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SYSTEMS BIOLOGY

Genome sequences are now available that enable us to determine the biologi-
cal components that make up a cell or an organism. The new discipline of sys-
tems biology examines how these components interact and form networks and
how the networks generate whole cell functions corresponding to observable
phenotypes. This textbook, the first devoted to systems biology, describes how
to model networks, how to determine their properties, and how to relate these
to phenotypic functions.

The prerequisite is some knowledge of linear algebra and biochemistry.
Though the links between the mathematical ideas and biological processes are
made clear, the book reflects the irreversible trend of increasing mathemati-
cal content in biology education. Therefore to assist both teacher and student,
Palsson provides problem sets, projects, and PowerPoint slides in an associ-
ated web site and keeps the presentation in the book concrete with illustrative
material and experimental results.

Bernhard Ø. Palsson is Professor of Bioengineering and Adjunct Professor of
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Preface

In 1995, the first full genome sequence became available, ushering in the
genome era. Since then, a large number of high-throughput technologies
have enabled us to define the molecular parts catalogs of cellular compo-
nents. Although these catalogs are still incomplete, it is now possible to
reconstruct, based on this and other information, genome-scale networks of
biochemical reactions that take place inside cells. This process of network
reconstruction, followed by the synthesis of in silico models describing
their functionalities, is the essence of systems biology.

The functions of reconstructed networks are defined by the interconnec-
tions of their parts. Since these connections involve chemical reactions,
they can be described by a stoichiometric relationship. The stoichiometric
matrix, which contains all such relationships in a network, is thus a con-
cise mathematical representation of reconstructed networks. This matrix
comprise integers that represent time- and condition-invariant properties
of a network. It may therefore be expected to represent a key in the study of
the functionalities of complex biochemical reaction networks. Its content
and associated information effectively constitute a biochemically, geneti-
cally, and genomically structured database.

This book is focused on the stoichiometric matrix. In order to satisfacto-
rily understand the material, good knowledge of linear algebra and of bio-
chemistry is needed. Most of the mathematical concepts and principles,
when properly interpreted, have a direct biological and chemical meaning.
This text thus tries to relate what might be seen as abstract mathematical
quantities to real biological and chemical features.

Like it or not, the ability to reconstruct genome-scale reaction networks
will firmly thrust biology into the domain of systems science. Not just
any systems science, but systems biology and bioengineering, where the
underlying biochemical and genetic processes set the stage. Biological ed-
ucation in the future will undoubtedly involve more mathematics, and

ix



x Preface

thus new generations of biologists should be able to readily deal with this
material.

This is a personal book. The author has been working on the construc-
tion of mathematical descriptions of complicated biochemical reaction
networks for more than 20 years. At the inception of this activity, the gen-
eral view was that such an exercise was purely theoretical and had no
real biological relevance. However, with the advent of the genome era, we
now have the necessary biological data to build realistic genome-scale net-
works and relate their properties to observable phenotypes. This field has
grown in scope over the last 5 to 10 years and has become quite broad.
In a way, this book was written by the author, for the author, in an at-
tempt to organize this field, the concepts it contains, what has been ac-
complished, and what may potentially lie ahead. Hopefully it will benefit
others.

The author has many people to thank for their help in preparing this text.
The biggest and most important acknowledgment is to his wife, Mahshid,
who has tolerated and accepted many hours of absence during which the
contents of this book were conceived, formulated, and brought into prac-
tice. Without her patience and support over the past 20 years, this book
would not have been possible.

Three individuals influenced my career development and thus con-
tributed to this text being written. As an undergraduate working in the
biochemistry laboratory of Sigmundur Gudbjarnason, I learned the won-
ders of the world of enzymes, their purification, and kinetic characteriza-
tion. During the analysis of data in his lab, I came to the realization that
enzymes are interesting catalysts, but just that. Hundreds if not thousands
of them had to come together to reproduce the living process that I was
so interested in. I thus selected chemical engineering as a field of study,
as it was the only major within which I could study life, chemical, and
systems sciences. I was fortunate to join Edwin Lightfoot’s laboratory for
my PhD studies. Although he had not worked much with systems analysis
in molecular biology, he immediately recognized its importance and was
willing to support me in my pursuit of such analysis for my PhD stud-
ies. Needless to say, systems analysis in biology in the early 1980s was
seen as a “dead-end career” and “professional suicide.” After joining the
University of Michigan as a faculty member I was forced to pursue other,
more fundable sources of work. In the early 1990s I became aware of Lee
Hood’s revolutionary impact on biology through the development of high-
throughput approaches. He became an inspiration through his vision and
leadership, and eventually a good friend. I am thankful for the positive
influence that these three individuals have had on my career development
and their impact on the development of the material in this book.



Preface xi

In my transition from the University of Michigan to the University of
California, San Diego (UCSD), I had the pleasure of being hosted by Jens
Nielsen and John Villadsen at the Technical University of Denmark in the
spring of 1996. During this four-month leave, sponsored by the Fulbright
and Ib Heinriksen foundations, I pondered the impact that the first full
genome-sequences would have, and as a result some of the conceptual
foundation for this book was laid down. In 2000, I was appointed as the
Hougen visiting professor at the University of Wisconsin. I prepared the
Hougen lecture series that fall. These lecture notes proved to be the first
outline of the material contained in this book.

The Whitaker Foundation generously supported the preparation of this
book through their Teaching Materials Program. It is very hard for pro-
fessors to prepare textbooks in today’s academic environment given the
general lack of staff support and the ever-growing demands on faculty
members’ time. Without the support of the Whitaker Foundation, this book
would not have been written.

Marc Abrams managed the technical coordination of this book. He cap-
tured most of the material (text, artwork, and references) and translated
it into a LATEX file for publication. He also prepared many of the origi-
nal illustrations. His patience, persistence, and perseverance during the
book-writing process has been much appreciated.

I have been fortunate to have had a series of outstanding students during
my stay at UCSD. Special thanks go to many of these excellent students
for helping out with several of the chapters in this book: Scott Becker,
Chapter 7 and Appendix B; Natalie Duarte, Chapter 3; Iman Famili, Chap-
ters 3, 6, 8, 10, and 14; Adam Feist, Chapter 15 and Appendix B; Markus
Herrgard, Chapters 4 and 16; Andrew Joyce, Chapter 4; Jason Papin, Chap-
ters 5, 9, and 13; Nathan Price, Chapters 9 and 14; Jennifer Reed, Chapters 3,
15, 16, and Appendix B; and Ines Thiele, Chapter 13. Thanks also to Henry
Kang for editorial assistance.

Four of my other students have been influential in the development of
this material: Joanne Savinell, who wrote the first comprehensive PhD
thesis on stoichiometric networks in the late 1980s; Amit Varma, who
built a biochemically comprehensive E. coli model in the early 1990s;
Jeremy Edwards, who de facto became the first “high-throughput in silico
biologist” by building the first genome-scale metabolic models in the late
1990s; and Christophe Schilling, who developed the extreme pathways in
the late 1990s and who decided that commercial-strength software and
services were needed for genome-scale network reconstruction and model
building. I am a cofounder of the resulting Genomatica, Inc. Homework
sets and network reconstructions related to this book will be posted on
http://systemsbiology.ucsd.edu.
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A few books have influenced my thinking over the years. The book by
Daniel Atkinson (CELLULAR ENERGY METABOLISM AND ITS REGULATION, 1977)
was my first exposure to the analysis of metabolism from a systems and
engineering perspective and had a strong influence early on in my career.
The book by Jens Reich and Evgeni Selkov (ENERGY METABOLISM OF THE CELL,
1981) had a profound influence on my early thinking. This book is concep-
tually rich and a pioneering effort toward the quantitative systems analy-
sis of biochemical reaction networks. The recent book of Antoine Danchin
(THE DELPHIC BOAT, 2003) is a masterful biological analysis of the contents
genomes and what they tell us. The many writings of Ernst Mayr (e.g., THIS

IS BIOLOGY, 1997) provide decades worth of the author’s perceptive think-
ing about the basic difference between biology and the physicochemical
sciences, a divide that systems biology now tries to bridge.

Many other individuals have directly or indirectly (willingly or un-
willingly) influenced the material in this book. They include Adam
Arkin, Laszlo Barabasi, Dan Beard, Sydney Brenner, Antony Burgard,
George Church, Frank Doyle, John Doyle, David Fell, David Galas, Igor
Goryanin, Vassily Hatzimanikatis, David Haussler, Leland Hartwell, Rein-
hard Heinrich, Jay Keasling, Marc Kirschner, Hioraki Kitano, Stefan Klamt,
Choul-Gyun Lee, Sang Yup Lee, William Loomis, Costas Maranas, Harley
McAdams, Terry Papoutsakis, Uwe Sauer, Mick Savage, Michael Savageau,
Stefan Schuster, Daniel Segré, Lucy Shapiro, Jurg Stelling, Gilbert Strang,
Shankar Subramaniam, and Masaru Tomita. Many thanks to these col-
leagues for the stimulating discussions over the years.

The author hopes that this book will be the beginning of courses and
textbooks that will formalize the emerging systems biology paradigm of
components to networks to models to computed phenotypes.

La Jolla
May 2005



CHAPTER 1

Introduction

Suddenly, systems biology is everywhere. What is it? How did it
arise? The driving force for its growth is high-throughput (HT) technolo-
gies that allow us to enumerate biological components on a large scale.
The delineation of the chemical interactions of these components gives
rise to reconstructed biochemical reaction networks that underlie various
cellular functions. Systems biology is thus not necessarily focused on the
components themselves, but on the nature of the links that connect them
and the functional states of the networks that result from the assembly of
all such links. The stoichiometric matrix represents such links mathemat-
ically based on the underlying chemistry, and the properties of this matrix
are key to determining the functional states of the biochemical reaction
networks that it represents.

1.1 The Need for Systems Analysis in Biology

Biological parts lists
During the latter half of the 20th century, biology was strongly influenced
by reductionist approaches that focused on the generation of information
about individual cellular components, their chemical composition, and of-
ten their biological functions. Over the past decade, this process has been
greatly accelerated with the emergence of genomics. We now have entire
DNA sequences for a growing number of organisms, and we are continu-
ally delineating their gene portfolios. Although functional assignment to
these genes is presently incomplete, we can expect that we will eventually
have assigned and verified function for the majority of genes on selected
genomes. Extrapolation between genomes will then most likely accelerate
the definition of what amounts to a “catalog” of cellular components in a
large number of organisms. Expression array and proteomic technologies

1
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20th-Century biology 21st-Century biology

Integrative analysis:
bioinformatics
mathematical models
computer (in silico)
simulation

Figure 1.1: Illustration of a paradigm shift in cell and molecular biology from component to
systems analysis. Redrawn from [152].

give us the capability to determine when a cell uses particular genes, and
when it does not (left side in Figure 1.1). At the beginning of the 21st
century, this process was unfolding at a rapid rate, driving a fundamental
paradigm shift in biology.

Beyond bioinformatics
The advent of high-throughput experimental technologies is forcing bi-
ologists to view cells as systems, rather than focusing their attention on
individual cellular components. Not only are high-throughput technolo-
gies forcing the systems point of view, but they also enable us to study cells
as systems. What do we do with this developing list of cellular components
and their properties? As informative as they are, these lists only give us
basic information about the molecules that make up cells, their individual
chemical properties, and when cells choose to use their components.

How do we now arrive at the biological properties and behaviors that
arise from these detailed lists of chemical components? It is now gener-
ally accepted that the integrative analysis of the function of multiple gene
products has become a critical issue for the future development of biol-
ogy. Such integrative analysis will rely on bioinformatics and methods
for systems analysis (right side of Figure 1.1). It is thus likely that over
the coming years and decades biological sciences will be increasingly fo-
cused on the systems properties of cellular and tissue functions. These are
the properties that arise from the whole and represent biological proper-
ties. These properties are sometimes referred to as “emergent” properties
since they emerge from the whole and are not properties of the individual
parts.
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Figure 1.2: Genetic circuits. From sequence, to genes, to gene product function, to multicom-
ponent cellular functions. Prepared by Christophe Schilling.

Genetic circuits
The relationship between genetics and cellular functions is hierarchical
and involves many layers, some of which are illustrated in Figure 1.2.
Gene sequences allow for the identification of open reading frames (ORFs).
The base pair sequence of the ORFs in turn allows for the functional
assignment of the defined gene. Although not always unambiguous, such
assignments are being carried out with increasing accuracy, due to our
expanding biological databases. Sequence is important and so is the
functional assignment of ORFs. However, the interrelatedness of the genes
may prove to be even more important. Establishing these relations and
studying their systemic characteristics is now necessary.

Cellular functions rely on the coordinated action of the products from
multiple genes. Such coordinated function of multiple gene products can
be viewed as a “genetic circuit” (some synonyms that are commonly used
are “cellular wiring diagrams” and modules). The term genetic circuit is
used here to designate a collection of different gene products that together
are required to execute a particular cellular function. The functions of
such genetic circuits are diverse, including DNA replication, translation,
the conversion of glucose to pyruvate, laying down the basic body plan
of multicellular organisms, and cell motion. It is likely that we will view
cellular functions within this framework and the physiological functions
of cells and organisms as the coordinated or integrated functions of multi-
ple genetic circuits. Consequently, we will need to develop the conceptual
framework within which to describe and analyze these circuits.

Not all the properties of genetic circuits are clear at present, but some
important ones are summarized in Table 1.1. For many of these character-
istics, it is also clear what methodology is needed to describe and analyze
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Table 1.1: Some of the characteristics of genetic circuits and the analysis
methods required.

Characteristic Analysis method

They are complex Bioinformatics

They are autonomous Control theory

They are robust System science

They function to execute a physicochemical process Transport and kinetic theory

They have “creative functions” Bifurcation analysis

They are conserved, but can adjust Evolutionary dynamics

them. Genetic circuits tend to have many components; they are complex.
From the standpoint of system science, they are “robust,” i.e., in many,
but not all cases, one can remove their components without compromis-
ing their overall function.

Accepting the concept of a gene circuit seems straightforward. However,
the implications of this acceptance are quite profound. We will view
bioinformatics as a way to establish, classify, and cross-species corre-
late genetic circuits. The beginning of such classification is illustrated in
Figure 1.3. Metabolism, information processing, and cellular fate processes
represent some of the major categories of genetic circuits. Considerable
unity in biology is likely to result in conceptualizing biological functions
as genetic circuits. From this standpoint, gene therapy may no longer be
viewed as replacing a “bad” gene, but instead fixing a “malfunctioning”
genetic circuit. Evolution may be viewed as the “tuning” or “honing”
of circuits to improve performance and chances of survival. Classifying
organisms based on the types of genetic circuits they possess may lead
to “genomic taxonomy.” Ex vivo “evolutionary” procedures for designing
genetic circuit performance are emerging [99, 258]. Understanding the
function of genetic circuits will become fundamental to applied biology,
in fields as diverse as metabolic engineering and tissue engineering.

The concept of a genetic circuit as a multicomponent functional entity
(either in time or space, or both) is an important paradigm in systems
biology. It will be a fundamental component in our treatment of the rela-
tionship between genetics and physiology. the genotype–phenotype rela-
tionship. Individual genetic circuits do not operate in isolation, but in the
context of other genetic circuits. The assembly of all such circuits found
on a genome produces cellular and organismic functions and leads to hi-
erarchical decomposition of complex cellular functions. Thus, the need
for genome-scale analysis arises. This need in turn leads to viewing the
genome as the “system.”
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Genetic circuits

Biological databases

• Gene sequence
• Genes
• Gene function
• Gene family

Evolutionary
dynamics

Gene
transfer

Cell fate
processes

InformationEnergy

Metabolism Transport Transcription Posttranslational
modification

Translation

Organogenic
processes

  Cell division
  Cell motion
  Cell differentiation
  Cell adhesion

Metabolic engineering Tissue engineering

Figure 1.3: Coarse-grained classification of the types of genetic circuits that are found on
genomes. Some major categories are indicated, in particular to indicate that some underlie
the important metabolic and tissue engineering applications of cell and molecular biology.
Prepared by Christophe Schilling.

1.2 The Systems Biology Paradigm

The ability to generate detailed lists of biological components, determine
their interactions, and generate genome-wide data sets has led to the emer-
gence of systems biology [101]. The process comprises four principal steps
(Figure 1.4). First, the list of biological components that participate in
the process of interest is enumerated. Second, the interactions between
these components are studied and the “wiring diagrams” of genetic cir-
cuits are constructed. This process is one of biochemical reaction network
reconstruction and is covered in detail in Part I of this text. Third, recon-
structed network are described mathematically and their properties ana-
lyzed (Part II). Computer models are then generated to analyze, interpret,
and predict the biological functions that can arise from the reconstructed
networks (Part III). Fourth, the models are used to analyze, interpret, and
predict experimental outcomes. Prediction essentially corresponds to gen-
erating specific hypotheses that can then be experimentally tested. These
in silico models of reconstructed networks are then improved in an itera-
tive fashion [152].

There is much creative work that has led to the development of high-
throughput technologies (step 1). Many different mathematical methods
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Transcript-Gen Proteo- Metabol-

Reconstruction of biochemical reaction network

ConstraintsTopology Dynamics Sensitivity Noise

Phenotypic space
“practically infinite”
for most organisms

Experiment

1.  Components
      Plurality of -omics

2.  Reconstruction
      “Systemic annotation”
      one set of reactions
      arising from the
      genome

3.   In silico modeling
      plurality of methods

4.   Hypothesis generation
      and testing
     -CHiP-chip
     -Fluxomics

Figure 1.4: The four principal steps in the implementation of systems biology. Note that
the second step is unique, while the others are diverse, and is the interface between high-
throughput data and in silico analysis.

have been formulated for the analysis of biochemical reaction networks
(step 3), and the phenotypic space explored by experimentation (step 4)
is essentially infinite. In contrast, the reconstruction effort leads to one
result. The reconstruction should culminate in the generation of the set of
chemical reactions that take place inside a cell and underlie its function.
Although systems biology is currently thought of as a cell-scale effort repre-
senting a genome-enabled science, it is likely that it will be conceptualized
as a broader field as it develops. We will begin to talk about the systems
biology of tissues, through networks of cellular interactions, and so on.

Systemic annotation
The unity represented by step 2 in Figure 1.4 leads to an effort to create a
two-dimensional annotation of a genome (Figure 1.5). The classical com-
ponent annotation of a genome leads to the identification of open reading
frames, their location, and often the corresponding DNA regulatory se-
quences, a one-dimensional list of components. The open reading frames
can then be assigned function based on homology searches of known genes.
The two-dimensional annotation accounts for not only the components,
but all their chemical states (represented as rows in the table in Figure 1.5)
and the links between them. The latter are the columns in the table and
ideally should represent the stoichiometric coefficients that correspond
to the underlying chemical transformations that are possible between the
components. This table represents the full genome-scale stoichiometric
matrix for a genome.
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Figure 1.5: Systemic or two-dimensional annotation of genomes: the origin of the stoichio-
metric matrix. From [155].

Calling for the formulation of this matrix may represent as bold a state-
ment as asking for the full base pair sequence of the human genome some
20 years ago. However, progress is being made. Genome-scale metabolic
networks have been reconstructed for microorganisms. We are in the pro-
cess of beginning to define signaling networks and transcriptional regula-
tory networks. Sometimes events in such networks are known chemically,
but sometimes we only have causal relationships, which eventually will
be converted into chemical equations once the underlying mechanisms
are discovered.

Hierarchical thinking in systems biology
We are quite used to thinking hierarchically about DNA. We think about a
base pair as the irreducible unit of DNA sequence. Then we talk about
codons, introns, exons, alleles, and chromosomes, and other measures
of DNA size. We will need to adapt similar hierarchical thinking about
the genome-scale stoichiometric matrix. The irreducible elements in a
network are the elementary chemical reactions. These can combine into
reaction mechanisms, many reactions into modules or motifs, pathways
can form, and sectors can be defined. Currently, such coarse graining of
a network often relies on somewhat ill-defined notions of hierarchical
structure.

Our understanding of how to hierarchically decompose a network is
likely to improve as we begin to build genome-scale networks and are able
to define their properties. Components that always function together in
steady or dynamic states normally would fall into modules. Correlated
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Biology root

Systems root

1995

Systems biology requirements

Figure 1.6: The two roots of systems biology.

subsets of reactions do appear in the delineation of steady-state properties
of networks ([163], Chapter 9). Time-scale separation is often used for tem-
poral decomposition of complex systems, and the stoichiometric matrix
does seem to play a role in this formation of dynamics pools [109, 149]
that represent dynamic course graining of a network.

Historical roots
Although it is often stated that reductionist thinking has characterized
molecular biology, it does not mean that integrative thinking has not taken
place. The first genetic circuits were indeed mapped out more than 40 years
ago (Figure 1.6). The feedback inhibition of amino acid biosynthetic path-
ways was discovered in 1957 [225, 257], and the transcriptional regulation
associated with the glucose–lactose diauxic shift led to the definition of the
lac operon [12, 124]. These regulatory mechanisms began the unraveling
of the molecular logic that underlies cellular processes.

In the decades following these discoveries, molecular biology blossomed
as a field. In the 1980s we began to see the scale-up of some of the fun-
damental experimental approaches of molecular biology. Automated DNA
sequencers began to appear and reached genome-scale sequencing in the
mid-1990s. Automation, miniaturization, and multiplexing of various as-
says led to the generation of additional “omics” data types. The large
volumes of data generated by these approaches led to a rapid growth of the
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field of bioinformatics. Although this effort was mostly focused on statisti-
cal models and object classification approaches in the late 1990s, it became
recognized that a more formal and mechanistic framework was needed to
systematically analyze multiple high-throughput data types [153]. This
need led to calls for genome-scale model building.

Following the events of the late 1950s and early 1960s, efforts were ini-
tiated to formulate mathematical models to simulate the functions of the
newly discovered genetic circuits. Even in the early 1960s, before digi-
tal computers became available, the function of such circuits was simu-
lated on analog computers [78]. These efforts grew to the dynamic sim-
ulation of large metabolic networks in the 1970s [69, 123, 253, 255]. By
the late 1980s and early 1990s, cell-scale models of the human red cell
had appeared [106], genome-scale models of viruses were formulated,
and large-scale models of mitosis appeared [146]. The advent of genome-
scale sequencing led to the first genome-scale metabolic models for bacte-
ria [50, 51].

These two roots of systems biology are illustrated in Figure 1.6. The
upper branch had much greater presence in the scientific community,
dazzling us with a never-ending stream of discoveries and exciting tech-
nologies. One might say that this was the “biology” root to systems biology.
The lower branch never gained much notoriety, although, unlike in the
United States, this activity was reasonably prominent in Europe. Systems
modeling and simulation in molecular biology was seen as purely theo-
retical and not a contributor to understanding real biology. However, with
biology now having become a “data-rich” field, the need for theory, model
building, and simulation has emerged. One might think of this branch as
the “systems” root to the emergence of systems biology.

These two branches must now merge to further the field. While there
are many books and sources on the “biological root,” few exist for the
“systems root.” This book is an attempt to meet this need, although real
genome-scale analysis is still the material of cutting-edge research. Thus,
this initial effort is conceptual and illustrative in nature with references
to the genome-scale studies that have appeared.

1.3 About This Book

Purpose
The availability of annotated genome sequences in the mid to late 1990s
enabled the reconstruction of genome-scale metabolic networks [37]. Sim-
ilar reconstructions of signaling and transcriptional regulatory networks
are now beginning to appear [85, 213]. The topological structure and func-
tional properties of these networks can now be studied. More importantly,



10 Introduction

for the first time, we can analyze, interpret, and predict the phenotypic
functions that such networks could produce. The stoichiometric matrix is
a compact mathematical representation of biochemical reaction networks.
It represents the interface between the HT data world and that of in silico
analysis, e.g., Figure 1.4, and the two-dimensional annotation of a genome.
The purpose of this book is to describe how the stoichiometric matrix is
formed, what its basic properties are, and how it can be used to analyze
the functional states of networks.

Approach
We will first outline some of the basic concepts of systems biology in
Chapter 2. We will then divide the material into three parts.

Part I will briefly review three types of networks – metabolic, regu-
latory, and signaling – and show how they are comprised of underly-
ing biochemical reactions. The efforts to reconstruct them are intensive
in analyzing the data from various HT experimental technologies and
legacy (bibliouric) data. Reconstructions basically culminate in the for-
mation of a chemically, genetically, and genomically (BIGG) structured
database that represents all the data types simultaneously. Once curated,
a genome-scale reconstruction represents a BIGG structured integration
of the available information about a cell or an organism.

Part II will describe the formation of the stoichiometric matrix, S, in-
cluding its function as a mathematical mapping operation, the chemical
constraints on its structure, and its topological properties. An under-
standing of basic linear algebra now becomes essential to the reader.
The topological properties of the stoichiometric matrix are then out-
lined and methods for their analysis described. We then explore the
more subtle and intricate properties of the stoichiometric matrix. To do
so, we need to study its fundamental spaces associated with S and will
thus require an intermediate-level understanding of linear algebra. The
two null spaces of S contain systemically defined reaction pathways and
concentration conservation quantities. The row and column spaces of S
contain the dynamic flux vector and the time derivatives, respectively.
These two spaces are thus key to studying the transient function and the
underlying thermodynamics. The transition from Part I to Part II may
be challenging for some life scientists, but it is important for mastering
systems biology.

Part III will describe the mathematical methods that have been devel-
oped to interrogate the properties of reconstructed networks. The recon-
structions and their associated information are not sufficient to complet-
ely define the state of a network. Flexibility in function exists, lead-
ing to constraint-based analysis. This approach is consistent with the
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biological reality of operating under governing constraints, but allowing
for evolution within them to adapt and improve biological function.

1.4 Summary

➤ Detailed biological parts catalogs of cells have emerged.

➤ The chemical and causal interactions of these parts are being docu-
mented.

➤ Cellular “wiring diagrams” representing genetic circuits and genome-
scale networks are being reconstructed.

➤ The systems biology paradigm of “components→ networks→ in silico
models→ phenotype” has arisen.

➤ Two-dimensional or systemic annotation of genomes is emerging and
represents unity of effort in systems biology through network recon-
struction.

➤ Network reconstruction is described by a BIGG structured data base.

➤ The stoichiometric matrix describes the reconstruction mathemati-
cally and thus it becomes a key to the field of systems biology.

➤ Systems biology is inherently mathematical.
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CHAPTER 2

Basic Concepts in Systems Biology

In the early 1960s, there was a bifurcation of emphasis in biol-
ogy. Molecular biology had arrived, providing a growing understanding
of DNA, protein, and other chemical components of cells. A science was
emerging that had rigor in terms of analytical chemistry and controlled
experimentation, and relevance to biochemical and genetic functions of
cells and occasionally to their phenotypes. Holistic emphasis in biology,
which had primarily been practiced through physiology, faded into the
background as it is much more difficult to state hypotheses, do controlled
experiments, or execute the scientific process for the behavior of systems
and networks in biology. However, as outlined in the introductory chapter,
this situation has now changed. We now have technology that allows for
the detailed enumeration of biological components, enabling us to study
cells and complex biological processes as systems. As a consequence, sys-
tems biology has arisen as a new field. This new field does not yet have
a well-defined and articulated conceptual basis. In this chapter, we will
attempt to collect some of the key issues that represent to the conceptual
foundations of systems biology. Its content is not intended to be, and can-
not be, complete but rather represents an attempt to initiate this process.

2.1 Components vs. Systems

Biological components all have a finite turnover time. Most metabolites
turn over within a minute in a cell, mRNA molecules typically have 2-hour
halflives in human cells [256], 3% of the extracellular matrix in cardiac
muscle is turned over daily, and so forth. So a cell that you observe today,
compared with the same cell yesterday, may only contain a small fraction
of the same molecules. Similarly, cells have finite lifetimes. The cellularity
of the human bone marrow turns over every 2–3 days, the renewal rate of

12
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Figure 2.1: A contrast between the components view (left) and the systems view (right).

skin is of the order of 5 days to a couple of weeks, the lining of the gut
epithelium has a turnover time of about 5–7 days, and slower tissues like
the liver turn over their cellularity approximately once a year. Therefore,
most of the cells that are contained in an individual today were not there a
few years ago. However, we consider the individual to be the same, albeit
older. Likewise, we consider one cell to be the same a week later, even
if most of its chemical components have turned over. Components come
and go, therefore a key feature of living systems is how their components
are connected together. The interconnections between cells and cellular
components define the essence of a living process.

The difference between the components view of life is different from the
systems view in many subtle ways. Here, we try to illustrate this difference
by just one example (see Figure 2.1).

� On the left side of Figure 2.1 we see the components point of view
of the function of a gene product. When we are looking at one gene
product, in this case an enzyme carrying out its function, we study
this component by placing it in a beaker with its substrates and then
observe the time-dependent disappearance of a substrate and the ap-
pearance of a product. The component that we are studying is the
centerpiece of this experiment, and it is responsible for concentration
changing in a time-dependent manner.

� The right side illustrates a systems viewpoint of a biochemical net-
work. It is not so much the components themselves and their state
that matters, contrary to the components view, but it is the state of the
whole system that counts. Any biological network will have a nominal
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state, which we recognize as a homeostatic state. Thus, the fluxes that
reflect the interactions among the components to form the state of the
network are dominant variables, and the concentrations of the indi-
vidual components are “subordinate quantities.” The concentrations
of the network components are determined first by the flux map, or
the state of the network, and then by the kinetic properties of the links
in the network.

2.2 Links and Functional States

Two key issues arise from the earlier considerations. The first deals with the
nature of the links between components in a biological network, and the
second deals with the functional states and the properties of a network
that a set of links form.

Links
Links between molecular components are basically given by chemical
reactions or associations between chemical components. These links are
therefore characterized and constrained by basic chemical rules. In tissue
biology, the nature of links between cells is more complicated and often
related to higher-order chemistry. We note that a T-cell receptor, for in-
stance, forms a complicated structure in the membrane of a cell and the
properties of that structure, and how compatible it is with the complimen-
tary features of another cell determines whether there is communication
or links between these cells. Since we are focused on the characteristics
of biochemical networks, we will further discuss the chemical nature of
links in molecular biology.

The prototypical transformations in living systems at the molecular level
are bilinear. This association involves two compounds coming together to
either be chemically transformed through the breakage and formation of
covalent bonds, as is typical of metabolic reactions or macromolecular
synthesis,

X + Y � X − Y covalent bonds

or two molecules associated together to form a complex that may be held to-
gether by hydrogen bonds and/or other physical association forces to form
a complex that has a different functionality than individual components,

X + Y � X : Y association of molecules
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Such association, for instance, could designate the binding of a transcrip-
tion factor to DNA to form an activated site to which an activated poly-
merase binds. Such bilinear association between two molecules might also
involve the binding of an allosteric regulator to an allosteric enzyme that
induces a conformational change in the enzyme.

Chemical transformations have certain key properties:

1. Stoichiometry. The stoichiometry of chemical reactions is fixed and is
described by integral numbers counting the molecules that react and
that form as a consequence of the chemical reaction. Thus, stoichiom-
etry basically represents “digital information.” Chemical transforma-
tions are constrained by elemental and charge balancing, as well as
other features. Stoichiometry is invariant between organisms for the
same reactions and does not change with pressure, temperature, or
other conditions. Stoichiometry gives the primary topological prop-
erties of a biochemical reaction network.

2. Relative rates. All reactions inside a cell are governed by thermody-
namics. The relative rate of reactions, forward and reverse, is there-
fore fixed by basic thermodynamic properties. Unlike stoichiometry,
thermodynamic properties do change with physicochemical condi-
tions such as pressure and temperature. The thermodynamic prop-
erties of associations between macromolecules can be changed by
altering the sequence of a protein or the base-pair sequence of a DNA
binding site. The thermodynamics of transformation between small
molecules in cells are fixed but condition dependent.

3. Absolute rates. In contrast to stoichiometry and thermodynamics, the
absolute rates of chemical reactions inside cells are highly manipula-
ble. Highly evolved enzymes are very specific in catalyzing particular
chemical transformations. Cells can thus extensively manipulate the
rates of reactions through changes in their DNA sequence.

Therefore, links cannot just form between any two cellular components.
The links that are formed are constrained by the nature of covalent bonds
that are possible and by the thermodynamic nature of interacting macro-
molecular surfaces. All of these are subject to the basic rules of chemistry
and thermodynamics. The absolute rates are key biological design vari-
ables because they can evolve from a very low rate determined by the
mass action kinetics based on collision frequencies to a very high and spe-
cific reaction rate determined by appropriately evolved enzyme properties.
Enzymes evolve to bring molecules into particular orientation to control
the rate of appropriately oriented collisions between two molecules that
lead to a chemical reaction (see Figure 2.2).
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Figure 2.2: A schematic of how the binding sites of two molecules on an enzyme bring them
together to collide at an optimal angle to produce a reaction. Panel 1: Two molecules can
collide at at random and various angles in free solution. Only a fraction of the collisions
lead to a chemical reaction. Panel 2: Two molecules bound at the surface of a reaction can
only collide at a highly restricted angle, substantially enhancing the probability of a chemical
reaction between the two compounds. Redrawn from [122].

Functional states
Once all the links in a network have been identified and described, its
functional states can be determined. We can study the topological prop-
erties of a network, but these properties give is only limited information
about the actual functional state of a network. The functional states of
biological reaction networks are constrained by the physicochemical na-
ture of the intracellular environment (see Figure 2.3). There is a highly
developed spatiotemporal organization that orients the biological com-
ponents and determines the transient nature of the interactions. Interest-
ingly, cells are in a near crystalline state. The protein density in cytoplasm
and mitochondria is very close to the protein density in a protein crystal.
There are some other notable higher-order properties of biological net-
works, which will not be detailed here, which include self-assembly of
components to spontaneously form a functioning network, the selection
that seems to be at work at all levels in biology, and the interesting notion
of a self in biology, namely, is a component a part of a network or not?

2.3 Links to Networks

Chemical reactions link components together to form a network. Although
we can specify the chemical properties of links in biological networks, it is
the way in which a multitude of such links form networks that determines
phenotypic functions.
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Figure 2.3: The crowded state of the intra-
cellular environment. Some of the physical
characteristics are viscosity > 100 × µH2O,
osmotic pressure < 150 atm, electrical gradi-
ents ≈ 300,000 V/cm, and a near crystalline
state. Copyright David S. Goodsell 1999.

Most biochemical reactions are bilinear. Bilinearity gives the networks
a hypergraph property that is topologically nonlinear. The biochemical
consequence of this is that biochemical reaction networks form a tangle
of cycles [186] where different chemical properties and moieties are being
transferred throughout the network from one carrier to the next. Perhaps
the most familiar of such transformations is the movement of high-energy
phosphate bonds between metabolites and proteins. ATP is the primary
carrier of such high-energy bonds, and, for instance, a phosphate group
is tied to glucose to form glucose-6-phosphate as the first step in glycoly-
sis. The same feature is found in signaling networks whose components
are in phosphorylated or dephosphorylated states. Other properties being
transferred between molecules are redox potential, 1 carbon units, 2 car-
bon units, ammonia groups, and so on. This makes biochemical reaction
networks highly interwoven.

One interesting feature of biochemical networks as they grow in size is
the fact that because of combinatorics, the number of possible functional
states that they can take can grow faster than the number of components in
a network. This proliferation in the number of functional states seems to oc-
cur past some (a relatively low number) components that come together to
form a network. Therefore, the number of phenotypic functions derivable
from a genome does not linearly scale with the gene number contained
in that genome. For instance, the human genome may have only 50%
more genes than the genome of Caenorhabditis elegans, a small worm, but
nevertheless human beings display much more complicated phenotypes
and in greater variety. Thus, in general, it is hard to correlate organism
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complexity and functions to the number of genes that the organism’s
genome contains.

The fundamental property of biochemical networks of having many pos-
sible functional states leads to the possibility of having the same network
carry out many functions and displaying many different phenotypic be-
haviors. An organism does not fully exploit or use all such possible func-
tional states. Many possible states will be useless to the organism in its
struggle for survival. Therefore, a limited subset of these functional states
needs to be selected and expressed by cells. We are becoming increas-
ingly familiar with the regulatory mechanisms that carry out the selection
of functional states. We are unraveling the very complicated transcrip-
tional regulatory networks in single-celled organisms and the signaling
networks that coordinate the function of multicellular organisms. As we
will discuss in Chapter 16, complex biological reaction networks will have
equivalent functional states; that is, there are identical overall functional
states that differ in the ways in which they use the underlying links in the
network.

Some of the key features of biological networks that distinguish them
from other networks need to be accounted for in the analysis of their sys-
temic properties. The first basic feature of biological networks is that they
evolve; they change with time. They are time variant. Principally, such
changes occur through the kinetic properties of the links in the network
and the changing of the available or active links in the network at any
given point in time. The number of available links can be manipulated by
regulation of gene expression, by horizontal gene transfer, and by other
mechanisms. The second feature that has to be taken into account is the
fact that they have a sense of purpose. The fundamental purpose is sur-
vival. However, in complicated organisms that fundamentally comprise
many networks, some will have goals that are subtasks to the overall goal
of survival. For instance, the goal of adipocytes would be to collect and
store fat if, in their environment, there is an abundance of energy resources.
The goal of the mitochondrion, being the powerhouse of the cell, seems
to be to maximize ATP production from available resources. Therefore,
the study of objectives, that is, purpose, of biochemical reaction networks
becomes a relevant and perhaps a central issue.

Thus, linking many biological components together forms a network.
This network can have many functional states from which a subset is se-
lected. Links, network topology, and the sense of purpose can all change
with time or environmental conditions. It is important to be cognizant of
the fact that biochemical reaction networks have to operate in the crowded
interior of a cell (see Figure 2.3). Thus, the network view of the biologi-
cal process has to be considered in the context of the three-dimensional
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Figure 2.4: Theory-vs. constraint-based analysis. Illustration of finding an exact solution (a
point) versus finding a range of allowable solutions (a solution space).

physical arrangement of such networks. These considerations may limit
the usefulness of analogies with other man-made networks, such as elec-
trical circuits.

2.4 Constraining Allowable Functional States

The earlier considerations of the nature of links, how they form networks,
and how networks form functional states make it likely that in silico mod-
eling and simulation of genome-scale biological systems is going to be
different than that practiced in the physicochemical sciences. First is the
notion that a network can fundamentally have many different states or
many different solutions. Which states (or solutions) are picked is up to
the cell, and such choices can change over time based on the selection
pressure experienced. This difference from the physico-chemical sciences
is illustrated in Figure 2.4. All theory-based considerations in engineering
and physics lead one to attempt to seek an “exact” solution, typically com-
puted based on the laws of physics and chemistry. However, in biology it
appears that not only can a network have many different behaviors that are
picked based on the evolutionary history of the organism, but also, as we
shall see, these networks can carry out the same function in many differ-
ent and equivalent ways. Therefore, what are called silent phenotypes in
biology may be mathematically synonymous to multiple equivalent net-
work states. This further leads to an interesting distinction in mathematical
modeling philosophy between the key disciplines (Table 2.1).

In physics, the emphasis has always been on deriving theory. Quantum
mechanics developed about 100 years ago. Boltzmann derived his famous
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Table 2.1: Disciplinary differences in modeling philosophy.

Equations Boundary conditions Nature of solutions

Physics +++ + Unique

Engineering ++ ++ Design

Biology + +++ Multiple and changing

equation prior to that. Theory, as expressed by mathematical equations
representing our understanding of fundamental physical mechanisms,
has been and probably will continue to be, central to physics. If one
wants to then obtain particular solutions to these equations, one has to im-
pose boundary conditions that typically lead to a calculation of a unique
solution.

Engineering takes a bit of a departure from this philosophy. The equa-
tions used in engineering do not need to be mechanistically correct, in a
fundamental theoretic sense, as long as they phenomenologically describe
the phenomena and process at hand. Furthermore, the boundary condi-
tions that need to be stated are very important and are often very specific to
what an engineer is designing. In engineering, though, one is used to the
fact that a problem can have multiple solutions, and this often comes down
to the use of design variables to try to optimize a design.

In biology, based on the earlier consideration, we find that the equa-
tions needed to describe the physics of the intracellular environment may
never be well known, and furthermore, network functionalities evolve and
change over time. Therefore, the fundamental equations describing bio-
logical functions may be hard to formulate and fully define. On the other
hand, the boundary conditions or the constraints under which cells operate
and evolve against are easier to identify, state, and use. Constraint-based
approaches to the analysis of complex biological systems have proven to
be very useful (see Part III of this book).

The constraints under which a cell operates
Cells operate under myriad constraints. There are different ways to classify
these constraints, and many authors have discussed them from different
points of view. A few will be mentioned here.

� A statement of two very general categories of constraints imposed by
natural selection have been described by F. Jacob [102]. They basi-
cally are (i) the requirement for reproduction and the genetic mecha-
nisms required to produce offsprings with nonidentical genetic com-
position of the parent(s), and (ii) the permanent interaction with the
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environment that imposes thermodynamic constraints of constant flux
of matter, energy, and information. The latter constraints are easier to
describe in the language of the basic physical laws.

� Danchin [41] in his insightful book about genomes divides the cellular
processes and their associated constraints into four general categories:
(i) compartmentalization to segregate function in space and to differ-
entiate the “inside” from the “outside”; (ii) metabolism that deter-
mines the flow of matter, energy, and redox potential within cells, and
its relationship with the outside world; (iii) the transfer of memory to
physicochemical processes (i.e., “actuating” inherited information);
and (iv) memory transmitted from one generation to the next.

� The author and his collaborators have defined four categories of con-
straints that can be used to analyze the capabilities of reconstructed
biochemical reaction networks [176]: (i) physicochemical constraints,
(ii) spatial and topological constraints, (iii) environmental constraints,
and (iv) regulatory constraints. These constraints can be mathemati-
cally described and used to assess the capabilities of networks (see
Chapter 12.).

Viewing regulation as self-imposed constraints, or perhaps as restraints,
justifies a few more observations in the context of natural selection and
organism survival.

Picking candidate states
Cells are subject to inviolable constraints such as those associated with
mass and energy balances. Their underlying biochemical networks must
obey these and other spatial constraints. These constraints have been
called hard constraints and, as illustrated by the pentagon in Figure 2.5,
give a range of all allowable states of the network. One or more states
may be deemed suitable by the cell on the basis of its evolutionary history
and current challenges (i.e., the prevailing environmental constraints). A
way to exclude all the unwanted states (i.e., those that are unsuitable, or
selected against) is to implement a regulatory network that eliminates a
large portion of the solution space (the pentagon) and by default forces the
expression of the “desired” phenotype. These issues are discussed further
in Chapters 12 and 13.

If a state or phenotype is not the best one under given conditions, the
solution can move within the allowable range. This change in the selection
of a functional state can be accomplished by regulating the expression of
the genes that are present at a given point in time and/or by regulating
the activity of the corresponding gene products. Such regulation has a
relatively short time profile. Over longer times, of course, the components
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Figure 2.5: Illustration of the constraints on network functions. The pentagon illustrates the
range of allowable functions based on hard physicochemical and environmental constraints.
The solid line illustrates self-imposed constraints (restraints) produced by regulatory networks;
that is, all the states below the line are ruled out by regulatory mechanisms. The dot denotes
the desired functional state, which is found among the admissible states after regulatory
constraints have been imposed.

of the network can evolve and the properties change slightly, allowing a
drift in the phenotypic function of the cell.

Hierarchical organization in biology
Many facets of cellular function and properties are organized hierarchi-
cally. The spatial organization of the DNA is shown in Figure 2.6A. The
linear dimension of the E. coli genome is about 1 mm, while the length of
the cell is of the order of 1 �m, a 1000-fold difference. The bacterial genome
is thus “folded” a thousand times, in a hierarchically organized fashion.
Biochemical reaction networks can be similarly decomposed (Figure 2.6B).
Reactions group together into coordinated units that may be colocalized
in space, or even compartmentalized. Many such coordinated units can
form a larger organized unit, and so forth.

The constraints that apply to the lower levels of organization by ne-
cessity will constrain the subsequent higher level functions. This upward
application of constraints necessitates a bottom-up approach to the anal-
ysis of complex biological phenomena. Gödel’s completeness theorem in
mathematics that showed an axiomatic approach to proving mathematical
theorems could not prove that all properties of a system may in a general
sense apply to biology. If so, we cannot construct all higher level functions
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Figure 2.6: Hierarchical organization in cells: (a) bacterial genome and (b) network topology
and function. Prepared by Timothy Allen (A) and Jason Papin (B).

from the elementary operations alone. Thus, observations and analyses
of system level functions will be needed to complement the bottom-up
approach. Therefore, bottom-up and top-down approaches are comple-
mentary to the analysis of the hierarchical nature of complex biological
phenomena.

The successive adoption of cellular functions over evolution are illus-
trated in Figure 2.7. The basic biochemistry of cellular processes and the
maintenance and expression of the information on the DNA molecule
evolved early. This basic set of processes is still found in most organ-
isms today. The genetic code is essentially universal and most proteins are
made up of about 20 amino acids. These are basic constraints under which
all subsequent cellular processes must operate. The genetic code cannot
be predicted from basic theory or physics [39] but is consistent with the
basic laws of physics and chemistry. Once picked, it is essentially fixed
over evolution. Similarly, most modern proteins are made up of a limited
number of motifs, and the basic circuits that lay out the body plan are re-
markably conserved. Thus, the constraints set at a lower level of biological
hierarchy confine higher levels of organization but may not explain or pre-
dict the more complex functions. Evolution is a “tinkerer” that combines
the elements at hand together in new and unpredictable ways. The first
“wave” in Figure 2.7 is close to the underlying chemical principles and
will thus naturally represent a focus of this text.
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Figure 2.7: The history of the world according to cellular processes. Inspired by Marc Kirschner.

2.5 Summary

➤ Biological systems are defined by the interactions between their com-
ponents.

➤ The links between molecular components are constrained by the basic
laws of chemistry.

➤ Multiple links between components form a network, and the network
can have functional states.

➤ Functional states of networks are constrained by various factors that
are physicochemical, environmental, and biological in nature.

➤ The number of possible functional states of networks typically grow
much faster than the number of components in the network.

➤ The number of candidate functional states of a biological network far
exceed the number of biologically useful states to an organism.

➤ Cells must select useful functional states by elaborate regulatory mech-
anisms.

2.6 Further Reading
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PART ONE

Reconstruction of
Biochemical Networks

Cellular functions rely on the interactions of their chemical con-
stituents. Various high-throughput experimental methods allow us now
to determine the chemical composition of cells on a genome scale. These
methods include whole genome sequencing and annotation (genomics),
the measurement of the messenger RNA molecules that are synthesized
under a given condition (transcriptomics), the protein abundance, interac-
tions and functional states (proteomics) measurements of the presence and
concentration of metabolites (metabolomic), and metabolic fluxes (flux-
omics). In addition, methods now exist to determine the binding sites of
protein to the DNA (location analysis) and to measure of a limited number
of fluxes through reactions inside a cell. The physical location of protein
products and segments of the DNA can be determined using various flu-
orescent reporting molecules. All these methods can be used to help to
reconstruct the biochemical reaction networks that operate in cells. This
part of the text discusses the reconstruction of metabolic, regulatory, and
signaling networks. Given the rate at which new methods are being devel-
oped, it is likely that this part of the text will become dated the fastest.
However, with new or existing methods the result of the reconstruction
process is a set of chemical reactions or interactions that comprise these
networks. The reader should be mindful of the fact that these are not sep-
arate and independent networks. In fact they interact with one another.
We often tend to think of them as being separate based on the biases that
the structure of the typical life science curriculum imposes. The recent
discovery of the transcriptional regulatory roles of key glycolytic enzymes
illustrates this point [113].





CHAPTER 3

Metabolic Networks

The function of cells is based on complex networks of interacting
chemical reactions carefully organized in space and time. These biochem-
ical reaction networks produce observable cellular functions. Network re-
construction is the process of identifying all the reactions that comprise a
network. The reconstruction process for metabolic networks has been de-
veloped and implemented for a number of organisms. The main features of
metabolic network reconstruction are described in this chapter. We briefly
review the key properties of metabolic networks and introduce the hi-
erarchical thinking that goes into the interpretation of complex network
functions. Further details can be found in authoritative sources [120, 218].

As discussed at the end of this chapter, a true genome-scale reconstruc-
tion of cellular functions necessitates accounting for all cellular networks
simultaneously. Such a comprehensive network reconstruction has yet to
be established; therefore, in this chapter, we focus on metabolism and
address the reconstruction of transcriptional regulatory and signaling net-
works in the following two chapters.

3.1 Basic Features

Intermediary metabolism can be viewed as a chemical “engine” that
converts available raw materials into energy as well as the building
blocks needed to produce biological structures, maintain cells, and carry
out various cellular functions. This chemical engine is highly dynamic,
obeys the laws of physics and chemistry, and is thus limited by various
physicochemical constraints. It also has an elaborate regulatory structure
that allows it to respond to a variety of external perturbations. Metabolic
imbalance is involved in major human diseases, such as diabetes, obesity,
cancer, and heart disease. Metabolism comprises two types of chemical

29
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Table 3.1: Key chemical groups in metabolism and their carriers.

Group carried in activated form Carrier molecule

Phosphoryl ATP, GTP

Electrons NADH, NADPH, FADH2, FMNH2

One carbon unit Tetrahydrofolate

Methyl S-Adenosylmethionine

Acyl (two carbons) Coenzyme A, lipoamine

Aldehyde Thiamine pyrophosphate

Carbon dioxide Biotin

Nucleotides Nucleoside triphosphates

transformations: catabolic pathways that break down various substrates
into common metabolites and anabolic pathways that collectively synthe-
size amino acids, fatty acids, nucleic acids, and other needed building
blocks. During these processes, an intricate exchange of various chemical
groups and reductionoxidation (redox) potentials takes place through a set
of carrier molecules (see Table 3.1). These carrier molecules and the prop-
erties that they transfer thus tie the metabolic network tightly together.
Intermediary metabolism can be described at several levels of complexity
(Figure 3.1).

Hierarchy in function of metabolic networks
Genome-scale reconstructions of metabolic networks contain hundreds of
metabolites and sometimes over a thousand reactions (see Table 3.6). The
functions of such networks are hard for the human mind to comprehend.
We thus need mathematical models for the study of their properties and
simulation of their function. However, as pointed out in Section 1.2, we
can think of network properties in a hierarchical fashion to simplify the
conceptualization of network functions. Such hierarchy can be based on
manmade concepts, as discussed later, or can be the result of a nonbi-
ased mathematical analysis of the stoichiometric matrix (see Chapter 9).
In what follows, we briefly describe the traditional view of the hierarchical
decomposition of the functions of metabolic networks (see Figure 3.1).

Level 1: Cellular inputs and outputs. Overall, intermediary metabolism
comprises the enzymatic reactions pertaining to the transformation of sub-
strate molecules into the essential building blocks of macromolecules and
other vital products for growth and maintenance. A coarse-grained de-
scription of the overall activity of metabolism thus involves substrates as
inputs and biomass and metabolic by-products as outputs. For industrial
fermentation processes, a description of cells at this level has sufficed for
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Figure 3.1: Four-level functional decomposition of metabolism. Level 1: whole cell; level 2:
metabolic sectors; level 3: pathways; and level 4: individual reactions.

many purposes [6, 198]. The description comprises a simple set of coupled
mass and energy balances, with various empirically determined “yield”
coefficients that describe partitioning of the consumed substrate. Growth
kinetics are given in terms of simple phenomenological models such as the
Monod growth model. Models of this type are useful for a limited set of
specific conditions. The yield coefficients are not constants; they change
with the physiological state of the cell.

Level 2: Sectors. A bit finer grained look at intermediary metabolism
reveals that it can be divided into two basic sectors (see Figure 3.2).
Catabolism carries out the degradation of substrates via a series of con-
verging pathways that lead to a set of 11 metabolites of central importance,
called the biosynthetic precursors. Anabolism is a set of diverging path-
ways that originate from these central metabolites to form monomers or
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Figure 3.2: Major parts of cellular metabolism. Modified from [4].

building blocks for macromolecular biosynthesis. Genetically engineered
bacteria used for bioprocessing, for instance, can be described at this level
of complexity since it is appropriate for assessing host-plasmid interac-
tions.

Level 3: Pathways. A still finer resolution reveals a situation in which path-
ways, and segments thereof, serve a definite role. For instance, catabolism
of the major classes of biomolecules follows the same pattern; first, sub-
strates are picked up by the cell, hydrolyzed if necessary, activated by a
cofactor, and then degraded to yield energy and other properties stored
on the carrier molecules. At this level of description, the essential fea-
tures of metabolism begin to depend on basic chemical principles such
as stoichiometric structure and kinetic regulation. Key metabolic pools,
such as the energy charge, dominate the description, and key regulatory
enzymes influence the motion of these pools and how mass and energy is
distributed among them. There is currently much interest in the pathway
level characterization of reconstructed biochemical reaction networks.

Level 4: Individual reactions. At the finest level of description one consid-
ers all the biochemical transformations that take place in a cell. Available
high-throughput data, as discussed in Chapter 1, allows us to generate
the information needed to describe cells at this resolution. It is at this
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level where this book is focused. We can now reconstruct genome-scale
stoichiometric matrices of organisms and study them. The dimensions of
these matrices are on the order of hundreds of metabolites and sometimes
over a thousand chemical reactions, reflecting the complexity of a fully
functional metabolic network.

Biochemical transformations fall into a few major categories. Some ex-
amples include transamination, phosphorylation, isomerization, dehydra-
tion, and dismutation. Thus, there are chemical “rules” that dictate what
kind of links can exist in metabolic networks. As described later, bio-
chemists have devised nomenclature that classifies these types of transfor-
mations and an Enzyme Commission (E.C.) number is associated with each
enzymatically catalyzed metabolic reaction. Furthermore, there are ther-
modynamic restrictions associated with these transformations that dictate
the energetic feasibility of a reaction and its equilibrium state. Thus, even
though metabolic networks may appear complex, there are underlying
physicochemical restrictions on their topological structure and network
states. These constraints are detailed in Parts II and III of this book.

3.2 Reconstruction Methods

Defining the reaction list
The reconstruction of a genome-scale metabolic network relies on assem-
bling various sources of information about all the biochemical reactions
in the network. A variety of data sources can be used to synthesize a
list of chemical reactions that form an organism’s metabolic network (see
Figure 3.3). The principal data sources are (roughly in the order of relia-
bility) as follows:

1. Biochemistry. The strongest evidence for the presence of a metabolic
reaction is found if an enzyme has been isolated directly from the or-
ganism and its function demonstrated. Extensive data is often avail-
able for model organisms, such as Escherichia coli and yeast but may
be fragmented for organisms that have been sparingly studied.

2. Genomics. Functional assignments to open reading frames (ORFs),
based on DNA sequence homology, may be used as a strong evidence
for the presence of a reaction in an organism. Functional assignments
can also be achieved from the genome location of an ORF and the
cluster of genes that are found in its neighborhood. Genome annota-
tions are subject to revision and updates.

3. Physiology and indirect information. Physiological evidence, such as
the known ability of the cell to produce an amino acid in vivo, may
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Figure 3.3: A schematic of the overall process of genome-scale metabolic network reconstruc-
tion (GENRE) and subsequent model formulation. Modified from [37].

lead us to include reactions which “fill in the pathway” to produce
that amino acid. This process is called gap analysis. Other physi-
ological information is often useful in diagnosing the function of a
reconstructed networks.

4. In silico modeling data. Modeling and simulation studies often lead
to the inclusion of metabolic reactions in the reconstruction. A net-
work needs to be able to simulate cell behavior in silico. For instance,
the metabolic network must be able to produce or take up all of the
necessary components of the cellular biomass. One needs to add the
reactions necessary to fulfill the biomass requirements if they are not
present. Such reactions are referred to as “inferred reactions.”

All the reactions identified by these various means then combine to
produce a genome-scale metabolic reconstruction for the organism of in-
terest. Normally, the reconstruction process starts with the annotated DNA
sequence and thus the reconstruction is “genome-scale” since it will con-
tain all the information that is found on the genome that relates to the
organism’s metabolism. This set of reactions comprises a genome-scale
metabolic model when combined with quantitative analytical methods,
which enable us to analyze, interpret, and predict integrated network func-
tions (see Figure 3.3). Some of these mathematical methods that are scal-
able to the genome-scale networks are described later in the text.

Clearly, the confidence level in the various sources differs, but one can
use quantitative scale to rank-order the reliability of the source. One such
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Table 3.2: Methods for annotating genomes [108, 148].

ORF identification “Traditional’’ annotation methods New annotation methods

Stop codons Experimental (direct) Protein–protein interactions

GLIMMER Sequence homology Correlated mRNA expression levels

Genscan Phylogenetic profile

Protein fusion clustering

Gene neighbors (operon clustering)

Automation

quantitative scheme proposed is biochemical data (4), genetic data (3), ge-
nomic data (2), physiological data (1), and modelling data (0) [191]. One is
never fully sure about the presence of a reaction until the biochemical data
has been obtained, although sequence homology that meets certain criteria
is often taken as sufficient evidence for a true functional assignment.

Genome annotation
Since few organisms have extensive biochemical information available,
reconstruction relies heavily on an annotated genome sequence. ORFs are
identified on the genomic sequence, then assigned a function. This process
can be done through experimental methods (gene cloning and expression
or gene knockout) or more commonly by comparing its sequence homology
to genes of known function in other organisms. In silico annotation meth-
ods typically lead to functional assignment of 40–70% of identified ORFs
on a freshly sequenced microbial genome. New and improved methods
continue to be developed for genome annotation. For example, functions
of gene products may be inferred from protein–protein interactions, tran-
scriptomics, phylogenetic profiles, protein fusion, and operon clustering
(see Table 3.2). It should be emphasized that every gene annotation based
on in silico methods is hypothetical, and such annotation is subject to
revision until the gene has been cloned, expressed, and the function of
the gene product directly evaluated. The automation of network recon-
struction from annotated sequence has been attempted [108]. To produce
high-quality, well-curated reconstructions, one has to manually verify all
the components and links in a network, since there are often subtle dif-
ferences between even related organisms. There are many Web resources
available for this purpose (Table 3.3).

Publicly available sources of sequence data
There are several publicly available databases that contain genomic data
(Table 3.3). The Comprehensive Microbial Resource (CMR) provides tools
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Table 3.3: Publicly available genome databases. Prepared by Ines Thiele.

Microbial genomes

and annotation

DDBJ http://www.ddbj.nig.ac.jp/

EBI http://www.ebi.ac.uk/

EMBL http://www.ebi.ac.uk/embl/

GenBank (NCBI) http://www.ncbi.nlm.nih.gov/Genbank/

TIGR annotation software http://www.tigr.org/software/

Comparative genomics

ERGO http://ergo.integratedgenomics.com/ERGO/

The SEED http://theseed.uchicago.edu/FIG/index.cgi

GenDB http://www.cebitec.uni-bielefeld.de/groups/

brf/software/gendb info/index.html

GeneQuiz http://jura.ebi.ac.uk:8765/ext-genequiz/

MBGD http://mbgd.genome.ad.jp/

Pedant http://pedant.gsf.de/

Prolinks http://128.97.39.94/cgi-bin/functionator/pronav

String http://string.embl.de/

PUMA2 http://compbio.mcs.anl.gov/puma2/cgi-bin/index.cgi

Pathway/

Reconstruction tools

INSILICO discovery http://www.insilico-biotechnology.com/f products.html

MetaFluxNet http://mbel.kaist.ac.kr/mfn

MFAML (Metabolic Flux http://mbel.kaist.ac.kr/mfaml

Analysis Markup Language)

SimPheny http://www.genomatica.com/solutions simpheny.shtml

Pathfinder http://bibiserv.techfak.uni-bielefeld.de/pathfinder/

PATIKA http://www.patika.org/

Pathway databases

BioSilico http://biosilico.kaist.ac.kr or http://biosilico.org

KEGG http://kegg.com/

MetaCyc http://metacyc.org/

MRAD http://capb.dbi.udel.edu/whisler/

Phylosopher http://www.genedata.com/phylosopher.php

PUMA2 http://compbio.mcs.anl.gov/puma2/cgi-bin/index.cgi

EMP http://www.empproject.com/

Enzymes

Brenda http://www.brenda.uni-koeln.de/

KEGG http://www.kegg.com/

IntEnz http://www.ebi.ac.uk/intenz/

Proteins

HAMAP project http://www.expasy.org/sprot/hamap/

InterPro http://www.ebi.ac.uk/interpro/
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Table 3.3 (continued)

E. coli-specific

Databases

EcoCyc http://ecocyc.org/

Colibri http://genolist.pasteur.fr/Colibri/

GenProtEC http://genprotec.mbl.edu/

CyberCell http://redpoll.pharmacy.ualberta.ca/CCDB/index.html

EchoBase http://www.ecoli-york.org/

Yeast-specific

Databases

CYGD http://mips.gsf.de/genre/proj/yeast/

Saccharomyces Genome http://www.yeastgenome.org/

Database

H. pylori-specific

Databases

PyloriGene http://genolist.pasteur.fr/PyloriGene/

hp-DPI http://dpi.nhri.org.tw/protein/hp/ORF/index.php

for the analysis of 63 annotated genome sequences, both individually and
collectively. The Institute for Genomic Research (TIGR) updates and main-
tains this site.

Another database that maintains many microbial genomes is the
Genomes On-Line Database (GOLD) site. Not all of the information on
the site is publicly available. The developers of GOLD have been active
in automating the reconstruction of metabolic networks using pathway
templates.

Biochemical data
Direct biochemical information is the most reliable source for the presence
of a reaction in an organism. Biochemical data also gives stoichiometry
and whether or not a reaction is reversible. For example, the enzyme that
catalyzes the conversion of D-glucose to D-glucose-6-phosphate, as ATP
is converted to ADP, is called glucokinase. The gene that encodes this
enzyme is commonly called glk, and the E.C. number that corresponds to
this reaction is 2.7.1.2. The structure of the Human β-cell glucokinase is
shown at the top of Figure 3.5 (found in the Protein Data Bank). Collections
of biochemical data on an organism’s metabolism is often found in review
articles and more recently in whole volumes that are focused on the biology
of a single organism.
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Gene: glk
Enzyme: Glucokinase
Reaction: ATP + D-Glucose = 

ADP + D-Glucose 6-pho
E.C.: 2.7.1.2

Figure 3.5: Biochemistry of the glucokinase reaction and and illustration of its protein struc-
ture. From http://www.rcsb.org/pdb/

Enzyme commission numbers
E.C. numbers are used to systematically characterize enzymatic reactions
(http://www.chem.qmul.ac.uk/iubmb/enzyme/). They have been estab-
lished to unambiguously classify reactions, which is needed because so
many enzymes have ambiguous and duplicate names across organisms
(see Table 3.4). For instance, try going to the E.C. Web site and searching
first for succinate dehydrogenase (sdh), and then for fumarate reductase
(fr). Both of these enzymes catalyze the same reaction, but in opposite di-
rections. Some biochemists find that frd or sdh may be reversible at times.
As a result, when you type in succinate dehydrogenase you will find that
it is often used to indicate either reaction. A classification scheme similar
to the E.C. system is being developed for transport reactions [26]. Unfortu-
nately, there is no similar system for genes, which have the same problem
of ambiguous and duplicate names. Thus, the curation of gene annotation
information for a reconstruction can be quite laborious.

Protein databases
Swiss-Prot (http://us.expasy.org/sprot/) is a very useful source for examin-
ing particular protein or reaction assignments in detail and is considered a
“gold standard” for biochemical information because it is so well-curated.
It contains literature references, sequences, functional assignments, and
other useful information, all specific to the organism being examined.
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Table 3.4: Example of the E.C. nomenclature.

EC 1 Oxidoreductases

EC 1.1 Acting on the CH OH group of donors

EC 1.1.1 With NAD or NADP as acceptor

EC 1.1.2 With a cytochrome as acceptor

EC 1.1.3 With oxygen as acceptor

EC 1.1.4 With a disulfide as acceptor

EC 1.1.5 With a quinone or similar compound as acceptor

EC 1.1.99 With other acceptors

EC 1.2 Acting on the aldehyde or oxo group of donors

EC 1.2.1 With NAD or NADP as acceptor

EC 1.2.2 With a cytochrome as acceptor

EC 1.2.3 With oxygen as acceptor

EC 1.2.4 With a disulfide as acceptor

EC 1.2.7 With an iron–sulfur protein acceptor

EC 1.2.99 With other acceptors

EC 1.3 Acting on the CH CH group of acceptors

EC 1.3.1 With NAD or NADP as acceptor

EC 1.3.2 With a cytochrome as acceptor

EC 1.3.3 With oxygen as acceptor

EC 1.3.5 With a quinone or similar compound as acceptor

EC 1.3.7 With an iron-sulfur protein acceptor

If one is not sure about the presence of a protein in an organism but a
page is found for it on Swiss-Prot, he or she can be fairly sure that the
protein has been characterized and that literature references are available.
TrEMBL contains new entries to Swiss-Prot that have not yet been curated.

Gene–protein–reaction (GPR) associations
When associating genes to reactions, and vice versa, it is important to
remember that not all genes have a one-to-one relationship with their cor-
responding enzymes or metabolic reactions. Many genes may encode sub-
units of a protein which catalyze one reaction. One example is the fumarate
reductase. There are four subunits, frdA, frdB, frdC, and frdD, without
which the enzyme (a protein complex) will not be able to catalyze the
reaction. Conversely, there are genes that encode so-called promiscuous
enzymes that can catalyze several different reactions, such as transketo-
lase I in the pentose phosphate pathway. Such reactions typically involve
similar chemical transformations of structurally related molecules.

These examples highlight the need to keep track of associations between
genes, proteins, and reactions. Examples of different types of GPR associ-
ations are shown in Figure 3.6, where the top level is the gene locus, the
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LEVEL GPR ASSOCIATIONS
Succinate Dehydrogenase

b0721 b0722 b0723 b0724

sdhC sdhD sdhA sdhB

Sdh

&

SUCD1i SUCD4

Gene

Peptide

Protein

Reaction

D-Xylose ABC Transporter

b3566 b3567 b3568

xylF xylG xylH

XylF

XYLabc

Gene

Peptide

Protein

Reaction

&

XylG XylH

Glyceraldehyde 3-
Phosphate Dehydrogenase

b1779 b1416 b1417

gapA gapC2

GapA

GAPD

Gene

Peptide

Protein

Reaction

&

GapC

gapC1

Figure 3.6: Gene–protein–reaction (GPR) associa-
tions. Redrawn from [185].

second level is the translated peptide, the third level is the functional pro-
tein, and the bottom level is the reaction. Many genes may encode subunits
of a protein, or multiple proteins might come together to form an enzyme
complex. Subunits (e.g., sdhABCD and gapC1C2) and enzyme complexes
(e.g., xylFGH) are connected to reactions with “&” associations, meaning
that all have to be expressed for the reaction to occur. For sdhABCD, the “&”
is shown above the enzyme level indicating that all of these gene products
are needed for the functional enzyme. With xylFGH, the “&” association
is shown above the reaction level, indicating that the different proteins
form a complex that carries out the reaction. Succinate dehydrogenase is
an example of a promiscuous enzyme that can catalyze several different
reactions. Isozymes (e.g., GapC and GapA) are independent proteins that
carry out identical reactions. Only one of the isozymes needs to be present
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for the reaction to occur. Isozymes are shown as two or more arrows leaving
different proteins but impinging on the same reaction.

Organism-specific sources of information
Several biological databases that integrate genomic and biochemical data
for a particular organism are becoming available. One of the earliest of
such sites is the E. coli encyclopedia (EcoCyc) database. Comprehensive
Yeast Genome Database (CYGD), Yeast Protein Database (YPD), and Sac-
charomyces Genome Database (SGD) are some examples for yeast.

The widely used Kyoto Encyclopedia of Genes and Genomes (KEGG)
database organizes its genomic information as maps of reaction networks.
In reaction maps, arrows are used to connect various metabolites, indicat-
ing that one metabolite can be converted to another by a chemical reaction.
This representation is the standard graphical representation of reaction
and pathway data and will be described in Chapter 6.

For many organisms of interest, comprehensive textbooks have been
written that include detailed descriptions of the organism’s metabolism
and other biological functions. These books give an overview of the or-
ganism’s importance, metabolic features, and important references, as
well as physiological data. The E. coli two-volume set [142] was the
first of its kind and continues to be a useful source when building mod-
els of other bacteria. Several such organism-specific compendia have ap-
peared [131, 138, 142, 211]. Such compilations of genetic, biochemical,
and physiological data, and functional attributes of a particular organism,
represent highly concentrated sources of data needed for reliable recon-
structions.

In addition, to achieve a high-quality, well-curated network reconstruc-
tion, one should search the primary research literature. Comprehensive
review articles are particularly useful since they contain organized collec-
tions of primary articles on a particular organism. Reviews are typically
well summarized and written by experts on the subject and provide an
accessible source of biochemical information. Frequently though, one has
to search the primary literature, and searches may have to be done on a
regular basis to continually update the network reconstruction.

Meeting demands and measured physiological states
There are two additional issues that one needs to consider in completing
the reconstruction.

First, one needs to analyze the demands that are placed on the network.
Most of the time, metabolic networks are fulfilling many functions, such as
synthesizing the entire biomass composition of the organism in a growth
state. In many cases, the biomass composition of an organism will not be
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available from direct experiments; for such cases, the biomass composition
of a closely related organism may be used. For example, in reconstruct-
ing H. pylori or H. influenzae, one could assume a biomass composition
similar to that for E. coli. This may not be an acceptable assumption for
eukaryotes, such as S. cerevisiae. The best option is to experimentally de-
termine the composition for the organism of interest. Knowing the relative
macromolecular composition, such as the amino acid composition of pro-
teins [233], is more important than detailed information on the makeup of
each class of macromolecules.

Second, it is important to obtain physiological data to determine if the
reconstructed network can reproduce physiological behaviors that have
been observed experimentally. Such tests require integrated or mathemat-
ical descriptions of the network, detailed later in the text. Physiological
data de facto gives the functional states of the network. The reconstruction
must be able to reproduce these observed states.

Data on individual reactions and data on functional states represent fun-
damentally different information. The former is component-type informa-
tion, often referred to as bottom-up data. The latter is whole network-type
information, often referred to as top-down data. Since metabolic networks
are functionally hierarchical, both these data types are important in ob-
taining genome-scale reconstructions.

Reconciliation and curation
Although a reconstructed network has been synthesized using various
databases and literature sources for information, it is most likely not yet
complete. Careful studies will often show that enzymes that are likely to
exist in the thriving organism may be missing from the reconstruction.
For example, both KEGG and TIGR give no indication that phosphofruc-
tokinase is found in H. pylori. This could mean that H. pylori is not able
to produce 1,6-fructose bisphosphate (FDP) from glucose, although there
may be other pathways by which FDP is produced. Careful review of the
literature reveals that the phosphofructokinase enzyme may have been
identified [90]. Other scientists, however, have disputed this claim. After
thoroughly examining studies of H. pylori metabolism, one needs to de-
cide whether or not to include this enzyme and the reaction it catalyzes
in the reconstruction. Biochemical data is therefore fundamental to both
curating and expanding the network.

Prospective design of experiments
No organism is fully characterized today. Therefore, although the online
databases and all of the relevant literature have been searched and re-
actions tabulated, there is still a high probability that several necessary
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reactions will be missing in the reconstruction. Not all of the ORFs in the
genome have been identified, assigned a function, and linked to reactions
in the network. Based on knowledge of how an organism grows and func-
tions, a gene product’s presence can be inferred based on the inability of
the organism to function without it. “Filling in the gaps” in this way is
tantamount to stating hypotheses to drive further experimental research.

Indeed, the primary result from genome-scale constraint-based mod-
els of networks is a well-defined list of hypotheses and experiments to
carry out in order to reconcile discrepancies in a reconstruction, fill in
the gaps, and explore new functionalities of an organism. There are now a
growing number of examples where models are used to drive such experi-
ments, from well-characterized organisms, such as E. coli [51, 185, 33] and
yeast [67, 47], to organisms that are not as well studied, such as Geobacter
sulfurreducens [127]. This process of iterative model building promises to
accelerate biological discovery, product development, and process design.
It represents one of the major goals of systems biology [100, 152].

3.3 Genome-scale Metabolic Reconstructions

The reconstruction of metabolic reaction networks has been ongoing based
on biochemical information de facto since the 1930s, when the glycolytic
pathway was delineated. Since then, a large number of metabolic reactions
have been discovered and described. Assembly of such reactions make up
large sections of textbooks on biochemistry [120, 218]. Large-scale organ-
ism specific assemblies began to appear through multiauthored volumes
in the late 1980s [142]. The availability of such information began the sys-
tematic synthesis of organism-specific metabolic networks. Large-scale re-
constructions of E. coli metabolism were established in a stepwise fashion
(see Table 3.5) and the network properties of their mathematical descrip-
tions were assessed [183]. Similar biochemically based reconstructions
have appeared for S. cerevisiae [54, 47] and Aspergillus niger [43].

The first genome to be fully sequenced was that of H. influenzae
in 1995 [60], which enabled the first reconstruction of a genome-scale

Table 3.5: Pregenome era reconstructions of the metabolic
network in E. coli. From [183].

Number of metabolites Number of reactions Publication

17 14 [129]

118 146 [231, 232]

305 317 [171, 172]
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Table 3.6: Genome-scale reconstructions of metabolic networks in microbial
cells. The detailed contents of many of these models are available at
http://systemsbiology.ucsd.edu. Organelle-scale reconstructions of the human
cardiac myocyte have appeared [238], accounting for 230 metabolites and 189
reactions. Compiled by Jennifer Reed.

Organism Number of Number of Number of

Organelle genes metabolites reactions Publication

H. influenzae 296 343 488 [50]

E. coli 660 436 720 [51]

904 625 931 [185]

H. pylori 291 340 388 [192]

341 485 476 [221]

S. cerevisiae 708 584 842 [54]

750 646 1149 [47]

G. sulfurreducens 588 541 523 [127]

S. aureus 619 571 640 [10]

M. succiniciproducens 335 352 373 [93]

metabolic network in 1999 [50]. Since then, a number of genome-scale re-
constructions have been achieved (see Table 3.6). Most of the genome-scale
networks reconstructed thus far are for bacteria, although the first genome-
scale eukaryotic networks have recently appeared. Eukaryotic reconstruc-
tions are much more complicated than those of bacteria; for instance, the
most recent S. cerevisiae reconstruction accounts for seven cellular com-
partments [47].

The process described in the last section represents the detailed lessons
learned through these reconstruction efforts. The process of reconstruction
is iterative. Unlike genome sequencing projects which have a well-defined
end point, the reconstruction process is ongoing. The history of the recon-
struction of the E. coli network is shown in Figure 3.7, and, at the publi-
cation of this book, reconstruction of this organism has been ongoing for
close to 15 years. The reconstruction of other recently sequenced organ-
isms is proceeding much faster now that a comprehensive reconstruction
of the E. coli metabolic network is available.

3.4 Multiple Genome-scale Networks

Metabolic networks do not operate in isolation. They interact with many
other cellular processes, such as transcriptional regulation and cellu-
lar motility. Signaling networks in multicellular organisms interact with
metabolism, as do cellular fate processes, such as mitosis and apoptosis.
To fully describe a cell, all these networks need to be reconstructed and
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Figure 3.7: History of reconstruction of mathematically described metabolic reaction networks
for E. coli. From [183].

integrated to simultaneously represent all cellular functions. Today, such
integration has only been achieved for metabolism and transcriptional
regulation [33]. As described earlier, genome-scale metabolic reconstruc-
tions are currently fairly comprehensive. Models of mitosis and apoptosis
have appeared [223, 224, 68]. The status of reconstruction of transcrip-
tional regulatory and signaling networks are described in the next two
chapters.

Common components
The division of cellular networks into metabolism, regulation, and signal-
ing has historical and life science curriculum origins. However, there are
an increasing number of discoveries showing that often the same molecules
participate in more than one of these networks (see Table 3.7). We must
therefore begin to think of all the chemical reactions resulting from the
activities of genomes and gene products as one genome-scale network.

Putting “content in context”
Over the coming decade we may expect to see reconstructions appear that
integrate multiple such networks. As in the past, it is likely that model
organisms such as E. coli will lead the way (see Figure 3.8). Seen from
a broader perspective, reconstructing genome-scale models provides a
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Table 3.7: Cellular components of multiple networks (signaling, metabolism, and
regulation). From [157].

Component Metabolic Regulatory Signaling Ref.

ATP Energy metabolism Global regulator of Phosphate is [83]

DNA coiling ubiquitous in

signaling reactions

Riboswitches Metabolite-binding Ribozymes cleave [250]

and ribozymes can regulate activity RNA transcripts;

control gene

expression

Arg5,6 Arginine biosynthesis Binds to specific [81]

nuclear and

mitochondrial

loci of DNA

Phosphoinositides Lipid biosynthesis PI3K signaling [27]

GAPDH Glycolytic enzyme Transcriptional [208]

coactivator

Lactate Glycolytic enzyme Transcriptional [208]

dehydrogenase coactivator

Nicotinamide Metabolic cofactor Alter TF Calcium signaling; [208, 14]

adenine DNA-binding Poly-ADP-ribose

dinucleotide properties polymerases

(NAD)

Interleukin-1 Inhibition of fatty Immune system [133]

acid synthesis signaling

Sialic acid Oligosaccharide Apoptotic [140]

synthesis signaling

Insulin Glucose uptake PI3K signaling [133, 206]

Hog1 Glycerol synthesis; Osmolarity [45]

phosphofructokinase response

in yeast

formalism for integrating all of the “omics” data that is currently avail-
able, or allows one to put “content in context.” Here, genomic, transcrip-
tomic, proteomic, and metabolomic data are all integrated in the context
of a biochemically and genetically accurate framework that enables one
to make predictions about whole organism function, given the nutritional
environment.

Note that chemical composition data (genomics, transcriptomics, pro-
teomics, metabolomics) and component interaction data (DNA-protein and
protein–protein interactions, or “interactomics”) can be comprehensively
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Table 3.8: The data types accounted for in genome-scale multinetwork reconstruction.

Genomic data Annotated genes

Splice variants

Gene location

Regulatory regions

Wobble base pairs

Biochemical data Stereochemistry (L and D forms)

pH and pKa to determine charge

Elemental balance and charge balance

Multiple reactions/enzyme

Multiple enzymes/reaction

Transcription/translation Gene–transcript–protein–reaction association

Transcript and protein half-lives

tRNA abundances

Ribosomal and polymerase capacities

Physiological data Fluxes (fluxomic data)

Overall phenotypic behavior

Gene knockout phenotypes

Compartmentalization of gene products

connected to phenotypic data (network functional states, such as flux-
omics and growth rate phenotyping). Because of the predictive nature
of mathematical models, they can also be used to to curate and criti-
cally examine high-throughput data by reconciling in silico predictions
with experimental results. Thus, the reconstruction can be called a bio-
chemically, genetically, and genomically structured (BIGG) database, and
the mathematical analysis approach can be called query or interrogation
methods.

Data types accounted for in a multinetwork reconstruction
The reconstruction and integration of multiple networks will allow for the
simultaneous accounting of diverse date types and their reconciliation. Ge-
nomic, biochemical, macromolecular, and physiological data can be used
in such reconstructions (Table 3.8).

� Genomic data include DNA sequences and the location and functional
annotation of genes. Transcriptional regulatory models also account
for many of the intragenic regions where RNA polymerase and tran-
scription factors bind.

� Extensive biochemical information is contained in reconstructions.
The L and D forms of compounds are accounted for separately.
A molecule’s charge can be determined from its pKa value and
network-scale proton balancing. All reactions must elementally and
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charge balanced. Promiscuity of enzymes and the ability of different
enzymes to catalyze the same reaction needs to be accounted for.

� Reconstructions of translation and transcription include the relation-
ship between an open reading frame and its transcript. Translation not
only associates a transcript with a protein but also enables the incor-
poration of transcript half-life data, tRNA abundances, and ribosomal
capacities. Wobble base pairs can also be associated with correspond-
ing tRNAs. The assembly of multiple proteins to form functional com-
plexes can also be incorporated.

� Large-scale reconstructions allow us to simulate and thus reconcile
phenotypic data. Fluxomic data give information about the actual
flux distributions in a network and can be derived from a mathemat-
ical model. The consequences of removing a gene can be assessed.
The cellular location of proteins can be described, as in the seven-
compartmental model of yeast.

Genome-scale reconstructions provide a mechanistic framework for the
integration of a wide range of data types. Such reconstructions, and their
stoichiometric representation, are a common denominator in systems bi-
ology (recall Figure 1.4).

Regulation of metabolic networks
Regulation of metabolism is accomplished by modulating enzymatic reac-
tion rates. Such modulation is achieved by either regulating the activity
or the concentration of key enzymes. In some cases, both kinetic function
and enzyme concentration are regulated. These two types of regulation
are illustrated in Figure 3.9, where feedback loops at the end of a pathway
regulate the first reaction in the sequence and also control the production
rate of the enzymes catalyzing reactions in the pathway. Regulation on
both levels can be either

� negative, called repression in the case of regulation of gene expression
and inhibition in the case of regulation of enzyme activity, or

� positive, called induction in the case of gene expression and activation
in the case of regulation of enzyme activity.

The time scale of regulation of enzyme activity is typically much shorter
than that of gene expression, that is, on the order of minutes and hours,
respectively [75]. Normally, regulation of gene expression is considered
a coarse control of metabolism, whereas regulation of enzyme activity
is viewed as fine tuning. Regulation of gene expression is fairly well-
characterized in bacteria, but much more complicated regulatory patterns
are found in eukaryotic cells. A detailed account of the principles of
metabolic regulation is given in [84]. Transcriptional regulation is detailed
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Figure 3.9: schematic of interacting metabolic and genetic control loops, modified from [151].
The dashed lines indicate regulatory interactions, while the solid arrows indicate primary
chemical transformations. The dotted line is used to seperate the domain of metabolic from
that of transcriptional regulation.

in the next chapter, but the regulation of gene product activity is briefly
discussed here.

Regulation of enzyme activity
Cells use various mechanisms to regulate the activity of enzymes. For in-
stance, many key enzymes in metabolism are regulated by an allosteric
mechanism. In addition to having the binding site for the substrate, al-
losteric enzymes have a binding site for regulatory molecules as well. A
bound regulatory molecule can either activate or inhibit enzyme activ-
ity. Allosteric interactions between the catalytic and regulatory sites cause
conformational changes in the enzyme molecule. This is indicated by the
name allosteric, coined by [139], which means different (allo-) binding
sites, as opposed to isosteric, where substrates and modulators would bind
to the same site. Allosterism is quite advantageous since the substrate and
regulatory molecules are typically chemically unrelated.

Allosteric enzymes are commonly found at the beginning of a sequence,
whereas their regulators are found at the end. This forms feedback loops, as
indicated in Figure 3.9. Hexokinase, the enzyme catalyzing the phospho-
rylation of glucose, is a familiar example. It is inhibited by the chemical
energy source ATP, which is one of the primary products of glycolysis, and
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is stimulated by ADP, which is produced by consumption of the energy
stored in ATP and may be considered a substrate. Allosteric regulation
and other regulatory mechanisms, such as protein phosphorylation, have
an underlying chemical mechanism and can thus be described stoichio-
metrically.

3.5 Summary

➤ Complex networks operating inside cells carry out complicated bio-
logical functions. Examples include metabolic, regulatory, and signal-
ing networks.

➤ All networks are based on underlying biochemical reactions and can
thus be described by a stoichiometric matrix.

➤ Reaction networks can be described at different levels of resolution
enabling us to conceptualize their functionalities in a hierarchical
fashion.

➤ Metabolism is the best characterized cellular reaction network in
terms of its biochemistry, kinetics, and thermodynamics.

➤ Genome-scale reconstruction of metabolic networks for organisms
whose genome has been sequenced is now possible.

➤ Network reconstruction is a detailed, laborious process that needs
careful examination of all the components and links in the network.
Procedures to perform this task have been developed. Numerous Web
resources and tools are available to aid in developing curated net-
works.

➤ Metabolic networks interact with essentially all other cellular pro-
cesses. The reconstruction of these processes and the integration of
multiple networks will lead to the description of a comprehensive
range of cellular functions.

➤ Such a multinetwork reconstruction represents a biochemically, ge-
netically and genomically, structured database that provides the
framework for analyzing -omics data types.

3.6 Further Reading
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CHAPTER 4

Transcriptional Regulatory
Networks

The expression of the gene complement of a genome is carefully
regulated. Only a fraction of the genes in a genome are expressed under
a given condition or in a particular cell type. There is a complex tran-
scriptional regulatory network that controls which genes are expressed
in response to various environmental and developmental signals. Exten-
sive effort is being devoted to the elucidation of the components of tran-
scriptional regulatory networks and the links between them. The recon-
struction methods that are being developed are based on both legacy and
high-throughput data types, and notable progress is being made with a few
specific cases. Although the comprehensive details are not yet available
for any one transcriptional regulatory network, some of their fundamen-
tal principles have been elucidated and a conceptual framework for their
hierarchical decomposition has been developed.

4.1 Basic Properties

The chemical conversions taking place in metabolic networks relate to
the dismemberment and assembly of small molecules through a series of
chemical transformations. In contrast, transcriptional regulatory networks
involve the association and interaction of large molecules. They rely pri-
marily on protein–protein interactions and DNA–protein interactions, al-
though metabolites do participate directly in some of these transforma-
tions. The chemistry underlying these interactions is currently partially
understood, but much progress is being made. Still, however, these net-
works are not as well assembled and characterized as metabolic networks.

Some of the key features of regulatory networks are emerging. Speci-
ficity in regulatory networks is achieved by specificity in binding and
association of macromolecules, often in particular locations in the cell.

54
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Once the components are colocalized, specific interactions among them
can take place. The localization step is critical, and it is governed by col-
lision frequency, or mass action kinetics, of the participating components.
The strength of the association is determined by the chemical composition
and molecular structure of the surfaces of the interacting macromolecules.
The extent of flexibility in determining the properties of these surfaces by
changing the amino acid sequence in proteins and the base sequence in
DNA binding sites is unknown [21]. This process has been termed regu-
lated recruitment [180] and the binding affinity, or the “stickiness,” of the
complementary surfaces is of key importance. Once we better understand
the constraints and limitations of this process, we will understand how
easily new links can form or old links can disappear in transcriptional
regulatory networks.

To get the reader oriented, two examples that are of historical importance
are provided. These two examples illustrate the effect of the DNA-binding
proteins alone and in combinations on the transcription of the target gene.
The activity of the DNA-binding proteins themselves is controlled by var-
ious signaling pathways, which are not described in these examples.

The lac operon in Escherichia coli
The lac operon consists of three structural genes (lacA, lacZ, and lacY)
involved in lactose utilization. The operon is regulated by lactose and
glucose signals mediated by two DNA-binding regulatory proteins: the
lac repressor and CAP, respectively. The lac repressor binds DNA only in
the absence of lactose, whereas CAP binds only in the absence of glucose.
Depending on the lactose and glucose concentrations in the medium, three
different states for the regulatory system can be identified (Figure 4.1):

1. If both lactose and glucose are present, neither lac repressor nor CAP
is bound to DNA, RNA polymerase binds weakly to the promoter,
and the operon is transcribed at a low basal level.

2. If lactose is present and glucose is absent, CAP is bound to the pro-
moter, but lac repressor is not bound to its site. CAP will now prefer-
entially recruit RNA polymerase to the promoter, and the expression
level of the lac genes is increased 40-fold.

3. If lactose is absent (independent of whether glucose is present or
not), lac repressor is bound to DNA. Because the binding site of the
lac repressor is within the operator, it excludes the RNA polymerase
from the promoter, and the expression of the lac genes is strongly
repressed.

A fourth state of this system at low lactose in the absence of glucose has
been described recently [205].
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Figure 4.1: Transcriptional regulation of the lac operon in E. coli by the lac repressor (rep) and
CAP in response to the presence of glucose and lactose. The logistical representation can be
formulated based on these experimental observations. Redrawn from [180].

The GAL regulon in yeast
The GAL genes are required for the breakdown of galactose, a sugar hex-
ose. Their transcription is induced by galactose and repressed by glucose.
Galactose induction is mediated by a DNA-binding activator, Gal4, and
repression by a DNA-binding repressor, Mig1. Similar to the lac operon,
three different binding, and thus functional, states of this regulatory system
can be identified (Figure 4.2):

1. If galactose and glucose are both absent, Gal4 is bound to its binding
site as a homodimer, and Mig1 is not bound. However, Gal4 is not
able to recruit the polymerase and activate transcription because it
is complexed with the Gal80 protein, which acts as an inhibitor.

2. If galactose is present and glucose is absent, Gal80 inhibition is re-
leased and Gal4 recruits the RNA polymerase to the promoter. Due to
the low basal level of transcription in eukaryotic cells, Gal4 induces
GAL gene transcription more than 1000-fold.

3. If galactose and glucose are both present, both Gal4 and Mig1 are
bound to the promoter. However, the activating effect of Gal4 is
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Figure 4.2: Transcriptional regulation of the GAL1 gene in yeast by Gal4 and Mig1 transcription
factors in response to glucose (Glu) and galactose (Gal) signals. Redrawn from [180].

counteracted by the much stronger repressing effect of Mig1, result-
ing in strong repression of GAL gene transcription. Mig1 acts by re-
cruiting a corepressor complex, which represses transcription by an
ill-characterized mechanism.

Note that the underlying experimental facts in these two examples are
described essentially in terms of logistical statements. Such statements can
be mathematically represented. Of course in reality, these different bind-
ing states represent chemical events that are determined by concentrations
and binding affinities. If the chemical equations describing DNAbinding of
regulatory proteins are known, these regulatory circuits can be described
stoichiometrically. Furthermore, given the small number of some of the reg-
ulatory molecules and the thermal noise that exists inside cells, stochas-
tic factors are believed to play an important role in the kinetic behav-
ior of regulatory networks, at least at the lower end of their hierarchical
scale [107, 182].

Proteins that bind to DNA
E. coli DNA-binding proteins are classified into several major categories:
DNA packaging, DNA recombination, DNA repair, DNA replication, tran-
scription initiation, RNA synthesis, and transcriptional regulation (see
Table 4.1). Most of the proteins involved in transcription regulation and
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Table 4.1: Functions and examples of E. coli DNA-binding proteins.

DNA packaging Nucleoid proteins (OmpH)

DNA recombination DNA strand exchange, renaturation proteins (RecA)

DNA repair uracil-DNA glycosylases (Ung), DNA endonucleases (Vsr)

DNA replication Origin binding proteins (Rob), DNA polymerases (Po1A),

DNA ligases (LigA), single-strand binding proteins (Ssb),

DNA topoisomerases (GyrA)

Transcription initiation Subunit of RNA polymerase (RpoD)

RNA synthesis RNA polymerases (RpoA)

Transcription regulation 186 transcription factors, including

Crp, Fnr, ArcA, Fis, HimA, PhoB, etc.

Others Restriction enzymes (McrA)

DNA repair recognize specific DNA sequences and bind predominantly to
these target sequences, whereas others may bind nonspecifically at various
positions along an E. coli genome.

The copy number of RNA polymerases can be related to a degree of ex-
pression activity in a cell. In a fast-growing E. coli cell, there are roughly
3,000 RNA polymerase complexes. Most transcription factors recognize
upstream promoter sequences and upregulate or downregulate transcrip-
tion initiation at the promoter to which these elements are attached.
According to RegulonDB (http://www.cifn.unam.mx/Computational
Genomics/regulondb/), there are 186 known and 141 additional predicted
transcription factors in E. coli [165].

Each gene (or operon in prokaryotes), in a genome has at least one pro-
moter region associated with it, similar to the ones described in the earlier
examples. Genes whose expression is controlled by a set of DNA-binding
proteins binding to their promoter region can in turn act as regulatory pro-
teins. When all of the DNA-binding proteins and their target promoters
in a genome are considered together, a complex regulatory network with
transcriptional cascades and feedback loops emerges. The earlier examples
illustrate fairly simple cases of regulation with only two to three different
DNA-binding proteins acting on one promoter. In higher eukaryotes, the
complexity of promoter and enhancer regions of the genome is usually
much higher, and these regions can contain binding sites for tens of differ-
ent regulatory proteins. The higher the number of molecules participating
in transcriptional regulation, the larger the combinatorial possibilities are,
and thus a larger number of functional states can be derived as the number
of components grows.
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Fundamental building blocks
Although the fundamental reaction chemistry is the same for metabolic
and regulatory networks, the types of reactions that form the “building
blocks” of transcriptional regulatory networks are different than those of
metabolism. The basic functional block of a regulatory network is the pro-
moter region of a gene or operon, which contains the cis-regulatory bind-
ing sites for the relevant transcription factors regulating the expression of
a particular gene, as illustrated by the earlier two examples. The locations
and orientations of these binding sites, as well as the affinity of the tran-
scription factors to particular variants of the site, determine the expression
levels of a gene in response to changes in the active transcription factor
concentrations.

The transcriptional regulatory network is then defined by which tran-
scription factors bind to which promoters and what the integrated effect of
all these transcription factors is on the expression of genes [180]. It has been
demonstrated that the known organization of promoter regions in bacteria
allows for the implementation of a wide class of regulatory logic functions
within a single promoter [141], such that a single “node” in the regulatory
network can be relatively complex. Regulatory networks can be decom-
posed into a small set of commonly occurring structural “motifs” [207],
summarized in Figure 4.3. The behavior of prototypical examples of these
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Figure 4.4: Transcriptional regulation: levels of abstraction by gene, operon, regulon, and
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motifs can be studied to gain insight, in a bottom-up fashion, into their
role in the full regulatory network [188, 251].

Hierarchy in transcriptional regulatory networks
As for metabolism, there are several levels of abstraction to consider for
transcriptional regulatory networks (see Figure 4.4). The simplest elements
are the genes. Some genes are constitutively expressed, meaning that they
are always transcribed at relatively constant levels. Other genes are reg-
ulated, and the transcriptional regulatory network induces or represses
transcription of these genes. A group of genes that are adjacent on the
genome and are transcribed together forms a unit called an operon. This
arrangement is primarily found on prokaryotic genomes. An additional
means of regulating related genes as a group is a regulon, where a certain
regulatory protein binds to multiple locations on the DNA, causing induc-
tion or repression (or a combination of both) of the related genes or even
multiple operons. This mode of coordination is the method of choice for
eukaryotes.

At the highest level of abstraction is the stimulon, which includes all the
regulons that are induced by a particular stimulus. For example, a stimulon
may be all the regulons that are related to a particular substrate. If that
substrate, such as an amino acid or glycerol, is present in the extracellular
medium, representing a stimulus sensed by the cell, it will result in the
activation or inactivation of certain proteins in the cell. These proteins
in turn have an effect on the transcription of various genes and operons,
resulting in a new set of available metabolic or other types of proteins in
the cell. The end result is an altered behavior. In the case of amino acids,
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they are most likely no longer synthesized by the cell de novo, but are
instead taken up from the environment. In the case of glycerol, there are
five operons on the E. coli genome involved in its metabolism. They all
react in a coordinated manner to the presence of glycerol in the medium.

The spatial or topological configuration of the genome influences gene
expression. Such effects can be global or local. For instance, the energy
charge itself is a global regulator of gene expression through its alteration
of genome geometric arrangement [83]. Thus, in addition to the network
of specific binding events that place the RNA polymerase throughput the
genome, there are three-dimensional aspects to the expression state of the
genome. The reader should recall Figure 2.3 that conveys the intricate
organization and crowding of the cell’s interior, within which genomes
function.

4.2 Reconstructing Regulatory Networks

The magnitude of the task
Estimating the scope of a metabolic network reconstruction task for a given
organism can be done relatively easily by estimating the number of genes
with potential metabolic function present in the genome. This number
is based on its annotation. For regulatory networks, the number of tran-
scription factors can not simply be used to estimate the complexity of
the network since the transcription factors can have multiple target genes
and often act in synergistic combinations. However, the relative fraction of
transcription factor coding genes tends to be higher for organisms that en-
counter more varied environmental conditions during their lifetime [29],
indicating that there are limits to the range of transcriptional states that
can be achieved with a fixed number of transcription factors.

Information on well-studied organisms can be used to evaluate the
level of complexity of transcriptional regulatory networks in terms of
the number of components (TFs, target genes) and regulatory interactions
(Table 4.2). E. coli has been predicted to have 314 transcription fac-
tors [165], and based on primary literature, 577 regulatory interactions
have been identified [207]. In yeast Saccharomyces cerevisiae, there are
203 verified or putative DNA-binding transcription factors, and large-scale
protein-DNA binding screens indicate that there are at least 3,500 high-
confidence regulatory interactions [82]. For both E. coli and yeast these
numbers of regulatory interactions are most likely underestimates [33],
but they give an indication of the order of magnitude of the regulatory
network reconstruction task. Although the numbers of regulatory interac-
tions appear to be large, developments in experimental techniques as well
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Table 4.2: Reconstructed regulatory network structures in E. coli and S. cerevisiae.
Prepared by Markus Herrgard.

Network Regulatory Target Regulatory Regulated

genes genes interactions reactions

E. coli full metabolic [33] 104 451 – 555

E. coli database [207] 123 762a 1468a –

S. cerevisiae metabolic [88] 55 348 775 –

S. cerevisiae database [80] 109 418 945 –

S. cerevisiae ChIP-chip [82] 203 1296b 3353b –

aCounting each gene in an operon separately.
bIncludes only high confidence interactions.

as computational methods make genome-scale regulatory network recon-
struction a feasible task, at least for well-studied microbial organisms.

Three fundamental data types
As conceptually described in Chapter 2, systems biology is about compo-
nents, how they are linked together to form networks, and the functional
states that these networks take. Consequently, there are three data types of
interest:

1. Component data. We can break cells apart, then isolate and identify
their components. For transcriptional regulatory networks, the data
types in this category include the identification of binding sites, the
transcription factor molecules, riboswitches, and so forth. Significant
relevant legacy data exist, and so do ORF functional assignment data.
Both are needed to determine the scope the reconstruction effort.

Transcriptional
regulatory network

Promoter sequence

Gene expression

Location analysis

Genome annotation

Literature

Curated databases

DataKnowledge

Figure 4.5: Data types used in the bottom-up and top-down reconstruction approaches to
transcriptional regulatory networks. Courtesy of Markus Herrgard.
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2. Interaction data. Links are formed by chemical interactions be-
tween components. There are many methods, both experimental and
computational, being developed to determine such interactions, in-
cluding DNA–protein, protein–protein, and metabolite–RNA inter-
actions. Global data sets often have significant error rates, and ideally
all such interactions should be directly verified by small-scale exper-
iments. Furthermore, a set of positive and negative controls should
always be included.

3. Network state data. The reconstructed networks have functional
states. The state of a whole network can be assessed by a variety of
data generated from living cells in well-defined environments, such
as genome-scale expression data and phenotyping data. Controls for
network states are often assessed through perturbation experiments
(see Chapter 12). Network perturbation experiments include genetic
perturbations (gene knockouts, gene silencing through inhibitory
RNA), environmental perturbations (changing the availability of nu-
trients, shocking cells by changing temperature or pH), systemic
perturbation (through adaptation), and diseased states (normal vs.
pathological).

The integration of component, link, and network state data is needed for
network reconstruction and validation.

Top-down data types
High-throughput data types that simultaneously measure a large number
of variables or states are often referred to as top-down data. We discuss
three such top-down methods:

1. Experimentally determining the expression state of a genome.
Genome-scale mRNA expression profiling is perhaps the most com-
mon of such data types. Such data give the expression level of poten-
tially every gene being expressed in an organism under a particular
condition. One can then use gene knockouts to remove a transcrip-
tion factor from the genome and then expression profile the knockout
organism under the same condition. Then a comparison of the two
expression states allows one to infer the role of the missing transcrip-
tion factor in the regulation of genes whose expression is altered.
Such experiments are known as genetic perturbation experiments.
This approach has been used to study the GAL operon in yeast [100]
and the oxygen shift in E. coli [33]. Such inference of regulatory inter-
actions can also be achieved using other approaches [97, 202, 241].

2. Identifying all promoter sites using computational approaches. Pro-
moters are genomic locations near the transcriptional start sites
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of genes. The knowledge that transcriptional regulatory proteins
normally act by binding semi-specifically in promoter regions has
spurred the development of numerous in silico methods to identify
promoter sites.

One class of analyses is aimed at discovering the actual DNA sites
where regulatory proteins bind. Some algorithms work by consider-
ing all known promoters in an organism and searching for similar
nucleotide sequences that occur significantly more often than would
be expected by chance. Since different regulatory proteins often act
synergistically, other methods exploit this fact by searching for dif-
ferent groups of similar nucleotide sequences that occur near each
other an improbably high number of times.

Expression data can be combined with such in silico search
methods. Genes are first clustered based on similar expression pat-
terns, and then one can infer that a similarity of expression implies
similarity of transcriptional regulation. This similarity in regulation
often means that one or more regulatory motifs will be enriched
in the clustered promoters. But due to the combinatorial nature of
interacting regulatory proteins, this assumption may not always be
completely true.

3. Experimentally determining the location of protein binding sites
on DNA. The inference of a regulatory interaction based on in
silico methods needs to be examined by a direct experiment. High-
throughput data sets can lead to the generation of numerous such in-
ferences. Thus, high-throughput methods are needed to test, validate,
and refute such inferred interactions. One such approach is to use
the so-called genome-wide location or ChIP–chip analysis [187](see
Figure 4.6). In this approach, the transcription factors are cross-
linked to DNA under the physiological condition of interest. The
DNA is isolated and fragmented by sonication. Then an antibody
specific to a particular transcription factor is used to isolate the tran-
scription factor and the DNA fragment to which it is bound. Follow-
ing such isolation, the DNA fragment is released from the protein
and its sequence is identified by hybridization to a microarray con-
taining promoter sequences, and the relative amount of binding can
be quantified. The sequence of the DNA fragment can then be com-
pared to the genomic sequence to identify the binding site(s) of the
transcription factor.

An advantage that regulatory network reconstruction has over metabolic
network reconstruction is the availability of high-throughput experimental
data directly relevant to the network structure. For metabolic processes, the
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Figure 4.6: Location or ChiP–chip analysis. Modified from [116].

only widely available data source is the genome sequence. Unfortunately,
methods for measuring relevant metabolic quantities such as metabolic
fluxes and metabolite levels are still not commonly used at the genome
scale [216]. On the other hand, the two primary data types useful for the
regulatory network reconstruction task – genome-wide mRNA expression
and location analysis data – are widely available.

Bottom-up data types
Data derived from classical biochemistry or genetics that are focused on
a single or a few variables are often referred to as bottom-up data. Such
data on individual transcription factors can be found in the literature. In
some cases, such as for the transcription factors FNR or ArcA in E. coli,
such literature searches would yield a large number of primary research
reports, and often review papers. In other cases, little information is found
in the primary literature.

As the lac operon and GAL regulon examples show, there are select cases
in which the regulatory structures of operons or regulons have been eluci-
dated. Such data may be available for select model organisms. Accumula-
tion of such data has resulted in the construction of databases that target
transcriptional regulation. One prominent example is the RegulonDB that
contains information about 186 transcription factors in E. coli. There are
also general databases for individual organisms such as YPD for yeast [40]
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that contain significant amounts of regulatory information. In addition to
databases describing regulatory network structures, there are also compre-
hensive databases specializing in describing transcription factor binding
sites such as SCPD [261] for yeast and the general transcription factor
binding site database TRANSFAC [134]. Although these databases contain
valuable information for regulatory network reconstruction, they are not
very complete and for the most part lack information about the synergis-
tic effects between transcription factors acting on one gene. Nevertheless,
these databases and primary research literature can be utilized to recon-
struct regulatory networks for well-characterized organisms such as E. coli
and yeast [35, 207].

The bottom-up approach to reconstruction is laborious, as one has to
study the network component by component. Such detailed curation is
necessary, however, to achieve a high-quality reconstruction. It is also
needed to develop an intimate familiarity with the regulatory network,
which is important for prospective experimental design.

A combination of top-down and bottom-up methods is needed
There are many different data types available that relate to transcriptional
regulatory networks. All these data types have information relevant to
the network reconstruction process. Thus, they all need to be simulta-
neously reconciled. Developing methods for the reconciliation of diverse
data types is one of the major challenges in network reconstruction and
systems biology in general.

Six different data types that can be used in network reconstruction are
illustrated in Figure 4.5. They need to be simultaneously reconciled to
reconstruct a network. The end result can be depicted graphically as an
interaction map. In the map shown in Figure 4.5, the transcription factors
are denoted by a triangle, and the target genes by a square. The thick-
ness of the arrows are a statistical measure of the consistency of the data
types used. Ideally, all lines in the network should be thick and thus
well reconciled. However, this is not typically the case, except for subnet-
works or “modules.” Examples of such well reconciled subnetworks are
the flagellar genes in E. coli and those involved in nitrogen utilization in
yeast [87].

4.3 Large-scale Reconstruction Efforts

Few specific transcriptional regulatory networks are well characterized.
Currently, there is progress being made with a few model systems. We
describe three cases here: regulation of bacterial replication, regulation of
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early developmental events, and regulation of a genome-scale metabolic
network.

Cell cycle in Caulobacter
The aquatic bacterium Caulobacter crescentus has been extensively stud-
ied as a model organism for elucidating the cell cycle and the regula-
tory mechanisms that govern the precisely timed events in this cycle.
Caulobacter divides asymmetrically into two types of progeny: a stalk
cell and a motile swarmer cell. The swarmer cell typically migrates for
30–45 minutes before differentiating into a stalk cell, in which replication
proceeds almost immediately. However, Caulobacter’s regulatory network
suppresses DNA replication in swarmer cells via the global regulatory pro-
tein, CtrA, which binds to (and blocks access to) the origin of replication.
Genome-scale mRNA expression studies have been used to identify over
500 genes that are regulated in a cell cycle dependent manner [118]. Fig-
ure 4.7 summarizes the key components of the Caulobacter cell cycle regu-
latory network as determined in this study. This network, which involves
multiple kinases as well as the regulation of several metabolic genes, pro-
vides redundant negative feedback control over the timing of CtrA expres-
sion. More recent work has revealed how the genes in Caulobacter are
arranged in three dimensions within the cell nucleoid as replication pro-
ceeds [237], thus expanding our thinking of this network from a “circuit”
confined to two dimensions toward one that exists within more realistic
three-dimensional bounds.

Early development of the sea urchin
In recent years, significant progress has been made toward a genome-scale
characterization of the genetic regulatory network (GRN) responsible for
controlling embryonic specification in the sea urchin, Strongylocentrotus
purpuratus. The results from several pioneering studies have uncovered
many network components and associated interactions that underlie the
spatial and temporal aspects at work in the early development of this echin-
oderm (see Figure 4.8). The current GRN encompasses regulatory events up
to 24-hour postfertilization and includes links among 50 genes including
transcription factor, signaling, and their target genes [96].

Each link represented in this complex network represents the culmina-
tion of large-scale data integration from all available data, ranging from
sequence-based cis-regulatory predictions to detailed molecular embry-
ology. As a general requirement, experimental confirmation of each net-
work relationship is performed via detailed expression analysis. In prac-
tice, this process involves experimentally perturbing the system, via gene
knockouts for example; measuring detailed gene expression levels for all
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Figure 4.7: Schematic representation of the Caulobacter crescentus cell cycle regulatory net-
work. Reprinted with permission from Science 301:1874–1877. Copyright 2003 AAAS.

network components, and inferring network relationships from the result-
ing data. Confirmation of sequence-based predictions via multiple inde-
pendent experimental measures cuts down on the inclusion of indirect
effects, increasing the likelihood that the resulting network model reflects
biological reality.

The resultant model has utility beyond simply reflecting a conceptually
accurate representation of this GRN. It can also serve as an analytical tool to
aid in understanding a variety of observed sea urchin developmental phe-
nomena. For example, the current model helps explain boundary stability
of differentiated cell layers, as well as the irreversibility of the embryonic
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Figure 4.8: Schematic representation of the genetic regulatory network (GRN) for sea urchin
endomesoderm specification. The network architecture is based on the analysis of gene ex-
pression following experimental perturbation, as well as cis-regulatory analyses. Reprinted
from [147].

specification process [147]. Furthermore, those phenomena that are not
characterized well by the model indicate poorly understood portions of
the GRN and thus help direct hypothesis generation and further experi-
ments. In any case, the success in terms of explanatory power of this still
incomplete model clearly indicates the promise of this approach to model-
ing GRNs and will likely spur additional efforts to broaden its scope with
the ultimate goal of a comprehensive and accurate model of the entire
system.

Regulation of metabolism in E. coli
The transcriptional regulatory network in E. coli has been studied for the
past 40 years, and as such it is one of the best characterized microbial
regulatory networks. Databases, such as RegulonDB and EcoCyc, are be-
ing constructed that contain information about known regulatory interac-
tions in this network. These known interactions were recently translated
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Figure 4.9: Graphical representation of the Boolean transcriptional regulatory network in
E. coli. Metabolic genes are represented as squares and are arranged around the perimeter,
transcription factors as triangles arranged in the middle, and stimuli as circles arranged around
the center. The links or lines indicate that a Boolean rule exists relating the two objects. A link
between a stimulus and a transcription factor would indicate that the stimulus affects the
transcription factor activity, and a link between a transcription factor and a metabolic gene
would indicate that the transcription factor regulates gene expression. Prepared by Markus
Covert.

into Boolean rules or logic statements, resulting in a genome-scale model
of transcriptional regulation in E. coli. Boolean rules were written that
describe transcription factor activity as well as the conditions needed
for the expression of metabolic genes. This Boolean representation of
the regulatory network responds to 102 different stimuli and contains
104 transcription factors regulating 479 metabolic genes (see Figure 4.9).
Once completed, this genome-scale reconstruction was used to predict
growth phenotypes for single gene deletions as well as changes in expres-
sion. Discrepancies between the model predictions and experimental data
led to testable hypotheses regarding both the metabolic and regulatory
network [33].

Formal representation of regulatory networks
The available data on, and knowledge about, transcriptional regulatory
networks can be represented in different ways. The granularity of the
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description depends on how we intend to interrogate the data and how
much detailed information we have. Thus, a spectrum of coarse-grained
to detailed representations have been applied. They can be categorized as
follows:

� Finding components, links, and coregulated modules by using statis-
tical data mining methods. This represents a very high level analysis
and can be used to detect patterns and screen for candidate causes and
mechanisms explaining the observed effects.

� Finding causal relationships. This information can be described by
directed graphs and Boolean formalism. Such logistical descriptions
of regulatory networks, their states, and function have appeared [33].

� Finding reaction mechanisms. If known, they are described by chemi-
cal equations. Progress with understanding these mechanisms is being
made (see Figure 4.10). The composition of the RNA polymerase and
enzyme complexes is stoichiometric, and thus their formation can be
described by a stoichiometric matrix.

� Finding kinetic constants. Dynamic simulations are possible if kinetic
information is available [19, 52]. Given the scarcity of available nu-
merical values for kinetic constants, such efforts are confined to small-
scale networks and studies.

Given the lack of reliable reconstructions and fine-grained models of tran-
scriptional regulatory networks, few studies have appeared that focus on
their emergent properties. More such studies will eventually appear and
are likely to be of key importance in systems biology, as they will help
us to unravel the “logic” that cells use to manage the information on
their genomes. For many, this issue is at the heart of cell and molecular
biology.
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4.4 Summary

➤ Transcriptional regulatory networks determine the expression state of
a genome.

➤ These networks are still incompletely defined even for model organ-
isms.

➤ Regulatory networks can be broken down hierarchically, into operons,
regulons, and stimulons, based on the breadth of the transcriptional
response.

➤ At the most detailed level of description, function is often described
in terms of modules that are defined by investigators.

➤ Since many of the interactions in transcriptional regulatory networks
are not known in mechanistic detail, they are often described by causal
relationships.

➤ Once the underlying chemical mechanisms are known, the cor-
responding chemical equations can be described stoichiometri-
cally.
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CHAPTER 5

Signaling Networks

Signaling networks involve the transduction of a “signal” from
the outside to the inside of the cell. Signaling networks transmit a variety
of signals from the cellular environment to the nucleus or other cellular or-
ganelles and functions. The environmental signals can be biological, such
as cyto- and chemokines, or physicochemical, such as osmotic pressure
or pH. Cells in multicellular organisms communicate in three principal
ways:

� one cell sends a soluble signal that diffuses to the target cell,
� cells can manipulate the composition of the extracellular matrix,
� cells can communicate with very specific direct cell-to-cell mecha-

nisms.

These fundamental modes of signal transduction rely on an underlying
network of chemical reactions. Except for very few specific cases, the re-
construction of signaling networks is incomplete. However, progress and
advances are currently being made toward the comprehensive reconstruc-
tion of selected signaling networks.

5.1 Basic Properties

When the cell encounters an extracellular signal (i.e., the binding of a
growth factor to an extracellular receptor) a sequence of events takes place.
These can be as simple as the opening of an ion channel (i.e., acetyl-
choline triggers the influx of calcium ions) or as complex as a highly
interconnected network of protein phosphorylations. In brief, signal trans-
duction often involves: (1) the binding of a ligand (the signaling molecule)
to an extracellular receptor, (2) the subsequent phosphorylation of an in-
tracellular enzyme, (3) amplification and passage of the signal, and (4) the

74
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Figure 5.1: A three-level coarse-grained view
of signal transduction. Redrawn from [1].

resultant change in cellular function (i.e., increase in the expression of a
gene). Various classification schemas exist for the different components of
signal transduction. A coarse-grained view of signaling networks shows
that they have three principal parts: events around the membrane, reac-
tions that link submembrane events to the nucleus, and events that lead
to transcription (see Figure 5.1).

Signaling pathways and networks are often thought of as being differ-
ent from metabolic networks. Metabolism involves the breakdown of sub-
strate molecules for energy and redox potential production, and for the
synthesis of various metabolites. The demands on metabolism are nor-
mally thought of in terms of fluxes; i.e., the cell must produce a certain
amount of an amino acid to satisfy protein synthesis needs. Thus, flux
maps are frequently used to describe the state of metabolism. Signaling,
in contrast, conveys “information.” This information is basically the tran-
scription state of the genome. Although the result is the production of
mRNA molecules (i.e., flux), it is the binding state (i.e., concentration) of
the regulator sites that give the transcription state.

Some examples of signaling mechanisms are given in the following.
These are just a few examples, but they serve to illustrate that signaling
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Figure 5.2: The basic reactions involved in steroid regu-
lation of gene expression. Taken from [122].

networks involve chemical transformations that are catalyzed by enzymes.
Such reactions can be described stoichiometrically.

Steroids
Perhaps one of the simplest examples of a reaction network in signal trans-
duction is that of steroids. Sterol lipids include such hormones as cortisol,
estrogen, testosterone, and calcitriol. These steroids simply cross the mem-
brane of the target cell and then bind to an intracellular receptor that is in an
inactive form due to an association with an inhibitory molecule. This bind-
ing results in the release of the inhibitory molecule from the intracellular
receptor. With the steroid bound and the inhibitor released, the steroid
receptor traverses the nuclear membrane and binds to its corresponding
site on the DNA molecule (see Figure 5.2). This DNA binding event triggers
the transcription of the target (regulated) genes.

G-protein signaling
G-protein-coupled receptors (GPCR) represent important components of
signal transduction networks. For instance, this class of receptor comprises
5% of the genes in Caenorhabditis elegans. GPCRs consist of an extracel-
lular domain that binds to a ligand, and another region that binds to a
G-protein. The G-protein complex consists of three subunits (α, β, and γ ),
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and in its inactive state is bound to guanosine diphosphate (GDP). When a
ligand binds to the GPCR, the G-protein exchanges its GDP for a guanosine
triphosphate (GTP). This exchange leads to the disassociation of the G-
protein from the receptor and the split into a βγ complex and a GTP-bound
α subunit. These two components can then further relay messages to other
membrane-bound molecules that transduce the signal (see Figure 5.3). The
hydrolysis of the GTP-bound α subunit, replacing the GTP with GDP, leads
to the reassociation of the three components of the G-protein. This inac-
tive complex can then rebind to the GPCR. These are the basic chemical
transformations that make up G-protein signaling. The system is fueled by
GTP, which, like ATP, is an energy rich metabolite.

The JAK-STAT network
The JAK-STAT signaling system is an important two-step process that is
involved in multiple cellular functions, including cell growth and inflam-
matory response. Upon binding to a cytokine, a cell surface receptor of-
ten dimerizes. The monomeric forms of the receptor are often constitu-
tively associated with a kinase called JAK (Janus-associated kinase). In
their dimerized forms, the JAKs induce phosphorylation of themselves
and the receptor, activating the ligand–receptor dimer complex. This active
form of the complex in turn leads to the binding of multiple proteins that
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can be further phosphorylated. One important protein that binds to the
JAK–receptor complex is the STAT (signal transducers and activators of
transcription) family. The STAT molecule is phosphorylated by the acti-
vated complex. The phosphorylated form of STAT then dimerizes, and this
STAT dimer is then translocated to the nucleus, where it serves to activate
transcription of the target genes (see Figure 5.4).

All these examples represent a set of coupled chemical reactions. Mass
is balanced and thermodynamic laws are obeyed. Each of these fundamen-
tal components is a chemical transformation (Figure 3.1). The integration
of the components leads to pathways, then sectors, and then whole-cell
function where emergent properties surface.

Families of signaling molecules and processes
It is useful to categorize signaling processes according to shared compo-
nents and to understand some basic signaling functions. One classifica-
tion scheme groups signaling processes into one of 17 different families
(see Table 5.1). These 17 families are further divided into three groups ac-
cording to developmental processes. For example, the Wnt, receptor ser-
ine/threonine, Hedgehog, receptor tyrosine kinase (small G proteins), and
Notch/Delta pathways are of particular relevance in early developmental
processes of most animal cells. There may be many different isoforms of
proteins that participate in each of these pathways and that provide addi-
tional specificity to a variety of signaling stimuli.

Fundamental building blocks
Some building block of signaling networks are nodes, modules, and
pathways. They are detailed in the next section.
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Table 5.1: The 17 intercellular signaling pathways. From [72].

Early development and later

1. Wnt pathway

2. Receptor serine/threonine kinase (TGFb) pathway

3. Hedgehog pathway

4. Receptor tyrosine kinase (small G proteins) pathway

5. Notch/Delta pathway

Mid-development and later

6. Cytokine receptor (cytoplasmic tyrosine kinases) pathway

7. IL1/Toll NFkB pathway

8. Nuclear hormone receptor pathway

9. Apoptosis pathway

10. Receptor phosphotyrosine phosphatase pathway

Adult physiology

11. Receptor guanylate cyclase pathway

12. Nitric oxide receptor pathway

13. G-protein coupled receptor (large G proteins) pathway

14. Integrin pathway

15. Cadherin pathway

16. Gap junction pathway

17. Ligand-gated cation channel pathway

Hierarchy in signaling networks
Unlike for metabolic (Figure 3.1) and transcriptional regulatory networks
(Figure 4.4), well-defined hierarchical thinking has not emerged for signal-
ing networks. The notions of modules and motifs are developing. However,
a hierarchy similar to operons, regulons, and stimulons in transcriptional
regulatory networks has not yet been delineated. In addition to motifs and
modules, the concept of a cross-talk is often used to describe interactions
in signaling networks. This notion based on a signal’s ability to propagate
beyond its “primary” channel or pathway into another. The conceptual de-
velopment of hierarchy in signaling networks is likely to develop quickly,
and one such development is an unbiased assessment of network proper-
ties discussed in Chapter 9.

5.2 Reconstructing Signaling Networks

Magnitude of the problem
The human genome has a repertoire of approximately 25,000 genes, each
with an average of three unique transcripts [117, 236]. A human be-
ing, comprising 1014 cells [94] containing more than 200 different cell
types [228, 94], will develop from a fertilized egg. The coordination of this
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developmental process and the subsequent organism’s homeostatic mech-
anisms is achieved through signaling networks. This signaling network in-
cludes genes for 1,543 signaling receptors [236], 518 protein kinases [130],
and approximately 150 protein phosphatases [65]. These components of
the human signaling network result in the activation (or inhibition) of the
1,850 transcription factors [117] in the nucleus that in turn form a tran-
scriptional regulatory network.

There is increasing evidence that the topological structure of these sig-
naling networks is comparable to the topological structure of metabolic
networks. For example, there is on average more than five metabolites
that are one reaction step away from a given metabolite in a metabolic
network [239]. This degree of interconnectivity is similar to that seen in
the yeast signaling network in which there is on average more than five
protein interactions for a given protein (as calculated from extensive data
from protein–protein interaction experiments) [79]. Likewise, the struc-
ture of both networks has been described as “scale-free” in which there is
a power law relationship between the network nodes and the number of
links [105, 104].

These studies suggest that signaling networks are as interconnected as
metabolic networks. Studies of metabolic networks have indicated that the
number of functional states in a biochemical network grows much faster
than the number of components [163]. This property is expected to be
found in signaling networks. However, as the values here indicate, the sig-
naling network may not be larger than some of the metabolic networks that
have been reconstructed and studied to date [175]. Their analysis should
therefore be possible with existing mathematical methods described in this
book.

Combinatorial features
There is a large difference difference between the number of elements in a
signaling network and the number of environmental stimuli that each cell
type would need to respond to. However, a simple example of the power in
combinatorial control demonstrates how even a very small number of ele-
ments can exert a broad spectrum of regulatory functions. The homo- and
heterodimerization of only 224 proteins would provide sufficient speci-
ficity (e.g., as activating protein complexes) to control the expression of
all 25,000 human genes. If a given regulatory protein were associated with
multiple genes, then the number of required homo- and heterodimers for
such specificity would be even less. This number is well below the es-
timated 1,850 transcription factors present in the human genome [117].
In fact, 1,850 transcription factors can form 1.7 million unique dimer
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pairs. Of course, if there are more than two components needed to induce
a specific event, the combinatorial possibilities grow to correspondingly
greater numbers.

Similarly, a small number of expressed receptors, used in combination,
can allow for the discrimination of a very large number of environmental
stimuli. For example, if we assume that 1% of the estimated 1,543 recep-
tors in the human genome [236] are expressed in a given cell type, then
that cell type could respond to 32,768 (= 215) different ligand combina-
tions. These “back of the envelope” calculations emphasize that a small
number of transcription factors and signaling receptor proteins operating
in a combinatorial manner can allow for diversity of function in signaling
networks. A recent study analyzed the repertoire of GPCRs in the human
genome and identified 367 GPCRs [235]. The expression profiles of 100
GPCRs in the mouse genome for 26 different tissues indicated that most of
the receptors were expressed in a variety of tissues but that each tissue had
a unique profile of receptors. These results further support the existence
of combinatorial control of signaling networks.

Elements of reconstruction
Signaling network reconstruction has been approached in three different
ways (see Figure 3.8).

� The first approach consists of reconstructions of, preferably highly
connected, nodes. This approach involves the delineation of all the
compounds and reactions associated with a given network compo-
nent (i.e., a protein, an ion, or a metabolite). For example, much work
has been done with calcium that plays a key role in many signaling
processes.

� The second approach consists of identifying signaling modules. Such
modules involve grouping components that function together under
certain conditions. Such grouping can be based on intuitive reason-
ing or on unbiased assessment of network properties (see Chapter 9).
These modules allow for detailed analyses of kinetics of various con-
centrations and help to understand processes like feedback mecha-
nisms. For example, much successful work has been done with the
epidermal growth factor receptor and associated mitrogen-activated
protein (MAP) kinases [197, 248]. Analyses of other growth factor re-
ceptor signaling have also been performed [209, 164].

� The third approach of reconstructed networks involves pathways that
connect signaling inputs to signaling outputs. For example, the de-
lineation of all the steps from the binding of a growth factor to its
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Table 5.2: Online sources on signaling networks.

BioCarta http://www.biocarta.com/genes/

allpathways.asp

Transpath (now commercialized) http://transpath.gbf.de

Alliance for Cellular Signaling http://www.signaling-gateway.org

Cell Signaling Networks Database http://geo.nihs.go.jp/csndb

SPAD database http://www.grt.kyushu-u.ac.jp/spad/

Science Magazine’s STKE database http://stke.sciencemag.org

Database of Quantitative Cellular http://doqcs.ncbs.res.in

Signaling (DOQCS)

receptor to the subsequent activation of a transcription factor that in-
duces the expression of target genes. The reconstruction and analysis
of the pheromone-activated MAP kinase pathway in yeast has demon-
strated the utility of such an approach [227]. The reconstruction and
analysis of this signaling pathway resulted in an hypothesized mech-
anism by which the MAP kinase Fus3p was dephosphorylated and
localized at particular steps in the signaling pathway.

Level of detail in a reconstruction
An important consideration in the reconstruction of a signaling network
is the desired level of detail. The level of detail can be as coarse as a de-
lineation of associations between network components or as refined as a
precise mechanistic description of the chemical reactions that occur. A
reconstruction of associations can involve a description of a simple con-
nectivity (e.g., ligand A – transcription factor B; ligand A is functionally
connected to transcription factor B) or a more involved set of relationships
that shows more intermediates between a signaling input and a signaling
output (e.g., ligand A → protein B → protein C → transcription factor D)
(e.g., [212]). Network reconstructions consisting of associations between
components are amenable to multiple types of structural analyses (to be
discussed). More detailed causal relationships account for cause and ef-
fect relationships (e.g., ligand A → protein B; ligand A activates protein B)
(e.g., [197]). Kinetic relationships build off of these causal relationships,
assigning scaling factors and time constants between different properties
of interest. At an even more refined level of detail are mechanistic recon-
structions. These reconstructions account for stoichiometric relationships
between signaling components (e.g., ligand A binds to receptor B and re-
ceptor B then dimerizes) and thus can be represented with stoichiomet-
ric matrices. This level of detail allows for an accounting of all network
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components (e.g., ATP and receptor protein synthesis) necessary to drive
a signal from stimulus to response.

Data sources for reconstruction process
High-throughput techniques to elucidate the mechanisms that connect an
extracellular signaling stimulus to the level of control by transcription fac-
tors are still in their infancy [260]. Despite their shortcomings, such tech-
nologies are leading to the characterization of intracellular signaling mech-
anisms at a large scale. These developing technologies can be grouped into
two categories: first, biochemical techniques and expression systems for
characterizing protein–protein interactions; and second, assays for piecing
together functional properties.

1. Characterizing interactions. Perhaps the most widely used technique
for deciphering protein–protein interactions involves yeast two-hybrid as-
says. However, to date, there is only a small degree of congruence between
different data sets. False-positive results for protein-protein interactions in
yeast two-hybrid experiments occur in part because spatially or temporally
segregated proteins would not interact in vivo.

Multiprotein complexes in Saccharomyces cerevisiae have been char-
acterized using mass spectrometric approaches [70, 89]. Additional bio-
chemical techniques for investigating intracellular signaling networks are
developing, including isotope-coded affinity tags, stable isotope label-
ing by amino acids in cell culture, Src-homology-2 profiling, and target-
assisted iterative screening [214]. Although these approaches are only be-
ginning to be systematically applied at a large scale, the initial results are
promising [16].

2. Assays for functional properties. Four approaches are highlighted
here. First, perturbation analysis monitors genome-wide changes in
gene expression after disrupting specific components of a network and
has been used to refine models of the yeast galactose-utilization path-
way [100]. Second, knockdown strategies (RNAi) have been used to eluci-
date the components of the Hedgehog signaling pathway in Drosophila
melanogaster [126], and the interactions between deubiquitylating en-
zymes and the IKK complex involved in NF-kB signaling [20]. This ap-
proach will certainly develop into a powerful tool for deciphering larger
cellular signaling networks at a genome scale [18, 259]. Third, protein ar-
rays in development generate high-throughput data on protein presence
and activity [145]. Fourth, fluorescence imaging technologies are gener-
ating data regarding protein localization and the dynamics of signaling
processes [137, 167]. For example, a GFP-fusion genomic DNA library
of Schizosaccharomyces pombe was created by fusing fragments of the
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S. pombe genome to the GFP gene. S. pombe cells were then transformed
with this plasmid library, and the localization of proteins to 11 distinct
compartments was evaluated [46].

Imaging technology allows for a global analysis of protein localization
in S. cerevisiae and discriminated between 22 different cellular locales. It
was also used to assign a cellular compartment location for 70% of pro-
teins for which the location was not previously known [98]. Furthermore,
fluorescence resonance energy transfer (FRET) is used to decipher specific
signaling mechanisms because it can indicate molecular proximity. For
example, FRET has been used to study membrane-extracellular signaling
events and showed that 14% of epidemal growth factor (EGF) receptors
in A431 cells were oligomerized before growth factor binding [132]. It has
also been used to study membrane-associated signaling mechanisms (e.g.,
activation of heterotrimeric G-protein complexes might involve rearrange-
ment rather than dissociation [22]), and intracellular signaling events (e.g.,
the phosphorylation states of insulin–receptor substrates [189]).

Integration of data types
Each of these techniques has distinct advantages and disadvantages. There
is thus a growing need to integrate a variety of data sources to most accu-
rately reconstruct a signaling network. Initial efforts to integrate disparate
data sources have been successful. For example, yeast two-hybrid protein–
protein interaction experiments, RNAi phenotyping, and gene expression
arrays were used for Caenorhabditis elegans germline to generate systems-
level hypothesis including the tendency of essential proteins to interact
with each other [240]. The integration of experimental data from exper-
imental sources in the context of a mathematical model has also been
performed [85]. Regulatory interactions determined from gene expression
arrays were evaluated for consistency with reconstructed regulatory net-
works of E. coli and S. cerevisiae. Novel hypotheses were generated from
this data integration study. For example, expression arrays and literature-
based reconstructions are generally less consistent for repressor than ac-
tivator regulatory proteins. These systems-level descriptions require the
integration of multiple types of data since no single experimental protocol
can accurately characterize all necessary parameters for a systems-level
biological description.

Large-scale reconstruction efforts
To date, most work on reconstructing signaling networks has been limited
to analyses at a small scale, i.e., analyzing the dynamics of a particular
receptor–ligand complex. However, with the availability of large-scale data
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Figure 5.5: An example of a complex signaling network. Taken from http://www.afcs.org.

sets, the scope of such reconstructions is growing. The Alliance for Cellular
Signaling [74] has focused resources on elucidating signaling mechanisms
in the human B-cell and cardiac myocyte, and more recently a human
macrophage cell line. The Cell Migration (www.cellmigration.org) and
LIPID MAPS (http://www.lipidmaps.org/) consortiums have also begun
work on elucidating components of signaling networks.

The descriptions of the signaling mechanisms described earlier only hint
at the intricate and complex networks that are formed from the interac-
tions of all components in signaling networks (see Figure 5.5). Large-scale
efforts are required (see http://www.afcs.org for a description of the multi-
institutional effort in the Alliance for Cellular Signaling) to decipher all
the players and relationships in the tremendous reaction networks that
exist in living cells. With the significant effort currently being devoted to
signaling, we may expect to see cell and tissue-scale networks emerge over
the coming years.
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5.3 Summary

➤ Signal transduction involves the transmission of extracellular signals
into the nucleus of the cell, leading to changes in gene expression.

➤ There are three different modes of cellular communication: soluble
signaling, extracellular matrix–cell, and direct cell–cell.

➤ Signaling pathways involve three basic steps: the formulation of a
membrane complex, a series of reactions leading to the nucleus, and
changed activity of transcription factors.

➤ Signaling networks have combinatorial properties.

➤ Few signaling pathways have been extensively reconstructed.

➤ Reconstruction of signaling pathways involves the integration and use
of multiple data types (many of which are similar to those used to
reconstruct transcriptional regulatory networks).
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PART TWO

Mathematical
Representation of
Reconstructed Networks

The set of chemical reactions that comprise a network can be rep-
resented as a set of chemical equations. Embedded in these chemical equa-
tions is information about reaction stoichiometry. All this stoichiometric
information can be represented in a matrix form; the stoichiometric ma-
trix, denoted by S. Associated with this matrix is additional information
about enzyme complex formation, transcript levels, open reading frames,
and protein localization. Therefore, once assembled, the stoichiometric
matrix represents a biochemically, genetically, and genomically (BIGG)
structured database. This database structure represents an interface be-
tween high-throughput data and in silico analysis (see Figure 1.4). It al-
lows high-throughput data (often called content) to be put into context.
The stoichiometric matrix is the starting point for various mathematical
analysis used to determine network properties. Part II of this text will
summarize the basic properties of the stoichiometric matrix. Since it is a
mathematical object, the treatment is necessarily mathematical. However,
S represents biochemistry. We will thus relate the mathematical proper-
ties of S to the biochemical and biological properties that it fundamentally
represents.





CHAPTER 6

Basic Features of the Stoichiometric
Matrix

The stoichiometric matrix is formed from the stoichiometric co-
efficients of the reactions that comprise a reaction network. This matrix is
organized such that every column corresponds to a reaction and every row
corresponds to a compound (recall Figure 1.5). The entries in the matrix are
stoichiometric coefficients, which are integers. Each column that describes
a reaction is constrained by the rules of chemistry, such as elemental bal-
ancing. Every row thus describes the reactions in which that compound
participates and therefore how the reactions are interconnected. The sto-
ichiometric matrix transforms the flux vector (that contains the reaction
rates) into a vector that contains the time derivatives of the concentrations.
The stoichiometric matrix thus contains chemical and network informa-
tion. These basic properties of the stoichiometric matrix are described in
this chapter.

6.1 S as a Linear Transformation

Mathematically, the stoichiometric matrix S is a linear transformation
(Figure 6.1) of the flux vector

v = (v1, v2, . . . , vn) (6.1)

to a vector of time derivatives of the concentration vector

x = (x1, x2, . . . , xm) (6.2)

as

dx
dt

= Sv (6.3)

89
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Figure 6.1: The stoichiometric matrix as a linear transformation. The four fundamental sub-
spaces of S are shown. Prepared by Iman Famili.

The reader may also be familiar with other notations of time derivatives

dx
dt

= x′ = ẋ (6.4)

This perhaps makes it more clear that the dx/dt is a vector and that ẋ = Sv
is a linear transformation.

Dynamic mass balances
Equation 6.3 represents the fundamental equation of the dynamic mass
balances that characterizes all functional states of a reconstructed bio-
chemical reaction network. Each individual equation in the set

dxi

dt
=

∑
k

sikvk (6.5)

represents a summation of all fluxes vk that form compound xi and those
that degrade it.

Dimensions
There are m metabolites (xi) found in the network and n reactions (vi).
Thus,

dim(x) = m, dim(v) = n, dim(S) = m×n (6.6)

For a typical biological network there are more reactions than compounds,
or n > m. The matrix S may not be full rank, and therefore Rank(S) = r < m.

The four fundamental subspaces
There are four fundamental subspaces associated with a matrix. The four
fundamental subspaces of S, shown in Figure 6.1, have important roles in
the analysis of biochemical reaction networks, as detailed in the following
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chapters. The vector produced by a linear transformation is in two orthog-
onal spaces (the column and left null spaces), called the domain, and the
vector being mapped is also in two orthogonal spaces (the row and null
spaces), called the codomain or the range of the transformation.

The column and left null spaces
The time derivative is in the column space of S (denoted by Col(S)), as can
be seen from the expansion of Sv:

dx
dt

= s1v1 + s2v2 + · · · + snvn (6.7)

where si are the reaction vectors that form the columns of S. Col(S) is there-
fore spanned by the reaction vectors si. The reaction vectors are structural
features of the network and are fixed. However, the fluxes vi are scalar
quantities and represent the flux through reaction i. The fluxes are vari-
ables. We do note that each flux has a maximal value, vi ≤ vi,max, and this
limits the size of the time derivatives. Thus, only a portion of the column
space is explored, that is, we can cap the size of the column space of S.
The vectors in the left null space (li) of S are orthogonal to the column
space, that is, 〈l j · si〉 = 0. The vectors li represent a mass conservation,
(see Chapter 10).

The row and null spaces
The flux vector can be decomposed into a dynamic component and a
steady-state component:

v = vdyn + vss (6.8)

The steady state component satisfies

Svss = 0 (6.9)

and vss is thus in the null space of S (see Chapter 9). The dynamic com-
ponent of the flux vector, vdyn, is orthogonal to the null space and conse-
quently it is in the row space of S. Each pair of subspaces in the domain and
codomain of the dynamic mass balance equation therefore form orthogo-
nal sets to each other, and their dimensions sum up to the dimension of
their corresponding vectors, that is, dim(Null(S) + dim(Row(S)) = n and
dim(Left null(S)) + dim(Col(S)) = m.

These are introductory observations about S and its fundamental sub-
spaces. In Chapters 8 through 11, we will study the individual fundamental
subspaces in more detail.
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Prepared by Iman Famili.

6.2 S as a Connectivity Matrix

In the stoichiometric matrix, each column represents a reaction and each
row represents a compound (Figure 6.2A). S is a connectivity matrix, and
it represents a network. This network is represented with a map. Each
node in the map corresponds to a row in the matrix, and each column
corresponds to a link in the map. Therefore, S represents a map where a
compound is a node and the reactions connect (link) the compounds. This
map is the reaction map and is the standard way of viewing metabolic
reactions and pathways in biochemistry textbooks.

The negative of the transpose of the stoichiometric matrix, −ST, also
represents a map (Figure 6.2B), which we will call the compound map.
The map that −ST represents has the reactions (now the rows in −ST) as
the nodes in the network and the compounds (now the columns of −ST) as
the connections, or the links. This representation of a biochemical reaction
network is unconventional but useful in many circumstances.
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Figure 6.3: Orthogonality of the column and left null space in three dimensions: (A) a one-
dimensional and (B) a two-dimensional column space.

It is worth examining the columns (si) and rows of S a bit more closely.
Let us examine a reaction:

A+ B
vi→ C + D (6.10)

with the corresponding column of S, si = (−1, −1, 1, 1)T. This vector is
in the column space of S. Moving along this vector is like carrying out
this reaction. Note that motion along this vector will conserve the sum
A+ B+ C + D. Thus, a column in S represents a “tie” between the com-
pounds participating in a particular reaction. If these compounds partic-
ipate in other reactions, there will be interactions between the motions
along the columns of S. These vectors, si, span the column space of S and
thus give a conceptually useful basis for the column space of S.

The orthogonality of the column and left null space can be represented
schematically for a three-dimensional case (Figure 6.3). If there is one inde-
pendent reaction vector si, there is a two-dimensional subspace orthogonal
to this single reaction where the network’s metabolite mass is conserved. If
the system has two independent reactions, there is only a one-dimensional
left null space. Thus, the higher the number of independent reaction vec-
tors, the smaller the orthogonal left null space. The higher the number of
independent reactions, the fewer conservation quantities exist.

Similar comments follow for the rows of S (or the columns of −ST). A
column in −ST will tie together, or connect, all the reactions in which a
metabolite participates. Note that the columns of S create a “hard” con-
nection between the metabolites, since a reaction will simultaneously use
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Figure 6.4: The columns of the stoichiometric matrix that correspond to elementary chemical
transformations.

and produce the participating compounds. Conversely, the connectivities
created between the reactions are “soft,” since the reactions in which a
compound participates can have varying flux levels that may not have
fixed ratios. These ratios are determined by the kinetic properties of the
reactions.

6.3 Elementary Biochemical Reactions

There is a limited number of elementary types of biochemical reactions
that take place in cells. These fall into three categories. In the following
examples derived for metabolic transformations, we used C to denote a
primary metabolite, P as a phosphate group, and A as a cofactor such
as the adenosine moiety in AMP, ADP, and ATP. The columns, si, that
correspond to these elementary transformations are shown in Figure 6.4.

Reversible conversion
Transformation between two compounds comprising the same two chem-
ical moieties C and P can be written as

C P � PC (6.11)

representing two elementary reactions (forward and backward). Although
such reversible conversions are often used to generically describe re-
actions, they can only represent simple chemical rearrangement of the
molecule without any change in its elemental composition. Isomerases
catalyze such reactions. The stoichiometric matrix that describes this re-
action is

S =
(

−1 1
1 −1

)
(6.12)
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where the first column of the matrix represents the forward reaction and
the second column the reverse reaction. The first row represents C P,
and the second row PC. Under certain circumstances, one may wish to
combine the two elementary reactions into a net reaction that can take on
positive or negative values.

Bimolecular association
Many biochemical reactions involve the combination of two moieties, C
and P, to form a new compound.

C + P � C P (6.13)

Sometimes, such reactions may not involve covalent bonds but a series
of hydrogen bonds to form a complex, such as the dimerization of two
protein molecules or the initial binding of a substrate to an active site on an
enzyme molecule. The stoichiometric matrix that describes a bimolecular
association is

S =

⎛
⎜⎝−1 1

−1 1
1 −1

⎞
⎟⎠ (6.14)

where the rows represent C, P, and C P, respectively, and the columns
represent the forward and reverse elementary reactions.

A cofactor-coupled reaction
A frequent reaction in biochemical reaction networks is one in which one
compound (AP ) donates a moiety (P ) to another compound (C ):

C + AP � C P + A (6.15)

In reality, such reactions have an intermediate and can be decomposed
into two bimolecular association reactions. The stoichiometric matrix that
describes the cofactor-coupled (or exchange) reaction is

S =

⎛
⎜⎜⎜⎝

−1 1
−1 1

1 −1
1 −1

⎞
⎟⎟⎟⎠ (6.16)

where the rows represent C, AP, C P and A, respectively, and the columns
represent the forward and reverse reactions. The word cofactor is used
synonymously with carrier.
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6.4 Linear and Nonlinear Maps

The topological structure of the maps formed by connectivity matrices are
very important in determining the properties of the network. The topo-
logical properties of maps can be linear and nonlinear (Figure 6.4). Some
simple examples of reaction and compound maps are shown in Figure 6.5.

Linear maps are made up of links that have only one input and one
output. Thus, the columns of S will only have two entries, corresponding to
the two nodes (metabolites) that the link (reaction) connects. Similarly for
ST, if only one compound links two reactions, the map is linear. Although
frequently used for illustrative purposes, the occurrence of such links in
biological reaction networks is rare.

Nonlinear maps are made up of links with more than one input or
more than one output (Figure 6.4). The number of compounds that par-
ticipate in a reaction can be found by adding up the nonzero elements
in the corresponding column of S. In genome-scale metabolic models,
the most common number of metabolites participating in a reaction is
4, as in reaction 6.15. Thus, metabolic cofactors create nonlinearity in the
map of S. Metabolites that participate in more than two reactions create a
nonlinearity in the map of ST. The participation number of a metabolite
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in genome-scale models can be as high as 150 (for ATP) but is 2 for most
compounds found in the cell [50]. The metabolites that participate in many
reactions thus create strong nonlinearities in the compound map. Again,
the cofactors lead to strong nonlinear topological features of metabolic
networks. However, note the difference in the maps: in the reaction map,
the nonlinear links are hard (i.e., two molecules must come together to
produce a reaction), whereas in the compound map, a molecule can go
through one reaction or another.

6.5 The Elemental Matrix

The chemical reactions that form the columns in S have the basic rules
of chemical transformation associated with them. There are conservation
quantities (such as elements and charge) and there are nonconserved quan-
tities (such as osmotic pressure and free energy) associated with chemical
transformations. These properties must be accounted for in the construc-
tion of a biochemically meaningful stoichiometric matrix.

Every compound in the reaction network comprises chemical elements.
The elemental matrix E gives the composition of all the compounds con-
sidered in a network. A column of E corresponds to a compound, ei, and
the rows correspond to the elements, typically carbon, oxygen, nitrogen,
hydrogen, phosphorous, and sulfur. It is important to note that the ele-
mental composition of a molecule does not uniquely specify its chemi-
cal structure. For instance, glucose and fructose have the same elemental
structure. The elemental composition of common metabolites is shown in
Table 6.1.

Example: Consider the simple chemical reaction

2H2 + O2 → 2H2O (6.17)

that involves only two elements, oxygen and hydrogen. The elemental
matrix for this chemical reaction is

E =
(

0 2 1
2 0 2

)
(6.18)

where the first row corresponds to oxygen and the second row to hydrogen.
The columns correspond to the compounds, in this case ordered as H2, O2,
and H2O.
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Table 6.1: The elemental composition of some common metabolites. Adapted from [144].

Elemental Elemental

Compound composition Compound composition

Glucose C6H12O6 Alanine C3H7NO2

Glucose-6-phosphate C6H11O9P Arginine C6H14N4O2

Fructose-6-phosphate C6H11O9P Asparagine C4H8N2O3

Fructose-1, 6-phosphate C6H10O12P2 Cysteine C3H7O2NS

Dihydroxyacetone phosphate C3H5O6P Glutamic acid C5H9NO4

Glyceraldehyde-3-phosphate C3H5O6P Glycine C2H5NO2

1,3-Diphosphoglycerate C3H4O10P2 Leucine C6H13NO2

2,3-Diphosphoglycerate C3H3P2O10 Isoleucine C6H13NO2

3-Phosphoglycerate C3H4O7P Lysine C6H14N2O2

2-Phosphoglycerate C3H407P Histidine C6H9N3O2

Phosphoenolpyruvate C3H206P Phenylalanine C9H11NO2

Pyruvate C3H3O3 Proline C5H9NO2

Lactate C3H5O3 Serine C3H7NO3

6-Phosphogluco-lactone C6H9O9P Threonine C4H9NO3

6-Phosphogluconate C6H10O10P Tryptophane C11H12N2O2

Ribulose-5-phosphate C5H9O8P Tyrosine C9H11NO3

Ribulose-5-phosphate C5H9O8P Valine C5H11NO2

Xylulose-5-phosphate C5H9O8P Methionine C5H11O2NS

Ribose-5-phosphate C5H9O8P Sedoheptulose C7 H13O10P

7-phosphate

Erythrose-4-phosphate C4H7O7P 5-Phosphoribosyl C5H8O14P3

1-pyrophosphate

Inosine monophosphate C10N4H12O8P Ribose-1-phosphate C5H9O8P

Hypoxanthine C5N4H4O Inosine C10H12N4O5

Conserved quantities
A chemical reaction cannot create or destroy elements. Thus, the inner
product of the rows, ei, in the elemental matrix and the reaction vectors,
s j, must be zero, or

〈ei · s j〉 = 0 (6.19)

for all the elements found in the compounds that participate in the re-
action. This inner product simply adds up an element on each side of
the reaction. Since the stoichiometric coefficients are negative for the
reactants (the compounds that disappear in the reaction) and positive
for the products (the compounds that appear in the reaction), this sum
is zero. The number of atoms of an element on each side of the reaction
is the same. For the elemental matrix in equation 6.18 and the reaction
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vector si = (−2, −1, 2)T we see that

〈(0, 2, 1) · (−2, −1, 2)T〉 = 0 and 〈(2, 0, 2) · (−2, −1, 2)T〉 = 0 (6.20)

All elemental balancing equations taken together lead to

ES = 0 (6.21)

Although not shown here, the same must be true of compound charge,
since it is balanced during a chemical reaction.

Isotopomers are often used to trace the flow of atoms, typically carbon,
through a metabolic network. In this case, the carbon atoms are not identi-
cal since some carbon atoms in the substrate may be of atomic mass 13 and
not the usual 12. The fate of these particular carbon atoms can be traced
using particular conservation rules [112, 195, 252, 247].

Nonconserved quantities
Other physicochemical properties may not be conserved during a chem-
ical reaction. Such properties of the molecules can be represented as an
appended row to the elemental matrix. For instance, all the osmotic co-
efficients for reactants and products can be listed. If they do not sum to
zero, the osmotic pressure will not be balanced as the reaction takes place.
In other words, osmolality of the solution can be increased or decreased
as a reaction proceeds. Gibbs free energy is another important quantity
that changes with chemical reaction. When summed, the Gibbs free en-
ergy change of a reaction needs to be negative for a reaction to proceed
forward at a significant rate. Note that nonconserved properties do lie in
the row space of S since the summation of the rows of S for these properties
is nonzero.

Compounds as points in the elemental space
All compounds contain a finite number of elements, described with inte-
gral numbers. Thus, any compound can be represented in a space where the
axes correspond to the elements (see Figure 6.6). All feasible combinations
of the elements represented by the axes of the space can be represented
as point in the elemental space. For instance, the water molecule is in the
(0, 2, 1) point in a three-dimensional space formed by carbon, hydrogen,
and oxygen. There are six elements (carbon, hydrogen, oxygen, nitrogen,
phosphate, and sulfur) that make up most biochemical molecules.

Reaction vectors as connections between these points
The reaction vectors connect points in the elemental space (Figure 6.7).
Isomerization like the one indicated in equation 6.11 is simply a point in
the elemental space, since the elemental composition of the compound
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does not change. Since most reactions involve more than one reactant and
more than one product, the ties are not simple lines. If the location of
a compound along an axis is normalized to its stoichiometric coefficient
in the reaction (no change if it is unity), then the ties that the reactions
represent are orthogonal to the axes since the number of elements must be
conserved.

Chemical moieties
Chemical moieties that do not change in the network can be represented
as a group that displays the combination of the elements it comprises. For
instance, in the chemical reaction

H CH3 + H OH → CH3 OH + H2 (6.22)

we can consider the CH3 and OH groups as moieties that are intact in this
reaction. Note that this reaction is of the type shown in equation 6.15,
where OH and H are being exchanged between CH3 and H.

The elemental matrix for this reaction is

CH4 H2O CH3OH H2

C 1 0 1 0
H 4 2 4 2
O 0 1 1 0

It can also be written with the invariant moieties as rows

CH4 H2O CH3OH H2

C 0 0 0 0
H 1 1 0 2
O 0 0 0 0

CH3 1 0 1 0
OH 0 1 1 0

Note that the rows for carbon and oxygen now have all zero entries.

Metabolic carrier molecules as conserved moieties
The consideration of conserved chemical moieties is useful in describing
transformations in biochemical reaction networks. Many cofactors, such
as ATP and NADH, do not change except for a phosphate group (a chemical
moiety) and a redox equivalent in the form of a hydrogen ion.

Phosphorylated adenosines are carriers of high-energy bonds. We can
think of ATP as AMP-P-P, and ADP as AMP-P. When the high-energy
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Table 6.2: The elemental composition of common chemical moieties in metabolism.
Adapted from [144].

Elemental Elemental

Compound composition Compound composition

Adenine C5H5N5 Adenosine C10H13N5O4

Adenosine C10N5H13O7P Adenosine diphosphate C10N5H13O10P2

monophosphate

Adenosine C10N5H13O13P3 Nicotinamide adenine C21H27N7O14P2

triphosphate dinucleotide

Nicotinamide adenine C21H28N7O14P2

Nicotinamide adenine C21H27N7O17P3 Nicotinamide adenine C21H28N7O17P3

dinucleotide phosphate dinucleotide phosphate

Hydrogen ion H Inorganic phosphate HPO4

Ammonia NH3 Carbon dioxide CO2

Water H2O

phosphate bond is transferred between these compounds, the AMP portion
remains invariant. In the case of the redox carrier NAD+ and NADH, the
core cofactor molecule is conserved. However, in this case we also have
to conserve compound charge, and so H+ becomes an important player in
redox conservation quantities (see Chapter 10 for details).

There are several types of carrier molecules in metabolism (see Ta-
ble 3.1). Any cyclic process has a chemical moiety at its core. For example,
in the TCA cycle there is a conserved C4 moiety that cycles around in this
pathway (e.g., see Table 10.8). Similar conserved moieties exist in other
cyclic pathways. The elemental composition of some common chemical
moieties are shown in Table 6.2. These moieties tend to be conserved on
faster time scales.

Protein molecules as conserved moieties
In enzyme-catalyzed reactions, the backbone of the enzyme molecule can
be considered as an invariant moiety since the enzyme molecule is recov-
ered intact after the reaction has taken place. For instance, consider the
glucosephosphate isomerase (PGI) in glycolysis. It catalyzes the reaction

G6P + E � E-G6P � E + F6P

The elemental composition of G6P and F6P is the same (Table 6.1), and
the elemental composition of this enzyme itself does not change during
this reaction. The basic enzyme can be considered as a moiety. In reaction
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Figure 6.8: Schematic illustration of open and closed metabolic networks.

networks of signaling pathways and regulation of DNA transcription, one
can identify similar conserved moieties.

6.6 Open and Closed Networks

The boundaries around a network can be drawn in different ways (see Fig-
ure 6.8). In defining a network a systems boundary is drawn. The reactions
are then partitioned into internal and exchange reactions. Exchange fluxes
are denoted by bi and internal fluxes by vi. Similarly, the concentration
vector is partitioned into internal (xi) and external concentrations (ci).
There are several different versions of S depending on what is encom-
passed by a network.

The total stoichiometric matrix
The most general form of S is

vi bi

Stot :
xi

ci

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

|
|

−− −− − − | −
|

0 |

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

where the dashed lines show the partitioning of the internal elements
in the matrix. This form accounts for the internal reactions (vi), the ex-
change reactions (bi), the internal compounds (xi), and the external com-
pounds (ci).
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The exchange stoichiometric matrix
If we do not consider the external compounds, ci, we have

vi bi

Sexch : xi

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

|
|
|
|
|

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

which only contains the internal fluxes and the exchange fluxes with the
environment. This form of the matrix is frequently used in pathway anal-
ysis of a network (see Chapter 9).

The internal stoichiometric matrix
If we consider the cell as a closed system, we can focus just on the internal
fluxes and examine the properties of

vi

Sint : xi

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

This form is useful to define pools of compounds that are conserved (see
Chapter 10).

Example
The Stot for the system shown earlier is given by

Stot =

v1 v2 b1 b2⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1
... 1 0

1 −1
... 0 −1

. . . . . . . . . . . . . . .

0 0
... −1 0

0 0
... 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

x1

x2

c1

c2

(6.23)
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The internal stoichiometric matrix

Sint =
(

−1 1
1 −1

)

has m = 2, n = 2, and r = 1. Thus all the fundamental subspaces have a
dimension of 1.

The exchange stoichiometric matrix

Sexch =
⎛
⎝−1 1

... 1 0

1 −1
... 0 −1

⎞
⎠

has m = 2, n = 4, and r = 2. It is full rank. The null space has a dimension
of 2 (= 4 − 2), while the left null space has a dimension of 0 (= 2 − 2).

The total stoichiometric matrix has m = 4, n = 4, and r = 3. Thus, both
of the null spaces are one-dimensional. In later chapters, we will learn
how the dimensions of the null spaces relate to pools and pathways.

Partitioning Sint further
The internal stoichiometric matrix can be further partitioned. The com-
pounds that cannot be exchanged with the environment form one group,
and those that can, form another. In Chapter 10, for instance, we designate
these two as secondary and primary metabolites, respectively.

Defining the system boundary
Note that in the earlier consideration we have drawn a systems bound-
ary around the cell. Such definition is common since it is consistent with
physical realities. However, since the definition of a systems boundary
can be chosen, we can segment any network into subnetworks by drawing
“virtual” boundaries. This property is useful in defining subsystems that
may be “fast” (i.e., have rapid dynamics) and lead to temporal decompo-
sition and subsystems that have a biochemical relevance (e.g., fatty acid
biosynthesis).

6.7 Summary

➤ The stoichiometric matrix comprises stoichiometric coefficients that
are commonly integer numbers.

➤ The columns of the stoichiometric matrix represent chemical reac-
tions, while the rows represent compounds.

➤ The column vectors si represent chemical transformations and thus
come with chemical information.



106 Basic Features of the Stoichiometric Matrix

➤ The reaction vectors si imply elemental and charge balance. The reac-
tion vectors are thus orthogonal to the rows of the elemental matrix.
These conservation quantities are in the left null space of the stoichio-
metric matrix.

➤ Some quantities, such as free energy, are not conserved during a chem-
ical reaction. These quantities will be in the row space of the stoichio-
metric matrix.

➤ There are few basic forms of the elementary reactions. Most, if not all,
biochemical reaction networks are either linear or bilinear.

➤ Mathematically, the stoichiometric matrix is a linear mapping opera-
tion.

➤ Structurally, or topologically, the stoichiometric matrix represents a
reaction map.

➤ The transpose of stoichiometric matrix represents a compound map.

➤ Both maps are topologically nonlinear, as they contain joint edges
between nodes.

➤ The boundaries of a reaction network can be drawn in different ways
and lead to three fundamental forms of S.
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CHAPTER 7

Topological Properties

The topological properties of matrices that describe the connec-
tivity features of a network, such as the stoichiometric matrix, can be de-
fined and studied. Elementary topological properties can be computed
directly from the individual elements of S. Direct topological studies are
interesting from a variety of standpoints. They focus on relatively easy to
understand and intuitive properties of the structure of the network. Ele-
mentary topological properties relate to how connected a network is and
how its components participate in forming the connectivity properties
of the network. As pointed out in Chapter 2, there may be many func-
tional states for a given network structure. Topological properties are thus
global and less specific than functional states of networks. Some of the
differences between functional states and network topology are covered
in Part III.

7.1 The Binary Form of S

The elementary topological properties are determined based on the
nonzero elements in the stoichiometric matrix. Thus, we define the ele-
ments of a new matrix Ŝ as

ŝij = 0 if sij = 0
ŝij = 1 if sij �= 0

(7.1)

that is the binary form of S. This matrix comprises only 0’s and 1’s. If
ŝij is unity, it means that compound i participates in reaction j. Note that
in the rare case where a homodimer is formed, that is, in a reaction of the
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Figure 7.1: The stoichiometric matrix for Geobacter sulfurreducens. The dimensions of this
matrix are m = 541 and n = 609, giving rise to 329,469 elements in the matrix. Of
these, 2655, or 0.81%, of the elements are nonzero. Image provided by Radhakrishnan
Mahadevan.

type 2A → A2, the stoichiometric coefficient 2 becomes unity in the binary
form of S.

S is a sparse matrix
A number of genome-scale stoichiometric matrices have been recon-
structed (see Table 3.6). Since there are typically only two, three, or four
compounds that participate in a reaction out of hundreds of compounds
participating in a network, the stoichiometric matrix is sparse. A sparse
matrix mostly comprises zero elements. For instance, if there are on aver-
age three compounds that participate in a reaction but there are m com-
pounds in the network, then the fraction of nonzero elements in the matrix
is 3/m. If m is 300, then only 1% of the elements are nonzero and the matrix
is sparse.

A pictorial representation of the genome-scale stoichiometric matrix
for Geobacter sulfurreducens is shown in Figure 7.1. The 2,655 nonzero
entries are indicated. They represent only 0.81% of the total of 329,469
elements in the matrix.
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Figure 7.2: Simple reaction network illustrating
connectivities of network nodes. The network
shown has four nodes (compounds). The con-
nectivities, ρi , for each node are given in the
circled numbers next to a node. x1 represents
the most connected node.

7.2 Compound Participation and Connectivity

The number of nonzero entries in a row and a column of S give the two
elementary topological properties. The sum of the nonzero entries in a
column

π j =
m∑

i=1

ŝij (7.2)

gives the number of compounds that participate in reaction j. This quan-
tity, π j, can be called the participation number for a reaction. For elemen-
tary reactions, this number is most likely 3. Note that all compounds have
to participate in a reaction for it to take place. It represents the number of
nodes that form an edge in the reaction map.

The sum of the number of nonzero entries in a row

ρi =
n∑

j =1

ŝij (7.3)

gives the number of reactions in which compound i participates. This
number, ρi, is a measure of how connected, or linked, a compound is in
the network. A compound that participates in a large number of reactions
will form a highly connected node on the reaction map (see Figure 7.2).
This number could be called the connectivity number, for the node, or
simply its connectivity. Note that in a given functional state of a network,
a compound does not have to participate in all the reactions that it is
connected to, or to participate equally in them. This feature represents a
fundamental difference between the flux and concentration maps.

Connectivities in genome-scale matrices
As soon as the first genome-scale matrices had been reconstructed (recall
Table 3.6), the connectivities for all the metabolites were computed (see
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Figure 7.3: The distribution of node connectivities in the reconstructed first four genome-scale
matrices. Data taken from [50, 51, 54, 67, 192].

Figure 7.3). Such computations show that there are relatively few metabo-
lites (24 or so) that are highly connected, while most of the metabolites
participate in only two reactions. This result is a reflection of the fact that
few carrier molecules participate in a large number of reactions and a few
metabolites are key to certain metabolic functions, such as nitrogen, one-
carbon, and two-carbon metabolism (recall Table 3.1).

A surprising finding was the approximate linear appearance of the curve
of the connectivities when the metabolites were rank ordered by decreasing
connectivity, when plotted on a log–log scale [50] (see Figure 7.3). This
curve can be redrawn based on the probability that a metabolite has a
certain connectivity. Thus, there is a high probability of low connectivity
and a low probability of high connectivity. Plotting these probabilities as
a function of connectivity gives an approximate straight line on a log–log
plot (Figure 7.4). Networks that show such a power law distribution are
said to be scale-free [7].

The most highly connected nodes are carrier molecules, and due to their
high connectivity they form the dominant features of S (see Chapter 8).
Such biochemical insight has led to the analysis of the connectivity dis-
tributions of decomposed forms of S based on biochemical classification
of reactions. Such analysis has concluded that genome-scale stoichiomet-
ric matrices are actually scale-rich and that the overall power law prop-
erty is the result of the amalgamation of the connectivity properties of the
biochemically classified modules [220]. Since functional states and their
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Figure 7.4: Connectivity probability distributions for meta-
bolites. ρ represents the connectivity of a node, and P (ρ)
represents the probability that a node has connectivity ρ.
The connectivity distribution is averaged over 43 different
organisms. The connectivity of reactions into a node (In) and
out of a node (Out) are represented separately. From [105].

biological interpretation is the focus of this text, the reader is directed to
the list in Section 7.6 for more information on studies of network topolog-
ical studies.

Biological interpretation
The biological significance of the power law distribution is not clear. It has
been suggested that the most highly connected nodes in a network may
represent the compounds that in the network were “first” in evolutionary
time [239]. Such interpretations must of course be made in view of the
constraining chemistry; for instance, there is a finite number of chemical
transformations that a particular metabolite can undergo. Similarly, the
“attack tolerance” of a network is such that the removal of the most highly
connected nodes has the broadest impact on network functions [104, 105].
This consideration may apply to regulatory networks. Conversely, it is not
possible to simply delete a metabolite from a network, but a link can be
severed.

Node connectivity and network states
It should be noted that highly connected nodes may represent effective
targets for drug development. However, topological properties of networks
must be interpreted in the context of the more biologically relevant func-
tional network states and their properties. One such consideration, for
instance, is that a metabolic network must make all the biomass compo-
nents of the cell in order for it to grow. Thus, even eliminating a step in
a linear low-flux pathway leading to the synthesis of cofactors, vitamins,
or amino acids will prevent a genome-scale metabolic network from sup-
porting growth.
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The relationship between node connectivity and lethality of reactions
connecting into a node have been studied in genome-scale metabolic net-
works (Figure 7.5) [128]. The results in this figure show that the lethality
fraction ( fL) of some of the less connected metabolites is higher than that of
the highly connected metabolites irrespective of the size or the complex-
ity of the metabolic network. In fact, surprisingly, for all of the networks
studied, most of the points fall within a narrow range from 0.2 to 0.5. Links
into poorly connected nodes are thus just as likely to be lethal as links into
highly connected nodes. The number of lethal reactions around a highly
connected metabolite such as OAA (ρI = 10) is shown in comparison to a
poorly connected metabolite such as prbamp (ρI = 2) in Figure 7.5. How-
ever, the number of lethal reactions for both metabolites is 2, as prbamp
occurs in a linear pathway in histidine biosynthesis and the deletion of
either of the linked reactions leads to the loss of network function (growth).
Therefore, although network topology as characterized by the elementary
topological properties is certainly interesting and worthy of study, one
must keep in mind the role of such properties with respect to attaining
biologically meaningful functional states. The study of the functional
states of networks is detailed in Part III of the text.

7.3 The Adjacency Matrices of S

An expanded set of elementary topological network properties can be ob-
tained from the two adjacency matrices of Ŝ. One relates to the columns
of Ŝ, while the other relates to the rows.

The reaction adjacency matrix Av

The premultiplication of a matrix by its transpose

Av = ŜTŜ (7.4)

leads to a symmetrical matrix whose elements are the inner product of its
columns, ŝi. The diagonal elements of Av are:

〈ŝT
i · ŝi〉 =

∑
k

ŝ2
ki (7.5)

Thus, since the elements of ŝi are 0 or 1, this summation simply represents
the number of nonzero elements in ŝi or the number of compounds that
participate in the reaction. The diagonal elements of Av are thus the same
quantity as given in equation 7.2.
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Figure 7.5: (A) The plot of the average lethality fraction ( fL,i ) as a function of the metabolite
connectivity (ρa) for the metabolic networks of E. coli, S. cerevisiae, and G. sulfurreducens under
different growth conditions. (B) The reactions consuming or producing oxaloacetate (OAA, a
key metabolite in the TCA cycle) and phosphoribosyl-AMP (prbamp, an intermediate in the
histidine biosynthetic pathway) are shown. The reactions predicted to be essential for cell
growth based on in silico analysis are shown as outlines, while the nonessential reactions
are shown in black. The normalized predicted growth rate, connectivity (ρI ), and the lethality
fraction ( fL,i ) are also shown. From [128].
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The off-diagonal elements are given by

〈ŝT
j · ŝi〉 =

∑
k

ŝ jkŝki (7.6)

These elements can count how many compounds two reactions (reactions
i and j ) have in common.

The compound adjacency matrix, Ax

The postmultiplication of a matrix by its transpose

Ax = ŜŜT (7.7)

leads to a symmetric matrix whose elements are the inner products of its
rows. The diagonal elements are:

(ax)ii =
∑

k

ŝ2
ik (7.8)

This summation gives the number of reactions in which compound xi

participates. This is the same quantity as computed in equation 7.3. The
off-diagonal elements are

(ax)ij =
∑

k

sikskj (7.9)

This is the number of reactions in which both compounds xi and xj partici-
pate and shows how extensively the two compounds are topologically
connected in the network.

7.4 Computation of the Adjacency Matrices

The reversible reaction
The stoichiometric matrix for a simple reversible reaction

Ŝ =
(

1 1
1 1

)
(7.10)

has two identical adjacency matrices:1

Av = Ax =
(

2 2
2

)
(7.11)

Thus, each compound participates in two reactions (the forward and
backward reactions are treated separately), and there are two compounds
participating in each reaction.

1 Since the matrices Av and Ax are symmetric, the elements below the diagonal are left blank.
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The reversible bimolecular association reaction
The stoichiometric matrix for a reversible bimolecular association

Ŝ =

⎛
⎜⎝1 1

1 1
1 1

⎞
⎟⎠ (7.12)

has adjacency matrices

Av =
(

3 3
3

)
and Ax =

⎛
⎜⎝2 2 2

2 2
2

⎞
⎟⎠ (7.13)

Thus, Av states that there are three compounds participating in each reac-
tion (the forward and backward), and the two reactions have three com-
pounds in common. Similarly, Ax states that each compound participates
in two reactions (the diagonal) and that the first and second, first and
third, and second and third compounds jointly participate in two reactions
(forward and backward).

The reversible cofactor exchange reaction
The stoichiometric matrix for a reversible cofactor exchange reaction

Ŝ =

⎛
⎜⎜⎜⎝

1 1
1 1
1 1
1 1

⎞
⎟⎟⎟⎠ (7.14)

has adjacency matrices

Av =
(

4 4
4

)
and Ax =

⎛
⎜⎜⎜⎝

2 2 2 2
2 2 2

2 2
2

⎞
⎟⎟⎟⎠ (7.15)

Thus, Av states that there are four compounds participating in each reac-
tion (forward and backward) and the two reactions have four compounds
in common. Similarly, Ax states that each compound participates in two
reactions (the diagonal) and that all pairwise combinations of the com-
pounds jointly participate in two reactions (forward and backward).

Genome-scale matrices
The off-diagonal elements of Ax for the genome-scale metabolic net-
works for Escherichia coli, Saccharonyces cerevisiae, Helicobacter pylori,
Staphylococcus aureus, and the human cardiac mitochondrion have been
studied [11]. When rank ordered, they approximate a line on a log–log plot
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Figure 7.6: Metabolite coupling in E. coli. The number of metabolite pairs that share a given
number of reactions are plotted and identified from the E. coli metabolic network. From [11].

for all networks considered. This suggests the notion of metabolite cou-
pling, the concept that pairs of metabolites influence network behavior on
different scales. The results for E. coli are shown in Figure 7.6. The pairs
of metabolites that occur most often and dominate the network tend to be
common cofactors (ATP/ADP, etc.). Other metabolite pairs have progres-
sively less influence. The most often occurring metabolite pairs tend to be
similar across the genome-scale networks studied, but their less prominent
counterparts are often quite different.

7.5 Summary

➤ The binary form of S is Ŝ, which has zeros everywhere except unity,
where a nonzero element appears in S.

➤ The summation of the elements in column j of Ŝ give the number of
compounds π j that participate in reaction j.

➤ The summation of the elements in row i of Ŝ give the number of reac-
tions ρi in which compound i participates or shows how connected it
is in the network.

➤ The binary stoichiometric matrix Ŝ has two adjacency matrices Av and
Ax that are reaction and compound associated, respectively.
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➤ A diagonal element of Av gives the number of compounds (i.e., π j)
that participate in that reaction, and an off-diagonal element gives the
number of compounds that the two corresponding reactions have in
common.

➤ A diagonal element of Ax gives the number of reactions in which the
corresponding compound participates (i.e., ρi), and an off-diagonal
element gives the number of reactions in which the two corresponding
compounds participate.

➤ The number of reactions that compounds participate in follow an
approximate power law distribution in genome-scale matrices of
metabolism. The number of reactions that pairs of metabolites par-
ticipate in also follows a power law distribution.

7.6 Further Reading
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(2002).
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CHAPTER 8

Fundamental Subspaces of S

In the last chapter we discussed the elementary topological prop-
erties of the network that the stoichiometric matrix represents. In this
chapter we look deeper into the properties of the stoichiometric matrix
and how these fundamental topological properties can be used to obtain
a more thorough understanding of the reaction network that it represents.
This material is perhaps the most mathematical part of this book. It should
be readily accessible to readers with formal education in the physical and
engineering sciences, while readers with a life science background may
find it challenging. The concepts introduced are important to the rest
of the chapters in Part II. The stoichiometric matrix is a mathematical
mapping operation (recall Figure 6.1). Matrices have certain fundamen-
tal properties that describe this mapping operation. These properties are
contained in the four fundamental subspaces associated with a matrix.
This chapter discusses these subspaces and how we can mathematically
define them and interpret their contents in biochemical and biological
terms.

8.1 Dimensions of the Fundamental Subspaces

The mapping that the stoichiometric matrix represents was illustrated
in Figure 6.1 and a preliminary discussion of the associated four sub-
spaces is found in Chapter 6. The stoichiometric matrix is typically rank
deficient. The rank r of a matrix denotes the number of linearly inde-
pendent rows and columns that the matrix contains. Rows are linearly
dependent if any one row can be computed as a linear combination
of the other rows. Linear dependency between the compounds and re-
actions determines the dimensionality of each of the four fundamental
subspaces.

118
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The dimensions of both the column and row space is r.

dim(Col(S)) = dim(Row(S)) = r

Since the dimension of the concentration vector is m, we have

dim(Left Null(S)) = m − r

Similarly, the flux vector is n-dimensional; thus,

dim(Null(S)) = n − r

The linear dependency between columns and rows of the stoichiometric
matrix and its effect on the dimensionality of each fundamental subspace
will be discussed further in subsequent chapters.

Contents of the fundamental subspaces
The four fundamental subspaces contain important information about a
reaction network. Their contents are as follows:

� Null space. The null space of S contains all the steady-state flux
distributions allowable in the network. The steady state is of much
interest since most homeostatic states are close to being steady states.

� Row space. The row space of S contains all the dynamic flux distri-
butions of a network and thus the thermodynamic driving forces that
change the rate of reaction activity.

� Left null space. The left null space of S contains all the conservation
relationships, or time invariants, that a network contains. The sum
of conserved metabolites or conserved metabolic pools do not change
with time and are combinations of concentration variables.

� Column space. The column space of S contains all the possible
time derivatives of the concentration vector and thus shows how the
thermodynamic driving forces move the concentration state of the
network.

The contents of these spaces are described in detail in the subsequent
chapters.

Basis for vector spaces
A basis for a space can be used to span the space. Thus, a basis describes
all contents of a space. Different bases can be used for this purpose, in-
cluding a linear basis, orthonormal basis (a special case of a linear basis)
for linear spaces, and a convex basis for finite linear spaces. The choice of
basis for the four fundamental subspaces becomes important since it in-
fluences the biological interpretation. Singular value decomposition gives
simultaneous orthonormal bases for all the four fundamental subspaces.



120 Fundamental Subspaces of S

m×m

 Σ 

m×n m×n

= . .

n×n

r×r

VV TTUUSS

Reaction

Metabolite

Singular value

st
oi

ch
io

m
et

ry connectivity

Column
space

Left null
space

Row
space

Null
space

Figure 8.1: A schematic showing SVD of the stoichiometric matrix. The location of the or-
thonormal basis vectors for the four fundamental subspaces are indicated. Prepared by Iman
Famili.

8.2 The Basics of Singular Value Decomposition

Singular value decomposition (SVD) is a well-established method used in a
wide variety of applications, including signal processing, noise reduction,
image processing, kinematics, and the analysis of high-throughput biolog-
ical data [3, 91]. Unlike matrices that comprise experimentally determined
numbers, the stoichiometric matrix is a “perfect” matrix that commonly
comprises integers describing the structure of a reaction network. SVD of
S can be used to analyze network properties, and it is a particularly useful
way to obtain the basic information about the four fundamental subspaces
of S.

SVD states that for a matrix S of dimension m × n and of rank r, there
are orthonormal matrices U (of dimension m × m) and V (of dimension
n × n) and a matrix with diagonal elements � = diag(σ1, σ2, . . . , σr ) with
σ1 ≥ σ2 ≥ · · · ≥ σr > 0 such that

S = U�VT (8.1)

SVD of S is shown schematically in Figure 8.1. The columns of U and V
are the left and right singular vectors of S, respectively, and represent its
modes, while the σi represent the singular values. The values in � give
us the weight with which the modes contribute to the reconstruction of
the matrix. These are rank ordered by decreasing magnitude in � with
the largest singular value being first. For large systems, one can graph the
magnitude of the r singular values to obtain a spectrum of singular values.

The singular value spectrum
The fractional singular values are calculated by

fi = σi∑r
k=1 σk

(8.2)
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Figure 8.2: Singular value spectra. (A) The σi are rank ordered and plotted as a function
of i . (B) Cumulative fractional singular values, Fi . One can use a certain fraction, i.e., 0.95,
to determine the “effective dimensionality” representing 95% of the variance of the matrix
being decomposed. Two types of spectra are illustrated. In the spectrum represented by the
squares, the singular values are of similar magnitude, and thus the cumulative fractional
singular values form a linear curve. Conversely, in the spectrum shown with the open circles,
the relative magnitude of the singular values drops quickly, and the cumulative fractional
spectrum rises quickly, leading to a low effective dimensionality of the mapping that the matrix
represents.

Some example singular value spectra are given in Figure 8.2A. The cumu-
lative fractional singular values, Fi, are defined as the sum of the first i
fractional singular values:

Fi =
i∑

k=1

fk (8.3)

where i varies from 1 to r. In data analysis, one often uses a numer-
ical criterion (i.e., 0.95) to terminate the cumulative spectrum and de-
fine the number of modes that generate 95% of the reconstruction of the
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Figure 8.3: Orthonormal bases of the four fundamental subspaces of S obtained by SVD.
Prepared by Iman Famili.

matrix. Since the stoichiometric matrix is of perfect precision, meaning no
“measurement” noise in its elements, such cutoff may not be appropriate,
depending on the information sought from the SVD. Some example cumu-
lative spectra are given Figure 8.2B. Note that Fr = 1.

Orthonormal bases for the four fundamental subspaces
The columns of U are called the left singular vectors and the columns of
V are the right singular vectors. The columns of U and V give orthonormal
bases for all the four fundamental subspaces of S (see Figure 8.3). The first r
columns of U and V give orthonormal bases for the column and row spaces,
respectively. The last m − r columns of U give an orthonormal basis for the
left null space, and the last n − r columns or V give an orthonormal basis
for the null space.

The inner product of orthonormal vectors is zero. The inner product of
an orthonormal vector with itself is unity. Thus,

UTU = I(m×m) and VTV = I(n×n) (8.4)

The transposes of U and V are thus their inverses as well. The subscripts
on the identity matrices in equation 8.4 are to remind the reader that they
are not the same size.

Mapping between the singular vectors
The equation S = U�VT can be rewritten as

SV = U� (8.5)
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which can be expanded in terms of a series of independent equations that
look like

Svk = σkuk (8.6)

In other words, S maps a right singular vector onto the corresponding
left singular vector scaled by the corresponding singular value. A right
singular vector (a column in V) gives the weightings on the reaction vectors
si needed to reconstruct each of the left singular vectors (a column in U)
as scaled by their respective singular values.

Mode-by-mode reconstruction of S
The stoichiometric matrix can be reconstructed as

S =
v∑

i=0

σi
〈
uivT

i

〉
(8.7)

where each term successively adds the contribution of each mode (or sin-
gular vector) to the reconstruction of S.

A note on nomenclature
The naming conventions of the right singular vectors vk and the flux vector
v may cause confusion. Unfortunately, the literature uses the symbol v
for both quantities, a convention that we will not change here. Both are
vectors, denoted with a boldface font, but one has a subscript and the
other does not. Equation 8.25 should help illustrate the difference between
the two.

SVD as a series of transformations
Concentration variables can be transformed into groupings of concentra-
tions that correspond to eigen-reactions, and these are driven by groupings
of metabolic reactions. The basic mathematical nature of these transfor-
mations is shown in Figure 8.4. VT represents orthonormalization of the
flux space, and these basis vectors are stretched by the singular values
and mapped onto an orthonormal basis for the concentration space. The
transformation U then converts the orthonormal concentrations back to
the original coordinate system.

This set of transformations is conceptually useful. SVD has certain prop-
erties that make it convenient for numerical and mathematical analysis.
The requirement for orthonormality makes chemical and biological in-
terpretation difficult, and, as we will see in the subsequent chapters, an
alternate set of basis vectors can be used to further such interpretations.
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Figure 8.4: A schematic illustration of the singular value decomposition of S.

8.3 SVD of S for the Elementary Reactions

To develop an understanding of the information that SVD of S provides,
we will apply it to the elementary reactions introduced in Chapter 6. This
will show that the fundamental subspaces are finite and for some purposes
may better be spanned by a nonorthonormal set of basis vectors.

Reversible conversion
Consider the reaction of equation 6.11 written as

v1

x1 � x2

v2

(8.8)

where x1 = C P and x2 = PC. The corresponding stoichiometric matrix can
be decomposed as

S = U�VT

or (
−1 1

1 −1

)
= 1√

2

(
−1 1

1 1

) (
2 0
0 0

)
1√
2

(
1 −1
1 1

)
(8.9)

The four fundamental subspaces are shown in Figure 8.5. They are all one
dimensional. Thus, the second column of U spans the left null space and,
as we will see in Chapter 10, corresponds to a conservation relationship,
x1 + x2 being a constant. Similarly, the second row of VT spans the null
space of the stoichiometric matrix, and, as we will see in Chapter 9, it
corresponds to a type III circular extreme pathway.
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Figure 8.5: The four fundamental subspaces of the stoichiometric matrix for the reaction
x1 � x2. Here, n = m = 2 and r = 1. Thus all four fundamental subspaces are one dimensional.
Note that we have multiplied all the basis vectors by

√
2 to make it easier to visualize the

direction of the basis vectors of the four subspaces.

The column and row spaces are one dimensional and related by

Sv1 = σ1u1

or

S

(
1/

√
2

−1/
√

2

)
= 2

(
−1/

√
2

1/
√

2

)
or S

(
1

−1

)
= 2

(
−1

1

)
(8.10)

The row space is spanned by vT
1 = (1, −1)/

√
2, meaning that for a net flux

through the reaction, the time derivatives in the column space are moved in
the opposite direction multiplied by a factor of 2. As shown in Figure 8.5,
if (v1, v2) is located above the 45-degree line, the distance from the 45-
degree line is doubled and projected in the opposite direction in the time
derivative space. The opposite is true for a point located below the 45-
degree line. If the numerical values of v1 and v2 are the same, there is no
net reaction and the time derivatives are zero.

The finite size of the fundamental subspaces
All fluxes of elementary reactions are positive and have a maximal rate.
Thus, all flux values fall into a range 0 ≤ vi ≤ vi,max. This range for v1 and
v2 for the elementary reaction x1 � x2 is shown in Figure 8.6. The null
space is on a diagonal line, while the rest of the square is the possible row
space. Every point in the square can be decomposed into a steady state (vss)
and a dynamic (vdyn) component. These two components are represented
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--σ1Vdyn
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Figure 8.6: A graphical depiction of the null, row, and column spaces for x1 � x2. Since the
fluxes v1 and v2 are finite, all these three spaces are finite. The singular vectors shown are
multiplied by

√
2 to make the figure more simplistic.

by the (1, 1)/
√

2 and (1,−1)/
√

2 vectors. They are orthogonal and span
the null and row spaces respectively; vss is mapped into the origin by S,
whereas vdyn is mapped onto u1 = (−1, 1)/

√
2 and stretched by the singular

value (see equation 8.10).
Note that the bounded range of the fluxes also set the bounds of the

column space. The extreme points of the row space (the open triangle
and square) correspond to the maximum allowable values on the time
derivatives of x1 and x2. Thus, the extreme points of the row space lead
to extreme points in the column space. The implication of nonnegativity
and finite size of the flux and concentration values will be discussed in
subsequent chapters.

Numerical example
We can trace these mappings using a specific numerical example. If we
pick v = (2

√
2,

√
2)T, then

VTv =
(

1
3

)
(8.11)

which corresponds to the projection of v onto the two right singular vec-
tors. In other words, this flux vector is decomposed into one unit of v1 and
three of v2. Then

�VTv =
(

2
0

)
(8.12)
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which finally maps onto the left singular vectors as

ẋ = U�VTv = U

(
2
0

)
= 2 · u1 + 0 · u2 = 2u1 =

(
−√

2√
2

)
(8.13)

Bilinear association
Consider the reaction of equation 6.13 written as

v1

x1 + x2 � x3

v2

(8.14)

where x1 = C, x2 = P and x3 = C P. The SVD of the stoichiometric
matrix is⎛
⎜⎝−1 1

−1 1
1 −1

⎞
⎟⎠ =

⎛
⎜⎝−1/

√
3 2/

√
6 0

−1/
√

3 −1/
√

6 1/
√

2
1/

√
3 1/

√
6 1/

√
2

⎞
⎟⎠

⎛
⎜⎝

√
6 0
0 0
0 0

⎞
⎟⎠

(
1/

√
2 −1/

√
2

−1/
√

2 −1/
√

2

)

There is only one singular value, and thus the column space is spanned
by one left singular vector u1. It is the reaction vector si normalized to
unit length. The row space is spanned by vT

1 = (1, −1)/
√

2. The row and
column spaces are related by

Sv1 = σ1u1 (8.15)

or ⎛
⎜⎝−1 1

−1 1
1 −1

⎞
⎟⎠

(
1/

√
2

−1/
√

2

)
= √

6

⎛
⎜⎝−1/

√
3

−1/
√

3
1/

√
3

⎞
⎟⎠ (8.16)

or ⎛
⎜⎝−1 1

−1 1
1 −1

⎞
⎟⎠

(
1

−1

)
= 2

⎛
⎜⎝−1

−1
1

⎞
⎟⎠ (8.17)

Note that the row and null spaces are spanned by the same right singular
vectors, vT

1 and vT
2 , respectively, as the reversible conversion. This same

decomposition is true of the flux vector, leading to an analogous interpre-
tation. The column space is simply spanned by the normalized form of
the reaction vector. The left null space is now two dimensional. The or-
thonormal basis vectors for the column and left null space are shown in
Figure 8.7. The second and third left singular vectors u2 and u3 that span
the left null space are hard to interpret chemically. We will address this
issue in what follows.
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Figure 8.7: The three-dimensional depiction of
the orthonormal basis for the column and left
null spaces for a simple bilinear association. The
plane is the left null space and the line is the col-
umn space. The vectors shown are an orthonor-
mal set. If the flux vector is on the left-hand side
of the plane as indicated, then the reaction is
proceeding in the forward direction, and vice
versa.

Linear combinations of fluxes and concentrations
We can begin to familiarize ourselves with the details of these transforma-
tions. The flux vector in the dynamic equations can be transformed using
VT as

dx
dt

= SVVTv (8.18)

or

d
dt

⎛
⎜⎝ x1

x2

x3

⎞
⎟⎠ =

⎛
⎜⎝−1

−1
1

⎞
⎟⎠ (v1 − v2) −

⎛
⎜⎝0

0
0

⎞
⎟⎠ (v1 + v2) (8.19)

forming two groupings of the fluxes. The second term corresponds to the
null space, and the combination v1 + v2 is a type III extreme pathway that
we will discuss in Chapter 9. The first corresponds to the row space and the
grouping v1 − v2 is the net flux through the reaction, and it is orthogonal
to v1 + v2 (see Figure 8.5). Multiplying equation 8.19 by UT leads to

d
dt

⎛
⎜⎝ (−x1 − x2 + x3)/

√
3

(2x1 − x2 + x3)/
√

6
(x2 + x3)/

√
2

⎞
⎟⎠ =

⎛
⎜⎝

√
6
0
0

⎞
⎟⎠ (v1 − v2)√

2
−

⎛
⎜⎝0

0
0

⎞
⎟⎠ (v1 + v2)√

2

Note that the singular value of
√

6 shows up and that the two column
vectors on the right-hand side of the equation are the two columns of �.

This system is now fully decomposed, showing how independent group-
ings of concentrations are moved by independent groupings of the fluxes.
As noted earlier, the two left singular vectors that span the left null
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(--1,--1,1)

(1,0,1) (0,1,0)
Figure 8.8: The three-dimensional depiction of a convex ba-
sis for the column space and chemical moiety-based basis
for the left null space for a simple bilinear association. Note
that the two basis vectors ((1,0,1) and (0,1,1)) for the left null
space are not orthogonal to each other, but both are orthog-
onal to the basis vector for the column space. The wedge
shown contains the nonnegative combinations of the two
basis vectors.

space are not easy to interpret chemically. Since they are not changed
by the groupings of fluxes (0’s in the last two rows of the vectors on the
right-hand side), they can be combined without changing the dynamic
solution.

Nonorthonormal basis vectors
The second and third left singular vectors can be combined to give (1, 0, 1)
and (0, 1, 1) that still span the left null space. These are not orthonormal
vectors spanning the left null space, but they represent chemical conser-
vation moieties, or pools, which are x1 + x3 (the moiety C based on equa-
tion 6.13) and x2 + x3 (the moiety P based on equation 6.13), respectively.
This basis for the left null space is shown in Figure 8.8. Note that the seg-
ment of the left null space that is chemically meaningful lies in the wedge
spanned by these two vectors since only a nonnegative combination of
them is chemically possible. This basis is called a convex basis for the left
null space, and we will discuss these issues in more detail in Chapter 10.
Thus, although mathematically convenient and useful, the use of the or-
thonormal bases obtained by SVD may not be well suited for chemical and
biological interpretation of the left null space. We will also see in Chapter 9
that convex bases for the null space are quite useful.

8.4 Interpretation of SVD: Systemic Reactions

The orthonormal basis vectors that are obtained from SVD do give useful
information about the properties of the overall chemical transformations
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that characterize a network. The basic dynamic mass balance equation

dx
dt

= Sv (8.20)

can be rearranged as

UT dx
dt

= UTSVVTv (8.21)

or

d(UTx)
dt

= �(VTv) (8.22)

Thus, the left singular vectors (ui) form linear combinations of the concen-
tration variables and the right singular vectors (vi) form linear combina-
tions of the fluxes. Groups of concentration variables are called pools, and
groups of fluxes are called pathways (see Chapters 9 and 10, respectively).

The dynamic relationship between the groupings of fluxes and concen-
trations that correspond to the nonzero singular values can be written as

d(uT
k x)

dt
= σk(vT

k v) (8.23)

This simple derivation shows that there is a linear combination of com-
pounds:

uT
k x = uk1x1 + uk2x2 + · · · + ukr xm (8.24)

which is being uniquely moved by a linear combination of metabolic fluxes
as

vT
k v = vk1v1 + vk2v2 + · · · + vknvn (8.25)

and the extent of this motion is given by σk. An important feature of SVD is
that the singular vectors are orthonormal to each other, and consequently
each of the kth motions in equations 8.24 and 8.25 are structurally decou-
pled.

Equation 8.23, therefore, defines an eigen-reaction or a systemic
metabolic reaction as

�vkjv j
for vkj > 0

�ukixi � �ukixi
for uki < 0 �vkjv j for uki > 0

for vkj < 0

(8.26)

where the elements of uk are equivalent to systemic stoichiometric coeffi-
cients and the elements of vk are systemic participation numbers. Note that
the uk vectors correspond to systemic reaction vectors that are analogous to
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Figure 8.9: A schematic of the singular value decomposition of the stoichiometric matrix.
Prepared by Iman Famili.

si (see Figure 8.9). Thus, as we move a point along this vector, compounds
with negative uki values decrease, while those with positive uki increase,
and vice versa. Similarly, the reactions with positive vkj values will drive
a point in the increasing direction of uk, while those with negative values
will act in the opposite direction. This relationship is graphically illus-
trated in Figure 8.10. Thus, equation 8.26 describes a systemic reaction.
These systemic metabolic reactions can be used to describe the function
of the network as a whole.

vifluxes
with
vki < 0

fluxes
with
vki > 0

n-dimensional
flux space

ui

derivatives
with
uki < 0

derivatives
with
uki > 0

m-dimensional
flux spaceA B

Figure 8.10: The relationship between corresponding left (ui ) and right (vi ) singular vectors
as a systemic reaction. The right singular vector can be broken up into two parts, containing
positive elements (on x-axis) and negative elements (on y-axis) (A). Reactions with positive
elements correspond to reactions driving the systemic reaction forward, while those with
negative elements drive it in the reverse direction. Analogously, the left singular vector ui

can be broken into a part with positive elements (y-axis) and negative elements (x-axis) (B).
The former corresponds to compounds formed by the systemic reaction, while the latter
corresponds to those disappearing. Since S maps vi onto ui , all points on vi correspond to a
point on ui . Further, since vi and v j are orthonormal, the systemic reactions are independent.
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1

2
u2= =(1,--1,0)

= 2σ2

Figure 8.11: Simple example of SVD analysis for reacting systems. (A) Schematic of a reaction
network with two reactions (v1 and v2) that act on metabolites A, B, and C, and its corre-
sponding stoichiometric matrix, S. (B) Graphical representation of the mapping between the
eigen-connectivities and eigen-reactions. The two singular vectors that correspond to v1 and
v2 are orthogonal and catalyze each eigen-reaction, u1 and u2, independently. The two singu-
lar vectors of time derivatives are orthogonal in a three-dimensional space. The magnitude of
the singular values σ1 and σ2 indicates the relative contribution of its corresponding singular
vectors to the overall construct of the biochemical transformation in the network (A′, time
derivative of A). This reaction schema is similar to the reactions in glycolysis where a hexose
(FDP) is split into two trioses (GAP and DHAP), which are interconverted by an isomerase.
From [57].

Simple example
These general concepts can be illustrated by a simple example (Fig-
ure 8.11). The two reactions, v1 and v2, in Figure 8.11A form a two-
dimensional flux space and relate metabolites A, B, and C in the space
where the time derivatives of concentrations lie. The two singular vectors
v1 and v2 are orthogonal and drive the singular vectors of time deriva-
tives, u1 and u2, independently (Figure 8.11B). Note that reaction v2 only
drives the motion of A and B. The singular values in this simple example
are σ1 = 1.73 and σ2 = 1.41 and indicate the relative contribution of each
singular vector to the overall construct of the biochemical motion in the
network.
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Figure 8.12: The first mode in genome-scale matrices of H. pylori, H. influenzae, and E. coli. (A)
The compound composition of the mode; (B) the reactions driving the conversion. Note that
the values on the x-axis are shown by u2

i j and v2
i j to make them all positive. From [57].

Decomposition of genome-scale matrices
The genome-scale matrices for Helicobacter pylori, Haemophilus influen-
zae, and Escherichia coli (see Table 3.6) have been studied using SVD [57].
The dominant four modes of the three matrices were similar, accounting for
about 27% of the cumulative singular value spectra. The cofactors partici-
pating in energy, redox, and phosphate metabolism emerge with the most
significant values in the first four eigen-reactions of all three genome-scale
networks.

� The first eigen-reaction in all the genomes is the conversion of ATP to
ADP and Pi (see Figure 8.12).

� The second eigen-reaction describes the conversion of NADP to
NADPH (see Figure 8.13).

Although the eigen-reactions are similar in the three organisms, the
metabolic reactions participating in driving the eigen-reactions differ
somewhat from one network to another. This difference is in part due to
dissimilarity among metabolic reactions in these organisms. The reaction
participation in the two principal conversions is as follows:

� The ATP-coupled transporters have the highest participation num-
bers of the first right singular vectors, except for E. coli where a group
of synthetase reactions is present. A group of kinases with identical
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the values on the x-axis are shown by u2
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participation numbers follow. These three types of reactions thus de-
fine the dominant eigen-reaction in all three genomes.

� The second mode corresponds to redox conversions that involve
NADPH. In all three genomes, fatty acid synthesis reactions have dom-
inant participation numbers in this mode. Then, a group of reductases
appears with 5- to 10-fold lower participation numbers. These two
types of redox exchanges dominate NADPH metabolism.

Thus, the dominant eigen-reactions correspond to important generic bio-
chemical transformations of metabolites in all these organisms, but the sets
of metabolic reactions that participate in these transformations may differ
significantly in a number of modes while being similar in others. The over-
all dominant features of these three genome-scale networks thus represent
similar but not identical chemical transformations.

8.5 Summary

➤ SVD provides unbiased and decoupled information about all the fun-
damental subspaces of S simultaneously.

➤ The first r columns of the left singular matrix U contain a basis for the
column space of S, and the remaining m − r columns contain a basis
for the left null space.

➤ The first r columns of the right singular matrix V contain a basis for
the row space of S and the remaining n − r columns contain a basis
for the null space.
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➤ The sets of basis vectors in U and V are orthonormal.

➤ The first r columns of U give systemic reactions, analogous to a single
column of S, representing a single reaction.

➤ The corresponding column of V gives the combination of the reactions
that drive a systemic reaction.

➤ Orthonormal basis vectors are mathematically convenient but not nec-
essarily biologically or chemically meaningful.

8.6 Further Reading

Famili, I., and Palsson B.O., “Systemic metabolic reactions are obtained by
singular value decomposition of genome-scale stoichiometric matrices,”
Journal of Theoretical Biology, 224:87–96 (2003).

Meyer, C.D., MATRIX ANALYSIS AND APPLIED LINEAR ALGEBRA, SIAM, Philadel-
phia (2000).



CHAPTER 9

The (Right) Null Space of S

The right null space of the stoichiometric matrix contains the
steady-state flux distributions through the network that the matrix repre-
sents. It is typically just called the null space. The choice of basis for the
null space is important in describing its contents in meaningful chemical
and biological terms. A convex representation of the null space has proven
useful to meet this goal. The convex basis vectors correspond to pathways
through a reconstructed network. We will introduce the basic concepts in
this chapter and describe their use for large-scale networks in Chapter 13.

9.1 Definition

The right null space of S is defined by

Svss = 0 (9.1)

Thus, all the steady-state flux distributions, vss, are found in the null space.
The null space has a dimension of n − r. Note that vss must be orthogonal to
all the rows of S simultaneously and thus represents a linear combination
of flux values on the reaction map that sum to zero. Therefore, the null
space is orthogonal to the row space of S (recall Figure 6.1).

The right null space is spanned by a set of n − r basis vectors, ri, i ∈
[1, n − r]. The set of basis vectors form columns of a matrix R that satisfy

SR = 0 (9.2)

that can be pictorially (where horizontal lines are row vectors, and vertical
lines are column vectors) represented as

(≡)(|||) = 0 with R = (|||) thus any vss = �wiri (9.3)

136
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A set of linear basis vectors is not unique, but once the set is chosen, the
weights (wi) for a particular vss are unique.

A basis vector ri makes nodes in the flux map link neutral (i.e., bal-
anced) since it is orthogonal to all the rows of S simultaneously. Such
network-scale flux balancing may be nonintuitive for topologically nonlin-
ear networks. This balancing requirement leads to network-based pathway
definitions and the use of basis vectors (pi) that represent such pathways.

If a reacting system is closed, only internal cycles are possible. These
cycles are at a thermodynamic equilibrium and thus of little biological
interest. Living systems are open to the environment, and thus it is the
trafficking of substances in and out of a cell that becomes a key interest.
This feature leads to the segregation of the flux vector into two parts, inter-
nal and external fluxes, as discussed in Chapter 6. The internal fluxes can
be defined by elementary reactions that have nonnegative flux values and
thus are naturally considered to be unidirectional. The exchange fluxes
can involve diffusive processes and may not have a natural representation
as chemical reactions. The exchange fluxes are thus naturally considered
to be bidirectional.

9.2 Choice of Basis

A linear basis for the null space can be computed using a number of
standard methods, including SVD (see Chapter 8). An infinite number of
different bases exist for a linear space. We are interested in finding a basis
that is biochemically meaningful and thus useful for biological interpre-
tation.

Linear basis
A simple linear reaction network is shown in Figure 9.1A. The null space
is defined by

⎛
⎜⎜⎜⎝

1 −1 0 0 −1 0
0 1 −1 0 0 0
0 0 1 −1 0 1
0 0 0 0 1 −1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1

v2

v3

v4

v5

v6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

0
0
0
0

⎞
⎟⎟⎟⎠ (9.4)

The matrix is full rank, and thus the dimension of the null space is
2 (= 6 − 4). Since columns 4 and 6 do not contain pivots, this set of linear
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A

B

Figure 9.1: Simple network and basis vectors for the null space of the corresponding S. (A)
The reaction map; (B) the basis vectors from equation 9.5 drawn as flux distributions on the
reaction map. Prepared by Christophe Schilling.

equations can be solved using v4 and v6 as the free variables to give
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⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1
1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ v6

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
−1
−1

0
1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= w1r1 + w2r2 (9.5)

where r1 and r2 form a basis. They are both in the null space and are linearly
independent. For any numerical values of v4 and v6, a flux vector will be
computed that lies in the null space. These basis vectors can be shown
schematically by graphing them on to the reaction map (Figure 9.1B).

Any steady-state flux distribution is a unique linear combination of the
two basis vectors. For example,

v =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
1
1
2
1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= w1r1 + w2r2 = (2)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1
1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ (1)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
−1
−1

0
1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= (2)r1 + (1)r2 (9.6)

This combination can also be drawn on the reaction map (Figure 9.2A).
This set of basis vectors, although mathematically valid, is chemically
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A

B

Figure 9.2: Representation of flux distribution as a combination of basis vectors (from equa-
tion 9.5 in (A); and of a set of nonnegative basis vectors (from equation 9.7, in (B). Prepared
by Christophe Schilling.

unsatisfactory. The reason is that the second basis vector, r2, represents
fluxes through irreversible elementary reactions, v2 and v3, in the reverse
direction, and it thus represents a chemically unrealistic event.

Nonnegative linear basis
The problem with the acceptability of the basis just considered stems from
the fact that the flux through an elementary reaction can only be positive,
i.e., vi ≥ 0. A negative coefficient in the corresponding row in the basis
vector that multiplies the flux is thus undesirable. This consideration leads
to the need to have nonnegative basis vectors for the null space. In the
earlier example we can combine the basis vectors to eliminate all negative
elements in them. This combination is achieved by transforming the set of
basis vectors by

(r1, r2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
1 −1
1 −1
1 0
0 1
0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(
1 1
0 1

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1
1 0
1 0
1 1
0 1
0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= (p1, p2) (9.7)

In this new basis, p1, p2, the first basis vector is the same as in the old basis,
whereas the second basis vector in the new set is an addition of the two
basis vectors in the old basis. These two new basis vectors are shown on
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Table 9.1: Comparing the properties of linear and convex bases.

Linear spaces Convex spaces

Described by linear equations Described by linear equations

and inequalities

Vector spaces defined by a set of Convex polyhedral cone defined by

linearly independent basis a set of conically independent

vectors (bi ) generating vectors (pi )

v = ∑
wibi −∞ ≤ wi ≤ +∞ v = ∑

αipi 0 ≤ αi ≤ +∞

Every point in the vector space is Every point in the vector space is

uniquely described by a linear described as a nonnegative linear

combination of basis vectors (unique combination of the generating

representation for a given basis) vectors (nonunique representation)

Number of basis vectors equals Number of generating vectors may

dimension of the null space exceed dimension of the null space

Infinite number of bases that can Unique set of generating vectors

be used to span the space

the reaction map in Figure 9.2B, and they contain no fluxes that operate
in the incorrect direction. Notice that these nonnegative basis vectors look
like pathways through this simple system. We remind the reader that this
toy system is biochemically irrelevant since there are no carrier or cofactor
exchange reactions.

Convex versus linear bases
The introduction of nonnegative basis vectors leads us to convex analysis.
Convex analysis is based on equalities (in our case, Sv = 0) and inequalities
(in our case, 0 ≤ vi ≤ vi,max). It leads to the definition of a set of nonnegative
generating vectors. The differences between linear and convex bases are
summarized in Table 9.1. An important feature of the convex basis is that
it is unique and determined based on network topology. However, the
number of convex basis vectors can be greater than the dimension of the
null space, leading to multiple ways to represent a flux distribution with
the convex basis vectors.

Finite or closed spaces
The elementary reactions have nonnegative fluxes, vi ≥ 0. In addition, they
have an upper bound, vi ≤ vi,max. Thus, the allowable flux vectors are in
a rectangular hyperbox in the positive orthant of the flux space, bounded
by planes parallel to each axis as defined by vi,max (see Figure 9.5). This
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A

P1 P2 P3
P4

Figure 9.3: A four-sided pyramid. This object is a bounded 3D
convex space. There are four convex basis vectors. Any nonneg-
ative combination of these four vectors will generate a point, A,
inside the pyramid.

hyperbox contains all allowable flux states, both steady-state and dynamic.
The flux balance equation Sv = 0 is a hyperplane that intersects the hy-
perbox forming a finite segment of a hyperplane. This intersection is a
polytope in which all the steady-state flux distributions lie. This polytope
can be spanned by the convex basis vectors that are edges of the polytope
(see Figure 9.5C) with restricted ranges on the weights. In other words,

vss =
∑
k=1

αkpk (9.8)

where pk are the edges, or extreme states, and αk are the weights that
are positive and bounded, 0 ≤ αi,min ≤ αi ≤ αi,max. The pk are the so-called
extreme pathways and are discussed in the following section.

Illustrative examples
Let us consider the consequences of the nonnegativity properties of the
fluxes and the flux balance equations. Unfortunately, only the simplest of
cases can be viewed in 3D, and we must use conceptual illustrations.

� A simple illustration of a 3D convex object is a four-sided pyramid,
seen in Figure 9.3. As illustrated in the figure, this object is described
by four convex basis vectors. A nonnegative combination of these four
vectors leads to the generation of a point inside the pyramid.

� The flux vector lies in the positive orthant further constrained by the
flux balance equations (Figure 9.4). The general shape of this space
is one of a cone or a triangle in a 2D representation. Two pairs of
nonnegative basis vectors are shown. Only the vectors that lie on the
edges can give a nonnegative representation of all the points in the
cone. It is thus a unique convex basis. Note that to represent point A
in Figure 9.4, we need to use a negative weighting on the dashed set
of basis vectors.
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Figure 9.4: Schematic illustration of a flux cone in the positive
orthant. The dashed vectors are non-negative basis vectors, while
the pair of solid vectors are a convex basis, with which the en-
tire cone can be spanned with αi > 0. Note that representing
the point A would require a negative weighting on the dashed
set of basis vectors.

The simple flux split
A node with three reaction links forms a simple flux split (Figure 9.5(A).
The min, max constraints on the reactions form a 3D box that is intercepted
by the plane formed by the flux balance

0 = v3 − v1 − v2 = 〈(−1, −1, 1) · (v1, v2, v3)〉 (9.9)

forming a segment of a plane (Figure 9.5(B)). This 2D polytope is spanned
by two convex basis vectors (Figure 9.5(C)). These basis vectors are b1 =
(v1, 0, v3) and b2 = (0, v2, v3). The length of these basis vectors is thus lim-
ited by the vi,max values. The relative magnitudes of the vi,max values lead
to dominant and redundant constraints, as illustrated in Figure 9.6. The

b1

b2

Figure 9.5: Forming a 2D polytope in 3D. (A) A simple flux split. (B) The 2D null space is
constrained by the vmax planes corresponding to the three reactions in the network. (C) A 2D
representation of the finite null space. Modified from [179].
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C

B

A

Figure 9.6: Bounding the flux cone; redun-
dant and dominant constraints. Three con-
straints on v3,max in Figure 9.5 are illustrated; A:
v3,max > 14(=v2,max + v1,max); B: 6 < v3,max <

14; C: v3,max < 6(= min{v1,max, v2,max}). In case
A, v3,max is redundant; in case B, all vi,max are
relevant; and in case C, v3,max is relevant, while
v1,max and v2,max are redundant.

upper bounds on the fluxes close the flux cone to form a polytope. This
finite set has extreme points that can be used to define the space.

Varying constraints and biological interpretation
The constraints offer a mechanism to determine the effects of various pa-
rameters on the achievable functional states of a network. For instance,
enzymopathies can reduce the maximum flux through a particular reac-
tion in a network. Such constraints could reduce the numerical value for
αi,max and thus shorten the maximum length of an extreme pathway vector
(see Figure 9.7). In such a case, several functional states are not possible.
A desirable functional state may thus be eliminated, possibly leading to
a pathological condition [103]. The consequences of complete gene dele-
tions also can be analyzed in this fashion (see Chapter 16).

Some key concepts: Mathematics versus biology
The finite null space contains all the allowable steady-state flux distribu-
tions through the network. It provides a nice link between mathematical
and biological concepts:

� The null space represents all the possible functional, or phenotypic,
states of a network.

� A particular point in the polytope represents one network function or
one particular phenotypic state.

Figure 9.7: Changing constraints and shrinking polytopes. If a vmax

constraint is reduced, a portion of the solution space may become in-
accessible (shaded region). Enzymopathies can have this effect [103].
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Evolution of
network-based
pathways

System boundary

(A)

(B)

(C)

Figure 9.8: The historical development of the network-based pathway diagram: From reac-
tions to pathways to networks. Taken from [163].

� As we will see in Chapter 16, there are equivalent points in the cone
that lead to the same overall functional state of a network. Biologically,
such conditions are called silent phenotypes.

� The edges of the flux cone are the unique extreme pathways. Any flux
state in the cone can be decomposed into the extreme pathways. The
unique set of extreme pathways thus gives a mathematical description
of the range of flux levels that are allowed.

Perspective: From reactions to pathways
Early in the history of biochemistry, enzymes isolated from cells were
shown to be able to carry out specific chemical reactions (Figure 9.8A). It
was then recognized that the products of one reaction were substrates of
another. Thus, one could link different chemical transformations to form
a series of reactions (Figure 9.8B), to form basic metabolic pathways, such
as glycolysis, the TCA cycle, and so on. The definition and biochemical
functions of such pathways have been taught to generations of life scien-
tists. With the advent of whole genome sequencing and the development
of network reconstruction methods (see Part I), we can now piece together
entire networks. The properties of such networks can and must be stud-
ied. In the words of Uwe Sauer, “Pathways are concepts, but networks are
reality.”

Interestingly, as illustrated earlier, the finite null space of the stoichio-
metric matrix has a natural set of basis vectors that can be used to span
all allowable network states. Thus, network-based definitions of pathways
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Figure 9.9: The bounded null space of the stoichiometric matrix as a convex cone. Redrawn
from [163].

emerged (see Figure 9.8), that account for the function of the network as a
whole. These pathways are mathematically defined and thus free of human
bias in their definition and are useful for studying the systems properties
of networks. Next, we discuss such pathways, and they are put to use in
Chapter 13 to study large-scale networks.

9.3 Extreme Pathways

Biochemically meaningful steady-state flux solutions can be represented
by a nonnegative linear combination of convex basis vectors as

vss =
∑

αipi where 0 ≤ αi ≤ αi,max (9.10)

The vectors pi are a unique convex generating set, but αi may not be unique
for a given vss. The number of the convex basis vectors can exceed n − r.
The pi have been extensively studied [159, 193]. They correspond to the
edges of a cone in an (n − r)-dimensional space (see Figure 9.9). They
correspond to pathways when represented on a flux map and are called
extreme pathways, since they lie at the edges of the bounded null space in
its conical representation.

The flux cone
For conceptual purposes, the extreme pathways can then be visualized as
vectors in a high-dimensional space, whose axes correspond to the flux
levels through the individual reactions (Figure 9.9). A numerical value on
a given axis is the flux level in the corresponding reaction. The flux cone
depicted in Figure 9.9 is the set of points that correspond to allowable flux
values in the metabolic network. The cone can also be mathematically
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Figure 9.10: Classification of extreme pathways based on the exchange fluxes that they con-
tain. (A) The structure of the pathway matrix P for the tree types of extreme pathways; (B) The
corresponding flux maps. Redrawn from [174].

described as

C = {v : v =
p∑

i=1

αipi, αi ≥ 0, for all i} (9.11)

where C represents the convex cone encompassing all possible steady-state
flux distributions in a metabolic network; v represents the vector of fluxes
for each reaction in the network; p is the number of extreme pathways
(p ≥ n − r), and αi and pi are the weights and the extreme pathways of the
network, respectively.

Classification of the extreme pathways
Extreme pathways have been classified into three groups according to their
use of exchange metabolites (Figure 9.10). The extreme pathways are com-
puted based on the null space of Sexch. The exchange fluxes are grouped
into two categories: external fluxes and fluxes external to metabolism but
internal to the cell. Thus, the first set of exchange fluxes are with the sur-
roundings of the cell, while the second set represent a virtual boundary
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separating metabolism from other cellular functions. The second category
primarily contains the use of currency metabolites, such as carrier and co-
factor molecules. The pathway matrix P (whose columns are the pi) and a
schematic of what it represents is shown in Figure 9.10.

With this definition of exchange fluxes, the extreme pathways are clas-
sified into three categories based on which exchange fluxes they contain.

� type I extreme pathways involve the conversion of primary inputs into
primary outputs and thus contain exchange fluxes with the environ-
ment.

� type II extreme pathways involve the internal exchange of currency
(carrier) metabolites only, such as ATP and NADH.

� type III extreme pathways are solely internal cycles; there is zero flux
across all system boundaries.

By either including currency metabolites as internal to the system or
considering currency metabolites as primary exchange metabolites, an
extreme pathway analysis yields zero type II pathways. It has been demon-
strated that type III pathways are thermodynamically infeasible and con-
sequently the corresponding net fluxes through them are zero [174].

Simple reactions
Extreme pathways can be computed for simple reactions (Figure 9.11).
If they operate in a closed system, the only pathway is a type III that
corresponds to the two elementary reactions operating in the opposite
direction. This corresponds to chemical equilibria when the fluxes have
to be equal and opposite. Thus, there is no net flux associated with the
type III pathway.

If the simple reactions operate in an open setting, type I extreme path-
ways appear (see Figure 9.11). For a simple reversible reaction, a straight
through type I pathway occurs in addition to the type III pathway that is
also present in the closed system. Adding exchange reactions as columns
in S increases the dimension of the null space. This linear type I pathway
represents the common notion of a metabolic pathway.

Most reactions in cells involve carrier molecules. The carrier coupled
reaction leads to exchange fluxes within the cell (see Figure 9.11). The type
I pathways that arise describe not only the entry and exit of the primary
substrate but also the charging of a carrier molecule, with the uncharged
form entering and the charged form leaving (or vice versa). This type I
pathway thus describes the balancing of all network functions at the same
time. This type of an extreme pathway will be typical of what is found in
real networks and is of greatest interest.
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Figure 9.11: Extreme pathway structure of simple reactions. Courtesy of Jason Papin.

Skeleton metabolic pathways
The extreme pathway structure of simple reactions is not complicated. As
the number of reactions that occur simultaneously goes up, the extreme
pathway structure becomes more complex. A skeleton pathway is shown in
Figure 9.12, and it represents the basic structure of substrate-level phos-
phorylation in glycolysis. The substrate enters and is “charged” with a
phosphate group by a carrier molecule, i.e., ATP. Then, after a chemical
transformation, two charged carrier molecules are produced. Note that for
this network to be strictly elementally balanced, x1 must contain the sec-
ond phosphate group that the carrier molecule takes away. The charging
reaction is not reversible but can proceed in the opposite reaction by the
splitting of the phosphate group. Either x4 or x5 can leave the system, as
with pyruvate and lactate in glycolysis.

This simple skeleton representation of glycolysis has five extreme path-
ways. There are two type I pathways that result in the secretion of x4 and
x5 respectively, and the net production of one charged cofactor molecule.
There is one type II pathway that represents the dissipation of the high-
energy phosphate bond, a futile cycle. This pathway can operate in only
one direction. Then there are two type III pathways that will have no net
flux.
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Figure 9.12: Extreme pathway structure of a skeleton phosphate metabolism in glycolysis.
Courtesy of Jason Papin.

Large-scale networks
We defer the analysis of large-scale networks to Chapter 13. Although
the discussion in this section is mostly focused on metabolic networks,
it should be clear to the reader that this analysis applies to any network
whose reactions have been defined and stoichiometrically described. For
instance, the JAK-STAT signaling network in B lymphocytes has been sto-
ichiometrically represented and its extreme pathways analyzed [160].

Computing extreme pathways
Algorithms have been developed to compute the extreme pathways [190].
The details of such algorithms are not important here, but open source code
has been provided to compute them [13]. The computation of extreme path-
ways for small systems is relatively easy. However, as the size of a network
grows, the number of extreme pathways grows much faster. The combi-
natorial nature of their computation leads to an N-P hard problem. Thus,
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Table 9.2: The history of the use of convex analysis of steady-state flux vectors. From [159].

1980 Stoichiometric network analysis developed to study instability in inorganic chemical

reaction networks. Relied on kinetic information and utilized concepts of

convex analysis [31].

1988 Artificial intelligence algorithm developed to search through reaction networks for the

identification/synthesis of biochemical pathways [204].

1990 Stoichiometric constraints used to synthesize pathways again using artificial

intelligence [135].

1992 Development of concept implementing null space vectors as component pathways [59].

1994 Convex analysis first applied to metabolic networks with the introduction of a

nonunique set of elementary modes [199].

1996 Pathway analysis used to optimize bacterial strain design for highly efficient production

of aromatic amino acid precursors [121].

1999 (1996–1999) Software for elementary mode analysis. Development of algorithm to use

elementary modes to calculate enzyme subsets [166].

Elementary modes used for comparative genome analysis [42].

2000 Extreme pathways, the unique and irreducible set of elementary modes, are developed

and applied to the study of large-scale metabolic networks [190].

2002 Extreme pathways are calculated for genome-scale metabolic networks [162, 174].

Elementary modes are determined for a recombinant strain of yeast [28].

Gene expression is correlated to enzyme subsets in yeast calculated from elementary

modes [200].

Elementary modes of a recombinant strain of M. estorquens AM1 are analyzed [226].

Regulatory logic is incorporated into extreme pathway analysis [35].

Human red blood cell metabolism is analyzed with extreme pathways [246].

it has been possible only to compute extreme pathways at the genome-
scale for small matrices and under a limited set of conditions [162, 178].
The development of robust algorithms for their computation is needed
and so are analysis methods to interpret the results. In general, a full
set of extreme pathways may not be of importance, but a subset of them
will be. Fortunately, linear programing can be used to find particular ex-
treme pathways of interest, which typically is a very fast computation (see
Chapter 15).

History of convex pathway vectors
The use of convex analysis of flux solution spaces has a history that spans
more than 20 years. The highlights of these developments are shown in
Table 9.2. The original extreme currents by B. Clarke in 1980 and the ele-
mentary modes by S. Schuster are based on a similar definition as extreme
pathways and are related quantities. These definitions differ in the way
the reactions are represented. For instance, the elementary modes com-
bine the two irreversible elementary reactions, representing a reversible



9.3 Extreme Pathways 151

A B

C

Figure 9.13: Simple example of a biochemical network with corresponding extreme pathways
(ExPa) and elementary modes (ElMo). (A) The network consists of three metabolites, three
internal reactions, and three exchange reactions. There are four elementary modes (B) and
three extreme pathways (C) in this network. The difference between the two sets of pathways
revolves around the use of the reversible exchange flux for the metabolite A. ElMo 4 is a
nonnegative linear combination of ExPa 1 and ExPa 2, since the reversible exchange flux for
metabolite A can be canceled out. From [161].

chemical conversion into one net reaction that can take on positive and
negative values. The choice of how the reactions are represented leads to
different forms of a polytope, since the axes of the space differ.

Contrasting elementary modes and extreme pathways
These two types of network-based pathway definitions have received
much attention. The extreme pathways and elementary modes for a simple
reaction system are illustrated in Figure 9.13. There may be fewer extreme
pathways than elementary modes. Thus, elementary modes are a superset
of the extreme pathways. The primary difference between the two defini-
tions is the representation of exchange fluxes. If the exchange fluxes are all
irreversible, the extreme pathways and elementary modes are equivalent.
If the exchange fluxes are reversible, there are more elementary modes
than extreme pathways. For instance, for the metabolic network of the hu-
man red blood cell, there are 55 extreme pathways but 6,180 elementary
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modes [158]. This larger number has it roots in the same feature as dis-
played in Figure 9.13. The extreme pathways are a convex basis set. Thus,
once added up, a reversible exchange flux can disappear (as in the repre-
sentation of elementary mode 4 in Figure 9.13).

9.4 Summary

➤ The stoichiometric matrix has a null space that corresponds to a linear
combination of the reaction vectors that add up to zero; so-called link-
neutral combinations.

➤ The orthonormal basis given by SVD does not yield a useful biochem-
ical interpretation of the null space of the stoichiometric matrix.

➤ Convex basis vectors for the null space can be formulated by consid-
ering elemental reactions only. Since they are irreversible (0 ≤ vi) and
finite in magnitude (vi ≤ vi,max), it only makes sense to add them in a
positive fashion leading to a convex representation of the null space.

➤ The convex representation has edges that represent a set of vectors
that span the convex space in a nonnegative fashion.

➤ These edges correspond to biochemical pathways and are extreme
functions that a network can have; therefore they are called extreme
pathways.

➤ The extreme pathways are classified based on the exchange reactions
that they contain. Type I involve the transfer of properties to currency
molecules (carriers or cofactors), type II have no external exchange
reaction and represent irreversible futile cycles, and type III have no
exchange reactions and by thermodynamic restrictions must have zero
flux.

➤ The number of extreme pathways grows faster than the number of
components in a network, giving rise to the need to study them in
large numbers.
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CHAPTER 10

The Left Null Space of S

The left null space of the stoichiometric matrix contains combi-
nations of the time derivatives that add up to zero. This summation adds
up to zero in both dynamic and steady states of the network; hence it
contains time-invariant quantities. This condition is also called node neu-
trality. As with the (right) null space, the choice of basis for the left null
space is important in describing its contents in biochemically and biologi-
cally meaningful terms. A convex representation of the left null space has
proven useful.

10.1 Definition

The left null space of S is defined by

LS = 0 (10.1)

The dimension of the left null space of the stoichiometric matrix is m − r.
Equation 10.1 represents a linear combination of nodes whose links sum
to zero, as can be seen pictorially from

(≡)(|||) = 0 (10.2)

where the vertical lines represent column vectors and the horizontal lines
represent row vectors. Thus the rows of L are a set of linearly indepen-
dent vectors, li, i ∈ [1, m − r], spanning the left null space, and they are
orthogonal to the reaction vectors (s j) comprising S

〈li · s j〉 = 0 (10.3)

The set of li’s may represent mass conservation of atomic elements (e.g.,
hydrogen, carbon, oxygen), molecular subunits (e.g., carboxyl group, hy-
droxyl group), or chemical moieties (e.g., pentose, purine), as discussed

154
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Chapter 6. The elemental vectors ei, for instance, represent conservation
relationships for the elements (see equation 6.19). Thus, the vectors that
span the left null space represent the conservation relationships that are
orthogonal to the reaction vectors (s j) that span the column space.

10.2 The Time Invariants

The conservation relationships
One can use equation 6.3 to show that equation 10.1 represents

li
dx
dt

= 0 (10.4)

which is a conservation relationship, or a summation of concentrations,
called a pool, that is time invariant. All the time derivatives can be written
simultaneously as

d
dt

(Lx) = 0 (10.5)

which represents all the conservation relationships and defines the pools.
While there can be dynamic motion taking place in the column space along
the reaction vectors, these motions do not change the total amount of mass
in the time-invariant pools (see Chapter 11 for examples). Note that since
the basis for the left null space is nonunique, there are many ways to
represent these metabolic pools. The time derivatives can be positive or
negative.

Pool sizes
Equation 10.5 can be integrated to give the mass conservation equations:

Lx = a (10.6)

where a is a vector that gives the sizes (the total concentration) of the pools.
Note that equation 10.6 defines an affine hyperplane, that is, a plane that
does not go through the origin. This hyperplane is the concentration space
in which the concentration vector x resides. Since the concentrations xi are
nonnegative quantities, like fluxes through elementary reactions, a convex
representation of the concentration space is useful. The convex basis for
the left null space can be computed in the same way as the (right) null
space by transposing S.

As discussed in Chapter 6, a compound map can be formed based on
the negative transpose of the stoichiometric matrix. In Chapter 9 we in-
troduced extreme pathways and graphed them as vectors on flux maps.
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Figure 10.1: Conserved pools and extreme pathway classifications shown on compound and
reaction maps, respectively. (A) Type A, B, and C metabolic pools correspond to the conser-
vation of biochemical elements, metabolic moieties common to the primary and secondary
metabolites, and cofactor conservation, respectively. (B) Type I, II, and III extreme pathways
correspond to through pathways, futile cycles coupled to cofactor utilization, and internal
loops that are thermodynamically infeasible [174], respectively. Prepared by Iman Famili.

In a similar fashion, the conservation quantities represent groups of ar-
rows on a compound map. These compound maps are useful to display
the metabolic pools.

Classifying the pools
Extreme pathway analysis led to the classification of three basic types of
convex basis vectors (see Chapter 9). These three categories correspond
to “through” flux pathways (type I), “futile cycles” coupled to cofactor
use (type II), and “internal” cycles (type III). In an analogous fashion, the
conservation quantities can be grouped into three basic types: types A,
B, and C (Figure 10.1). The classification is based on grouping the com-
pounds into primary and secondary categories (Figure 10.2). The primary
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x1 x2 .  .  . xm

Type A

Type B

Type C

primary met. secondary met.

Figure 10.2: Metabolic pool classification schema and structure of L. Partitioning the metabo-
lites into primary and secondary allows for the classification of metabolic pools. In the absence
of the secondary and primary metabolite participation in conservation pools, the vectors are
classified as types A and C, respectively. The remaining vectors are grouped as type B pools
with both metabolite types present. Note the similarity to Figure 9.10. Prepared by Iman Famili.

compounds contain the primary molecule structures that are undergoing
serial transformations (e.g., the carbon backbone of glucose in glycolysis).
The secondary compounds function as currency molecules (carriers and
cofactors) and generally remain internal to the cell (e.g., ATP). Based on
this classification, the three types of conservation pools correspond to:

� type A pools that are composed only of the primary compounds;
� type B pools that contain both primary and secondary compounds

internal to the system; and
� type C pools that comprise only of secondary compounds.

type B pools generally represent the conserved moieties (or currencies)
that are exchanged from one compound to another, such as a hydroxyl or
a phosphate group.

Reference states
We note that the conservation equations (equation 10.6) hold for all states
of the network, and thus

Lx = Lxref = a (10.7)

or

L(x − xref) = 0 (10.8)



158 The Left Null Space of S

The initial or steady-state conditions can be used to set the pool sizes, ai.
Note that x is not orthogonal to the left null space of S, whereas dx/dt and
(x − xref) are.

A reference state for x can be selected. Equation 10.8 is a parameteriza-
tion of the concentration space. If we select xref that is parallel to the row
vectors of L, we can span the affine concentration space using the reaction
vectors si, since they are an orthogonal set of vectors. Thus, we can state
two criteria for such a selection:

1. xref is orthogonal to si (since xref is in the left null space).
2. x − xref is orthogonal to li (follows from equation 10.8).

These criteria are illustrated in Figure 10.3. These two conditions are linear
and together lead to a unique solution for xref. Thus, we can convert the
affine representation of the concentration space (equation 10.6) into a non-
affine representation using x − xref and use the same basis for this space as
the left null space of S.

10.3 Single Reactions and Pool Formation

Simple reversible reaction
Consider the simple reaction of equation 6.11. The stoichiometric matrix
and the convex basis for the left null space are

S =
(

−1 1
1 −1

)
and L = l1 = (1, 1) (10.9)

If a1 = 1, then a parameterization of x is given by

x =
(

1
0

)
+ ξ

(
−1

1

)
ξ ∈ [0, 1] (10.10)

We can now determine xref. The first criteria is given by

(−1, 1) ·
(

x1,ref

x2,ref

)
= 0 (10.11)

and thus x1,ref = x2,ref. The second criteria is

(1, 1) ·
(

x1 − x1,ref

x2 − x2,ref

)
= 0 (10.12)
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Figure 10.3: The definition of xref. (A) The time derivatives for the reaction A P � P A. The
vectors l1 and s1 that span the left null and column space, respectively, are shown. B) The
concentration space for the same reaction when the total concentration A P + P A = a1 = 1.
The starting point of (1, 0) and the parametrization of the vector x is shown. (C) The subtraction
of the reference concentration state (A Pref, PAref) to form a homogeneous concentration space
that is spaced by s1 and is orthogonal to l1. Note that the concentration space is closed and
has end points that represent the extreme concentration states of this reaction.

The solution of these two equations is

(
x1,ref

x2,ref

)
=

(
1/2
1/2

)
(10.13)

since x1 + x2 = a1 = 1. Thus, we finally get the parameterization of the
concentration vector as

x − xref =
(

1/2
−1/2

)
+ ξ

(
−1

1

)
ξ ∈ [0, 1] (10.14)

and x − xref is now spanned by s1 = (−1, 1)T. Figure 10.3C shows how
this representation of the concentration space goes through the origin, is
spanned by s1, and has extreme states (the end points). Thus, the concen-
tration space is bounded.
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Left null space planes

A

AP

P

Figure 10.4: The one-dimensional concentration space
for the reaction A + P → A P , where the total concentra-
tions are A + A P = 1 and P + A P = 2. The vectors l1 and
l2 that span the left null space are shown.

Bilinear association
Next, consider the reaction in equation 6.13. The stoichiometric matrix
and the convex basis for the left null space are (if the concentrations in x
are ordered as A, P, AP )

S =

⎛
⎜⎝−1

−1
1

⎞
⎟⎠ , L =

(
1 0 1
0 1 1

)
(10.15)

If a = (1, 2)T, then the one-dimensional concentration space is given by
the parameterization (see Figure 10.4):

x =

⎛
⎜⎝1

2
0

⎞
⎟⎠ + ξ

⎛
⎜⎝−1

−1
1

⎞
⎟⎠ , ξ ∈ [0, 1] (10.16)

xref can be determined from L(x − xref) = 0 and 〈s1 · xref〉 = 0 to obtain xref =
(0, 1, 1)T. This reference state then leads to the parameterization of the
concentration space as

x − xref =

⎛
⎜⎝ 1

1
−1

⎞
⎟⎠ + ξ

⎛
⎜⎝−1

−1
1

⎞
⎟⎠ ξ ∈ [0, 1] (10.17)

As shown in Figure 10.5, this forms a line between (1, 1, −1) and (0, 0, 0)
in the space formed by the shifted concentration space. It is orthogonal to
L and is spanned by s1.

Carrier-coupled reaction
Finally consider the reaction in equation 6.15. The stoichiometric matrix
and the convex basis for the left null space is given by (the entries of x are
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1
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xref = (0,1,1)

x − xref

A − Aref

AP − APref

P − Pref

1Figure 10.5: The affine concentration space for the reaction A +
P → A P, where the total concentrations are A + A P = 1 and P +
A P = 2. The vectors l1 and l2 that span the left null space are
shown.

ordered by (C P, C, AP, A))

S =

⎛
⎜⎜⎜⎝

1
−1
−1

1

⎞
⎟⎟⎟⎠ , L =

⎛
⎜⎜⎜⎜⎜⎝

1 1 0 0
0 0 1 1
1 0 1 0
− − − −
0 1 0 1

⎞
⎟⎟⎟⎟⎟⎠ (10.18)

The left null space is three dimensional, but its convex basis has four row
vectors as shown.

� The first pool is a conservation of the primary substrate pool
C (= C + C P) and is a type A pool.

� The second pool is a conservation of the cofactor A (= A+ AP) and is
a type C pool.

� The third pool is a conservation of the phosphorylated compounds
(= C P + AP) and represents the total energy inventory, or occupancy,
in the system.

� The last pool is a vacancy pool (C + A) that represents the low-energy
state of the participating compounds.

The latter two pools relate to exchange of a property (energy in the form
of a high-energy phosphate bond in this case) and form a conjugate pair of
occupied and vacant carrier states.

If a = (1, 2, 2, 1)T, then the four convex vectors can be depicted on a two-
dimensional graph as shown in Figure 10.6. By considering L(x − xref) = 0
and < xref · s1 >= 0, we get xref = (3/2, −1/2, 1/2, 3/2), which leads to the
parameterization

x − xref =

⎛
⎜⎜⎜⎝

3/4
3/4
3/4
3/4

⎞
⎟⎟⎟⎠ + ξ

⎛
⎜⎜⎜⎝

1
−1
−1

1

⎞
⎟⎟⎟⎠ , ξ ∈ [0, 1] (10.19)
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Figure 10.6: Graphical depiction of the three-dimensional left null space for the carrier-coupled
reaction. The carrier-coupled reaction contains four convex conservation relationships as
shown in Figure 9.9. The relative distance between the carbon and carrier metabolites re-
mains constant and is determined by the magnitude of the conservation quantities, and
so C + C P = a1, C + A = a2, C P + A P = a3, and A + A P = a4. The points with the same
shading (black, grey, white) correspond to an identical state depicted in two distinct two-
dimensional spaces. For example, the concentration state in which C = 2, C P =1, A = 2, and
A P = 3 is depicted by the grey point and satisfies a1 = 3, a2 = 4, a3 = 4, and a4 = 5. The
states represented by the white and black points also satisfy theses pool sizes. The concen-
tration solution space is the solid line shown in the two spaces. The symbol ≈ indicates
that the origin is not common between the two two-dimensional spaces. Prepared by Iman
Famili.

The exchange of the carried P moiety between C and Acreates a conjugate
pair of convex basis vectors in L. They correspond to the total P bound to
AP and C P, or the P-occupancy in the system, and the vacant binding sites
for P, or C + A.

Redox carrier coupled reactions
The coupling of the NADH redox carrier to a reaction is given by the chem-
ical equation

v1

RH2 + NAD+ � R + NADH + H+

v2

(10.20)

where two protons on a moiety R are captured by the oxidized form of
NAD releasing R and a free proton. The stoichiometric matrix for this
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system is

S =

⎛
⎜⎜⎜⎜⎜⎝

−1 1
−1 1

1 −1
1 −1
1 −1

⎞
⎟⎟⎟⎟⎟⎠ (10.21)

The convex basis for the left null space of this stoichiometric matrix is

RH2 NAD+ R H+ NADH Type Pool interpretation
1 0 1 0 0 A Total R
1 0 0 0 1 B Redox occupancy 1
1 0 0 1 0 B Redox occupancy 2
0 1 1 0 0 B Redox vacancy
0 1 0 0 1 C Total redox carrier 1
0 1 0 1 0 C Total redox carrier 2

The reaction map and the compound map are shown in Figure 10.7.
The pools are readily interpreted as indicated. There are three conserva-
tion pools of primary and secondary metabolites (types A and C). The first
is associated with the substrate, and then two are associated with the redox
carriers. The origin of the latter two is similar to that in the bimolecular
association treated earlier. There are three exchange property conserva-
tion pools (type B). Two are total “occupancy” pools of redox equivalents,
which represent total concentration of a reduced form of compounds, and
one is a “vacancy” pool that represents the conjugate oxidized form of the
pair.

10.4 Multiple Reactions and Pool Formation

The pool formation in single elementary reactions begins to show the use-
fulness of convex basis vectors to generate chemically meaningful defi-
nitions of pools. We now look at more complicated cases that enable us
to begin to scale up the use of these definitions to larger networks. The
time invariants derived for the elementary reactions can be displayed on
a compound map (see the first three cases in Figure 10.8). These pools,
once plotted on the compound map, look very much like pathways on a
flux map, and the quantities being conserved are clearly displayed on such
maps. We now pursue this representation for coupled reactions.
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Figure 10.7: Schematic representation of the pool formation in redox coupled reaction equa-
tion 10.20. Prepared by Iman Famili.

Combining elementary reactions
As one combines elementary reactions, the pools become more interesting.
Case IV in Figure 10.8 shows a combination of two serial carrier coupled
reactions. Combining these two reactions leads to conservation quantities
that are similar to the single carrier coupled reaction. Total substrate (C +
C P + C P2) and carrier (A+ AP) pools appear, as well as P occupied (C P +
2C P2 + AP) and P vacant (2C + C P + A) pools.

Case V in Figure 10.8 shows a cofactor coupled reaction followed by
a condensation reaction where inorganic P is incorporated. Note that we
still get a conservation of substrate (primary metabolite) and carrier (sec-
ondary metabolite). However, in this case there are two distinct types of
P containing pools: one containing P that was always bound to a carrier
and a new conservation quantity that corresponds to the free and incor-
porated P.
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Figure 10.8: Pool maps for time-invariant quantities for simple and coupled chemical reac-
tions. From [56].

Multiple redox coupled reactions
Biochemical reaction networks comprise multiple interacting redox or
energy coupled reactions, as the following example chemical equations
indicate:

v1

RH2 + NAD+ � R + NADH + H+

v2

(10.22)

as with the redox carrier coupled reaction in the previous section, followed
by a chemical transformation of R

v3

R � R ′

v4

(10.23)
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followed by a reduction reaction reusing the redox carrier

v5

R ′ + NADH + H + � R ′H2 + NAD +

v6

(10.24)

The use of NAD in glycolysis follows this basic reaction structure. The
convex basis for the left null space is represented by

RH2 NAD+ R H+ NADH R ′ R ′ H2 Type Pool interpretation
1 0 1 0 0 1 1 A Total R
1 0 0 0 1 0 1 B Redox occupancy 1

0 0 1 0 0 1 B Redox occupancy 1
0 1 1 0 0 1 0 B Redox vacancy
0 1 0 0 1 0 0 C Total redox carrier 1
0 1 0 1 0 0 0 C Total redox carrier 2

The reaction map and the compound map are shown in Figure 10.9.
The pools are readily interpreted as in the redox carrier coupled reaction
in the previous section. There are three conservation pools of primary and
secondary metabolites (types A and C). The first is associated with the
substrate and then two are associated with the redox carriers as in the pre-
vious example. There are also three exchange property conservation pools
of type B. There are two that are total redox occupancy pools, and there
is one “vacancy” pool. The latter three represent two coupled conjugate
pairs of high and low redox states.

10.5 Pool Formation in Classical Pathways

The basic concepts outlined in the previous sections can be used to un-
derstand how pools form in realistic biological networks. Note that the
symbols used in the reaction schemas that follow are not meant to directly
indicate chemical elements.

Simplified glycolysis
A few additions to schema IV will give the skeletal structure of glycolysis
(Figure 10.8). The convex basis for the left null space of the corresponding
stoichiometric matrix has six conservation quantities: carbon l1, and co-
factor A, l6. There are four type B pools (Figure 10.8) that correspond to

l2, high-energy conservation pool (2C6 + 3C6 P + 4C6 P2 + 2C3 P1 +
2C3 P2 + C3 P + AP3);

l3, conservation of elemental P (C6 P + 2C6 P2 + C3 P1 + 2C3 P2 + C3 P +
AP3 + P);
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Figure 10.9: Schematic representation of the pool formation in multiple redox coupled reac-
tion. Prepared by Iman Famili.

l4, low-energy conservation pool (2C6 + C6 P + C3 P + 2C3 + AP2); and

l5, potential to incorporate the standalone moiety P (C3 P2 + C3 P + C3 +
P).

l2 and l4 form energy conjugates to each other representing the high- and
low-energy occupancy in the system. l5 corresponds to l3 in example V.
The incorporation and exchange of phosphate thus results in four different
convex basis vectors, each representing different aspects of the complex
role of phosphate in energy metabolism (e.g., high-energy phosphate and
standalone inorganic phosphate, as shown here). Note that the phosphate
in AP2 does not appear in the conservation of the elemental P, l3, since AP2

interacts as a whole moiety and is never reduced to other chemical moieties
in this reaction network. In addition, the pool maps readily illustrate the
reaction contributions to the conservation of biochemical moieties, such
as shown by the pool map of l5 that involves only v4, v5, and v6.

Simplified TCA cycle
The TCA cycle is a circular pathway that converts a two-carbon unit into
carbon dioxide and redox potential in terms of NADH. The convex basis
for the left null space of the stoichiometric matrix for the simplified TCA
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network has five conservation moieties (Figure 10.8VII). They represent
the conservation of

l1, exchanging carbon group (2H2C2 + 2H2C6 + HC5 + C);

l2, recycled four-carbon moiety which “carries” the two carbon group
that is oxidized (C4 + H2C6 + HC5);

l3, hydrogen group that contains the redox inventory in the system
(2H2C2 + 2H2C6 + HC5 + NH);

l4, redox vacancy (C + N); and

l5, total cofactor pool (N + NH).

Note that l3 can be partitioned into redox on carbon (i.e., 2H2C2 + 2H2C6 +
HC5) and on the cofactor (NH). This partitioning then leads to a redox
charge definition by taking the ratio of NH to (N + NH) forming a NADH
redox charge that is analogous to the energy charge.

10.6 Summary

➤ The left null space of S contains dynamic invariants.

➤ Integration of the time derivatives leads to a bounded affine space.
All the concentration states, dynamic and steady, lie in this space of
concentrations.

➤ Since all the concentrations are positive, a convex basis for this space
is biochemically meaningful. A nonnegative convex basis for the left
null space can be found.

➤ As with extreme pathways, three basic types of convex basis vectors
can be defined for the concentration space.

➤ A suitable reference state can be defined for the affine concentration
space to make it parallel to the left null space (and have the same
basis) and orthogonal to the column space.

➤ The metabolic pools can be displayed on the compound map, leading
to a representation that is similar to pathways on a flux map.

10.7 Further Reading

Clarke, B.L., “Stoichiometric network analysis,” Cell Biophysics, 12:237–
253 (1988).
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CHAPTER 11

The Row and Column Spaces of S

The column and row spaces of the stoichiometric matrix contain
the concentration time derivatives and the thermodynamic driving forces,
respectively. The basic content of these spaces is described in this chapter.
A full analysis of these spaces requires knowledge of kinetics. Since we
do not have comprehensive information about in vivo values of kinetic
constants, the treatment of these spaces at the genome scale is necessarily
limited.

11.1 The Column Space

The reaction vectors form the basis for the column space
The column space contains the derivatives of the concentrations of the
compounds contained in a network. It is spanned by the reaction vectors
(si) as

dx
dt

= s1v1 + s2v2 + · · · + snvn (11.1)

as weighted by the fluxes through each of the reactions at any given instant
in time. We note therefore that the different flux levels or the changes in
the flux levels determine the location of the vector of derivatives in the
column space.

Reactions with high flux levels and those changing much in time will
thus generate large motion along the corresponding reaction vector. The
reaction vectors can be organized by the expected size and responsiveness
of the reactions. Although network dynamics are outside the scope of this
book, we note that reactions that are fast and quickly come to some sort of
a quasi-steady-state effectively reduce the column space’s dimension on
slower time scales. Time scale separation results, and for every dimension

170
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that the column space is reduced in this fashion, an effective additional
dimension in the left null space is created.

The values of the individual fluxes are constrained, i.e., vi ≤ vi,max. Thus,
the weighting factors in the sum of the reaction vectors in equation 11.1
are constrained and therefore the values of the time derivatives are con-
strained. Hence, the column space is a closed space.

Simple examples
Let us consider the reaction

2H2O2 → O2 + 2H2O (11.2)

we know that the left null space will be spanned by the elemental matrix

H2O2 O2 H2O
O 2 2 1
H 2 0 2

We can use these vectors and the reaction vector sT
1 = (−2, 1, 2) to transform

the concentration vector:⎛
⎜⎝−2 1 2

2 2 1
2 0 2

⎞
⎟⎠ d

dt

⎛
⎜⎝H2O2

O2

H2O

⎞
⎟⎠ = d

dt

⎛
⎜⎝−2H2O2 + O2 + 2H2O

2H2O2 + 2O2 + H2O
2H2O2 + 2H2O

⎞
⎟⎠

= d
dt

⎛
⎜⎝ R

O
H

⎞
⎟⎠ =

⎛
⎜⎝9

0
0

⎞
⎟⎠ v1

where R is a group of concentrations changing over time.
The transforming matrix⎛

⎜⎝ s1

l1

l2

⎞
⎟⎠ =

⎛
⎜⎝−2 1 2

2 2 1
2 0 2

⎞
⎟⎠ (11.3)

represents the reaction vector and a convex basis for the left null space.
We note that since

〈s1 · l1〉 = 0 〈s1 · l2〉 = 0 〈l1 · l2〉 = 4 (11.4)

the reaction vector is orthogonal to the basis vectors of the left null space.
However, the two chosen basis vectors for the left null space are not
orthogonal.

The progress of this reaction can be graphically depicted, (Figure 11.1).
The time derivative of R is nonzero while the time derivatives of the oxygen
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Column space

Left null space

Concentration states

dR
dt

dH
dt

dO
dt

Figure 11.1: A graphical representation of the column and left null spaces, and the concen-
tration states for the reaction 2H2O2 → O2 + 2H2O. (A) shows the time derivatives and (B)
shows the concentration states, where an initial concentration vector of (1, 0, 0) was used for
the integration. Prepared by Iman Famili.

and hydrogen are zero. All the concentration states fall on a finite line
whose coordinate is ξ1 ∈ [0, 1].

Reconsider the reaction

v1

x1 + x2 � x3

v2

(11.5)

In Chapter 8 we showed that

d
dt

⎛
⎜⎝ x1

x2

x3

⎞
⎟⎠ =

⎛
⎜⎝−1

−1
1

⎞
⎟⎠ (v1 − v2) +

⎛
⎜⎝0

0
0

⎞
⎟⎠ (v1 + v2) (11.6)

A transformation matrix ⎛
⎜⎝−1 −1 1

1 0 1
0 1 1

⎞
⎟⎠ (11.7)

leads to

d
dt

⎛
⎜⎝−x1 − x2 + x3

x1 + x3

x2 + x3

⎞
⎟⎠ = d

dt

⎛
⎜⎝ R

l1

l2

⎞
⎟⎠ =

⎛
⎜⎝4

0
0

⎞
⎟⎠ (v1 − v2)

⎛
⎜⎝0

0
0

⎞
⎟⎠ (v1 + v2)

This fully decomposed system shows the participation of the flux vector
and the representation of the conservation quantities and the dynamic
motion of the reaction group R.

Next, consider two simultaneous reactions

ADP � ATP and 2ADP � ATP + AMP (11.8)
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dR

dR
dt

dt

Figure 11.2: A graphical representation of the column and left null spaces, and the concentra-
tion states for the reaction system ATP � ADP and ATP + AMP � 2ADP. (A) shows the time
derivatives and (B) shows the concentration states, where an initial concentration vector of
(1,1,1) was used for the integration. Prepared by Iman Famili.

that represent the use and production of ATP and the redistribution of the
phosphate group among ATP, ADP, and AMP. For the moment, we leave
out phosphate in the first reaction to make this a three compound system
that can be shown graphically. The left null space is spanned by (1, 1, 1),
which represents conservation of the adenosine moiety.

We can use the two reaction vectors, and the basis of the left null space
to transform the concentration vector:⎛

⎜⎝1 −1 0
1 −2 1
1 1 1

⎞
⎟⎠ d

dt

⎛
⎜⎝ ATP

ADP
AMP

⎞
⎟⎠ =

⎛
⎜⎝ ATP − ADP

ATP − 2ADP + AMP
ATP + ADP + AMP

⎞
⎟⎠ = d

dt

⎛
⎜⎝R1

R2

A

⎞
⎟⎠

The progress of this reaction system can be graphically depicted in three
dimensions (Figure 11.2). The time derivatives of R1 and R2 are nonzero,
while the time derivatives of the adenosine moiety are zero. The concen-
tration space is a finite plane whose coordinates can be represented by
ξ1 ∈ [0, 1] and ξ2 ∈ [0, 1]. Note that if one of the reactions is “fast” com-
pared to the other, the path taken in the concentration space is L-shaped,
as shown in Figure 11.2B.

11.2 The Row Space

A basis for the row space
The individual reaction fluxes form an orthogonal basis for the row space.
This basis is a good choice when considering the stoichiometric mapping
itself. Each reaction has a natural thermodynamic basis vector once the
kinetics are included. As discussed in Chapter 9, each flux has a maximum
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value, confining all flux vectors to a rectangle in the positive orthant of the
flux space. The null space lies within these confines and its orthogonal
complement is the row space.

Constraints on the flux values
The magnitude of the individual fluxes is constrained. These constraints
are derived from the limitation on the concentrations of the reactants and
upper limits on the numerical values of the kinetic constants. The turnover
rate of an enzyme complex (X)

v = k1x ≤ k1(x + e) = k1etotal (11.9)

where the total amount of enzyme (etotal) present is limited to x + e.
For a bilinear association reaction of a substrate to an enzyme, the

rate is

v = kbxie ≤ kbaietotal (11.10)

where ai is the size of the most limiting conservation pool of which xi is
a member. Limiting the turnover rates would be a more effective way to
control fluxes through enzymatic pathways since only one variable needs
to be regulated: the total amount of enzyme. The release step of the product
from the enzyme often turns out to be the rate limiting step in enzyme
catalysis [114].

Thermodynamic driving forces
If the fluxes are imbalanced, there will be a net generation or elimination
of compounds in the network. If we denote a row in S by ri, then the
corresponding dynamic mass balance is

dxi

dt
= 〈ri · v〉 (11.11)

thus, the time derivative is the inner product of that row vector and the
flux vector:

〈ri · v〉 =‖ri ‖‖v‖ cos(θi) (11.12)

where θi is the angle between the two vectors. If this inner product is zero,
then the flux vector is orthogonal to the row vector. If not, this inner product
sets the magnitude of the time derivative. Geometrically, the magnitude of
this inner product may be viewed as a projection of the flux vector on
the row vector. Since the magnitude of the row vector is fixed and the
individual fluxes are bounded, this inner product is also bounded.
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11.3 Summary

➤ The column space is naturally spanned by the reaction vectors.

➤ The row space can be represented by an orthogonal basis formed by
the individual fluxes with values only in the positive orthant.

➤ The magnitude of the individual fluxes is limited by kinetics and caps
on concentration values.

➤ This limitation also limits the possible values of the time derivatives
and thus the column space.

➤ The column and row spaces are closed.

11.4 Further Reading

Wei, J., and Prater, C.D., “The structure and analysis of complex reaction
systems,” Advances in Catalysis, 13:203–392 (1960).





PART THREE

Capabilities of
Reconstructed Networks

The functional states of reconstructed networks are directly re-
lated to cellular phenotypes. With reconstructed networks represented in
the form of S, we can use mathematics to compute their candidate func-
tional states of reconstructed networks. If one adopts the informatics point
of view of S and its annotated information as biochemically, genetically,
and genomically (BIGG) structured database, then these in silico methods
are viewed as query tools. Whether viewed from an informatic or math-
ematical standpoint, the result of applying in silico analysis methods is
the study of network properties, sometimes called emergent properties.
These properties represent functionalities of the whole network and are
hard to decipher from a list of its individual components. In some sense,
these properties are a reflection of the hierarchical nature of living systems.
A variety of methods have been developed to examine the properties of
genome-scale networks. The third part of this text summarizes the in silico
methods that have been developed and deployed to date. The development
and application of such methods is the focus of a growing number of re-
searchers worldwide, and we can thus anticipate that there will be much
progress in this field over the coming years.





CHAPTER 12

Dual Causality

The stoichiometric matrix and its associated information funda-
mentally represents a biochemically, genetically, and genomically struc-
tured database. It can be used to analyze network properties, and to re-
late the components of a network and its genetic bases to network or
phenotypic functions. In developing biologically meaningful in silico
analysis procedures, fundamental characteristics of biology need to be ex-
plicitly recognized. Unlike the physicochemical sciences, biology is sub-
ject to dual causality or dual causation [136]. Biology is governed not
only by the natural laws but also by genetic programs. Thus, while biolog-
ical functions obey the natural laws, their functions are not predictable
by the natural laws alone. Biological systems function and evolve un-
der the confines of the natural laws according to basic biological prin-
ciples, such as the generation of diversity and natural selection. The
natural laws can be described based on physicochemical principles and
used to define the constraints under which organisms must operate. How
organisms operate within these constraints is a function of their evo-
lutionary history and survival. Survival and its relationship to cellular
functions can perhaps be readily understood for simple, single cellular
organisms.

12.1 Causation in Physics and Biology

Physics
Classically, “cause and effect” is established by formulating mathematical
descriptions of conceptual models of fundamental physical phenomena.
One example is that of molecular diffusion; see Figure 12.1. The fundamen-
tal process underlying diffusion is the random walk process that a collec-
tion of molecules undergoes. The statistical properties of the random walk
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Figure 12.1: Random walk and diffusion. (A) The simulated trajectory of a single molecule.
(B) The probability distribution for the molecule’s location as a function of time when it was
located at l = 0 at t = 0. The width of the distribution, l , increases with the square root of
time. Modified from [156].

process can be quantitatively assessed, and its macroscopic consequences
are described with Fick’s law. Fick’s law is described by a simple equa-
tion that is used as the basis to describe mass transfer processes. The
established causality is the basis for computations that reliably predict
the consequences of mass transfer processes. Engineering design can be
based on such predictions. The Boltzmann and Nernst equations provide
other specific cases of causality in physics, and there are many more ex-
amples. Thus, in physics and engineering “there is nothing more practical
than a good theory.” Cause and effect for physical phenomena are thus
often well established and can be described mathematically. Mathematical
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Figure 12.2: Mapping between genotype and phenotype in sexually reproducing organisms.
This figure illustrated the iterative scrambling of genes and the selection of the resulting
phenotype. Modified from [210].

descriptions are often in the form of equations and inequalities. Discussion
of the character of physical law is available [58].

Biology
Causation in biology is much different than in physics. Biological cau-
sation fundamentally originates from replication or reproduction that
produces nonidentical offsprings. In particular, sexual reproduction is
a very efficient process to constantly recombine chromosomes to pro-
duce nonidentical individuals; see Figure 12.2. This process leads to di-
versity, a biopopulation of nonidentical individuals. Natural selection
then determines survival, which, over time, leads to evolution of the
species.

Thus, living systems are time variant, meaning they evolve and change
over time. In contrast, physical phenomena are time-invariant; e.g., oxygen
diffuses the same way in water under given circumstances, and the unit
charge on the electron does not change. The omnipresent selection process
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Figure 12.3: The hierarchical nature of living systems and multilevel causation. Systems biol-
ogy tries to provide structure to the hierarchical relationship between molecular and physio-
logical events. Prepared by Timothy Allen.

in biology gives the appearance of “sense of purpose” that is fundamentally
survival. The outcome of the selection process is in part stochastic and is
influenced by environmental variables. Such attributes are not given to
fundamental physical phenomena.

Hierarchy
Thus, we conceptualize causation in physics and biology differently. How-
ever, both are relevant to systems biology and they represent opposite ends
of a hierarchical process (Figure 12.3). As discussed by F. Jacob [102] con-
straints are upwardly applicable in the hierarchy. In other words, processes
like diffusion, that constrain intracellular processes [242], thus constrain
all, but do not specify, higher level functions. Similarly, Figure 2.7 shows
that early events in evolution tend to constrain subsequent evolution-
ary events. Hierarchical organization, a fundamental biological principle,
makes it difficult to interpret, let alone predict, the outcome of selection
processes at higher levels of biological complexity (recall Section 2.4).
However, a constraint-based analysis provides a framework within which
these basic considerations can be accommodated.
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12.2 Model Building in Biology

Because of dual causality, mathematical model building in biology at the
network and genome scale will need to differ from that practiced in the
physicochemical sciences. In these fields, one starts with basic physic-
ochemical principles, such as thermodynamics, chemical potential, the
diffusion equation, mass conservation, or the Nernst and Boltzmann equa-
tions. These equations are based on well-developed fundamental physical
theories, and they typically contain a large number of parameters, most
of which can be individually measured under defined conditions. These
equations then form the basis for computer models and simulation.

Limitations of theory-based modeling approaches
In spite of the impressive bioinformatic databases that are currently avail-
able, we cannot obtain all of the information needed to build a detailed
computer model of a whole cell based on physicochemical principles.
Traditional theory-based models of large-scale cellular processes are faced
with fundamental challenges:

First, the intracellular chemical environment is complex (e.g., see [76,
77]) and hard to define in terms needed for the formulation of equations
that describe the physics of the intracellular milieu.

Second, assuming that we had all the governing equations defined, we
would have to find numerical values for all the parameters that appear in
these equations. These values would have to be accurate for intracellular
conditions.

Third, even if we could overcome the first two challenges, we would face
the fact that evolution changes the numerical values of kinetic constants
over time. In addition, in a biopopulation, we could have a perfect in
silico model for one individual organism, but it would not apply to
other individuals in the biopopulation due to genetic and epigenetic
differences between individuals. Such time dependency and diversity
of parameter values are key distinguishing features between biological
and physicochemical systems.

Constraining behaviors
The third limitation results from the dual causality that needs to be ac-
counted for in realistic models of biological processes. An approach to
the in silico analysis of cellular functions can be formulated that is based
on the fact that cells are subject to governing constraints that limit their
possible behaviors. Imposing these constraints, it can be determined what
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Table 12.1: Physicochemical factors constraining the functions of biochemical
reaction networks. Adapted from [152].

Factor Type of constraint

Physicochemical constraints

Osmotic pressure, electroneutrality, Hard nonadjustable constraints

solvent capacity, molecular diffusion

Connectivity

Systemic stoichiometry Hard nonadjustable constraints

Causal relationships

Capacity

Maximum/minimum flux Nonadjustable maximum based

on maximum association rates

Adjustable by transcriptional

regulation

Rates

Mass action, enzyme kinetics, Highly adjustable by an

regulation evolutionary process

functional states can and cannot be achieved by a reconstructed network.
Imposing a series of successive constraints can limit allowable cellular
behavior, but will never predict it precisely.

The imposition of constraints leads to the formulation of solution spaces
rather than the computation of a single solution, the hallmark of theory-
based models. Cellular behaviors (i.e., functional states) within the defined
solution space can be attained. Each allowable behavior basically repre-
sents a different phenotype based on the component list, the biochemical
properties of the components, their interconnectivity, and the imposed
constraints. The constraint-based approach leads to in silico analysis pro-
cedures that are helpful in analyzing, interpreting, and occasionally pre-
dicting the genotype–phenotype relationship.

Cells are subject to a variety of constraints. There are both nonadjustable
(i.e., invariant or hard) and adjustable constraints (see Table 12.1). The
former can be used to bracket the range of possible behavior, and the lat-
ter can be used to further limit allowable behavior, but these constraints
can adjust through an evolutionary process or through changing environ-
mental conditions. In addition, the adjustable constraints may vary in a
biopopulation from one individual to another.

Successive imposition of constraints
Constraints can be applied to the analysis of reconstructed networks to
narrow attainable behaviors, and can be applied in a successive fashion,
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Figure 12.4: Narrowing down alternatives. The successive application of constraints to a re-
action network narrows down the attainable functional states. Redrawn from [152].

as illustrated in Figure 12.4. The first icon in Figure 12.4 shows a space
where the axes represent fluxes through reactions in a network. Not all the
points in this space are attainable due to the interrelatedness of the fluxes.
The flux balances limit (through an equation Sv = 0) the steady-state fluxes
to a subspace that is a hyperplane (step 1). If the reactions are defined so
that all the fluxes are positive, this plane is converted into a semifinite
space, called a cone (step 2). The edges of this cone become a set of unique,
systemically defined extreme pathways, as detailed in Chapter 9. All the
points inside the cone can be represented as nonnegative combinations
of these extreme pathways. Since there are capacity constraints on the
individual reactions in the extreme pathways, the length of each edge is
limited. This closes the cone (step 3) and forms a closed solution space
in which all allowable network states lie. The properties of this space
can then be studied using the methods described in the subsequent three
chapters. Further segmentation of this space can be achieved if additional
constraints, such as kinetic constants or thermodynamic quantities, are
available (step 4).
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Table 12.2: Generations of genome-scale models.

Model generation Type of data used

(and their use)

First: Genomic and legacy

(what states are possible)

Second: Transcriptomic and

(what states are chosen) genome location

Third: Time-dependent

(how chosen states are achieved) proteomic and metabolomic

Developing genome-scale models
The successive application of constraints lends itself to a step-wise devel-
opment of increasingly refined data-driven in silico models. These mod-
els broaden in scope with the establishment and imposition of additional
constraints. Constraint-based models can address the questions relating to
allowable functions of a given network, which of these functions the cell
actually chooses, and how such choices are made (Table 12.2).

The first generation of constraint-based models for microbial metabolism
have appeared [110, 175, 183]. The “omics” data type on which they
are based is genomic. Literature (legacy) data are used as well as the
formulation of hard physicochemical constraints, such as mass, energy
and redox balance, thermodynamic, and maximal reaction rates. These
constraints collectively define all the possible functionalities of a re-
constructed network, which are mathematically confined to a solution
space. The properties of this space can be studied by the methods de-
scribed in the following chapters.

The second generation of constraint-based models include the impo-
sition of transcriptional regulatory networks, leading to the shrinking
of the allowable states of metabolic networks. In response to environ-
mental queues and built-in regulation, the solution space is shrunk [35,
36] to contain network functions that the cell has chosen through an
evolutionary process; recall Figure 2.5. The choices that a cell makes
can then be identified and analyzed.

The third generation of constraint-based models are likely to account
for the abundance or concentration of the cellular components. Various
“omic” data types can now be obtained in a time-resolved fashion. Such
data will help clarify just how the cell implements the choices it has
made and how it evolves to find new choices. This approach is likely
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Table 12.3: The engineering design procedure contrasted with the constraint-based
modeling approach. Inspired by Edwin Lightfoot.

Engineering design Constraint-based modeling

Statement of goal Survival criteria (fitness)

Statement of constraints (time, money, Identification of constraints (physicochemical,

shape, materials, etc.) topological, environmental, regulatory)

Define design envelope Formulate solution space

Choose design variables to produce Evolve toward best fitness (by adjusting

best design regulation and kinetic parameters)

to lead to the definition of the rate constants of the network as a whole
rather than constants for the individual underlying biochemical events.

First generation constraint-based models of metabolism in several mi-
crobes have been developed [110, 175, 183]. These models have gener-
ated several valuable results. For instance, the initial models predicted
about 60% of knock-out growth phenotypes correctly in Helicobacter
pylori [192], 86% in Escherichia coli [51, 185], and about 85% in Sac-
charomyces cerevisiae [54, 66]. These were simple, qualitative, growth/no
growth predictions. Using the genome-scale in silico model of E. coli,
experimentally testable predictions were formulated describing the quan-
titative relationship between the primary carbon source uptake rate, oxy-
gen uptake rate, and cellular growth rate. Experimental data for E. coli
were consistent with optimal use of the network to maximize growth under
the conditions examined [51, 63]. The outcomes of adaptive evolutionary
processes have also been analyzed using first generation models, by placing
cells under growth rate selection over a long period of time [64, 99].

Through the reconstruction of transcriptional regulatory networks
(Chapter 4), we can now begin to impose condition-dependent restraints
on reconstructed metabolic networks [38, 33] and formulate the second
generation models. These transcriptional regulatory networks represent a
mechanism by which the cell makes choices in response to changes in
the internal or external states of the cell. Mathematically, they lead to a
shrinking of the solution space so that it contains only the solutions or
phenotypes that the cell chooses to utilize under a particular condition.

A limited analogy to the engineering design process
The constraint-based modeling procedure detailed above has some strik-
ing similarities with the engineering design process; see Table 12.3. An
engineering design begins with the statement of a goal, i.e., achieve the
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separation of all the protein in E. coli, or build a bridge across the Golden
Gate. Then one states the constraints under which the design is being pro-
duced. Time and money are always major constraints, but so are shape
requirements and the availability of materials. After the constraints are
specified, the design, or free variables and their allowable numerical val-
ues are identified, resulting in the definition of the design envelope. The
design variables are then varied to produce the best design based on some
stated objective, such as cost and functionality.

The constraint-based modeling procedure consists of the same funda-
mental steps. The analogy between the two is, of course, limited. There are
at least two major differences. Biology, by necessity, employs a one-step
look-ahead procedure, that is probabilistically based through the genera-
tion of alternatives. Then selection follows. The engineer, by contrast, can
employ a multistep look-ahead strategy. The goal for engineering design is
typically well defined as opposed to the survival objectives of cells, and
different survival strategies may succeed. Furthermore, organisms must
deal with a time-varying environment. Nevertheless, this analogy points
to the adjustable constraints, such as changing kinetic and regulatory pa-
rameters, as the major biological design variables. It should be noted that
engineering designs evolve over time as well.

Redundancy, multifunctionality, and noncausality
Biological networks have several fundamental properties that need to be
considered when interpreting large-scale data sets and building models to
describe their functions.

Redundancy: Biochemical reaction systems have redundancy built into
them at many levels. Often, individual steps in a network can be carried
out in more than one way. Isozymes represent different enzymes that
carry out the same reaction. Similarly, some codons can be translated by
more than one tRNA. There are also network-level redundancies. The
overall function of a network to support a phenotype can be achieved
in more than one way. Thus, there are multiple equivalent outcomes
from the same biological selection process. The mathematical aspect
of this feature, alternate optimal solutions, is detailed in Chapter 16.
Biologically, these can be called silent phenotypes.

Multifunctionality: There are components in biochemical networks that
can carry out more than one function. Examples of this feature in-
clude enzymes that can catalyze many related chemical reactions. Sim-
ilarly, some tRNA molecules can translate more than one codon. At the
network level, there could be global network states that would give
similar phenotypes even if the environments are different. This feature
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would be called a generalist phenotype. The notion of a high-flux back-
bone in metabolism [2] comprises a set of reactions that lead to optimal
growth on different substrates. A high-flux backbone is an example of a
large correlated set of reactions that function together in optimal solu-
tions [159].

Noncausality: Due to the hierarchical organization of organisms, changes
on one level may not percolate up to functions at a higher level of orga-
nization, and would thus be noncausal. A well-known example of non-
causality is hitchhiker mutations that co-select with a causal mutation
located nearby on the genome. It is not known if the same is true for indi-
vidual variables changing in high-throughput data sets, such as expres-
sion profiling. In the field of signal transducton, many are interested in
knowing “who-talks-to-whom,” meaning that one wants to know all pos-
sible chemical interactions between two components. Protein–protein
interaction maps provide one example. However, the biologically–
meaningful question is “who-listens-to-whom,” since we are only in-
terested in knowing if chemical interactions are a part of a higher order
biological function. Thus, there can be many noncausal (biologically),
but detectable, chemical interactions among macromolecules.

These three attributes are important considerations in studying the hier-
archical nature of biological systems. Multiscale, multiparameter analysis
methods will be needed to study this hierarchical organization. They will
need to be able to deal with nonregular patterns, which will be a deviation
from classical methods such as Fourier analysis that looks for repeated reg-
ular patterns. All of these features have appeared through the evolutionary
process, which abides by a series of constraints.

12.3 Models Can Drive Discovery

A number of genome-scale networks have been reconstructed based on
available data; see Table 3.6. At present, there is no organism for which a
complete data set exists. Therefore, the in silico analyses of these recon-
structions will lead to failed predictions and enable data-driven model
updates. In this way, the reconstruction as a chemically and genetically
defined database offers a framework to identify gaps in our knowledge
about an organism.

Failure modes
From a discovery standpoint, the primary results from genome-scale analy-
sis using constraint-based analysis methods are the failure modes. Detailed
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analysis of failure modes leads to iterative model building, Figure 12.5. For
instance, the study of failure modes from the analysis of knock-out strain
phenotypes can be seen in [51, 67], updated sequence annotations based
on gap analysis in [185], and phenotype prediction failures in [47, 33].
Such analysis leads to well-defined questions that are addressed during
the next iteration of the model building process. The analysis of failure
modes and the design of experiments to resolve them have not yet been
algorithmatized.

The iterative model building process
The process of building mathematical models and running computer
simulations of complex biological processes is iterative. Reconstructed
“in silico organisms” are computer representations of their in vivo coun-
terparts. They are based on the curation of available data to form what
is basically a biochemically and genetically structured database. These
in silico models will have some analytical, interpretive, and predictive
capabilities. However, due to incomplete knowledge of constraints and
incomplete or erroneous annotation, genome-scale in silico models will
only be able to represent some functions of the organism correctly.

One must therefore learn to appreciate the value of failure in prediction.
The main difference between the in silico and in vivo organism is that
the in silico version is incomplete and missing some features. Therefore,
we must set out to formulate experimentally testable hypotheses based
on the in silico analysis, perform the experiments, and update the mod-
els (Figure 12.5). Interestingly, this iterative process in building in silico
organisms is likely to have two loops. One is the classical experimental
loop (on the right in Figure 12.5), and the other is in silico (on the left in
Figure 12.5). Many corrections and adjustments to these models are likely
to originate from analyzing and searching the ever-growing bioinformatic
databases.

In silico models as hypotheses
The scientific process has traditionally been based on the statement of hy-
potheses. Hypotheses represent the result of an investigator’s evaluation
of the available data and past knowledge in the field. Well-defined exper-
iments are then constructed in an attempt to invalidate the hypothesis.

In the era of high-throughput biology, it is now possible to generate
volumes of data, much more than needed to address narrow hypothe-
ses. This capability has led to the so-called discovery-based approach in
biological and medical research. In this approach, the investigator obtains
large amounts of data about a process or phenomenon, without an a priori
statement of hypothesis. The data are subsequently analyzed, to look for
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Figure 12.5: The iterative in silico model-building procedure as a dual loop. Modified
from [152].

any interesting correlations, information, or content from which scientific
“knowledge” can be derived.

As a result of high-throughput biology, a clash has emerged in the ap-
proach to the way biological research is conducted. Rigorous thinking
in science would dictate that discovery-driven research is somehow a
“second-class citizen” in the scientific endeavor. However, it has become
clear that high-throughput biology can indeed be hypothesis driven. The
hypotheses in the era of systems biology may not be the simple, crisp state-
ments as have been seen in the past, but instead may be represented by
complex in silico models.

It is difficult for an investigator to comprehend the vast high-throughput
data sets that are being generated. The enormity of these data sets, often
including hundreds of thousands or potentially millions of data points, is
such that the human mind cannot keep track of all the variables involved.
An in silico model, or a mathematical representation of the data, would
serve as its most compact description. Like scientific hypotheses, these
in silico models will include underlying mechanisms rather than being
correlative statistical models. Such models represent highly structured
hypotheses and the most compact representation of the data at hand.

In silico models, therefore, like classical hypotheses, are meant to be dis-
proved. An interesting difference between a classical hypothesis in science
and an in silico model as a hypothesis in systems biology is that only parts
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of the model are disproved, but not necessarily the model in its entirety.
Thus, through a systematic procedure, pieces of a model are invalidated,
and as the model is built and its capability of representing data improves,
the more accurate representation of an organism it becomes.

Unlike physics and chemistry, it is often difficult to state crisp hypothe-
ses about complex biological processes. This difficulty arises from the enor-
mous complexity of any biological process and the difficulty breaking it
down into small pieces. If the pieces are small enough, the hypotheses look
no different than those in chemistry. For instance, hypothesizing whether
a binding factor regulates two or more genes would simply come down to
ascertaining a chemical binding affinity to a region of the genome. Con-
versely, in silico models as hypotheses allow us to address systems or
integrated properties of a network and apply it at different levels in the
hierarchy of biological systems (recall Figure 2.6).

Experimental designs to probe network functions
Experimental examination of network functions is often approached
through perturbation experiments. Such experiments examine the func-
tion of a network by perturbing it in a defined fashion and then comparing
the functions of the perturbed and unperturbed networks.

There are several types of perturbation experiments. We divide them
here into two major categories:

Single variable perturbation: A single variable can be changed to exam-
ine the effects of individual components of a network. The two most
frequently used variables are genetic and environmental perturbations.
Genetic perturbations can be achieved by removing a gene from a genome
to produce a knock-out strain, or by using methods to “silence” the gene
product, such as through the use of small inhibitory RNA molecules. On
a smaller scale, a base pair in the DNA sequence of a gene can be changed
through site-directed mutagenesis to examine the effects of a point mu-
tation in a controlled setting. Environmental variables are easy to control
in a laboratory setting. A single medium component, such as carbon or
nitrogen sources, can also be changed. Similarly, heat shock experiments
can be performed by suddenly changing the temperature. A combination
of gene and environmental perturbations (a double perturbation exper-
iment) have been effectively used to examine causal relationships [101]
and to iteratively build transcriptional regulatory networks [33].

Systemic perturbations: The network states resulting from the simul-
taneous charge in a number of variables can be compared. The state
of networks in normal cells versus cells involved in a diseased state
can be compared and used to guide discovery of drug targets that can
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then be used for the development of therapeutic compounds [95]. Simi-
larly, familial background can be used to compare the responses of cells
from a patient and those from the next of kin to reduce genetic differ-
ences to a minimum in the discovery of drug targets and for drug devel-
opment [154]. Finally, adaptive evolution can be used to compare the
changes in the functional states of networks as they improve in fitness
through a rigorous selection process [61].

12.4 Constraints in Biology

The process of evolution is fundamental to the biological sciences. Organ-
isms exist in particular environments, and as they replicate, they produce
offsprings that are not genetically identical to the parent, thus generating a
biopopulation of individuals that are each slightly different from one an-
other. Over time, natural selection favors those individuals in the biopop-
ulation that have more fit functions than other members of the biopopu-
lation. To survive in a given environment, organisms must satisfy myriad
constraints, which limits the range of available phenotypes. The better
an organism can achieve a relatively fit function in a given environment
(which includes the other members of the biopopulation), the more likely
it is to survive.

All expressed phenotypes resulting from the selection process must sat-
isfy the governing constraints. Therefore, clear identification and state-
ment of constraints to define ranges of allowable phenotypic states pro-
vides a fundamental approach to understanding biological systems that is
consistent with our understanding of the way in which organisms operate
and evolve. Thus, in developing a mathematical framework within which
to analyze organism functions, it becomes important to identify govern-
ing constraints. As pointed out in Section 2.4, several authors have dis-
cussed general constraints in biology [34, 41, 73, 102, 136]. Different types
of constraints limit cellular functions. Here, we divide constraints into
four categories [176]: fundamental physicochemical, spatial or topologi-
cal, condition-dependent environmental, and regulatory, or self-imposed,
constraints. We must be mindful of the fact that constraints alone cannot
predict many basic biological features such as the genetic code [39].

Physicochemical constraints
Many physicochemical constraints govern cellular processes. These con-
straints are inviolable and thus represent hard constraints. Conservation
of mass, energy, and momentum represent hard constraints. The interior
of a cell is densely packed, forming an environment where the viscosity
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may be on the order of 100–1000 times that of water. Diffusion rates inside
a cell may be slow, especially for macromolecules. The confinement of a
large number of molecules within a semipermeable membrane causes high
osmolarity. Thus, cells require mechanisms for dealing with the osmotic
pressure generated, such as sodium–potassium pumps to balance osmo-
larity or a rigid cell wall to physically withstand it. Intracellular reaction
rates are determined by local concentrations inside cells. Reactions have
maximal reaction rates (denoted with vmax) estimated to be about a mil-
lion molecules per µm3 per sec. Furthermore, biochemical reactions need
to have a negative free energy change in order to proceed in the forward
direction. These are some of the many basic physicochemical constraints
that cells must satisfy.

Topobiological constraints
The crowding of molecules inside cells leads to topobiological, or three-
dimensional, constraints; recall Figure 2.3. The linear dimension of the
bacterial genome is on the order of 1000 times that of the length of the
cell. DNA must therefore be tightly packed in the nuclear region in an ac-
cessible and functional configuration since DNA is only functional if it is
accessible. Thus, at least two competing needs (to be tightly packed, yet
accessible) constrain the physical arrangement of the bacterial genome.
And there are likely to be additional constraints. As one further example,
we note that the ratio between the total number of tRNA molecules and
the number of ribosomes in a typical E. coli cell is approximately 10 [143].
With 43 different types of tRNA, there is less than one full set of tRNAs
per ribosome. The genome, therefore, may have to be configured such that
the location of rare codons is spatially close and translated by the same
ribosome. Identification of these constraints and analysis of their conse-
quences will be important for the understanding of the three-dimensional
organization of cells.

Environmental constraints
Environmental constraints on cells, such as nutrient availability, pH, tem-
perature, osmolarity, etc., are typically time and condition dependent. For
example, H. pylori, a human gastric pathogen, lives in a relatively con-
stant environment but is constrained by its low pH. It produces ammonia
to sufficiently neutralize the pH in its immediate surroundings in order to
stay alive. Conversely, the life cycle of E. coli is characterized by a series
of sudden environmental changes. Outside of an animal it lives at ambient
temperature and in the presence of ample oxygen. Then it experiences a
heat shock when it enters the mouth of an animal, followed by an acid
shock when it reaches the stomach. Following entry into the small in-
testine another pH shock is experienced, followed by a nutritionally rich
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anaerobic environment where it can grow rapidly in the presence of other
bacterial species. Then finally it experiences a cold shock and ample oxy-
gen with diminishing nutrients surrounding it. E. coli needs to be able to
adjust its internal functional state to survive this series of environmental
changes.

Knowing the environmental constraints is of fundamental importance
for the quantitative analysis of microorganism functions; however, natural
environments may be hard to precisely define. Conversely, in the labora-
tory, defined growth media can be used so that the environmental variables
are precisely known. Laboratory experiments with undefined media com-
position are often of limited use for quantitative in silico modeling.

Regulatory constraints
These constraints are fundamentally different than the three types dis-
cussed above. They are self-imposed and are subject to evolutionary
change, and can thus be time variant. For this reason, these constraints may
be referred to as regulatory restraints, in contrast to the physicochemical
constraints, the topological constraints, and time-dependent environmen-
tal constraints. Based on environmental conditions, regulatory constraints
provide a mechanism to eliminate suboptimal phenotypic states (recall
Figure 2.5) and confine cellular functions to behaviors of high fitness. Reg-
ulatory constraints are produced in a variety of ways, including the amount
of gene products present and their activity; recall Figure 3.9.

Mathematical representation of constraints: balances and bounds
Following their definition, governing constraints need to be described
mathematically. Then they can be used to perform in silico analyses. Math-
ematically, constraints are represented as either balances or bounds.

� A balance constraint is represented by an equality such as the con-
servation of mass. In a steady state, there is no accumulation or de-
pletion of compounds; thus, the rate of production equals the rate of
consumption for each compound in the network. This balance is rep-
resented mathematically as Sv = 0, as detailed in Chapter 6. Similar
balance equations can be formulated for other quantities, such as
osmotic pressure, electroneutrality, and free energy around biochem-
ical loops.

� A bound is represented by an inequality. Bounds are constraints that
limit the numerical ranges of individual variables and parameters such
as concentrations, fluxes, or kinetic constants. Upper and lower limits
can be applied to individual fluxes (vmin ≤ v ≤ vmax). For elementary
(and irreversible) reactions vmin = 0, and vmax is less than approxi-
mately one million molecules per µm3 per sec. Concentrations must
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Figure 12.6: Narrowing down alternatives, a simple example. Taken from [34].

always be nonnegative; so 0 ≤ xi. Upper bounds for concentrations
can arise from solvent capacity constraints, represented as xi ≤ xmax.
Kinetic constants are constrained to be positive and have an upper
bound based on collision frequency (0 ≤ k ≤ kmax). Transmembrane
potentials are limited to about 240–270 mV, above which lipid bi-
layers destabilize.

Illustrative example
The details of the successive imposition of constraints can be illustrated
with a simple example. A small network with only two chemical reactions
(flux v1 : A → B and flux v2 : A → C) as well as two transport processes
(metabolite A enters the cell with flux vin and B and C exit together via
flux vout through a symporter) is depicted in Figure 12.6. The candidate
functional states of this toy network can be defined through the imposition
of successive constraints:

1. Initially following the reconstruction, there is nothing that constrains
the flux values.

2. If the exchange fluxes are irreversible, then vin and vout become non-
negative variables (i.e., they cannot take on negative values that
would restrict the numerical values that they can take).

3. If the capacities of the internal enzymes are known (i.e., 3 for v1 and
2 for v2 in Figure 12.6), the numerical range for their flux values
becomes finite.

4. If the network is in a steady state, a flux balance is imposed further
restricting the allowable ranges of the flux values. Note that the ex-
change fluxes are now confined to a closed range, and that this range
corresponds to the closed null space (see Chapter 9) for this toy net-
work.
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5. If the system is completely characterized, and all numerical values
for the physical parameters are known, then the allowable numer-
ical ranges are reduced to a single point, and we have a unique
solution.

12.5 Constraint-Based Analysis Methods

A variety of in silico procedures have been developed to study the prop-
erties of genome-scale networks [176]. These methods are detailed in the
remaining chapters of this book. They are organized and summarized in
Figure 12.7.

Reconstruction and imposition of constraints: At the heart of constraint-
based procedures is network reconstruction and the use of constraints
to define a solution space. These two core topics are covered in Part I
and this chapter, respectively.

Properties of solution spaces: Once the solution space is formed, its prop-
erties can be studied. Chapter 9 described the definition of a conical set
of basis vectors that can be used to generate the closed solution space.
This set of basis vectors can be used to study various network proper-
ties (Chapter 13). The defined solution spaces can also be uniformly and
randomly sampled to generate a set of representative solutions in the
space. The properties of this set of solutions can then be studied (Chap-
ter 14). These methods amount to an unbiased assessment of the defined
solution space and its overall properties.

Finding particular network states: One may want to find particular solu-
tions in the space that represent network states of interest. Thus, a biased
search for these states is carried out. Computationally, such a search is
carried out using constrained optimization. If the constraints used are
linear equalities and inequalities, then the solution space is a polytope. If
the solutions sought can be described by a linear objective function, then
the optimization process is carried out using linear programming (LP).
This procedure to find particular solutions is the popular flux-balance
analysis (FBA). It is described in Chapter 15.

Parametric sensitivity analysis: FBA was the first method developed in
a series of optimization-based approaches to study particular aspects
of the solution spaces associated with biochemical reaction networks.
Within this framework, a plethora of in silico analysis methods have
been developed. These include the study of parametric sensitivities, the
consequences of gene deletions, and changes in environmental condi-
tions. These methods are detailed in Chapter 16.
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12.6 Summary

➤ Dual causation in biology requires us to accommodate the physico-
chemical constraints under which cells operate, as well as fundamen-
tal biological properties, such as natural selection and generation of
alternatives.

➤ Organisms have to abide by a series of constraints, including those
arising from basic natural laws, spatial constraints, and the environ-
ment in which they operate. Many possible biological functions are
achievable under these constraints, and organisms willfully impose
constraints through various regulatory mechanisms to select useful
functional states from all allowable states.

➤ A constraint-based approach emerges from these considerations that
enables the simultaneous analysis of physicochemical factors and bi-
ological properties.

➤ Genome-scale reconstructions are mathematically represented and the
governing constraints are imposed. This procedure leads to an in silico
organism that contains all the known components of the real organism
that it represents, and allows the simulation of allowable states given
a set of governing constraints.

➤ The in silico model building process is iterative and will proceed in
multiple steps.

➤ In silico models function as a structured way of integrating data and
systematically building hypotheses.

➤ A wide range of constraint-based analysis methods have appeared
and are being used to analyze various aspects of genome-scale mod-
els and the biological properties of the organisms that these models
represent.
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CHAPTER 13

Properties of Solution Spaces

As outlined in the previous chapter, we cannot uniquely compute
the state of a biochemical reaction network. However, we can limit the
range of possible functional states that a biochemical network can attain.
With this range defined, there are two tasks that we can undertake. First,
we can seek to characterize all the allowable states by using a set of basis
vectors that can be used to span all the allowable solutions, and second,
we can sample the solution spaces uniformly and determine the statistical
properties of a large number of candidate solutions. These two approaches
amount to an unbiased assessment of the properties of all the allowable
states of a biological network.

13.1 Network Properties

Network functions arise from interactions of the components. Network
properties and functional states are often referred to as emergent properties
since they do not depend on the functions of any particular component, but
“emerge” from the interactions of the components functioning together.

The pathway matrix
Since the extreme pathways (Chapter 9) are convex basis vectors and can
represent all the functional states of a network, they can also be used to
define, derive, and compute network properties. The pathway matrix P is
formed using the extreme pathways (pi) as its columns:

P = (p1, p2, p3, . . . ) = (|||) (13.1)

Thus entries in row i of P indicate whether reaction i (vi) is used in an
extreme pathway. P can be written in a binary form (P̂), whose elements

201



202 Properties of Solution Spaces

are defined by

p̂ij = 1, if pij �= 0 and p̂ij = 0, if pij = 0 (13.2)

and they indicate whether a reaction is involved in the makeup of a path-
way. This binary form of P is analogous to the binary form of S discussed
in Chapter 7.

SVD of the pathway matrix
As for the stoichiometric matrix, SVD can be used to study some properties
of P̂ [177]. SVD is described in detail in Chapter 8. It decomposes the
extreme pathway matrix into three matrices,

P̂ = U�VT (13.3)

The columns of U can be called eigen-pathways and the rows of VT can
be called eigen-participations using an analogy to Figure 8.10. The eigen-
participations, or the columns of V, represent how the extreme pathways
can be linearly combined to form the scaled modes of U;

P̂V = �U (13.4)

Thus, the elements of V are the weightings on the pathways needed to
reconstruct each of the modes of U as scaled by their respective singular
values.

As with the stoichiometric matrix, SVD leads to conceptually useful
quantities that give us information about properties of P̂. For instance, the
singular value spectrum gives a measure of the effective dimensionality
of P̂, and the modes give us the principle directions of variance in the set
of extreme pathways [177, 178]. However, as we will see in the following
sections, the adjacency matrices of P̂ are more useful.

Systems properties of interest
The pathway matrix can be used to define, compute, and study several
useful properties of a network. We will discuss the following properties
below:

� Pathway length: Classically, we think of a pathway as a linear se-
quence of events and the length of the pathway is the number of
steps in this sequence. Extreme pathways can be much more compli-
cated, and “length” becomes the number of reactions that participate
in the pathway. This number is computed from an adjacency matrix
of P̂.

� Reaction participation: The number of pathways in which a reaction
participates is an important quantity. It indicates how many pathways
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are affected if a reaction is removed from the network. The knock-
out of a gene can lead to the removal of a reaction, or a reaction can
be down-regulated. Reaction participation is computed from an adja-
cency matrix of P̂. More importantly, one can calculate correlated sub-
sets of reactions that always appear together in the extreme pathways,
effectively forming a network module. Thus, reaction participation is
useful for the hierarchical analysis of networks.

� Input–output relationships: Type I extreme pathways contain primary
exchange reactions, recall Figure 9.10A. These exchange reactions can
be used to determine which output can be achieved from a given input.
Conversely, one can determine all the input combinations that lead to
a given output. Furthermore, one can determine which pathways have
an identical set of inputs and outputs. The number of pathways with
identical inputs and outputs give a measure of network, or pathway
redundancy, by counting the number of different internal states that
give the same external state. Finally, based on the input–output rela-
tionships, one can mathematically define crosstalk using the overlap
between the inputs and outputs in a set of pathways.

� Consequences of regulatory rules: The reconstruction of regulatory
networks can lead to a set of causal relationships that describe regula-
tory interactions. These logical statements can be such that an extreme
pathway can never be expressed due to conflicts with the regulatory
rules, or only expressed under certain environmental conditions. One
can therefore get an assessment of how regulation reduces the allow-
able functional states.

� Decomposition of a flux state into extreme pathways: Convex basis
vectors can be used to reconstruct any point in a convex space. As
discussed in Chapter 9, this reconstruction is not unique. Thus, we
may want to know all the ways in which a particular point in the space
can be decomposed into constituent pathways. The α-spectrum is a
method that helps to answer this question.

Example systems
Several different network properties are discussed in this chapter. To il-
lustrate them, we use sample networks:

� A simple, easy to understand network is shown in Figure 13.1. It
contains three extreme pathways. ExPa1 and ExPa2 are not simple
linear reaction chains, but instead contain two outputs: E and the by-
product. Extreme pathways can have any number of inputs or outputs.
ExPa3, like ExPa2, maintains cofactor pools at steady state. Each of the
extreme pathways results in the production of E.
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Figure 13.1: A simple network, its stoichiometric matrix, pathway matrix, and the flux map
for the extreme pathways. From [162].

� The core metabolism in Escherichia coli. This network is described
in Appendix B. Extreme pathways can be computed for growth on
a variety of substrates. A summary of the extreme pathways found
in this network is given in Table 13.1. The large number of extreme

Table 13.1: The number of extreme pathways found in the core E. coli model for
four principal inputs (the columns; glucose pyruvate, succinate, and fumarate) and
various outputs (the rows). Prepared by Ines Thiele.

Total number Glucose Pyruvate Succinate Fumarate

of ExPa 613 1749 904 2598

Acetate out − 464 232 591

2-oxoglutarate out − 251 132 305

CO2 out 613 1749 904 2598

Ethanol out 206 771 436 799

Formate out − 892 620 1216

Proton in − 649 820 2451

Water in − − 210 876

Water out 571 383 400 366

Lactate out − 611 20 379

Oxygen in 571 1598 904 2036

Pyruvate out − − 40 58

Succinate out − 508 − 1277
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Figure 13.2: Equivalent sets in the E. coli core metabolic network. (A) Two alternative and
equivalent ways to import a proton using two succinate transporters or two transhydro-
genases. (B) Two equivalent ways to use the malic enzymes and transhydrogenase to pro-
duce pyruvate, CO2, and NADH from malate and NAD. For each equivalent set there are
two extreme pathways that are identical, except for the fluxes through the equivalent set. n
equivalent sets representing two identical routes can lead to 2n combinations of basically n
different states. Network topology determines if they lead to n different states. Prepared by
Ines Thiele.

pathways is due to the occurrence of equivalent reaction sets that leads
to a combinatorial explosion; see Figure 13.2.

� The JAK-STAT signaling network in B cells has been recon-
structed [160]. It accounts for 15 receptors and the corresponding lig-
ands, and a total of 297 reactions (216 internal and 81 irreversible
exchange reactions). A portion of the reaction map of this network
is shown in Figure 13.3, and some of its finer details are illustrated
using two representative sets of reactions in Figure 13.4. This set of
reactions can be represented with a stoichiometric matrix and there
are 147 extreme pathways found in this network [160].

13.2 Pathway Length

A pathway length matrix (PLM) can be calculated directly from the binary
form of the extreme pathway matrix (P̂). PLM is computed by premultiplying
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Figure 13.3: A portion of the reaction map for the JAK-STAT signaling network of the human
B cell. Taken from [157].

P̂ by its own transpose,

PLM = P̂TP̂ (13.5)

resulting in a symmetric matrix. PLM is an adjacency matrix of P̂.

1. The diagonal values of PLM correspond to the number reactions in
an extreme pathway. In the example system (Figure 13.5), the first
value along the diagonal is 6, meaning that six reactions participate
in ExPa1. A quick count of the fluxes shown in ExPa1 (Figure 13.1)
shows that there are indeed six reactions participating in the first
extreme pathway.

2. The off-diagonal terms of PLM are the number of reactions that a pair of
extreme pathways have in common. For example, notice the circled
diagonal term in Figure 13.5, which is a comparison of ExPa3 (the
column) and ExPa1 (the row) and contains a value of 5. ExPa1 and
ExPa3 have five reactions in common. Upon examining ExPa1 and
ExPa3 in Figure 13.1, one can readily see that the five reactions shared
are b1, v1, v2, b2, and b3.

Thus, the diagonal and off-diagonal terms of PLM are the number of re-
actions in an extreme pathway and the number of reactions common to
the two pathways, respectively. The diagonal and off-diagonal elements in
the matrix relate to the number of reactions in participating pathways and
can be used to obtain a measure of pathway “length.”
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Figure 13.5: The pathway length matrix PLM for the simple network in Figure 13.1. The lengths
of ExPa1, ExPa2, and ExPa3 are 6, 6, and 7, respectively, and are the highlighted diagonal
elements of the final matrix. ExPa2 and ExPa3 have a shared length of 5, indicated by the
circle. From [162].
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E. coli core network
The pathway lengths for the extreme pathways in Table 13.1 can be com-
puted using equation 13.5 and by studying the diagonal elements of PLM.
The distributions of pathway lengths are shown in Figure 13.6 and are
bimodal. For example, for pyruvate as an input, there are many pathways
of lengths 25–35 and 42–48.

Genome-scale studies
Pathway lengths have been computed for genome-scale matrices [162]. For
Helicobacter pylori, all the extreme pathways that lead to protein synthe-
sis from a set of substrates have been computed (Figure 13.7). These path-
ways comprise about 100–110 reactions even though the protein yields
vary significantly. This demonstrates that basically the same set of re-
actions can be used to generate quite different overall protein synthesis
rates.
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Figure 13.7: Correlation of extreme pathway length and yield (mol of protein/mol of carbon
input) in H. pylori protein synthesis. There was essentially zero correlation between target
product yield and extreme pathway length. From [162].

13.3 Reaction Participation and Correlated Reaction Subsets

The reaction participation matrix (RPM) is calculated by postmultiplying
P̂ by its own transpose,

RPM = P̂P̂T (13.6)

forming a symmetric matrix. RPM is an adjacency matrix of P̂. The com-
puted RPM for the example system is shown in Figure 13.8.

1. The diagonal terms in RPM give the number of pathways in which a
particular reaction participates. For example, the first diagonal term
in RPM for the sample system, corresponding to reaction v1, has a
value of 3. Thus, reaction v1 participates in all three extreme path-
ways. An examination of ExPa1, ExPa2, and ExPa3 in Figure 13.1
shows that reaction v1, which converts A to B, is in fact utilized in
all three extreme pathways.

2. The off-diagonal terms give the number of extreme pathways that
contains the pair of corresponding reactions. For example, the off-
diagonal element boxed in Figure 13.8 has a value of 2. This element



210 Properties of Solution Spaces

Figure 13.8: The reaction participation matrix RPM for the simple network in Figure 13.1. The
number of extreme pathways in which each reaction participates is indicated in the diagonal
elements, as highlighted in the final matrix. These can be expressed as a percentage of the total
number of extreme pathways. For example, reaction v1 has a participation value of 3. Since
there are three extreme pathways, this can be expressed as a 100% reaction participation.
The off-diagonal terms can indicate correlated groups of reactions. Reactions v1, b1, b2, and
b3 participate in three pathways. They also have a shared participation of 3, meaning they
act as a correlated group, indicated by the circles. From [162].

refers to the number of pathways that contains both reaction b2 (the
column) and reaction v4 (the row). Both of these reactions are utilized
in ExPa2 and ExPa3, while only b1 is utilized in ExPa1 (Figure 13.1).

The values in RPM can be converted to percentages by normalizing the
entries in RPM to the total number of extreme pathways, three in the ex-
ample case. Thus, the first diagonal element would correspond to 100%
reaction participation, since reaction v1 was utilized in all three extreme
pathways.

Reaction participation in the JAK-STAT signaling network
The reaction participation values have been calculated for the JAK-STAT
signaling network (Figure 13.9). The reactions with participation values
greater than 10% are shown in the inset table. Plotting the data on a log–log
scale does not result in a linear relationship. Some of the observations from
these computational results are:

� The exchange reactions of ATP and ADP have 100% participation. The
conversion of ATP to ADP is essential for all the states of the signal-
ing network since phosphate transfer is the mechanism by which the
signal propagates. The signaling system is thus driven by the supply
of ATP from energy metabolism.

� The exchange reactions for STAT1, STAT3, the STAT1-STAT3 het-
erodimer, and the reaction SD7, which describes the formation of the
STAT1-STAT3 heterodimer, have the next highest participation val-
ues. The network is structured such that there are multiple routes to
synthesize the STAT1-STAT3 heterodimer.

� There are 168 reactions that participate in only one extreme pathway.
Reactions with low participation values correspond to reactions that
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Figure 13.9: Reaction participation in the extreme pathways of the JAK-STAT signaling
network. From [160].

have highly specific network functions. Manipulating reactions with
low participation values could thus allow for control of very specific
functions, potentially important for drug targeting.

Genome-scale studies
Reaction participation numbers have been computed for all the extreme
pathways that lead to protein synthesis in H. pylori. The participation
numbers for the individual reactions can be rank ordered (Figure 13.10)
leading to the definition of three categories of reactions: (1) reactions that
participate in all of the extreme pathways; (2) reactions that participate in
varying amounts of extreme pathways; and (3) reactions that do not partic-
ipate in any of the extreme pathways. The first group represents essential
reactions for protein synthesis, and the last represents reactions irrelevant
to protein synthesis. The second group represents a set of reactions that
can be used for protein synthesis, but are not essential since there are
pathways that lead to protein synthesis without them.

Correlated subsets
The off-diagonal elements of RPM can be used to define correlated subsets
of reactions [162, 166]. The circled elements in Figure 13.8 show reaction
pairs that participate in exactly the same extreme pathways. In this par-
ticular case, each of these reaction pairs participates together in all of the
extreme pathways. Thus, reactions v1, b1, b2, and b3 are always present.
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They form a correlated reaction subset, meaning that if one of them is
utilized, the others must also be utilized.

Correlated reaction subsets, CoSets [159], have been computed for
genome-scale metabolic networks [162] and for the JAK-STAT signaling
network. CoSets are informative with respect to the hierarchical organiza-
tion of networks and are also useful for experimental design as discussed
in Chapter 14.

CoSets in core E. coli metabolism
The CoSets for the extreme pathways in Table 13.1 have been computed
(Table 13.2). They are shown graphically in Figure 13.11. Some observa-
tions from these results include:

� CoSets for all substrates: There are three CoSets of reactions that ap-
pear in the utilization of all the four substrates. CoSet 1 is reactions
required for the secretion of ethanol; CoSet 2 is recycling of AMP; and
CoSet 3 is the glyoxylate shunt in the TCA.

� CoSets for three substrates: There are seven CoSets that appear in the
use of succinate, pyruvate, and fumarate, but not in the utilization of
glucose. Two CoSets (number 4 and 11) are in the TCA cycle and CoSet
7 relates to the reverse use of glycolysis and the pentose pathway.
These do not appear in the extreme pathways that use glucose as an
input since glucose enters at the top of these pathways. CoSets 5, 6,
8, 9, and 10 relate to the secretion of acetate, α-ketoglutarate, formate,
lactate, and water, respectively.
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Table 13.2: The CoSets computed for extreme pathways in core E. coli metabolism
(Table 13.1). Prepared by Ines Thiele.

Found in

CoSets # Members Glucose Fumarate Succinate Pyruvate

All 1 ADHEr, ETOHt2r, EX etoh X X X X

substrates 2 ADK1, PPS X X X X

3 ICL, MALS X X X X

Three 4 ACONT, CS X X X

substrates 5 ACKr, ACt2r, PTAr, EX ac(e) X X X

6 AKGt2r, EX akg(e) X X X

7 ENO, FBA, G6PDH2r,

GAPD, GND, PGI, PGK,

PGL, PGM, RPE, RPI,

TALA, TKT1, TKT2, TPI X X X

8 FORt, PFL, EX for(e) X X X

9 D-LACt2, LDH D, EX lac-D(e) X X X

10 H2Ot, EX h2o(e) X X X

11 SUCOAS, TEST AKGDH X X X

Flux-coupling assessment through optimization
A more thorough assessment of the relationships between the use of fluxes
in reconstructed networks has been developed [24], called the flux cou-
pling finder (FCF). FCF is based on a linear programming approach to
minimize and maximize the ratio between all pairwise combinations of
fluxes in a reaction network. The computations classify reaction pairs
to be:

1. directionally coupled, if a nonzero flux for vi implies a nonzero flux
for v j, but not necessarily the reverse;

2. partially coupled, if a nonzero flux for vi implies a nonzero, though
variable, flux for v j, and vice versa; or

3. fully coupled, if a nonzero flux for vi implies not only a nonzero but
also a fixed flux for v j, and vice versa.

The FCF was utilized to analyze the genome-scale networks of E. coli,
Saccharomyces cerevisiae, and H. pylori [24]. The percentage of reactions
in the networks for each microorganism that were found in a coupled set
was 60% for H. pylori, 30% for E. coli, and 20% for S. cerevisiae. This
percentage is indicative of the flexibility of a network and the degrees of
freedom available in a network.
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Figure 13.11: The representation of the CoSets in core E. coli metabolism on a reaction map.
These sets are shown in Table 13.2. The CoSets in a box appear in the use of all four substrates
in the table, while those in ovals appear in the use of only three of the substrates. The reactions
in circles do not appear in any CoSet. The number in the CoSet is the same as the number in
Table 13.2.

13.4 Input–Output Relationships

Extreme pathways have an input–output signature that is made up of the
exchange reactions found in the pathway. These signatures can be used to
generate an input/output feasibility array (IOFA).

The IOFA
The primary exchange reactions of an extreme pathway will contain input
and output reactions (Figure 13.12). The columns of P̂ can be ordered based
on the input and output status of a pathway. The extreme pathways with
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Figure 13.12: The input–output feasibility array.

identical inputs and outputs will be placed in an adjacent position, and
the number of such pathways enumerated.

The part of P̂ that contains the primary inputs and outputs can be seg-
mented out of the matrix. This part of the matrix can be represented in
a different format. An array can be formed where the columns repre-
sent a unique set of inputs (the input signature) and the rows represent
a unique set of outputs (the output signature). If there is a pathway that
connects an input signature to an output signature the corresponding en-
try in the array can be assigned a value. This value can be a color so
that one can visualize all the possible matches between a set of inputs
and outputs. One can also put a numerical value in the array that corre-
sponds to the number of pathways that connects a particular set of inputs
to a particular set of outputs. This array is called the IOFA. The IOFA
is a concise representation of a set of input–output properties of extreme
pathways.

The IOFA for the core E. coli network
The IOFA has been computed for the extreme pathways in Table 13.1; see
Figure 13.13. There are several interesting observations that follow from
these results. For instance, for fumarate and oxygen as the sole inputs,
there is only one output signature, formate and CO2. The numbers in the
boxes give the number of extreme pathways that links the same sets of
inputs and outputs. This number is the number of different internal states
for a particular I/O relationship. For instance, for glucose as the sole input,
there are 42 ways to produce CO2 and ethanol.
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Figure 13.13: The IOFA for the extreme pathways in the core E. coli network. (A) Succinate as
the primary input and (B) fumarate as the primary input. Prepared by Ines Thiele.

Computing the number of identical input/output states
in a genome-scale metabolic network
Sets of extreme pathways for genome-scale metabolic networks for H. py-
lori and Haemophilus influenzae have been computed for a number of
growth environments and for a number of required outputs (such as the
production of individual amino acids). The average number of extreme
pathways for all these different functional states that have identical in-
put/output signatures has been computed [161]. The results show that for
H. pylori, the number of pathways with identical inputs and outputs is
2, whereas the corresponding number for H. influenzae is 46. Thus, even
though the metabolic networks appear similar, H. influenzae has much
more flexibility in the choice of an internal state for a given overall net-
work function.

13.5 Crosstalk

Definition
Extreme pathway analysis can be used to analyze the interconnection of
multiple inputs and multiple outputs of signaling pathways, often called
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crosstalk. Since the extreme pathways are fundamental and irreducible
functional states of a signaling network, crosstalk can be defined as the
nonnegative linear combination of extreme pathways of a signaling net-
work. The pair-wise combination of extreme pathways is thus the sim-
plest form of crosstalk. The α-spectrum (see Section 13.7) could give a
more complex breakdown of a measured functional state.

Classifying crosstalk
With this definition, crosstalk can be classified into nine different cate-
gories as shown in Figure 13.14. Each circle in Figure 13.14 represents a
set of pathway inputs or a set of pathway outputs. From left to right, each
pair of pathway input sets is classified as disjoint, overlapping, or iden-
tical. From top to bottom, each pair of pathway output sets is classified
as disjoint, overlapping, or identical. For example, the representation in
the middle of the figure corresponds to two extreme pathways with shared
(but not identical) sets of inputs and shared (but not identical) sets of out-
puts. Thus, the two independent extreme pathways in this instance have
overlapping but not identical functionality.

These nine categories provide a succinct description of fundamental
properties of signaling networks:

� A pair-wise comparison of this type represents completely indepen-
dent functions of a network (Figure 13.14A); completely separate
inputs generate completely separate outputs.
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Figure 13.15: Crosstalk analysis of the JAK-STAT signaling network following the classification
theme in Figure 13.14. Taken from [160].

� Extreme pathways with disjoint inputs interact to generate overlap-
ping outputs (Figure 13.14B). This type of interaction is convention-
ally thought of as crosstalk [201].

� Pair-wise pathway comparisons of the type in Figure 13.14C represent
a nondiscriminate set of signals; two completely distinct inputs result
in identical outputs. Recent experimental data show that cells can
respond identically to different sets of stimuli.

� Interacting pathways of the type shown in Figure 13.14D would rep-
resent synergy or the use of co-signals; the network can use related
inputs to generate distinct outputs.

� The case where a pair of pathways represents completely overlap-
ping functions (Figure 13.14I) was discussed above and indicates that
the same net result can be achieved in more than one way by the
network.

The definition of these nine categories is possible using extreme pathway
analysis and they allow for fundamental descriptions, such as those de-
scribed above, of signaling networks and their functional states.

Crosstalk in the JAK-STAT signaling network
All nine categories of crosstalk have been computed for the reconstructed
JAK-STAT network. With 147 extreme pathways, there are 10,731 (=
(1472 − 147)/2) pair-wise combinations. Approximately 99.8% of the pairs
of extreme signaling pathways have disjoint outputs and nearly 0.2% have
identical outputs. There are no pair-wise combinations of extreme path-
ways with overlapping outputs since all of the extreme pathways in the
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JAK-STAT network have only one signaling output. Approximately 63.9%,
21.3%, and 14.8% of the pair-wise combinations have disjoint, overlap-
ping, and identical input sets, respectively. The high percentage of pair-
wise combinations with disjoint sets of inputs and disjoint sets of outputs
indicates a fairly deterministic signaling network; there is very little classi-
cal crosstalk (i.e., identical signaling molecules used in different signaling
pathways [201]) as one input signal typically corresponds to one output
signal in this network.

13.6 Regulation and Elimination of Pathways

Regulation shrinks the solution space
All the allowable functional states of a reconstructed network are described
by the corresponding set of extreme pathways. However, regulation may
prevent the use of some of these functional states. Thus, regulation may
be viewed as a way to shrink the steady-state flux solution space. This
principle is illustrated in Figure 13.16. A flux cone is shown that has
four extreme pathways. If regulation prevents the use of pathway 1, then
the cone is reduced in size. Thus, regulatory networks can be viewed as a
mechanism to generate self-imposed constraints that restrict the allowable
functional states of a network. These constraints may be thought of as
restraints.

Skeleton representation of the core metabolic pathways
A skeleton network of core metabolism has been formulated [38]. This net-
work comprises 20 reactions, 7 of which are governed by regulatory logic.
This network is a highly simplified representation of core metabolic pro-
cesses, along with corresponding regulation, such as catabolite repression,
aerobic/anaerobic regulation, amino acid biosynthesis regulation, and car-
bon storage regulation. A schematic of this skeleton network is shown in
Figure 13.17, together with a table containing all of the relevant chemical
reactions and regulatory rules which govern the transcriptional regulation.
This network has 80 extreme pathways.

A total of 80 extreme pathways were calculated [36] for the simplified
metabolic system shown in Figure 13.18. Whether a pathway is accessible
to the cell depends on: (1) the regulatory network and (2) the environment
in which the cell lives. Given the five inputs to the metabolic network and
representing these inputs using Boolean logic (considering each as ON if
present or OFF if absent), there are a total of 25 = 32 possible environments,
which may be recognized by the cell.
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Figure 13.16: Regulatory constraints reduce the steady-state solution space of a metabolic net-
work. A solution space bounded by invariant constraints on the network is shown. Extreme
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the space. In the space on top, all of the pathways are considered available to the system
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a metabolic network with fewer available behaviors. From [36].

Regulatory constraints alone eliminate 21 extreme pathways. The 32 en-
vironmental conditions allow anywhere from 2 to 26 extreme pathways
to be expressed. Thus, the regulatory network for this simplified core
metabolic model leads to a reduction of 67.5–97.5% in the number of
available extreme pathways. To illustrate this process, a relatively simple
dual-substrate environment is now described in more detail.
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REACTION NAME  REGULATION 

Metabolic Reactions 
A + ATP → B R1
B  2 → ATP + 2 NADH + C   R2a IF NOT (RPb) 
C + 2 ATP + 2 NADH → B R2b
B → F R3
C → G R4
G → 0.8 C + 2 NADH R5a IF NOT (RPo2) 
G → 0.8 C + 2 NADH R5b IF RPo2 
C → 2 ATP + 3 D R6
C + 4 NADH → 3 E R7 IF NOT (RPb) 
G + ATP + 2 NADH → H R8a IF NOT (RPh) 
H → G + ATP + 2 NADH R8b
NADH + O2 → ATP Rres IF NOT (RPo2) 
Transport Processes 
Carbon1 → A Tc1
Carbon2 → A Tc2 IF NOT (RPc1)
Fext → F Tf
D → Dext Td
E → Eext Te
Hext → H Th
Oxygen → O2 To2
Maintenance and Growth Processes 
C + F + H + 10 ATP → Biomass Growth
Regulatory Proteins 

RPo2  IF NOT (Oxygen) 
RPc1 IF Carbon1 
RPh IF Th 
RPb IFR2b
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Figure 13.17: A schematic of the simplified core metabolic network. This network is a highly
simplified representation of core metabolic processes, including a glycolytic pathway with pri-
mary substrates carbon1 (C1) and carbon2 (C2), as well as a pentose phosphate pathway and a
TCA cycle, through which “amino acid” H enters the system. Fermentation pathways as well as
amino acid biosynthesis are also represented. The regulation accounted for includes simplified
versions of catabolite repression (e.g., preferential uptake of C1 over C2), aerobic/anaerobic
regulation, amino acid (H) biosynthesis regulation and carbon storage regulation, and is also
listed. The Growth reaction is indicated by a dashed line. From [36].

Growth on two carbon sources (C1 and C2) and oxygen (O2)
If the core metabolic network operates in this nutritional environment
and is able to secrete D and E while producing biomass, the number of
allowable extreme pathways is substantially reduced (Figure 13.18). Ini-
tially, all 80 pathways are considered and are represented schematically in
Figure 13.18A. Twenty-one of the extreme pathways are always restricted
by regulation, as discussed earlier; the boxes representing these pathways
are darkened in gray. By considering only the pathways with appropriate
inputs and outputs based on the cell environment, 49 more pathways are
eliminated (shaded in light gray). Of the 10 remaining pathways, six are
inconsistent with the given regulation (C1 catabolite repression of the C2
transport protein Tc2 or regulation due to the aerobic environment) (shown
in black) and the flux maps for the remaining four extreme pathways are
shown in Figure 13.18B.
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Figure 13.18: Extreme pathway reduction by constraints, using growth of the sample system
in a C1 and C2 aerobic medium as an example. (A) The 80 total extreme pathways calculated
for the system are represented by a grid. The number of pathways is reduced by 21 when
pathways are removed that are always inconsistent with the regulatory rules (dark gray),
then by 49 due to the specific environmental constraints (light gray), and then by 6 as the
regulation corresponding to the specific environment is considered (black). The four remaining
pathways, which are consistent with all the regulatory and environmental constraints, are
shown schematically in (B), where the thick dark arrows represent active fluxes. (C) The solution
space of the system, projected on a three-dimensional space, with the pathways and the line
of optimality (LO) (the pathway with the greatest growth yield) noted. (D) A two-dimensional
projection of the space, superimposed on a two-dimensional PhPP for the C1 and oxygen
uptake. The region to the left of the LO lies outside of the space and is therefore infeasible.
From [36].

The reduced solution space can be projected into three dimensions (rep-
resented by C1 uptake rate (x-axis), oxygen uptake rate (y-axis), and growth
rate (z-axis)) showing the four feasible extreme pathways (Figure 13.18C).
All the volume defined by these edges represents attainable functional
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states. The two-dimensional phenotypic phase plane (PhPP), see Chap-
ter 16, for growth on C1 and O2 is shown in Figure 13.18D. This PhPP has
two feasible phases between the lines shown, which represent projections
of the four operational extreme pathways; pathways 46 and 50 are both
fermentative and therefore overlap in the PhPP (oxygen uptake rate = 0).
pathway 30 is the line of optimality as none of the carbon is lost in se-
cretion of by-products; pathway 34 includes secretion of D and therefore
gives a lower biomass yield than pathway 30.

Is the regulation of members of CoSets coordinated?
The CoSets that were discussed earlier in this chapter comprise reactions
that appear together in all functional states of a network. Their regulation
might therefore be coordinated. This possibility has been analyzed for the
genome-scale E. coli model [184]. Two CoSets involving different carbon
source usage during the optimal growth of E. coli are shown in Figure 13.19.
They are computed from the metabolic network alone.

� Panel (A) in Figure 13.19 shows a CoSet containing four reactions
involved in the utilization of the sugar rhamnose. The reactions in this
CoSet are catalyzed by the products of four genes, which are organized
into two operons. These operons form a regulon that is regulated by
rhaS.

� Panel (B) in Figure 13.19 shows a larger CoSet that is involved in
the degradation of the amino acid arginine. The 11 associated genes
make up four operons. Currently, these four operons are not known to
be regulated by a common regulator; however, the expression of the
associated genes is found to be highly correlated (P < 0.003) across
several growth conditions [184].

13.7 The α-Spectrum

The number of extreme pathways can exceed the dimension of the null
space. Thus, there may not be a single set of weightings (α) on the extreme
pathways that produce a given flux distribution, but rather a range of val-
ues. The numerical values of the weight on each extreme pathway in the
reconstruction of a particular flux distribution can be determined using
linear optimization to produce what is called the α-spectrum [244]. The
α-spectrum defines which extreme pathways can and cannot be included
in the reconstruction of a given steady-state flux distribution, and at what
level [245].
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Figure 13.19: Correlated reaction sets and regulation. Taken from [159].

Defining the α-spectrum
The rank of P determines the number of independent equations, and is
usually smaller than the number of extreme pathways, resulting in extra
degrees of freedom. This results in an “α space” (Figure 13.20). In order
to elucidate the range of possible α values that could contribute to the
steady-state solution, the α-spectrum is computed based on the equation:

v = Pα (13.7)

Where P is the pathway matrix, α is a vector of weightings on the extreme
pathways, and v is a steady-state flux distribution. For each individual
extreme pathway defined for the network, the α weighting for that path-
way is both maximized and minimized using linear programming (see
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Figure 13.20: The α-spectrum. (A) A schematic graph of a two-dimensional α-space in which
each α can vary from a minimum to a maximum forming an allowable range of α values
(shown as shaded pentagon). The open circles represent the minimum and maximum pos-
sible values for each α. (B) A sample α-spectrum, rank-ordered according to the maximum
α value with a corresponding pathway number on the x-axis. This sample α-spectrum shows
all possible ranges of α: pathway 4: 0 to maximum usage (1 or 100%); pathway 6: a nonzero
minimum to maximum usage; pathway 2: 0 to a submaximum usage; pathway 3: a nonzero
minimum to a submaximum usage; pathway 5: a single nonzero value for α; and pathway
1: no usage of α (a single value of 0). Note that pathways 6, 3, 5 must be used in the recon-
struction while pathway 1 cannot be used. Redrawn from [244].

Chapter 15) while leaving all other extreme pathway α weightings free.
This computation will generate the range of weightings for every extreme
pathway in the reconstruction of a particular flux distribution.

Computing the α-spectrum
The resulting mathematical formulation is summarized as follows:

Max αi, subject to v = Pα, i = 1, . . ., np, 0 ≤ αi ≤ 1
Min αi, subject to v = Pα, i = 1, . . ., np, 0 ≤ αi ≤ 1

where v is a particular flux distribution, the αi-weightings correspond to
each extreme pathway, pi, and np is the number of extreme pathways.
Thus, 2np linear programming problems are solved to obtain 2np sets of
α-weightings. Therefore, the maximum and minimum weighting of each
pathway over all possible solutions to equation 13.7 can be obtained. This
computation results in an allowable range for the α value for each extreme
pathway.

The results are then plotted in a bar-type graph where the extreme path-
way numbers are on the x-axis and their allowable ranges of α-weightings
on the y-axis. The αi value is normalized to the most constraining vi,max,
and thus the αi-weightings correspond to a percentage or fractional usage
of each extreme pathway. Hence, the y-axis ranges from 0 (no usage) to 1
(100% usage). Some extreme pathways are not used while others can have
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a range of αi-weightings (Figure 13.20). In some cases, the αi-weighting
is restricted to a single, nonzero value, meaning that particular extreme
pathway is always utilized in that amount for the given flux distribution.

The conservative nature of the α-spectrum
As can be seen from Figure 13.20A, the defined α-spectrum is a rectan-
gle that “boxes” in the range of allowable α values (as represented by the
pentagon in Figure 13.20A). The rectangular shape is due to the fact that
only one α-weighting is considered at a time; i.e., independent of the oth-
ers. For a low-dimensional system, the true range of allowable weights
fills a large fraction of the rectangle, but as the network size grows, this
fraction becomes smaller and smaller. Thus, further refinement of the α-
spectrum would be useful for genome-scale studies. One such refinement
is to compute the minimum number of extreme pathways that was needed
to describe a given flux distribution in cases where multiple extreme path-
way combinations exist. Mixed integer linear programming (MILP) [249]
is used for this purpose [244].

13.8 Summary

➤ Extreme pathways are a set of convex basis vectors that can be used
to describe the entire steady-state flux solution space and can thus be
used to characterize its content.

➤ The extreme pathways can be used as columns in a matrix to form
a pathway matrix. This matrix can be represented in a binary form
(P̂), where an entry of “1” indicates that a reaction participates in a
pathway.

➤ The adjacency matrices of P̂ give the number of reactions that make
up extreme pathways (pathway length), and the number of pathways
in which a particular reaction participates (pathway participation).

➤ Analysis of pathway participation leads to the identification of cor-
related reaction sets (CoSets), which are sets of reactions that always
appear together in the functional states of a network. The reactions
that make up a CoSet may be coordinately regulated.

➤ The input/output status of pathways can be used to determine network
redundancy and its crosstalk characteristics.

➤ Regulatory rules can be used to reduce the number of allowable
pathways in a three-step process: first, the identification of path-
ways that are always in conflict with the regulatory rules, second, the
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identification of pathways that are inoperable in a given environment,
and third, the identification of pathways that are rendered inoperable
through regulation that is active in a particular environment.

➤ The decomposition of a particular steady-state flux vector into extreme
pathways can be studied using the α-spectrum.

13.9 Further Reading
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CHAPTER 14

Sampling Solution Spaces

Extreme pathways are useful for studying the capabilities of
a network and for determining network properties. Computing extreme
pathways for genome-scale networks has proven difficult. An alternative
approach to characterizing the contents of solution spaces is random uni-
form sampling. This approach involves obtaining a statistically meaningful
number of solutions throughout the entire solution space and then study-
ing their properties. A number of useful results can be obtained in this
fashion. The sampling of solution spaces described in this chapter is an
unbiased way of characterizing solution spaces.

14.1 The Basics

A simple flux split
Random uniform sampling can be illustrated by looking at a simple flux
split; see Figure 14.1. Panel A shows a simple network that consists of
one flux split, three exchange reactions, and constraints placed on the
reactions. A three-dimensional space is formed by the three fluxes. The
flux balance for this system is

−v1 − v2 + v3 = 0 (14.1)

or

〈(−1, −1, 1) · (v1, v2, v3)〉 = 0 (14.2)

This equation defines a plane with the normal vector n = (−1, −1, 1). This
plane intersects the positive orthant. The maximum and minimum con-
straints on the fluxes define a box, and the intersecting plane of equa-
tion 14.2 forms a closed space that is a segment of a plane (Figure 14.1B).
This segment can be shown in two dimensions using its two conical basis

228
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Figure 14.1: The simple flux split: the reaction network (A), overview of the process of forming
the solution space (B), selecting one of the parallelepipeds (C), and the outcome and represen-
tation of randomized sampling. Taken from [179].

vectors (Figure 14.1C):

b1 = (1, 0, 1) and b2 = (0, 1, 1) (14.3)

Note that both of these basis vectors are orthogonal to n.
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The plane segment can be enclosed with a parallelepiped, that is a paral-
lelogram in two dimensions. The parallelepiped can then be sampled uni-
formly and a set of candidate solutions is formed by selecting only points
in the segment (Figure 14.1D). The probability distributions for the flux
through each individual reaction can then be computed. The algorithms
used to perform the randomized sampling are discussed in the subsequent
sections.

The overall procedure
The process of obtaining a uniform set of candidate solutions and studying
their properties consists of three basic steps:

1. Defining the solution space based on imposed constraints;
2. Randomly sampling it based on uniform statistical criteria; and
3. Further segmenting the solution space based on additional post-

sampling criteria as necessary.

It is particularly convenient to use only linear constraints in the first step.
Linear equalities and inequalities lead to the formation of a polytope. Then,
following the random sampling, candidate solutions can be eliminated
based on nonlinear criteria in the third step, or based on additional exper-
imental information. A large number of candidate solutions can then be
characterized using statistical measures.

14.2 Sampling Low-Dimensional Spaces

To compute the size and contents of a solution space, Monte Carlo inte-
gration is generally implemented by defining a range of the variables that
encompasses the solution space and then uniformly and randomly sam-
pling points within this region. The solution space size is then calculated
by determining the fraction of the uniformly distributed points that lie
within the solution space and multiplying by the volume of the enclosing
region, see Figures 14.1D and 14.7.

It is easy to sample regularly shaped geometric objects. A solution space
can be enclosed by a geometric object in which uniformly distributed ran-
dom points can be readily generated. Ideally, the shape of the chosen geo-
metric object needs to fit as tightly as possible around the solution space.
This would lead to a high fraction of points that are in the geometric object
and in the enclosed solution space. This approach has been described in
detail and the computational methods have been developed [179].
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Parallelepipeds
A parallelepiped with the same dimension as the rank, r, of the null space
of S is a geometric object that can enclose polytopes and can be readily
sampled. A parallelepiped can be represented as a matrix, B, where the
columns of B represent a set of spanning edges of the parallelepiped,

B = (b1, . . . , bi, . . . , br ) (14.4)

Its volume is simple to compute [217]:

Volume =
√

Det(BTB) (14.5)

Sampling parallelepipeds
Uniform random samples of points can readily be generated within a par-
allelepiped. Uniform random weightings, αi, are generated on all of the
spanning edges, bi. A random point inside the space is generated by

v =
∑

i

αibi, αi,min ≤ αi ≤ αi,max (14.6)

where v is a point within the space. This sampling procedure is readily
applied to a simple flux split where there are only two basis vectors, as
is illustrated in Figure 14.1D. Note that the maximum weight that can be
placed on these vectors is α1,max = 6 and α2,max = 8, whereas the minimum
values in both cases are zero.

Elimination of redundant constraints in determining αmax

Many reaction vi,max levels cannot be reached in a steady state since the
saturation of other reactions can be more constraining for vi than its own
vi,max (recall Figure 9.6). Thus, many of the vi,max constraints may be sys-
temically redundant. Redundant vi,min and vi,max constraints are not needed
to define the solution space. One can readily determine if a particular vi,max

is redundant by determining if

max vi < vi,max redundant (14.7)

or

max vi = vi,max not redundant (14.8)

along a spanning edge using the optimization methods described in the
next chapter. Determining redundant vi,min constraints is done similarly.

For the simple flux split in Figure 14.1, note that the maximum flux
through reaction v3 is redundant since the maximum fluxes on reactions v1

and v2 are more constraining on the spanning edges than that for reaction
v3. This fact is evident in Figure 14.1D where neither of the spanning
edges reach the maximum value for v3. The most constraining vi,max of
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the reactions forming a spanning edge will determine the αi,max value.
Note that the v3,max constraint does become important after we sample the
parallelepiped and it does lead to the exclusion of points from the random
set of points obtained within the parallelepiped.

Choice of enclosing parallelepiped
Because each pair of vi,min and vi,max constraints form parallel hyper-
planes, the shape of the null space leads naturally to the choice of a high-
dimensional parallelepiped in which it will be enclosed. The set of possi-
ble parallelepipeds that can enclose the steady-state flux space is chosen
by forming the faces of the parallelepiped along the directions defined by
these vi,min and vi,max constraints. Since each parallelepiped is defined by
r planes which are chosen from the set of m vi,min and vi,max planes, the
number of such parallelepipeds that could be used to enclose the space is

Number of possible parallelepipeds =
(

m
r

)
= m!

r!(m − r)!
(14.9)

where m is the number of vmax constraints and r is the dimension of the null
space. For the simple split, m = 3 and r = 1; thus the number of possible
parallelepipeds is 3. All three can be seen in Figure 14.1D.

The number of candidate parallelepipeds can be large, and it may be
infeasible to compute the volumes for all of them. Therefore, an alternate
approach is needed. One can choose the set of vi,min and vi,max constraints
that are closest together based on Euclidean distance. Then, the second
direction of the parallelepiped is chosen by determining the smallest par-
allelogram that can be formed by choosing the next set of vi,min and vi,max

constraints. The third direction is then chosen as the set of constraints that
forms the smallest parallelepiped using three sets of vi,min and vi,max con-
straints. This process continues until r sets of parallel planes are chosen
and the so-formed parallelepiped fully encloses the solution space.

Uniform random sampling
A set of uniform random points can be generated within a solution space
by randomly sampling within the enclosing parallelepiped. This can be
performed by uniformly choosing a weight on each of the edges, bi, of the
parallelepiped. Each point in the space is uniquely defined by weightings
on the edges spanning the parallelepiped (equation 14.6). The weighting,
αi, on each basis vector, bi, can be uniformly selected by generating a ran-
dom number, f, between 0 and 1 and computing each weight as

αi = αi,min + f (αi,max − αi,min) (14.10)
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Points generated uniformly within the parallelepiped were then compared
to the set of vi,max and vi,min constraints to verify whether or not the point
falls in the solution space. If the point satisfies all constraints, it is a valid
solution and is kept in the random set. If the point does not satisfy all the
constraints, it is excluded.

Computing the “volume” of the solution space
We can determine the hit fraction (p) as the ratio of sampled points that
fall inside the solution space and n as the total number of sample points
generated. The volume of the solution space can be calculated by multiply-
ing the volume of the enclosing parallelepiped by the fraction of generated
points that fall within the solution space:

Estimated volume of solution space ≈ p× volume
of enclosing parallelepiped

Note that the notion of a volume here is not related to our usual definition
of volume as the size of a three-dimensional solution space. For instance,
the so-calculated volume of a 2D solution space is actually an area (i.e.,
see Figure 14.1D).

Error in computed volume estimate
The variance in the volume estimate is [173]

σ 2 = p(1 − p)
n

≤ 1
4n

(14.11)

where n is the total number of sample points generated. The maximum
variance is at p = 1/2. The estimated relative error in the volume calcula-
tion, ε, can be calculated as the ratio of the standard deviation (σ ) to the
mean (µ) as

ε = σ

µ
=

√
p(1 − p)/n

p2
=

√
1/p− 1

n
(14.12)

Sampling high-dimensional spaces
The sampling methods described above have proven to work for poly-
topes of dimensions of up to 10–12. In spaces of higher dimension, more
sophisticated sampling methods are required. The detailed description of
these methods requires sophisticated statistics and is beyond the scope
of this text. The interested reader can consult with some of the primary
references [111, 125].
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Figure 14.2: Monte Carlo sampling of the steady-state flux solution space for the red blood
cell. From [179].

14.3 Applications to Biological Networks

Several studies have appeared that use random sampling of large solu-
tion spaces to study properties of reconstructed networks. This section
describes some of these studies and the key results obtained to date. One
can look forward to a productive use of this approach for genome-scale
networks in the near future.

The red blood cell
The steady-state flux solution space of the human red blood cell has been
studied through randomized sampling [179, 243]. The probability distri-
butions for each flux in the network can be shown on the reaction map
(Figure 14.2). This allows one to visualize all the allowable flux values for
all the reactions in the network simultaneously. These studies have led to
several notable results, three of which are briefly described here.

1. The histograms provide information about the “shape” of the solu-
tion space and how likely the fluxes are to fall into certain numer-
ical values. For instance, some of the histograms are flat, implying
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Figure 14.3: Simulated enzymopathies in the human red blood cell using segmentation of
sampled solution spaces. From [179].

that every numerical value for a flux through a particular reaction is
equally likely.

2. The cross-correlations between every pair of flux values can be com-
puted. Such computations lead to identifying CoSets if the correla-
tion coefficient is unity (r2 = 1.0). The CoSets are also computable
from the extreme pathways (Chapter 13). Less than perfect correla-
tions can be found between flux variables, as described in more detail
in the mitochondria example below. Such correlations can be used
to guide experimental design. The measurement of poorly correlated
fluxes is likely to be more informative than measuring highly corre-
lated fluxes.

3. The pairs of fluxes that are correlated can be studied further. There
may be regions in the solution space where they are strongly corre-
lated and regions where they are poorly correlated. Such regions can
be found by segmenting the solution space and computing the cor-
relations in each segment; see Figure 14.4 for an illustration of this
procedure.

Solution spaces have been segmented based on inborn errors
in metabolism, i.e., lowered vi,max values due to genetic variation.
Figure 14.3 shows an example of the analysis of enzymopathies in
red cell metabolism. Pyruvate kinase (PK) and glucose-6-phosphate
dehydrogenase (G6PDH) have many genetic variations in the hu-
man population, some of which are related to pathological condi-
tions [103]. Figure 14.3 shows how the correlation between fluxes can
be very different between the full solution space and the segment cre-
ated by the imposition of a vi,max constraint for PK and G6PDH. This
suggests that the metabolic states could be significantly different in
individuals with these enzymopathies as compared to a normal state.
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vḿax1v ḿin2
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Figure 14.4: Sampling the steady-state flux solution space for the mitochondria in the human
cardiac myocyte, and its segmentation based on restricting flux values. From [222].

The mitochondrion in human cardiomyocytes
The metabolic reaction network in the mitochondria in the human car-
diac myocyte has been reconstructed based on proteomic data [238]. The
steady-state flux solution space for this network has been sampled and
the results used to study the effects of diabetes, ischemia, and dietary
conditions. The overall procedure used in such a study is illustrated in
Figure 14.4, following the three-step process outlined in the first section
of this chapter. In the third step, altered vi,max constraints are used to rep-
resent the disease and dietary conditions of interest.

A random sample of one-half million points was obtained for the
mitochondrial metabolic network. All the pair-wise cross-correlation
coefficients were computed and the CoSets identified. Such computa-
tions show the complicated and nonintuitive correlations between the
various fluxes in the network; see Figure 14.5. Disease states were rep-
resented by segmenting the solution space based on measured changes
in exchange rates, such as the uptake rates of nutrients and oxygen. The
segmentation based on elevated fatty acid uptake (to simulate diabetic con-
ditions) showed that the probability distribution for pyruvate dehydroge-
nase (PDH) becomes very narrow. Thus, network structure and allowable
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Figure 14.5: CoSets in metabolism in the human cardiomyocyte metabolism. The dashed lines
indicate over 85% correlation between CoSets. From [222].

states under diseased conditions lead to a network structure-based re-
striction of the flux through PDH. This restriction is experimentally ob-
served [44, 215, 219]. No unknown regulatory mechanism is therefore
likely to be responsible for this observation.

Growth of E. coli
The steady-state flux solution space of a genome-scale reconstruction of
E. coli metabolism has been randomly sampled [2]. The distribution of
all the steady-state flux levels through all of the individual reactions in
the sampled solutions shows an approximate power-law distribution; see
Figure 14.6. This feature is a global property of the functional states of
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Figure 14.6: Distribution of the flux lev-
els through reactions in a genome-scale
metabolic network of E. coli. From [2].

the network. Recall from Chapter 7 that the distribution of the number
of reactions that a compound participates in also follows an approximate
power-law distribution.

This study also looked at the correlated use of reactions in the E. coli
metabolic network. It was found that a large fraction of the candidate so-
lutions had common network-scale patterns in the used sets of reactions.
This large CoSet was termed the high-flux backbone of the flux map, since
it was similar in all solutions. The individual solutions then have distinct
deviations from this state.

14.4 Sampling the Concentration Space

The methods and studies described above are focused on the sampling of
a solution space that contains the steady-state flux maps. The concentra-
tion spaces that are described in Chapter 10 are also polytopes that can
be sampled using Monte Carlo methods. The additional constraints that
can be stated on concentration spaces are nonlinear and lead to an addi-
tional step in the generation of candidate solutions for the concentration
vector.

Defining the ranges of allowable values
Equation 10.6 defines a hyperplane that contains the concentration vector.
Since the concentrations are positive variables, xi ≥ 0, the concentration
solution space is the intersection of the hyperplane with the positive or-
thant. Since the definition involves linear equalities and inequalities, the
minimum and maximum allowable concentration values (xi,min and xi,max)
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Figure 14.7: Monte Carlo sampling of a two-dimensional
concentration space. The relative size of a constrained sub-
space, i.e., space defined by xi,min ≤ xi ≤ xi,max, is com-
puted by uniformly sampling the entire space and calculat-
ing the ratio of the points inside the constrained subspace
over the total sampled points. Notice that one of the bound-
aries is nonlinear. Further segmentation based on an addi-
tional criterion for x1 (≤ xc ) is illustrated. From [53].

in this space can be found by linear optimization (see Chapter 15 for de-
tails):

Max (or min) xi, subject to: a = Lx, and 0 ≤ xi, for all i (14.13)

Imposing additional constraints on concentration spaces
When no constraints are imposed in addition to the equality and inequal-
ity constraints, the solution space size (volume) is considered to be 1, or
100%. Imposing additional constraints subsequently reduces the space
size, thus giving a measure of relative size. The reduced space size is esti-
mated simply by calculating what fraction (or percentage) of the random
set falls within the constrained region (Figure 14.7). A calculated error in
this estimate is obtained by computing the variance in estimating the size;
see equation 14.11.

In addition to the mass conservation and nonnegativity constraints, there
may be other factors further constraining the range of allowable concen-
tration states. Thermodynamic constraints and measured concentrations
further reduce the size of the concentration solution space:

� Thermodynamic constraints are imposed by including an inequality
condition

� ≤ Keq (14.14)

where � represents the mass action ratio, which is the product to
reactant concentration ratio. These constraints are typically bilinear.

� Concentration constraints based on measurements are imposed by
constraining a compound concentration to within a range of the nom-
inal value:

xi = (1 ± ε)xi,measured (14.15)

where ε represents the relative experimental error.

Normalized histograms and expected value calculation
The effect of the successive imposition of constraints can be visualized
using a histogram of the randomized values for each concentration. To
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determine an expected value for each concentration in the solution space,
the average value and the variance of the probability distribution can be
evaluated and compared to experimental measurements.

Such histograms can be normalized in different ways. One way is to start
with a certain number of points, and then eliminate points by imposing
successive constraints. Alternatively, the histograms can be normalized
so that the same number of points are used in each one. The number of
points at each bin on the histogram represents the likelihood of observing
that value when sampling each reduced subspace.

Specific cases
We will now consider the successive imposition of constraints over and
above the linear equality and nonequality constraints used to define
the hyperplane segment confined to the positive orthant. The two addi-
tional constraints considered are thermodynamically derived equilibrium
constraints and concentration measurements. Furthermore, the allowable
ranges of the values of the individual variables and their variance will be
computed, as well as their expected values following the imposition of
successive constraints.

Bimolecular association
The bilinear association reaction that converts C and P to form C P con-
tains two conservation relationships and was described in equation 10.15.
Note that the conservation relationships, i.e., the rows of L, are indepen-
dent of the equilibrium constant, Keq, and result solely from the network
topology. Assuming one known metabolite profile xknown = (1, 1, 1)T, the
conservation quantities can be calculated as a = (2, 2)T. The concentration
solution space is thus a one-dimensional space residing at the intersection
of the two planes formed by the basis of the left null space in the positive
orthant; see Figure 14.8A.

For Keq = 0.22, the nonlinear equilibrium constraint divides the solution
space into two unequal regions. If the reaction proceeds in the forward
direction, the mass action ratio, �, or product to reactant ratio, must be
less than the equilibrium constant,

� = [C P]
[C][P]

≤ Keq (14.16)

and the constrained subspace lies at the lower side of the nonlinear con-
straint with 25% of the original size (Figure 14.8B).

If the reaction proceeds in a reverse direction, the nonlinear constraint
is changed so

� = [C P]
[C][P]

≥ Keq (14.17)
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Figure 14.8: Concentration solution space reduction in bimolecular association schema. (A)
Concentration space lies at the intersection of two planes formed by the basis vectors of the
left null space. (B) The nonlinear equilibrium constraint segments the space into two regions.
The lower segment forms the constrained region if the reaction proceeds in the forward
direction (25% of the unconstrained space with K eq = 0.22). (C) For the reaction occurring in
the reverse direction, the upper segment defines where the constrained region resides (75%
of the unconstrained space). From [53].

and the constrained subspace shrinks to 75% of the original (Figure 14.8C).
The value of Keq determines the percent of reduction in space size. For
example, for an equilibrium constant of unity, the solution space will be
divided into two equal regions of 50% each.

Thus, the imposition of equilibrium constraints may segment the solu-
tion space equally or unequally depending on the numerical value of the
equilibrium constant. Note that the imposition of a nonlinear constraint
in this example does not alter the linearity of the boundaries in the result-
ing subspaces, i.e., the reduced subspaces remain linear even though the
additional constraint imposed is nonlinear.

Multicomponent cofactor coupled reactions
In Chapter 10 we studied multiple redox coupled reactions; see equa-
tion 10.4. A linear basis for the concentration space is given by

L =

⎛
⎜⎜⎜⎝

0 0 0 0 1 1 0
0 1 1 0 0 1 0
0 0 0 0 0 1 1
1 0 0 1 0 −1 0

⎞
⎟⎟⎟⎠ (14.18)

where the order of columns in L is RH2, R, R, RH2, H+, NAD+, and NADH.
Assuming a concentration of 5 mM for each metabolite, the conserva-
tion quantities become a = (10, 15, 10, 5)T. With seven variables and four
constraints, the concentration solution space is three dimensional, i.e.,
7 − 4 = 3.

The effect of equilibrium constants and concentration constraints can
be observed in the three-dimensional space formed by RH2, R, and NADH;
see Figure 14.9. The nonlinear equilibrium constraints reduce the concen-
tration space to a subspace with nonlinear boundaries that can be non-
convex (Figure 14.9D). Note that the convexity of a constrained space is
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Figure 14.9: The concentration space for a multicomponent cofactor-coupled reaction (see
equation 10.4) and its size reduction with the imposition of additional constraints. (A) The
intersection of the two nonlinear spaces lies below the curved surface. (B) The solution space
with no constraints is formed by the conservation relationships of Lx = a. (C) The solution
space is reduced when the nonlinear constraints shown in (A) are applied. (D) Another view of
(C) shows that the space is nonconvex, i.e., a line connecting two solution points lies outside
the space. (E) The space is further reduced when a known metabolite concentration is specified
as an additional constraint. From [53].

guaranteed only when the linear or nonlinear inequality constraints are
also convex functions [15]. In this example, the equilibrium relationship
of reaction 1 is nonconvex, and when imposed on the solution space re-
sults in the observed nonconvexity (Figure 14.9D). Thus, the imposition
of nonlinear thermodynamic constraints can significantly change the char-
acteristics of the solution space. The solution size can be further reduced
if any of the internal metabolite concentrations are specified to a known
value (Figure 14.9E).

14.5 Summary

➤ Solution spaces can be studied by randomly sampling points con-
tained within them.

➤ Large sets of candidate solutions can be statistically analyzed.

➤ A three-step procedure comprising (1) confinement by linear con-
straints, (2) randomized sampling, and (3) confinement by nonlinear
and other additional constraints can be implemented.
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➤ Bounds and balances form linear constraints that comprise nonnega-
tivity constraints on the variables and by mass or flux balances.

➤ Solution spaces can be enclosed by regularly shaped objects, such as
parallelepipeds, making the sampling procedure easy and enabling
the computation of the size (volume) of the solution space.

➤ Low-dimensional spaces (≤10–12) can be sampled by Monte Carlo
based methods, whereas high-dimensional spaces require more so-
phisticated approaches.

➤ Metabolomic data, fluxomic data, and thermodynamic properties can
be used to set additional constraints.

➤ The consequences of additional constraints can be assessed by deter-
mining the reduction in the size of the solution space.
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CHAPTER 15

Finding Functional States

For typical biological networks, the number of reactions (n) is
greater than the number of compounds (m) resulting in a plurality of feasi-
ble steady-state flux distributions. Although infinite in number, the steady-
state solutions lie in a restricted region, the null space (Chapter 9). The null
space can be used to define the range of all allowable phenotypes of a given
network [233], since it specifies all the steady-state flux distributions that
it can achieve. However, only a particular set of phenotypes are expressed
under particular conditions. Optimization can be used to find particular
solutions of interest.

15.1 Finding “Best” Flux Distributions Through Optimization

The null space of the stoichiometric matrix is bounded since the fluxes
have maximal values.1 Linear optimization can be used to find solutions
of interest within the bounded null space; see Figure 15.1. The bounded
null space is defined by

Sexch

(
v
b

)
= 0 where 0 ≤ vi ≤ vi,max and bi,min ≤ bi ≤ bi,max (15.1)

To pick out particular solutions within this space, one has to define the
desired properties of such solutions. Mathematically, the definition of the
solutions sought is stated in the form of an objective function. A general

1 Note that a statement of maximal values for all fluxes may not be required. Recall Figure 9.6
and the associated discussion about redundant and dominant constraints.
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Figure 15.1: A schematic representation of the capped null space and a particular solution
located within that space. Redrawn from [233].

linear objective function is defined as

Z = w ·
(

v
b

)
=

∑
i

wivi +
∑

j

w jb j (15.2)

where the vector w is a vector of weights (wi) on the internal and exchange
fluxes, vi and b j respectively. The weights are used to define the properties
of the particular solutions sought. Z is then optimized, i.e., minimized
or maximized as appropriate. The solutions to these equations give the
best use of the defined network to meet the stated objective function in
a steady state. With a linear objective function (Z), this constrained opti-
mization procedure is known as linear programming (LP). The constraints
(equation 15.1) and the objective function (equation 15.2) can represent
dual causation. The former is a statement of physicochemical constraints,
while the latter can be used to represent biological features.

15.2 Objective Functions

The general representation of Z in equation 15.2 enables the formulation
of a range of functionalities and network states of interest. Z can be used
to represent exploration of the metabolic capabilities of a network, physio-
logically meaningful objectives (such as maximum cellular growth rate), or
design objectives for a microbial production strain. A number of different
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objective functions have been used to analyze metabolic networks. These
include:

� Minimize ATP production: This objective is stated to determine con-
ditions of optimal metabolic energy efficiency and has been used to
study the properties of the mitochondrion [181, 238].

� Minimize nutrient uptake: This objective has been used to study
conditions under which the cell performs a particular metabolic
function while consuming the minimum amount of available nutri-
ents. This objective has been used to study yeast cultures grown in
chemostats [54].

� Minimize the Manhattan (absolute) norm of the flux vector: This ob-
jective can be applied to satisfy the strategy of a cell to minimize the
sum of the flux values, or to channel metabolites through the network
using the lowest overall flux. Using the Euclidean norm of the flux
vector would lead to quadratic programming (QP).

� Maximize metabolite production: This objective function has been
used to determine the biochemical production capabilities of a partic-
ular cell, such as the maximal production rate of a chosen metabolite
(i.e., lysine or phenylalanine). It also has been used to study the bio-
chemical production capabilities of Escherichia coli [230]

� Maximize biomass formation: This objective has been widely used
to determine the maximal growth rate of a cell in a given environ-
ment [49, 99]. We will discuss this objective function in detail in
Section 15.5.

� Maximize biomass and metabolite production: By weighing these two
conflicting objectives appropriately, one can explore the trade-off be-
tween cell growth and forced metabolite production in a production
strain [25, 169, 170].

� More detailed objective functions that take thermodynamic and ki-
netic considerations into account have been described [92].

Some issues
The definition of the solution space has relatively few ambiguities associ-
ated with it, but the statement of the objective carries more uncertainties.
There are a few important issues associated with the objective function of
biomass formation:

� The biomass composition is variable and depends on the growth rate
and the growth environment, and is different from one organism to an-
other. These differences may change the predicted optimum behavior.
This issue has been addressed [171, 172].
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Figure 15.2: A simple LP problem. Modified
from [17].

� Sensitivity calculations show that the optimum growth rates do not
change significantly by varying the monomeric composition of the ma-
jor macromolecules [233]. For instance, if the valine-to-alanine ratio
is varied in the protein of a cell, the optimal growth rate does not
significantly change. Conversely, if the protein relative to lipid com-
position in a cell changes, the optimum solution can be noticeably
affected.

� The statement of a physiologically relevant objective function repre-
sents a guess about the “goals” of a cell. Although such assumptions
can be rationalized, one never really knows the “true” objective. To
help deal with this issue, one can invert this problem and look at an
edge of the solution space, and then calculate all the objective func-
tions that are maximized under those conditions [23].

15.3 Linear Programming: the Basics

Linear optimization is accomplished through LP. This optimization pro-
cedure is routinely used for the solution of a variety of different problems.
The basics of LP are described in this section.

How LP works
A readily understandable example of an LP problem is shown in Fig-
ure 15.2. Panel A shows a reaction network where a compound A is picked
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up by a cell and is metabolized to B via two different routes and then se-
creted. One route, v1, produces high energy phosphate bonds in the form
of ATP. The other route, v2, produces redox potential in the form of NADH.
The flux balance for this system is

v1 + v2 = b1(=b2) (15.3)

Since v1 ≥ 0 and v2 ≥ 0, these constraints define the solution space to be a
line segment that is the intersection of the positive orthant and the single
flux balance equation. Once b1 is measured and has a known numerical
value, this intersection forms a closed line in the (v1, v2)-plane. Given a
stated objective, this line segment is searched for the best solution. The
optimal solutions for the maximization of ATP production or maximization
of NADH production are shown in Figure 15.2B and they lie at the ends
of the line segment that forms the solution space. This example shows a
one-dimensional solution space and the optimal solutions for two single-
valued objective functions.

Extreme points as optimal solutions
The fact that solutions lie at the edge of the allowable solution space is
particularly easy to see from the example in Figure 15.2. If one maximizes
ATP production, it is clear that v2 should go to zero and v1 to the maximum
value equal to the uptake rate. This optimal solution thus lies at the right
extreme point of the solution space. Conversely, if one maximizes the redox
production from this metabolite in the form of NADH, the optimal solution
is v2 equal to the uptake rate b1, and v1 goes to zero. That optimal solution
is at the opposite end of the solution space.

Location of the optimal solutions
Next, we consider a slightly more complex example where a two-
dimensional solution space is formed by three inequalities (Figure 15.3).
We can also consider an objective function that is a combination of the two
variables. For a fixed value of Z, the objective function forms a straight line
in the two-dimensional plane. If the value of Z is changed, the line moves
and intersects the two-dimensional polytope at a different location. As we
increase the value of Z, the intersecting line moves closer and closer to
the periphery of the solution space. The maximum value for the objective
function is found when it intersects the solution space at a single point,
which is an extreme point in the space.

The types of solutions found
There are three types of feasible solutions encountered in solving LP prob-
lems. They are illustrated in Figure 15.4.
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Figure 15.3: A two-dimensional depiction of a bounded two-dimensional solution space and
an objective function that is being maximized. In this illustrative case, there are no equality
constraints, but there are inequality constants: 0 ≥ A ≥ 60 and 0 ≥ B ≥ 50. Additionally, there
is a simultaneous constraint: A + 2B ≤ 120. The objective function is Z = 20A + 30B .

1. Unique solutions: For small networks, the optimal solution typically
lies at an extreme point of the feasible set, as is the case in Figure 15.3.

2. Degenerate solutions: In some instances, the line formed by a con-
stant value of an objective function is parallel to a constraint. In this
case, the entire edge of the feasible set has the same value as the
objective function, and all the points along the edge represent an op-
timal solution. This edge represents an infinite number of solutions,
and mathematically they are called degenerate solutions. These solu-
tions are equivalent optimal solutions since they correspond to the
same value of the objective function. The occurrence of equivalent
optimal solutions is frequent in genome-scale networks [184], and
thus genome-scale networks are typically able to achieve the same
overall functional network state in many different ways.

Unique solution Degenerate solution Unbounded solution

Optimal solution
in a corner

Optimal solution
along an edge

Optimal solution not 
found--region unbounded

Figure 15.4: A graphical representation of the types of feasible solutions found by LP. The
dashed lines are lines of constant Z.
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Direction of increasing Z

No increase in objective
function along this border

Figure 15.5: A graphical representation of a zero and nonzero shadow price at the edge
of a boundary. The thick lines denote constraints, while the dashed lines represent lines of
constant value of the objective function as in Figure 15.3.

3. Unbounded solutions: Sometimes the feasible set is unbounded and
the objective function increases without limit in the open direction.
In this case, no solution is found. Biologically, such situations are un-
realistic, and if detected, typically result from an incomplete network
formulation.

If the constraints are inconsistent, then the set of feasible solutions is
empty and no solution can satisfy the stated constraints. In such cases, the
constraints are incorrectly formulated.

Assessment of the sensitivity of the optimum solution
The sensitivity of the optimal solution is measured by shadow prices and
reduced costs.

� Shadow prices: The shadow prices are the derivatives of the objective
function at the boundary with respect to an exchange flux:

πi = − ∂ Z
∂bi

(15.4)

The shadow prices define the incremental change in the objective
function if a constraining exchange flux is incrementally changed.
Shadow prices may change discontinuously as bi is varied. The
shadow prices can be used to determine whether an optimal func-
tional state of a network is limited by the availability of a particular
compound (Figure 15.5). The shadow prices thus essentially define the
intrinsic value of the metabolites toward attaining a stated objective.
This feature has proven useful for interpreting optimum solutions and
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for metabolic decision making [231]. We note that in some literature,
the definition of a shadow price is the negative of what is stated in
equation 15.4.

� The reduced costs: The reduced costs can be defined as the amount by
which the objective function will change with the flux level through
an internal flux that is not in the basis solution (i.e., fluxes that have
a zero net flux):

ρi = − ∂ Z
∂vi

(15.5)

Several important questions arise that can be addressed using the re-
duced costs. The reduced costs can be used to analyze the presence
of alternate equivalent flux distributions. If a reduced cost is zero, it
means that the flux level through the corresponding reaction does not
change the objective function. Thus, the reduced costs can be useful
examining the effect of gene deletions on the overall function of a
network.

15.4 Exploring Network Capabilities

The linear programming methods that have been outlined and illustrated
for very simple examples are highly scalable and can be applied to net-
works of arbitrary complexity. In this section, we will perform a few illus-
trative computations using the core E. coli network detailed in Appendix B.
These methods are now routinely applied at the genome scale [110, 175].

The core metabolic network in E. coli
The core metabolic network of E. coli (see Appendix B) contains 56 com-
pounds and 64 reactions. This network can be used to compute various
properties of E. coli metabolism. The solution to the linear optimization
problem is a 64-dimensional flux vector v, a string of 64 numbers. These
numbers are hard to interpret directly. The best way to interpret the solu-
tion is to put the numbers on the reaction map so that the steady-state flux
distribution can be visualized in the form of a flux map. The reaction map
for the core E. coli metabolism is shown in Appendix B.

Determining network properties
The core E. coli metabolic network can be interrogated for various capabil-
ities, including the maximal yields of cofactors, precursors, and biomass
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Table 15.1: Maximum stoichiometric yields of biosynthetic precursors from glucose under
aerobic conditions. Note that the production of two OAA requires eight carbon molecules,
two of which come from CO2. The core network was allowed to fix CO2 during these
computations.

Maximum

Metabolite yield πATP πNADH πNADPH

G6P 0.889 −0.042 0.069 −0.069

F6P 0.889 −0.042 0.000 −0.069

R5P 1.055 −0.049 0.000 −0.082

E4P 1.297 −0.061 −0.101 −0.101

G3P 1.684 −0.079 −0.101 −0.132

3PG 2.000 0.000 0.000 0.000

PEP 2.000 0.000 0.000 0.000

PYR 2.000 0.000 0.000 0.000

AcCoA 2.000 0.000 0.000 0.000

αKG 1.000 0.000 0.000 0.000

OAA 2.000 0.000 0.000 0.000

achievable from a particular substrate or in a particular growth environ-
ment.

� Yield of key cofactors: If the core E. coli metabolic network is pro-
vided one unit of glucose and unlimited oxygen, it will maximally
produce 15.00 units of ATP. This number is different than the num-
ber (38) reported in standard biochemistry textbooks. The difference
is due to the fact that the electron transport system (ETS) in E. coli
does not have a P/O ratio of 3 as assumed to be the case for mito-
chondria in animal cells. The P/O ratio for E. coli is closer to 1.0. The
flux distribution that leads to maximal ATP production is shown on
the reaction map in Figure 15.6A. The production and use of ATP
during maximal production is shown in Figure 15.6B. Note that PFK
uses one ATP, whereas first phosphorylation step to G6P is performed
by the PTS by transferring the high energy phosphate group from
PEP. Figure 15.7 shows the maximal production rates of NADH from
glucose.

� Yield of the biosynthetic precursors: Various yields can be calculated
based on any carbon source, once the LP problem has been set up.
The results from maximal yield computations of the biosynthetic pre-
cursors using one unit of glucose as an input are shown in Table 15.1.
The shadow prices can be used to determine the governing constraint,
such as additional needs for key cofactors.
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Figure 15.6: Maximal ATP production in the E. coli core metabolic network. Maximum ATP
yield is 15 mmol/mmol glucose. (A) The flux map. (B) The rates of production and use of
ATP under maximal yield conditions. Prepared by Adam Feist.
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Figure 15.7: Maximal NADH production in the E. coli core metabolic network. Maximum NADH
yield is 10 mmol/mmol glucose. (A) The flux map. (B) The rates of production and use of
NADH under maximal yield conditions. Prepared by Adam Feist.
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Figure 15.8: The generation of succinate from fumarate in the core E. coli model.
The molar yield (mol/mol) of all 2,598 extreme pathways is shown. Prepared by Ines
Thiele.

Occurrence of equivalent solutions
The relatively small core E. coli network has equivalent optimal solutions.
The same optimal production of succinate from fumarate can be achieved
in more than one way (Figure 15.8). The optimal value for succinate pro-
duction is 0.86 mol/mol. This identical value can be achieved in 88 differ-
ent ways; see Figure 15.8. In other words, the core network can support the
same rate of succinate production through the use of different functional
states. Two examples are shown in Figure 15.9, where two very different
flux distributions result in the same overall yield.

Extreme pathways and optimal states
The extreme pathways are extreme conditions in the flux solution space
and can thus represent optimal solutions. The extreme pathways that give
a succinate yield of 0.86 from fumarate are alternate equivalent optimal
solutions. In fact, any nonnegative linear combination of them (with �αi =
1, see Section 13.7) will also be an optimal solution. Figure 15.8 shows all
the extreme pathways in the core model that lead to biomass generation,
rank ordered by yield.
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Figure 15.9: Two flux maps that give the same suc-
cinate generation from fumarate of 0.86, but have
very different flux distributions. Prepared by Ines
Thiele.

15.5 Producing Biomass

Growth can be defined in terms of the biosynthetic requirements to make
a cell. These requirements are based on literature values of experimentally
determined biomass composition. Thus, biomass generation is defined as
a linked set of reaction fluxes draining intermediate metabolites in the
appropriate ratios and represented as an objective function Z. This concept
is illustrated in Figure 15.10A, which shows a schematic of a cell where a
variety of substrates can enter the cell to produce all the compounds that
constitute cellular components.
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Some objective functions are used for genome-scale models. (B): The core metabolic network
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Biomass formation in E. coli
The requirements for making 1 g of E. coli biomass from key cofactors and
biosynthetic precursors have been documented [143]. This means that for
E. coli to grow, all these components must be provided in the appropriate
relative amounts. Key biosynthetic precursors are used to make all the
constituents of E. coli biomass [143]. Their relative requirements to make
1 g of E. coli biomass are

Zprecursors = + 0.205vG6P + 0.071vF6P + 0.898vR5P

+ 0.361vE4P + 0.129vT3P + 1.496v3PG
(15.6)+ 0.519vPEP + 2.833vPYR + 3.748vAcCoA

+ 1.787vOAA + 1.079vαKG
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The biomass composition of a cell thus serves to define the weight vector w
in this objective function. In addition to the material that is needed to
form biomass, cofactors are needed to drive the process. The cofactor re-
quirement to synthesize the monomers from the precursors (amino acids,
fatty acids, nucleic acids) and to polymerize them into macromolecules
is

Zcofactors = 42.703vATP − 3.547vNADH + 18.22vNADPH (15.7)

Note that the biosynthetic reactions generate net redox potential in form
of NADH. Thus the mass and cofactor requirements to generate E. coli
biomass are:

Zbiomass = Zprecursors + Zcofactors (15.8)

The full growth function for a genome-scale network of E. coli is more
complicated than the one given above [185].

Maintenance energy requirements
To simulate growth situations, the biomass maintenance requirements
have to be accounted for. Energy is used for both growth associated and
nongrowth associated maintenance functions. These requirements for E.
coli are estimated to be 7.6 mmol/ATP/gDW/h and 13.0 mmol ATP/gDW
respectively [229]. The latter represents use of ATP that is proportional
to the biomass being produced, while the former is constant drain that
needs to be satisfied even in the absence of growth. Thus, the maintenance
requirements are

Zmaintenance = Zgrowth associated + Znongrowth associated (15.9)

and the combined biomass synthesis and maintenance requirements form
a demand function

Zgrowth = Zbiomass + Zmaintenance (15.10)

that requires both functions to be fulfilled at the same time.
The flux distribution through the core E. coli metabolic network for

the optimal growth computed based on equation 15.10 is shown in
Figure 15.11. The growth rate achieved is 0.59/h. If the maintenance re-
quirements are removed from the objective function, and we recompute
the growth rate based on equation 15.8 we get a growth rate of 0.64/h.
The flux distribution changes a little bit (no flux changes by more than 2
mmol/gDW/h). Using Z = Zgrowth, less flux goes through the pentose path-
way and less NADPH for biomass synthesis is available. The flux down
glycolysis through the TCA cycle increases (relative to Z = Zbiomass) that
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Figure 15.11: The flux distributions for the core metabolic network in E. coli for growth
(biomass production plus maintenance, equation 15.10) from an input of 7 mmol glucose per
gDW per hour. The thickness of the arrows is proportional to the flux through the reaction.
The computed growth rate is 0.59/h. Prepared by Jennie Reed.

leads to more production of NADH whose electrons go down the ETS to
produce more ATP to meet the maintenance requirements.

The growth rate can be computed as a function of the glucose consumed,
Figure 15.12. The fulfillment of the stoichiometric biomass synthesis re-
quirement is a straight line through the origin. Once the two maintenance
requirements are added, the line intersects the x-axis and becomes slightly
nonlinear. The glucose uptake rate at intercept with the x-axis represents
the glucose that must be consumed just to satisfy the nongrowth associated
maintenance requirement. The growth rate increases more slowly with the
glucose uptake rate when the growth associated maintenance requirement
is imposed since not all the glucose consumed can be used to meet biosyn-
thetic requirements.
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Figure 15.12: The growth rate as a function of glucose uptake rate. The two cases cor-
respond to just biomass synthesis (equation 15.8) and to biomass synthesis with simul-
taneous fulfillment of the maintenance requirements (equation 15.10). Prepared by Adam
Feist.

Gene deletions
One common application resulting from the ability of LP to determine
network capabilities has been to assess the consequences of gene knock-
outs. If a gene is removed from the genome of an organism, one or
more reactions can be rendered inoperative. The GRP associations (see
Chapter 3) determine how a gene deletion affects the reactions in the net-
work. The capabilities of the network without these reactions can be as-
sessed and compared to the full network using the same procedures as
discussed above. Gene knockout strains and their growth properties have
been studied at the genome scale. An increasingly large set of knockouts
and growth conditions have been performed in recent years [71, 115]. For
Saccharomyces cerevisiae and E. coli these results show that genome-scale
models compute the consequences of metabolic gene knockouts correctly
in about 70–90% of the cases considered.

A simple example of a gene deletion analysis is the determination of
the effects of the removal of each gene in the core E. coli model on the
network’s ability to generate the biosynthetic precursors. Such an analy-
sis is performed by setting the objective function to maximize the pro-
duction of one of the biosynthetic precursors. Then one performs re-
peated optimization computations in each of which a flux is constrained
to zero for a reaction that is rendered inactive due to gene deletion.
The procedure is then repeated for all the biosynthetic precursors of
interest.
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Figure 15.13: The effect of removing reactions from the core E. coli metabolic network on its
ability to produce the biosynthetic precursors. The objective function is set to produce a pre-
cursor and the optimization is repeated for a series of cases where the flux has been set to zero
for the reactions being studied. This procedure is performed for all the precursor molecules
of interest. White areas indicate that the reaction deleted has no impact on production, gray
areas indicate inhibited production, and black areas indicate that no production is possible.
Prepared by Scott Becker.

The entries in Figure 15.13 can be studied:

� The knockout of the GLCpts (i.e., PTS) prevents the network from
producing any of the precursors. The core model has no other way
to import glucose. Similarly, if the phosphate transporter (PIt) is re-
moved, none of the precursors that contain phosphate can be made.

� GAPD, PGK, and PGM, all in lower glycolysis, prevent the production
of all the precursors except those that are found in the pentose pathway
and in upper glycolysis. Without these enzymes there is no way that
the core network can get carbon into the TCA cycle.

� The removal of three TCA cycle reactions (ACONT, CS, ICDyr) and of
transhydrogenase (NADTRHD) and enolase (ENO) prevents the pro-
duction of αKG.
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� The removal of three reactions in the pentose pathway (RPI, TALA,
TKT1) prevents the production of R5P.

Almost all of these predictions of lethality are consistent with experimen-
tal data [51].

Similarly, the reduction in yield of the precursors is shown in the gray
areas in the Figure 15.13. This table could be a map to experimentation, by
supplementing the medium with the precursors that the knock-out strain
cannot produce to determine if growth is then possible.

Effects of proton balancing
Metabolizing a substrate to support growth often requires the secretion or
uptake of a proton. Thus, if a cell grows in an unbuffered environment, the
pH of the medium can change as a result of proton exchange with the cellu-
lar surroundings. The core E. coli model was allowed to produce biomass
from a variety of substrates as the limiting nutrient (Figure 15.14A). The
optimal growth rate was then computed. In each case considered, the
network needed to exchange a proton with the environment to achieve
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maximal growth. In some cases the import of a proton was required (mak-
ing the environment alkaline), and in some cases the secretion of a proton
was required (leading to an acidification of the growth medium). Carbon
sources such as glucose will lower the medium pH while growth on other
carbon sources (such as fumarate or pyruvate) will raise the pH of the
medium.

The importance of the proton balancing to cell growth can be assessed by
restricting the proton exchange rate with the environment. The growth rate
can be computed as a function of the proton exchange rate (Figure 15.14B).
In all cases the growth rate was a strong function of the proton ex-
change rate. For three substrates (pyruvate, lactate, α-ketoglutarate) re-
duced growth was achieved without any proton exchange, while for other
substrates (glucose, ethanol, fumarate and succinate) no growth was possi-
ble without exchanging a proton. This example illustrates the importance
of charge and elemental balancing of the reactions in a network.

15.6 Summary

➤ The fundamental subspaces of S are bounded with the application of
vmax values.

➤ Specific points within these bounded solution spaces can be deter-
mined through optimization procedures.

➤ The optimization is based on a stated objective.

➤ Objectives can be used to probe network capabilities, to represent
likely physiological objectives, and to represent candidate biological
designs.

➤ If the objective function is linear, then linear programming can be used
to find the optimal solution.

➤ Unique optimal solutions are found in the corners of the bounded
solution space.

➤ Frequently, for large biological systems, the solutions are found on
an edge of a surface of the solution space leading to redundant solu-
tions. In such cases, many different solutions lead to the same optimal
objective value.

➤ The computation of extreme pathways leads to the identification of the
edges of the solution space. If the optimal solution lies on this edge,
then the corresponding extreme pathway is the optimal solution.

➤ Network capabilities can be assessed and various physiological con-
siderations can be addressed using LP.
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CHAPTER 16

Parametric Sensitivity

One optimal solution is rarely of interest. The constraint-based
optimization method introduced in the last chapter is scalable and can
be repeatedly applied for varying environmental and genetic parameters.
This scalability has spurred a growing number of analysis methods that
have been developed under the constraint-based approach [176]. Here we
describe some of the methods that are used to characterize a changing en-
vironment and genetic makeup. To date, the focus has been on the steady-
state flux distributions, but now this approach is being used to study all
allowable concentration [9] and kinetic states [55] and to algorithmatize
iterative model-building procedures [33, 86].

16.1 Overview of Constraint-Based Methods

Constraint-based reconstruction and analysis (COBRA) procedures for an-
alyzing the allowable phenotypic states of microorganism on a genome
scale have developed rapidly in recent years [176, 183]. COBRA consists
of three fundamental steps (Figure 16.1):

� First, as detailed in Chapter 3, a genome-scale network reconstruction
(GENRE) is formed,

� Second, the appropriate constraints are applied to form the corre-
sponding genome-scale model (GEM) in silico, and

� Third, various analysis methods are applied to evaluate the properties
of GEMs.

This chapter focuses on the methods used in the third step.
It is important to note that only a curated and quality-controlled recon-

struction can lead to organism-specific GEMs. Many automated procedures
generate reaction maps that cannot be used as a basis for computation. The

265
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Figure 16.1: An overview of constraint-based methods used to analyze properties of recon-
structed networks. Modified from [176].

reasons for this vary, but often basic rules of chemistry may be violated,
pathways may have gaps, and so forth. The conversion of a GENRE to a
GEM is a laborious and detailed process, but it has been accomplished for
a number of organisms (Chapter 3).

Many in silico methods have been developed under the COBRA frame-
work as outlined in Figure 16.1. These growing number of methods can be
broadly classified into several categories:

1. Finding “best” or optimal states within the allowable range and
studying the properties of such solutions. The methods in this cate-
gory involve the computations of a single optimal solution, and the
study of alternate, or equivalent, optimal solutions. One can also
study the flux variability amongst all equivalent solutions.

2. Investigating how values for fluxes vary by changing one, two,
or more parameters, and to investigate how strongly reactions are
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coupled (correlated) in all functional states of networks. Often, the
influence of environmental parameters can be varied over a specified
numerical range.

3. Evaluating possible phenotypic changes as a consequence of genetic
variations through the removal of one or more gene products from
the network. These procedures have developed toward genome-scale
designs of metabolic networks.

4. Defining and imposing additional constraints.

Optimization methods
The COBRA methods developed [176], some of which are discussed in this
chapter, rely on the use of various optimization methods. These methods
include:

� Linear programming (LP): this method is used when the problem to be
solved involves a linear set of constraints (equalities and inequalities)
and a linear objective function. LP was discussed in the last chapter
and is used for flux-balance analysis (FBA).

� Quadratic programming (QP): this method is used when the problem
to be solved involves a linear set of constraints (equalities and in-
equalities) and a quadratic objective function. A quadratic objective
arises when one uses a Euclidean distance as an objective function.
When computing the Euclidean distance, the elements of a vector are
raised to a second power. The “least-squares method” is an example
of QP.

� Mixed integer linear programming (MILP): The formulation of LP prob-
lems often leads to the use of discontinuous variables. Often logical
variables are introduced that take on a value of 0 or 1. MILP is used
to solve this type of problem.

� Nonlinear programming (NLP): The most complicated optimization
problems involve the use of nonlinear constraints and/or a nonlinear
objective function. In general, such problems are hard to solve. One
fundamental issue that arises is that the solution space being searched
is nonconvex. In such a circumstance, one cannot guarantee finding
the global optimum for the objective function in the space.

These optimization methods have been deployed in the various analysis
methods developed under the COBRA umbrella. None of these methods
are described in mathematical or algorithmic detail in this text. For such
information one should consult established textbooks in the field such
as [30, 8].
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16.2 Evaluating Optimal States

As outlined in the last chapter, LP can be used to find single optimal
solutions. The problem that is solved is:

maximize Z = w · v
subject to Sv = 0

and vi,min ≤ vi ≤ vi,max, i = 1, . . . , n
(16.1)

Here, v contains both the internal and exchange fluxes. The solution to this
problem may not be unique, as illustrated in Figure 16.2. Various ways to
characterize the range of optimal solutions have been developed.

Alternative equivalent optima
Alternate flux distributions that lead to equivalent optimal network states
are a property of genome-scale networks; recall Figures 15.8 and 15.9.
The number of such alternate equivalent optima varies depending on
the size of the metabolic network, the chosen objective function, and the
environmental conditions. In general, the larger and more interconnected
the network, the higher the number that can be realized. A GEM can re-
produce the same overall functional state of a network in many different
ways. The existence of equivalent optimal states is related to the biological
notion of silent phenotypes. This feature is a network property and rep-
resents a distinguishing feature of the in silico modeling of phenotypes.
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In comparison, solutions sought in the physicochemical sciences are typ-
ically unique (recall Table 2.1).

The methods used to compute alternate optima involve MILP [119, 168].
The basic problem stated in equation 16.1 gives a single optimal solution. A
MILP-based approach can be iteratively implemented by adding additional
constraints (so-called integer cut constraints). At iteration J, we eliminate
one nonzero flux variable by stating∑

i∈NZk

yi ≥ 1 (16.2)

where yi is a binary variable (i.e., either yi = 0 or yi = 1) that is associated
with each reaction. NZ refers to the set of nonzero fluxes in a solution
and J − 1 is used to index the previous iterations. Equation 16.2 makes
sure that at least one of the nonzero fluxes in the previous solution is zero.
Then we introduce another binary variable wi for every reaction to make
sure that previous solutions are not revisited and eliminate one nonzero
flux ∑

i∈NZ J

wi ≤ |NZk| − 1, for k = 1, 2, . . . , J − 1 (16.3)

where |NZk| denotes the number of members of the NZ set. Finally, we
introduce two constraints:

wi + yi ≤ 1 and wivi,min ≤ vi ≤ wivi,max (16.4)

for all i states that lead to “if yi = 1 then vi = 0 else vi,min ≤ vi ≤ vi,max.”
The outcome of such calculations is the identification of extreme points

where the value of the objective function is identical; see Figure 16.2. Any
point on the boundary in between such extreme points is also an equivalent
optimal solution. The sets of such points are called interior solutions. This
approach has been applied to a genome-scale model of Escherichia coli to
identify a large number of equivalent solutions under a variety of growth
conditions [184].

Flux variability
For a given optimal state (Zopt), one can find the maximum and minimum
allowable flux that a particular reaction can have while still supporting
that functional state of the network. This range is computed for each flux
vi of interest by solving two LP problems:

maximize or minimize vi

subject to: Z = Zopt

Sv = 0
and vi,min ≤ vi ≤ vi,max, for i = 1, . . . , n

(16.5)
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Figure 16.3: Flux variability analysis for the core E. coli model for optimal production of suc-
cinate from fumarate. Figure generated by Jennie Reed.

The first constraint fixes the value of the original objective function,
the second constraint forces the flux balance to hold, and the third de-
fines the allowable range for all the fluxes. To find the minimum value for
vi, the corresponding minimization problem is solved. This gives the range
of the allowable numerical values for vi as illustrated in Figure 16.2.

This procedure is similar to the one used to generate the α-spectrum in
Chapter 13. The results can be graphically presented as the α-spectrum
(Figure 13.20) with the individual fluxes on the x-axis and their allowable
range on the y-axis.

Flux variability in the core E. coli model
Fixing Z at the optimal yield in Figure 15.8 and performing the procedure
in equation 16.5 generates the range of fluxes allowable under optimal
conditions (Figure 16.3). There are 88 extreme pathways that result in the
same optimal yield.

Finding objective functions
As discussed in Chapter 15, the statement of an objective function has some
inherent uncertainties and assumptions associated with it. If experimen-
tal data are available, the range of candidate objective functions that are
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maximized under the measured conditions can be computed, as illustrated
in Figure 16.2 [23]. The mathematics used are detailed and are beyond the
scope of this text.

This procedure was applied to a network describing metabolism in
E. coli where experimentally measured flux distributions were avail-
able [196]. The back-calculated objective functions for aerobic and anaer-
obic growth were similar to each other. The set of objective functions
back-calculated were similar to biomass generation, thus indicating that
one metabolic objective function can predict both aerobic and anaerobic
flux distributions and the behavior is consistent with the maximization of
biomass generation.

16.3 Varying Parameters

The sensitivity of the optimal properties of a network can be assessed by
changing parameters over a given range of values and repeatedly comput-
ing the optimal state. Both environmental and genetic parameters can be
considered.

Robustness analysis: varying one parameter
One parameter can be varied in a stepwise fashion and the LP problem
solved for every incremental value. If we are interested in varying v j be-
tween two values, i.e., a and b, we can solve

maximize Zk = w · v
subject to v j = ck

Sv = 0
and vi,min ≤ vi ≤ vi,max i = 1, . . . , n, i �= j

(16.6)

l times, where ck is varied in l increments between a and b; i.e., from
c1 = a to cl = b with ck+1 = ck + (b − a)/(l − 1). The results will generate
a series of l values for Z (Zk, k ∈ [1, l]), and the associated shadow prices
and reduced costs.

Varying oxygen uptake rate in the core E. coli network
The effects of varying the oxygen uptake rate of the core E. coli metabolic
network to support optimal growth can be computed using the procedure
in equation 16.6. The effects of varying the oxygen uptake rate from zero
(completely anaerobic growth) to all the oxygen required for fully oxidizing
the substrate on the growth rate are shown in Figure 16.4.

As the oxygen uptake rate increases from zero, the growth rate increases
(Figure 16.4). There are three linear segments in the rising part of the
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Figure 16.4: The effects of varying the oxygen uptake rate on the ability of the core E. coli
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(they are suboptimal growth states). The optimal point corresponds to the perfect conversion
of glucose into biomass with no bioproduct formation. The shadow prices for fermentation
bioproducts for oxygen uptake rate between 0 and 22 mmol/gDW/h are shown in Table 16.1.
Prepared by Scott Becker.

curve. The shadow price structure changes at each discontinuity. In the
first segment, the shadow prices for acetate, formate, and ethanol are zero
(Table 16.1). These three metabolites are useless to the cell and are thus
secreted. In the second segment, the shadow prices for acetate and formate
are zero and are secreted, while ethanol has value to the growth process as
indicated by the negative shadow price. In the third segment, only acetate
has a zero shadow price and is secreted. At the peak of the curve, the carbon
to oxygen uptake (C/O) ratio is perfect for biomass formation and no by-
products are secreted. Beyond the peak in the curve, too much oxygen
is taken up relative to glucose and the growth rate drops due to forced
dissipation of the excess oxygen. This segment represents an unrealistic
physiological situation as discussed below.
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Table 16.1: The changes in the secretion rate and shadow prices of key metabolites in the
core E. coli metabolic network with varying oxygen uptake rate. The number given is the
secretion rate in mmol/gDW/h, followed by the shadow price in parentheses. Metabolites
with a zero shadow price do not affect the value of the objective function (see equation 15.4)
and are secreted. Metabolites with a negative shadow price can increase the objective
function and are thus not secreted.

Oxygen

uptake Acetate Formate Ethanol Lactate Succinate

0 8.087 (0) 17.08 (0) 8.262 (0) 0 (−0.0045) 0 (−0.011)

6.66 12.988 (0) 14.933 (0) 0 (−0.0030) 0 (−0.0059) 0 (−0.012)

14.7 7.382 (0) 0 (−0.0034) 0 (−0.0095) 0 (−0.012) 0 (−0.022)

22.35 0 (−0.046) 0 (−0.011) 0 (−0.069) 0 (−0.069) 0 (−0.080)

Phenotypic phase planes: varying two parameters
Robustness analysis represents the effects of varying a single parameter on
the performance of a network. In a similar fashion, two parameters can be
varied simultaneously, Figure 16.5 [13, 48]. A set of variables that have

Phenotypic phase plane (PhPP):
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Figure 16.5: Phenotypic phase planes. The center figure shows a three-dimensional rendering
of a maximal growth rate plotted as a function of two variables: the O2 and succinate uptake
rates. A phase plane is a projection of this surface into two dimensions, the floor of the 3D
figure. The line of optimality corresponds to the conditions where the objective function is
optimal (in this case, growth rate). Robustness analysis of the two uptake rates individually is
shown in the two side panels. The graph on the left shows the effect on growth rate on varying
O2 uptake at a fixed succinate uptake rate (as in Figure 16.4) and represents a slice through
the 3D surface at a specific oxygen uptake rate. Conversely, the graph on the right shows
the effect on biomass generation on varying the succinate uptake rate at a fixed oxygen rate.
From [176].
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been of particular interest are the substrate and oxygen uptake rates for
microbial growth. Then the optimal flux-maps can be calculated for all
points in a plane formed by using the substrate uptake rate on the x-axis
and the oxygen uptake rate on the y-axis. A 3D surface can be graphed
above this x, y plane.

The plane formed by the two uptake rates is called the phenotypic
phase plane (PhPP). One can denote each phase as Pnx,y, where P rep-
resents phenotype, n is the number of the demarcated region for this
phenotype, and x, y are the two uptake rates on the axes of the plane.
The PhPP in some ways resembles the phase planes used in physical
chemistry, which define the different states (i.e., liquid, gas, or solid) of a
chemical system depending on the external conditions (e.g., temperature,
pressure).

Although one can compute an infinite number of optimal solutions in
the PhPP, it turns out that there are a finite number of fundamentally dif-
ferent optimal functional states present in the PhPP. The demarcations
between the regions of different functional states can be determined from
the shadow prices of the variables that are represented on the axes of the
PhPP. As the robustness analysis shows, the shadow prices can be used
to interpret shifts from one optimal flux distribution to another. This pro-
cedure leads to the definition of distinct regions, or phases, in the PhPP
in which the optimal use of the network is fundamentally different, corre-
sponding to a different functional state.

The regions in the PhPP can be defined based on the contributions of
the two parameters represented on the x- and y-axes to the objective func-
tion. To facilitate such an interpretation, we define the ratio of the relative
shadow prices for the two variables on the axes of the PhPP:

α = −πx

πy
(16.7)

where π is the shadow price (see equation 15.4) and x and y refer to the
variables on the x- and y-axes. The negative sign on α is introduced in
anticipation of its interpretation. The ratio α is the relative change in the
objective function for changes in the two key exchange fluxes. In order
for the objective function to remain constant, an increase in one of the
exchange fluxes will be accompanied by a decrease in the other, and thus
we introduce the negative sign on the definition of α. The parameter α is
thus the slope of a line in the PhPP along which the value of the objective
function is a constant. This line is called an isocline.

The slope of the isoclines within each phase of the PhPP is calculated
from the shadow prices. Thus, the slope of the isoclines will be different
in each region of the PhPP. Based on these considerations, we identify four
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Figure 16.6: Characteristics of the PhPP. (A) Phases in a PhPP and (B) isoclines and classification
of different phases.

types of regions on the PhPP (Figure 16.6):

1. In phases where the α value is negative, there is dual limitation of
the substrates. Based on the absolute value of α, the substrate with a
greater contribution toward obtaining the objective can be identified.
If the absolute value of α is greater than unity, the substrate along the
x-axis is more valuable toward obtaining the objective, whereas if the
absolute value of α is less than unity, the substrate along the y-axis
is more valuable to the objective.

2. The phases where the isoclines are either horizontal or vertical are
phases of single substrate limitation; the α value in these phases will
be zero or infinite, respectively. These phases arise when the shadow
price for one of the substrates goes to zero, and thus has no value to
the cell.

3. Phases in the PhPP can also have a positive α value; these are termed
“futile” phases. In these phases, one of the substrates is inhibitory
toward obtaining the objective function, and this substrate will have
a positive shadow price. The metabolic operation in this phase is
wasteful, in that it consumes substrate that is not needed to improve
the objective, i.e., the post-peak segment in Figure 16.4. Phases with
positive α values are expected to be physiologically unstable. For ex-
ample, under selection pressure, cells would move their phenotype
state out of the phase.

4. Finally, due to stoichiometric limitations, there are infeasible steady-
state phases in the PhPP. If the substrates are taken up at the rates
represented by these points, the metabolic network is not able to obey
the mass, energy, and redox constraints while generating biomass.
The metabolic network can only transiently operate in such a
region.
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PhPP for the core E. coli model
The phase plane for aerobic growth on glucose is shown in Figure 16.7.
The PhPP (Figure 16.7B) has four phases. They are consistent with the
robustness analysis in Figure 16.4. At low oxygen uptake rates, the phase
P4O2,gluc is characterized by the secretion of acetate, formate, and ethanol.
P3O2,gluc has acetate and formate secreted, and P2O2,gluc has only acetate
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secretion. These three phases have isoclines with negative slopes. The line
of optimality (LO) represents the condition where all the carbon taken up
is fully oxidized or incorporated into biomass. P1O2,gluc has isoclines with a
positive slope and are thus phenotypically unstable, i.e., if the glucose rate
is fixed, then lowering the oxygen uptake rate toward the LO will increase
the growth rate. Thus, the maximum allowable oxygen uptake rate would
not be chosen to maximize growth rate.

16.4 Changing the Genotype

Many situations of interest involve the analysis of the consequences of
the loss or gain of gene function. These may result from the removal of
one or more genes from a genome that results in the loss of a reaction in
a network. One may also be interested in the design of new strains and
determine what genes need to be added or removed in order to design a
strain that can achieve certain functional states of interest. The gene dele-
tion analysis shown in Figure 15.13 and the computations on the lethal
lines in Figure 7.5 are examples of analyzing the consequences of gene
deletions. Several sophisticated in silico analysis methods have been de-
veloped to carry out analyses of the consequences of gene deletions. They
are graphically illustrated in Figure 16.8 and will be briefly discussed in
this section.

Minimization of metabolic adjustment (MOMA)
This method was developed to predict the changes in the location of the
flux vector within the solution space if the function of a gene product is
lost [203]. A loss of gene product may reduce the solution space. If an
optimal functional state for the wild-type strain was in the portion of the
solution space that is eliminated with the loss of the function of a gene
product, it will have to be projected into the reduced solution space to
represent functions of the knockout strain. MOMA finds a new solution in
the reduced solution space such that the Euclidean distance between the
wild-type state and the reduced solution space is minimized. Since the
Euclidean distance is not a linear function, this procedure uses quadratic
programming.

Mathematically the problem is stated as:

Minimize Z = (vKO − vwt)T (vKO − vwt)
subject to Sv = 0

and v j = 0 resulting from the knockout
except vi,min ≤ vi ≤ vi,max, i = 1, . . . , n i �= j

(16.8)
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secretion. OptKnock identifies gene knockouts such that in order for a cell to grow optimally, it
must produce the desired by-product (OptKnock Mutants A and AB – triangles). Figure adapted
from [176].

where vKO is the flux distribution in the knockout strain, vwt is the optimal
solution for the wild-type strain, and the index j represents the fluxes that
are removed from the network as a result of the gene knockout.

MOMA analysis of core E. coli
The MOMA projection of the optimal growth state of the core E. coli model
following the deletion of PFK corresponds to a biomass of 0.0108 g/mol
glucose. This point in the reduced solution space is the closest (using
Euclidean distance) to the optimal biomass production of 0.0861 g/mol
with the full set of reactions. However, an LP search (equation 16.1) over
the reduced space finds an optimal yield of 0.0704 g/mol. The correspond-
ing flux distributions are shown in Figure 16.9. The LP search identifies a
solution that is essentially a textbook use of the classical pathway, with the
additional use of PPC as an entry route to the TCA (Figure 16.9A). The LP
optimization of the PFK knockout produces a flux map where glucose is
processed through the pentose pathway to generate NADPH. The transhy-
drogenase converts NADPH to NADH that then donates the electrons to the
ETS to produce ATP. The TCA is thus partially used. The MOMA projection
changes this pathway significantly (Figure 16.9B). In the MOMA solution,
a PPC-PPCK cycle appears, the glyoxylate shunt and transhydrogenase is
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Figure 16.9: MOMA analysis of the PFK knockout for stoichiometric biomass production (no
maintenance). (A) The wild-type flux distribution (yield = 0.0861 g/mol). (B) The MOMA projec-
tion (yield = 0.0108 g/mol). (C) The LP solution for the PFK knockout (yield = 0.0704 g/mol).
Prepared by Scott Becker.

used, and quite a bit of succinate is produced. This flux map might be
taken as a prediction of the initial response to the loss of PFK.

Bilevel optimization procedures
Bilevel optimization is the nesting of objectives. In this way, one can syn-
chronize physiological and engineering objectives [25, 169, 170]. One can
put an outer optimization problem over the E. coli biomass optimization
problem. This outer problem is used to find the minimum number of gene
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Table 16.2: The minimum gene deletion sets in the core E. coli network that lead to
succinate secretion under optimal growth conditions. Prepared by Markus Herrgard.

Succinate Oxygen

Reactions Growth rate secretion uptake

Strain eliminated (1/h) (mmol/gDW/h) (mmol/gDW/h)

WT 0 0.86 0.00 22.35

CyoA-/Pyka-/Pykf- 2 0.16 6.06 0.00

CyoA-/Pflc- 2 0.21 0.78 0.00

AceE-/Sdh-/Zwf- 3 0.48 6.34 12.42

AckA-/FumA-/FumB-/FumC-/Zwf- 3 0.58 5.61 15.11

Pgi-/Pta-/Sdh- 3 0.69 3.14 19.01

Ppsa-/Pta-/Sdh- 3 0.72 2.24 20.68

knockouts or gene additions that maximizes the secretion of a by-product
of interest while the inner problem maximizes the biomass formation. The
bilevel optimization procedure has been used to compute optimal designs
based on the genome-scale E. coli model. Some of these designs have been
implemented for the production of lactate in E. coli [62].

Figure 16.10: The succinate secretion rate graphed as a function of the growth rate for the
core E. coli network, and the deletion sets given in Table 16.2. The maximum growth rates are
indicated by the points as shown. Prepared by Markus Herrgard.
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Analysis of the core E. coli network
The bilevel optimization procedure can be used to calculate the gene dele-
tion sets that lead to the secretion of succinate as growth rate is optimized.
The five smallest gene deletion sets are shown in Table 16.2. The relation-
ship between the growth rate and the succinate secretion rate is shown in
Figure 16.10. For the core network, this curve decreases monotonically.
The maximal growth rate is found at the point represented by the open
square where there is no succinate secreted. The bilevel optimization com-
puted deletion sets give a curve that has a maximal growth rate at a finite
secretion rate of succinate (solid points in Figure 16.10). To optimize a
bioprocess, a balance between growth and secretion rate is required [234].
The best balance tends to favor a small drop in the growth rate, relative
maximal growth, and a small per-cell secretion rate of the desired product.

16.5 Summary

➤ Constraint-based reconstruction and analysis at the genome scale has
proved to be useful.

➤ A growing number of methods to analyze the properties of genome-
scale networks have emerged. These methods are principally based
on the use of constraint-based optimization.

➤ Various analysis methods that look at optimal states, parameter varia-
tions, and the consequences of gene knockouts have been developed.
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CHAPTER 17

Epilogue

Now that we have come to the end of this text, it is time to ponder
what we have done, how far we have come, and what lies ahead. In this
chapter I put forth some of my thoughts related to these issues.

17.1 Types of questions asked in biology

There are fundamentally three types of questions that are asked in biology:
“what,” “how,” and “why.”

What is there?
We have made substantial strides in answering this type of question. We
can sequence entire genomes and use bioinformatic analyses to determine
what is in a genome. We can expression profile a genome under various
conditions. We now have extensive information about genomes, cells, and
organisms, and are in a position to continue to generate much more. It is
indeed this impressive availability of data that has made biology “data-
rich” and has been the driving force for the emergence of systems biology.

How does it work?
Science seeks to generate mechanisms and theories to explain the world
around us. Functional genomics tries to assign function to various gene
products and segments of a genome. The large number of interactions that
needs to be taken into account to explain cellular components has grown
substantially with our growing knowledge of cellular components. The
drive to reconstruct genome-scale networks and to assess their functional
states is a response to this need. This book focused on biochemically, ge-
netically, and genomically based “bottom-up” approaches to answer the
“how” questions systematically and at a network level.

282
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Why does it work the way it does?
The answers to such questions are generally very difficult to obtain. In
biology, they are based on the understanding of evolution and making
teleological arguments. This book does not address such issues, although
the statement of biological objectives and assessing their importance bor-
ders on such questions. Surprisingly, the outcome of adaptive evolution in
bacteria can be predicted in genome-scale models with about 70%–80%
success rate [62, 64, 99].

17.2 Why make models?

Mathematical modeling has been practiced in various branches of science
and engineering. The purpose and utility of model building has been suc-
cinctly summarized and discussed [5]; quoting:

1. To organize disparate information into a coherent whole;
2. To think (and calculate) logically about what components and inter-

actions are important in a complex system;
3. To discover new strategies;
4. To make important corrections to the conventional wisdom; and
5. To understand the essential qualitative features.

All of these issues were directly or indirectly addressed in this book.

17.3 Expanding the scope

The scope of material in this book is likely to grow in two categories:
biological content and the range of in silico analysis methods covered.

Genome-scale models should be useful for addressing all the five issues
listed above in that they relate the contents of genomes to their respective
living processes. In a sense, genome-scale models “bring genomes to life.”
Most of the material in this book is related to metabolism and microor-
ganisms. This scope is likely to change if there are subsequent editions
of this book. We are bordering on having high-resolution reconstructions
of signaling and transcriptional regulatory networks that will enable us to
use the methods described herein to analyze their properties. With 99%
of the human euchromatin sequence finished [32], we are now in a posi-
tion to reconstruct the human metabolic map. Once that is accomplished,
the materials and methods described in this book will hopefully become
useful to study human physiology and pathophysiology.
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There is considerable interest in characterizing the dynamic states of re-
constructed networks. Here we have primarily dealt with the steady state,
but interestingly, in nonlinear dynamical analysis, the properties of the
steady state are the most informative with respect to the dynamic charac-
teristics of the network. A full treatment of network dynamics is a highly
mathematical subject and is not included in this text. There is clearly room
for an additional text on dynamic analysis methods of large biochemical
reaction networks. However, such an undertaking may have to wait a bit
until we have more information available about the numerical values of the
kinetic constants that are needed for dynamic analysis. Ideally, the grand
challenge of predicting kinetic properties from DNA sequences would of-
fer an efficient solution to this issue. Another topic on in silico analysis
that needs to find its way in to a textbook of this type is the various sta-
tistical procedures that are used for top-down analysis of networks. These
methods will mature and solidify in the coming years.

17.4 Where does the field need to go?

Systems and network analysis in biology is at an early stage of develop-
ment. We have made some progress, but there is a long way to go. There are
a few challenges that the field faces, some are generic and some specific.
A few of these challenges are as follows:

Dealing with physical vs. biological causation: as illustrated in Fig-
ure 12.3 these two issues are at opposite ends of a hierarchy of events
that we have to deal with. It is clear that this relationship is hierarchical
and calls for multiscale analysis.

Consequently, one challenge is to determine what the information con-
tent is in the various omics data types since they address different layers
in the hierarchy. Constraints at the lowest level must hold at all higher
levels. However, there will be additional constraints and considerations
that arise as we move up the hierarchy. Thus, there may be measurable
changes at a lower level that are inconsequential at a higher level. The
existence of hitchhiker mutations is one example, and we can expect
to find similar examples with other omics data types. In silico analysis
methods are needed that explicitly deal with these issues.

In the intracellular environment there is much thermal noise, as biologi-
cal components are constantly bouncing into one another. The question
of “who talks to whom?” that has been getting much attention, partic-
ularly in the study of signaling networks, should perhaps more clearly
be asked as “who listens to whom?” since biological components can
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be bouncing into one another without any resulting chemical reaction
or any influence on the network as a whole. Reactions that lead to no
further consequences would be “dead ends” in a network. Dead ends
can turn into “live contacts” if new links are established. Robust and
properly functioning networks within the constraints of thermal noise
are clearly important in maintaining basic cellular functions.

A molecule within the complex intracellular environment (see Fig-
ure 2.3) will, by virtue of physicochemical constraints, only be able to
interact with a finite number of potential partners. Thus, every molecule
and every component seems to function in what might be called a small
world. What is happening in one small world or in one locality inside a
cell may be unknown to what is happening a few locales over, at least not
at every point in time. Therefore, what is happening at one location in-
side a cell may be only loosely connected to what is occurring elsewhere.
In terms of a computer programming language, this may be thought of
as parallel processing, which every so often needs to be synchronized
by some higher level organization.

This necessarily leads to the consideration of the 3D arrangements of
cells and the morphogenic properties of groups, or modules, executing
integrated functions in molecular biology. Therefore, the 2D represen-
tations of biochemical reaction networks that are discussed in Part I of
this text will eventually have to become three dimensional. The consid-
eration of the architecture of cellular processes at the ∼100 nm length
scale is likely to lead to an exciting new dimension in systems biology, in
terms of both in silico analysis as well as new generation of measurement
tools.

Hierarchical analysis will come down to aggregating or combining the el-
ementary variables (e.g., concentrations and fluxes) into new quantities
that will systematically take us from chemistry to biology. Mathematical
definitions of aggregate variables in terms of pools and pathways have
appeared [186]. The systematic decomposition of pools appears through
a combination of network topology and kinetic values through the use
of temporal decomposition and modal analysis [109, 150]. Such analy-
ses begin to focus on variables such as the capacity to carry a particular
property (such as the adenosines to carry high energy bonds) and how
occupied such capacities are [186]; recall Chapter 10. A systematic anal-
ysis of this sort shows for example that the ca. 40 variables that describe
metabolism in the human red cell lead to the definition of four aggre-
gate variables that correspond to the four key physiological functions
of the red cell. The systemic reactions defined in Chapter 6 are another
example of a high-level network property.
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As we become better at biologically driven hierarchical analysis of large
networks, we will begin to be able to formulate mathematical defini-
tions of key properties like redundancy, robustness, causality, and so
on. Potentially, such analyses may graduate to definitions of network
properties that may relate to fundamental biological properties such as
“what is self.”

These considerations beg the question of how cells function, or “think”
and “remember.” It appears that on a short time scale, cells respond to
their environment and “look up” functional states that have been learned
and are stored in the cell’s “memory.” Memory here is a nebulous term, of
course, but it should reflect a selected functional network state, the links
used, and their kinetic properties. Mechanism is needed to “look up”
this entry in the cell’s memory, which would correspond to a signaling
and regulatory network. Of course, over longer time scales, the contents
of the memory can change. Presumably, a cell will only remember a
finite number of network states that will be remembered based on recent
survival needs. As new behaviors are learned and stored, older ones may
have to disappear.1

17.5 Closing

Hopefully this text will be useful to those who are interested in network re-
construction, the biochemically and genomically accurate representation
of such reconstructions, and methods to interrogate the functional states of
networks. It is the author’s intent to complement the book with homework
sets and the continued posting of genome-scale networks for all to use
(on http://systemsbiology.ucsd.edu). It is also clear that this book is just
the first installment of a number of books in this growing field of systems
biology, books that will grow in scope and educational impact.

1 This item was inspired by Sydney Brenner.



APPENDIX A

Nomenclature and Abbreviations

Roman Symbols1,2

Av the left adjacency matrix of S (equation 7.4)

Ax the right adjacency matrix of S (equation 7.7)

a a vector of conservation pool sizes (equation 10.6)

ai size of conservation pools, i, in units of concentration (Fig-
ure 10.3)

B matrix of spanning edges (equation 14.4)

b exchange flux vector (equation 15.1)

bi vectors representing spanning edges (equation 14.4); also in-
dividual exchange fluxes (equation 6.23)

E the elemental matrix represents the elemental composition
of all the compounds considered in a network. The columns
correspond to the compounds and the rows to the elements
(equation 6.18).

ei a row vector in the elemental matrix giving the elemental
composition of compound i (equation 6.19)

Fi cumulative singular value (equation 8.3)

fi fractional singular value (equation 8.2)

I the identity matrix (equation 8.4)

ki rate constant (equation 11.9)

L a matrix of left null space basis vectors (equation 10.1)

li a left null space basis vector, a row vector (equation 10.3)

P pathway matrix (Figure 9.10)

1 Equation number given indicates the first appearance of symbol in the text.
2 Some symbols are used to designate more than one quantity. Standard nomenclature used

in the literature dictates such dual use.
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PLM pathway length matrix (equation 13.5)

p expected value (equation 14.11)

p the number of extreme pathways (equation 9.11)

pi pathway vector (equation 9.7)

R a matrix of right null space basis vectors (equation 9.2)

RPM reaction participation matrix (equation 13.6)

ri a right null space basis vector, a column vector (equation 9.3);
also row in the stoichiometric matrix (equation 11.11)

S the stoichiometric matrix; each row corresponds to a metabo-
lite and every column to a reaction. Dimension given in terms
of nxm (equation 6.3).

si the reaction vector corresponding to reaction i, a column
vector of the stoichiometric matrix (equation 6.7)

sij the ijth element in the stoichiometric matrix (equation 6.5)

U: matrix of left singular vectors (equation 8.1)

V: matrix of right singular vectors (equation 8.1)

v the vector of reaction fluxes, dimension is n (equation 6.1)

vi the flux through the i th reaction; units are moles per volume
per time (equation 6.1).

w the vector of weights (equation 15.2)

wi element i in a vector of weights (equation 9.3)

x the vector of concentrations, dimension is m (equation 6.2)

x′ the time derivative of x (equation 6.4)

ẋ the time derivative of x (equation 6.4)

xi the concentration of the i th compound; units are moles per
volume (equation 6.2)

Z an objective function, a scalar (equation 15.2)

Greek Symbols

α slope of an isocline (equation 16.7)

αk weights on pathway vectors (equation 9.8)

� mass action ratio (equation 14.14)

ε estimated error (equation 14.12)

µ average value (equation 14.12)

ξ vector of ξi (equation 10.10)

ξi used for parameterization (ξi ∈ [0, 1]) (equation 10.10)
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πi participation number (equation 7.2); also shadow price
(equation 15.4)

ρi connectivity number (equation 7.3); also reduced cost (equa-
tion 15.5)

� diagonal matrix of singular values (equation 8.1)

σi singular value (equation 8.2); also standard deviation (equa-
tion 14.11)

Mathematical Symbols

Col(A) column space of matrix A

dim(·) dimension of a vector, space, matrix, . . .

Left Null(A) left-null space of matrix A

Null(A) null space of matrix A

Row(A) row space of matrix A
T transpose

|| · || the norm of a vector

(≡) row vectors in a matrix

(|||) column vectors in a matrix

Subscripts

dyn dynamic

exch exchange

int internal

ref reference

ss steady state

tot total

Superscripts

∧ binary form (equation 7.1)
− expected value (equation 14.11)

Abbreviations

3PG 3-phospho-D-glycerate

αKG Alpha ketoglutarate

AcCoA Acetyl coenzyme A

ADP Adenosine diphosphate
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ADK Adenylate kinase

AKGDH Alpha ketoglutarate dehydrogenase

AMP Adenosine monophosphate

ArcA Aerobic respiration control

Arg Arginine

ATP Adenosine triphosphate

ATPM ATP maintenance requirement

ATPS4r ATP synthesis (four proteins for one ATP)

BIGG Biochemically, genetically, and genomically structured data
base

C/O Carbon to oxygen ratio

CAMP Cyclic AMP

CBP CREB binding protein

ChIP Chromatin immunoprecipitation

CMR Comprehensive microbial resource

COBRA Constraint-based reconstruction and analysis

CoSets Correlated sets of reactions

CREB CAMP response element binding protein

CRP C-reactive protein precursor

CYGD Comprehensive yeast genome database

CYTBD Cytochrome oxidase bd

DHAP Dihydroxyacetone phosphate

DNA Deoxyribonucleic acid

DOQCS Database of quantitative cellular signaling

E4P D-erythrose 4-phosphate

E.C. Enzyme commission

EcoCyc Escherichia coli encyclopedia

EGF Epidermal growth factor

ENO Enolase

ETS Electron transfer system

ExPa Extreme pathway

F6P D-fructose 6-phosphate

FADH2 Flavin adenine dinucleotide – reduced

FBA Flux-balance analysis

FBP Fructose-biphosphatase

FCF Flux coupling finder



Appendix A. Nomenclature and Abbreviations 291

FDP D-fructose 1,6-biphosphate

FMNH2 Flavin mononucleotide – reduced

FNR Fumarate and nitrate reduction

FRD Fumarate reductase

FRET Fluorescence resonance energy transfer

G3P/GAP Glyceraldehyde 3-phosphate

G6P D-glucose 6-phosphate

G6PDH Glucose-6-phosphate dehydrogenase

GAL Galactose

GAPD Glyceraldehyde 3-phosphate dehydrogenase

GDP Guanosine 5-diphosphate

GEM Genome-scale model

GENRE Genome-scale network reconstruction

GFP Green fluorescent protein

GLIMMER Gene locator and interpolated markov modeler

GLU Glucose

GND Phosphogluconate dehydrogenase

GOLD Genomes on-line database

GPCR G-protein-coupled receptors

GPR Gene-protein reaction

GRN Genetic regulatory network

GTP Guanosine triphosphate

GWLA Genome-wide location analysis

GyrA DNA gyrase

HOG High osmolarity glycerol

HT High-throughput

I/O Input-to-output

ICAT Isotope-coded affinity tags

IKK complex I kappa β kinase

IOFA Input/output feasibility array

JAK Janus-associated kinase

KEGG Kyoto encyclopedia of genes and genomes

LigA DNA ligases

LIPID MAPS Lipid metabolites and pathways strategy

LO Line of optimality

LP Linear programming
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MAPK Mitogen-activated protein kinase

McrA Modified cytosine restriction

MILP Mixed integer linear programming

MOMA Minimization of metabolic adjustment

mRNA Messenger ribonucleic acid

NAD Nicotinamide adenine dinucleotide

NADH Nicotinamide adenine dinucleotide – reduced

NADP+ Nicotinamide adenine dinucleotide phosphate

NADPH Nicotinamide adenine dinucleotide phosphate – reduced

NADTRHD Nicotinamide adenine dinucleotide phosphate transhydro-
genase

NLP Nonlinear programming

OAA Oxaloacetate

OmpH Outer membrane protein

ORF Open reading frame

P/O Phosphate-to-oxygen

PDH Pyruvate dehydrogenase

PEP Phosphoenolpyruvate

PFK Phosphofructokinase

PGI Glucose 6-phosphate isomerase

PGK Phosphoglycerate kinase

PGL 6-Phosphogluconolactonase

PGM Phosphoglycerate mutase

pH Potential of hydrogen

PhPP Phenotypic phase plane

PIT Phosphate transporter

PK Pyruvate kinase

PKA Protein kinase A

pKa Ionization constant

Po1A DNA polymerases

PrbAMP Phosphoribosyl AMP

PTS Proton transfer system

PYK Pyruvate kinase

PYR Pyruvate

QP Quadratic programming

R5P Alpha-D-ribose 5-phosphate
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RecA Renaturation protein

RegulonDB Regulon database

RNA Ribonucleic acid

ROB Right origin-binding protein

ROOM Regulatory off–on Minimization

RPE Ribulose 5-phosphate 3-epimerase

RPI Ribose 5-phosphate isomerase

RpoA/D RNA polymerase

SCPD Saccharomyces cerevisiae promoter database

SGD Saccharomyces genome database

SH2 Src-homology-2

SILAC Stable isotope labeling by amino acids in cell culture

SPAD Signaling pathway database

Ssb Single-strand binding proteins

STAT Signal transducers and activators of transcription

STKE Signal transduction knowledge environment

SuccCoA Succinyl-coenzyme A

SUCD4 Succinate dehydrogenase

SVD Singular value decomposition

T3P Triose 3-phosphate

TAIS Target-assisted iterative screening

TALA Transaldolase

TCA Tricarboxylic acid

TF Transcription factor

TGF Transforming growth factor

THD2 NAD(P) transhydrogenase

TIGR Institute for genomic research

TKT Transketolase

TPI Triose-phosphate isomerase

TRANSFAC Transcription factor database

TrEMBL Translated European Molecular Biology Laboratory

tRNA Transfer ribonucleic acid

UNG Uracil glycosylase

VSR DNA endonucleus

YPD Yeast protein database



APPENDIX B

Escherichia coli Core Metabolic
Network

Table B.1: A list of compounds in the core Escherichia coli network, their
abbreviations, and cellular location.

Abbreviation Name Compartment

13dpg 3-phospho-D-glyceroyl phosphate Cytosol

2pg D-glycerate 2-phosphate Cytosol

3pg 3-phospho-D-glycerate Cytosol

6pgc 6-phospho-D-gluconate Cytosol

6pgl 6-phospho-D-glucono-1,5-lactone Cytosol

ac Acetate Cytosol

ac[e] Acetate Extracellular

accoa Acetyl-CoA Cytosol

actp Acetyl phosphate Cytosol

adp ADP Cytosol

akg 2-oxoglutarate Cytosol

akg[e] 2-oxoglutarate Extracellular

amp AMP Cytosol

atp ATP Cytosol

cit Citrate Cytosol

co2 CO2 Cytosol

co2[e] CO2 Extracellular

coa Coenzyme A Cytosol

dhap Dihydroxyacetone phosphate Cytosol

e4p D-erythrose 4-phosphate Cytosol

etoh Ethanol Cytosol

etoh[e] Ethanol Extracellular

f6p D-fructose 6-phosphate Cytosol

fad FAD Cytosol

fadh2 FADH2 Cytosol

fdp D-fructose 1,6-bisphosphate Cytosol

for Formate Cytosol

(continued)
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Table B.1 (continued).

Abbreviation Name Compartment

for[e] Formate Extracellular

fum Fumarate Cytosol

fum[e] Fumarate Extracellular

g3p Glyceraldehyde 3-phosphate Cytosol

g6p D-glucose 6-phosphate Cytosol

glc-D[e] D-glucose Extracellular

glx Glyoxylate Cytosol

h H+ Cytosol

h2o H2O Cytosol

h2o[e] H2O Extracellular

h[e] H+ Extracellular

icit Isocitrate Cytosol

lac-D D-lactate Cytosol

lac-D[e] D-lactate Extracellular

mal-L L-malate Cytosol

nad Nicotinamide adenine dinucleotide Cytosol

nadh Nicotinamide adenine dinucleotide – reduced Cytosol

nadp Nicotinamide adenine dinucleotide phosphate Cytosol

nadph Nicotinamide adenine dinucleotide phosphate – reduced Cytosol

o2 O2 Cytosol

o2[e] O2 Extracellular

oaa Oxaloacetate Cytosol

pep Phosphoenolpyruvate Cytosol

pi Phosphate Cytosol

pi[e] Phosphate Extracellular

pyr Pyruvate Cytosol

pyr[e] Pyruvate Extracellular

q8 Ubiquinone-8 Cytosol

q8h2 Ubiquinol-8 Cytosol

r5p Alpha-D-ribose 5-phosphate Cytosol

ru5p-D D-ribulose 5-phosphate Cytosol

s7p Sedoheptulose 7-phosphate Cytosol

succ Succinate Cytosol

succ[e] Succinate Extracellular

succoa Succinyl-CoA Cytosol

xu5p-D D-xylulose 5-phosphate Cytosol
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