and 6 . 1 2 . ~ ~ - ~ '  Notice that the response is not 
linear, especially for heavier ions. The response has been studied theoretically 
by many investigators (Birks and Refs. 32-35). 

Photons and neutrons. Organic scintillators are not normally used for detection 
of gammas because of their low efficiency. The liquid scintillators NE 213+ is 
being used for y detection in mixed neutron-gamma fields36 because of its 

'NE 213 consists of xylene, activators, and POPOP as the wavelength shifter. Naphthalene is 
added to enhance the slow components of light emission. The composition of NE 213 is given as 
CH,, ,, and its density as 0.867 X lo3 kg/cm3. 
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Energy, MeV 

Figure 6.9 Pulse height versus energy for a 
NaI(Tl) crystal resulting from charged par- 
ticles (from Ref. 22). 

ability to discriminate against neutrons. Neutrons are detected by NE 213 
through the proton-recoil method. More details about the use of the NE 213 
scintillator and its response function are given in Chaps. 12 and 14. 

6.6 THE PHOTOMULTIPLIER TUBE 

6.6.1 General Description 

The photomultiplier tube or phototube is an integral part of a scintillation 
counter. Without the amplification produced by the photomultiplier, a scintilla- 

Electron energy, keV 
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1 1 1 1 1 1 1 1 1 1 1  
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Figure 6.10 Pulse height versus energy for a 
liquid scintillator resulting from alphas and 
electrons (from Ref. 29). 
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tor is useless as a radiation detector. The photomultiplier is essentially a fast 
amplifier, which in times of s amplifies an incident pulse of visible light by 
a factor of lo6 or more. 

A photomultiplier consists of an evacuated glass tube with a photocathode 
at its entrance and several dynodes in the interior (Fig. 6.13). The anode, located 
at the end of a series of dynodes serves as the collector of electrons. The 
photons produced in the scintillator enter the phototube and hit the photocath- 
ode, which is made of a material that emits electrons when light strikes it. The 
electrons emitted by the photocathode are guided, with the help of an electric 
field, toward the first dynode, which is coated with a substance that emits 
secondary electrons, if electrons impinge upon it. The secondary electrons from 
the first dynode move toward the second, from there toward the third, and so 
on. Typical commercial phototubes may have up to 15 dynodes. The production 
of secondary electrons by the successive dynodes results in a final amplification 
of the number of electrons as shown in the next section. 

The electric field between dynodes is established by applying a successively 
increasing positive high voltage to each dynode. The voltage difference between 
two successive dynodes is of the order of 80-120 V (see Sec. 6.6.2). 

The photocathode material used in most commercial phototubes is a com- 
pound of cesium and antimony (Cs-Sb). The material used to coat the dynodes is 
either Cs-Sb or silver-magnesium (Ag-Mg). The secondary emission rate of the 
dynodes depends not only on the type of surface but also on the voltage applied. 

A very important parameter of every photomultiplier tube is the spectral 
sensitivity of its photocathode. For best results, the spectrum of the scintillator 
should match the sensitivity of the photocathode. The Cs-Sb surface has a 
maximum sensitivity at 440 nm, which agrees well with the spectral response of 
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Figure 6.1 .2 Plastic scintillator (NE 102) re- 
Energy, MeV sponse to heavy ions (from Ref. 31). 

most scintillators (Tables 6.1 and 6.3). Such a response, called S-11, is shown in 
Fig. 6.3. Other responses of commercial phototubes are known as S-13, S-20, etc. 

Another important parameter of a phototube is the magnitude of its dark 
current. The dark current consists mainly of electrons emitted by the cathode 
after thermal energy is absorbed. This process is called themionic emission, and 
a 50-mm-diameter photocathode may release in the dark as many as 10' 
electrons/s at room temperature. Cooling of the cathode reduces this source of 
noise by a factor of about 2 per 10-15°C reduction in temperature. Thermionic 
emission may also take place from the dynodes and the glass wall of the tube, 
but this contribution is small. Electrons may be released from the photocathode 
as a result of its bombardment by positive ions coming from ionization of the 
residual gas in the tube. Finally, light emitted as a result of ion recombination 
may release electrons upon hitting the cathode or the dynodes. Obviously, the 
magnitude of the dark current is important in cases where the radiation source 
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Figure 6.13 Schematic diagram of the interior of a photomultiplier tube. 
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is very weak. Both the dark current and the spectral response should be 
considered when a phototube is to be purchased. 

Recall that the electrons are guided from one dynode to the next by an 
electric field. If a magnetic field is present, it may deflect the electrons in such a 
way that not all of them hit the next dynode, and the amplification is reduced. 
Even the earth's weak magnetic field may sometimes cause this undesirable 
effect. The influence of the magnetic field may be minimized by surrounding the 
photomultiplier tube with a cylindrical sheet of metal, called p-metal. The 
p-metal is commercially available in various shapes and sizes. 

Commercial photomultiplier tubes are made with the variety of geometrical 
arrangements of photocathode and dynodes. In general, the photocathode is 
deposited as a semitransparent layer on the inner surface of the end window of 
the phototube (Fig. 6.14). The external surface of the window is, in most 
phototubes, flat for easier optical coupling with the scintillator (see Sec. 6.7). 
Two different geometries for the dynodes are shown in Fig. 6.14. 

6.6.2 Electron Multiplication in a Photomultiplier 

The electron multiplication M in a photomultiplier can be written as 

M = ( 8 , ~ ~ ) ( 8 ~ € ~ )   on^,) (6.3) 

Semitransparent 
Photocathode 

Focusing 

I 10th dynode 

(6) 

Figure 6.14 Two dynode arrangements in commercial phototubes: (a) Model 6342 RCA, 1-10 are 
dynodes, 11 is anode; ( b )  Model 6292 DuMont. 
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where 
n = number of dynodes 

number of electrons collected by ith dynode 
E. = ' number of electrons emitted by (i - 11th dynode 

number of electrons emitted by ith dynode 
8. = 

number of electrons impinging upon ith dynode 

If Bi and ei are constant for all dynodes, then 

M = ( 8 ~ ) "  
The quantity E depends on the geometry. The quantity 8 depends on the 

voltage between two successive dynodes and on the material of which the 
dynode is made. The dependence of 8 on voltage is of the form 

8 = kVa (6.5) 
I 
I where V = y - y - ,  = potential difference between two successive dynodes, 
I assumed the same for all dynode pairs 

k, a = constants (the value of a is about 0.7) 
Using Eq. 6.5, the multiplication M becomes 

M = ~ " ( k v ~ ) ~  = CVan (6.6) 
where C = ( ~ k ) "  = constant, independent of the voltage. 

Equation 6.6 indicates that the value of M increases with the voltage V and 
the number of stages n. The number of dynodes is limited, because as n 
increases, the charge density between two dynodes distorts the electric field and 
hinders the emission of electrons from the previous dynode with the lower 
voltage. In commercial photomultipliers, the number of dynodes is 10 or more. 
If one takes n = 10 and €8 = 4, typical value, the value of M becomes equal 
to lo6. 

To apply the electric field to the dynodes, a power supply provides a voltage 
adequate for all the dynodes. A voltage divider, usually an integral part of the 
preamplifier, distributes the voltage to the individual dynodes. When reference 
is made to phototube voltage, one means the total voltage applied. For example, 
if 1100 V are applied to a phototube with 10 dynodes, the voltage between any 
two dynodes is 100 V. 

6.7 ASSEMBLY OF A SCINTILLATION COUNTER AND THE 
ROLE OF LIGHT PIPES 

A scintillation counter consists of the scintillator and the photomultiplier tube. 
It is extremely important that these two components be coupled in such a way 
that a maximum amount of light enters the phototube and strikes the photocath- 
ode. This section presents a brief discussion of the problems encountered during 
the assembly of a scintillation counter, with some of the methods used to solve 
them. 
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A solid scintillator is coupled to the photomultiplier through the end 
window of the tube (Fig. 6.15). During the transfer from the scintillator to the 
photocathode, light may be lost by leaving through the sides and front face of 
the scintillator, or by being reflected back to the scintillator when it hits the 
window of the phototube. 

To avoid loss of light through the sides and front face, the scintillator is 
painted with a material that reflects toward the crystal the light that would 
otherwise escape. Examples of reflecting materials commercially available are 
alpha alumina and AI,O,. 

To avoid reflection of light from the end window of the phototube, a 
transparent viscous fluid (such as Dow-Corning 200 Silicone fluid) is placed 
between the scintillator and the phototube (Fig. 6.15). The optical fluid mini- 
mizes reflection because it reduces the change of the index of refraction during 
the passage of light from the scintillator to the phototube. A sharp change in the 
index of refraction results in a small critical angle of reflection, which in turn 
increases total reflection. 

In certain experiments, the scintillator has to be a certain distance away 
from the photocathode. Such is the case if the phototube should be protected 
from the radiation impinging upon the scintillator or from a magnetic field. 
Then a light pipe is interposed between the scintillator and the phototube. The 
light pipe is made of a material transparent to the light of the scintillator. 
Lucite, quartz, plexiglas, and glass have been used in many applications to form 
light pipes of different lengths and shapes. Light pipes of several feet-some- 
times with bends-have been used with success. The optical coupling of the 
light pipe at both ends is accomplished by the same methods used to couple the 
scintillator directly to the phototube. 

One of the major reasons for using scintillators is their availability in large 
sizes. In fact, commercially available scintillators are larger than the biggest 
commercial photomultipliers. In cases where the scintillator is too large, multi- 
ple phototubes are coupled to the same crystal. Figure 6.16 shows a NaI(T1) 
crystal coupled to six photomultipliers. 

Light may be 
lost through 
sides or front 
face 

I 
4 f 

f - r- Photomultiplier tube /. 

\' 
i 

Light reflected 

Figure 6.15 Assembly of a scintillation counter. 
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Figure 6.16 A special 30-in (0.762-m) diameter scintillator crystal coupled to six photomultiplier 
tubes (from Harshaw Chemical Company). 

When a liquid scintillator is used, the phototube is optically coupled to the 
scintillator through a window of the vessel containing the liquid scintillator. The 
efficiency of such a counting system increases by using a large volume of liquid 
and more than one photomultiplier tube (Fig. 6.17). 

6.8 DEAD TIME OF SCINTILLATION COUNTERS 

The dead time or resolving time is the minimum time that can elapse after the 
arrival of two successive particles and still result in two separate pulses (see Sec. 



SCINTILLATION DETECTORS 231 

Photomultiplier 

scintillator 

Figure 6.17 A counting system using a liquid 
scintillator and four photomultiplier tubes. 

2.21). For a scintillation counter this time is equal to the sum of three time 
intervals: 

1. Time it takes to produce the scintillation, essentially equal to the decay time 
of the scintillator (see Eq. 6.1 and Tables 6.1 and 6.3). 

2. Time it takes for electron multiplication in the phototube, of the order of 
20-40 ns. 

3. Time it takes to amplify the signal and record it by a scaler. The resolving 
time of commercial scalers is of the order of 1 ps. The time taken for 
amplification and discrimination is negligible. 

By adding the three above components, the resulting dead time of a 
scintillation counter is of the order of 1-5 ps. This is much shorter than the 
dead time of gas-filled counters, which is of the order of tens to hundreds of 
microseconds. 

Scintillators are detectors with fast response. As seen in Tables 6.1 and 6.3, 
the risetime of the pulse is very short for all of them. Short risetime is important 
in measurements that depend on the time of arrival of the particle (see Chap. 
10). 

6.9 SOURCES OF BACKGROUND IN A 
SCINTILLATION COUNTER 

One of the major sources of background in a scintillation counter is the dark 
current of the phototube (see Sec. 6.6.1). Other background sources are natu- 
rally occurring radioisotopes, cosmic rays, and phosphorescing substances. 

The holder of a liquid scintillator may contain small amounts of naturally 
occurring isotopes. In particular, 4 0 ~  is always present (isotopic abundance of 
40 K is 0.01 percent). Another isotope, 14c, is a constituent of contemporary 
organic materials. Solvents, however, may be obtained from petroleum, consist- 
ing of hydrocarbons without 14c. 
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The term phosphorescence refers to delayed emission of light as a result of 
deexcitation of atoms or molecules. Phosphorescent half-lives may extend to 
hours. This source of background may originate in phosphorescent substances 
contained in the glass of the phototube, the walls of the sample holder, or the 
sample itself. 

Cosmic rays, which are highly energetic charged particles, produce back- 
ground in all types of detectors, and scintillators are no exception. The effect of 
cosmic-ray background, as well as that of the other sources mentioned earlier, 
will be reduced if two counters are used in coincidence or anticoincidence. 

6.10 THE PHOSWICH DETECTOR 

The phoswich detector is used for the detection of low-level radiation in the 
presence of considerable background. It consists of two different scintillators 
coupled together and mounted on a single photomultiplier tube.' By utilizing 
the difference in the decay constants of the two phosphors, differentiation 
between events taking place in the two detectors is possible. The combination of 
crystals used depends on the types of particles present in the radiation field 
under in~estigation.~~, 38 

The basic structure of a phoswich detector is shown in Fig. 6.18. A thin 
scintillator (scintillator A) is coupled to a larger crystal (scintillator B), which in 
turn is coupled to the cathode of a single phototube. Two examples of scintilla- 
tors used are these: 

1. NaI(T1) is the thin scintillator (A) and CsI(Tl) is the thick one (B). Pulses 
originating in the two crystals are differentiated based on the difference 
between the 0.25-ps decay constant of the NaI(T1) and the 1-ps decay 
constant of the CsI(T1). Slow pulses come from particles losing energy in the 
CsI(T1) or in both crystals simultaneously. In a mixed low-energy-high-energy 
photon field, the relatively fast pulses of the NaI(T1) will come from the soft 

Low background 
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1 Magnetic shield 
Low-bac kground 

[Beryllium] 
Entrance w~ndow 

[Csl(TI)I photomultiplier 
Scintillator B 

[Nal(TI) I  
Scintillator A 

Figure 6.18 A Phoswich detector (from Harshaw Chemical Company). 
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component of the radiation. [Soft photons will not reach the CsI(TI).] Phoswich 
detectors of this type have been used in X-ray and y-ray astronomy, in 
detection of plutonium in the environment, and in other cases of mixed-radi- 
ation fields. 

2. CaF2(Eu) is the thin scintillator (A) and NaI(T1) is the thick one (B). This 
combination is used for measurements of low-energy beta particles in the 
presence of a gamma background. The thin (0.1 mm) CaF,(Eu) crystal detects 
the betas, but is essentially transparent to gammas because of its relatively 
low atomic number and thickness. A quartz window is usually placed between 
the two scintillators to stop the betas that did not deposit all their energy in 
the CaF2(Eu). The fast pulses of the NaI(Tl), which are due to gammas, are 
time-discriminated against the slower pulses from the CaF,(Eu) (T  = 0.94 
ps). Thus, the background due to gammas is reduced. 

PROBLEMS 

6.1 If the dead time of a detection system using a scintillator is 1 ps, what is the gross counting rate 
that will result in a loss of 2 percent of the counts? 

6.2 A typical dead time for a scintillation detector is 5 ps. For a gas counter, the corresponding 
number is 200 ps. If a sample counted with a gas counter results in 8 percent loss of gross counts 
due to dead time, what is the corresponding loss in a scintillation counter that records the same 
gross counting rate? 
6.3 A parallel beam of 1.5-MeV gammas strikes a 25-mm-thick NaI crystal. What fraction of these 
gammas will have at least one interaction in the crystal ( p = 0.0047 m2/kg)? 

6.4 What is the range of 2-MeV electrons in a plastic scintillator? Assume that the composition of 
the scintillator is C,,H,, ( p = 1.02 X lo3 kg/m3). 

6.5 Consider two electrons, one with kinetic energy 1 MeV, the other with 10 MeV. Which electron 
will lose more energy going through a 1-mm-thick plastic scintillator? Consider both ionization and 
radiation loss. Composition of the scintillator is given in Prob. 6.4. For radiation loss, use 

6.6 A phoswich detector consists of a 1-mm-thick NaI(T1) scintillator coupled to a 25-mm-thick 
CsI(T1) scintillator. A 0.1-mm-thick beryllium window protects the NaI(TI) crystal. If the detector is 
exposed to a thin parallel beam of 150-keV X-rays and 1.5-MeV y rays, what are the fractions of 
interactions of each type of photon in each scintillator? 
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CHAPTER 

SEVEN 

SEMICONDUCTOR DETECTORS 

7.1 INTRODUCTION 

Semiconductor detectors are solid-state devices that operate essentially like 
ionization chambers. The charge carriers in semiconductors are not electrons 
and ions, as in the gas counters, but electrons and  hole^."'^^ At present, the 
most successful semiconductor detectors are made of silicon and germanium. 
Other materials have been tried, however, with some success, e.g., CdTe and 
HgI 2 .  

The most important advantage of the semiconductor detectors, compared to 
other types of radiation counters, is their superior energy resolution: the ability to 
resolve the energy of particles out of a polyenergetic energy spectrum (energy 
resolution and its importance are discussed in Chaps. 9, 12-14). Other advan- 
tages are 

1. Linear response (pulse height versus particle energy) over a wide energy 
range 

2. Higher efficiency for a given size, because of the high density of a solid 
relative to that of a gas 

3. Possibility for special geometric configurations 
4. Fast pulse risetime (relative to gas counters) 
5. Ability to operate in vacuum 
6. Insensitivity to magnetic fields 

The characteristics of a semiconductor detector depend not only on the type 
of material used-e.g., Si or Ge-but also on the way the semiconductor is 
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shaped and treated. The type, size, shape, and treatment of the crystal play a 
role in the operation and performance of a semiconductor detector. 

This chapter first discusses the fundamentals of energy states in crystals, a 
subject necessary for understanding the creation and movement of electrons and 
holes in a solid. The properties of semiconductors are discussed next, with 
special emphasis given to the properties of silicon and germanium. The principle 
of construction and operation is accompanied by a description of the different 
types of detectors available in the market. Future prospects in this field are also 
discussed. 

7.2 ELECTRICAL CLASSIFICATION OF SOLIDS 

Solids are divided according to their electrical conductivity into three groups: 
conductors, insulators, and semiconductors. If a piece of solid material is placed 
in an electric field, whether or not current will flow depends on the type of 
material. If current flows, the material is a conductor. If current is zero at low 
temperatures but larger than zero at higher temperatures, the material is a 
semiconductor. If current is zero at all temperatures, the material is an insulator. 

Conductivity and electric current mean motion of electrons, and according to 
the results of this simple experiment, 

In conductors, electrons can move freely at any voltage different than zero. 
In insulators, electrons cannot move under any voltage (except, of course, 
when the voltage is so high that an electrical discharge occurs). 

3. In semiconductors, electrons cannot move at low temperatures (close to 
absolute zero) under any voltage. As the temperature of a semiconductor 
increases, however, electrons can move and electric current will flow at 
moderate voltages. 

These properties can be explained by examining the electronic structure of 
crystals. 

7.2.1 Electronic States in Solids-The Fermi Distribution Function 

In a free atom the electrons are allowed to exist only in certain discrete energy 
states (Fig. 7.1~). In solids, the energy states widen into energy bands. Electrons 
can exist only in bands 1, 3, and 5, but not in bands 2 and 4 (Fig. 7.lb). An 
electron can move from band 1 to band 3 if 

1. The electron acquires the energy E, necessary to cross the forbidden gap 
2. There is an empty state in band 3, which the jumping electron can occupyt 

'This constraint is due to the Pauli principle, which forbids two or more electrons to be in the 
same state. 
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Forbidden 

I Forbidden 

Figure 7.1 ( a )  The atomic energy levels are discrete lines. ( b )  In a solid, the allowed energy states 
become energy bands. 

The energy distribution of electronic states is described in terms of the following 
quantities: 

N ( E ) d E  = number of electrons per unit volume with energy between 

E and E + dE 
S ( E ) d E  = number of allowed electronic energy states, per unit volume, 

in the energy interval between E and E + dE 

P ( E )  = probability that a state of energy E is occupied 

= Fermi distribution function 

Then 

N ( E )  dE = P ( E ) [ S ( E )  d E ]  

The form of P ( E )  is given by 

where Ef = Fermi energy 
k = Boltzmann constant 
T = temperature, Kelvin 

The Fermi energy Ef  is a constant that does not depend on temperature but it 
does depend on the purity of the solid. The function P ( E )  is a universal 
function applying to all solids and having these properties (Fig. 7.2): 
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E function. 

2. At any T, 

3. For T > 0, the function P(E)  extends beyond Ef. If E - Ef s kT, P(E)  
takes the form 

which resembles the classical Boltzmann distribution. 

Notice that at T = 0 (Fig. 7.2), all the states are occupied for E < Ef but all the 
states are empty for E > Ef. 

7.2.2 Insulators 

In insulators, the highest allowed band, called the valence band, is completely 
occupied (Fig. 7.3). The next allowed band, called the conduction band, is 
completely empty. As Fig. 7.3 shows, the gap is so wide that the number of 
occupied states in the conduction band is always zero. No electric field or 
temperature rise can provide enough energy for electrons to cross the gap and 
reach the conduction band. Thus, insulators are insulators because it is impossi- 
ble for electrons to be found in the conduction band, where under the influence 
of an electric field, they would move and generate an electric current. 

7.2.3 Conductors 

In conductors, the conduction band is partially occupied (Fig. 7.4). An electron 
close to the top of the filled part of this band (point A, Fig. 7.4) will be able to 
move to the empty part (part B) under the influence of any electric field other 
than zero. Thus, because of the lack of a forbidden gap, there is no threshold of 
electric field intensity below which electrons cannot move. Motion of the charge 
carriers and, consequently, conductivity are always possible for any voltage 
applied, no matter how small. 
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Conduction band 
(emptv) 

Figure 7.3 All the energy states in the conduction band of an insulator are empty. Since there are no 
charge carriers, the conductivity is zero. 

7.3 SEMICONDUCTORS 

In semiconductors, the valence band is full and the conduction band is empty, 
but the energy gap between these two bands is very small. At very low 
temperatures, close to T = 0, the conductivity of the semiconductors is zero and 
the energy-band picture looks like that of an insulator (Fig. 7.3). As temperature 
increases, however, the "tail" of the Fermi distribution brings some electrons 
into the conduction band and conductivity increases (Fig. 7.5). That is, as 
temperature increases, some electrons obtain enough energy to cross over to the 

Figure 7.4 In conductors, the conduction band is partially occupied. If an electric field is applied, 
the electrons move and conductivity is not zero. 
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Figure 7.5 In semiconductors, the energy gap is relatively narrow. As temperature increases, some 
electrons have enough energy to be able to move to the conduction band and conductivity appears. 

conduction band. Once there, they will move under the influence of an electric 
field for the same reason that electrons of conductors move. 

When an electron moves to the conduction band, an empty state is left in 
the valence band. This is called a hole. A hole is the absence of an electron. 
When the electron moves in one direction, the hole moves in the opposite 
direction (Fig. 7.6). Holes are treated as particles with positive charges: -( - e )  
= +e .  They contribute to the conductivity in the same way electrons do (see 
Sec. 7.3.2). In a pure and electrically neutral semiconductor, the number of 
electrons is always equal to the number of holes. 

Heat-i.e., temperature increase-is not the only way energy may be given 
to an electron. Absorption of radiation or collision with an energetic charged 
particle may produce the same effect. The interaction of ionizing radiation with 
a semiconductor is a complex process and there is no agreement upon a 
common model explaining it. One simplified model is the following. 

An energetic incident charged particle collides with electrons of the semi- 
conductor and lifts them, not only from the valence to the conduction band but 
also from deeper lying occupied bands to the conduction band, as shown in Fig. 
7.7~.  Electrons appear in normally empty bands and holes appear in normally 
fully occupied bands. However, this configuration does not last long. In times of 
the order of lo-'' s, the interaction between electrons and holes makes the 
electrons concentrate at the bottom of the lowest lying unoccupied (conduction) 
band. The holes, on the other hand, concentrate near the top of the highest full 
(valence) band. During this deexcitation process, many more electrons and holes 
are generated. Because of this multistep process, the average energy necessary 
for the creation of one electron-hole pair is much larger than the energy gap E,. 
For example, for silicon at room temperature, E, = 1.106 eV, and the average 
energy for the production of one electron-hole pair is 3.66 eV. 

In the absence of an electric field, the final step of the deexcitation process 
is the recombination of electrons and holes and the return of the crystal to its 
neutral state. 
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Hole motion Figure 7.6 Electrons and holes move in opposite direc- 

eeeee eeee tions. A hole behaves like a positively charged carrier. 

7.3.1 The Change of the Energy Gap with Temperature 

The value of the energy gap E, (Fig. 7.5) is not constant, but it changes with 
temperature as shown in Fig. 7.8. For silicon and germanium, E, initially 
increases linearly as temperature decreases; but at very low temperatures, E, 
reaches a constant value. 

The average energy needed to create an electron-hole pair follows a similar 
change with temperature (Fig. 7.9). 

Figure 7.7 (a) Collisions with an ener- - 
getic charged particle raise electrons to 
the conduction bands. ( b )  After times of 
the order of lo-'' s, electrons and holes 
tend to deexcite to the upper part of the 
valence band and lower part of the 

(b)  conduction band, respectively. 
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Figure 7.8 The variation of E, with temperature: (a) for silicon; ( b )  for germanium (from Chap. 
1.1.1 of Bertolini & Coche). 

3.64 
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Temperature, K 

( a )  

Temperature, K 

(b)  

Figure 7.9 Energy needed to produce an 
electron-hole pair in (a) silicon and (b )  germa- 
nium, as a function of temperature (from Ref. 3). 
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7.3.2 Conductivity of Semiconductors 

Conductivity u is the inverse of resistivity and is defined by 

where j = current density ( ~ / m ' )  
a = conductivity [A/(V m)] 
E = electric field (V/m) 

Another expression for the current density is 

where N = number of charge carriers/m3 
u = speed of carriers 

Using Eqs. 7.4 and 7.5, one obtains the following equation: 
U 

u = eN- 
E 

(7.6) 

The ratio u /E  is given a new name, mobilig of the cam'er: 

p = ( u / E )  (7.7) 

All the types of charge carriers present in a medium contribute to the 
conductivity. In the case of semiconductors, both electrons and holes should be 
taken into account when conductivity is calculated, and the expression for the 
conductivity becomes (using Eqs. 7.6 and 7.7). 

where N, and Np are charge carrier concentrations and p, and p, are 
mobilities of electrons and holes, respectively. According to Eq. 7.8, the conduc- 
tivity changes if the mobility of the carriers or their concentration or both 
change. 

The mobilities of electrons and holes are independent of the electric field 
over a wide range of carrier velocities, but they change with temperature. If the 
temperature decreases, the mobility of both carriers increases. The mobility of 
electrons and holes in pure germanium as a function of temperature is shown in 
Fig. 7.10.4 The mobility changes at p - TPa with a = 1.5, for T < 80 K. For 
T > 80 K, the value of a is somewhat larger. It is worth noting that for T < 80 
K, P, = Pp. 

In a pure semiconductor, N, = Np and each one of these quantities is given 
by the equation 

where A is a constant independent of T. 
The motion of the carriers in a semiconductor is also affected by the 

presence of impurities and defects of the crystal. A small amount of impurities is 
always present, although impurities are usually introduced deliberately to make 
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Figure 7.10 (a) Electron mobility versus temperature for n-type germanium. ( b )  Hole mobility 
versus temperature for p-type germanium (from Ref. 4). 

the properties of the crystal more appropriate for radiation detection (see Sec. 
7.3.3). Crystal defects are present too. Even if one starts with a perfect crystal, 
defects are produced by the incident particles (this is called radiation damage). 
In the language of energy bands, impurities and defects represent new energy 
states that may trap the carriers. Trapping is, of course, undesirable because it 
means loss of part of the charge generated by the incident particle. 

For semiconductors, the probability that an electron will move from the 
valence to the conduction level is proportional to the factor (Eq. 7.3) 

(Ef is located in the middle of the gap; thus E - Ef = Eg/2.) Because of the 
exponential form of Eq. 7.10, there are always some electrons in the conduction 
band. These electrons produce a leakage current. Obviously, a successful detec- 
tor should have as low a leakage current as possible to be able to detect the 
ionization produced by the incident radiation. The leakage current decreases 
with temperature, and for two different materials it will be smaller for the 
material with the larger energy gap. 



7.3.3 Extrinsic and Intrinsic Semiconductors-The Role of Impurities 

The properties of a pure semiconductor change if impurities are introduced. 
With impurities present, new states are created and the semiconductor obtains 
extra electrons or extra holes, which increase the conductivity of the material. 

Actually, pure semiconductors are not available. All materials contain some 
impurities and for this reason they are called impure or extrinsic, in contrast to a 
pure semiconductor, which is called intrinsic. In most cases, controlled amounts 
of impurities are introduced purposely by a process called doping, which 
increases the conductivity of the material by orders of magnitude. 

Doping works in the following way. Consider silicon (Si), which has four 
valence electrons. In a pure Si crystal, every valence electron makes a covalent 
bond with a neighboring atom (Fig. 7.11~). Assume now that one of the atoms is 
replaced by an atom of arsenic (As), which has five valence electrons (Fig. 
7.11b). Four of the valence electrons form covalent bonds with four neighboring 
Si atoms, but the fifth electron does not belong to any chemical bond. It is 
bound very weakly and only a small amount of energy is necessary to free it, i.e., 
to move it to the conduction band. In terms of the energy-band model, this fifth 
electron belongs to an energy state located very close to the conduction band. 
Such states are called donor states (Fig. 7.12), and impurity atoms that create 
them are called donor atoms. The semiconductor with donor atoms has a large 
number of electrons and a small number of holes. Its conductivity will be due 
mainly to electrons, and it is called an n-type semiconductor (n is for negative). 

If a gallium atom is the impurity, three valence electrons are available; thus 
only three Si bonds will be matched (Fig. 7.13). Electrons from other Si atoms 
can attach themselves to the gallium atom, leaving behind a hole. The gallium 
atom will behave like a negative ion after it accepts the extra electron. In terms 
of the energy-band theory, the presence of the gallium atom creates new states 
very close to the valence band (Fig. 7.14). These are called acceptor states. The 
impurity is called an acceptor atom. For every electron that moves to the 
acceptor states, a hole is left behind. The acceptor impurity atoms create holes. 
The charge carriers are essentially positive, and the semiconductor is called 
P-type. 

Figure 7.11 (a) Pure (intrinsic) silicon. ( b )  Silicon doped with arsenic. The fifth electron of the 
arsenic atom is not tightly bound, and little energy is needed to move it to the conduction band. 
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Figure 7.12 ( a )  Intrinsic and ( b )  n-type semiconductor. New electron states (donor states) are 
created close to the conduction band. 

Interstitial atoms can act as donors or acceptors. Lithium, as an interstitial 
in either silicon or germanium, creates donor states very close to the conduction 
band. Copper and nickel introduce donor states midway between the valence 
and conduction bands. Gold may act as either an acceptor or donor, depending 
on its position on the lattice. 

For every atom of n-type or p-type impurity, an electron or hole is located at 
the donor or acceptor state, respectively. The material is still neutral, but when 
conductivity appears, 

Electrons are the major carriers for n-type semiconductors. 
Holes are the major carriers for p-type semiconductors. 

Since the addition of impurities creates new states that facilitate the 
movement of the carriers, it should be expected that the conductivity of a 
semiconductor increases with impurity concentration. Figures 7.15 and 7.16 
show how the resistivity of germanium and silicon changes with impurity 
concentration. 

The energy gap E, depends on temperature, as shown in Fig. 7.8, and on 
the number of impurities and defects of the crystal. With increasing tempera- 
tures, if E, is small as in germanium, the electrical conduction is dominated by 
electron-hole pairs created by thermal excitation and not by the presence of the 
impurity atoms. Therefore, at high enough temperatures, any semiconductor can 
be considered as intrinsic. 

Table 7.1 presents the most important physical and electrical properties of 
silicon and germanium, the two most widely used semiconductors. 

7.4 THE p-n JUNCTION 

7.4.1 The Formation of a p-n Junction 

As stated in the introduction to this chapter, semiconductor detectors operate 
like ionization counters. In ionization counters (see Chap. 5), the charges 
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Figure 7.13 Silicon doped with gallium. One of 
the covalent bonds is not matched. 

I -Full band 

Figure 7.14 (a) Intrinsic and ( b )  p-type semiconductor. New hole states (acceptor states) are created 
close to the top of the valence band. 

Impurity concentration, at/cm3 

Figure 7.15 Resistivity as a function of 
impurity concentration in germanium 
(from Chap. 1.1.3 of Bertolini & Coche). 
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Figure 7.16 Resistivity as a function 
of impurity concentration in silicon 
(from Chap. 1.1.3 of Bertolini & 
Coche). 

produced by the incident radiation are collected with the help of an electric field 
from an external voltage. In semiconductor detectors, the electric field is 
established by a process more complicated than in gas counters, a process that 
depends on the properties of n- and p-type semiconductors. The phenomena 
involved will be better understood with a brief discussion of the so-called p-n 
junction. 

An n-type semiconductor has an excess of electron carriers. A p-type has 
excess holes. If a p-type and an n-type semiconductor join together, electrons 
and holes move for two reasons: 

1. Both electrons and holes will move from areas of high concentration to areas 
of low concentration. This is simply diffusion, the same as neutron diffusion 
or diffusion of gas molecules. 

2. Under the influence of an electric field, both electrons and holes will move, 
but in opposite directions because their charge is negative and positive, 
respectively. 

Consider two semiconductors, one p-type, the other n-type, in contact, 
without an external electric field (Fig. 7.17). The n-type semiconductor has a 
high electron concentration; the p-type has a high hole concentration. Electrons 
will diffuse from the n- to the p-type; holes will diffuse in the opposite direction. 
This diffusion will produce an equilibrium of electron and hole concentrations, 
but it will upset the original charge equilibrium. Originally, both p- and n-type 
semiconductors were electrically neutral, but as a result of the diffusion, the 
n-type region will be positively charged, while the p-type region will be nega- 
tively charged. After equilibrium is established, a potential difference exists 
between the two regions. This combination of p- and n-type semiconductor with 
a potential difference between the two types constitutes a p-n junction. 

The potential V ,  (Fig. 7.17~) depends on electron-hole concentrations and is 
of the order of 0.5 V. If an external voltage Vb is applied with the positive pole 
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Table 7.1 Properties of Si and Ge (from Fenvres and Haiman and Ref. 2) 

Property Si Ge 

Atomic number 14 3 2 
Atomic weight 28.1 72.6 
Density (300 K) 2.33 x lo3 kg/mS 5.33 X lo3 kg/m3 
Energy gap (E8), 300 K 1.106 eV 0.67 eV 
Energy gap (Eg), 0 K 1.165 eV 0.75 eV 
Average energy per electron-hole 

pair, 77 K 3.7 eV 2.96 eV 
Average energy per electron-hole 

pair, 300 K 3.65 eV - 
Diffusion voltage (V,) 0.7 V 0.4 V 
Atomic concentration 5 x 10aB m-' 4.5 X rn-) 
Intrinsic carrier concentration (300 K) 1.5 X 1016 m-3 2.4 X 10" m-3 
Intrinsic resistivity (300 K) 2.3 x 10' f2.m 0.47 a - m  
Intrinsic resistivity (77 K) OD 5 X 10' i2.m 
Electron mobility (300 K) 0.1350 m"V.s 0.3900 ml/V.s 
Hole mobility (300 K) 0.0480 ma/V.s 0.1900 ma/V.s 
Electron mobility (77 K) 4.0-7.0 m"V-s 3.5-5.5 m1 1V.s 
Hole mobility (77 K) 2.0-3.5 ma/V.s 4.0-7.0 ma/V.s 
Dielectric constant 12 16 

connected to the n side, the total potential across the junction becomes Vo + Vb. 
This is called reverse bias. Such external voltage tends to make the motion of 
both electrons and holes more difficult. In the region of the changing potential, 
there is an electric field E = - dV/dx. The length Xo of the region where the 
potential and the electric field exist increases with reverse bias. Calculation 

Figure 7.17 (a) A p-n junction without external voltage. ( b )  If a reverse voltage is applied externally, 
the potential across the junction increases, and so does the depth x ,  along which an electric field 
exists. 
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shows that 

Xo db p(VO + Vb) for p-type semiconductor (7.11~) 

and 

x0 = 41% p(Vo + Vb) for n-type semiconductor (7.11 b) 

where p(f2 - m) is the resistivity of the crystal. Application of a negative 
potential on the n side will have the opposite effect. The total potential 
difference will be Vo - Vb. This is called forward bias. For a successful detector, 
reverse bias is applied. Since, usually, Vb s Vo, Xo - K. 

In practice, a p-n junction is not made by bringing two pieces of semicon- 
ductor into contact. Instead, one starts with a semiconductor of one type (say, 
n-type) and then transforms one end of it into the other type (p-type). 

7.4.2 The p-n Junction Operating as a Detector 

The operation of a semiconductor detector is based, essentially, on the proper- 
ties of the p-n junction with reverse bias (Fig. 7.18). Radiation incident upon the 
junction produces electron-hole pairs as it passes through it. For example, if a 
5-MeV alpha particle impinges upon the detector and deposits all its energy 
there, it will create about 

5 x lo6 eV - 1.7 x lo6 electron-hole pairs 
3 eV/pair 

Electrons and holes are swept away under the influence of the electric field and, 
with proper electronics, the charge collected produces a pulse that can be 
recorded. 

The performance of a semiconductor detector depends on the region of the 
p-n junction where the electric field exists (region of width Xo, Fig. 7.18). 
Electrons and holes produced in that region find themselves in an environment 
similar to what electrons and ions see in a plate ionization chamber (see Sec. 
5.4). There are some differences, however, between these two types of detectors. 
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In a gas counter, the electron mobility is thousands of times bigger than that 
of the ions. In semiconductors, the electron mobility is only about two to three 
times bigger than that of the holes. The time it takes to collect all the charge 
produced in a gas counter is of the order of milliseconds. In semiconductors, the 
sensitive region of the counter is only a few millimeters, and the speed of 
electrons and holes is such that the charge carriers can traverse the sensitive 
region and be collected in times of the order of lop7 s. 

It is always the objective in either an ionizatin or a semiconductor detector 
to collect all the charges produced by the incident particle. This is achieved by 
establishing an electric field in the detector such that there is zero recombina- 
tion of electrons and ions (or holes) before they are collected. In a semiconduc- 
tor detector, even if recombination is zero, some charge carriers may be lost in 
"trapping7' centers of the crystal, such as lattice imperfections, vacancies and 
dislocations. The incident radiation creates crystal defects that cause deteriora- 
tion of the detector performance and, thus, reduce its lifetime (see Sec. 7.6). 

The capacitance of p-n junction is important because it affects the energy 
resolution of the detector. For a detector such as that shown in Fig. 7.18, the 
capacitance C is given by 

where E = dielectric constant of the material 
A = surface area of the detector 

X,  = depletion depth (detector thickness) 
Combining Eqs. 7.11 and 7.12, 

To summarize, a material that will be used for the construction of a detector 
should have certain properties, the most important of which are the following: 

1 .  High resistivity. This is essential, since otherwise current will flow under the 
influence of the electric field, and the charge produced by the particles will 
result in a pulse that may be masked by the steadily flowing current. 

2. High carrier mobility. Electrons and holes should be able to move quickly and 
be collected before they have a chance to recombine or be trapped. High 
mobility is in conflict with property (1) because in high-resistivity materials, 
carrier mobility is low. Semiconductor materials doped with impurities have 
proven to have the proper resistivity-carrier mobility combination. 

3.  Capability of supporting strong electric fields. This property is related to 
property (1). Its importance stems from the fact that the stronger the field, 
the better and faster the charge collection becomes. Also, as the electric field 
increases, so does the depth of the sensitive region (Eq. 7.11a) for certain 
detectors. 
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4. Perfect crystal lattice. Apart from externally injected impurities, the semicon- 
ductor detector material should consist of a perfect crystal lattice without any 
defects, missing atoms, or interstitial atoms. Any such defect may act as a 
"trap" for the moving charges. 

7.5 THE DIFFERENT TYPES OF SEMICONDUCTOR DETECTORS 

The several types of semiconductor detectors that exist today differ from one 
another because of the material used for their construction or the method by 
which that material is treated. The rest of this section describes briefly the 
method of construction and the characteristics of the most successful detectors 
-made of silicon or germanium-and two promising ones made of CdTe and 
H g b  

7.5.1 Surface-Barrier Detectors 

Silicon of high purity, usually n-type, is cut, ground, polished, and etched until a 
thin wafer with a high-grade surface is obtained. The silicon is then left exposed 
to air or to another oxidizing agent for several days. As a result of surface 
oxidization, surface energy states are produced that induce a high density of 
holes and form, essentially, a p-type layer on the surface (Fig. 7.19). A very thin 
layer of gold evaporated on the surface serves as the electrical contact that will 
lead the signal to the preamplifier. In Fig. 7.19, X,, is the depth of the sensitive 
region, t is the total silicon thickness, and D is the diameter of the detector. 
The size of the detector is the length (or depth) Xo. 

7.5.2 Diffused-Junction Detectors 

Silicon of high purity, normally p-type, is the basic material for this detector 
type. As with surface-barrier detectors, the silicon piece has the shape of a thin 
wafer. A thin layer of n-type silicon is formed on the front face of the wafer by 
applying a phosphorus compound to the surface and then heating the assembly 
to temperatures as high as 800-1000" C for less than an hour. The phosphorus 
diffuses into the silicon and "dopes" it with donors (Fig. 7.20). The n-type silicon 
in front and the p-type behind it form the p-n junction. 

Both surface-barrier and diffused-junction detectors are used for the detec- 
tion of charged particles. To be able to measure the energy of the incident 
radiation, the size Xo of the detector should be at least equal to the range of the 
incident particle in silicon. The value of X,, depends on the resistivity of the 
material (which in turn, depends on impurity concentration) and on the applied 
voltage, as shown by Eq. 7.11. Blankenship and Borkowski have designed a 
nomogram relating all these q~anti t ies.~ Figure 7.21 shows a simplified version 
of the nomogram, and Ex. 7.1 explains its use. 
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EXAMPLE 7.1 What is the bias needed for a surface-barrier detector made 
of p-type silicon with resistivity 1.5 kR cm, used for the detection of 10-MeV 
alpha particles? 

ANSWER The bias is found by following these steps: 

Find the range of a 10-MeV alpha particle in silicon. From Sec. 4.6, one 
obtains R = 65 pm (point A in Fig. 7.21). 
Define point B on the resistivity scale for p-type silicon. 
Draw the straight line defined by points A and B. 
The required bias (point C) is the intersection of the line AB with the bias 
scale (Vb -3 35 V). 
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Figure 7.20 A diffused-junction detector. 

The nomogram of Fig. 7.21 also gives the capacitance of the detector. Of 
course, the capacitance can also be calculated using Eq. 7.11. 

7.5.3 Silicon Lithium-Drifted [Si(Li)l Detectors 

For both surface-barrier and diffused-junction detectors, the sensitive 
region-i.e., the actual size of the detector-has an upper limit of about 2000 
pm. This limitation affects the maximum energy of a charged particle that can 
be measured. For electrons in Si, the range of 2000 pm corresponds to an 
energy of about 1.2 MeV; for protons the corresponding number is about 18 
MeV; for alphas, it is about 72 MeV. The length of the sensitive region can be 
increased if lithium ions are left to diffuse from the surface of the detector 
toward the other side. This process has been used successfully with silicon and 
germanium and has produced the so-called Si(Li) (pronounced silly) and Ge(Li) 
(pronounced jelly) semiconductor detectors. Lithium-drifted detectors have been 
produced with depth up to 5 mm in the case of Si(Li) detectors and up to 12 mm 
in the case of Ge(Li) detectors. 

The lithium drifting process, developed by Pe11,6,7 consists of two major 
steps: (1) formation of an n-p junction by lithium diffusion, and (2) increase of 
the depletion depth by ion drifting. 

The n-p junction is formed by letting lithium diffuse into a p-type silicon. 
The diffusion can be accomplished by several Probably the sim- 
plest method consists of painting a lithium-in-oil suspension onto the surface 
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Figure 7.21 The Blankenship and ~orkowski~ nomogram that relates resistivity, detector thickness, 
and detector bias. The detector capacitance as a function of detector thickness is also given. 
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Figure 7.22 (a) During the diffusion of lithium, 
-xo* 
I the donor concentration changes with depth as 

I I I I \ shown. ( b )  During drifting (at elevated tempera- 
X i  ture and under reverse bias), and almost intrinsic 

(b)  region is formed with thickness x,. 

from which drifting is to begin. Other methods are lithium deposition under 
vacuum, or electrodeposition. After the lithium is applied on the surface, the 
silicon wafer is heated at 250-400" C for 3-10 min in an inert atmosphere, such 
as argon or helium. 

Lithium is an n-type impurity (donor atom) with high mobility in silicon (and 
germanium; see next section). When the diffusion begins, the acceptor concen- 
tration (N,) is constant throughout the silicon crystal (Fig. 7.22a), while the 
donor concentration (N, )  is high on the surface and zero everywhere else. As 
the diffusion proceeds, the donor concentration changes with depth, as shown in 
Fig. 7 .22~.  At the depth xi where 

and n-p junction has been formed (Fig. 7.22b). 
After the diffusion is completed, the crystal is left to cool, the excess lithium 

is removed, and ohmic contacts are put on the n and p sides of the junction. The 
contact on the p side is usually formed by evaporating aluminum or gold doped 
with boron. The contact on the n side can be formed by using pure gold or 
antimony-doped gold. 



SEMICONDUCTOR DETECTORS 257 

Drifting is accomplished by heating the junction to 120-150" C while apply- 
ing a reverse bias that may range from 25 V up to about 1000 V. In general, the 
higher the temperature and the voltage are, the faster the drifting proceeds. 
Depending on the special method used, the semiconductor may be under 
vacuum or in air or be placed in a liquid bath (e.g., silicon oil or fluorocarbon). 
The electric field established by the reverse bias tends to move the n-type atoms 
(lithium) toward the p side of the junction. As a result, the concentration of 
lithium atoms becomes lower for x < x j  (Fig. 7 . 2 2 ~ )  and higher for x > x j .  For 
x  < x j ,  Nn cannot become less than N, because then a local electric field would 
appear pushing the lithium atoms toward the n side. Similarly, for x  > x j ,  Nn 
cannot increase very much because the local electric field works against such a 
concentration. Thus, a region is created that looks like an intrinsic semiconduc- 
tor because Nn = N,,. For long drifting times, the thickness of the intrinsic 
region Xo(t) as a function of time is given by 

where V = applied voltage 
pLi = mobility of Li ions in silicon at the drifting temperature 

The mobility of lithium, which increases with temperature,12 has a value of 
about 5 X 10-l4 m2/v  s at T = 150°C. Drifting is a long process. Depending 
on the desired thickness, drifting may take days and sometimes weeks. 

EXAMPLE 7.2 How long will it take to obtain an intrinsic region of 1.5 mm 
in a silicon wafer drifted at 150" C under a reverse bias of 500 V? 

ANSWER Using Eq. 7.13 with pLi = 5 X 10-l4 m2/V s, one obtains 

After drifting is completed, the Si(Li) detector is mounted on a cryostat, 
since the best results are obtained if the detector is operated at a very low 
temperature. Usually, this temperature is 77K, the temperature of liquid nitro- 
gen. Si(Li) detectors may be stored at room temperature for a short period of 
time without catastrophic results, but for longer periods it is advisable to keep 
the detector cooled at all times. The low temperature is necessary to keep the 
lithium drifting at a "frozen" stage. At room temperature, the mobility of 
lithium is such that its continuous diffusion and precipitation12 will ruin the 
detector. 

Si(Li) detectors are used for detection of charged particles and especially 
X-rays. Their characteristics with respect to energy measurements are described 
in Chaps. 12 and 13. 
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7.5.4 Germanium Lithium-Drifted [Ge(Li) 1 Detectors 

Ge(Li) detectors are not made anymore; they have been replaced by pure 
germanium crystals. Historically, Ge(Li) detectors dominated the gamma detec- 
tion field for about 15 years (until about 1985). Since there may still be some 
Ge(Li)'s operating, a brief discussion is presented in this section. 

Ge(Li) detectors are made from horizontally grown or pulled single crystals 
of germanium. As the crystal is grown, it is doped with acceptor impurities such 
as indium, gallium, or boron, and becomes a p-type semiconductor. Germanium 
crystals may be cut to length and shaped by a variety of means, including the use 
of diamond wheels or band saws. In these mechanical operations, great care 
must be taken not to fracture the brittle material. 

Lithium drifting in germanium follows the same approach as in silicon. The 
deposition and diffusion of lithium are accomplished by one of the methods 
discussed in the previous section. The ohmic contacts are made by electrolytic 
deposition of gold,13 by using gallium-indium14 or mercury-indium,15 or by ion 
implantation.16 The drifting process itself takes place at a lower temperature 
(< 60" C) than for silicon, with the germanium diode in air" or immersed in a 
liquid maintained at its boiling point.ls 

After the drifting process has been completed, the detector is mounted on a 
cryostat and is always kept at a low temperature (liquid nitrogen temperature - 77 K). Keeping the Ge(Li) detector at a low temperature is much more 
critical than for a Si(Li) detector. The mobility of the lithium atoms in germa- 
nium is so high at room temperature that the detector will be ruined if brought 
to room temperature even for a short period of time. If this happens, the 
detector may be redrifted, but at a considerable cost. 

7.5.5 Germanium (Gel Detectors 

The production of high-purity germanium (HPGe) with an impurity concentra- 
tion of 1016 atoms/cm3 or less has made possible the construction of detectors 
without lithium drifting.1g-21 These detectors are now designated as Ge, not 
HPGe, and are simply formed by applying a voltage across a piece of germa- 
nium. The sensitive depth of the detector depends on the impurity concentration 
and the voltage applied, as shown in Fig. 7.23. 

The major advantage of Ge versus Ge(Li) detectors is that the former can 
be stored at room temperature and cooled to liquid nitrogen temperature (77 K) 
only when in use. Cooling the detector, when in use, is necessary because 
germanium has a relatively narrow energy gap, and at room or higher tempera- 
tures a leakage current due to thermally generated charge carriers induces such 
noise that the energy resolution of the device is destroyed. 

Germanium detectors are fabricated in many different geometries, thus 
offering devices that can be tailored to the specific needs of the measurement. 
Two examples, the coaxial and the well-type detector, are shown in Fig. 7.24. 
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11 I 1 I 
1 o8 1 o9 1ol0 lo l l  

Impurity concentration, at/cm3 

Figure 7.23 Depletion depth as a function of impurity concentration and applied voltage for planar 
diodes of high-purity germanium (from Ref. 21). 

More details about these detectors are presented in Chap. 12 in connection with 
y-ray spectroscopy. 

7.5.6 CdTe and HgI, Detectors 

The major disadvantage of lithium-drifted detectors is the requirement for 
continuous cooling. In the case of Ge detectors, the requirement for cooling 

incident 
radiation - incident 

radiation 

Figure 7.24 Two examples of geometries used for Ge Detectors; ( a )  coaxial; ( b )  well type (from 
Canberra Nuclear, Edition Nine Instruments Catalog). 
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during operation is also a disadvantage. Cooling requires a cryostat, which 
makes the counter bulky and thus impossible to use in cases where only a small 
space is available; another disadvantage is the cost of continuously buying liquid 
nitrogen. There is a great incentive, therefore, to develop semiconductor detec- 
tors that can be stored and operated at room temperature. Two materials that 
have been studied and show great promise for the construction of such detectors 
are CdTe and HgI,.22-35 A comprehensive review of the state-of-the-art (until 
1978) for both materials can be found in Ref. 36. 

Successful detectors using CdTe or HgI, have been constructed with 
thickness up to 0.7 mm and area 100 mm2 (as of 1978).~' These detectors are 
small in size, compared to Si(Li) or Ge(Li) detectors, but the required detector 
volume depends on the application. For CdTe and HgI,, the favored applica- 
tions are those that require a small detector volume: monitoring in 
measurement of activity in nuclear power plants,38 medical portable scanning,39 
or medical imaging devices.40 Although the detector volume is small, efficiency is 
considerable because of the high atomic number of the elements involved 
(Table 7.2). The energy needed for the production of an electron-hole pair is 
larger for CdTe and HgI, than it is for Si and Ge; as a result, the energy 
resolution of the former is inferior to that of the latter (see also Chap. 12). But 
CdTe and HgI, detectors are used in measurements where their energy resolu- 
tion is adequate while, at the same time, their small volume and, in particular, 
their room-temperature operation offers a distinct advantage over Si(Li) and 
Ge(Li) detectors. 

7.6 RADIATION DAMAGE TO SEMICONDUCTOR DETECTORS 

The fabrication and operation of a semiconductor detector are based on the 
premise that one starts with a perfect crystal containing a known amount of 
impurities. Even if this is true at the beginning, a semiconductor detector will 
suffer damage after being exposed to radiation. The principal type of radiation 
damage is caused by the collision of an incident particle with an atom. As a 
result of the collision, the atom may be displaced into an interstitial position, 
thus creating an interstitial-vacancy pair known as the Frenkel defect. A recoiling 

Table 7.2 Properties of Si, Ge, CdTe, and HgI, 

Atomic Energy 
Material number gap (eV) 

Energy needed 
to form the 
pair (eV) 

Si 14 1.106 (300K) 3.65 (300 K) 
Ge 32 0.67 (77 K) 2.96 (77 K) 
CdTe 48 and 52 1.47 (300K) 4.43 (300 K) 
HgI, 80 and 53 2.13 (300 K) 4.22 (300 K) 
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Table 7.3 Particle Fluence That Causes Significant Radiation Damage 

Heavy ions Alphas Fast neutrons 
(particles/m2) (a /m2)  (n/m3) 

Junction detectors 1012 
Si(Li) 
Ge(Li) or Ge 

atom may have enough energy to displace other atoms; therefore an incident 
particle may produce many Frenkel defects. 

Crystal defects affect the performance of the detector because they may act 
as trapping centers for electrons and holes or they may create new donor or 
acceptor states. New trapping centers and new energy states change the charge 
collection efficiency, the leakage current, the pulse risetime, the energy resolu- 
tion, and other properties of the detector. The changes are gradual, but the final 
result is shortening of the detector lifetime. 

Electrons and photons cause negligible radiation damage compared to 
charged particles and neutrons. Heavier and more energetic charged particles 
cause more damage than lighter and less energetic  particle^.^,^' Also, the 
damage is not the same for all detector types. Table 7.3 gives the fluences that 
cause considerable radiation damage for different detectors and bombarding 
particles. 

Ge detectors are not affected by gammas, but they are damaged by the 
neutrons in a mixed n-y field. 

PROBLEMS 

7.1 What is the probability that an electron energy state in Ge will be occupied at temperature 
T = 300 K if the energy state is greater than the Fermi energy by 2 eV? 

7.2 Repeat Prob. 7.1 for T = 77 K. 

7.3 The energy gap for diamond is 7 eV. What temperature will provide thermal energy ( k T )  equal 
to that amount? 

7.4 What should be the maximum thickness of the gold layer covering the front face of a surface 
barrier detector used for the measurement of 10-MeV alphas, if the energy loss of the alphas 
traversing the layer should be less than 0.1 percent of the kinetic energy? 

7.5 Repeat Prob. 7.4 for 6-MeV electrons. 

7.6 The thickness of the gold layer covering the front face of a semiconductor detector may be 
measured by detecting particles entering the detector at two different angles. Calculate that 
thickness if alphas that enter in a direction perpendicular to the front face register as having energy 
4.98 MeV, but those that enter at a 45' angle register as having energy 4.92 MeV. 

7.7 What is the average distance traveled in Si by a 50-KeV gamma before it has an interaction? 
What is the corresponding distance in Ge? 
7.8 Lithium has been drifted in germanium at 50" C under a reverse bias of 500 V for 2 weeks. What 
is your estimate of the drifting depth? [ gLi = 1.5 X m2/(v s)] 



262 MEASUREMENT AND DETECTION O F  RADIATION 

7.9 A parallel beam of 0.5-MeV gammas is normally incident upon 2-mm-thick-crystals of Si, Ge, 
CdTe, and HgI,. What fraction of photons will interact at least once in each crystal? 
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CHAPTER 

EIGHT 

RELATIVE AND ABSOLUTE MEASUREMENTS 

8.1 INTRODUCTION 

An absolute measurement is one in which the exact number of particles emitted 
or the exact number of events taking place is determined, for example, 

1. Determination of the activity of a radioactive source, i.e., measurement of the 
number of particles emitted by the source per second 

2. Determination of the neutron flux (neutrons per square meter per second) at 
a certain point in a reactor 

3. Measurement of the number of neutrons emitted per fission 
4. Measurement of the first cross section for a nuclear interaction 

A relative measurement is one in which the exact number of particles 
emitted or the exact number of events taking place is not determined. Instead, a 
"relative" number of particles or events is measured, a number that has a fixed, 
but not necessarily known, relationship to the exact number, for example, 

1. Determination of the G-M plateau. The relative change of the number of 
particles counted versus HV is measured. The exact number of particles 
emitted by the source is not determined; in fact, it is not needed. 

2. Determination of half-life by counting the decaying activity of an isotope. 
The relative change of the number of atoms versus time is measured. The 
exact number of nuclei decaying per second is not needed. 
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3. Measurement of the fission cross section for 2 3 9 ~ ~ ,  based on the known 
fission cross section for 2 3 5 ~ .  

4. Determination of the variation of the neutron flux along the axis of a 
cylindrical reactor. The relative change of the flux from point to point along 
the axis of the reactor is measured, and not the exact number of neutrons per 
square meter per second. 

Relative measurements are, in most cases, easier than absolute measure- 
ments. For this reason, investigators tend to perform the very minimum of 
absolute measurements and use their results in subsequent relative measure- 
ments. One of the most characteristic examples is the determination of the 
value of nuclear cross sections. Absolute measurements have been performed 
for very few cross sections. After certain cross sections have been measured, 
most of the others may be determined relative to the known ones. 

This chapter discusses the factors that should be taken into account in 
performing relative and absolute measurements. Assume that there is a source 
of particles placed a certain distance away from a detector (Fig. 8.1) and that the 
detector is connected to a pulse-type counting system. The source may be 
located outside the detector as shown in Fig. 8.1, or it may be inside the detector 
(e.g., liquid-scintillation counting and internal-gas counting), and may be isotropic 
(e.g., particles emitted with equal probability in all directions) or anisotropic 
(e.g., parallel beam of particles). Both cases will be examined. Let 

S = number of particles per second emitted by the source 

r = number of particles per second recorded by the scaler 

It is assumed that the counting rate r has been corrected for dead time and 
background, if such corrections are necessary. The measured rate r is related to 
S by 

r = fifif3 . a .  frJ (8.1) 

where the f factors represent the effects of the experimental setup on the 
measurement. These factors may be grouped into three categories, to be 
discussed in detail in the following sections. 

Detector aperture 
or window 

Figure 8.1 A point isotropic source counted by a pulse-type counting system. 
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1. Geometry effects. The term geometry refers to size and shape of source (point, 
parallel beam, disk, rectangular), size and shape of detector aperture (cylin- 
drical, rectangular, etc.), and distance between source and detector. 

2. Source effects. The size and, in particular, the way the source is made may 
have an effect on the measurement. Whether the source is a solid material or 
a thin deposit evaporated on a metal foil may make a difference. The effect 
of source thickness is different on charged particles, gammas, and neutrons. 

3.  Detector effects. The detector may affect the measurement in two ways. First, 
the size and thickness of the detector window (Fig. 8.1) determine how many 
particles enter the detector and how much energy they lose, as they traverse 
the window. Second, particles entering the detector will not necessarily be 
counted. The fraction of particles that is recorded depends on the efficiency 
of the detector (see Sec. 8.4.2). 

8.2 GEOMETRY EFFECTS 

The geometry may affect the measurement in two ways. First, the medium 
between the source and the detector may scatter and may also absorb some 
particles. Second, the size and shape of the source and the detector and the 
distance between them determine what fraction of particles will enter the 
detector and have a chance to be counted. 

8.2.1 The Effect of the Medium between Source and Detector 

Consider a source and a detector separated by a distance d (Fig. 8.2). Normally, 
the medium between the source and detector is air, a medium of low density. 
For measurements of photons and neutrons, the air has no effect. If the source 
emits charged particles, however, all the particles suffer some energy loss, and 
some of them may be scattered in or out of the detector (Fig. 8.2). If this effect 

I '  
Detector 

Figure 8.2 The medium between the source and the 
detector may scatter and/or absorb particles emitted by 
the source. 
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is important for the measurement, it can be eliminated by placing the source 
and the detector inside an evacuated chamber. If the use of an evacuated 
chamber is precluded by the conditions of the measurement, then appropriate 
corrections should be applied to the results. 

8.2.2 The Solid Angle-General Definition 

To illustrate the concept of solid angle, consider a point isotropic source at a 
certain distance from a detector as shown in Fig. 8.3. Since the particles are 
emitted by the source with equal probability in every direction, only some of the 
particles have a chance to enter the detector. That portion is equal to the 
fractional solid angle subtended by the detector at the location of the source. In 
the general case of an extended source, the solid angle S1 is defined by 

number of particles per second emitted inside the space defined 
by the contours of the source and the detector aperture 

cR = 
number of particles per second emitted by the source 

(8.2) 

The mathematical expression for fl is derived as follows (Fig. 8.4). A plane 
source of area A, emitting So particles/(m2 s), isotropically, is located a 
distance d away from a detector with an aperture equal to A,. Applying the 
definition given by Eq. 8.2 for the two differential areas dAs and &I, and 
integrating, one obtainst 

' ~ ~ u a t i o n  8.3 applies to isotropic sources: nonisotropic sources, seldom encountered in 
practice, need special treatment. 

Figure 8.3 The fraction of particles emitted by a point isotropic source and entering the detector is 
defined by the solid angle subtended by the detector at the location of the source. 
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Figure 8.4 Definition of the solid an- 
gle for a plane source and a plane 
detector parallel to the source. 

where ii is a unit vector normal to the surface of the detector aperture. Since 
ii . r/r = cos w, Eq. 8.3 takes the form 

1 COS w "=-/, d s j  a d 7  

4 7 ~ A s  s A d  

Equation 8.4 is valid for any shape of source and detector. In practice, one deals 
with plane sources and detectors having regular shapes, examples of which are 
given in the following sections. 

As stated earlier, fl is equal to the fractional solid angle (0 I fl I 1). In 
radiation measurements, it is called either solid angle or geometry factor. In this 
text it will be called the solid angle. 

8.2.3 The Solid Angle for a Point Isotropic Source and a Detector with a 
Circular Aperture 

The most frequently encountered case of obtaining a solid angle is that of a 
point isotropic source at a certain distance away from a detector with a circular 
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aperture (Fig. 8.5). In Eq. 8.4, cos w = d/r, and the integration gives 

From Fig. 8.5, 

Therefore, an equation equivalent to Eq. 8.5 is 

a = i ( 1  - cos 6,) (8.7) 

It is instructive to rederive Eq. 8.7, not by using Eq. 8.4, but by a method 
that gives more insight into the relationship between detector size and source- 
detector distance. 

Consider the point isotropic source of strength S ,  particles per second 
located a distance d away from the detector, as shown in Fig. 8.6. If one draws a 
sphere centered at the source position and having a radius R, greater than d, 
the number of particles/(m2 s) on the surface of the sphere is s0/4.rrR;. The 
particles that will hit the detector are those emitted within a cone defined by the 
location of the source and the detector aperture. If the lines that define this 
cone are extended up to the surface of the sphere, an area A, is defined there. 
A, is a nonplanar area on the surface of the sphere. The number of particles per 
second entering the detector is AS(S,/4.rr~;) and, using Eq. 8.2, the solid angle 

Figure 8.5 The solid angle between a point 
isotropic source and a detector with a 
circular aperture. 
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Source 

Figure 8.6 Diagram used for the calculation of the solid angle between a point isotropic source and 
a detector with a circular aperture. 

becomes 

The area A ,  is given by (Fig. 8.7): 

A ,  = / d ~ ,  = / ( R ,  d 0 ) ( R S  sin 0 d + )  = ~ : / ~ ~ d + / ' " d 0  sin 6 
0 0 

Therefore, the expression for the solid angle becomes 

A ,  2 ~ ~ : ( 1  - cos 0 0 )  1 a=-= = - ( 1  - cos 6 , )  ( 8 . 7 ~ )  
47rR: 47rR: 2 

which is, of course, Eq. 8.7. 
If R < d ,  Eq. 8.5 takes the form [after expanding the square root (Eq. 8.6) 

and keeping only the first two terms] 

R 2  r R 2  detector aperture a=-=-= 
4 d 2  47rd2 47rd2 

(8 .8)  

Equation 8.8 is valid even for a noncylindrical detector if the source-detector 
distance is much larger than any of the linear dimensions of the detector aperture. 

Example 8.1 A typical Geiger-Muller counter is a cylindrical detector with 
an aperture 50 mm in diameter. What is the solid angle if a point isotropic 
source is located 0.10 m away from the detector? 
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Source 

(a )  

Figure 8.7 (a )  The detector is at distance d from the source. ( b )  The source is assumed to be at the 
center of the sphere. The cone defined by the angle 0, determines the area A, (differential area 
dA) on the surface of the sphere. 

Answer Using Eq. 8.5 with d = 0.10 m and R = 25 mm, 

If R = 1, the setup is called a 47r geometry because the detector sees the 
full 4 7 ~  solid angle around the source. A spherical detector represents such a 
case (Fig. 8 .8~) .  If R = i, the setup is called a 27r geometry. Then half of the 
particles emitted by the source enter the detector (Fig. 8.8b). 

Figure 8.8 (a) 4 5 ~  Geometry. ( b )  27r Geometry. 
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8.2.4 The Solid Angle for a Disk Source Parallel to a Detector with a 
Circular Aperture 

Consider a disk source parallel to a detector with a circular aperture (Fig. 8.9). 
Starting with Eq. 8.4, one may obtain an expression involving elliptic  integral^',^ 
or the following equation in terms of Bessel f u n c t i o n ~ ~ , ~ ~ :  

where s = R,/R,, z = d/R,, and J,(x) = Bessell function of the first kind. If 
R,/d and R,/d are less than 1, the following algebraic expression is obtained 
for the solid angle (see Prob. 8.1): 

where + = R,/d 
w = R,/d 

I Detector 

Figure 8.9 A disk source and a detector with a circular aperture. 
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The accuracy of Eq. 8.10 increases as \CI and w decrease. If IC, < 0.2 and 
w < 0.5, the error is less than 1 percent. 

8.2.5 The Solid Angle for a Point Isotropic Source and a Detector with a 
Rectangular Aperture 
Consider the geometry of Fig. 8.10 with a point isotropic source located a 
distance d away from a detector having a rectangular aperture with area equal 
to ab. The solid angle is given by4 

1 ab 
fl = - arctan (8.11) 

4m dda2 + b2 + d 2  
If the source is located at an arbitrary point above the detector, the solid 

angle is the sum of four terms (Fig. 8.10, each of them similar to Eq. 8.11. As 
Fig. 8.11 shows, the detector is divided into four rectangles by the lines that 
determine the coordinates of the point P. The solid angle is then 

fl = R, + R 2  + 0, + R 4  
where Ri for i = 1,. . . , 4  is given by Eq. 8.11 for the corresponding rectangles. 

8.2.6 The Solid Angle for a Disk Source and a Detector with a 
Rectangular Aperture 
Consider the geometry shown in Fig. 8.12. A disk source is located at a distance 
d above a detector having a rectangular aperture with an area equal to ab. It is 
assumed that the center of the source is directly above one comer of the 
aperture, as shown in Fig. 8.12. The more general case of the arbitrary position 
of the source is derived from the present example. 

Figure 8.10 The solid angle between a point 
isotropic source and a detector with a rectan- 
gular aperture. Source is located directly above 
one corner of the detector. 
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Figure 8.11 A point isotropic source located at 
an arbitrary point above a detector with a 
rectangular aperture. The solid angle is equal 
to four terms, each given by Eq. 8.11. 

The distance r (Fig. 8.12) is equal to 

Equation 8.4 is then written as 

As in Sec. 8.2.4, if the ratios R s / d ,  a / d ,  and b / d  are less than 1, the expression 
in the braces may be expanded in a series. If only the first four terms are kept, 
the result of the integration is 

where w ,  = a / d  
w2 = b / d  * = RS/d 
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z 

Y 

- - - - - - - - - - - - - 

Figure 8.12 A disk source and a detector with a rectangular aperture. 

If the source is located at an arbitrary point above the detector, the solid 
angle is the sum of four terms as shown in Fig. 8.11. 

8.2.7 The Use of the Monte Carlo Method for the Calculation of the 
Solid Angle 

The basic equation defining the geometry factor (Eq. 8.4) can be solved 
analytically in very few cases. Approximate solutions can be obtained either by a 
series expansion (Eqs. 8.10 and 8.13 are such results) or by a numerical 
integration or using other appro~irnat ions , '~~~~ 

A general method that can be used with any geometry is based on a Monte 
Carlo cal~ulation,~- '~ which simulates, in a computer, the emission and detec- 
tion of particles. A computer program is written based on a model of the 
source-detector geometry. Using random numbers, the particle position of birth 
and the direction of emission are determined. The program then checks whether 
the randomly selected direction intersects the detector volume. By definition, 
the ratio of particles hitting the detector to those emitted by the source is equal 
to the solid angle. 

The advantage of a Monte Carlo calculation is the ability to study compli- 
cated geometries. The result has an error associated with it that decreases as the 
number of particles studied increases. 
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8.3 SOURCE EFFECTS 

Two source effects are discussed in this section: absorption of particles in the 
source, and the effect of the backing material that supports the source. Both 
effects are always important in measurements of charged particles. In some 
cases, however, they may also be significant in X-ray or thermal-neutron 
measurements. 

8.3.1 Source Self-Absorption Factor (fa) 

Radioactive substances are deposited on a backing material in thin deposits. But 
no matter how thin, the deposit has a finite thickness and may cause absorption 
of some particles emitted by the source. Consider the source of thickness t 
shown in Fig. 8.13. Particle 1 traverses the source deposit and enters the 
detector. Particle 2 is absorbed inside the source so that it will not be counted. 
Therefore, source self-absorption will produce a decrease of the counting rate r. 

Source self-absorption may be reduced to an insignificant amount but it 
cannot be eliminated completely. It is always important for charged particles 
and generally more crucial for heavier particles ( p ,  a, d, heavy ions) than for 
electrons. 

Source self-absorption, in addition to altering the number of particles 
leaving the source, may also change the energy of the particles escaping from it. 
Particle 1 in Fig. 8.13 successfully leaves the deposit, but it loses some energy as 
it goes through the deposit. This energy loss is important when the energy of the 
particle is measured. 

An approximate correction for self-absorption can be obtained if the source 
emits particles following a known attenuation law. As an example, consider a 
source with thickness t (Fig. 8.14) that has a uniform deposit of a radioisotope 
emitting p particles. Assume that the source gives S betas per second in the 
direction of the positive x axis. If self-absorption is absent, S betas per second 

Figure 8.13 Source self-absorption. Particles may be absorbed in the source deposit. 

t - 
Source deposit 

2 
4 

1 _--- Detector - - 
t- 

* X 
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Source deposit 

) X 
x x + d x  

Figure 8.14 Diagram used for the calculation of the source self-absorption factor for betas. 

will leave the source (toward positive x). Because of the source thickness, betas 
produced in &, around x, have to successfully penetrate the thickness (t - x) to 
escape. The probability of escape is e-"('-"), where p is the attenuation 
coefficient for the betas in the material of which the deposit is made. The total 
number of betas escaping is 

A self-absorption factor fa is defined by 

number of particles leaving source with self-absorption 

fa = number of particles leaving source without self-absorption 

Using the result obtained above, 

Example 8.2 Assume that ' 3 7 ~ s  was deposited on a certain material. The 
thickness of the deposit is t = 0.1 mm. 1 3 7 ~ s  emits betas with Emax = 0.514 
MeV. What is the value of fa for such a source? The density of cesium is 
1.6 x lo3 kg/m3. 

Answer For betas of Emax = 0.514 MeV, the attenuation coefficient is (from 
Chap. 4) 

II. = 1.7E-'.I4 max = 1.7(0.514)-~'~~ = 2.14 m2/kg 

p t  = (2.14 m2/kg)(0.1 X mK1.6 X lo3 kg/m3) = 0.34 
Using Eq. 8.14, 
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Therefore, only 85 percent of the betas escape this source. Or, if this effect is 
not taken into account, the source strength will have an error of 15 percent.t 

If the source emits monoenergetic charged particles, essentially all the 
particles leave the source deposit as long as t < R, where R = range of the 
particles. In practice, the sources for monoenergetic charged particles are such 
that t 4 R, in which case, fa = 1. Then the only effect of the source deposit is 
an energy loss for the particles that traverse it (see also Chap. 13). 

8.3.2 Source Backscattering Factor (f,) 

A source cannot be placed in midair. It is always deposited on a material that is 
called source backing or source suppoll. The source backing is usually a very thin 
material, but no matter how thin, it may backscatter particles emitted in a 
direction away from the detector (Fig. 8.15). To understand the effect of 
backscattering, assume that the solid angle in Fig. 8.15 is R = lop2.  Also 
assume that all the particles entering the detector are counted, self-absorption is 
zero, and there is no other medium that might absorb or scatter the particles 
except the source backing. 

Particle 1 in Fig. 8.15 is emitted toward the detector. Particle 2 is emitted in 
the opposite direction. Without the source backing, particle 2 would not turn 
back. With the backing material present, there is a possibility that particle 2 will 
have scattering interactions there, have its direction of motion changed, and 
enter the detector. If the counting rate is r = 100 counts per minute and there 
is no backscattering of particles toward the detector, the strength of the source 

t~ similar calculation of fa may be repeated for an X-ray or a neutron source. For X-rays the 
probability of escape e-!-"; for neutrons it is e-". 

Source backing 
material 

Source I?:.: deposit 
0 
D 

I 
Backscanered particle 

Figure 8.15 The source backing material backscatters particles and necessitates the use of a 
backscattering factor f,. 



280 MEASUREMENT AND DETECTION OF RADIATION 

will be correctly determined as 
r 100 s = - = - -  
R 1 0 - ~  

- 10,000 part ./min 

If the source backing backscatters 5 percent of the particles, the counting rate 
will become 105 counts per minute, even though it is still the same source as 
before. If source backscattering is not taken into account, the source strength 
will be erroneously determined as 

To correct properly for this effect, a source backscattering factor ( f b )  is 
defined by 

number of particles counted with source backing 
(8.15) f b  = number of particles counted without source backing 

From the definition it is obvious that 
2 > f b 2 1  

In the example discussed above, fb = 1.05, and the correct strength of the 
source is 

105 r s = - =  = 10,000 part ./min 
a f b  l op2  X 1.05 

The backscattering factor is important, in most cases, only for charged 
particles. It depends on three variables: 

1. Thickness ( b )  of the backing material 
2. Particle kinetic energy ( T )  
3. Atomic number of the backing material ( Z )  

The dependence of fb on thickness b is shown in Fig. 8.16. As b + 0,  
f ,  + 1, which should be expected. For large thicknesses, fb reaches a saturation 

Figure 8.16 ( a )  The backscattering factor fb as a function of thickness b of the backing material. (b )  
The saturation backscattering factor as a function of the atomic number Z of the backing material. 
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value, which should also be expected. Since charged particles have a definite 
range, there is a maximum distance they can travel in the backing material, be 
backscattered, and traverse the material again in the opposite direction. There- 
fore an upper limit for that thickness is b = R/2, where R is the range of the 
particles. Experiments have shown that 

The dependence of the saturation backscattering factor of electrons on the 
kinetic energy and the atomic number of the backing material is given by the 
following empirical equati~n,"? '~ based on a least-squares fit of experimental 
results: 

where the constants bi for i = 1,2,. . . ,8  have these values: 

Figure 8.17 shows the change of fb(sat) versus kinetic energy T for four 
elements. 

A backscattering correction should be applied to alpha counting in 27r 
counters (Fig. 8.8b). It has been determined13-l5 that the number of backscat- 

0.05 0.1 1 10 

Electron energy, MeV 

Figure 8.17 Backscattering factor as a 
function of energy for C, Al, Cu, and Au. 
Curves were obtained using Eq. 8.16. 



282 MEASUREMENT AND DETECTION OF RADIATION 

tered alphas is between 0 and 5 percent, depending on the energy of the alphas, 
the uniformity of the source, and the atomic number of the material forming the 
base of the counter. 

Correction for source backscattering is accomplished in two ways: 

1. An extremely thin backing material is used for which fb = 1. In general, a 
low2 material is used, e.g., plastic, if possible. 

2. A thick backing material is used, for which the saturation backscattering 
factor should be employed for correction of the data. 

For accurate results, the backscattering factor should be measured for the 
actual geometry of the experiment. 

8.4 DETECTOR EFFECTS 

The detector may affect the measurement in two ways. First, if the source is 
located outside the detector (which is usually the case), the particles may be 
scattered or absorbed by the detector window. Second, some particles may enter 
the detector and not produce a signal, or they may produce a signal lower than 
the discriminator threshold. 

8.4.1 Scattering and Absorption Due to the Window of the Detector 

In most measurements the source is located outside the detector (Fig. 8.18). The 
radiation must penetrate the detector window to have a chance to be counted. 
Interactions between the radiation and the material of which the detector wall is 
made may scatter and/or absorb particles. This is particularly important for 
low-energy P particles. 

Figure 8.18 shows a gas-filled counter and a source of radiation placed 
outside it. Usually the particles enter the detector through a window made of a 

I I Detector wall 

Detector 
window 

Figure 8.18 The window of the detector may scatter and/or absorb some of the particles emitted by 
the source. 
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very thin material (such as glass, mica, or thin metal). Looking at Fig. 8.18, most 
of the particles, like particle 1, traverse the window and enter the counter. But, 
there is a possibility that a particle, like particle 2, may be scattered at the 
window and never enter the counter. Or, it may be absorbed by the material of 
the window (particle 3). 

In the case of scintillation counters, the window consists of the material that 
covers the scintillator and makes it light-tight. In some applications the source 
and the scintillator are placed in a light-tight chamber, thus eliminating the 
effects of a window. 

In semiconductor detectors, the window consists of the metallic layer 
covering the front face of the detector. That layer is extremely thin, but may still 
affect measurements of alphas and heavier charged particles because of energy 
loss there. 

There is no direct way to correct for the effect of the window. Commercial 
detectors are made with very thin windows, but the investigator should examine 
the importance of the window effect for the particular measurement performed. 
If there is a need for an energy-loss correction, it is applied separately to the 
energy spectrum. If, however, there is a need to correct for the number of 
particles stopped by the window, that correction is incorporated into the 
detector efficiency. 

8.4.2 Detector Efficiency ( E ) 

It is not certain that a particle will be counted when it enters a detector. It may, 
depending on the type and energy of the particle and type and size of detector, 
go through without having an interaction (particle 1 in Fig. 8.19); it may produce 
a signal so small it is impossible to record with the available electronic instru- 
ments (particle 3); or, it may be prevented from entering the detector by the 
window (particle 4). In Fig. 8.19, the particle with the best chance of being 
detected is particle 2. 

/ 
No interaction-No pulse 

I 

Source 

Figure 8.19 Particles detected are those that interact inside the detector and produce a pulse higher 
than the discriminator level. 
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The quantity that gives the fraction of particles being detected is called the 
detector eficiency E ,  given by 

number of particles recorded per unit time 
E = 

number of particles impinging upon the detector per unit time 
(8.17) 

The detector efficiency depends upon1 

1. Density and size of detector material 
2. Type and energy of radiation 
3. Electronics 

Effect of density and size of detector material. The efficiency of a detector will 
increase if the probability of an interaction between the incident radiation and 
the material of which the detector is made increases. That probability increases 
with detector size. But larger size is of limited usefulness because the back- 
ground increases proportionally with the size of the detector, and because in 
some cases it is practically impossible to make large detectors. (Semiconductor 
detectors are a prime example.) 

The probability of interaction per unit distance traveled is proportional to 
the density of the material. The density of solids and liquids is about a thousand 
times greater than the density of gases at normal pressure and temperature. 
Therefore, other things being equal, detectors made of solid or liquid material 
are more efficient than those using gas. 

Effect of type and energy of radiation. Charged particles moving through matter 
will always have Coulomb interactions with the electrons and nuclei of that 
medium. Since the probability of interaction is almost a certainty, the efficiency 
for charged particles will be close to 100 percent. Indeed, detectors for charged 
particles have an efficiency that is practically 100 percent, regardless of their 
size or the density of the material of which they are made. For charged particles, 
the detector efficiency is practically independent of particle energy except for 
very low energies, when the particles may be stopped by the detector window. 

Charged particles have a definite range. Therefore, it is possible to make a 
detector with a length L such that all the particles will stop and deposit their 
energy in the counter. Obviously, the length L should be greater than R, where 
R is the range of the particles in the material of which the detector is made. 

Photons and neutrons traversing a medium show an exponential attenuation 
(see Chap. 4), which means that there is always a nonzero probability for a 
photon or a neutron to traverse any thickness of material without an interaction. 
As a result of this property, detectors for photons or neutrons have efficiency 
less than 100 percent regardless of detector size and energy of the particle. 

'1n gamma spectroscopy, several other efficiencies are being used in addition to this one (see 
Chap. 12). 
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Effect of electronics. The electronics of a detector affects the counter efficiency 
indirectly. If a particle interacts in the detector and produces a signal, that 
particle will be recorded only if the signal is recorded. The signal will be 
registered if it is higher than the discriminator level, which is, of course, 
determined by the electronic noise of the counting system. Thus, the counting 
efficiency may increase if the level of electronic noise is decreased. 

As an example, consider a counting system with electronic noise such that 
the discriminator level is at 1 mV. In this case, only pulses higher than 1 mV will 
be counted; therefore, particles that produce pulses lower than 1 mV will not be 
recorded. Assume next that the preamplifier or the amplifier or both are 
replaced by quieter ones, and the new noise level is such that the discriminator 
level can be set at 0.8 mV. Now, pulses as low as 0.8 mV will be registered, more 
particles will be recorded, and hence the efficiency of the counting system 
increases. 

If electronics is included in the discussion, it is the efficiency of the system 
(detector plus electronics) that is considered rather than the efficiency of the 
counter. 

8.4.3 Determination of Detector Efficiency 
The efficiency of a detector can be determined either by measurement or by 
calculation. Many methods have been used for the measurement of detection 
efficiency,16-l8 but the simplest and probably the most accurate is the method of 
using a calibrated source, i.e., a source of known strength. In Fig. 8.19, assume 
that the source is a monoenergetic point isotropic source emitting S particles 
per second. If the true net counting rate is r counts per second, the solid angle 
is fl, and the efficiency is E ,  the equation giving the efficiency is 

r 

where F = f a  f, ..- is a combination of all the correction factors that may have 
to be applied to the results. Note that the correction factors and the efficiency 
depend on the energy of the particle. 

Accurate absolute measurements rely on measured rather than calculated 
efficiencies. Nevertheless, an efficiency calculation is instructive because it 
brings forward the parameters that are important for this concept. For this 
reason, two cases of efficiency calculation for a photon detector are presented 
below. 

Consider first a parallel beam of photons of energy E impinging upon a 
detector of thickness L (Fig. 8.20). The probability that a photon will have at 
least one interaction in the detector is 1 - eC'"(E)L, where p ( E )  is the total 
linear attenuation coefficient of photons with energy E in the material of which 
the detector is made. If one interaction is enough to produce a detectable pulse, 
the efficiency is 

E ( ~ )  = 1 - e - ~ ( E ) L  (8.19) 
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Figure 8.20 A parallel beam of photons going through a detector of length (thickness) L. 

Equation 8.19 shows the dependence of E(E) on 

1. The size L of the detector 
2. The photon energy (through p )  
3. The density of the material (through p )  

Example 8.3 What is the efficiency of a 50-mm-long NaI(T1) crystal for a 
parallel beam of (a) 2-MeV gammas or (b) 0.5-MeV gammas? 

Answer (a) From the table in App. D, the total mass attenuation coefficient 
for 2-MeV gammas in NaI(T1) is p = 0.00412 m2/kg. The density of the 
scintillator is 3.67 X lo3 kg/m3. Therefore, Eq. 8.19 gives 

E = 1 - exp [ -0.00412 m2/kg(3.67 X lo3 kg/m3)0.05 ml = 1 - exp ( -0.756) 

= 0.53 = 53% 

(b) For 0.50-MeV gammas, p = 0.00921 m2/kg. Therefore, 

E = 1 - exp [ -0.00921 m2/kg(3.67 x lo3 kg/m3)0.05 m] = 1 - exp ( - 1.69) 

= 0.81 = 81% 

The next case to consider is that of a point isotropic monoenergetic source, 
at a distance d away from a cylindrical detector of length L and radius R (see 
Fig. 8.21). For photons emitted at an angle 8, measured from the axis of the 
detector, the probability of interaction is 1 - exp [-p(E)r(8)] and the probabil- 
ity of emission between angles 8 and 8 + d8  is isin 8 do. Assuming, as before, 
that one interaction is enough to produce a detectable pulse, the efficiency is 
given by 

/oss{l - exp [ - p ( ~ ) r ( e ) ] } i  sin 8 dB 
E ( E )  = (8.20) 

(s/~)/ 'o sin 8 dB 
0 

Equation 8.20 shows that the efficiency depends, in this case, not only on L, p, 
and E, but also on the source-detector distance and the radius of the detector. 
Results obtained by numerically integrating Eq. 8.20 are given in Sec. 12.4.1, 
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/ r' 

Figure 8.21 A point isotropic photon source at a distance d away from a cylindrical detector. 

where the efficiency of gamma detectors is discussed in greater detail. Many 
graphs and tables based on Eq. 8.20 can be found in Ref. 20. 

Equations 8.19 and 8.20 probably overestimate efficiency, because their 
derivation was based on the assumption that a single interaction of the incident 
photon in the detector will produce a detectable pulse. This is not necessarily 
the case. A better way to calculate efficiency is by determining the energy 
deposited in the detector as a result of all the interactions of an incident 
particle. Then one can compute the number of recorded particles based on the 
minimum energy that has to be deposited in the detector in order that a pulse 
higher than the discriminator level may be produced. The Monte Carlo method, 
which is ideal for such calculations, has been used by many  investigator^'^^^^ for 
that purpose. 

Efficiencies of neutron detectors are calculated by methods similar to those 
used for gammas. Neutrons are detected indirectly through gammas or charged 
particles produced by reactions of nuclei with neutrons. Thus, the neutron 
detector efficiency is essentially the product of the probability of a neutron 
interaction, with the probability to detect the products of that interaction (see 
Chap. 14). 

8.5 RELATIONSHIP BETWEEN COUNTING RATE AND 
SOURCE STRENGTH 

Equation 8.18 rewritten in terms of the true net counting rate r gives the 
relationship between r and the source strength: 

In terms of gross counts G obtained over time tG and background count B 
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obtained over time t,, the true net counting rate (Eq. 2.113) is 

where r is the counter dead time. Usually the objective of the measurement is 
to obtain the source strength S using a detection system of known R, F, and E .  

Combining Eqs. 8.21 and 8.22, the source strength becomes 

The error in the value of S is due to errors in the values of R, F, E ,  and the 
statistical error of r. In many cases encountered in practice, the predominant 
error is that of r. Then one obtains, from Eq. 8.23, 

That is, the percent error of S is equal to the percent error of the true net 
counting rate r. 

Example 8.4 The geometric setup shown in Fig. 8.22 was used for the 
measurement of the strength of the radioactive source. The following data were 
obtained: 

G = 6000 B = 400 r = 100 ps  E = 0.60 f 0.005 

t ,  = 10 min t, = 10 min F = 1 + 0.001 

What is the strength S and its standard error? 

Answer The true net counting rate r is 

Source 

- 0.1 0 rn 
I Figure 8.22 Geometry assumed in Example 

8.4. 
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The standard error of r is (Eq. 2.114) 

Therefore 

The solid angle is 

Using Eq. 8.23, 

r s = - =  561 
= 96,392 part./min 

ln FE (0.0097)(0.60) 

The standard error of S is (Sec. 2.15.1) 

PROBLEMS 

8.1 Show that if R, /d  < 1 and R , / d  < 1, the solid angle between two parallel disks with radii R,  
and R, a distance d  apart is given to a good approximation by 

where J, = R, /d  and o = R, /d .  
8.2 Show that an approximate expression for the solid angle between two nonparallel disks is 

where 0 is the angle between the planes of the two disks, and lJJ and w are defined as in Prob. 8.1. 



290 MEASUREMENT AND DETECTION OF RADIATION 

8 3  Show that the solid angle between a disk source and a detector with a rectangular aperture is 
given, approximately, by Eq. 8.13 under the conditions given in Sec. 8.2.6. 
8.4 A 1-mCi point isotropic gamma source is located 0.10 m away from a 60" spherical shell of a 
NaI detector, as shown in the figure below. Assuming that all the pulses at the output of the 
photomultiplier tube are counted, what is the counting rate of the scaler? The gamma energy is 1.25 
MeV. 

8.5 Calculate the counting rate for the case shown in the figure below. The source has the shape of 
a ring and emits lo6 part./s isotopically. The background is zero. The detector efficiency is 80 
percent, and F = 1. 

8.6 Calculate the self-absorption factor for a 14c source that has a thickness of 10 pg/cm2 
kg/m2); Em,, = 156 keV. 
8.7 An attempt was made to measure the backscattering factor by placing foils of continuously 
increasing thickness behind the source and observing the change in the counting rate. The foils were 
of the same material as the source backing. The results of the measurements are given in the table 
below. Calculate the saturation backscattering factor and the source backscattering factor. 

Thickness behind source (rnm) Counting rate (counts/rnin) 
- -  

0.1 (Source backing only) 3015 
0.15 3155 
0.2 3365 
0.25 3400 
0.3 3420 
0.35 3430 
0.4 3430 

8.8 What is the counting rate in a detector with a rectangular aperture measuring 1 mm x 40 mm, if 
a 1-mCi gamma-ray point isotropic source is 0.10 m away? The efficiency of the detector for these 
gammas is 65 percent. 
8.9 A radioactive source emits electrons isotropically at the rate of lo4 electrons/s. A plastic 
scintillator having the shape of a cylindrical disk with a 25-mm-radius is located 120 mm away from 
the source. The efficiency of the detector for these electrons is 95 percent. The backscattering factor 
is 1.02, and the source self-absorption factor is 0.98. Dead time of the counting system is 5 ps. How 
long should one count, under these conditions, to obtain the strength of the source with a standard 
error of 5 percent? Background is negligible. The only error involved is that due to counting 
statistics. 
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8.10 How would the result of Prob. 8.9 change if the backscattering factor was known with an error 
of 1 percent, the efficiency with an error of f 0.5 percent, and the source self-absorption factor 
with an error of + 1 percent? 

8.11 Calculate the strength of a point isotropic radioactive source if it is given that the gross 
counting rate is 200 counts/min, the background counting rate is 25 counts/min, the counter 
efficiency is 0.90, the source detector distance is 0.15 m, and the detector aperture has a radius of 20 
mm ( F  = 1). What is the standard error of the results if the error of the gross counting rate is 
known with an accuracy of * 5  percent and the background with t 3  percent? Dead time is 1 ps. 
8.12 A point isotropic source is located at the center of a hemispherical 297 counter. The efficiency 
of this detector for the particles emitted by the source is 85 percent. The saturation backscattering 
factor is 1.5. The background is 25 + 1 counts/min. What is the strength of the source if 3000 
counts are recorded in 1 min? What is the standard error of this measurement? 
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CHAPTER 

NINE 

INTRODUCTION TO SPECTROSCOPY 

9.1 INTRODUCTION 

Spectroscopy is the aspect of radiation measurements that deals with measuring 
the energy distribution of particles emitted by a radioactive source or produced 
by a nuclear reaction. 

This introduction to spectroscopy is complemented by Chap. 11, which 
discusses methods of analysis of spectroscopic data, and Chaps. 12-14, which 
present details on spectroscopy of photons, charged particles, and neutrons. This 
chapter discusses the following broad subjects: 

1. Definition of differential and integral spectra 
2. Energy resolution of the detector 
3. The function of a multichannel analyzer (MCA) 

9.2 DEFINITION OF ENERGY SPECTRA 

A particle energy spectrum is a function giving the distribution of particles in 
terms of their energy. There are two kinds of energy spectra, differential and 
integral. 

The differential energy spectrum, the most commonly studied distribution, is 
also known as an energy spectrum. It is a function n ( E )  with the following 
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meaning: 

n(E) dE = number of particles with energies between E and E + dE 
or 

n( E )  = number of particles with energy E per unit energy interval 

The quantity n(E) dE is represented by the cross-hatched area of Fig. 9.1. 
The integral energy spectrum is a function N(E), where N(E) is the number 

of particles with energy greater than or equal to E. The quantity N(E) is 
represented by the hatched area of Fig. 9.1. The integral energy spectrum N(E) 
and the differential energy spectrum n(E) are related by 

The two examples that follow illustrate the relationship between a differential 
spectrum and an integral spectrum. 

Example 9.1 Consider a monoenergetic source emitting particles with en- 
ergy E,. The differential energy spectrum n(E) is shown in Fig. 9.2. Since there 
are no particles with energy different from E,, the value of n(E) is equal to 
zero for any energy other than E = E,. 

The corresponding integral spectrum N(E) is shown in Fig. 9.3. It indicates 
that there are no particles with E > E,. Furthermore, the value of N(E) is 
constant for E I E,, since all the particles have energy E, and only those 
particles exist. In other words, 

N(E,) = number of particles with energy greater than or equal to E, = N(E,) 

= number of particles with energies greater than or equal to E, (Fig. 9.3) 

Figure 9.1 A differential energy spectrum. The quantity n ( E )  dE is equal to the number of particles 
between E and E f dE (cross-hatched area). 
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1 E Figure 9.2 A monoenergetic spec- 
€ 0  trum. All particles have energy E,,. 

Example 9.2 Consider the energy spectrum shown in Fig. 9.4. According to 
this spectrum, there are 10 particles per MeV at 11, 12, and 13 MeV. The total 
number of particles is 30. The integral spectrum is shown in Fig. 9.5. Its values 
at different energies are 

N(14) = 0 no particles above E = 14 MeV 

N(13) = 10 10 particles at E = 13 MeV and above 

N(12) = 20 20 particles at E = 12 MeV and above 

N(11) = 30 30 particles at E = 11 MeV and above 

N(10) = 30 30 particles at E = 10 MeV and above 

N(0) = 30 30 particles above E = 0 

The determination of energy spectra is based on the measurement of 
pulse-height spectra, as shown in the following sections. Therefore, the defini- 
tions of differential and integral spectra given in this section in terms of energy 
could be expressed equivalently in terms of pulse height. The relationship 
between particle energy and pulse height is discussed in Sec. 9.5. 

9.3 MEASUREMENT OF AN INTEGRAL SPECTRUM WITH A 
SINGLE-CHANNEL ANALYZER 

Measurement of an integral spectrum means to count all particles that have 
energy greater than or equal to a certain energy E or, equivalently, to record all 
particles that produce pulse height greater than or equal to a certain pulse 
height V. A device is needed that can sort out pulses according to height. Such a 
device is a single-channel analyzer (SCA) operating as a discriminator (integral 
mode). If the discriminator is set at V, volts, all pulses with height less than Vo 
will be rejected, while all pulses with heights above Vo will be recorded. 
Therefore, a single discriminator can measure an integral energy spectrum. The 
measurement proceeds as follows. 
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1 
I 
I I Figure 9.3 The integral spectrum of a 

0 EI E 0 monoenergetic source. 

Consider the differential pulse spectrum shown in Fig. 9.6 for which all 
pulses have exactly the same height Vo. To record this spectrum, one starts with 
the discriminator threshold set very high (higher than VJ and then lowers the 
threshold by a certain amount AV (or AE) in successive steps. Table 9.1 shows 
the results of this measurement, where N(V) is the number of pulses higher 
than or equal to V. A plot of these results is shown in Fig. 9.7. 

9.4 MEASUREMENT OF A DIFFERENTIAL SPECTRUM WITH A 
SINGLE-CHANNEL ANALYZER (SCA) 

Measurement of a differential energy spectrum amounts to the determination of 
the number of particles within a certain energy interval A E for several values of 
energy; or, equivalently, it amounts to the determination of the number of 
pulses within a certain interval AV, for several pulse heights. A SCA operating 
in the differential mode is the device that is used for such a measurement. 

If the lower threshold of the SCA is set at Vl (or El )  and the window has a 
width AV (or AE), then only pulses with height between Vl and Vl + AV are 
recorded. All pulses outside this range are rejected. To measure the pulse 
spectrum of Fig. 9.6, one starts by setting the lower threshold at Vl, where 
Vl > Vo, with a certain window AV (e.g., AV = 0.1 V) and then keeps lowering 
the lower threshold of the SCA. Table 9.2 shows the results of the measurement, 
where n(V) AV is the number of pulses with height between V and V + AV. 
Figure 9.8 shows these results. It is assumed that the width is AV = I/: - V; ,  ,, 
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I I 

0 v A 1 1 1 1  I E, MeV 
9 10 11 12 13 14 

Figure 9.5 The integral spectrum corresponding to that of Fig. 9.4. 

vo 

Figure 9.6 A differential pulse spectrum consisting of pulses with the same height V,. 

Table 9.1 Measurement of Integral Spectrum 

Discriminator 
Threshold 

"3 

C', < v, 
" 5  

v 6 

v; < Vo 
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1 I I 
I I I I I  I l l  

v, v, v6 v5 v4 v3 v2 v1 1 Figure 9.7 The integral spec- 
Discriminator level trum corresponding to the pulse 

spectrum of Fig. 9.6. 4 
"0 

where I/, are the successive settings of the lower threshold of the SCA. It is 
important to note that one never measures the value of n(V), but only the 
product n(V)  AV. 

9.5 THE RELATIONSHIP BETWEEN PULSE-HEIGHT 
DISTRIBUTION AND ENERGY SPECTRUM 

To determine the energy spectrum of particles emitted by a source, one 
measures, with the help of a detector and appropriate electronics, the pulse- 

Table 9.2 Measurement of Differential Spectrum 

SCA threshold n(v) A V  

I I 1  

vi v, "5 ~ 4 ~ 3  v ,  v, Figure 9.8 A differential en- 
Lower threshold of the SCA I 

vo 
ergy spectrum measured with 
an SCA. 
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height distribution produced by these particles. Fundamental requirements for 
the detector and the electronics are as follows: 

1. The particle should deposit all its energy or a known constant fraction of it in 
the detector. 

2. The voltage pulse produced by the detector should be proportional to the 
particles energy dissipated in it, or a known relationship should exist between 
energy dissipated and pulse height. 

3. The electronic amplification should be the same for all pulse heights. 

Since the relationship between pulse-height distribution and energy spectrum 
depends on these three requirements, it is important to discuss them in some 
detail. 

Charged particles deposit all their energy in the detector, as long as their 
range is shorter than the size of the detector. Gammas do not necessarily 
deposit all their energy in the detector, regardless of detector size. Neutrons are 
detected indirectly through other particles produced by nuclear reactions. The 
energy deposited in the detector depends not only on the energy of the neutron 
but also on the energy and type of the reaction products. 

The events that transform the particle energy into a voltage pulse are 
statistical in nature. As a result, even if all the particles deposit exactly the same 
energy in the detector, the output pulses will not be the same but they will have 
a certain distribution. 

The state of commercial electronics is such that the amplification is essen- 
tially the same for all pulse heights (see also Sec. 10.11). 

As a result of incomplete energy deposition and the statistical nature of the 
events that take place in the detector, the shape of the pulse-height distribution 
is different from that of the source energy spectrum. In other words, two spectra 
are involved in every measurement: 

1. The source spectrum: This is the energy spectrum of particles emitted by the 
source. 

2. The measured spectrum: This is the measured pulse height distribution. 

Consider, for example, the measured pulse-height distribution shown in Fig. 
9.9b produced by a monoenergetic gamma source. This distribution (or spec- 
trum) is obtained using a scintillation counter. The observer records the data 
shown in Fig. 9.9b, which is not identical to that of the source, Fig. 9 . 9 ~ .  The 
objective of the measurement is to obtain the spectrum of Fig. 9.9a, but the 
observer actually measures the distribution shown by Fig. 9.96. The task of the 
observer is, therefore, to apply appropriate corrections to the measured spec- 
trum to finally obtain the source spectrum. 
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9.6 ENERGY RESOLUTION OF A DETECTION SYSTEM 

The quality of the performance of a detection system used for energy measure- 
ments is characterized by the width of the pulse-height distribution obtained 
with particles of the same energy (monoenergetic source). Even in the case 
where each particle deposits exactly the same energy in the detector, the 
pulse-height distribution will not be a single line (like that shown in Fig. 9.9~); 
instead, it will have a certain finite width (Fig. 9.10) due to 

1. Statistical fluctuations in the number of charge carriers produced in the 
detector 

2. Electronic noise in detector itself, the preamplifier, and the amplifier 
3. Incomplete collection of the charge produced in the detector 

The width, measured at half of the maximum of the bell-shaped curve, is 
indicated by r or by full width at half maximum (FWHM). The ability of a 
detector to identify particles of different energies, called the energy resolution, is 
given either in terms of r or in terms of the ratio R(E,), where 

r 
R(Eo) = - (9.2) 

Eo 

The width r is given in energy units, while the ratio R(Eo) is given as a 
percentage. 

Figure 9.9 ( a )  The source energy spectrum 
of a monoenergetic gamma source. (b )  The 
pulse-height distribution obtained with a 
NaI(T1) scintillation counter. 
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Source spectrum 

distribution 

Figure 9.10 The energy resolution of the detector is given by the width r or the ratio T/E,,. 

The most important elements affecting the energy resolution of a radiation 
detection system are the three statistical factors mentioned above in relation to 
the width r. It is worth repeating that in energy measurements it is the energy 
resolution of the counting system (detector-preamplifier-amplifier) that is the 
important quantity and not the energy resolution of just the detector. 

9.6.1 The Effect of Statistical Fluctuations: The Fano Factor 

To discuss the effect of the statistical fluctuations on energy resolution, consider 
a monoenergetic source of charged particles being detected by a silicon semi- 
conductor detector. (The discussion would apply to a gas-filled counter as well.) 
The average energy w needed to produce one electron-hole pair in silicon is 
3.66 eV, although the energy gap (E,) is 1.1 eV. This difference between w and 
E, shows that part of the energy of the incident particles is dissipated into 
processes that do not generate charge carriers. Any process that consumes 
energy without producing electron-hole pairs is, of course, useless to the 
generation of the detector signal. If the energy deposited in the detector is E, 
the average number of charge carriers is E/w .  If the process of the electron-hole 
generation were purely statistical, Poisson statistics would apply and the stan- 
dard deviation of the number of pairs would be 

Experience has shown that the fluctuations are smaller than what Eq. 9.3 gives. 
The observed statistical fluctuations are expressed in terms of the Fano factor 
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F,l where 

(standard deviation of the number of pairs produced)2 
F =  

number of pairs produced 

or, using Eq. 9.3, 

The two extreme values of F are 0 and 1. 
F = 0 means that there are no statistical fluctuations in the number of pairs 

produced. That would be the case if all the energy was used for production of 
charge carriers. F = 1 means that the number of pairs produced is governed by 
Poisson statistics. 

Fano factors have been calculated and also measured.'-' For semiconduc- 
tor detectors, F values as low as 0.06 have been r e p ~ r t e d . ~  For gas-filled 
counters, reported F values lie between 0.2 and 0.5. Values of F < 1 mean that 
the generation of electron-hole pairs does not exactly follow Poisson statistics. 
Since Poisson statistics applies to outcomes that are independent, it seems that 
the ionization events in a counter are interdependent. 

The width r of a Gaussian distribution, such as that shown in Fig. 9.10, is 
related to the standard deviation cr by 

Combining Eqs. 9.4 and 9.5, 

Equation 9.5 shows that the width Tf, which is due to the statistical fluctuations, 
is roughly proportional to the square root of the energy (the Fano factor is a 
weak function of energy). 

To compare the contribution of the statistical fluctuations to the resolution 
of different types of detectors at a certain energy, one can use Eqs. 9.2 and 9.6 
and write for detectors 1 and 2 

It can be seen from Eq. 9.7 that the resolution is better for the detector with the 
smaller average energy needed for the creation of a charge carrier pair (and 
smaller Fano factor). Thus, the energy resolution of a semiconductor detector 
(w - 3 eV, F < 0.1) should be expected to be much better than the resolu- 
tion of a gas-filled counter (w = 30 eV, F .= 0.2), and indeed it is (see Chaps. 12 
and 13). 
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9.6.2 The Effect of Electronic Noise on Energy Resolution 

The electronic noise consists of a small voltage variation around the zero line 
(Fig. 9.11), with average voltage En # 0. To see the effect of the noise on the 
energy resolution, consider pulses of constant height V. In the absence of noise, 
the FWHM of the distribution of these pulses is zero. If noise is present, the 
pulses will be superimposed on the noise with the results that the pulses are not 
of equal height any more (Fig. 9.12), and that the pulses form a Gaussian 
distribution centered at V and having a width equal to Tn = 2 m - z  q,. The 
width rn is due to the noise only and has nothing to do with statistical effects in 
the detector. 

The signal-to-noise ratio is frequently the quantity used to indicate the 
magnitude of the noise. It is defined by 

mean pulse height V 
Signal-to-noise ratio = = - 

noise standard deviation an 

Or, one can write 

where R is given by Eq. 9.2. This last equation may be rewritten as 

to show that the higher the signal-to-noise ratio is, the better the resolution 
becomes (other things being equal, of course). 

9.6.3 The Effect of Incomplete Charge Collection 

The effect of incomplete charge collection in gas counters is small compared to 
the effect of the statistical fluctuations. In semiconductor detectors, incomplete 
charge collection is due to trapping of carriers. The amount of charge trapped is 
approximately proportional to the energy deposited in the detector, which in 
turn, is proportional to the energy of the incident  particle^.^ For this reason, the 
resolution is affected by trapping effects more at high energy than at low energy. 
As discussed in Chap. 7, trapping effects depend on the material of which the 
detector is made and on radiation damage suffered by the semiconductor. 
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Figure 9.12 ( a )  The pulses are superimposed on the noise, as a result of which ( b )  they show a 
distribution with a width that depends on the standard deviation of the noise. 

Usually, the effect of incomplete charge collection is included in the statistical 
fluctuations. 

9.6.4 The Total Width r 
The total width r (or the total energy resolution) is obtained by adding in 
quadrature the contributions from the statistical effects (r') and from the noise 
and incomplete charge collection (T,). Thus, 

For gas and scintillator counters, the main contribution comes from the statisti- 
cal fluctuations. For semiconductor detectors at low energies, measurements 
have shown that T, > rf. At higher energies this is reversed, since T, is 
essentially independent of energy while I'f increases with it (see Eq. 9.6). 

9.7 DETERMINATION OF THE ENERGY RESOLUTION-THE 
RESPONSE FUNCTION 

Depending on the type and energy of the incident particle and the type of the 
detector, a monoenergetic source produces a pulse-height distribution that may 
be a Gaussian (Fig. 9.10) or a more complicated function (Fig. 9.9). In either 
case, one concludes that although all the particles start at the source with the 
same energy, there is a probability that they may be recorded within a range of 
energies. That probability is given by the response function or energy resolution 
function R(E, E') of the detection system, defined as 

R(E, E') dE = probability that a particle emitted by the source with energy E' 

will be recorded with energy between E and E + dE 
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One measures, of course, a pulse-height distribution, but the energy calibration 
of the system provides a one-to-one correspondence between energy and pulse 
height. If one defines 

S( E )  d E  = source spectrum = number of particles emitted by the source 
with energy between E and E + dE 

and 

M( E )  dE = measured spectrum = number of particles recorded as having 

energy between E and E + dE 
then the three functions R(E,  E'), S(E) ,  and M ( E )  are related by 

Equation 9.10 is an integral equation with the source spectrum S ( E )  being the 
unknown. The procedure by which S ( E )  is obtained, after R(E,  E ' )  and M ( E )  
have been determined, is called unfolding of the measured spectrum. Methods 
of unfolding are discussed in Chaps. 11-14. 

To determine the response function of a detection system at energy E, the 
energy spectrum of a monoenergetic source emitting particles with that energy 
is recorded. Since the resolution changes with energy, the measurement is 
repeated using several sources spanning the energy range of interest. The 
response function can also be calculated, as shown in Chaps. 12-14. Figure 9.13 
shows response functions for several commonly encountered cases. 

9.8 THE IMPORTANCE OF GOOD ENERGY RESOLUTION 

The importance of good energy resolution becomes obvious if the energy 
spectrum to be measured consists of several energies. Consider as an example 
the source spectrum of Fig. 9.14, consisting of two energies E, and E,. Assume 
that this spectrum is measured with a system having energy resolution equal to 
I',+ and examine the following cases. 

Case I: E, - El > 2r'. The measured spectrum is shown in Fig. 9.15 for this 
case. The system can resolve the two peaks-i.e., the two peaks can be identified 
as two separate energies. 

Case 11: E, - E, = 2I'. This case is shown in Fig. 9.16. The peaks can still be 
resolved. 

'T may be different at El and E,. However, the difference is very small since El and E, are 
close. For the present discussion, the same will be used at El and E,. 
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Figure 9.13 Four examples of 
response functions (a)  5-MeV 
Alpha particles detected by a 
silicon surface barrier detector 
(Chap. 13), or 20-keV X-rays 
detected by a Si(Li) reactor 
(Chap. 12). (b )  1-MeV Gamma 
ray detected by a NaI(TI) crystal 
(Chap. 12). ( c )  1-MeV Electrons 
detected by a plastic scintillator 
(Chap. 13). ( d )  5-MeV Neutrons 
detected by an NE 213 organic 
scintillator (Chap. 14). 

Case 111: E, - E, = r. This case is shown in Fig. 9.17. The solid line shows how 
the measured spectrum will look as the sum of the two peaks (dashed lines). 

It is obvious that it is difficult to identify two distinct peaks if E, - El = T, 
and the situation will be worse if E, - E, < T. 

The three cases examined above intend to show how important good energy 
resolution is for the measurement of spectra with many energy peaks. If the 
response function of the detector is not known and the measured spectrum 
shows no well-identified peaks, the following criterion is used for the energy 
resolution required to identify the peaks of about equal magnitude: 

To be able to resolve two energy peaks at El and E,, the resolution of the system should be 
such that r I (E l  - E,I. 
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L E2 E Figure two distinct 9.14 energies. Source spectrum consisting of 

9.9 BRIEF DESCRIPTION OF A MULTICHANNEL 
ANALYZER (MCA) 

To measure an energy spectrum of a radioactive source means to record the 
pulse-height distribution produced by the particles emitted from the source, 
which is achieved with the use of an instrument called the multichannel analyzer 
(MCA). Multichannel analyzers are used in either of two different modes: the 
pulse-height analysis (PHA) mode or the multichannel scaling (MCS) mode. 

The MCS mode is used to count events as a function of time. The individual 
channels of the memory count all incoming pulses for a preset time width At. 
After time At,  the counting operation is switched automatically to the next 
channel in the memory, thus producing in the end a time sequence of the 
radiation being detected. For example, if the radiation source is a short-lived 
isotope, the MCS mode will provide the exponential decay curve that can be 
used for the measurement of the half-life of this isotope. The MCS mode is also 
useful for Mossbauer experiments. 

The PHA mode is the traditional function of an MCA and is used to sort 
out incoming pulses according to their height and store the number of pulses of 
a particular height in a corresponding address of the MCA memory called the 
channel number. 

In the PHA mode, an MCA performs the function of a series of SCAs 
placed adjacent to one another. When only one SCA with width A E  is used, the 
experimenter has to sweep the spectrum by moving the lower threshold of the 
SCA manually (see Sec. 9.4). On the other hand, if one had many SCAs, all 
counting simultaneously, the whole spectrum would be recorded simultaneously. 
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This is exactly what the MCA does, although its principle of operation is not 
based on a series of SCAs. 

Figure 9.18 shows a simplified block diagram of an MCA. In the PHA mode, 
the incoming pulse enters into a unit called the analog-to-digital converter 
(ADC). The ADC digitizes the pulse amplitude: it produces a number propor- 
tional to the height of the pulse, a number that determines the channel where 
the pulse will be stored. The size of the ADC, given in terms of channels, 
defines the absolute resolution of the system. Actually, the ADC determines the 
number of discrete parts into which the pulse height can be subdivided. 
Commercial ADCs have at the present time a size up to 16384 channels, with 
the full scale adjustable in steps of 256, 512, 1024, etc., channels. 

The number of discrete parts (channels) into which the input pulse range (0 
to + 10 V) is divided is called the conversion gain. The conversion gain is set by a 
stepwise control knob located on the front of the instrument. As an example, if 
the conversion gain is set at 2048 channels, it means that the maximum pulse 
height (10 V) is divided into that many parts. Therefore, the resolution of the 
MCA at this setting is 

10 V/2048 = 4.88 mV/channel 

More details about the operation and characteristics of ADCs are given in Sec. 
10.12. 

The memory of the MCA is a data-storage unit arranged in a series of 
channels. Every channel is capable of storing up to 220 - 1 data (pulses), in 
most cases. Commercial MCAs have memories with up to 16384 channels. 
Normally, the MCA provides for selection and use of the full memory, only half 
of it, or one-fourth of it. Transfer of data from one fraction of the memory to 
another is also possible. 

Figure 9.17 Measured spectrum for Case 
111: r = E2 - E l .  
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ADC Input 

User lnpul 

t 
Inputloutput Device 

Figure 9.18 Block diagram showing the components of an MCA counting system (modified from 
Ref. 10). 

In the PHA mode, the first channel of the region used is called channel zero 
and records, in almost all late model MCAs, the live time of the analysis, in 
seconds. If the full memory or the first half or first quarter of the memory is 
used, channel zero is the address 0000. If the second half of 4096 memory is 
used, channel zero is address 2048; if the second quarter is used, channel zero is 
address 1024; and so on. 

How does one determine the size of the MCA memory needed for a specific 
experiment? The decision is made based on the requirements for the PHA 
mode. One equation frequently used is 

energy range of interest (keV) 
Number of channels = h (9.11) 

T(keV) 

where r is the FWHM of the detector used. The factor h is equal to the 
number of channels at or above the FWHM of the peak. Its value is between 3 
and 5. 

As an example, assume that the energy range of interest is 0 to 2.0 MeV and 
consider a NaI(T1) and a Ge detector. The resolution of the NaI(T1) detector is 
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about 50 keV. Therefore, the minimum number of channels is ( h  = 5) 

5 ( ) = 200 channels 

The resolution of a Ge detector is about 2 keV. Now, the number of channels is 

5 ( ) = 5000 channels 

The user should remember that the ADC, not the memory, determines the 
absolute resolution of an MCA. An MCA with an ADC of 1000 channels and a 
memory of 2000 channels has an actual resolution of only 1000 channels. 

In using an MCA to record a spectrum, there is "dead time" involved, which 
is, essentially, the time it takes to store the pulse in the appropriate channel. 
That time depends on and increases with the channel number. More details 
about the MCA dead time are given in Sec. 10.12 in connection with the 
discussion of ADCs. 

Commercial MCAs have a meter that shows, during counting, the percent- 
age of dead time. They also have timers that determine the counting period in 
live time or clock time. In clock time mode, the counting continues for as long as 
the clock is set up. In live time mode, an automatic correction for dead time is 
performed. In this case, the percent dead time indication can be used to 
determine the approximate amount of actual time the counting will take. For 
example if the clock is set to count for 5 min (in live mode) and the dead time 
indicator shows 25 percent, the approximate actual time of this measurement is 
going to be 

live time 
- - 

300 s 
Actual time = = 400 s 

1 - (dead time fraction) 1 - 0.25 

Modern MCAs can do much more than just store pulses in memory. They 
are computers that may, depending on the hardware and software available, be 
able to 

1. Perform the energy calibration of the system 
2. Determine the energy of a peak 
3. Integrate the area over a desired range of channels 
4. Identify an isotope, based on the energy peaks recorded, etc. 

9.10 CALIBRATION OF A MULTICHANNEL ANALYZER 

The calibration of an MCA follows these steps: 
1. Determination of range of energies involved. Assume this is 0 I E I Em 

(MeV). 
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2. Determination of preampliJier-amplifier setting. Using a source that emits 
particles of known energy, one observes the signal generated on the screen of 
the oscilloscope. It should be kept in mind that the maximum possible signal at 
the output of the amplifier is 10 V. In energy spectrum measurements, one 
should try to stay in the range 0-9 V. 

Assume that the particle energy El results in pulse height Vl.  Is this 
amplification proper for obtaining a pulse height Vm I 10 V for energy Em? To 
find this out, the observer should use the fact that pulse height and particle 
energy are proportional. Therefore, 

If Vm < 10 V ,  then the amplification setting is proper. If V, 2 10 V ,  the 
amplification should be reduced. (If Vm < 2 V ,  amplification should be in- 
creased. It is good practice, but not necessary, to use the full range of allowed 
voltage pulses.) The maximum pulse Vm can be changed by changing the 
amplifier setting. 

3. Determination of MCA settings. One first decides the part of the MCA 
memory to be used. Assume that the MCA has a 1024-channel memory and it 
has been decided to use 256 channels, one-fourth of the memory. Also assume 
that a spectrum of a known source with energy El is recorded and that the peak 
is registered in channel C,. Will the energy Em be registered in Cm < 256, or 
will it be out of scale? 

The channel number and energy are almost proportional,+ i.e., Ei - Ci. 
Therefore 

If Cm 1 256, the setting is proper and may be used. If Cm > 256, a new 
setting should be employed. This can be done in one of two ways or a 
combination of the two: 

1. The fraction of the memory selected may be changed. One may use 526 
channels of 1024, instead of 256. 

2. The conversion gain may be changed. In the example discussed here, if a 
peak is recorded in channel 300 with conversion gain of 1024, that same peak 
will be recorded in channel 150 if the conversion gain is switched to 512. 

There are analyzer models that do not allow change of conversion gain. For 
such an MCA, if C, is greater than the total memory of the instrument, one 
should return to step 2 and decrease Vm by reducing the gain of the amplifier. 

 h he correct equation is E = a + bC, but a is small and for this argument it may be neglected; 
proper evaluation of a and b is given in step 4 of the calibration procedure. 
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4. Determination of the energy-channel relationship. Calibration of the MCA 
means finding the expression that relates particle energy to the channel where a 
particular energy is stored. That equation is written in the form 

... where C = channel number and a , ,  a,, a, ,  are constants. 
... The constants a,, a,, a,, are determined by recording spectra of sources 

with known energy. In principle, one needs as many energies as there are 
constants. In practice, a large number of sources is recorded with energies 
covering the whole range of interest, and the constants are then determined by a 
least-squares fitting process (see Chap. 11). 

Most detection systems are essentially linear, which means that Eq. 9.12 
takes the form 

E = a, + a,C 

Example 9.3 Obtain the calibration constants for 
spectrum shown in Fig. 9.19. The peaks correspond 
energies: 

El = 0.662 MeV C, = 160 

an MCA based on the 
to the following three 

E, = 1.173 MeV C, = 282.5 

E3 = 1.332 MeV C3 = 320 

Answer Plotting energy versus channel on linear graph paper, one obtains 
the line shown in Fig. 9.20, which indicates that the linear equation, Eq. 9.13, 
applies, and one can determine the constants a, and a, from the slope and the 
zero intercept of the straight line. From Fig. 9.20, the value of a, is 

Channel number 

Figure 9.19 A gamma spectrum used for calibration of an MCA. 
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L / I Slope is equal to a, 

Channel number 

Figure 9.20 Plot of energy versus channel number. In this case, the relationship is linear. 

The constant a ,  is equal to the zero-intercept of the line.' In the present case, it 
is almost zero. Based on these results, the calibration equation of this MCA is 
E = 4.15C. 

5. Calculation of the enelgy resolution. By definition, the energy resolution is 
R  = T / E ,  where r is the FWHM of the peak of energy E. Therefore, using Eq. 
9.13, 

r ( a ,  + a 2 C R )  - ( a ,  - a2CL> a2(CR - C L )  R = - =  - - (9.14) 
E E E 

where C ,  and C ,  are the channel numbers on either side of the peak at half of 
its maximum. If a ,  is zero, the resolution is given by 

For peak E, (Fig. 9.191, 

CL = 158 C,,,, = 160 C, = 162 

Therefore 

' ~ o s t  commercial MCAs have a hand-screw adjustment that makes a, equal to zero. 
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PROBLEMS 

9.1 Sketch the integral spectrum for the differential spectrum shown in the figure below. 

9.2 Sketch the differential energy spectrum for the integral spectrum shown in the figure below. 

9 3  Sketch the integral spectrum for the differential spectrum shown in the figure below. 

9.4 If the energy resolution of a NaI(TI) scintillator system is 11 percent at 600 keV, what is the 
width r of a peak at that energy? 

9.5 What is the maximum energy resolution necessary to resolve two peaks at 720 keV and 755 
keV? 

9.6 Prove that if a detection system is known to be linear, the calibration constants are given by 

where El  and E, are two energies recorded in channels C, and C,, respectively. 
9.7 Shown in the following figure is the spectrum of " ~ a ,  with its decay scheme. Determine the 
calibration constants of the MCA that recorded this spectrum, based on the two peaks of the 22 Na 
spectrum. 
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1.277 MeV 

9.8 In Prob. 9.7, the channel number cannot be read exactly. What is the uncertainty of the 
calibration constants a, and a, if the uncertainty in reading the channel is one channel for either 
peak? 
9.9 Assume that the energy resolution of a scintillation counter is 9 percent and that of a 
semiconductor detector is 1 percent at energies around 900 keV. If a source emits gammas at 0.870 
MeV and 0.980 MeV, can these peaks be resolved with a scintillator or a semiconductor detector? 

9.10 Consider the two peaks shown in the accompanying figure. How does the peak at E, affect the 
width of the peak at E, and vice versa? What is the width l- for either peak? 

Channel number 
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CHAPTER 

TEN 

ELECTRONICS 

10.1 INTRODUCTION 

This chapter presents a brief and general description of electronic units used in 
radiation measurements. The subject is approached from the viewpoint of 
' 6 .  input-output7'-i.e., the input and output signals of every component unit or 
instrument are presented with a minimum of discussion on circuitry. The 
objective is to make the reader aware of the capabilities and limitations of the 
different types of units and, at the same time, create the capacity to choose the 
right component for a specific counting system. 

Details about construction and operation of electronic components and 
systems are given in books specializing on that subject. A few such texts are 
listed in the bibliography at the end of the chapter. Also, the vendors of nuclear 
instruments provide manuals for their products with useful information about 
their operation. 

10.2 RESISTANCE, CAPACITANCE, INDUCTANCE, 
AND IMPEDANCE 

To understand what factors affect the formation, transmission, amplification, 
and detection of a detector signal, it is important to comprehend the function of 
resistance, capacitance, inductance, and impedance, which are the basic con- 
stituents of any electronic circuit. For this reason, a brief review of these 
concepts is offered. 
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The resistance R is a measure of how difficult (or easy) it is for an electric 
current to flow through a conductor. The resistance is defined by Ohm's law as 
the ratio of a voltage to current flowing through a conductor (Fig. 10.1~). The 
resistance is measured in ohms ( a ) .  If a potential difference of 1 V generates a 
current of 1 A, the resistance is 1 a ;  that is, 

Capacitance C is the ability to store electrical charge. A capacitor usually 
consists of two conductors separated by an insulator or a dielectric (Fig. 10.lb). 
Every conductor, e.g., simple metal wire, has a certain capacitance. The capaci- 
tance is measured in farads (F). If a charge of 1 coulomb produces a potential 
difference of 1 V between the two conductors forming the capacitor, then its 
capacitance is 1 F; that is, 

9 c = -  (10.2) 
v 

If the voltage across the capacitor is constant, no current flows through it; i.e., a 
capacitor acts as an open circuit to dc voltage. If, however, the voltage changes, 
a current flows through the capacitor equal to 

Inductance refers to the property of conductors to try to resist a change in a 
magnetic field. If the current flowing through a conductor changes with time (in 
which case the magnetic field produced by the current also changes), a potential 
difference is induced that opposes the change. The induced potential difference 
VL is given by (Fig. 10.1~)  

where L is called the inductance of the conductor and is measured in henrys 
(H). If a current change of 1 A/s induces a potential difference of 1 V, the 
inductance is 1 H. An inductor is usually indicated as a coil (Fig. lO.lc), but any 

(a )  (b )  -- (c) 

Figure 10.1 (a) A resistor. ( b )  A capacitor. ( c )  An inductor (coil). 



conductor, e.g., a metal wire, has a certain inductance. No pure inductor exists 
because there is always some ohmic resistance and some capacitance in the 
wires making the coils. 

Capacitance and inductance are important for time-varying signals. To be 
able to introduce and discuss the pertinent concepts, consider a sinusoidal 
voltage signal with maximum voltage Vm and frequency w applied to an RC 
circuit, as shown in Fig. 10.2: 

V ( t )  = Vm sin wt (10.5) 

Kirchhoff's second law applied to this circuit gives 

9 
Vm sin wt - - = Ri (10.6) 

C 

Differentiating Eq. 10.6 with respect to time, 

The current flowing through the circuit is sinusoidal with frequency w but with a 
phase difference relative to the input voltage. Let us call this phase difference 
cp. Then, we can write for the current 

i ( t )  = im sin ( w t  + c p )  (10.8) 

To evaluate the phase difference cp ,  substitute Eq. 10.8 into Eq. 10.7 and 
compute the resulting expression at some convenient value of the time t (in this 
case, t = 7r/2w; see Prob. 10.1). The result is 

1 
tan cp = - 

RCw 

Note that as R + 0, tan cp + and cp + r / 2 .  The voltage across the capacitor 
is given by 

Figure 10.2 The interaction of an RC circuit with a sinusoidal input. 
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At every time t ,  the instantaneous potentials V(t ) ,  VR(t), and Vc(t) satisfy 
the equation 

v ( t )  = vR( t>  + v c ( t )  (10.10) 

The peak potentials, however, are not additive linearly because their maxima do 
not occur at the same time. To find the correct relationship, apply Eq. 10.7 at 
time t = -(cp/w) with i ( t )  from Eq. 10.8. The result is 

v m  v m  1 
cos cp  = - - - Vm 

l m  = - 
R 

(10.11) 
R ,I- ,IR' + ( 1 / 0 2 C 2 )  

Equation 10.11 is the analog of Ohm's law for the RC circuit. The "resistance7' 
of the circuit is called the impedance Z and is given by 

Pictorially, the relationships expressed by Eqs. 10.11 and 10.12 are shown in Fig. 
10.3. The quantity R, = l / w C  is called the capacitive resistance. The impedance 
Z, as well as R and R,, are measured in ohms. 

Consider now an LR circuit as shown in Fig. 10.4. If the voltage given by 
Eq. 10.5 is applied at the input, Kirchhoffs second law gives, in this case, 

di 
Vm sin o t  - L -  = iR 

dt 
(10.13) 

Figure 10.4 The interaction of an LR circuit with a sinusoidal input. 
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As in the RC circuit, the current will have the frequency o and a phase 
difference c p ,  relative to the voltage. The current may be written as 

i ( t )  = i ,  sin ( o t  - c p )  (10.14) 

Substituting the value of the current from Eq. 10.14 into Eq. 10.13 and 
evaluating the resulting expression at t = 0 (see Prob. 10.2), one obtains 

L o  
tan cp = - 

R 

which is the phase difference in the L R  circuit (equivalent to Eq. 10.9). To find 
the relationship between the peak values, Eq. 10.13 is evaluated at time 
t = cp/w. The result is 

Thus, the impedance of an LC circuit is 

The quantity R ,  = L o  is called the inductive reactance. If a circuit contains all 
three elements, R ,  L ,  C ,  it can be shown (see Prob. 10.3) that the phase 
difference and impedance are given by 

o L  - ( l / w C )  
tan cp = 

R 

Every electronic component has a characteristic impedance. When a signal 
is transmitted from a unit with a high-impedance output to a low-impedance 
input, there is going to be a loss in the signal unless an impedance-matching 
device is used to couple the two units. Manufacturers of preamplifiers and 
amplifiers quote the impedance of the input and output for their products. 
Coaxial cables have an impedance between 90 and 100 a. 

10.3 A DIFFERENTIATING CIRCUIT 

A differentiating circuit consists of a capacitor and a resistor (Fig. 10.2). If a 
time-dependent voltage T/l(t) is applied at the input, Eq. 10.10 relating the 
instantaneous values of the three voltages involved (Fig. 10.5) becomes 

where q(t) is the charge of the capacitor at time t. If the input signal is a step 
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I 1 Figure 10.5 A CR shaping circuit (differentiator). 

function (Fig. 10.6), the output voltage is given (after solving Eq. 10.20) by 

Figure 10.7 shows the output voltage if the input signal is a rectangular pulse of 
height v,, and duration T. Notice that if RC 4 T, the output signal represents 
the derivative of the input. Indeed, from Eq. 10.20, if RC 4 T, then 

Thus, 

and for this reason, this circuit is called a differentiator. If K(t) is the pulse from 
a detector, the effect of differentiation is to force the pulse to decay faster. 

Figure 10.6 The output signal of a CR 
t = O  t= (RQ,  shaping circuit for a step input. 
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I rectangular pulse. 

As shown in Sec. 10.2, for a sinusoidal signal the peak value of the potential 
across the resistor of an RC circuit is related to the peak of the input signal by 

where o = 27~f and f is the frequency of input signal. According to Eq. 10.23, 
as the frequency decreases, the fraction of the signal appearing at the output of 
the differentiator also decreases, approaching zero for very low frequencies. For 
this reason, this circuit is called a high-pass filter. The output of the filter as a 
function of frequency is shown in Fig. 10.8. If the signal is not purely sinusoidal, 
it may be decomposed into a series of sine components with frequencies that are 
multiples of a fundamental one (this is called Fourier analysis). Going through 

0.01 I 
I 

Figure 10.8 The output of a differentia- 
I I , f/f, tor (high-pass) filter as a function of 

0.01 0.1 1 input frequency. 
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.u Figure 10.9 An RC shaping circuit (integrator). 

the high-pass filter, the lower frequencies will be attenuated more than the 
higher ones. 

10.4 AN INTEGRATING CIRCUIT 

An integrating circuit also consists of a resistor and a capacitor, but now the 
output signal is taken across the capacitor (Fig. 10.9). Equation 10.20 applies in 
such a case too, and the output signal as a result of a step input is given by 

Input and output signals are shown in Fig. 10.10. Figure 10.11 shows the output 
voltage if the input signal is a rectangular pulse of height K , ,  and duration T. If 
RC s T ,  the output signal looks like the integral of the input. Indeed, from Eq. 
10.20, 

which gives, if RC s T, 

p ( R C ) ,  = ( R C ) , / I O  

P 

t  Figure 10.10 The output signal of an RC 
t = 0  t  = (RC) ,  shaping circuit for a step input (top). 
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;& I 
Figure 10.11 The response of an RC circuit 

t = O  t = ~  * to a rectangular pulse. 

Then, from Eq. 10.24, 

and for this reason, this circuit is called an integrator. 
For a sinusoidal input signal, the peak value of the voltage across the 

capacitor is related to the peak value of the input signal by 

As the frequency increases, the ratio given by Eq. 10.26 decreases, and for this 
reason this circuit is called a low-pass filter. Going through the filter, lower 
frequencies fare better than the higher ones. The output of the filter as a 
function of frequency is shown in Fig. 10.12. 

10.5 DELAY LINES 

Any signal transmitted through a coaxial cable is delayed by a time T = 

seconds per unit length, where L is the inductance per unit length and C is the 

2 . 
lo 

Figure 10.12 The output of an integrator 

flf, (low-pass) filter as a function of input 
0.01 0.1 1 10 frequency. 
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I I 

I Time 
I 

I Reflected signal 

I L 
I ' ~ 4  -- output signal 

Time 

Figure 10.13 The use of a delay line to 
input output form a rectangular pulse. 

capacitance per unit length. For ordinary coaxial cables, the delay is about 5 
ns/m. For larger delays, the central conductor of the cable is spiraled to 
increase the inductance per unit length. 

Commercial delay lines are a little more complicated than a simple cable. 
They are used not only to delay a signal, but also to produce a rectangular pulse 
for subsequent pulse shaping or for triggering another electronic unit (e.g., a 
scaler). The formation of the rectangular pulse is achieved by reflecting the 
delayed signal at the end of the delay line, bringing it back to the input and 
adding it to the original signal (Fig. 10.13). A double delay line produces the 
double rectangular pulse shown in Fig. 10.14. 

10.6 PULSE SHAPING 

The pulse produced at the output of a radiation detector has to be modified or 
shaped for better performance of the counting system. There are three reasons 
that necessitate pulse shaping: 

1. To prevent overlap. Each pulse should last for as short a period of time as 
possible, and then its effect should be abolished so that the system may be 

' . 
-T- * 2 T &  

Delay ] line Delay line 

input 
% 

output 

Figure 10.14 The effect of a double delay line. 
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ready for the next pulse. Without pulse shaping, the detector signal lasts so 
long that pulses overlap. If only the number of particles is counted, pulse 
overlap leads to loss of counts (dead time loss). In spectroscopy measure- 
ments, pulse overlap worsens the resolution. 

2. To improve the signal-to-noise ratio. Noise created in the detector and the 
early amplification stages accompanies the detector signal. Appropriate pulse 
shaping can enhance the signal while at the same time reduce the noise. 
Thus, the signal-to-noise ratio will improve, which in turn, leads to better 
energy resolution. 

3.  For special pulse manipulation. The detector pulse may, in certain applica- 
tions, need special pulse shaping to satisfy the needs of certain units of the 
counting system. As an example, the signal at the output of the amplifier 
needs to be stretched before it is recorded in the memory of a multichannel 
analyzer (see Sec. 10.12). 

The pulse-shaping methods used today are based on combinations of RC 
circuits and delay lines. For example, the use of a CR-RC circuit combination 
produces the pulse shown in Fig. 10.15. The exact shape and size of the output 
pulse depends on the relative magnitudes of the time constants C ,  R, and C ,  R, .  
The use of the CR-RC circuit combination provides, in addition to pulse 
shaping, a better signal-to-noise ratio by acting as high-pass and low-pass filter 
for undesired frequencies. 

If one adds more RC integrating circuits, the pulse will approach a Gauss- 
ian shape (Fig. 10.16). 

If one applies a CR-RC-CR combination, the result is a doubly differenti- 
ated pulse as shown in Fig. 10.17. Commercial amplifiers usually provide either 
singly or doubly differentiated pulses. In all cases, the final pulse is the result of 
repeated application of CR-CR circuits. Figure 10.18 shows such pulses pro- 
duced by the application of many RC and CR circuits, called unipolar and 
bipolar pulses, respectively. Pulse shaping using a delay line and an RC circuit is 
shown in Fig. 10.19. 

Input signal A ~ u t p u ;  signal 

Figure 10.15 An example of CR-RC shaping. The triangle indicates the amplification unit (A) that 
isolates the two shaping circuits. 
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n RC circuits 

Figure 10.16 The output pulse after using many shaping circuits. The triangle indicates the 
amplification unit that isolates any two consecutive shaping circuits. 

10.7 TIMING 

The term timing refers to the determination of the time of arrival of a pulse. 
Timing experiments are used in measurement of the time development of an 
event (e.g., measurement of the decay of a radioactive species), measurement of 
true coincident events out of a large group of events, and discrimination of 
different types of particles based on the different time characteristics of their 
pulse (pulse-shape discrimination). 

Timing methods are characterized as "slow" or "fast" depending on the way 
the signal is derived. Slow timing signals are generated by an integral discrimina- 
tor or a timing single-channel analyzer. In either case, timing is obtained by 
using a shaped signal at the output of an amplifier. Fast timing signals are based 
on the unshaped pulse at the output of the detector or on a signal shaped 
specifically for timing. 

Many timing methods have been developed over the years. All the methods 
pick the time based on a certain point in the "time development" of the pulse, 

Figure 10.17 A doubly differentiated pulse. 
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polar pulse 
\ / v 

+ t 

Figure 10.18 A unipolar and bipolar pulse as a result of the application of many CR and RC circuits. 

but they differ in the way that point is selected. Three methods are discussed 
here.' -' 

10.7.1 The Leading-Edge Timing Method 

The leading-edge timing method determines the time of arrival of a pulse with 
the help of a discriminator, as shown in Fig. 10.20. A discriminator threshold is 
set and the time of arrival of the pulse is determined from the point where the 
pulse crosses the discriminator threshold.+ 

The leading-edge timing method is simple, but it introduces uncertainties 
because of "jitter" and "walk (Fig. 10.21). Jitter is another name for electronic 
noise. The timing uncertainty due to jitter depends on the amplitude of the 
noise and the slope of the signal close to the discriminator threshold. Walk 
originates when differences in the rate of pulse-risetime cause pulses starting at 
the same point in time to cross the discriminator level at different positions. 
Walk can be reduced by setting the discriminator level as low as possible or by 
res t r ic t ing  t h e  a m p l i t u d e  r a n g e  o f  the a c c e p t a b l e  pulses .  Both o f  t h e s e  co r r ec -  
tive measures, however, introduce new difficulties. Setting the discriminator 

t~ectangular pulses such as the ones shown in Fig. 10.20 are called logical pulses. 

Delay line t 

Output signal 

Input signal 'T nm 
Figure 10.19 Pulse shaping using a single delay line and an RC circuit. 
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Discriminator output 

Time of arrival of pulse Figure 10.20 The time of arrival of the pulse is 
determined from the instant at which the 
pulse crosses the discriminator threshold. 

level too close to the noise level may allow part of the random noise to be 
counted. Limiting the range of acceptable pulses reduces the counting rate. 

10.7.2 The Zero-Crossing Timing Method 

The zero-crossing method reduces the errors due to jitter and walk by picking 
the time from the zero crossing of a bipolar pulse (Fig. 10.22). Ideally, all the 
pulses cross the zero at the same point, and the system is walk free. In practice, 
there is some walk because the position of zero crossing depends on pulse 
risetime.+ The dependence on pulse risetime is particularly important for Ge 
detectors because the pulses produced by Ge detectors exhibit considerable 
variations in their time characteristics. To reduce the uncertainties still present 
with the zero-crossing method, the constant-fraction method has been devel- 
oped specifically for Ge detectors. 

'Pulse risetime is taken as the time it takes the pulse to increase from 10 percent to 90 percent 
of its value. 

Jitter 

Discriminator 
level 

4- 

Uncertainty due to jitter buncertainty due to walk 

Figure 10.21 Timing uncertainty due to jitter and walk. 
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Figure 10.22 Timing by the zero-crossing 
method. 

10.7.3 The Constant-Fraction Timing Method 

The principle of constant-fraction timing is shown in Fig. 10.23. First, the 
original pulse (Fig. 10.23a) is attenuated by a factor f equal to the fraction of 
the pulse height on which the timing will be based (Fig. 10.23b). The original 
pulse is inverted and delayed (Fig. 10.23~) for a time longer than its risetime. 
Finally, the signals in Figs. 10.23~ and 10.23b are added to give the signal in Fig. 
10.23d. The time pick-off, taken as the zero-crossing point, is thus defined by 
the preselected fraction of the pulse height and is independent of the pulse 
amplitude. It can be shown that pulses with the same risetime always give the 
same zero-crossing time. 

10.8 COINCIDENCE-ANTICOINCIDENCE MEASUREMENTS 

There are times in radiation measurements when it is desirable or necessary to 
discard the pulses due to certain types of radiation and accept only the pulses 
from a single type of particle or from a particle or particles coming from a 
specific direction. Here are two examples of such measurements. 

1. Detection of pair-production events. When pair production occurs, two 
0.511-MeV gammas are emitted back-to-back. To insure that only annihilation 
photon are counted, two detectors are placed 180" apart, and only events that 
register simultaneously (coincident events) in both detectors are recorded. 

2. Detection of internal conversion electrons. Radioisotopes emitting internal 
conversion (IC) electrons also emit gammas and X-rays. The use of a single 
detector to count electrons will record not only IC electrons but also Compton 
electrons produced in the detector by the gammas. To eliminate the Compton 
electrons, one can utilize the X-rays that are emitted simultaneously with the IC 
electrons. Thus, a second detector is added for X-rays and the counting system 
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Figure 10.23 Timing by the constant-fraction technique. 

is required to record only events that are coincident in these two detectors. This 
technique excludes the detection of Compton electrons. 

Elimination of undesirable events is achieved by using a coincidence (or 
anti-coincidence) unit. Consider the counting system shown in Fig. 10.24. The 
source emits particles detected by detectors 1 and 2. After amplification, the 
detector signals are fed into a timing circuit, which in turn generates a pulse 
signifying the time of occurrence in the detector of the corresponding event (1) 
or (2).  The timing signals are fed into a coincidence unit, so constructed that it 
produces an output signal only when the two timing pulses are coincident. If the 
objective is to count only the number of coincident events, the output of the 
coincidence unit is fed into a scaler. If, on the other hand, the objective is to 
measure the energy spectrum of particles counted by detector 1 in coincidence 
with particles counted by detector 2, the output signal of the coincidence unit is 
used to "gate" a multichannel analyzer (MCA) that accepts the energy pulses 
from detector 1. The gating signal permits the MCA to store only those pulses 
from detector 1 that are coincident with events in detector 2. 

In theory, a true coincidence is the result of the arrival of two pulses at 
exactly the same time. In practice, this "exact coincidence" seldom occurs, and 
for this reason a coincidence unit is designed to register as a coincident event 
those pulses arriving within a finite but short time interval 7. The interval 7 ,  
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Multichannel 
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Source I Coincidence unit 4 
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I 

Figure 10.24 A simple coincidence measurement setup. 

called the resolving time or the width of the coincidence, is set by the observer. 
Typical values of T are 1-5 ps  for "slow" coincidence and 1-10 ns for "fast" 
coincidence measurements. By introducing the width T, the practical definition 
of coincidence is 

Two or more events are coincident if they occur within the time period T. 

According to this definition, events (1) and (2) or (2) and (3) in Fig. 10.25 are 
coincident, but events (1) and (3) are not. 

As stated earlier, the coincidence unit is an electronic device that accepts 
pulses (events) in two or more input channels and provides an output signal only 
if the input pulses arrive within the time period T. The logic of a coincidence 
unit is shown in Fig. 10.26. 

An anticoincidence unit is an electronic device that accepts pulses (events) 
in two input channels and provides an output signals only if the two events do 
not arrive within the time period T. The logic of an anticoincidence unit is 
shown in Fig. 10.27 

Figures 10.26 and 10.27 both show a "coincidence" unit as the instrument 
used because, commercially, a single component is available that, with the flip of 
a switch, is used in the coincidence or anticoincidence mode. 

For a successful coincidence or anticoincidence measurement, the detector 
signals should not be delayed by any factors other than the time of arrival of the 
particles at the detector. If it is known that it takes longer to generate the signal 

(1)  (2) (3) 
I 

Figure 10.25 Events (1) and (2) or 
I I 
I- -a events (2) and (3) are coincident. 
: 7 !- Events (1) and (3) are not. 
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Channel 1 

Channel 2 

Signal out 

Yes 
1 7 ,  

No 
Coincidence unit 

Figure 10.26 The logic of a coincidence unit with two input channels. 

in one detector than in another, the signal from the fast detector should be 
delayed accordingly to compensate for this difference. This compensation is 
accomplished by passing the signal through a delay line before it enters the 
coincidence unit. A delay line is always needed if the detectors used in the 
coincident measurement are not identical. The value of the relative delay 
needed is determined as follows. 

1 
Coincidence unit 

3 Yes 

1 No 
Coincidence unit 

2 

Figure 10.27 The logic of an anticoincidence unit. 
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Consider what is probably the simplest type of coincidence circuit, the 
additive type shown in Fig. 10.28. The coincidence unit is summing the input 
pulses. When two pulses overlap, their sum exceeds a discriminator threshold 
and the unit produces an output pulse. If the width of the input pulse is T, the 
resolving time is essentially r = 2T. Assume now that a system has been set up 
as shown in Fig. 10.24, with the addition of a delay line in channel 2 between the 
timing and the coincidence units. If one measures the number of coincidences as 
a function of the delay between the two signals, the result will be the delay or 
resolving-time curve shown in Fig. 10.29. The proper relative delay is the value 
corresponding to the center of the flat region. The ideal (rectangular) curve will 
be obtained if the time jitter is zero. 

Since the pulses from the two detectors arrive randomly, a certain number 
of accidental (or chance) coincidences will always be recorded. Let 

r, = counting rate of detector 1 

r, = counting rate of detector 2 

r, = accidental coincidence rate 

Consider a single pulse in channel 1. If a pulse occurs in channel 2 within the 
time period r ,  then a coincidence will be registered. Since the number of pulses 
in channel 2 during time T is r,r, the rate of accidental coincidences is 

Equation 10.27 gives accidental coincidences of first order. Corrections for 
multiple coincidences of higher order have also been ~alculated.~. ' 

If S is the strength of the source, E, and E, the efficiencies, 0, and R, the 
solid angle factors, and F,  and F, any other factors that affect the measurement 
of particles counted by detectors 1 and 2 (see Chap. 8), then the true coinci- 

Channel 1 

Channel 2 1 (2 I 
n 

threshold 

Summation 

Coincidence output 

Figure 10.28 The coincidence circuit of the additive type. 
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Figure 10.29 The delay or resolving-time curve. 

dence rate r, is given by 

and from Eq. 10.27 the accidental coincidence rate is 

The Jigure of merit in a coincidence experiment is the ratio 

which should be as high as possible. Equation 10.30 shows that this ratio 
improves when S and T decrease. Unfortunately, the values for both of these 
quantities have constraints. The value of T is limited by the performance of the 
detector and by the electronics. The source strength S has to be of a certain 
value for meaningful counting statistics to be obtained in a reasonable time. It is 
interesting to note that when the source strength increases, both true and 
accidental coincidence rates increase but the ratio Q (Eq. 10.30) decreases, 
because r, a S but ra a S 2 .  

Another coincidence technique involves the use of a time-to-amplitude 
converter (TAC). A TAC is an electronic unit that converts the time difference 
between two pulses into a voltage pulse between 0 and 10 V. The height of the 
pulse is proportional to the time difference between the two events. The time 
spectrum of the two detectors is stored directly in the MCA. A "time" window is 
set around the coincidence peak (Fig. 10.30). A second window of equal width is 
set outside the peak to record accidental coincidences only. 

The advantages of using a TAC are 

1. No resolving curve need be taken. 
2. No resolving time is involved. 
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Figure 1030 An MCA spectrum taken with a TAC 

3. The number of channels and the range of time intervals analyzed may be 
changed over a wide range by simply changing the conversion gain of the 
MCA. 

Most TACs cannot distinguish the sequence of events-i.e., they cannot tell 
if a pulse from channel 1 precedes a pulse from channel 2 and vice versa. To 
avoid this ambiguity and also to create a measurable difference between the 
pulses, the signal from one detector is usually shifted by a fixed delay. 

Figure 10.31 shows what is now a common counting system for y-y coinci- 
dence measurements using a NaI(T1) detector and a Ge(Li) detector. The 
initials ADC stand for analog-to-digital converter (see Sec. 10.12). 

10.9 PULSE-SHAPE DISCRIMINATION 

Pulse-shape discrimination (PSD) is the name given to a process that differenti- 
ates pulses produced by different types of particles in the same detector. 
Although PSD has found many applications, its most common use is to discrimi- 
nate between pulses generated by neutrons and gammas in organic scintillators 
(see also Chap. 14), and it is this type of PSD that will be discussed. 

Measurement of the amount of light produced in organic scintillators by 
neutrons and gammas shows that both the differential and integral light intensi- 
ties are different as functions of time. Figure 10.32, presenting the results of 
Kuchnir & ~ ~ n c h , '  illustrates this point. It is obvious that the pulses from 
neutrons and gammas have different time characteristics, and it is this property 
that is used as the basis for PSD. 

Many different methods have been proposed and used for successful 
P S D . ~ - ' ~  One method doubly differentiates the detector pulse, either using CR 
circuits or a delay line, and bases the PSD on the time interval between the 
beginning of the pulse and the zero crossing point. This time interval, which is 
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Figure 10.31 A NaI-Ge(Li) y y  coincidence system (from Ref. 25; numbers indicate Canberra 
models). 

essentially independent of the pulse amplitude but depends on the pulse shape, 
is usually converted into a pulse by means of a TAC. The pulse from the TAC 
may be used to gate the counting system. Figure 10.33 shows a block diagram for 
such a counting system. The result of n-y discrimination is usually a spectrum 
that resembles Fig. 10.34. Actually, the y peak is due to electrons produced by 
the gammas, and the neutron peak is due to protons recoiling after collisions 
with the incident neutrons. More details of this method of neutron detection are 
given in Chap. 14. 

A second method, introduced by ~rooks," integrates the charge from the 
early part of the pulse and compares it to the total charge. A third method, 
introduced by Kinbara and ~ u m a h a r a , ' ~  differentiates n-y pulses by a measure- 
ment of the risetime of the pulse. A final example of a PSD technique is that 
used by Burrus and ~ e r b i n s k i , ' ~ , ' ~  based on a design by FortC.16 Details of the 
circuitry are given in Refs. 14 and 15. This PSD method produces a large 
positive pulse output for neutrons and a small positive or a large negative pulse 
for gammas. 
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Figure 1032 The light produced by neutrons and gammas in stilbene and NE 213. Light intensity is 
shown at left: integrated light intensity is shown at right (based on data of Ref. 8). 

10.10 PREAMPLIFIERS 

In Sec. 1.5.5, a few general comments were made about preamplifiers. It was 
stated that the primary purpose of the preamplifier is to provide an optimum 
coupling between the detector and the rest of the counting system. A secondary 
purpose of the preamplifier is to minimize any sources of noise, which will be 
transmitted along with the pulse and thus may degrade the energy resolution of 
the system. This second objective, low noise, is particularly important with 
semiconductor detectors, which are the counters offering the best energy 
resolution. 

There are three basic types of preamplifiers: charge-sensitive, current-sensi- 
tive, and voltage-sensitive. The voltage-sensitive preamplifier is not used in 
spectroscopy because its gain depends on the detector capacitance, which in 
turn depends on the detector bias. The charge-sensitive preamplifier is the most 
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Figure 10.33 A block diagram for a PSD system (reproduced from Instruments for Research and 
Applied Sciences by permission of EG &G ORTEC, Oak Ridge, Tennessee). 

commonly used in spectroscopic measurements and the only type used with 
semiconductor detectors. 

To understand the basic features of a charge-sensitive preamplifier, con- 
sider the basic circuit associated with a semiconductor detector, shown in Fig. 
10.35. The high-voltage (HV) bias applied to the detector is usually connected 
through the detector to the first stage of the charge-sensitive preamplifier. In 
Fig. 10.35, Cf is the feedback capacitor (- 1 pF) and Rf is the feedback resistor 
(- 1000 MR)." The triangle with the letter A indicates the first stage of the 
preamplifier, which today is usually a field-effect transistor (FET). The FET is a 
p-n junction with reverse bias, exhibiting extremely low noise. The type of 
coupling shown in Fig. 10.35 is called dc coupling. There is an ac coupling, too, 

Channel 

Figure 10.34 The result of y-n 
using PSD. 

discrimination 
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Bias 

in which the detector is coupled to the FET through a coupling capacitor (see 
Nicholson, p. 110). 

The detector sees the FET stage as a large capacitor of magnitude ACf.  As 
long as ACf + Ci ,  where Ci is the total input capacitance consisting of the 
detector capacitance C,, the cable capacitance, etc., the voltage at the output of 
the preamplifier is equal to 

f 

where Q, the charge produced in the detector, is given by 

Detector 

. , 

where E = energy of the particle 
e = electronic charge = 1.6 x 1 0 ~ ' ~  coulombs 

w = average energy required to produce one electron-hole pair 
The major components of Ci are the detector capacitance C,  and that of the 
cables between the detector and the preamplifier. Both of these components are 
controlled by the user to a certain extent. 

The noise of the charge-sensitive preamplifier depends on three parameters: 
the noise of the input FET, the input capacitance Ci, and the resistance 
connected to the input. The noise can be determined by injecting a charge Q, 
equivalent to E, into the preamplifier and measuring the amplitude of the 
generated pulse. Commercial preamplifiers are provided with a test input for 
that purpose. In general, the noise expressed as the width (keV) of a Gaussian 
distribution increases as input capacitance increases (Fig. 10.36). 

The output pulse of the preamplifier has a fast risetime (of the order of 
nanoseconds) followed by a slow exponential decay, - 100 ps  (Fig. 10.37). The 
useful information in the pulse is its amplitude and its risetime. The risetime is 
particularly important when the signal is going to be used for timing. The 
observer should be aware that the risetime increases with external capacitance. 
The preamplifier pulse is shaped in the amplifier by the methods described in 
Sec. 10.6. 

, p f  
I I 

Figure 1035 The first stage of a 
To stage charge-sensitive preamplifier 

dc-coupled to the bias circuit. 
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Y 

i Figure 1036 The dependence of noise on external 
capacitance for a typical charge-sensitive preamplifier 

1 = l0U 1 10 100 1000 (from by permission Instruments of for EG Research & G ORTEC, and Applied Oak Sciences Ridge, 

External capacitance (pF) Tennessee). 

The sensitivity (or gain) of a charge-sensitive preamplifier is expressed by 
the ratio V/E, where V is given by Eq. 10.31. For a 1-MeV particle in a 
germanium detector, the sensitivity is (using Cf - 5 pF) 

A current-sensitive preamplifier is used to transform fast current pulses 
produced by a photomultiplier into a voltage pulse. The current-sensitive pream- 
plifier is an amplifying instrument. The sensitivity (or gain) of such a unit is 
expressed as V,,,/Zi,, i.e., in mV/mA with typical values of the order of 500 
mV/mA. The risetime of the pulse is - 1 ns. 

10.11 AMPLIFIERS 

As explained in Sec. 1.5.6, the amplifier plays the two roles of amplifying and 
shaping the signal. The need for amplification is obvious. The output signal of 
the preamplifier, being in the range of a few millivolts, cannot travel very far or 
be manipulated in any substantial way without losing the information it carries 
or being itself lost in the noise. Commercial amplifiers consisting of many 
amplification stages increase the amplitude of the input signal by as many as 
2000 times, in certain models. 

The need for shaping the signal was explained in Sec. 10.6. The type of 
shaping that is applied depends on the requirements of the measurement. For 
spectroscopy measurements where good energy resolution is the important 

I Figure 1037 Typical pulse from a charge-sensitive 
preamplifier. 
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parameter, pulse shaping should not decrease the signal-to-noise ratio. For 
timing measurements, depending on the method of time pick-off, the signal may 
be singly or doubly differentiated or be shaped by a single or double delay line. 

For a good measurement, the amplifier should satisfy many require- 
m e n t ~ . ' ~ - ~ ~  Not all types of measurements, however, require the same level of 
performance. For example, if one measures only the number of particles and not 
their energy, the precision and stability of the amplification process can be 
relatively poor. It is in spectroscopy measurements, particularly measurements 
using semiconductor detectors, that the requirements for precision and stability 
are extremely stringent. Since the energy resolution of Ge detectors is of the 
order of 0.1 percent, the dispersion of the pulses due to the amplification 
process should be much less, about 0.01 percent. 

An ideal spectroscopy amplifier should have a constant amplification for 
pulses of all amplitudes without distorting any of them. Unfortunately, some 
pulse distortion is always present because of electronic noise, gain drift due to 
temperature, pulse pile-up, and limitations on the linearity of the amplifier. 

The effect of electronic noise on energy resolution was discussed in Sec. 
9.6.2. Random electronic noise added to equal pulses makes them unequal (see 
Fig. 9.12). Gain drift of an amplifier is caused by small changes in the character- 
istics of resistors, capacitors, transistors, etc., as a result of temperature changes. 
The value of the gain drift, always quoted by the manufacturer of the instru- 
ment, is for commercial amplifiers of the order of 0.005 percent per "C or less. 

Since the time of arrival of pulses is random, it is inevitable that a pulse may 
arrive at a time when the previous one did not fully decay. Then the incoming 
pulse "piles up" on the tail of the earlier one and appears to have a height 
different from its true one. Pulse pile-up depends on the counting rate. 

The linearity of an amplifier is expressed as differential and integral. 
Differential nonlinearity is a measure of the change in amplifier gain as a 

function of amplifier input signal. Referring to Fig. 10.38, the differential 

Figure 10.38 Diagram used for the defi- 
nition of differential and integral linear- 
ity of an amplifier. The output signal of a 
perfect amplifier plotted versus input 
signal should give the straight line shown 

Amplifier input (-.-.-. ), 
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nonlinearity in percent is given by 

In Eq. 10.33, the numerator is the slope of the amplifier gain curve at the 
point where the nonlinearity is measured, and the denominator is the slope of 
the straight line as shown in Fig. 10.38. 

Integral nonlinearity is defined as the maximum vertical deviation between 
the straight line shown in Fig. 10.38 and the actual amplifier gain curve, divided 
by the maximum rated output of the amplifier. Referring to Fig. 10.38, the 
integral nonlinearity in percent is given by 

The integral nonlinearity is one of the specifications of commercial amplifiers 
and has a value of about 0.05 percent or less over the range 0-10 V. 

There are many types of commercial amplifiers designed to fit the specific 
needs of spectroscopic or timing measurements. Companies like Canberra, 
EG & G ORTEC, etc., offer a wide selection of such instruments. 

10.12 ANALOG-TO-DIGITAL CONVERTERS (ADC) 

As discussed in Sec. 9.9, the backbone of an MCA is the analog-to-digital 
converter (ADC), the unit that digitizes the input pulse height and assigns it to a 
specific channel. Many types of ADCs have been developed, but the most 
frequently used is the Wilkinson type.24 

The Wilkinson-type ADC operates as shown in Fig. 10.39. When a pulse 
enters the MCA, two events are initiated: 

1. A capacitor starts charging. 
2. An input gate prevents the acceptance of another pulse until the previous 

one is fully processed and registered. 

The capacitor keeps charging until the peak of the pulse is reached. At that 
point in time, two new events are initiated: 

1. The voltage on the charged capacitor is discharged by a constant current. 
2. An oscillator clock starts. The clock stops its oscillations when the capacitor 

is fully discharged. 

The number of oscillations during this time-called rundown or conversion time 
-is proportional to the pulse height and constitutes the information that 
determines the channel number in which that pulse will be stored. 
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Figure 1039 The processing of the 
pulse in a Wilkinson ADC. ( a )  

emery cycle Input pulse. ( b )  Charge capacitor 
voltage. ( c )  Gate stops other 

I I pulses. ( d )  Oscillator clock. ( e )  
I- Dead time -< Pulse storage. 

A variation of this method is shown in Fig. 10.40. The steps followed in this 
case are 

1. The input pulse is stretched in such a way that its flat portion is proportional 
to its height. 

2. At the moment the pulse reaches its maximum (time t ,) ,  a linear ramp 
generator is triggered, producing a voltage C. 

Figure 10.40 The processing of the pulse 
by the ADC. (a) Input pulse. ( b )  Input 
pulse stretched; flat part proportional to 
pulse height. ( c )  Ramp voltage and oscilla- 
tor clock start at 1, .  
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3. At the same moment (t,), a gate signal is produced and an oscillator clock is 
turned on. 

When the voltage ramp signal reaches the flat part of the stretched pulse (PI ,  
the gate signal turns the clock off. Thus, the time interval (t, - t,) and, 
therefore, the number of oscillations during (t, - t,) are again proportional to 
the height of the pulse. This second method of ADC operation (Fig. 10.40) is not 
favored because it is difficult to keep the pulse height constant for the time 
interval (t, - t,). 

Figure 10.39 shows, in addition to the principle of operation of the Wilkin- 
son ADC, the reason for the dependence of the MCA dead time on the channel 
number. The dead time consists of three components: 

1. Pulse risetime 
2. Conversion time 
3. Memory cycle time (time it takes to store the digitized signal) 

Of the three components, the second is the most important because it depends 
on the channel number. One can reduce the size of the conversion time by using 
a clock with higher frequency. Today's ADCs use quartz-stabilized clocks with a , 
frequency of up to 450 MHz. Obviously, for a Wilkinson ADC, the higher the 
clock frequency is, the shorter the dead time will be. The equation for dead time 
is written as 

where a typical value of a, is 1.5 ps, C = address (channel) count, and 
X = effective digital offset." The digital offset is a capability offered by modern 
ADCs of subtracting a certain number of channels from the converted channel 
number before the data are introduced into the memory. One application of 
digital offset is to enhance resolution in a measurement performed with a small 
MCA. For example, with a 1000-channel MCA and an 8000 channel ADC, a 
7000 digital offset allows data to be recorded for the top eighth of the spectrum 
only. A fixed dead time (FDT) ADC has also been developed for certain 
 application^.^^ 

The resolution of an ADC is expressed in terms of channels. It represents 
the maximum number of discrete voltage increments into which the maximum 
input pulse can be subdivided. ADC resolutions range from 4096 to 16,384 
channels. Since commercial amplifiers can provide a maximum 10-V pulse, an 
ADC with a resolution of 4096 channels may subdivide 10 V into 4096 incre- 
ments. Another quantity used is the conversion gain of the ADC. The conver- 
sion gain may be considered as a subset of the resolution. An ADC with a 
resolution of 16,384 channels may be used, depending on the application, with a 
conversion gain of 4096, or 8192, or 16,384 channels. 

The accuracy of the ADC is expressed in terms of its differential and 
integral nonlinearity. The differential nonlinearity describes the uniformity of 
address widths over the entire range of the ADC. To make this point better 
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understood, assume that a 1000-channel ADC is used to process pulses with 
maximum height of 10 V. Then the average address width is 10/1000 = 

lOmV/channel. The ideal ADC should provide a conversion of 10 mV/channel 
at any channel. Any deviation between this width and the actual one is 
expressed by the differential nonlinearity. Mathematically, if 

- 
AV = average width 

AVmax = maximum width 

AVmin = minimum width 

then the differential nonlinearity is given by the equation 

% Differential nonlinearity = 
AVmax - A v m i n  
- (100) (10.36) 
AV 

Commercial ADCs have differential nonlinearity of the order of k 0.5 percent 
to S 1 percent. 

The integral nonlinearity is defined as the maximum deviation of any address 
(ADC channel) from its nominal position, determined by a linear plot of address 
(ADC channel) versus input pulse amplitude (Fig. 10.41). The maximum pulse 
height VmaX corresponds to the maximum address N,,,. If N is the address 
number with the maximum deviation between the actual and nominal pulse 
heights, the integral nonlinearity is given by the equation 

Vnom - K c ,  
% Integral nonlinearity = (100) (10.37) 

vmax 

Modern commercial ADCs have integral nonlinearity of the order of f 0.05 
percent over 98-99 percent of the full range. 

The integral nonlinearity affects the centroid position of energy peaks, 
which in turn affects the calibration of the system as well as the identification of 
unknown energy peaks. 

10.13 MULTIPARAMETER ANALYZERS 

The MCA is an instrument that stores events by a single parameter, namely, 
pulse height. When the need arises, however, there are many experiments for 

I 
I 

n ADC channel 

Figure 10.41 The definition of integral nonlinearity is based on a linear plot of ADC channel versus 
pulse amplitude. 
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the study of events in terms of more than one parameter. Such requirements 
occur in 

1. Coincidence measurements where the energy spectrum from both detectors 
need be analyzed 

2. Simultaneous measurement of energy and mass distribution of fission frag- 
ments 

3. Study of energy and angular dependence of nuclear reactions involving many 
particles, etc. 

The "direct7' method of multiparameter analysis would be to use an ar- 
rangement such that all parameters but one are limited to a narrow range (by 
using a single-channel analyzer) and the remaining parameter is recorded by an 
MCA. After an adequate number of events have been recorded, the value of 
one of the fixed parameters is changed, and the measurement is repeated. This 
process continues until all values of all parameters are covered. Obviously, such 
an approach is cumbersome and time consuming. 

A more efficient way of performing the measurement is by storing the 
information simultaneously for more than one parameter. For example, consider 
a coincidence measurement involving two detectors (Fig. 10.42). The detector 
signals are fed into a coincidence unit, which then is used to gate the corre- 
sponding ADCs. The amplified detector pulses that are coincident are thus 
digitized by the ADCs, and the information is stored in the memory of the 
system. Any event that reaches the memory is defined like a point in a 
two-dimensional space. For example, if a pulse from ADC, has the value 65 (i.e., 
ADC channel 65) and one from ADC, has the value 18, the event is registered 
as 6518 (assuming 100 channels are available for each parameter). The mea- 
sured data may be stored in the computer, for subsequent analysis, and may also 
be displayed on the screen of the monitor for an immediate preliminary 
assessment of the results. The results of a dual-parameter system such as that 
shown in Fig. 10.42 constitute a three-dimensional histogram as shown by Fig. 
10.43. 

Amplification Gate 

Source I 
F$ Coincidence 1-1 

Amplification Gate ADC, 

Figure 10.42 A two-parameter measurement. 
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Counts x (ADC,) 

y (ADC,) 

Figure 10.43 A sample of the output from a two-parameter system (from Ref. 26). 

One of the difficulties with multiparameter measurements is to secure 
sufficient memory capacity to register all possible events. The necessary storage 
increases exponentially with the number of parameters. For a k parameter 
measurement with N channels per parameter, the capacity of the memory 
should be N ~ .  Thus a two-parameter system with 100 channels per parameter 
needs lo4 memory locations. If both parameters are registered in 1000 channels, 
the requirements are lo6 locations. 

PROBLEMS 

10.1 Prove that the phase difference between voltage and current maximum values in an RC circuit 
is given by q = tan-' (l/RCw). 

10.2 Prove that the phase difference between voltage and current maximum values in a LR circuit is 
given by cp = tan-' (Lo/R). 

10.3 Prove that (a) the phase difference between voltage and current maximum values in an 
RCL circuit is given by 

cp = tan-' [ wL - Y C )  I 
and (b) the impedance is given by Z = JR' + [ wL - ( l / d ) 1 2  . 
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10.4 Prove that the output signal of a differentiating circuit is, for a step input, equal to 

V,(t) = Ke-'IRC 

10.5 Show that the output signal of a differentiating circuit is given by 

when the input signal is given by & ( t )  = K ~ / T .  
10.6 Show that the output signal of an integrating circuit is, for a step input, equal to 

10.7 Show that the output signal of a differentiating circuit is given by 

when the input signal is &(1 - e- ' / ' ) .  
10.8 A coincidence measurement has to be performed within a time T .  Show that the standard 
deviation of the true coincidence rate is given by 

where r, = accidental coincidence rate 
r, = true coincidence rate 
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CHAPTER 

ELEVEN 

DATA ANALYSIS METHODS 

11.1 INTRODUCTION 

Rawt experimental data seldom give the answer to the problem that is the 
objective of the measurement. In most cases, additional calculations or analysis 
of the raw data is necessary. The analysis of the raw data may consist of a simple 
division of the counts recorded in a scaler by the counting time to obtain 
counting rates, may require fitting an analytical function to the data, or may 
necessitate unfolding of a measured spectrum. 

Whatever the analysis of the data may entail, there are some general 
methods helpful to the analyst. The objective of this chapter is to present a brief 
introduction to these general methods and principles of data analysis. 

11.2 CURVE FITTING 

The results of most experiments consist of a finite number of values (and their 
errors) of a dependent variable y measured as a function of the independent 
variable x (Fig. 11.1). The objective of the measurement of y = y(x) may be one 

' ~ a w  data consist of the numbers obtained by the measuring device, e.g., a scaler, a clock, or a 
voltmeter. 
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Figure 11.1 Experimental re- 
sults consist of the values of 
the dependent variable y ( x )  
and their errors. The curve was 

1 2 3 4 5 6 7 8  x drawn to help the eye. 

of the following: 

1. To find how y changes with x 
2. To prove that y = y(x) follows a theoretically derived function 
3. To use the finite number of measurements of y(x) for the evaluation of the 

same function at intermediate points or at values of x beyond those mea- 
sured 

These objectives could be immediately achieved if the function y(x) were 
known. Since it is not, the observer tries to determine it with the help of the 
experimental data. The task of obtaining an analytic function that represents 
y(x) is called cume fitting. 

The first step in curve fitting is to plot the data (y versus x) on linear graph 
paper (Fig. 11.1). A smooth curve is then drawn, following as closely as possible 
the general trend of the data and trying to have an equal number of points on 
either side of the curve. The experimental points always have an error associ- 
ated with them, so the smooth curve is not expected to pass through all the 
measured (x, y) points. Obviously, there is no guarantee that the smooth curve 
so drawn is the "true7' one. Criteria that may help the observer draw a curve 
with a certain degree of confidence are then needed. Such criteria exist and are 
described in Sec. 11.4. 

After the data are plotted and a smooth curve is drawn, the observer has to 
answer two questions: 

1. What type of function would represent the data best (e.g., exponential, 
straight line, parabola, logarithmic)? 

2. After the type of function is decided upon, how can one determine the best 
values of the constants that define the function uniquely? 
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Since there exist an infinite number of functions, the observer would like to 
have certain criteria or rules that limit the number of possible functions. While 
no such formal set of criteria exists, the following suggestions have proved 
useful. 

First, the observer should utilize any a priori knowledge about y(x) and x. 
Examples are restrictions of x and y within a certain range (e.g., in counting 
experiments both x and y are positive) or information from theory that suggests 
a particular function (e.g., counting data follow Poisson statistics). 

Second, the observer should try the three simple expressions listed next, 
before any complicated function is considered. 

1. The linear relation (straight line) 

where a and b are constants to be determined based on the data. A linear 
relationship will be recognized immediately in a linear plot of y(x) versus x. 

2. The exponential relationship 

If the data can be represented by such a function, a plot on semilog 
paper-i.e., a plot of In y versus x-will give a straight line. 

3. The power relationship 

If the data can be represented by this expression, a plot on log-log paper-i.e., 
a plot of In y versus In x-will give a straight line. 

Third, the observer should know that a polynomial of degree N can always 
be fitted exactly to N + 1 pieces of data (see also Sec. 11.3-11.5). 

If no satisfactory fit can be obtained by using any of these suggestions, the 
analyst should try more complicated functions. Plotting the data on special kinds 
of graph paper, such as reciprocal or probability paper may be helpful. After the 
type of function is found, the constants associated with it are determined by a 
least-squares fit (see Sec. 11.4). 

There is software now available that accepts a table of data points as input 
and tests possible fits of this data set to a large number of analytic functions. At 
the end of the operation, both the function representing the best fit and a 
degree of "confidence" are provided. 

11.3 INTERPOLATION SCHEMES 

It was mentioned in Sec. 11.2 that one of the reasons for curve fitting is to be 
able to evaluate the function y(x) at values of x for which measurements do not 
exist. An alternative to curve fitting that can be used for the calculation of 
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intermediate y(x) values is the method of interpolation. This section presents 
one of the basic interpolation techniques-the Lagrange formula. Many other 
formulas exist that the reader can find in the bibliography of this chapter (e.g., 
see Hildebrand, and Abramowitz and Stegan's Handbook or Mathematical Func- 
tions). 

Assume that N values of the dependent variable y(x) are known at the N 
points xi, x, I xi I x, for i = 1,. . . , N. The pairs of data (yi, xi) for i = 

1,. . . , N, where y(xi) = yi, may be the results of an experiment or tabulated 
values. Interpolation means to obtain a value y(x) for x, < x < x, based on the 
data (y,, xi), when the point x is not one of the N values for which y(x) is 
known. 

The Lagrange interpolation formula expresses the value y(x) in terms of 
polynomials (up to degree N - 1 for N pairs of data). The general equation is 

where 

The error associated with Eq. 11.4 is given by 

where yM+'(()  is the (M + 1) derivative of y(x) evaluated at the point 
5, x, < 6 < x,. Since y(x) is not known analytically, the derivative in Eq. 11.6 
has to be calculated numerically. 

Equation 11.4 is the most general. It uses all the available points to 
calculate any new value of y(x) for x, < x < x,. In practice, people use only a 
few points at a time, as the following two examples show. 

Example 11.1 Derive the Lagrange formula for M = 1. 

Answer If M = 1, Eq. 11.4 takes the form (also using Eq. 11.5) 

where yi = y(xi). The points x, and x, could be anywhere between x, and x,, 
but the point x should be xo I x I x,. 
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To calculate y ( x )  at any x ,  Eq. 11.7 uses two points, one on either side of x,  
and for this reason it is called the Lagrange two-point interpolation formula. 
Equation 11.7 may be written in the form 

which shows that the two-point formula amounts to a linear interpolation. 
The error associated with the two-point formula is obtained from Eq. 11.6: 

where 5 ) is the second derivation evaluated at 5, x,  5 5 < x , .  

Example 11.2 Derive the Lagrange formula for M = 2. 

Answer If M = 2, Eq. 11.4 takes the form 

To calculate y ( x )  at any point x,  Eq. 11.9 uses three points xo ,  x , ,  x2 with 
x,  I x I x,,  and is called the Lagrange three-point interpolation formula. The 
three-point formula amounts to a parabolic representation of the function y ( x )  
between any three points. 

The error associated with the three-point formula is (applying again Eq. 
11.6): 

where y C 3 ) ( 5 )  is the third derivative evaluated at 5 ,  x ,  5 5 < x,.  

Example 11.3 Calculate the value of the function f ( x )  at x = 11.8 from the 
table below using the Lagrange two- and three-point interpolation formulas. 
The data are plotted in Fig. 11.2. 
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Figure 11.2 A plot of the data 
used in Ex. 11.3. 

Answer (a) Using the two-point formula (Eq. 11.7), one has xo = 11, 
x, = 12, yo = 33.0, y, = 35.8. 

(b) Using the three-point formula (Eq. 11.9), one has xo = 11, x, = 12, x2 = 13, 
yo = 33, y, = 35.8, y2 = 36.7. 

The error of y(x) associated with the interpolation is, for the first case only, 

The second derivative evaluated at 6 = i (xo  + x,)  is 

Thus the error is 
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11.4 LEAST-SQUARES FITTING 

Assume that an observer obtained the experimental data yi = y(xi)li= 1 ; ~ .  It is 
often desirable to find a function that can represent the data, i.e., to find a 
function that can be fitted to the data. Let such a function be written as 

f x a a  2 , . . . , a M  M < N  

where a,l,= 1 , ~  are parameters to be determined. According to the method of 
least squares, the best values of the parameters a, are those that minimize the 
quantity 

N 

Q = C wi[yi -f(x,)12 (11.10) 
i= 1 

where wili=l,N are weighting functions. Minimization of Q is achieved by 
requiring 

dQ - -  - 0 rn = 1, ..., M 
'am 

Before Eq. 11.11 is solved, it should be pointed out that the observer 
decides about the form of the function f(x) and the weighting functions wi. The 
form of f(x) is obtained by the curve-fitting methods discussed in Sec. 11.2. The 
weighting functions are selected based on the type of data and the purpose of 
the fit. For example, if the data are the result of a counting experiment, 
wi = 1/ai2, where ai is the standard deviation of yi. 

There are two types of least-squares fit, linear and nonlinear. Linear 
least-squaresfit is based on a function f(x) of the form 

where the +,(x) are known functions of x. 
Nonlinear least-squares fit is based on 

such as 
a function f(x) nonlinear in a,, 

f (x ,  a , ,  a,, . . . , a,) = a, cos(a2x) 

The interested reader should consult the bibliography of this chapter (see 
Bevington) for further information on nonlinear least-squares fit. 

For a linear least-squares fit, the parameters amlm= ,, are determined 
from Eq. 11.11, with Eq. 11.12 giving the form of f(x). The result is 

If one defines 
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and 

then Eq. 11.13 takes the form 

Equation 11.16 forms a system of M linear nonhomogeneous equations for the 
M unknowns a,l,= and can be solved by using any of the standard methods 
(e.g., Kramer's rule). In matrix notation, the solution is 

where A and B are matrices with elements given by Eqs. 11.14 and 11.15. 
If the function f ( x )  is a polynomial, then 

M 

f ( x ,  a,, a,, . . . , a m )  = x amxm-'  (11.18) 
m = l  

Equations 11.14 and 11.15 take the form [since + k ( ~ )  = x k -  ' 1 

A k m  = C wiX;- l xy  - I (11.19) 
i 

B, = ~ w i y i x "  -' (11.20) 
1 

The notation used in Eqs. 11.19 and 11.20 and in the next section is C: , -+ Xi .  

11.4.1 Least-Squares Fit of a Straight Line 

If the function represented by Eq. 11.18 is a straight line, then 

f ( x i ,  a,, a,) = a,  + a2xi  

Thus, Eqs. 11.19 and 11.20 become 

A,, = C w ,  AI2 = wixi = A2' A2, = E w i x ?  
1 i i 

B,  = wiyi B, = C w i y i x i  
i t 

Then, Eq. 11.16 takes the forms 

Al la i  + Al,a2 = B,  

A,, a1 + A22a2 = B2 
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which are solved to give 

1 
a2 = [( f wi) ( f WiYiXi) - ( i i )  ( Y ) ]  (11.23) 

and 

The variance of a ,  and a ,  is obtained by using the principle of propagation of 
error presented in Chap. 2. 

where a,, = standard error of yi = ui. 
In many cases, the standard deviation of yi defines the weighting functions, 

and specifically, analysts use 

Then, Eq. 11.25 gives 

where D is given by Eq. 11.24 with wi = 1/u i2 .  Equations 11.22-11.27 are 
further simplified if all the ui have the same value. 

11.4.2 Least-Squares Fit of General Functions 

A straight-line least-squares fit is not limited to linear functions of x. It may be 
used with functions such as the exponential ( y  = aebx)  or the power relationship 
( y  = axb) after an appropriate transformation of variables. For example, the 
exponential function can be written as 

In y = In a + bx 
which is of the form given by Eq. 11.21 after setting 

y' = In y a; = In a a; = b 
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When the variable is transformed, it is necessary to obtain the standard 
deviation of the new variable. In general, if one sets 

then the standard deviation of yl(x) is 

In the example given above, y' = In y and 

Therefore, if a transformation is applied to the function, all the ui in Eqs. 11.26 
and 11.27 should be replaced by the values given by Eq. 11.30. 

If the parameters a, are transformed, the standard deviation of the new 
constant is again determined by Eq. 11.29. In the example given above, a' = In a 
and 

Table 11.1 presents a number of functions that can be cast into a linear (or 
polynomial) form by a transformation of variables. It should be emphasized that 
although the functions shown in Table 11.1 are not linear in x, the least-squares 
fit is still linear. An example of a function f(x, a,, . . . ) that represents a 
nonlinear least-squares fit is 

f (x ,  a,, a,, . . .) = a, cos(a,x) 

Example 11.4 The following table gives neutron-absorption cross-section 
values and their errors as a function of neutron kinetic energy. Determine the 
analytic function that fits this data set. 
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Table 11.1 Functions That Can Be Changed into a Form Suitable for a 
Linear Least-Squares Fit 

Function used in 
Function y(x) Transformation the least-squares fit 

y = aebx y ' = l n y  a ' = l n a  y '  = a' + bx 

Answer If one plots the data on log-log paper, the result is very close to a 
straight line (see Fig. 11.3). Therefore, the function to use is 

If one takes wi = 1/ui2 and applies Eqs. 11.22-11.27, the result is 

Figure 11.3 The least-squares fit to the data of Ex. 11.4. 
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11.5 FOLDING AND UNFOLDING 

To define the problems of folding and unfolding, consider the functions 

where the function R(x, x') is normalized to 1: 

Folding the function S(x) with the function R(x, x') to obtain the function 
M(x) means to perform the integration 

Unfolding means to obtain the function S(x), knowing M(x) and R(x, x'). Thus, 
folding is an integration, as shown by Eq. 11.33. Unfolding, on the other hand, 
entails solving the integral equation, Eq. 11.33-known as the Fredholm equa- 
tion-for the unknown function S(x). 

In the field of radiation measurements, folding and (especially) unfolding 
are very important operations that have to be applied to the experimental data. 
In most radiation measurements, the variable x is the energy of the particle, and 
for this reason the discussion in this section will be based on that variable. The 
reader should be aware, however, that x may represent other quantities, such as 
time, velocity, or space variables. If x is the energy of the particle, the functions 
S(x), M(x), and R(x, x') have the following meanings (also given in Sec. 9.7): 

S( E )  dE = source spectrum = number of particles emitted by the source 

with energy between E and E + dE 

M( E )  dE = measured spectrum = number of particles recorded as having 

energy between E and E + dE 

R(E, E') dE = response of the detector =probability that a particle emitted by 

the source with energy E' will be recorded with energy 

between E and E + dE 

As explained in Chap. 9, the response function is measured using monoen- 
ergetic sources. A monoenergetic source is represented mathematically by the 
delta function ( 8  function), which has these properties (Fig. 11.4): 

l-;6(~ - E,) dE = 
if El  < E, < E, 

0 otherwise 
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Thus, the 6 function is equal to zero everywhere except at E = E,, which is, of 
course, what the energy spectrum of a monoenergetic source represents. Be- 
cause of the property expressed by Eq. 11.34, integrals involving the 6 function 
are immediately evaluated. For any function f(E), one obtains 

because there is no contribution to the integral except at E = E,. For the same 
reason, if E, is outside the limits of integration, then 

Assume that a nionoenergetic source emitting S, particles per second (Fig. 
11.4) is used to measure the response function. If one substitutes the expression 
for this source, 

into Eq. 11.33, the result is 

M ( E )  = I m R ( ~ ,  E')S,S(E - E,) dE' = S,R(E, E,) (11.38) 
0 

Equation 11.38 shows that the measured spectrum is indeed equal to the 
response function in the case of a monoenergetic source. 

11.5.1 Examples of Folding 

In radiation measurements, folding means to obtain the shape of the measured 
spectrum when the source and the detector response are known. Several 
examples of folding using a Gaussian distribution as the response function are 
presented next. 
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Example 11.5 The source spectrum is a step function: 

What is the measured spectrum? 

Answer 

where 

( "i: ) = error function = & L ( E - E . ) / ~  r 2 / 2  erf - e dt 

Figure 11.5 shows the three functions involved. 

Example 11.6 The source spectrum is a square spectrum: 

El I E I E2 
S ( E )  = 

otherwise 

What is the measured spectrum? 

Answer 

Figure 11.6 shows the functions involved. 
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Figure 11.5 A step function folded with a Gaussian. 

Example 11.7 The source spectrum is a Gaussian centered at E = E,: 

What is the measured spectrum? 

Answer 

m dE' 
M(E)'  = / 7 exp 

-m ~ T U  

Figure 11.7 shows the three functions involved. It is worth noting that if a 
Gaussian is folded with another Gaussian, their standard deviations add in 
quadrature. 

 h he integral of Eq. 11.33 may be extended to -m because the Gaussian drops off quickly to a 
negligible value for E < 0. 

Figure 11.6 A "square" function folded with a Gaussian. 



368 MEASUREMENT AND DETECTION O F  RADIATION 

Figure 11.7 A Gaussian folded with a Gaussian gives a third Gaussian, which has a larger width. 

Example 11.8 The source spectrum is a Lorentzian centered at E,: 

and the response function is also a Lorentzian with width r. What is the 
measured spectrum? 

Answer 

Figure 11.8 shows the three functions involved. Notice that by folding a 
Lorentzian with a Lorentzian, the result is a third Lorentzian with width equal 
to the sum of the two widths. 

11.5.2 The General Method of Unfolding 

This section discusses methods of unfolding, assuming that an energy spectrum 
is measured with a multichannel analyzer or any other device that divides the 
measured spectrum into energy bins. As stated at the beginning of Sec. 11.5, 
unfolding means to solve the Fredholm-type integral equation 

M ( E )  = / I R ( E ,  EWE') d ~ '  (11.39) 
0 

for the unknown function S(E). Before possible methods of solution of Eq. 
11.39 are discussed, it is important to note that no spectrometer measures 
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Figure 11.8 A Lorentzian folded with a Lorentzian gives a third Lorentzian with a width equal to the 
sum of the widths of the first two distributions. 

M(E). What is measured is the quantity 

where E,,, - E, = AE, = energy "bin" of the spectrometer. For a multichan- 
nel analyzer, AE, represents the width of one of the channels. Therefore, one 
never measures a continuous function M(E) but obtains instead a histogram 
consisting of the quantities Mi (see Fig. 11.9). As a first approximation, M(E,) 
= M,/AE,. 

An analytic solution of Eq. 11.39 is immediately obtained if the detector 

Figure 11.9 The spectrometer produces a 
histogram, i.e., the quantities Mi, and not 

E the continuous function M ( E )  shown by the 
E,: E ;  + 1 dashed line. 
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Figure 11.10 A step-function response. E' 

response is a 6 function. Indeed, if R(E, E') = 6(E - E'), then 

This case is not encountered in practice because there is no detector with such a 
response function; it indicates only that with perfect energy resolution there is 
no need for unfolding. In general, the more the detector response resembles a 
Sfunction, the more the measured spectrum looks like the source spectrum. 

A second type of response that gives an analytic solution, in principle, is a 
step functiont (Fig 11.10). Let 

R(E,E1)  = 
O < E s E 1  

otherwise 

where C is a normalization constant. Then Eq. 11.39 takes the form 

The lower limit of the integral has been set equal to E because if the response 
function is that given by Eq. 11.41, no source particles with energy E' < E can 
contribute to M(E). Upon differentiation,'-4 Eq. 11.42 gives 

which is the desired solution. This method of unfolding is known as the 
differentiation method. 

Since only the quantities Mi (Eq. 11.40) are obtained, and not the function 
M(E), the differentiation indicated by Eq. 11.43 must be performed numerically. 
There are several computer codes that perform such differentiation. 

 h he response of proton-recoil counters resembles a step function (see Chap. 14). 
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The most general method of unfolding is based on a transformation of Eq. 
11.39 into a matrix equation. Equation 11.39 may be rewritten as 

where the integral over E' has been written as a sum of integrals over NR 
energy intervals AE, = E,,,  - E,. Next, Eq. 11.44 is integrated over E to give 
(see Eq. 11.40) 

Equation 11.45 is still exact. To proceed further, one needs an approximation 
for the source spectrum S ( E ) .  Two approximations and corresponding methods 
of solving the resulting matrix equation are presented in the next two sections. 

11.5.3 An Iteration Method of Unfolding 

There are several iteration methods. The method presented here is useful for 
slowly varying spectra and has been used successfully to unfold beta spectra.' 

The source spectrum S ( E )  is approximated over any interval AEj by the 
expression 

si S ( E 1 )  = - 
AE, 

Using Eq. 11.46 and defining 

then Eq. 11.45 takes the form 

or, in matrix notation, 

M = R - S  

A formal solution of Eq. 11.49 is 

where R-' is the inverse of the matrix with elements given by Eq. 11.47. 
Although in principle, Eq. 11.50 represents a solution to the unfolding problem, 
in practice the matrix inversion is not always achieved or leads to a solution with 
a large error. 
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The iteration method to be discussed here starts with Eq. 11.48 and uses the 
measured spectrum as the first guess of the iteration pr~cedure .~  

This source spectrum when substituted into Eq. 11.48 gives 

The error of Sj') is taken to be 

S . - S ! ~ ) = M . - M . ( ~ )  j = 1 , ~ ~  
I I I I 

and the new guess for the second iteration is 

S!2) = + [Mi  - ~ , . ( l ) ]  j = 1, NR 
I I 

Substitution into Eq. 11.48 gives 

M ! ~ ) = ~ R ~ ~ s ~ ( ~ )  I i = l , N R  

and so on. The nth iteration uses 

s!") = s!" - 1 )  + [ M  - ~ . ( n  - 1 )  
I I I I ] j = l , N R  

and is the solution to the problem if the difference I Mj - Mi(")[ for j = 1,. . . , NR 
is acceptably small. This iteration method converges in less than five iterations 
and gives good results. 

11.5.4 Least-Squares Unfolding 

A different approximation for the source spectrum, used with neutrons, assumes 
that S ( E )  can be represented as a sum of NS discrete  component^.^-^ There- 
fore, one can write 

NS 

S ( E t )  = C X j S ( E t  - E,) (11.51) 
j=  1 

Using Eq. 11.5 1 and defining 

then Eq. 11.45 takes the form 

or in matrix notation, 
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If NR = NS, the formal solution of Eq. 11.54 is, as with Eq. 11.49, 

Because of the difficulties of matrix inversion, a least-squares solution has been 
attempted with NR > NS. If NR < NS, no unique solution exists, but an 
acceptable one has been obtained. 

The least-squares unfolding starts with Eq. 11.53 and minimizes the quantity 

The weighting factors wi are usually taken to be the inverse of the variance of 
Mi. The minimization is achieved by setting 

which gives 

and can be solved for X, for j = 1, NS. Equation 11.57 may be written in matrix 
form6 

where = transpose of A. 
Computer round-off errors in completing the matrix inversion shown by Eq. 

11.58 lead to large oscillations in the solution X. The oscillations can be reduced 
if the least-squares solution is "constrained." Details of least-squares unfolding 
with constraints are given in Refs. 6 and 7. 

11.6 DATA SMOOTHING 

The smoothing of raw experimental data is a controversial subject because it 
represents manipulation of the data without clear theoretical justification. 
However, smoothing is generally accepted as common practice, since experience 
has shown that it is beneficial in certain cases to the subsequent analysis of the 
data, for example, in identification of energy peaks in complex gamma energy 
spectra (Chap. 12) and unfolding of neutron energy spectra (Chap. 14). Data 
smoothing should be viewed as an attempt to filter out the statistical fluctua- 
tions without altering the significant features of the data. 

To illustrate how data smoothing is performed, consider again N measure- 
ments yili= 1 ,N,  where y, = y(xi). Smoothing, which is applied to the values of y,, 
is an averaging process. In the simplest case, one adds a fixed odd number of yi 
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values, takes the arithmetic average of the sum, and sets the smoothed value of 
yi at the center of the group equal to this average. Next, the first point of the 
group is dropped, the next point is added at the other end of the group, and the 
process is repeated for all yi points. In general, the "smoothing" equation takes 
the form 

1 j = n  

where C, = coefficients that depend on the method of smoothing (see below) 
M = normalization constant 
n = index showing the number of points used in the smoothing process 

(the index n means that 2n + 1 points were used for smoothing) 
y, = smoothed value, replacing the old y, in the middle of 2n + 1 points 

The coefficients C, are determined by least-squares fitting a polynomial of 
I 

order m to 2n + 1 data points9-" and taking the smoothed value equal to the 
value of the polynomial in the middle point (Fig. 11.11). To illustrate the 
method, a few examples are given below. The least-squares fit will be based on 
Eqs. 11.18-11.20. 

Three-point zeroth-order smoothing. From Eq. 11.18, 

f ( x )  = a ,  
From Eq. 11.19, 

3 

A,, = C w i =  El  = 3  
i= 1 i 

From Eq. 11.20, 
3 3 

B~ = Cwiyi  = C yi 
1 i=  1 

From Eq. 11.16, 
B ,  1 3 

a ,  = - = - C y .  
'11 3 i=l  

(2n + 1)  Data points - Polynomial of i.' degree m 

Figure 11.11 Data smoothing. A 
polynomial of degree m is fitted 
to (2n + 1) data points, and the 
smoothed value is equal to the 
value of the polynomial in the 

1 1 1 1 1 1  
x middle point. 
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Therefore, if three-point zeroth-order smoothing is applied (Fig. 11.121, the 
constants of Eq. 11.59 are 

M = 3  C l = C 2 = C 3 = 1  

and 

y. 1 = i( 3 Yi-I  + ~ i  + ~ i + l )  

Five-point zeroth-order smoothing. Following the same s 
obtains 

M = 5  C i = l  i = 1 , 5  

and 

y. r = i( 5 Yi-2  + Yi-I Yi + Y i + l  + ~ i + 2 )  

;teps as above, one 

Three-point first-order smoothing. From Eq. 11.18, f(x) = a ,  + a,x.  Using 
Eqs. 11.19, 11.20, and 11.16, one can solve for the values of M  and Ci. If the xi  
points are equally spaced, the result is identical with three-point zeroth-order 
smoothing (Eq. 11.60). This is true, in general, for equally spaced xi; that is, the 
result of smoothing with an even-order polynomial is the same as that with a 
polynomial of the next higher order. Table 11.2 gives the values of M  and C, for 
second-order smoothing. 

As an example of using the various equations, Fig. 11.13 shows results of 
three-point zeroth-order smoothing and five-point second-order smoothing, i.e., 
using Eqs. 11.60 and 11.62: 

If the total number of points is N, the number of smoothed points is 
N - 2n for ( 2n  + 1)-point smoothing because the first smoothed point is 
i = n + 1 and the last one is N - n.  The smoothing process can be repeated if 
necessary-i.e., one may smooth data that were previously s m ~ o t h e d . ~  

1 . .  
Figure 11.12 Three-point, zeroth-order smoothing. 
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Table 11.2 Coefficients for Second-Order Smoothingt 

f ~ r o m  reference 9. 

One of the difficulties in data smoothing is the choice of the correct value 
for n. Unfortunately, there are no strict criteria for the selection of n. The 
analyst should be guided mainly by experience and by the general effects of 
smoothing on the results. In particular, if the data represent energy spectra with 
many peaks, the smoothed spectrum may tend to flatten the peaks and fill the 
valleys. 

50 

45 -- 

40 -- 

35 -- 

30 -- 

Yi 

25 -- 

20 -- 

15 -- 

lo -- 

Figure 11.13 The same data smoothed with two different equations. Circles are original data, 
squares are data smoothed with Eq. 11.60, and crosses are data smoothed with Eq. 11.62. 
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The general smoothing equation may be written as 

which has the same form as the folding-unfolding matrix equations (Eq. 11.48). 
Thus, smoothing may be considered as folding the data (y,) with the weights 
(Ri-  ,) as the response function. Taking it one step further, one may perform 
smoothing by using a continuous function, i.e., a Gaussian. Then 

The operation indicated by Eq. 11.64 has been applied to neutron spectroscopic 
data.12 

PROBLEMS 

11.1 The table below shows radioactive decay data from a certain isotope. Using least-squares fit, 
determine the half-life of the isotope. What is the error of the half-life as determined by this set of 
data? 

t(rnin) Counts t(min) Counts 

11.2 The numbers below represent values of cosine for the corresponding angles. 

Angle: 5' 10" 15" 20" 25" 3 0" 
Cosine: 0.99619 0.98481 0.96593 0.93969 0.90631 0.86603 

Obtain cosine values, by interpolation, for 22" using Lagrange's three-point interpolation formula. 
Evaluate the error of your result. Compare the error with its correct value. 

11.3 Prove Eqs. 11.22 to 11.24. 

11.4 Obtain the least-squares fit equations for a quadratic fit. 
11.5 Prove that the result of folding a step function with a Gaussian is 

where the source spectrum is 

E 2 E, 
S ( E )  = (? otherwise 
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11.6 Prove that the result of folding a Gaussian with a Gaussian is 

where the source spectrum is centered at Eo and has a standard deviation a,. 

11.7 Prove that the result of folding an exponential function e P E  with a Gaussian is 

11.8 What is the measured spectrum M(E) if the detector response is a step function of the form 
R(E, E') = C(Ef)/E' and the source emits two types of particles at energy El  and E,? 
11.9 What is the measured spectrum M(E) if the detector response is a step function, as in Prob. 
11.8, and the source spectrum is 

and is zero otherwise. 

11.10 The following data represent results of counting an energy peak. How does the full width at 
half maximum of the peak change if one applies (a) three-point zeroth-order smoothing and (b) 
five-point second-order smoothing? 

Channel Counts Channel Counts 
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CHAPTER 

TWELVE 

PHOTON (GAMMA-RAY AND X-RAY) 
SPECTROSCOPY 

12.1 INTRODUCTION 

Photons, i.e., gamma-rays and X-rays, may be treated either as electromagnetic 
waves or as particles. An electromagnetic wave is characterized by its wavelength 
A or frequency v. A photon is a particle having zero charge and zero rest mass, 
traveling with the speed of light, and having an energy E = hv ,  where h = 

Planck's constant. The wave properties of a photon are used for low-energy 
measurements only. In all other cases, detection of photons is based on their 
interactions as particles. 

This chapter first examines the mechanisms of detection in photon counters 
and then discusses the spectroscopic characteristics of the different types of 
X-ray and y-ray detectors. 

12.2 MODES OF ENERGY DEPOSITION IN THE DETECTOR 

Photons are detected by means of the electrons they produce when they interact 
in the material of which the detector is made. The main interactions are 
photoelectric effect, Compton scattering, and pair production. The electrons (or 
positrons) produced by these interactions deposit their energy in the counter 
and thus generate a voltage pulse that signifies the passage of the photon. The 
height of the voltage pulse is proportional to the energy deposited in the 
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detector. Since the objective is to measure the energy of the incident photon, 
the question arises: Is this voltage pulse proportional to the energy of the 
incident particle? To provide an answer, one must examine how the photon 
interacts and what happens to its energy. 

12.2.1 Energy Deposition by Photons with E < 1.022 MeV 

A photon with E < 1.022 MeV can interact only through the photoelectric or 
the Compton effect. If a photoelectric interaction takes place, the photon 
disappears and an electron appears with energy equal to E - Be, where Be is 
the binding energy of that electron. The range of electrons in a solid, either a 
scintillator crystal or a semiconductor, is so short that it can be safely assumed 
that all the electron energy will be deposited in the detector (Fig. 12.1~). If the 
interaction occurs very close to the wall, the electron may deposit only part of its 
energy in the counter (Fig. 12.161, but the probability of this happening is small. 
In practice, one assumes that all the photoelectrons deposit all their energy in 
the detector. This energy is less than the energy of the incident photon by the 
amount Be, the binding energy of the electron. What happens to the energy Be? 

After a photoelectric effect takes place, an electron from one of the outer 
atomic shells drops into the empty inner state in about lo-' s. This electronic 
transition is followed by an X-ray or by an Auger electron (see Chap. 4). The 
Auger electron will also deposit its energy in the detector. The X-ray with 
energy in the low keV range ( -  100 keV or less) interacts again photoelectri- 
cally and generates another electron.+ The net result of these successive 
interactions is that the part Be of the incident photon energy is also deposited in 
the counter. All these events take place within a time of the order of lo-' s. 
Since the formation of the voltage pulse takes about s, both parts of the 
energy-namely, E - Be = energy of photoelectron and Be = energy of the 
X-ray-contribute to the same pulse, the height of which is proportional to 

 o or thin detectors, or detectors made of high-Z material-e.g., CdTe or Hg1,-some X-rays 
may escape, thus forming the so called "escape peaks" (see Sec. 12.8). 

lncident photon 
(a 1 

Incident photon 
(b 1 

Figure 12.1 As a result of a photoelectric interaction, the photon disappears. (a) All the energy of 
the electron is deposited in the detector. ( b )  Part of the energy is deposited in the wall. 
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( E  - B,) + B, = E = incident photon energy. The conclusion is, therefore, that 
if the photon interacts via photoelectric effect, the resulting pulse has a height 
proportional to the incident particle energy. 

If Compton scattering takes place, only a fraction of the photon energy is 
given to an electron. A scattered photon still exists carrying the rest of the 
energy. The energy of the electron is deposited in the detector. But what 
happens to the energy of the scattered photon? 

The scattered photon may or may not interact again inside the detector. The 
probability of a second interaction depends on the size of the counter (Fig. 12.2), 
on the position of the first interaction, on the energy of the scattered photon, 
and on the material of which the detector is made. Unless the detector is 
infinite in size, there is always a chance that the scattered photon may escape, in 
which case a pulse will be formed with height proportional to an energy that is 
less than the energy of the incident photon. 

From the study of the Compton effect (Chap. 4), it is known that Compton 
electrons have an energy range from zero up to a maximum energy T,,,, which 
is 

where mc2 = 0.511 MeV, the rest mass energy of the electron. Therefore, if the 
interaction is Compton scattering, pulses are produced from Compton electrons 
with heights distributed from V = 0 volts, corresponding to T,,, = 0, up to a 
maximum height V,,, volts corresponding to the maximum energy T,,, . Figures 
12.3 to 12.5 illustrate how a monoenergetic photon spectrum is recorded as a 
result of photoelectric and Compton interactions. 

Figure 12.3 shows the source spectrum. In the case of perfect energy 
resolution, this monoenergetic source produces in an MCA the measured 
spectrum shown by Fig. 12.4. Some photons produce pulses that register in 
channel C,, corresponding to the source energy E,, and thus contribute to the 
main peak of the spectrum, which is called the full-energy peak. The Compton 

Detector 

escapes Scattered 

\ 
photon interacts 
inside this 
larger detector 

Figure 12.2 As a result of Compton scattering, part of the photon energy may escape. 
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E Figure 123 A monoenergetic gamma spec- 

€ 0  trum (source spectrum). 

Figure 12.4 The pulse height spectrum obtained from the source spectrum of Fig. 12.3, in the 
absence of statistical effects in the detector (perfect energy resolution). 

number 

Figure 12.5 The measured pulse height spectrum for the source spectrum of Fig. 12.3. The statistical 
effects in the detector broaden both the peak and the Compton continuum part of the spectrum. 
The dashed line shows the spectrum that would have been recorded in the absence of the Compton 
continuum. 
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electrons are responsible for the continuous part of the spectrum, extending 
from zero channel up to channel CC and called the Compton continuum. The 
end of the Compton continuum, called the Compton edge, corresponds to the 
energy given by Eq. 12.1. Since no detector exists with perfect energy resolution, 
the measured spectrum looks like that of Fig. 12.5. 

Sometimes the Compton interaction occurs very close to the surface of the 
detector or in the material of the protective cover surrounding the detector (Fig. 
12.61t Then there is a high probability that the electron escapes and only the 
energy of the scattered photon is deposited in the detector. The minimum 
energy Emin of the scattered photon is given by 

Occasionally, a rather broad peak, corresponding to the energy given by Eq. 
12.2, is observed in y-ray spectra. This peak is called the backscatterpeak (Fig. 
12.5). 

The fraction of counts recorded outside the full-energy peak depends on the 
energy of the gamma and on the size of the detector. The energy of the photon 
determines the ratio u / p  of the Compton scattering coefficient to the total 
attenuation coefficient. The lower the gamma energy is, the smaller this ratio 
becomes. Then a greater fraction of photons interacts photoelectrically and is 
recorded in the full-energy peak, thus reducing the Compton continuum part of 
the spectrum. As an example, consider gammas with energy 100 keV and 1 
MeV, and a Ge(Li) detector. For 100-keV gammas in germanium, the ratio C T / ~  

is 0.9/3.6 .= 0.25 (Fig. 12.311, which indicates that 25 percent of the interactions 
are Compton and 75 percent photoelectric. The number of pulses in the 
Compton continuum should be equal to or less than one-third the number 
recorded under the full energy peak. At 1 MeV, the ratio C T / ~  is about 
0.4/0.42 = 0.95, which means that about 95 percent of the interactions are 
Compton and only 5 percent photoelectric. Thus, the Compton continuum due 
to 1-MeV photons is the largest part of the spectrum. 

The magnitude of the Compton continuum is also affected by the size of the 
detector (Fig. 12.2). The larger the detector is, the greater the probability of a 
second Compton interaction. If the detector size could become infinite, the 
Compton continuum would disappear. 

12.2.2 Energy Deposition by Photons with E > 1.022 MeV 

If E > 1.022 MeV, pair production is possible, in addition to photoelectric 
effect and Compton scattering. As a result of pair production, the photon 

'~ackscat ter in~ may also take place in the source itself, or in the shield surrounding the 
detector. 
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Protective 
cwer 

7' 

Figure 12.6 If Compton scattering occurs close to 
the surface of the detector, the only energy de- 
posited may be that of the scattered photon. 

disappears and an electron-positron pair appears, at the expense of 1.022 MeV 
transformed into the pair's rest masses. The total kinetic energy of the electron- 
positron pair is 

I The kinetic energy of the pair is deposited in the counter (the arguments are the 
I same as for photoelectrons or Compton electrons). Therefore, pulses propor- 

tional to the energy T = E - 1.022 MeV are certainly produced, but what 
happens to the energy of 1.022 MeV? 

The positron slows down and reaches the end of its range in a very short 
time, shorter than the time needed for pulse formation. Sometimes while in 
flight, but most of the time at the end of its track, it combines with an atomic 
electron, the two annihilate, and two gammas are emitted, each with energy 
0511 M ~ v . +  There are several possibilities for the fate of these annihilation 
gammas. 

1. The energy of both annihilation gammas is deposited in the detector. Then, a 
pulse height proportional to energy 

( E  - 1.022) MeV + 1.022 MeV = E  

is produced. 
2. Both annihilation photons escape. A pulse height proportional to energy 

( E  - 1.022) MeV -is formed. 
3. One annihilation photon escapes. A pulse height proportional to energy 

( E  - 1.022) MeV + 0.511 MeV = ( E  - 0.511) MeV 

is formed. 

If the pair production event takes place on or close to the surface of the 
detector, it is possible that only one of the annihilation photons enters the 
counter. In such a case, a pulse height proportional to energy 0.511 MeV is 
formed. 

  here is a small probability that three gamma may be emitted. This event has a negligible 
effect on spectroscopy measurements. 
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Peaks corresponding to these energies could be identified, but this does not 
mean that they are observed in every y-ray spectrum. The number, energy, and 
intensity of peaks depend on the size of the detector, the geometry of the source 
(is it collimated or not?), and the energies of the gammas in the spectrum. If a 
source emits only one gamma, the measured spectrum will certainly show 

1. The full energy peak, corresponding to E (this is the highest energy peak) 
2. The Compton edge, corresponding to energy 

Other peaks that may be observed are 

3. Backscatter peak, with energy 

4. The single-escape peak with energy ( E  - 0.511) MeV 
5. The double-escapepeak with energy ( E  - 1.022) MeV 

Figure 12.7 presents the spectrum of 2 4 ~ a .  The single- and double-escape 
peaks due to the 2.754-MeV gamma are clearly shown. The single- and double- 

Double escape of 
E,, = 2754 keV 

Channel number 

Figure 12.7 A gamma spectrum showing single- and double-escape peaks (from Chap. 4.4.2 of 
Bertolini and Coche). 
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escape peaks are very important when complex gamma spectra are recorded. 
The observer should be extremely careful to avoid identifying them falsely as 
peaks produced by gammas emitted from the source. 

If the source is a positron emitter, a peak at 0.511 MeV is always present. 
The positron-emitting isotope '*Na is such an example. It emits only one gamma 
with energy 1.274 MeV, yet its spectrum shows two peaks. The second peak is 
produced by 0.511-MeV annihilation photons emitted after a positron annihi- 
lates (Fig. 12.8). 

The Compton continuum, present in gamma energy spectra recorded either 
by a NaI(T1) scintillator or by a Ge detector, is a nuisance that impedes the 
analysis of complex spectra. It is therefore desirable to eliminate or at least 
reduce that part of the spectrum relative to the gamma energy peak. One way to 
achieve this is to use two detectors and operate them in anticoincidence. Such 
an arrangement, known as the Compton-suppression spectrometer, is shown in 
Fig. 12.9. A large NaI(T1) scintillator surrounds a Ge detector, and the two 
detectors are operated in anticoincidence. The energy spectrum of the central 

1.51 1 MeV 

Channel number 

Figure 12.8 The ' ' ~ a  spectrum showing the 1.274-MeV peak and the 0.511-MeV peak that is due to 
annihilation gammas. 
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Source 

Pb collimator BJ 1 " 0 1 , 1 1 ,  

Figure 12.9 Diagram of a Compton suppression spectrometer using a NaI(T1) and a Ge detector. 
The two detectors are operated in anticoincidence, with the Ge recording the energy spectrum. 

detector [the Ge in this case] will consist of pulses that result from total energy 
absorption in that detector. Figure 12.10 shows the 60Co spectrum obtained with 
and without Compton suppression. 

12.3 EFFICIENCY OF X-RAY AND GAMMA-RAY 
DETECTORS: DEFINITIONS 

There are four types of efficiency reported in the literature: 

1. Total detector efficiency 
2. Full-energy peak efficiency 

lo4 - - - - - No Compton suppression 
+ 

- - - 
0) - 
g lo3 - 
C 

I 
= - 

1 
Compton suppressed 

- 
10 

1 I I I I I I I I I I I I I ~  

0  400 800 1200 1600 2000 2400 2800 
Channel number 

Figure 12.10 The 'OCO spectrum recorded with and without Compton suppression. Notice that the 
ordinate is in logarithmic scale. 
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- 1 - 1 Figure 12.11 The geometry assumed in the - 8 - definition of intrinsic efficiency. 
l ncident beam 

3. Double-escape peak efficiency 
4. Single escape peak efficiency 

The first two are much more frequently used than the last two. All four 
efficiencies may be intrinsic, absolute, or relative. The individual definitions are 
as follows. 

Intrinsic total detector eficiency is the probability that a gamma of a given 
energy which strikes the detector will be recorded. The geometry assumed for 
the calculation or measurement of this efficiency is shown in Fig. 12.11. 

Absolute total detector eficiency is the probability that a gamma emitted 
from a specific source will be recorded in the detector. The geometry assumed 
for the absolute efficiency is shown in Fig. 12.12. The intrinsic efficiency (Fig. 
12.11) depends on the energy of the gamma E and the size of the detector L. 
The absolute total efficiency (Fig. 12.12) depends on, in addition to E and L, 
the radius of the detector R and the source-detector distance d.  Therefore the 
absolute total efficiency, as defined here, is the product of intrinsic efficiency 
times the solid angle fraction (see also Chap. 8). 

Full-enetgy peak eficiency is defined as follows: 

counts in full- 

( 
Full-energy peak total detector energy peak 

efficiency efficiency total counts in 
(12.1) 

spectrum I 
The ratio by which the total detector efficiency is multiplied in Eq. 12.3 is 

called the peak-to-total ratio ( P ) .  Figure 12.13 shows how P is measured. 
The double-escapepeak efficiency is important if the energy of the gamma E 

is greater than about 1.5 MeV, in which case pair production becomes impor- 
tant. The energy of the double-escape peak, equal to E - 1.022 MeV, is used 

Figure 12.12 The geometry assumed 
in the definition of absolute effi- 
ciency. 
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Figure 12.13 The peak-to-total 
ratio is equal to the number of 
counts under the peak (N, )  di- 

vided by the total number of 

Channel number counts (N,). 

for identification of certain isotopes. This kind of efficiency is defined by 

( counts in double- \ 
Double-escape \ escape peak 
peak efficiency efficiency 

(12.4) ( total counts in \ 
\ spectrum 

The single-escape peak efficiency is important also for E > 1.5 MeV, and its 
definition is analogous to that of the double-escape peak: 

( counts in single- \ 
Single-escape escape peak 1 

peak efficiency efficiency (12.5) 
total counts in 

spectrum 

The double- and single-escape peak efficiencies are used with semiconductor 
detectors only. In the above definitions, if the total detector efficiency is 
replaced by intrinsic, the corresponding full-energy, single-, and double-escape 
peak efficiencies are also considered intrinsic. 

Relative efficiency may be obtained for all the cases discussed above. In 
general, 

(absolute effi~iency)~ 
(Relative efficien~y)~ = (12.6) 

efficiency of a standard 

where the subscript i refers to any one of the efficiencies defined earlier. 
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Depending on the type of detector and measurement, the user selects the 
efficiency to be used. For quantitative measurements, the absolute total effi- 
ciency of the detector has to be used at some stage of the analysis of the 
experimental data. 

12.4 DETECTION OF PHOTONS WITH NaI(T1) 
SCINTILLATION COUNTERS 

Of all the scintillators existing in the market, the NaI crystal activated with 
thallium, NaI(Tl), is the most widely used for the detection of y-rays. NaI(T1) 
scintillation counters are used when the energy resolution is not the most 
important factor of the measurement. They have the following advantages over 
Ge(Li) and Si(Li) detectors: 

1. They can be obtained in almost any shape and size. NaI(T1) crystals with size 
0.20 m (8 in) diameter by 0.20 m (8 in) thickness are commercially available. 

2. They have rather high efficiency (see Sec. 12.4.1). 
3. They cost less than semiconductor detectors. 

A disadvantage of all scintillation counters, in addition to their inferior 
energy resolution relative to Si(Li) and Ge(Li) detectors, is the necessary 
coupling to a photomultiplier tube. 

NaI(T1) detectors are offered in the market today either as crystals that may 
be ordered to size or as integral assemblies mounted to an appropriate photo- 
multiplier tube.'-3 The integral assemblies are hermetically sealed by an alu- 
minum housing. Often, the housing is chrome-plated for easier cleaning. The 
phototube itself is covered by an antimagnetic p-metal that reduces gain 
perturbations caused by electric and magnetic fields surrounding the unit. 

The front face of the assembly is usually the "window" through which the 
photons pass before they enter into the crystal. The window should be as thin as 
possible to minimize the number of interactions of the incident photons in the 
materials of the window. Commercially available NaI(T1) counters used for y-ray 
detection have an aluminum window, which may be as thin as 0.5 mm (0.02 in). 
X-ray scintillation counters usually have a beryllium window, which may be as 
thin as 0.13 mm (0.005 in). Beryllium is an excellent material because it allows 
less absorption thanks to its low atomic number ( Z  = 4). 

12.4.1 Efficiency of NaI(T1) Detectors 

The intrinsic efficiency of NaI(T1) detectors (see Fig. 12.11) is essentially equal 
to 1 - exp[-p(E)L], where 

p ( E )  = total attenuation coefficient in NaI for photons with energy E 
L = length of the crystal 
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A plot of EL(E)  for NaI as a function of photon energy is shown in Fig. 12.14. 
The efficiency increases with crystal size. The user should be aware, how- 

ever, that when the detector volume increases, the background counting rate 
increases too. In fact, the background is roughly proportional to the crystal 
volume, while the efficiency increases with size at a slower than linear rate. 
Thus, there may be a practical upper limit to a useful detector size for a given 
experiment. 

0.01 0.1 1 
Energy (MeV1 

Figure 12.14 The photon linear attenuation coefficients for NaI(TI) (from Ref. 3). 
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Calculated absolute total efficiencies of a NaI crystal are given in Fig. 12.15 
for several source-detector distances. They have been obtained by integrating 
Eq. 8.20, which is repeated here (refer to Figs. 8.21 and 12.12 for notation): 

"(1 - exp [-p(E)L/cos 61) sin 6 dB 
E(E)  = 

1 - cos 8, 

where 6, = tan-' [R/(d + L)] 
6, = tan-' (R/d) 

The inherent approximation of Eq. 8.20 is that it considers detected every 
photon that interacted at least once inside the detector. 

In Fig. 12.15, note that the efficiency decreases with energy up to about 5 
MeV. Beyond that point, it starts increasing because of the increase in the pair 

Source-todetector distance (cm) 

0.5 

Gamma-ray energy, MeV 

Figure 12.15 Calculated abso- 
lute total efficiencies of a 3 
in x 3 in (76.2 mm X 76.2 mm) 
NaI(T1) scintillator as a func- 
tion of energy for different 
source-detector distances 
(from Ref. 3). 
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production probability. Figure 12.16 shows how the peak-to-total ratio (see Fig. 
12.13) changes with energy for a source located 0.10 m from detectors of 
different sizes. 

12.4.2 Analysis of Scintillation Detector Energy Spectra 

NaI(T1) scintillators are seldom used as gamma-ray spectrometers because their 
energy resolution is inferior to that of semiconductor detectors. Despite this 
fact, a brief discussion of the methods of analysis of NaI(TI) spectra is instruc- 
tive because it helps point out differences and similarities between the responses 
of NaI(T1) and Ge(Li) detectors. 

If a NaI(T1) scintillator is used to detect a photon spectrum consisting of 
many gamma energies, the measured spectrum will be the summation of spectra 

Crystal dimensions 
(diameter X height) 

v 8" x 8" x 4" x 4" 

a9" X 6.5" Q3" X 3" 

0 2" x 2" 

I I I I I 

0.5 1 .O 1.5 2 .O 2.5 3 .O 
Energy, MeV 

Figure 12.16 Peak-to-total ratio as a function of energy for NaI(T1) scintillators of different sizes. 
The source-to-detector distance is 0.10 m (from Ref. 3). 
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similar to those shown in Fig. 12.5. To identify individual energies from a 
complex spectrum, one unfolds the measured spectrum (see Chap. 11). Unfold- 
ing, in turn, requires the knowledge of the detector response function. 

Response functions of NaI(T1) detectors, obtained by Heath et al.,4,5 are 
shown in Fig. 12.17. These authors measured the response for several gamma 
energies and then used an interpolation scheme to derive the three dimensional 
plot of Fig. 12.17. A modified Gaussian of the form 

Figure 12.17 A three-dimensional representation of NaI(T1) response functions (from Ref. 4). 
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gave a successful fit to individual gamma peaks. The five parameters y o ,  x,, b,, 
a,, and a,  were determined by least-squares fit. The parameter x ,  shows the 
location of the peak, and b is related to the full width at half maximum 

n 2)b Figure 12.18 shows the measured and calculated (FWHM) by = 2 d 2 ( 1 .  
response functions for ' 3 7 ~ s .  Unfolding of the spectrum was achieved by using 
these response functions in a computer program that determines energy and 
intensity of individual gammas based on a least-squares fit and iteration tech- 
n i q ~ e . ~  

The energy resolution of Nal(T1) detectors is quoted in terms of the percent 
resolution for the 0.662-MeV gamma of 1 3 7 ~ s .  Using the best electronics 
available, this resolution is about 7 percent and the FWHM is about 46 keV. As 
mentioned in Chap. 9, the FWHM is roughly proportional to the square root of 
the energy. For this reason, the resolution in percent deteriorates as the energy 
decreases. For 10-keV X-rays, the best resolution achieved is about 40 percent, 
which makes the FWHM about 4 keV. 

Figure 12.18 Comparison of the mea- 
sured (solid circles) and calculated 

0 20 40 60 80 100 120 (open circles) response functions for 
Channel '"CS (from Ref. 4). 
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12.5 DETECTION OF GAMMAS WITH AN NE 213 
ORGANIC SCINTILLATOR 

The NE 213 organic scintillator has emerged as one of the leading fast neutron 
spectrometers (see Chap. 14). As a gamma spectrometer, the NE 213 scintillator 
has an efficiency lower than that of NaI(T1) and an energy resolution that is 
poor compared to that of semiconductor detectors. There are certain applica- 
tions, however, where high-energy resolution is not the most important factor. 
One such application is detection of gammas in a mixed neutron-gamma field. 
There, the ability of the NE 213 scintillator to discriminate against neutrons 
makes it an attractive gamma detector. 

Because gammas are detected by the NE 213 scintillator mainly through 
Compton interactions, the response function of the detector consists of the 
Compton continuum. The response function has been calculated6 and mea- 
sured' for several gamma energies. Figure 12.19 shows a comparison of calcu- 
lated and measured response functions. 

To obtain the gamma spectrum from the source, the measured NE 213 
spectrum must be unfolded. Results of matrix-inversion unfolding applied to the 
measured spectrum of 2 4 ~ a  are shown in Figs. 12.20 and 12.21. The spectrum 
shown in Fig. 12.21 was obtained by unfolding the spectrum of Fig. 12.20 with 
the code FORIST,~ which is a variation of the code FERDOR.~ Both codes use 

Figure 12.19 Comparison of measured 
(point) and calculated (line) NE 213 
response functions for 2.1-, 4.0-, and 

Pulse height, light units 6 . 1 1 ~ e  gamma rays (from Ref. 7). 
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Figure 12.20 Gamma-ray pulse height spec- 
trum produced by NE 213 for a 2 4 ~ a  source. 

0 1 2 3 The two Compton edges are due to the 1.37- 
Pulse height, light units and 0.75-MeV gammas (from Ref. 7). 

the least-squares unfolding method described in Sec. 11.5.4. Another program 
used for gamma spectra analysis is called SAMPO, adapted for use with 
microcomputers.10 

12.6 DETECTION OF X-RAYS WITH A 
PROPORTIONAL COUNTER 

Gas-filled chambers operating in the proportional counter range are used in 
certain special applications for the detection of X-rays with energy less than 100 

Figure 12.21 The spectrum of Fig. 12.20, un- 
folded with the code FORIST. The vertical 
error bars show f 1 standard error due to 

Gamma-ray energy, MeV counting statistics (from Ref. 7). 
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keV. At this energy range, the photons interact only through the photoelectric 
effect. Since the photoelectric cross section increases as Zm, with rn - 3-5, it is 
important to have a window made of very low-Z material and a gas with as high 
a Z value as possible. 

X-ray proportional counters are usually cylindrical with a very thin beryl- 
lium window located either on the side or at the front end. They use a gas that is 
a mixture of a noble gas-He, Ne, Ar, Kr, Xe-with methane, at a pressure of 
about 1 atm. 

The energy resolution of these counters is such that the FWHM is 1-2 keV 
at 20 keV. Thus, proportional counters are superior to scintillation counters in 
this energy range. 

12.7 DETECTION OF GAMMAS WITH Ge DETECTORS 

As mentioned in Sec. 7.5.5, the Ge(Li) detectors have been replaced by Ge 
detectors, which are devices that use hyper pure germanium (impurity concen- 
tration 1016 atoms/m3 or less). The main advantage of Ge over Ge(Li) detectors 
is that the former should be kept at low temperatures only when in use; the 
latter must be kept cool at all times. 

The cooling of Ge detectors is achieved by permanently mounting the 
detector on a cryostat. The cryostat consists of a reservoir or Dewar containing 
the cooling medium and a vacuum chamber housing the detector. The Dewar is 
made of two concentric metal containers (Fig. 12.22) with the space between the 
two containers evacuated for thermal insulation. In one design, called the 
"dipstick" (Fig 12.22a), the detector is housed in a separate vacuum chamber 
and the cooling rod is made of copper. The cooling medium is usually liquid 

Detector 

Dewar 

Chamber 

liquid nitrogen 
r--. _--- 

C--- 
Z 

Figure 12.22 (a) A dipstick cryostat (cross section). ( b )  An integral cryostat (cross section) (courtesy 
of Canberra Nuclear). 



nitrogen (boiling temperature - 196"C, or 77 K). In another design, called the 
integral cryostat (Fig. 12.226), there is a common vacuum chamber for both the 
Dewar and the detector. One version of the integral cryostat is provided with a 
rotary vacuum seal, which allows the detector chamber to be rotated 180". With 
respect to cooling, one manufacturer (Canberra) has designed and is offering a 
cryoelectric cryostat that uses a commercial refrigerator with helium gas as the 
refrigerant. 

The vacuum chamber that contains the detector is made of stainless steel. 
The chamber protects the detector from dirt and, by being evacuated, prevents 
condensation of vapor on the detector surface or electrical discharge when high 
voltage is applied to the detector. A metal envelope, with a very thin window at 
its end for the passage of the incident photons, surrounds the detector. The 
window is made of beryllium, aluminum, or a carbon composite fiber. Transmis- 
sion characteristics of several window thicknesses are shown in Fig. 12.23. Most 
commercial cryostats include the preamplifier as a standard component. 

Reduction of background in any measurement is very important. It becomes 
absolutely necessary in cases when the sample to be counted is a very weak 
radiation source and its activity barely exceeds the background. Complete 
elimination of the background radiation is impossible, but reduction of it is 
feasible by using special shields. Common shields are made of lead or steel and 
are 0.10-0.15 m thick. Figure 12.24 shows a typical arrangement of the cryostat, 
the detector, and the shield. Photographs of two commercial detectors, cryostats, 
and multichannel analyzers are shown in Fig. 12.25. 

12.7.1 Efficiency of Ge Detectors 

The efficiency of Ge detectors quoted in the list of specifications by the 
manufacturer may be a relative full-energy peak efficiency or an absolute 

Energy (keV) 

Figure 12.23 Transmission characteristics of various detector windows. The thicknesses shown are in 
mils of inches (courtesy of Canberra Nuclear). 
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Shield t. 

Detector --* 
L u 

1 

Figure 12.24 A typical arrangement of the detector, 
the shield, and the cryostat. 

efficiency. Relative efficiencies are referenced in terms of the absolute full-en- 
ergy peak efficiency of a 76 mm X 76 mm (3 in X 3 in) NaI(T1) crystal. The 
measurement (or calculation) is based on the 1.33-MeV peak of 6 0 ~ o .  It is 
assumed that a 60Co source of known strength is positioned 0.25 m away from 
the face of the detector. A count is taken for a period of time, and the absolute 
full-energy peak efficiency of the Ge(Li) detector is determined by dividing the 
total number of counts under the 1.33-MeV peak (shaded area, Fig. 12.26) by 
the number of photons emitted from the source during the same time period. 
This absolute efficiency is divided by 1.2 x lop3, which is the absolute efficiency 
of a 3 in x 3 in NaI(T1) crystal 0.25 m from the source, to give the relative 
efficiency quoted in the specifications. 

Absolute efficiencies as a function of energy for four types of Ge detectors 
are shown in Figs. 12.27-12.30. In Fig. 12.27, a Ge wafer is used to make what 
the manufacturer calls a low-energy Ge (LEGe) detector. In this detector, a p + 
contact is fabricated on the front face and the cylindrical surface with implanted 
boron; on the rear face, an n + contact is formed with lithium diffused along a 
spot that is smaller than the full rear area of the device. The efficiency of this 
detector is dropping for energies below 5 keV because of absorption in the Be 
window; at the other end of the graph, the efficiency drops for E > 100 keV 
because of a corresponding decrease in the value of the total linear attenuation 
coefficient of gamma rays in Ge (Fig. 12.31). A coaxial Ge detector and its 
efficiency are shown in Fig. 12.28. The contacts of this detector are formed by 
diffused lithium (n contact) and by implanted boron (p contact). The diffused- 
lithium n contact is given by the manufacturer as 0.5 mm thick. A variation of 
the coaxial detector, called the reverse-electrode (REGe) detector and its 
efficiency are shown in Fig. 12.29. In the REGe detector the electrodes are 
opposite to those of the "normal" coaxial: the p-type electrode (formed by 
ion-implanted boron) is on the outside, and the n-type contact (formed by 
diffused lithium) is on the inside. This electrode arrangement leads to decreased 
window thickness (the p contact may be as thin as 0.3 pm; the Be window is - 0.5 mm), which, in turn, results in higher efficiency at lower energy (compare 
efficiency curves of Figs. 12.28 and 12.29). Finally, in Fig. 12.30 a Ge well-type 
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Figure 12.25 ( a )  Ge detector with its cryostat and multichannel analyzer (reproduced from Instru- 
ments for Research and Applied Sciences by permission of EG & G ORTEC, Oak Ridge, Ten- 
nessee). ( b )  Portable Ge detector system with its cryostat and multichannel analyzer (courtesy of 
Canberra Nuclear). 
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I 1.1 7 MeV 1.33 MeV 

Figure 12.26 A sketch of the 60Co spec- 
trum, indicating how it is used for effi- 
ciency and peak-to-Compton ratio deter- 

Photon energy mination. 

detector is shown. The special characteristic of this device is its increased 
efficiency due to its particular geometry. The solid angle approaches 47r, 
resulting in close to 100 percent efficiency in a certain energy range. 

For Ge detectors other than the well-type, the efficiency is low, relative to 
Na(Tl) scintillation counters. This statement holds true for Si(Li) detectors as 
well (see Sec. 12.9). Lower efficiency, however, is more than compensated for by 
the better energy resolution of the semiconductor detector. Figure 12.32 illus- 
trates the outstanding resolution characteristics of a semiconductor detector by 
showing the same spectrum obtained with a NaI(T1) and a Ge(Li) detector. 
Notice the tremendous difference in the FWHM. The Ge(Li) gives a FWHM = 

1.9 keV, while the NaI(T1) gives FWHM = 70 keV. 
Consider a case of 10,000 counts being recorded by a 3 in X 3 in Na(T1) 

detector under the 1.33-MeV peak of 60Co. A Ge detector with 10 percent 
relative efficiency will record only 1000 counts. The FWHM of the Na(T1) peak 
is 70 keV; the corresponding width of the Ge peak is about 2 keV. Since the 
total number of counts under the peak is proportional to the product of the 
FWHM times the peak, the heights of the two peaks are related by 

Height of Ge peak - - (1000/2) 70 
= - 

Height of NaI(Tl) peak (10,000/70) 20 
= 3.5 

Thus, even though the Ge detector is only 10 percent efficient, relative to the 
NaI(Tl) crystal, it produces a peak that is 3.5 times higher. 

Another parameter specified by the manufacturer of Ge detectors is the 
peak-to-Compton ratio (PCR). Looking at Fig. 12.26, the PCR is defined by the 
equation 

height of 1.33-MeV peak 
PCR = 

average height of Compton 
plateau of 1.33-MeV peak 

The average of the plateau is taken between 1040 and 1096 keV, in accordance 
with IEEE Standard No. 325-1971." The PCR is important because it indicates 
the capability of the detector to identify lowenergy peaks in the presence of 
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Figure 12.27 (a) LEGe detector. ( b )  Absolute efficiency as a function of energy for a detector size 
shown on the graph and 2.5-cm distance assumed between source and detector (from Canberra, Ref. 
2). 
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Energy (keV) 

(b )  

Figure 12.28 (a) Coaxial Ge detector. ( b )  Absolute efficiency as a function of energy for a distance 
of 2.5 cm between source and detector (from Canberra, Ref. 2). 
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Figure 12.29 (a) REGe coaxial detector. ( b )  Absolute efficiency as a function of energy for a 
distance of 2.5 cm between source and detector (from Canberra, Ref. 2). 
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Figure 1230 (a) A Ge well-type detector. ( b )  Absolute detector efficiency for a detector with 40-mm 
depth and 10-mm-diameter well. Source assumed placed at the bottom of the well. 

stronger peaks of higher energy. PCR values of 30:l are common, but higher 
values have also been reported. 

For the analysis of complex gamma spectra, it is helpful to have an analytic 
function that represents the efficiency of the detector as a function of energy. 
Many semiempirical equations have been developed to fit the efficiency of 
Ge(Li) detectors."-20 Three examples are given here. 
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Energy, MeV 

Figure 12.31 Photon attenuation coefficients for germanium. The dashed line is the approximate 
total linear attenuation coefficient. 

The Freeman-Jenkin   qua ti on". 

where r = photoelectric coefficient 
x = thickness of the detector 
u = Compton coefficient 

A,  B = constants to be determined from measurement 
Equation 12.8 was used to determine the relative efficiency of a cylindrical and a 
trapezoidal detector over the range 500-1500 keV, with an accuracy of about 1 
percent. 

The Mowatt Equation". 

where F' = l I i  exp (- pix i )  = product of attenuation factors outside the intrin- 
sic region 

a ,  = normalization factor 
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Figure 12.32 The 6 0 ~ o  spectrum obtained with a NaI(T1) scintillator and a Ge(Li) detector 
(reproduced from Instruments for Research and Applied Sciences by permission of EG & G ORTEC, 
Oak Ridge, Tennessee). 

a, = the thickness of the germanium front dead layer 
a,, a, = constants to be determined from measurement 

a, = effective detector depth 
Equation 12.9 is an improvement over Eq. 12.8 because it takes into account 
absorption in the window (through the factor F ' )  and in the dead layer of the 
detector [through the factor exp(- p,,a,)]. Mowatt's equation, developed for 
planar detectors, gives the efficiency with an accuracy of 1.5 percent over the 
range 100-1400 keV. 

where a, through a, are constants to be determined from measured gamma 
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spectra. Equation 12.10, developed for coaxial detectors, predicts the efficiency 
with an accuracy of 0.2 percent over the energy range 160-1333 keV. Further 
testing of 12.10 showed2' that the last term involving the constants a, and a, 
has a negligible effect on the result. 

Equations 12.8-12.10 are given just as examples that indicate the general 
energy dependence of the efficiency curve. What is done in practice is to 
measure the efficiency as a function of energy using calibrated sources emitting 
gammas of known energies and inten~ities."- '~.~'  A table of gamma energies 
used for calibration is given in App. C. 

12.7.2 Energy Resolution of Ge Detectors 

The energy resolution of a Ge detector is given in terms of the FWHM (r). The 
width r  consists of the following two components: 

r, = width due to detector effects 

re = width due to effects of electronics 

Since these two components are uncorrelated, they are added in quadrature to 
give the total width, T, 

r = , / m  (12.11) 

As shown in Chap. 9, the width T, is energy dependent and is given by 

where F is the Fano factor and w is the average energy needed to produce an 
electron-hole pair. For germanium, at the operational temperature of 77 K, 
w = 2.97 eV. Thus, 

The width re increases when the detector capacitance increases. The 
detector capacitance, in turn, generally increases with detector size and may 
change with detector bias. Good Ge detectors have a flat capacitance-bias 
relationship over most of the range of bias voltage applied. 

The capacitance of the detector has an effect on the energy resolution 
because it influences the performance of the charge-sensitive preamplifier that 
accepts the detector signal. The contribution of the preamplifier to the value of 
re increases with the input capacitance. One of the manufacturers, Canberra, 
reports a 0.570-eV re with zero input capacitance and a slow increase with 
higher values as shown in Fig. 12.32. Clearly, the resolution improves if the 
capacitance is kept low. The other component of the input capacitance comes 
from items like connectors and cables. Reduction of the length of input cable 
and of connectors' capacitance is helpful. For the best resolution with a given 
system, the preamplifier should be located as close to the detector as possible. 
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Figure 12.33 The dependence of re on input capacitance for a charge-sensitive preamplifier (from 
Ref. 2). 

Large Ge detectors commercially available today have capacitance as high 
as 30 pF, which results in a value of re = 1.06 keV (Fig. 12.33). Combining the 
two contributions r, and re in accordance with Eq. 12.11, one gets 

r (keV) = d ( 0 . 1 2 8 3 ) ~ ~ ~  (keV) + 1.062 (12.14) 

A typical value of the Fano factor for 0.1 < E < 10 MeV is 0.16. Substitution in 
Eq. 12.14 gives 

r (keV) = J(2.63 x lop3 ) E  (keV) + 1.06~ (12.15) 

Equation 12.15 shows that for low energies, the resolution is determined by 
electronic noise. For higher energies, the energy contribution predominates. 
Consider two cases: 

Case 1: E = 100 keV 

Case 2: E = 1000 keV 

4 for the The energy resolution versus gamma energy is shown in Fig. 12.3, 
four detectors depicted in Figs. 12.27-12.30. Usually, the resolution is given in 
terms of the FWHM at 5.9, 122, and 1332 keV. 

12.7.3 Analysis of Ge Detector Energy Spectra 

Despite the superb energy resolution of Ge detectors compared to that of 
NaI(T1) scintillators (see Fig. 12.32), analysis of complex gamma spectra is 
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Figure 12.34 Typical energy resolution versus gamma energy for Ge detectors (from Canberra, Ref. 
2). 

necessary. Figure 12.35 shows a typical Ge energy spectrum. Analysis of the 
spectrum entails, first, assignment of energy to the peaks of the spectrum and, 
second, the determination of the number of counts (i.e., the area) for each peak. 

The energy assignment to the peaks of the spectrum is accomplished by 
calibrating the detector with a source that emits gammas of known energy and 
intensity. As explained in Sec. 9.10, calibration means to determine the con- 

Channel 

Figure 12.35 A gamma-ray energy spectrum recorded with a Ge detector. (This is the spectrum from 
a human hair sample irradiated in a reactor.) 
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stants of the equation 

where C is the channel number (for most systems, a, is very small, or zero). 
When the energy assignment is performed, the observer should be aware of the 
following general features of a gamma spectrum recorded by a Ge detector: 

1. For E, < 2 MeV, the full-energy peak is intense and almost Gaussian in 
shape. 

2. At higher energies (E, > 2 MeV) the double-escape peak (ED, = E, - 1.022 
MeV) becomes prominent. The single-escape peak is present too (see Fig. 
12.7). 

3. In spectra taken with thin Ge(Li) detectors, one may see the germanium 
"escape" peaks. The escape peaks (EP) have energy equal to 

where Ek is the K X-ray energy of germanium. The escape peaks are due to 
the loss of the energy carried away by the escaping K X-ray of germanium. 
This energy is equal to 9.9 keV for the K, and 11.0 keV for the KO X-ray of 
germanium. Figure 12.36 shows tk,: 13'Ce X-ray spectrum with the escape 
peaks marked. 

4. When the front surface of the detector is covered by a metal, characteristic 
X-rays of that metal are emitted if the incident radiation consists of photons 

? keV 1 ie K, escape peaks . 

23.3 
Ge Kp escape peak keV 

keV\ 

5 10 15 20 25 30 35 

Energy, keV 

Figure 12.36 The X-ray spectrum resulting from the decay of ' 3 9 ~ e .  The Ge escape peaks are 
clearly seen (from Ref. 54). 
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with energy greater than the K X-ray energy of that metal. Gold, which is 
sometimes used, emits a K, X-ray with energy 68 keV and five L X-rays 
between 9 and 13 keV. 

The determination of the area under a peak-i.e., the absolute intensity of 
a particular gamma energy-is not as straightforward as the assignment of 
energy, because the area under a peak includes contributions from other 
gammas. The methods that have been developed for the determination of the 
area can be classified into two groups: methods that treat the data (i.e., counts 
per channel) directly, and methods that fit a known function to the data. 

Methods that treat the data directly give the area under the peak by adding 
the counts from all the channels in the region of the peak and subtracting a 
"base background." The methods differ in the way they define the "base7' and 
the number of channels that define the peak (a review of the methods is given in 
Refs. 22 and 23). Figures 12.37 and 12.38 show graphically three of the methods. 

Method 1. A straight line is used to separate the peak from the b a ~ e , ' ~ . ' ~  and 
the net area under the peak (NPA) is calculated using the equation (Fig. 12.37~) 

R R - L + 1  
NPA = C a, - (a, + a,) 

r, 

where a ,  = number of counts in channel i 
L = channel number at left limit of photopeak 
R  = channel number at right limit of photopeak 

Method 2. Here, the background (Fig. 12.373) is defined as the average count in 
a region equal to 3 r  (3 FWHM), extending 1.T on both sides of the peak. The 
gross count under the peak is taken as the sum of all the counts in the channels 
corresponding to 3 r .  The net peak area is then given by 

Method 3. This method, due to ~ u i t t n e r , ' ~  fits a polynomial, using the least- 
squares technique, to the data from 2kL + 1 and 2kR + 1 channels (Fig. 12.38) 
on either side of the peak. The base line is constructed in such a way that at X ,  
and XR (shown in Fig. 12.38) it has the same magnitude (p,,p,) and slope 
(q,, q,) as the fitted polynomial. The net area under the peak is now given by 
the equation 
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Channel number 

(a) 

Channel number 

Figure 12.37 Determination of the net area under the peak. (a) A straight line is used to define the 
base. ( b )  An average background is subtracted from the gross count. 

where the value of b is, in terms of a third-degree polynomial, equal to 
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Figure 12.38 Determination of the area under the peak using the method of Quittner (from Ref. 
25). 

Quittner's method is quite accurate if the peaks are separated by about 20 
channels. 

Today, the most widely used methods are those that fit an analytic function 
to each peak. After the fit is accomplished, the analytic function is used for the 
calculation of quantities of interest such as the area and the centroid (position) 
of the peak. 

The principle of obtaining the fit is simple and essentially the same for all 
the meth~ds .~ ,  5,26G34 Let yili= 1, N be the experimental point-i.e., the counts in 
channels xi(,= N-and f(x, a,, a,, . . . ) be a function that will represent a single 
peak. The parameters a,, a,, . . . are determined by minimizing the quantity 

C y [ y i  - f (x i ,  a,,  a,, . . . ) 1 2  
1 

i.e., by a least-squares technique, where the weighting factors y usually are the 
inverse of the variance of y,. The fitting function consists of a Gaussian plus 
modifying functions. Three examples are 

Here, a Gaussian describes the peak, and the linear function B + Cx de- 
scribes the ba~kground.,~ 

2. f = ~ ( x ) [ l  + aI(x - x . ) ~ '  + a2(x - x ~ ) ~ ~ ]  (from Ref. 27) 
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where B = linear background 
S = step function = A(1 - erf [ ( x ,  - x ) / & ] }  

D = tail function having an exponential form on the left of the peak and 
a Gaussian on the right 

In addition to the methods discussed so far, there are others that use mixed 
 technique^.^^,^^ No matter what the method is, the analysis has to be done by 
computer, and numerous computer codes have been developed for that purpose. 
Examples are the codes sAMPO?~ SISYPHUS-I1 and SHIITY-11: HYPER- 

and GAUSS.37 
The determination of the absolute intensity of a gamma requires that the 

efficiency of the detector be known for the entire energy range of interest. The 
efficiency is determined from information provided by the energy spectrum of 
the calibration source. Using the known energy and intensity of the gammas 
emitted by the source, a table is constructed giving efficiency of the detector for 
the known energy peaks. The efficiency at intermediate points is obtained either 
by interpolation or, better yet, by fitting an analytic form to the data of the table 
(see Sec. 12.7.1). 

As in the case of minimum detectable activity (Sec. 2.20), two types of errors 
are encountered when one tries to identify peaks in a complex energy spectrum.38 
Type I arises when background fluctuations are falsely identified as true peaks. 
Type I1 arises when fluctuations in the background obscure true peaks. Criteria 
are set in the form of confidence limits (see Sec. 2.20 and Ref. 38) that can be 
used to avoid both types of errors. 

12.7.4 Timing Characteristics of the Pulse 

For certain measurements, like coincidence-anticoincidence counting or experi- 
ments involving accelerators, the time resolution of the signal is also important, 
in addition to energy resolution. For timing purposes, it is essential to have 
pulses with constant risetime. 

No detector produces pulses with exactly the same risetime. This variation is 
due to the fact that electrons are produced at different points inside the 
detector volume, and thus traverse different distances before they reach the 
point of their collection. As a result, the time elapsing between production of 
the charge and its collection is not the same for all the carriers 

Consider a true coaxial detector, shown in Fig. 12.39~ (see also Fig. 7.26). 
Since the electric field is radial, electrons and holes will follow a trajectory 
perpendicular to the axis of the detector. The maximum time required for 
collection of the charge corresponds to electron-holes being produced either at 
A or C. That time t is equal to t = (AC)/u, where AC is the detector thickness 
and u is the speed of electrons or holes. For a detector bias of about 2000 V and 
the size shown in Fig. 12.39a, u = 0.1 mm/ns = lo5 m/s, which gives a 
maximum collection time of 120 ns. The best risetime corresponds to electron- 
holes generated at point B (Fig. 12.39~) and is equal to about 60 ns. 
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Figure 1239 (a) In a true coaxial detector, electrons and holes travel along the direction ABC. ( b )  
In wrap-around coaxial detectors, the carriers may travel along ABC but also along the longer path 
A'B'C' .  

The pulse risetime is essentially equal to the collection time. For the 
detector shown in Fig. 12.39a, the risetime will vary between 60 and 120 ns. For 
other detector geometries the variation in risetime is greater because the 
electrons and holes, following the electric field lines, may travel distances larger 
than the thickness of the detector core (Fig. 12.396). The variation in risetime 
for the detector of Fig. 12.396 will be between 60 and 200 ns. The distribution of 
pulse risetimes for commercial detectors is a bell-type curve, not exactly Gauss- 
ian, with a FWHM of less than 5 ns. 

12.8 CdTe AND HgI, DETECTORS AS 
GAMMA SPECTROMETERS 

A great advantage for CdTe and HgI,  detector^,^^-^^ compared to Ge and Si(Li) 
detectors, is that they can operate at room temperature (see also Sec. 7.5.6). At 
this time, they can be obtained in relatively small volumes, but they still have an 
intrinsic efficiency of about 75 percent at 100 keV because of the high atomic 
number of the elements involved. The energy resolution of CdTe detectors is 18 
percent at 6 keV and 1.3 percent at 662 keV. The corresponding numbers for 
HgI, are 8 percent and 0.7 percent.45 

The HgI, detectors are very useful for the measurement for X-rays with 
energy less than 10 keV. In that energy range, resolutions of 245 eV at 1.25 
k e ~ ~ ~  and 295 eV at 5.9 kevso have been reported. 

As with small Ge detectors, X-ray escape peaks are present in spectra taken 
with these CdTe and HgI, detectors. Figure 12.40 shows the spectrum of the 
59.5-keV X-rays and y-rays from 2 4 1 ~ r n  taken with a CdTe detector. The escape 
peaks due to the K, X-rays of cadmium (23 keV) and tellurium (27 keV) are 
clearly seen. 
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Figure 12.40 The 59.5-keV X-ray of 2 4 1 ~ m  detected with a CdTe detector (from Ref. 42). 

12.9 DETECTION OF X-RAYS WITH A Si(Li) DETECTOR 

Si(Li) detectors are generally used as X-ray spectrometers for E < 50 keV. They 
need cooling and therefore require a cryostat. Their energy resolution and 
efficiency are better than those of a Ge(Li) detector for E < 50 keV. Figure 
12.41 shows how the resolution changes with energy. The FWHM is again given 
by Eq. 12.11. Using a value of w = 3.7 eV per electron-hole pair for silicon at 77 
K and Fano factor equal to 0.1, the width r becomes 

The width re is indicated as "electronic noise" in Fig. 12.41. Of the three 
types of X-ray detectors mentioned-scintillation, proportional, and semicon- 
ductor counters-the Si(Li) detector has the best energy resolution for X-rays. 
This fact is demonstrated in Fig. 12.42, which shows the same energy peak 
obtained with the three different detectors. Notice that only the Si(Li) detector 
can resolve K,  and K p  lines, an ability absolutely necessary for the study of 
fluorescent X-rays for most elements above oxygen. The manganese fluores- 
cence spectrum obtained with a Si(Li) detector is shown in Fig. 12.43 
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Figure 12.41 Si(Li) detector energy resolution as a function of X-ray energy (from Ref. 2). What is 
indicated as electronic noise is the width re. 

The dependence of Si(Li) detector efficiency on the X-ray energy is shown 
in Fig. 12.44. For E < 3 keV, the efficiency drops because of absorption of the 
incident X-rays by the beryllium detector window. For E > 15 keV, the effi- 
ciency falls off because of the decrease of the total linear attenuation coefficient 
of X-rays in silicon (Fig. 12.45). 

12.10 DETECTION OF X-RAYS WITH A CRYSTAL 
SPECTROMETER 

The measurement of X-ray energy by wavelength-dispersive crystal spectrome- 
ters is based on the phenomenon of diffraction of electromagnetic waves from a 
crystal (see Compton and Allison, and Cullity). Consider an X-ray of wavelength 
A incident at an angle 8 on a crystal with interplanar spacing d (Fig. 12.46). The 
incident X-rays will be scattered by the atoms of the crystal in all directions, but 
as a result of the periodicity of the atom positions, there are certain directions 
along which constructive interference of the scattered photons takes place. The 
direction of constructive interference of the diffracted beam is given by the 
Bragg condition 

nA = 2dsin 0 (12.22) 
where n is the order of reflection ( = 1,2,3,. . . ). Equation 12.22 states that for 
constructive interference, the path difference between any two rays (photons) 
must be an integral number of wavelengths. In Fig. 12.46, the path difference for 
rays 1 and 2 is BC + CD = 2dsin 8 = n A. 
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Figure 12.42 Demonstration of the superior energy resolution of Si(Li) detectors by showing the 
same peak recorded with a NaI(TI) scintillator and a gas-filled proportional counter (from Ref. 55). 
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Figure 12.43 The manganese fluorescence spectrum obtained with a Si(Li) detector (from Ref. 1). 
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Figure 12.44 Si(Li) detector efficiency as a function of X-ray energy for different beryllium window 
thicknesses (from Ref. 2). 

Energy, MeV 

Figure 12.45 Linear photon attenuation coefficients for silicon. 
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Figure 12.46 Diffraction of electromagnetic waves by a crystal. The detector counts photons being 
diffracted at an angle 0, i.e., photons having wavelength A satisfying Eq. 12.18. 

The order of reflection n may take any value (for a given 8 and d) provided 
sin 8 < 1, and is physically equal to the number of wavelengths by which the 
paths of X-rays scattered by two adjacent planes are different. Figure 12.46 
shows first-order reflection if the path difference between rays 1 and 2 is 1 
wavelength (BC + CD = A); between 1 and 3 is 2 wavelengths (B'C' + C'D' = 

2 A); between 1 and 4 is 3 wavelengths, and so on. Second-order reflection would 
mean that BC + CD = 2 A; therefore, first-, second-, third-, . . . , nth-order re- 
flections satisfy the equations 

A = 2dsin 8, 

2A = 2d sin 8, 

3A = 3d sin 8, 

nA = 2d sin On 

Reflections of order higher than 1 act as "contamination" in X-ray mea- 
surements. Fortunately, the first-order reflection is always much more intense 
than higher-order ones (second-order reflection is about 20 percent the intensity 
of the first). 

The diffracted photons are detected by a counter set to accept the radiation 
emerging at an angle 8 (Fig. 12.46), i.e., set to accept photons of wavelength A, 
or energy 

According to Eq. 12.22, if one uses an X-ray detector set at an angle 8 (Fig. 
12.47) to detect diffracted photons of wavelength A, the counting rate is zero at 
any angle different from 8. In practice, this does not happen. As the angle 8 
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changes from rotating the crystal around an axis perpendicular to the plane 
formed by the incident and diffracted beams, the counting rate of the detector 
will have a maximum at 8 = 00, where h = 2d sin O,, but it will gradually go to 
zero as shown in Fig. 12.48. The curve of Fig. 12.48, known as the rocking curve 
of the crystal, is the result of incomplete destructive interference of the 
diffracted X-rays. The rocking curve is the equivalent of the Gaussian response 
function of a detector to a monoenergetic photon source. However, its origin is 
not statistical, as the following discussion shows. 

As stated earlier, the Bragg condition (Eq. 12.22) indicates that the waves 
(photons) scattered by the different crystal planes have a path difference equal 
to an integral number of wavelengths along the direction 8 satisfying Eq. 12.22. 
But what if the angle 8 is such that the path difference is only a fraction of a 
wavelength? The destructive interference of the scattered waves is not complete 
and the result is radiation of lower amplitude. This partial constructive interfer- 
ence may happen because of three reasons: 

1. Finite thickness of the clystal. A crystal with finite thickness consists of a finite 
number of planes. For any angle O,, there are planes with no matching 
partner to create the correct phase difference in scattered radiation for 
complete destructive interference. The width T, of the rocking curve, due to 
the finite thickness of the crystal, is given by (see Cullity) 

where t is the crystal thickness. Notice that T, depends on the wavelength, 
the thickness, and the diffraction angle. If t > 1 mm, the width T; is 
negligible for the cases encountered in practice. 

2. Nonparallel incident rays. It is impossible to produce a beam consisting of 
exactly parallel rays. Thus, at any angle 8, there are X-rays hitting the crystal 

l ncident wave 
with wavelength 

Detector / 
Crystal 

, r. 
0 '  '\ ' . 

L0 
'. Figure 12.47 The rocking curve of the c~ystal .\. / is obtained by rotating the crystal and keep- 

\ 
\ ing source and detector fixed. 
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Figure 
crystal. 

12.48 The rocking 

at an angle slightly different from 8,. The magnitude of this effect depends 
on the collimation of the beam. 

3. Mosaic structure of the cystal. Real crystals do not consist of a single 
uninterrupted lattice. Instead, they are made up of small regions, each region 

t 
being a perfect lattice but having a slightly different orientation with respect 
to the next one (Fig. 12.49). 

One of the most difficult and important tasks in the use of a crystal 
spectrometer is correct alignment of the instrument and accurate measurement 
of the diffraction angle. At any position, the diffraction angle 8 is taken as the 
angle corresponding to the maximum of the rocking curve. In most cases, what is 
measured is 28  (Fig. 12.47) instead of 8. Of course, for an accurate measure- 
ment, the experimenter must know the crystal parameters and the crystal planes 
giving the reflection, in addition to the angle 8. 

12.10.1 Types of Crystal Spectrometers 

Crystal spectrometers can be used in two ways (Fig. 12.50). The first is to use the 
spectrometer as a means to obtain monochromatic radiation, which then strikes 
a sample (Fig. 12.50a). The second is to use it for the measurement of the 
energy of the radiation emerging from the sample (Fig. 12.50b). In most cases 
the sample emits fluorescent radiation, and for this reason the instrument is 

Figure 12.49 The mosaic structure of real crystals. Each 
block represents a perfect crystal. 
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Figure 12.50 Two examples of using a fluorescent spectrometer. 

called a fluorescent spectrometer. The diffracted radiation reaching the counter is 
strongly attenuated, first at the crystal and a second time at the sample. A very 
small fraction of the incident radiation reaches the counter. It is therefore 
important to design a spectrometer that provides maximum intensity. Consider- 
able improvement in intensity is achieved if the crystal, the X-ray source, and 
the detector are located on the same circle, and the crystal is bent to twice the 
radius of that circle (Fig. 12.51).~l-'~ In addition to the reflection spectrometer 
shown in Fig. 12.51, called the Johansson type, others based on transmission 
through the crystal have also been constructed. 

X-ray source 

Figure 12.51 The geometry of a bent-crystal spectrometer. 
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12.10.2 Energy Resolution of Crystal Spectrometers 

The resolution of crystal spectrometers is traditionally expressed as the resolving 
power, which is the inverse of the energy resolution: 

n2k2 
- 1 / 2  

E A tan 0 nk 
Resolving power = - = - = - = 

AE Ah A0 2d(AO)E 

where k = 1.2399 keV . nm, the constant of Eq. 12.23. The uncertainty of the 
angle A0 depends on crystal properties (rocking curve), the size of the source, 
and the size of the detector. The experimentally obtained rocking curve (Fig. 
12.48) includes all the contributions to AO; thus its width r is 

where Tg = width due to the geometry (collimator, source, detector) 
r, = width due to crystal imperfections and size, given by Eq. 12.24 

For practical cases of interest, T, 4 Tg and r = 0.5". The resolving power and 
the resolution of a crystal spectrometer as a function of energy are shown in Fig. 
12.52. It should be pointed out that the X-ray detector used with the crystal 
spectrometer need not have an extremely good energy resolution, because it is 
the resolution of the analyzing crystal that determines the spectroscopic capabil- 
ities of the system, not that of the detector. The X-ray counter may be a 
proportional counter or a Si(Li) detector. 

Example 12.1 What is the energy resolution of an X-ray crystal spectrome- 
ter for 6-keV X-rays using a crystal with d = 0.15 nm and A0 = 0.3"? 

Answer Using Eq. 12.25, the resolution is (n = 1) 

One can improve the resolution by decreasing A6 or using a crystal with a 
smaller interplanar distance. 

The energy range over which crystal spectrometers can be used is deter- 
mined, in principle, from the Bragg condition (Eq. 12.22) and the requirement 
that 0 < sin 0 < 1. Using Eq. 12.22 and assuming Omin = OSO, d = 0.2 nm,? and 

t~rys ta ls  frequently used are mica, (331) planes, d = 0.15 nm; LiF, (200) planes, 0.201 nm; 
NaCI, (200) planes, 0.082 nm. 
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Figure 12.52 Resolving power and energy resolution of a crystal spectrometer as a function of X-ray 
energy (data used: n = 1, d = 0.2 nm, A 0  = to). 

n = 1, the limits are 

In practice, the upper limit is about 50 keV because Si(Li) detectors have better 
resolution beyond that energy. Advantages and disadvantages of crystal spec- 
trometers versus Si(Li) detectors are summarized in Table 12.1. 

Table 12.1 Advantages and Disadvantages of a Crystal Spectrometer and a 
Si(Li) Detector 

Crystal spectrometer Si(Li) detector 
- - 

Energy resolution (6.4 keV) - 10 eV - 150 eV 
Data collection One energy at a time All energies at once 
Efficiency Low High 
Position, relative to  sample Certain distance away from Very close to sample 

sample 
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PROBLEMS 

12.1 The Compton edge of a Fray peak falls at 0.95 MeV. What is the energy of the photon? What 
is the energy of the backscatter peak? 
12.2 Sketch the energy spectrum you would expect to get from isotopes having the decay schemes 
shown in the figure below. Explain energy and origin of all peaks. You may assume either a NaI(TI) 
or a Ge(Li) detector. 

12.3 A liquid sample is contaminated with equal amounts (mass, not activity) of 13'1 and '37Cs. 
Sketch the energy spectra you expect to see if you use (a) a NaI(T1) crystal with 7 percent energy 
resolution for the cesium peak, and (b) a Ge(Li) detector with energy resolution given by Eq. 12.15. 
Assume the same number of channels is used with both detectors. Relevant data for the two 
isotopes are given in the table below. Assume that the sample is placed at a distance of 0.20 m from 
the detectors. The NaI(TI) is a 3 in X 3 in crystal. The efficiency of the Ge(Li) detector is given by 
Fig. 12.28. 

I31 1 13'Cs 

E (MeV) Intensity (%) E (MeV) Intensity (%) 

Half-life = 8.05 d Half-life = 30 y 

12.4 An isotope emits two gammas with energies 0.8 and 1.2 MeV and intensities 30 and 100 
percent, respectively. Assume that a Ge(Li) detector 5 mm thick is used for the measurement of this 
spectrum. Also assume that all the photons are normally incident upon the detector. Calculate the 
ratio of counts under the 0.8-MeV spectrum to counts under the 1.2-MeV spectrum. 
12.5 What is the width above which the two peaks of Mn shown in Fig. 12.43 cannot be resolved? 
12.6 Will the peaks of Fig. 12.40 be resolved with a gas-filled proportional counter, assuming the 
best possible resolution for that type of counter? 
12.7 What is the efficiency of a 50-mm-long proportional counter filled with a mixture of xenon (20 
percent) and methane at a pressure of 1 atm for a parallel beam of 10-keV X-rays (geometry of Fig. 
12.11)? 
12.8 Verify the efficiency values for 1-keV X-rays, shown in Fig. 12.44 for a Si(Li) detector. 
12.9 Other things being equal, what is the ratio of intrinsic efficiencies of Si(Li) and Ge(Li) 
detectors 3 mm thick for 50-keV X-rays? 
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12.10 Prove that the energy of a photon is related to its wavelength by 

12.11 A crystal spectrometer will be used for analysis of fluorescent X-rays. If the required 
resolution is 0.1 percent and the angular aperture cannot be less than 0.5", what is the lattice 
interplanar distance needed? Assume first-order reflection. The energy of the X-rays is between 4 
and 6 keV. 
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CHAPTER 

THIRTEEN 

CHARGED-PARTICLE SPECTROSCOPY 

13.1 INTRODUCTION 

A charged particle going through any material will have interactions affecting its 
detection in two ways. First, the energy spectrum is distorted because of the 
energy loss caused by the interactions in any mass interposed between source 
and detector. Second, a particle entering the active detector volume will interact 
there at least once and will be detected, i.e., the efficiency is practically 100 
percent. 

Because any energy loss outside the detector is undesirable, the task of the 
experimenter is to design a spectrometer with zero mass between the source and 
the detector. Such an ideal system cannot be built, and the only practical 
alternative is a spectrometer that results in such a small energy loss outside the 
detector that reliable corrections can be applied to the measured spectrum. 

In certain measurements, the particles do not stop in the detector, but they 
go through it and emerge with only a fraction of their energy deposited in the 
detector. Then a correction to the spectrum of the exiting particles will have to 
be applied because of energy straggling, a term used to describe the statistical 
fluctuations of energy loss. Energy straggling should not be confused with the 
statistical effects that result in the finite energy resolution of the detector. 

For heavy ions, a phenomenon called the pulse height defect (PHD) seems to 
have an important effect on energy calibration. As a result of the PHD, the 
relationship between pulse height and ion energy is mass dependent. In semi- 
conductor detectors, experiments have shown that the PHD depends on the 
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orientation of the incident ion beam relative to the crystal planes of the 
detector. This phenomenon is called channeling. 

To avoid unnecessary energy loss, the source of the charged particles should 
be prepared with special care. The heavier the ion, the more important the 
source thickness becomes and the more difficult the source preparation is. 

This chapter discusses the subjects of energy loss and straggling, pulse 
height defect, energy calibration methods, and source preparation, from the 
point of view of their effect on spectroscopy. All the effects are not equally 
important for all types of particles. Based on similarity in energy loss behavior, 
the charged particles are divided into three groups, as in Chap. 4: 

1. Electrons and positrons 
2. Alphas, protons, deuterons, tritons 
3. Heavy ions ( Z  > 2, A > 4) 

Energy straggling, which is a phenomenon common to all particles, is 
discussed first. Then the other effects are analyzed separately for each particle 
group. 

13.2 ENERGY STRAGGLING 

If a monoenergetic beam of charged particles traverses a material of thickness 
Ax, where Ax is less than the range of the particles in that medium, the beam 
will emerge from the material with a distribution of energies. The broadening of 
the beam is due to the statistical fluctuations of the energy loss processes. 
Simply stated, the incident particle participates in a great number of collisions 
as it travels the distance Ax, and loses a certain fraction of its energy in every 
collision. However, neither the number of collisions nor the energy lost per 
collision is constant, resulting in a distribution of energies called energy strag- 
gling. 

Energy straggling plays no role in the measurement of the total energy of 
the charged particle. It does play a significant role, however, in transmission-type 
experiments where the particle emerges from a detector after depositing only a 
fraction of its energy in it. 

Consider a monoenergetic beam of particles with kinetic energy To (Fig. 
13.1) going through a thickness Ax that is a fraction of the particle range. The 
average energy T of the emerging particles is 

where dE/dx is the stopping power of the medium for the incident particle (see 
Chap. 4). In most cases, T < Tp, where Tp is the most probable energy of the 
particles after going through the thickness Ax. 
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L will Figure exhibit 13.1 an A energy monoenergetic distribution beam af- 
7 Tp To ter going through a material of thick- 

Partide kinetic energy, T ness A x  < R. 

The shape of the energy distribution shown in Fig. 13.1 is determined by the 
parameter k, 

where 6 is roughly equal to the mean energy loss of the particle traversing the 
thickness Ax, and AE,,, is the maximum energy transfer to an atomic electron 
in one collision. The expressions for 5 and AEmaX are 

All the symbols in Eqs. 13.3 and 1 3 . 4 ~  have been defined in Sec. 4.3, except Z,, 
the charge of the incident particle, and Z,, the atomic number of the stopping 
material. For nonrelativistic particles ( P -s I), which are much heavier than 
electrons, Eq. 1 3 . 4 ~  takes the form 

If M P m, then Eq. 13.4b takes the form AEmaX = 4(m/Ml)T. 
For small values of k(k I 0.01), a small number of collisions takes place 

in the stopping medium and the resulting distribution is asymmetric with a low- 
energy tail. ~ a n d a u '  first investigated this region and obtained a universal 
asymmetric curve. The case of intermediate k values (0.1 < k < 10) was first 
investigated by Symon2 and later by ~ a v i l o v . ~  The Vavilov distribution was 
checked and was found to agree with e ~ ~ e r i m e n t . ~  For small k, the Vavilov 
distribution takes the shape of the Landau result, while for large k, when the 
number of collisions is large, it becomes a Gaussian. Figure 13.2 shows how the 
distribution changes as a function of k. Many other authors have studied special 
cases of the energy straggling 
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Figure 13.2 The Vavilov distribution shown for various values of the parameter k.  The quantity q5 is 
a measure of the probability that a particle will lose energy between T and T + dT in traversing 
thickness A x .  The parameter A = (T - T ) / [  - 0.423 - P 2  - In k (from Ref. 11). 

The variance of the energy straggling distribution was first calculatedt by 
~ o h r ' ~  using a classical model. Bohr's result is 

where AT = energy loss in a specific case 
m= average energy loss given by (Eq. 13.1) To - T 

The width r of the distribution is equal to ( 2 m X u , ) .  
Livingston and ~ e t h e ' ~  obtained a different expression by incorporating 

quantum-mechanical concepts into the calculation. Their result is 

where Z; = effective atomic number of the stopping material 
Ii, Zi = ionization potential and number of electrons, respectively, in the 

ith atomic shell of the stopping material 
AEmax is given by Eq. 13.4~.  A third expression for u: was obtained by 
Titeica.14 It is worth noting that Bohr's result (Eq. 13.5) is independent of the 
particle energy, while the Beth-Livingston (Eq. 13.6) and the Titeica result have 
a small energy dependence. 

The expressions for u; mentioned above were all obtained by taking into 
account electronic collisions only. Nuclear collisions (see Chap. 4) are rare, but 
they cause large energy losses. As a result, they do not contribute significantly to 
the average energy loss but they do influence the energy distribution by giving it 
a low-energy tail. (The energy loss distribution will have a high-energy tail.) 

 h he calculation is presented by Evans and by Segrk (see bibliography of this chapter). 



CHARGED-PARTICLE SPECTROSCOPY 437 

The width of the energy distribution after the beam traverses a thickness Ax 
consists of a partial width T, due to straggling and a second one rd due to the 
resolution and noise of the detection system. The total width r is obtained by 
adding the two partial widths in quadrature: 

The energy straggling is measured with an experimental setup shown 
schematically in Fig. 13.3. A source, a detector, and a movable absorber are 
housed in an evacuated chamber, to avoid any energy loss as the particles travel 
from the source to the detector. The width rd is measured first by recording the 
particle energy spectrum with the absorber removed. Then the absorber is put 
into place and the measured spectrum gives the width T. The straggling width is, 
using Eq. 13.7, 

By using absorbers of different thicknesses, the width rs may be studied as a 
function of Ax.  Measurements of this type have been performed by many 
people, especially with alpha particles.15.16 For small thicknesses, the experimen- 
tal results agree with theory, but for large thicknesses the theory underestimates 
the width. Figure 13.4 shows results for thin and thick silver foils. It should be 
noted that according to the theory (Eqs. 13.5 and 13.61, the width Ts is 
proportional to a, assuming that Z l  does not change as the particle traverses 
the thickness Ax.  

Energy straggling is more pronounced for electrons than for heavier parti- 
cles for three reasons. First, electrons are deflected to large angles and may lose 
up to half of their energy in one collision. Second, large-angle scattering 
increases their path-length. Third, electrons radiate part of their energy as 
bremsstrahlung. All three effects tend to increase the fluctuations of the energy 
loss. Results of electron transmission and straggling measurements have been 
reported by many observers. A typical spectrum of straggled electrons is shown 
in Fig. 13.5, which compares the experimental result1' with a Monte Carlo 
~alculation.'~ - Detector 

--1e 

- -  

Movable 
absorber 

Source 
To vacuum pump Figure 13.3 The experimental setup used 

in the study of energy straggling. 
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Thickness, mg/crna Thickness, rng/crna 

Figure 13.4 Alpha-particle energy straggling for (a) thin, and ( b )  thick foils of silver. [(a) Data (0) 
from Ref. 16; (.) measurements of Sykes & Harris (Ref. 59); (---) calculation from Ref. 12; (-) 
calculation from Ref. 13; (r) measurements from Ref. 15; ( b )  Experimental points from Ref. 15; 
the lines are results of calculations.] 

Range straggling is a phenomenon related to energy straggling by the 
equation 

where u; is the range variance. Range straggling refers to the pathlength 
distribution of monoenergetic particles traversing the same absorber thickness 
(for more details see Sec. 22.5 of Evans). For spectroscopy measurements, only 
energy straggling is important. 

> 

0 1.0 2.0 3.0 4.0 5.0 6.0 
Energy, MeV 

Figure 13.5 Energy spectrum of 8- 
MeV electrons transmitted through 
2.52 g/cm2 of Be and observed at 
20" from the direction of the inci- 
dent beam. The histogram is the 
result of a Monte Carlo calculation 
(Ref. 18), The experimental points 
are from Ref. 17. 
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13.3 ELECTRON SPECTROSCOPY 

Under the common title of electron spectroscopy, this section discusses the most 
important problems of electron, positron, and beta-ray energy measurements: 
back-scattering, energy resolution and detector response functions, energy cali- 
bration, and source preparation. 

13.3.1 Electron Backscattering 

Electrons moving through a detector behave differently from heavier charged 
particles in two respects. First, as a result of successive collisions with atomic 
electrons, the incident electrons may be deflected by more than 90°, i.e., they 
may be backscattered. Second, electrons slowing down lose part of their energy 
as bremsstrahlung.+ In general, the effect of bremsstrahlung production on 
spectrum distortion is small. Backscattering in the detector, on the other hand, 
is important, and therefore corrections to the measured spectrum have to be 
applied. The effect of backscattering on electron energy spectra is discussed in 
this section. 

Consider a monoenergetic electron beam of energy To impinging normally 
up a detector of thickness x, where x > R(To) (Fig. 13.6) and R(To) is the range 
of electrons of energy To in the material of which the detector is made. Most of 
the incident electrons will deposit all their energy in the detector (electron A, 
Fig. 13.6) and thus generate a pulse proportional to To. But some electrons (like 
B or C or D, Fig. 13.6) are scattered out of the detector before they deposit all 
their energy in it. Such particles will give rise to a pulse smaller than that 
corresponding to energy To. As a result of electron backscattering, the energy 
spectrum of a monoenergetic source will have a full-energy peak and a low-en- 
ergy tail, as shown in Fig. 13.7.'~-'~ The fraction of electrons recorded in the tail 

1. Increases with the atomic number of the detector material 

 v very charged particle slowing down radiates part of its energy. For particles other than 
electrons, however, and for the energies considered here, the bremsstrahlung can be ignored (see 
Chap. 4). 

Figure 13.6 Some of the electrons incident upon the detector 
are backscattered and deposit only part of their energy in it. 
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A 
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! I t  
i I 

i? 
C 

3 Figure 13.7 The dashed line shows the 
measured spectrum without backscatter- - I '-- - ing in the detector. The solid line shows 

To T - the same spectrum with backscattering. 

2. Changes slowly with the energy To 
3. Increases as the incident angle of the beam deviates from the normal 

An electron energy spectrum measured with a plastic scintillator is shown in 
Fig. 13.8. It is represented extremely well by the following analytic function, 
which was developed by Tsoulfanidis et a1." and is shown in Fig. 13.9. 

l b  E - E' 1 - b  1 ( E  - E ' ) ~  
R ( E ,  E') = - - erfc - 

2 E' ( ) e x p [  u 2  ] (13.10) 

where 

and 

u = standard deviation of the Gaussian 
b = fraction of electrons in the tail 

The backscattering fraction b is given by 

where (Fig. 13.9) g is the height of the peak and 7 is height of the backscatter- 
ing tail. 

Similar results have been obtained with a Si(Li) d e t e c t ~ r . ~ ~ , ~ ~  More refer- 
ences on the subject are given by Bertolini and Coche (see their Sec. 4.3.3). 
Semiempirical formulas giving the value of b as a function of Z and T have 
been developed by many a ~ t h o r s , ~ ~ , ~ ~  but such equations are of limited general 
value because the response function and the backscattering depend on the 
geometry of the system; for this reason, response function and backscattering 
should be measured for the actual experimental setup of the individual observer. 
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I 1 

Channel 

Figure 13.8 The '13sn internal conversion electron spectrum obtained with a plastic scintillator. The 
solid line was obtained using Eq. 13.10 (from Ref. 20). 

13.3.2 Energy Resolution and Response Function of Electron Detectors 

The best energy resolution for electrons is obtained using silicon semiconductor 
detectors, with the possible exception of magnetic spectrometers. Silicon detec- 
tors may be surface-barrier or Si(Li) detectors. The surface-barrier detectors 
operate at room temperature, while the Si(Li) detectors give best results when 
cooled to liquid nitrogen temperatures. The energy resolution of semiconductor 
detectors is determined by the electronic noise alone. It deteriorates as the area 
and the sensitive depth of the detector increase. For commercial detectors the 
full width at half maximum (FWHM) ranges from about 7 to 30 keV. 

The energy resolution of scintillators, plastic scintillators in particular, is 
much worse. It is of the order of 8-10 percent at 1 MeV, which gives a FWHM 
of 80-100 keV. For scintillators the FWHM is roughly proportional to I@. 
Plastic scintillators have two advantages over semiconductor detectors: the 
backscattering fraction is less for scintillators because of their lower atomic 
number, and the timing characteristics are extremely useful for certain types of 
measurements. The pulse risetime is about 0.1 ns for a plastic scintillator, while 
for a silicon detector it is between 1 and 10 ns. 

The response function of electron detectors is of the form shown in Fig. 
13.9. Because of the low-energy tail, if one measures a continuous spectrum 
(e.g., one beta spectrum or a mixture of beta spectra), the measured spectrum 
will be higher than the source spectrum at the low-energy end and lower at the 
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0 t E' E 
Electron energy 

Figure 13.9 Analytical response func- 
tion for monoenergetic electrons 
measured by a thin plastic scintillator. 
Shown are the backscattering tail ( ... ) 
an the Gaussian (---). 

high-energy end, as shown in Fig. 13.10. Therefore, spectrum unfolding is 
necessary to shift back to their proper energy all the betas that were incorrectly 
recorded at lower energies because of backscattering. The iteration method of 
unfolding, described in Sec. 11.5.3, is suitable for beta spectra. The spectrum 
shown in Fig. 13.10 was unfolded using that method. 

13.3.3 Energy Calibration of Electron Spectrometers 

The energy calibration of any spectrometer requires the use of sources of known 
energy and preferably of monoenergetic sources. Monoenergetic electron sources 
are provided by accelerators and by radioisotopes emitting internal-conversion 
(IC) electrons (see Chap. 3). 

The advantage of the accelerators is their ability to provide a monoenergetic 
beam with any desired energy from zero up to the upper limit of the machine. 
The disadvantages are their expensive operation and the fact that the spectrom- 
eter has to be moved to the accelerator beam. 

IC emitters are relatively inexpensive to obtain and very easy to handle. 
They have the disadvantage that they emit not only IC electrons but also 
gammas. Thus, when a spectrum is recorded, the result includes both IC 
electrons and Compton electrons created by gammas that interact in the 
detector. One may eliminate the Compton electrons by utilizing the X-rays that 
are also given off by the IC source. The X-rays are emitted in coincidence with 
the IC electrons, while the gammas, and therefore the Compton electrons too, 
are not. Thus, if the IC electrons are counted in coincidence with the X-rays, the 
Compton electrons will not be recorded. 

IC sources emit K, L, . . . , electrons. The energy resolution of silicon semi- 
conductor detectors is so good that separation of the K, L, . . . , electrons is 
possible. Figure 13.11 shows the IC electron energy spectrum of 'O'B~, one of the 
most widely used calibration sources. The excellent energy resolution of the 
detector distinguishes K, L, and M electrons. The K, and Kp X-rays, which 
accompany the IC process, are also known. 
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Figure 13.10 Measured (0) and unfolded (0) 
beta spectra from 2 3 5 ~  fission fragments. Un- 

0.01 folding removes the effect of backscattering in 
0.1 1 .O 10.0 the detector; thus, it reduces the spectrum at 

Energy, MeV the low-energy end (from Ref. 26). 

Pure beta-emitting isotopes exist and may be used for calibration, but only 
after the energy spectrum is cast into a form called the Kurie plot. The beta 
spectrum is continuous and extends from zero energy up to a maximum end 
point kinetic energy (see Fig. 13.12). Because of the shape of the spectrum, it is 
impossible to accurately determine the end point energy. However, from the 

EL = 554 keV 
= 10$0 keV 

4.4 keV 
4 Compton edge '-) $1;. 

0 
250 500 7 50 

Channel number 

Figure 13.11 The '''~i internal conversion electron spectrum obtained with a silicon semiconductor 
detector (from Ref. 27). 
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+Kurie plot 

Figure 13.12 A typical beta en- 
ergy spectrum (solid line) and its 
Kurie plot (dashed line). 

theory of beta decay, it is known that the beta spectrum may be written asz8 

where E = beta kinetic energy in units of mc2 
E = T + meZ = (E  + 1)mc2 = total energy 

G(Z,  E )  = modified Fermi function of P decay 
k = constant independent of energy (for allowed transitions) 

If the left-hand side of Eq. 13.12 is plotted against E ,  the result is a straight line 
that crosses the energy axis at E = E,. The Kurie plot is a straight line for 
allowed beta transitions. A "forbidden" beta decay will show an upward curva- 
ture at the end.% 

13.3.4 Electron Source Preparation 

Preparation of electron or beta sources is accomplished by observing these two 
rules: 

1. The source backing material should be as thin as possible, to avoid backscat- 
tering from the source. 

2. The source cover should be as thin as possible, to avoid any unnecessary 
energy loss there. 

One way to make a source is by following these steps: 

1. A liquid solution of the radioisotope is obtained. 
2. A thin piece of Mylar or metallic foil (a few microns thick) is mounted on a 

metal ring (see Fig. 13.13). This is the source support. 
3. Using a pipette, a small amount of the radioisotope is placed on the source 

support. 
4. The source support is then placed under a heat lamp until the liquid 

evaporates. The heat lamp should be located inside a properly monitored 
fume hood. 
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3.13 Preparation of an electron source. 
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5. Steps 3 and 4 are repeated as many times as necessary to achieve the 
required source strength. 

6. The source is sealed by placing a ring with an extremely thin cover (again a 
few microns thick) on its front face, as shown in Fig. 13.13. 

There are many commercial outfits that sell P sources with specified 
characteristics of intensity, source backing, and source cover. Detailed descrip- 
tion of the source preparation, for all types of charged particles, is given in a 
review article by van de Eijk et al.29 and also in Refs. 30-32. 

13.4 ALPHA, PROTON, DEUTERON, AND 
TRITON SPECTROSCOPY 

Protons, deuterons, tritons, and alpha particles behave similarly as far as energy 
loss and straggling are concerned. As they travel in a medium, they are deflected 
very little from their direction of incidence, as a result of which backscattering is 
insignificant and their range is almost equal to their pathlength. 

To avoid significant energy loss, the particles must go through as small a 
mass as possible when they move from the source to the detector. This is 
accomplished by making the source cover and the detector window as thin as 
possible. The entrance window of such detectors consists of a metallic layer, 
usually gold, with a thickness of 4 x lop4 kg/m2 (40 pg/cm2) or less. The 
measurements are performed in an evacuated chamber to avoid energy loss in 
air. 

The discussion in the rest of this section uses examples from alphas, but the 
points made are valid for the other particles of this group. Alphas have been 
studied and used much more extensively than the others, providing a basis for 
discussion. 
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13.4.1 Energy Resolution and Response Function of Alpha Detectors 

The best energy resolution is obtained with silicon surface-barrier detectors. 
Most detector manufacturers quote the resolution obtained for the 5.486-MeV 
alphas of 241Am. A typical spectrum obtained with a detector having 25 mm2 
active area and 100 pm sensitive depth is shown in Fig. 13.14. The resolution 
deteriorates somewhat as the detector size increases. Since the response func- 
tion of alpha detectors is a narrow Gaussian, there is no need to unfold a 
measured monoenergetic alpha spectrum. 

13.4.2 Energy Calibration 

All isotopes with Z > 82 emit alphas in the energy range 4 MeV < T < 8 MeV, 
each isotope giving off more than one group of alphas. A particular isotope is 
selected to be used for calibration based on the energy of the alphas, the 
presence of other interfering radiations, and its half-life. For example, the 
isotope '$Am is very popular because it has a 432-year half-life and its only 
other radiation emitted is 2 3 7 ~ p  X-rays. Other isotopes frequently used are 
2 1 0 ~ o ,  2 2 6 ~ a ,  and 2 5 2 ~ f .  Alpha sources with T, > 8 MeV, as well as sources of 
protons, deuterons, and tritons of any energy, can be provided by accelerators 
only. 

13.4.3 Source Preparation 

The main precaution taken in the preparation of an alpha source using an 
alpha-emitting radioisotope is to cover its front face with the thinnest possible 
layer of material. Commercial sources are made by sandwiching the radioisotope 
between two thin foils. Figure 13.15 shows a 241Am source made by the 
Amersham Corporation. 

Alpha-emitting isotopes are considered extremely hazardous when ingested, 
and in particular when they enter the lungs. To avoid accidental exposure, the 
user should always be certain that the source cover has not been damaged. The 
user should also be aware that all alpha sources emit a small number of 

Figure 13.14 The 2 4 1 ~ m  alpha spectrum ob- 
tained with a silicon surface-barrier detector 
(from Canberra). 
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Figure 13.15 A "'Am source (from Amersham Corp.). 

neutrons, produced either through (a, n) reactions with the source-supporting 
material or from spontaneous fission of the radioisotope itself. 

13.5 HEAVY-ION ( Z  > 2) SPECTROSCOPY 

Heavy-ion spectroscopy is different from that of lighter charged particles be- 
cause of the pulse-height defect (PHD), which makes the energy calibration 
equation mass dependent. 

13.5.1 The Pulse-Height Defect 

The measurement of particle energy with any type of detector is based on the 
assumption that the charge collected at the output of the detector is propor- 
tional to the energy of the incident particle. The assumption is valid if all the 
particle energy is lost in ionizing collisions and all the charge produced is 
collected, i.e., no recombination takes place. 

It has been known for many years that heavy ions moving in gases lose part 
of their energy in nonionizing collisions with nuclei. The same phenomenon, 
PHD, has been observed in semiconductor detectors. The PHD, which is 
negligible for alphas and lighter particles, is defined as the difference between 
the energy of a heavy ion and that of a light ion (usually an alpha particle) that 
generates the same pulse height in the detector. Experimental results showing 
this phenomenon are presented in Fig. 13.16.33 Notice that for alphas and 
carbon ions, the relationship between energy and pulse height is linear. Nickel 
and silver ions show a small PHD. Heavier ions (Au, U) show a significant PHD. 

The PHD is the result of three contributing  defect^:^^-^^ 
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Channel 

Figure 13.16 The relationship between energy and pulse height (channel) for ions with different 
masses (from Ref. 33). 

1. The nuclear defect is due to nuclear collisions. As a result of such collisions, 
the moving ion imparts energy upon other nuclei. The recoiling nuclei lose 
their energy partly in electronic ionizing collisions and partly in nuclear 
nonionizing ones. The nuclear defect has been ~ a l c u l a t e d ~ ~  based on the 
work of ~ o h r '  and of Lindhard et a1.39 (see also Chap. 4). 

2. The recombination defect arises from incomplete collection of the charge 
produced in the detector. A heavy ion is a strongly ionizing particle. It creates 
a dense plasma of electron-hole pairs along its path, a plasma that reduces 
the electric field established by the external bias applied to the detector. The 
reduction of the electric field intensity hinders the drifting of the electrons 
and holes and thus increases the probability of recombination. The calcula- 
tion of this defect is not so easy as that of the nuclear one, but an 
approximate calculation was performed by Wilkins et a1.33 

3. The window defect is due to energy loss in the dead layer (window) of the 
front surface of the detector. It can be obtained from the thickness of the 
window and the stopping power of the ion. The thickness of the window can 
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be measured by determining the change in pulse height as a function of the 
incident angle (see Problem 7.6). 

The PHD for iodine and for argon ions has been measured by Moak et a1.:' 
using the channeling effect in silicon. Pulse-height distributions were measured 
by first aligning the direction of incident ions with the [I101 crystal axis of the 
silicon surface-barrier detector and then by letting the ions impinge at an angle 
with respect to the same axis. In the first case, the ions moved along the channel 
between two planes (channeled ions); in the second, they did not (unchanneled 
ions). The channeled ions showed an energy resolution about three times better 
than that of unchanneled ones, and essentially no PHD (Fig. 13.17). This result 
can be explained by assuming that the channeled ions traveling between atomic 
planes lose all their energy in ionizing collisions, all the way to the end of their 
track. Similar results have been obtained with 2 3 5 ~  fission and 2 5 2 ~ f  
fission fragmenk4' 

The lack of nuclear collisions for channeled ions is not the only phe- 
nomenon that affects the pulse height. It is known that the electron density is 
much reduced along the channel. As a result, the electronic stopping power is 
lower and, consequently, so is the charge density produced by the heavy ion. 
Thus, not only the nuclear but also the recombination defect is reduced for the 
channeled ions. 

The PHD increases slowly with ion energy, as shown in Fig. 13.18. 

800 I I I I I I I I I 

Extrapolated olparticle line 

. l ions unchanneled 

o I ions channeled . Ar ions unchanneled 

A Ar ions channeled 

Ion energy, MeV 

Figure 13.17 Pulse-height response of a Si surface-barrier detector for "channeled" and "unchan- 
neled" ions (from Ref. 40). 
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p 10 ! I/ 
Figure 13.18 The dependence of the pulse 
height defect on ion energy (from Ref. 33). 

10 10' lo3 The numbers correspond, approximately, to 
E, MeV uranium ions. 

13.5.2 Energy Calibration: The Schmitt Method 

The relationship between the pulse height h and the kinetic energy T of a heavy 
ion was determined by Schmitt et a1.42,43 to be of the form 

where M is the mass of the ion and a, b, c ,  and d are constants. The calibration 
of the detector, i.e., the determination of the constants a, b, c, and d, can be 
achieved in two ways. The first is an absolute calibration, and the second is a 
relative one. 

Absolute energy calibration is performed with the help of an accelerator. 
One measures the pulse heights of four monoenergetic beams of ions with 
known mass. Substitution of the known energy, mass, and pulse height into Eq. 
13.13 provides four equations with four unknowns that can be solved for the 
constants a, b ,  c,  and d.  

For fission-fragment measurements, a relative calibration is used. The 
calibration constants of Eq. 13.13 are determined in terms of two pulse heights 
H  and L of a fission-fragment spectrum (Fig. 13.19), where H and L represent 
pulse height corresponding to the mid-point at three-quarters maximum of the 
heavy or light fragment peak, respectively. The equations for the constants are 

a1 a=- 
L - H  

a2 b = -  
L-H 

c = a, - aL 

and the constants a,, a2,  a,, a, for 2 5 2 ~ f  and 2 3 5 ~  fission fragments are given in 
Table 13.1. 

The constants a,, a,, a,, and a, do not dependton the detector. The quality 
of the detector with respect to energy resolution is determined from a set of 
criteria developed by Schmitt and   leas on ton^^ and shown in Table 13.2. Figure 
13.19 explains the symbols used (see also Ref. 45). 
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CF-252 Pulse height spectrum 
Run 9/25/74 -36 NH = 1428 H = 97.84 
Detector 1 1-1 02A NL = 1814 L = 142.43 
Total counts = 98301 N, = 650 AH = 19.23 

HS = 66.96 AL = 16.57 
LS = 164.63 AS = 97.66 

Channel 

Figure 13.19 The 2 5 2 ~ f  fission-fragment spectrum used for the determination of the detector 
calibration constants (from Ref. 44). 

Table 13.1 Schmitt Calibration Constants for '''~f and U 5 ~  

Fission ~ r a g r n e n t s ~ ~ ' ~ ~  

Constant lr2 Cf 23s " 
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Table 13.2 Acceptable Parameters for a 2 5 2 ~ f  Fission-Fragment Spectrum 

Spectrum parameters Expected values Spectrum of Fig. 13.19 

13.5.3 Calibration Sources 

Monoenergetic heavy ions necessary for energy calibration can be provided only 
by accelerators. Fission fragments, which are heavy ions, cover a wide spectrum 
of energies (Fig. 13.19). The isotope 2 5 2 ~ f  is a very convenient source of fission 
fragments produced by the spontaneous fission of that isotope. Uranium, 
plutonium, or thorium fission fragments can only be produced after fission is 
induced by neutrons; therefore, a reactor or some other intense neutron source 
is needed. 

13.5.4 Fission Foil Preparation 

Fission foils are prepared by applying a coat of fissile material of the desired 
thickness on a thin metal backing. Details of several methods of foil preparation 
are given in Refs. 29-32. A technique used for the preparation of uranium foils 
is described here. 

Enriched uranium in the form of uranium nitrate hexahydrate crystals is 
dissolved in ethanol until it forms a saturated solution. A small amount of 
collodion is added to the solution to improve its spreading characteristics. A thin 
metal foil-e.g., nickel-that serves as the backing material is dipped into the 
solution and then heated in an oven in a controlled temperature environment. 
The heating of the foil is necessary to remove organic contaminants and to 
convert the uranium nitrate into uranium oxides (mostly U,O,). The tempera- 
ture is critical because if it is too high, part of the uranium diffuses into the 
backing material, causing fragment energy degradation. Dipping produces a 
two-sided foil. If the material is applied with a paint brush, a one-sided foil is 
formed. 

The dipping (or brush-painting) and heating is repeated as many times as 
necessary to achieve the desired foil thickness. The thickness of the foil is 
determined by weighing it before and after the uranium deposition or, better 
yet, by counting the alphas emitted by the uranium isotopes. Most of the alphas 
come from 2 3 4 ~ ;  therefore the fraction of this isotope in the uranium must be 
known. 
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13.6 THE TIME-OF-FLIGHT SPECTROMETER 

The time-of-flight (TOF) method, which is also used for the measurement of 
neutron energy (see Sec. 14.8), has been applied successfully for the determina- 
tion of the mass of fission fragments and other heavy ions. 

The principle of TOF is simple. A beam of ions is directed along a flight 
path of length L (Fig. 13.20). The time t it takes the ions to travel the distance 
L determines their speed V = L/t. This information, combined with the mea- 
surement of the energy of the particle, gives the mass (nonrelativistically): 

The errors in determining the mass come from uncertainty in energy, A E, in 
time, At, and in length of the flight path, AL. The mass resolution is then given 
by 

Usually, the system is designed in such a way that A L/L is negligible compared 
to the other two terms of Eq. 13.19. Assuming that this is the case, consider the 
sources of uncertainty in energy and time. 

The uncertainty AE/E is the resolution of the detector measuring the 
energy of the ion. The best energy resolution that can be achieved with silicon 
surface-barrier detectors is about 1.5-2 percent. The resolution can be improved 
with magnetic or electrostatic analyzers (DiIorio and wehring4' achieved 0.3 
percent energy resolution using an electrostatic analyzer). 

The time t it takes the particle to travel the distance L is the difference 
between a START and a STOP signal (Fig. 13.20). The STOP signal is generated 
by the detector, which measures the energy of the ion. This detector is usually a 
surface-barrier detector. The START signal is generated by a transmission 
counter, also called the 6E detector. The ion loses a tiny fraction of its energy 
going through the START detector. 

Several types of 6E detectors have been used.48 Examples are totally 
depleted surface-barrier  detector^,^^.'^ thin (- kg/m2 = 100 pg/cm2) 
plastic scintilla tor^,^^ ionization  chamber^,'^ and secondary-electron emission 

ri 

Ion beam I I 6 E detector 
I I 

;,-L 
START 
signal 

STOP 
signal 

Figure 13.20 The principle of time-of-flight for the determination of the mass of heavy ions. 
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d e t e ~ t o r s . ~ ~ , ~ ~ - ~ ~  Secondary-electron emission detectors fall into two categories. 
In the first, the ions traverse a thin foil (e.g., carbon foil lop4 kg/m2 = 10 
pg/cm2 thick) and generate secondary electrons that are accelerated and 
focused to strike a scintillator coupled to a photomultiplier tube. In the second 
category belong the channel electron multipliers (CEM) and the microchannel 
plates (MCP). 

A CEM is essentially a thin glass tube (- 1 mm diameter) shaped into a 
spiral, with its inside surface coated with a semiconducting material that is also a 
good secondary electron emitter. An accelerating field is created in the tube by 
applying a high voltage along its length. Electrons multiply as they proceed down 
the tube. Figure 13.21 shows one possible arrangement for the use of a CEM. 

An MCP is a glass disk perforated with a large number of small-diameter 
(10-100 pm) holes or channels. Each channel is a glass tube coated with a 
resistive secondary electron-emitting material. If a voltage is applied, each 
channel acts as an electron multiplier. 

The state of the art of SE detector systems is such that At < 100 ps has 
been achieved and the flight path L can become long enough that the time 
T - 100-300 ns. Thus, the time resolution of TOF measurements is 

and the mass resolution (Eq. 13.19) is essentially limited by the energy .resolu- 
tion. The mass measurement is actually the measurement of the mass number A 
(A M/M = A A/A). Since A is an integer, the lowest limit for mass resolution is 
A A < 1. Assuming A A = 0.7, Fig. 13.22 gives the ion energy necessary for such 
resolution as a function of A and L / A ~ . ~ ~  For heavy ions, mass resolution as 
low as AA = 0.2 has been rep~rted.~' 

If the mass of the ion is known, the TOF technique can be used to 
determine the energy of the ion with a resolution much better than with any 
detector in use today. Indeed, if AM = 0, Eq. 13.19 gives 

Ion path - 

Figure 13.21 The use of a CEM as a 6 E  detector. 
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lmor-l'--T 

Figure 13.22 Energy of ion at which adjacent isotopes 
can be resolved, as a function of A, for different values 

A of L / A t  (from Ref. 57). 

13.7 DETECTOR TELESCOPES ( E  d E / h  DETECTORS) 

The TOF method discussed in the previous section measures the energy and the 
mass of the ion. This section presents a method that identifies the atomic 
number Z  and the mass number A of the parti~le.~' 

Identification of A and Z  is possible by making use of a detector telescope 
consisting of a very thin detector measuring d E / &  and a thick detector that 
stops the particle. The geometric arrangement is similar to that shown in Fig. 
13.20. The particle traverses the thin detector after depositing there an energy 
equal to (dE/dr)t (where t is the detector thickness), and stops in the "E 
detector." The total energy of the particle is obtained from the sum of the two 
detector signals. The product E d E / h  can be written, using Eq. 4.2 or 4.33, as 

where Z e f  is the effective charge of the ion. Since the logarithmic term changes 
very slowly with energy, Eq. 13.20 gives a value for M Z ~ .  

Another method, giving better results, is based on the fact that the range of 
heavy ions is given, over a limited energy range, by an equation of the form 

r b  

where b is a constant. If a particle deposits energy 6E = (dE/&)t in a detector 
of thickness t and then deposits energy E in the second detector, one can say 
that the range of the particle with energy E + SE is t units longer than the 
range of the same particle with energy E. Using Eq. 13.21, one can write 

Thus, Eq. 13.22 provides the value of MZ; since t, E, and SE are known. The 
constant b is also assumed to be known for the ion of interest. 
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Equations 13.20 to 13.22 were written in terms of the mass M of the 
particle. For nonrelativistic particles, M has a nonintegral value very close to 
the value of A, which in turn, is given by an integer. This is fortunate because Z 
also assumes integral values only, and the product MZ' assumes unique values 
for many particles. For example, for protons, deuterons, tritons, and alphas, the 
value of MZ2 is 1, 2, 3, and 16, respectively. 

13.8 MAGNETIC SPECTROMETERS 

Magnetic spectrometers (or analyzers) are instruments that exhibit high-energy 
resolution. They are used mainly in experiments involving high-energy particles, 
but they can be used with low-energy particles as well. Energy resolutions 
achieved with this type of spectrometer are of the order of AE/E = lop4 for 
high-energy electrons6' and AE/E = for heavy ions.61 

Many types of magnetic spectrometers have been developed, differing 
mainly in the shape of the magnetic field ~ s e d . ~ ' - ~ '  The basic principle common 
to all of them is the action of the force from a magnetic field on a moving 
charged particle. If a particle with charge Ze moves with velocity v in a magnetic 
field of strength B, the force F on the particle is given by 

F = Zev X B (13.23) 

Since the magnetic force is always perpendicular to the direction of motion 
of the particle, it does not change the energy but only the direction of motion of 
the particle. If the velocity is perpendicular to the magnetic field, the particle 
trajectory will form a circle of radius p given by the equation 

M * U ~  
= ZevB 

P 

which after rearrangement becomes 

M*v = ZeBp (13.25) 

where M* = M/ 41 - p 2 ,  the total mass of the particle. 
Equation 13.25 is the basis of magnetic spectroscopy. It expresses the fact 

that the momentum of the particle is proportional to the quantity Bp, called the 
magnetic rigidity of the particle. The relationship between kinetic energy and 
rigidity is obtained from the equation linking energy and momentum (see Chap. 
3). The relativistic equation for the kinetic energy T is 

T = \I(MC')~ + - Mc2 

The nonrelativistic equation is 



CHARGED-PARTICLE SPECIROSCOPY 457 

To understand how a magnetic spectrometer works, consider two particles 
with momenta Mlul and M2u2 coming into a space with a constant magnetic 
field B (Fig. 13.23). Assuming that the magnetic field is perpendicular to the 
velocity and also perpendicular to the plane of the figure, the two particles will 
move along circular paths of radii p, and p, given by Eq. 13.25. If the particles 
are allowed to complete half a circle, they will hit the "focal" plane at points A 
and B. Thus, if one determines p, and p, and the charge of the particles is 
known, the momentum can be determined from Eq. 13.25. If the mass of the 
particle is also known, the energy can be determined from Eq. 13.26 or 13.27. 
Obviously, for a given rigidity Bp, the energy T depends on the factor z 2 / M .  If 
one determines the energy by other meansWe.g., by using a semiconductor 
detector-the magnetic spectrometer may give the Z 2 / M  value. 

In practice, the value of B is accurately known; therefore, the real task is 
the accurate determination of the radius p. The radius p (or the distance 2 p )  is 
measured with the help of position-sensitive detectors placed at the focal plane. 
Any uncertainty in the value of p, or in general in the value of Bp, introduces 
an uncertainty in the value of energy. If all the particles move in parallel paths 
when they enter the spectrometer, the energy resolution obtained from Eq. 
13.26 or Eq. 13.27 is given by 

Relativistic 

Nonrelativistic 
AT A( Be) 
- - - 2- 
T BP 

The position can be determined with an accuracy of less than a millimeter. Since 
a typical value of p is 0.80 m, the expected resolution is 

Figure 13.23 Two particles with ve- 
locities u ,  and u, follow trajectories 
with radius p,  and p, respectively, 
and are separated spatially (points 
A and B). 
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As shown in Fig. 13.23, the particles enter the spectrometer through a slit, 
whose size defines the solid angle accepting particles from the source. This solid 
angle should be as large as possible, because the more particles that enter the 
spectrometer, the less the necessary counting time is. Since magnetic spectrome- 
ters are commonly used with accelerators, reduction of the counting time means 
less operational time for the accelerator. When the solid angle increases, 
however, the probability also increases that particles with nonparallel paths will 
enter the spectrometer. Such particles will not focus at the same point even if 
they have the same momentum. This "defocusing" is a difficult problem, 
corrected by using magnetic fields that focus at a spot or a line of the detector 
all the particles entering through a certain solid angle and having the same 
momentum. 

The first magnetic spectrometers used photographic plates for the detection 
of the deflected particles. Today, position-sensitive semiconductor detectors or 
multiwire proportional chambers are used (see Sec. 13.10). These detectors are 
better than photographic plates because they have the capability of on-line data 
collection, provide time information for coincidence experiments, and measure 
the energy of the particle. 

t 

13.9 ELECTROSTATIC SPECTROMETERS 

Electrostatic spectrometers (or analyzers) do not have such extensive use as 
magnetic spectrometers. They are only used for certain types of experiments 
where an electrostatic field is more convenient than a magnetic one. 

An electrostatic spectrometer uses a radial electric field formed between 
two cylindrical electrodes, as shown in Fig. 13.24. If there is a potential 
difference V between the electrodes EF and E'F', the electric field in the space 

Figure 13.24 An electrostatic spec- 
trometer using a radial field. 
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between the two electrodes is equal to 

where r is the distance from the center of the electrodes. A particle entering the 
spectrometer at EE' with velocity v perpendicular to EE' will follow under the 
influence of the radial force 

a circular path of radius r f .  It can be show# that particles entering at EE' with 
the same speed but traveling along a direction slightly different from the normal 
to EE' will focus at the point Fo, provided the angle 4 = .rr/ = 127O17' (Fig. 
13.24). All the particles that arrive at Fo have a kinetic energy that can be 
calculated in terms of the radius rf and the strength of the electric field.67 More 
details about the focusing properties and energy resolution of electrostatic 
spectrometers can be found in Refs. 68-70. Electrostatic analyzers with parallel 
plates have also been constructed. 

13.10 POSITION-SENSITIVE DETECTORS 

Detectors that in addition to the measurement of the energy also indicate the 
position of the particle have been developed for application with magnetic or 
electrostatic spectrometers and for imaging devices used in biological and 
medical research. As discussed in Secs. 13.8 and 13.9, magnetic or electrostatic 
spectrometers are mostly used with high-energy particles. Biological and medical 
imaging devices, on the other hand, involve mostly X-rays and, in general, 
low-energy radiation. It is because of the latter use that position-sensitive 
detectors are briefly discussed here. 

13.10.1 Position-Sensitive Semiconductor Detectors 

Most of the position-sensitive semiconductor detectors determine the position of 
the incident particle by employing the method of resistive-charge divi~ion.~' To 
illustrate the method, consider the detector in Fig. 13.25. The detector is a 
reverse-biased p-n junction with electrodes on both front and back. The front 
electrode with considerable resistivity has two electrical contacts a distance L 
apart. The back electrode has low resistivity and provides a good electrical 
contact to the base material. When a particle enters the detector, electrons and 
holes are created that move under the influence of the electric field. If the 
resistivity of the front electrode is homogeneous, and charge-sensitive low-im- 
pedance amplifiers are used, the charge collected at one of the two contacts of 
the front electrode is proportional to the distance between the point of impact 
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Figure 13.25 A position-sensitive semiconductor detector using resistive-charge division (from Ref. 
71). 

and the other contact. The total charge q, collected through the single contact 
of the back side is, of course, proportional to the energy deposited in the 
sensitive region of the junction. This technique of determining the position by 
comparing the signals from q ,  and q, is called the amplitude method. 

The signal q, changes with time, as shown in Fig. 13.26. The timescale is in 
units of the time constant rD = RDCD, where RD and C, are the resistance and 
capacitance of the detector, respectively. Figure 13.26 shows that the risetime of 
the signal depends on the position. This property is the basis of a second 
technique for determination of position, called the time method. The position is 
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Figure 13.26 Time dependence of the position 
signal for different positions of incidence (from 
Ref. 71). 
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now determined from the difference in arrival times of the signals from the 
charges q,  and q, (Fig. 13.25). 

The detector described above is of the "continuous" type. Position-sensitive 
detectors of the "discrete" type have also been developed.72 They consist of 
individual semiconductor elements all placed on the same base material, with 
each element connected to its own preamplifier-amplifier system. Two-dimen- 
sional detectors of the continuous type73 as well as of the discrete type74 have 
also been tried. 

13.10.2 Multiwire Proportional Chambers 

Mulitwire proportional chambers (MWPC)? have been developed for use as 
position-sensitive focal detectors for magnetic  spectrometer^.^^-^^ They can 
provide excellent position resolution, operate with counting rates as high as lo6 
counts/s, and provide a large solid angle at the focal plane of the spectrometer. 

The basic design of an MWPC is shown in Fig. 13.27. A series of thin, 
equally spaced anode wires is positioned between two parallel plates serving as 
cathodes. A noble gas mixed with an organic component fills the space between 
the cathodes. A positive voltage is applied to the anode wires. When a particle 
goes through the counter, electrons and ions are created by the processes 
explained in Chap. 5. The electric field close to the wires is so intense that the 
primary electrons acquire enough energy to produce secondary ionization. Thus, 
an avalanche of electrons is produced that is collected within a time of 1 ns, but 
that leaves behind a cloud of positive ions. 

It is significant that the pulse produced by the counter is not due to the 
motion of the electrons, but to that of the ions.76 As the positive ions move away 
from the anode wires, they generate a fast-rising (- 10 ns) negative pulse that 
gradually slows down and lasts a few microseconds. The pulse induced in the 
neighboring wires is positive. Thus, the active wire (the wire close to the 
trajectory of the particle) is distinguished from the others. The signals from the 
wires are processed and read by either digital or analog systems.77 

The position resolution depends on the spacing between the wires, but it is 
better than the actual size of the spacing. The smallest wire spacing is about 1 

'single-wire position-sensitive proportional counters operating by charge division (as described 
in Sec. 13.10.1) have also been used?' 

Anode wires 
Cathode 
planes 

Figure 13.27 The basic design of an MWPC. 



462 MEASUREMENT AND DETECTION OF RADIATION 

mm, while position resolutions better than 100 p m  have been r e p ~ r t e d . ~ ~ , ' ~  
Such space resolution has been achieved because the position is determined 
from the well-defined centroid of the charge distribution generated by the 
passage of the particle. 

A variation of the detector described above is the so-called "drift chamber." 
The drift chamber determines the position from the time it takes the electrons 
produced by the incoming particle to drift to the nearest anode wire.89 A 
two-dimensional MWPC has also been constructed for detection of neutrons 
scattered from biological samples?' It is a 3 ~ e  gas-filled counter that detects 
neutrons through the ( n ,  p )  reaction. 

PROBLEMS 

13.1 Prove that the maximum energy transfer to an electron as a result of a collision with a particle 
of mass M and speed u = pc is equal to 

13.2 Show that AE,,, of Prob. 13.1 takes the form 

if T = +MU' (nonrelativistic particle) and m 4 M. 

133 Calculate the energy loss of a 6-MeV alpha particle going through an aluminum foil with 
thickness equal to one-fourth of the range of the alpha (remember dE/dx is not constant as the 
particle slows down). 
13.4 A monoenergetic beam of 10-MeV alpha particles goes through a nickel foil with a thickness 
equal to 1/30 of the range of the alphas. What is the width of the emerging beam (in keV)? If the 
emerging particles are counted by a silicon detector with a resolution of 15 keV, what is the total 
width of the measured alpha beam (measurement performed in vacuum)? 
13.5 What is the thickness of a nickel foil that will cause energy loss equal to 1/50 of the energy of 
a 10-MeV proton traversing it? 
13.6 Show that the backscattering fraction of electrons is given by 

where g, T, and E' are defined in Fig. 13.9; u is the standard deviation of the Gaussian. 
13.7 If the stopping power for a heavy ion can be represented by the equation 

where k and b are constants, what is the expression for the range as a function of energy for such 
ions? What is the energy of the ion as a function of distance traveled? 
13.8 If the expression for dE/d! given for Prob. 13.7 is valid, what fraction of the initial kinetic 
energy of the ion is lost in the first half of its range? 
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13.9 A thin fission foil was prepared using natural uranium. Calculate the ratio of alpha activities 
due to the isotopes 2 3 4 ~ ,  2 3 5 ~ ,  and 2 3 8 ~ .  The abundance a and half-lives of the three isotopes are 

234 U: a = 0.0057% TI/, = 2.47 X lo5 y 

2 3 5 ~ :  a = 0.711% TI,, = 7.10 X 10' y 

Assume that every decay gives off an alpha; i.e., neglect decay by spontaneous fission. 

13.10 Verify the curves of Fig. 13.22. 
13.11 Prove that the energy resolution of a magnetic spectrometer is given (relativistically) by the 
equation 

(Definition of the symbols used is given in Sec. 13.8.) 
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CHAPTER 

FOURTEEN 

NEUTRON DETECTION AND SPECTROSCOPY 

14.1 INTRODUCTION 

Since neutrons do not directly ionize atoms, they are detected "indirectly7' upon 
producing a charged particle or a photon, which is then recorded with the help 
of an appropriate detector. The charged particle or the photon is the result of a 
neutron interaction with a nucleus. If the mechanism of the interaction is 
known, information about the neutron can be extracted by studying the products 
of the reaction. Many types of interactions are used, divided into absorptive and 
scattering reactions. 

Absorptive reactions are (n, a), (n, p), (n, y), or ( n ,  fission). In the case of 
an (n, y)  reaction, the neutron may be detected through the interactions of the 
gamma emitted at the time of the capture, or it may be detected through the 
radiation emitted by the radioisotope produced after the neutron is captured. 
The radioisotope may emit P or P+ or y or a combination of them. By 
counting the activity of the isotope, information is obtained about the neutron 
flux that produced it. This is called the activation method. If the reaction is 
fission, two fission fragments are emitted; being heavy charged particles, these 
are detected easily. 

The main scattering reaction used is neutron-proton collision, called the 
proton-recoil method. The knocked-out proton is the particle recorded. 

With the exception of the proton-recoil method, which functions for fast 
neutrons only (En > 1.0 keV), all the other interactions can be used with 
neutrons of any energy. However, at every neutron energy, one method may be 
better than another. The best method will be selected based on the neutron 
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energy, the purpose of the experiment (is it number or energy of neutrons 
measured, or both?), and the physical constraints of the measurement (e.g., 
inside a reactor core or outside). 

This chapter discusses in detail all the neutron detection methods men- 
tioned above, as well as the Bragg crystal spectrometer, the time-of-flight 
method, compensated ion chambers, and self-powered neutron detectors 
(SPND). Other specialized neutron detectors, such as fission track recorders and 
thermoluminescent dosimeters, are described in Chap. 16. 

14.2 NEUTRON DETECTION BY (n, CHARGED 
PARTICLE) REACTION 

There are many nuclear reactions of the type ( n ,  charged particle) used for 
neutron detection. In general, endothermic reactions are used for fast neutrons, 
and exothermic ones for thermal neutrons. The endothermic reactions will be 
discussed in Sec. 14.6. 

The most useful exothermic reactions are listed in Table 14.1, along with 
their Q values and the value of the cross section for thermal neutrons. 

The charged particles from any one of the reactions of Table 14.1 share an 
amount of kinetic energy equal to Q + En, where En is the neutron kinetic 
energy. The large Q values make detection of the products very easy, regardless 
of the value of En, but at the same time make measurement of the energy of 
slow neutrons practically impossible. The neutron energy would be measured 
from the pulse height, which is proportional to Q + En. However, if the pulse 
corresponds to energy of the order of MeV (because of the Q value), a small 
change in En will produce a variation in the pulse that is undetectable. For 
example, the fractional change of a 1-MeV pulse due to 1-keV change in 
neutron kinetic energy is (1.001 - 1.000)/1.000 = 0.1 percent, which is less than 
the best energy resolution of alpha-particle detectors. Therefore, the measure- 
ment of neutron energy is possible only when En amounts to a considerable 
fraction of the Q value. 

Table 14.1 Exothermic Reactions Used for Neutron Detection 

Charged particles Q Value 
Reaction 

a (b) 
produced (MeV) for En = 0.025 eV 

10 B(n, or): Li or,  ' Li 2.78 3840 

6, Li(n, a ) :  H or,  3 H  4.78 937 

:He(n ,  p):H P, ' H  0.765 5400 
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14.2.1 The BF, Counter 

The (n, a )  reaction with ':B is probably the most useful reaction for the 
detection of thermal neutrons because 

1. The reaction cross section is large. 
2. The energy dependence of the cross section is of the l / u  type. 

10 3. 5B is a constituent of the compound BF,, which may be used as the gas of a 
proportional gas counter. 

The BF, counter is a proportional counter filled with BF, gas, usually enriched 
to more than 90 percent in ' O B  (about 20 percent of natural boron is 'OB; the 

11 rest is B). The BF, counter detects the alpha and the lithium particles 
produced by the reaction 

10 ,B +An + i ~ e  + Z L ~  + 2.78 MeV 

With thermal neutrons, the 7 ~ i  nucleus is left in an excited state about 96 
percent of the time. In that case, the Q value of the reaction is 2.30 MeV and 
the 7 ~ i  nucleus goes to the ground state by emitting a gamma with energy equal 
to 2.78 - 2.30 = 0.480 MeV. This photon may also be used for the detection of 
the neutron. 

The relationship between counting rate and neutron flux is derived as 
follows. Let 

n(E) dE = number of neutrons/m3 with kinetic energy between E and E + dE 

+(E)  dE = u( E)n( E )  dE = neutron flux consisting of neutrons with kinetict 

energy between E and E + dE 

u(E) = neutron speed for energy E (m/s) 

Em = upper limit of neutron energy considered 

N = number of 'OB atoms per unit volume 
V = volume of the counter 

a ( E )  = a (u) = cross section of the (n , a ) reaction for neutron energy E 

Assuming that the neutron flux is uniform over the detector volume, the 
reaction rate R is given by 

The 'OB cross section has a l / u  dependences over a wide range of neutron 

'1n Chap. 3, the symbol T was used to denote kinetic energy. That was necessary because the 
discussion involved kinetic and total energy. In this chapter, E is used for the kinetic energy of the 
neutron. 

*The "B cross section is quite different. Equation 14.2 represents only the ' O B  cross section. 
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energies; i.e., it can be written as 

where a, is the cross section at some known speed vo = and M is 
the neutron mass. If Eq. 14.2 is substituted into Eq. 14.1, the reaction rate takes 
the form 

R = NVuouon (reactions/s) (14.3) 

where n is the total number of neutrons per unit volume, or 

n = AEmn(E) dE (14.4) 

Equation 14.3 shows that the reaction is proportional to the total neutron 
density. BF, counters are most frequently used for the detection of thermal 
neutrons, for which one can calculate an average neutron speed E given by 

and a total flux 4 ,  given by 

Under these conditions, Eq. 14.3 takes the form 

Thus, if E is known, the reaction rate is proportional to the total neutron flux 4. 
For example, for the commonly encountered Maxwell-Boltzmann distribution of 
thermal neutrons, E = 2vp/ &, where up is the most probable neutron speed. 

The derivation of Eqs. 14.3 and 14.7 was based on the assumption that the 
neutron flux is uniform over the volume of the counter. A measure of the flux 
uniformity is the value of the factor exp ( - & I ) ,  where 

Z, = total macroscopic cross section for the gas of the counter, averaged over 

all the neutron energies present 

I = a characteristic dimension of the counter (usually the diameter or the 

length of a cylindrical counter) 

If exp(-Z,l) - 1, the flux may be taken as uniform over the detector volume. 

Example 14.1 Consider a BF, counter with a diameter of 0.05 m (- 2 in) 
and length 0.30 m (- 12 in) filled with BF, gas, 96 percent enriched to 'OB, at a 
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pressure of 1 atm and used for the detection of 0.0253 eV neutrons. Should the 
user take into account flux depression in the counter? 

Answer The factor exp(-C,1) should be calculated. For the worst case, 
consider 1 = length of the counter. The total macroscopic cross section is 

2, = N(BF, ) [O.~~U( '~B)  + 0.04u("B) + 3u(F)1 

For the calculation of C,, the cross sections of "B and F were neglected 
because they are much smaller than that of 'OB. The "depression factor" is 

exp (-&I) = exp [(-9.91)(0.30)] = exp (-2.97) = 0.05 

If 1 is the diameter of the counter, then 

One concludes that flux depression is considerable in this case, and the flux 
cannot be taken as uniform over the counter volume. 

If the BF, counter is used for the detection of a polyenergetic neutron 
spectrum, instead of a monoenergetic neutron source, average cross sections 
should be used for the calculation (Section 4.9.4 explains how average cross 
sections are obtained). 

As a first approximation, the efficiency of a BF, counter is equal to 

a 
E = --[I - exp (-2,l)l[exp (-2:t,)l (14.8) 

X t  

where C, and C, are total and absorptive neutron macroscopic cross sections, 
respectively, for BF,, and 1 is the dimension of the counter parallel to the 
direction of the neutron beam. 2: and t, are the total macroscopic cross 
section and thickness, respectively, for the material of which the wall or the 
front window of the counter is made. Equation 14.8 was derived under the 
assumptions that 

1. All neutrons travel the same distance inside the counter (parallel beam). 
2. Every neutron interaction in the wall or the front window of the counter 

removes the neutron from the beam. 

Example 14.2 What is the efficiency of a BF, counter enriched to 96 
percent in 'OB, 0.04 m (1.57 in) in diameter, 0.30 m ( - 12 in) long, for a parallel 
beam of 1-eV neutrons? The BF, pressure in the counter is 53,329 Pa (40 
cmHg). Consider two cases: 

(a) The beam is directed parallel to the axis of the counter. 
(b) The beam is perpendicular to the axis of the counter. 
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Assume that the wall and the window of the counter are made of aluminum and 
are 2 mm thick. Take the total neutron cross section for A1 at 1 eV to be 1.5 b. 

Answer Equation 14.8 will be used. At 1 eV for BF, enriched to 96 percent 
to 'OB, C, = C, = C, ('OB). To find the microscopic cross section at 1 eV, use 
Eq. 14.2 and the value of ua = 3840 b at En = 0.025 eV. 

For aluminum, 

(a) If the beam is parallel to the counter axis, 1 = 0.30 m and 

E = [ l  - exp (C,l)][exp (-Cyt,)] = (0.18)(0.982) = 0.214 = 21.4% 

(b) If the beam is perpendicular to the axis, all the neutrons do not travel the 
same distance inside the cylindrical counter. Assuming that the incident 
neutrons form a narrow beam that hits the counter at the center, 1 = 

diameter = 0.04 m. Then, 

E = 11 - exp [( -0.82)(0.04)1}(0.982) = (0.032)(0.982) = 0.032 = 3.2% 

The specifications of commercial BF, counters consist of sensitivity, dimen- 
sions, composition of the filling gas, operating voltage, and maximum operating 
temperature. 

The sensitivity S is defined as the ratio 

true net counting rate r  
S = - - - 

neutron flux 4 
and is given in terms of counts/s per neutron/(m2 s). The parameters affecting 
the sensitivity can be seen by noting that 

r = e p R = g - b  (14.10) 

where ep = efficiency of the counter for detection of the charged particles 
produced 

b  = background counting rate 
g  = gross counting rate 
R = reaction rate given by Eq. 14.7 

Since the charged particles are generated inside the volume of the detector, the 
efficiency E, is practically equal to 1. Also, the background rate may be made 
negligible because the pulses produced by the charged particles are well above 
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the electronic noise. Thus, a proper discriminator level may be set to eliminate 
almost all the background. Under these conditions, R = g and the equation for 
the sensitivity becomes 

Equation 14.11 indicates that for a certain neutron spectrum, the sensitivity is 
proportional to boron density (i.e., pressure of the BF, gas) and volume of the 
counter. 

The number of boron atoms decreases with exposure, and so does the 
sensitivity. The decrease is expressed by a factor having the form 

exp ( -aa&) 

where 4t in neutrons/m2 is the fluence to which the counter was exposed. 
Since the average value of q for thermal neutrons reacting with 'OB is of the 
order of m2 (1000 b), the fluence necessary to cause an appreciable 
change in sensitivity is of the order of neutrons/m2. 

Typical specifications of commercial counters are the following. 

Sensitivity: 5 counts per second per n/(cm2 s) 
Dimensions: Almost any dimensions 
Pressure of BF,: From a little less than 1 to about 2 atm (202 kPa). An increase 

in pressure requires an increase in the operating voltage. 
Operating voltage: BF, counters show an almost flat plateau (see Chap. 5 )  

extending over 1000 V or more. Typical operating voltages range from 1000 
to 3000 V. 

Temperature: Maximum operating temperature is about 100°C. 

14.2.2 Boron-Lined Counters 

Boron-lined counters are gas-filled proportional counters that employ the same 
10 reaction as the BF, counter, except that the B is coated on the walls of the 

counter. Since the (n, a )  reactions take place in a thin layer close to the wall 
(Fig. 14.0, only one of the two particles has a chance of entering the sensitive 
volume of the counter and producing a pulse; the other stops in the wall. The 

10 sensitivity increases with the thickness of the B coating. That thickness, 

n Wall of 
counter 

t 1' 

Figure 14.1 A 'O B-lined counter. 
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however, cannot exceed the range of the alphas produced. The advantage of 
boron-lined over the BF, counters is the flexibility of using a gas more appropri- 
ate than BF,. Then the operating voltage is less and the counter is less sensitive 
to gamma rays. For this reason, boron-lined counters may be used to detect 
neutrons in intense gamma fields. 

Both BF3 and boron-lined counters are mainly used for the measurement of 
the number (not energy) of thermal neutrons. 

14.2.3 6 ~ i  Counters 

Neutron detection by 6 ~ i  is based on the reaction 

The cross section for this reaction is of the l/v type up to 10 keV, with a value 
of 937 b at 0.025 eV. Lithium is used either as LiF or as the component of a 
scintillator. 

A neutron spectrometer based on L~F' consists of a thin slice of 6 ~ i ~  
( -  30 x low5 kg/m2 = 30 pg/cm2) sandwiched between two surface-barrier 
silicon detectors. When neutrons strike the LiF, charged-particle pairs ( 4 ~ e - 3 ~ )  
are produced and are detected simultaneously by the two detectors. The pulses 
from the detectors are amplified and then summed to produce a single pulse, 
which is proportional to the energy of the neutron plus the Q value of the 
reaction. 

6 There are many inorganic scintillators based on lithium. LiI(Eu) has been 
used for neutron energy measurements from 1 to 14 MeV with 10 percent 
energy reso~ution.~ It has good efficiency for low-energy neutrons, but activation 
of iodine creates some problems. The most widely used lithium scintillator was 
developed by Ginther and Schulman3 and Voitovetskii et al.4 It is a cerium- 
activated scintillating glass containing Li20. The proportion of the cerium 
activator affects the efficiency of luminescence. A series of measurements of 
many properties of commercially available glasses has been reported recently by 
S p ~ w a r t . ~ , ~  Today one can buy these glasses in a large variety of thicknesses 
(0.5-25 mm), sizes (up to 125 mm in diameter), Li contents (up to 11 percent), 
and 6 ~ i  enrichments (up to 95 percent). The efficiency of 6 ~ i  glass as a function 
of neutron energy is shown in Fig. 14.2. 

6 To increase the efficiency, Li glass scintillators with thickness about 13 mm 
and diameter 110 mm have been optically coupled to one or more photomulti- 
plier tubes through light To avoid moderation of the incident neutrons, 
the light pipe should not contain hydrogenous material. One problem with such 
thick scintillators is considerable scattering of the incident neutrons. The 
scattered neutrons add an exponential tail to the primary neutron signal, a tail 
that should be included in the time resolution function of the instrument in 
time-of-flight measurements. 
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0.5 I 
10 20 50 100 200 500 11 

Neutron energy, keV 

Figure 14.2 The efficiency of 6 ~ i  glass as a function of neutron energy, with glass thickness 12.7 mm 
(from Ref. 7). 

A different type of arrangement, using a 6 ~ i ~ ( ~ u )  scintillator to detect the 
neutrons after they are moderated, is the Bonner ball (or sphere).lO." Using the 
Bonner ball, neutrons are detected by a 6 ~ i ~ ( ~ u )  scintillator, a BF3 tube, or an 
3 He counter placed at the center of polyethylene spheres with sizes ranging 
from 51 to 305 mm (2-12 in) in diameter. Using the Bonner sphere, the neutron 
energy is determined on the basis of the difference in moderating efficiency for 
the spheres of different sizes. Because the Bonner sphere is primarily used as a 
neutron dosimeter, it is discussed in more detail in Chap. 16. 

14.2.4 3 ~ e  Counters 

Neutron detection by 3 ~ e  is based on the reaction 

The cross section for this reaction is quite high for thermal neutrons (5400 b at 
0.025 eV) and varies as l / u  from 0.001 eV to 0.04 eV. 

One type of helium neutron spectrometer consists of two surface-barrier 
silicon detectors facing each other, with the space between them filled with 
helium at a pressure of a few atmospheres (this is similar to the 6 ~ i ~  spectrome- 
ter described in Sec. 14.2.3). 

Proportional counters filled with 3 ~ e  are widely used, especially in time-of- 
flight measurements (see Sec. 14.8). The efficiency of the counter can be 
increased by increasing the pressure. Figure 14.3 shows the efficiency of a 3 ~ e  
counter as a function of neutron energy for three different pressures. One of the 
problems of 3 ~ e  counters is the wall effect. If the reaction takes place close to 
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Neutron energy, eV 

Figure 14.3 Efficiency of 3~e-f i l led  proportional counter as a function of neutron energy. 

the wall of the counter, there is a high probability that only a fraction of the 
charged-particle energy will be deposited in the counter. As a result, smaller size 
pulses are produced which do not come under the main peak. There are two 
ways to overcome this effect. One is to use a large-diameter counter, in which 
case the fraction of reactions occurring near the wall is smaller. The other is to 
increase the stopping power of the gas. Increase in stopping power is achieved 
either by increasing the pressure of the gas or by adding a small fraction of 
another gas, such as krypton, with a higher stopping power. Increase in stopping 
power is accompanied, however, by an increase in gamma sensitivity and a 
decrease in pulse risetime. Fast risetime is important for time-of-flight measure- 
ments. 

The pressure of the gas and the operating voltage are higher in 3 ~ e  than in 
BF, counters. The pressure of the 3 ~ e  is usually between 404 and 1010 kPa 
(4-10 atm), and the operating voltage is 3000-5000 V. 

14.3 FISSION CHAMBERS 

Fission chambers are gas counters that detect the fragments produced by fission. 
The fission fragments, being massive charged particles with Z = +20e and 
kinetic energy 60-100 MeV, have a short range even in a gas. They produce 
such an intense ionization that gas multiplication is not necessary. Thus, fission 
chambers operate in the ionization region. 

In the most common type of fission counter, the interior surface of the 
detector is coated with a fissile isotope (Fig. 14.4). When fission takes place, one 
of the fission fragments (denoted as FF, in Fig. 14.4) is emitted toward the 
center of the counter and is detected. The other (FF,) stops in the fissile deposit 
or the wall of the counter. The counting rate of a fission counter is proportional 
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Wall of 
counter 

fissile 
isotope 

Figure 14.4 A fission counter. 

to the fission rate, which in turn, is proportional to the neutron flux. The 
relationship among these three quantities is similar to the equations given for 
the BF, counter. 

For relative measurements, the thickness of the fissile material coating is 
not very critical except that it should be less than the range of the fission 
fragments. For absolute measurement, however-i.e., measurements for which 
every fission should be detected-at least one fission fragment from each fission 
should produce a recorded pulse. To achieve this, the thickness of the coating 
must be limited so that fission fragments being produced anywhere in the layer 
of the fissile material generate a pulse larger than that of alphas, betas, or 
gammas, which are always present.+ Pulses from gammas present a problem only 
when the counter is used in an extremely intense gamma field. Pulses from 
alphas, however, are always present and should be discriminated from those of 
fission fragments. Fortunately, the difference between the ionization produced 
by alphas and that produced by fission fragments is so large that such discrimi- 
nation is easy. Figure 14.5 shows a typical integral pulse-height spectrum. Notice 
that the alpha pulses start at such a low level that a discriminator level can be 
set to cut them off. 

Fission counters may be used for detection of either fast or thermal 
neutrons. If the counter wall is coated with 2 3 5 ~ ,  essentially only thermal 

23 5 neutrons are detected because the U fission cross section for thermal neu- 
trons is about 500 times higher than that of fast neutrons. If the counter is 
coated with 2 3 8 ~  or 2 3 2 ~ h ,  only fast neutrons with kinetic energy greater than 1 
MeV are detected because the fission cross section of these isotopes has a 
threshold at about that energy. 

Fission counters are used for detection of the number and not the energy of 
neutrons. They can be used, however, for differentiation of thermal and fast- 
neutron flux by using a combination of 2 3 5 ~ -  and 238~-coated counters (see also 
Sec. 14.6). 

The sensitivity of a fission counter decreases with exposure because of the 
depletion of the fissile isotope (the same phenomenon as depletion of boron 

'~11 fissile isotopes emit alpha particles. Betas and gammas may be emitted either by the fissile 
isotope or by fission fragments. 
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atoms-see Sec. 14.2.1). The decrease in sensitivity may be halted, to a certain 
extent, if the counter wall is coated with a mixture of fertile and fissile materials. 
One such combination is 90 percent 2 3 4 ~  and 10 percent 2 3 5 ~ .  The 2 3 5 ~  is 

artiall replenished with new atoms produced by neutron capture in 2 3 4 ~ .  A 
%5 23x U- U combination will have a similar effect, thanks to 2 3 9 ~ ~  produced as a 
result of neutron capture in 2 3 8 ~ .  

Fission counters are used extensively for both out-of-core and in-core 
measurements of neutron flux in nuclear flux in nuclear reactors. In out-of-core 
situations, they monitor the neutron population during the early stages of power 
ascension when the neutron flux level is very low. For in-core measurements, 
fission counters are used for flux mapping (and consequently, determination of 
the core power distribution). They are manufactured as long thin cylindrical 
probes that can be driven in and out of the core with the reactor in power. 
Typical commercial fission counters for in-core use have diameters of about 1.5 
mm (0.06 in), use uranium enriched to at least 90 percent in 2 3 5 ~  as the sensitive 
material, and can be used to measure neutron fluxes up to 1018 neutrons/(m2 . s) 
[1014 neutrons/(cm2 dl. 

Another method of measuring fission rates is by using fission track detec- 
tors, as discussed in Sec. 16.9.3. 

14.4 NEUTRON DETECTION BY FOIL ACTIVATION 

14.4.1 Basic Equations 

Neutron detection by foil activation is based on the creation of a radioisotope by 
neutron capture, and subsequent counting of the radiation emitted by that 
radioisotope. Foil activation is important not only for neutron flux measure- 
ments but also for neutron activation analysis, which is the subject of Chap. 15. 
This section presents the basic equations involved. 

Fission fragments :\ \ 

2 4 6 8 1 0  Figure 14.5 An integral pulse-height spec- 
Discriminator setting trum taken with a fission counter. 
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Consider a target being irradiated in a neutron flux +(E), where 

ui( E )  = neutron absorption cross section of isotope A, at neutron energy E 

A,, , = decay constant of isotope with atomic mass number Ai + 1( A, ,  

u,, , (El  = neutron absorption cross section of isotope A, ,  , at neutron energy E 

N, (t  ) = number of atoms of nuclide with atomic mass number A , ,  

present at time t 

rn = mass of target (normally this is the mass of the element whose isotope 

A, captures the neutron) 

a, = weight fraction in the sample of isotope A, 

As a result of neutron absorption, the following processes take place: 

1. Target atoms of atomic mass number A, are destroyed. 
2. Atoms with atomic mass number A,,  , are produced. 
3. Atoms of type A,,  , decay. 
4. Atoms of type A, , ,  may be destroyed by absorbing a neutron. 

For the target isotope ($:x), the reaction involved is 

2 : ~  + n z, X 

The destruction of these atoms proceeds according to the equation 

In Eq. 14.12 and all others in this section, it is assumed that the presence of the 
target does not disturb the flux; i.e., the foil does not cause depression of the 
flux. Corrections that take into account foil self-absorption can be found in 
Chap. 11 in Beckurts and Wirtz and in Ref. 12. The integral over energy in Eq. 
14.12 is usually expressed as 

That is, an average cross section is used, even though the overbar that indicates 
averaging is normally dropped. From now on, Eq. 14.13 will be used without the 
overbar, but the reader should keep in mind that u is an average over the 
neutron energy spectrum. 

The solution of Eq. 14.12 is, using Eq. 14.13, 

N,(t) = N,(0)ep"~4' (14.14) 
where 

airnNA 
Ago) = - - - number of atoms of isotope Ai at t = 0 

A i 
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The net production of the A,+ , isotope is expressed by 

dN,+ ,(t) 
= production-destruction-decay 

dt 

With initial condition N,.+ ,(t) = 0, the solution of Eq. 14.15 is 

The activity of this target, A,+ ,(t), is, after irradiation for time t, 

-exp[-(Ai+, + ui+,+)tll (14.17) 

Equation 14.17 refers to the most general case. In practice, targets are selected 
in such a way that 

1. The fraction of target nuclei destroyed is negligible, i.e., ui+t 4 1. 
2. The radioisotope produced has a neutron absorption cross section such that 

hi+, mi+,+. 

If conditions (1) and (2) are met, Eq. 14.17 takes the form 

A,+ ,(t) = ui4(0)+[ l  - exp (-Ai+,t)l (14.18) 

which is the more familiar form of the activity or activation equation. 
If one plots activity as a function of irradiation time, the result is Fig. 14.6. 

Two regions are observed. 

1. For irradiation times that are short compared to the half-life of the radioiso- 
tope produced, the activity increases linearly with time. Indeed, if A,+ ,t 4 1, 
then e-"+I' .= 1 - A,+ , t  and 

where T,+ , is the half-life of the isotope produced. 
2. For irradiation times many times longer than the half-life of the radioisotope, 

the activity reaches a saturation value (A,). Theoretically, the saturation 
activity 

A, = u,&(O)+ (14.19) 
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Saturation 

Figure 14.6 Activity versus irradi- 
ation time (shown as a fraction of 

Irradiation time saturation activity). 

is reached for t = m. In practice, the activity produced is taken as equal to A, 
for t = 6-7 half-lives. 

Table 14.2 gives the fraction of saturation activity produced for several irradia- 
tion times. 

197 Example 14.3 The isotope Au is irradiated in a thermal neutron flux of 
1018 neutrons/(m2. s). The cross section for neutron capture is 99 b, and the 
half-life of the radioactive I9 '~u  produced is 2.7 days. (a) How long does the 
sample have to be irradiated for 0.1 percent of the target atoms to be destroyed? 
(b) What is the irradiation time necessary to produce 95 percent of saturation 
activity? (c) If the mass of the sample is 4 X lop6 kg, what is the irradiation 
time necessary to produce 7.4 x lo4 Bq (2 pCi) of activity? 

Answer 

(a) Using Eq. 14.14, 

N(t) -- 1 1 

N(0) 
- 0.999 = epU4' or t = - ln- 

0.999 

Table 14.2 Fraction of Saturation Activity 
Produced as a Function of Irradiation Time 

Irradiation time 
(in half-lives) A;+, (t)/A, 
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(b) Using Eq. 14.18, the irradiation time t should be such that 1 - exp ( -  At) = 

0.95 or 

(c) Using Eq. 14.18, 

It is useful to evaluate A, first, because if A, is less than the activity desired, it 
is impossible to obtain such activity under the conditions given. 

The saturation activity is 

In this example, A, is greater than A(t) and the required irradiation time t is 

T A(t) 2.7 days 
n I - -  =- -  1 - 1  In 2 [ A s ]  In 2 In ( I  - 

1.21 x 10" 

14.4.2 Determination of the Neutron Flux by Counting the Foil Activity 

As shown in Eq. 14.18, the activity of the irradiated foil is proportional to the 
neutron flux. Determination of the flux requires measurement of the activity, a 
task accomplished as follows. 

Let the irradiation time be t o .  In practice, counting of the foil starts some 
time after irradiation stops, and it is customary to consider the end of irradiation 
as time t = 0 (Fig. 14.7). At time t after irradiation stops, the activity is, using 
Eq. 14.18, 

Ai+ I(t) = N,(0)ui+[l - exp ( - A ~ +  l t o ) l e h + l '  (14.20) 

If the sample is counted between t, and t,, the number of disintegrations in that 

Figure 14.7 Timescale for counting an irradiated sample. Time t = 0 coincides with the end of the 
irradiation period. 

-Irradiation- 

t o  

I I 

;--counting+; Time after 
t I t 2  irradiation stops 

0 
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period is 

Assuming that one counts particles with energy Ek for which ek is the probabil- 
ity of emission per decay, and the counting system is such that 

E,  = the efficiency of the detection of particles with energy E, 
R = solid angle 
B = background counts recorded in time T = t ,  - t ,  

then the gross counts recorded, G,, will be 

The factor F in Eq. 14.22 takes into account any other corrections (i.e., 
backscattering, foil self-absorption) that may be necessary (see Sec. 8.3). If 
dead-time correction is necessary, it should be applied to G,. 

The flux + is determined from Eq. 14.22 if all the other factors are known. 
There are two types of factors in Eq. 14.22: 

1. Factors that depend on the sample [ N , ( O ) ,  a,, hi+ ,, e,], which are assumed to 
be known with negligible error 

2. Factors that depend on the counting system ( E ,  F, a,  B), which are the main 
sources of error 

To determine the flux distribution only, not the absolute value of the flux, 
foils are placed at known positions x ,  and are irradiated for a time to. The foils 
are then counted using the same detector. At any point x,, the flux may be 
written as 

where the subscript j indicates position of the foil and 

m, = mass of foil at position j 

( L  includes all the factors that are common to all the foils.) 
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The title of this section includes the word foil because the sample to be 
irradiated is used in the form of a thin foil of the order of 1 mm thick or less. 
The mass of the foil is only a few milligrams. Small thin foils are used because 

1. A thick sample will absorb so many neutrons that the radiation field will be 
perturbed and the measurement will not give the correct flux. 

2. A thick sample will cause a depression of the flux in its interior. In such a 
case, correction factors will have to be applied to all the equations of this 
section that contain the flux 4. 

3. If the radioisotope emits P particles, increased thickness will not necessarily 
increase the counting rate, because only particles emitted close to the surface 
within a thickness less than the range will leave the target and have a chance 
to be recorded. 

4. There is no purpose in producing more activity than is necessary. 

Foil activation may be used for detection of the number of either fast or 
thermal neutrons. The use of foils for fast-neutron energy measurements is 
discussed in Sec. 14.6. Foil activation is not used generally for measurement of 
the energy of thermal neutrons. 

14.5 MEASUREMENT OF A NEUTRON ENERGY SPECTRUM BY 
PROTON RECOIL 

Detection of neutrons by proton recoil is based on collisions of neutrons with 
protons and subsequent detection of the moving proton. Since neutrons and 
protons have approximately the same mass, a neutron may, in one collision, 
transfer all its kinetic energy to the proton. However, there is a possibility that 
the struck proton may have any energy between zero and the maximum possible, 
as a result of which the relationship between a neutron energy spectrum and a 
pulse-height distribution of the struck protons is not simple. It is the objective of 
this section to derive a general expression for this relationship. The sections that 
follow show its application for specific detectors. 

Consider the case of a neutron with kinetic energy En colliding with a 
proton at rest (Fig. 14.8). To calculate the proton kinetic energy after the 
collision, one must apply the equations of conservation of energy and linear 
momentum (Eqs. 3.81-3.83) using Q = 0 and Mn = Mp. The result for E,, the 
proton kinetic energy as a function of the recoil angle 8, is 

In a neutron-proton collision, the maximum value of angle 0 is 90°, and the 
minimum 0"; therefore, the limits of the proton energy are 0 I Ep I En. For 
neutron energies up to about 14 MeV, the (n - p )  collision is isotropic in the 
center-of-mass system; as a consequence, there is an equal probability for the 
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I 
I 
I Neutron 
! Figure 14.8 Neutron-proton collision 

Before collision I After collision kinematics. 
I 

proton to have any energy between zero and En in the laboratory system. That 
is, if p (E)  dE is the probability that the proton energy is between E and 
E + dE, after the collision, then 

The function p(E)  is shown in Fig. 14.9. What is important for the observer is 
not p(E)  but the proton pulse-height distribution produced by the detector. The 
relationship between the pulse-height distribution and the neutron spectrum is 
derived as follows. Let 

4( E n )  dEn = neutron energy spectrum =flux of neutrons with energy 

between En and En + dEn 

N( Ep) dEp = proton recoil energy spectrum = number of protons produced (by 

collisions with neutrons) with energy between Ep and Ep + dE, 

R( E ,  Ep) dE = response function of the detector = probability that a proton 

of energy Ep will be recorded as having energy between E and 

E + d E  (defined before in Sec. 11.5) 

M ( E )  dE = measured spectrum = number of protons measured with energy 

between E and E + dE 

The measured spectrum M(E) is the pulse-height distribution in energy 
scale. The response function R(E, Ep) takes into account the finite energy 

Figure 14.9 The proton energy distribu- 
tion after a ( n , p )  collision that is 
isotropic in the center of mass system of 

En E the two particles. 
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resolution of the detector and the relationship between energy deposition and 
pulse height. 

Assuming isotropic scattering in the center of mass system, the proton 
energy spectrum is 

where N, = number of hydrogen atoms exposed to the neutron beam 
T = time of measurement of the recoil protons 

H(En - E,) = step function; H(En - E,) = lIEn r E , zero otherwise 
u(En)  = elastic scattering cross section for ( n ,  p? collisions 

The measured energy spectrum is then given by 

In Eqs. 14.26 and 14.27, the energy Em,, is the upper limit of the neutron energy 
spectrum. Equation 14.27 may be rewritten in the form 

where 

Equation 14.28 has the form of the folding integral (see also Sec. 11.51, while 
Eq. 14.29 gives the "composite" response function for the proton recoil spec- 
trometer. 

Example 14.4 As a first application of Eq. 14.28, consider the case of a 
monoenergetic neutron spectrum and a detector with a Gaussian response 
function. What is the measured spectrum? 

Answer Substituting the Gaussian response function 

into Eq. 14.29 and performing the integration, assuming E / u  * 1, one obtainst 

 h here are two a ' s  involved here: u ( E )  is the cross section at energy E; u without an 
argument is the standard deviation of the Gaussian. 
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where 

Substituting the value of k(E, En) and the monoenergetic flux +(En) = S6(En 
- E,) into Eq. 14.28 and performing the integration, one obtains 

The function M ( E )  given by Eq. 14.30 is shown in Fig. 14.10. It is essentially the 
same function as that shown in Fig. 14.9, except for the rounding off at the 
upper energy limit caused by the Gaussian detector response. 

The task of neutron spectroscopy is to obtain the neutron energy spectrum 
4(E), which means to unfold Eq. 14.28. Two general methods used to unfold 
this equation are discussed next. 

14.5.1 Differentiation Unfolding of Proton Recoil Spectra 

If R(E, EJ = 6(E - EJ then the response function of the proton recoil 
spectrometer is (using Eq. 14.29) 

and Eq. 14.28 takes the form 

The lower limit of the integral is set equal to E because at any energy E, only 
neutrons with energy En > E can contribute to M(E). Equation 14.31 may be 
solved by differentiation to give 

Figure 14.10 The measured mo- 
noenergetic neutron spectrum ob- 
tained with a detector having a 

E o E Gaussian response (S  = 1). 



488 MEASUREMENT AND DETECTION OF RADIATION 

The evaluation of the derivative in Eq. 14.32 is performed by numerical 
techniques, since it is not the spectrum M(E) that is measured but its "binned" 
equivalent, 

I;+'M(E) d~ = M, (14.33) 

where Mi is the number of counts in channel i of the spectrometer. Several 
 investigator^'^-'^ applied least-squares fit techniques to numerically perform the 
differentiation of Eq. 14.32. Usually, each Mi is assigned the energy correspond- 
ing to the midpoint of the channel and an Mth-order polynomial is least-squares 
fit to that point and the preceding and following N points [this is an Mth-order, 
(2 N + 1)-point fit]. The derivative of the polynomial at the mid-point is used as 
the derivative [dM(E)/dE],. This method has the disadvantage that it slightly 
hardens the unfolded spectrum. 

An improved differentiation technique1' consists of first smoothing the true 
spectrum @(E) to obtain a "smoothed" true spectrum +s(E), given by 

where G(E, E') is a smoothing function normalized to 1. Substituting Eq. 14.32 
into Eq. 14.34, one obtains1' 

where NC is the number of channels, Mi is given by Eq. 14.33, and the 
assumption is made that the quantity [E1/a(E')]G(E, E') approaches zero at 
both limits of integration of Eq. 14.34. Results obtained with Eq. 14.35 and a 
Gaussian smoothing function show no spectrum hardening. 

14.5.2 The FERDOR Unfolding Method 

The unfolding code FERDOR based on the work of ~ u r r u s ' ~  is described in 
several  article^.'^^^^ The measured spectrum given by Eq. 14.28 is written in the 
form 

where 

Ei+ , - E, = AEi = width of the spectrometer channel at energy Ei 

NC = number of spectrometer channels 

The functions ki(E), which represent the detector response, can be measured at 
selected energies or can be c~mputed.~ '  
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The code FERDOR, instead of obtaining +(El, calculates the quantities S, 
given by 

where W,(E) = window function, chosen by the observer 
NW = number of window functions 

There are many interpretations of Eq. 14.38, all equally valid: 

1. If W,(E) is taken as the response of an "ideal" detector, then the S,'s are the 
elements of an "ideal" measured spectrum. 

2. The functions W,(E) are smoothing functions for the true spectrum 4(E). 
3. The Sk7s are linear functions of the true spectrum +(El that have to be 

calculated. For example, if W,(E) is a cross section, the corresponding Sk is a 
reaction rate; if W,(E) is a flux-to-dose conversion factor, then S, is the dose 
rate; or if Wk(E) = 1, then S, is the integral spectrum. 

The functions Wk(E) used by FERDOR are Gaussians with a standard 
deviation given by 

where w, = rk/Ek, and its value is set by the user. The code calculates the S,'s 
and their uncertainties based on the values of ki(E), Mi, and the statistical 
errors of Mi, using a constrained least-squares method. 

Experience has shown that the proper values of w, depend on both the 
shape of the neutron spectrum and the statistical errors of Mi, and that small 
changes in the w, cause large changes in the errors of the result.23 This effect 
has been mitigated in the code FORIST,~~ which is a modification of FERDOR.~ 
In FORIST, the value of w, is obtained by an iterative process in terms of the 
desired statistical error of the result S,. Choosing the widths w, by this method 
improves the resolution of the unfolded spectrum, for a fixed desired statistical 
error. 

14.5.3 Proportional Counters Used as Fast-Neutron Spectrometers 

Proportional counters filled with hydrogen or methane are used for the mea- 
surement of neutron spectra in the energy range l keV < En < 2 MeV. Neither 
hydrogen nor methane are equally useful over the full energy range. Hydrogen- 
filled counters are used for En < 100 keV. For higher neutron energy, greater 
stopping power is needed, and for this reason, methane is used instead of 
hydrogen. Methane-filled counters do not give good results for E, < 100 keV 
because of spectrum distortion from carbon recoils. 

t ~ h e  codes FERDOR and FORIST are available through the Radiation Shielding Information 
Center of Oak Ridge National ~ a b o r a t o r y . ~ ~ ~ ~ ~  
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The efficiency of a proportional counter, like that of any other gas counter, 
depends on its size, the composition and pressure of the gas, and the energy of 
the incident neutrons. Knowledge of the neutron cross section for interactions 
with hydrogen and carbon over the energy range of interest is necessaq for 
efficiency calculations. The hydrogen cross section is known to better than 1 
percent for neutron energies between 0.2 and 22 MeV. The carbon cross section 
is less accurately known for En > 2 MeV. In addition to elastic scattering, other 
carbon reactions, such as (n, n'), (n, a), and (n, p), are important for En > 4.8 
MeV and should be included in the response function of the counter. Table 14.3 
gives hydrogen and carbon cross sections for 0.2 < En < 20 MeV. 

The relationship between the neutron spectrum and the measured pulse- 
height distribution is given by Eq. 14.28. The response function k(E, En) (Eq. 
14.29) may be measured or calculated. In either case, the following effects have 
to be taken into account in obtaining k(E, E ~ ) : ~ ~ - ~ ~ ~ ~ ~ ~ ~ ~  

Wall-and-end effects. Tracks of protons generated close to the wall or close to 
the ends of the counter have a high probability for incomplete energy deposition 
and collection of ionization. Proton-recoil tracks close to the wall are truncated 
by collisions with the wall material before the struck proton deposits all its 
energy in the counter. Protons being produced close to the end of the counter 

Table 143 Total Hydrogen and Carbon Cross Sections 
for 0.2 < En < 20 M ~ v ~ '  
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and moving toward either end enter into a region of lower electric field where 
there is little or no gas multiplication and where there is, consequently, incom- 
plete collection of the charge produced. 

As a result of wall-and-end effects, lower energy pulses are generated that 
tend to increase the response function toward the lower energies (Fig. 14.11). 
Corrections for this effect have been ~ a l c u l a t e d , " ~ ~ ~  but unfortunately each 
calculation applies only to a specific geometry. 

The magnitude of wall-and-end effects increases as the size of the counter 
decreases. It also increases as the neutron energy increases. In fact, for neutrons 
in the MeV range, the distortion of the spectrum due to these effects becomes 
so significant that it sets the upper energy limit ( -  2 MeV) for the use of a 
proportional counter as a spectrometer. 

Electric field distortion. The gas multiplication in a proportional counter de- 
pends on the intensity of the electric field. Close to the ends of a cylindrical 
counter, the strength of the electric field becomes gradually less intense than in 
most of the counter volume. This effect produces lower pulses from proton 
recoils at the ends of the counter. Detectors with large length-to-diameter ratio 
are less affected by this problem. Theoretical corrections of this effect have 
been developed and successfully applied.17 

Effect of carbon recoils. Neutrons detected by methane-filled counters collide 
not only with hydrogen nuclei but also with carbon atoms. The ionization 
produced by carbon recoils is indistinguishable from that produced by protons. 
However, carbon recoils produce pulses that are smaller than those from 
protons because of differences in both kinematics and ionization ability. The 
maximum fraction of neutron energy that can be imparted to a carbon nucleus 
in one collision is 0.28 (versus 1 for a hydrogen nucleus), and the relative 
ionization efficiency of a carbon to a proton recoil is about 0.5." Thus, the 
effect of carbon recoils is to add pulses at the low-energy region of the response 

Heavy-atom recoils 

Wailandend effects 
Response obtained without 

E' 
8 
0 

Figure 14.11 Distortion of the response function because of wall-and-end effects and heavy-atom 
recoils. 
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function (Fig. 14.11). Carbon-recoil effects are so significant for En < 100 keV 
that methane-filled counters are not usable below this energy. 

Variation of energy needed to produce one ion pair. The measured spectrum 
may differ from the proton-recoil spectrum because of nonlinearity in the 
relationship between proton energy and ionization produced. That relationship 
is expressed by the quantity w(E), defined as the energy needed by a proton of 
energy E to produce one electron-ion pair. To be able to use a counter as a 
spectrometer, the value of w(E) should be accurately known for the gas of the 
counter for all energies below the maximum neutron energy measured. Experi- 
ments have shown that the value of w(E) is essentially constant for hydrogen 
for neutron energies about - 20 keV. Below that energy, w(E) changes slightly 
with energy.'7'28 For methane, w(E) seems to be essentially constant between 
100 keV and 1 M ~ v . ~ ~  

Gamma-ray discrimination. Proportional counters used in a mixed neutron- 
gamma field detect both types of radiation. Discrimination of y-ray pulses has 
been accomplished by utilizing the fact that the Compton electrons produced by 
the gammas have longer range than proton recoils. The time-of-rise method, 
which is now almost universally used, takes advantage of the faster risetime of 
the proton pulse relative to that of the electrons. Proton range is so much 
shorter than electron range that all the ions produced by the proton arrive at 
the anode at about the same time and generate a pulse with a fast risetime. On 
the other hand, ions produced by electrons along their path arrive at the anode 
over a period of time and generate a pulse with a slower risetime. Thus, using 
appropriate electronics, the pulses from gammas can be rejected. 

Finite resolution of proton detector. The resolution of a proportional counter 
for monoenergetic protons is derived from two factors. One is a statistical 
broadening that depends on the number of ion pairs produced. The other is a 
"mechanical" broadening due to imperfections in the design of the counter and 
impurities in the filling gas. At an energy of 615 keV, the energy resolution is of 
the order of 4 percent, but it deteriorates to about 60 percent at 1 keV. 

Response functions of proportional counters have been measured and 
calculated by several people. Verbinski and GiovanniniZ8 gave a critical study of 
response functions of gas-filled counters as well as a comparative study of the 
different codes used to unfold their spectra. Figures 14.12 and 14.13 show 
measured and calculated response functions for methane- and hydrogen-filled 
proportional counters. 

Coarse calibration of proportional counters is achieved by using 3 ~ e  and Nz 
as additives in the gas of the counter and employing the reactions 
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Figure 14.12 Measured and calculated response functions for a methane-filled proportional counter 
(1.5 in diameter, 3.5 atm pressure). ( a )  At 75°C. 1772 keV. ( b )  At 75°C 592 keV. (From Ref. 28; 
d N / d I  is the proton ionization spectrum.) 
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Figure 14.13 Measured and calculated response functions for a cylindrical hydrogen-filled propor- 
tional counter (1.5 in diameter, 2.6 atm pressure, Hz + 5 percent N,). (a) Electric field distortion, 
45T,  50 keV; ( b )  45T ,  100 keV. (From Ref. 28; d N / d I  is the proton ionization spectrum.) 
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Fine calibration is obtained by placing the detector inside neutron filters made 
of aluminum, NaC1, and ~ e f l o n . ~ '  The filters generate dips in the unfolded 
spectrum, which coincide with the energies of cross-section resonances of the 
corresponding isotope. Fine calibration is achieved when the energies of the dips 
of the unfolded spectrum coincide with the energies of the resonances. 

14.5.4 Organic Scintillators Used as Fast-Neutron Spectrometers 

Organic scintillators have proven to be excellent fast-neutron detectors because 
they have high and known efficiency, good energy resolution, and low sensitivity 
to gammas. The high efficiency is due to their hydrogen content (1.1 hydrogen 
atoms per carbon atom, density about lo3 kg/m3 = 1 g/cm3), the relatively 
high hydrogen cross section (2.5 b for 2.5-MeV neutrons), and the ability to 
make and use them in large sizes. Organic scintillators are the main detectors 
used for neutron spectroscopy from - 10 keV to 200 MeV. An excellent review 
of organic scintillator properties is given in Ref. 31. 

Stilbene scintillators were used as early as 1957. Stilbene as a crystal is very 
sensitive to mechanical and thermal shock and shows an anisotropic response to 
neutrons-i.e., neutrons incident from different directions, with respect to the 
crystal lattice, produce different light output. Liquid organic scintillators have 
none of these problems; in addition, they have higher H/C ratio, and light 
production from carbon recoils relatively lower than in stilbene. For all these 
reasons, liquid organic scintillators are almost exclusively used for detecting fast 
neutrons. 

The NE seriest of organic scintillators has been studied in detail and used 
in particular NE 213. The NE 213 scintillator, which is most 

commonly used, consists of xylene, activators, the organic compound POPOP (as 
a wavelength shifter), and naphthalene, which is added to improve light emis- 
sion. The density of NE 213 is about 870 kg/m3 (0.87 g/cm3), and its composi- 
tion is taken to be CH,,,,. 

As the size of an organic scintillator increases, the efficiency increases, the 
energy resolution deteriorates, and the background increases. The optimum size 
for MeV neutrons seems to be a scintillator with a volume lop4  m3 (100 cm3), 
i.e., a cylinder 50 mm in diameter and 50 mm tall. The efficiency of the NE 213 
scintillator has been determined by Verbinski et a1.22 using a combination of 
measurements and Monte Carlo calculations for 20 neutron energies between 
0.2 and 22 MeV. 

The response of an organic scintillator to monoenergetic neutrons depends 
on effects similar to those discussed in the previous section for proportional 
counters, with the exception of electric field distortions. The most important 
cause of a response different from the ideal rectangular distribution shown in 
Fig. 14.9 is the nonlinear relation between the energy of the proton and the 
amount of light produced by the scintillation process. For organic scintillators, 

'Manufactured by Nuclear Enterprises, Winnipeg, Ontario, Canada. 
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the light production by protons and heavier ions is essentially proportional to 
the $ power of the energy deposited22 in the energy range 0.3 MeV < E < 4 
MeV, and linear for lower energies.33 The light production by electrons varies 
almost linearly with energy33 (Fig. 14.14). 

Response functions for the NE 213 organic scintillator were first obtained 
by Verbinski et a1.22 These authors measured the NE 213 response for 20 
energies between 0.2 and 22 MeV and then normalized the spectra to Monte 
Carlo calculations. One additional response was constructed at 10 MeV from 
Monte Carlo calculations and from interpolation of the measured responses at 8 
and 12 MeV. These 21 neutron response functions are included in the FER- 
DOR/COOLC but they constitute an insufficient response matrix. 
Ingersoll and ~ e h r i n ~ , ~ ~ , ~ ~  using an interpolation scheme, expanded these data 
into an 81-column matrix, and used it successfully to unfold neutron spectra up 
to 20 MeV. This expanded matrix, along with a measured gamma-ray response 
function,34 is included in the FORIST code package.26 Figure 14.15 shows 
typical response functions for monoenergetic neutrons up to 8.12 MeV. Figure 
14.16 shows a pulse-height distribution and an unfolded spectrum. Two other 
unfolding methods can be found in Refs. 37 and 38. 

Neutron-gamma discrimination is essential for satisfactory performance of 
an organic scintillator as a neutron spectrometer. Fortunately, rejection of 
gamma pulses can be achieved by electronic means. The method is called 
pulse-shape discrimination (PSD) and is based on the difference in scintillator 
response to gamma- and neutron-associated events. The electrons, which are 
produced by gammas, cause scintillations at a rate faster than that due to 
protons produced by neutrons. Thus, the electron pulses, which are associated 
with photon interactions, have a faster risetime than the proton pulses associ- 
ated with neutrons. There are many PSD circuits. All of them generate a pulse 
with amplitude dependent upon the fast and slow components of the scintilla- 
tion. The PSD circuit used by Burrus and verbinski20 produces a large positive 
pulse for neutrons and a small positive or large negative pulse for gammas. 

10' r 

- Electrons 

Figure 14.14 Light response of NE 110 (plastic) 
and NE 213 scintillator as a function of electron 

Electron or proton energy, MeV and proton energy (from Ref. 35). 
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Cross section at 

Figure 14.15 Response functions of NE 213 spectrometer. The curves represent the quantity k i ( E ) ,  
Eq. 14.37 (from Ref. 20). 

Johnson et al.36 used a time-to-amplitude converter to generate a signal propor- 
tional to the risetime of the pulses produced in the scintillator (Fig. 14.17). 

Organic scintillators can be used in time-of-flight measurements because 
they have shown timing resolution less than 1 ns3' (see Sec. 14.8). 

14.6 DETECTION OF FAST NEUTRONS USING THRESHOLD 
ACTIVATION REACTIONS 

Detection of fast neutrons by threshold activation reactions (or threshold 
detectors) is based on the existence of an energy threshold for certain reactions 
of neutrons with nuclei. Thus, if one activates a foil made of such nuclei, the 
activity of the foil will give a measure of the neutron flux above the threshold. 
Consider, for example, the (n, a )  and (n,2n) cross sections of 27Al an 4 6 ~ i  
shown in Fig. 14.18. If A1 and Ti foils are irradiated, the activity produced 
(activity of 2 4 ~ a  and 4 5 ~ i )  will be a measure of the neutron flux above - 5 MeV 
and - 13 MeV, respectively. 
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Figure 14.16 Pulse-height distribution and un- 
folded neutron spectrum obtained with a 46- 
mm X 46.5-mm diameter NE 213 organic scin- 
tillator (from Ref. 20). 

The main advantages of this technique, over the use of other spectrometers, 
are as follows: 

1. The foils have a small volume and a low cross section; therefore, they do not 
disturb the neutron field. 

2. The foils are almost insensitive to gammas. 
3. Their small size makes the location of foils possible in places where no other 

spectrometer would fit. 
4. The counting equipment does not have to be carried to the radiation area. 

As shown in Sec. 14.4, the saturation activity A, of a foil is given by 



498 MEASUREMENT AND DETECTION OF RADIATION 

l b  I I 1 1 1 

0 Gamma-ray 
2400 - - 

events 

2000 - - 
c 1 8  
m 
5 1600 - - 
L 
m 
a I 

g 1200 - - 
c 
3 s 800 - I - 

Neutron 
400 - " ..-.":.yn" - 

0 .*- , I 

4 0  50  6 0  70 8 0  90  100 
Channel number (1  13 nslchannel) 

Figure 14.17 Risetime spectrum of gamma- 
ray and neutron events recorded by a NE 
213 organic scintillator (from Ref. 36). 

where N, cr(E), and +(E) have been defined in Sec. 14.4 and Eth is the energy 
threshold for the cross section cr(E). Table 14.4 gives a partial list of the many 
reactions one can use to cover a given neutron energy range. In general, 
reactions are selected according to the energy range of the neutron spectrum 
and the counting equipment available. There are, however, criteria that make 
certain reactions and certain foils more desirable than others: 

1. The cross section for the reaction should be well known as a function of 
energy. 

2. The type, energy, and relative intensity of the radiations of the product of the 
reaction should be well known. 

3. The half-life of the radionuclide produced should be well known and should 
be at least several minutes long. 

4. The foil material should be available in high purity, to avoid interference 
reactions caused by impurities. 

To determine the neutron flux as a function of energy by the threshold 
reaction technique, one irradiates n foils and obtains n equations for the 
saturation activity per target nucleus,+ 

Note that the activity Ai is not the total activity of the foil but only the activity 
due to the reaction associated with the cross section ui(E). For example, if one 

'1f saturation activity cannot be obtained because of long half-life, an appropriate time-correc- 
tion factor is used. 
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En, MeV En, MeV 

Figure 14.18 The ( n ,  a )  and ( n ,  2 n )  cross sections for "AI and 4 6 ~ i .  

Table 14.4 A List of Threshold Reactions 

Threshold Half-life 
Material Reaction (MeV) of product 

Teflon l9  F(n, 2n)18 F 11.6 109.7 min 
Li 'Li(n, W Z ' ) ~ H  3.8 - 
Mg " Mg(n, p)" Na 6 15 h 
A1 " Al(n , a)'4 Na 4.9 15h 
A1 " Al(n, p)" Mg 3.8 9.45 min 
Ti Ti@, P) '~  SC 5.5 83.3 d 
Ti 4' Ti(n , p)47 SC 2.1 3.41 d 
Ti 48 Ti@, p)48 Sc 6.8 43.7 h 
Fe s6 Fe(n, P ) ' ~  Mn 4.9 2.58 h 
Fe s4 Fe(n, Mn 2.2 312.5 d 

Co "Co(n, a)s6 Mn 5.2 2.58 h 
Ni Ni(n , 2n) " Ni 13 36 h 
Ni " Ni(n, p)"Co 2.9 71.3 d 
Cu " Cu(n, 2n)6' Cu 11.9 9.8 min 
Cu 63Cu(n, a)60 Co 6.1 5.27 y 
Zn 64 Zn(n, p)64 Cu 2 12.7 h 
I la' I(n, 2n)la6 I 9.3 13 d 
Au 19' Au(n, 2n)lP6 Au 8.6 6.17 d 

NP Np(n, fission)140  at 0.5 12.8 d 
U U(n, fis~ion)"~  at 1.45 12.8 d 

?various fission products are available for counting, e.g., 95 Zn, lo3 Ru, 140 La. "O Ba is 
shown as typical. 



500 MEASUREMENT AND DETECTION OF RADIATION 

irradiates an aluminum foil, the total activity will be the result of the (n, a )  and 
(n, p )  reactions listed in Table 14.4 and the (n ,  -y) reaction that will also occur. 
If the user intends to examine the (n, p )  reaction, the activity that should be 
used in Eq. 14.41 is that of 2 7 ~ g .  Activity due to 2 4 ~ a  [from the (n, a )  reaction] 
and 28Al [from the (n, y)  reaction] should be disregarded. 

It is advantageous, but not necessary, to choose reactions that result in the 
same type of radiation being emitted by all the foils used. Then the same 
counting equipment can be used with all the foils. The most common choice is 
gammas, and the detector is a Ge spectrometer. 

Example 14.5 Consider two foils made of materials with neutron absorption 
cross sections as shown below: 

The foils were exposed to a fast-neutron flux for 2 hours. The half-life of the 
radioisotope produced by the first foil is 10 min, and of the second is 5 hours. 

(a) Write the activation equations and sketch activity produced versus irradia- 
tion time for both foils. 

(b) What information about the neutron spectrum can one obtain from this 
measurement? 

Answer The activation equation is 
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The saturation activity is an integral over the neutron spectrum (Eq. 14.40): 

Since the cross sections are constants, 

These expressions show that (a) from foil 1, one can get the number of neutrons 
above 0.5 MeV, and (b) from foil 2, one can get the number of neutrons above 
1.75 MeV. Subtracting the two activities gives information about the number of 
neutrons between 0.5 and 1.75 MeV. 

The calculation of +(E) based on Eq. 14.41 is another case of unfolding. 
Usually the flux is expressed in terms of a number of energy groups G. If 
G < n, unfolding of Eq. 14.41 is a simple case of least-squares fit. Unfortu- 
nately, in most cases of practical interest, G > n, and the only way to obtain 
4(E)  is to assume a certain a priori form for it and then try to improve upon 
this initial guess. The result depends on the choice of the input spectrum, the set 
of threshold reactions chosen, the errors of the measured activities, and the 
uncertainties of the cross sections involved. The several unfolding codes that are 
used differ mainly in the choice of the input spectrum. A brief description of 
four such codes, SAND-II?~ SPECTRA,"' relative deviation minimization 
method (RDMM)?' and LSL-M242 is given next. 

14.6.1 The Code SAND-I1 

The code SAND-I1 assumes an estimate of the flux # " ) I , = I , G ,  and for sub- 
sequent iterations applies a nonlinear adjustment to the flux. For the kth 
iteration, 

4jk+l) = 4jk) exp~ j (k )  j = 1, . . . ,G  (14.42) 

where cjk) is the kth iteration correction term for the jth flux group. The value 
of cjk) depends on weighting factors, which in turn, are calculated from the 
measured activities. The activity of every foil is written in terms of the flux as 
shown by Eq. 14.43: 

A$' = g. . ~ W ( E , + ,  - E,) 
' I  I 

(14.43) 

where a, - = ith foil cross section averaged over flux of group j 
~ ! f j  = the portion of Ai contributed by neutrons in the jth group, during 

the kth iteration 
To avoid spurious variations introduced to the result by the iteration, 

SAND-I1 applies ~ m o o t h i n ~ ~ ~ , ~ ~  to the weighting factors used for the calculation 
of the flux correction factor cjk). Experience has shown that SAND-I1 is better 
than either SPECTRA or RDMM. 
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14.6.2 The Code SPECTRA 

The code SPECTRA assumes that the flux is a piecewise-linear function of 
energy; i.e., for any energy group j, one can write 

The flux +(E) from Eq. 14.44 is introduced into Eq. 14.41, and the integration 
is performed to give a matrix equation A = SQ, where A is an n x 1 vector 
whose components are the measured activities, S is an n x G matrix whose 
elements are integrals of the cross section of the form 

and Q, is a G X 1 vector whose components are the desired fluxes. The best flux 
Q, is that flux that minimizes the quantity 

where A, and A,, are measured and calculated activities, respectively. 

14.6.3 The Relative Deviation Minimization Method (RDMM) 

The RDMM4' assumes that the flux can be represented as a series of linearly 
independent functions, 

m 

4,(E) = W(E) ak$k,,(E) (14.46) 
k =  1 

where W( E)  = weighting function (e.g., e - E )  
a, = coefficients of the expansion 

ICI,(E) = polynomial, simple or orthogonal (e.g., Laguerre or Chebyshev 
polynomials may be used) 

Equation 14.46 represents an iterative procedure for the evaluation of the flux, 
because a new term is added to the expansion, after each iteration, up to a 
maximum of n. The best approximation for the flux is that which minimizes the 
quantity 

By taking the derivatives 

one obtains rn equations that can be solved for the constants aklk= ',,. 
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14.6.4 The LSL-M2 Unfolding Code 

The LSL-M2 program package determines the neutron energy spectrum based 
on information obtained from a combination of neutron flux calculations and 
threshold foil activation measurements. The results of LSL-M2 are used primar- 
ily for the determination of radiation damage to reactor components and 
specimens irradiated by neutrons. The package consists of three programs. The 
program ACT converts measured activities to reaction rates, taking into account 
the reactor power history. The program CALACT calculates the reaction rates 
using appropriate cross sections and computed neutron fluxes. The third pro- 
gram, FLXPRO, converts data from one energy group structure to another, 
applying appropriate interpolation and extrapolation procedures. 

The LSL-M2 performs a nonlinear least-squares adjustment procedure 
based on the logarithm of the ratio Ac/AM, where 

G 

A ,  = C 4 y g  
g =  1 

are the calculated reaction rates based on G energy groups and A ,  are the 
corresponding measured reaction rates. Based on the discrepancies between the 
In (Ac/AM) values, the initially computed fluxes +g are adjusted so that, after a 
few iterations, there is acceptable agreement between measured and calculated 
reaction rates. The least-squares adjustment takes into account the random 
errors for both calculated and measured quantities. The final product of the 
computation is the adjusted neutron spectrum +gI, = 1, G that generates the 
acceptable values of A,. The mathematical details are given in Refs. 42 and 45. 

14.7 NEUTRON ENERGY MEASUREMENT WITH A 
CRYSTAL SPECTROMETER 

The measurement of neutron energy with a crystal spectrometer is based on the 
same principle of Bragg diffraction as is the measurement of X-ray energy (see 
Sec. 12.10). 

A neutron with kinetic energy E has a de Broglie wavelength equal to 

where h = Planck's constant 
p = Mu = d?%@ = linear momentum of the neutron 

Neutrons with wavelength A incident upon a crystal with interplanar distance d 
are scattered by the atoms of the crystal. As a result of constructive interfer- 
ence, a diffracted neutron beam appears at an angle 0 satisfying the Bragg 
condition (Fig. 14.19), 

n A =  2dsinO (14.50) 
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Diffracted 

Figure 14.19 The arrangement of a neutron diffraction spectrometer. 

where n is the order of reflection (see Sec. 12.10). If the incident beam is 
polyenergetic, the neutron detector set at an angle 8 will detect neutrons of 
wavelength A satisfying Eq. 14.50, i.e., neutrons having kinetic energy E related 
to h by 

Neutron crystal spectrometers are used either to analyze a polyenergetic 
neutron source or, more frequently, to provide a source of monoenergetic 
neutrons. Considering again Fig. 14.19, even though the incident beam may 
consist of neutrons of many energies, the neutrons diffracted at an angle 8 
constitute a monoenergetic neutron beam of energy given by Eq. 14.51. 

Monoenergetic neutron sources at the energy range provided by crystal 
spectrometers are necessary for the study of low-energy neutron cross sections 
with resonances. Consider, as an example, the total neutron cross section of 
iridium shown in Fig. 14.20. To be able to measure the resonances of this cross 
section, one needs neutron energy resolution less than 0.1 eV, resolution that 
can be achieved only with crystal  spectrometer^^^,^^ or time-of-flight measure- 
ments (see Sec. 14.8). 

Most of the discussion presented in Sec. 12.10 for X-ray crystal spectrome- 
ters is also valid for neutron spectrometers (i.e., rocking curve, alignment, higher 
order reflections, types of spectrometers). There are some differences, however, 
which are discussed next. 

The resolving power of a neutron crystal spectrometer is given (based on 
Eqs. 14.49 and 14.50) by 

E A n2k2 
1 / 2  

- - 
tan 8 nk 

- ( l  - qd2E) (14.52) 
AE 2Ah 2AO 4 ( ~ 0 ) d @  

where k = 0.028602 nm . (ev)'I2, the constant of Eq. 14.49. This function, as 
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Neutron energy, eV 

Figure 14.20 The total neutron 
cross section of iridium (from 
Ref. 46). 

well as its inverse (which is the energy resolutiont), is shown in Fig. 14.21, 
assuming d = 0.2 nm, A 0  = 0.3", and n = 1. One can improve the resolution, as 
in the use of X-ray spectrometers, by decreasing A 0  and choosing a crystal with 
short interatomic distances. Using a beryllium crystal with d = 0.0732 nm and 
A 0  = 7.8 min, a resolution of 2 percent at 1 eV has been achieved.47 

The energy range over which the crystal spectrometer can be used is 
determined from the Bragg condition (Eq. 14.50) and the requirement that 
0 < sin 0 < 1. Using Eqs. 14.49 and 14.50, one obtains for first-order reflection 

0.028602 
sin Omin < < 1 

2~~ d (nm) 

which shows that the energy range is a function of the crystal (interplanar 
distance d )  and the minimum observable angle Omin. If one assumes d = 0.2 nm 
(LiF crystal) and Omin = OSO, the energy range becomes 0.005 eV < E < 67 eV. 
Both energy limits increase if a crystal with smaller interplanar distance d is 
used. In practice, the upper limit is determined by the energy resolution that is 
acceptable for the experiment. As Fig. 14.21 shows, the resolution deteriorates 
rather rapidly as energy increases. Neutron crystal spectrometers are generally 
used for E < 100 eV. Crystals that have been used include LiF, calcite, mica, 
beryllium, and copper. 

14.8 THE TIME-OF-FLIGHT METHOD 

The time-of-flight (TOF) method determines the neutron energy with a resolu- 
tion that is better than with any other detector. The principle of neutron TOF is 

' ~ e t t e r  resolution would be obtained with higher order reflections ( n  > I), but unfortunately, 
the intensity is much lower. 
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Figure 14.21 Resolving power and en- 
ergy resolution of a neutron crystal 
spectrometer (n = 1, d = 0.2 nm, A 0  

Neutron energy, eV = 0.3"). 

the same as for heavy ions (see Sec. 13.6). As was pointed out in Sec. 13.6, by 
using the TOF technique, the particle energy can be measured extremely 
accurately if the mass of the particle is known. The mass of the neutron is 
known (to within 3 keV), and energy resolution as good as 0.1 percent has been 
achieved. 

In a TOF measurement, one determines the speed of the neutron u from 
the time t it takes to travel a flight path of length L. The kinetic energy of the 
neutron is given by 

where 

MC' = 939.552 MeV = rest mass energy of the neutron 

The nonrelativistic equation is the familiar one, 

Which equation should be used depends on the energy range measured and the 
resolution of the experiment. At 1 MeV, the nonrelativistic equation, Eq. 14.55, 
introduces an error of 0.16 percent. 

The energy resolution is, using Eqs. 14.54 and 14.55, 

Relativistic: 
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Nonrelativistic: 

In neutron TOF experiments, the neutron source is a burst of neutrons gener- 
ated either by a velocity selector (chopper) or by an ion beam, as explained later 
in this section. The time-of-flight t is the difference between the time of 
production of the neutron burst and the time of neutron detection. 

The uncertainty At consists of three parts. 

1. At, is the uncertainty in the time of neutron emission; it is essentially equal 
to the width of the neutron burst and ranges from a few hundred nanosec- 
onds to less than a hundred picoseconds. 

2. At, is the uncertainty in the time of neutron detection; it depends on the 
pulse risetime, since it is the pulse risetime that signals the time of detection. 
Neutron detectors used today have a pulse risetime equal to 5 ns or less.48 

3. At, is the uncertainty in neutron slowing-down time if the source is sur- 
rounded by a moderator. 

The uncertainty AL is due to the finite thicknesses of the neutron-produc- 
ing target and the neutron detector. The uncertainty in the measurement of L 
itself can be made negligible. The longer the flight path is, the smaller the 
uncertainty AL/L becomes. As the length L increases, however, the intensity 
of the source should increase, and by a greater factor, so that the counting rate 
in the detector stays the same. 

It is customary to use the quantity t/L as a figure of merit for TOF 
experiments. From Eqs. 14.54 and 14.55, one obtains 

Table 14.5 gives typical t/L values. 
The requirements for slow-neutron TOF experiments fall in the ps/m 

range, and those of fast neutrons in the ns/m range. Because of this large 
difference in timing requirements, it is impossible to span the whole neutron 
energy range (eV to MeV) with the same TOF spectrometer. 

The change of resolution with neutron energy is the same for TOF and 
crystal spectrometers. In both systems, the energy spread AE changes, essen- 
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Table 14.5 Typical Values of t / L for Several Neutron 
Energies 

-- 

E (eV) t / L  b s l m )  E (MeV) 1/15 (nslm) 

0.01 722 0.1 228 
0.1 228.5 1 72.3 
1 72.2 2 51.2 

10 22.8 5 32.4 
100 7.2 10 23 

1000 2.3 20 16 

tially, as E ~ / ~  (compare Eqs. 14.52 and 14.57): 

14.8.1 The Neutron Velocity Selector (Neutron Chopper) 

The first velocity selector was designed by Fermi and his co-workers in the 1940s 
and is now known as the Fermi chopper.49 The Fermi chopper consisted of a 
multiple sandwich of aluminum and cadmium foils that fit tightly into a steel 
cylinder about 38 mm (1.5 in) in diameter (Fig. 14.22). The cylinder was rotated 
at speeds of up to 15,000 r/min, thus allowing only bursts of neutrons to go 
through the aluminum channels. Based on the geometry of Fig. 14.22, no 
neutrons from a parallel beam would go through the channel when the chopper 
was more than A8/2 degrees from its fully open position (Fig. 14.23), where 
A8 = (width of channel)/(radius of cylinder). The spinning cylinder was viewed 
with two photocells, one giving a direct measure of the rotation and the other 
sending to the neutron detector a signal used for the measurement of the 
time-of-flight of the transmitted neutrons. 

Incident, 
beam 

Steel 

ging beam 

Figure 14.22 The Fermi chopper. 
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Incident 
beam 

Figure 14.23 (a) The channel is fully open. ( b )  The chopper has rotated by AO/2, and the channel is 
closed. 

Fermi's chopper was a "slow" chopper, the word slow referring to the speed 
of the neutrons, and was used for neutrons up to 1 eV. Fast choppers have also 
been developed for use with neutron energy up to the keV range,50-52 with the 
rotating cylinders of the chopper having different design, depending on the 
requirements of the measurement. 

The most important characteristic of any chopper is the width of the 
neutron burst. In all choppers, the shape of the pulse is essentially triangular 
with the base of the triangle being inversely proportional to the rotating speed 
of the shutter. The shape of the pulse changes slightly with the neutron speed 
and the shape of the channel. The width of the channel, which also affects the 
pulse, is a compromise between acceptable time resolution and adequate count- 
ing rate. Using choppers, neutron bursts with widths as low as 0.5 p s  have been 
a~hieved.~' The time resolution due to such a width is adequate for energies up 
to 10 keV. At higher energies, ion beams from accelerators are used to provide 
the neutron burst. 

14.8.2 Pulsed-Ion Beams 

Narrow and intense bursts of neutrons for TOF experiments are obtained by 
using ion beams. The ions are accelerated, strike a target, and produce neutrons 
through a (charged particle, n)-type reaction. Examples of such reactions are 

Neutrons produced by these reactions are in the MeV range. 
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The first accelerator to be used for neutron production was the cyclotron.53 
Since that time, other types of accelerators have been utilized in TOF experi- 
m e n t ~ ~ ~ - ~ ~  such as electron linear accelerators; the Los Alamos Meson Physics 
Facility (LAMPF), which accelerates protons to 800 M ~ v ~ ~ . ~ ~ ;  and the ORELA 
facility at Oak Ridge, ~ e n n . ~ '  The width of neutron bursts produced by 
accelerators can be lower than 100 ps.61,62 If the burst becomes as narrow as - 50 ps, the resolution is limited by the time response of the neutron detector. 

14.9 COMPENSATED ION CHAMBERS 

Neutron counters located close to a reactor core are subjected to both neutron 
and gamma bombardment. Although a neutron counter-e.g., a ' O B  counter-is 
mainly sensitive to neutrons, it responds to gammas too. At low reactor power, 
when the neutron flux is small, the neutron signal is overshadowed by a signal 
due to gammas emitted from fission products that had been accumulated from 
earlier reactor operation. To eliminate the effect of the gammas, a compensated 
ion chamber is used. 

Compensated ion chambers operate in such a way that the gamma signal is 
subtracted from the total (n + y)  signal and the output is proportional to the 
neutron signal only. Figure 14.24 shows the basic principle of a compensated ion 
chamber. The counter consists of two compartments. One, coated with boron, is 
sensitive to both neutron and gammas and produces a signal proportional to the 
total radiation field. The other is sensitive to gammas only and produces a signal 
proportional to y radiation only. As Fig. 14.24 shows, the circuitry is such that 
the y signal is subtracted from the (y  + n) signal, thus giving a signal propor- 
tional to the neutron field only. The signal, in the form of a current, is measured 
by a picoammeter. 

Volume sensitive to 
neutrons + gammas 

Boron coat 

t t 
+ 

Volume sensitive to V 
- gammas only 

Figure 14.24 A compensated ion chamber. 
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Collector 

l nsulator 

Emitter 

Figure 14.25 Configuration of a self-powered detector. 

Correct compensation is achieved when the signal is zero in a pure gamma 
field. This is accomplished by using the proper combination of volumes for the 
two compartments or by changing the voltages or by a combination of voltage 
and volume change. Typical compensation voltages (V,) are of the order of - 25 
V; the positive voltage V is of the order of +800 V. Without compensation, a 
detector of this type has a useful range from 2 x 10' to 2 X lo4 neutrons/(m2 
d. With compensation, the useful range is extended downward by about two 
orders of magnitude. The sensitivity of compensated ion chambers is of the 
order of 10-l8 ~/[neutrons/(m' . $1. 

14.10 SELF-POWERED NEUTRON DETECTORS (SPND) 

Self-powered detectors, as their name implies, operate without an externally 
applied voltage. The incident radiation (neutrons or gammas or both) generates 
a signal in the form of a current proportional to the bombarding flux. The 
detectors are usually constructed in coaxial configuration (Fig. 14.25). The 
central conductor is called the emitter and is the material responsible for the 
generation of the signal. The outer conductor, called the collector, is separated 
from the emitter by an insulator. The collector is made of inconel alloy, and has 
the form of a metallic sheath encasing the insulator and the emitter. 

The principle of signal generation in a self-powered detector is simple. As a 
result of bombardment by radiation, the emitter releases electrons (betas) that 
escape to the insulator and leave the emitter positively charged. If the emitter is 
connected to the collector through a resistor (Fig. 14.251, current flows, which 
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when measured, gives an estimate of the incident flux. Note that this is not an 
emitter-collector system: any beta particle escaping from the emitter contributes 
to the current, regardless of whether or not it reaches the collector. 

Because self-powered detectors have been developed for use inside the core 
of power reactors, they are designed to have small size (a few millimeters in 
diameter), to be able to operate for rather long periods of time (years) in the 
intense radiation field of the reactor core without appreciable deterioration in 
performance, and finally, to operate without an external power supply. 

The performance of a self-powered detector is given in terms of its sensitiv- 
ity S ,  defined by the equation 

where I(t) = detector current after exposure to the flux 4 for time t 
C$ = neutron flux 

Thus, the sensitivity represents the change in detector current per unit change 
in the flux. 

Many elements have been considered as emitters for self-powered detec- 
t o r ~ . ~ ~ - ~ ~  The ideal emitter should be such that the detector has 

1. High sensitivity 
2. Low burnup rate 
3. Prompt response 
4. Sensitivity to neutrons only 

The material properties that determine these characteristics are discussed in 
Secs. 14.10.1 and 14.10.2, after the equations for the detector current and 
sensitivity are derived. 

The properties of the insulator are also important. The insulator must have 
a resistance of about 1012 ohms at room temperature and lo9 ohms at reactor 
operating temperature. The two insulators commonly used are magnesium oxide 
(MgO) and aluminum oxide (Al,O,). Experiments have shown6" that the resis- 
tance of MgO decreases with exposure to radiation, while that of A1203 does 
not change. For this reason, A1203 is gradually replacing MgO as an insulator 
for self-powered detectors. 

The self-powered neutron detectors are divided into those with delayed 
response and those with prompt response. The characteristics of these types of 
self-powered detectors are presented in Secs. 14.10.1 and 14.10.2. 

14.10.1 SPNDs with Delayed Response 

Rhodium, vanadium, cobalt, and molybdenum have been used as emitters for 
SPNDs. Since rhodium SPNDs are the main in-core instruments for the deter- 
mination of power distribution in pressurized-water reactors (PWR), they are 
discussed first and in greater detail than the others. 
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The si nal of rhodium SPNDs is produced as a result of activation of the 
mk emitter ( Rh) by the incident neutrons, and subsequent decay of the isotope 

104 Rh that is produced. The decay scheme of l o 4 ~ h  is shown in Fig. 14.26. An 
isomeric state with a 4.4-min half-life is produced with a 12-b cross section. The 
ground state of l o 4 ~ h  has a 43-s half-life and is formed with a cross section of 
138 b (with thermal neutrons). It decays to '04pd with a maximum P- energy of 
2.5 MeV. This decay, which takes place 98.5 percent of the time, is primarily 
responsible for the signal of the rhodium detector. The isomeric state with the 
4.4-min half-life contributes very little to the signal, but is responsible for a 
residual current after reactor shutdown. 

To identify the factors that improve sensitivity of the detector and lengthen 
its life, one should look at the processes responsible for the generation of the 
detector signal. This is done below, and equations for current and sensitivity are 
derived for any emitter material. 

Consider an emitter with an average neutron absorption cross section a 
exposed to a total neutron flux 4 ,  and upon absorption of a neutron becoming 
radioactive with a half-life T [or decay constant h = (ln2)/T]. The number of 
radioactive atoms N(t) present after exposure for time t is (see Eq. 14.16) 

where No = 
ua = 

ue = 

S = 

number of emitter atoms at t = 0 
absorption cross section of emitter 
cross section that leads to the state that contributes to the signal 
self-shielding factor (s < 1) 

The self-shielding factors corrects for the fact that the target (emitter) is thick, 
as a result of which the flux in the emitter is depressed. Thus, interior atoms are 
"shielded" from exposure to the full flux by the atoms close to the surface. The 

Qp = 2.5 MeV \ 

Figure 14.26 The decay scheme of l o 4 ~ h .  
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0.25 0.5 0.75 1.0 1.25 
Emitter diameter, mm 

Figure 14.27 The self-shielding factors for 
rhodium detectors with 10-mil (0.254-mm) thick 
MgO insulator (from Ref. 68). 

shielding factor is less than 1 and decreases as the diameter of the emitter 
increases (see Fig. 14.27). If every decay of the radioisotope releases a particle 
with charge q, the current at time t is equal to 

where k is a constant that takes into account such effects as self-absorption of 
betas in the emitter or loss of betas in the insulator (see Fig. 14.27). The factor 
u a 4 / A  in the denominator can be neglected because, for all emitters of interest, 
aac$/A e 1. The exponential factors of Eq. 14.62 have the following meaning. 

The factor exp(- At) gives the response of the detectors. If the flux 
undergoes a step increase, as shown in Fig. 14.28, the signal will rise exponen- 
tially to its saturated value. If the flux goes down suddenly, the signal will decay 
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again exponentially. The speed of response is determined by the half-life of the 
isotope involved. Rhodium, with a half-life of 42 s, reaches saturation after 
about 5 min. Vanadium ( 5 2 ~ ) ,  with a half-life equal to 3.76 min, reaches 
saturation after about 25 min. 

The factor exp(-sua+t) gives the burnup rate of the emitter. It is the 
factor that determines the lifetime of the detector, because, as seen below, the 
decrease in sensitivity with time is essentially given by this same factor. 

Assuming saturation, the sensitivity of the detector is given (using Eqs. 14.60 
and 14.62) by 

If the emitter diameter is D, its length is L,  its density is p, and its atomic 
weight is A, then the number of atoms is No = ( p~D2/4XLNA/A), where NA 
is Avogadro's number. 

Substituting into Eq. 14.63, one obtains an equation for the sensitivity per 
unit length: 

Example 14.6 What is the sensitivity of Rh detectors 0.5 mm in diameter, 
per unit detector length under saturation conditions, for a new detector? 

Answer For rhodium, ue = 139 b, a, = 150 b, p = 12.4 X lo3 kg/m3, A = 

103, and q = 1.602 x 10-19 C. At the beginning of life (t = 01, 

= 3.17 X 10-23ks (A/m)/[neutrons/(m2. s)] 

Typical values of ks are about 0.4.68 Since the flux in a large power reactor (1000 
MWe) is about loi7 neutrons/(m2 - s)[1013neutrons/(cm2 . s)] at full power, and 
the typical detector has a length of about 0.10 m, the expected current is of the 
order of 

(0.8M0.8 X l~-~~)(A/m)/[neutrons/(rn~ - s)1[1017 neutrons/(m2 . s)](0.1 m) 

= 1.92 x A - 200nA 

Equation 14.64 shows that to achieve high sensitivity, one should select an 
emitter with high cross section ue and large diameter D. The diameter affects 
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the sensitivity through the factor D~ and through the shielding factors k and s, 
which decreaset as the diameter increases. The net result is that the sensitivity 
changes roughly as the first power of the diameter.68 

A high cross section increases the sensitivity but also increases the rate at 
which the sensitivity decreases with time. Indeed, from Eq. 14.64, the ratio of 
the sensitivity after exposure for time t to its value at time t = 0 is 

Table 14.6 gives the characteristics of several self-powered detectors. Rhodium 
detectors have the best sensitivity but also the largest burnup rate. Their change 
of sensitivity with time is important and necessitates a correction before the 
signal is used for the determination of power. The correction is not trivial 
because of changes in self-absorption effects in the emitter, and may introduce 
errors unless the detector is calibrated properly. 

Despite the drawback of large burnup, rhodium SPNDs are used extensively 
in nuclear power plants, especially in PWRs for the determination of power 
distribution, fuel burnup, and other information related to the performance of 
the core. The detectors are inserted into a certain number of "instrumented" 
fuel assemblies through guide tubes. Every instrumented assembly has seven 
equally spaced SPNDs (a background detector and a thermocouple are also 
included in the package; see Fig. 14.29) for the measurement of the flux at seven 
axial locations. The outputs of the detectors, corrected for background, are 
transmitted to the plant computer, where after appropriate corrections are 
applied, the power, fuel burnup, plutonium production, etc., are calculated. 
Every PWR has a least 50 instrumented assemblies, which means that the flux is 
monitored at more than 350 locations. 

 h he factor s is not constant over prolonged exposure. It tends to increase as the emitter 
bumup continues because a smaller number of emitter atoms is left for self-shielding.65 

Table 14.6 Characteristics of Self-Powered Detectors with 0.5-mm 
Emitter ~ i a r n e t e r ~ ~ .  65 

Sensitivity ~urnupt/year (%) 
Emitter (A/m)/[2 X lot7 neutrons/(ma .s)] for @ = 2 X 10'' neutrons/ (ma as) Response 

Rh 2.4 X lo -=  5 Delayed 
V 1.5 x l o - 1  0.3 Delayed 
Co 3.4 X l o - *  2.3 Prompt 
Mo 1.7 X lo-'  0.9 Prompt 
Pt 2.6 X l o - "  0.2 Prompt 
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Thermocouple 
Background detector 

Y r o s  section AA 
/ 

wall of guide tube 

Figure 14.29 Each detector tube contains seven SPNDs, one background detector, and one thermo- 
couple. 

14.10.2 SPNDs with Prompt Response 

Neutron-sensitive self-powered detectors with prompt response operate on a 
different principle than rhodium and vanadium SPNDs. The emitter, in this 
case, absorbs a neutron and emits gammas at the time of capture. It is these 
capture gammas that are responsible for the signal, and since they are only 
emitted at the time of the neutron capture, the detector response is instanta- 

Collector 
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neous. Cobalt e9co)  and molybdenum ( 9 5 ~ o )  are two elements seriously consid- 
ered as emitters. The subsequent discussion is based on cobalt, but the pro- 
cesses involved in the signal generation are the same for molybdenum. 

Consider, then, a cobalt SPND (Fig. 14.30). Most of the capture gammas 
traverse the emitter, the insulator, and the collector without an interaction. 
Those that do interact produce electrons through the photoelectric or Compton 
reactions. As these fast electrons travel, they produce an outward flow of charge 
that generates a current. Because relatively few gammas interact, the sensitivity 
of a cobalt detector is lower than that of either rhodium or vanadium detectors 
(see Table 14.6). 

The Co detector has one undesirable characteristic due to the product of 
the neutron capture. That product is 6 0 ~ o ,  a P- emitter with a 5.3-year half-life. 
The betas from 6 0 ~ o  produce a background signal that builds up with exposure. 
A way to suppress this background, using platinum shields, has been reported by 
Goldstein and ~ o d t . ~ ~  

14.11 CONCLUDING REMARKS 

Neutron detection is, in general, more complicated and more difficult than 
detection of either charged particles or photons for two reasons. First, neutrons 
have no charge and can only be detected indirectly through photons or charged 
particles that they generate. Second, the neutron energy range spans at least 10 
decades eV < E < 10' eV), over which the type and cross sections for 

Table 14.7 Summary of Neutron Detectors and Their Range of Application 

Neutron Measurement of number Measurement of energy and 
energy of neutrons only number of neutrons 

O < E < l  keV BF,, boroncoated, SPND, T L D , ~  Crystal spectrometer 
Li, He Time-of-fligh t 

Foil activation 
Fission track detectorst 

1 k e V < E 6 2 M e V  BF, , Li (both with low efficiency) Roton recoil (proportidnal 
Foil activation, SPND counters, organic 
Bonner ball t scintillators) 

Time-of-flight 
Threshold reactions 

E 2  1 MeV Foil activation Organic scintillators 
Threshold reactions 
Time-f-fligh t 

t See Chap. 16. 
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neutron reactions change drastically. Table 14.7 gives a summary of all the 
methods for neutron detection and spectrometry. 

PROBLEMS 

14.1 Prove that for thermal neutrons, the kinetic energies of the alpha particle and the lithium in 
the ' ' ~ ( n ,  a ) ' ~ i  reaction are given by 

14.2 If the neutron energy is 1 MeV, what is the maximum energy of the proton in the %e(n, P),H 
reaction? 

14.3 Obtain the efficiency curve as a function of neutron energy for a 1-in-diameter proportional 
counter filled with 'He at 10 atm. Assume l /u  cross section from 0.01 to 1000 eV. The neutron 
beam is perpendicular to the counter axis. Compare your result with that of Fig. 14.3. 

14.4 Show that the sensitivity of a neutron counter (BF, or boron-lined or fission counter) decreases 
with time as exp ( -  pa@). 

14.5 What is the maximum thickness of 2 3 5 ~  coating inside a fission counter if it is required that a 
60-MeV fission fragment lose no more than 10 percent of its energy as it goes through the uranium 
deposit? For the fission fragment, assume Z = 45, A = 100. 

14.6 How long should one irradiate an ?n foil (100 mm2 area, 1 mm thick) in a thermal neutron 
flux of 1014 neutrons/(m2 . s) to obtain 1 mCi (3.7 x lo7 Bq) of activity? ( a  = 194 b, p = 7.3 X 10" 
kg/m3, = 54 min.) 

14.7 An aluminum foil is left in a reactor for 15 s in a flux of 1016 neutrons/(m2. s). What is the 
activity produced? ( u  = 0.23 b, T , , ,  = 2.3 min, m = lo-' kg.) 

14.8 The betas from the A1 foil of Prob. 14.7 were counted in a 27r detection system with E = 0.95. 
Counting started 1 min after the end of the irradiation and stopped 2 min later. If the background is 
20 counts/min, how many counts will the scaler record? 

14.9 Calculate the irradiation time needed to produce l Y 8 ~ u  in such a quantity that the gross 
counting rate is 1000 counts/min using a counter with = lo-', E = 0.90, and F = 1. The 
background is 100 counts/min. It takes 10 min to get the sample from the reactor, place it under the 
counter, and start counting. [ 4  = 10" neutrons/(rn2 . s), TI/, = 2.7 days, cr = 99 b, m(I9hu) = 

kg.] 
14.10 In a light-water reactor, how long will it take for the initial amount of 2 3 5 ~  to be reduced by 
50 percent? ( 4  = 1017 neutrons/(m2. s), ua = 670 b.) 
14.11 Prove Eq. 14.24. Also show that the neutron and the proton directions after collision are 90" 
apart ( 8  + I$ = 90°, Fig. 14.8). 

14.12 Calculate the measured neutron spectrum obtained by the proton recoil method if the 
detector response is a 6-function and the source spectrum is the "square" function shown in the 
figure below. Assume u (n ,  p )  is constant for the range E, I E I EZ. 
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14.13 Assuming that the threshold-reaction cross sections are ideal step functions, as shown in this 
figure, indicate how the neutron energy spectrum could be obtained. There are N such cross 
sections with thresholds at E i l i = l , ~  and E i + ,  - E, = AE = constant. 

14.14 Prove Eq. 14.49. 
14.15 Prove Eq. 14.56 and show that it takes the form of Eq. 14.57 in a nonrelativistic region. 
14.16 A neutron TOF experiment will be designed for the measurement of 1-MeV neutrons, with 
the requirement that the energy resolution is 0.1 percent. What should the length of the flight path 
be if A t  = 1 ns and AL/L is negligible? 
14.17 The original Fermi chopper consisted of a cylinder 1.5 in in diameter with a maximum 
rotational speed of 15,000 r/min. The open channels consisted of aluminum sheets $ inch thick. 

(a) Calculate the angle during which the channel is fully open. 
(b) Assuming the maximum rotational speed, what is the minimum neutron speed necessary 

for a neutron to make it through the channel? - 
14.18 What is the burnup rate per month of an SPND using 2 3 5 ~  as the emitter and being exposed 
to a thermal flux of 2 X 10" neutrons/(m2. s)? 
14.19 How long will it take for the sensitivity of a rhodium SPND to decrease to 50 percent of its 
initial value? Assume a thermal flux of 10" neutrons/(m2 . s). 
14.20 Using semiquantitative arguments, show that the sensitivity of a Co detector increases as D m ,  
where D is the emitter diameter and 2 < m < 3. 
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CHAPTER 

FIFTEEN 

ACTIVATION ANALYSIS 

15.1 INTRODUCTION 

Activation analysis achieves a qualitative and quantitative analysis of an un- 
known sample by irradiating the sample and thus producing radioactive nuclides 
from stable or unstable isotopes present in the sample. The radioactive nuclides 
can then be identified from properties of the radiations they emit: 

1. Type of radiation 
2. Energy of radiation 
3. Intensity of radiation 
4. Half-life 

The basic principle of activation analysis is not new. It was applied for the 
first time in 1936 by Hevesy and Levi,' who determined the amount of 
dysprosium in an yttrium sample. The dysprosium in the sample became 
radioative when bombarded with neutrons from a Ra-Be source. Two years 
later, Seaborg and ~ i v i n g o o d ~  determined the gallium content in an iron sample 
by bombarding it with deuterons. The sensitivity of the method increased 
considerably with the availability of high neutron fluxes for nuclear reactors. 
Although charged particles, gamma rays, and 14-MeV neutrons may be used as 
the bombarding particles, thermal neutrons are, by far, the particles most 
frequently utilized for the irradiation of the sample. 
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Activation analysis has become, because of its extremely high sensitivity, an 
indispensable tool in a wide variety of fields3 ranging from science and engineer- 
ing4 to industry? minerals e~plora t ion,~- '~  medi~ine, '~-~'  environmental mon- 
i t ~ r i n g , ' ~ , ~ ~ - ~ ~  and forensic ~ c i e n c e . ~ ~ - ~ '  The purpose of this chapter is not to 
present all the aspects, details, and applications of this field, but to discuss the 
major steps that comprise the method, the interpretation of the results, the 
errors and sensitivity of the method, and certain representative applications. 
The reader will find many more details and an extensive list of applications in 
the bibliography and the references given at the end of the chapter. 

The activation analysis method consists of the following major steps, to be 
discussed next: 

1. Selection of the optimum nuclear reaction 
2. Preparation of the sample for irradiation 
3. Irradiation of the sample 
4. Counting of the irradiated sample 
5. Analysis of the counting results 

15.2 SELECTION OF THE OPTIMUM NUCLEAR REACTION 

The optimum nuclear reaction is chosen with these considerations in mind. 

1. Production of large activity should occur within a reasonable irradiation time. 
2. The radioisotope produced should have a reasonable half-life ( T  > mid. 
3. The type and energy of the radiation emitted by the radioisotope should not 

present great counting difficulties. 
4. A minimum number of interfering reactions should be involved. 

If the sample is completely unknown, one starts with neutron irradiation 
because neutrons are absorbed by almost all isotopes. If the composition of the 
sample is known, then the best reaction for the identification of the isotope of 
interest should be chosen. Sometimes there is more than one reaction available 
for the same isotope. For example, aluminum bombarded with fast neutrons 
may be detected by three different reactions: 

The "optimum nuclear reaction7' depends not only on the isotope and the 
bombarding particles but also on the composition of the sample that is analyzed. 

27 For example, the Al(n, y)28Al reaction may be the best for detection of 
aluminum in a certain sample. However, if the sample contains silicon in 



ACTIVATION ANALYSIS 525 

addition to aluminum, the reaction 2 8 ~ i ( n ,  p)28Al also produces 28Al, and thus 
causes an interference to the measurement. If silicon is present, it may be better 
to use the reaction 27Al(n, p)27Mg or 27Al(n, c~) '~Na.  More details about inter- 
fering reactions are given in Sec. 15.9. 

The most commonly used neutron reaction is the (n, y )  reaction, which 
takes place with almost all isotopes (although with different probability) and has 
no threshold. In general, the (n, ? )  cross section is higher for thermal than for 
fast neutrons. Other neutron interactions are (n, a), (n, p), and (n, 2n) reac- 
tions; except for a few exothermic (n, a )  reactions, the others have a threshold; 
therefore, they can occur with fast neutrons only. Table 15.1 lists neutron 
reactions for the identification of several elements. Details for many more 
elements and reactions can be found in the bibliography of this chapter. 

Table 15.1 Neutron Activation Reactions 

Threshold Half- Main radiation 
energy life of emitted and its 

Element Symbol Reaction (MeV) product energy (MeV) 

Aluminum 

Arsenic 

Cadmium 

Calcium 
Chlorine 

Copper 
Fluorine 
Gold 

Iodine 
Iron 

Lead 
Mercury 

Nickel 
Nitrogen 
Oxygen 
Phosphorus P 
Potassium K 
Silicon Si 
Silver Ag 

2.3 min 
9.46 min 

15 h 
26.4 h 
14.1 h 
17.9 d 
48.6 min 

235 d 
8.8 min 

37.2 min 
5 rnin 
9.76 min 
7.15 s 
2.7 d 
6.18 d 

25 min 
45.5 d 

2.57 d 
0.885 s 

43 min 
65 h 
46.9 d 
36 h 
10 min 
7.1 s 
2.3 rnin 
7.7 min 
2.3 min 

24 s 

t(-) = No threshold. 
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Charged-particle reactions are also used in activation analysis. Their disad- 
vantage over neutron reactions is that charged-particle reactions are mostly 
endothermic, i.e., they have a threshold. Table 15.2 gives several examples of 
such reactions. 

Photon activation complements neutron and charged-particle activation. 
Photons are better than neutrons in certain cases. For example, photons are 
preferred if the product of the neutron activation is an isotope that has a very 
short half-life or emits only low-energy betas or low-energy X-rays. The cross 
sections for photonuclear reactions are generally smaller than those for neu- 
trons and charged particles. Table 15.3 gives several photonuclear reactions that 
have been used in activation analysis. 

15.3 PREPARATION OF THE SAMPLE FOR IRRADIATION 

A sample should be prepared properly and then placed in a container before it 
is irradiated. The person who prepares the sample should be extremely careful 
not to contaminate it. Activation analysis is so sensitive that it can determine 
traces of elements undetectable by chemical methods. If the sample is left on a 
table for a certain period of time, it collects dust that acts as a contaminant. 
Touch by hand may transfer enough salt to cause the irradiated sample to show 
the presence of sodium and chlorine. To avoid contamination, samples should 
be handled in dry boxes or in clean rooms. The person who prepares the sample 
should use clean instruments (knife, file, tweezers, etc.) and also wear clean 
plastic gloves. 

Table 15.2 Charged-Particle Reactions 

Threshold Half- Main radiation 
energy life of emitted and its 

Element Symbol Reaction (MeV) product energy (MeV) 

Boron B 

Carbon C 
Nitrogen N 
Oxygen 0 
Sodium Na 
Aluminum A1 
Copper Cu 
Phosphorus P 
Iron Fe 

10 min p+. r (0.511) 
20.4 min p+, 7 (0.5 11) 

11 ms 
20.4 min 

109.8 rnin 
6.7 s P+, r (0.5 11) 
2.55 min p+, 7 (0.5 11) 
9.45 h 

14.3 d p- (Em,, = 1.17) 
18.2 h p+, 7 (0.51 1,0.93) 
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Table 15.3 Photonuclear Reactions 
-- 

Threshold Half-life Main radiation 
energy of emitted and its 

Element Symbol Reaction (MeV) product energy (MeV) 

Carbon 
Fluorine 
Nitrogen 
Oxygen 
Copper 

Silver 
Sodium 
Lead 

20.4 min 
109.8 min 

10  min 
2.03 min 
9.7 min 

12.8 h 
24 min 

2.62 y 
52.1 h 

Solid samples should have their surfaces cleaned with a suitable cleaning 
fluid to remove any surface contamination. The weight of the sample should be 
determined after cleaning it. For maximum accuracy, the weight is determined 
again after irradiation and counting are completed. 

Liquids and powders cannot be cleaned, so they are handled in clean 
containers, avoiding contamination from the container wall. For liquid samples, 
care should be exercised to avoid loss of fluid when the sample is transferred in 
and out of the container. In the case of powder (or powderized) samples, the 
observer should be certain that a truly representative sample has been prepared. 
This is especially important if the main sample under analysis is not homoge- 
neous. 

The packaging material or container should 

1. Have high radiation and thermal resistance (i.e., it should not decompose, 
melt, or evaporate in the irradiation environment) 

2. Have low content of elements that become radioactive 
3. Be inexpensive and easy to handle 

Materials that are used most frequently are polyethylene, silica, and alu- 
minum foil. Polyethylene satisfies requirements 2 and 3 listed above, but it has 
low resistance to radiation and temperature. It becomes brittle after exposure to 
a fluence of 102'-1022 neutrons/m2. Polyethylene tubes of different diameters 
are routinely used in radiation laboratories. The tubes can be easily cleaned and 
sealed. Silica containers are not as useful as polyethylene because they are 
not as pure, they become radioactive, and sealing is more complicated. Alumi- 
num foil is useful for packaging solids, but it becomes radioactive through 
27Al(n, y)28Al and 27~l (n ,  ( u ) 2 4 ~ a  reactions. The second reaction is more trou- 
blesome than the first because the half-life of 2 4 ~ a  is the 15 h, whereas the 
half-life of 28Al is only 2.3 min. 
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15.4 SOURCES OF RADIATION 

Intensities, energies, and special characteristics of the various radiation sources 
are briefly discussed in this section. 

15.4.1 Sources of Neutrons 

Neutron sources include nuclear reactors, accelerators, and isotopic sources. 
Nuclear reactors are, by far, the most frequently used irradiation facilities. They 
provide high fluxes [upper limit 1018 neutrons/(m2. s)] of mostly thermal 
neutrons ( E  < 1 eV). Fast neutrons in the keV range are also available, but at 
lower flux levels. 

When short-lived isotopes are involved, a higher activity is produced by 
irradiating the sample in a reactor that can be pulsed (see Lenihan et al.). Such 
a reactor producing a high flux of about lo2' neutrons/(m2. s) for a short 
period of time (milliseconds) is the TRIGA reactor, marketed by General 
Atomic. 

Accelerators produce fast neutrons as products of charged-particle reac- 
tions. The most popular device is the so-called neutron generator, which 
operates on the reaction 

;H +:H + i n  +;He + 17.586 MeV 

The cross section for this exothermic reaction peaks at a deuteron kinetic 
energy of about 120 keV with a value of about 5 b. The neutrons produced have 
an energy of about 14 MeV. (The neutron kinetic energy changes slightly with 
the direction of neutron emission.) The maximum neutron flux provided by a 
neutron generator is of the order of 1012 neutrons/(m2 . s). 

Neutrons with an average energy of about 2.5 MeV are produced by the 
(d, d)  reaction 

The cross section for this reaction peaks at about 2-MeV bombarding deuteron 
energy with a value of about 100 mb. At acceleration voltages normally used in 
neutron generators (- 150 kV), the cross section is about 30 mb. The (d, d)  
reaction offers neutron fluxes of the order of lo9 neutrons/(m2. s). It is 
important to note that both the (d, t )  and the (d, d)  reactions produce essen- 
tially monoenergetic neutrons. 

Isotopic neutron sources are based on ( a ,  n) and (y, n) reactions, and on 
spontaneous fission ('"~f). They all produce fast neutrons. The (a, n) and 
(y, n) sources produce the neutrons through the reactions 
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The isotope 2 5 2 ~ f  is the only spontaneous fission (SF) source of neutrons easily 
available. It provides fission spectrum neutrons with an average of 2.3 MeV. The 
characteristics of isotopic neutron sources are given in Table 15.4. 

15.4.2 Sources of Charged Particles 

Apart from certain a-emitting radioisotopes, accelerators are the only practical 
sources of charged particles. They can provide almost any charged particle or 
ion for bombardment of the target for a wide range of energies. The particles 
most commonly used as projectiles are protons, deuterons, alphas, tritons, and 
3 ~ e  nuclei. The beam current of the accelerator is related to particles per 
second hitting the target by the equations33 

where i = the beam current in mA 
z = the charge of the accelerated particle in units of the electronic charge 

Knowing the number of particles per second hitting the target and the cross 
section for the reaction, one can calculate the reaction rate. 

15.4.3 Sources of Photons 

The sources of photons include radioisotopes, nuclear reactions, and brems- 
strahlung radiation. 

There are many radioisotopes that emit gamma rays. The most useful ones 
are as follows: 

24 1. Na with a 15-h half-life emitting y's with energy 1.37 and 2.75 MeV 
2. 6 0 ~ o  with 5.3-year half-life emitting y's with energy 1.17 an 1.33 MeV 

124 3. Sb with a 60-d half-life emitting y's with energy 1.71, 2.1, and 2.3 MeV 

Table 15.4 Isotopic Neutron sourcest 

Average Half-life of 
neutron isotope 

Source Reaction Yield energy (MeV) involved 

la6 Ra-Be (a, n)  7 x 10' neutrons/s.g (Ra) -4 1,600 y 
Po-Be (a, n) 1 x 101° neutrons/s.g (Po) -4 138.4 d 

239 Pu-Be (a, n) 1.0 X lo5 neutrons/s-g (Pu) -4 24,131 y 
Am-Be (a, n)  7 X lo6 neutrons/s*g (Am) -4 432 y 

la4 Sb-Be (7, n) 1.0 X 10'" neutrons/s-g 0.024 60.2 d 
M' Cm-14' Am-Be (a, n) 1 X 10'" neutrons/s-g (Cm) 4 162.8 d 

(14' Cm) 
lS2 Cf (SF) 2 x 10" neutrons/s.g 2.3 2.646 y 

t ~ r o m  Lenihan, Thornson, and Guinn. 
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4. "Na with a 2.6-y half-life emitting a gamma with energy 1.275 MeV ("Na 
being a positron emitter is also a source of 0.511-MeV gamma rays) 

Photons of extremely high energy may be produced by nuclear reactions. 
Examples are 

3 
H(p ,  y ) 4 ~ e  E, = 19.8 MeV 

7 
Li(p, -y 1 8 ~ e  E, = 14.8 and 17.6 MeV 

11 B ( ~ ,  y)12c E, = 11.7 and 16.1 MeV 

Unfortunately, the gamma fluxes generated by these reactions are very small, 
relative to neutron fluxes produced by reactors. 

Bremsstrahlung is produced with the help of electron accelerators. The 
electrons are accelerated to a certain energy and then are allowed to hit a solid 
target. The radiation produced has a continuous energy spectrum, extending 
from zero energy up to the maximum electron kinetic energy. Large photon 
fluxes are produced, and may be used for activation of rather large samples. 

15.5 IRRADIATION OF THE SAMPLE 

Depending on the selected reaction, irradiation of the sample may take place in 
a reactor, in an accelerator, or with an isotopic source. After the selection of an 
irradiation facility, the next step is a decision about the irradiation time. If the 
sample contains known isotopes at approximately known amounts, it is easy to 
estimate the proper irradiation time. If, on the other hand, the sample is 
completely unknown, one irradiates the sample for an arbitrary time, checks 
some of the isotopes present (from the emitted radiations), and then irradiates 
the sample again for a time that will provide enough activity for proper isotope 
identification with the desired accuracy. 

Since neutrons are, by far, more frequently used for activation analysis than 
other particles, neutrons will be assumed to be the projectiles for the equations 
discussed next. However, it should be noted that the same equations apply when 
some other radiation is used as the bombarding particle. 

The equation that gives the activity produced after irradiating the sample 
for time to is (for derivation, see Sec. 14.4) 

where m = mass of the element of interest in the sample 
ai = weight fraction (abundance) of isotope with atomic mass Ai (Ai is 

an isotope of the element with mass m, the element of interest) 
A,, , = decay constant of the radioisotope produced 
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ui = cross section for the reaction that makes the isotope with atomic 
weight Ai radioactive 

C$ = particle flux [particles/(m2 - s)] 
N, = Avogadro's number 

Equation 15.2 is valid if (see Sec. 14.4) 

1. The number of target nuclei stays essentially constant, i.e., a,& 4 1. 
2. The radioisotope produced has such a small reaction cross section that 

hi+ 1 P &'i+ 1 .  

3. The flux is uniform throughout the target. 

If the half-life of the radioisotope is much shorter than to ( to  2 6 ~ ~ / 2 ) ,  
saturation activity (A, , , )  is obtained, given by 

Equation 15.3 indicates that, for a particular isotope, the activity increases by 
irradiating a larger mass m in a higher flux 4. 

The size of the sample (mass m) is dictated by four factors: 

1. The maximum activity that can be safely handled under the conditions of the 
laboratory (i.e., shielding of source and detector, existence of remote control, 
automated remote handling of samples). 

2. The size of the sample holder. 
3. The self-absorption of the radiation emitted by the sample. This is particu- 

larly important if the radiation detected is betas or soft X-rays. 
4. The size of the detector. Little, if anything, is gained by using a sample much 

larger than the detector size. 

The flux 4 is determined by the limitations of the irradiation facility. At the 
present time, the maximum flux is about 10" neutrons/(m2 . s) (thermal neu- 
tron flux). 

15.6 COUNTING OF THE SAMPLE 

After irradiation is completed, the sample is counted using an appropriate 
system. The qualitative and quantitative determination of an isotope is based on 
the analysis of the energy spectrum of the radiations emitted by the radioisotope 
of interest. Sometimes it may be necessary to use information about the half-life 
of the isotope(s). In such a case, counting may have to be repeated several times 
at specified time intervals. 

The counting system depends on the radiation detected. Modern activation 
analysis systems depend on the detection of gamma rays and X-rays and very 
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seldom on detection of other particles. For this reason, the discussion in the rest 
of this chapter is based on the assumption that the irradiated sample emits 
photons. 

A basic counting system for activation analysis consists of a detector [Ge or 
Si(Li)], electronics (i.e., preamplifier, amplifier), and a multichannel analyzer 
(MCA). Modern MCAs do much more than record the data. They are minicom- 
puters or are connected to computers that store and analyze the recorded data. 
Examples are the ADCAM architecture offered by EG & G ORTEC and the 
Genie-ESP VAX-based Data Acquistion and Analysis System offered by Can- 
berra. 

15.7 ANALYSIS OF THE RESULTS 

The analysis of an activation analysis spectrum is based on the procedures 
described in Sec. 12.7.3. It is performed either by the MCA itself, if that 
instrument has such capability, or by a digital computer. Several computer codes 
have been written for that p ~ r p o s e . ~ ~ - ~ '  

Activation analysis may be qualitative or quantitative. In a qualitative 
measurement, only identification of the element is involved. This is accom- 
plished, as shown in Sec. 12.7.3, from the energies and intensities of the peaks of 
the spectrum. In a quantitative measurement, on the other hand, in addition to 
identification, the amount of element in the sample is also determined. To 
illustrate how the mass is determined and what the errors and sensitivity of the 
method are, consider the energy spectrum of Fig. 15.1 as an example. 

Assume that the mass of an element in the sample will be determined from 
the full-energy peak at E,. Using the notation of Sec. 14.4, the mass m is given 
by (see Eq. 14.22) 

where P, = net number of counts under the peak (determined by one of the 
methods described in Sec. 12.7.3) 

E(E,)+ = absolute full-energy peak detector efficiency at energy Ek 
e,  = probability that a photon of energy E, is emitted per decay of the 

isotope (also known as intensity of this gamma) 
t,  - t ,  = counting time = T 

The error in the value of m depends on the errors of the quantities that 
comprise Eq. 15.4, such as P,, A, E ,  a,, and 4. In the most general case, the 
standard derivation am is 

'In activation analysis, the efficiency is determined in such a way as to include the solid angle 
and the other correction factors F(E, )  discussed in Chap. 8. 
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Figure 15.1 A typical Ge(Li) energy spectrum. The element will be identified using the main peak at 
channel 888. 

In practice, certain errors are always negligible when compared to others. The 
quantities Ai, A, e,, and ui are known very accurately for most isotopes. Also, 
the flux 4 and the efficiency E can be determined with a known but small error. 
The error in the times t ,  and t ,  can be negligible. Thus, the major contribution 
to the error of m comes from the error of P,, i.e., the error of the area under 
the peak. Assuming that upk is the only important error, the standard error of 
m is 

or the relative error (using Eq. 15.4) is 

Thus, the relative error of m is equal to the relative error of P,, in this case. 
It should be emphasized that only one well-identified peak, and not the 

whole spectrum, is needed for quantitative determination of an element in the 
unknown sample. The other peaks, if used, should give results consistent with 
the one chosen for the analysis, and they should also be utilized as additional 
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check points to remove any doubts in the identification of the unknown. For 
example, if the k peak leads to the identification of isotope X, other peaks in 
the spectrum should agree, in energy and intensity, with additional gammas 
emitted by isotope X. 

In practice, the objective of the measurement is often to identify the mass of 
a particular trace element in the sample. Then the unknown mass is determined 
in a simpler way by irradiating, along with the unknown, a standard sample with 
a known mass of the trace element and counting both samples with the same 
counter. If m, is the mass of the standard and m, the mass of the unknown, 
using Eq. 15.4, one obtains 

where the times t ,  and t ,  are different for the standard and the unknown, but in 
both cases, t ,  - t ,  = T.  Use of Eq. 15.8 constitutes a relative method, in 
contrast to the use of Eq. 15.4, which represents an absolute method. 

15.8 SENSITIVITY OF ACTIVATION ANALYSIS 

Sensitivity of the activation analysis method for a particular element refers to 
the minimum mass of that element that can be reliably detected. The minimum 
detectable mass is determined from Eq. 15.4 by assuming the most favorable 
conditions for the measurement and by setting an upper limit for the acceptable 
error of the result. The process is similar to the determination of the minimum 
detectable activity discussed in Sec. 2.20. 

Assuming that the observer is willing to accept a maximum error am such 
that 

% sfm (15.9) 
(f < 1) and that the only error in the determination of the mass comes from the 
error in the number of counts under the peak, a limiting counting rate can be 
defined as follows. If one defines a net counting rate rk as 

then, using Eqs. 2.101, 15.7, and 15.11, one obtains for the minimum acceptable 
counting rate rk, 

' ~ o t e  that both Gk and bk refer to gross counts and background of the peak k, and not the 
whole spectrum. 
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Example 15.1 What is the minimum mass of gold that can be detected by 
neutron activation analysis under the conditions listed below? 

4 = 1016 neutrons/(m2 . s) E = 0.30 

t , = 2 h  t, = 5 min 

f = 0.50 t, = 125 min 

b = 20 f 0.2 counts/min 

For gold, A = 197, a = 1, e ,  = 1, a = 99 b, and T I , ,  = 2.7 days. 

Answer Using Eq. 15.12, the minimum acceptable counting rate is 

Using Eqs. 15.10 and 15.11, 

p, = r,T = 0.93(120) = 111.12 counts 

Since the half-life of l g s ~ u  is 2.7 days, 

and the exponential factors in Eq. 15.4 become 

exp (-Ai+ ,to) = exp [( - 2.971 X 10-6)2(3600)1 = 0.979 

exp(-Ai+,t,) = exp [(-2.971 X 10P6)300] = 0.999 

exp ( - A , +  , t 2 )  = exp [( -2.971 X 10-6)125(60)] = 0.978 

Equation 15.4 gives 

Example 15.2 What is the absolute minimum mass of an element that can 
be detected under the most favorable conditions? 
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Answer The absolute minimum mass will be determined if one assumes 

Efficiency 100 percent ( E  = 1) 
Intensity 100 percent (e, = 1) 

Saturation activity (1 - eA '0  = 1) 

Maximum thermal neutron flux [ - 1018 neutrons/(m2 - s)] 

Then Eq. 15.4 takes the form 

Factors that may further affect the result given by Eq. 15.13 depend on the 
background of the counting system and the maximum acceptable error (both 
background and acceptable error affect the minimum acceptable value of P,). 

15.9 INTERFERENCE REACTIONS 

One source of error in activation analysis is interference reactions. These are 
reactions that produce the same isotope as the one being counted, through 
bombardment of a different isotope in the sample. As an example, assume that a 
sample is analyzed for magnesium by using fast-neutron activation. The reaction 
of interest is 2 4 ~ g ( n ,  p)24Na. Therefore, the activity of 2 4 ~ a  will be recorded, 
and from that the amount of 24Mg can be determined. If the sample con- 
tains 2 3 ~ a  and 2 7 ~ ,  two other reactions may take place which also lead to 2 4 ~ a .  
They are 

23 Na(n , y ) 2 4 ~ a  
27 ANn, a ) 2 4 ~ a  

If this is the case and the investigator does not consider these last two reactions, 
the mass of 2 4 ~ g  will be determined to be higher than it is. 

Interference reactions are discussed in detail in many activation analysis 
books (see Rakovic, and Nargolwalla & Przybylowicz). A few representative 
examples are given below: 

6 8 ~ n ( n ,  y ) 6 9 m ~ n  and 6 9 ~ a ( n ,  p ) 6 9 m ~ n  and 7 2 ~ e ( n ,  a ) 6 9 m ~ n  

3 2 ~ ( n ,  p ) 3 2 ~  and 3 1 ~ ( n ,  y ) 3 2 ~  and 3 5 ~ l ( n ,  a ) 3 2 ~  
17 O(n, a)14c and 13c(n, y)14c and 14N(n, p)14c 

98 Tc(n, and 9 8 ~ o ( n ,  y ) 9 9 ~ o  P-  + 9 9 m ~ c  
31 ~ ( n ,  y ) 3 2 ~  and 3 0 ~ i ( n ,  y ) 3 1 ~ i P + 3 1 ~ ( n ,  y )  32 P 

5 5 ~ n ( n ,  y ) 5 6 ~ n  and 5 4 ~ r ( n ,  -y ) 5 5 ~ r p -  4 5 s ~ n ( n ,  ) 5 6 ~ n  

lgF(n, 2 n ) 1 8 ~  and I70(p,  y )18F and 180(p,  n)18F 
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In the last two reactions, the proton is produced by the incident fast neutrons 
interacting with the target nuclei. 

15.10 ADVANTAGES AND DISADVANTAGES OF THE 
ACTIVATION ANALYSIS METHOD 

One of the greatest advantages of activation analysis is its ability to detect most 
of the isotopes with an extremely high sensitivity. Other advantages are that the 
method 

1. Is nondestructive (in most cases) 
2. Needs a sample with a very small mass 
3. Can detect more than one element at a time 
4. Identifies different isotopes of the same element 
5. Provides results rapidly 
6. Is not affected by the chemical form of the element of interest 

The greatest disadvantage of the method is that it requires expensive 
equipment, and the analysis of the results is not trivial. Also, activation analysis 
does not provide information about the chemical compound in which the 
nuclide of interest belongs. 

Overall, activation analysis is a very powerful technique, as demonstrated by 
its wide use in so many different fields-i.e., chemistry, biology, medicine, 
forensic medicine, industry, archaeology, and environmental research. For de- 
tails regarding these special applications, the reader is referred to Refs. 3-33 
and to the bibliography of this chapter, in particular, to the books by Nargol- 
walla and Przybylowicz, and by Rakovic. 

PROBLEMS 

15.1 Traces of manganese are suspected in an unknown sample that has been irradiated for 30 min 
in a flux of 1016 neutrons/(m2. s). Counting started 5 min after the irradiation ended. The 0.8-MeV 
gamma of " ~ n  was detected by a counter with a 4 percent efficiency (F.e.0). The sample gave 500 
counts in 5 min, while the background was 30 f 1 counts/min. Based on this information, calculate 
the mass of manganese in the sample and the standard error of this measurement. For "Mn, u = 14 
b. For 5 6 ~ n ,  T,,, = 2.58 h. 
15.2 What should the minimum activity of a sample be if it is required that in the worst case 
a, = 0.8r, and the sample is counted in a system for which l = 0.50, and the background is 100 + 5 
counts/min. The sample can only be counted for 1 min. 
153 In a neutron activation analysis experiment, a 10-percent-efficient Ge(Li) detector with 
12 f 0.1 counts/min background is used for the measurement of 0.6-MeV y's emitted by the 
sample. If the counting time is 5 min, 

(a) What is the minimum acceptable counting rate if the maximum acceptable error is 60 
percent? 





ACTIVATION ANALYSIS 539 

23. Hankins, D. A,, Babb, A. L., and Scribner, B. H., ANS Trans. 21:98 (1975). 
24. Ricci, E., ANS Trans. 21:99 (1975). 
25. Landsberger, S., and Wu, D., ANS Transactions 64:lO (1991). 
26. Spyrou, N., and Arshed, W., ANS Transactions 64:l l  (1991). 
27. Lindstrom, R. M., and Norman, B. R., ANS Transactions 64:12 (1991). 
28. Becker, D. A., ANS Transactions 6 4 1 2  (1991). 
29. Ruch, R. R., Guinn, V. P., and Pinker, R. H., Nucl. Sci. Eng. 20:381 (1964). 
30. Guinn, V. P., and Rumos, J. C., ANS Trans. 14:105 (1971). 
31. Scheringer, H. L., and Lukens, H. R., ANS Trans. 14:106 (1971). 
32. Williamson, T. G., and Harrison, W. W., ANS Trans. 14:107 (1971). 
33. Ricci, E., "Charged Particle Activation Analysis," in J. M. A. Lenihan, S. J. Thomson, and V. P. 

Guinn (eds.), Advances in Activation Analysis, Academic, London, 1972, vol. 2. 
34. Cline, J. E., Putnam, M. H., and Hermer, R. G., "GAUSS VI, A Computer Program for the 

Automatic Analysis of Gamma-Ray Spectra from Ge(Li) Spectrometers," ANCR-1113 (1973). 
35. Heath, R. L., Helmer, R. G., Schmittroth, L. A., and Cazier, G. A., Nucl. Instrum. Meth. 47:281 

(1967). 
36. Helmer, R. G., Heath, R. L., Schmittroth, L. A,, Jape ,  G. A,, and Wagner, L. M., Nucl. Instrum. 

Meth. 47:305 (1967). 
37. Mariscotti, M. A., Nucl. Instrum. Meth. 50:309 (1967). 
38. Phillips, G. W., and Marlow, K. W., Nucl. Instrum. Meth. 137525 (1976). 





CHAPTER 

SIXTEEN 

HEALTH PHYSICS FUNDAMENTALS 

16.1 INTRODUCTION 

Health physics is the discipline that consists of all the activities related to the 
protection of individuals and the general public from potentially harmful effects 
of ionizing radiation. Ionizing radiation comes from two sources: 

1. Natural or background radiation which is radiation emitted by radioisotopes 
that exist on or inside the earth, in the air we breathe, in the water we drink, 
in the food we eat, and in our bodies, as well as radiation incident upon the 
earth from outer space (cosmic rays). Humans have been exposed to this 
natural radiation for as long as they have existed on this planet. 

2. Man-made radiation which is radiation emitted by all the radioisotopes that 
have been produced through nuclear reactions (mainly fission), as well as 
radiation produced by machines used in medical installations (e.g., X-ray 
machines) or in scientific laboratories (e.g., accelerators). 

Health physics is concerned with protection of people from radiation. Since 
the background radiation has been, is, and will always be on our planet at about 
the same level everywhere, there is not much a health physicist can do to protect 
individuals or populations from background radiation. Hence, health physics is 
concerned with protection of people from man-made radiation. 

A health physicist performs many tasks. He or she, most importantly, 

1. Is responsible for the detection and measurement of radiation in areas of 
work and in the environment 
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2. Is responsible for the proper operation and calibration of detection instru- 
ments 

3. Inspects at regular intervals the facilities where radiation sources are used 
4. Enforces federal and state regulations dealing with proper handling of 

radiation sources and establishment of acceptable levels of radiation fields at 
places of work 

5. Keeps records of exposure for all individuals under his or her jurisdiction 
6. Knows how to clean areas that have been contaminated with radioactive 

materials 
7. Acts as the liaison representative between the regulatory agencies and his or 

her organization 

Although the term health physics was coined after 1940, and a health 
physics society was established in 1955, the concern about the harmful effects of 
radiation had been born much earlier-but probably not early enough. The first 
recorded radiation damage case occurred in 1896, only a year after the discovery 
of X-rays, yet the first limits concerning X-ray exposure were set in the 1920s. 
Today, both national and international groups exist that act as advisory bodiest 
to the appropriate regulatory agencies. 

Since improperly handled radiation may produce deleterious effects to 
humans, it is important that individuals who use radiation sources learn the 
fundamentals of dosimetry, definition of dose units, biological effects of radia- 
tion, standards for radiation protection, and operation of health physics instru- 
ments. This chapter briefly discusses all these items. If more detailed treatment 
of these topics is needed, consult the bibliography and references given at the 
end of the chapter. 

16.2 UNITS OF EXPOSURE AND ABSORBED DOSE 

Protection of individuals against radiation necessitates the completion of two 
tasks: 

1. Development of safe radiation exposure limits 
2. Construction of instruments that measure the intensity of radiation 

Neither of these tasks can be accomplished without the means of quantitative 
description of radiation, i.e., without defining radiation units. 

The radiation effect is measured in terms of exposure or dose. Exposure is 
defined as charge released per unit mass of air. Dose is defined as energy 
absorbed per unit mass of material. The first radiation unit to be defined was 

'~nternational Commission on Radiological Units and Measurements (ICRU); International 
Commission on Radiological Protection (ICRP); in the United States, the National Council on 
Radiation Protection and Measurements (NCRP). 
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the roentgen (symbol R): 

1 R =exposure due to X-rays or gamma-rays of such intensity that the electrons 
produced by this radiation in 1 cm3 of dry air, at standard temperature 
and pressure, generate along their tracks electron-ion pairs carrying a 
total charge of 1 esu of either sign 

The SI unit of exposure is defined as 1 C/kg air, without any new name 
proposed for it. Numerically, 

1 R = 2.58 X lop4 C/kg air 

The roentgen suffers from two limitations: 

1. It was defined in terms of electromagnetic radiation only. 
2. It was defined in terms of air only. 

Radiation protection may involve other types of radiation, and media other 
than air. For this reason, another unit was defined called the radiation absorbed 
dose or rad, defined as 

1 rad = 100 erg/g 

The SI unit of absorbed dose is the Gray (Gy), defined as 

1 Gy = 1 J/kg = 100 rad 

The rad (or the Gy) has a simple definition and is a unit independent of 
both type of radiation and material. But the measurement of absorbed dose in 
terms of rad (or Gy) is neither simple nor straightforward, because it is very 
difficult to measure energy deposited in a certain mass of tissue. Fortunately, 
one can bypass this difficulty by measuring energy deposited in air, which is 
proportional to the exposure, and then relate it to the absorbed dose. 

The measurement of exposure is achieved by using ionization chambers, and 
the result is given in roentgens. Based on the definitions of the roentgen, the 
following relationship can be established between roentgens and rads. 

1 esu 
l R =  (2.082 x lo9) ion pairs/esu 

1.293 X lop3 g 

x (34 eV/pair)l.602 X 10-l2 ergs/eV 

= 88 ergs/g = 0.88 rad = 8.8 mGy 

If D is the absorbed dose in air, and X is the exposure in air, the relationship 
between the two is 

D = 0.88X (16.1) 
For media other than air, the relationship is obtained as follows. The 

absorbed dose rate in material i is (in terms of energy deposited per unit mass 
per unit time) 
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The absorbed dose rate in air is 

The ratio of Eq. 16.2 to Eq. 16.3 gives 

Pa,i - lj . = -  
Pa, i D . =-- 

a ,  1 a,  alr (0.88)Xair (16.4) 
Pa ,a i r  P a ,  air 

Equations 16.1 and 16.4 express the fact that the measurement of absorbed 
doset is a two-step process: 

1. Exposure (or exposure rate) is measured. 
2. Absorbed dose (or dose rate) is calculated from the measured exposure using 

Eq. 16.4. 

In practice, the instruments that measure radiation dose are, usually, 
properly calibrated to read rad or Gy. 

16.3 THE RELATIVE BIOLOGICAL EFFECTIVENESSTHE 
DOSE EQUIVALENT 

The units of absorbed dose defined in the previous section are quite adequate 
for the quantitative assessment of the effects of radiation to inanimate objects, 
like irradiated transistors or reactor fuel. For protection of people, however, the 
important thing is not the measurement of energy deposited-i.e., the absorbed 
dose-but the biological effects due to radiation exposure. Unfortunately, 
biological effects and absorbed dose do not always have one-to-one correspon- 
dence, and for this reason a new unit had to be defined: a unit that takes into 
account the biological effects of radiation. 

The ideal unit for the measurement of biological effect should be such that 
a given dose, measured in that unit, produces a certain biological effect 
regardless of the type and e n e w  of radiation and also regardless of the biologzcal 
effect considered. Unfortunately, such a unit cannot be established because of 
the different modes by which radiation deposits energy in tissue, the intricate 
way by which the energy deposition is related to a given biological effect, and 
the complexity of biological organisms. An ideal unit may not exist, but some 
unit that "equalizes" biological effects had to be defined. 

' ~ ~ u a t i o n s  16.2 and 16.3 give dose rate, not dose; the meaning of Eq. 16.4, however, is the 
same if one uses either dose or dose rate. 



HEALTH PHYSICS FUNDAMENTALS 545 

The first step toward that task was the introduction of a factor called the 
relative biological effectiveness (RBE), defined as 

[absorbed dose from X-ray or gamma radiation (200-300 keV) 
producing a certain biological effect] 

RBEi = 
[absorbed dose from radiation type i 
producing the same biological effect] 

In understanding the meaning of RBE, note the following: 

1. RBE is defined in terms of photons; therefore, it follows that RBE = 1 for 
electromagnetic radiation. Also, although the definition of RBE specifies the 
energy of the photons to be 200-300 keV, RBE is taken as equal to 1 for 
photons of all energies. 

2. A given type of radiation does not have a single RBE, because RBE values 
depend on the energy of the radiation, the cell, the biological effect being 
studied, the total dose, dose rate, and other factors. 

3. It is a well-known fact that the biological damage increases as the energy 
deposited per unit distance, the linear energy transfer (LET), increases. Thus, 
heavier particles (alphas, heavy ions, fission fragments) are, for the same 
absorbed dose, more biologically damaging than photons, electrons, and 
positrons. 

In 1963, the International Commission on Radiological Units and Measure- 
ments (ICRU) proposed the replacement of RBE by a new factor named the 
quality factor (QF). Here is an excerpt from their recommendation. 

In radiation protection it is necessary to provide a factor that denotes the modification of the 
effectiveness of a given absorbed dose by LET (Linear Energy Transfer). Unlike RBE, which is 
always experimentally determined, this factor must be assigned on the basis of a number of 
considerations and it is recommended that it be termed the quality factor (QF). Provisions for 
other factors are also made. Thus a distribution factor (DF) may be used to express the 
modification of biological effect due to nonuniform distribution of internally deposited 
radionuclides. The product of absorbed dose and modifying factors is termed the dose equiva- 
lent, ( H ) .  

In 1973 the ICRU' recommended dropping the "F" from QF, a suggestion 
that has now become practice. In 1977 the I C R P ~  recommended that the dose 
equivalent ( H )  at a point in tissue be written as 

H = NQD (16.6) 

where Q = quality factor 
D = absorbed dose 
N = product of all the modifying factors. The suggested value of N is 1. 
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RBE is now used only in radiobiology, whereas Q is used in radiation 
protection. A detailed discussion of similarities and differences between the two 
factors is given in Ref. 3. For the radiations and energy ranges considered in this 
book, RBE and Q are practically the same, and from this point on, only the 
factor Q will be mentioned. Table 16.1 gives Q values for various radiations 
commonly encountered. 

When the unit of absorbed dose is multiplied by the corresponding Q value, 
the unit of dose equivalent ( H )  is obtained. The H units are 

1 rem = Q x 1 rad 
and the SI unit 

1 Sievert (Sv) = Q X 1 Gy 
Thus 

1 Sv = 100 rem 
Because it is only the dose equivalent that equalizes biological effects from 
different types and energy of radiation, only Sv (or rem) should be added, never 
Gy (or rad). 

Example 16.1 At the open beam port of a research reactor, the absorbed 
dose rate consists of 10 mrad/h due to gammas, 10 mrad/h due to fast 
neutrons, and 6 mrad/h due to thermal neutrons. What is the total dose a 
person will receive by standing in front of the beam for 5 s? 

Answer Calculate the dose equivalent H, as shown below: 

Abs. dose rate 

Gammas 10 1 10 0.1 
Fast neutrons 10 10 100 1 .O 
Thermal neutrons 6 2 12 0.12 

Total 122 1.22 

Table 16.1 Quality Factors for Several Types of R a d i a t i ~ n ~ , ~  

Radiation type Q Radiation type Q 

Gamma-rays 
X-rays 
Beta particles: 
Electrons 
Positrons 
Protons (E < 14 MeV) 
Alpha particles 

(E < 10 MeV) 
Recoil nuclei (A > 4) 

Neutrons: 
Thermal 
0.005 MeV 
0.02 MeV 
0.10 MeV 
0.50 MeV 
1 .OO MeV 
5.0 MeV 
10 MeV 
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The total dose received by the individual is 
5 

H = 122 mrem/h - = 0.17 mrem = 1.7 x Sv ( 3600 ) 
16.4 DOSIMETRY FOR RADIATION EXTERNAL TO THE BODY 

The general dosimetry problem is defined as follows: Given the intensity of the 
radiation field at a certain point in space, calculate the dose rate received by an 
individual standing at that point. The radiation field, outside the body, is 
assumed to be known in terms of the type, energy, and number of particles 
involved. The calculation that follows disregards the possible perturbation of the 
field from the presence of the human body. The calculation is different for 
charged particles, photons, and neutrons. 

16.4.1 Dose Due to Charged Particles 

Consider a point in space where it is known that the charged-particle radiation 
field is given by 

+( E )  dE = charged particles per m2 s with kinetic energy between E and E 

+ dE 
A person exposed to this field will receive a radiation dose because of energy 
deposited by these charged particles. The dose equivalent rate is given by 

where 
d E / h  = stopping power of tissue for particles of energy E 

p = density of tissue 

Q( E )  = quality factor for particles of energy E 

The units of Eq. 16.7 are MeV/(kg s). To obtain the result in Sv/s, one needs to 
transform MeV to J (1 MeV = 1.602 x 10-l3 J). 

Most of the time in practice, the radiation field is computed not as an 
analytic function +(E) but as an energy group distribution, where 

4, = / E g l + ( ~ )  dE = number of particles per mi s with 
Eg 

energy between Eg and Eg- , (E ,  < Egp,  ) 

Using the multigroup structure, Eq. 16.7 takes the form 
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where G is the total number of energy groups and Q, is the average quality 
factor for group g. In principle, Eqs. 16.7 and 16.8 are valid for any charged-par- 
ticle flux that hits a human body from the outside. In practice, for the particles 
and energies considered here, these equations are useful for electron and beta 
beams only, since alphas with E < 10 MeV do not penetrate the human skin. 
The dose from external beams of betas will be confined to a depth in tissue 
equal to the range of these particles. 

The division between electrons and betas is necessary (although beta 
particles are electrons) because an electron beam consists of monoenergetic 
electrons; a beam of beta particles consists of electrons emitted by the beta 
decay of a nucleus. Therefore, as explained in Chap. 3, these particles have an 
energy spectrum with a maximum energy Emax and an average energy 1 / 3 ~ , , , . +  

To calculate the dose rate from an electron or a beta beam, one can use Eq. 
16.7 or Eq. 16.8 with Q ( E )  = 1 .  In practice, the actual calculation is shortened 
by using tables that provide flux-to-dose-rate conversion factors (Table 16.2). In 
terms of the flux-to-dose-rate conversion factors, the dose rate is written as 

or, in terms of energy groups, 

'A more accurate equation for Em,, is given in Ref. 6. 

Table 16.2 Flux-to-Dose-Rate Conversion Factors for Electrons and Betas5 

Electrons Betas 

(Sv/s)/ (mrem/h)/ (Svls)l (mremlh)l 
Emax(MeV) [particleJ(m2 s)] [particles/(cma s)] E (MeV),,, [particles/(m2 s)] [particles/(cm2 s)] 
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with the group conversion factor defined by 

16.4.2 Dose Due to Photons 

The dose rate due to a beam of photons is calculated based on an equation 
similar to Eq. 16.7: 

where p,(E) = energy absorption coefficient in tissue for a photon of energy 
E(m2/kg>. 

Notice the two main differences between Eq. 16.7 and Eq. 16.12. For 
photons, Q(E) = 1 and dE/dx is replaced by the product Ep,(E). As with 
charged particles, the analytic form of +(E)  and p,(E) is seldom known. 
Instead, one has to work with a set of energy groups, and Eq. 16.12 takes the 
form 

H = z +gEg pZSS( E,) (SV/S) (16.13) 
g 

where 4g and E, have the same meaning as before. 
As with charged particles, tables have been developed that provide a 

flux-to-dose-rate conversion factor as a function of photon energy (Table 16.3 
and Fig. 16.1). Using the conversion factor C(E), Eqs. 16.12 and 16.13 take the 

B . t .....I t t ~ n d  10-l3 . . .I . 8 8 lo-; 0-2 lo-' 1 o0 10' 1 o2 
Photon energy, MeV 

Figure 16.1 Photon flux-to-dose rate factors for energies from lo-' to 15 MeV (Ref. 7). 
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form 

Example 16.2 What is the dose rate at 1 m away from 3.7 x 10'' Bq (1 Ci) 
of 1 3 7 ~ s ,  if (a) the attenuating medium is water or (b) the attenuating medium is 
air? ' 3 7 ~ s  emits a 0.662-MeV gamma 0.85 percent of the time. 

Answer In both cases the dose rate is calculated by using Eq. 16.15 with a 
dose-to-flux conversion factor obtained from Table 16.3 for 0.662-MeV gammas. 
Using linear interpolation, that factor is 4.05 X 10-l6 (Sv/s)/[y/(m2 . $1. 

The flux at r meters from the source is given by ~ ~ e - ~ ' / 4 . r r r ~ ,  where 

B = buildup factor (from App. E) 
S = source strength 

p = total attenuation coefficient for 0.662-MeV gammas in air or water 

Table 16.3 Gamma-Ray Flux-to-Dose-Rate Conversion Factors7 

Photon Photon 
energy (rem/h)/ (SV/S)/ energy (rem/h)/ (SV/S)/ 
(MeV) [particles/(cm2 s)] [particles/(m2 s)] (MeV) [particles/cm2 s)] [particles/(m2 s)] 
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From App. E, the buildup factor is 

where (using linear interpolation) a = 1.96 and b = 0.054. 
(a) For water, the value of the total attenuation coefficient is (from App. D, 

using linear interpolation) 

The number of mean free paths (mfp) in water is 

pr = (0.00861 m2/kg)(103 kg/m3)(1 m) = 8.61 mfp 

Thus, 

B (water) = 1 + (1.96)(8.61)[exp(8.61 x 0.054)] = 27.86 

The dose rate in water is 

(b) For air, the value of the total attenuation coefficient is (from App. D, 
using linear interpolation) 

The buildup factor is 

B (air) = 1 + (1.96)(0.01)[exp (0.01 x 0.05411 = 1.02 

The dose rate in air is 

As pointed out in Sec. 4.8.6, where buildup factors are defined and dis- 
cussed in detail, the value of the buildup factor is significantly greater than 1 if 
the distance in mean free paths is significantly greater than 1. In Ex. 16.2 the 
distance in water is 8.61 mfp and B = 27.86, while in air the distance is 0.01 mfp 
and B = 1.02. 

The buildup factor constants given in App. E apply to a point isotropic 
source in an infinite medium (Ex. 16.2 is such a case). The same constants can 
be used, however, in other geometries if no better values are available. For 
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example, one could use the constants given in App. E to calculate the dose rate 
from a point isotropic source in a semi-infinite medium or from a point isotropic 
source located behind a slab shield. In such cases, the use of the constants from 
App. E results in an overestimate of the buildup factor. Buildup factors for 
many different geometries are given in Ref. 5. 

16.4.3 Dose Due to Neutrons 

Neutrons hitting the human body deliver energy to it through elastic and 
inelastic collisions with nuclei, and through secondary radiation emitted by the 
radioisotopes produced after neutrons are captured. 

If an individual is exposed to fast neutrons, most of the energy transfer 
takes place through elastic collisions with hydrogen (- 90 percent) and, to a 
lesser extent, through collisions with oxygen and carbon nuclei. [The average 
neutron energy loss per collision with hydrogen (proton) is 50 percent of the 
incident neutron energy; the corresponding fractions for carbon and oxygen are 
14 percent and 11 percent.] These "recoil" nuclei are charged particles, which 
lose their energy as they move and slow down in tissue. This is true for neutron 
energies down to about 20 keV. When the neutron energy reaches or becomes 
lower than a few keV, the importance of elastic collisions decreases, and the 

14 reaction N(n, p)14C produces more significant effects. As discussed in Chap. 
14, this is an exothermic reaction producing protons with kinetic energy of 584 
keV. Radioactive 14c is also produced, emitting betas with a maximum energy of 
156 keV. The biological damage comes mainly from the protons, not from the 
betas of 14c. 

Thermal neutrons are absorbed in the body mainly through the reaction 
' ~ ( n ,  y ) ' ~ ,  which results in the emission of a 2.2-MeV gamma. A reaction of 
secondary importance is 2 3 ~ a ( n ,  -y Iz4~a .  The isotope 2 4 ~ a  has a 15-h half-life 
and emits two energetic gammas with energy 1.37 and 2.75 MeV. Thus, when 
thermal neutrons are absorbed, damage is caused by the energetic gammas that 
are produced as a result of the neutron capture. 

The general equation for the dose rate has the form 

where +(r, E )  = neutron flux [n/(m2 s)] at point r, of neutrons with energy E 
Xi(E) = macroscopic cross sections, for neutrons of energy E for 

elastic scattering, capture, charged-particle-producing reac- 
tions, etc., for isotope i 

M = total number of isotopes present 
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Table 16.4 Neutron Flux-to-Dose-Rate Conversion Factors4 

Neutron energy (MeV) (Sv/s)/ [neut~ons/(m' s)] (remlh)/[neutrons/(cma s)] 

2.5 - 087 1.02 - 15 3.67 - 06 
1.0 - 07 1.02 - 15 3.67 - 06 
1.0 - 06 1.23 - 15 4.44 - 06 
1.0 - 05 1.23 - 15 4.44 - 06 
1.0 - 04 1.19 - 15 4.28 - 06 
1.0 - 03 1.02- 15 3.67 - 06 
1.0 - 02 9.89 - 16 3.56 - 06 
1.0 - 01 5.89 - 15 2.12 - 06 
5.0 - 01 2.56 - 14 9.23 - 05 
1.0 3.69 - 14 1.33 - 04 
2.5 3.44 - 14 1.24- 04 
5.0 4.33 - 14 1 .56 - 04 
7.0 4.17 - 14 1.50 - 04 
10.0 4.17 - 14 1.50 - 04 
14.0 5.89 - 14 2.12 - 04 
20.0 6.25 - 14 2.25 - 04 

t ~ e a d  as 2.5 X lo-'. 

f, = fraction of gamma energy deposited at the capture site 
Qi = the Q value of the charged-particle reaction; all Qi are as- 

sumed to be deposited at site of the reaction 
Q(E) = quality factor for neutrons of energy E 

Equation 16.16 neglects inelastic scattering, which is negligible for neutrons in 
tissue for the energies considered here. If neutrons of many energies are 
present, the calculation should be repeated for all energies, and the results 
summed to give the total dose rate. Flux-to-dose-rate conversion factors have 
been developed for neutrons as well (Table 16.4, Figs. 16.2 and 16.3). Using the 
conversion factor, Eq. 16.16 takes the form 

If the neutron spectrum is known in terms of energy groups, Eq. 16.16 becomes 

Although Eq. 16.16 is not normally used for everyday dose calculations, it is 
instructive to present it so that the reader may comprehend the various 
contributors to the neutron dose. 

Example 16.3 At the open beam port of a research reactor, the neutron flux 
at a certain power level consists of 1.6 x lo8 neutrons/(m2 . s) with energy 100 
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Figure 16.2 Neutron flux-to-1 
rate factors for energies 10- 

Neutron energy, MeV MeV (Ref. 7). 

dose- 
- 8  to 

keV, and 3.5 X lo9 neutrons/(m2 s) with an average energy of 0.025 eV. What 
is the total dose rate at that point? 

Answer Using Table 16.4, the dose rate is 

H = (1.6 x io8)(5.89 x 10-15) + (3.5 x 108)(1.02 x 10-15) 

= 1.30 X lop6 Sv/s = 0.467 rem/h 

Figure 16.3 Neutron flux-to-dose-rate factors for energies to 20 MeV (Ref. 7). 
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16.5 DOSIMETRY FOR RADIATION INSIDE THE BODY 

16.5.1 Dose from a Source of Charged Particles Inside the Body 

If the charged particles ( e ,  p, a )  are created or deposited inside the body, the 
calculation of the dose is easier because the range of the particles considered 
(energy less than 10 MeV) is millimeters or less and all the energy is deposited 
in a very small volume. (In the case of electrons, a fraction of the energy escapes 
as bremsstrahlung, but it represents a small correction; neglecting bremsstrah- 
lung, one obtains a conservative answer.) The dose rate equivalent is given in 
this case by 

i m ~  S(E)Q(E) d~ 
H =  (SV/S) (16.19) 

(mass in which the particle 
energy was deposited) 

where S(E) dE = number of particles emitted per second (activity) with energy 
between E and E + dE. 

If the particle spectrum is known in multigroup form, Eq. 16.19 becomes 

with 

If the charged-particle source is localized, i.e., it can be considered a point 
isotropic source, the mass in the denominator of Eq. 16.20 is equal to 

(Mass where energy was deposited) = ;.rr~% 

where R = range of charged particle in tissue 
p = density of tissue 

If the source is deposited in an organ, e.g., liver, thyroid, spleen, then the 
mass in the denominator of Eq. 16.20 is the mass of that organ, and the result of 
this calculation is the average dose rate for this organ. By using the mass of the 
organ, the tacit assumption is made that all the energy emitted by the radioac- 
tive source is absorbed in that volume. It is a conservative estimate, since some 
particles will be borne very close to the surface of the organ and escape from it 
after depositing only part of their energy there. 

Example 16.4 What is the dose rate from 1 pCi of an alpha source emitting 
6-MeV alphas in tissue? 
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Answer The range of this alpha particle in tissue 4.7 x m. Thus, 

This is an extremely large dose rate, the result of the energy being deposited in 
a very small volume. 

Example 16.5 What is the dose rate due to the alphas of Ex. 16.4 if it is 
known that the source is uniformly distributed in the lungs? 

Answer In this case, the mass affected is that of the lungs, which is (for a 
70-kg person) about 1 kg. The dose rate is 

Example 16.6 What is the dose rate to the thyroid gland due to the betas 
emitted by 1 mCi of l3'l? 

Answer The isotope 1311 emits two betas, one with E:?,), = 0.608 MeV, 85 
percent of the time, and a second with E:;,), = 0.315 MeV, 15 percent of the 
time. The range of these betas in tissue is about 2 mm and 0.9 mm, respectively. 

The thyroid gland has a mass of about 0.025 kg (i-e., a volume of about 25 
cm3); therefore, all the beta energy will be deposited in it. 

The dose rate is obtained using Eq. 16.20: 

16.5.2 Dose from a Photon Source Inside the Body 

Since photons have, essentially, an infinite range, the previous calculation for 
charged particles does not apply. A source of photons located anywhere in the 
body will deliver some dose to all the other parts of that body. The calculation of 
the dose rate proceeds as follows. 

Consider an internal organ containing a uniform concentration of a ra- 
dioisotope emitting a gamma with energy E at the rate of S,[y/(s m3)] inside 
the volume V,, called the source volume (Fig. 16.4). The dose rate received by 
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Figure 16.4 The geometry used in the calculation 
of the dose to a target organ (V,) from a 
radioisotope uniformly distributed in another vol- 

/ X  ume (vs). 

another organ with volume VT, called the target, is given by the expression 

where p = total linear attenuation coefficient in tissue for gammas of energy E 
p$" = mass energy absorption coefficient in tissue for gammas of energy E 

B( p r )  = B( pr,  E )  = buildup factor for gammas of energy E 
p = density of tissue 

Or, pulling out of the integral the quantities that are constant in space, Eq. 
16.21 becomes 

where the quantity 

1 e - ~ r  

9 = -/ ~ v T J  dV,-B( p r ,  E )  
VT v V, r 2  

is called the geometry factor. Note that the factor g has dimensions of length. 
Values of g have been calculated and tabulated (e.g., Cember). The usefulness 
of g stems from the fact that g values can be calculated for a relatively small 
number of cases and then, by interpolation, other geometry factor values may be 
computed and used. Once g is known, the dose rate to an organ can be 
calculated from Eq. 16.22, and such calculation will have an uncertainty mainly 
from the value of g. There is a certain similarity in the use of g and the use of 
buildup factors. Buildup factors are also tabulated for a limited number of cases, 
and additional values are obtained by interpolation. 
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One common case utilizing the concept of the geometry factor is the 
calculation of the dose rate in an organ from a radioisotope deposited in that 
organ. For example, what is the dose rate to the thyroid from radioactive iodine 
given to a patient? If the organ is further assumed to be spherical, Eq. 16.23 
takes the simple form 

R e - p r  477 
g = / 477r2 dr- = ( 1  - e - ~ R )  

o r 2  P 

Using this value of g with Eq. 16.22 gives the dose rate at the center of the 
sphere. To obtain the average dose rate, an average value of g should be used. 
For a sphere the average value of the geometry factor is (Cember) 

Average geometry factors for cylindrical bodies are given in Table 16.5. An 
example of using geometry factors is given in Sec. 16.6 

The equations given above for the dose rate from photons are valid for 
monoenergetic sources. If the deposited radioisotope emits many discrete gam- 
mas or if a multigroup energy spectrum of the source is provided, the calculation 
should be repeated for all gammas (or groups) and the results added to obtain 
the total dose rate. 

16.6 INTERNAL DOSE TIME DEPENDENCE- 
BIOLOGICAL HALF-LIFE 

Radioisotopes may enter the body by inhalation, drinking, eating, injection, or 
through broken skin (wound). If the radiation source is inside the body, the 
exposure is internal and more damaging. No attenuation is provided by skin or 

Table 16.5 Average Geometry Factors for Cylindrical Organs Containing a 
Uniformly Distributed Photon Source 

Cylinder Radius of cylinder (cm) 

height (cm) 3 5 10 15 20 25 30 35 

From Hine & Brownell. 



HEALTH PHYSICS FUNDAMENTALS 559 

clothes, and the person cannot walk away from the source. The exposure 
continues until the radioisotope decays completely or is excreted by the body. 

A radioisotope is rejected by the body at a rate that depends upon the 
chemical properties of the element. All isotopes of the same element are 
rejected at the same rate, whether they are stable or not. For most radioiso- 
topes, the rate of rejection is proportional to the amount of the isotope in the 
body. This leads to an exponential elimination law as a result of the combination 
of decay and rejection.+ Let 

N(t) = number of radioactive atoms at time t 
A, = radiological decay constant 

A, = biological decay constant 

= probability of rejection (by the body) per atom per unit time 

The rate of change of N(t) is dN(t)/dt = - h,N(t) - A,N(t), with solu- 
tion 

where A, = A, + A, = effective decay constant. 
A biological half-life is defined in terms of A,: 

and an effective half-life is defined by the equation 

The biological excretion rate of an element from the human body is not 
necessarily the same for the whole body and for a particular organ. In fact, in 
most cases, the biological elimination rates are different for different organs and 
for the body as the whole. For example, the biological half-life of iodine is 138 
days for rejection from the thyroid, 7 days for the kidneys, 14 days for the bones, 
and 138 days for the whole body. For this reason, a table of biological and 
effective half-lives ought to include the organ of reference. Table 16.6 gives 
radiological, biological, and effective half-lives for certain common isotopes. The 
reader should remember that the biological half-life is the same for all isotopes 
of the same element, but the effective half-life is not. 

If TB P TR, the decay removes the material much faster than the body 
rejects it. An example of such a case is l3' I, with T, = 138 days (thyroid), TR = 8 
days, and Te = 7.6 days. If T, < TR, the biological elimination is mainly respon- 
sible for the removal of the isotope. An example of such a case is tritium, with 
TB = 12 days, T, = 12 years, and Te = 12 days. 

'other rejection laws have been proposed (see p. 35 of Ref. 8 and Ref. 9) 
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Table 16.6 Radiological, Biological, and Effective Half-Lives of Certain 
Common isotopes8 

Organ of Radiological Biological Effective 
Isotope reference half-life half-life half-life 

Total body 
Total body 
Fat 
Bone 
Total body 
Liver 
Bone 
Brain 
Total body 
Total body 
Spleen 
Lungs 
Liver 
Bone 
Total body 
Total body 
Kidneys 
Lungs 
Skin 
Liver 
Bone 
Total body 
Thyroid 
Kidneys 
Liver 
Spleen 
Testes 
Bone 
Thyroid 
Total body 
Kidneys 
Bone 
Total body 
Total body 
Liver 
Kidneys 

As a result of the combined radioactive and biological elimination of a 
radioisotope from the whole body or from an organ, the dose rate to the body or 
the organ is not constant over time. Consider an amount of a certain radioiso- 
tope that delivers a dose rate equal to H ( O )  at the time the radioisotope entered 
the body. If the effective half life of the isotope is T,, the total dose delivered 
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over a period of time T is 

If T * T,, then 

Example 16.7 What is the total dose received by an individual who drank, 
accidentally, kg of 3 ~ , ~ ?  

Answer Assuming that the 3 ~ 2 ~  is uniformly distributed, the dose rate at 
the time of the accident ( t  = 0) is given by Eq. 16.20. Tritium is a beta emitter 
with Em,, = 18.6 keV, TR = 12 years, and T, = 12 days. At t = 0, the source 
strength (i.e., the activity) is 

Considering an average-size person (70 kg), the dose rate at t = 0 is 

The total dose is obtained by using Eq. 16.30 (with T = 50y): 

HT = 

- - 

Example 16.8 A 

0.212 Sv = 21.2 rem 

patient was given 10 ~ c i  of 1311  in an attempt to kill a 
thyroid tumor. ~ s s u m i n ~  that all the iodine is concentrated in the thyroid, 
calculate (a) the dose rate to the patient at the time of the injection and (b) the 
total dose received by this patient. Iodine emits 0.364-MeV gammas 82 percent 
of the time and 0.606-MeV betas 92 percent of the time. For I3l1, TR = 8 days, 
T, = 138 days; mass of the thyroid is 0.020 kg. The radius of the thyroid, taken 
as a sphere, is R = 16.8 mm. 
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Answer a) The dose rate from the betas will be obtained with the assump- 
tion that all the beta energy is deposited in the thyroid. Thus, 

. Energy/s 0.92(3.7 X 105)(0.606/3)(1.602 X 10-13) J/s 
D = H =  - - 

mass 20 x lo-3 kg 

The dose rate from gammas is given by Eq. 16.22, and g is calculated using Eqs. 
16.24 and 16.25. 

b) For 0.364-MeV gammas in tissue, p = ptOt = 0.0101 m2/kg = 0.101 
cm-', pa = 0.00325 m2/kg. The volumetric gamma source strength needed for 
Eq. 16.22 is 

The total dose (during 50 years after the intake) is given by Eq. 16.30, since 

TRTB 8 X 138 
T, = =- days = 7.77 days e T (= 50y) 

T R + T B  8 + 1 3 8  

= 0.032 Sv = 3.2 rem 

16.7 BIOLOGICAL EFFECTS OF RADIATION 

The study of the biological effects of radiation is a very complex and difficult 
task for two main reasons. 

1. The human body is a very complicated entity with many organs of different 
sizes, functions, and sensitivities. 

2. Pertinent experiments are practically impossible with humans. The existing 
human data on the biological effects of radiation come from accidents, 
through extrapolation from animal studies, and from experiments in vitro. 

How and why does radiation produce damage to biological material? To 
answer the question, one should consider the constituents and the metabolism 
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of the human body. In terms of compounds, about 61 percent of the human 
body is water. Other compounds are proteins, nucleic acids, fats, and enzymes. 
In terms of chemical elemental composition, the human body is, by weight, 
about 10 percent H, 18 percent C, 3 percent N, 65 percent 0, 1.5 percent Ca, 1 
percent P, and other elements that contribute less than 1 percent each. To 
understand the basics of the metabolism, one needs to consider how the basic 
unit of every organism, which is the cell, functions. 

16.7.1 Basic Description of the Human Cell 

The cell, the basic unit of every living organism, consists of a semipermeable 
membrane enclosing an aqueous suspension of a liquid substance called the 
cytoplasm. The cell exchanges material with the rest of the organism through 
the membrane. A typical cell size is about lo-' m (size of a typical atom is lo-'' 
m). At the center of the cell, there is another region called the nucleus, also 
enclosed by a semipermeable membrane. The nucleus is the most important 
part of the cell because it controls cell activities. Nucleic acids and chromosomes 
are the cell's most significant contents. 

The two nucleic acids found in the nucleus of a cell are ribonucleic acid 
(RNA) and deoxyribonucleic acid (DNA). The RNA controls the synthesis of 
proteins. The DNA contains the genetic code of the species. The structure of 
the DNA has been determined to be a double helix, or staircase with the 
stairsteps consisting of paired molecules of four bases: adenine (A), guanine (G), 
cytosine (C), and thymine (T). It is the combination of these four compounds, A, 
G, C,  and T, that makes the genes (a gene is a segment of DNA) that contain 
the instructions for the metabolism of the cell. The DNA molecules have a 
molecular weight of about lo9. They are usually coiled inside the cell, but when 
extended like a string, the width of the double-stranded helix of the DNA is 
about 2 nm. 

The chromosomes are threadlike assemblies that are extremely important 
because they contain the genes that transmit the hereditary information. Every 
species has a definite number of chromosomes. The human species has 23 pairs, 
one chromosome of each pair being contributed by each parent. Every cell has 
23 pairs of chromosomes with the exception of the egg and the sperm, which 
have 23 chromosomes each. When fertilization occurs, the first cell of the new 
organism contains 23 pairs of chromosomes, equally contributed by each parent. 

Cells multiply by a dividing process called mitosis. Just before mitosis is to 
take place, each chromosome of the cell splits in two. Thus, each of the two new 
cells has exactly the same number of chromosomes as the parent cell. There are 
some human cells that do not divide, such as the blood cells and the nerve cells. 
The blood cells are regenerated by the blood-forming organs, primarily by the 
bone marrow. The nerve cells, when destroyed, are not supplied again. 

Radiation may damage the cell when it delivers extra energy to it because 
that energy may be used to destroy parts or functions of the cell. For example, 
as a result of irradiation, chromosomes or DNA molecules may break. The 
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break may occur either by direct collision with an incoming fast particle (e.g., 
fast neutron) or as the result of chemical activity initiated by the radiation. It 
has been determined experimentally that the energy imparted by the radiation 
may be used to break chemical bonds and create free radicals, which are always 
chemically active and which may produce new chemical compounds unhealthy 
for the organism. For example, a water molecule may break into two radicals 
that, in turn, may form hydrogen peroxide ( ~ ~ 0 , ) ~ :  

A damaged cell may react in different ways. It may recover, or die, or grow 
out of control if the radiation has damaged the RNA and DNA molecules that 
provide the instructions to feed and divide the cell. Obviously, the net result of 
the damage to the organism depends on many factors, such as the number and 
the type of cells destroyed. Another effect of irradiation may be damage to the 
DNA of the germ cells, the sperm and the egg, that carry the genetic code of the 
new organism. This type of damage (called genetic; see Sec. 16.7.2) will appear 
in the offspring of the irradiated cell or organism. 

16.7.2 Stochastic and Nonstochastic Effects 

As explained in the previous section, radiation imparts energy to the cell, which 
may trigger mechanisms that result in biological damage. This "damage," which 
starts at the microscopic (cell) level, may, in some cases, manifest itself as a 
macroscopic observable biological effect. 

The biological effects of radiation are divided into different categories, 
depending upon the objective of the discussion. Examples are somatic (effects 
appearing on the individual being irradiated), genetic (appearing in the offspring 
of the irradiated person), short-term effects, long-term effects, etc. The division 
to be used here is stochastic and nonstochastic effects because it is this 
characterization that leads to a better understanding of the dose-effect relation- 
ship. 

Examples of nonstochastic (or deterministic) effects are erythema, nausea, 
loss of hair, cataracts, sterility, etc. Stochastic (or probabilistic) effects are 
cancer and genetic defects (birth defects) (Table 16.7). Genetic effects are 
abnormalities that may appear in the offspring of persons exposed to radiation, 
one or many generations after the exposure. 

An important difference between stochastic and nonstochastic effects is that 
nonstochastic effects have a threshold; stochastic effects do not. The "threshold" 
is a minimum radiation dose that has to be received in a relatively short time 
period for the effect to appear (Fig. 16.5). A dose below the threshold will not 

'chemical poisoning by H,O, shows many of the radiation sickness symptoms. 
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Table 16.7 Biological Effects of Radiation 

Stochastic Nonstochastic 
(probabilistic) (deterministic) 

Somatic Cancer Erythema 
Loss of Hair 
Nausea 
Sterility 
Cataracts 
Fever 
Death 
etc. 

Genetic Birth 
defects 

produce nonstochastic effect. A dose above the threshold will definitely cause 
the effect. The threshold line in Fig. 1 6 . 5 ~  is shaded to emphasize the point that 
the threshold dose is not a single one but a range of doses that depends on the 
effect considered and on the individual receiving the dose. Different effects have 
different threshold doses. For example, the threshold dose for erythema is much 
less than that for death. For stochastic effects, it is believed today that there is 
no threshold. All one can say is that there is a probability that the effect may 
appear (some time later, probably years) after any amount of radiation exposure 
above zero. It is also accepted today that the probability that the effect will 
appear increases with dose received. There is no scientific proof that a threshold 
does not exist. Also there is no concrete scientific proof that all radiation effects 
are detrimental. However, in the absence of proof that a threshold does exist 
and that radiation may, at certain dose levels, be beneficial, the conservative 
approach is taken, which is no threshold and any radiation dose is damaging. 
Notice, however, the word may. It is not certain that the effect will appear; all 
one can say is that there is a probability that it may happen. 

An example of stochastic versus nonstochastic effects can be made using 
alcohol. If a person drinks 20 glasses of wine in a short period of time, it is 

Figure 16.5 (a) The probability for a nonstochastic effect to occur versus dose D. ( b )  The 
probability for a stochastic effect to occur versus dose D. 
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certain that the individual will get drunk. Drunkenness is a nonstochastic effect 
caused by alcohol (the "threshold" is not 20 glasses for everybody, it depends on 
the individual, on the rate of wine consumption, etc.). Examples of stochastic 
effects caused by alcohol are cirrhosis of the liver and birth defects to a child 
whose mother was drinking during pregnancy. One glass of wine, just once in a 
lifetime, or one glass per day may cause cirrhosis or produce a child with birth 
defects; on the other hand, it may cause neither. 

Nonstochastic effects appear after relatively high doses in the Sv (rem) 
range. The first measurable effect of a whole-body irradiation appears after a 
dose of 0.25-0.50 Sv (25-50 rem). The individual exposed to this dose will feel 
nothing, and clinical tests will not show any symptoms of illness or injury. 
Depending on the person, a clinical test may show changes in the blood. A dose 
of 4-5 Sv (400-500 rem) is indicated as LD-50, meaning that it is lethal to about 
50 percent of the persons so exposed (death will occur in months). A dose of 10 
Sv (1000 rem) or more to the whole body is considered lethal (death will occur in 
days), no matter what treatment may be applied. In the range of about 1-10 Sv 
(100-1000 rem), symptoms that may appear are nausea, vomiting, fever, diar- 
rhea, loss of hair, inability of the body to fight infection, etc. These symptoms 
have been observed in victims of accidents and in patients undergoing radiation 
treatment. 

The incidence of stochastic effects can only be treated in a probabilistic 
manner. Consider cancer first. In the United States the normal incidence of 
cancer (not necessarily fatal) in the adult population is 25 percent. The estimate 
for radiation-induced cancer is9,'' (1.5-4.5) X per manSv [(1.5-4.5) X 
per manrem]. To understand this estimate better, consider an example. In a 
group of 10,000 adult Americans, about 2500 cases of cancer will be detected 
(not necessarily fatal). If this group of 10,000 persons receives 0.01 Sv (1 rem) of 
radiation collectively, the estimated number of cancers due to this radiation 
dose is 1.5-4.5. Therefore, the total number of cancers expected to be detected 
will be between 2501.5 and 2504.5. The incidence of fatal cancer in the United 
States is 16.4 percent. The risk of deadly cancer from radiation is estimated to 
be (0.7-2.26) X per manSv [(0.7-2.26) X lop4 per manrem]. 

Genetic effects are those related to the transmission of harmful hereditary 
information from one generation to the next. It is known today that the carriers 
of the hereditary code are the genes, which are parts of DNA molecules and are 
contained in the chromosomes. The gene is an extremely stable entity. Its 
structure is transmitted from generation to generation without any changes, 
which means that it transmits identical information from generation to genera- 
tion. But sometimes a gene may change and become a mutation. The mutated 
gene may be transmitted through many generations without any further change, 
or it may change again to its original form or to a new third form. It is generally 
believed by geneticists that most mutations are harmful; therefore, conditions 
that increase the rate of mutations should be avoided. 

The current incidence of human genetic disorders is 107,000 per lo6 births, 
or about 0.11 per birth. These effects constitute the so-called spontaneous 
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mutation rate. The genetic risk from radiation is expressed in terms of the ratio 

m, (radiation-induced mutations) 
- - - 
m s (spontaneous mutations) 

This ratio is equal to (2-0.4)/Sv [(0.02-0.004)/rem]. One quantity that is always 
reported along with this risk is the "doubling dose," i.e., the dose that if inflicted 
to a population over many generations will eventually result in doubling the rate 
of spontaneous mutations. From the ratio given above, the doubling dose is 
0.5-2.5 Sv (50-250 rem). 

Is radiation the only agent that causes mutations? Definitely not. Known 
mutagenic agents include certain chemicals, certain drugs, elevated tempera- 
ture, and ionizing radiation. It is quite possible that many other mutagenic 
substances or environments may exist but are still unknown. Humans have been 
exposed to ionizing radiation since first appearing on this planet. The level of 
this background radiation is not constant at every point on the surface of 
the earth, but at sea level it is about 1.5-3 mSv/y (150-300 mrem/y). Every 
individual receives this exposure every year of his life. There is no doubt that 
genetic effects have been caused as a result of this exposure. Yet it should be 
pointed out that (a) there is no proof that radiation causes only detrimental 
genetic effects, and (b) despite the continuous exposure during thousands of 
years, there is no evidence of genetic deterioration of the human race. 

16.8 RADIATION PROTECTION GUIDES AND 
EXPOSURE LIMITS 

All regulations relevant to the protection of humans can be found in Title 10, 
Chapter 1, Part 20 Code of Federal Regulations (10CFR20). The 10CFR20 that 
is in force today: which became effective January 1, 1994, is based on the 
recommendations of the International Commission on Radiological Protection 
(ICRP)? published in 1977 as ICRP Publication 26. The general principles upon 
which the new 10CFR20 radiation protection guides have been established are 
as follows. 

No person should be exposed to any man-made radiation unless some benefit 
is derived from the exposure. 
Radiation exposure limits are set at such levels that nonstochastic biological 
effects do not occur. 
Radiation exposure limits are set at such levels that stochastic effects are 
minimized and become acceptable in view of the benefits derived from the 
exposure. 
In every activity that may involve radiation exposure, it is not enough to keep 
exposure limits below the maximum allowed. Instead, every effort should 
be made to keep the exposure as low as reasonably achievable (ALARA). 
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The ALARA principle is strictly enforced by the U. S. Nuclear Regulatory 
Commission (NRC). 

Since nonstochastic effects have a threshold, all that is needed to satisfy 
requirement 2 is to set the exposure limits below that threshold. For nonstochas- 
tic effects, the maximum allowed dose is set at 0.5 Sv (50 rem) for any tissue, 
except for the lens of the eye, for which the limit is set at 0.15 Sv (15 rem). For 
stochastic effects the limits are set at an acceptable level of risk. Ideally, the 
limit should be zero, since any exposure is supposed to increase the probability 
for stochastic effects to occur. Obviously, a zero limit is not practical. For 
stochastic effects the 10CFR20 sets the limiting exposure on the basis that the 
risk should be equal regardless of whether the whole body is irradiated uni- 
formly or different tissues receive different doses. Recognizing the fact that 
different tissues have different sensitivities and, therefore, the proportionality 
constant between dose and effect is not the same for all tissues, the limit is 
expressed in terms of the "effective dose equivalent" (HE) ,  defined as 

where H, is the dose equivalent to tissue or organ T and w, is a weighting 
factor for tissue T. The values of wT are presented in Table 16.8. 

The interpretation of the weighting factors is as follows. Consider the factor 
w, = 0.25 for the gonads. This means that irradiation of the gonads alone would 
present about one-fourth the risk for stochastic effects expected to appear after 
uniform irradiation of the whole body at the same dose level. The risk per Sv 
due to irradiation of the gonads is derived from 

(Risk/Sv-gonads) = (Risk/Sv-whole bodylw, 

= 1.65 x 1oP2(0.25) = 4.1 X 

(or 1 in 250). Table 16.9 presents various maximum exposure limits. For 

Table 16.8 Organ Dose Weighting Factors 

Organ or tissue W T Risk coefficient (Sv) Probability (Sv) 

Gonads 
Breast 
Red bone marrow 
Lung 
Thyroid 
Bone surface 
~ e m a i n d e r ~  
Total (whole 
body) 

tThe remainder is 0.06 for each of five remaining organs, excluding the skin and 
the lens of the eye, which receive the highest doses. 
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Table 16.9 Various Maximum Exposure Limits 

10CFR20 
Old 10CFR20 effective Jan. 1, 1994 ICRP 60 (1990) 

Whole body 5 rem/yr 

Lens of eye 1.25/quarter, 
5.0 rem/yr 

Extremities 18.75 rem/ 
quarter, 75 rem/yr 

Thyroid-skin 7.5 rem/ 
quarter, 30 rem/yr 

Lifetime dose less 
than 5(N-18) 

Dose to minors 
Public 0.5 rem/yr 

Dose to fetus - 

ALARA program recommended 

50 mSv/yr (stochastic) 20 mSv/yr, averaged 
(5 rem/yr) over 5 yr, less than 

500 mSv/yr (nonstochastic) 50 mSv in any single year 
(50 rem/yr) 

15 mSv/yr 15 mSv/yr 
(15 rem) 

500 mSv/yr 500 mSv/yr 
(50 rem/yr) 

50 mSv/yr (stochastic) - 

(5 rem/yr) 
500 mSv/yr (nonstochastic) 

(50 rem/yr) 

10 percent of adult limit 10 percent of adult limit 
1 mSv/yr 1 mSv/yr 

(100 mrem) 
5 mSv (500 mrem) 2 mSv (200 mrem) 
required required 

comparison, limits of the old 10CFR20 are given as well as limits recommended 
by the ICRP in 1990." Judging from past experience, it is likely that the 1990 
ICRP recommendations will be adopted in the not too distant future. 

For the dose from radioisotopes inhaled or ingested by the body, several 
other doses have been defined, as follows. 

Committed dose equivalent (H50,T):  the dose equivalent to organs or tissues 
that will be received from an intake of radioactive material by an individual, 
during a 50-year period following the intake. 

Committed effective dose equivalent (HE, ,,): the sum, over all relevant tissues 
or organs, of the product of the factor w ,  times the corresponding committed 
dose equivalent: 

Deep dose equivalent: It applies to external whole body exposure and is the 
dose equivalent at a depth of tissue of 1 cm (1000 mg/cm2). 

Total effective dose equivalent (TEDE): the sum of the deep dose equivalent 
(for external exposure) and the committed effective dose equivalent (for internal 
exposure) 

TEDE = Hd + HE,50 (16.33) 
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The annual limit for radiation workers is the more limiting of the following 
two: a) TEDE being equal to 50 mSv (5 rem); or b) the sum of the deep dose 
equivalent and the committed dose equivalent to any individual organ or tissue 
other than the lens of the eye being equal to 0.5 Sv (50 rem). 

Annual limit of intake (ALI): the amount of a radioactive material taken into 
the body of an adult worker in one year, by inhalation or ingestion, that would 
result in an effective committed dose equivalent of 0.05 Sv (5 rem) or a 
committed dose equivalent of 0.5 Sv (50 rem) to any single tissue or organ. 

Derived air concentration (DAC): the concentration for a given radioisotope 
is that concentration in air that, if breathed by an adult for a working year of 
2000 hours under conditions of light activity (inhalation rate 2 . 0 ~ ~  mL/min), 
would result in total intake of 1 ALI. Values of ALI and DAC for several 
radioisotopes are given in App. B of 1 0 ~ ~ ~ 2 0 . ~  

For radon (Rn) and its daughters the radiation limits are given in terms of 
the working level (WL) and working level month (WLM), where 1 WL is the 
amount, in 1 I of air, of any combination of Rn and its daughters that results in 
the release of 1.3 X lo5 MeV of alpha-particle energy. This number is approxi- 
mately the energy released by the short-lived daughters in equilibrium with 100 
pCi and Rn. One WLM is equal to exposure to 1 WL for 170 h (170 = 2000/12). 
As an example, if a worker is exposed to 1 WL for 50 h, the exposure is 
(50/170) X 1 = 0.294 WLM. 

In addition to exposure from man-made radiation, humans are exposed to 
natural radiation. The components of the natural or background radiation are 
shown in Table 16.10. 

16.9 HEALTH PHYSICS INSTRUMENTS 

A health physics instrument is a device that can provide information about the 
dose rate or dose at the location where the instrument is placed. Health physics 
instruments are detectors like those discussed in Chaps. 5-7. They have to 

Table 16.10 Sources of Background Radiation in the United States 

Bone 

Source Gonads Lung Surface Marrow GI tract 

Cosmic radiation+ 28 28 28 28 28 
Cosmogenic nuclides 0.7 0.7 0.8 0.7 0.7 
External terrestrial 26 26 26 26 26 
Inhaled nuclides - 100-450 - - 

Radionuclides in bodyt 27 24 60 24 24 
Total (rounded) 80 180-350 115 80 80 

All values are in units of mrem/yr. 
?he cosmic-ray component is given at sea level; it increases with altitude. 
'~adionuclides in the body are, primarily, 14c and 4 0 ~ .  
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satisfy some unique requirements, however, because their purpose is to measure 
dose equivalent, which is the absorbed dose in tissue times a quality factor. 
Radiation detectors provide a signal that, in general, depends on the energy 
deposited in the material of which the detector is made; that material does not 
necessarily have the same response as tissue to the radiation field being 
investigated. Even if the detector material responds to the radiation exactly like 
tissue, the problem still exists of getting dose equivalent from absorbed dose 
(which the detector signal provides). Thus, the dose measurement involves three 
steps. 

1. Measurement of energy deposition in the detector (a quantity proportional to 
D in the detector material) 

2. Determination of DtisSu, by comparing the response to the incident radiation 
of tissue versus the response of the material of which the detector is made 

3. Computation of dose equivalent H, from Dtissu, by incorporating the appro- 
priate quality factor 

In practice, the instruments are properly calibrated to read directly Sv (or 
rem), or Gy (or rad). For some neutron detection instruments, the neutron flux 
is recorded. Then the dose equivalent is obtained after multiplying the flux by 
the conversion factor given in Table 16.4. Since different detectors do not have 
the same efficiency or sensitivity for all types of radiation and for all energies, 
there is no single instrument that can be used for all particles (a, P ,  y, n )  and 
all energies. 

Health physics instruments are divided into two general groups according to 
the way they are used: 

1. Survey instruments-portable and nonportable 
2. Personnel monitoring instruments (dosimeters) 

The rest of this section discusses the most commonly used devices. Survey 
instruments are described in Sec. 16.9.1. Dosimeters are described in Secs. 
16.9.2-16.9.8. 

16.9.1 Survey Instruments 

The portable survey instruments are detectors like those described in detail in 
Chaps. 5-7. The most commonly used are GM counters and the so-called "cutie 
pie" meter. Many commercial GM counters offer a fixed thin window that will 
allow betas and photons to traverse it and be counted, and one or more movable 
windows that will stop the betas and allow only the gammas to enter the 
counter. In a mixed P-y field, such an instrument will provide information for P 
and y separately. The cutie pie is an ionization counter that can be used to 
detect X-rays, alphas, and some high-energy betas. 
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The nonportable instruments are set at fixed locations to detect the radia- 
tion field; they are usually equipped with an alarm that will provide an audio 
and/or visual signal when the field intensity exceeds a preset limit. Examples 
are continuous air monitors and personnel monitors (e.g., hand, foot, and whole 
body). A list of several health physics instruments and their characteristics is 
given in Table 16.11. 

16.9.2 Thermoluminescent Dosimeters 

Thermoluminescent dosimeters (TLDs) are based on the property of thermolu- 
minescence, which can be understood if one refers to the electronic energy-band 
diagram of crystals (see also Chap. 7). When ionizing radiation bombards a 
crystal, the energy given to the electrons may bring about several results (Fig. 
16.6). The electron may acquire enough energy to move from the valence to the 
conduction band, in which case the event is called ionization. Or the electron 
acquires enough energy to move to an excited state (to the exciton band) and 
form an exciton. An exciton, consisting of an electron and a hole bound 
electrostatically, can migrate through the crystal. Electrons, holes, and excitons 
may be caught in many "traps" that exist in the solid. Traps are formed in a 
variety of ways. Foreign atoms (impurities), interstitial atoms, dislocations, 
vacancies, and imperfections may act as traps. The trapped carriers remain in 
place for long periods of time if the temperature of the crystal stays constant or 
decreases. If the temperature is raised, however, the probability of escape 
increases. As electrons and holes are freed and return to the ground state, they 
emit light (Fig. 16.7). The emission of this light is called thermoluminescence 
and is the property upon which the operation of TLDs is based. 

A TLD is essentially a piece of a thermoluminescent material, exposed to 
the radiation being measured. After irradiation stops, the TLD is heated under 
controlled conditions (Fig. 16.8), and the light intensity is measured either as a 
function of temperature or as a function of the time during which the tempera- 
ture is raised. The result of such a measurement is a graph called the glow curve 
(Fig. 16.9). Glow curves have more than one peak, corresponding to traps at 
various energy levels. The amplitudes of the peaks are proportional to the 
number of carriers trapped in the corresponding energy traps. The absorbed 
dose may be measured either from the total light emitted by the glow curve or 
from the height of one or more peaks of the glow curve. The TLD is 
annealed-i.e., it returns to its original condition-and is ready to be used again 
after being heated long enough that all the traps have been emptied; then it is 
left to cool down to room temperature. Measurement of the light from the glow 
curve, and subsequent annealing, are performed by instruments generally called 
readers, which are available commercially (e.g., from Harshaw Co.). 

There are many thermoluminescent materials, but those useful for dosime- 
try should have the following characteristics. 

1. Retention of trapped carriers for long periods of time at temperatures 
encountered during the exposure 



Table 16.11 A List of Common Health Physics Instruments 

Instrument Detector Radiation detected Range (nominal) Remarks 

Portable 

Film badge 

Pocket chamber (direct 
reading) 

Personnel radiation monitor 

Cutie-pie survey meter 

PIC-6 

PAC-4G 
Rem ball 

Photographic emulsions 

Ionization chamber (air) 

G-M tube 

Ionization chamber (air) 

Proportional gas-filled 
counter 

Proportional gas-filled counter 
Bonner sphere with BF, 

or Lil as the detector 

y ,  X-ray, high-level P 

y, X-ray, high- 
energy P 

Y 

0.1-1,000 rad of 
mixed radiations 

5-200 mR; available 
with higher ranges 

Maximum audible 
warning at - 0.5 

R/h 
5-10,000 mrad/h 

- - 

Measurement of integrated dose 

Visual check on gamma exposure 

Audible warning of radiation field 

Dose-rate meter for y and X-rays 
(0.008-2 MeV within 10 percent) 

Measures y dose rate 

Measures neutron dose equivalent 

Nonportable 

Continuous P- y particulate GM tube (shielded) P3 Y 
air monitor 

Continuous a particulate ZnS(Ag) for a a, P 
air monitor 

Hand and foot monitor Halogen-quenched G M  P, Y 
tube 

0-5,000 cpm Light and audible alarms for preset 
levels 

0-1,000 cpm Light and audible alarms for preset 
levels 

Low-level Simultaneous detection of p and y 
contamination of hands and shoes 
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Conduction band Electron 
0 

Figure 16.6 Energy-band diagram of a 
crystal. 

band - 
Incident 
radiation 

Light 

O o O \  Holes y o ' o  

(a I (6 I 

Figure 16.7 ( a )  As a result of irradiation, some carriers fall into traps. ( b )  Upon heating, the carriers 
are given enough energy to escape from the traps and return to the valence band, with the emission 
of light. 

Heater power 
supply Figure 16.8 A setup used to read a TLD. 



HEALTH PHYSICS FUNDAMENTALS 575 

Figure 16.9 Typical thermoluminescent 
glow curves. ( a )  Glow curve of CaSO,: Mn 
heated at 6"C/min. ( b )  LiF (TLD-100) 

- 0 1 0 0  200 300 exposed to lo4 R and heated at 20' C/min 
Temperature, "C (from Ref. 12). 

2. Large amount of light output 
3. Linear response over a large dose range 
4. Perfect annealing to enable repetitive use 

Materials commercially available that satisfy most of these requirements are 
CaSO,: Mn, CaF, (natural), CaF,: Mn, Li2B407: Mn, and LiF. CaSO, and CaF, 
are used for gammas only. Other materials that have been studied are CaSO,: 
Dy, BeO, and A120,. A commercial dosimetry package, based on a combination 
of CaSO, and Li2B407, and known as Panasonic UD-802 or UD-854 is used in 
nuclear power plants. The main features of some of these materials are given in 
Table 16.12. Various uses are described in Refs. 13-19. The book by Shani (see 

Table 16.12 Properties of Certain TLDst 

Material 
Radiation to 
which it responds Z, Range 

CaSO, (Mn) r 15.3 pR-lo3 R 
CaF, (Natural) 7 16.3 mR-10' R 
CaF, (Mn) r, n (thermal, low response) 16.3 m ~ - l 0 '  R 
LiF (T~D-100)* r, n (thermal). B 8.2 r n ~ - 1 0 ~  R 
LiF ULD600) r, n (thermal), P 8.2 rn~- lo '  R 
LiF (TLD700) 7. a 8.2 m ~ - 1 0 '  R 

t ~ r o m  Ref. 12. 
$TLD~OO, TLIMOO, TLD-700 are products of the Harshaw Chemical Company. 
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bibliography) gives many details for the construction, use, and performance 
characteristics of all TLD materials studied. 

The three LiF TLDs listed in Table 16.12 have found wide use for measure- 
ments in mixed neutron-gamma fields. The TLD-100 containing natural lithium 
(92.6 percent 7 ~ i ,  7.4 percent 6 ~ i )  responds to gamma and thermal neutrons. 
Thermal neutrons are detected through the ( n ,  a) reaction with 6 ~ i ,  which has a 
cross section equal to 950 b for thermal energies. If a TLD-100 is exposed to 
about 3 x 1011 neutrons/m2 (thermal), its light output is equivalent to that 
from 1 R of gamma radiation. The TLD-600, containing lithium enriched to 
95.62 percent in 6 ~ i ,  is extremely sensitive to thermal neutrons and also to 
gammas. The TLD-700, containing 99.993 percent 7 ~ i ,  is sensitive to gammas 
only, because the neutron cross section for 7 ~ i  is very small (about 0.033 b for 
thermal neutrons). In a mixed neutron-gamma field, one can achieve y-n 
discrimination by exposing to the radiation a TLD-100 plus a TLD-700, or a 
TLD-600 plus a TLD-700. The difference in response between the two dosime- 
ters of either pair gives the dose due to the neutrons only. A very sensitive LiF 
TLD has been reported by Nakajima et al.19 It consists of LiF with three 
dopants: Mg, Cu, and P. Its sensitivity is supposed to be 23 times that of 
TLD-600. 

16.9.3 Solid-state Track Recorders (SSTRs) 

The technique of measuring the number of particles by observing their tracks in 
certain organic and inorganic materials has been used for the study of phenom- 
ena in such diverse fields as geology, archeology, astrophysics, nuclear physics, 
and dosimetry. The book by Fleischer et al. is an excellent review of materials 
used as SSTRs, of the theories for track formation, and of the techniques used 
for track etching. In the field of radiation measurements, SSTRs are used for 
fission rate m e a s u r e r n e n t ~ ~ ~ . ~ ~  and as alphaz2 and neutron  dosimeter^.'^-^^ 

The SSTR technique is based on the damage created in a solid along the 
path of a heavily ionizing particle such as an alpha particle or a fission fragment. 
The damage along the path, called a track, may become visible under an 
ordinary optical microscope after etching with suitable chemicals. The visible 
tracks are counted either by direct observation by a human or with the help of 
automated  instrument^.^^-^^ 

Many theories have been proposed for the production of tracks by ionizing 
particles in solids, but none explains all the phenomena involved for both 
organic and inorganic materials. The basic mechanisms of energy loss are known 
(see Chap. 4). A fast-moving charged particle loses energy by excitation and 
ionization. Ionization creates charge centers in any solid. The ejected electrons, 
also called Grays, can produce further excitation and ionization. In organic 
materials, such as polymers, the deexcitation may break the long molecular 
chains and produce free radicals. As the ion slows down, it starts picking up 
electrons, and thus its charge decreases. Close to the end of its path, atomic 
rather than electronic collisions are the dominant mode of energy loss. The 
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result of atomic collisions is atom displacement and creation of a vacancy. 
Pictorially, the formation of the track in a crystal and a polymer is believed to be 
taking place as shown in Fig. 16.10. 

The best means of observing the tracks is by etching the SSTR material with 
a chemical that preferentially attacks the damaged material and enlarges the 
original track. It is believed that the damaged region is preferentially attacked 
because it becomes more active chemically than the surrounding undamaged 
region. This is a result of the free energy associated with the disorders created 
along the trajectory of the particle. After etching, the track is enlarged because 
the chemical attacks the surface of the SSTR and the interior surface of the 
original track and creates a conical hole as shown in Fig. 16.11. Thus, tracks that 
originally intersected the surface will appear as circles or ellipses under the 
microscope. If the etching continues further, some tracks may be "etched away"; 
therefore the level of etching is important, especially in absolute measurements. 

As dosimeters, the SSTRs are used for neutron dose measurements. The 
SSTR is formed by placing a uniform deposit of a fissionable isotope on a 

Figure 16.10 The formation of a particle track in (a) a crystal and ( b )  a polymer (from Fleischer et 
a l l  
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\ I- Original surface - Surface removed by etching 
/- 

Track formed by etching 

\ 1- Original track 

Figure 16.11 Enlargement of a track by etching. 

material such as mica or lexan.+ When the SSTR is exposed to neutrons, fissions 
take place, and the fission fragments are imbedded into the SSTR material and 
produce the tracks. For absolute measurement of fission rate, the observer 
should be certain that all the fission fragments enter the SSTR and create 
visible tracks; or, if some fragments are lost, a correction should be applied to 
the observed fission rate. Some fission fragments will not escape no matter how 
thin the fissionable deposit is (Fig. 16.12). As Fig. 16.12 shows, a fission fragment 
emitted toward the SSTR will not reach it unless it is emitted within a cone 
defined by the angle 28 = 2arccos(x/R), where x is the depth at which the 
fission took place and R is the range of that fragment. If t < R, where t is the 
thickness of the deposit, the fraction of fragments reaching the SSTR is equal to 
1 - t/2R. If one places a second SSTR on the other side of the deposit, the 
fraction of escaping fission fragments is doubled. As the thickness t decreases, a 
greater fraction of fragments escape, but at the same time a smaller number of 
fissions takes place and a smaller number of tracks is formed. 

In addition to fission-fragment track measurements, thermal neutrons can 
also be detected by alpha tracks from ( n ,  a) reactions with 6 ~ i  or 'OB. Finally, 

  exa an is a polymer developed by General Electric, with atomic composition C,,H,,O,. 

Deposit of 
fissionable t < range of fission fragments 
material I 
Figure 16.12 A fission fragment emitted at an angle greater than 8 ( 8  = arccos x / R )  will not reach 
SSTR. 
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SSTRs have been used as monitors of alphas  particle^,'^ especially alphas 
emitted by radon and its daughters. 

16.9.4 The Bonner Sphere (the Rem Ball) 

The Bonner sphere,29 named after one of the first people to study its features 
and use it, is a neutron detector. It consists of a polyethylene sphere, at the 
center of which a neutron detector is placed (Lil scintillator or BF, or 3 ~ e  
counter). With any one of these materials, the neutrons are detected through 
the reactions 

The polyethylene serves as the moderating material. The Bonner sphere has 
been found to be very useful for neutron dose measurements because the 
response of a 0.25- to 0.30-m (10-12 in) diameter sphere has an energy 
dependence very close to the dose equivalent delivered by neutrons (Figs. 16.13 
and 16.14). The line indicated as RPG in these two figures is the dose rate H 
per unit neutron flux. The similarity between detector response and dose 
equivalent H is just a coincidence. This coincidence is utilized, in practice, for 
the determination of neutron dose rate H in a neutron field of unknown energy. 
Note from Fig. 16.13 that the sensitivity (efficiency) of the Bonner sphere is high 
for high-energy neutrons (with high Q value) and lower for low-energy neutrons 
(low Q value). For this reason, the number of counts recorded by the sphere 

Figure 16.13 Sensitivity of a 10-in 
(0.254 m) diameter Bonner sphere 
surrounding a 4 mm X 4 mm Lil 
scintillator. For com~arison. the in- 

I 1 1 verse of the response function RPG is 
100 keV 1.0 MeV 10 MeV also shown. The RPG gives dose rate, 

neutron energy H, per unit neutron flux (Ref. 30). 
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placed in an unknown spectrum 4(E)  automatically includes a weighting factor 
for all energies. 

The match between response and neutron dose rate is not perfect, as Fig. 
16.14 clearly shows, particularly for energy less than 100 keV. If the unknown 
spectrum contains many neutrons in the energy range of discrepancy between 
the two curves, then the dose rate will be overestimated for the following 
reason. Consider E = 10 keV. The calculated response is about 1.7; the RPG is 
about 0.3. The inverse of RPG is about 3.3, which means that the detector will 
record 3.3 when the response ought to be close 1.7; hence, dose rate is 
overestimated. Another point to mention is the underesponse at E > 10 MeV 
(Fig. 16.13); luckily, this energy is not important for neutron fields encountered 
at nuclear power plants. 

Another advantage of the Bonner sphere, in addition to its convenient 
response function, is its complete insensitivity to gammas. This is the result of 
relying for neutron detection on charged-particle reactions with high Q value, 
thus making possible the complete rejection of pulses due to gammas with the 
use of a proper discriminator level. 

In the nuclear industry the Bonner sphere is known as the rem ball or rem 
meter. 

16.9.5 The Neutron Bubble Detector 

The neutron bubble detector (trade name BD-100R) is a reusable, passive 
integrating dosimeter that allows instant, visible detection of neutron dose. The 
bubble detector consists of a glass tube filled with thousands of superheated 
liquid drops in a stabilizing matrix. When exposed to neutrons, these droplets 
vaporize, forming visible permanent bubbles in an elastic polymer. The total 
number of bubbles formed is proportional to the neutron dose equivalent H. 
The bubbles can be counted manually or by a machine. Figure 16.15 shows the 
response of the bubble detector as a function of neutron energy. 

The bubble dosimeter is reusable; it is insensitive to gammas (the formation 
of the bubbles is based on the stopping power of the recoil nuclei produced by 
collisions with neutrons); it responds to $neutron energy range from 200 keV to 

calculated 
response \ 

4 0.5 /- measured 
8 c  

Sj 0.2 - Inverse of RPG curve 

0.1 
Thermal0.1eV l.0eV lOeV lOOeV 1keV lOkeV lOOkeV lMeV 1OMeV 

neutron energy 

Figure 16.14 Calculated sensitivity of a 10-in (0.254 m) diameter Bonner sphere compared with the 
measured response (Ref. 30). 
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Figure 16.15 The response of the neutron bubble dosimeter as a function of neutron energy 
(Siemens, 1993). 

about 14 MeV. The dose range extends from less than 1 mrem to 1 rem; its 
useful life is 3 months, if recycled; its shelf life is 1 year. 

16.9.6 The Electronic Personal Dosimeter 

The electronic personal dosimeter (EPD) was developed by England's National 
Radiological Protection Board and is now marketed by Siemen~.~' The EPD, 
having the size and weight of a small pocket pager, uses the latest in integrated 
circuitry technology. It is a solid-state device based on silicon diodes. Complete 
details of the design are proprietary. 

The objective of the EPD project was to produce a dosimeter that is 
accurate over a wide energy and dose range, rugged, and can communicate with 
a computer for data storage and subsequent analysis. All indications are that the 
EPD satisfies these requirements. It is small and rugged and the energy range is 
from 20 keV to 7 MeV for gammas and 250 keV to 1.5 MeV (average energy) 
for betas. In terms of dose, the dosimeter can display doses from 1 pSv to 1 Sv 
(0.1 mrem to 100 rem) and dose rates from 1 pSv/h to 10 Sv/h and is equipped 
with audible and visual alarms that can be set only by authorized persons. 

The EPD uses infrared links to interface with a computer, thus providing 
the data to authorized persons who can read the dose received, add up previous 
exposures, and establish dose-alarm threshold settings. A custom lithium battery 
that lasts for a year powers the EPD. Each unit will be issued to a radiation 
worker for a full year. 
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16.9.7 Foil Activation Used for Neutron Dosimetry 

Neutron dosimetry by foil activation is not used so much to record doses 
received by personnel as it is to record doses to materials, instruments, or other 
components that may suffer radiation damage as a result of neutron bombard- 
ment. The principle of this method was presented in Secs. 14.4 and 14.6. A 
target, in the form of a thin small foil, is exposed to the neutron field and 
becomes radioactive. The relationship between activity and neutron flux is 

where N = number of targets 
u = neutron absorption cross section 
4 = neutron flux 
A = decay constant of the radioisotope produced 

After irradiation, the activity A(t) is counted and the flux is determined from 
Eq. 16.34. Depending on the foil used (reaction involved), information about the 
neutron energy spectrum may also be obtained. Information about the neutron 
spectrum + ( E )  is necessary for the determination of the neutron dose equiva- 
lent H. 

16.10 PROPER USE OF RADIATION 

Since radiation may be hazardous, it is important that individuals who handle 
ionizing radiation follow certain rules to avoid accidents. The official rules to be 
followed by all persons licensed to handle radioactive materials have been 
studied and proposed by such bodies as the ICRP and the National Research 
Council (NRC), which is an arm of the National Academy of Sciences. The 
proposed standards are adopted and enforced by federal agencies such as the 
U.S. NRC and the Environment Protection Agency (EPA). The NRC and EPA 
standards for protection against radiation are contained in Code of Federal 
~egula t ions .~~ The exposure limits, based on these guidelines, were discussed in 
Sec. 16.8. 

To protect personnel, areas where radiation sources are used are marked 
with certain signs. The definitions of "radiation areas" and the corresponding 
signs are as follows." 

"Restricted area" means any area access to which is controlled by the licensee for purposes of 
protection of individuals from exposure to radiation and radioactive materials. "Restricted 
area" shall not include any areas used as residential quarters, although a separate room or 
rooms in a residential building may be set apart as a restricted area. 

"Radiation area" means an area, accessible to individuals, in which radiation levels could result 
in an individual's receiving a dose equivalent in excess of 0.050 mSv (5 mrem) in 1 hour at 0.30 
m from the radiation source or from any surface that the radiation penetrates. 



HEALTH PHYSICS FUNDAMENTALS 583 

"High radiation area" means an area, accessible to individuals, in which radiation levels could 
result in an individual's receiving a dose equivalent in excess of 1 mSv (100 mrem) in 1 hour at 
0.30 m from the radiation source or from any surface that the radiation penetrates. 

Radiation areas should be marked with the radiation symbol shown in Fig. 
16.16 and with cautionary signs. If necessary, the radiation area should be roped 
off or, if it is a room, should be locked to keep people out. 

People who work in radiation areas or use radioisotopes should keep in 
mind the following simple principle: 

Radiation exposure should be avoided, if at all possible. If exposure is necessary, the risk from 
the exposure should be balanced against the expected benefit. The exposure is justified if the 
benefit outweighs the risk. 

If exposure is justified, the employer and the employee should obey the ALARA 
principle (Sec. 16.8). Satisfying ALARA means not just keeping exposure below 
the maximum allowed limits; it means taking all possible "reasonably achiev- 
able" measures to minimize the dose received in any task that has to be 
performed. The best assurance against violating ALARA is constant education 
and training of the radiation workers. Given below are some commonsense rules 
that have proved helpful in reducing exposure. 

1. Try to avoid internal exposure. Substances enter the body by mouth (eating, 
drinking), by breathing, through wounds, and by injection. Therefore, in 
places where radioactive materials are handled, do not eat, do not drink, and 

Figure 16.16 The standard radiation 
symbol with dimensions as shown 
has a yellow background, with the 
hatched area being magenta or pur- 
ple. 
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cover all wounds. If the air is contaminated, wear a mask. Hands should be 
washed after the operation is over, especially if no protective gloves were 
used. 
Stay close to the source of radiation for as short a time interval as possible. 
Use protective covers, if this is the suggestion of the health physicist. 
Place the source behind a shield or in a proper container. 
If practical, wait for the radiation to decay to a safer level before handling it. 
The exponential decay law is a helpful ally. 
Stay as far away from the source as practical. The flux of a point isotropic 
source decreases as l / r2  ( r  = distance away from the source). 

The shielding medium that should be used is not the same for all types of 
radiation. Here are simple suggestions for the three types of radiation consid- 
ered in this book. 

Charged particles. Charged particles have a definite range. Therefore, to stop 
them completely, a shielding material with thickness at least equal to the range 
(in that material) of the most penetrating particle should be placed between the 
source and the worker. A few millimeters of metal will definitely stop all 
charged particles emitted by radioisotopic sources. Some bremsstrahlung may 
get through, though. 

Gammas. A beam of gammas going through a material of thickness t is 
attenuated by a factor exp(-pt), where p is the total linear attenuation 
coefficient of the gamma in that medium. The higher the value of p is, the 
smaller the thickness t that reduces the intensity of the beam by a desired 
factor. In theory, the beam cannot be attenuated to zero level. In practice, the 
attenuation is considered complete if the radiation level equals the background. 

The attenuation coefficient p increases with the atomic number of the 
material. The most useful practical element for gamma shielding is lead (2 = 82). 
Lead is relatively inexpensive, and it is easy to melt it and make shields with it 
having the desired shape, size, and thickness. 

Neutrons. Shielding against neutrons is more difficult than shielding either 
against charged particles or photons. If the source emits fast neutrons, the first 
step is to provide a material that will thermalize the neutrons. Such materials 
are water, wax, or paraffin. 

Thermalized neutrons are easily absorbed by many isotopes. Examples are 
115 113 

In, Cd, and 'OB. Of these, the most practical to use is boron. It can be used 
in powder form or be dissolved in water or liquid wax. A very simple but 
effective shield for a source of fast neutrons is 0.15-0.30 m of wax or paraffin to 
which boron has been added. The thickness of this borated material may 
change, depending on the strength of the source and the amount of boron 
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added. Cadmium is very useful in sheet form. A cadmium sheet 3-6 mm (d- 
in) will stop a thermal neutron beam almost completely. Finally, shields have 
been manufactured that are flexible, like rubber, yet are excellent neutron 
a t t en~a tors .~~  

PROBLEMS 

16.1 What is the total dose received by an individual standing in front of the open beam port of a 
research reactor for 10 s under the radiation levels listed in the figure below? 

Core 
C- 

I 10' fast neutronsl(ma s) 

lo9 thermal neutrons/(ma s) 
lo7 yl (m's)  (E, = 2 MeV) 
10' yl(ma S )  (Ey = 0.5 MeV) 

lO1O pl(ma s) (ED, ,,, = 1.2 Mev) 

16.2 What is the dose rate per curie of 24Na if it is shielded by 0.025 m of lead as shown below? 

24 Na emits a 1.37-MeV gamma and a 2.75-MeV gamma 100 percent of the time, betas with 
Em,, = 4.17 MeV 0.003 percent of the time, and betas with Em,, = 1.389 MeV 100 percent of the 
time. 

16.3 As a result of carelessness, a worker inhaled 1 yg of " '~ rn .  Considering alpha particles only 
and assuming that the americium is spread uniformly in the bones, (a) what is the dose rate at the 
time of the accident and (b) what is the total dose to that individual? For 2 4 ' ~ m ,  T, = 433 years and 
T, = 200 years, mass of bones = 10 kg. 

16.4 What is the dose rate 0.30 m away from 1 Ci of 6 0 ~ o  if (a) the attenuating medium is air, and 
(b) if the source is shielded by 0.01 m of aluminum? 

16.5 What is the thickness of a lead container that will result in a dose rate at its surface of 2.5 
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mrem/h = 2.5 X lo-' Sv/h, if it is used to store 1 Ci of Iz4sb? lZ4sb emits the following gammas: 

Energy Energy Energy 
(MeV) Intensity (%) (MeV) Intensity (%) (MeV) Intensity (%) 

0.603 97 0.967 2.4 1.37 5 
0.644 7 1 .048 2.4 1.45 2 
0.720 14 1.31 3 1.692 50 

2.089 7 

16.6 What is the dose rate due to the lZ4sb of Prob. 16.5 at a distance equal to the thickness of the 
container, if the attenuating medium is air? 
16.7 A 1-Ci sample of 6 0 ~ o  is stored behind a concrete and lead shield as shown below. What is the 
dose rate at point P? 

Concrete 

16.8 The isotope 9 9 m ~ c  is used in uivo for diagnostic purposes in humans. It emits X-rays with 
energy 140 keV and betas with Em,, = 0.119 MeV. If a person is injected with 1 pCi of this isotope, 
what is the total dose to the brain, assuming that all the isotope is uniformly distributed there? 
(Mass of the brain = 1.5 kg.) 
16.9 If all the water in the human body were suddenly changed to T20(T E ~ H ) ,  what would be the 
total dose to that individual? Assume 61 percent of the body is water. 
16.10 If 1 pCi of 2 3 9 ~ ~  is inhaled by breathing and gets into the lungs, what is going to be the total 
dose to that individual? (T, = 24,000 years, T, = 200 years, mass of lungs = 1 kg.) 
16.11 Calculate the total dose rate at the center of a spherical submarine submerged in contami- 
nated water with activity 1 Ci/m3 of I3'cs. The submarine is made of steel 0.025 m thick. Its radius 
is 1.5 m and it is filled with air at 1 atm. 
16.12 What is the annual dose to a person due to the 4 0 ~  found in every human body? The isotopic 
abundance of 4 0 ~  in potassium is 0.0119 percent. The human body contains 1.7 X kg of 
potassium per kg. 40K emits the following radiations: 

Pa~tiele Energy (MeV) Intensity (%) 

16.13 A "hot particle" (a tiny speck of radioactive material) was lodged on the palm of a radiation 
worker, from where it was removed after 10 min of scrubbing. What is the estimated total dose 
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received by the tissue exposed to this radiation if it was determined that the radioactivity came from 
a beta emitter with Em,, = 1.7 MeV, half-life equal to 2 days, and initial estimated activity equal to 
1.3 mCi? 

16.14 Show that the doubling dose for radiation-induced mutations is between 0.5 and 2.5 Sv 
(50-250 rem) if the probability to induce a mutation by irradiation is 2-0.4 per Sv. 
16.15 Prove that the probability that a fission fragment will escape from one side of a fissile deposit 
is t ( l  - x/R), where R is the average range of fission fragments and x is the depth in the deposit 
where the fission took place. 

16.16 Prove that the total number of fission fragments escaping from one side of a fissile deposit of 
thickness t ( t  < range) is equal to F(t - t2/2R), where F is the number of fissions per unit volume. 
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APPENDIX 

A 

USEFUL CONSTANTS AND 
CONVERSION FACTORS 

Table A1 Useful Constants 

Constant 
Symbol or 
definition Value 0.6022169 

Avogadro's number 
Elementary charge 
Atomic mass unit 
Atomic mass unit 
Electron rest mass 
Proton rest mass 
Neutron rest mass 
Planck constant 
Boltzmann constant 
Standard atmosphere 
Finestructure constant 
Classical electron radius 
Bohr radius 
Compton wavelength 

NA 
e 
U 

of mass ':C 
m 

MP 
Mn 
h 
k 

0.6022045 X 10" at/mol 
1.6021917 X 10-l9 C = 4.803250 X 10-'Oesu 
1.66040 x kg = 931.481 MeV 

9.109558 X kg = 0.51 1 MeV 
1.672622 X 10-17 kg = 938.258 MeV 
1.674928 X kg = 939.552 MeV 
6.626196 X lo-% J.s 
1.380622 X lo-" J/K 
101,325 Pa = 14.696 Ib/inz 
11137.14 
2.818042 X lO-I5 m 
0.529177 X 10-lo m 
2.424631 X lo-'% 

Table A2 Conversion Table 

To convert Multiply by To obtain (symbol) 

MeV 
Pounds (Ib) 
Inches 
Lb/ina 
Btu/h 
Pounds force 
Flux [particles/(cmz s)] 
Density (g/cm3) 
r (cm' lg) 
r (cm-' 
z (an-' ) 
Range (dcm') 
Curies 
Rad 
Rem 

Joules (1) 
Kilograms (kg) 
Meters (m) 
Pascal (Pa) 
Watts (W) 
Newtons (N) 
Flux (particles/ma . s) 
Density (kg/m3) 
r (ma Fg) 
r (m-') 
z (m-') 
Range (kglm') 
Becquerels (Bq) 
Grays (GY) 
Sieverts (Sv) 
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Table A3 Prefur and SI Symbols of 
Multiplication Factors 

10" tera (T) 10- micro (p)  
lo9 giga (G)  1 0-9  nano (n) 
lo6 mega (M) 10- " pic0 (p) 
lo3 kilo (k) 10-IS femto (f) 
10- milli (m) 10-la atto (a) 



APPENDIX 

B 

ATOMIC MASSES AND OTHER 
PROPERTIES OF ISOTOPES 

a, (b) 
Isotopic Natural Density of for (n, 7 )  
mass abundance element (in (0.0253-eV 

Name Symbol Z A (u)t (%) l o 3  kg/m3) neutrons) 

Aluminum 
Antimony 

Argon 

Arsenic 
Beryllium 
Bismuth 
Boron 

Cadmium 

Carbon 

Cesium 
Cobalt 
Copper 

Gadolinium 

2.73 
6.62 

Gas 

5.73 
1.85 
9.8 
2.3 

8.65 

1.60 

1.9 
8.8 
8.96 

7.95 
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on (b) 
Isotopic Natural Density of for (n, y) 
mass abundance element (in (0.025 3-eV 

Name Symbol Z A (u) t  (%) lo3 kg/m3) neutrons) 

Germanium 

Gold 
Helium 

Hydrogen 

Indium 

Iodine 
Iron 

Lead 

Lithium 

Mercury 

Nickel 

Nitrogen 

Oxygen 

Phosphorus 
Platinum 

5.36 

19.32 
Gas 

Gas 

7.31 

4.93 
7.87 

11.34 

0.53 

13.55 

8.90 

Gas 

Gas 

1.82 
21.45 

3.68 
0.98 
14.0 
0.45 
0.2 
98.8 
5,327.0 
- 

0.332 
0.0005 
11.1 
193.2 
6.2 
2.3 
2.7 
2.5 
1.2 
0.17 
0.0305 
0.709 
< 0.03 
245 (n, o r )  
0.037 
3,100.0 
0.018 
2,500.0 
50.0 
50.0 
4.5 
0.4 
4.4 
2.6 
2.0 
14.2 
1.5 
1.81 
0.00004 
0.0001 78 
0.04 
0.00016 
0.19 
150.0 
8.0 
1.2 
27.0 
1.0 
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0, (b) 
Isotopic Natural Density of for ( n ,  7) 
mass abundance element (in (0.025 3-eV 

Name Symbol Z A (u)? (%) 1 O3 kg/m3 ) neutrons) 

198 
Rhodium Rh 45 103  
Silicon Si 14 28 

29 
30  

Silver Ag 47 107 
109 

Sodium Na 11 23 
Uranium U 92 234 

235 
238 

tlsotopic masses from Nuclear Heat Transfer by M .  M .  El-Wakil, International Textbook Co., 
N.Y. (1971). 

*same number gives density in g/cm3 or l o 3  kg/m3. 





APPENDIX 

C 

ALPHA, BETA, AND GAMMA SOURCES 
COMMONLY USED 

Table C1 Alpha Sources 

Isotope Half-life Alpha energy (Mew Relative intensity? (%) 

=I0 Po 138.38 d 5.304 
a w U  2.446 x lo5 y 4.774 

4.723 
ass u 7.038 x 10' y 4.397 

4.367 
ass u 4.468 X l o9  y 4.196 

4.149 
239 PU 2.413 X lo4 y 5.155 

5.143 
5.105 

Am 432.02 y 5.486 
5.443 

lS2 Cf 2.646 y 6.1 18 
6.076 

?only intensities greater than 10 percent are listed. 

Table C2 Electron and Beta Sources 

Isotope Half-life Type of particle Energy (MeV) 

H 12.33 y P -  0.0 186 
l4 C 5730 y 0- 0.1565 

P 14.28 d 0- 1.7104 
35 S 87.4 d P -  0. 1675 
36 c1  3.0 x lo5  y 0- 0.7095 
O9 Sr 50.55 d P- 1.463 

Y 64 h 0- 2.282 
99 Tc 2.14 X lo5  y P-  0.292 
63Ni 100 y P‘ 0.0659 
l r 3  Sn 115.1 d IC electron EK = 0.3625 

EL = 0.3875 
137 cst 30.17 y IC electron EK = 0.626 

EL = 0.656 
207 Bi 38 Y IC electron EK = 0.4816, 0.5558 

EL = 0.9754, 1.0496 
EM = 1.060 

t l s 7 c s  is also a 0- emitter. 

595 



Table C3 Gamma Rays Used as Reference Standards for Energy Calibrationt 

Parent Gamma-ray Parent Gamma-ray Parent Gamma-ray Parent Gamma-ray 
nuclide energy (keV) nuclide energy W V )  nuclide energy (keV) nuclide energy (keV) 



t ~ r o r n  R. L. Heath, "Gamma Ray Spectrum Catalogue, Ce(Li) and Si(Li) Spectrometry Vol. 2," Aerojet Nuclear Co. Report ANCR-1000-2, USAEC (1974).  





APPENDIX 

D 

TABLES OF PHOTON 
ATTENUATION COEFFICIENTS 

Table D l  Total Mass Attenuation Coefficients in cm2 / gt for Gamma R ~ Y S $  

Photon 
energy 
(MeV) H Be C N 0 Na 
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Table D l  Total Mass Attenuation Coefficients in cm2 / gt for Gamma ~ a y s *  
(Continued) 

Photon 
energy 
(MeV) A 1 Si Fe Cu P b Na l 

Compact Muscle, Pyrex Lucite 
Air " 2 0  bone striated concrete glass (CsH,Oz)n 
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Table D l  Total Mass Attenuation Coefficients in cm2 / gt for Gamma ~ a ~ s *  
(Continued) 

Photon 
energy Compact Muscle, Pyrex Lucite 
(MeV) Air H a 0  bone striated concrete glass (C,%Oa)n 

-- 
1.00 + 00 6.36 - 02 7.07 - 02 6.75 - 02 7.00 - 02 6.37 - 02 6.33 - 02 6.87 - 02 
1.50 + 00 5.18 - 02 5.75 - 02 5.50 - 02 5.70 - 02 5.19 - 02 5.16 - 02 5.59 - 02 
2.00 + 00 4.45 - 02 4.94 - 02 4.73 - 02 4.89 - 02 4.48 - 02 4.44 - 02 4.80 - 02 
3.00 + 00 3.58 - 02 3.97 - 02 3.83 - 02 3.93 - 02 3.65 - 02 3.6 1 - 02 3.85 - 02 

1.00 + 01 2.04 - 02 2.22 - 02 2.26 - 02 2.19 - 02 2.31 - 02 2.22 - 02 2.1 1 - 02 

t ~ u l t i ~ l y  by lo-' to  obtain m1 /kg. * ~ r o m  J. H. Hubbell, "Photon Cross Sections, Attenuation Coefficients, and Energy Absorption 
Coefficients from 10 keV t o  100 GeV," NSRDS-NBS 29 C (1969). 

S ~ e a d  X 10.' 

Table D2 Mass Energy Absorption Coefficients in cm2 / gt for Gamma ~ a y d  

Photon 
energy 
(MeV) H Be C N 0 Na 
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Table D2 Mass Energy Absorption Coefficients in cm2 / gt for Gamma 
(Continued) 

Photon 
energy 
(MeV) H Be C N 0 N a 

Compact Muscle, Pyrex Lucite 

H z o  bone striated Concrete glass (CsH,Oi)n 
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Table D2 Mass Energy Absorption Coefficients in cm2 / gt for Gamma ~ a ~ s '  
(Continued) 

Photon 
energy Compact Muscle, Pyrex Lucite 
(MeV) H z 0  bone striated Concrete glass (C, H802)n 

t ~ u l t i ~ l ~  by 10" t o  obtain m2 /kg. 
t ~ r o m  J. H. Hubbell, "Photon Cross Sections, Attenuation Coefficients, and Energy Absorption 

Coefficients from 10 keV to  100 GeV," NSRDS-NBS 29 C (1969). 
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TABLE OF BUILDUP FACTOR CONSTANTS 

Coefficients of the Berger Equation for Dose Buildup Factors 
B = 1 + a p r  exp(bPr)+ 

concrete$ ~ i r  5 water 8 

E (MeV) a b a b a b 

0.015 0.0 1 0.029 0.08 -0.034 0.09 -0.036 
0.02 0.03 0.04 1 0.23 -0.032 0.26 -0.032 
0.03 0.10 -0.036 0.93 -0.009 1.01 -0.006 
0.04 0.26 0.035 2.40 0.018 2.58 0.024 
0.05 0.52 -0.026 4.05 0.050 4.36 0.057 

0.06 0.78 -0.008 5.27 0.075 5.59' 0.082 
0.08 1.42 0.007 6.11 0.102 6.47 0.108 
0.1 1.83 0.028 5.93 0.113 6.11 0.120 
0.15 2.19 0.054 4.70 0.121 4.88 0.125 
0.2 2.20 0.065 3.94 0.113 4.13 0.1 18 

0.3 2.03 0.067 3.10 0.094 3.18 0.096 
0.4 1.87 0.061 2.61 0.079 2.67 0.080 
0.5 1.73 0.055 2.29 0.067 2.32 0.068 
0.6 1.60 0.049 2.05 0.058 2.07 0.05 9 
0.8 1.41 0.040 1.71 0.045 1.74 0.045 

1 1.27 0.032 1.50 0.035 1 .50 0.036 
1.5 1.02 0.02 1 1.16 0.021 1.16 0.02 1 
2 0.89 0.014 0.97 0.01 3 0.97 0.013 
3 0.71 0.007 0.75 0.005 0.74 0.005 
4 0.59 0.004 0.61 0.001 0.62 0.000 

5 0.49 0.004 0.53 -0.002 0.52 -0.002 
6 0.45 0.002 0.47 -0.004 0.47 -0.005 
8 0.36 0.001 0.37 -0.004 0.38 -0.006 

10 0.30 0.003 0.31 -0.004 0.31 -0.005 
15 0.21 0.004 0.23 -0.006 0.23 - 0.008 

t ~ o o d  up to  40 mean free paths, for point isotropic source in infinite medium. 
$prom A. B. Chilton, Nuc. Sci. Eng. 69:436 (1979). 
$From A. B. Chilton, C. M. Eisenhauer, and G. L. Simmons,Nuc. Sd. Eng. 73:97 (1980). 
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Absorption coefficients (see Attenuation 
coefficients) 

Accuracy, 3, 5 
Activation analysis: 

charged particle reactions, 526 
counting the sample, 531 
interference reactions, 536 
neutron reactions, 525 
neutron sources, 529 
photon sources, 529 
photonuclear reactions, 527 
sample irradiation, 530 
sample preparation, 526 
sensitivity, 534 
standard error, 532 

Activation equation, 481 
Activator, 212 
Activity, 105 

minimum detectable, 71 
specific, 105 

ALARA, 567,583 
Alpha, 90 

detector, long-range, 204 
range, 134 

a particle (see Alpha) 
Amplifier, 14, 343 

coarse gain, 16 
fine gain, 16 
nonlinearity, 343, 344 

Analog-to-digital converter (ADC), 308,345, 348 
nonlinearity, 346, 347 

Annihilation, 102 
gammas, 157 

Annual limit of intake (ALI), 569 
Anticoincidence, 331 

Antineutrino, 86, 98 
Antiparticle, 102 
Arithmetic mean, 31, 33 

standard error, 50 
Atomic mass unit, 87 
Atomic number, 86 

effective, 131, 139, 147 
Atoms, 83 

radius, 83 
energy levels, 84 

Attenuation coefficient: 
beta, 142 
gamma, 158, 159 
gamma, for compounds, 160 

Average, 31 
binding energy per nucleon, 90 
cross section, 173 
lifetime of nucleus, 105 
of a function, 31 

Background radiation, 541, 570 
Barn, definition, 167 
Bateman equation, 107 
Beta particle, 98, 99 

average energy, 100 
mass absorption coefficient, 142 

BF, counter, 469 
BF, sensitivity, 472 
Binding energy, 87 

of proton, 89 
of neutron, 89 
of alpha, 90 
average per nucleon, 90 
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Binomial distribution, 35 
mean, 36 
standard deviation, 37 
variance, 37 

Biological effects, 562 
Biological half life, 559 
Bonner sphere, 579 
Bragg condition, 421 
Bragg-Kleeman rule, 134, 135 
Bremsstrahlung, 123, 129, 150 
Buildup factors, 162, 164 

Berger formula, 165 
dose, 164 
energy deposition, 164 
geometric progression (GP), 165 
number, 164 
Taylor formula, 165 

CaF,(Eu), 217 
Capacitance, 318 
Carrier, mobility, 243 
CDF, 29 
CdTe detector, 419 
Cell, 563 
Central limit theorem, 45 
Cerenkov, detector, 122 
Channel electron multiplier (CEM), 454 
Charged particles, 121 
Chauvenet criterion, 61 
X 2  criterion, 59, 60 
Chromosome, 563 
Circuit: 

differentiating, 321 
integrating, 324 
LR, 319 
RC, 319 

Coincidence, 331 
accidental, 335 
figure of merit, 336 
resolving time, 333 
width, 333 

Committed dose equivalent, 569 
Committed effective dose equivalent, 569 
Compensated ion chambers, 510 
Compton coefficient, 156 

(See also Cross section) 
Compton, cross section, 156 
Compton edge, 387 
Compton, effect, 154 
Compton scattering, 154 
Compton-suppression spectrometer, 388 
Conduction band, 212 
Conductors, 236, 238 

Confidence limits, 52, 53 
Corrections of measurements (see Measure- 

ment) 
Correlation, 33 
Correlation coefficient, 34 
Coulomb interactions, 122 
Counter (see Detector) 
Counter, gas-flow, 201 
Counter, internal gas, 205 
Counting rate, 287 

background, 65 
combining of, 67 
gross, 65 
net, 65 
true, 74 
true net, 75 

Covariance 33, 34 
Cross section: 

average, 173 
Compton, 156 
macroscopic, 169 
microscopic, 167, 169 
pair production, 157 
photoelectric, 153 

Crystal spectrometer, neutron, 503 
Crystal spectrometer, X-ray, 421 
CsI (Na), 217 
CsI (TO, 217 
Cumulative distribution function (CDF), 29 
Current chamber, 177 
Current-type system, 7 
Curve fitting, 354 

exponential, 355 
linear, 355 
power, 355 

Cutie pie, 573 

DAC, 569 
Data smoothing, 373 
Dead time, 73 

MCA, 346 
measurement, 75 

Decay: 
alpha, 96 
beta, 98 
P', 100 
P-,  98 
constant, 103 
gamma, 94 
law, 104 
nuclear, 92 
statistical nature of, 5 

Deep dose equivalent, 569 
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Delay line, 325, 334 
Delayed gammas, 115 
Delta function, 364 
Grays, 123 
Derived air concentration (DAC), 569 
Detector, 7 

BF,, 469 
boron-lined, 473 
CdTe, 259, 419 
compensated ion chamber, 510 
dead time of, 8 
diffused junction, 252 
E(dE/du), 455 
energy resolution, 8 
fission chamber, 477 
gas-filled, 177 

geometry, 207 
pressure, 208 
window, 208 

gas-flow, 201 
Ge, 258 
Ge(Li), 258 
GM, 199 
3 ~ e ,  475 
HgI,, 259, 419 
ionization, 181, 183 
6 ~ i ,  474 
MWPC, 461 
phoswich, 232 
position-sensitive, 459 
proportional 189 
scintillation (see Scintillators) 
semiconductor, 235 
Si(Li), 254 
SPND, 511, 512, 517 
surface barrier, 252 

Detector efficiency, 8, 283, 285 
absolute total, 390 
BF,, 471 
double escape peak, 390, 391 
effect of density, 284 
effect of particle energy, 284 
Freeman-Jenkin equation, 409 
full-energy peak, 390 
intrinsic total, 390 
McNelles-Campbell equation, 410 
Mowatt equation, 409 
NaI(Tl), 392, 394 
relative, 391 
single-escape peak, 391 

Detector pulse height, 8 
Detector response, 364 
Differentiating circuit, 321 
Discharge, electric, 180 

Discriminator, 17, 18 
Dispersion indexes, 33 
Distributions, 28 

binomial, 35 
Fermi, 237 
Gaussian, 39 
Lorentzian, 46 
mean of, 31 
median of, 31 
mode of, 30 
Poisson, 37 
standard normal, 43 

DNA, 563 
Dose: 

absorbed, 543 
equivalent (H), 546 
from charged particles, 547, 555 
from neutrons, 552 
from photons, 549 

geometry factor, 557 
Dosimeter: 

activated foils, 582 
Bonner sphere, 579 
bubble detector, 580 
EPD, 581 
SSTR, 576 
TLD, 572,575 

Doubling dose, 567 
Drift velocity: 

electrons, 184 
ions. 184 

E(dE/dx) detectors, 455 
Effective: 

atomic number, 131, 139 
charge, 147 
dose equivalent, 568 
half-life, 559 
molecular weight, 134 

Efficiency (see Detector efficiency) 
Electron: 

backscattering, 439 
capture (EC), 101 
electron-hole pair, 240 
electron-ion pair, 177 

average energy for production, 189 
range, 138 

Electronic noise, 303 
Electronic personal dosimeter (EPD), 581 
Electrostatic spectrometer, 458 
Energy, binding, 87 

(See also Binding energy) 
Energy calibration, Schmitt method, 450 
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Energy levels: 
atomic, 84, 
nuclear, 91 

Energy loss, mechanisms, 122 
Energy loss, 124 

(See also Stopping power) 
Energy resolution, 300, 305 

crystal spectrometer, 421, 504 
electron detectors, 441 
Ge detector, 411 

Energy spectrum, 293 
area under the peak, 415 
differential, 293, 296 
integral, 294, 295 
measured, 299 
source, 299 

Energy states (see Energy levels) 
Energy straggling, 433, 434, 437 
EPD, 581 
Error: 

definition, 3 
determinate, 5 
probable, 49 
propagation, 55, 56 
radiation measurements, 62 
random, 5 ,6  
reduction, 68 
relative importance, 70 
standard, 49, 56 
standard, of single measurement, 51 
statistical, 5, 6 
systematic, 5 
type I, 71 
type 11, 71 
types, 5 

Error function, 42, 44 
Event, 23, 25 
Excitation, 85, 123 
Exciton, 213 
Expectation value (see Average) 
Exposure, 543 

Fano factor, 301, 411 
Flux-to-dose rate conversion factor: 

betas and electrons, 548 
neutrons, 553 
photons, 550, 556 

Fermi distribution, 237 
FET, 341 
Field-effect-transistor (see FET) 
Fission, 113 

betas, 115 
chamber, 477 

foil preparation, 452 
fragments, 115 
neutrinos, 116 
neutrons, 116 
yield, 116 

Fluorescent radiation, 102 
Folding, 363, 365 
Frequency function, 29 
Full width at half maximum (FWHM), 42, 300 

Gamma: 
absorption coefficient, 161 
attenuation (see Attenuation coefficients) 
backscatter peak, 387 
buildup factors, 162, 164 
double escape peak, 387 
energy deposition, 382, 385 
full energy peak, 387 
gammas, total, 158 
Ge detector, 400 
interactions, 150 
mean free path, 160 
NE, 213, 398 
single escape peak, 387 

Gamma detection with: 
Ge detector, 400 
NaI(T1) scintillator, 392 
NE-213 scintillator, 398 

Gaussian distribution (see Normal distribution) 
Ge: 

properties, 249 
resistivity, 247 

Ge detector, 258, 400 
efficiency, 401, 405, 406, 407, 408 
energy resolution, 411 
energy spectra, 413 
escape peaks, 415 

Geiger-Muller (GM) counter, 181 
external quenching, 199 
plateau, 195 
pulse, 200 
quenching, 199 
self-quenching, 199 

Geiger-Muller (GM) region, 180 
Ge(Li) detector, 258 
Gene, 563 
Genetic effects, 566 

doubling dose, 567 
Geometry factor (see Solid angle) 
Goodness of data, 58 
Gray (Gy), 543 
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Half-life: 
biological, 559 
effective, 559 
of nucleus, 105 
partial, 106 

Health physics, 541 
Health physics instruments, 573 
Heavy ion, calibration sources, 452 
HgI, detector, 259, 419 
High pass filter, 323 
High-voltage: 

plateau, 195 
slope, 197 

Hole, 240 
HVPS. 9 

IC electron spectrum, 443 
Impedance, 321 
Indexes: 

dispersion, 33 
location, 30 

Inductance, 318 
Insulators, 236, 238 
Integrating chamber, 177 
Integrating circuit, 324 
Internal conversion (IC), 94, 96 
Interpolation, 355 

Lagrange formula, 356 
error, 356 

Ion beams, pulsed, 509 
Ionization, 85, 123 

chamber, 181, 183 
potential, 85, 86 
potential, mean, 126 
primary, 178 
region, 179 
secondary, 178 

Ionization chamber: 
current, 187 
pulse, 183 

Isobar, 86 
Isomer, 87 
Isotone, 87 
Isotope, 87 

Kurie plot, 443 

Lagrange formula, 356 
Least-squares fit, 359 

general functions, 361 
linear, 359 

nonlinear, 359 
straight line, 360 

Light pipe, 228 
LiI(Eu), 217 
Low pass filter, 325 
LR circuit, 320 
LRAD, 204 

Macroscopic cross section, 169 
((See also Cross section) 

Magnetic rigidity, 456 
Magnetic spectrometer, 456 
Mean, 31 

(See also Average) 
Mean free path: 

gamma, 160 
neutron, 170 

Measurement: 
absolute, 265 
accuracy of, 3 
anticoincidence, 331 
coincidence, 331 
detector effects, 282 

efficiency, 283 
window, 282 

error of, 3 
geometry effects, 267 
outcome, 25 
precision of, 3 
relative, 265 
solid angle, 268 
source effects, 277 

backscattering factor, 279 
self-absorption, 277 

Median, 31 
Microscopic cross section, 167, 169 

(See also Cross section) 
Minimum detectable activity (MDA), 71, 73 
Mobility of carriers, 243 
Multichannel analyzer (MCA), 21, 307 

calibration, 310 
dead time, 346 
multichannel scaling (MCS), 307 
pulse-height analysis, 307 

Multiparameter analyzer, 347 
Multiplication factor, gas, 179 
Multiwire proportional counter (MWPC), 461 

NaI(TI), 216 
NE-213,398 
Neutrino, 100 
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Neutron, 89 
absorption, 166 
Bonner sphere, 579 
bubble detector, 580 
chopper, 508 
cross section, average, 173 
cross sections, 167 
crystal spectrometer, 503 
detection by exothermic reactions, 468 
detection by organic scintillator, 494 
detection by proton recoil, 467 
detection by threshold reactions, 496 
foil activation, 478, 482, 582 
interactions, 166, 525 
reaction rate, 171, 172 
scattering, 166 
sources, 528, 529 
time-of-flight method, 505 

Neutron detection with: 
BF, counter, 469 
boron-lined counter, 473 
Bonner ball, 475, 579 
crystal spectrometer, 503 
3 ~ e  counter, 475 
6 ~ i ~ ,  474 
(n, a) reaction, 469 
(n, Y )  reaction, 478 
(n, p) reaction, 484, 489 
proportional counter, 489 
proton recoil, 484 
scintillators, 474, 494 
self-powered neutron detectors, 511, 512, 517 
SSTR, 576 
threshold reactions, 496 
time-of-flight, 505 
TLD, 576 

Nuclear instrument module (NIM), 9 
Noise, electronic, 8, 303 
Nonstochastic effects, 564 
Normal distribution, 39 

CDF, 41 
mean, 41 
standard, 43 
standard deviation, 41 
variance, 41 

Nuclear: 
decay, 92 

(See also Decay) 
mass, 87 
radius, 87 
reactions, 107 

kinematics, 109 
threshold, 113 

Nuclei, 86 
Nucleic acids, 563 

Nucleus, compound, 108 

Oscilloscope, 16 

Pair: 
electron-hole, 240 
production, 157, 386 

Pair production coefficient, 157 
(See also Cross section) 

PDF, 29 
Peak-to-Compton ratio, 404 
Peak-to-total ratio, 390 
Phoswich detector, 232 
Photoelectric effect, 153 
Photoelectric: 

coefficient, 153 
(See also Cross section) 

cross section, 153 
Photomultiplier tube, 211, 224 

dark current, 226 
electron multiplication, 227 
p-metal, 227 
photocathode, 225 

Photon, interactions, 150 
Phototube, 211 

(See also Photomultiplier tube) 
p-n junction, 246, 250 

capacitance, 251 
reverse bias, 249 

Poisson distribution, 37 
mean, 39 
standard deviation, 39 
variance, 39 

Positron, 100 
Preamplifier, 11, 339 
Precision, 3, 5 
Primary ionization, 178 
Probability: 

addition law, 26 
definition, 23 
density function (PDF), 29 
distributions, 28 
multiplication law, 26 
theorems, 25 

Prompt gammas, 115 
Proportional counter, 181 

for neutron detection, 489 
for X-ray detection, 399 
gas multiplication, 189, 192 
multiwire (MWPC), 461 
pulse, 194 

Proportional region, 180 
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Proton recoil method, 467, 484 
Pulse height defect, 433, 447 
Pulse shape discrimination, 337 
Pulse shaping, 326, 327 
Pulse timing, 328, 418 

constant fraction, 331 
jitter, 329 
leading edge, 329 
walk, 329 
zero-crossing, 330 

Pulse-type system, 7, 8 

Quality factor (Q), 545 

Rad, 543 
Radiation, 1 

biological effects of, 562 
nonstochastic, 564 
stochastic, 564, 566 

cancer incidence, 566 
exposure limits, 569 
fluorescent, 102 
ionizing, 1 
nonionizing, 1 
protection guides, 567 
statistical nature of, 2 

Radiation area, 582 
Random variable, 34 

continuous, 28, 29 
discrete, 28, 29 

Range, 132 
alpha, 134 
a, p, d ,  t ,  133 
electrons, 138 
extrapolated, 134 
heavy ions, 149 
mean, 134 
protons, 137 
straggling, 438 

Rate meter, 206 
RC circuit, 319 
Reaction rate, 171, 172 
Reactions, 107 

(See also Nuclear reactions) 
Recombination region, 179 
Rejection of data, 61 
Relative biological effectiveness (RBE), 545 
Relativistic kinematics, 80 

kinetic energy, 81 
momentum, 81 

Relativity postulates, 80 
Rem, 546 
Rem ball, 579 

Resistance, 318 
Resolving power, crystal spectrometer, 504 
Response function, 304 

alpha detector, 446 
Ge detector, 413 
NaI(TI), 396 

Restricted area, 582 
RNA, 563 
Roentgen (R), 543 

Saturation activity, 480, 531 
Scaler, 20 
Scattered beam, 163 
Scintillation counter: 

background, 231 
dead time, 230 
organic for neutron detection, 494 

Scintillation process, 218 
Scintillators, 21 1 

Anthracene, 220 
CaF,(Eu), 217 
crystal, 212, 215 
CsI(Na), 217 
CsI(TI), 217 
gaseous, 222 
inorganic, response, 222 
LiI(Eu), 217 
NaI(TI), 216 
organic, 218, 219, 220 
organic liquid, 220 

response, 223 
photon emission rate, 215 
plastic, 221 
trans-stilbene, 220 

Secondary ionization, 178 
Self-powered neutron detectors (SPND), 511, 

512, 517 
Semiconductor detectors, 235 

radiation damage, 260 
Semiconductors, 236, 239 

acceptor states, 245 
conductivity, 243 
donor states, 245 
doping, 245 
energy gap, 241 
extrinsic, 245 
intrinsic, 245 
n-type, 245 
p-n junction, 246 
p-type, 245 

Si: 
properties, 249 
resistivity, 248 

Sievert (Sv), 546 
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Signal-to-noise ratio, 327 
Si(Li) detector, 254 

FWHM, 420 
X-ray, 420 

Single-channel analyzer (SCA), 17, 20 
Smoothing of data, 373 
Solid angle, 268, 269, 273, 274, 276 
Solid-state track recorders (SSTR), 576 
Source backscattering factor, 279, 280, 281 
Spectrometer: 

calibration, 422 
Compton suppression, 388 
crystal, neutron, 503 
crystal, X-ray, 421 
electrostatic, 458 
magnetic, 456 

Spectrum (see Energy spectrum) 
Standard error, 48 

of average, 63 
of counting rates, 64 

Standard normal distribution, 43 
Stochastic effects, 564 
Stopping power, 124 
a, p, d ,  t ,  125 
compounds, 131 
density effect, 127 
electrons, 125 
heavy ions, 144 
positrons, 125 

Surface barrier detector, 252 

TAC, 336 
Thermoluminescent dosimeters (see TLD) 
Threshold reactions, 496, 499 
Time-of-flight, 505 

figure of merit, 507 
spectrometer, 453 

Time-to-amplitude converter (see TAC) 

Timer, 21 
TLD, 572,575 
Total effective dose equivalent (TEDE), 569-570 

Unfolding, 305, 364, 368, 371, 372 
FERDOR method, 488 
LSL-M2 method, 503 
proton recoil spectra, 487 
RDMM method, 502 
SAND-I1 method, 501 
SPECTRA method, 502 

Unscattered beam, 162 

Valence band, 212 
Variance, 33 

Weighting factors (w,), 568 
Working level (WL), 570 
Working level month (WLM), 570 

X-ray crystal spectrometer, 421 
Bragg condition 421 
energy resolution, 428, 429 
fluorescent, 427 
Johanson type, 427 
rocking curve, 425,426 

X-ray detection with: 
c~ystal spectrometer, 421 
proportional counter, 399 
scintillators, 392 
Si(Li) detector, 420 

X-rays, 1, 150 
X-rays, energy, 84 
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