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Genome sequences are now available that enable us to determine the biologi-
cal components that make up a cell or an organism. The new discipline of sys-
tems biology examines how these components interact and form networks and
how the networks generate whole cell functions corresponding to observable
phenotypes. This textbook, the first devoted to systems biology, describes how
to model networks, how to determine their properties, and how to relate these
to phenotypic functions.

The prerequisite is some knowledge of linear algebra and biochemistry.
Though the links between the mathematical ideas and biological processes are
made clear, the book reflects the irreversible trend of increasing mathemati-
cal content in biology education. Therefore to assist both teacher and student,
Palsson provides problem sets, projects, and PowerPoint slides in an associ-
ated web site and keeps the presentation in the book concrete with illustrative
material and experimental results.
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Preface

In 1995, the first full genome sequence became available, ushering in the
genome era. Since then, a large number of high-throughput technologies
have enabled us to define the molecular parts catalogs of cellular compo-
nents. Although these catalogs are still incomplete, it is now possible to
reconstruct, based on this and other information, genome-scale networks of
biochemical reactions that take place inside cells. This process of network
reconstruction, followed by the synthesis of in silico models describing
their functionalities, is the essence of systems biology.

The functions of reconstructed networks are defined by the interconnec-
tions of their parts. Since these connections involve chemical reactions,
they can be described by a stoichiometric relationship. The stoichiometric
matrix, which contains all such relationships in a network, is thus a con-
cise mathematical representation of reconstructed networks. This matrix
comprise integers that represent time- and condition-invariant properties
of a network. It may therefore be expected to represent a key in the study of
the functionalities of complex biochemical reaction networks. Its content
and associated information effectively constitute a biochemically, geneti-
cally, and genomically structured database.

This book is focused on the stoichiometric matrix. In order to satisfacto-
rily understand the material, good knowledge of linear algebra and of bio-
chemistry is needed. Most of the mathematical concepts and principles,
when properly interpreted, have a direct biological and chemical meaning.
This text thus tries to relate what might be seen as abstract mathematical
quantities to real biological and chemical features.

Like it or not, the ability to reconstruct genome-scale reaction networks
will firmly thrust biology into the domain of systems science. Not just
any systems science, but systems biology and bioengineering, where the
underlying biochemical and genetic processes set the stage. Biological ed-
ucation in the future will undoubtedly involve more mathematics, and
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thus new generations of biologists should be able to readily deal with this
material.

This is a personal book. The author has been working on the construc-
tion of mathematical descriptions of complicated biochemical reaction
networks for more than 20 years. At the inception of this activity, the gen-
eral view was that such an exercise was purely theoretical and had no
real biological relevance. However, with the advent of the genome era, we
now have the necessary biological data to build realistic genome-scale net-
works and relate their properties to observable phenotypes. This field has
grown in scope over the last 5 to 10 years and has become quite broad.
In a way, this book was written by the author, for the author, in an at-
tempt to organize this field, the concepts it contains, what has been ac-
complished, and what may potentially lie ahead. Hopefully it will benefit
others.

The author has many people to thank for their help in preparing this text.
The biggest and most important acknowledgment is to his wife, Mahshid,
who has tolerated and accepted many hours of absence during which the
contents of this book were conceived, formulated, and brought into prac-
tice. Without her patience and support over the past 20 years, this book
would not have been possible.

Three individuals influenced my career development and thus con-
tributed to this text being written. As an undergraduate working in the
biochemistry laboratory of Sigmundur Gudbjarnason, I learned the won-
ders of the world of enzymes, their purification, and kinetic characteriza-
tion. During the analysis of data in his lab, I came to the realization that
enzymes are interesting catalysts, but just that. Hundreds if not thousands
of them had to come together to reproduce the living process that I was
so interested in. I thus selected chemical engineering as a field of study,
as it was the only major within which I could study life, chemical, and
systems sciences. I was fortunate to join Edwin Lightfoot’s laboratory for
my PhD studies. Although he had not worked much with systems analysis
in molecular biology, he immediately recognized its importance and was
willing to support me in my pursuit of such analysis for my PhD stud-
ies. Needless to say, systems analysis in biology in the early 1980s was
seen as a “dead-end career” and “professional suicide.” After joining the
University of Michigan as a faculty member I was forced to pursue other,
more fundable sources of work. In the early 1990s I became aware of Lee
Hood’s revolutionary impact on biology through the development of high-
throughput approaches. He became an inspiration through his vision and
leadership, and eventually a good friend. I am thankful for the positive
influence that these three individuals have had on my career development
and their impact on the development of the material in this book.
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In my transition from the University of Michigan to the University of
California, San Diego (UCSD), I had the pleasure of being hosted by Jens
Nielsen and John Villadsen at the Technical University of Denmark in the
spring of 1996. During this four-month leave, sponsored by the Fulbright
and Ib Heinriksen foundations, I pondered the impact that the first full
genome-sequences would have, and as a result some of the conceptual
foundation for this book was laid down. In 2000, I was appointed as the
Hougen visiting professor at the University of Wisconsin. I prepared the
Hougen lecture series that fall. These lecture notes proved to be the first
outline of the material contained in this book.

The Whitaker Foundation generously supported the preparation of this
book through their Teaching Materials Program. It is very hard for pro-
fessors to prepare textbooks in today’s academic environment given the
general lack of staff support and the ever-growing demands on faculty
members’ time. Without the support of the Whitaker Foundation, this book
would not have been written.

Marc Abrams managed the technical coordination of this book. He cap-
tured most of the material (text, artwork, and references) and translated
it into a KTEX file for publication. He also prepared many of the origi-
nal illustrations. His patience, persistence, and perseverance during the
book-writing process has been much appreciated.

I have been fortunate to have had a series of outstanding students during
my stay at UCSD. Special thanks go to many of these excellent students
for helping out with several of the chapters in this book: Scott Becker,
Chapter 7 and Appendix B; Natalie Duarte, Chapter 3; Iman Famili, Chap-
ters 3, 6, 8, 10, and 14; Adam Feist, Chapter 15 and Appendix B; Markus
Herrgard, Chapters 4 and 16; Andrew Joyce, Chapter 4; Jason Papin, Chap-
ters 5,9, and 13; Nathan Price, Chapters 9 and 14; Jennifer Reed, Chapters 3,
15, 16, and Appendix B; and Ines Thiele, Chapter 13. Thanks also to Henry
Kang for editorial assistance.

Four of my other students have been influential in the development of
this material: Joanne Savinell, who wrote the first comprehensive PhD
thesis on stoichiometric networks in the late 1980s; Amit Varma, who
built a biochemically comprehensive E. coli model in the early 1990s;
Jeremy Edwards, who de facto became the first “high-throughput in silico
biologist” by building the first genome-scale metabolic models in the late
1990s; and Christophe Schilling, who developed the extreme pathways in
the late 1990s and who decided that commercial-strength software and
services were needed for genome-scale network reconstruction and model
building. I am a cofounder of the resulting Genomatica, Inc. Homework
sets and network reconstructions related to this book will be posted on
http://systemsbiology.ucsd.edu.

Xi



Xii

Preface

A few books have influenced my thinking over the years. The book by
Daniel Atkinson (CELLULAR ENERGY METABOLISM AND ITS REGULATION, 1977)
was my first exposure to the analysis of metabolism from a systems and
engineering perspective and had a strong influence early on in my career.
The book by Jens Reich and Evgeni Selkov (ENERGY METABOLISM OF THE CELL,
1981) had a profound influence on my early thinking. This book is concep-
tually rich and a pioneering effort toward the quantitative systems analy-
sis of biochemical reaction networks. The recent book of Antoine Danchin
(TrE DELPHIC Boart, 2003) is a masterful biological analysis of the contents
genomes and what they tell us. The many writings of Ernst Mayr (e.g., Txis
1s BioLogy, 1997) provide decades worth of the author’s perceptive think-
ing about the basic difference between biology and the physicochemical
sciences, a divide that systems biology now tries to bridge.

Many other individuals have directly or indirectly (willingly or un-
willingly) influenced the material in this book. They include Adam
Arkin, Laszlo Barabasi, Dan Beard, Sydney Brenner, Antony Burgard,
George Church, Frank Doyle, John Doyle, David Fell, David Galas, Igor
Goryanin, Vassily Hatzimanikatis, David Haussler, Leland Hartwell, Rein-
hard Heinrich, Jay Keasling, Marc Kirschner, Hioraki Kitano, Stefan Klamt,
Choul-Gyun Lee, Sang Yup Lee, William Loomis, Costas Maranas, Harley
McAdams, Terry Papoutsakis, Uwe Sauer, Mick Savage, Michael Savageau,
Stefan Schuster, Daniel Segré, Lucy Shapiro, Jurg Stelling, Gilbert Strang,
Shankar Subramaniam, and Masaru Tomita. Many thanks to these col-
leagues for the stimulating discussions over the years.

The author hopes that this book will be the beginning of courses and
textbooks that will formalize the emerging systems biology paradigm of
components to networks to models to computed phenotypes.

La Jolla
May 2005



CHAPTER 1

Introduction

Suddenly, systems biology is everywhere. What is it? How did it
arise? The driving force for its growth is high-throughput (HT) technolo-
gies that allow us to enumerate biological components on a large scale.
The delineation of the chemical interactions of these components gives
rise to reconstructed biochemical reaction networks that underlie various
cellular functions. Systems biology is thus not necessarily focused on the
components themselves, but on the nature of the links that connect them
and the functional states of the networks that result from the assembly of
all such links. The stoichiometric matrix represents such links mathemat-
ically based on the underlying chemistry, and the properties of this matrix
are key to determining the functional states of the biochemical reaction
networks that it represents.

EEI The Need for Systems Analysis in Biology

Biological parts lists

During the latter half of the 20th century, biology was strongly influenced
by reductionist approaches that focused on the generation of information
about individual cellular components, their chemical composition, and of-
ten their biological functions. Over the past decade, this process has been
greatly accelerated with the emergence of genomics. We now have entire
DNA sequences for a growing number of organisms, and we are continu-
ally delineating their gene portfolios. Although functional assignment to
these genes is presently incomplete, we can expect that we will eventually
have assigned and verified function for the majority of genes on selected
genomes. Extrapolation between genomes will then most likely accelerate
the definition of what amounts to a “catalog” of cellular components in a
large number of organisms. Expression array and proteomic technologies
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Figure 1.1: lllustration of a paradigm shift in cell and molecular biology from component to
systems analysis. Redrawn from [152].

give us the capability to determine when a cell uses particular genes, and
when it does not (left side in Figure 1.1). At the beginning of the 21st
century, this process was unfolding at a rapid rate, driving a fundamental
paradigm shift in biology.

Beyond bioinformatics
The advent of high-throughput experimental technologies is forcing bi-
ologists to view cells as systems, rather than focusing their attention on
individual cellular components. Not only are high-throughput technolo-
gies forcing the systems point of view, but they also enable us to study cells
as systems. What do we do with this developing list of cellular components
and their properties? As informative as they are, these lists only give us
basic information about the molecules that make up cells, their individual
chemical properties, and when cells choose to use their components.
How do we now arrive at the biological properties and behaviors that
arise from these detailed lists of chemical components? It is now gener-
ally accepted that the integrative analysis of the function of multiple gene
products has become a critical issue for the future development of biol-
ogy. Such integrative analysis will rely on bioinformatics and methods
for systems analysis (right side of Figure 1.1). It is thus likely that over
the coming years and decades biological sciences will be increasingly fo-
cused on the systems properties of cellular and tissue functions. These are
the properties that arise from the whole and represent biological proper-
ties. These properties are sometimes referred to as “emergent” properties
since they emerge from the whole and are not properties of the individual
parts.
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Figure 1.2: Genetic circuits. From sequence, to genes, to gene product function, to multicom-

ponent cellular functions. Prepared by Christophe Schilling.

Genetic circuits

The relationship between genetics and cellular functions is hierarchical
and involves many layers, some of which are illustrated in Figure 1.2.
Gene sequences allow for the identification of open reading frames (ORFs).
The base pair sequence of the ORFs in turn allows for the functional
assignment of the defined gene. Although not always unambiguous, such
assignments are being carried out with increasing accuracy, due to our
expanding biological databases. Sequence is important and so is the
functional assignment of ORFs. However, the interrelatedness of the genes
may prove to be even more important. Establishing these relations and
studying their systemic characteristics is now necessary.

Cellular functions rely on the coordinated action of the products from
multiple genes. Such coordinated function of multiple gene products can
be viewed as a “genetic circuit” (some synonyms that are commonly used
are “cellular wiring diagrams” and modules). The term genetic circuit is
used here to designate a collection of different gene products that together
are required to execute a particular cellular function. The functions of
such genetic circuits are diverse, including DNA replication, translation,
the conversion of glucose to pyruvate, laying down the basic body plan
of multicellular organisms, and cell motion. It is likely that we will view
cellular functions within this framework and the physiological functions
of cells and organisms as the coordinated or integrated functions of multi-
ple genetic circuits. Consequently, we will need to develop the conceptual
framework within which to describe and analyze these circuits.

Not all the properties of genetic circuits are clear at present, but some
important ones are summarized in Table 1.1. For many of these character-
istics, it is also clear what methodology is needed to describe and analyze
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Table 1.1: Some of the characteristics of genetic circuits and the analysis
methods required.

Characteristic Analysis method

They are complex Bioinformatics

They are autonomous Control theory

They are robust System science

They function to execute a physicochemical process Transport and Kinetic theory
They have “creative functions” Bifurcation analysis

They are conserved, but can adjust Evolutionary dynamics

them. Genetic circuits tend to have many components; they are complex.
From the standpoint of system science, they are “robust,” i.e., in many,
but not all cases, one can remove their components without compromis-
ing their overall function.

Accepting the concept of a gene circuit seems straightforward. However,
the implications of this acceptance are quite profound. We will view
bioinformatics as a way to establish, classify, and cross-species corre-
late genetic circuits. The beginning of such classification is illustrated in
Figure 1.3. Metabolism, information processing, and cellular fate processes
represent some of the major categories of genetic circuits. Considerable
unity in biology is likely to result in conceptualizing biological functions
as genetic circuits. From this standpoint, gene therapy may no longer be
viewed as replacing a “bad” gene, but instead fixing a “malfunctioning”
genetic circuit. Evolution may be viewed as the “tuning” or “honing”
of circuits to improve performance and chances of survival. Classifying
organisms based on the types of genetic circuits they possess may lead
to “genomic taxonomy.” Ex vivo “evolutionary” procedures for designing
genetic circuit performance are emerging [99, 258]. Understanding the
function of genetic circuits will become fundamental to applied biology,
in fields as diverse as metabolic engineering and tissue engineering.

The concept of a genetic circuit as a multicomponent functional entity
(either in time or space, or both) is an important paradigm in systems
biology. It will be a fundamental component in our treatment of the rela-
tionship between genetics and physiology. the genotype—phenotype rela-
tionship. Individual genetic circuits do not operate in isolation, but in the
context of other genetic circuits. The assembly of all such circuits found
on a genome produces cellular and organismic functions and leads to hi-
erarchical decomposition of complex cellular functions. Thus, the need
for genome-scale analysis arises. This need in turn leads to viewing the
genome as the “system.”
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Figure 1.3: Coarse-grained classification of the types of genetic circuits that are found on
genomes. Some major categories are indicated, in particular to indicate that some underlie
the important metabolic and tissue engineering applications of cell and molecular biology.
Prepared by Christophe Schilling.

E®I The Systems Biology Paradigm

The ability to generate detailed lists of biological components, determine
their interactions, and generate genome-wide data sets has led to the emer-
gence of systems biology [101]. The process comprises four principal steps
(Figure 1.4). First, the list of biological components that participate in
the process of interest is enumerated. Second, the interactions between
these components are studied and the “wiring diagrams” of genetic cir-
cuits are constructed. This process is one of biochemical reaction network
reconstruction and is covered in detail in Part I of this text. Third, recon-
structed network are described mathematically and their properties ana-
lyzed (Part II). Computer models are then generated to analyze, interpret,
and predict the biological functions that can arise from the reconstructed
networks (Part III). Fourth, the models are used to analyze, interpret, and
predict experimental outcomes. Prediction essentially corresponds to gen-
erating specific hypotheses that can then be experimentally tested. These
in silico models of reconstructed networks are then improved in an itera-
tive fashion [152].

There is much creative work that has led to the development of high-
throughput technologies (step 1). Many different mathematical methods
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Figure 1.4: The four principal steps in the implementation of systems biology. Note that
the second step is unique, while the others are diverse, and is the interface between high-
throughput data and in silico analysis.

have been formulated for the analysis of biochemical reaction networks
(step 3), and the phenotypic space explored by experimentation (step 4)
is essentially infinite. In contrast, the reconstruction effort leads to one
result. The reconstruction should culminate in the generation of the set of
chemical reactions that take place inside a cell and underlie its function.
Although systems biology is currently thought of as a cell-scale effort repre-
senting a genome-enabled science, it is likely that it will be conceptualized
as a broader field as it develops. We will begin to talk about the systems
biology of tissues, through networks of cellular interactions, and so on.

Systemic annotation

The unity represented by step 2 in Figure 1.4 leads to an effort to create a
two-dimensional annotation of a genome (Figure 1.5). The classical com-
ponent annotation of a genome leads to the identification of open reading
frames, their location, and often the corresponding DNA regulatory se-
quences, a one-dimensional list of components. The open reading frames
can then be assigned function based on homology searches of known genes.
The two-dimensional annotation accounts for not only the components,
but all their chemical states (represented as rows in the table in Figure 1.5)
and the links between them. The latter are the columns in the table and
ideally should represent the stoichiometric coefficients that correspond
to the underlying chemical transformations that are possible between the
components. This table represents the full genome-scale stoichiometric
matrix for a genome.
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Figure 1.5: Systemic or two-dimensional annotation of genomes: the origin of the stoichio-
metric matrix. From [155].

Calling for the formulation of this matrix may represent as bold a state-
ment as asking for the full base pair sequence of the human genome some
20 years ago. However, progress is being made. Genome-scale metabolic
networks have been reconstructed for microorganisms. We are in the pro-
cess of beginning to define signaling networks and transcriptional regula-
tory networks. Sometimes events in such networks are known chemically,
but sometimes we only have causal relationships, which eventually will
be converted into chemical equations once the underlying mechanisms
are discovered.

Hierarchical thinking in systems biology

We are quite used to thinking hierarchically about DNA. We think about a
base pair as the irreducible unit of DNA sequence. Then we talk about
codons, introns, exons, alleles, and chromosomes, and other measures
of DNA size. We will need to adapt similar hierarchical thinking about
the genome-scale stoichiometric matrix. The irreducible elements in a
network are the elementary chemical reactions. These can combine into
reaction mechanisms, many reactions into modules or motifs, pathways
can form, and sectors can be defined. Currently, such coarse graining of
a network often relies on somewhat ill-defined notions of hierarchical
structure.

Our understanding of how to hierarchically decompose a network is
likely to improve as we begin to build genome-scale networks and are able
to define their properties. Components that always function together in
steady or dynamic states normally would fall into modules. Correlated
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Figure 1.6: The two roots of systems biology.

subsets of reactions do appear in the delineation of steady-state properties
of networks ([163], Chapter 9). Time-scale separation is often used for tem-
poral decomposition of complex systems, and the stoichiometric matrix
does seem to play a role in this formation of dynamics pools [109, 149]
that represent dynamic course graining of a network.

Historical roots

Although it is often stated that reductionist thinking has characterized
molecular biology, it does not mean that integrative thinking has not taken
place. The first genetic circuits were indeed mapped out more than 40 years
ago (Figure 1.6). The feedback inhibition of amino acid biosynthetic path-
ways was discovered in 1957 [225, 257], and the transcriptional regulation
associated with the glucose-lactose diauxic shift led to the definition of the
lac operon [12, 124]. These regulatory mechanisms began the unraveling
of the molecular logic that underlies cellular processes.

In the decades following these discoveries, molecular biology blossomed
as a field. In the 1980s we began to see the scale-up of some of the fun-
damental experimental approaches of molecular biology. Automated DNA
sequencers began to appear and reached genome-scale sequencing in the
mid-1990s. Automation, miniaturization, and multiplexing of various as-
says led to the generation of additional “omics” data types. The large
volumes of data generated by these approaches led to a rapid growth of the
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field of bioinformatics. Although this effort was mostly focused on statisti-
cal models and object classification approaches in the late 1990s, it became
recognized that a more formal and mechanistic framework was needed to
systematically analyze multiple high-throughput data types [153]. This
need led to calls for genome-scale model building.

Following the events of the late 1950s and early 1960s, efforts were ini-
tiated to formulate mathematical models to simulate the functions of the
newly discovered genetic circuits. Even in the early 1960s, before digi-
tal computers became available, the function of such circuits was simu-
lated on analog computers [78]. These efforts grew to the dynamic sim-
ulation of large metabolic networks in the 1970s [69, 123, 253, 255]. By
the late 1980s and early 1990s, cell-scale models of the human red cell
had appeared [106], genome-scale models of viruses were formulated,
and large-scale models of mitosis appeared [146]. The advent of genome-
scale sequencing led to the first genome-scale metabolic models for bacte-
ria [50, 51].

These two roots of systems biology are illustrated in Figure 1.6. The
upper branch had much greater presence in the scientific community,
dazzling us with a never-ending stream of discoveries and exciting tech-
nologies. One might say that this was the “biology” root to systems biology.
The lower branch never gained much notoriety, although, unlike in the
United States, this activity was reasonably prominent in Europe. Systems
modeling and simulation in molecular biology was seen as purely theo-
retical and not a contributor to understanding real biology. However, with
biology now having become a “data-rich” field, the need for theory, model
building, and simulation has emerged. One might think of this branch as
the “systems” root to the emergence of systems biology.

These two branches must now merge to further the field. While there
are many books and sources on the “biological root,” few exist for the
“systems root.” This book is an attempt to meet this need, although real
genome-scale analysis is still the material of cutting-edge research. Thus,
this initial effort is conceptual and illustrative in nature with references
to the genome-scale studies that have appeared.

EEM About This Book

Purpose

The availability of annotated genome sequences in the mid to late 1990s
enabled the reconstruction of genome-scale metabolic networks [37]. Sim-
ilar reconstructions of signaling and transcriptional regulatory networks
are now beginning to appear [85, 213]. The topological structure and func-
tional properties of these networks can now be studied. More importantly,
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for the first time, we can analyze, interpret, and predict the phenotypic
functions that such networks could produce. The stoichiometric matrix is
a compact mathematical representation of biochemical reaction networks.
It represents the interface between the HT data world and that of in silico
analysis, e.g., Figure 1.4, and the two-dimensional annotation of a genome.
The purpose of this book is to describe how the stoichiometric matrix is
formed, what its basic properties are, and how it can be used to analyze
the functional states of networks.

Approach
We will first outline some of the basic concepts of systems biology in
Chapter 2. We will then divide the material into three parts.

Part I will briefly review three types of networks — metabolic, regu-
latory, and signaling — and show how they are comprised of underly-
ing biochemical reactions. The efforts to reconstruct them are intensive
in analyzing the data from various HT experimental technologies and
legacy (bibliouric) data. Reconstructions basically culminate in the for-
mation of a chemically, genetically, and genomically (BIGG) structured
database that represents all the data types simultaneously. Once curated,
a genome-scale reconstruction represents a BIGG structured integration
of the available information about a cell or an organism.

Part IT will describe the formation of the stoichiometric matrix, S, in-
cluding its function as a mathematical mapping operation, the chemical
constraints on its structure, and its topological properties. An under-
standing of basic linear algebra now becomes essential to the reader.
The topological properties of the stoichiometric matrix are then out-
lined and methods for their analysis described. We then explore the
more subtle and intricate properties of the stoichiometric matrix. To do
so, we need to study its fundamental spaces associated with S and will
thus require an intermediate-level understanding of linear algebra. The
two null spaces of S contain systemically defined reaction pathways and
concentration conservation quantities. The row and column spaces of S
contain the dynamic flux vector and the time derivatives, respectively.
These two spaces are thus key to studying the transient function and the
underlying thermodynamics. The transition from Part I to Part II may
be challenging for some life scientists, but it is important for mastering
systems biology.

Part ITT will describe the mathematical methods that have been devel-
oped to interrogate the properties of reconstructed networks. The recon-
structions and their associated information are not sufficient to complet-
ely define the state of a network. Flexibility in function exists, lead-
ing to constraint-based analysis. This approach is consistent with the



1.5 Further Reading

biological reality of operating under governing constraints, but allowing
for evolution within them to adapt and improve biological function.

K summary

Detailed biological parts catalogs of cells have emerged.

>
» The chemical and causal interactions of these parts are being docu-
mented.

» Cellular “wiring diagrams” representing genetic circuits and genome-
scale networks are being reconstructed.

» The systems biology paradigm of “components— networks— in silico
models— phenotype” has arisen.

» Two-dimensional or systemic annotation of genomes is emerging and
represents unity of effort in systems biology through network recon-
struction.

Network reconstruction is described by a BIGG structured data base.

vy

The stoichiometric matrix describes the reconstruction mathemati-
cally and thus it becomes a key to the field of systems biology.

» Systems biology is inherently mathematical.
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CHAPTER 2

Basic Concepts in Systems Biology

In the early 1960s, there was a bifurcation of emphasis in biol-
ogy. Molecular biology had arrived, providing a growing understanding
of DNA, protein, and other chemical components of cells. A science was
emerging that had rigor in terms of analytical chemistry and controlled
experimentation, and relevance to biochemical and genetic functions of
cells and occasionally to their phenotypes. Holistic emphasis in biology,
which had primarily been practiced through physiology, faded into the
background as it is much more difficult to state hypotheses, do controlled
experiments, or execute the scientific process for the behavior of systems
and networks in biology. However, as outlined in the introductory chapter,
this situation has now changed. We now have technology that allows for
the detailed enumeration of biological components, enabling us to study
cells and complex biological processes as systems. As a consequence, sys-
tems biology has arisen as a new field. This new field does not yet have
a well-defined and articulated conceptual basis. In this chapter, we will
attempt to collect some of the key issues that represent to the conceptual
foundations of systems biology. Its content is not intended to be, and can-
not be, complete but rather represents an attempt to initiate this process.

EXEI Components vs. Systems

Biological components all have a finite turnover time. Most metabolites
turn over within a minute in a cell, nRNA molecules typically have 2-hour
halflives in human cells [256], 3% of the extracellular matrix in cardiac
muscle is turned over daily, and so forth. So a cell that you observe today,
compared with the same cell yesterday, may only contain a small fraction
of the same molecules. Similarly, cells have finite lifetimes. The cellularity
of the human bone marrow turns over every 2—3 days, the renewal rate of



2.1 Components vs. Systems
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Figure 2.1: A contrast between the components view (left) and the systems view (right).

skin is of the order of 5 days to a couple of weeks, the lining of the gut
epithelium has a turnover time of about 5-7 days, and slower tissues like
the liver turn over their cellularity approximately once a year. Therefore,
most of the cells that are contained in an individual today were not there a
few years ago. However, we consider the individual to be the same, albeit
older. Likewise, we consider one cell to be the same a week later, even
if most of its chemical components have turned over. Components come
and go, therefore a key feature of living systems is how their components
are connected together. The interconnections between cells and cellular
components define the essence of a living process.

The difference between the components view of life is different from the
systems view in many subtle ways. Here, we try to illustrate this difference
by just one example (see Figure 2.1).

¢ On the left side of Figure 2.1 we see the components point of view
of the function of a gene product. When we are looking at one gene
product, in this case an enzyme carrying out its function, we study
this component by placing it in a beaker with its substrates and then
observe the time-dependent disappearance of a substrate and the ap-
pearance of a product. The component that we are studying is the
centerpiece of this experiment, and it is responsible for concentration
changing in a time-dependent manner.

¢ The right side illustrates a systems viewpoint of a biochemical net-
work. It is not so much the components themselves and their state
that matters, contrary to the components view, but it is the state of the
whole system that counts. Any biological network will have a nominal

13



14

Basic Concepts in Systems Biology

state, which we recognize as a homeostatic state. Thus, the fluxes that
reflect the interactions among the components to form the state of the
network are dominant variables, and the concentrations of the indi-
vidual components are “subordinate quantities.” The concentrations
of the network components are determined first by the flux map, or
the state of the network, and then by the kinetic properties of the links
in the network.

E¥I Links and Functional States

Two key issues arise from the earlier considerations. The first deals with the
nature of the links between components in a biological network, and the
second deals with the functional states and the properties of a network
that a set of links form.

Links

Links between molecular components are basically given by chemical
reactions or associations between chemical components. These links are
therefore characterized and constrained by basic chemical rules. In tissue
biology, the nature of links between cells is more complicated and often
related to higher-order chemistry. We note that a T-cell receptor, for in-
stance, forms a complicated structure in the membrane of a cell and the
properties of that structure, and how compatible it is with the complimen-
tary features of another cell determines whether there is communication
or links between these cells. Since we are focused on the characteristics
of biochemical networks, we will further discuss the chemical nature of
links in molecular biology.

The prototypical transformations in living systems at the molecular level
are bilinear. This association involves two compounds coming together to
either be chemically transformed through the breakage and formation of
covalent bonds, as is typical of metabolic reactions or macromolecular
synthesis,

X+Y=X-Y covalent bonds
or two molecules associated together to form a complex that may be held to-
gether by hydrogen bonds and/or other physical association forces to form

a complex that has a different functionality than individual components,

X+Y=X:Y association of molecules



2.2 Links and Functional States

Such association, for instance, could designate the binding of a transcrip-
tion factor to DNA to form an activated site to which an activated poly-
merase binds. Such bilinear association between two molecules might also
involve the binding of an allosteric regulator to an allosteric enzyme that
induces a conformational change in the enzyme.

Chemical transformations have certain key properties:

1. Stoichiometry. The stoichiometry of chemical reactions is fixed and is
described by integral numbers counting the molecules that react and
that form as a consequence of the chemical reaction. Thus, stoichiom-
etry basically represents “digital information.” Chemical transforma-
tions are constrained by elemental and charge balancing, as well as
other features. Stoichiometry is invariant between organisms for the
same reactions and does not change with pressure, temperature, or
other conditions. Stoichiometry gives the primary topological prop-
erties of a biochemical reaction network.

2. Relative rates. All reactions inside a cell are governed by thermody-
namics. The relative rate of reactions, forward and reverse, is there-
fore fixed by basic thermodynamic properties. Unlike stoichiometry,
thermodynamic properties do change with physicochemical condi-
tions such as pressure and temperature. The thermodynamic prop-
erties of associations between macromolecules can be changed by
altering the sequence of a protein or the base-pair sequence of a DNA
binding site. The thermodynamics of transformation between small
molecules in cells are fixed but condition dependent.

3. Absolute rates. In contrast to stoichiometry and thermodynamics, the
absolute rates of chemical reactions inside cells are highly manipula-
ble. Highly evolved enzymes are very specific in catalyzing particular
chemical transformations. Cells can thus extensively manipulate the
rates of reactions through changes in their DNA sequence.

Therefore, links cannot just form between any two cellular components.
The links that are formed are constrained by the nature of covalent bonds
that are possible and by the thermodynamic nature of interacting macro-
molecular surfaces. All of these are subject to the basic rules of chemistry
and thermodynamics. The absolute rates are key biological design vari-
ables because they can evolve from a very low rate determined by the
mass action kinetics based on collision frequencies to a very high and spe-
cific reaction rate determined by appropriately evolved enzyme properties.
Enzymes evolve to bring molecules into particular orientation to control
the rate of appropriately oriented collisions between two molecules that
lead to a chemical reaction (see Figure 2.2).
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Figure 2.2: A schematic of how the binding sites of two molecules on an enzyme bring them
together to collide at an optimal angle to produce a reaction. Panel 1: Two molecules can
collide at at random and various angles in free solution. Only a fraction of the collisions
lead to a chemical reaction. Panel 2: Two molecules bound at the surface of a reaction can
only collide at a highly restricted angle, substantially enhancing the probability of a chemical
reaction between the two compounds. Redrawn from [122].

Functional states

Once all the links in a network have been identified and described, its
functional states can be determined. We can study the topological prop-
erties of a network, but these properties give is only limited information
about the actual functional state of a network. The functional states of
biological reaction networks are constrained by the physicochemical na-
ture of the intracellular environment (see Figure 2.3). There is a highly
developed spatiotemporal organization that orients the biological com-
ponents and determines the transient nature of the interactions. Interest-
ingly, cells are in a near crystalline state. The protein density in cytoplasm
and mitochondria is very close to the protein density in a protein crystal.
There are some other notable higher-order properties of biological net-
works, which will not be detailed here, which include self-assembly of
components to spontaneously form a functioning network, the selection
that seems to be at work at all levels in biology, and the interesting notion
of a self in biology, namely, is a component a part of a network or not?

EXEM Links to Networks

Chemical reactions link components together to form a network. Although
we can specify the chemical properties of links in biological networks, it is
the way in which a multitude of such links form networks that determines
phenotypic functions.
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Figure 2.3: The crowded state of the intra-
cellular environment. Some of the physical
characteristics are viscosity > 100 x un,0,
osmotic pressure < 150 atm, electrical gradi-
ents ~ 300,000 V/cm, and a near crystalline
state. Copyright David S. Goodsell 1999.

Most biochemical reactions are bilinear. Bilinearity gives the networks
a hypergraph property that is topologically nonlinear. The biochemical
consequence of this is that biochemical reaction networks form a tangle
of cycles [186] where different chemical properties and moieties are being
transferred throughout the network from one carrier to the next. Perhaps
the most familiar of such transformations is the movement of high-energy
phosphate bonds between metabolites and proteins. ATP is the primary
carrier of such high-energy bonds, and, for instance, a phosphate group
is tied to glucose to form glucose-6-phosphate as the first step in glycoly-
sis. The same feature is found in signaling networks whose components
are in phosphorylated or dephosphorylated states. Other properties being
transferred between molecules are redox potential, 1 carbon units, 2 car-
bon units, ammonia groups, and so on. This makes biochemical reaction
networks highly interwoven.

One interesting feature of biochemical networks as they grow in size is
the fact that because of combinatorics, the number of possible functional
states that they can take can grow faster than the number of components in
anetwork. This proliferation in the number of functional states seems to oc-
cur past some (a relatively low number) components that come together to
form a network. Therefore, the number of phenotypic functions derivable
from a genome does not linearly scale with the gene number contained
in that genome. For instance, the human genome may have only 50%
more genes than the genome of Caenorhabditis elegans, a small worm, but
nevertheless human beings display much more complicated phenotypes
and in greater variety. Thus, in general, it is hard to correlate organism
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complexity and functions to the number of genes that the organism’s
genome contains.

The fundamental property of biochemical networks of having many pos-
sible functional states leads to the possibility of having the same network
carry out many functions and displaying many different phenotypic be-
haviors. An organism does not fully exploit or use all such possible func-
tional states. Many possible states will be useless to the organism in its
struggle for survival. Therefore, a limited subset of these functional states
needs to be selected and expressed by cells. We are becoming increas-
ingly familiar with the regulatory mechanisms that carry out the selection
of functional states. We are unraveling the very complicated transcrip-
tional regulatory networks in single-celled organisms and the signaling
networks that coordinate the function of multicellular organisms. As we
will discuss in Chapter 16, complex biological reaction networks will have
equivalent functional states; that is, there are identical overall functional
states that differ in the ways in which they use the underlying links in the
network.

Some of the key features of biological networks that distinguish them
from other networks need to be accounted for in the analysis of their sys-
temic properties. The first basic feature of biological networks is that they
evolve; they change with time. They are time variant. Principally, such
changes occur through the kinetic properties of the links in the network
and the changing of the available or active links in the network at any
given point in time. The number of available links can be manipulated by
regulation of gene expression, by horizontal gene transfer, and by other
mechanisms. The second feature that has to be taken into account is the
fact that they have a sense of purpose. The fundamental purpose is sur-
vival. However, in complicated organisms that fundamentally comprise
many networks, some will have goals that are subtasks to the overall goal
of survival. For instance, the goal of adipocytes would be to collect and
store fat if, in their environment, there is an abundance of energy resources.
The goal of the mitochondrion, being the powerhouse of the cell, seems
to be to maximize ATP production from available resources. Therefore,
the study of objectives, that is, purpose, of biochemical reaction networks
becomes a relevant and perhaps a central issue.

Thus, linking many biological components together forms a network.
This network can have many functional states from which a subset is se-
lected. Links, network topology, and the sense of purpose can all change
with time or environmental conditions. It is important to be cognizant of
the fact that biochemical reaction networks have to operate in the crowded
interior of a cell (see Figure 2.3). Thus, the network view of the biologi-
cal process has to be considered in the context of the three-dimensional
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Figure 2.4: Theory-vs. constraint-based analysis. lllustration of finding an exact solution (a
point) versus finding a range of allowable solutions (a solution space).

physical arrangement of such networks. These considerations may limit
the usefulness of analogies with other man-made networks, such as elec-
trical circuits.

PXW Constraining Allowable Functional States

The earlier considerations of the nature of links, how they form networks,
and how networks form functional states make it likely that in silico mod-
eling and simulation of genome-scale biological systems is going to be
different than that practiced in the physicochemical sciences. First is the
notion that a network can fundamentally have many different states or
many different solutions. Which states (or solutions) are picked is up to
the cell, and such choices can change over time based on the selection
pressure experienced. This difference from the physico-chemical sciences
is illustrated in Figure 2.4. All theory-based considerations in engineering
and physics lead one to attempt to seek an “exact” solution, typically com-
puted based on the laws of physics and chemistry. However, in biology it
appears that not only can a network have many different behaviors that are
picked based on the evolutionary history of the organism, but also, as we
shall see, these networks can carry out the same function in many differ-
ent and equivalent ways. Therefore, what are called silent phenotypes in
biology may be mathematically synonymous to multiple equivalent net-
work states. This further leads to an interesting distinction in mathematical
modeling philosophy between the key disciplines (Table 2.1).

In physics, the emphasis has always been on deriving theory. Quantum
mechanics developed about 100 years ago. Boltzmann derived his famous
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Table 2.1: Disciplinary differences in modeling philosophy.

Equations Boundary conditions  Nature of solutions

Physics +++ + Unique
Engineering  ++ ++ Design
Biology + +++ Multiple and changing

equation prior to that. Theory, as expressed by mathematical equations
representing our understanding of fundamental physical mechanisms,
has been and probably will continue to be, central to physics. If one
wants to then obtain particular solutions to these equations, one has to im-
pose boundary conditions that typically lead to a calculation of a unique
solution.

Engineering takes a bit of a departure from this philosophy. The equa-
tions used in engineering do not need to be mechanistically correct, in a
fundamental theoretic sense, as long as they phenomenologically describe
the phenomena and process at hand. Furthermore, the boundary condi-
tions that need to be stated are very important and are often very specific to
what an engineer is designing. In engineering, though, one is used to the
fact that a problem can have multiple solutions, and this often comes down
to the use of design variables to try to optimize a design.

In biology, based on the earlier consideration, we find that the equa-
tions needed to describe the physics of the intracellular environment may
never be well known, and furthermore, network functionalities evolve and
change over time. Therefore, the fundamental equations describing bio-
logical functions may be hard to formulate and fully define. On the other
hand, the boundary conditions or the constraints under which cells operate
and evolve against are easier to identify, state, and use. Constraint-based
approaches to the analysis of complex biological systems have proven to
be very useful (see Part III of this book).

The constraints under which a cell operates

Cells operate under myriad constraints. There are different ways to classify
these constraints, and many authors have discussed them from different
points of view. A few will be mentioned here.

» A statement of two very general categories of constraints imposed by
natural selection have been described by F. Jacob [102]. They basi-
cally are (i) the requirement for reproduction and the genetic mecha-
nisms required to produce offsprings with nonidentical genetic com-
position of the parent(s), and (ii) the permanent interaction with the
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environment that imposes thermodynamic constraints of constant flux
of matter, energy, and information. The latter constraints are easier to
describe in the language of the basic physical laws.

e Danchin [41] in his insightful book about genomes divides the cellular
processes and their associated constraints into four general categories:
(i) compartmentalization to segregate function in space and to differ-
entiate the “inside” from the “outside”; (ii) metabolism that deter-
mines the flow of matter, energy, and redox potential within cells, and
its relationship with the outside world; (iii) the transfer of memory to
physicochemical processes (i.e., “actuating” inherited information);
and (iv) memory transmitted from one generation to the next.

¢ The author and his collaborators have defined four categories of con-
straints that can be used to analyze the capabilities of reconstructed
biochemical reaction networks [176]: (i) physicochemical constraints,
(ii) spatial and topological constraints, (iii) environmental constraints,
and (iv) regulatory constraints. These constraints can be mathemati-
cally described and used to assess the capabilities of networks (see
Chapter 12.).

Viewing regulation as self-imposed constraints, or perhaps as restraints,
justifies a few more observations in the context of natural selection and
organism survival.

Picking candidate states

Cells are subject to inviolable constraints such as those associated with
mass and energy balances. Their underlying biochemical networks must
obey these and other spatial constraints. These constraints have been
called hard constraints and, as illustrated by the pentagon in Figure 2.5,
give a range of all allowable states of the network. One or more states
may be deemed suitable by the cell on the basis of its evolutionary history
and current challenges (i.e., the prevailing environmental constraints). A
way to exclude all the unwanted states (i.e., those that are unsuitable, or
selected against) is to implement a regulatory network that eliminates a
large portion of the solution space (the pentagon) and by default forces the
expression of the “desired” phenotype. These issues are discussed further
in Chapters 12 and 13.

If a state or phenotype is not the best one under given conditions, the
solution can move within the allowable range. This change in the selection
of a functional state can be accomplished by regulating the expression of
the genes that are present at a given point in time and/or by regulating
the activity of the corresponding gene products. Such regulation has a
relatively short time profile. Over longer times, of course, the components

21



22

Basic Concepts in Systems Biology

States

"Fit” phenotype } allowed

Regulatory constraints; / ‘ \

self-imposed restraints Evolutionary
selection
pressure

States
>eliminated

by regulation

e

Hard constraints
(P/C environment, etc.)

J

Figure 2.5: lllustration of the constraints on network functions. The pentagon illustrates the
range of allowable functions based on hard physicochemical and environmental constraints.
The solid line illustrates self-imposed constraints (restraints) produced by regulatory networks;
that is, all the states below the line are ruled out by regulatory mechanisms. The dot denotes
the desired functional state, which is found among the admissible states after regulatory
constraints have been imposed.

of the network can evolve and the properties change slightly, allowing a
drift in the phenotypic function of the cell.

Hierarchical organization in biology

Many facets of cellular function and properties are organized hierarchi-
cally. The spatial organization of the DNA is shown in Figure 2.6A. The
linear dimension of the E. coli genome is about 1 mm, while the length of
the cell is of the order of 1 wm, a 1000-fold difference. The bacterial genome
is thus “folded” a thousand times, in a hierarchically organized fashion.
Biochemical reaction networks can be similarly decomposed (Figure 2.6B).
Reactions group together into coordinated units that may be colocalized
in space, or even compartmentalized. Many such coordinated units can
form a larger organized unit, and so forth.

The constraints that apply to the lower levels of organization by ne-
cessity will constrain the subsequent higher level functions. This upward
application of constraints necessitates a bottom-up approach to the anal-
ysis of complex biological phenomena. Godel’s completeness theorem in
mathematics that showed an axiomatic approach to proving mathematical
theorems could not prove that all properties of a system may in a general
sense apply to biology. If so, we cannot construct all higher level functions
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Figure 2.6: Hierarchical organization in cells: (a) bacterial genome and (b) network topology
and function. Prepared by Timothy Allen (A) and Jason Papin (B).

from the elementary operations alone. Thus, observations and analyses
of system level functions will be needed to complement the bottom-up
approach. Therefore, bottom-up and top-down approaches are comple-
mentary to the analysis of the hierarchical nature of complex biological
phenomena.

The successive adoption of cellular functions over evolution are illus-
trated in Figure 2.7. The basic biochemistry of cellular processes and the
maintenance and expression of the information on the DNA molecule
evolved early. This basic set of processes is still found in most organ-
isms today. The genetic code is essentially universal and most proteins are
made up of about 20 amino acids. These are basic constraints under which
all subsequent cellular processes must operate. The genetic code cannot
be predicted from basic theory or physics [39] but is consistent with the
basic laws of physics and chemistry. Once picked, it is essentially fixed
over evolution. Similarly, most modern proteins are made up of a limited
number of motifs, and the basic circuits that lay out the body plan are re-
markably conserved. Thus, the constraints set at a lower level of biological
hierarchy confine higher levels of organization but may not explain or pre-
dict the more complex functions. Evolution is a “tinkerer” that combines
the elements at hand together in new and unpredictable ways. The first
“wave” in Figure 2.7 is close to the underlying chemical principles and
will thus naturally represent a focus of this text.
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Figure 2.7: The history of the world according to cellular processes. Inspired by Marc Kirschner.

X3 summary

>

Biological systems are defined by the interactions between their com-
ponents.

The links between molecular components are constrained by the basic
laws of chemistry.

Multiple links between components form a network, and the network
can have functional states.

Functional states of networks are constrained by various factors that
are physicochemical, environmental, and biological in nature.

The number of possible functional states of networks typically grow
much faster than the number of components in the network.

The number of candidate functional states of a biological network far
exceed the number of biologically useful states to an organism.

Cells must select useful functional states by elaborate regulatory mech-
anisms.
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PART ONE

Reconstruction of
Biochemical Networks

Cellular functions rely on the interactions of their chemical con-
stituents. Various high-throughput experimental methods allow us now
to determine the chemical composition of cells on a genome scale. These
methods include whole genome sequencing and annotation (genomics),
the measurement of the messenger RNA molecules that are synthesized
under a given condition (transcriptomics), the protein abundance, interac-
tions and functional states (proteomics) measurements of the presence and
concentration of metabolites (metabolomic), and metabolic fluxes (flux-
omics). In addition, methods now exist to determine the binding sites of
protein to the DNA (location analysis) and to measure of a limited number
of fluxes through reactions inside a cell. The physical location of protein
products and segments of the DNA can be determined using various flu-
orescent reporting molecules. All these methods can be used to help to
reconstruct the biochemical reaction networks that operate in cells. This
part of the text discusses the reconstruction of metabolic, regulatory, and
signaling networks. Given the rate at which new methods are being devel-
oped, it is likely that this part of the text will become dated the fastest.
However, with new or existing methods the result of the reconstruction
process is a set of chemical reactions or interactions that comprise these
networks. The reader should be mindful of the fact that these are not sep-
arate and independent networks. In fact they interact with one another.
We often tend to think of them as being separate based on the biases that
the structure of the typical life science curriculum imposes. The recent
discovery of the transcriptional regulatory roles of key glycolytic enzymes
illustrates this point [113].






CHAPTER 3

Metabolic Networks

The function of cells is based on complex networks of interacting
chemical reactions carefully organized in space and time. These biochem-
ical reaction networks produce observable cellular functions. Network re-
construction is the process of identifying all the reactions that comprise a
network. The reconstruction process for metabolic networks has been de-
veloped and implemented for a number of organisms. The main features of
metabolic network reconstruction are described in this chapter. We briefly
review the key properties of metabolic networks and introduce the hi-
erarchical thinking that goes into the interpretation of complex network
functions. Further details can be found in authoritative sources [120, 218].

As discussed at the end of this chapter, a true genome-scale reconstruc-
tion of cellular functions necessitates accounting for all cellular networks
simultaneously. Such a comprehensive network reconstruction has yet to
be established; therefore, in this chapter, we focus on metabolism and
address the reconstruction of transcriptional regulatory and signaling net-
works in the following two chapters.

EXI Basic Features

Intermediary metabolism can be viewed as a chemical “engine” that
converts available raw materials into energy as well as the building
blocks needed to produce biological structures, maintain cells, and carry
out various cellular functions. This chemical engine is highly dynamic,
obeys the laws of physics and chemistry, and is thus limited by various
physicochemical constraints. It also has an elaborate regulatory structure
that allows it to respond to a variety of external perturbations. Metabolic
imbalance is involved in major human diseases, such as diabetes, obesity,
cancer, and heart disease. Metabolism comprises two types of chemical
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Table 3.1: Key chemical groups in metabolism and their carriers.
Phosphoryl ATP, GTP

Electrons NADH, NADPH, FADH;, FMNH;
One carbon unit Tetrahydrofolate

Methyl S-Adenosylmethionine

Acyl (two carbons) Coenzyme A, lipoamine
Aldehyde Thiamine pyrophosphate
Carbon dioxide Biotin

Nucleotides Nucleoside triphosphates

transformations: catabolic pathways that break down various substrates
into common metabolites and anabolic pathways that collectively synthe-
size amino acids, fatty acids, nucleic acids, and other needed building
blocks. During these processes, an intricate exchange of various chemical
groups and reductionoxidation (redox) potentials takes place through a set
of carrier molecules (see Table 3.1). These carrier molecules and the prop-
erties that they transfer thus tie the metabolic network tightly together.
Intermediary metabolism can be described at several levels of complexity
(Figure 3.1).

Hierarchy in function of metabolic networks

Genome-scale reconstructions of metabolic networks contain hundreds of
metabolites and sometimes over a thousand reactions (see Table 3.6). The
functions of such networks are hard for the human mind to comprehend.
We thus need mathematical models for the study of their properties and
simulation of their function. However, as pointed out in Section 1.2, we
can think of network properties in a hierarchical fashion to simplify the
conceptualization of network functions. Such hierarchy can be based on
manmade concepts, as discussed later, or can be the result of a nonbi-
ased mathematical analysis of the stoichiometric matrix (see Chapter 9).
In what follows, we briefly describe the traditional view of the hierarchical
decomposition of the functions of metabolic networks (see Figure 3.1).

Level 1: Cellular inputs and outputs. Overall, intermediary metabolism
comprises the enzymatic reactions pertaining to the transformation of sub-
strate molecules into the essential building blocks of macromolecules and
other vital products for growth and maintenance. A coarse-grained de-
scription of the overall activity of metabolism thus involves substrates as
inputs and biomass and metabolic by-products as outputs. For industrial
fermentation processes, a description of cells at this level has sufficed for
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Figure 3.1: Four-level functional decomposition of metabolism. Level 1: whole cell; level 2:
metabolic sectors; level 3: pathways; and level 4: individual reactions.

many purposes [6, 198]. The description comprises a simple set of coupled
mass and energy balances, with various empirically determined “yield”
coefficients that describe partitioning of the consumed substrate. Growth
kinetics are given in terms of simple phenomenological models such as the
Monod growth model. Models of this type are useful for a limited set of
specific conditions. The yield coefficients are not constants; they change
with the physiological state of the cell.

Level 2: Sectors. A bit finer grained look at intermediary metabolism
reveals that it can be divided into two basic sectors (see Figure 3.2).
Catabolism carries out the degradation of substrates via a series of con-
verging pathways that lead to a set of 11 metabolites of central importance,
called the biosynthetic precursors. Anabolism is a set of diverging path-
ways that originate from these central metabolites to form monomers or
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Figure 3.2: Major parts of cellular metabolism. Modified from [4].

building blocks for macromolecular biosynthesis. Genetically engineered
bacteria used for bioprocessing, for instance, can be described at this level
of complexity since it is appropriate for assessing host-plasmid interac-
tions.

Level 3: Pathways. A still finer resolution reveals a situation in which path-
ways, and segments thereof, serve a definite role. For instance, catabolism
of the major classes of biomolecules follows the same pattern; first, sub-
strates are picked up by the cell, hydrolyzed if necessary, activated by a
cofactor, and then degraded to yield energy and other properties stored
on the carrier molecules. At this level of description, the essential fea-
tures of metabolism begin to depend on basic chemical principles such
as stoichiometric structure and kinetic regulation. Key metabolic pools,
such as the energy charge, dominate the description, and key regulatory
enzymes influence the motion of these pools and how mass and energy is
distributed among them. There is currently much interest in the pathway
level characterization of reconstructed biochemical reaction networks.

Level 4: Individual reactions. At the finest level of description one consid-
ers all the biochemical transformations that take place in a cell. Available
high-throughput data, as discussed in Chapter 1, allows us to generate
the information needed to describe cells at this resolution. It is at this
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level where this book is focused. We can now reconstruct genome-scale
stoichiometric matrices of organisms and study them. The dimensions of
these matrices are on the order of hundreds of metabolites and sometimes
over a thousand chemical reactions, reflecting the complexity of a fully
functional metabolic network.

Biochemical transformations fall into a few major categories. Some ex-
amples include transamination, phosphorylation, isomerization, dehydra-
tion, and dismutation. Thus, there are chemical “rules” that dictate what
kind of links can exist in metabolic networks. As described later, bio-
chemists have devised nomenclature that classifies these types of transfor-
mations and an Enzyme Commission (E.C.) number is associated with each
enzymatically catalyzed metabolic reaction. Furthermore, there are ther-
modynamic restrictions associated with these transformations that dictate
the energetic feasibility of a reaction and its equilibrium state. Thus, even
though metabolic networks may appear complex, there are underlying
physicochemical restrictions on their topological structure and network
states. These constraints are detailed in Parts II and III of this book.

E¥I Reconstruction Methods

Defining the reaction list

The reconstruction of a genome-scale metabolic network relies on assem-
bling various sources of information about all the biochemical reactions
in the network. A variety of data sources can be used to synthesize a
list of chemical reactions that form an organism’s metabolic network (see
Figure 3.3). The principal data sources are (roughly in the order of relia-
bility) as follows:

1. Biochemistry. The strongest evidence for the presence of a metabolic
reaction is found if an enzyme has been isolated directly from the or-
ganism and its function demonstrated. Extensive data is often avail-
able for model organisms, such as Escherichia coli and yeast but may
be fragmented for organisms that have been sparingly studied.

2. Genomics. Functional assignments to open reading frames (ORFs),
based on DNA sequence homology, may be used as a strong evidence
for the presence of a reaction in an organism. Functional assignments
can also be achieved from the genome location of an ORF and the
cluster of genes that are found in its neighborhood. Genome annota-
tions are subject to revision and updates.

3. Physiology and indirect information. Physiological evidence, such as
the known ability of the cell to produce an amino acid in vive, may
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Figure 3.3: A schematic of the overall process of genome-scale metabolic network reconstruc-
tion (GENRE) and subsequent model formulation. Modified from [37].

lead us to include reactions which “fill in the pathway” to produce
that amino acid. This process is called gap analysis. Other physi-
ological information is often useful in diagnosing the function of a
reconstructed networks.

4. In silico modeling data. Modeling and simulation studies often lead
to the inclusion of metabolic reactions in the reconstruction. A net-
work needs to be able to simulate cell behavior in silico. For instance,
the metabolic network must be able to produce or take up all of the
necessary components of the cellular biomass. One needs to add the
reactions necessary to fulfill the biomass requirements if they are not
present. Such reactions are referred to as “inferred reactions.”

All the reactions identified by these various means then combine to
produce a genome-scale metabolic reconstruction for the organism of in-
terest. Normally, the reconstruction process starts with the annotated DNA
sequence and thus the reconstruction is “genome-scale” since it will con-
tain all the information that is found on the genome that relates to the
organism’s metabolism. This set of reactions comprises a genome-scale
metabolic model when combined with quantitative analytical methods,
which enable us to analyze, interpret, and predict integrated network func-
tions (see Figure 3.3). Some of these mathematical methods that are scal-
able to the genome-scale networks are described later in the text.

Clearly, the confidence level in the various sources differs, but one can
use quantitative scale to rank-order the reliability of the source. One such
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Table 3.2: Methods for annotating genomes [108, 148].

ORF identification  “Traditional” annotation methods = New annotation methods

Stop codons Experimental (direct) Protein—protein interactions
GLIMMER Sequence homology Correlated mRNA expression levels
Genscan Phylogenetic profile

Protein fusion clustering
Gene neighbors (operon clustering)
Automation

quantitative scheme proposed is biochemical data (4), genetic data (3), ge-
nomic data (2), physiological data (1), and modelling data (0) [191]. One is
never fully sure about the presence of a reaction until the biochemical data
has been obtained, although sequence homology that meets certain criteria
is often taken as sufficient evidence for a true functional assignment.

Genome annotation

Since few organisms have extensive biochemical information available,
reconstruction relies heavily on an annotated genome sequence. ORF's are
identified on the genomic sequence, then assigned a function. This process
can be done through experimental methods (gene cloning and expression
or gene knockout) or more commonly by comparing its sequence homology
to genes of known function in other organisms. In silico annotation meth-
ods typically lead to functional assignment of 40-70% of identified ORF's
on a freshly sequenced microbial genome. New and improved methods
continue to be developed for genome annotation. For example, functions
of gene products may be inferred from protein—protein interactions, tran-
scriptomics, phylogenetic profiles, protein fusion, and operon clustering
(see Table 3.2). It should be emphasized that every gene annotation based
on in silico methods is hypothetical, and such annotation is subject to
revision until the gene has been cloned, expressed, and the function of
the gene product directly evaluated. The automation of network recon-
struction from annotated sequence has been attempted [108]. To produce
high-quality, well-curated reconstructions, one has to manually verify all
the components and links in a network, since there are often subtle dif-
ferences between even related organisms. There are many Web resources
available for this purpose (Table 3.3).

Publicly available sources of sequence data
There are several publicly available databases that contain genomic data
(Table 3.3). The Comprehensive Microbial Resource (CMR) provides tools
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Table 3.3: Publicly available genome databases. Prepared by Ines Thiele.

Microbial genomes

and annotation

DDBJ

EBI

EMBL

GenBank (NCBI)

TIGR annotation software

Comparative genomics
ERGO

The SEED

GenDB

GeneQuiz
MBGD
Pedant
Prolinks
String
PUMA2

Pathway/
Reconstruction tools
INSILICO discovery
MetaFluxNet

MFAML (Metabolic Flux
Analysis Markup Language)
SimPheny

Pathfinder

PATIKA

Pathway databases
BioSilico

KEGG

MetaCyc

MRAD

Phylosopher

PUMA2

EMP

Enzymes
Brenda
KEGG
IntEnz

Proteins
HAMAP project
InterPro

http://www.ddbj.nig.ac.jp/
http://www.ebi.ac.uk/
http://www.ebi.ac.uk/embl/
http://www.ncbi.nlm.nih.gov/Genbank/
http://www.tigr.org/software/

http://ergo.integratedgenomics.com/ERGO/
http://theseed.uchicago.edu/FIG/index.cgi
http://www.cebitec.uni-bielefeld.de/groups/
brf/software/gendb_info/index.html
http://jura.ebi.ac.uk:8765/ext-genequiz/
http://mbgd.genome.ad.jp/

http://pedant.gsf.de/
http://128.97.39.94/cgi-bin/functionator/pronav
http://string.embl.de/
http://compbio.mcs.anl.gov/puma2/cgi-bin/index.cgi

http://www.insilico-biotechnology.com/f_products.html
http://mbel kaist.ac.kr/mfn
http://mbel kaist.ac.kr/mfaml

http://www.genomatica.com/solutions_simpheny.shtml
http://bibiserv.techfak.uni-bielefeld.de/pathfinder/
http://www.patika.org/

http://biosilico.kaist.ac.kr or http://biosilico.org
http://kegg.com/

http://metacyc.org/
http://capb.dbi.udel.edu/whisler/
http://www.genedata.com/phylosopher.php
http://compbio.mcs.anl.gov/puma2/cgi-bin/index.cgi
http://www.empproject.com/

http://www.brenda.uni-koeln.de/
http://www.kegg.com/
http://www.ebi.ac.uk/intenz/

http://www.expasy.org/sprot/hamap/
http://www.ebi.ac.uk/interpro/
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Table 3.3 (continued)

E. coli-specific

H. pylori-specific

Databases

EcoCyc http://ecocyc.org/

Colibri http://genolist.pasteur.fr/Colibri/
GenProtEC http://genprotec.mbl.edu/

CybercCell http://redpoll.pharmacy.ualberta.ca/CCDB/index.html
EchoBase http://www.ecoli-york.org/
Yeast-specific

Databases

CYGD http://mips.gsf.de/genre/proj/yeast/
Saccharomyces Genome http://www.yeastgenome.org/
Database

Databases
PyloriGene http://genolist.pasteur.fr/PyloriGene/
hp-DPI http://dpi.nhri.org.tw/protein/hp/ORF/index.php

for the analysis of 63 annotated genome sequences, both individually and
collectively. The Institute for Genomic Research (TIGR) updates and main-
tains this site.

Another database that maintains many microbial genomes is the
Genomes On-Line Database (GOLD) site. Not all of the information on
the site is publicly available. The developers of GOLD have been active
in automating the reconstruction of metabolic networks using pathway
templates.

Biochemical data

Direct biochemical information is the most reliable source for the presence
of a reaction in an organism. Biochemical data also gives stoichiometry
and whether or not a reaction is reversible. For example, the enzyme that
catalyzes the conversion of p-glucose to p-glucose-6-phosphate, as ATP
is converted to ADP, is called glucokinase. The gene that encodes this
enzyme is commonly called glk, and the E.C. number that corresponds to
this reaction is 2.7.1.2. The structure of the Human g-cell glucokinase is
shown at the top of Figure 3.5 (found in the Protein Data Bank). Collections
of biochemical data on an organism’s metabolism is often found in review
articles and more recently in whole volumes that are focused on the biology
of a single organism.
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Gene: glk

Enzyme:  Glucokinase

Reaction:  ATP + D-Glucose =
ADP + D-Glucose 6-phc

E.C. 2.7.1.2

Figure 3.5: Biochemistry of the glucokinase reaction and and illustration of its protein struc-
ture. From http://www.rcsb.org/pdb/

Enzyme commission numbers

E.C. numbers are used to systematically characterize enzymatic reactions
(http://www.chem.qmul.ac.uk/iubmb/enzyme/). They have been estab-
lished to unambiguously classify reactions, which is needed because so
many enzymes have ambiguous and duplicate names across organisms
(see Table 3.4). For instance, try going to the E.C. Web site and searching
first for succinate dehydrogenase (sdh), and then for fumarate reductase
(fr). Both of these enzymes catalyze the same reaction, but in opposite di-
rections. Some biochemists find that frd or sdh may be reversible at times.
As a result, when you type in succinate dehydrogenase you will find that
it is often used to indicate either reaction. A classification scheme similar
to the E.C. system is being developed for transport reactions [26]. Unfortu-
nately, there is no similar system for genes, which have the same problem
of ambiguous and duplicate names. Thus, the curation of gene annotation
information for a reconstruction can be quite laborious.

Protein databases

Swiss-Prot (http://us.expasy.org/sprot/) is a very useful source for examin-
ing particular protein or reaction assignments in detail and is considered a
“gold standard” for biochemical information because it is so well-curated.
It contains literature references, sequences, functional assignments, and
other useful information, all specific to the organism being examined.
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Table 3.4: Example of the E.C. nomenclature.
EC 1.1 Acting on the CH—OH group of donors
EC1.11 With NAD or NADP as acceptor
EC11.2 With a cytochrome as acceptor
EC113 With oxygen as acceptor
EC114 With a disulfide as acceptor
EC115 With a quinone or similar compound as acceptor
EC 1.1.99 With other acceptors
EC 1.2 Acting on the aldehyde or oxo group of donors
EC1.21 With NAD or NADP as acceptor
EC1.22 With a cytochrome as acceptor
EC1.23 With oxygen as acceptor
EC1.2.4 With a disulfide as acceptor
EC1.27 With an iron—sulfur protein acceptor
EC 1.2.99 With other acceptors
EC13 Acting on the CH—CH group of acceptors
EC1.31 With NAD or NADP as acceptor
EC13.2 With a cytochrome as acceptor
EC13.3 With oxygen as acceptor
EC13.5 With a quinone or similar compound as acceptor
EC13.7 With an iron-sulfur protein acceptor

If one is not sure about the presence of a protein in an organism but a
page is found for it on Swiss-Prot, he or she can be fairly sure that the
protein has been characterized and that literature references are available.
TrEMBL contains new entries to Swiss-Prot that have not yet been curated.

Gene-protein—reaction (GPR) associations
When associating genes to reactions, and vice versa, it is important to
remember that not all genes have a one-to-one relationship with their cor-
responding enzymes or metabolic reactions. Many genes may encode sub-
units of a protein which catalyze one reaction. One example is the fumarate
reductase. There are four subunits, frdA, frdB, frdC, and frdD, without
which the enzyme (a protein complex) will not be able to catalyze the
reaction. Conversely, there are genes that encode so-called promiscuous
enzymes that can catalyze several different reactions, such as transketo-
lase I in the pentose phosphate pathway. Such reactions typically involve
similar chemical transformations of structurally related molecules.

These examples highlight the need to keep track of associations between
genes, proteins, and reactions. Examples of different types of GPR associ-
ations are shown in Figure 3.6, where the top level is the gene locus, the
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LEVEL | GPR ASSOCIATIONS
Succinate Dehydrogenase
Gene |([b0721] [00722 |b0{23| |b0{24|
} 1
Peptide |[sdhC] [sdhD] |sdhA] [sdhB |
-~
Protein
Reaction
D-Xylose ABC Transporter
Gene [b3566| |b3567] b3568
1 ¥ 1
Peptide | [xylF] DylG | [xylH |
Figure 3.6: Gene—protein—reaction (GPR) associa- l l l
tions. Redrawn from [185]. .
Protein M@@
®
Reaction (xvLabe)
Glyceraldehyde 3-
Phosphate Dehydrogenase
Gene [b1779] b1416] |b1417|
¥ 1 1
Peptide |  [gapA] [gapC3 (gapCil
e
Protein
Reaction

second level is the translated peptide, the third level is the functional pro-
tein, and the bottom level is the reaction. Many genes may encode subunits
of a protein, or multiple proteins might come together to form an enzyme
complex. Subunits (e.g., sdhABCD and gapC;C;) and enzyme complexes
(e.g., xyIFGH) are connected to reactions with “&” associations, meaning
that all have to be expressed for the reaction to occur. For sdhABCD, the “&”
is shown above the enzyme level indicating that all of these gene products
are needed for the functional enzyme. With xylFGH, the “&” association
is shown above the reaction level, indicating that the different proteins
form a complex that carries out the reaction. Succinate dehydrogenase is
an example of a promiscuous enzyme that can catalyze several different
reactions. Isozymes (e.g., GapC and GapA) are independent proteins that
carry out identical reactions. Only one of the isozymes needs to be present
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for the reaction to occur. Isozymes are shown as two or more arrows leaving
different proteins but impinging on the same reaction.

Organism-specific sources of information

Several biological databases that integrate genomic and biochemical data
for a particular organism are becoming available. One of the earliest of
such sites is the E. coli encyclopedia (EcoCyc) database. Comprehensive
Yeast Genome Database (CYGD), Yeast Protein Database (YPD), and Sac-
charomyces Genome Database (SGD) are some examples for yeast.

The widely used Kyoto Encyclopedia of Genes and Genomes (KEGG)
database organizes its genomic information as maps of reaction networks.
In reaction maps, arrows are used to connect various metabolites, indicat-
ing that one metabolite can be converted to another by a chemical reaction.
This representation is the standard graphical representation of reaction
and pathway data and will be described in Chapter 6.

For many organisms of interest, comprehensive textbooks have been
written that include detailed descriptions of the organism’s metabolism
and other biological functions. These books give an overview of the or-
ganism’s importance, metabolic features, and important references, as
well as physiological data. The E. coli two-volume set [142] was the
first of its kind and continues to be a useful source when building mod-
els of other bacteria. Several such organism-specific compendia have ap-
peared [131, 138, 142, 211]. Such compilations of genetic, biochemical,
and physiological data, and functional attributes of a particular organism,
represent highly concentrated sources of data needed for reliable recon-
structions.

In addition, to achieve a high-quality, well-curated network reconstruc-
tion, one should search the primary research literature. Comprehensive
review articles are particularly useful since they contain organized collec-
tions of primary articles on a particular organism. Reviews are typically
well summarized and written by experts on the subject and provide an
accessible source of biochemical information. Frequently though, one has
to search the primary literature, and searches may have to be done on a
regular basis to continually update the network reconstruction.

Meeting demands and measured physiological states
There are two additional issues that one needs to consider in completing
the reconstruction.

First, one needs to analyze the demands that are placed on the network.
Most of the time, metabolic networks are fulfilling many functions, such as
synthesizing the entire biomass composition of the organism in a growth
state. In many cases, the biomass composition of an organism will not be
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available from direct experiments; for such cases, the biomass composition
of a closely related organism may be used. For example, in reconstruct-
ing H. pylori or H. influenzae, one could assume a biomass composition
similar to that for E. coli. This may not be an acceptable assumption for
eukaryotes, such as S. cerevisiae. The best option is to experimentally de-
termine the composition for the organism of interest. Knowing the relative
macromolecular composition, such as the amino acid composition of pro-
teins [233], is more important than detailed information on the makeup of
each class of macromolecules.

Second, it is important to obtain physiological data to determine if the
reconstructed network can reproduce physiological behaviors that have
been observed experimentally. Such tests require integrated or mathemat-
ical descriptions of the network, detailed later in the text. Physiological
data de facto gives the functional states of the network. The reconstruction
must be able to reproduce these observed states.

Data on individual reactions and data on functional states represent fun-
damentally different information. The former is component-type informa-
tion, often referred to as bottom-up data. The latter is whole network-type
information, often referred to as top-down data. Since metabolic networks
are functionally hierarchical, both these data types are important in ob-
taining genome-scale reconstructions.

Reconciliation and curation

Although a reconstructed network has been synthesized using various
databases and literature sources for information, it is most likely not yet
complete. Careful studies will often show that enzymes that are likely to
exist in the thriving organism may be missing from the reconstruction.
For example, both KEGG and TIGR give no indication that phosphofruc-
tokinase is found in H. pylori. This could mean that H. pylori is not able
to produce 1,6-fructose bisphosphate (FDP) from glucose, although there
may be other pathways by which FDP is produced. Careful review of the
literature reveals that the phosphofructokinase enzyme may have been
identified [90]. Other scientists, however, have disputed this claim. After
thoroughly examining studies of H. pylori metabolism, one needs to de-
cide whether or not to include this enzyme and the reaction it catalyzes
in the reconstruction. Biochemical data is therefore fundamental to both
curating and expanding the network.

Prospective design of experiments

No organism is fully characterized today. Therefore, although the online
databases and all of the relevant literature have been searched and re-
actions tabulated, there is still a high probability that several necessary
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reactions will be missing in the reconstruction. Not all of the ORFs in the
genome have been identified, assigned a function, and linked to reactions
in the network. Based on knowledge of how an organism grows and func-
tions, a gene product’s presence can be inferred based on the inability of
the organism to function without it. “Filling in the gaps” in this way is
tantamount to stating hypotheses to drive further experimental research.

Indeed, the primary result from genome-scale constraint-based mod-
els of networks is a well-defined list of hypotheses and experiments to
carry out in order to reconcile discrepancies in a reconstruction, fill in
the gaps, and explore new functionalities of an organism. There are now a
growing number of examples where models are used to drive such experi-
ments, from well-characterized organisms, such as E. coli [51, 185, 33] and
yeast [67, 47], to organisms that are not as well studied, such as Geobacter
sulfurreducens [127]. This process of iterative model building promises to
accelerate biological discovery, product development, and process design.
It represents one of the major goals of systems biology [100, 152].

EXM Genome-scale Metabolic Reconstructions

The reconstruction of metabolic reaction networks has been ongoing based
on biochemical information de facto since the 1930s, when the glycolytic
pathway was delineated. Since then, a large number of metabolic reactions
have been discovered and described. Assembly of such reactions make up
large sections of textbooks on biochemistry [120, 218]. Large-scale organ-
ism specific assemblies began to appear through multiauthored volumes
in the late 1980s [142]. The availability of such information began the sys-
tematic synthesis of organism-specific metabolic networks. Large-scale re-
constructions of E. coli metabolism were established in a stepwise fashion
(see Table 3.5) and the network properties of their mathematical descrip-
tions were assessed [183]. Similar biochemically based reconstructions
have appeared for S. cerevisiae [54, 47] and Aspergillus niger [43].

The first genome to be fully sequenced was that of H. influenzae
in 1995 [60], which enabled the first reconstruction of a genome-scale

Table 3.5: Pregenome era reconstructions of the metabolic
network in E. coli. From [183].

Number of metabolites Number of reactions Publication

17 14 [129]
118 146 [231, 232]
305 317 171, 172]
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Table 3.6: Genome-scale reconstructions of metabolic networks in microbial
cells. The detailed contents of many of these models are available at
http://systemsbiology.ucsd.edu. Organelle-scale reconstructions of the human
cardiac myocyte have appeared [238], accounting for 230 metabolites and 189
reactions. Compiled by Jennifer Reed.

Organism Number of Number of Number of

Organelle genes metabolites reactions Publication

H. influenzae 296 343 488 [50]

E. coli 660 436 720 [51]

904 625 931 [185]

H. pylori 291 340 388 [192]

341 485 476 [221]

S. cerevisiae 708 584 842 [54]

750 646 1149 [47]

G. sulfurreducens 588 541 523 [127]

S. aureus 619 571 640 [10]

M. succiniciproducens 335 352 373 [93]

metabolic network in 1999 [50]. Since then, a number of genome-scale re-
constructions have been achieved (see Table 3.6). Most of the genome-scale
networks reconstructed thus far are for bacteria, although the first genome-
scale eukaryotic networks have recently appeared. Eukaryotic reconstruc-
tions are much more complicated than those of bacteria; for instance, the
most recent S. cerevisiae reconstruction accounts for seven cellular com-
partments [47].

The process described in the last section represents the detailed lessons
learned through these reconstruction efforts. The process of reconstruction
is iterative. Unlike genome sequencing projects which have a well-defined
end point, the reconstruction process is ongoing. The history of the recon-
struction of the E. coli network is shown in Figure 3.7, and, at the publi-
cation of this book, reconstruction of this organism has been ongoing for
close to 15 years. The reconstruction of other recently sequenced organ-
isms is proceeding much faster now that a comprehensive reconstruction
of the E. coli metabolic network is available.

EX W Multiple Genome-scale Networks

Metabolic networks do not operate in isolation. They interact with many
other cellular processes, such as transcriptional regulation and cellu-
lar motility. Signaling networks in multicellular organisms interact with
metabolism, as do cellular fate processes, such as mitosis and apoptosis.
To fully describe a cell, all these networks need to be reconstructed and
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Figure 3.7: History of reconstruction of mathematically described metabolic reaction networks
for E. coli. From [183].

integrated to simultaneously represent all cellular functions. Today, such
integration has only been achieved for metabolism and transcriptional
regulation [33]. As described earlier, genome-scale metabolic reconstruc-
tions are currently fairly comprehensive. Models of mitosis and apoptosis
have appeared [223, 224, 68]. The status of reconstruction of transcrip-
tional regulatory and signaling networks are described in the next two
chapters.

Common components

The division of cellular networks into metabolism, regulation, and signal-
ing has historical and life science curriculum origins. However, there are
an increasing number of discoveries showing that often the same molecules
participate in more than one of these networks (see Table 3.7). We must
therefore begin to think of all the chemical reactions resulting from the
activities of genomes and gene products as one genome-scale network.

Putting “content in context”

Over the coming decade we may expect to see reconstructions appear that
integrate multiple such networks. As in the past, it is likely that model
organisms such as E. coli will lead the way (see Figure 3.8). Seen from
a broader perspective, reconstructing genome-scale models provides a
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Table 3.7: Cellular components of multiple networks (signaling, metabolism, and
regulation). From [157].

Component Metabolic Regulatory Signaling Ref.
ATP Energy metabolism Global regulator of Phosphate is [83]
DNA coiling ubiquitous in
signaling reactions
Riboswitches Metabolite-binding Ribozymes cleave [250]
and ribozymes can regulate activity =~ RNA transcripts;
control gene
expression
Arg5,6 Arginine biosynthesis Binds to specific [81]
nuclear and
mitochondrial
loci of DNA
Phosphoinositides Lipid biosynthesis PI3K signaling [27]
GAPDH Glycolytic enzyme Transcriptional [208]
coactivator
Lactate Glycolytic enzyme Transcriptional [208]
dehydrogenase coactivator
Nicotinamide Metabolic cofactor Alter TF Calcium signaling;  [208, 14]
adenine DNA-binding Poly-ADP-ribose
dinucleotide properties polymerases
(NAD)
Interleukin-1 Inhibition of fatty Immune system [133]
acid synthesis signaling
Sialic acid Oligosaccharide Apoptotic [140]
synthesis signaling
Insulin Glucose uptake PI3K signaling [133, 206]
Hog1 Glycerol synthesis; Osmolarity [45]
phosphofructokinase response
in yeast

formalism for integrating all of the “omics” data that is currently avail-

able, or allows one to put “content in context.” Here, genomic, transcrip-

tomic, proteomic, and metabolomic data are all integrated in the context

of a biochemically and genetically accurate framework that enables one

to make predictions about whole organism function, given the nutritional

environment.

Note that chemical composition data (genomics, transcriptomics, pro-

teomics, metabolomics) and component interaction data (DNA-protein and

protein—protein interactions, or “interactomics”) can be comprehensively
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Table 3.8: The data types accounted for in genome-scale multinetwork reconstruction.

Genomic data Annotated genes
Splice variants
Gene location
Regulatory regions
Wobble base pairs
Biochemical data Stereochemistry (L and p forms)
pH and pK, to determine charge
Elemental balance and charge balance
Multiple reactions/enzyme
Multiple enzymes/reaction
Transcription/translation Gene—transcript—protein—reaction association
Transcript and protein half-lives
tRNA abundances
Ribosomal and polymerase capacities
Physiological data Fluxes (fluxomic data)
Overall phenotypic behavior
Gene knockout phenotypes
Compartmentalization of gene products

connected to phenotypic data (network functional states, such as flux-
omics and growth rate phenotyping). Because of the predictive nature
of mathematical models, they can also be used to to curate and criti-
cally examine high-throughput data by reconciling in silico predictions
with experimental results. Thus, the reconstruction can be called a bio-
chemically, genetically, and genomically structured (BIGG) database, and
the mathematical analysis approach can be called query or interrogation
methods.

Data types accounted for in a multinetwork reconstruction

The reconstruction and integration of multiple networks will allow for the
simultaneous accounting of diverse date types and their reconciliation. Ge-
nomic, biochemical, macromolecular, and physiological data can be used
in such reconstructions (Table 3.8).

¢ Genomic data include DNA sequences and the location and functional
annotation of genes. Transcriptional regulatory models also account
for many of the intragenic regions where RNA polymerase and tran-
scription factors bind.

¢ Extensive biochemical information is contained in reconstructions.
The 1 and p forms of compounds are accounted for separately.
A molecule’s charge can be determined from its pK, value and
network-scale proton balancing. All reactions must elementally and
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charge balanced. Promiscuity of enzymes and the ability of different
enzymes to catalyze the same reaction needs to be accounted for.

¢ Reconstructions of translation and transcription include the relation-
ship between an open reading frame and its transcript. Translation not
only associates a transcript with a protein but also enables the incor-
poration of transcript half-life data, tRNA abundances, and ribosomal
capacities. Wobble base pairs can also be associated with correspond-
ing tRNAs. The assembly of multiple proteins to form functional com-
plexes can also be incorporated.

» Large-scale reconstructions allow us to simulate and thus reconcile
phenotypic data. Fluxomic data give information about the actual
flux distributions in a network and can be derived from a mathemat-
ical model. The consequences of removing a gene can be assessed.
The cellular location of proteins can be described, as in the seven-
compartmental model of yeast.

Genome-scale reconstructions provide a mechanistic framework for the
integration of a wide range of data types. Such reconstructions, and their
stoichiometric representation, are a common denominator in systems bi-
ology (recall Figure 1.4).

Regulation of metabolic networks

Regulation of metabolism is accomplished by modulating enzymatic reac-
tion rates. Such modulation is achieved by either regulating the activity
or the concentration of key enzymes. In some cases, both kinetic function
and enzyme concentration are regulated. These two types of regulation
are illustrated in Figure 3.9, where feedback loops at the end of a pathway
regulate the first reaction in the sequence and also control the production
rate of the enzymes catalyzing reactions in the pathway. Regulation on
both levels can be either

* negative, called repression in the case of regulation of gene expression
and inhibition in the case of regulation of enzyme activity, or

* positive, called induction in the case of gene expression and activation
in the case of regulation of enzyme activity.

The time scale of regulation of enzyme activity is typically much shorter
than that of gene expression, that is, on the order of minutes and hours,
respectively [75]. Normally, regulation of gene expression is considered
a coarse control of metabolism, whereas regulation of enzyme activity
is viewed as fine tuning. Regulation of gene expression is fairly well-
characterized in bacteria, but much more complicated regulatory patterns
are found in eukaryotic cells. A detailed account of the principles of
metabolic regulation is given in [84]. Transcriptional regulation is detailed
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Figure 3.9: schematic of interacting metabolic and genetic control loops, modified from [151].
The dashed lines indicate regulatory interactions, while the solid arrows indicate primary
chemical transformations. The dotted line is used to seperate the domain of metabolic from
that of transcriptional regulation.

in the next chapter, but the regulation of gene product activity is briefly
discussed here.

Regulation of enzyme activity

Cells use various mechanisms to regulate the activity of enzymes. For in-
stance, many key enzymes in metabolism are regulated by an allosteric
mechanism. In addition to having the binding site for the substrate, al-
losteric enzymes have a binding site for regulatory molecules as well. A
bound regulatory molecule can either activate or inhibit enzyme activ-
ity. Allosteric interactions between the catalytic and regulatory sites cause
conformational changes in the enzyme molecule. This is indicated by the
name allosteric, coined by [139], which means different (allo-) binding
sites, as opposed to isosteric, where substrates and modulators would bind
to the same site. Allosterism is quite advantageous since the substrate and
regulatory molecules are typically chemically unrelated.

Allosteric enzymes are commonly found at the beginning of a sequence,
whereas their regulators are found at the end. This forms feedback loops, as
indicated in Figure 3.9. Hexokinase, the enzyme catalyzing the phospho-
rylation of glucose, is a familiar example. It is inhibited by the chemical
energy source ATP, which is one of the primary products of glycolysis, and
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is stimulated by ADP, which is produced by consumption of the energy
stored in ATP and may be considered a substrate. Allosteric regulation
and other regulatory mechanisms, such as protein phosphorylation, have
an underlying chemical mechanism and can thus be described stoichio-
metrically.

EX3 summary

» Complex networks operating inside cells carry out complicated bio-
logical functions. Examples include metabolic, regulatory, and signal-
ing networks.

» All networks are based on underlying biochemical reactions and can
thus be described by a stoichiometric matrix.

» Reaction networks can be described at different levels of resolution
enabling us to conceptualize their functionalities in a hierarchical
fashion.

» Metabolism is the best characterized cellular reaction network in
terms of its biochemistry, kinetics, and thermodynamics.

» Genome-scale reconstruction of metabolic networks for organisms
whose genome has been sequenced is now possible.

» Network reconstruction is a detailed, laborious process that needs
careful examination of all the components and links in the network.
Procedures to perform this task have been developed. Numerous Web
resources and tools are available to aid in developing curated net-
works.

» Metabolic networks interact with essentially all other cellular pro-
cesses. The reconstruction of these processes and the integration of
multiple networks will lead to the description of a comprehensive
range of cellular functions.

» Such a multinetwork reconstruction represents a biochemically, ge-
netically and genomically, structured database that provides the
framework for analyzing -omics data types.

EX3 Further Reading
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CHAPTER 4

Transcriptional Regulatory
Networks

The expression of the gene complement of a genome is carefully
regulated. Only a fraction of the genes in a genome are expressed under
a given condition or in a particular cell type. There is a complex tran-
scriptional regulatory network that controls which genes are expressed
in response to various environmental and developmental signals. Exten-
sive effort is being devoted to the elucidation of the components of tran-
scriptional regulatory networks and the links between them. The recon-
struction methods that are being developed are based on both legacy and
high-throughput data types, and notable progress is being made with a few
specific cases. Although the comprehensive details are not yet available
for any one transcriptional regulatory network, some of their fundamen-
tal principles have been elucidated and a conceptual framework for their
hierarchical decomposition has been developed.

X Basic Properties

The chemical conversions taking place in metabolic networks relate to
the dismemberment and assembly of small molecules through a series of
chemical transformations. In contrast, transcriptional regulatory networks
involve the association and interaction of large molecules. They rely pri-
marily on protein—protein interactions and DNA—protein interactions, al-
though metabolites do participate directly in some of these transforma-
tions. The chemistry underlying these interactions is currently partially
understood, but much progress is being made. Still, however, these net-
works are not as well assembled and characterized as metabolic networks.

Some of the key features of regulatory networks are emerging. Speci-
ficity in regulatory networks is achieved by specificity in binding and
association of macromolecules, often in particular locations in the cell.
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Once the components are colocalized, specific interactions among them
can take place. The localization step is critical, and it is governed by col-
lision frequency, or mass action kinetics, of the participating components.
The strength of the association is determined by the chemical composition
and molecular structure of the surfaces of the interacting macromolecules.
The extent of flexibility in determining the properties of these surfaces by
changing the amino acid sequence in proteins and the base sequence in
DNA binding sites is unknown [21]. This process has been termed regu-
lated recruitment [180] and the binding affinity, or the “stickiness,” of the
complementary surfaces is of key importance. Once we better understand
the constraints and limitations of this process, we will understand how
easily new links can form or old links can disappear in transcriptional
regulatory networks.

To get the reader oriented, two examples that are of historical importance
are provided. These two examples illustrate the effect of the DNA-binding
proteins alone and in combinations on the transcription of the target gene.
The activity of the DNA-binding proteins themselves is controlled by var-
ious signaling pathways, which are not described in these examples.

The lac operon in Escherichia coli

The lac operon consists of three structural genes (lacA, lacZ, and lacY)
involved in lactose utilization. The operon is regulated by lactose and
glucose signals mediated by two DNA-binding regulatory proteins: the
lac repressor and CAP, respectively. The lac repressor binds DNA only in
the absence of lactose, whereas CAP binds only in the absence of glucose.
Depending on the lactose and glucose concentrations in the medium, three
different states for the regulatory system can be identified (Figure 4.1):

1. Ifboth lactose and glucose are present, neither lac repressor nor CAP
is bound to DNA, RNA polymerase binds weakly to the promoter,
and the operon is transcribed at a low basal level.

2. If lactose is present and glucose is absent, CAP is bound to the pro-
moter, but lac repressor is not bound to its site. CAP will now prefer-
entially recruit RNA polymerase to the promoter, and the expression
level of the lac genes is increased 40-fold.

3. If lactose is absent (independent of whether glucose is present or
not), lac repressor is bound to DNA. Because the binding site of the
lac repressor is within the operator, it excludes the RNA polymerase
from the promoter, and the expression of the lac genes is strongly
repressed.

A fourth state of this system at low lactose in the absence of glucose has
been described recently [205].
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Figure 4.1: Transcriptional regulation of the lac operon in E. coli by the lac repressor (rep) and
CAP in response to the presence of glucose and lactose. The logistical representation can be
formulated based on these experimental observations. Redrawn from [180].

The GAL regulon in yeast

The GAL genes are required for the breakdown of galactose, a sugar hex-
ose. Their transcription is induced by galactose and repressed by glucose.
Galactose induction is mediated by a DNA-binding activator, Gal4, and
repression by a DNA-binding repressor, Mig1. Similar to the lac operon,
three different binding, and thus functional, states of this regulatory system
can be identified (Figure 4.2):

1. If galactose and glucose are both absent, Gal4 is bound to its binding
site as a homodimer, and Mig1 is not bound. However, Gal4 is not
able to recruit the polymerase and activate transcription because it
is complexed with the Gal80 protein, which acts as an inhibitor.

2. If galactose is present and glucose is absent, Gal80 inhibition is re-
leased and Gal4 recruits the RNA polymerase to the promoter. Due to
the low basal level of transcription in eukaryotic cells, Gal4 induces
GAL gene transcription more than 1000-fold.

3. If galactose and glucose are both present, both Gal4 and Mig1 are
bound to the promoter. However, the activating effect of Gal4 is
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Figure 4.2: Transcriptional regulation of the GALT gene in yeast by Gal4 and Mig1 transcription
factors in response to glucose (Glu) and galactose (Gal) signals. Redrawn from [180].

counteracted by the much stronger repressing effect of Mig1, result-
ing in strong repression of GAL gene transcription. Mig1 acts by re-
cruiting a corepressor complex, which represses transcription by an
ill-characterized mechanism.

Note that the underlying experimental facts in these two examples are
described essentially in terms of logistical statements. Such statements can
be mathematically represented. Of course in reality, these different bind-
ing states represent chemical events that are determined by concentrations
and binding affinities. If the chemical equations describing DNAbinding of
regulatory proteins are known, these regulatory circuits can be described
stoichiometrically. Furthermore, given the small number of some of the reg-
ulatory molecules and the thermal noise that exists inside cells, stochas-
tic factors are believed to play an important role in the kinetic behav-
ior of regulatory networks, at least at the lower end of their hierarchical
scale [107, 182].

Proteins that bind to DNA

E. coli DNA-binding proteins are classified into several major categories:
DNA packaging, DNA recombination, DNA repair, DNA replication, tran-
scription initiation, RNA synthesis, and transcriptional regulation (see
Table 4.1). Most of the proteins involved in transcription regulation and
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Table 4.1: Functions and examples of E. coli DNA-binding proteins.

DNA packaging Nucleoid proteins (OmpH)

DNA recombination DNA strand exchange, renaturation proteins (RecA)
DNA repair uracil-DNA glycosylases (Ung), DNA endonucleases (Vsr)
DNA replication Origin binding proteins (Rob), DNA polymerases (Po1A),

DNA ligases (LigA), single-strand binding proteins (Ssb),
DNA topoisomerases (GyrA)

Transcription initiation Subunit of RNA polymerase (RpoD)
RNA synthesis RNA polymerases (RpoA)
Transcription regulation 186 transcription factors, including

Crp, Fnr, ArcA, Fis, HimA, PhoB, etc.

Others Restriction enzymes (McrA)

DNA repair recognize specific DNA sequences and bind predominantly to
these target sequences, whereas others may bind nonspecifically at various
positions along an E. coli genome.

The copy number of RNA polymerases can be related to a degree of ex-
pression activity in a cell. In a fast-growing E. coli cell, there are roughly
3,000 RNA polymerase complexes. Most transcription factors recognize
upstream promoter sequences and upregulate or downregulate transcrip-
tion initiation at the promoter to which these elements are attached.
According to RegulonDB (http://www.cifn.unam.mx/Computational
Genomics/regulondb/), there are 186 known and 141 additional predicted
transcription factors in E. coli [165].

Each gene (or operon in prokaryotes), in a genome has at least one pro-
moter region associated with it, similar to the ones described in the earlier
examples. Genes whose expression is controlled by a set of DNA-binding
proteins binding to their promoter region can in turn act as regulatory pro-
teins. When all of the DNA-binding proteins and their target promoters
in a genome are considered together, a complex regulatory network with
transcriptional cascades and feedback loops emerges. The earlier examples
illustrate fairly simple cases of regulation with only two to three different
DNA-binding proteins acting on one promoter. In higher eukaryotes, the
complexity of promoter and enhancer regions of the genome is usually
much higher, and these regions can contain binding sites for tens of differ-
ent regulatory proteins. The higher the number of molecules participating
in transcriptional regulation, the larger the combinatorial possibilities are,
and thus a larger number of functional states can be derived as the number
of components grows.
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Figure 4.3: Motifs in transcriptional regulatory networks: (A) adapted from [207] and (B)
adapted from [188]. Redrawn from [207].

Fundamental building blocks

Although the fundamental reaction chemistry is the same for metabolic
and regulatory networks, the types of reactions that form the “building
blocks” of transcriptional regulatory networks are different than those of
metabolism. The basic functional block of a regulatory network is the pro-
moter region of a gene or operon, which contains the cis-regulatory bind-
ing sites for the relevant transcription factors regulating the expression of
a particular gene, as illustrated by the earlier two examples. The locations
and orientations of these binding sites, as well as the affinity of the tran-
scription factors to particular variants of the site, determine the expression
levels of a gene in response to changes in the active transcription factor
concentrations.

The transcriptional regulatory network is then defined by which tran-
scription factors bind to which promoters and what the integrated effect of
all these transcription factors is on the expression of genes [180]. It has been
demonstrated that the known organization of promoter regions in bacteria
allows for the implementation of a wide class of regulatory logic functions
within a single promoter [141], such that a single “node” in the regulatory
network can be relatively complex. Regulatory networks can be decom-
posed into a small set of commonly occurring structural “motifs” [207],
summarized in Figure 4.3. The behavior of prototypical examples of these
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Figure 4.4: Transcriptional regulation: levels of abstraction by gene, operon, regulon, and
stimulon.

motifs can be studied to gain insight, in a bottom-up fashion, into their
role in the full regulatory network [188, 251].

Hierarchy in transcriptional regulatory networks

As for metabolism, there are several levels of abstraction to consider for
transcriptional regulatory networks (see Figure 4.4). The simplest elements
are the genes. Some genes are constitutively expressed, meaning that they
are always transcribed at relatively constant levels. Other genes are reg-
ulated, and the transcriptional regulatory network induces or represses
transcription of these genes. A group of genes that are adjacent on the
genome and are transcribed together forms a unit called an operon. This
arrangement is primarily found on prokaryotic genomes. An additional
means of regulating related genes as a group is a regulon, where a certain
regulatory protein binds to multiple locations on the DNA, causing induc-
tion or repression (or a combination of both) of the related genes or even
multiple operons. This mode of coordination is the method of choice for
eukaryotes.

At the highest level of abstraction is the stimulon, which includes all the
regulons that are induced by a particular stimulus. For example, a stimulon
may be all the regulons that are related to a particular substrate. If that
substrate, such as an amino acid or glycerol, is present in the extracellular
medium, representing a stimulus sensed by the cell, it will result in the
activation or inactivation of certain proteins in the cell. These proteins
in turn have an effect on the transcription of various genes and operons,
resulting in a new set of available metabolic or other types of proteins in
the cell. The end result is an altered behavior. In the case of amino acids,
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they are most likely no longer synthesized by the cell de novo, but are
instead taken up from the environment. In the case of glycerol, there are
five operons on the E. coli genome involved in its metabolism. They all
react in a coordinated manner to the presence of glycerol in the medium.

The spatial or topological configuration of the genome influences gene
expression. Such effects can be global or local. For instance, the energy
charge itself is a global regulator of gene expression through its alteration
of genome geometric arrangement [83]. Thus, in addition to the network
of specific binding events that place the RNA polymerase throughput the
genome, there are three-dimensional aspects to the expression state of the
genome. The reader should recall Figure 2.3 that conveys the intricate
organization and crowding of the cell’s interior, within which genomes
function.

Reconstructing Regulatory Networks

The magnitude of the task

Estimating the scope of a metabolic network reconstruction task for a given
organism can be done relatively easily by estimating the number of genes
with potential metabolic function present in the genome. This number
is based on its annotation. For regulatory networks, the number of tran-
scription factors can not simply be used to estimate the complexity of
the network since the transcription factors can have multiple target genes
and often act in synergistic combinations. However, the relative fraction of
transcription factor coding genes tends to be higher for organisms that en-
counter more varied environmental conditions during their lifetime [29],
indicating that there are limits to the range of transcriptional states that
can be achieved with a fixed number of transcription factors.

Information on well-studied organisms can be used to evaluate the
level of complexity of transcriptional regulatory networks in terms of
the number of components (TFs, target genes) and regulatory interactions
(Table 4.2). E. coli has been predicted to have 314 transcription fac-
tors [165], and based on primary literature, 577 regulatory interactions
have been identified [207]. In yeast Saccharomyces cerevisiae, there are
203 verified or putative DNA-binding transcription factors, and large-scale
protein-DNA binding screens indicate that there are at least 3,500 high-
confidence regulatory interactions [82]. For both E. coli and yeast these
numbers of regulatory interactions are most likely underestimates [33],
but they give an indication of the order of magnitude of the regulatory
network reconstruction task. Although the numbers of regulatory interac-
tions appear to be large, developments in experimental techniques as well
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Table 4.2: Reconstructed regulatory network structures in E. coli and S. cerevisiae.
Prepared by Markus Herrgard.

Network Regulatory Target Regulatory Regulated
genes genes interactions reactions
E. coli full metabolic [33] 104 451 - 555
E. coli database [207] 123 7629 14687 -
S. cerevisiae metabolic [88] 55 348 775 -
S. cerevisiae database [80] 109 418 945 -
S. cerevisiae ChiP-chip [82] 203 1296°  3353P -

4Counting each gene in an operon separately.
bIncludes only high confidence interactions.

as computational methods make genome-scale regulatory network recon-
struction a feasible task, at least for well-studied microbial organisms.

Three fundamental data types

As conceptually described in Chapter 2, systems biology is about compo-
nents, how they are linked together to form networks, and the functional
states that these networks take. Consequently, there are three data types of
interest:

1. Component data. We can break cells apart, then isolate and identify
their components. For transcriptional regulatory networks, the data
types in this category include the identification of binding sites, the
transcription factor molecules, riboswitches, and so forth. Significant
relevant legacy data exist, and so do ORF functional assignment data.
Both are needed to determine the scope the reconstruction effort.

enome annotation Promoter sequenc:
OGTEGCAM. pat
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Figure 4.5: Data types used in the bottom-up and top-down reconstruction approaches to
transcriptional regulatory networks. Courtesy of Markus Herrgard.
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2. Interaction data. Links are formed by chemical interactions be-
tween components. There are many methods, both experimental and
computational, being developed to determine such interactions, in-
cluding DNA-protein, protein—protein, and metabolite—RNA inter-
actions. Global data sets often have significant error rates, and ideally
all such interactions should be directly verified by small-scale exper-
iments. Furthermore, a set of positive and negative controls should
always be included.

3. Network state data. The reconstructed networks have functional
states. The state of a whole network can be assessed by a variety of
data generated from living cells in well-defined environments, such
as genome-scale expression data and phenotyping data. Controls for
network states are often assessed through perturbation experiments
(see Chapter 12). Network perturbation experiments include genetic
perturbations (gene knockouts, gene silencing through inhibitory
RNA), environmental perturbations (changing the availability of nu-
trients, shocking cells by changing temperature or pH), systemic
perturbation (through adaptation), and diseased states (normal vs.
pathological).

The integration of component, link, and network state data is needed for
network reconstruction and validation.

Top-down data types

High-throughput data types that simultaneously measure a large number
of variables or states are often referred to as top-down data. We discuss
three such top-down methods:

1. Experimentally determining the expression state of a genome.
Genome-scale mRNA expression profiling is perhaps the most com-
mon of such data types. Such data give the expression level of poten-
tially every gene being expressed in an organism under a particular
condition. One can then use gene knockouts to remove a transcrip-
tion factor from the genome and then expression profile the knockout
organism under the same condition. Then a comparison of the two
expression states allows one to infer the role of the missing transcrip-
tion factor in the regulation of genes whose expression is altered.
Such experiments are known as genetic perturbation experiments.
This approach has been used to study the GAL operon in yeast [100]
and the oxygen shift in E. coli [33]. Such inference of regulatory inter-
actions can also be achieved using other approaches [97, 202, 241].

2. Identifying all promoter sites using computational approaches. Pro-
moters are genomic locations near the transcriptional start sites
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of genes. The knowledge that transcriptional regulatory proteins
normally act by binding semi-specifically in promoter regions has
spurred the development of numerous in silico methods to identify
promoter sites.

One class of analyses is aimed at discovering the actual DNA sites
where regulatory proteins bind. Some algorithms work by consider-
ing all known promoters in an organism and searching for similar
nucleotide sequences that occur significantly more often than would
be expected by chance. Since different regulatory proteins often act
synergistically, other methods exploit this fact by searching for dif-
ferent groups of similar nucleotide sequences that occur near each
other an improbably high number of times.

Expression data can be combined with such in silico search
methods. Genes are first clustered based on similar expression pat-
terns, and then one can infer that a similarity of expression implies
similarity of transcriptional regulation. This similarity in regulation
often means that one or more regulatory motifs will be enriched
in the clustered promoters. But due to the combinatorial nature of
interacting regulatory proteins, this assumption may not always be
completely true.

. Experimentally determining the location of protein binding sites

on DNA. The inference of a regulatory interaction based on in
silico methods needs to be examined by a direct experiment. High-
throughput data sets can lead to the generation of numerous such in-
ferences. Thus, high-throughput methods are needed to test, validate,
and refute such inferred interactions. One such approach is to use
the so-called genome-wide location or ChIP—chip analysis [187](see
Figure 4.6). In this approach, the transcription factors are cross-
linked to DNA under the physiological condition of interest. The
DNA is isolated and fragmented by sonication. Then an antibody
specific to a particular transcription factor is used to isolate the tran-
scription factor and the DNA fragment to which it is bound. Follow-
ing such isolation, the DNA fragment is released from the protein
and its sequence is identified by hybridization to a microarray con-
taining promoter sequences, and the relative amount of binding can
be quantified. The sequence of the DNA fragment can then be com-
pared to the genomic sequence to identify the binding site(s) of the
transcription factor.

An advantage that regulatory network reconstruction has over metabolic
network reconstruction is the availability of high-throughput experimental
data directly relevant to the network structure. For metabolic processes, the
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only widely available data source is the genome sequence. Unfortunately,
methods for measuring relevant metabolic quantities such as metabolic
fluxes and metabolite levels are still not commonly used at the genome
scale [216]. On the other hand, the two primary data types useful for the
regulatory network reconstruction task — genome-wide mRNA expression
and location analysis data — are widely available.

Bottom-up data types

Data derived from classical biochemistry or genetics that are focused on
a single or a few variables are often referred to as bottom-up data. Such
data on individual transcription factors can be found in the literature. In
some cases, such as for the transcription factors FNR or ArcA in E. coli,
such literature searches would yield a large number of primary research
reports, and often review papers. In other cases, little information is found
in the primary literature.

Asthe lac operon and GAL regulon examples show, there are select cases
in which the regulatory structures of operons or regulons have been eluci-
dated. Such data may be available for select model organisms. Accumula-
tion of such data has resulted in the construction of databases that target
transcriptional regulation. One prominent example is the RegulonDB that
contains information about 186 transcription factors in E. coli. There are
also general databases for individual organisms such as YPD for yeast [40]
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that contain significant amounts of regulatory information. In addition to
databases describing regulatory network structures, there are also compre-
hensive databases specializing in describing transcription factor binding
sites such as SCPD [261] for yeast and the general transcription factor
binding site database TRANSFAC [134]. Although these databases contain
valuable information for regulatory network reconstruction, they are not
very complete and for the most part lack information about the synergis-
tic effects between transcription factors acting on one gene. Nevertheless,
these databases and primary research literature can be utilized to recon-
struct regulatory networks for well-characterized organisms such as E. coli
and yeast [35, 207].

The bottom-up approach to reconstruction is laborious, as one has to
study the network component by component. Such detailed curation is
necessary, however, to achieve a high-quality reconstruction. It is also
needed to develop an intimate familiarity with the regulatory network,
which is important for prospective experimental design.

A combination of top-down and bottom-up methods is needed

There are many different data types available that relate to transcriptional
regulatory networks. All these data types have information relevant to
the network reconstruction process. Thus, they all need to be simulta-
neously reconciled. Developing methods for the reconciliation of diverse
data types is one of the major challenges in network reconstruction and
systems biology in general.

Six different data types that can be used in network reconstruction are
illustrated in Figure 4.5. They need to be simultaneously reconciled to
reconstruct a network. The end result can be depicted graphically as an
interaction map. In the map shown in Figure 4.5, the transcription factors
are denoted by a triangle, and the target genes by a square. The thick-
ness of the arrows are a statistical measure of the consistency of the data
types used. Ideally, all lines in the network should be thick and thus
well reconciled. However, this is not typically the case, except for subnet-
works or “modules.” Examples of such well reconciled subnetworks are
the flagellar genes in E. coli and those involved in nitrogen utilization in
yeast [87].

IEEM Large-scale Reconstruction Efforts

Few specific transcriptional regulatory networks are well characterized.
Currently, there is progress being made with a few model systems. We
describe three cases here: regulation of bacterial replication, regulation of
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early developmental events, and regulation of a genome-scale metabolic
network.

Cell cycle in Caulobacter

The aquatic bacterium Caulobacter crescentus has been extensively stud-
ied as a model organism for elucidating the cell cycle and the regula-
tory mechanisms that govern the precisely timed events in this cycle.
Caulobacter divides asymmetrically into two types of progeny: a stalk
cell and a motile swarmer cell. The swarmer cell typically migrates for
30—45 minutes before differentiating into a stalk cell, in which replication
proceeds almost immediately. However, Caulobacter’s regulatory network
suppresses DNA replication in swarmer cells via the global regulatory pro-
tein, CtrA, which binds to (and blocks access to) the origin of replication.
Genome-scale mRNA expression studies have been used to identify over
500 genes that are regulated in a cell cycle dependent manner [118]. Fig-
ure 4.7 summarizes the key components of the Caulobacter cell cycle regu-
latory network as determined in this study. This network, which involves
multiple kinases as well as the regulation of several metabolic genes, pro-
vides redundant negative feedback control over the timing of CtrA expres-
sion. More recent work has revealed how the genes in Caulobacter are
arranged in three dimensions within the cell nucleoid as replication pro-
ceeds [237], thus expanding our thinking of this network from a “circuit”
confined to two dimensions toward one that exists within more realistic
three-dimensional bounds.

Early development of the sea urchin

In recent years, significant progress has been made toward a genome-scale
characterization of the genetic regulatory network (GRN) responsible for
controlling embryonic specification in the sea urchin, Strongylocentrotus
purpuratus. The results from several pioneering studies have uncovered
many network components and associated interactions that underlie the
spatial and temporal aspects at work in the early development of this echin-
oderm (see Figure 4.8). The current GRN encompasses regulatory events up
to 24-hour postfertilization and includes links among 50 genes including
transcription factor, signaling, and their target genes [96].

Each link represented in this complex network represents the culmina-
tion of large-scale data integration from all available data, ranging from
sequence-based cis-regulatory predictions to detailed molecular embry-
ology. As a general requirement, experimental confirmation of each net-
work relationship is performed via detailed expression analysis. In prac-
tice, this process involves experimentally perturbing the system, via gene
knockouts for example; measuring detailed gene expression levels for all
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Figure 4.7: Schematic representation of the Caulobacter crescentus cell cycle regulatory net-
work. Reprinted with permission from Science 301:1874—1877. Copyright 2003 AAAS.

network components, and inferring network relationships from the result-
ing data. Confirmation of sequence-based predictions via multiple inde-
pendent experimental measures cuts down on the inclusion of indirect
effects, increasing the likelihood that the resulting network model reflects
biological reality.

The resultant model has utility beyond simply reflecting a conceptually
accurate representation of this GRN. It can also serve as an analytical tool to
aid in understanding a variety of observed sea urchin developmental phe-
nomena. For example, the current model helps explain boundary stability
of differentiated cell layers, as well as the irreversibility of the embryonic



4.3 Large-scale Reconstruction Efforts

Maternal and Early Interactions i1

Natepl  OF-GSK3

ECNS TCF
o ot
—— MicriNuc Mat Otx. [ "bist SoxBL—4 Mat Ot _ frimed
|_,—. unkn mal acthy T [l
unkn pme rep unkn mes'end rep unkn vegetal activ— gl
Ublg  Ubiq 1] — DHI-TCP
i ' [Pril— ™
1 T SaxBl - e "
i p E Krox P o On | Repof Wil W
! - 118 hirs)
Lk — = =it
! g = ; f ] i R
B | 3
Ubig Pmarl b L g )
i ] Bra FoxA GataE Krox *
f B : # Frdoderm Hox11/13b |
R 3 | | I ] = 8 gl
1 i —— | 1 g ! ? GataE
i I | Y T 1
: bl | } Eve vl FoxB |
i e TR . [
] Etsl Alsl Noteh = "'I"‘ Il » L i o]
e et o P unkn mes activ | Net = (L .| m
| | ] I3 inf 6
i L) _En:_t_l ' | _HeslVb —| | FezA
i Dri FoxB | Gac | Nl Endomesoderm |
e D Pl e _eleliel 2l ¢ CF I | oo
| EpH: MspL Mspl3)  Smso SuTx CAPK  Dpi  Pla OCT Kakapo OKCT  Kakapo
e e
Sm27  Smd0 CyP  Ficolin FrMol, 23 Decorin Apobec  Gelsalin Apsbec  Gelsolin  Endolé

Current Oginion in Genetics & Development

Figure 4.8: Schematic representation of the genetic regulatory network (GRN) for sea urchin
endomesoderm specification. The network architecture is based on the analysis of gene ex-
pression following experimental perturbation, as well as cis-regulatory analyses. Reprinted
from [147].

specification process [147]. Furthermore, those phenomena that are not
characterized well by the model indicate poorly understood portions of
the GRN and thus help direct hypothesis generation and further experi-
ments. In any case, the success in terms of explanatory power of this still
incomplete model clearly indicates the promise of this approach to model-
ing GRNs and will likely spur additional efforts to broaden its scope with
the ultimate goal of a comprehensive and accurate model of the entire
system.

Regulation of metabolism in E. coli

The transcriptional regulatory network in E. coli has been studied for the
past 40 years, and as such it is one of the best characterized microbial
regulatory networks. Databases, such as RegulonDB and EcoCyc, are be-
ing constructed that contain information about known regulatory interac-
tions in this network. These known interactions were recently translated
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would indicate that the transcription factor regulates gene expression. Prepared by Markus
Covert.

into Boolean rules or logic statements, resulting in a genome-scale model
of transcriptional regulation in E. coli. Boolean rules were written that
describe transcription factor activity as well as the conditions needed
for the expression of metabolic genes. This Boolean representation of
the regulatory network responds to 102 different stimuli and contains
104 transcription factors regulating 479 metabolic genes (see Figure 4.9).
Once completed, this genome-scale reconstruction was used to predict
growth phenotypes for single gene deletions as well as changes in expres-
sion. Discrepancies between the model predictions and experimental data
led to testable hypotheses regarding both the metabolic and regulatory
network [33].

Formal representation of regulatory networks
The available data on, and knowledge about, transcriptional regulatory
networks can be represented in different ways. The granularity of the
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Figure 4.10: Chemical mechanisms associated with transcription factor binding to DNA. The
transcription factor can exist in two conformational states, one that binds to DNA and one
that does not. This mechanism is reminiscent of the way allosteric enzymes work. Courtesy
of Jennie Reed.

description depends on how we intend to interrogate the data and how
much detailed information we have. Thus, a spectrum of coarse-grained
to detailed representations have been applied. They can be categorized as
follows:

» Finding components, links, and coregulated modules by using statis-
tical data mining methods. This represents a very high level analysis
and can be used to detect patterns and screen for candidate causes and
mechanisms explaining the observed effects.

» Finding causal relationships. This information can be described by
directed graphs and Boolean formalism. Such logistical descriptions
of regulatory networks, their states, and function have appeared [33].

¢ Finding reaction mechanisms. If known, they are described by chemi-
cal equations. Progress with understanding these mechanisms is being
made (see Figure 4.10). The composition of the RNA polymerase and
enzyme complexes is stoichiometric, and thus their formation can be
described by a stoichiometric matrix.

» Finding kinetic constants. Dynamic simulations are possible if kinetic
information is available [19, 52]. Given the scarcity of available nu-
merical values for kinetic constants, such efforts are confined to small-
scale networks and studies.

Given the lack of reliable reconstructions and fine-grained models of tran-
scriptional regulatory networks, few studies have appeared that focus on
their emergent properties. More such studies will eventually appear and
are likely to be of key importance in systems biology, as they will help
us to unravel the “logic” that cells use to manage the information on
their genomes. For many, this issue is at the heart of cell and molecular
biology.
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[ summary

» Transcriptional regulatory networks determine the expression state of
a genome.

» These networks are still incompletely defined even for model organ-
isms.

» Regulatory networks can be broken down hierarchically, into operons,
regulons, and stimulons, based on the breadth of the transcriptional
response.

» At the most detailed level of description, function is often described
in terms of modules that are defined by investigators.

» Since many of the interactions in transcriptional regulatory networks
are not known in mechanistic detail, they are often described by causal
relationships.

» Once the underlying chemical mechanisms are known, the cor-
responding chemical equations can be described stoichiometri-
cally.
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CHAPTER 5

Signaling Networks

Signaling networks involve the transduction of a “signal” from
the outside to the inside of the cell. Signaling networks transmit a variety
of signals from the cellular environment to the nucleus or other cellular or-
ganelles and functions. The environmental signals can be biological, such
as cyto- and chemokines, or physicochemical, such as osmotic pressure
or pH. Cells in multicellular organisms communicate in three principal
ways:

« one cell sends a soluble signal that diffuses to the target cell,

* cells can manipulate the composition of the extracellular matrix,

* cells can communicate with very specific direct cell-to-cell mecha-
nisms.

These fundamental modes of signal transduction rely on an underlying
network of chemical reactions. Except for very few specific cases, the re-
construction of signaling networks is incomplete. However, progress and
advances are currently being made toward the comprehensive reconstruc-
tion of selected signaling networks.

EXI Basic Properties

When the cell encounters an extracellular signal (i.e., the binding of a
growth factor to an extracellular receptor) a sequence of events takes place.
These can be as simple as the opening of an ion channel (i.e., acetyl-
choline triggers the influx of calcium ions) or as complex as a highly
interconnected network of protein phosphorylations. In brief, signal trans-
duction often involves: (1) the binding of a ligand (the signaling molecule)
to an extracellular receptor, (2) the subsequent phosphorylation of an in-
tracellular enzyme, (3) amplification and passage of the signal, and (4) the
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resultant change in cellular function (i.e., increase in the expression of a
gene). Various classification schemas exist for the different components of
signal transduction. A coarse-grained view of signaling networks shows
that they have three principal parts: events around the membrane, reac-
tions that link submembrane events to the nucleus, and events that lead
to transcription (see Figure 5.1).

Signaling pathways and networks are often thought of as being differ-
ent from metabolic networks. Metabolism involves the breakdown of sub-
strate molecules for energy and redox potential production, and for the
synthesis of various metabolites. The demands on metabolism are nor-
mally thought of in terms of fluxes; i.e., the cell must produce a certain
amount of an amino acid to satisfy protein synthesis needs. Thus, flux
maps are frequently used to describe the state of metabolism. Signaling,
in contrast, conveys “information.” This information is basically the tran-
scription state of the genome. Although the result is the production of
mRNA molecules (i.e., flux), it is the binding state (i.e., concentration) of
the regulator sites that give the transcription state.

Some examples of signaling mechanisms are given in the following.
These are just a few examples, but they serve to illustrate that signaling
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Figure 5.2: The basic reactions involved in steroid regu-
lation of gene expression. Taken from [122].

networks involve chemical transformations that are catalyzed by enzymes.
Such reactions can be described stoichiometrically.

Steroids

Perhaps one of the simplest examples of a reaction network in signal trans-
duction is that of steroids. Sterol lipids include such hormones as cortisol,
estrogen, testosterone, and calcitriol. These steroids simply cross the mem-
brane of the target cell and then bind to an intracellular receptor that is in an
inactive form due to an association with an inhibitory molecule. This bind-
ing results in the release of the inhibitory molecule from the intracellular
receptor. With the steroid bound and the inhibitor released, the steroid
receptor traverses the nuclear membrane and binds to its corresponding
site on the DNA molecule (see Figure 5.2). This DNA binding event triggers
the transcription of the target (regulated) genes.

G-protein signaling

G-protein-coupled receptors (GPCR) represent important components of
signal transduction networks. For instance, this class of receptor comprises
5% of the genes in Caenorhabditis elegans. GPCRs consist of an extracel-
lular domain that binds to a ligand, and another region that binds to a
G-protein. The G-protein complex consists of three subunits («, 8, and y),
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and in its inactive state is bound to guanosine diphosphate (GDP). When a
ligand binds to the GPCR, the G-protein exchanges its GDP for a guanosine
triphosphate (GTP). This exchange leads to the disassociation of the G-
protein from the receptor and the split into a 8y complex and a GTP-bound
« subunit. These two components can then further relay messages to other
membrane-bound molecules that transduce the signal (see Figure 5.3). The
hydrolysis of the GTP-bound « subunit, replacing the GTP with GDP, leads
to the reassociation of the three components of the G-protein. This inac-
tive complex can then rebind to the GPCR. These are the basic chemical
transformations that make up G-protein signaling. The system is fueled by
GTP, which, like ATP, is an energy rich metabolite.

The JAK-STAT network

The JAK-STAT signaling system is an important two-step process that is
involved in multiple cellular functions, including cell growth and inflam-
matory response. Upon binding to a cytokine, a cell surface receptor of-
ten dimerizes. The monomeric forms of the receptor are often constitu-
tively associated with a kinase called JAK (Janus-associated kinase). In
their dimerized forms, the JAKs induce phosphorylation of themselves
and the receptor, activating the ligand-receptor dimer complex. This active
form of the complex in turn leads to the binding of multiple proteins that
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can be further phosphorylated. One important protein that binds to the
JAK-receptor complex is the STAT (signal transducers and activators of
transcription) family. The STAT molecule is phosphorylated by the acti-
vated complex. The phosphorylated form of STAT then dimerizes, and this
STAT dimer is then translocated to the nucleus, where it serves to activate
transcription of the target genes (see Figure 5.4).

All these examples represent a set of coupled chemical reactions. Mass
is balanced and thermodynamic laws are obeyed. Each of these fundamen-
tal components is a chemical transformation (Figure 3.1). The integration
of the components leads to pathways, then sectors, and then whole-cell
function where emergent properties surface.

Families of signaling molecules and processes

It is useful to categorize signaling processes according to shared compo-
nents and to understand some basic signaling functions. One classifica-
tion scheme groups signaling processes into one of 17 different families
(see Table 5.1). These 17 families are further divided into three groups ac-
cording to developmental processes. For example, the Wnt, receptor ser-
ine/threonine, Hedgehog, receptor tyrosine kinase (small G proteins), and
Notch/Delta pathways are of particular relevance in early developmental
processes of most animal cells. There may be many different isoforms of
proteins that participate in each of these pathways and that provide addi-
tional specificity to a variety of signaling stimuli.

Fundamental building blocks
Some building block of signaling networks are nodes, modules, and
pathways. They are detailed in the next section.
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Table 5.1: The 17 intercellular signaling pathways. From [72].

Early development and later
1. Wnt pathway
2. Receptor serine/threonine kinase (TGFb) pathway
3. Hedgehog pathway
4. Receptor tyrosine kinase (small G proteins) pathway
5. Notch/Delta pathway
Mid-development and later
6. Cytokine receptor (cytoplasmic tyrosine kinases) pathway
7. IL1/Toll NFKB pathway
8. Nuclear hormone receptor pathway
9. Apoptosis pathway
10. Receptor phosphotyrosine phosphatase pathway
Adult physiology
11. Receptor guanylate cyclase pathway
12. Nitric oxide receptor pathway
13. G-protein coupled receptor (large G proteins) pathway
14. Integrin pathway
15. Cadherin pathway
16. Gap junction pathway
17. Ligand-gated cation channel pathway

Hierarchy in signaling networks

Unlike for metabolic (Figure 3.1) and transcriptional regulatory networks
(Figure 4.4), well-defined hierarchical thinking has not emerged for signal-
ing networks. The notions of modules and motifs are developing. However,
a hierarchy similar to operons, regulons, and stimulons in transcriptional
regulatory networks has not yet been delineated. In addition to motifs and
modules, the concept of a cross-talk is often used to describe interactions
in signaling networks. This notion based on a signal’s ability to propagate
beyond its “primary” channel or pathway into another. The conceptual de-
velopment of hierarchy in signaling networks is likely to develop quickly,
and one such development is an unbiased assessment of network proper-
ties discussed in Chapter 9.

EEI Reconstructing Signaling Networks

Magnitude of the problem

The human genome has a repertoire of approximately 25,000 genes, each
with an average of three unique transcripts [117, 236]. A human be-
ing, comprising 10'* cells [94] containing more than 200 different cell
types [228, 94], will develop from a fertilized egg. The coordination of this
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developmental process and the subsequent organism’s homeostatic mech-
anisms is achieved through signaling networks. This signaling network in-
cludes genes for 1,543 signaling receptors [236], 518 protein kinases [130],
and approximately 150 protein phosphatases [65]. These components of
the human signaling network result in the activation (or inhibition) of the
1,850 transcription factors [117] in the nucleus that in turn form a tran-
scriptional regulatory network.

There is increasing evidence that the topological structure of these sig-
naling networks is comparable to the topological structure of metabolic
networks. For example, there is on average more than five metabolites
that are one reaction step away from a given metabolite in a metabolic
network [239]. This degree of interconnectivity is similar to that seen in
the yeast signaling network in which there is on average more than five
protein interactions for a given protein (as calculated from extensive data
from protein—protein interaction experiments) [79]. Likewise, the struc-
ture of both networks has been described as “scale-free” in which there is
a power law relationship between the network nodes and the number of
links [105, 104].

These studies suggest that signaling networks are as interconnected as
metabolic networks. Studies of metabolic networks have indicated that the
number of functional states in a biochemical network grows much faster
than the number of components [163]. This property is expected to be
found in signaling networks. However, as the values here indicate, the sig-
naling network may not be larger than some of the metabolic networks that
have been reconstructed and studied to date [175]. Their analysis should
therefore be possible with existing mathematical methods described in this
book.

Combinatorial features

There is a large difference difference between the number of elements in a
signaling network and the number of environmental stimuli that each cell
type would need to respond to. However, a simple example of the power in
combinatorial control demonstrates how even a very small number of ele-
ments can exert a broad spectrum of regulatory functions. The homo- and
heterodimerization of only 224 proteins would provide sufficient speci-
ficity (e.g., as activating protein complexes) to control the expression of
all 25,000 human genes. If a given regulatory protein were associated with
multiple genes, then the number of required homo- and heterodimers for
such specificity would be even less. This number is well below the es-
timated 1,850 transcription factors present in the human genome [117].
In fact, 1,850 transcription factors can form 1.7 million unique dimer
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pairs. Of course, if there are more than two components needed to induce
a specific event, the combinatorial possibilities grow to correspondingly
greater numbers.

Similarly, a small number of expressed receptors, used in combination,
can allow for the discrimination of a very large number of environmental
stimuli. For example, if we assume that 1% of the estimated 1,543 recep-
tors in the human genome [236] are expressed in a given cell type, then
that cell type could respond to 32,768 (= 21°) different ligand combina-
tions. These “back of the envelope” calculations emphasize that a small
number of transcription factors and signaling receptor proteins operating
in a combinatorial manner can allow for diversity of function in signaling
networks. A recent study analyzed the repertoire of GPCRs in the human
genome and identified 367 GPCRs [235]. The expression profiles of 100
GPCRs in the mouse genome for 26 different tissues indicated that most of
the receptors were expressed in a variety of tissues but that each tissue had
a unique profile of receptors. These results further support the existence
of combinatorial control of signaling networks.

Elements of reconstruction
Signaling network reconstruction has been approached in three different
ways (see Figure 3.8).

» The first approach consists of reconstructions of, preferably highly
connected, nodes. This approach involves the delineation of all the
compounds and reactions associated with a given network compo-
nent (i.e., a protein, an ion, or a metabolite). For example, much work
has been done with calcium that plays a key role in many signaling
processes.

» The second approach consists of identifying signaling modules. Such
modules involve grouping components that function together under
certain conditions. Such grouping can be based on intuitive reason-
ing or on unbiased assessment of network properties (see Chapter 9).
These modules allow for detailed analyses of kinetics of various con-
centrations and help to understand processes like feedback mecha-
nisms. For example, much successful work has been done with the
epidermal growth factor receptor and associated mitrogen-activated
protein (MAP) kinases [197, 248]. Analyses of other growth factor re-
ceptor signaling have also been performed [209, 164].

¢ The third approach of reconstructed networks involves pathways that
connect signaling inputs to signaling outputs. For example, the de-
lineation of all the steps from the binding of a growth factor to its
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Table 5.2: Online sources on signaling networks.

BioCarta http://www.biocarta.com/genes/
allpathways.asp

Transpath (now commercialized) http://transpath.gbf.de

Alliance for Cellular Signaling http://www.signaling-gateway.org

Cell Signaling Networks Database http://geo.nihs.go.jp/csndb

SPAD database http://www.grt.kyushu-u.ac.jp/spad/

Science Magazine’'s STKE database http://stke.sciencemag.org

Database of Quantitative Cellular http://doqcs.ncbs.res.in

Signaling (DOQCS)

receptor to the subsequent activation of a transcription factor that in-
duces the expression of target genes. The reconstruction and analysis
of the pheromone-activated MAP kinase pathway in yeast has demon-
strated the utility of such an approach [227]. The reconstruction and
analysis of this signaling pathway resulted in an hypothesized mech-
anism by which the MAP kinase Fus3p was dephosphorylated and
localized at particular steps in the signaling pathway.

Level of detail in a reconstruction

An important consideration in the reconstruction of a signaling network
is the desired level of detail. The level of detail can be as coarse as a de-
lineation of associations between network components or as refined as a
precise mechanistic description of the chemical reactions that occur. A
reconstruction of associations can involve a description of a simple con-
nectivity (e.g., ligand A — transcription factor B; ligand A is functionally
connected to transcription factor B) or a more involved set of relationships
that shows more intermediates between a signaling input and a signaling
output (e.g., ligand A — protein B — protein C — transcription factor D)
(e.g., [212]). Network reconstructions consisting of associations between
components are amenable to multiple types of structural analyses (to be
discussed). More detailed causal relationships account for cause and ef-
fect relationships (e.g., ligand A — protein B; ligand A activates protein B)
(e.g., [197]). Kinetic relationships build off of these causal relationships,
assigning scaling factors and time constants between different properties
of interest. At an even more refined level of detail are mechanistic recon-
structions. These reconstructions account for stoichiometric relationships
between signaling components (e.g., ligand A binds to receptor B and re-
ceptor B then dimerizes) and thus can be represented with stoichiomet-
ric matrices. This level of detail allows for an accounting of all network
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components (e.g., ATP and receptor protein synthesis) necessary to drive
a signal from stimulus to response.

Data sources for reconstruction process

High-throughput techniques to elucidate the mechanisms that connect an
extracellular signaling stimulus to the level of control by transcription fac-
tors are still in their infancy [260]. Despite their shortcomings, such tech-
nologies are leading to the characterization of intracellular signaling mech-
anisms at a large scale. These developing technologies can be grouped into
two categories: first, biochemical techniques and expression systems for
characterizing protein—protein interactions; and second, assays for piecing
together functional properties.

1. Characterizing interactions. Perhaps the most widely used technique
for deciphering protein—protein interactions involves yeast two-hybrid as-
says. However, to date, there is only a small degree of congruence between
different data sets. False-positive results for protein-protein interactions in
yeast two-hybrid experiments occur in part because spatially or temporally
segregated proteins would not interact in vivo.

Multiprotein complexes in Saccharomyces cerevisiae have been char-
acterized using mass spectrometric approaches [70, 89]. Additional bio-
chemical techniques for investigating intracellular signaling networks are
developing, including isotope-coded affinity tags, stable isotope label-
ing by amino acids in cell culture, Src-homology-2 profiling, and target-
assisted iterative screening [214]. Although these approaches are only be-
ginning to be systematically applied at a large scale, the initial results are
promising [16].

2. Assays for functional properties. Four approaches are highlighted
here. First, perturbation analysis monitors genome-wide changes in
gene expression after disrupting specific components of a network and
has been used to refine models of the yeast galactose-utilization path-
way [100]. Second, knockdown strategies (RNAi) have been used to eluci-
date the components of the Hedgehog signaling pathway in Drosophila
melanogaster [126], and the interactions between deubiquitylating en-
zymes and the IKK complex involved in NF-kB signaling [20]. This ap-
proach will certainly develop into a powerful tool for deciphering larger
cellular signaling networks at a genome scale [18, 259]. Third, protein ar-
rays in development generate high-throughput data on protein presence
and activity [145]. Fourth, fluorescence imaging technologies are gener-
ating data regarding protein localization and the dynamics of signaling
processes [137, 167]. For example, a GFP-fusion genomic DNA library
of Schizosaccharomyces pombe was created by fusing fragments of the
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S. pombe genome to the GFP gene. S. pombe cells were then transformed
with this plasmid library, and the localization of proteins to 11 distinct
compartments was evaluated [46].

Imaging technology allows for a global analysis of protein localization
in S. cerevisiae and discriminated between 22 different cellular locales. It
was also used to assign a cellular compartment location for 70% of pro-
teins for which the location was not previously known [98]. Furthermore,
fluorescence resonance energy transfer (FRET) is used to decipher specific
signaling mechanisms because it can indicate molecular proximity. For
example, FRET has been used to study membrane-extracellular signaling
events and showed that 14% of epidemal growth factor (EGF) receptors
in A431 cells were oligomerized before growth factor binding [132]. It has
also been used to study membrane-associated signaling mechanisms (e.g.,
activation of heterotrimeric G-protein complexes might involve rearrange-
ment rather than dissociation [22]), and intracellular signaling events (e.g.,
the phosphorylation states of insulin-receptor substrates [189]).

Integration of data types

Each of these techniques has distinct advantages and disadvantages. There
is thus a growing need to integrate a variety of data sources to most accu-
rately reconstruct a signaling network. Initial efforts to integrate disparate
data sources have been successful. For example, yeast two-hybrid protein—
protein interaction experiments, RNAi phenotyping, and gene expression
arrays were used for Caenorhabditis elegans germline to generate systems-
level hypothesis including the tendency of essential proteins to interact
with each other [240]. The integration of experimental data from exper-
imental sources in the context of a mathematical model has also been
performed [85]. Regulatory interactions determined from gene expression
arrays were evaluated for consistency with reconstructed regulatory net-
works of E. coli and S. cerevisiae. Novel hypotheses were generated from
this data integration study. For example, expression arrays and literature-
based reconstructions are generally less consistent for repressor than ac-
tivator regulatory proteins. These systems-level descriptions require the
integration of multiple types of data since no single experimental protocol
can accurately characterize all necessary parameters for a systems-level
biological description.

Large-scale reconstruction efforts

To date, most work on reconstructing signaling networks has been limited
to analyses at a small scale, i.e., analyzing the dynamics of a particular
receptor—ligand complex. However, with the availability of large-scale data
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Figure 5.5: An example of a complex signaling network. Taken from http://www.afcs.org.

sets, the scope of such reconstructions is growing. The Alliance for Cellular
Signaling [74] has focused resources on elucidating signaling mechanisms
in the human B-cell and cardiac myocyte, and more recently a human
macrophage cell line. The Cell Migration (www.cellmigration.org) and
LIPID MAPS (http://www.lipidmaps.org/) consortiums have also begun
work on elucidating components of signaling networks.

The descriptions of the signaling mechanisms described earlier only hint
at the intricate and complex networks that are formed from the interac-
tions of all components in signaling networks (see Figure 5.5). Large-scale
efforts are required (see http://www.afcs.org for a description of the multi-
institutional effort in the Alliance for Cellular Signaling) to decipher all
the players and relationships in the tremendous reaction networks that
exist in living cells. With the significant effort currently being devoted to
signaling, we may expect to see cell and tissue-scale networks emerge over
the coming years.
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EEM summary

» Signal transduction involves the transmission of extracellular signals
into the nucleus of the cell, leading to changes in gene expression.

» There are three different modes of cellular communication: soluble
signaling, extracellular matrix—cell, and direct cell-cell.

» Signaling pathways involve three basic steps: the formulation of a
membrane complex, a series of reactions leading to the nucleus, and
changed activity of transcription factors.

Signaling networks have combinatorial properties.

Few signaling pathways have been extensively reconstructed.

YyvyYy

Reconstruction of signaling pathways involves the integration and use
of multiple data types (many of which are similar to those used to
reconstruct transcriptional regulatory networks).
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PART TWO

Mathematical
Representation of
Reconstructed Networks

The set of chemical reactions that comprise a network can be rep-
resented as a set of chemical equations. Embedded in these chemical equa-
tions is information about reaction stoichiometry. All this stoichiometric
information can be represented in a matrix form; the stoichiometric ma-
trix, denoted by S. Associated with this matrix is additional information
about enzyme complex formation, transcript levels, open reading frames,
and protein localization. Therefore, once assembled, the stoichiometric
matrix represents a biochemically, genetically, and genomically (BIGG)
structured database. This database structure represents an interface be-
tween high-throughput data and in silico analysis (see Figure 1.4). It al-
lows high-throughput data (often called content) to be put into context.
The stoichiometric matrix is the starting point for various mathematical
analysis used to determine network properties. Part II of this text will
summarize the basic properties of the stoichiometric matrix. Since it is a
mathematical object, the treatment is necessarily mathematical. However,
S represents biochemistry. We will thus relate the mathematical proper-
ties of S to the biochemical and biological properties that it fundamentally
represents.






CHAPTER 6

Basic Features of the Stoichiometric
Matrix

The stoichiometric matrix is formed from the stoichiometric co-
efficients of the reactions that comprise a reaction network. This matrix is
organized such that every column corresponds to a reaction and every row
corresponds to a compound (recall Figure 1.5). The entries in the matrix are
stoichiometric coefficients, which are integers. Each column that describes
a reaction is constrained by the rules of chemistry, such as elemental bal-
ancing. Every row thus describes the reactions in which that compound
participates and therefore how the reactions are interconnected. The sto-
ichiometric matrix transforms the flux vector (that contains the reaction
rates) into a vector that contains the time derivatives of the concentrations.
The stoichiometric matrix thus contains chemical and network informa-
tion. These basic properties of the stoichiometric matrix are described in
this chapter.

X s as a Linear Transformation

Mathematically, the stoichiometric matrix S is a linear transformation
(Figure 6.1) of the flux vector

v=_(v,Vva,...,Vn) (6.1)

to a vector of time derivatives of the concentration vector

X = (X1, X2, ..., Xm) (6.2)
as
dx
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Left null(S)

Figure 6.1: The stoichiometric matrix as a linear transformation. The four fundamental sub-
spaces of § are shown. Prepared by Iman Famili.

The reader may also be familiar with other notations of time derivatives

dx ..
E:x =X (6.4)

This perhaps makes it more clear that the dx/dt is a vector and that x = Sv
is a linear transformation.

Dynamic mass balances

Equation 6.3 represents the fundamental equation of the dynamic mass
balances that characterizes all functional states of a reconstructed bio-
chemical reaction network. Each individual equation in the set

de
5 = Z SikVk (6.5)
K

represents a summation of all fluxes vy that form compound x; and those
that degrade it.

Dimensions
There are m metabolites (x;) found in the network and n reactions (v;).
Thus,

dim(x) =m, dim(v)=n, dim(S)=mxn (6.6)

For a typical biological network there are more reactions than compounds,
or n > m. The matrix S may not be full rank, and therefore Rank(S) = r < m.

The four fundamental subspaces

There are four fundamental subspaces associated with a matrix. The four
fundamental subspaces of S, shown in Figure 6.1, have important roles in
the analysis of biochemical reaction networks, as detailed in the following
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chapters. The vector produced by a linear transformation is in two orthog-
onal spaces (the column and left null spaces), called the domain, and the
vector being mapped is also in two orthogonal spaces (the row and null
spaces), called the codomain or the range of the transformation.

The column and left null spaces
The time derivative is in the column space of S (denoted by Col(S)), as can
be seen from the expansion of Sv:

dx

T =81V1 +SVo + -+ 8,V (6.7)
where s; are the reaction vectors that form the columns of S. Col(S) is there-
fore spanned by the reaction vectors s;. The reaction vectors are structural
features of the network and are fixed. However, the fluxes v; are scalar
quantities and represent the flux through reaction i. The fluxes are vari-
ables. We do note that each flux has a maximal value, v; < v; nqax, and this
limits the size of the time derivatives. Thus, only a portion of the column
space is explored, that is, we can cap the size of the column space of S.
The vectors in the left null space (1;) of S are orthogonal to the column
space, that is, (I;-s;) = 0. The vectors l; represent a mass conservation,
(see Chapter 10).

The row and null spaces
The flux vector can be decomposed into a dynamic component and a
steady-state component:

V = Vdyn + Vss (6-8)
The steady state component satisfies
Sv,, =0 (6.9)

and vs; is thus in the null space of S (see Chapter 9). The dynamic com-
ponent of the flux vector, vqyy,, is orthogonal to the null space and conse-
quently it is in the row space of S. Each pair of subspaces in the domain and
codomain of the dynamic mass balance equation therefore form orthogo-
nal sets to each other, and their dimensions sum up to the dimension of
their corresponding vectors, that is, dim(Null(S) + dim(Row(S)) = n and
dim(Left null(S)) + dim(Col(S)) = m.

These are introductory observations about S and its fundamental sub-
spaces. In Chapters 8 through 11, we will study the individual fundamental
subspaces in more detail.
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Figure 6.2: The structure of the stoichiometric matrix and how it corresponds to a map. Both
the regular (reaction) and transpose (compound) maps are shown in (A) and (B), respectively.
Prepared by Iman Famili.

[EI s as a Connectivity Matrix

In the stoichiometric matrix, each column represents a reaction and each
row represents a compound (Figure 6.2A). S is a connectivity matrix, and
it represents a network. This network is represented with a map. Each
node in the map corresponds to a row in the matrix, and each column
corresponds to a link in the map. Therefore, S represents a map where a
compound is a node and the reactions connect (link) the compounds. This
map is the reaction map and is the standard way of viewing metabolic
reactions and pathways in biochemistry textbooks.

The negative of the transpose of the stoichiometric matrix, —S7, also
represents a map (Figure 6.2B), which we will call the compound map.
The map that —ST represents has the reactions (now the rows in —S") as
the nodes in the network and the compounds (now the columns of —ST) as
the connections, or the links. This representation of a biochemical reaction
network is unconventional but useful in many circumstances.
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A B
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S
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> >
dim(v)=n=3 dim(v)=n=3
dim(Col(S)) =1 dim(Col(S)) =2
dim(Left Null(S))=2=n-1 dim(Left Null(S))=1=n-2

Figure 6.3: Orthogonality of the column and left null space in three dimensions: (A) a one-
dimensional and (B) a two-dimensional column space.

It is worth examining the columns (s;) and rows of S a bit more closely.
Let us examine a reaction:

A+BLAC+D (6.10)

with the corresponding column of S, s; = (-1, -1, 1, 1)T. This vector is
in the column space of S. Moving along this vector is like carrying out
this reaction. Note that motion along this vector will conserve the sum
A+ B+ C+ D. Thus, a column in S represents a “tie” between the com-
pounds participating in a particular reaction. If these compounds partic-
ipate in other reactions, there will be interactions between the motions
along the columns of S. These vectors, s;, span the column space of S and
thus give a conceptually useful basis for the column space of S.

The orthogonality of the column and left null space can be represented
schematically for a three-dimensional case (Figure 6.3). If there is one inde-
pendent reaction vector s;, there is a two-dimensional subspace orthogonal
to this single reaction where the network’s metabolite mass is conserved. If
the system has two independent reactions, there is only a one-dimensional
left null space. Thus, the higher the number of independent reaction vec-
tors, the smaller the orthogonal left null space. The higher the number of
independent reactions, the fewer conservation quantities exist.

Similar comments follow for the rows of S (or the columns of —ST). A
column in —S" will tie together, or connect, all the reactions in which a
metabolite participates. Note that the columns of S create a “hard” con-
nection between the metabolites, since a reaction will simultaneously use
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Figure 6.4: The columns of the stoichiometric matrix that correspond to elementary chemical
transformations.

and produce the participating compounds. Conversely, the connectivities
created between the reactions are “soft,” since the reactions in which a
compound participates can have varying flux levels that may not have
fixed ratios. These ratios are determined by the kinetic properties of the
reactions.

[ZEM Elementary Biochemical Reactions

There is a limited number of elementary types of biochemical reactions
that take place in cells. These fall into three categories. In the following
examples derived for metabolic transformations, we used C to denote a
primary metabolite, P as a phosphate group, and A as a cofactor such
as the adenosine moiety in AMP, ADP, and ATP. The columns, s;, that
correspond to these elementary transformations are shown in Figure 6.4.

Reversible conversion
Transformation between two compounds comprising the same two chem-
ical moieties C and P can be written as

CP= PC (6.11)

representing two elementary reactions (forward and backward). Although
such reversible conversions are often used to generically describe re-
actions, they can only represent simple chemical rearrangement of the
molecule without any change in its elemental composition. Isomerases
catalyze such reactions. The stoichiometric matrix that describes this re-

-1 1
S:( ) _1> (6.12)

action is
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where the first column of the matrix represents the forward reaction and
the second column the reverse reaction. The first row represents CP,
and the second row PC. Under certain circumstances, one may wish to
combine the two elementary reactions into a net reaction that can take on
positive or negative values.

Bimolecular association
Many biochemical reactions involve the combination of two moieties, C
and P, to form a new compound.

C+P=CP (6.13)

Sometimes, such reactions may not involve covalent bonds but a series
of hydrogen bonds to form a complex, such as the dimerization of two
protein molecules or the initial binding of a substrate to an active site on an
enzyme molecule. The stoichiometric matrix that describes a bimolecular
association is

-1 1
S=]1-1 1 (6.14)
1 -1

where the rows represent C, P, and CP, respectively, and the columns
represent the forward and reverse elementary reactions.

A cofactor-coupled reaction
A frequent reaction in biochemical reaction networks is one in which one
compound (AP) donates a moiety (P) to another compound (C ):

C+AP=CP+ A (6.15)

In reality, such reactions have an intermediate and can be decomposed
into two bimolecular association reactions. The stoichiometric matrix that
describes the cofactor-coupled (or exchange) reaction is

-1 1
-1 1
S= (6.16)
1 -1
1 -1

where the rows represent C, AP, CPand A, respectively, and the columns
represent the forward and reverse reactions. The word cofactor is used
synonymously with carrier.
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Figure 6.5: Reaction maps versus compound maps. Reaction maps (left) show metabolites
as nodes and reactions as directed edges. The reaction map includes both the internal and
exchange fluxes, if present. In contrast, compound maps of the same systems (right) show the
reactions as nodes and metabolites as directed edges. A system boundary that allows for the
exchange of the internal nodes is open on a reaction map. The compound map of an open
reaction map is closed, and vice versa, as is shown by changing the network from (A) to (B)
and to (C). Figure prepared by Iman Famili.

X Linear and Nonlinear Maps

The topological structure of the maps formed by connectivity matrices are
very important in determining the properties of the network. The topo-
logical properties of maps can be linear and nonlinear (Figure 6.4). Some
simple examples of reaction and compound maps are shown in Figure 6.5.

Linear maps are made up of links that have only one input and one
output. Thus, the columns of S will only have two entries, corresponding to
the two nodes (metabolites) that the link (reaction) connects. Similarly for
ST, if only one compound links two reactions, the map is linear. Although
frequently used for illustrative purposes, the occurrence of such links in
biological reaction networks is rare.

Nonlinear maps are made up of links with more than one input or
more than one output (Figure 6.4). The number of compounds that par-
ticipate in a reaction can be found by adding up the nonzero elements
in the corresponding column of S. In genome-scale metabolic models,
the most common number of metabolites participating in a reaction is
4, as in reaction 6.15. Thus, metabolic cofactors create nonlinearity in the
map of S. Metabolites that participate in more than two reactions create a
nonlinearity in the map of ST. The participation number of a metabolite
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in genome-scale models can be as high as 150 (for ATP) but is 2 for most
compounds found in the cell [50]. The metabolites that participate in many
reactions thus create strong nonlinearities in the compound map. Again,
the cofactors lead to strong nonlinear topological features of metabolic
networks. However, note the difference in the maps: in the reaction map,
the nonlinear links are hard (i.e., two molecules must come together to
produce a reaction), whereas in the compound map, a molecule can go
through one reaction or another.

[ The Elemental Matrix

The chemical reactions that form the columns in S have the basic rules
of chemical transformation associated with them. There are conservation
quantities (such as elements and charge) and there are nonconserved quan-
tities (such as osmotic pressure and free energy) associated with chemical
transformations. These properties must be accounted for in the construc-
tion of a biochemically meaningful stoichiometric matrix.

Every compound in the reaction network comprises chemical elements.
The elemental matrix E gives the composition of all the compounds con-
sidered in a network. A column of E corresponds to a compound, e;, and
the rows correspond to the elements, typically carbon, oxygen, nitrogen,
hydrogen, phosphorous, and sulfur. It is important to note that the ele-
mental composition of a molecule does not uniquely specify its chemi-
cal structure. For instance, glucose and fructose have the same elemental
structure. The elemental composition of common metabolites is shown in
Table 6.1.

Example: Consider the simple chemical reaction
ZHZ + Oz — ZHZO (6.17)

that involves only two elements, oxygen and hydrogen. The elemental
matrix for this chemical reaction is

0 2 1
E:(z 0 2) (6.18)

where the first row corresponds to oxygen and the second row to hydrogen.
The columns correspond to the compounds, in this case ordered as Hy, O,
and H,O.
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Table 6.1: The elemental composition of some common metabolites. Adapted from [144].
Elemental Elemental
Compound composition  Compound composition
Glucose CeH1206 Alanine C3H7NO3
Glucose-6-phosphate CegHq1109P Arginine CeH14N402
Fructose-6-phosphate CgHq1100P Asparagine C4HgN> 03
Fructose-1, 6-phosphate CeHq10012P2 Cysteine C3H703NS
Dihydroxyacetone phosphate  C3Hs5O0gP Glutamic acid CsHgNOg4
Glyceraldehyde-3-phosphate C3Hs506P Glycine CoHs5NO>
1,3-Diphosphoglycerate C3H4010P2 Leucine CgH13NO>
2,3-Diphosphoglycerate C3H3P20q9 Isoleucine CegH13NO2
3-Phosphoglycerate C3H407P Lysine CeH14N203
2-Phosphoglycerate C3H407P Histidine CgHgN30>
Phosphoenolpyruvate C3H,06P Phenylalanine CoH11NO>
Pyruvate C3H303 Proline CsHgNO>
Lactate C3H503 Serine C3H7NO3
6-Phosphogluco-lactone CgHoOgP Threonine C4HgNO3
6-Phosphogluconate CeH10010P Tryptophane C11H12N202
Ribulose-5-phosphate CsHoOgP Tyrosine CgH11NO3
Ribulose-5-phosphate CsHoOgP Valine CsHq11NO>
Xylulose-5-phosphate CsHgoOgP Methionine CsHq1102NS
Ribose-5-phosphate CsHoOgP Sedoheptulose C7 Hi13019P
7-phosphate
Erythrose-4-phosphate C4H707P 5-Phosphoribosyl CsHgO14P3
1-pyrophosphate
Inosine monophosphate CioNgH120gP  Ribose-1-phosphate  CsHoOgP
Hypoxanthine CsNgH40 Inosine Ci0H12N405
Conserved quantities

A chemical reaction cannot create or destroy elements. Thus, the inner
product of the rows, e;, in the elemental matrix and the reaction vectors,
s, must be zero, or

(e;-s)=0 (6.19)
for all the elements found in the compounds that participate in the re-
action. This inner product simply adds up an element on each side of
the reaction. Since the stoichiometric coefficients are negative for the
reactants (the compounds that disappear in the reaction) and positive
for the products (the compounds that appear in the reaction), this sum
is zero. The number of atoms of an element on each side of the reaction
is the same. For the elemental matrix in equation 6.18 and the reaction
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vector s; = (—2, —1, 2)T we see that
(0,2,1)-(-2,-1,2)"Y =0 and ((2,0,2)-(-2,-1,2)"Y)=0 (6.20)
All elemental balancing equations taken together lead to
ES=0 (6.21)

Although not shown here, the same must be true of compound charge,
since it is balanced during a chemical reaction.

Isotopomers are often used to trace the flow of atoms, typically carbon,
through a metabolic network. In this case, the carbon atoms are not identi-
cal since some carbon atoms in the substrate may be of atomic mass 13 and
not the usual 12. The fate of these particular carbon atoms can be traced
using particular conservation rules [112, 195, 252, 247].

Nonconserved quantities

Other physicochemical properties may not be conserved during a chem-
ical reaction. Such properties of the molecules can be represented as an
appended row to the elemental matrix. For instance, all the osmotic co-
efficients for reactants and products can be listed. If they do not sum to
zero, the osmotic pressure will not be balanced as the reaction takes place.
In other words, osmolality of the solution can be increased or decreased
as a reaction proceeds. Gibbs free energy is another important quantity
that changes with chemical reaction. When summed, the Gibbs free en-
ergy change of a reaction needs to be negative for a reaction to proceed
forward at a significant rate. Note that nonconserved properties do lie in
the row space of S since the summation of the rows of S for these properties
is nonzero.

Compounds as points in the elemental space

All compounds contain a finite number of elements, described with inte-
gral numbers. Thus, any compound can be represented in a space where the
axes correspond to the elements (see Figure 6.6). All feasible combinations
of the elements represented by the axes of the space can be represented
as point in the elemental space. For instance, the water molecule is in the
(0,2, 1) point in a three-dimensional space formed by carbon, hydrogen,
and oxygen. There are six elements (carbon, hydrogen, oxygen, nitrogen,
phosphate, and sulfur) that make up most biochemical molecules.

Reaction vectors as connections between these points

The reaction vectors connect points in the elemental space (Figure 6.7).
Isomerization like the one indicated in equation 6.11 is simply a point in
the elemental space, since the elemental composition of the compound
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12y

: __,..-dioxide

Figure 6.6: The elemental space. Representation of compounds containing carbon, hydrogen,
and oxygen in a three-dimensional space. The coordinates are glucose (6, 12, 6), pyruvate (3,
3, 3), water (0, 2, 1), and carbon dioxide (1, O, 2).

CH,4 ./\ i

e
CH;0H 51.H2

Figure 6.7: Reactions as co-connected dots in the elemental space. The reactant and prod-
ucts of the reaction H—CH3z + H—OH — CH3—OH + H; are shown. The arrows indicated are
meant to connect all the dots at the same time.
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does not change. Since most reactions involve more than one reactant and
more than one product, the ties are not simple lines. If the location of
a compound along an axis is normalized to its stoichiometric coefficient
in the reaction (no change if it is unity), then the ties that the reactions
represent are orthogonal to the axes since the number of elements must be
conserved.

Chemical moieties

Chemical moieties that do not change in the network can be represented
as a group that displays the combination of the elements it comprises. For
instance, in the chemical reaction

H—CH; + H—OH — CH3;—OH + H; (6.22)

we can consider the CH; and OH groups as moieties that are intact in this
reaction. Note that this reaction is of the type shown in equation 6.15,
where OH and H are being exchanged between CH; and H.

The elemental matrix for this reaction is

CH, H;O CH;0H H,

C 1 0 1 0
H 4 2 4 2
O 0 1 1 0

It can also be written with the invariant moieties as rows

CH, H;O CH;OH H,

C o 0 0 0

H 1 1 0 2

O o 0 0 0
CH, 1 0 1 0
OH o0 1 1 0

Note that the rows for carbon and oxygen now have all zero entries.

Metabolic carrier molecules as conserved moieties

The consideration of conserved chemical moieties is useful in describing

transformations in biochemical reaction networks. Many cofactors, such

as ATP and NADH, do not change except for a phosphate group (a chemical

moiety) and a redox equivalent in the form of a hydrogen ion.
Phosphorylated adenosines are carriers of high-energy bonds. We can

think of ATP as AMP-P-P, and ADP as AMP-P. When the high-energy
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Table 6.2: The elemental composition of common chemical moieties in metabolism.
Adapted from [144].

Elemental Elemental
Compound composition Compound composition
Adenine CsHsNs Adenosine CioH13N504
Adenosine CioN5H1307P Adenosine diphosphate Ci0N5H13010P>
monophosphate
Adenosine CioNs5H13013P3  Nicotinamide adenine C21H27N7014P2
triphosphate dinucleotide
Nicotinamide adenine C21H28N7014P>
Nicotinamide adenine C21H27N7047P3  Nicotinamide adenine Co1H28N70¢7P3
dinucleotide phosphate dinucleotide phosphate
Hydrogen ion H Inorganic phosphate HPO4
Ammonia NH3 Carbon dioxide CO>
Water H>O

phosphate bond is transferred between these compounds, the AMP portion
remains invariant. In the case of the redox carrier NAD™ and NADH, the
core cofactor molecule is conserved. However, in this case we also have
to conserve compound charge, and so H* becomes an important player in
redox conservation quantities (see Chapter 10 for details).

There are several types of carrier molecules in metabolism (see Ta-
ble 3.1). Any cyclic process has a chemical moiety at its core. For example,
in the TCA cycle there is a conserved C; moiety that cycles around in this
pathway (e.g., see Table 10.8). Similar conserved moieties exist in other
cyclic pathways. The elemental composition of some common chemical
moieties are shown in Table 6.2. These moieties tend to be conserved on
faster time scales.

Protein molecules as conserved moieties

In enzyme-catalyzed reactions, the backbone of the enzyme molecule can
be considered as an invariant moiety since the enzyme molecule is recov-
ered intact after the reaction has taken place. For instance, consider the
glucosephosphate isomerase (PGI) in glycolysis. It catalyzes the reaction

G6P + E = E-G6P = E + F6P

The elemental composition of G6P and F6P is the same (Table 6.1), and
the elemental composition of this enzyme itself does not change during
this reaction. The basic enzyme can be considered as a moiety. In reaction
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Figure 6.8: Schematic illustration of open and closed metabolic networks.

networks of signaling pathways and regulation of DNA transcription, one

can identify similar conserved moieties.

XA Open and Closed Networks

The boundaries around a network can be drawn in different ways (see Fig-
ure 6.8). In defining a network a systems boundary is drawn. The reactions
are then partitioned into internal and exchange reactions. Exchange fluxes
are denoted by b; and internal fluxes by v;. Similarly, the concentration
vector is partitioned into internal (x;) and external concentrations (c;).

There are several different versions of S depending on what is encom-

passed by a network.

The total stoichiometric matrix
The most general form of S is

Vi

Xi
Siot :
Ci

where the dashed lines show the partitioning of the internal elements
in the matrix. This form accounts for the internal reactions (v;), the ex-

change reactions (b;), the internal compounds (x;), and the external com-

pounds (c;).
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The exchange stoichiometric matrix
If we do not consider the external compounds, c¢;, we have

Vi b;

Sexch L X

which only contains the internal fluxes and the exchange fluxes with the
environment. This form of the matrix is frequently used in pathway anal-
ysis of a network (see Chapter 9).

The internal stoichiometric matrix
If we consider the cell as a closed system, we can focus just on the internal
fluxes and examine the properties of

Vi
Sint © Xi

This form is useful to define pools of compounds that are conserved (see
Chapter 10).

Example
The Siot for the system shown earlier is given by

Vi V2 b1 bz
-1 1 1 0\ xX
1 -1 0 -1|x
Stot = (623)
0o 0 : -1 o|©

0 0 : 0 1)¢c



6.7 Summary

The internal stoichiometric matrix

Sint= (_1 1)
1 -1

has m =2, n=2, and r = 1. Thus all the fundamental subspaces have a
dimension of 1.
The exchange stoichiometric matrix

has m = 2, n = 4, and r = 2. It is full rank. The null space has a dimension
of 2 (= 4 — 2), while the left null space has a dimension of 0 (= 2 — 2).
The total stoichiometric matrix has m = 4, n = 4, and r = 3. Thus, both
of the null spaces are one-dimensional. In later chapters, we will learn
how the dimensions of the null spaces relate to pools and pathways.

Partitioning Sin¢ further

The internal stoichiometric matrix can be further partitioned. The com-
pounds that cannot be exchanged with the environment form one group,
and those that can, form another. In Chapter 10, for instance, we designate
these two as secondary and primary metabolites, respectively.

Defining the system boundary

Note that in the earlier consideration we have drawn a systems bound-
ary around the cell. Such definition is common since it is consistent with
physical realities. However, since the definition of a systems boundary
can be chosen, we can segment any network into subnetworks by drawing
“virtual” boundaries. This property is useful in defining subsystems that
may be “fast” (i.e., have rapid dynamics) and lead to temporal decompo-
sition and subsystems that have a biochemical relevance (e.g., fatty acid
biosynthesis).

Summary

» The stoichiometric matrix comprises stoichiometric coefficients that
are commonly integer numbers.

» The columns of the stoichiometric matrix represent chemical reac-
tions, while the rows represent compounds.

» The column vectors s; represent chemical transformations and thus
come with chemical information.
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» The reaction vectors s; imply elemental and charge balance. The reac-
tion vectors are thus orthogonal to the rows of the elemental matrix.
These conservation quantities are in the left null space of the stoichio-
metric matrix.

» Some quantities, such as free energy, are not conserved during a chem-
ical reaction. These quantities will be in the row space of the stoichio-
metric matrix.

» There are few basic forms of the elementary reactions. Most, if not all,
biochemical reaction networks are either linear or bilinear.

» Mathematically, the stoichiometric matrix is a linear mapping opera-
tion.

» Structurally, or topologically, the stoichiometric matrix represents a
reaction map.

» The transpose of stoichiometric matrix represents a compound map.

» Both maps are topologically nonlinear, as they contain joint edges
between nodes.

» The boundaries of a reaction network can be drawn in different ways
and lead to three fundamental forms of S.
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CHAPTER 7

Topological Properties

The topological properties of matrices that describe the connec-
tivity features of a network, such as the stoichiometric matrix, can be de-
fined and studied. Elementary topological properties can be computed
directly from the individual elements of S. Direct topological studies are
interesting from a variety of standpoints. They focus on relatively easy to
understand and intuitive properties of the structure of the network. Ele-
mentary topological properties relate to how connected a network is and
how its components participate in forming the connectivity properties
of the network. As pointed out in Chapter 2, there may be many func-
tional states for a given network structure. Topological properties are thus
global and less specific than functional states of networks. Some of the
differences between functional states and network topology are covered
in Part III.

The Binary Form of §

The elementary topological properties are determined based on the
nonzero elements in the stoichiometric matrix. Thus, we define the ele-
ments of a new matrix S as

S=0 1 s;=0 (7.1)
Sjj =1 if Sij ;é 0

that is the binary form of S. This matrix comprises only 0’s and 1’s. If

§;jis unity, it means that compound i participates in reaction j. Note that

in the rare case where a homodimer is formed, that is, in a reaction of the
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Figure 7.1: The stoichiometric matrix for Geobacter sulfurreducens. The dimensions of this
matrix are m=541 and n= 609, giving rise to 329,469 elements in the matrix. Of
these, 2655, or 0.81%, of the elements are nonzero. Image provided by Radhakrishnan
Mahadevan.

type 2A — A, the stoichiometric coefficient 2 becomes unity in the binary
form of S.

S is a sparse matrix

A number of genome-scale stoichiometric matrices have been recon-
structed (see Table 3.6). Since there are typically only two, three, or four
compounds that participate in a reaction out of hundreds of compounds
participating in a network, the stoichiometric matrix is sparse. A sparse
matrix mostly comprises zero elements. For instance, if there are on aver-
age three compounds that participate in a reaction but there are m com-
pounds in the network, then the fraction of nonzero elements in the matrix
is 3/m.If mis 300, then only 1% of the elements are nonzero and the matrix
is sparse.

A pictorial representation of the genome-scale stoichiometric matrix
for Geobacter sulfurreducens is shown in Figure 7.1. The 2,655 nonzero
entries are indicated. They represent only 0.81% of the total of 329,469
elements in the matrix.
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Compound Participation and Connectivity

The number of nonzero entries in a row and a column of S give the two
elementary topological properties. The sum of the nonzero entries in a
column

m
= Z@j]‘ (7.2)
i=1

gives the number of compounds that participate in reaction j. This quan-
tity, 7}, can be called the participation number for a reaction. For elemen-
tary reactions, this number is most likely 3. Note that all compounds have
to participate in a reaction for it to take place. It represents the number of
nodes that form an edge in the reaction map.

The sum of the number of nonzero entries in a row

n
pi = Zg'ij (7.3)
=

gives the number of reactions in which compound i participates. This
number, p;, is a measure of how connected, or linked, a compound is in
the network. A compound that participates in a large number of reactions
will form a highly connected node on the reaction map (see Figure 7.2).
This number could be called the connectivity number, for the node, or
simply its connectivity. Note that in a given functional state of a network,
a compound does not have to participate in all the reactions that it is
connected to, or to participate equally in them. This feature represents a
fundamental difference between the flux and concentration maps.

Connectivities in genome-scale matrices
As soon as the first genome-scale matrices had been reconstructed (recall
Table 3.6), the connectivities for all the metabolites were computed (see
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Figure 7.3: The distribution of node connectivities in the reconstructed first four genome-scale
matrices. Data taken from [50, 51, 54, 67, 192].

Figure 7.3). Such computations show that there are relatively few metabo-
lites (24 or so) that are highly connected, while most of the metabolites
participate in only two reactions. This result is a reflection of the fact that
few carrier molecules participate in a large number of reactions and a few
metabolites are key to certain metabolic functions, such as nitrogen, one-
carbon, and two-carbon metabolism (recall Table 3.1).

A surprising finding was the approximate linear appearance of the curve
ofthe connectivities when the metabolites were rank ordered by decreasing
connectivity, when plotted on a log-log scale [50] (see Figure 7.3). This
curve can be redrawn based on the probability that a metabolite has a
certain connectivity. Thus, there is a high probability of low connectivity
and a low probability of high connectivity. Plotting these probabilities as
a function of connectivity gives an approximate straight line on a log—log
plot (Figure 7.4). Networks that show such a power law distribution are
said to be scale-free [7].

The most highly connected nodes are carrier molecules, and due to their
high connectivity they form the dominant features of S (see Chapter 8).
Such biochemical insight has led to the analysis of the connectivity dis-
tributions of decomposed forms of S based on biochemical classification
of reactions. Such analysis has concluded that genome-scale stoichiomet-
ric matrices are actually scale-rich and that the overall power law prop-
erty is the result of the amalgamation of the connectivity properties of the
biochemically classified modules [220]. Since functional states and their
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biological interpretation is the focus of this text, the reader is directed to
the list in Section 7.6 for more information on studies of network topolog-
ical studies.

Biological interpretation

The biological significance of the power law distribution is not clear. It has
been suggested that the most highly connected nodes in a network may
represent the compounds that in the network were “first” in evolutionary
time [239]. Such interpretations must of course be made in view of the
constraining chemistry; for instance, there is a finite number of chemical
transformations that a particular metabolite can undergo. Similarly, the
“attack tolerance” of a network is such that the removal of the most highly
connected nodes has the broadest impact on network functions [104, 105].
This consideration may apply to regulatory networks. Conversely, it is not
possible to simply delete a metabolite from a network, but a link can be
severed.

Node connectivity and network states

It should be noted that highly connected nodes may represent effective
targets for drug development. However, topological properties of networks
must be interpreted in the context of the more biologically relevant func-
tional network states and their properties. One such consideration, for
instance, is that a metabolic network must make all the biomass compo-
nents of the cell in order for it to grow. Thus, even eliminating a step in
a linear low-flux pathway leading to the synthesis of cofactors, vitamins,
or amino acids will prevent a genome-scale metabolic network from sup-
porting growth.
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The relationship between node connectivity and lethality of reactions
connecting into a node have been studied in genome-scale metabolic net-
works (Figure 7.5) [128]. The results in this figure show that the lethality
fraction ( fi) of some of the less connected metabolites is higher than that of
the highly connected metabolites irrespective of the size or the complex-
ity of the metabolic network. In fact, surprisingly, for all of the networks
studied, most of the points fall within a narrow range from 0.2 to 0.5. Links
into poorly connected nodes are thus just as likely to be lethal as links into
highly connected nodes. The number of lethal reactions around a highly
connected metabolite such as OAA (p; = 10) is shown in comparison to a
poorly connected metabolite such as prbamp (p; = 2) in Figure 7.5. How-
ever, the number of lethal reactions for both metabolites is 2, as prbamp
occurs in a linear pathway in histidine biosynthesis and the deletion of
either of the linked reactions leads to the loss of network function (growth).
Therefore, although network topology as characterized by the elementary
topological properties is certainly interesting and worthy of study, one
must keep in mind the role of such properties with respect to attaining
biologically meaningful functional states. The study of the functional
states of networks is detailed in Part III of the text.

The Adjacency Matrices of S

An expanded set of elementary topological network properties can be ob-
tained from the two adjacency matrices of §. One relates to the columns
of S, while the other relates to the rows.

The reaction adjacency matrix A,
The premultiplication of a matrix by its transpose

A, = ST§ (7.4)

leads to a symmetrical matrix whose elements are the inner product of its
columns, §;. The diagonal elements of A, are:

(8 -8:) =Y 8% (7.5)
k

Thus, since the elements of §; are 0 or 1, this summation simply represents
the number of nonzero elements in §; or the number of compounds that
participate in the reaction. The diagonal elements of A, are thus the same
quantity as given in equation 7.2.
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Figure 7.5: (A) The plot of the average lethality fraction (fi ;) as a function of the metabolite
connectivity (pq) for the metabolic networks of E. coli, S. cerevisiae, and G. sulfurreducens under
different growth conditions. (B) The reactions consuming or producing oxaloacetate (OAA, a
key metabolite in the TCA cycle) and phosphoribosyl-AMP (prbamp, an intermediate in the
histidine biosynthetic pathway) are shown. The reactions predicted to be essential for cell
growth based on in silico analysis are shown as outlines, while the nonessential reactions
are shown in black. The normalized predicted growth rate, connectivity (p;), and the lethality

fraction (fi ;) are also shown. From [128].
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The off-diagonal elements are given by
(§,T -8;) = Zgjkgki (7.8)
P

These elements can count how many compounds two reactions (reactions
iand j) have in common.

The compound adjacency matrix, Ay
The postmultiplication of a matrix by its transpose

A, = SS§T (7.7)

leads to a symmetric matrix whose elements are the inner products of its
rows. The diagonal elements are:

(@i =) 8% (7.8)
k

This summation gives the number of reactions in which compound x;
participates. This is the same quantity as computed in equation 7.3. The
off-diagonal elements are

(ax)ij= Z SikSkj (7.9)
X

This is the number of reactions in which both compounds x; and x; partici-
pate and shows how extensively the two compounds are topologically
connected in the network.

Computation of the Adjacency Matrices

The reversible reaction
The stoichiometric matrix for a simple reversible reaction

A 11
s:(1 1) (7.10)

has two identical adjacency matrices:?

2 2
AV:AX:< 2) (7.11)

Thus, each compound participates in two reactions (the forward and
backward reactions are treated separately), and there are two compounds
participating in each reaction.

1 Since the matrices A, and Ay are symmetric, the elements below the diagonal are left blank.
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The reversible bimolecular association reaction
The stoichiometric matrix for a reversible bimolecular association

1 1
S=111 (7.12)
1 1
has adjacency matrices
2 2 2
3 3
AV=< 3) and A= 2 2 (7.13)
2

Thus, A, states that there are three compounds participating in each reac-
tion (the forward and backward), and the two reactions have three com-
pounds in common. Similarly, A, states that each compound participates
in two reactions (the diagonal) and that the first and second, first and
third, and second and third compounds jointly participate in two reactions
(forward and backward).

The reversible cofactor exchange reaction
The stoichiometric matrix for a reversible cofactor exchange reaction

1 1
A 1 1
§— (7.14)
1 1
1 1
has adjacency matrices
2 2 2 2
4 4 2 2 2
A, = and Ay= 7.15
() 2 2 (719
2

Thus, A, states that there are four compounds participating in each reac-
tion (forward and backward) and the two reactions have four compounds
in common. Similarly, Ay states that each compound participates in two
reactions (the diagonal) and that all pairwise combinations of the com-
pounds jointly participate in two reactions (forward and backward).

Genome-scale matrices

The off-diagonal elements of Ay for the genome-scale metabolic net-
works for Escherichia coli, Saccharonyces cerevisiae, Helicobacter pylori,
Staphylococcus aureus, and the human cardiac mitochondrion have been
studied [11]. When rank ordered, they approximate a line on a log—log plot
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Figure 7.6: Metabolite coupling in E. coli. The number of metabolite pairs that share a given
number of reactions are plotted and identified from the E. coli metabolic network. From [11].

for all networks considered. This suggests the notion of metabolite cou-
pling, the concept that pairs of metabolites influence network behavior on
different scales. The results for E. coli are shown in Figure 7.6. The pairs
of metabolites that occur most often and dominate the network tend to be
common cofactors (ATP/ADP, etc.). Other metabolite pairs have progres-
sively less influence. The most often occurring metabolite pairs tend to be
similar across the genome-scale networks studied, but their less prominent
counterparts are often quite different.

EZJ summary

» The binary form of S is S, which has zeros everywhere except unity,
where a nonzero element appears in S.

» The summation of the elements in column jof S give the number of
compounds r; that participate in reaction j.

» The summation of the elements in row i of § give the number of reac-

tions p; in which compound i participates or shows how connected it
is in the network.

» The binary stoichiometric matrix S has two adjacency matrices A, and
A that are reaction and compound associated, respectively.



7.6 Further Reading

» A diagonal element of A, gives the number of compounds (i.e., 7
that participate in that reaction, and an off-diagonal element gives the
number of compounds that the two corresponding reactions have in
common.

» A diagonal element of Ay gives the number of reactions in which the
corresponding compound participates (i.e., p;), and an off-diagonal
element gives the number of reactions in which the two corresponding
compounds participate.

» The number of reactions that compounds participate in follow an
approximate power law distribution in genome-scale matrices of
metabolism. The number of reactions that pairs of metabolites par-
ticipate in also follows a power law distribution.

Further Reading

Barabasi, A.L., Linkep: THE NEw ScieNce oF NETWORKS, Perseus, Cambridge
(2002).
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Biotechnology, 18:1121-1122 (2000).

Mahadevan, K., and Palsson, B.O., “Properties of metabolic networks:
Structure versus function,” Biophysical Journal, 88:L7-L9 (2005).

Tanaka, R., “Scale-rich metabolic networks,” Physical Review Letters,
94:168101-168104 (2005).

117



118

CHAPTER 8

Fundamental Subspaces of §

In the last chapter we discussed the elementary topological prop-
erties of the network that the stoichiometric matrix represents. In this
chapter we look deeper into the properties of the stoichiometric matrix
and how these fundamental topological properties can be used to obtain
a more thorough understanding of the reaction network that it represents.
This material is perhaps the most mathematical part of this book. It should
be readily accessible to readers with formal education in the physical and
engineering sciences, while readers with a life science background may
find it challenging. The concepts introduced are important to the rest
of the chapters in Part II. The stoichiometric matrix is a mathematical
mapping operation (recall Figure 6.1). Matrices have certain fundamen-
tal properties that describe this mapping operation. These properties are
contained in the four fundamental subspaces associated with a matrix.
This chapter discusses these subspaces and how we can mathematically
define them and interpret their contents in biochemical and biological
terms.

EXW Dimensions of the Fundamental Subspaces

The mapping that the stoichiometric matrix represents was illustrated
in Figure 6.1 and a preliminary discussion of the associated four sub-
spaces is found in Chapter 6. The stoichiometric matrix is typically rank
deficient. The rank r of a matrix denotes the number of linearly inde-
pendent rows and columns that the matrix contains. Rows are linearly
dependent if any one row can be computed as a linear combination
of the other rows. Linear dependency between the compounds and re-
actions determines the dimensionality of each of the four fundamental
subspaces.



8.1 Dimensions of the Fundamental Subspaces

The dimensions of both the column and row space is r.
dim(Col(S)) = dim(Row(S)) =r
Since the dimension of the concentration vector is m, we have
dim(Left Null(S)) =m —r
Similarly, the flux vector is n-dimensional; thus,
dim(Null(S)) =n-r

The linear dependency between columns and rows of the stoichiometric
matrix and its effect on the dimensionality of each fundamental subspace
will be discussed further in subsequent chapters.

Contents of the fundamental subspaces
The four fundamental subspaces contain important information about a
reaction network. Their contents are as follows:

e Null space. The null space of S contains all the steady-state flux
distributions allowable in the network. The steady state is of much
interest since most homeostatic states are close to being steady states.

¢ Row space. The row space of S contains all the dynamic flux distri-
butions of a network and thus the thermodynamic driving forces that
change the rate of reaction activity.

 Left null space. The left null space of S contains all the conservation
relationships, or time invariants, that a network contains. The sum
of conserved metabolites or conserved metabolic pools do not change
with time and are combinations of concentration variables.

e Column space. The column space of S contains all the possible
time derivatives of the concentration vector and thus shows how the
thermodynamic driving forces move the concentration state of the
network.

The contents of these spaces are described in detail in the subsequent
chapters.

Basis for vector spaces

A basis for a space can be used to span the space. Thus, a basis describes
all contents of a space. Different bases can be used for this purpose, in-
cluding a linear basis, orthonormal basis (a special case of a linear basis)
for linear spaces, and a convex basis for finite linear spaces. The choice of
basis for the four fundamental subspaces becomes important since it in-
fluences the biological interpretation. Singular value decomposition gives
simultaneous orthonormal bases for all the four fundamental subspaces.



120

Fundamental Subspaces of §
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Figure 8.1: A schematic showing SVD of the stoichiometric matrix. The location of the or-
thonormal basis vectors for the four fundamental subspaces are indicated. Prepared by Iman
Famili.

EXI The Basics of Singular Value Decomposition

Singular value decomposition (SVD) is a well-established method used in a
wide variety of applications, including signal processing, noise reduction,
image processing, kinematics, and the analysis of high-throughput biolog-
ical data [3, 91]. Unlike matrices that comprise experimentally determined
numbers, the stoichiometric matrix is a “perfect” matrix that commonly
comprises integers describing the structure of a reaction network. SVD of
S can be used to analyze network properties, and it is a particularly useful
way to obtain the basic information about the four fundamental subspaces
of S.

SVD states that for a matrix S of dimension m x n and of rank r, there
are orthonormal matrices U (of dimension m x m) and V (of dimension
n x n) and a matrix with diagonal elements ¥ = diag(oy, 02, ..., 0;) with
01 > 0y > -+ > o, > 0 such that

S=UxV" (8.1)

SVD of S is shown schematically in Figure 8.1. The columns of U and V
are the left and right singular vectors of S, respectively, and represent its
modes, while the o; represent the singular values. The values in T give
us the weight with which the modes contribute to the reconstruction of
the matrix. These are rank ordered by decreasing magnitude in £ with
the largest singular value being first. For large systems, one can graph the
magnitude of the r singular values to obtain a spectrum of singular values.

The singular value spectrum
The fractional singular values are calculated by
fi

Oj

B > k=1 0k ©2)
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Figure 8.2: Singular value spectra. (A) The o; are rank ordered and plotted as a function
of i. (B) Cumulative fractional singular values, F;. One can use a certain fraction, i.e., 0.95,
to determine the “effective dimensionality” representing 95% of the variance of the matrix
being decomposed. Two types of spectra are illustrated. In the spectrum represented by the
squares, the singular values are of similar magnitude, and thus the cumulative fractional
singular values form a linear curve. Conversely, in the spectrum shown with the open circles,
the relative magnitude of the singular values drops quickly, and the cumulative fractional
spectrum rises quickly, leading to a low effective dimensionality of the mapping that the matrix
represents.

Some example singular value spectra are given in Figure 8.2A. The cumu-
lative fractional singular values, F;, are defined as the sum of the first i
fractional singular values:

F = Z fe (8.3)
k=1

where i varies from 1 to r. In data analysis, one often uses a numer-
ical criterion (i.e., 0.95) to terminate the cumulative spectrum and de-
fine the number of modes that generate 95% of the reconstruction of the
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Figure 8.3: Orthonormal bases of the four fundamental subspaces of § obtained by SVD.
Prepared by Iman Famili.

matrix. Since the stoichiometric matrix is of perfect precision, meaning no
“measurement” noise in its elements, such cutoff may not be appropriate,
depending on the information sought from the SVD. Some example cumu-
lative spectra are given Figure 8.2B. Note that F, = 1.

Orthonormal bases for the four fundamental subspaces
The columns of U are called the left singular vectors and the columns of
V are the right singular vectors. The columns of U and V give orthonormal
bases for all the four fundamental subspaces of S (see Figure 8.3). The first r
columns of U and V give orthonormal bases for the column and row spaces,
respectively. The last m — r columns of U give an orthonormal basis for the
left null space, and the last n — r columns or V give an orthonormal basis
for the null space.

The inner product of orthonormal vectors is zero. The inner product of
an orthonormal vector with itself is unity. Thus,

U'U=Imem and VIV =TI, (8.4)
The transposes of U and V are thus their inverses as well. The subscripts

on the identity matrices in equation 8.4 are to remind the reader that they
are not the same size.

Mapping between the singular vectors
The equation S = UL V' can be rewritten as

SV =U% (8.5)
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which can be expanded in terms of a series of independent equations that
look like

SVk = OUk (8-6)

In other words, S maps a right singular vector onto the corresponding
left singular vector scaled by the corresponding singular value. A right
singular vector (a column in V) gives the weightings on the reaction vectors
s; needed to reconstruct each of the left singular vectors (a column in U)
as scaled by their respective singular values.

Mode-by-mode reconstruction of S
The stoichiometric matrix can be reconstructed as

S=3 o () (6.7)
i=0

where each term successively adds the contribution of each mode (or sin-
gular vector) to the reconstruction of S.

A note on nomenclature

The naming conventions of the right singular vectors vi and the flux vector
v may cause confusion. Unfortunately, the literature uses the symbol v
for both quantities, a convention that we will not change here. Both are
vectors, denoted with a boldface font, but one has a subscript and the
other does not. Equation 8.25 should help illustrate the difference between
the two.

SVD as a series of transformations

Concentration variables can be transformed into groupings of concentra-
tions that correspond to eigen-reactions, and these are driven by groupings
of metabolic reactions. The basic mathematical nature of these transfor-
mations is shown in Figure 8.4. VT represents orthonormalization of the
flux space, and these basis vectors are stretched by the singular values
and mapped onto an orthonormal basis for the concentration space. The
transformation U then converts the orthonormal concentrations back to
the original coordinate system.

This set of transformations is conceptually useful. SVD has certain prop-
erties that make it convenient for numerical and mathematical analysis.
The requirement for orthonormality makes chemical and biological in-
terpretation difficult, and, as we will see in the subsequent chapters, an
alternate set of basis vectors can be used to further such interpretations.
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Figure 8.4: A schematic illustration of the singular value decomposition of S.

EXEM svD of S for the Elementary Reactions

To develop an understanding of the information that SVD of S provides,
we will apply it to the elementary reactions introduced in Chapter 6. This
will show that the fundamental subspaces are finite and for some purposes
may better be spanned by a nonorthonormal set of basis vectors.

Reversible conversion
Consider the reaction of equation 6.11 written as

1%}
X1 — Xo (88)
V2

where x; = CPand x, = PC. The corresponding stoichiometric matrix can
be decomposed as

S=UxzV"

-1 1) _ 1 (-1 1\({2 o\ 1 (1 —1 (5.9)
1 -1) 2\ 1 1)\o o) v2\1 1 '

The four fundamental subspaces are shown in Figure 8.5. They are all one
dimensional. Thus, the second column of U spans the left null space and,
as we will see in Chapter 10, corresponds to a conservation relationship,

or

x; + X, being a constant. Similarly, the second row of VT spans the null
space of the stoichiometric matrix, and, as we will see in Chapter 9, it
corresponds to a type III circular extreme pathway.
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Figure 8.5: The four fundamental subspaces of the stoichiometric matrix for the reaction
X1 = X2.Here,n=m= 2andr = 1. Thus all four fundamental subspaces are one dimensional.
Note that we have multiplied all the basis vectors by +/2 to make it easier to visualize the
direction of the basis vectors of the four subspaces.

The column and row spaces are one dimensional and related by

SVl = o141

1/2 -1/v2 1 -1
()= (0) o s() ()

The row space is spanned by v = (1, —1)/+/2, meaning that for a net flux
through the reaction, the time derivatives in the column space are moved in

or

(8.10)

the opposite direction multiplied by a factor of 2. As shown in Figure 8.5,
if (v1, v2) is located above the 45-degree line, the distance from the 45-
degree line is doubled and projected in the opposite direction in the time
derivative space. The opposite is true for a point located below the 45-
degree line. If the numerical values of v; and v, are the same, there is no
net reaction and the time derivatives are zero.

The finite size of the fundamental subspaces

All fluxes of elementary reactions are positive and have a maximal rate.
Thus, all flux values fall into a range 0 < v; < Vimax. This range for v; and
v, for the elementary reaction x; = x, is shown in Figure 8.6. The null
space is on a diagonal line, while the rest of the square is the possible row
space. Every point in the square can be decomposed into a steady state (vgs)
and a dynamic (v4yn) component. These two components are represented
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Figure 8.6: A graphical depiction of the null, row, and column spaces for x; = x». Since the
fluxes v; and v, are finite, all these three spaces are finite. The singular vectors shown are
multiplied by +/2 to make the figure more simplistic.

by the (1, 1)/+/2 and (1,—1)/+/2 vectors. They are orthogonal and span
the null and row spaces respectively; v is mapped into the origin by S,
whereas vgy, is mapped ontou; = (-1, 1)/+/2 and stretched by the singular
value (see equation 8.10).

Note that the bounded range of the fluxes also set the bounds of the
column space. The extreme points of the row space (the open triangle
and square) correspond to the maximum allowable values on the time
derivatives of x; and x,. Thus, the extreme points of the row space lead
to extreme points in the column space. The implication of nonnegativity
and finite size of the flux and concentration values will be discussed in
subsequent chapters.

Numerical example
We can trace these mappings using a specific numerical example. If we

pick v = (24/2, +/2)7, then
Viv= (;) (8.11)

which corresponds to the projection of v onto the two right singular vec-
tors. In other words, this flux vector is decomposed into one unit of v; and

three of v,. Then
T 2
TV'iv= 0 (8.12)
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which finally maps onto the left singular vectors as

X:UZVTv:U((Z)):2-u1+0-u2:2u1:(_£> (8.13)

Bilinear association
Consider the reaction of equation 6.13 written as

141
X1+ X = X3 (8.14)

V2

where x; =C, x, = P and x3 = CP. The SVD of the stoichiometric
matrix is

11 ~1/4/3  2/V6 0\ (V6 0
-1 1| =|-1v3 -1/v6 V2 || 0 0 (—3@ j;ﬁ)
1 -1 1/v/3  1/V6 1/V2 0 0

There is only one singular value, and thus the column space is spanned
by one left singular vector u,. It is the reaction vector s; normalized to
unit length. The row space is spanned by v] = (1, —1)/+/2. The row and
column spaces are related by

SVl = o101 (815)
or
-1 1 -1//3
-1 1 < 1/£>:\/5 —1//3 (8.16)
1 ) \TY 1/v/3
or
-1 1 -1
1
-1 1 (_1>= -1 (8.17)
1 -1 1

Note that the row and null spaces are spanned by the same right singular
vectors, vi and vy, respectively, as the reversible conversion. This same
decomposition is true of the flux vector, leading to an analogous interpre-
tation. The column space is simply spanned by the normalized form of
the reaction vector. The left null space is now two dimensional. The or-
thonormal basis vectors for the column and left null space are shown in
Figure 8.7. The second and third left singular vectors u; and uj that span
the left null space are hard to interpret chemically. We will address this
issue in what follows.
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Figure 8.7: The three-dimensional depiction of
the orthonormal basis for the column and left
] ) null spaces for a simple bilinear association. The
Forward reaction (0,00) | Reversereaction  piane js the left null space and the line is the col-
1 -1 umn space. The vectors shown are an orthonor-
V3B B mal set. If the flux vector is on the left-hand side

of the plane as indicated, then the reaction is
proceeding in the forward direction, and vice

(i -1 LJ versa

Linear combinations of fluxes and concentrations

We can begin to familiarize ourselves with the details of these transforma-
tions. The flux vector in the dynamic equations can be transformed using
VT as

dx

— =8svv' 8.18
ai v (8.18)
or
d X1 -1 0
ai x|=]l-1|mn-w)-]0]|+Wv) (8.19)
X3 1 0

forming two groupings of the fluxes. The second term corresponds to the
null space, and the combination v; + v, is a type III extreme pathway that
we will discuss in Chapter 9. The first corresponds to the row space and the
grouping vy — v; is the net flux through the reaction, and it is orthogonal
to vi + v, (see Figure 8.5). Multiplying equation 8.19 by UT leads to

(—x1 — Xz + x3)/+/3 NG
di (2x1 — X3+ x3)//6 | = 0
(x2 -l-Xs)/\/E 0

(vi—vz)

VZ

(v1 +v2)
V2

o O O

Note that the singular value of +/6 shows up and that the two column
vectors on the right-hand side of the equation are the two columns of X.
This system is now fully decomposed, showing how independent group-
ings of concentrations are moved by independent groupings of the fluxes.
As noted earlier, the two left singular vectors that span the left null
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Figure 8.8: The three-dimensional depiction of a convex ba-

sis for the column space and chemical moiety-based basis

for the left null space for a simple bilinear association. Note

that the two basis vectors ((1,0,1) and (0,1,1)) for the left null (=1-11)
space are not orthogonal to each other, but both are orthog-

onal to the basis vector for the column space. The wedge

shown contains the nonnegative combinations of the two

basis vectors.

space are not easy to interpret chemically. Since they are not changed
by the groupings of fluxes (0’s in the last two rows of the vectors on the
right-hand side), they can be combined without changing the dynamic
solution.

Nonorthonormal basis vectors

The second and third left singular vectors can be combined to give (1, 0, 1)
and (0, 1, 1) that still span the left null space. These are not orthonormal
vectors spanning the left null space, but they represent chemical conser-
vation moieties, or pools, which are x; + x5 (the moiety C based on equa-
tion 6.13) and x; + x3 (the moiety Pbased on equation 6.13), respectively.
This basis for the left null space is shown in Figure 8.8. Note that the seg-
ment of the left null space that is chemically meaningful lies in the wedge
spanned by these two vectors since only a nonnegative combination of
them is chemically possible. This basis is called a convex basis for the left
null space, and we will discuss these issues in more detail in Chapter 10.
Thus, although mathematically convenient and useful, the use of the or-
thonormal bases obtained by SVD may not be well suited for chemical and
biological interpretation of the left null space. We will also see in Chapter 9
that convex bases for the null space are quite useful.

EXW interpretation of SVD: Systemic Reactions

The orthonormal basis vectors that are obtained from SVD do give useful
information about the properties of the overall chemical transformations



130

Fundamental Subspaces of §

that characterize a network. The basic dynamic mass balance equation

dx
— =8 8.20
g =5 (8.20)
can be rearranged as
ur X _utsyvty (8.21)
dt
or
T
% =x(V'v) (8.22)

Thus, the left singular vectors (u;) form linear combinations of the concen-
tration variables and the right singular vectors (v;) form linear combina-
tions of the fluxes. Groups of concentration variables are called pools, and
groups of fluxes are called pathways (see Chapters 9 and 10, respectively).
The dynamic relationship between the groupings of fluxes and concen-
trations that correspond to the nonzero singular values can be written as

This simple derivation shows that there is a linear combination of com-
pounds:

ugx = U X1 + Uge Xy + - - - + Upr Xm (8.24)

which is being uniquely moved by a linear combination of metabolic fluxes
as

v]fv:vklvl + VoV + -+ + Vin Vi (8.25)

and the extent of this motion is given by ox. An important feature of SVD is
that the singular vectors are orthonormal to each other, and consequently
each of the kth motions in equations 8.24 and 8.25 are structurally decou-
pled.
Equation 8.23, therefore, defines an eigen-reaction or a systemic
metabolic reaction as
EV](]'V]'
for vi; > 0
Zu]q'Xj ;\ Euijj (8'26)
for ug; < 0 2:ijVj for ug; > 0
for vi; < 0
where the elements of uy are equivalent to systemic stoichiometric coeffi-
cients and the elements of vy are systemic participation numbers. Note that
the uy vectors correspond to systemic reaction vectors that are analogous to
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Figure 8.9: A schematic of the singular value decomposition of the stoichiometric matrix.
Prepared by Iman Famili.

si (see Figure 8.9). Thus, as we move a point along this vector, compounds
with negative uy; values decrease, while those with positive uy; increase,
and vice versa. Similarly, the reactions with positive vi; values will drive
a point in the increasing direction of uy, while those with negative values
will act in the opposite direction. This relationship is graphically illus-
trated in Figure 8.10. Thus, equation 8.26 describes a systemic reaction.
These systemic metabolic reactions can be used to describe the function
of the network as a whole.

n-dimensional A m-dimensional B
flux space flux space
A
derivatives
fluxes ~— with
with u Up>0
Vii>0 !
derivatives
v, with
fluxes Upi<0
with
Vii<0

Figure 8.10: The relationship between corresponding left (u;) and right (v;) singular vectors
as a systemic reaction. The right singular vector can be broken up into two parts, containing
positive elements (on x-axis) and negative elements (on y-axis) (A). Reactions with positive
elements correspond to reactions driving the systemic reaction forward, while those with
negative elements drive it in the reverse direction. Analogously, the left singular vector u;
can be broken into a part with positive elements (y-axis) and negative elements (x-axis) (B).
The former corresponds to compounds formed by the systemic reaction, while the latter
corresponds to those disappearing. Since § maps v; onto u;, all points on v; correspond to a
point on w;. Further, since v; and v; are orthonormal, the systemic reactions are independent.

Eigen-connectivity
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Figure 8.11: Simple example of SVD analysis for reacting systems. (A) Schematic of a reaction
network with two reactions (v; and v;) that act on metabolites A, B, and C, and its corre-
sponding stoichiometric matrix, S. (B) Graphical representation of the mapping between the
eigen-connectivities and eigen-reactions. The two singular vectors that correspond to v; and
v, are orthogonal and catalyze each eigen-reaction, u; and uy, independently. The two singu-
lar vectors of time derivatives are orthogonal in a three-dimensional space. The magnitude of
the singular values o4 and o> indicates the relative contribution of its corresponding singular
vectors to the overall construct of the biochemical transformation in the network (A’, time
derivative of A). This reaction schema is similar to the reactions in glycolysis where a hexose
(FDP) is split into two trioses (GAP and DHAP), which are interconverted by an isomerase.
From [57].

Simple example

These general concepts can be illustrated by a simple example (Fig-
ure 8.11). The two reactions, v; and v, in Figure 8.11A form a two-
dimensional flux space and relate metabolites A, B, and C in the space
where the time derivatives of concentrations lie. The two singular vectors
v, and v, are orthogonal and drive the singular vectors of time deriva-
tives, u; and u,, independently (Figure 8.11B). Note that reaction v, only
drives the motion of A and B. The singular values in this simple example
are o4 = 1.73 and o, = 1.41 and indicate the relative contribution of each
singular vector to the overall construct of the biochemical motion in the
network.
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(A) Eigen-reaction
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Figure 8.12: The first mode in genome-scale matrices of H. pylori, H. influenzae, and E. coli. (A)
The compound composition of the mode; (B) the reactions driving the conversion. Note that
the values on the x-axis are shown by u,?j and v,?j to make them all positive. From [57].

Decomposition of genome-scale matrices

The genome-scale matrices for Helicobacter pylori, Haemophilus influen-
zae, and Escherichia coli (see Table 3.6) have been studied using SVD [57].
The dominant four modes of the three matrices were similar, accounting for
about 27% of the cumulative singular value spectra. The cofactors partici-
pating in energy, redox, and phosphate metabolism emerge with the most
significant values in the first four eigen-reactions of all three genome-scale
networks.

¢ The first eigen-reaction in all the genomes is the conversion of ATP to
ADP and P; (see Figure 8.12).

¢ The second eigen-reaction describes the conversion of NADP to
NADPH (see Figure 8.13).

Although the eigen-reactions are similar in the three organisms, the
metabolic reactions participating in driving the eigen-reactions differ
somewhat from one network to another. This difference is in part due to
dissimilarity among metabolic reactions in these organisms. The reaction
participation in the two principal conversions is as follows:

¢ The ATP-coupled transporters have the highest participation num-
bers of the first right singular vectors, except for E. coli where a group
of synthetase reactions is present. A group of kinases with identical
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(A) Eigen-reaction
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Figure 8.13: The second mode in genome-scale mattices of H. pylori, H. influenzae, and E. coli.
(A) The reaction composition of the mode; (B) the reactions driving the conversion. Note that

the values on the x-axis are shown by u,.zj and \/,21. to make them all positive. From [57].

participation numbers follow. These three types of reactions thus de-

fine the dominant eigen-reaction in all three genomes.

e The second mode corresponds to redox conversions that involve
NADPH. In all three genomes, fatty acid synthesis reactions have dom-
inant participation numbers in this mode. Then, a group of reductases
appears with 5- to 10-fold lower participation numbers. These two

types of redox exchanges dominate NADPH metabolism.

Thus, the dominant eigen-reactions 