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PREFACE

The objective of this book is to provide a mathematical text at the third year level and
beyond, appropriate for students of engineering and sciences. It is a book of applicable mathematics.
We have avoided the approach of listing only the techniques followed by a few examples, without
explaining why the techniques work. Thus we have provided not only the know how but also the
know why. Equally it is not written as a book of pure mathematics with a list of theorems followed
by their proofs. Our emphasis is to help students develop an understanding of mathematics and its
applications. We have refrained from using clichés like “it is obvious™ and “it can be shown”, which
might be true only to a mature mathematician. In general, we have been generous in writing down all
the steps in solving the example problems. Contrary to the opinion of the publisher of S. Hawking’s
book, A Short History of Time, we believe that, for students, every additional equation in the worked
examples will double the readership.

Many engineering schools offer little mathematics beyond the second year level. This is not a
desirable situation as junior and senior year courses have to be watered-down accordingly. For
graduate work, many students are handicapped by a lack of preparation in mathematics. Practicing
engineers reading the technical literature, are more likely to get stuck because of a lack of
mathematical skills. Language is seldom a problem. Further self-study of mathematics is easier said
than done. It demands not only a good book but also an enormous amount of self-discipline. The
present book is an appropriate one for self-study. We hope to have provided enough motivation,
however we cannot provide the discipline!

The advent of computers does not imply that engineers need less mathematics. On the
contrary, it requires more maturity in mathematics. Mathematical modelling can be more
sophisticated and the degree of realism can be improved by using computers. That is to say,
engineers benefit greatly from more advanced mathematical training. As Von Karman said: “There
is nothing more practical than a good theory”. The black box approach to numerical simulation, in
our opinion, should be avoided. Manipulating sophisticated software, written by others, may give the
illusion of doing advanced work, but does not necessarily develop one’s creativity in solving real
problems. A careful analysis of the problem should precede any numerical simulation and this
demands mathematical dexterity.

The book contains ten chapters. In Chapter one, we review freshman and sophomore calculus
and ordinary differential equations. Chapter two deals with series solutions of differential equations.
The concept of orthogonal sets of functions, Bessel functions, Legendre polynomials, and the Sturm
Liouville problem are introduced in this chapter. Chapter three covers complex variables: analytic
functions, conformal mapping, and integration by the method of residues. Chapter four is devoted to
vector and tensor calculus. Topics covered include the divergence and Stokes’ theorem, covariant
and contravariant components, covariant differentiation, isotropic and objective tensors. Chapters
five and six consider partial differential equations, namely Laplace, wave, diffusion and Schrédinger
equations. Various analytical methods, such as separation of variables, integral transforms, Green’s
functions, and similarity solutions are discussed. The next two chapters are devoted to numerical
methods. Chapter seven describes methods of solving algebraic and ordinary differential equations.
Numerical integration and interpolation are also included in this chapter. Chapter eight deals with
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numerical solutions of partial differential equations: both finite difference and finite element
techniques are introduced. Chapter nine considers calculus of variations. The Euler-Lagrange
equations are derived and the transversality and subsidiary conditions are discussed. Finally, Chapter
ten, which is entitled Special Topics, briefly discusses phase space, Hamiltonian mechanics,
probability theory, statistical thermodynamics and Brownian motion.

Each chapter contains several solved problems clarifying the introduced concepts. Some of
the examples are taken from the recent literature and serve to illustrate the applications in various
fields of engineering and science. At the end of each chapter, there are assignment problems labeled
a or b. The ones labeled b are the more difficult ones.

There is more material in this book than can be covered in a one semester course. An
example of a typical undergraduate course could cover Chapter two, parts of Chapters four, five and
six, and Chapter seven.

A list of references is provided at the end of the book. The book is a product of close
collaboration between two mathematicians and an engineer. The engineer has been helpful in
pinpointing the problems engineering students encounter in books written by mathematicians.

We are indebted to many of our former professors, colleagues, and students who indirectly
contributed to this work. Drs. K. Morrison and D. Rodrigue helped with the programming associated
with Chapters seven and eight. Ms. S. Boily deserves our warmest thanks for expertly typing the
bulk of the manuscript several times. We very much appreciate the help and contribution of Drs. D.
Cartin , Q. Ye and their staff at World Scientific.

New Orleans C.F. Chan Man Fong

December 2002 D. De Kee
P.N. Kaloni
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CHAPTER 1

REVIEW OF CALCULUS AND ORDINARY
DIFFERENTIAL EQUATIONS

1.1  FUNCTIONS OF ONE REAL VARIABLE

The search for functional relationships between variables is one of the aims of science. For simplicity,
we shall start by considering two real variables. These variables can be quantified, that is to say, to
each of the two variables we can associate a set of real numbers. The rule which assigns to each real
number of one set a number of the other set is called a function. It is customary to denote a function
by f. Thus if the rule is to square, we write

y:f(x)=x2 (1.1—1a,b)

The variable y is known as the dependent variable and x is the independent variable. It is
important not to confuse the function (rule) f with the value f(x) of that function at a point x. A
function does not always need to be expressed as an algebraic expression as in Equation (1.1-1). For
example, the price of a litre of gas is a function of the geographical location of the gas station. It is not
obvious that we can express this function as an algebraic expression. But we can draw up a table
listing the geographical positions of all gas stations and the price charged at each gas station. Each gas
station can be numbered and thus to each number of this set there exists another number in the set of
prices charged at the corresponding gas station. Thus, the definition of a function as given above is
general enough to include most of the functional relationships between two variables encountered in
science and engineering.

The function f might not be applicable (defined) over all real numbers. The set of numbers for which
f is applicable is called the domain of f. Thus if f is extracting the square root of a real number, f
is not applicable to negative numbers. The domain of f in this case is the set of non-negative
numbers. The range of f is the set of values that f can acquire over its domain. Figure 1.1-1
illustrates the concept of domain and range. The function f is said to be even if f(—x)=f(x) and
odd if f(—x)=-f(x). Thus, f(x)=x2 is even since

f(-x) = (~x)2 = x2 =f(x) (1.1-2a,b,c)
while the function f(x) =x3 is odd because

f(=x) = (~x)3 =-x3 = ~f(x) (1.1-3a,b,c)
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A function is periodic and of period T if

f(x+T)=1(x) (1.1-4)

RANGE
oF f

DOMAIN OF f

FIGURE 1.1-1 Domain and range of a function

An example of a periodic function is sin x and its period is 27.

A function f is continuous at the point x, if f(x) tends to the same limit as X tends to Xy from
both sides of x, and the limitis f(x,). This is expressed as

lim f(x) = f(xy) = Lm f(x) (1.1-5a,b)
X=X

X—Xo4 0—

The notation lim  means approaching x, from the right side of x, (or from above) and lim
X=X 0+ X—Xg_

the limit as x, is approached from the left (or from below). An alternative equivalent definition of

continuity of f(x) at x =x, is, given € >0, there exists a number 0 (which can be a function of

g) such that whenever Ix—x,l <9, then
[t -fxp) | <e (1.1-6)
This is illustrated in Figure 1.1-2.

If the function f(x) is continuous in a closed interval [a, b], it is continuous at every point X in the
interval a<x <b.
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FIGURE 1.1-2 Continuity of a function

1.2 DERIVATIVES

We might be interested not only in the values of a function at various points x but also at its rate of
change. For example, waiting at the corner of “walk and don’t walk”, one might want to know, not
only the position of a car but also its speed before crossing the road. The average rate of change of
f(x) inaninterval [x, + Ax, x,] is defined as

Af f(xg+ AX) — f(xo)

(1.2-1)
AX Ax
The rate of change of f at x,, which is the derivative of f at x, is defined as
Af f(x,+ Ax) —
f'(x) = im — = lim (Xo + &%) ~ f(Xo) (1.2-2a,b)

We have assumed that the limit in Equations (1.2-2a,b) exists and f is thus differentiable at x = x,.

The derivative of f with respect to x is also denoted as HCE :

X
2
The second derivative of f is the derivative of f' and is denoted by f" or g—i Likewise higher
X
n
derivatives can be defined and the n'? derivative is written either as ™ or dg—rf; .
X

Geometrically, f'(X,) is the tangent to the curve f(x) at the point x =x,.
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Rules for Differentiation

6)) If y isa function of z and z is a function of x
dy _dy dz .
ix - & & (chain rule) (1.2-3)

(i1) If u and v are differentiable functions of x

du dv
VAL L A
d fuy_ _dx dx
< (%)= ¥ (1.2-4)
od _ o, dv, ,du )
(iii) ix (uv) = u i +v dx (1.2-5)
(iv) n n n-1 I n-r n (1.2-6)
dwy _ dv, dud V+...+(?d—ud LA L
dx"™ dx™  dx dx™! dx" dx"" dx"
ny__ n! - _ . .
where () = FEETR n![=n(n-1)..1] is the factorial of n.

Rule (iv) is known as Leibnitz rule (one of them!).

Mean Value Theorem

If f(x) is continuous in the closed interval a<x <b, and f(x) is differentiable in the open interval
a<x<b, there exists a point c in (a, b), such that

_fb)-1(a)

f'(c) . (1.2-7)

From Equation (1.2-7), we deduce that if f'(c) =0 for every c in (a, b), then f is a constant. If
f'(c) >0 for every ¢ in(a, b), then f(x) is an increasing function, that is to say, as X increases
f(x) increases. Conversely, if f'(c) <0 forevery c in(a,b), f(x) is a decreasing function of x.

Cauchy Mean Value Theorem

If f and g are continuous in [a, b] and differentiable in (a, b), there exist a number c in (a, b) such
that

f(b)-f(a) _f'(c)
gb)-g@ g'©

(1.2-8)

If g(x) =x, then Equation (1.2-8) reduces to Equation (1.2-7).
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L’Hopital’s Rule

f(x) f'x)

lim f(x) = 0 and lim g(x) = 0, the lim —— isindeterminate. But if the lim exists
X—X, X=X, x—x, &(X) X%, g'(x)
19 T (1.2-9)
X—X, g(x) X=X, g'(x)
') , W .
If im — does notexistbut lim ——— exists for some value of n, Equation (1.2-9) can be
X%, g (%) X%, g™ (x)
replaced by
(n)
lim £ g £ (1.2-10)
X=X, g(x) XX, g(n) (x)
The same rule applies if the lim f(x) = and lim g(X)=oc, the lim fx) 1s indeterminate. The
X—Xg X—Xg Xx—x, (X

rule holds for x — e or x —> —e. Other indeterminate forms, such as the difference of two
quantities tending to infinity, must first be reduced to one of the indeterminate forms discussed here
before applying the rule.

Taylor’s Theorem

If f(x) is continuous and differentiable

n
£'(kg) + oo + (X-Xo) ¢m) ®g) +R_ (1.2-11)
n! n

(x~ xo)2

f(x) = f(xy) + (x—xy) £'(xg) + 5

where R n is the remainder term.

There are various ways of expressing the remainder term R . The simplest one is probably
Lagrange’s expression which may be written as

n+1
_(x=xp)

= £ [x, +0 (x - xy)] (1.2-12)

where 0 <O < 1.

R is the result of a summation of the remaining terms, and represents the error made by truncating
the series at the n? term. Note that we are expanding about a point X, Wwhich belongs to an interval
(Xg» X). Therefore, the remainder term for each point x in the interval will generally be different. The
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maximum truncation error, associated with the evaluation of a function, at different values of x within
the considered interval, determines the value of 6 in Equation (1.2-12).

In Equation (1.2-11), we have expanded f(x) about the point x,, and if x is the origin, we are
dealing with Maclaurin series. The Taylor series expansion is widely used as a method of
approximating a function by a polynomial.

Maximum and Minimum

We might need to know the extreme (maximum or minimum) values of a function and this can be
obtained by finding the derivatives of the function. Thus, if the function f has an extremum at x

Af =f (xy +h) -1 (x) (1.2-13)
must have the same sign irrespective of the sign of h.

If Af is positive, f has a minimum at x,, andif Af isnegative, f has a maximum at x,. Figure
1.2-1 defines such extrema. From Equation (1.2-11), we see that Equation (1.2-13) can be written as

2
Af=hf'(x0)+h7 £"(x,) + .. (1.2-14)

where h=x—x0.

FIGURE 1.2-1 Extremum of a function f
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From Equation (1.2-14) we deduce that the condition for f to have an extremum at x,, is

f'(x0)=0 (1.2-15)
The conditions for f to have a maximum or minimum at X = X o are

f"(xg) >0, f hasaminimum (1.2-16)

f"(xy) <0, f hasamaximum (1.2-17)

Butif f"(x,) =0, we cannot deduce that f has an extreme value at x,. We need to consider higher
derivatives until we obtaina f(® (xy) which is non-zero. Thus, the general criteria for extreme values
are

if f(x) is defined in [a,b] and x,, is an interior point of (a,b), and if f (n) (Xg)
exists and is non-zero, but f'(xy) =f"(xy) = ... = (@D (xg) =0, f(x) has an
extreme value at X, if n iseven. If f (n) (Xg) <0, f has a maximum at x =x,
and if £® (X¢) >0, f has a minimum at x=x,. If n is odd, f(x) does not
have an extreme value at x =X.

Example 1.2-1. Find the extreme values of f(x) = x>, if they exist.
On differentiating, we have

f'(x) = 3x2, " (x) = 6x, " (x)=6 (1.2-18a,b,c)
From Equation (1.2-18a, b), we see that

f'0)=f"0)=0 (1.2-19a,b)

Thus we need to consider higher derivatives and the next one f'"' (0) happens to be non-zero. From
the criteria given earlier we deduce that f does not have an extreme value at the origin. The origin is
neither a maximum nor a minimum, it is a point of inflection, as can be seen by drawing the curve
given by f(x) = x3.

1.3 INTEGRALS

An integral can be considered to be an antiderivative. Thus, if we know that the derivative of F(x)
is f(x) [=F'(x)], an integral of f(x) is F(x). For example, the derivative of % x3 is x2, and an

%x3. Note that we have used the article an. Since the derivative of a constant is

integral of x? is
zero, F(x) is arbitrary to the extent of an arbitrary constant. The integral we have defined is known

as an indefinite integral which is usually denoted by the symbol f . Thus, we write
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F(x)=f f(x) dx=f f(t) dt (1.3-1a,b)

where a is an arbitrary constant of integration. Equations (1.3-1a,b) define a function of x in terms
of a dummy variable t.

The integral may be interpreted as the area enclosed by the curve y = f(x) and the x-axis. For the area
to be definite, we need to fix the ordinates, such as, x =a and x =b. Thus, if A is the area
bounded by the curve y =f(x), the x-axis and the ordinates x=a, x=Db

b
A=f £(x) dx (1.3-2)

Equation (1.3-2) defines a definite integral; the limits x =a and x =b are given. We can convert
the indefinite integral in Equation (1.3-1) to a definite integral if x =b. In this case, we usually write

b
F(b).—F(a>=f £(x) dx =] F(x) ]

a

b
a (1.3-3a,b)

Thus to evaluate a definite integral analytically, we first need to find an indefinite integral. There are

tables of integrals, where the indefinite integrals of standard functions are given. Below we list some
of the general methods of integration.

Integration by Parts
If f and g are functions of x

ad; (fg) = f'g +fg' (1.3-4)

It follows from Equation (1.3-4) that

—= —_ >33 -

Example 1.3-1. Integrate f e?* sin bx dx.

We integrate by parts, identifying from Equation (1.3-5) ¢?* as f(x) and sinbx as g§ Carrying
X

out the integration, we have
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f e sin bx dx =

On integrating f e? cos bx dx by parts again, we obtain

_aaX
%OSMJ%@ feaxcos bx dx (1.3-6)

ax
feax cos bx dx = % sin bx| — % feax sin bx dx (1.3-7)
Combining Equations (1.3-6, 7) yields
a2 ax .: 1 ax .
1+ e™sinbx dx = — L [e® cos bx] + & [¢** sin bx] (1.3-8)
2 b 2
b b
Hence
f e®sinbx dx = [a sin bx — b cos bx] (1.3-9)
a2 + b’

Integration by Substitution

Certain integrals f f(x) dx can be easily evaluated if we substitute x by a function ¢(z) say. Since

x = 0(z), dx = ¢'(z) dz (1.3-10a,b)

It follows from Equations (1.3-10a,b) that

ff(x) dx =[f [0(2)] & (z) dz (1.3-11)

Example 1.3-2. Integrate f«/ a?-x2 dx, where a is a constant.

Substitute x by asin z, so that

dx=acoszdz (1.3-12)

I az—xzdxzf( az—azsinzz)acoszdz (1.3-13a)
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[ 2
= a? coszzdz=% (cos 2z + 1) dz
J
9
N I R
=3 '2s1n22+z]

Returning to the original variable x, we have

z=arcsin(£)
a

sin2z = 2sinzcosz = 2X 1_(_)(_)2
a a
Thus
2 2 a2 2 2 .
Va“—x“dx = = | £ Va“-x +arcsm(5)
2 a2 a

(1.3-13b,c)

(1.3-13d)

(1.3-14a)

(1.3-14b,c)

(1.3-15)

In evaluating finite integrals, it is often simpler to express the limits of integration in terms of the new

variable z.

In the method of substitution, the key is to find a substitution such that the integral is reduced to a

standard form.

Integration of Rational Functions

A rational function of x is a function of the form f(x)/g(x), where f(x) and g(x) are polynomials
in x. The rational function can be expressed as a sum of partial fractions and can thus be integrated.

Example 1.3-3. Integrate f 5’;—"'2 dx.
x” -8

The function 2X*+2 can be expressed as a sum of partial fractions as follows.

x3—8

Sx+2 _ Sx +2 =_A_ L, Bx+C
X—8 (x=2)(x*+2x+4) x-2 x’+2x+4

where A, B and C are constants.

By comparing powers of X, we obtain

(1.3-16a,b)
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1]

A=1, B=-1, C=1

15x+2 dx:[ dx +f (1 -x) dx
x3——8 X—2 X2 +2x + 4

The integral f ;ﬂ% is standard and

Thus

dx__ - -
fxfz—ln(x 2)

(1.3-17a,b,c)

(1.3-18)

(1.3-19)

The second integral on the right side of Equation (1.3-18) can be evaluated as follows

f (1-x) dx __f (x+1—2)dx__f x+Ddx
X% +2x +4 X2 +2x +4 X% +2x + 4

To evaluate I;, we make the following substitution

z=x2+2x+4, dz =(2x +2) dx
jﬁ_tll@g:Lfdz_:lxn(xZﬂH‘*)
2+2x+4 2 ‘2

To evaluate 12’ we let

x+1)=v3tan 0, dx =13 sec” 6 dO
f dx - f V3 sec20de _ f V3 sec?0do _1
x+1)%+3 3 (tan20 + 1) 3sec?® V3

Combining Equations (1.3-19 to 24d), we obtain

2f —dx____ g 421,

x+ 1) +3
(1.3-20a,b,c)

(1.3-21a,b)

(1.3-22a,b)

(1.3-23a,b)

g — arc tan ( x+1 )
V3
(1.3-24a,b,¢,d)

f X£2 dx=2n(x-2) -1 an (P +2x+4) + Z arctan (2L ) (1.3-25)

x> -8 V3

V3
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In the past, considerable efforts were devoted to finding methods to express integrals in closed form
and in terms of elementary functions. Contour integration, in the theory of complex analysis
(Chapter 3) can be used to evaluate real integrals. Currently, a popular approach is to resort to
numerical methods (Chapter 7).

Some Theorems

b a
@) f f(x)dx = —f f(x) dx (1.3-26)
a b
c b c
(ii) f f(x) dx =f f(x) dx +[ f(x) dx (1.3-27)
a a b
21 f(x)dx, if f(x) iseven
a 0
(iii) j f(x)dx = (1.3-28a,b)
—-a 0, if £(x) is odd
a ra
@{iv) j f(x)dx = f(a—x)dx (1.3-29)
0 Jo

(v) First mean value theorem

If M and m are the upper and lower bounds respectively of f(x) in (a,b)
b

m(b — a) S[ f(x)dx < M(b-a) (1.3-30a,b)
a

(vi)  Generalized first mean value theorem

Under the conditions on f(x) given in (v), and for g(x) >0 everywhere in (a, b)

b b b
m f gx)dx < I fx) gx)dx < MI g(x) dx (1.3-31a,b)

a a a

The above mean value theorems provide bounds on integrals and can be useful in error analysis.
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1.4 FUNCTIONS OF SEVERAL VARIABLES

So far, we have considered functions of one variable only. In science and engineering, we often
encounter one variable which depends on several other independent variables. For example, the
volume of gas depends on the temperature and the pressure. For simplicity, we shall consider
functions of two independent variables x and y. In most cases, the extension to n variables
X{s Xgs ooy Xq 1S obvious.

The dependent variable u is said to be a function of the independent variables x and y if to every
pair of values of (x,y) one can assign a value of u. In this case we write

u=f(x,y) (1.4-1)

The domain of f is the set of values of (x,y) over which f is applicable. The range of f is the set
of values that u may have over the domain of f.

The function f(x,y) is continuous at (X, y,) if given &> 0, there exists a 0, such that whenever

W/(x——xo)2+(y—y0)2 < § (1.4-2)
[f(x, y) - f(xq yo) | < (1.4-3)

1.5 DERIVATIVES

Since u is a function of two variables x and y, we may calculate the rate of change of u with
respect to x, holding y fixed. This is the partial derivative of u with respect to x and is

) of
denoted by 5% Other notations are: I’ fX or u,. Thus

a_f= lim f(x+Ax, y) - f(x,y) (1.5-1)
X  Ax—0 Ax
Similarly, of is defined as
dy

of . . : . :
The computation of 3 the same as in the case of one independent variable. Here, y is treated as a

. of . : .
constant. Similarly to compute g, we consider x to be a constant. Since f, and fy are functions

of x and Yy, their partial derivatives with respectto x and y may exist. They are defined as
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_E_)_ (@2) = lim f, (x + Ax, -1y (1.5-3)
ox X Ax—0 AXx
i a_f) = lim fX(X,y+AY)—fX (X,Y) (15_4)
ay ox Ay—0 Ay

The second-order partial derivatives are denoted as
i(a—f ——ai—f (1.5-5a,b)
ox \ox | ax2 T XX ’ &
9 () —az—f— =f (1.5-6a,b)
dy \ox | ~“dyox ¥X Do
9 (of | _ of
o 3y | =3y - fxy (1.5-7a,b)

2.

9 [of) _Jf _o (1.5-8a,b)

dy \dy a2 7

We note that fyx means taking the partial derivative of f with respectto x first and then with respect
to y, whereas for fxy the order of differentiation is reversed. One may wonder if the order of
differentiation is important. If fxy is continuous then the order is not important. In practice, this is

generally the case and

oy = Fyx (1.5-9)

Likewise higher partial derivatives can be defined and computed. If the partial derivatives are
continuous, then the order of differentiation is not important.

In an xy-coordinate system, the first order partial derivatives f, and ’fy may be regarded as the rate of

change of f alongthe x and y-axis respectively. We can also define and compute the rate of change
of f along any arbitrary line in the xy-plane. Such a rate of change is known as a directional

derivative and is denoted by I where the vector n is parallel to the line along which we wish to

of . .
determine the rate of change. Thus n at a point (X, ¥,) along a line that makes an angle 6 with

the x-axis is defined as

(1-5-10)

_ai:_ lim f(xg+pcosB,y,+psin)—1(xy yg)
dn p—0 p
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where p is the distance of any point on the line from (X, y,). This situation is illustrated in Figure
1.5-1.

£ n
8 1

|

|

I

i

Xo

FIGURE 1.5-1 Directional derivative along a line parallel to n

We can rewrite Equation (1.5-10) as

of - lim f (xg+pcosh, y,+psind) — f(x,, y,+psind) +f (X, yo+psin®) —f (X, y,)
on  p—0 p
(1.5-11a)

Note that, in the first two terms on the right side of Equation (1.5-11a), we have kept
Yo+ P sin 6 =y; constant.

or pli_TO[f(xowcose, yl)—f<xo,gl>+f(x0,y1>- f (X, y@} (15-11b)
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This amounts to considering f to be a function of x only in the first two terms. Expanding this

function of x in a Taylor series yields: f(xy, y,) + g—)f( p cos 6. Similarly, one can consider f to be

a function of y only in the last two terms, resulting in: f(x,, y,) + g-; p sin 8. We deduce that

£ (xps yl)+§—fpcose—f(x0, ¥y 3
lim X

= =——cos 0 1.5-12

p—0 p ox ( 2

and similarly
df .
f (Xq» y0)+3—p sin B —f (x4, ¥,) 5

lim Y = =—sin O (1.5-12b)

p—0 p dy
Therefore

grf; =§£ cosﬂ+§§ sin O (1.5-13)

. f
Thus if £, and fy are known, we can compute 30

Total Derivatives

We now determine the change in u, Au, when both x and y change simultaneously to x + Ax and
to y + Ay respectively. Then

Au=f(x+Ax,y + Ay) - f(x, y) (1.5-14a)
=f(xX+AXx,y+Ay) - f(X,y +Ay) + f(x, y + Ay) — (X, y) (1.5-14b)

The observations made following Equation (1.5-11) are applicable to Equation (1.5-14b), and on
taking the limits Ax — 0, Ay — 0, we obtain
of of
=df==—dx+=—4d 5-
du=df X X 3y y (1.5-15a,b)
The existence of df guarantees the existence of f, and fy, but the converse is not true. For df to
exist we require not only the existence of f, and f_, but we also require f to be continuous.

The differential df may be regarded as a function of 4 independent variables x,y, dx and dy.
Higher differentials d’f, d3f, .., d° can also be defined. Thus
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d2f=d(df)=d(—a-f— dx)+d(a—f dy) (1.5-16a,b)
0 dy ’
Substituting d by idx +—a——dy yields
ox ay
2., 0 [of ) 8(af ) a(af ) 8(8f )
dx|dx + =—| s—dx|d dx =—d 5-
df= ax(a X x+ay axdx y+ax aydy 3y | 3y y|dy (1.5-16¢)
2 2 2
=§—f—(d )Y+ aaaf dx dy +Q—(dy) (1.5-164d)
ox? ay?
It can be shown by induction that
o"f o"f n) o'f o"f
=2t @0+ (]S @™ ay e+ (1) @0 @y Sy
ox"” ox™ 13y ox" oy oy"
(1.5-17)
In order to remember Equation (1.5-17), one can rewrite it as
) d n
e - d _— f -
d'f (ax x+ay dy (1.5-18)
In Equation (1.5-18), the right side can be expanded formally as a binomial expansion.
If both x and y are functions of another variable t, then from Equation (1.5-15) we have
du _of dx , of dy
T 5k E-'-ay m (1.5-19)
If x and y are functions of another set of independent variables r and s, then
ox ox
dx = . dr + % ds (1.5-20a)
_9Y 4.9
dy = . dr + 3 ds (1.5-20b)
Substituting dx and dy in Equation (1.5-15), we obtain
of ox af dy ( of dx  of dy
=| — = = . -2
du ox or ay or dr + dx ds +8y ds ds (1.5-21)

It follows from Equation (1.5-21) that
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3 3 ax o ¥
or or Ox dr dy or

du _of _af ax , of dy
ds ds 0x ds dy 0s

Equations (1.5-22a, b, ¢, d) again express the chain rule.

(1.5-22a,b)

(1.5-22¢,d)

Example 1.5-1. In rectangular Cartesian coordinates system, f is given by

f=x%+ y2
We change to polar coordinates (r, ). The transformation equations are

X=rcos9, y=rsin®

Calculate @ and @i
00

or

From Equations (1.5-22a, b, c, d), we have
o _9f ax , of dy
or 0x or dy or
o ot ax o &y
d0 Jx 90 Jy 90

Computing the partial derivatives yields

of _ o

5;—2)(, 5}7—2}’

ox _ ay _ .
ér——cose, 5;—51n6
iE:—rsin@, iy—=rcos(9
a9 d0

Substituting Equation (1.5-26a to f) into Equations (1.5-25a, b), we obtain

g—f=2xcose+2ysin9=2r

g‘l =2x (~rsin 0) + 2y (rcos 6) =0
6

(1.5-23)

(1.5-24a,b)

(1.5-252)

(1.5-25b)

(1.5-26a,b)

(1.5-26¢,d)

(1.5-26e.)

(1.5-27a,b)

(1.5-27c,d)
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Equations (1.5-27a, b, ¢, d) can be obtained by substituting Equations (1.5-24) into Equation (1.5-23)
and thus f is expressed explicitly as a function of r and 6 and the partial differentiation can be
carried out. In many cases, the substitution can be very complicated.

1.6 IMPLICIT FUNCTIONS

So far we have considered u as an explicit function of x and y [u=f(x, y)]. There are examples
where it is more convenient to express u implicitly as a function of x and y. For example, in
thermodynamics an equation of state which could be given as T = f(P, V) is usually written,
implicitly as

f(P,VT)=0 (1.6-1)
where P is the pressure, V is the volume and T is the temperature.

The two-parameter Redlich and Kwong (1949) equation is expressed as

{P + n2a

[V -nb]-nRT = 0 (1.6-2)
TY2V (V + nb)

where a and b are two parameters, R is the gas constant and n the number of moles.

In theory, we can solve for T in Equation (1.6-2) and express T as a function of P and V. Then

by partial differentiation, we can obtain —g—% and other partial derivatives. But as can be seen from
Equation (1.6-2) it is not easy to solve for T, it implies solving a cubic equation. Even if we solve
for T, the resulting function will be even more complicated than Equation (1.6-2), and finding g—g
(say) will be time consuming. It is simpler to differentiate the expression in Equation (1.6-2) partially
with respect to P and then deduce g% . We shall show how this is done by reverting to the variables
X, y and u.

We now consider an implicit function written as

f(x,y,u)=0 (1.6-3)
In terms of the thermodynamic example, we can think of

x=P, y=V, u=T (1.6-4a,b,c)

The variables x, y and u are not all independent. We are free to choose any one of them as the
dependent variable. Since f=0, df =0 and from Equation (1.5-15), we obtain
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of af of
df—aX dx ay dy +$du 0 (1.6-5a,b)

Equation (1.6-5) is still true for f=constant, since df =0 in this case also.

. .. odu . . ,
The partial derivative él;— is obtained from Equation (1.6-5) by putting dy =0 (since y is kept as a

constant). So

du of of

ﬁ"(&)/(éﬁ (1.6-6)
Similarly

du _ (Of of

E——(é*y—)/ 3 (1.6-7)

ad
We could equally obtain 3% , 3—3 by differentiating f from Equation (1.6-3) and using the chain rule

(Equations 1.5-22a, b). Thus taking u as the dependent variable and differentiating partially with
respect to x, we have

AR Y 1.6-8

ox du ox (1.6-8)
It then follows that

du of of

'a‘i"“(& /(a_u (1.6-9)

du 2u
Similarly a— and higher derivatives such as —— can be computed.
ox2

If, in addition to Equation (1.6-3), the variables x,y and u are related by another equation written as

gx,y,u)=0 (1.6-10)

we essentially have two equations involving three variables. We choose the only independent variable
to be x. Differentiating f and g with respect to x, yields

of of dy A of du _
S5y ot au ok =° (1.6-11a)
8g+8g ay+8g du

dx dy o0x oJu ox =0 (1.6-11b)
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Equations (1.6-11a, b) form a system of two algebraic equations involving two unknowns g—i and
g%. The solutions are
_ fx fu
g—i = —ngi (1.6-12a)
f, f y

g% - _glj_gy_ (1.6-12b)

I= gyy gxl (1.6-12¢)
Thus for g—i and 3—; to exist, the Jacobian J must not vanish.
1.7 SOME THEOREMS
Euler’s Theorem
A function f(x,y,u) is a homogenous function of degree n if

f (ox, oy, au) = o f(x, y, u) (1.7-1)
Defining new variables, which we indicate by a star (*), we write

X = ox, y* =Qy, u = om (1.7-2a,b,c)
Equation (1.7-1) becomes

fx*, y*, 0 = a f(x,y,0) (1.7-3)
Differentiating Equation (1.7-3) with respect to the parameter o yields

of ox", of oy Of W _ mip ) (1.7-4)

ox" do. 9y’ do  du’ da
Choosing o =1, Equation (1.7-4) becomes

X i9£+ of of =nf(x, y, u) (1.7-5)

ox y—a?+u du
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*

Note that we substitute (= x) etc. into Equation (1.7-4) before setting o = 1, otherwise we

o
would be trying to differentiate by a constant.

Equation (1.7-5) is known as Euler’s theorem.

The generalization of Equation (1.7-5) is

0 d d \
&-+y5§+u—a—a fx,y,uy=n(n-1).. (n-r+1)f(x,y,u) (1.7-6)

X

Taylor’s Theorem

Taylor’s theorem for functions of one variable can be extended to functions of several variables.
For simplicity we give the formula for two independent variables.

2 2 2
ha—f+kaf}+%-{ 2071 o 9 +k28—f} +

f(xyt+h, y0+k) = f(x, Vo) + " g 2 X0y ay2

1 n n n
+L{hnéi+(“)hn'lk————af +...+(n)h"'rkr of +...+k“a—f}+Rn

= Ixn 1 ax™ 1 ay r axn~rayr ayn
(1.7-7)
The remainder term Ry is given by
1 an+1f an+lf an+1f
R = hotl +h"k +o + KT (1.7-8)
n (n+ 1) oxnt1 dx"dy oyn+l

The derivatives in Equation (1.7-7) are to be evaluated at the point (x,, y,) and those in Equation
(1.7-8) at the point (x,+ 6h, y,+6k) and 0<6<1.

1.8 INTEGRAL OF A FUNCTION DEPENDING ON A PARAMETER

The function f(x,y) is a function of two variables x and y and we may integrate the function with
respect to y holding x fixed. We then obtain an integral which is a function of x and we may
consider x as a parameter. Thus if we integrate f(x,y) between two fixed points y=a and y =b,
we have

b
I(x) =f f(x, y)dy (1.8-1)
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Differentiating I with respect to x results in

b
of
d =f o ay (18-2)
a

If the limits of integration are not fixed but are functions of x, we integrate with respect to y from a
point on a curve given by y =u(x) to a point on another curve given by y = v(x)

v(X)
I(x) = f f(x, y) dy (1.8-3)
u(x)

Note that if we were integrating at another point on the same curve, the limits of integration would read
u(x;) and u(xy) which is equivalent to integrating from a to b.

I may be treated as a function of three variables X, v(x) and u(x). Using the results in Section 1.5,
dl s given by
dx

dl oI  dI dv I du

dx " 9x Tov dx " ou dx (1.8-4)
L ) . dl dl ol ) _
From the definitions of the partial derivatives %’ v and u We have, via Equation (1.8-2)
v(x)
ol of
ox ‘f x (1.8-5)
ux)

Note that u(x) and v(x) are not fixed!

To evaluate the partial derivative g—l, we fix the variables x and u(x). Equation (1.3-1) yields
v

dF(x) _ 9 f £ dt = 9 [F(x) - F(a)] = F'(x) = f(x) (1.8-6a,b,c,d)
gx ox ox

a

Therefore, identifying y with t and v(x) with x, we have

v (x)
A _9 1 fxydy = flx vl (1.8-7a,b)
v av e

Similarly
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g—j— = —f[x, u(x)] (1.8-8)

After appropriate substitution, Equation (1.8-4) becomes

v(x)
dl _ o dv _ du ]
i fu(x) x dy + f(x, v) dx f(x,u) dx (1.8-9)

Equation (1.8-9) is known as Leibnitz rule.

Example 1.8-1. Let 1 be given by

y=x*
| =f xy dy (1.8-10)

y=x

Calculate dL by
dx

(a) using Equation (1.8-9),

(b) integrate and obtain I explicitly as a function of x and then differentiate. Figure 1.8-1 shows
a projection in the xy-plane of the integration path.

From Equation (1.8-9)

x2
dL = j y dy + (x) (%) (2x) - (x) (x) (1.8-11a)
X
2
) X
= [Xz_ +2x4 - %2 (1.8-11b)
X
4 2
= 2’2‘_ _ %_ (1.8-11c)
On integrating directly
2 x?
5 3
I= {%J = 3;_ - X? (1.8-12a,b)
X

It follows from Equation (1.8-12b) that
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dl _5x 3 (1.8-12¢)

dx 2 2
Both methods result in the same expression for gl— , as they should. There are instances when it is
X

not possible to evaluate I explicitly and one has to use Leibnitz’s rule.

)
X

FIGURE 1.8-1 Integration described by Equation (1.8-10)

1.9 ORDINARY DIFFERENTIAL EQUATIONS (O.D.E.) — DEFINITIONS

A differential equation is an equation involving one dependent variable and its derivatives with respect
to one or more independent variables. If only one independent variable is involved, it is an ordinary
differential equation (O.D.E.) and if more than one independent variable is involved, it is a
partial differential equation (P.D.E.). Many laws and relations in science, engineering,
economics, and other fields of applied science are expressed as differential equations.

The highest order derivative occurring in the differential equation determines the order of the
differential equation. The degree of a differential equation is determined by the power to which the
highest derivative is raised. A differential equation is linear only if the dependent variable and its
derivatives occur to the first degree. Otherwise it is non-linear.
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For example, y' =5y is an O.D.E. (y is a function of x only) of order one (y' is the highest order
derivative) and of degree one (y' is raised to the power one) and is linear. (y " )3+ y =X 1is of order
two, of degree three and is non-linear.

A function f(x) is a solution of a given differential equation on some interval, if f(x) is defined and
differentiable on that interval and if the equation becomes an identity when y and y ™ are replaced
by f(x) and f(™M(x) respectively.

For example, we can easily verify that f(x) = e?* is a solution of the equation y' = ay. Indeed,
f'(x) = ae®® =y' and the right side (ay) is of course af(x) = ae®*. There are several types of
ordinary differential equations. Examples of first-order differential equations are separable equations,
exact differential equations, linear differential equations, homogeneous linear equations, etc. For each
of these types, there exists a known, standardized, procedure to arrive at a solution. Starting at
Section 1.10, we summarize the approach, leading to the solution of several of the types of ordinary
differential equations encountered in practice. In Section 1.19, we look at the modeling problem.

1.10 FIRST-ORDER DIFFERENTIAL EQUATIONS

The standard form of a first-order differential equation is as follows

M(x,y)dx + N(x,y)dy =0 (1.10-1)
M, y) -
or y = N(x, ) (1.10-2)

Equations of this type occur in problems dealing with orthogonal trajectories, growth, decay, and
chemical reactions.

1.11 SEPARABLE FIRST-ORDER DIFFERENTIAL EQUATIONS

For the case where M is a function of x only and N is a function of y only, a straightforward
integration will yield a result, as follows

fM(x)dx = —fN(y) dy (1.11-1)

Example 1.11-1. Solve y dx — x2dy = 0. (1.11-2)

Dividing both sides of the equation by x2y results in the appropriate form

dx _dy _

X2 Yy

0 (1.11-3)
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Integration yields
1
Any=Anc- (1.11-4)

where c is the constant of integration.

This can be written as

dny-Adncs -+ (1.11-5)
that is
y - _1
mi =2 (1.11-6)
or y=cel/x (1.11-7)

Example 1.11-2. In a constant volume batch reactor, the rate of disappearance of reactant A can be
given by

dc
d_tA =~k f(c,) (1.11-8)

Solve Equation (1.11-8) for the case where f(cp) =cy.

ch

o =kt (1.11-9)

Anc,=-kt+ Lnc (1.11-10)
Ca

An A =kt (1.11-11)

c,=ce K (1.11-12)

1.12 HOMOGENEOUS FIRST-ORDER DIFFERENTIAL EQUATIONS

If M(x,y) and N(x, y) in Equation (1.10-1) are homogeneous polynomials of the same degree,
then the substitution y =ux or x = vy will generate a separable first-order differential equation.

x2 -3 xy + y2 is an example of a homogeneous polynomial of degree two. x +y — 1 is not a
homogeneous polynomial.
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Example 1.12-1. Solve
(x+y)dy-(x-y)dx=0

dy (x-vy)

dx = (x+y)

The substitution y =ux defines y' as

3—3’( = (48)x+

We now have

du =x—ux=x(1—u)
x(dx)+u x+ux x(1+uw

x(gl)+u - d-w

dx " (1+u)
2
du)_ Ad-w _ 1-2u-u
x(dx)—(l+u) 4 1+u
g_yg _ (1+u) ~ du
X 1-2u-u

Integration yields

- { dpP
Anx+ Anc = f ~p

where P=1-2u—-u2.

Therefore
Ancx = ——;—ln(l —2u—u2)

Ancx2 = £n(1 —2u—u2)

= =1-2u-u?

X

Replacing u by %](—, we finally obtain

(1.12-1)

(1.12-2)

(1.12-3)

(1.12-4, 5)

(1.12-6)

(1.12-7, 8)

(1.12-9)

(1.12-10)

(1.12-11)

(1.12-12)

(1.12-13)
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2

2%y _y (1.12-14)

X2 X X
or  x’-2xy-y?=c (1.12-15)
°
NOTE: An equation such as

dy a1x+b1y +¢y

dx  ayx+b,y+c, (1.12-16)

where a;, b, Cy, Ay, b, and c, are constants can be reduced to a homogeneous equation if
through a change of variables, we manage to do away with the constants ¢, and c,.

Think of the numerator and the denominator as representing two intersecting straight lines. If we
translate the origin of the coordinate system to their point of intersection, that is to the solution (o, )
of the system

{alx +by+c,; =0

a, x+ b2y+c2=0 (1.12-17, 18)

2

we then obtain a situation where the directions of the lines are preserved (a; and b, remain unchanged)
and the coefficients c; vanish. Since the coordinates of this point of intersection are (o, B), we

perform the following change of variables

{X =X-0
Y=y-8 (1.12-19, 20)

Substitutions in Equation (1.12-16) yields

dY+PB)  day a (X+0a)+b,(Y+P)+c,

dX+a)  dX  a,(X+a)+by(Y+B)+c, (1.12-21a,b)
ay a,X+b Y+ao+bf+c
dX = a,X+b,Y+a,0+bf+c, (1.12-22)

where the underlined terms add up to zero by virtue of system (1.12-17,18) with solutions x = o. and
y =B. We are left with the homogeneous equation
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dy a1X+b1Y
ax - a,X+b,Y (1.12-23)

The solution of such a reducible equation is thus obtained by

i)
ii)

i)

solving equation (1.12-23) [a first-order homogeneous equation],

determining the solution (ot and B) of system (1.12-17,18). This requires the determinant
b
1
#0 and
2 2

replacing X and Y in the solution of (1.12-23) by x — ot and y — P respectively.

Example 1.12-2. Solve

iii)

dy _x-y-3
ix ~ x+y—1 (1.12-24)
We fi dY X-Y : Iy _ . .
e first solve aX - Xy Using the substitution Y = uX. This leads to Equation
(1.12-15).
Next we determine the values o and B by solving the system
X-y=3
x+y=1 (1.12-25, 26)

We obtain ao=2 and B=-1.

We now substitute X and Y in the solution of part (i) by (x ~2) and (y + 1). The final
solution is thus given by

x2—2xy—y2~6x+2y = ¢—7 = constant (1.12-27)

A problem arises if the determinant (a;b, —bya,) =0; that is, the coefficients of x and y in the

linear equations are multiples of one another. That is to say, the two lines are parallel and do not
intersect.

Introducing a variable z=a;x + b,y yields a relation of the form dz _ f and f is a function of z

dx

only, a separable first-order equation.
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Example 1.12-3. Solve
g—x}i = 6277(——_27—1)]);—% (1.12-28)
Note that
_2_ - —;27T % (1.12-29a,b)
Let z=2x-"7y then
dz - 5_-9y
dx dx (1.12-30)
:2—7(62x_7yﬂ) (1.12-31)
x—-2ly -1
_ 2_7(%) (1.12-32)
or 4z - - R (1.12-33)
This equation can be solved by separating the variables to yield
32z-28 An(z+9) = —x +c' (1.12-34)
where ¢' is a constant.
Replacing z by 2x -7y yields the solution to the problem
6x —21y-28An(2x-T7y+9) = x+c' (1.12-35)
or Tx =21y —28 An 2x -7y +9) = ¢' (1.12-36)
or X-3y-4An(2x-T7y+9) = ¢ (1.12-37)

1.13 TOTAL OR EXACT FIRST-ORDER DIFFERENTIAL EQUATIONS

A given differential equation, could have been obtained by differentiating an implicit function. For

example, one can determine by inspection that the equation
xdy+ydx=0

results from expanding

(1.13-1)



32 ADVANCED MATHEMATICS

d(xy)=0 (1.13-2)
Integration yields

Xy = constant (1.13-3)
oo  y=+ (1.13-4)

An equation such as
x2dy +2xdx=0 (1.13-5)

can be solved by inspection, after multiplication by an appropriate “integrating” factor. In this
particular case, multiplication by e¥ results in the following total differential equation

dx2e¥) = 0 (1.13-6)

thus x2e¥=c (1.13-7)

and y = )zni2 = -2 Ancx (1.13-8,9)
X

The following test allows one to determine if the equation
Mdx+Ndy=0 (1.10-1)

is a total (or exact) differential equation. We suspect that the equation is exact. That is, Equation
(1.10-1) could be represented by dF (x, y) = 0. This can be written as

oF dF

o Xt oy dy =0 (1.13-10)
Therefore
_ oF _OJF
M=3- and N= oy (1.13-11, 12)

So M and N are partial derivatives of the same function F. Furthermore, assuming that F and its
partial derivatives, of at least order two, are continuous in the region of interest, we note that

oxdy _ 0yodx (1.13-13)

That is to say
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M _ IN

dy -~ ox (1.13-14)

If our starting equation satisfies relation (1.13-14), we know that we are dealing with the total
derivative of a function of two variables. Equating that function to a constant yields the solution

F(x,y) = constant. One way of determining F is as follows: since % = M, a “partial” integration

with respect to x (keep y constant) yields F. The “constant” of integration will in general be an
arbitrary function of y, which will disappear on differentiating with respect to x. That is to say

F=fde+f(y) (1.13-15)
f(y) can then be determined from 3—5 = N, as illustrated next.

Example 1.13-1. Solve

(3x%2 - 6xy+4cosy)dx + (2y-3x2-4x siny-—;]—)dy =0 (1.13-16)

oM .

Sy - —6x— 4siny (1.13-17)

ON _ oo _agi _

% = 6x —4siny (1.13-18)
Therefore

%f— =3x2 — 6Xy +4cosy (1.13-19)
and F =f (3x2—6xy+4cos y) dx=x3-3x2y+4x cos y + f(y) (1.13-20)

f(y) is now determined by substitution of the previous equation for F in g? =N.

That is

0 [43_ 3,2 — v - 3x2— dxsiny — L
Jy [x 3x y+4xcosy+f(y):|—2y 3x¢—4xsiny y (1.13-21)

or  =3x2-4xsiny +f(y) =2y - 32— 4xsiny - (1.13-22)



34 ADVANCED MATHEMATICS

£'(y) = 2y —yl (1.13-23)
f(y)=y2—Any+c (1.13-24)

Hence, the solution is
x3—3x2y+4xcosy+y2—,€ny=constant (1.13-25)
L

If Equation (1.10-1) is not exact, we can try to make it exact by multiplying with an integrating
factor I. Equation (1.10-1) becomes

IMdx + INdy = 0 (1.13-26)

which is exact if

d 9
E (IM) = e (IN) (1.13-27)
That is
oM dl oN ol
I—+M—=1—+N—
ay dy ox ox (1.13-28)
or

l_ N_a_£ _M—al)zaM——a—N
I( ox dy dy ox (1.13-29)

In general it is not easy to find I but there are special cases when there is a standard procedure to
obtain I

1
(i) I is a function of x only. Then g-y— =0, and Equation (1.13-29) becomes

| d1 _ 9M/3y —aN/x

X N (1.13-30)

-
Q.

The assumption that I is a function of x only implies that the right side of Equation (1.13-30)
is also a function of x only. Therefore, the integrating factor I can be determined and
Equation (1.13-26) is exact and can be solved.
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(ii) I is a function of y only. Then as in (i), we have

di _ ON/ox — dM/dy

dy M (1.13-31)

)—(I»—A

The right side is a function of y only and allows I to be determined, leading to a solution.

Example 1.13-2. Solve
(3x2 - y?) dy - 2xydx =0 (1.13-32)

by finding an appropriate integrating factor.

oM

— =-2x

dy (1.13-33)
B_N_ = 6x

% (1.13-34)

In this case the equation is not exact, we note that

(E)N BM) 8x
ox dy

M= _8x_ _ _4§ (1.13-35a,b)

is a function of y only.
From Equation (1.13-31), we obtain

dl 4 o dl_ 44

% y oy I y (1.13-36a,b)

I=y (1.13-37)
Multiplying Equation (1.13-32) by the integrating factor y_4, we have

Gx3y -y Hdy-2xy3dx = 0 (1.13-38)
Equation (1.13-38) is exact, we can proceed as in Example 1.13-1.

oF
— = 2xy~3
ox Y (1.13-39)

F = —x%y2 +1(y) (1.13-40)
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oF 2. -4, df 2 -4 -2

A dat _ 3 ~ 13-

3y 3x%y +dy X“y y (1.13-41a,b)
Therefore

daf _ —y2

dy (1.13-42)

f=yl+c (1.13-43)

The solution is

F = constant = —xxy34yl=c¢ (1.13-44a,b)
1.14 LINEAR FIRST-ORDER DIFFERENTIAL EQUATIONS

The standard form is given by

d
= +P(x)y = Q¥ (1.14-1)

Note that P and Q are not functions of y. The integrating factor 1(x) is given by

I(x) = exp f P(x) dx (1.14-2)
o : . : : L d(y)

Multiplying both sides of Equation (1.14-1) by I(x) yields a left side which is equal to ™
Direct integration produces the solution as follows

Lyl = QWi (1.14-3)
and

X

y=1" f Q) 1) d&+c (1.14-4)
Example 1.14-1. Solve

y'—2xy=x (1.14-5)

2x2
I(x) = exp | -2xdx = exp——z— (1.14-6, 7)
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Multiplying both sides of the equation by e yields

e’y _2xe Xy = xe X (1.14-8)
or L yerD = xe* (1.14-9)
dx )
Integrating yields
2 2
f-d—(ye_x ydx = fxe'x dx (1.14-10)
dx
21 2
ye =-7e  +c¢ (1.14-11)
and finally
2
y=ce* - %
®

Another procedure which will generate a solution for Equation (1.14-1) is as follows: first one solves
the homogeneous equation

y'+Px)y =0 (1.14-13)

to yield the homogeneous solution y,. We then propose the solution of Equation (1.14-1) to be of the
form of y,, where we replace the constant of integration by a function of x, as illustrated in

Example 1.14-3. This method is known as the method of variation of parameters.

Example 1.14-2. The rate equations for components A, B and C involved in the following first-
order reactions

k1 ko
A > B —> C

are written as

ch

T T TXiCa (1.14-14)
dc

dep _ _

a = Kica—kocp (1.14-15)
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ch

@ et

(1.14-16)

We wish to solve for the time evolution of the concentration cg, giventhatat t=0, c A =Ca, and
cg=¢-=0.

Equation (1.14-14) has been treated in Example 1.11-2 and yields
— kit
Combining Equations (1.14-15, 17) leads to

d
B +kyep = Ky e (1.14-18)

which is of the form of Equation (1.14-1) with P(t) =k, and Q(t) =k, c Aoe_kIt .

Note that the independent variable is now t. The integrating factor I(t) = ekat

Multiplying Equation (1.14-18) by I(t) leads to

4 (g k) = i ey ettt (1.14-19)

Integration yields

k2t — 1 AO
Cpe 2" = +c (1.14-20)
B k) —ky

The constant ¢ is evaluated from the condition cg = 0 at t=0. Thatis

ki,c
L% ¢ (1.14-21)

0 =
k, -k

Finally we obtain
kot
———e—) (1.14-22)

Example 1.14-3. Solve

' 2y 3
y 1 (x+1) ( 23)

The homogeneous equation
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Y ol - 0 (1.14-24)
or XV- = xil (1.14-25)

results in the solution
yp=c (x + 1)? (1.14-26)

We now propose the solution of the given problem to be of the form y = u (x + 1)2 where u isa
function of x which is to be determined. Substitution of this solution, in the given problem results in
the following expression

2u(x + 1)2

)2 (x+1)

u'(x+1)*+2u(x +1)- = (x+ 1)} (1.14-27)

Note that since (x + 1)? is the homogeneous solution, the terms in u have to cancel.
We then obtain

W =x+1 (1.14-28)
and on integrating, we can write u as

2
u=%(x+ D +c (1.14-29)

The solution to the problem is thus given by

y=[;—(x+1)2+c](x+l)2 (1.14-30)

2 4
or y=c(x+1) +12-(x+1) (1.14-31)

The second term on the right side (that is choosing ¢ = 0) is a particular solution Yp- The general
solution y =y, + Yp-

1.15 BERNOULLI’'S EQUATION

The standard form of this equation is given by

y' +Px)y = Qx)y" (1.15-1)
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This equation can be reduced to the form of a linear first-order equation through the following
substitution

yln = v (1.15-2)

First one divides both sides of the equation by y™. This yields the following equation

-n dy 1-n _
y a;+P(x) y = Q(x) (1.15-3)

Thenlet v =yl This means that

dv _ d (y"™y=(1-n)y-ndy (1.15-4, 5)
dx dx dx

Equation (1.15-3) reduces now to the following linear first-order equation

(=) + Peov =Q) (1.15-6)

or g—l +(1-n) PV = (1- 1) Q(x) (1.15-7)
which is linear in v.
Example 1.15-1. Solve

dy - xyS ]
Y = XY (1.15-8)

Dividing by y° yields
_5d _
y -y = (1.15-9)

Let

_ dv _ _4-59y .
v=y = ™ 4y~ 5 (1.15-10, 11)

Combining Equations (1.15-9 to 11), we obtain

1ldv _ dv. - _
— A g V=X or dX+4v— 4 x (1.15-12, 13)

This equation can now be solved with the following integrating factor

I(x) = ¢l dx = o (1.15-14, 15)
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to yield
vedX = —xedx +—11— etX 4 ¢ (1.15-16)

Substituting y‘4 for v produces

y~ et = _xe** 4 ie4x+c (1.15-17)
and finally
1 _ 1 —4x
—7 =X+ tce (1.15-18)
y

1.16 SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS WITH CONSTANT
COEFFICIENTS

The standard form is given by

y"+Ay' +By = Q) (1.16-1)
where A and B are constants.
An alternative form of Equation (1.16-1) is

L(y) = Q) (1.16-2)
where the linear differential operator L (y) is defined by

L(y) = y"+Ay'+By (1.16-3)
The homogeneous differential equation is

Ly)=0 (1.16-4)

If y; and y, are two linearly independent solutions of the homogeneous equation L(y) =0, then by
the principle of superposition, ¢; y; +¢, ¥, is also a solution where ¢; and c, are constants. That

is
L(cyy;+eyyy) =c Lyp+cyLiyy) =0 (1.16-5a,b)

As mentioned earlier, the general solution to L (y) = Q(x) is given by

Y= Yty (1.16-6)
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Solving the homogeneous equation
y"'+Ay'+By = 0 (1.16-7)
will generate y,.

We propose y;, to be of the form e€**. Substitution of this function and its derivatives into the

homogeneous equation yields

e®™ (a2 + A0+ B) = 0 (1.16-8)
Since e®*#0, we have that

o +Ac+B =0 (1.16-9)

This is known as the characteristic or auxiliary equation. This equation has two solutions, o
and @,. Since we are dealing with a second order equation, we also have two constants of integration
and the solution y, is given by

Yy = clealx+czea2x (1.16-10)
The second order characteristic equation could have

1) two real and distinct roots (the case where D? = AZ_4B > 0).

In this case, y;, is given by equation (1.16-10).

i) two equal real roots (the case where D = 0).

In this case, y; is given by
yh=cre 1+ coxet (1.16-11)

iii) two complex conjugate roots (the case where D2 < 0)

¥y, 1s now given by

Yy = Cle(a+ib)x_'_cze(a-ib)X (1.16-12)
1/ 2
where 0} , = —% + i—fl—Bz—_—é—— =atib

This complex solution can be transformed into a real one, using the Euler formula to yield
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g, = €** (c5 cos bx + ¢ sin bx) (1.16-13)
where ¢4 and c, are constants and real. (1.16-14, 15)

Next we have to determine the particular solution Yp- This can be done by proposing a solution,

based on the form of Q(x), the right side of the equation. Substitution of the proposed form and of
its derivatives into the equation to be solved followed by equating the coefficients of the like terms
allows one to determine the values of the introduced constants as illustrated next. This solution
technique is referred to as the method of undetermined coefficients.

Example 1.16-1. Solve

y' =3y +2y = x>+ 1 (1.16-16)
The characteristic equation

o -30+2 =0 (1.16-17)
has the following roots: o; =1 and o, =2 so that

Yp = c1 &% +cpe (1.16-18)

Since the right side of the equation is of order two, we propose for Yp the quadratic polynomial
ax2 + bx + ¢, and proceed via substitution in the given equation to determine the values of the
constants a, b and c.

Yp = ax?+bx +c (1.16-19)

y];= 2ax +b (1.16-20)

yl')'= 2a (1.16-21)
Substitution yields

2a~3(2ax+b)+2 (ax2+bx+c) = x>+ 1 (1.16-22)

2a - 6ax — 3b + 2ax2 + 2bx + 2¢ = x%+ 1 (1.16-23)

2ax2+x (2b—6a) +2a-3b+2c = x2+ 1 (1.16-24)

Equating the coefficients of x? yields

(1.16-25a,b)

_ _1
2a=1 and a= 2
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Equating the coefficients of x yields

2b-6a =0 (1.16-26)

Jb=6a =3 and b= % (1.16-27a,b, 28)

Equating the coefficients of x° yields

2a—-3b+2c =1 (1.16-29)
9 - =2 -
1- 2 +2c =1 or c=7 (1.16-30a,b)

Yp is thus given by

2
Y= +2x+ 7 (1.16-31)
and the solution to the problem is
_ - 2y 12
y—yh+yp—cle"+cze"+4 2x“+6x+9) (1.16-32)

The form of the Yp t0 be chosen depends on Q(x) and on the homogeneous solution yy, , which in

turn depends on L (y). Examples are

(@)

(b)

Q(x) is a polynomial.

Q(x) = gy +qyX + qyx? + ... + X" (1.16-33)
Try

Yp = @t aX+ ...+ a x" (1.16-34)
if A0, B#0.

If B=0, A#0, uy
Yp = X (ag+a;x+....+ayx"h (1.16-35)
Ifboth B and A are equal to zero, then the solution can be obtained by direct integration.

Q(x)=singx or cos gx or a combination of both. (1.16-36)
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In this case an appropriate Yp 1s
Yp = 2gcCos gx + b sin gx (1.16-37)

If cosgx (or/and sin qx) is not a solution of the homogeneous equation. If cos gx (or/and
sin gx) is present in y, then we need to try

Yp = X (2, cos gx + by, sin gx) (1.16-38)
© Q) = et (1.16-39)

The particular integral will be of the form

Yp = ayed (1.16-40)
if e9* isnotatermin y; .
If e occursin y,, then Yp is

Yp = x (a, %) (1.16-41)
If xe9* is also part of the homogeneous solution, then

Yp = X* (ag %) (1.16-42)

We can also determine the particular solution for a combination of the cases examined in (a to c) by
intelligent guess work. We need to find the number of undetermined coefficients that can be
determined to fit the differential equation. The particular solution can also be obtained by the method
of variation of parameters (see Examples 1.14-3, 18-1).

Example 1.16-2. Levenspiel (1972) describes a flow problem with diffusion, involving a first-

. . o . . dc
order chemical reaction. The reaction is characterized by the rate expression d—tA = ~KCy .

The average velocity in the tubular reactor is (v, ). The concentration of A is given at the inlet

(z = 0) of the reactor by ¢ Ag and at the outlet (z=L) by ¢, .
A mass balance on A leads to the following differential equation which we wish to solve

—JSAB——+(VZ>d—§ZA+kcA =0 (1.16-43)

We can write Equation (1.16-43) in standard form as follows
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2
d d

oo _(Valdoak ooy (1.16-44)
dz? Dy dz Dy

We now propose a solution of the form c, =e%% As before, substitution leads to the characteristic

(or auxiliary) equation

) P S (1.16-45)
JSAB °®AB

The result in terms of the concentration ¢, is given by
cy, =ce%1?+c,e®2” (1.16-46)
4k
+ XA

(v,)?

The constants Cq and c, are evaluated from the conditions

where Oy = <J;Z> {li 1
tl 2 AB

CA = Ca, at z=0 (1.16-47)
Cp = Cyup at z=L (1.16-48)

This leads to the following final result

1L c —cC e(le
ogz , AL Ao ooz

e (1.16-49)

CA=

o

(X2L__e(XIL

(XzL (XIL

€ € —-C

1.17 SOLUTIONS BY LAPLACE TRANSFORM

Linear differential equations can sometimes be reduced to algebraic equations, which are easier to
solve. A way of achieving this is by performing a so called Laplace transform.

The Laplace transform L [f(t)] of a function f(t) is defined as
L[f(t)] = F(s) = f f(t) eStdt (1.17-1)
0
where the integral is assumed to converge.

The Laplace transform is linear. That is to say
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where c¢{, ¢, are constants.
For a given differential equation, the procedure to follow is

1) take the Laplace transform of the equation,
ii) solve the resulting algebraic equation; that is to say, obtain F(s),

iii) invert the transform, to obtain the solution f(t). This is usually done by consulting tables of
Laplace transforms.

The Laplace transform of a variety of functions are tabulated in most mathematical tables. Table
1.17-1 gives some useful transforms. Next, we state some theorems without proof.

1) Initial-value theorem
lim f(t) = lim s F(s -
lim. (t) Jim (s) (1.17-3)
ii) Final-value theorem
lim f(t) = lim s F(s) (1.17-4)
t—> o0 s—0

1ii) Translation of a function
Lie2f()] = F(s +a) (1.17-5)

iv) Derivatives of transforms

L{"f(g) = 1r EG (1.17-6)
ds"
V) Convolution
E(s) =F(s) G(s)
[ t (1.17-7)
=L f(t—u) g(u)du
0

Convolution is used when E(s) does not represent the Laplace transform of a known function
but is the product of the Laplace transform of two functions whose transforms are known.
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TABLE 1.17-1

Laplace Transforms

Function Transform
1 1
s
th nl | n=1,2
Sn+1
eat 1
s—a
sin at 4
s2 +a2
s
cos at Z+a2
d™ f(t n k-1
___IE_) gh F(S) _ 2 gk d f(O)
dt =1 dtk—l
tf o F(s)
t) dt S
X

1 2
——=exp (—x“/4t)
vt

—X__exp (—x2/4t)
) t3/2

erfc (x/241 )
2
(t+ XT) erfc (x/24/t ) - x \/% exp (—x2/4t)

&2t {c:_mﬁ1 erfc[—x— - m]+ ex‘/5 erfc[

27t —1)}—:+ (at)]}

1
2 2
0, O<t<k
- YT, t>k

aJ (at)

\/(é)‘ exp (—x W/S')

\/1? exp (-x W/;)

%exp (—x ’\/-S—)

e—xw/?

S2

e—xw/?
S—0O

e KS/st n>0

(‘V32+ a? —s)n

Sz+":l2

, n>-—1
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Heaviside Step Function and Dirac Delta Function

The Heaviside step function is a function which is equal to zero for —ec <t <0 and is equal to 1 for
all positive t. This can be expressed as

f 0, —o<t<0
H(t) = (1.17-8a,b)
\ 1, t>0

H (t) is discontinuous at t=0.

The Laplace transform of H(t) is given by

L[H(t)] = f e SUH(t) dt (1.17-9a)
0
_ 1 .-st]”
- [_Ee t]O (1.17-9b)
_ 1
=< (1.17-9c¢)

We can generalize the Heaviside step function for the case where the discontinuity occurs at t=a. In
this case, we have

0, t<a
H(t—a) = (1.17-10a,b)
1, t>a
L[{H(t-a)] =f e St H(t-a)dt (1.17-11a)
0
- f e-st gt (1.17-11b)
a
_|_1 .—st|™
_ [‘Ee s]a (1.17-11c)
= %e—sa (1.17-11d)

An arbitrary function f(t) can be shifted over a distance a, by multiplying f(t) by H(t - a). This
will result in the quantity f(t—a) H(t —a). Figure 1.17-1 illustrates this translation graphically.
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f(t) A

f(t) f(t-a)

H(t-a)

FIGURE 1.17-1 Translation of a function f(t) over a distance a

Taking the Laplace transform, we obtain

=
L{f(t—a)H(t-2a)] = J e Stf(t—a) H(t—a) dt (1.17-12a)
0
= f e Stf(t—a) dt (1.17-12b)
= ( e s+ £ty gy’ (1.17-12¢)
Jo
= e’saf e £(¢t") dt’ (1.17-12d)
0
= e SAF(s) (1.17-12¢)

where F is the Laplace transform of f.

In Equation (1.17-12c) we have used the transformation

t' =t-a (1.17-13)
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The Dirac delta function is defined as

d(t) = 0, everywhere exceptat t=0 (1.17-14a)
] o(tydt =1 (1.17-14b)
f f(t) o(t) dt = £(0) (1.17-14¢)

The Laplace transform of &(t) can be obtained using Equation (1.17-14c).

L[&(t)} = f eSU§(t) dt (1.17-15a)
0

=f e St §(t) dt (1.17-15b)

=1 (1.17-15¢)

The limits in Equation (1.17-14b, c¢) need not to be (—eo, o), they could be (€, €,) for any positive
€1, &,.

Thus
X
f dtydt = 0, if x<0 (1.17-162)
=1, ifx>0 (1.17-16b)
= Hx) (1.17-16¢)

wiiere H (x) is the Heaviside step function.
By formally differentiating both sides of Equation (1.17-16c) we obtain, via Equation (1.3-1)

8(x) = %I)% (1.17-17)

Equation (1.17-17) indicates that &(x) is not an ordinary function, because H(x) is not continuous at

x =0 and therefore does not have a derivative at x = 0. The derivative (ZI_H 1S zero in any interval that
X
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does not include the origin. For formal computational purposes, we may regard the derivative of the
Heaviside step function to be the Dirac delta function.

If the discontinuity is at t = a, then

§(t—a) = 0, everywhere exceptat t=a (1.17-18a)

fw S(t—a)dt = 1 (1.17-18b)
o atey

f_w f(t) 8(t—a) dt = le f(t) 8(t—a) dt = f(a) (1.17-18¢,d)

L[z‘)(t—a)} =f: eSUS(t—a)dt = 2 (1.17-18¢,6)

8(t - a) =% (t—a) (1.17-18g)

We may interpret d(t —a) to be an impulse at t = a and this will be considered in the next section.
We will illustrate the usefulness of the Heaviside and Dirac functions in Example 1.17-4 and in
Problems 35a and 36b.

Example 1.17-1. Compute the Laplace transform of sin (at).
Applying the definition, we write
L[sin (at)] =[ e Stsin at dt (1.17-19)
0

Referring to Equation (1.3-9) we observe that the integral on the right side is given by

oo

oSt )
> [—s sin at — a cos at]
s“+a 0
Evaluation of this term for t=c0 and t=0 yields the solution 5 d as given in Table 1.17-1.
s“+a

Example 1.17-2. Solve the following second order differential equation
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d®h ,a dh 1
_2_+.__.+_2h = f(t) (1.17-20)
ae” A dt A
subject to the conditions h=0 at t=0 and %ttl =0 at t=0.
Using Table 1.17-1, we determine the following Laplace transform
2
i_le > s2H(s) - sh(0) = h'(0) = sZH(s) (1.17-21a,b)
dt
1.17-21c,d
& SHE-hO = sHE ( &d)
h = H(s) (1.17-22a)
f(t) - F(s) (1.17-22b)
Substituting into Equation (1.17-20) yields the following algebraic equation
s2H(s) + 25 Hes) + 2 = Fg) (1.17-23)
A 2.2
Solving for H(s), we obtain
2
A F(s
H(s) = ) (1.17-24)

2
1+aks +A"s2

To invert H(s) requires knowledge of F(s) and therefore of f(t). For the simplified case where

. c
f(t) is assumed to be a constant, say c,, F(s) equals ?0.

Equation (1.17-24) can then be written as

2 2
H(s) = A ¢, _ A oc,
s(1+a7ks+7\,252) s(s=sy)(5-5,)
2
where 5| , = (—a)»i?»/\/(az—él) )/2}»

(1.17-25a,b)

(1.17-26)

This can be further expressed in terms of partial fractions, which are easier to invert. That is



54 ADVANCED MATHEMATICS

Hs) = A+-B _, C (1.17-27)
S S-81 S—82

We determine the constants A, B and C by multiplying Equation (1.17-27) respectively by (s —s,),
(s—s;) and s and setting in turn s =s,, s =s; and s=0. This leads to

2
Ac
= (s—s,)H = 0 -
C=(s—sy) (S)Is:52 5, Gy=57) (1.17-28a,b)
;\’2
c
B=(-s)H =0 17-
(s =) H(s) o, Ny (1.17-29a,b)
2
A
A=sHE) |, = ;%0 (1.17-30a,b)
Equation (1.17-27) becomes
2 2 2
Hes) = S0y A g + A < (1.17-31)
$81Sy S;(8;~8)(s=8;) 8y(85—87)(s—5p)
Inversion results in h(t) which is given by
2 2 2
h(@® = Mo Mo gy M e (1.17-32)
S18y 8;(81—5,) Sy (85 = 8¢)

The behavior of h(t) depends on the values of s; and s, and therefore on the values of a and A
[see Equation (1.17-26)].

In particular, if a>2, s; and s, are real and h changes with t in a non-oscillatory fashion. If
a<2, s; and s, arc complex and one has an oscillatory response (see Section 1.16 iii). For

a =2, acritically damped response is obtained.

Example 1.17-3. Solve the kinetic expression given by Equation (1.14-18), subject to the condition
cg =0 at t=0, by Laplace transform. Invert using convolution.

The Laplace transform of the equation is

s Cy(s) + kyCpl(s) = kchO( (1.17-33)

L)
s+k1
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C.(s) = K1%, (1.17-34)
B 7 (s+k) (s+ky) '
Using convolution (Equation 1.17-7), we write
t
cp(®) = kycp f e 10 7" gy (1.17-35a)
0
t
—kt=u (ky—k
= kep, [ T q (1.17-35b)
0
t
= kyop, ¢ " f ¢ () gy (1.17-35¢)
0
t
_kc, eXit _ B
S ¢ tkaky) (1.17-35d)
(ky —ky) 0
k.t
_ TN T k]
a0 =4, kp © -
(ky - k4 (1.14-20)

Example 1.17-4. A slab of a viscoelastic material was at rest and at time t = 0, it is suddenly
sheared by an amount 7,, as illustrated in Figure 1.17-2. Determine the shear stress in the material

as a function of time.

We assume the relation between the shear stress (’cyx) and the shear rate ( ’.ny) to be given by

€t Rty = R (1.17-36)

W, A, are the viscosity and relaxation time respectively, and the dot over the quantities denote
differentiation with respect to time.

The shear is given by
Tyx = Yo H (D (1.17-37)
Using Equation (1.17-17), we have

Tyx = %3O (1.17-38)
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YI / /
0

FIGURE 1.17-2 Shear deformation of a slab

Substituting Equation (1,17-38) into Equation (1.17-36), we obtain

Tyx  AgTyy = —1 Y 8 (1.17-39)

Taking the Laplace transform of Equation (1.17-39) and assuming that Tyx = 0 at t=0, we get

Tyx () +hosTy (5) = —1 7, (1.17-40)
Tyx (s), the Laplace transform of Tyx» .is given from Equation (1.17-40) by
Ty () = — 10 (1.17-41)
Ao (s +1/Ay)
The inverse of Tyx(s) can be seen from Table 1.17-1 to be
T () = 20 o (1.17-42)
0

Thus the shear stress decays to zero exponentially.
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1.18 SOLUTIONS USING GREEN’S FUNCTIONS

The Green’s function method is a powerful method to solve boundary value problems and can be used
not only for ordinary differential equations but also for partial differential equations and integral
equations. Our purpose in introducing the Green’s function now is to show the generality of the
method. Once a Green’s function has been obtained for a given operator and a set of boundary
conditions, then the solution to the boundary value problem can be written as an integral. Thus the
Green’s function is equivalent to the integrating factor in the first-order equation.

The solution of a non-homogeneous boundary value problem can be obtained if the Green’s function
G is known for the homogeneous equation.

The solution of Equation (1.16-1) with Q(x) replaced by f(x), subject to the conditions y =0 at
X=X, and x=Xx; can be written as
X1
y(x) = f G(x,t) f(t) dt (1.18-1)
X0
where G (X, t) is the Green’s function for this problem.

The Green’s function is a function of two variables, x and t. In Equation (1.18-1), we integrate with
respect to t so as to obtain a solution y at point x. This requires that during the process of

constructing G, we regard the differential equation which G has to satisfy, as a differential equation
in t. The boundary conditions will be applied at t=x_, and t=x; .

The Green’s function for any x has to satisfy conditions such as

1) G(x, t) is a solution of the homogeneous Equation (1.16-4), except at t = x. That is to say
2
d°G | 4 dG 1 BG = 0 (1.18-2)
a2 dt

i) G satisfies the boundary conditions. Thatis G=0 at t=x, and t=x;.

iii) G is continuous at t=x. Thatis

G =G (1.18-3)

t=x_ =X,
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iv) The first derivative is discontinuous at t=X.
G| - dG =1 (1.18-4)
de 1 X, de [, X

More generally, this difference equals the reciprocal of the coefficient of the highest derivative
in Equation (1.18-2).

V) G is symmetric.
G, t)=G(t, x) (1.18-5)
Example 1.18-1. Solve the equation

2
j_-‘£+y = f(x) (1.18-6)
X

subject to y(0) =y (1) =0 and identify the Green’s function.

The solution to the differential equation is given, in general, by Equation (1.16-6). Having obtained
the solution to Equation (1.18-6), it will be possible to deduce the Green’s function for the operator

2
L = d—z + 1. We can then show that the Green’s function satisfies conditions (i to v). Having
dx
obtained the Green’s function allows us to write down the solution to Equation (1.18-6) for any f(x).
The solution to the homogeneous equation is

Yp = €1 €OSX +C,sinx (1.18-7)

The particular solution y, can be obtained via the method of variation of parameters, as follows. We

try a solution of the form
Yp = a(x)cos x + b(x) sin x (1.18-8)
where we replace the constants ¢; and c, by functions of x.

We then calculate

yp = —a(x) sin x + b(x) cos x +a' (x) cos x + b’ (x) sin x (1.18-9)
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Note that yp has to satisfy Equation (1.18-6). However, y, contains two unknown (arbitrary)

functions, a(x) and b(x). One should realize that on substituting yl',' and yp in Equation (1.18-6)

one generates only one equation to determine the functions a(x) and b(x). It becomes therefore
necessary to impose one additional condition. Such a condition should be chosen to simplify the
problem. The obvious condition is

a'(x)cosx+b'(X)sinx=0 (1.18-10)
Next, we compute y}','

yl',' = —a'(x) sin x + b'(x) cos x — a(x) cos x — b (x) sin x (1.18-11)
Substitution into Equation (1.18-6) yields
—a'(x) sinx +b' (x) cos x =f(x) (1.18-12)

We can now use Equation (1.18-10) to replace a'(x) or b'(x). Replacing b'(x), Equation (1.18-12)
becomes

2
—a'(x) sin x —a'(x) X = fx) (1.18-13)
Sin X

which reduces to
a'(x) = —f(x)sinx (1.18-14)
Integration yields
X
a(x) = —f f(t) sint dt (1.18-15)
¢1
As in Equation (1.3-1), t is a dummy variable.
Also, from Equation (1.18-10), we have

—a'(x) cos x

b'(x) = :
sin x

(1.18-16)

On integrating, we obtain
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f" (1.18-17)
b(x) = f(t) cost dt

2

The constants c¢; and ¢, can be determined from the boundary conditions.

We note that when f(x)=0, a'=b'=0. Thatis, a and b are constants (say ¢, and ¢, respectively)
and we obtain vy, .

In other words, introducing ¢y and c, as limits of integration in Equations (1.18-15, 17) will
generate a solution yp which in fact includes y, . A similar situation was encountered in Example

1.14-3.
Thus the general solution of Equation (1.18-6) may be written as

X X
y = —cosxf f(t) sintdt+sian f(t) costdt (1.18-18)
C

1 €2

The boundary condition y =0 at x =0 implies

0
0 =f f(t) sintdt (1.18-19)
1

which leads to ¢y = 0.

Imposing the boundary condition at x =1 yields

1 1
0 = —cos (1)[ f(t) sint dt + sin (1)j f(t) cost dt (1.18-20)
0 02

This may be written as

1 0 1
0 = —cos (l)f f(t) sint dt + sin (1) f f(t) costdt+f f(t) costdt (1.18-21a)
0 02 0
1 1 0
= —Cos (1)[ f(t) sint dt + sin (l)f f(t) cost dt + sin (l)f f(t) costdt (1.18-21b)
0 0 02
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1 0
=j f(t)sin(l—t)dt+sin(l)f f(t) cost dt (1.18-21¢)
0 02
Thus
0 1
S in(1— -
L f(t) costdt = sn @) fO f(t) sin (1-t) dt (1.18-22)

2

Recall that we are in the process of determining G, in order to write the solution as in Equation
(1.18-1). To achieve this, we wish to determine G in two regions: t<x and t> x, because G has
several properties to satisfy at the points t=x_ and t= x_.

Thus we write Equation (1.18-18) as

0 X

f(t) costdt + I f(t) costdt (1.18-23)

X
y(X) = —cos x[ f(t) sint dt + sin x I
c 0

1 €2

Combining Equations (1.18-19, 22), we obtain

X rx 1
y(x) = —cos x] f(t) sintdt+sinx | f(t) costdt— —SMI f(t)sin(1-t)dt  (1.18-24a)
0

0 Jo sin(1)
X . f 1
= f(t) sin(x~t) dt — SILX_ f(t) sin(1-¢) dt (1.18-24b)
L sin(1) Jo

X (rx 1
I £(t) sin(x—t) dt — SIX | | £() sin(1—t) dt + f f(t) sin(1-t)dt|  (1.18-24c)

0 sin(1) Jo X

r-x . sin X rx : sin X 1 i
= J, f(t) sin(x-t) dt _éi_r;(l_)J . f(t) sin(1-t) dt — sin(1) ) f(t) sin(1-t) dt (1.18-24d)

(* T sin(1) sin(x—1) — sin x sin(1 — t) " ) sinx sin(1—0)
-[ w0 s Jo - [ [0S0 119200
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X . . 1 . .
_ sint sin(x - 1) dt sin X sin(t- 1) )
—]0 f(t)[ sin(D) dt + fx f(t){—————sin(l) ]dt (1.18-241)
1
y(x) =f f(t) G(x, t) dt (1.18-1)
0

where G (x, t) is the Green’s function and is given by

sint sin(x—1)

sin () , 0<t<x

G(x,t) = (1.18-25a, b)
sin X sin(t—1) i<
sn) 0 *=tsl

From Equations (1.18-25a, b) we can deduce that G satisfies conditions (iv, v) given earlier. In
particular, we deduce that

' cos x sin(x—1)
— .18-26
Gl sin (1) (1.18-262)
' sinx cos(x—1)
= .18-26b
G =X sin (1) (1.18 )
and
G' -G _ sinx cos(x—l?—cosx sin(x — 1) -1 (1.18-27a.b)
t=x _ sin (1)

t=x_4

The solution to the problem therefore is given by Equation (1.18-1) where G(x, t), which is
independent of f(t), is given by Equation (1.18-25a, b). As mentioned earlier, the solution of
Equation (1.18-6) can now be determined for any f(x), via Equations (1.18-25a, b). The boundary
conditions will be satisfied automatically. The Green’s function can of course also be constructed
from the condition given by Equations (1.18-2 to 5). This exercise is addressed in Example 1.18-2
and in Problem 37b.

The Green’s functions for several frequently used operators and boundary conditions are given in the
following table. The boundaries in Table 1.18-1 are all chosentobe x =0 and x = 1. That is to say,
the solution to a given problem is to be written as in Equation (1.18-24f) where the appropriate
function G (X, t) should be chosen from the right side column in Table 1.18-1.
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TABLE 1.18-1

Green’s Functions

Operator L(y) Boundary Conditions G, )
1.y" y0)=y(1)=0 t(x—-1), x>t
x(t-1), x<t
2.y" y ) =y'(1)=0 ~t, x>t
-X, X<t
3.y" + A2y yO)=y(1)=0 sin At sin A (x - 1) K>t
A sin A T
sin Ax sinA(t-1) X<t
A sin A T
4.y" - A2y y(0) =y(1)=0 sinh At sinh A (x - 1) K>t
A sinh A T
sinh Ax sinh A (t-1) K<t
A sinh A T

Example 1.18-2. Consider the transverse displacement of a string of unit length fixed at its two
ends,x =0 and x=1. If y is the displacement of the string from its equilibrium position, as a
result of a force distribution f(x), then y satisfies

T =2 ={(x) (1.18-28)

where T is the tension in the string.
The boundary conditions are

yO) =y1)=0 (1.18-29a,b)
We now construct the Green’s function for the operator

d2
Ly)=y"= — (1.18-30a,b)
dx
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Since G has to satisfy

d’G _
dt?

0

G(x,t) is given by
G, t) = (X)) +c,(x)t, t<x
= c3(X)+cx)t, t>x
Applying the boundary conditions on t yields
c;=0
c3t+cy =0
The continuity condition implies
XCy = C3+ XCy
The jump discontinuity can be expressed as
Cy4—Cy =1
From Equations (1.18-33 to 35) we can solve for c¢; to c,. The result are
c; =0, Cy=(x-1), C3 =—X, C4=X
Thus G(x,t) is given by
Gix,t) =t(x-1), t<x
=x(t-1), t>x
which is given in Table 1.18-1.

The displacement y at any point x is then given by Equation (1.18-1) as

1
y(x)= —[ G(x,t) £ dt
0 T

As an example, we can consider f(x) to be an impulsive force. That is

(1.18-31)

(1.18-32a)
(1.18-32b)

(1.18-33a)

(1.18-33b)

(1.18-34)

(1.18-35)

(1.18-36a,b,c,d)

(1.18-37a)
(1.18-37b)

(1.18-38)

to say, the force acts at one

point only, say at x =&. Thus f(x) will be zero everywhere except at the point x =&, where it is
not defined. Mathematically f(x) can be represented by the Dirac delta function §. We write f(x) as
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fx) = d(x-¢&) (1.18-39)

The delta function is not an ordinary function but it can be regarded as a limit of a sequence of
functions. An example of such a sequence is

. 2
Elino % exp{——(%) } = 8(x) (1.18-40)

An alternative approach, introduced by Schwartz (1957), is to consider the Dirac delta function as a
functional or distribution, given by Equations (1.17-14c). Both approaches produce equivalent
results. The main properties of the Dirac delta function are given in Section 1.17.

Combining Equations (1.18-38, 39), we obtain

1G t) 6(t
y(x)=—j X, )T( —8) & (1.18-41a)
0
_ G&E)
== (1.18-41b)

Equation (1.18-41b) provides a physical interpretation of the Green’s function. G represents the
displacement at x due to a point force applied at &.

1.19 MODELLING OF PHYSICAL SYSTEMS

In order to generate the equation(s) representing the physical situation of interest, it is useful to proceed
according to the following steps.

1. Draw a sketch of the problem. Indicate information such as pressures, temperatures, etc.
2. Make sure you understand the physical process(es) involved.
3. Formulate a model in mathematical terms. That is to say, determine the equation(s) as well as

the boundary and/ or initial condition(s).

4. Non-dimensionalize the equation(s). This may reduce the number of variables and it allows for
the identification of controlling variables such as, for example, a Reynolds number. It also
allows one to easily compare situations which are dimensionally quite different. For example,
one can compare flow situations in pipes of small to very large diameters in terms of a

dimensionless variable & = ﬁ which will always vary from O to 1.

5. Determine the limiting forms (asymptotic solutions).
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6. Solve the equation(s).
7. Verify your solution(s)! Do they make sense physically? Do all terms have the same
dimensions?

As a first example, we consider the flow of a Newtonian fluid in a pipe. We can imagine thin
concentric cylindrical sheets of liquid sliding past each other. Figure 1.19-1 illustrates the problem
which is to be modelled subject to the following assumptions

— steady-state flow;

—~ laminar flow: Re = < 2100 and v, is afunction of r only;

D(v,)p
u

— the fluid is incompressible: p = constant;
~ there are no end effects; that is, the piece of pipe of length L. which we are considering is located
far from either end of the pipe which is very long.

FIGURE 1.19-1 Flow in a pipe with associated velocity profile v, (r)
and shear stress profile 7.,
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Cylindrical coordinates are used since the geometry of the problem is cylindrical. This makes it
mathematically easier (less calculations) to apply the boundary conditions.

The differential equation representing this physical situation is obtained by applying a momentum (or
force) balance on a shell of thickness Ar. The balance is given as follows

rate of z _ rate of z net sum of forces| _ _
\ + e DLV =0 (1.19-1)
momentum in momentum out in z-direction

The right side of Equation (1.19-1) is zero because of the steady-state assumption (no accumulation!).
Analyzing the problem, one has to realize that z momentum is transported according to two
mechanisms: (i) by convection due to bulk flow, and (ii) by viscous (molecular) transport. The forces
acting on the system (cylindrical shell of thickness Ar and length L) are: (i) the pressure force in the
z-direction, and (ii) the z-component of the gravity force.

The individual contributions making up the force balance are

a) Z-momentum in by convection at z=0.

This contribution is obtained by multiplying the volumetric flowrate associated with the
appropriate area (2nrAr), with pv,. That is

Z-momentum in
(VZ 21trAr) pv, i 120
by convection at z=0
b) Similarly we write

Z-momentum out
(VZ 21l:rAr) pv, l PeL
by convection at z=L
Note that the quantities 2, &, r, Ar and p are not changing. Since the flow is laminar, v,

is not going to change with z so that the net contribution to the force balance of the z-
momentum associated with convection is zero.

) z-momentum in by viscous transport at T.

This contribution is obtained by multiplying the shear stress 1, (force per area) by the
appropriate area (2 trrL). That is

Z-momentum in
1., (2mrL)| .

by viscous transport at r
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d) Similarly we write

Z-momentum in
1., (2mrL)]

r+Ar
by viscous transport at r + Ar

Note that since we are dealing with a Newtonian fluid, the shear stress 1, is given by

o=y
rz = THg; (1.19-2)

. . . dv . .
v, 1s afunction of r, otherwise Hl would be zero. The Newtonian viscosity L is constant
T

and therefore the left side of Equation (1.19-2) has to be a function of r and we will have a net
contribution from the z-momentum by viscous transport to the force balance.

e) The contribution from the pressure force is obtained by multiplying the pressure (force per
area) at z=0 (P, in Figure 1.19-1) by the appropriate area (2rtrAr). That is

pressure force at z=0 P, (2rrAr)
1) Similarly we write
pressure force at z=L P, (2mrAr)
g) The z-contribution to the force balance due to the gravity acting on the system (shell) is given

by the weight of the fluid in the shell. That is, the volume (2rrArL) multiplied by pg and by
cos ot (z-contribution)

gravity force (2rrArL) pg cos o

Note that L cos o =h, - hy, the difference in height of the positions at z=0 and z=L in
Figure 1.19-1. The gravity force can therefore be written as: 27nr pg (hy —hy ) Ar.

Substitution of the terms in c), d), e), f) and g) into the force balance yields

T, (2nrL)| -1, @2nrrL)| , +(Pg—Pp)2nrAr + 2nrpg(hy —hy ) Ar = 0 (1.19-3)

T+

We can divide Equation (1.19-3) by 2rLAr to obtain

I”trzlr - rTer

Ar

r+Ar +(P0;PL)r Hpg(?o_"LlL_) ~ 0 (1.19-4)

Note that we did not divide by r. We established earlier that T, is a function of r.
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We are in the process of setting up a differential equation relating T, to r! Recall that the derivative
of a function y =f(x) with respectto x atthe point x =x, is defined by

f(xq+ Ax)—f
m ot A0) =T LAy df (1.19-5a,b)
AX—)O Ax AX—)O Ax dx
In Equation (1.19-4), we have a term involving the quantity r T,| —r7%,| _, , thatis, 7y, initial
(at r) — r 1y final (at r + Ar), so that we are dealing with —A(r1;).
Taking the limit for Ar—> 0 of Equation (1.19-4) yields
rT,| -TIT,]
lim [—2%f—2r+Ar) 4+ L [(p P )+pg(hy—hy)] = 0 1.19-6
Jm (e L [(Py Py )+ pe(hg—hy ) (1.19-6
or via Equation (1.19-5)
P,-7
d -
— )+ r(OTL) =0 (1.19-7)

Equation (1.19-7) is the desired differential equation with the potential ® defined by

® = P+pgh (1.19-8)
So the potential at z =0 is given by: ®, =P, + pgh, and the potential at z =L is: ®| =P + pgh; .
Note that the potential drop per length (%) becomes the pressure drop per length when

hy =h; (horizontal flow).

The differential Equation (1.19-7) is solved as follows, to yield the linear shear stress profile shown in
Figure 1.19-1.

ﬁ(r 1) = r(@) (1.19-9)
jd(rrrz) = fr(@) dr (1.19-10)
rY, = % (EQ%?L)+C1 (1.19-11)
T, = 5 (T%PL)J:—Q (1.19-12)
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To evaluate C;, we look at the physical situation for r=0. We cannot accept an infinitely large force
(per area). Therefore C; =0 and T, is a linear function of r.

P,-7
T = g (—OL—L) (1.19-13)
The velocity profile is obtained by replacing the left side of Equation (1.19-13) by —p %Vr—z . The
minus sign is as a result of following the convention by Bird et al. (1960).
We now have a differential equation relating v, to r given by
dv, P,- P
—2z = |20 "L 1.19-14
dr ( 2ul )’ ( )
This equation is solved as follows
®,-P
fdvz - —(—%HL—L)Irdr (1.19-15)
P,-P )2
=-|——L|L ;¢ 1.19-16
V2 ( 2pL ) 7 *& ( )

The physics of the situation allows us to assume that the velocity is zero at the wall. Thatis, v, =0 at
r=R. Applying this to Equation (1.19-16) allows us to evaluate the integration constant C,.

0 - _(@%;SL)RTZ ‘C, (1.19-17)
So

C, = (%if—L R? (1.19-18)
Substitution into Equation (1.19-16) yields

v, = %LEL—) R’ - (3%) r? (1.19-19)
That is, v, is related to the square of r (a parabola as in Figure 1.19-1).
The relation for v, is usually written as

v, = (Eﬁ:’—L Rz[l —(ﬁﬂ (1.19-20)
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Note that the maximum velocity occurs at the center of the tube. That is, at r = 0.

The average velocity (v, ) is obtained by dividing the flow rate by the cross-sectional area, as follows

27 R
J(-) fo v, rdrdd
<vz> =

27 R
f f rdr do
0 0

The denominator yields TR2, as it should. The numerator is the product of a point velocity (v,) and

(1.19-21)

an infinitesimal area (r dr d8). Integrating this product yields a flow rate, as it should.

Combining Equations (1,19-20, 21) yields

Po-Pr) 2 R[ r2}
21 (—4}LT_R.[0 1—(§) rdr
nR2

(Vz> =

(1.19-22)

We introduce a dimensionless variable & = ﬁ The integral can then be written as

1
f (1 —iz)édﬁ = (1.19-23)
0

The constant R2 necessary to non-dimensionalize r dr is obtained from the denominator.

Note also that the limits of integration have to be adjusted according to the newly introduced variable
€. Indeed, as the upper limit goes to R, the new variable &, goes to one. The lower limit remains
unchanged.

Note that this integral is now independent of R and is valid for pipes of any radius. Equation
(1.19-22) reduces to
® -7
=2]-0 L
(v = 27

R (4) = (———SHL )R (1.19-24a,b)

Example 1.19-2. As a second example, we consider the flow of a non-Newtonian fluid in a pipe.

We will assume the fluid to obey the power-law. That is to say

dv, "
Tz = Mg

(1.19-25)
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At this point, one should realize that Equation (1.19-13) is still valid. In fact, it is valid for any fluid,
since no assumption as to the type of fluid has to be made to derive the shear stress distribution. We
now proceed by computing the velocity distribution. Equation (1.19-13) now becomes

P -F dv_ |"
T =5 (—OL—L) = |52 (1.19-26)
dv,) . .
and the shear rate —d—rl is given by
d Py P\
(dvrZ - ( OzuL L) et (1.19-27)
Integration yields the velocity profile.
P.-P 1/n
v, = (-%}IL_L) f —r/M dr (1.19-28a)
?O—PL 1/n _rl/n+1
__( 2L ) o +C, (1.19-28b)
n

The constant C, is obtained, using the same (no slip) boundary condition as in Example 1.12-1, and
the velocity profile is

. - (’(PO—PL)”" nR'™! [1_ r)um}

ey P = (1.19-29)

R

Note that for n =1, the power-law fluid reduces to the Newtonian fluid. That is to say, Equation
(1.19-29) reduces to Equation (1.19-20).

The average velocity is obtained by substituting Equation (1.19-29) into Equation (1.19-21), following
the procedure given in Example 1.19-1.

R
2 (P,-®p |\ RrIn+] U+l
<VZ>_R7( SiL ) o [1_(E) }dr (1.19-30a)
0
1/n
. R_[®-P) _
e SiL (1.19-30b)
n
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We are now in a position to compare the velocity profiles in dimensionless form and to evaluate

asymptotic behavior, as n tends to zero and to infinity. To achieve this, we plot (VZ> versus ﬁ .
VZ
Dividing Equation (1.19-29) by Equation (1.19-30c) yields
Yz - 3n+l {1-(%”“”} (1.19-31)

(vz) n+1 R

Different values of n yield different profiles. The ones of interest are tabulated in Table 1.19-1 and
are shown in Figure 1.19-2.

TABLE 1.19-1

Velocity profiles

i o

0 1[1_(L)°°J _ (1) ZiRL:l
! 2|1

- -]

We note that for n =1, we obtain the Newtonian result (parabolic profile). The asymptotic solutions
(linear profiles) are obtained for n =0 and n = oo, These profiles are illustrated in Figure 1.19-2.
For n =0, the slope is zero and for n = oo, we obtain a maximum slope of 3. For intermediate
values of n, the slope must lie between 0 and 3. In practice, n is usually between O and 1 and the
observed velocity profiles are indeed more blunt than the Newtonian one.

In this example, we continued to use parameter p as in Example 1.19-1. However, note that the
dimensions of [ depend on n and P has the same dimension in both examples when n = 1.
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<vp> 2

FIGURE 1.19-2 Dimensionless velocity profiles

PROBLEMS

la.

2a.

3b.

Differentiate the following functions with respect to x
1) arc sin x

(i1) arc cos V1 —x?

Gii)  Ln(x2 Anx)
Answer: (i) and (ii) 1/V1-x?
(iii) (1 +2 £nx)/x Anx

The circumference C and the area A of a circle of radius r are given respectively by

C=2mr, A=mr2
Use the chain rule to compute g—é‘ . Answer: r

Ify = ¢ %% /(1-x)% where o is a constant, show that

dy _
(1-x) g = OxXY
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4a.

5a.

6b.

7a.

8a.

Use Leibnitz rule to show that

(1-x)y®* D _(n+ax)y®-noy® D =0

Find the limit as x —> O of the following functions

- sin x 1y X COS X any € : X
W X (W) sin X (ii1) sinh x ) x
(Hint: in (iv), take £An) Answer (i) to (iv): 1

Use Taylor’s theorem to obtain an expression for cos x about x = 7/2. Find the remainder
term if only the first three terms are retained. What is the maximum error if we use the
expansion you have derived to compute the value of cos x in the interval /4 < x < 31/4 7

The viscosity 1 of a non-Newtonian fluid is an even function of the shear rate Y. If ¥ is
small, such that ¥4 and higher powers of ¥ can be neglected, express M as a polynomial in

¥, using Maclaurin’s expansion. If it is known that m is given by the rational function

a+b?2

1+c\.(2

write down the coefficients of the expansion you have obtained in terms of a, b, and c.

Integrate the following

(1) fxexdx (ii) [cos(lnx)dx (iii) j xVxZ+1 dx
J
[ 2 24x+1

(iv) e* sine® dx (v) =2 TAT L dx
) x=12(x+3)

9 32
Answer: (i) eX(x—1); (i) %[cos (&n x) + sin (£n x)] (i) %(1 + X )

(iv) —coseX; (V) An(x2+2x-3)—(x-1)1

Sketch the curve y = cos x in the range O < x <m. Find the area of the region enclosed by
y = cos X, the x-axis, x=0, and x =7.
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9b.  The area of the surface of revolution S obtained by rotating the curve y = f(x) about the
x-axis from x=a to x =b is given by
b
dy 2
S=2 1+ (—) d
T y ix X
a
Compute S for y=eX*, 0 <x<oo, Answer: T (W/2> +sinh™1 1)
10a. Find f; fy, f,(y for the following functions
() f(x,y) = x3-x2y2+y3
(i) f(x,y) = 2n(x2+y?)
(iii) f(x,y) = xcosy+ysinx
11b. The pressure P, volume V, and temperature T for 1 mole of an ideal gas are related by the
equation
PV = RT
where R is a constant.
Find the change in volume if both the temperature and pressure are increased by 1%.
12b. The temperature T in a body is given by
T = Ty (1 + ax + by) ez
where a, b, ¢, and T, (>0) are constants. Find the rate of change of T along x, y, and
z-axes at the origin. In addition, find the direction in which the temperature changes most
rapidly at the origin.
Answer: n= __(i_b’_c_)__
Va2 + b2 +c?
13a.  Show that if the independent variables x and t are changed to

£ = x+ct, n = x-ct,

the wave equation
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14a.

15a.

16b.

o*u 2 o%u )
—— = ¢"——, ¢ 1saconstant,

ot dx2
is transformed to

3%u -0
o€ an

dy .
te —= if
Compute Ix

y2—sinxy+x2 = 4.
The pressure P, the volume V and the temperature T are given by

P+ (v-p) = RT
v

where @, B, and R are constants. This is the Van der Waals’ equation.

oT A%
te — -—.
Compute 5p and 5T
The volumetric flow rate Q of a non-Newtonian fluid in a circular tube of radius R is given
by

nR> " 2
QR, ) = ——3_1 Yr2 Tz 9%
0

TR

where Tp and T, are the shear stress at the wall and at any point in the tube respectively. ?rl
is the shear rate, which is a function of the shear stress. By differentiating with respect to g,

show that the shear rate at the wall y R is given by

R
1tR3

YR = T Az

0., 40

Also, show that the viscosity m (?R), which is defined as the ratio of the shear stress to the
shear rate, can be written as
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17a.

18a.

19a.

20b.

21b.

. d(,ﬁn Q/nr3) B
n(7g) = —R— |3 + DELYET)
: (Q/nRr?) d(2nty)

The above result is known as the Weissenberg-Rabinowitsch equation.

Determine the order and degree of

2
9Y 439 _ooex (i) (y)-xy' =0

(@) ") "

Verify that e=2X (cq cos X + ¢, sin x) is asolution of y" +4y'+5y = 0.

Solve the following separable first-order differential equations

. ) ; X _ 3 .4

(1 x“dx +3y°dy = 0 Answer:—3—=—4—y +c
2

() xydx+V1-x>dy =0 Answer: y = ce’ 17X

v _ sinx . _ _T Lo _

) y = cosy (glven thatat x=m,y = 2) Answer: siny = —cos x

In a constant-volume batch reactor, the rate of disappearance of reactant A can be given by

dC
—A = kC}
dt A
Solve for C, given that Cp = Cp, at t=0. Discuss the obtained result for the cases n >1
and n< 1.
ky
In the reversible chemical reaction A : B + C, the amount of component A, broken
ky

down at time t is represented by .

dx 2
= ki (Ag-0) -k X

with A, representing the initial concentration of chemical A.

A
Assuming the rate constants k; and k, to be related as follows: k= —2—9- k, , show that
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22a.

23b.

24a.

25a.

26a.

A0+x

k =L
I Ay—-2y

3t

given the initial condition that ¥ =0 at t=0.

Solve the following homogeneous first-order differential equations

@) x+y)dx+xdy =0 Answer: x2+2xy = ¢
() xdy-ydx = VxZ+y? dx Answer: y +Vx2+y? =c x2
(i) (2VSt —S)dt+tdS = 0 Answer: texp'\/—%— =c

A mixture of liquids A and B is boiling in a vessel. The volumes of the components are
Va(t) and Vg(t). At t=0, the initial volumes are V4 (0) and Vg (0). The evaporation of
component A is proportional to the volume V() of A.

dV,®
dt

That is to say, = - V(D)

The evaporation of component B is related to the evaporation of component A as follows

dVp() _ dV,(®

dt dt - BVB(t) .
Show that
B n VA(t) ~ o An OCVA(t) + (B _ OC) VB(t)
VA(O) (XVA(O) + (B _ a) VB (O)

Solve the following reducible first-order differential equations

6)) (y-3x)dy+(y-3x+2)dx =0 Answer: 2(y+x)—An (Qy-6x+1)=c
(ii) Ry+x+1)dx = 2x+4y+3)dy Answer: 4x — 8y — An (4x + 8y +5)=c
Solve the following exact first-order differential equations

@ xdx +ydy = (x2+y2)dy Answer: 2n (x2+y2) = 2y +c
(ii) yeXydx+xeX¥dy =0 Answer: eXyY = ¢

Solve the following linear first-order differential equations
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27b.

28a.

29b.

30a.

31a.

@ y' +%Y =x; y(1)=0 Answer: y = i(—x—2+x2)
) y' -7y = eX Answer: y = ce7"—éex

Viscoelastic behavior can be described via a Maxwell model given by
d [
x+ho gp Tyx = B Yy

where Ty, is the shear stress, ?yx is the shear rate, P is the viscosity, and A is the

relaxation time. Show, using the appropriate integrating factor that the Maxwell model can be
written as

Tyx (1) dt’

T, = - [E_ (- t-)/xo} ;
where the dummy integration variable t' is interpreted as a time in the past. That is, t’ <t.

Complete Example 1.14-2 by computing the time evolution of c. Discuss the particular cases
where k; >>k; and k; <<k;j.

Solve the following Bernouilli equations

@) g—i +2xy = —xy4 Answer: y=3 =

+ce3

t\)lv-—

(i) 2 (x%2+7x- 8) +(6x+21)y 3 (x+8)2y53
Answer: y‘2/3 =xX+8[1+c(x-1)]

Solve the following second-order differential equations with constant coefficients

@) y"—4y' +7y = ex Answer: y = e2X (c;cos V3 x+ cosin V3 %)+ %i
() y"+4y = 4cos2x Answer: y = (cy +X) sin 2x + ¢, cos 2x
Solve the following differential equations via Laplace transform

@ y' () -5y (t) = 0 (subject to initial condition y (0) = 2) Answer: y (t) =2 edt

@ y'®W+y®) =2 (y@©0)=0andy'(0)=3) Answer: y(t)=2+3sint—2cost
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32b.

33a.

34a.

Solve the following system of differential equations via Laplace transform

Y1 =9Y1+3y,

y, = 4y, —4e'

for the following initial conditions: y;(0) =2, y; (0)=3, y2(0) =1, y, (0) = 2.

Answer: y; =et+e2t

yp = et

The differential equation, describing the motion of a manometer fluid, subject to a sudden
pressure difference AP =P, — P}, is given by

2
dk+ 6 515+3gk

- 5 =0
R°p dt 2L

dt?
where k =2h — (A—R)
Pg

p is the density of the fluid, p is the fluid viscosity, L is the length of the manometer fluid,
R is the manometer tube radius, and 2h is identified in Figure 1.P-33. Determine the relation
between k and t, for a step change in AP, at t=0. The conditionson h at t=0are: h=

dh _
0 and dt 0.

The differential equation governing the mixing process, illustrated by Figure 1.P-34, is given
by the following unsteady-state macroscopic mass balance

d

E{mtot = -Aw

where my,; = Vpg(t) is the total mass, and where w =p Q. Q is the volumetric flow rate
and p is the density.

At steady state, the mass balance reduces to
Wis — Wos = 0
Attime t=0, astep change Aw; is imposed.
Determine w (t), the mass flow rate at the outlet, using the Laplace transform method.

Answer: w,(t) = (WiS+AWi)+ %e—%t(WOS_WiS—AWi)
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po g
Iz h
Z
FIGURE 1.P-33 Motion of a manometer fluid
35a. In Problem 27b, it was deduced that the constitutive equation of a Maxwell fluid can be written

as
t
Y J -0y yar

A Maxwell fluid has been at rest and, at time t=a, a shear of magnitude 7y, was suddenly

imposed. Using the properties of the Heaviside and Dirac functions, deduce the shear stress
Tyx attime t. Consider separately the cases when t>a and t<a.
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36b.

37b.

wilt) ——

— W, (t)

FIGURE 1.P-34 Mixing process at constant volumetric flow rate

Solve the differential equation

dy -
Sty = o(t — a)

with y(0)=1, a>0,
@) by the Laplace transform method,
(i) by finding the integrating factor.

Consider the cases t>a and t < a separately. Answer: t>a, y=el+ et
t<a, y=et

Construct the Green’s function, needed to solve Equation (1.18-6), by applying the conditions
given by Equations (1.18-2 to 5). That is to say

1) determine the solution to the homogeneous equation for the cases t <x and t >X;

(i1) use the boundary and continuity conditions to determine the relations which have to be
satisfied by the constants;

(ili)  use the jump discontinuity condition of Equation (1.18-4) to determine the remaining
equation needed to solve for the constants that were generated in step (i).
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38a.

39b.

40b.

Then solve Equation (1.18-6) for f(x) = sin x, using Equation (1.18-1).

Answer: % %11— sin x ~ %x cos X

Solve the boundary-value problem
y'-y =eXx, 0<x<1
y@© =y(1) =0

by the Green’s function method. Choose the appropriate Green’s function from Table1.18-1.
Verify that the Green’s function you have chosen satisfies conditions (i) to (v).

A .y = X gX_gsinhx

e Y = 5 " 2 sinh 1

A uniform string of unit length and of mass m lies along the x-axis. Its two ends x =0 and

x =1 are fixed. The tensionis T. A periodic force f(x) cos wt is applied to the string. ® is

aconstant and t is the time. If y is the vertical displacement of the string, then y satisfies
the following equations

2 2

cza—y— —él = f(x) cos ot
ax? 3

c2=T/m

y©1H =yt =0.

Assume that y is of the form
y (X,t) = h(x) cos mt

and determine the differential equation and the boundary conditions that h has to satisfy.
Solve for h using the appropriate Green’s function. Hence determine y for the following f

6] fx) = a, 6(x -1/ 2) » 8, 1s a constant and 8 is the Dirac delta function.
(i) f(x) = x.

A first-order reaction A — products takes place in a tubular reactor of radius R and length
L inthe z direction.

Perform a mass balance over a differential element of thickness Az, to generate the
appropriate expression for the flux Ny, defined by Bird et al. (1960).

Differentiate Ny, with respectto z to generate Equation (1.16-44).
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41b.

In order to accelerate the aeration of a Newtonian fluid, a continuous belt has been introduced
in the fluid reservoir, as shown in Figure 1.P-41. The belt has a width W and a velocity V.
The belt transports a laminar film of liquid, up to a wall C as illustrated. As the air penetration
in the liquid film depends on the film thickness, we wish to establish a relation between the
film thickness & and the velocity V. Show that this can be done in the following way.

@) Perform a momentum (or force) balance over a length L to obtain the following shear
stress distribution

T, = pgxcosf
List all assumptions made.

(ii) Combine Newton’s law with this equation and show the velocity profile to be
pgeosP (2 5
VZ =-V+ —ZE—— (8 - X )

(iii)  Calculate the flow rate

w prd
Q=I f v,dx dy
o Jo

and deduce from the physics of the situation that

82 _ 3uv

pgcosP

FIGURE 1.P-41 Aeration of a fluid
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42b.

In the design of spray dryers, one is interested in knowing the time required to solidify the
liquid droplets. Estimate the time t¢ required to solidify a droplet of radius R if

@) the droplet is initially at the melt temperature T, and the surrounding air is at T,, as
shown in Figure 1.P-42,

(i1) the heat transfer coefficient h at the solid gas interface is constant,

(iif)  the sensible heat required to cool the droplet from T, to T,, is negligible compared to
the latent heat of fusion.

Perform an energy balance on the solidified spherical portion and show that the temperature
profile is given by

In performing this calculation, note that the heat flux q; is linearly related to the temperature
gradient % as follows

= k4T
9 dr
This is Fourier’s law. The constant k is the thermal conductivity.

Show that the heat loss to the surrounding air is given by

4mR*h (T, - T.))

%—1)(&1(&)”

2
Q = 4nR qur:R = (

~ d
Given that the heat loss at the liquid-solid interface (Rg) is —p AH 4n R% —;i, show that the
time required to solidify the droplet is given by

_(LRh ,1)| PRAH,
= (g & +3)L(TO—T°°)

where A ﬁf is the latent heat of solidification per unit mass.
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FIGURE 1.P-42 Solidification of a droplet






CHAPTER 2

SERIES SOLUTIONS AND SPECIAL FUNCTIONS

2.1 DEFINITIONS

In Chapter 1, we reviewed several of the standard techniques used to solve ordinary differential
equations (O.D.E.’s). In particular, we have seen that second order linear differential equations with
constant coefficients admit a solution in the form of an exponential function. Since the derivatives of
exponential functions are also exponential functions, the differential equation reduces to an algebraic
equation [see Equations (1.16-8, 9)]. If the coefficients of the differential equation are not constants,
then the solution is not of an exponential form. In this chapter, we develop methods of solving
0.D.E.’s with variable coefficients. As in Chapter 1, we consider second order O.D.E.’s. Higher
order O.D.E.’s can be solved by the same method.

A second order O.D.E. can be written as

a,(0) y" +2;(0 Y +2,(0 y =a(x) @.1-1)
where a,(x)#0 and ' denotes differentiation with respect to x.
Equation (2.1-1) can be written in standard form as

y'+py +pyy =b (2.1-2a)
where p; = a/a,, Py = ag/a,, b = a/a2 (2.1-2b,c,d)

We recall that if b is zero, Equation (2.1-2a) is homogeneous. The solution of Equation (2.1-2a) can
be written as

Y = Yn+Yp (2.1-3)

where y}, is the homogeneous solution and y,, is the particular integral. If b is zero, we have only

the homogeneous solution. The particular integral (or particular solution) is usually obtained by the
method of variation of parameters which is described in Example 1.18-1 and Section 2.5.

The solution of the homogeneous equation in the neighborhood of a point x, is assumed to be given
by a power series in (x —x,). The form of this series depends on the nature of the point x,. The
point X, is an ordinary point if both p; and p, are analytic at the point x,. We recall that a
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function f(x) is analytic at X, if its Taylor series about X, exists. That is to say, f(x) can be
represented by the series

fx) = Y a, (x=xq)" (2.1-4a)
n=0
a_ = f®x,)/n! (2.1-4b)

If one or the other (or both) coefficients (py, p) is not analytic at x,, X, is a singular point.
From Equations (2.1-2b, c), it can be seen that if a;(x,) is zero and either a;(x,) or ag(x,) is
non-zero, then X, is a singular point.

Example 2.1-1. Analyze the following equations for ordinary and singular points.

i) y +xy +(xZ-4)y =0 (2.1-5a)
i) (x=-Dy"+xy' +%y =0 (2.1-5b)
i)  x2(x-2%y"+2(x-2)y'+(x+1)y =0 (2.1-5¢)
We proceed by evaluating the functions p;, p;, and b and by determining the presence or absence
of singular points.
i) This equation is in standard form and

P = X, Py = x2-4, and b = 0 (2.1-6a,b,c)

These functions are analytic everywhere and all points are ordinary points.

if) The standard form of this equation is given by
" X ' 1 - _
Y1y Yo ! 0 (2.1-7a)
= X =1 db=0 -
P o1 Py = 3 -1’ an (2.1-7b,c,d)

p; is not analyticat x=1 and p, is not analytic at x=0 and at x=1. The singular
points are therefore at x=0 and at x =1 and all other points are ordinary points.

iii) The standard form of this equation is given by

yn+ 2(X—2) y|+ x+1

x2(x_2)2 x2(x_2)2 y =0 (2.1-8a)
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p, = ,2__2_% , p, = _2x_+1_5 , and b = 0 (2.1-8b,c,d)
X“(x~2) X“(x—-2)

Here, the singular points are at x =0 and at x =2,

If x, is asingular point of the differential equation and (x —x,) p; as well as (x —x 0)2 pp are both
analytic at x,, X, is a regular singular point of the differential equation. If not, x, is an
irregular singular point.

Example 2.1-2. Determine which of the singular points in Example 2.1-1 are regular singular
points, assuming X, = 0.

1) All points are ordinary points.

‘. X2

ii) (X=Xg) Py = Xp; = — (2.1-9a,b)
(x=%)2p, = x2p, = . (2.1-9¢,d)

Both (x —Xy) p; and (x - xo)2 p, are analytic at x =0 and therefore x,=0 1is a
regular singular point.

iii) (X—Xg)P; = XPy = )-(—(;(2_7) (2.1-10a,b)
(x=xg)*py = x?py = X+L (2.1-10c,d)
x-2)

xp; is not analytic at x =0 and therefore x, =0 is an irregular singular point.

Note that had we chosen x, =2 in part (iii), we would be dealing with

(x-2)p; = % and (x—2)2p2= x+21 (2.1-11a,b)
X X

which are analytic at x, =2 and therefore x,=2 would be a regular singular point.

In this chapter, we use power series extensively and we next summarize their properties.
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2.2 POWER SERIES

The series on the right side of Equation (2.1-4a) is a power series in (x —Xx,). By translating the

oo

origin to X, Wwe can write the series as Z a, x". The series converges at a point x if the
n=0

m
lim 2 a, x" exists and the sum of the series is the value of this limit. Every power series
m-—>o
n=0

converges at x =0 and its sumis a, Not all power series converge for all non-zero values of x.
There are three possibilities: (a) the series converges for all values of x, (b) the series converges for
some values of x and diverges for other values of x, and (c) the series diverges for all non-zero
values of x. We illustrate this situation by the following examples.

@ ), xM@!) = 1+x+x2 20+ %731+ .. (2.2-1a)
n=0

® D, x"=l+x+xiexd 4 (2.2-1b)
n=0

© 2, nlx" = l+x+21x%+31%7 + .. (2.2-1c¢)
n=0

The first series represents exp (x) and is convergent for all values of x. The second series is a
geometric series and its sumis 1/(1 —x) and is convergent if |x|< 1 and diverges if |x|>=1. The
third series diverges for all values of x (# 0). If a series converges for |x| <R and diverges for
|x| >R, R is the radius of convergence. It is usual to state that R is zero for series that converge
only at x=0 and R is infinite for series that converge for all values of x. Thus all power series
have a radius of convergence. A series may or may not converge at its radius of convergence.

In many cases, the radius of convergence R can be determined by the ratio test. We recall that the
series z u,, is convergent if the ratio

n=0
u .
—ntl| =, (2.2-2)

Uy

lim

n —>o0

is less than one (L. < 1). If L > 1, the series is divergent. No conclusion can be drawn if L =1.

Applying this test to the series 2 a, x", we have (x #0)
n=0
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n+1
im (201X | = pm |Zasli|y] = L (2.2-3a,b)
n—ee| g x" n—e| g
Thus if
i dhel i an
lim |2+ iix| <1 = |x| < lim (2.2-4a,b)
n-—oo a n-—>oo a
n n+1
the series is convergent. If
a
|x] > bLm 1 (2.2-5)
n—e a1
the series is divergent. It follows that the radius of convergence R is given by
. a
R = lim = (2.2-6)
P apg

The comparison test is another simple method of determining whether a series is convergent or
divergent. If 2 u, is convergent, the series 2 v, is convergent if v, < Kuy ;if 2 u, is
n=0 n=0 n=0
divergent, the series Z v, is divergent if v, =Ku, forall n and any positive constant K. This
n=0
test can also be stated as follows. If the ratio v, /u_ tends to a finite non-zero limit as n—> co, then

oo oo

2 v,, converges or diverges according as 2 u, converges or diverges.
n=0 n=0

oo [

The series 2 1/n is divergent and the series 2 1/n? is convergent.
n=1 n=1

Example 2.2-1. Discuss the convergence of the following power series.

) > x"/(1+n)’ b) D x"/(1+n) 0 Y x-2""/(1+2n)
n=0 n=0 n=0
2 2
a) R = tim [CFD | o gy (U207 (2.2-7ab,c)
el en? ] T (1 + 1/n)?
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The series is convergent if |x|< 1 and is divergent if [x|[>1. For x=1, the series

becomes 2 1/(1 + n)2 and by comparison with the convergent series Z 1/n2%, we
n=0 n=1

deduce that the series is also convergent if |x|= 1.

= lim |2+0| = .

As in a), the series is convergent if [x| <1 and divergent if |x|> 1. For x=1, the series

becomes Z 1/(1 + n) and since Z 1/n is divergent, it follows that Z 1/(1 +n) is also

n=0 n=1 n=0

divergent. If x=-1, the series 2 (D" (1 +n) is an alternating series. We apply
n=0

oo

Leibnitz’s test, which states that for an alternating series (—1)rl u,ifu. >u >0
g n n n+1

n=0
and lim u_ is zero, the series is convergent. In the present example, the series is convergent
n—joco
if x=-1.
C) In this case, we translate the origin and write
%
X7 = x-2 (2.2-9)
The series becomes Z (x*)zn/ (1 +2n).
n=0
R = lim |3+2n - (2.2-10a,b)

n——oofl+4+2n

The series is convergent if lx*|< 1 or |[x—2]< 1 and is divergent if |x*|> 1 or |[x-2]>1.
In this example x* is raised to an even power and there is no need to separately consider the
cases x =1 and x* =-1. To Ix*| =1 corresponds x=1 or x=3. At both of these

oo

values of x, the series behaves as 2 1/n and is divergent.
n=0

We make use of the following properties of power series.

If the series 2 a_ x" converges for |x| <R (R #0)and its sum is denoted by f(x), that is to say
n=0
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f) = ) a,x" (2.2-11)
n=0

the series can be differentiated term by term as many times as is required. The differentiated series
have the same radius of convergence R and converge to the corresponding derivatives of f(x). The
series can also be integrated term by term and the resulting series represents the integral of f(x).

oo

If 2 b, x" is another power series with radius of convergence R, the two series Z a x" and
n=0 n=0

2 b, x" can be added and multiplied in the same way as polynomials.
n=0

If two power series converge to the same sum throughout their interval of convergence, their
coefficients are equal. Further discussions on power series are given in Chapter 3.

2.3 ORDINARY POINTS

Consider the standard form of the second order O.D.E. as given by Equation (2.1-2a). We seek a
solution in the neighborhood of x,. Without loss of generality, we can set x,, to be zero. If x, is

non-zero, we can translate the origin and write

*

X = X=X, (2.3-1a)
In the new variable x*, x = X, corresponds to x*=0.

If we are required to find the solution at points near infinity, we change the independent variable from
X to xq and write

x; = 1/x (2.3-1b)
To points near x at infinity correspond to points near x; at the origin.

The functions p; and p, are analytic at x, (=0) and their Taylor series are

P = D, prpx" (2.3-2a)
n=0

pr(X) = D, Py X" (2.3-2b)
n=0

where i, = p”(0) and p,y, = po’ (0) (2.3-2¢,d)
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The homogeneous form of Equation (2.1-2a) can be written as

y"+(2 plnxn)y'+(2 p2nx“)y =0
n=0 n=0

The solution y also has a Taylor series near the origin and y can be expressed as

where ¢, (n=0, 1, ...) are constants.

Differentiating term by term yields

y' = Z ncnxn_1
n=1

=]

y" = Z n(n—l)cnxn_2

n=2
Substituting Equations (2.3-4a to c) into Equation (2.3-3) results in an equation of the form
kotk x+k,x2+ . +k, x"+.. =0

where k; are known expressions in terms of py;, pyg, and cp .

(2.3-3)

(2.3-4a)

(2.3-4b)

(2.3-4¢)

(2.3-5)

Equation (2.3-5) is true for all x and this implies that each of the k; (i=0, 1, ...) is zero. The
recurrence equation (k;=0) allows us to determine ¢, interms of pj; and py; . The next

example illustrates the method of obtaining a series solution.

Example 2.3-1. Obtain the power series solution of
(1+x2)y"+2xy'=2y = 0

in the neighborhood of the origin.

In standard form, Equation (2.3-6) is written as

N 2X g2 o
y+ y - y=0
1+x2 1+ x2

(2.3-6)

(2.3-7)
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The functions p; [=2x/(1 + x2)] and p [=-2/(1 + x2)] are analytic at the origin. We seek a
solution given by Equation (2.3-4a) with y' and y" given by Equations (2.3-4b, c) respectively.
For ease of computation, we write Equations (2.3-4a to ¢) such that the summation index starts from
zero. To achieve this, we write (n=r, n=r+1, n=r+2) in Equations (2.3-4a, b, ¢)
respectively. These equations are now written as

y =Y cx (2.3-8a)
r=0

y' =) @+ De k" (2.3-8b)
r=0

y' =D D@+ Doy, x (2.3-8¢)
r=0

To avoid having to expand (1 + x2)~!, we work with Equation (2.3-6) rather than with Equation
(2.3-7). Substituting Equations (2.3-8a to c¢) into Equation (2.3-6), we obtain

N [+2) @+ D X +@+2) @+ e, X 2+2@+ De,y x™ —2¢,x"] = 0

r=0
(2.3-9)
Comparing powers of x, we have
X% 2c5-2¢,=0 = ¢, =g (2.3-10a,b)
xl: 6cg+2¢-2¢; =0 = ¢3=0 (2.3-10c,d)
x2 12c4+2cy+4c,—-2¢, =0 = ¢4 = —cy/3 (2.3-10e,f)

x$: (s+2)(s+ e y+s(s-Dec+2sc~2¢, =0 = ¢, ,=—(s— 1)cs/(s + 1) (2.3-10g,h)

We note from Equation (2.3-10h) that we have a formula relating cg,, and cg and this implies that
we can separate the solution into an even and an odd solution. That is to say, we obtain ¢,, c4, Cg,

. in terms of cy and c3, C5, €y, ... interms of c¢q. In the present example, c5 is zero and
consequently all the coefficients with an odd index greater than or equal to three are zero. It follows
that the solution can be written as

y = ¢l +x2—x*3+x8/5- . ]+ ¢x (2.3-11)
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where ¢ andc; are arbitrary constants.

Note that Equation (2.3-6) is a second order O.D.E and has two linearly independent solutions y; and
y2. The general solution is given by the linear combination of y; and y,. There is no loss of
generality in setting cy and cq to be equal to 1. The fundamental solutions y; and y, can be
written as

y; = 1+ X2 —x*3 +x0/5- ... , Yo = X (2.3-12a,b)
The general solution y is expressed as

y = Ay; +By, (2.3-13)
where A and B are arbitrary constants.

The general solution of a second order equation involves two arbitrary constants (A and B) and they
are determined by the initial conditions [y (0) and y'(0)] or by the boundary conditions.

In Example 2.3-1, y, (=x) has only one term and is a valid solution for all values of x. The
solution y; is in the form of an infinite series and is valid as long as the series is convergent. From
Equation (2.3-11), it can be seen that y; can be written as

v = 1+x(x-x3B3+x°/5-...) (2.3-14)

The infinite series is convergent for |x|<1. At |x|=1, the series is an alternating series and by
Leibnitz’s test, it is convergent. The solution y; is valid for |x|< 1.

On expanding p; (x) and p,(x) in powers of x, we obtain
py(x) = 2x(1-x>+x*—x®+ ) (2.3-15a)
Py () = =2(1 -2 +x*—x%+..) (2.3-15b)

We note that the series in Equations (2.3-15a, b) are convergent for |x|< 1 and p;(x) and p,(X)
are analytic in the interval |x| < 1. The point (x =1) is a singular point (see Example 3.6-5). We
observe that the series solution about an ordinary point is valid in an interval that extends at least up to
the nearest singular point of the differential equation. This observation is not restricted to Example
2.3-1 and can be generalized to all power series solutions about an ordinary point. It must be pointed

out that it does not follow that there is no analytic solution that goes beyond the critical point of the
differential equation. In Example 2.3-1, the solution y, (=x) is valid for all values of x. The
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presence of singular points in a differential equation does not imply that all the solutions are singular at
the singular points. Further examples will follow to illustrate this statement.

2.4 REGULAR SINGULAR POINTS AND THE METHOD OF FROBENIUS

We recall that x, (=0) is a regular point if xp;(x) and x2 p2 (x) are analytic. That is to say,
xpy(x) and x2 p2(x) can be expanded as

Xp;(x) = ag+a X +a,x% + ... (2.4-12)
x2py(x) = by+byx +byx? + ... (2.4-1b)

Substituting Equations (2.4-1a, b) into Equation (2.1-2a) and considering the homogeneous case, we
obtain

y'+(@g/x+a +ax+ )y + (b0/x2 +b;/x+by +..)y =0 (2.4-2)
We seek a solution in the neighborhood of the origin and the leading terms of Equation (2.4-2) are

y" +@y/X) Y + (by/xHy =0 (2.4-32)
or x2y"+ agxy' +byy =0 (2.4-3b)

Equation (2.4-3b) is Euler’s (Cauchy’s) equidimensional equation. It admits a solution of the
form

y = x' (2.4-4)
On differentiating and substituting into Equation (2.4-3b), we obtain

x"[r(r-1)+ayr+b,] =0 (2.4-5)
To obtain a non-trivial solution (x*#0), we require

r(r-1)+asr+b, =0 (2.4-6)

Equation (2.4-6) is a quadratic in r and has two roots r; and ry. The two linearly independent
solutions are x'' and x"2.

Alternatively Equation (2.4-3b) can be transformed to an equation with constant coefficients by writing
x = et (2.4-7)

Using the chain rule, we obtain



100

ADVANCED MATHEMATICS

d_y = e—t (_ll
dx dt

2 2
y _ ( 4y, ot d_y)
dx?2 dt dt?

Combining Equations (2.4-3b, 8a, b) yields

2

d7y dy
—+(@,-1)—=+b,y =0
a2 0 Tqr

(2.4-8a)

(2.4-8b)

(2.4-9)

The coefficients in Equation (2.4-9) are constants and can be solved by the methods described in
Chapter 1.

Example 2.4-1. Solve the following Euler equations.

a)
b)

a)

b)

4x2y"+4xy' -y =0

x2y"—xy' +y =0

In this example, Equation (2.4-6) is
4r(r-1D+4r-1 =20

The two roots are
ry =12 and 1, =-1/2

The two linearly independent solutions are

y = x12 y, = x~12

The general solution is a linear combination given by

y = ¢;x 24 e x 12

In this case, Equation (2.4-6) becomes
rr—1)-r+1 =20
or r-1)2 =0

We have a double root (r=1) and we have only one solution

(2.4-10a)

(2.4-10b)

(2.4-11)

(2.4-12a,b)

(2.4-13a,b)

(2.4-13c)

(2.4-142)

(2.4-14b)
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y1 =X (2.4-15)
To obtain the other solution, we note that if f(r) has a double root at ry, then

f(r,) =0, f'(ry) =0 (2.4-16a, b)

This means that if Equation (2.4-6) has a double root, x" and i (x") are solutions of the

or
differential equation. To differentiate with respect to r, we write x” as exp (r An x). That is
to say

a—ar— (x" = ga; [exp (r £n x)] (2.4-17a)
= (4nx) exp (r £nx) (2.4-17b)
= x" Anx (2.4-17¢)

The other linearly independent solution is
yo = x Anx (2.4-18)

Alternatively, by changing the independent variable x to t [Equation (2.4-7)], Equation
(2.4-10b) can be written as

d’y _
dt?

dy
dt

2Y iy =0 (2.4-19)

The solutions are [see Equation (1.6-11)]
y; = et = x (2.4-20a,b)

yp = tet = x dnx (2.4-20¢,d)

Note that the exponent r is not necessarily an integer. This suggests that if we retain all the terms on
the right side of Equation (2.4-1a, b), we should try a solution of the form

y =x" ) c,x" (2.4-21)
n=0

where ¢ is not zero and r is any real or complex number.
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The series is differentiated term by term and substituted in the differential equation. On comparing
powers of X, we obtain a set of algebraic equations. The equation associated with the lowest power
of x is a quadratic equation in r [see Equation (2.4-6)] and is the indicial equation. The other
equations are the recurrence formulae and are used to determine the coefficients c, [see Equations
(2.3-9a to h)]. In general, the indicial equation yields two distinct values of r which are denoted ry
and ry. The two linearly independent solutions are

y; = D, ¢ x™*h (2.4-22a)
n=0

c, x"tn (2.4-22b)

n

M

Yo =

=
I
o

If the two roots coincide (see Example 2.4-1b) or the two roots differ by an integer, y; and y, are
not linearly independent and we have to modify our method. In the examples that follow, we consider
the three possible cases: the roots of the indicial equation are distinct and do not differ by an integer;
the two roots are coincident; and the two roots differ by an integer. This method of solving a
differential equation is called the method of Frobenius.

Example 2.4-2. Obtain a power series solution to the following equation
2xy" +(x+ 1)y +3y =0 (2.4-23)

in the neighborhood of the origin.

In this example
p;(x) = (x+1)/2x, p,(x) = 3/2x (2.4-24a,b)
xpy(x) = (x+1)/2, x2p, (X) = 3x/2 (2.4-24c¢,d)

From Equations (2.4-24a to d), we deduce that x =0 is a regular singular point. We seek a solution
of the form

y =D c,x"* (2.4-25)
n=0
On differentiating, we obtain

y'= ) @+nc,x"r! (2.4-262)
n=0
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y'= ) @+ (m+r-1)c, x"*2 (2.4-26b)

n=0

Substituting Equations (2.4-25, 26a, b) in Equation (2.4-23) yields

2 Ro+n@+r-De x" e m+nc, x" "+ m+1)c, XMy 3c x"=0
n=0

(2.4-27)
We compare powers of x. The lowest power of x is xt-1
Xl 2rr-1Decy+rcy=0 = c,lr@r-11=0 = r;=1/2 and r,=0 (2.4-28a-d)
X" 2(1+)@c;+reg+(I+1)c;+3¢y=0 = ¢;=~[B+1) ¢ )/[(r+1) 2r+1)]
(2.4-28e,f)
SR} (@+s+1) (r+s)cg, g +(s+r)c + (s+r+l)cg, 1 +3¢c, =0 =
Cop1 =—[(s+1+3) cs]/[(s+r+1) (2s+2r+1)] (2.4-28g,h)
Substituting the value of r = 1/2 into Equation (2.4-28h) leads to
Cor1=—[2s+Dcd/[22s+3) (s+1)] (2.4-29)
We can compute ¢y, ¢y, €3, ... and they are
¢y =-Tcy/[243] (2.4-30a)
Cy=—9¢c;/[2252] = 7 -900/[22- 5¢32] (2.4-30b,c)
c3=—11cy/[273] ==T+9+11 cO/[Z3 *7e5¢323] (2.4-30d,e)

We denote the solution corresponding to r=1/2 by y; and it can be written as

_ _Tg420,2_ 77 3 ] _
yq cox/i—{l Tx+2Lx2- TLx® o . (2.4-31)

From Equations (2.4-29, 30a to e), we deduce that

DS 2s+7)(2s+5) . 112907 ¢,
21 (25 43) Qs +1)..725¢30(5+1)(5)...3°2

C

(2.4-32)

s+1 =
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The right side can be simplified by the following identities

2s+7)...7 = (@2s+7)! 31
6! 25 (s +3)!
2s+3)..3 = _2SEI
2L (s 4 1)

Combining Equations (2.4-32, 33a, b) yields

. DT es+ g
[ =
ST 2851 (s +3)! (25 + 3)!

Setting n=s+ 1, Equation (2.4-34) becomes

D" 2n+95)! ¢,
2™ 151 m+2)! @n+1)!

The solution y; can be written as

y, = co’\/; i D" 2n +5)! x"
a0 215t m+2)! @n+ 1)

(2.4-332)

(2.4-33b)

(2.4-34)

(2.4-35)

(2.4-36)

To obtain the other solution y,, we consider the case rp =0. We substitute this value of rp in
Equation (2.4-28h) and to avoid confusion we denote cg by bg for the case ry =0. Equation

(2.4-28h) becomes
b, =-6+3)b/[s+1)(2s+1)]

The coefficients by, by, bz, ... are

by = —4b,/[23] = 4+3b,/[2°3]
by = —5b,/[3+5] = —5¢4¢3b,/[2¢33¢5]

From Equations (2.4-37, 38a to e), we deduce that

. DS s +3)(s+2) .. 50443,

s+1 = s+ 1)s..392¢@2s+ 1) (2s—-1)..5+3

(2.4-37)

(2.4-38a)

(2.4-38b,c)

(2.4-38d,e)

(2.4-39a)
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1 1
_ DT s +3) 2% s+ D! by

2(s+1)! 2s+2)! (2.4-39b)
1 s

D28 (s+3)! b,

- 2s + 2)! (2.4-39c¢)

Again setting s+ 1 =n, we find that the solution y, can be written as
D" 2" m+2)! x
=0 2.4-40
2= D0 E;) 2n)! ( )

The general solution y is a linear combination of y; and y, and can be written as

oo _1\0 | D alDRIRRY (IS B n
y = cgix ¥ (=™ 2n +5)! x b, D" 2" m2)r x (2.441)
20 2™ st (e 2) 2o+ 1) n=0 (2n)!

The arbitrary constants c and b, are determined from the initial conditions or the boundary
conditions.

From Equations (2.2-6, 4-29, 37), we deduce that the radii of convergence of the two series are

R = fim |-Ss|= fim [238*¥36+D}_ (2.4-42a.b.¢)
§—eo | o § —> 00 (2S+7)
s+1
b
R= lim |25 |= fim (CFDEs*D)_ (2.4-43a,b.¢)
s—e | p § —> 00 (S+3)
s+1
The solutions y; and y, are valid for all values of x.
Example 2.4-3. Obtain a series solution to the equation
2w ' 2 _
Xy +xy +x°y =0 (2.4-44)
in the neighborhood of the origin.
In this example, we have
Py = Ux, p =1 (2.4-45a,b)
X =1 2 = x2 -
p; = 1, X“p, = X (2.4-45c,d)

The origin is a regular singular point and the series solution is of the form
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y = ) c,x"* (2.4-46)
n=0
Differentiating and substituting in Equation (2.4-44) yields
3 la+nmer—1 e, x™ +m+nc, x"F4c, x"+ = 0 (2.4-47)
n=0
Comparing the powers of x, starting with the lowest power (n = 0), we have
XL Colr(r=1D+r] =0 = r = 0 (double root) (2.4-48a,b)
Lo [+Dr+(1+0] =0 = ¢; =0 (1=0) (2.4-48c,d)
x'+2, HIZ+DU+N)+Q2+D]+c, =0 = ¢, = —-c,/2+ r)2 (2.4-48e,f)
XS e s+ (Gs+r-D+(s+Dl+c,_, =0 = c = —c, ,/(s+ r)2 (2.4-48g,h)

Note that with r =0, we deduce that c; is zero. From Equation (2.4-48h), we deduce that if s is
odd, c¢ is zero. We consider the case where s is even and we write s =2m and Equation

(2.4-48h) becomes
2
Com = ~Com-2/2m)

The coefficients ¢;, ¢4, cg ... are given by

C2 = —C0/22
¢y = —C,/4% = ¢ /2% + 47
cg = —c4/62 = —co/[22°42-62]

From Equations (2.4-49, 50 a to e), we deduce that

Co = (D™, /12724267 . 2m)}]

1™ co/12*™) (m!)?]

One series solution can be written as

(2.4-49)

(2.4-50a)

(2.4-50b,c)

(2.4-50d,e)

(2.4-51a)

(2.4-51b)
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(2.4-52)

Equation (2.4-44) is Bessel’s equation of order zero and the equation of arbitrary order will be
considered later. It is customary to set cy=1 and to denote y;(x) by Jo(x). Equation (2.4-52)

becomes
(2.4-53)

In this example, the indicial equation [Equation (2.4-48a)] has a double root and the second linearly
independent solution is not readily available. Example 2.4-1b suggests that we look for a solution of
the form

y = 2nxJy(x)+ Y, b x" (2.4-54)
n=1
Note that if the double root of the indicial equation is 1, (#0), the form of the series solution is
y=Unx)y,(x)+ Y b, xM (2.4-55)
n=0

Differentiating y, we obtain

y' = AnxJy(x) +Jpx)/x+ ., nb, x"! (2.4-56a)
n=1
y' = dnxJg (0 +2T(0)/x-T,(0/x2+ Y, n(-1)b,x"? (2.4-56b)
n=2

Substituting Equations (2.4-54, 56a, b) in Equation (2.4-44) yields

'enx[xzj(')""’”(')'*‘ x2J0]+2XJ(')+ Y n@-1)b, x" + 2:] nb, x"+ Y b x"*2=0
n=2 n= n=1

(2.4-57)

The function J;, is a solution of Equation (2.4-44) and the terms inside the square bracket equal zero.
From Equation (2.4-53), we obtain
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' o (D™ (2m)x*™!
To®) = Y, TR (2.4-58)
m=1 (m!)

Substituting Equation (2.4-58) in Equation (2.4-57) and changing the indices appropriately such that
the summation index s starts from one (see Example 2.3-1), we obtain

. (—l)s x2S s+1 8 s+2
> +s s+ by, x* L +sb x*+b x*2| = 0 (2.4-59)
s=1 22572 (s—1)!

To obtain the coefficients by, we compare powers of x.

xl: by =0 (2.4-60a)
x:: ~1+42by+2b, =0 = b, =1/4 (2.4-60b,c)
x3:  6by+3by+b; =0 = by =-b/9=0 (2.4-60d,e,f)

One observes that by is zero if s is odd and we need to consider the even powers of x only.

m
x2m; - 2(‘1) +2m(2m-1) by +2mb, +b, 5 =0 (2.4-61)
2" m! (m-1)!
The recurrence formula is
(G
bym = - +byn2 2
Lzm-z m! (m—1)! (2m) (2.4-62)

The coefficient b, is known [Equation (2.4-60c)] and from Equation (2.4-62), we can obtain by,
bg, ... as follows

l_4p ]/ 3
by —-[4.2 21/16 = 128 (2.4-63a,b)

o
6 = —|24312! 36 = 13872 (2.4-63c,d)

The second solution, which is linearly independent of J;, is denoted by y, and is given by

ﬁ 3x4+ 11x6

4 128 13824

Yo = AnxJy(x) + (2.4-64)

From Equations (2.4-62, 63a to d), we can verify that the general term b,,,, can be written as
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-1
by, = N (1 +% + % + ..+ %) (2.4-65)
22m (m!)2
The solution y, is
y, = AnxJy(x)+ Y, by x*™ (2.4-66)
m=1

The general solution of Equation (2.4-44) is the linear combination of J; and y, and is
y=AlJ+By, (2.4-67)
where A and B are constants.

Note the presence of £Anx in y,. This implies that y, is singular at the origin. If the physics of the

problem require y to be finite at the origin, we require B to be zero.

Example 2.4-4. Solve the equation
22Dy -x*+Dxy +&xZ+ 1)y =0 (2.4-68)
in the neighborhood of the origin.

In this example, p; and p, are given respectively by

2 2
_ X+ B . VI (2.4-69a,b)

P = , 2
x(x2-1) x2(x2-1)

The singular points are at x=0, x=1, and x=-1. We further note that x =0 is a regular
singular point and we assume a solution of the form

y =2 cpxr (2.4-70)
n=0
Differentiating and substituting the resulting expressions in Equation (2.4-68) yields

Z {(n+r) (m+r-1)c, X2 _(nar) (n4r—1) ¢, X" "= (n+r)c, X2 (ngr) c, x"*°
n=0

s X2 c x| = g @2.4-71)

Comparing powers of x, we obtain
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X l-r-1-r+1}]=0 = 21

=0 = r =11 (2.4-72a,b,c)
x+1 ¢~ +Dr-r+11=0 = ¢ “+2r-)=0 = ¢y =0 (r=%1) (2.4-72d.e.0)

X2 e fr (1) =14 1]+ ¢y [- Q+1) (141) = Q+D)+1] =0 = ¢, = ¢y (r-1)2/[(2+1) >~ 1]

(2.4-72g,h)
xS, Co_p [(s+1-2) (s41-3) — (s+r-2)+1] + ¢ [~ (s+1) (s+r-1) — (s+r)+1] = O
= ¢ = ¢,y [(s+1-2) (s+1=M)]/[(s+1)*= 1] (2.4-72i,))
We deduce from Equations (2.4-72f, j) that cy=c3 =c5 = ... =0. Substituting the value of r=1 in
Equation (2.4-72h) leads to ¢, =0 and Equation (2.4-72j) implies that ¢4 =cg = ... =0. The
solution y; corresponding to r=1 is a polynomial (one term only) and is
y1 = CgX (2.4-73)

To determine y,, the solution corresponding to r =-1, we substitute this value of r in Equation

(2.4-72h) and we observe that the numerator (r — 1)2 is non-zero and the denominator
[(2 +r)2 - 1] is zero. This implies that ¢, is infinity and we must seek a solution of the form

y =y, &nx+ Y b x"1  (by#0) (2.4-742)
n=0
= coxAnx+ Y by x"! (2.4-74b)
n=0

On differentiating term by term, we obtain

y = cg(Anx+1)+ Y, (n-1)b,x"2 (2.4-75a)
n=0
y' = cofx+ ), @m-1)(m-2)b, x"7? (2.4-75b)
n=0

Substituting y, y', and y" in Equation (2.4-68) yields

3 l-D@=-2b,x™ ! = -1) (n1-2) b, x" ' = (n = 1) by x"* 1 = (n— 1) b, x""!

n=0

n

+b x" b x"1]_2¢x = 0 (2.4-76)
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We now compare powers of x.

x by (-2+1+1) =0 (2.4-77a)
x% by =0 (2.4-77b)
xl: 2by+by—by+by+by—2cy; =0 = by =c,2 (2.4-77c,d)
x3  ~(3)(2)by-b,~3by+by+by =0 = b, =0 (2.4-T7e,f)

From Equations (2.4-76, 77a to f), we deduce that

by=b3=..=0, bo#0, by=bg=..=0 (2.4-78a,b,c)
The solution y,, corresponding to r=-1, is given by

Y, = o X Anx +by/(2x) (2.4-79)

Without loss of generality, we can set cy=bg =1 and the two linearly independent solutions y; and
y, can be written as

y1=X, yp = xAn X+ 1/(2x) (2.4-80a,b)
The general solution of Equation (2.4-68) is

y =Ay;+By; (2.4-81)
where A and B are arbitrary constants.

Note that y, is singular at the origin and if the general solution y is finite at the origin, B has to be
Zero.

Example 2.4-5. Find a series solution to the equation

X2y +xy +(x%-1/4)y = 0 (2.4-82)
valid near the origin.

The origin is a regular singular point [x p;(x) = 1, x2 p2 (x) = (x2- 1/4)] and we seek a

solution in the form of Equation (2.4-70). Proceeding as in the previous example, we obtain

3 4 m+r=1) oy x™ T+ @41 ey XM e, XTI (1/4) ¢ x™ =0 (2.4-83)

n=0

n
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Comparing powers of x yields

xm rr-1D+r-1/41 =0 = r=%1/2 (2.4-84a,b)
x+1 qlird+n+(1+n-1/41 =0 = ¢, =0if r=1/2 2.4.84¢)
= ¢ is arbitrary if r=-1/2 (2.4-844d)

T+S

X0 g [(s+r) (s+r=-1) + (s+41) - 1/4]+¢c;_, =0 = ¢ = —-cs_z/[(s+r)2—- 1/4] (2.4-84e,f)
We now substitute the value of r= 1/2 in Equation (2.4-84f) and we obtain
cg= —¢g_of[s(s+1)] (2.4-85)

From Equations (2.4-84c, 85), we note that all the coefficients with an odd index are zero. Writing
s =2m, we obtain

Com = ~Cogm_1)/[2m) @m + 1)] (2.4-86)

From Equation (2.4-86), we compute the first few coefficients and they are

Cy = — CO/[2 * 3] (2.4-872a)
¢y = —Cyl[4+5] = ¢,/5! (2.4-87b,c)
cg = —Cc4/[67] = ¢/ T! (2.4-87d,e)

From Equations (2.4-86, 87a to €), we deduce that
= (<D™ cy/ @m + 1) (2.4-88)
The solution y, is given by
m 2m+ 12 m 2m+1

_ -1 — . x-12 hH x7" )
= Y Dl " 2 (2m+1), (2.4-89a,b)

m=0

In Equation (2.4-89b), the sum is sin x and y; can be written in closed form as
v, = cgx Y2 sinx (2.4-90)

To obtain y,, we substitute the value of r=-1/2 in Equation (2.4-84f) and we obtain
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c, = ~cg_o/[s (s—1)] (2.4-91)

The denominator is zero if s=1 and it is not possible to determine c;. From Equation (2.4-84c),
we deduce that c; is arbitrary and we can compute c3, cs, ... All these coefficients are non-zero.
The coefficients with even indices can be written as multiples of ¢ and those with odd indices are
multiples of ¢;. We compute the first few coefficients as follows

c,=—co/(2), cy=—Cyl(43)=cyfdl, cg=—cy/(6°5)=~cy/6!, .. (2.4-92a)

cy=-c;/(322), cs5=—c3/(5°4)=c /5!, cy=—cs/(T*6)=~c(/T!, .. (2.4-92b)
From Equations (2.4-91, 92a, b), we verify that

Cpn = (DM cy/2m)! Come1 = DMy /@m+ 1) (2.4-93a,b)

The solution y, can be written as

(2.4-94)

2 o (2m)! 2m+1)!

Note that the second term on the right side of Equation (2.4-94) is y; (with c; replacing cg). The

summation 3y, (~1)™ x?™/(2m)! is cos x and the two linearly independent solutions y; and y,
m=0
are, to the extent of a multiplicative constant,

V2 sinx , Yo = x V2 cos x (2.4-95a,b)

y; = x°
The general solution of Equation (2.4-82) is
y=Ay;+By; (2.4-96)

where A and B are arbitrary constants.

Observe that y, is singular at the origin and y; is finite at the origin. For solutions which remain
finite at the origin, we require B to be zero.

Example 2.4-6. Gupta and Douglas (1967) considered a steady state diffusion problem, associated
with a first order irreversible reaction involving isobutylene and spherical cation exchange resin
particles.

Equation (1) of their paper can be written as (see Equation A.IV-3)
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0= 8, [i 9 (r2 aﬂ”nzA (2.4-97a)

where R, = —kc, (2.4-97b)

Assuming cp, to be a function of r only (symmetry!), Equation (2.4-97a) reduces to an O.D.E. given
by

2
d
O ,plr? d C,f +2r A _Kkr?c, = 0 (2.4-982)
dr dr
The boundary conditions are
Cp = CA, at r=R (2.4-98b)
dc
A _90 = -
i at r=0 (2.4-98¢c)

We now solve Equations (2.4-98a—c) for ¢, via the method of Frobenius.

Note that the origin (r =0) is a regular singular point. We seek a solution of the form
cpa = ), cprtP (2.4-99)
n=0

In Equation (2.4-99), the exponent involves p, so as to avoid confusion with the radial variable r.

Differentiating Equation (2.4-99) and substituting the resulting expressions in Equation (2.4-98a)
yields

2 [c, m+p) (+p-D) " P +2 (m+p)c P - Kcnr“+p+2] =0 (2.4-100a)
n=0

where K = k /8,5 (2.4-100b)
Comparing powers of r, we have
P co(P)(P-D+2pcy =0 = p(p+1) =0 = p=0 and p=-1 (2.4-101a,b,c,d)

tI*P ¢ (1+p) (P)+2(1+p)cy = 0 = ¢, (1+p)(2+p) = 0

c;=0, if p=0
= (2.4-101e,f,g,h)
cy is arbitrary, if p=-1
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_ Kcg 5
ST (s+p) (s+p+1)

r3*P: ¢ (s+p) (s+p—1)+2(s+p)c,—Ke, , =0 = ¢ (2.4-101i,j)

To determine cg, we substitute the values of p in Equation (2.4-101j)

Kcs_2
%= s+’

for p=0 (2.4-102)

Equation (2.4-101h) states that ¢y =0 if p=0.

Therefore, ¢, =0 if s is odd. We proceed by replacing s by 2m and Equation (2.4-102)
becomes

Kc
_ 2m-2 _
Com = 2m (2m + 1) (2.4-103)
We compute the first few coefficients as follows
=Ko Ko _ Ko (2.4-104a,b)
2% 7730 4T Es TS e
and deduce that
K™c
- 0 -
Com = (2m + 1)! (2.4-105)
One solution is
- KM
C‘A‘1 = Cy m (24‘106)
m=0 )
Substituting the other value of p in Equation (2.4-101i), we obtain
K Cs—2
= —— 2.4-107
=60 (2.4-10D

In this case, we have two arbitrary constants, c, and c;. This implies an even as well as an odd
solution. To compute the even solution, we replace s by 2m and Equation (2.4-107) becomes

Keoma

Com*= 2m-1m) (2.4-108)
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As before, we obtain

_ ch0
“2m= o

(2.4-109)

For the case where s is odd, we write

Keym 1

Com+1 = Cmyem+ 1) (2.4-110)

In terms of ¢y, we obtain

K™ Cq
Com+1 = (2m + 1)! 2.4-11D
Another solution to Equation (2.4-98a) is

m2m1 m2m

K™ 2m-l
Cp,= coz S +c12 oDl (2.4-112)

Note that the second term on the right side of Equation (2.4-112) is equal to the right side of Equation
(2.4-106).

Therefore, Equation (2.4-112) is the general solution of Equation (2.4-98a).

The solution can be written in a closed form by observing that

i 2m i 2m+1
h = X , i = R S 4-
cosh x 2 2m)! sinh x 2 Zme D) (2.4-1133,b)
m=0 m=0
Equation (2.4-112) can be written as
cA=ErQ coshrvK +ch sinhrvK (2.4-114)

Differentiation yields

g?A:-—‘ig—coshM/_K—+c0’\/—smhrr smhr’\/—~+clr

dr r r

coshr «/E

(2.4-115)

and applying the boundary conditions requires

e, = 2 coshRVK +Lsinh RVK (2.4-116a)

1
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0= [—cocoshr4/K_+cOr4/K—sinhr'\/K —clsinhrW/E+c1rW/€coshr'\/K ]/r2

(2.4-116b)
On evaluating Equation (2.4-116b), as r— 0, we obtain cy=0.
We now have
ca, = 2 sithRVK (2.5-117)
and substituting for ¢y in Equation (2.4-114) yields the final result
cp. R sinhr W/E
Cp = —1 (2.4-118)

rsinh RVK
which is Equation (2) in Gupta and Douglas (1967).

Before summarizing the Frobenius method, we note that Equation (2.4-98a) can be transformed to a
much simpler equation involving constant coefficients.

Replacing cp by @ transforms the equation to
d%u
—-Ku =0 (2.4-119)
dr?
with solution
u = cycoshrvK +c¢;sinhrvK (2.4-120)

and with c, correctly given by Equation (2.4-114).

We summarize Frobenius’s method of finding a solution near a regular singular point as follows. We
assume that the solution is of the form

y =3 cpx™T, cg#0 (2.4-121)
n=0

We differentiate the series term by term and substitute the resulting expressions in the differential
equation. On setting the coefficient of the lowest power of x to zero, we obtain a quadratic (for a



118

ADVANCED MATHEMATICS

second order equation) equation in r. We denote the two solutions by r; and r,. We now consider

the following three cases.

(a)

(b)

(©)

2.5

r; and rp are distinct and do not differ by an integer. By comparing powers of X, we obtain
a recurrence formula that allows us to obtain c;, ¢y, ¢3,... interms of ¢ and ry (or rp).

The two linearly independent solutions are

yi =, ¢, (rp)x™*n (2.4-122a)
n=0

Yo = 3, ¢, (ry) XM (2.4-122b)
n=0

r; =1p. In this case, one solution y; is given by Equation (2.4-122a). To obtain the other
solution, we assume a solution of the form

y =y Anx+ Y, b, x"*N (2.4-123)

n=0

We proceed as in case (a) to obtain by,

ry and r, differ by an integer. Let us assume that ry >r,. The solution y; can be obtained
as in (a). We try to compute the coefficients cg with the value of r=r,. If all the

coefficients can be computed as in Examples 2.4-5 and 6, the second linearly independent
solution y, is obtained. If, in the computation of cg, we have to divide by zero as in

Example 2.4-4, we assume a solution in the form of Equation (2.4-123) and proceed to
calculate b,. Note that in case (b) one of the solutions always has a 2n x term whereas in

case (c) this is not the case (see Examples 2.4-5 and 6).

If one solution is known, we can obtain the second solution by the method of variation of
parameters and this is explained in the next section.

METHOD OF VARIATION OF PARAMETERS

We use the method of variation of parameters to find a second linearly independent solution of
Equation (2.1-2a) if one solution is known. Let y; be a solution of Equation (2.1-2a) and we assume

a second solution to be given by

yX) =uxy;x) (2.5-1)

On differentiating and substituting y, y', and y" in Equation (2.1-2a), we obtain
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U(y]+P 1Y + Doy +u Ry + Py +u'y, = 0 (2.5-2)

Since y; is a solution of Equation (2.1-2a), Equation (2.5-2) simplifies to

u Qy;+pyy)+u'y; =0 (2.5-3)

We substitute u' by v and Equation (2.5-3) can be written as

dv _ 2y1+P1Y;
f dv = - f (_—3’1—) dx (2.5-4)

On integrating, we obtain

Anv = —-24n yl—fp1 dx (2.5-5a)

or vV = (1/y12) exp (—fp1 dx) (2.5-5b)

One further integration yields

u = f {(ny) exp(—fpldx)

The function u is generally not a constant and the second linearly independent solution y, is

dx (25~6)

Yo = u(X)y;(x) (2.5-7)

Example 2.5-1. Obtain a second linearly independent solution of Equation (2.4-68) given that one
solution y; is Xx.

We assume that the second solution is

y = xu(x) (2.5-8)
We substitute y, y', and y" from Equation (2.5-8) in Equation (2.4-68) and we obtain

w3 -D]Fu 22D -x2 2+ D] = 0 (2.5-9)
We denote u' by v and Equation (2.5-9) becomes

x(xz—l)%+(x2—3)v =0 (2.5-10)
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Equation (2.5-10) can be written as

2
dv _ =(x7-3) 44 (2.5-11a)
v o oxx3%-1)

{1 L+ 1 _3 -
Lo L3 ax (2.5-11b)

On integrating, we obtain

v=c x2-1/x3 (2.5-12)
where c; is a constant.
The function u is obtained by integrating v and is found to be

u=c [Anx+1/2xH]+K (2.5-13)
where K is a constant.
Combining Equations (2.5-8, 13) yields

y = cyx[&nx+1/2x?)] +Kx (2.5-14)
The second linearly independent solution can now be identified to be

Y, = x [Anx+1/(2x2)] (2.5-15)

There is no loss of generality in setting c;=1 and Kx isy;. Equation (2.5-15) is exactly
Equation (2.4-80b).

2.6 STURM LIOUVILLE PROBLEM

In the previous section, it is stated that the general solution of a second order O.D.E. is a linear
combination of two linearly independent solutions. To determine the two constants, we need to
impose two conditions. In many physical problems, the conditions are imposed at the boundaries and
these problems are boundary value problems. Many of the second order boundary value problems can
be stated as follows

cy) +(@+Apy = 0, a<x<b (2.6-1a)
subject to
a;y(@+a,y'(a) =0 (2.6-1b)

by (b)+b,y'(b) = 0 (2.6-1¢)
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where r, p, and q are continuous real functions of x, A is a constant parameter (possibly
complex), aj, ap, by, and b, are constants.

The system defined by Equations (2.6-1a to ¢) is the Sturm Liouville problem. Equation (2.6-1a) can
be written as

ry' +1r'y' +(q+Ap)y =0 (2.6-1d)

Many of the equations in mathematical physics are special cases of Equations (2.6-1a or d) and some
of them are given next.

(a) Simple harmonic equation
y'+Ay =0 (2.6-2a)
(In this case, r=p=1, q=0.)
(b)  Legendre equation
1-x3)y"-2xy'+2 L+ 1)y =0 (2.6-2b)
or [(0-x®)y]+2R+1)y=0 (2.6-2¢)
[In this case, r=(1 —x2), q=0, p=1, A=2 (£ +1).]
(©) Bessel equation

We denote the independent variable by X and write Bessel’s equation as

2

294 Wiz vhy =0 (2.6-2d)
_9 _
dx dx

On setting X = X ﬁ Equation (2.6-2d) becomes
x2y"+ xy' + (kxz—vz) y=0 (2.6-2¢)
or xy") + (Vv /x +Ax)y = 0 (2.6-2f)

(In this case, r=x, q=—v2/x, p=X.)
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(d)

Hermite equation

y'~2xy' +py =0

2

2
or €e* y)Y+pe™*y =0

2
(In this case, r=p=e"*, q=0, A=p.)

(2.6-2g)

(2.6-2h)

In general, the non-trivial solution (y # 0) of Equation (2.6-1a) depends on A and it is only for some
values of A that the boundary conditions [Equations (2.6-1b, c)] can be satisfied.

These values of A are the eigenvalues (characteristic values) and the corresponding functions

y (X, A) are the eigenfunctions (characteristic functions).

Example 2.6-1. Solve the equation

y'+Ay =0

subject to the conditions

y© =0 y@m=0

(2.6-3a)

(2.6-3b,c)

We assume A to be real and it can be positive, zero, or negative. We consider these three cases
separately.

(a)

A < 0. For convenience, we set A =-m? and the solution of Equation (2.6-3a) is

y=cye™+cye™™X
where ¢; and ¢, are constants.

To satisfy Equations (2.6-3b, c), we require

0

H

Cl +C2

0

m(c, e™"-c,e™™7)

The only solution of Equations (2.6-5a, b) is
Cl =C = 0

This leads to the trivial solution (y = 0).

(2.6-4)

(2.6-5a)

(2.6-5b)

(2.6-6a,b)
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(b) A =0. The solution is now given by
y =C3+CgX (2.6-7)
where cg and c4 are constants.
The boundary conditions imply
c3=c4=0 (2.6-8a,b)
Again the only possible solution is the trivial solution.
(c) A>0. Weset A =n?. The solution is
y = Cg Sin DX + Cg COS NX (2.6-9)
where cs and cg are constants.
Applying Equations (2.6-3b, c) yields
0 = cg (2.6-10a)
0 = csncosnn (2.6-10b)

Equation (2.6-10b) implies that either c5 is zero which leads to a trivial solution or that
cos nt is zero which provides the non-trivial solution. The cos function has multiple zeros and
cos nx is zero if

n=@Qs+1)7/2 s=01,2,.. (2.6-11)

The system defined by Equations (2.6-3a to c¢) has an infinite number of eigenvalues and they are
given by

2
A= (320 s=o012. (2.6-12)

The corresponding eigenfunctions are

y, = sin(25F1)x (2.6-13)

Note that the eigenvalues are real, positive, and discrete. Such properties are associated for example
with discrete energy levels in quantum mechanics.

Next we discuss the general properties of the Sturm Liouville problem.
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The Eigenvalues Are Real

Suppose A is complex and this implies that y is also complex. Taking the complex conjugate of
Equations (2.6-1a to c¢) and noting that r, p, q, a;, a;, by and b, are real, we obtain

¥ +(@+Ap)y =0 (2.6-14a)
2,7 @ +a,y' (a) =0 (2.6-14b)
b, F(b)+b, ¥ (b) = 0 (2.6-14c)

where y is the complex conjugate of y.

We multiply Equation (2.6-1a) by y and Equation (2.6-14a) by y and subtract one from the other to
yield

A-Mpyy=yay) -yay")' (2.6-15)

On integrating, we obtain

b b
(7v~7»)j pyydx = j [yy') -y@y"')1dx (2.6-16a)
a a
b b
= [yr§'—'37ry']a—f (y'ry'=y'ry")dx (2.6-16b)
-0 (2.6-16¢)

To obtain Equation (2.6-16c), we have used boundary conditions [Equations (2.6-1b, ¢, 14b, ¢)].
Since the eigenfunctions are non-trivial, Equation (2.6-16c) implies that A = A, that is to say, A is
real.

The Eigenfunctions Are Orthogonal

Let A and A (A, #A_) betwo eigenvalues and their corresponding functions are y, and yy,.
The functions y, and y,, satisfy

tyy) +(@+A,py, =0 (2.6-172)

a;y,(@+a,y (@ =0, by, (b)+byy (b) =0 (2.6-17b,c)
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Cyn) +@+rA, Py, =0 (2.6-182)

a;yp(@+a,yp@ =0, by (®)+byy, (b) =0 (2.6-18b,c)

We proceed as in (i), that is to say, we multiply Equations (2.6-17a, 18a) by y,, and y,
respectively, subtract one from the other and integrate the resulting expression to yield

b
(Kn—Km)f PYaY¥pdx =0 (2.6-19)
a

We have assumed that A # 7\,m and it follows that

b
f PYpYmdx =0 (2.6-20)
a

The functions y, and y,, are orthogonal with respect to the weight p(x). If A, =A_, Equation
(2.6-20) is no longer true and

b
f pyldx =12 (20) (2.6-21)
a

The eigenfunctions can be normalized and we define the normalized eigenfunction y: to be
%
Y, = Vo1, (2.6-22)

Equations (2.6-20, 21) can be expressed as

b b
f py: y; dx = f PYntm gx = & (2.6-23a,b)

a a In Im nm
where 8, is the Kronecker delta and is defined by

0, ifn#m

Snm = . (2.6-24a,b)
1, ifn=m
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2.7 SPECIAL FUNCTIONS

The solutions of Equation (2.6-3a) are hyperbolic functions (A < 0), polynomial (A =0), and
trigonometric functions (A > 0). The properties of these functions are well known. The solutions of
Equations (2.6-2b, e, g) are referred to as special functions and their properties have been investigated
and recorded. Since the beginning of the eighteenth century, many such functions have been
considered and their properties are listed in Erdélyi et al. (1953, 1955) and in Abramowitz and Stegun
(1970). In this section, we consider Legendre polynomials and Bessel functions.

Legendre’s Functions
Legendre’s equation can be written as

(1-x2)y"-2xy' +ky = 0 (2.7-1)
where k is a constant.

In Chapter 35, it is shown that if Laplace’s equation in spherical coordinates is solved by the method of
separation of variables and if axial symmetry is assumed, the equation in the 8-direction is Legendre’s
equation with x =cos 8. Thus the poles (8 = 0, 7) correspond to x = =*1.

We seek a solution near the origin, which is an ordinary point, and propose y to be of the form
y =2, cyx" 2.7-2)
n=0
On differentiating term by term and substituting y, y', and y" in Equation (2.7-1), one obtains

D nm-De x" 2= nm-1c, x"-2 Y ne,x"+k D, ¢, x" = 0 (2.7-3)
n=2 n=2

n=1 n=0

Following the procedure described in Example 2.3-1, we make a change in the indices so that in all
cases the summation starts from r=0to c. Equation (2.7-3) becomes

[+2) (+ 1) ¢y X = (142) (14 1) €y X2 2 (et D, X ke, xT] = 0 (27-4)

M s

..‘
I
o

We now compare powers of x

x0:0 2c,+kcy =0 = ¢, =-(k/2)¢, (2.7-5a,b)
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xl: 3e2c5-2¢ci+ke; =0 = c3=¢,2-k/6 (2.7-5¢,d)

X< 4¢3 cy—2¢cy—2%2¢cyH+kc, =0 = c4=cz(6—k)/12 (2.7-5¢,0)

xS: (s+2)(s+1)cg p—8(s=1)cg—2sc +ke, = 0 = Coyn = € (s2+s—k) /(s+2)(s+1)
(2.7-5g,h)

The solution can be separated into an even function and an odd function. The even function involves

Cg, €3, C4, ... and we denote this function by y;. The odd function y, is in terms of c;, c3,

Cs, ... From the recurrence formula [Equation (2.7-5h)], ¢,, c4, ... can be expressed in terms of
co and c3, cg, ... interms of c;. The general solution can be written as

Yy =Coyrtc1yz (2.7-6)

where c(, and c; are arbitrary constants.

From Equation (2.7-5h), we deduce that the radius of convergence R is

Cn+2 n2+n'—k

n

= lim

n—oc0

R = Ilim

n—oe

=1 (2.7-7a,b,c)

n2+3n+1

To examine the validity of the solution at x = 1, we consider the special case of k = 0.
Equation (2.7-5h) now becomes
Copn = sC/(s+2) (2.7-8)

We note from Equation (2.7-5b) that in this case c, is zero and this implies ¢4 =cg=...=0 and
y1 Is given by

Y1 = €o (2.7-9)

In this case, the even solution is a constant and is valid for all values of x including x =+1. From
Equation (2.7-8), we deduce that y, is given by

o = ey x (1+x2/3+xY5+x5/7 + ..) (2.7-10)

For values of x ==*1, we determine that the series diverges by comparing it with 2 1/n. We note

that x ==*1 are singular points and, for this special value of k, one solution is valid at the singular
points and the other is not. This result can be extended to general values of k. For convenience, we
set k=2 (£ + 1) and Equation (2.7-5h) becomes
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Copn = C (sz+s—22—£)/(s+2)(s+l) = ¢, (s—2) (s+2+1)/ (s+2)(s+1) (2.7-11)

From Equation (2.7-11), we observe that if £ is a non-negative integer, cy, , is zero and so are
Cp,a» Cpig» - Thus the infinite series becomes a polynomial and the solution is valid for all values

of x. Inparticular, if £ is even, the even solution (a polynomial) is valid for all values of x and, if
2 is odd, the odd solution is a polynomial. The case we considered earlier is k=0 (£ =0) and

the even solution is a constant. In general, for any integer £, the degree of the polynomial is £.
These polynomials are the Legendre polynomials and are denoted by P, (x). The constants ¢

(or c¢y) are chosen such that P, (1) is unity. The first few Legendre polynomials are shown in

Figure 2.7-1 and are

P,(x) = 1, P, (x) = (2.7-12a,b)

|
>

P, (x) = % Bx2-1), P;® (2.7-12¢,d)

i
N p—
—_
n
>

38
|
w
>4
N’

FIGURE 2.7-1 Legendre polynomials

A relatively easy method of computing P, (x) is to use Rodrigues’ formula which can be written
as

2
P,x) = -4 2-p? 2.7-13)

2% 0y dx*
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The Legendre polynomials can also be obtained by using the generating function (1 —2xt+t2)_1/2.

Expanding this function in powers of t yields

oo

z P, (%) (2.7-14)

V 1- 2xt+t 2=0

Another method of determining P, (x) is to use the recurrence formula which can be written as
(A+DPy 1 (x) = 22+ DxP, (x)-2P,_; (x) (2.7-15)
Knowing P, and P;, we can calculate P,, Ps, ...

An important property of the Legendre polynomials is the orthogonal property. From Equations
(2.6-2c, 20, 21), we deduce that the Legendre polynomials are orthogonal with respect to weight one.
The orthogonal property can be written as

Spm (2.7-16)
+1

1
P, X)P_(x)dx = —2
f—l g " 24
where 0, is the Kronecker delta.

The second linearly independent solution of Equation (2.7-1) can be obtained by the method of
variation of parameters. We denote the solution by Q, (X) and assume that

Qyx) =ux)Py x) (2.7-17)

On differentiating Q, (x) twice and substituting the resulting expressions in Equation (2.7-1) with
k=2 (2 +1), we obtain

u[(1-x2) Py —2xPy +2 (2+1) Py1+ (1-x2) @"Py+2u'P,) —2xu'P, =0 (2.7-18)
Since P, is a solution of Legendre’ s equation, Equation (2.7-18) sifnplifies to

(1-x2)Pyu"+u' [2 (1-x3)P, —2xP,] = 0 (2.7-19)
On writing u' = v, Equation (2.7-19) can be written as

%Z— +2v [, /Py —x/(1-x)] = 0 (2.7-20)

Equation (2.7-20) is a first order O.D.E. and the integrating factor LF. is
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LF. = expf [2P,/Py) - 2x/(1-x?)] dx

exp [24nP, + £n (1-x?)]
— 2 2
= (I—X )P'e
Equation (2.7-20) can be written as
2 2
Lvaxhrii=0
The solution is
v = C/[(1-x?) P}

where C is a constant.

It follows that Q) (x) is given by

dg
(1-E) P2 E)

mw=cmmf

(2.7-21a)

(2.7-21b)

(2.7-21c)

(2.7-22)

(2.7-23)

(2.7-24)

The functions P, (x) and Qp (x) are Legendre’s polynomials of the first and second kind.

Example 2.7-1. Calculate the Legendre polynomials of the second kind, Q, (x) and Q; (x).

From Equations (2.7-12a, 24), we have

QMM=CI =
1-¢)

| e

n {Lﬂ}

1-x

|
Sle!

dg

it
S

It is usual to choose C to be one and Q, (x) is given by

(2.7-25a)

(2.7-25b)

(2.7-25¢)
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Q) =1 ln{ll‘“i] (2.7-26)

Expanding Q, (x) about the origin yields

Q, (0 = % [x—x22+x313 =x*4 + .. = (~x=x212-x3/3 =x%4 - )] (2.7-273)

= Xx+x3/3 + ... (2.7-27b)

From Equations (2.7-12b, 24), we obtain

Q, (x) = Cx f Z—CET (2.7-28a)
g a-&)
*T1 .11 1
_ fo {?+5(1—_g+m}dg (2.7-28b)
_ 1 1+
= CX[ 1 )zn(l_x } (2.7-28¢)

As in the case of Q (x), we choose C to be one and Q, (x) is given by

Q () = % 4n (1—+L ~1 (2.7-29)

1-x

Expanding the £n function in powers of x, we obtain
Q) = -1+5 *+x¥/3+...) (2.7-30)

From Equations (2.7-26, 29), we note that Q, and Q; have singularities at x ==*1. The infinite
series given by Equations (2.7-27b, 30) are the infinite series solutions of Legendre’s equation and are
valid for | x| < 1. For 2=0 (2 is even), the even solution P,(x) (=1) isvalidat |x|=1 and the
odd solution Q, (x) is not valid at | x| = 1. Likewise for £ =1 (2 is odd), the odd solution P,(x)
(=x) isvalid at x| =1 and the even solution Q;(x) is not valid at | x| = 1.

The other Legendre functions of the second kind can be computed from the recurrence formula

(B+1DQup,; =x(1+22)Q,-2Q, 4 (2.7-31)
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Note that the recurrence formulae for both P, [Equation (2.7-15)] and Qp [Equation (2.7-31)] are
identical.

The general solution of Legendre’s equation can be written as

y = AP, (0+BQ, (x) (2.7-32)

where A and B are constants and £ is a non-negative integer.

The function Q, (x) is singularat |x| =1 and if we require the solution y to be finite at |[x| =1, B

has to be zero.

The associated Legendre equation can be written as

2
(1-x2) d—§—2xd—y+[£ (L+1)-m?/(1-x3)]y =0 (2.7-33)

dx dx
where £ and m are integers.

If m is zero, Equation (2.7-33) reduces to the standard Legendre equation [Equation (2.7-1)].
Equation (2.7-33) is derived from Laplace’s equation in spherical coordinates [see Equation
(5.5-37b)]. The additional term m?2 y/(1- xz) represents the non-symmetric contribution.

We start by considering the simplest case (m = 1) and Equation (2.7-33) becomes

2
(1-x2)‘—1-3’2——2xd—y+[£ R+D-(1-xHHy=0 (2.7-34)

dx dx

One would be tempted to introduce a series solution; however, the following procedure provides us
with an ingenious way of solving the problem.

The Legendre polynomials P, (x) satisfy the equation

(1-x2)Py—2xP, + 2 (A +1)P, = 0 (2.7-35)
Differentiating with respect to x yields

(1-x2)P, —4xPy + L (£+1)P, = 0 (2.7-36)
A new function w(x) is defined by

wx) = (1-x!"2 p, (2.7-37a)
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oo Py=(1-xH""wE (2.7-37b)

On differentiating, we obtain

P, = (1-x3" 2w +x(1-x)"w (2.7-38a)

P, = (A-x)2w'+2x (1 -x)2 we w (1 +2x2) (1 -x2) ™2 (2.7-38b)
Substituting Equations (2.7-37b, 38a, b) in Equation (2.7-36) yields

A-xHw'-2xw+w[2@+D)-1-xH1 =0 (2.7-34)

This is Equation (2.7-34) with y =w. By convention, the solution of the associated Legendre
equation is denoted by P;n (x). From Equation (2.7-37a), we deduce that

P, = (1-x)H" Py (2.7-39)
In the general case, P;n (x) is given by

m 2.m/2 de£
P2 x) = (1-x°) _— (2.7-40)
xm

Similarly the associated Legendre function of the second kind can be computed from the
formula

m 2mz 4" Qg
Qy(x) = (1~-x)"" —— (2.7-41)
dx™
The functions Qj;l (x) are singular at | x| = 1.
The general solution of Equation (2.7-33b) is
y = APy (X +BQj () (2.7-42)

where A and B are constants. If y is finite at x| = 1, B has to be zero.

The polynomial P p’ is of degree £ and we note from Equation (2.7-40) that if m > £, P;n (x) is

)m/2

zero. The function P;n is defined for £ >m. Note that due to the term (1 - x?2 in Equation

(2.7-40), P? is a polynomial iff m is even.
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Properties of the Legendre and the associated Legendre functions of both kinds are listed in the
references cited earlier.

Bessel Functions

Bessel functions were introduced by Bessel in 1824, in the discussion of a problem in astronomy.
Bessel’s equation occurs in the solution of Laplace’s equation in cylindrical coordinates [see Equation
(5.5-8a, 1b)]. It can be written as

x2y" + xy' + (x2-v?

)y =0 (2.7-43)
where v 1is a constant.

The origin is a regular singular point and we seek a solution of the form
y= Y c,x"** (2.7-44)
n=0

Differentiating term by term and substituting the resulting expressions in Equation (2.7-43) yields

oo

[(+1) (n+r—1) ¢ X" T+ (n+n) e x" T 4c x"*2_vic x"] = 0 (2.7-45)
n=0

Comparing powers of x, we obtain

X% el (r=D+r-v1=0 = r=2%v (c,#0) (2.7-46a,b)

xT+1 Cilr(r+ D) +(r+ 1)—V2] =0 = ¢; =0 (2.7-46¢,d)

x5 e [(s+1) (s+r—1)+(s+r)——\12]+cs_2 =0 = cs=—cs_2/[(s+r)2—v2]
(2.7-46¢.1)

For r=v, Equation (2.7-46f) becomes
¢, =—c,_o/[s (s +2V)] (2.7-47)

From Equation (2.7-47), we can compute the even terms ¢, €4, Cq, ... Writing s =2p, Equation
(2.7-47) can now be written as

¢op = ~Cop2 [12° P (P +V)] (2.7-48)
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The first few coefficients are

cy = —co /127 (1 +V)] (2.7-49a)
¢y = —c, /22 2+W)] = ¢, I2Y @ 1 +v) 2 +V)] (2.7-49b,c)
cg = —c, /22 B)B+W)] = =, /12° Q) B) (1 +v) 2 +V) B +V)] (2.7-49d,¢)

Equations (2.7-49a to ) suggest that
Cop = 1P o /[22p PHA+v2+Vv)..(p+V)] (2.7-50)

It can be verified that Equation (2.7-50) satisfies Equation (2.7-48). One solution of Equation
(2.7-43) can be written as

y=co Y, CDPxPV/RP EHA+V)2+V) .. (p+ V)] 2.7-51)
p=0

If v is a positive integer, the product (1 +V) (2+V) ... (p + V) can be written as (p +W!/v! . To
give a meaning to V! when Vv is not an integer, we define the gamma function I"(v) by

I(v) = f ' letde, v>0 (2.7-52)
0

The condition that v is positive is necessary so as to ensure the convergence of the integral.
C(v+1) = ] tV e tdt (2.7-53)
0
On integrating by parts, we obtain

Vet T +v f Ve tdt (2.7-542)
0

'iv+1

= vI(V) (2.7-54b)

From Equation (2.7-53), we deduce that

r() = f e tdt = 1 (2.7-55a,b)
0
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Combining Equations (2.7-54b, 55b) yields
rey=1, I@3)=2Tr2)=2<1, T'4 =3T'B) =321 (2.7-56a-¢)
Generalizing Equations (2.7-56a to €), we obtain

rev+1) =vt and Ol =1 (2.7-57a,b)

for v 20.

Equation (2.7-54b) can be used to define I'(v) for all values of v (#0,-1,-2, ...). Thatis to say,
we define T"(v) as

rwv) =[Cv+Dilv (2.7-58)

If -1<v<0, then O<v+1<1 and TI'(v +1) is defined. It follows from Equation
(2.7-58) that I'(v) is defined. Similarly if —2<v <-1, then v +1 lies between -1 and O,
and I'(v + 1) has just been defined. Similarly, the function I'(v) is defined for all negative non-
integers. From Equation (2.7-58), we deduce that I'(0) can be defined as

I'o)y = lim I'(v) = lim
v—0 >

v—0

f%f_ll = foo (2.7-59a,b,c)

It follows from Equation (2.7-58), that I"(v) is *eo for all negative integers. The graph of T'(v) is
shown in Figure 2.7-2. We note that (see Chapter 4, Problem 9b)

r{asn) =Vn (2.7-60)
Equation (2.7-51) can be written, in terms of gamma functions, for all positive v, as
y=co 3 CHPxPHY T+ 1) /2% ) T(p+v+1)] (2.7-61)
p=0

By choosing ¢ tobe 1/ [2v I'(v+1)], we obtain the Bessel function of the first kind of order v
and it is denoted by J,, (x). That is to say

L, = > DPxPV/RPY @) Tp +v+ 1) (2.7-622)
p=0
=Y EOP PV /IpH T +v+ 1) (2.7-62b)

p=0
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FIGURE 2.7-2 Gamma function

Thus one solution of Equation (2.7-43) is J, (x). If v is not an integer or zero, the other solution is

obtained by considering the other root of the indicial equation [Equation (2.7-46b)]. That is to say, the
other solution is J_,, (x) and is written as

L, = Y, DP 2PV Te-v+ 1] (2.7-63)
p=0

Note that whereas J,, (x) has no singularity at the origin, J_,, (x) is singular at the origin.

For v (# 0 or an integer), the general solution of Equation (2.7-43) is

y =AJ,x)+BJ_,(x) (2.7-64)
where A and B are constants.
If the solution is finite at the origin, B must be zero.

We recall that if the two roots of the indicial equation are coincident or differ by an integer, the two
linearly independent solutions are not obtained in a straight forward manner as described earlier for
non-integral values of v. If v is zero, the two roots are coincident and this case has been considered
in Example 2.4-3. If the two roots differ by an integer, this implies that 2v (r; =V, rp=-V) is
an integer. We consider the two cases where 2v is an odd or an even integer separately. In Example
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2.4-5, we solved the case where 2v is one. We recall that if 2v is one, c{ is not necessarily zero

[see Equation (2.4-84d)] and we have one solution starting with ¢, and the other starting with c;.
By assigning to ¢ and ¢ the values given earlier, we obtain J;, (x) and J_;/, (x). Similarly,

Jy(x) and J_, (x) are obtained in the case where 2v is an odd integer. If 2v is an even integer, Vv

is an integer and from Equation (2.7-63) we note that the series starts from p=V since
I'(p—v+1) is o for p<v. Writing q=p-v, Equation (2.7-63) can be written as

oo

Iy = X DTV x22V /1(q+ W) (@) (2.7-65)
q=0

Comparing Equations (2.7-62b, 65), we deduce that
v
Ly =D J,® (2.7-66)
If v isan integer, J,, (x) and J_,, (x) are not linearly independent.

Since J,, (x) is known, the other linearly independent solution can be obtained by the method of
variation of parameters. This method yields

x [J, )]

The solution y, is usually not considered. Instead, the Bessel function of the second kind
Y, (x) is defined as

Y, (x) = [J,®) cos v —-J_,, (x)] / sinvn (2.7-68)

From Equation (2.7-66), we conclude that both the numerator and the denominator on the right side of
Equation (2.7-68) are zero. By applying I’Hopital’s rule, we deduce that Y, (x) exists in the limit as

v tends to an integer. Thus, the general solution is
y=AJ,x)+BY,(x) (2.7-69)
where A and B are constants.

The function Y,,(x) hasa £n (x/2) term (see Problem 19b) and is singular at the origin. If y is
finite at the origin, B is zero.

If v is not an integer, the solution of Equation (2.7-43) is given by Equation (2.7-64 or 69), but if v
is an integer only Equation (2.7-69) is valid.
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We recall that there are circumstances when it is preferable to work with exp (+ix) rather than with
sinx and cos Xx. Equally, there are circumstances when it is preferable to choose Hankel
functions (Bessel functions of the third kind) of order v as solutions of Equation (2.7-43) instead

of J, (x) and Y,,(x). These Hankel functions Hi,l) and HE,Z) are defined by

HY = 1 0 +iY,® (2.7-70a)
H® = 1,00 -i Y, () (2.7-70b)

The functions Hf,l) and HS2) are linearly independent and the general solution of Equation (2.7-43)

is a linear combination of Hs,l) and HS,Z). From Equations (2.7-70a, b), we obtain

Jy(0 =1 @D +H?) 2.7-71a)
Y, 0 =4 @ -H) (2.7-71b)

The functions J, and J; are shown in Figure 2.7-3 and Y, and Y; in Figure 2.7-4. Table 2.7-1
lists some properties of Bessel functions.

FIGURE 2.7-3 Bessel functions of the first kind
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-

Yv(x)‘

FIGURE 2.7-4 Bessel functions of the second kind

The functions J_,, (x), Y, (x), Hf,l) (x) and Hf,z) (x) have the same recurrence relations as the

function J,, (x).

TABLE 2.7-1

Properties of Bessel functions

®» XYL =x"1,_®
i  xVI,®]'=-xVI,

i) Ty )+, 0 = 2T,
V) 5 0-3,,,0 =21, ®

V) f xV J,_1(x)dx = x" J, (X) + constant

(vi) f xVJ,,;(x)dx = xV J, (x) + constant
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The function J, (x) has an infinite number of zeros and we denote the zeros by A,, n=1,2, ...
That is to say

JyA) =0, n=1,2,.. (2.7-72)

The orthogonal property of J,, (x) can be written as

1 0 if m#n
] xJIy A x) Iy (A x)dx = (2.7-73a,b)
0

ZU 1 if m=n

Example 2.7-2. Compute J;,,(x), using the results of Example 2.4-5.

In Example 2.4-5, we have solved the Bessel equation for the case v ==*1/2 and the two linearly
-12 “12 005 x [Equations (2.4-95a, b)]. We recall that in
the definition of J, (x), the multiplicative constant (c) is 1/ R2Yrev+nl

independent solutions were x sinx and X

Using the properties of the gamma function, we deduce that J;,, (x) and J_;/,, (x) are given by

= 1/_2__ i
Jllz(X) . Sin X (27_74)
J =4/ 2
~12(0) = 2 cosx 2.7-75)

From Table 2.7-1, we obtain

L ® = L3,,00-7 1, (2.7-76a)
— 2 (sinx _ -
=2 (SIRX _ cos x| (2.7-76b)

Modified Bessel’s Equation

The modified Bessel’s equation is of frequent occurrence in applied mathematics [see Equation
(5.5-8a)] and can be written as

2y +xy —(x2+v)y =0 2.7-77)

Comparing Equations (2.7-43, 77), we note that they differ only in the coefficient of y. By writing
z = ix, Equation (2.7-77) becomes
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2 d2y dy 2

z —+z———+(22—-v

Yy =0 2.7-78
dz?  dz Y ( )

Equation (2.7-78) is exactly Equation (2.7-43) with z being replaced by x and the linearly
independent solutions of Equation (2.7-77) are J,, (ix) and J_,, (ix). That is to say, they are Bessel

functions with purely imaginary argument. Usually, the solution needs to be given in the form of real
variables and J,, (ix) and J_,, (ix) are not in a suitable form.

We seek a series solution as described previously for Bessel’s equation. The solution we obtain can
be denoted by I, (x) as follows

L, = Y 2PV /[EHT @ +v+ )] (2.7-79)
p=0

Comparing Equations (2.7-62b, 79), we deduce that

.= . —inv/2 .
I,(x) =i "I, (ix) = e"™V/2] (ix) (2.7-80a,b)

Note that we have already established that the solution of Equation (2.7-77) is J,, (ix) and to obtain

the real part of the solution we multiply J,, (ix) by a complex constant (™). The function I, ),

defined by Equation (2.7-79), is real. If v is not an integer, the two linearly independent solutions
are I, (x) and I_,, (x). If v is an integer, we define a new function K, as

I

I—v" Y
sin VI

(2.7-81)

Ky =2

The function K, (x) is linearly independent of I, (x) and the limit as v tends to an integer is

defined. The two linearly independent solutions of Equation (2.7-77) for all values of v (including
integral values) are I, (x) and K, (x). The properties of all Bessel functions are given in Watson

(1966).

Many second order linear differential equations can be transformed to Bessel’s equation (or to another
standard equation) by a suitable substitution. Kamke (1959) and Murphy (1960) list several such
possibilities.

Example 2.7-3. A simplified form of the equation governing the linear stability of a Newtonian
fluid flowing between two parallel walls can be written as (Rosenhead, 1963, p. 524)

2
d” %,
dn2

4

d %, _in
4

dn

-0 (2.7-82)
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where x , 1s related to the stream function and 1 is related to the distance from the centre of the

channel. Both quantities are complex and we wish to solve Equation (2.7-82).

Equation (2.7-82) can be reduced to a second order equation by writing

2
d
uw= 2 X0 (2.7-83)

dn2
Equation (2.7-82) becomes
2
—— —inu =0 (2.7-84)
dn
We now write

u=n"v (2.7-85)

Differentiating and substituting into Equation (2.7-84), we obtain

2
112d%y | o122 dV ] -3

n : In™%y —in*yv = 0 (2.7-86)
dn dn

We further transform the independent variable 1 by introducing z as

z = % )2 (2.7-87)
The chain rule yields
dv - 124y = §(3) dy (2.7-88a,b)
dn dz 2 dz ) ’
2 213 42 ~1/3
d’v _ _(1 Z) dv 1 (1 Z) dv (2.7-88¢)
Substituting Equations (2.7-88b, c) in Equation (2.7-86) yields
2 d?v dv 2
- —+z2—+(Z“-1/9v =0 (2.7-89)

dz? dz

Equation (2.7-89) is Bessel’s equation of order 1/3. Since we are dealing with complex functions, we
write the solution in terms of Hankel functions. The two linearly independent solutions of Equation
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(2.7-89) are H(11/)3 (z) and H(l% (z). It follows that the fundamental (linearly independent) solutions

of Equation (2.7-84) are

1 .
uy = 2 E { % (m)a/z] (2.7-90a)

u, = 2 H), [ %_ (m)s/z] (2.7-90b)

On integrating twice, we obtain two solutions for ¥ .

2.8 FOURIER SERIES

In Section 2.6, we have seen that the Sturm-Liouville system generates orthogonal eigenfunctions.
Trigonometric functions sin nx, cosnx, Legendre polynomials P, (x) and Bessel functions

J, (A, %) are among the eigenfunctions we have encountered. We recall that the eigenfunctions y,, (x)
and y,,(x) are orthogonal with respect to weight p (x) if

b 0 if m#n
f PX)Yyn(X) ym(xX)dx = (2.8-1a,b)

Ir% if m=n

We assume that the integral exists and this means that the functions are square integrable. These
square integrable functions generate a space (L, space) and since n can be infinity, the dimension

of the space is infinite.

The orthogonal property of y, reminds us of the property of orthogonal vectors and we state some of

the properties of vectors, which are presented in more detail in Chapter 4. Usually, the dimension of
the space is finite and if the dimension is n, we can choose n vectors 21> 82 - »>8n which are

linearly independent as bases. These bases are orthogonal (not orthonormal) if
0 if i#]

gitgj=(gi8j) = | | (2.8-2a,b)
I (0) ifi=j

The product 8i*8j (Or<§i’§j>) is the scalar (dot or inner) product and I, is the
magnitude of the vector g;. If u is any vector in the space, u can be expressed as

n
u = 2 C; 8 (2.8-3)
i=1

where ¢; are constants and are obtained by forming the dot product of u with g 2 That is to say
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n

(u,gj) =D cifgigj) = ¢ Ij2 (2.8-4a,b)
i=1
We deduce that
¢ = (u, g;)/1; = (u. g;)/ (g &) (2.8-5ab)

Having been inspired by these properties of vector spaces, we now continue with function spaces and
we regard the functions y, as the basis of the infinite space, and the integral in Equations (2.8-1a, b)
as the inner product. The magnitude y,, which is denoted by ||y || is the norm of y,. That is to
say

b
1Yall® = (Ypr ¥n) = f p) Y2 () dx = I2 (2.8-6a,b,c)

a

We now represent a function f(x) by a linear combination of y,, and write
N
f(x) = Y, ¢, ¥p® (2.8-7)
n=1

To determine the constants c,, we make use of the orthogonal property of y,. Forming the inner
product, we find that c, is given by

¢ = (£Y,) /Iy, (2.8-82)
b

(f.yq,) = f p(x) f(x) y, (x)dx (2.8-8b)
b

lyall” =f p(x) [y, (01 dx (2.8-8¢)

We need to examine in what sense the sum (letting N —> o) approximates f(x) in the interval
[a, b], with c, defined by Equation (2.8-8a). Usually, we consider pointwise approximation

and the difference between the sum and the function f(x) is small for all values of x in the interval.
The sum converges to f(x) if

< € (2.8-9)

N
f(x)- 2 CuV¥n
n=1
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for each € >0 whenever N> N, and for all x in the interval.

Another approximation which is widely used in the treatment of experimental data is the least square
approximation. Using the least square criterion, we require that the integral

b 2
f p(x) [f(X) —2 c, yn] dx be a minimum. We demonstrate that this is the present case. Let
a

b N ) b ) N N )
D=f PO [f- Y, c,y,l dx =f PO [F°—2f 3 cyyp + (2 cpy,) 1dx

n=1 n=] n=1
(2.8-10a,b)
D is afunction of ¢, and D is a minimum if
oD
— =0, =12, .. 8-
ac, s=1,2 (2.8-11a)
On differentiating, we obtain
ao [ <
5 = f p0[-2fy +2y, Y, ¢, y,]dx (2.8-11b)
s a n=1
and using the orthogonal property of y,, we write
oD b 2
—— = f p(x) [-2fy +2c y Jdx (2.8-11¢)
dcg a

Minimizing D implies that cg is given by Equation (2.8-8a). The approximation in this case is in the

N

least square sense. If D—> 0 as N — o, the sum Z C,y, converges in the mean to
n=1

f(x). The series is the Fourier series and the coefficient c, is the Fourier coefficient. If for

b N

every f(x) for which f px)f 2 dx is finite, 2 C, Y, converges in the mean to f(x), the set of
a n=1

functions (yj, Yy, ...) is complete and the space they span is a Hilbert space.

Note that in this case the requirement is that the integrals exist and the function can have a jump
discontinuity in the interval. The function y, can be continuous though f(x) can be discontinuous.

N
If f(x) has a jump discontinuity at x,, the sum 2 C,y, converges to % [f(xg, ) +1(xy )],
n=1
that is to say, to the mean value of f(x) as x approaches x; from the left and from the right.
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Trigonometric Fourier Series

The trigonometric functions sin x and cos x are periodic with period 2r. A periodic function f(x)
of period T is defined by Equation (1.1-14).

For simplicity, we assume f(x) to be defined in the interval [-m, w]. If f(x) is defined in the
interval [a, b], then the transformation

x* = 2n[x-(a+b)/2]/(b-a) (2.8-12)
transforms the interval [a, b] to [-m, &].

The orthogonal property of cos x and sin x can be written as

T
( sinnx cosmxdx = 0, forall m and n (2.8-13a)
Jon
( T T
sinnx sinmx dx = j cosnx cosmxdx = wd (2.8-13b,c,d)
4 -7

where O, is the Kronecker delta.

The functions sin x and cos x form an orthogonal basis in the interval [-mt, ©] with unit weight
T

[p(x)=1]. If f(x) is periodic and of period 2n and f 2 dx is bounded, the Fourier series
-7

converges in the mean to f(x). That is to say

f() = Lag+ Y. [a, cos nx +b,, sinnx] (2.8-14a)
n=1

n

a = % f £(x) cos nx dx (2.8-14b)
-7
I

b, = %j f(x) sin nx dx (2.8-14¢)
-

The coefficients a,, and b, given by Equations (2.8-14b, c) are special cases of Equation (2.8-8a).

Note that we have written - a, and not a; so that the formula for a, [Equation (2.8-14b)] is

2
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applicable to a,. Recall that if f(x) has a jump discontinuity at x,, the series converges to

21 (xg,) + £ (xo))

Example 2.8-1. Determine the Fourier series for the function f(x) defined in the interval (-, ©t) by
f(x) =x, -M<x<™N (2.8-15)

and periodic with period 2r.

To what value does the series converge at x =7/2 andat x=m ?

From Equations (2.8-14b, c), we obtain

= 1 ( dx = 1 { zjl 0 6
aO _J X dx 4= = (28-1 a,b,C)
r X Sin nX n nnx
-1 - 1 si 1 si
an = __J Xxcosnxdx = —[——-———} — j dx =0 (2.8*16d,€,f)

T T

| . _ 1 xcosnx] ™ |, 1 COS NX 2( 1)

bn—Ef xsmnxdx—E[———n——Ln+Ef —T—dx (2.8-16g,h,1)
-7 -

Substituting a, and b, in Equation (2.8-14a), we obtain

_zi (-1 i
n=1

The periodic function f(x) is sketched in Figure 2.8-1. The function is continuous at x =n/2 and
the series converges to the function. That is to say

sin nx (2.8-17)

n2 =2 ED” Gnnr2) (2.8-18a)
n=1
6‘1)25+1
= 2 sin [(2s + 1) /2] (2.8-18b)

Il

- D
2 EO ETFa] (2.8-18¢)
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We note that sin (n7/2) is zero when n is even and if n is odd, we write n=(2s + 1) with
$s=0,1,2,... and sin[2s+ D7r/2] = (-1)°.

f(x){k

-3 _27/-1” ‘{T 27J/3|7T
1 -
/ O / x

FIGURE 2.8-1 Periodic function of period 2n

From Equation (2.8-18c), we deduce that

- -1° _ )
% ST = /4 (2.8-19)

At x =1, the function is discontinuous and the sum converges to —é— [f(r—0)+f (x+0)]. Thatis

to say

Litm-0)+tm+0) = -2 Y, CU sinan (2.8-20)
n=1

From Figure 2.8-1, f(r-0) is &, f(®+0) is —x, and sinnm is zero. Both sides of Equation
(2.8-20) are zero.
L

Even and odd functions are defined in Chapter 1.
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The functions cos x, x20 (n is an integer) are even functions and the functions sin x, x @n+1) are
odd functions. If f(x) is an even function

£0) = 0 (2.8-21)
and if f(x) is odd
£(0) = 0 (2.8-22)

The product of two even (or odd) functions is an even function and the product of an even and an odd
function is an odd function. If f(x) is an even function, all coefficients b, are zero and Equations

(2.8-14a to c) reduce to

f(x) = %— ag + Z a, cos nx (2.8-23a)
n=1
T
a, = 2—[ f (x) cos nx dx (2.8-23b)
T
0
b, =0 (2.8-23c)

Similarly, if f(x) is an odd function, we obtain

f(x) = Y, by sinnx (2.8-242)
n=1
n

b, = % [ f(x) sin nx dx (2.8-24b)
0

Note that we have made use of the fact that

T 0, if f(x) isodd
I f(x)dx = (2.8-25a,b)

T

T
2]0 f(x)dx, if f(x) iseven

In many situations, it is known that f(x) has a period of 2r but is defined only in the interval
0 < x <. Mathematically, it is possible to define f(x) to be even or odd, but usually the physics
of the problem dictates whether f(x) is even or odd (see Chapter 5).
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Consider a rod of length 7 in the interval 0 <x <7 with temperature distribution T (x). If the
end x=0 is insulated, it implies that at x =0, dT/dx is zero. From Equation (2.8-21), we
deduce that T is even. If the temperature at x =0 is kept at a constant temperature T, by writing

fx) = T-T, (2.8-26)

we obtain f(0) =0. From Equation (2.8-22), we deduce that T is an odd function.

Example 2.8-2. The function f(x) is periodic and of period 2. It is defined by

f(x) = x, O<x<m (2.8-27a)
Obtain the Fourier series of f(x) if: (a) f is odd; and (b) f is even.
Case (a) is considered in Example 2.8-1. The function f in case (b) is sketched in Figure 2.8-2.

From Equations (2.8-16e, f, 23b), we obtain

T
a = 2 f X cos nx dx (2.8-27b)
T Jo
= 2 [cosnx)™ (2.8-27¢)
n| n? 0
= _—4——5 . s=0,1,2,... (2.8-27d)
nt(2s+1)
©
a, = 2 f xdx = (2.8-27¢)
T 0

Substituting a, in Equation (2.8-23a) yields

- COS (2s+1)x (2.8-28)
0 (2s+1)?

X =

o[

_4
T



152 ADVANCED MATHEMATICS

FIGURE 2.8-2 Even function

Note that both series on the right side of Equations (2.8-17, 28) represent the same function in the
interval 0 <x <m, but not in the interval -t < x <0.

At x =0, the function is continuous and from Equation (2.8-28), we deduce that
2

2.8-29
g 2s + 1) 8 ( )

If f(x) has a Fourier series, that is to say, f(x) can be represented by Equations (2.8-14a to c), the
series can be integrated term by term. This means that

X X oo X
I f(x)dx = %] a, dx + z f (a, cos nx + b, sin nx) dx (2.8-30)
X Xo n=1 JXxg

0

where x| is arbitrary.

If f(x) has a Fourier series, the series can be differentiated term by term, if f'(x) is piecewise
continuous and f(-mn) = f ().

Under the conditions stated earlier, we can write
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S x=0)+1" (x+0)] = Y, [n(~a,sinnx + b, cos nx)] (2.8-31)

n=1

where a, and b, are defined by Equations (2.8-14b, c).

Equations (2.8-14a to c¢) can be written in an alternative form. Recall that

CosSnNX = %[ei"’we-i""] (2.8-322)
sinnx = i [einX - g~inX] (2.8-32b)

Substituting Equations (2.8-32a, b) in Equation (2.8-14a) yields

f(x) “% %2 [a, "X +e7I0%) _ib_(e!™* —e7IN%)] (2.8-33a)
~ % %Z inX(a —ib ) +e iM% (a, +ib )] (2.8-33b)
= ) cel™ (2.8-33¢)

N=—occ

where

' T
1 o .. B i
5 (a,—ib,) = 511?]‘ f(x) [cosnx —isinnx] dx = élﬁf_ f(x) e '"* dx

T T
(2.8-33d,e.f)
Note that Equation (2.8-33f) is valid for both positive and negative values of n.
Example 2.8-3. Determine the Fourier series for f(x) defined by
f(x) = eX, —m<x<=®m (2.8-34)

and with period 2m. This function is shown in Figure 2.8-3. Calculate the sum of the series at
X = T.



154 ADVANCED MATHEMATICS

fix)

1__/ L L

- o] m 3w X

FIGURE 2.8-3 Periodic function eX

The coefficients c, are given by [Equation (2.8-331)]

n
c, = L j eX ™1™ dx

n2n n (2.8-35a)
1 e(1 —-in)x T
2r| 1-in . (2.8-35b)
(l + ln) T f el -7t ..
= ——————é; [e” (cosnt—isinnw)—e™ " (cos N7 + isin nm)} (2.8-35¢)
2n(l +n
= —((1{'—”’—); [(=1)" sinh 7] (2.8-35d)
n(l+n
Combining Equations (2.8-33c, 35d) yields
. < _1\® : inx
ex = siohm § CD (d+ime (2.8-36a)

T n=—oo (1 +n2)
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_ sinhm Z 2 1)" (cos nx —nsinnx) + i (ncos nx + sin nx) (2.8-36b)
L (1+n )
Taking the real part, we obtain
X o smhn z (-1)" (cos nx — nsin nx) (2.8-37a)
n=— oo (1+n )
- smhn ':1 +22 (- 1) (cos nx —nsin nx)] (2.8-37b)
n=1 (1 +n )

The imaginary part can be shown to be zero in the following way.

oo -1
Z (ncos nx + sinnx) = 2 (ncos nx + sin nx) + Z (ncos nXx + sin nx) (2.8-38a)

n=-—oco n=—oo n=1

1 o0
= 2 [(-m) cos (-mXx) + sin (-mx)] + Z (ncos nx + sin nx)
m=oo n=1

(2.8-38b)

2 (-mcos mx — sin mXx) +z (ncos nx+sinnx) (2.8-38¢c)

m=1 n=1
=0 (2.8-38d)

We replaced n by —m in the first sum on the right side of Equation (2.8-38b) and we made use of
the fact that cos is an even function and sin is an odd function.

At x =7, the function is discontinuous and the series converges in the mean. That is to say

Lifm-0)+f(n+0) = sithz [1 +2Z M} (2.8-39)
n=1 1 +n?
From Figure 2.8-3, we deduce
l[en_'_e—n] — sinh 1t |i1 +2z 1 :I (2.8-40a)
2 T il n?
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coshm = SIBAT 14 2% 1 (2.8-40b)
T n=1 1+I12

Example 2.8-4. The deflection w of a uniform beam of length £ with an elastic support under a
given external load p is given by

4
ET9Y s kw = p (2.8-41)
dx*

where EI is the flexural rigidity and k is the modulus of the elastic support.

If the beam is supported at the ends, the boundary conditions are

w=-—-=20 (2.8-42a,b)

at x=0 and x=24.

Assume that the load is constant and is applied on the interval £/3 <x <22/3, as shown in Figure
2.8-4. Obtain the deflection w (x). The derivation of Equation (2.8-41) is given in von Karman and
Biot (1940).

-
X

FIGURE 2.8-4 Beam on elastic foundation under an external load
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The function p (x) can be written as

fo, 0<x<A/3
P(X) = { py, A/B<x<22/3 (2.8-43a,b,c)
\l 0, 28/13<x< A

where p, is the constant external load.

The function p (x) can be considered to be an odd function of period 22£. Its Fourier series is given

p(x) = Y b, sin MEX (2.8-444a)
n=1 2
2 28/3
b, = 2 f p(x) sin 1X dx = (2p0/2)f sin AX qx (2.8-44b,c)
2 0 2 R/3
__2p, 2nxn nn] _ 4Po . nm ... 0K
= [cos 3 —CoSs 3 ] = T sin ) sin 6 (2.8-44d.e)

We seek a solution of the form
w = z w, sin 1LX (2.8-45)
n=1 2

Note that w automatically satisfies the boundary conditions. Differentiating w four times and
substituting the resulting expression in Equation (2.8-41) yields

BTl D % wnsinm‘Tx +k ) wnsin%& = bnsinn—7;L (2.8-462)
n=1 & n=1 n=1
We deduce that
4_4
wn[EIn u +kJ = b, (2.8-46b)
24

4 4
oo w_=b2 [EIn*n*+Kk2") (2.8-46¢)
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The coefficients b, are given by Equation (2.8-44¢), w, can be calculated from Equation (2.8-46c).
On substituting w,, in Equation (2.8-45), we obtain w.

Fourier Integral

The transformation from a function f(x) having a period 21 to a function f(x™) having a period 2L
is obtained by writing

X =x /L (2.8-47)

Combining Equations (2.8-33c, f, 47) yields

(== L
fx) = QII f f(x") exp (—ia,x ) dx" | exp (iot X ) (2.8-482)

n=—o0 -L
where o, = n7m/L (2.8-48Db)
Let Aa, = @+Dn/L-nn/L = /L (2.8-49a,b)

Substituting Equation (2.8-49b) in Equation (2.8-48a), we obtain

oo L
f(x*) ~ 2 Az?tnf f(€) exp (i, &) dE exp (iocnx*) (2.8-50a)
n=—oo -L
oo L
A *
=y 2‘1"tn f £(&) exp lior, (x"- E)] d& (2.8-50b)
n=—oo -L

On letting L —> o, Equation (2.8-50b) becomes

f(x*) - ﬁ f U' = £ (&) eioz(x*—“,) dﬁ} da (2.8-51a)
|

~ 51&— ( f f(E)[cos o (x —E&)+isina(x —&)]dE da (2.8-51b)
J-oo J—oo

n

I U“’ f (&) cos o (x - &) d&}doc (2.8-51c)
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=~ -71-{ [ {f B f () (cos ox” cos & + sin 0x " sin oLE) d% da (2.8-51d)
Jo LU7%
~ % r [A(oc) cos X" + B (a) sin ocx*] do, (2.8-51e)
Jo
where
A(o) =f f (€) cos o€ dE, B (o) =f f (€) sin ag dE (2.8-51f,g)

oo

Note that sin o is an odd function so [ sin oo da is zero. The quantities A (o) and B (o) exist

—o0

if f |f (&)' d§ converges. The right side of Equations (2.8-51a to e) is the Fourier integral of
f(x"). If f(x¥) has a jump discontinuity at a point x ;, the integral converges to % [f(x ; DR (x;_)].

If f(§) is even, B(ot) is zero and if f(§) is odd, A (o) is zero.

Example 2.8-5. Determine the Fourier integral of the following functions

1, [x]<1

@ fx) = (2.8-52a,b)
0, |[x|>1

Il, O<x<l1
-1, -1<x<0 (2.8-53a,b,c)

\ 0, |x|>1

Figure 2.8-5 illustrates these two functions.

b fx) =

(a) f(x) iseven and B (a) is zero.

1

Al = Zj f (§) cos af d& = 2[ cos . d€ = 2—531—0‘ (2.8-54a,b,c)
0 0
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f(x) = lf 2sin 0 o5 x dat
0 O

a

The function is continuous everywhere except at x =x1. We deduce that
n/2, 0<|x]|<1
f sin @ cos ax do = | n/4, x=+1
0 o
0, [x|>1
On setting x =0, we obtain

f SINQ 4o = 1/2
0 ©

(b)

FIGURE 2.8-5 (a) Even function; (b) Odd function

(b) f(x) is odd and A () is zero.

1
B(o) = 2[ sin o d§ = ;(l—cos o)
0 o

(2.8-55)

(2.8-56a,b,c)

(2.8-57)

(2.8-58a,b)
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f(x) = lf (A =cos® nox dat (2.8-59)
T 0 o

The function is continuous everywhere except at x =0 and at x =*1. We deduce that

0, x=0
- ‘ n/2, O<x<l1
(1 - cos o) sin ax da = (2.8-60a-d)
0 o n/4d, x=1
0, x> 1

Example 2.8-6. Extend the problem considered in Example 2.8-4 to an infinite beam extending
from —oo to eo. The appropriate boundary condition is that w vanishes at infinity. Assume that
p (x) is given by
Pos |x|<a
p(x) = (2.8-61a,b)
0, |x|>a

where py and a are constants.

We represent p (x) and w (x) by their Fourier integrals and write

p(x) = % f [A (o) cos aux + B (00) sin oix] do (2.8-62a)
0

w(x) = &1— J [C (o) cos ox + D (o) sin ox] do (2.8-62b)
0

Differentiating w (x) four times and substituting the resulting expression together with the expression
for p in Equation (2.8-41) yields

4 oo oo
(o EnI +k) J [C(a) cos ox + D(a) sin ax] dow = %j [A(c) cos ax + B (o) sin ax] dot

0 0
(2.8-63)

We deduce that
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@*EI+K) C(0) = A() (2.8-64a)

@*EI+K)D (o) = B () (2.8-64b)
From Equations (2.8-51f, g, 61a, b), we obtain

(=]

a

A(a) = ( p(x)cos ox dx = 2poj cosox dx = (2p, sin aa)/o (2.8-65a,b,¢)
J oo 0

a

p(x)sin ax dx = pof sinox dx = 0 (2.8-65d.e,f)

—a

-

—_—00

B(a) =

Combining Equations (2.8-64a to 65f) yields
C(0) = 2p,sinaa/ [0 (@*EI+k)] (2.8-662)
D@) =0 (2.8-66b)
Substituting Equations (2.8-66a, b) in Equation (2.8-62b) yields
2p, ) sin oLa cos oLX
w(x) = =0 $I0.0L2.005 X oy (2.8-67)
T Jo oa@*BI+k)

Examples of Legendre-Fourier and Bessel-Fourier series are given in Chapter 5.

2.9 ASYMPTOTIC SOLUTIONS

We have obtained convergent series solution in the neighborhood of x (=0) if x, is an ordinary or
regular singular point. If x is an irregular singular point, there is no method of generating a
convergent series solution. In some cases, we can obtain a formal series solution which is a good
approximation for small values of x. This is illustrated in the next example.

Example 2.9-1. Find a power series that satisfies the equation
3 v 2 ' _
Xy +(x“+x)y -y =0 (2.9-1)
The origin (x = 0) is an irregular singular point, that is to say, x (x2 +x)/ x3 and x? -1/ x3 do

not have a Taylor series about x =0. We seek a formal series solution as given by Equation
(2.3-8a). Substituting Equations (2.3-8a to c) in Equation (2.9-1) yields
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D [+ (4 Doy x™ e e, x™* 24 @+ e, x™loex] =0 (292
r=0

Comparing powers of x, we obtain

X% ¢y =0 (2.9-3a)
xl: ¢j-¢; =0 = ¢ isarbitrary (2.9-3b)
x2: Cit+t2cp—cy =0 = ¢y =—-¢ (2.9-3c,d)
x3: 2¢p+2cp+3c3-c3 =0 = ¢35 = ~2¢cy = 2¢; (2.9-3¢,)
x5 -1 =-2)cg 1 +(-1Dcg1+scs—cg =0 = cg=—-(-1)cg (2.9-3g,h)

The formal series that satisfies the differential equation is

e [x=x2+2x3 4+ 1120304 L 5= xS+ ] = ¢ O DM - DIx® (2.9-4)

s=1

Can this divergent series [Equation (2.9-4)] be used to calculate the values of y for small values of
x ? The answer is yes. Using the divergent series, we find that y (0.1) can be written as

y©.1) = ¢, [107 =102 +2x 10 ~6x 107 + 204 x 107 + .. ] (2.9-5)

We note that the magnitude of the terms decreases as the order increases and if we require y(0.1) to
be accurate to two decimal places, the first two terms are sufficient and y (0.1) = 0.99 c;.

n

The divergent series s_(X) [= X c,x"] is an asymptotic series expansion of a function f(x).
r=0
The power series s, (x) represents f(x) asymptotically as x —> 0 if

x "[f(x)-s,] — 0, forall n20 as x— 0 (2.9-6)

The error in approximating a function by a convergent series decreases as the number of terms
increases. We are certain of attaining the required accuracy by taking a sufficient number of terms.
From Equation (2.9-6), it is seen that the approximation improves as the magnitude of x decreases for
a fixed value of n. Since the asymptotic series is divergent, the error may increase as n increases.
Usually, for asymptotic series, only a few terms are required. We can increase the value of n as long
as the value of the n'! term is less than the value of the (n — 1) term. We stop at the (n — D! term
if the value of the n! term is greater than that of the (n — D)t term.
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Asymptotic series are widely used in the solution of differential equations and for evaluating integrals.
In applied mathematics, one often neither knows nor cares if the series converges or not [Van Dyke
(1975)]. Even if a convergent series is available, it is sometimes profitable to consider an asymptotic
series as shown in the next example.

Example 2.9-2. Solve Bessel’s equation of order zero [Equation (2.4-44)] for large values of x.

We first transform Equation (2.4-44) to its normal form. A second order differential equation is in
its normal form if the first derivative (dy/dx) is not present. To achieve this, we write

y = u(x) v(x) (2.9-7)
Differentiating and substituting the resulting expressions in Equation (2.4-44) yields

xX2@'v+2u' V+uv)+x@ v+uv)+xiuv =0 (2.9-8a)
or 2vu" +u 2x3v+xv) +u v xvi+x3v) = 0 (2.9-8b)
We now impose the condition

2x2v'+ xv = 0 (2.9-9)
The solution is

v = x~12 (2.9-10)
Equation (2.9-8b) becomes

" +u(l+1/4x3) = 0 (2.9-11)

For large values of x, Equation (2.9-11) is approximately the simple harmonic equation [Equation
(2.6-32)] and the solution is e'X. This suggests that we seek a solution of the form

u=e*d ¢ x" (2.9-12)
n=0

Note that, in this case, we look for a solution as x —» oo, therefore we expand in reciprocal powers
of x.

On differentiating, we obtain

u' = iel® 2 c, xM _elx 2 nc, x °-1 (2.9-13a)
n=0
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=ie* Y o xT-el® Y (r+1) e x2 (2.9-13b)
r=0 r=0

= e* ) fie,x T—(r+1) cpyqx2] (2.9-13c)
r=0

The second derivative u'' is given by
u'' = elX Z [Fc.xT=-2i@+1) ¢y XTI+ D) (r+2) Criq xT3] (2.9-13d)
r=0
Substituting Equations (2.9-13a, d) in Equation (2.9-11) and multiplying by e™X, we obtain

2 [Fc,xT=-2i(c+Dc, XT 24 @0+ ) (r+2) Crr1 x T34 e, x '+ (1/4) c, x2]=0
r=0

(2.9-14)
Comparing powers of x yields
x%:  —cptcg =0 = ¢ is arbitrary (2.9-15a)
xl —c;+cy =0 = ¢ isarbitrary (2.9-15b)
x2: —02—2icl+c2+%c0 =0 > ¢ = —ico/4°2 (2.9-15¢,d)
X3 —-03—4ic2+201+c3+211—cl =0 = ¢y, =-i (901/4)/4 (2.9-15¢.f)
xS ~cg=2i(s-Dc 1+ (s-2)(s-1cgp+cg+1/dcgy, =0
= 2i(s—1)cgy = Cop(s2=3s+94) = coq = —ic,_,(s-3/2)%/2(s=1)
(2.9-15g,h,1)

We note that the coefficients cg are alternately real and imaginary.

As usual, to allow for the tabulation of Bessel functions, we set c; to be equal to one and u can be
written as
_ . 2 22,52 2,52, 2
w=eXo—L 3 pfo37e57 35TV L (2.9-16a)
402x 4%2%2x2 43.23.31x3 g%t qnxt
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= e X (w,—iw,) (2.9-16b)
where w_ = 1-3%/[4%2%2x2 + 3% 520 72/ 4% 240 41 x4 + . (2.9-16¢)
wi = 1/[4°2x]-3%5%/[4% 2331 3] + .. (2.9-16d)

Combining Equations (2.9-7, 10, 16b) yields

y = x Y2elX(w —iw) (2.9-17a)
T)) - :
= X (cos x +isin x) (w, ~iw;) (2.9-17b)
= x~ 112 [, cos x + w; sin x +i (w_ sin x — w; €os x)] (2.9-17¢)

The two real fundamental solutions y; and y, are given by

y, = (y+y)2 = x12

(W, cOs X + W, 8in X) (2.9-18a,b)
Yo = (y-¥)/2i = x 2 (w_sin x - w; cos x) (2.9-18c,d)

where y is the complex conjugate of y.

The general solution of Equation (2.4-44), as x —> o, is given by the linear combination of y; and
y2. The solution of Equation (2.4-44) is the Bessel function of order zero. That is to say, as

X —> oo
Jox) = Ay +By, (2.9-19)
where A and B are arbitrary constants.
From Equations (2.9-16c¢, d), we deduce that
im w_ =1, Iim w, =0 (2.9-20a,b)

T 1

X—->00 X —> 00

Differentiating both sides of Equation (2.9-19) yields
Jo(x) = Ay; +Byj; (2.9-21)

From Equations (2.9-16c, d, 18b, d, 20a, b), we deduce that the leading terms of y; and y,, as
X —> oo, are
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yy =~ x 2 (—w_sinx) = —x 2 sinx (2.9-22a,b)
yy = x 12 cos x (2.9-22¢)

Combining Equations (2.9-19 to 22c) yields

lim x1/2 Jo(x) = Acos x+Bsinx (2.9-23a)
X-—>00

lim x1/2 J;)(x) = —Asinx + B cos x (2.9-23b)
X—>00

The solution is

A = lim x2[J,(x)cos x —J(x) sin x] (2.9-24a)
X —>o00
B = lim x!/2 [Jo(x)sinx + J;)(x) cos x] (2.9-24b)
X—>o00
The integral representation of Jy(x) is (see Problem 22b)
T
Jo(x) = l[ cos (x cos 6) dO (2.9-25)
T 0
It follows that
T
Tox) = -4 f [sin (x cos 8)] cos 6 dO (2.9-26)
T 0
Substituting Equations (2.9-25, 26) in Equation (2.9-24a) yields
2 "
A = lim — [cos x cos (x cos B) + sin x cos 0 sin (x cos 6)] dO (2.9-27a)
== T o
2 ("
= lim =— [cos (x + x cos B) + cos (x — X cos )
X ——> 00 275 J 0
+ c0s 6 {cos (X — x cos 0) —cos (x + x cos 8)}] dO (2.9-27b)
"
= lim >— 1] [(1-cos0)cos (x+x cos 8)+(1+cos 8) cos (x—x cos 6)] dO (2.9-27¢)

0
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. x1/2 ; .2 2 2 2
= lim — [(sin“0/2) cos (2xc05°6/2)+(cos“0/2) cos (2xsin“0/2)]dO (2.9-27d)

X—> o
0

To evaluate the first integral on the right side of Equation (2.9-27d), we write

¢ = W2x ) cos 6/2 (2.9-28)
On differentiating, we obtain

do = -1 (/2x ) sin 6/2 d6 (2.9-29)

It follows from Equations (2.9-28, 29) that

1/2
i 0 2
2
J sin? 8/2 cos (2xcos? 8/2) dO = f (cos ¢ (-2 )(1 - 9_) do (2.9-30a)
0 V2x 2x
V2x ) 172 ,
=2 (1 _‘1’_) (cos ¢ ) do (2.9-30b)
0 2X
Therefore
MV )
lim =—— | sin“6/2 cos(2xcos“0/2)d6
X—eo TU
0
172
. x1/2 21172 V2% ¢2 2
= Iim *~(2) 129 | (cos¢')do (2.9-31a)
X— oo T X 0 2%
a 2
_ V2 I cos ¢ do (2.9-31b)
0
1
_ 2.9-31
TV ( c)
Similarly, B and the associated integrals can be evaluated. It is found that
A=B=-L (2.9-32a,b)

T

Combining Equations (2.9-18a, b, 19, 32a, b) yields
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-1/2
I, = x—wl_ﬁ_ [w, (cos x + sin x) + w; (sin X — cos x)] (2.9-33a)
172
= (—n2x) [w, cos (x — Tt/4) + w; sin (x — 7/4)] (2.9-33b)

From Equation (2.9-15i), we deduce, using the ratio test, that the series representations of w, and w;
[Equations (2.9-16c¢, d)] are divergent. However, to determine J,(6) accurate to five places of
decimals, we need to consider only the first seven terms of the series (four for w, and three for w;)
and we obtain

Jp(6) = 0.15064 (2.9-34)

The function J,(x) can also be represented by a convergent series [Equation (2.4-53)] and, after
adding the first twenty one terms, we obtain

Jp(6) = 0.15067 (2.9-35)
and this value is accurate to four decimal places only.

An asymptotic series is often more useful than a convergent series. Since Poincaré’s pioneering work,
considerable progress has been made in the understanding of the asymptotic series. From the two
examples we have considered, we can postulate that the asymptotic solution of a differential equation
can be of the form

y = {exp A1} x" D, cpx" (2.9-36)
n=0

as X —> oo,

In Example 2.9-1, A=r=0 and it is not common for an asymptotic solution to be simply a power
series. Usually, exponential functions are involved as in Example 2.9-2, where

Ax) = ix, r=-1/2 (2.9-37a,b)

Further details on asymptotic expansions can be found in Cesari (1963), Nayfeh (1973), Van Dyke
(1964), and Wasow (1965).
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Parameter Expansion

Many physical problems involve a parameter which can be small or large. In fluid dynamics, we have
the Reynolds number which can be small (Stokes flow) or large (boundary-layer flow). We consider
the case when the parameter is small and we denote it by €. If the parameter is large, we consider its
reciprocal. We seek a solution in powers of € and often the series solution is an asymptotic series.
The next example illustrates the method of parameter expansion.

Example 2.9-3. A particle of unit mass is thrown vertically upwards (y-direction) with an initial
velocity vy. If the air resistance at speed v is assumed to be €v2, where € is a small positive
constant, determine the maximum height y,, reached by the particle at time t,.

We take the origin at the surface of the earth. The equation of motion (Newton’s second law of
motion) is

y = -[g+ey?] (2.9-38)
where g is the gravitational acceleration and the dot denotes differentiation with respect to time.

The initial conditions are

y©) =0, y(0) =v, (2.9-39a,b)

We have identified € to be a small parameter and we start by expanding all functions of interest in
powers of €. Thatis

y(t) = yo) + ey, @) + ... (2.9-40a)
ty = to+ &ty + .. (2.9-40b)

Substituting Equation (2.9-40a) in Equations (2.9-38, 39a, b), we obtain respectively

)70 +e§;1 +..0= —[g+e(§102+28§0)"1 +..)] (2.9-41a)
Yo (0) +ey ;0 + .. = 0 (2.9-41b)
Yo ©) +ey, (0 +... = v, (2.9-41c)

Attime t,,, the particle is at rest and this is expressed, using Taylor’s expansion, as

Y (t) = Yo (tg+6t, +..) + €y (tg+Et; +..) + .. (2.9-42a)
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L] e . 2 3
=yo ) +etyyg(ty) + ... + ey (ty) +€7tyy  (tg) + ... (2.9-42b)
= Yo () +Elt;Yotg) + ¥ E)] +.. = O (2.9-42¢,d)
Comparing powers of €, we obtain from Equations (2.9-41a to c)
€y, =-2 Y0 =0y, = v, (2.9-43a,b,c)
(1] [ ] 2 L]
ey, =-y5 ¥, 0 =0y 0= (2.9-43d,e,f)
From Equations (2.9-43a to c), we deduce
Yo = —8t+V, (2.9-442)
1 ..,2
Yo= _fgt + Vit (2.9-44b)
Substituting Equation (2.9-44a) in Equation (2.9-43d) yields
y, = -8t~ 2v,gt+v2] (2.9-45)
The solution subject to Equations (2.9-43e, f) can be written as
o 1.2,3 2 2
y1 = -[3870 - vost" +vyt] (2.9-46a)
4
v = - [ gt - Lvggt’ + Lvge] (2.9-46b)
From Equations (2.9-42c, 44a), we obtain
ty = vo/g (2.9-47)
Combining Equations (2.9-42d, 43a, 46a, 47) yields
ty =~y )/ Yo (tg) = ——(volg ) (2.9-48a,b)
Substituting Equations (2.9-47, 48b) in Equation (2.9-40b) yields
t, = Vo/g— e[ (v0 /gD)] +. (2.9-49)

The effect of the air resistance is to reduce tp,.



172 ADVANCED MATHEMATICS

The maximum height y., is obtained from Equations (2.9-44b, 46b, 49) and can be written as

Ym = L glvolg-(r3) v3 1)) + 1Py Ivg/g—@3) (v3/ g2 + ]
_e[L L g2 (volg+.0)" —% Vog (vVolg + ..)° +% vEWlg + )% (2.9-50a)
= (vo/28) ~e(vy /4g?) (2.9-50b)

As expected, the air resistance lowers the maximum height.

The present problem can be solved exactly. Replacing y by (vdv/dy), Equation (2.9-38) becomes

v g—; = —[g+ev?] (2.9-51a)
or —vdv_ - _gy (2.9-51b)
g+ gv?2
The solution of Equation (2.9-51b) subject to Equations (2.9-39a, b) is
1 g+ 8V02
y = A&n|=—=—2 (2.9-52)
& g +ev?
The maximum height y,, is given by
Vo = 2 An (1 +ev; 2/g) (2.9-53a)
= 2 [evi/g-e*vilag? + ] (2.9-53b)
= /2g A 4/ag? + . (2.9-53¢)

Equation (2.9-50b) is exactly Equation (2.9-53c).
®

It is not uncommon for the small parameter to be associated with non-linear terms, as in Example
2.9-3, and unlike the present example, it is often impossible to obtain an exact solution. By the
perturbation method, the non-linear system reduces to a linear system. The non-linear terms become
the non-homogeneous terms [Equation (2.9-43d)]. The equations can then be solved and an
approximate solution is obtained.
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The regular perturbation (straight forward expansion) method as described in the preceding
example may generate a solution which is not valid throughout the region of interest (usually at infinity
or at the origin). In this case, we have a singular perturbation. We next introduce several
examples involving a singular perturbation.

i) The function exp (—€x) can be approximated as
exp(-€x) = > (D" (€0)"/n! = 1-ex+e’x% + .. (2.9-54a,b)
n=0

The infinite series is convergent and, as an asymptotic expansion, we consider the first three
terms as shown in Equation (2.9-54b). If x < (l/e), the approximation is valid, but if
x >> (1/¢), the approximation is no longer valid and the magnitude of the first three terms can
exceed one while exp (—ex)<1 for all x>0. Thus the approximation of exp (-¢€x),
(e << 1) by the first three terms, is valid for x < (1/¢) but not for x >> (1/¢). In the case
of a convergent series, we need to include more terms as the value of x increases. There is a
limit to the number of terms that can be included. If we are required to evaluate exp (—€x) for
large values of x, the convergent series [Equation (2.9-54a)] is not useful (see Example
2.9-2).

ii) The function VX + € can be approximated as

xFe=Vx 1+ = Vx Q+e2x-e28x2 + ) (2.9-55a,b)
Except for the first term, (€ = 0), all the other terms are singular at the origin.

iii) If the coefficient of the highest derivative in a differential equation is €, the solution in powers
of € is often singular (see Section 2.4 and Example 2.9-4).

Several methods have been developed to extend the validity of the solution. The basic idea is to use
more than one scale. This is discussed in the next example.

Example 2.9-4. In Example 1.14-2, the rate equations for components A, B, and C involved in
first order reactions are solved. In more complicated cases, it is not possible to obtain the analytic
solution and the quasi-steady state approximation is introduced. This implies that the left side in
Equation (1.14-15) is set to zero. Discuss the validity of this approximation. Follow Bowen et al.
(1963) and write Equations (1.14-14 to 16) in dimensionless form. Show that the solution by the
regular perturbation is singular.

Setting dB/dt =0, we deduce from Equation (1.14-15) that

cg = (k /ky)cy (2.9-56)
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From the exact solutions [Equations (1.14-17, 22)], we obtain

o = kica [1—exp(k;—kj)t]
B k, (1 -k,/k,)

(2.9-57)

Comparing Equations (2.9-56, 57), we find that the approximate solution [Equation (2.9-56)] is valid
if

ki/ky = 0, exp(k; -kt =0 (2.9-58a,b)

The approximation is valid if ky >>k; and t—> . Evenif k, >>k;, the approximation is not
valid for small values of t and this restriction will be discussed later.

We introduce the following dimensionless quantities
* * *
cp = cpf Cap cg = cB/cA0 , cc = cC/cA0 (2.9-59a,b,c)

*

e =ki/ky, t =kt (2.9-59d,¢)

Using Equations (2.9-59a to €), Equations (1.14-15 to 16) becomes

dcy
':‘ = —cy (2.9-60a)
dt
dC; * *
€— = —CgtECy (2.9-60b)
dt
sk
e 8% - o (2.9-60c)
dt

The initial conditions are
cZ(O) =1, cg 0) = cé 0 =0 (2.9-61a,b,c)

On solving Equations (2.9-60a to c) subject to Equations (2.9-61a, b, ¢), we obtain

*

cp=e (2.9-62a)

cp =e(l-g) [t —et/?] (2.9-62b)
* %

o= (1-g et —ee™t/e]-1 (2.9-62¢)
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For simplicity, we consider only Equations (2.9-60a, b) and solve them by the regular perturbation
method. We express c; and c; as

* * 2 %
CpA = Cp, tECH +ECy + ... (2.9-63a)

*

_ U * * 2
cp = Cp,+tECp +€

Cp, + - (2.9-63b)

Substituting Equations (2.9-63a, b) in Equations (2.9-60a, b) and comparing powers of €, we obtain

dcy
A
e0: 0 = ¢y (2.9-64a)
dt
0 =cg, (2.9-64b)
dc
el: 11‘ = —CZI (2.9-64c¢)
dt
den
B0 = —cp +op (2.9-64d)
dt
dcy
e 2= -cy (2.9-64¢)
dt
deg —
dt*’ = —Cp,+Cy, (2.9-641)

The initial conditions are

cj\o(()) = 1, c,’;l(O) = c;2(0) =.=0 (2.9-652,b,c)

¢, 0 =cg (0 =cy (0) = .. = 0 (2.9-65d.e.f)

Solving Equations (2.9-64a to 65d), we obtain
cy, =€, ey =cx =0 (2.9-66a,b,c)

C;O = O’ CB[ = CZO’ CB2 =0 (2.9‘66d,e,f)
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The approximate solutions for c; and cg are

Cp =€, cg = €e” (2.9-67a,b)

Equation (2.9-62b) can be written as

cg = e(l+e+.)[et —e™t /] (2.9-68)

Comparing Equations (2.9-67b, 68), we note that Equation (2.9-67b) is a valid approximation in the
case €— 0, t#0. Attime t=0, the approximation is not valid. The solutions given by

Equations (2.9-56, 67b) are not uniformly valid and do not satisfy the initial condition [c]; 0)=0].

The coefficient of dc;/ dt is e Expanding CE in powers of €, the differential equation [Equation
(2.9-60b)] reduces to a system of algebraic equations [Equations (2.9-64b, d, f)] and no arbitrary
constant can be introduced so as to satisfy the initial conditions. Note that in Equations (2.9-64d, ),

cn and cp are known quantities and are defined in Equations (2.9-64b, d) respectively. We further
Bg B,

note that the zeroth approximation

* *

ch, =€, cp, =0 (2.9-69a,b)

is uniformly valid. This zeroth order solution cannot be improved because cgl is not uniformly valid.

This implies that the quasi-steady state method is valid for the zeroth approximation and not for higher
approximations.

A similar situation exists in fluid mechanics. The Stokes solution of the flow past a sphere is
uniformly valid but the higher approximation is not valid and is known as the Whitehead paradox.
A thorough discussion on the Whitehead paradox is given in Van Dyke (1975).

t*/e

It is the presence of the term e~ in Equation (2.9-62b) that contributes to the singularity. On

*
taking the limit as € —> O first and then as t* —> 0, the limit of ¢ /€ is zero. On reversing the

*/e

limiting process, the limit of et is one. This implies that

%k £
et/ 2 Lm et/t (2.9-70)
e—0 t*=0 t*~0 -0

*
We further note that ' /€ changes rapidly near t* =0. This suggests that to obtain a uniformly
valid solution we need to seek the solution in two separate regions. We obtain a solution near t* =0,
which is the inner region or boundary layer where € is important, and a solution for t* >> 0,

which is the outer region. We use two different time scales, one for the inner solution and one for
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the outer solution. This perturbation method is the matched asymptotic expansion method
(boundary layer method) and was introduced by Prandtl to resolve d’Alembert’s paradox in fluid
mechanics (see Chapter 3).

In the present example, c; [Equation (2.9-67a)] is uniformly valid and we need to solve only
Equation (2.9-60b) by the method of matched asymptotic expansion.

The time scale for the inner region is
T =t"/e (2.9-71)
Using Equation (2.9-71), Equation (2.9-60b) becomes

*
fidf% = —cp+ech (2.9-72)

Note that, by our choice of T, the coefficient of dc;/ dT is one and not €. The independent variable

for the inner region is chosen such that the coefficient of the highest derivative is not €. We denote the

inner solution by cg) " anditis expanded as

)*

0

O reed” 4 (2.9-73)

— oG
_CB |

Substituting Equation (2.9-73) in Equation (2.9-72) and comparing powers of €, we obtain

@*

0. d ZBT° = - c](;())* (2.9-742)
@*
el. f%_ = - CST* rop (2.9-74b)
The initial conditions can be applied in the inner region and they are
5 (0 =) @ =0 (2.9-74c,d)
The solution of Equation (2.9-74a) that satisfies Equation (2.9-74c) is
RO (2.9-75)

By

Combining Equations (2.9-66a, 71, 74b) yields
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dcd*
Z‘frl +c](31)1* =etT = 1_eT+.. =~ 1 (2.9-76a,b,c)

On solving Equation (2.9-76¢) subject to Equation (2.9-74d), we obtain

ey =1-eT (2.9-77)
The inner solution c](;) * can be written as
D" =e-e+.. (2.9-78)

For the outer region, t* is the time scale and the solution given by Equation (2.9-67b) is valid for
g q

t* >> 0. The outer solution clgo)* is given by Equation (2.9-67b). Note that since all conditions are

at time t* =0, no condition can be imposed on the outer solution. As mentioned earlier, the outer
solution is determined by an algebraic equation and there is no arbitrary constant. If the outer solution
is obtained by solving a differential equation, the arbitrary constant is determined by using a
matching principle. The simplest one was proposed by Prandtl and can be expressed as

m* _ (0)*

T]ir-fxw cg’ = t*I’Er)lo Cy (2.9-79)
In the present example, Equation (2.9-79) is identically satisfied. That is to say
Jim e(1-eT) = Jim ee™ =e (2.9-80a,b,c)

The matching principle can be interpreted as follows. There exists a region where both the outer and

the inner solutions are valid and are equal. The solution which is uniformly valid is the composite

solution and is denoted by c](; " This solution is given by

* % * %10 ; * x] 1
c](;) = Cl(al) +c© +[c(l)] = c](;)*+c](3°) +[cl(3°)] (2.9-81a,b)

B B

@*]° ©*]* - . : L
where [CB ] and [CB } denote the outer limit (T —> o) of the inner solution and the inner limit

(t* —> 0) of the outer solution respectively. Equation (2.9-79) implies
%10 %11
@] = e (2.9-82)
Combining Equations (2.9-67b, 78, 80c, 81a) yields

O = egl-e T +eet —e+0 () (2.9-832)
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~ gle™t —e"t/¥] (2.9-83b)
Note that c(c)* satisfies condition c; = 0.

B

For further details on singular perturbation, one can consult Nayfeh (1973) or Van Dyke (1975).

PROBLEMS

la.  Determine the singular points of the following equations. Are the singular points regular or
irregular?

2
@ a-xH9Y 2 ey o

dx? dx
.. dy . _dy _
(i1) xdx+smxdx+ycosx—0
2 d2y dy
(ii)) x“—=+cosx —+ysinx =0
dx? dx
d’y dy , .3
iv) x—2+e*—=+x’y=0
dx? dx
2a.  Determine the radius of convergence of the following series. Do they converge on the circle of
convergence?
>z n > n
N (ii) —
n=0 2 n:O (2[1 + 1)
.. o x" . - (-D)"x"
GEED Y iy Yy Cx
n=1 n=0
3a.  Compute a series solution of the equation

1+x)y' -x+2)y =0

Compare the series solution with the exact solution.
Answer: (1 +x)e*

4b.  Hermite’s equation can be written as
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2
dy _ 2x dy +2ny = 0
dx? dx
Show that its general solution can be written as the sum of two infinite series and are of the
form
2
2n 2’n(n-2) 2(n-1
y = 3, —7x2 —T——X4_ +a1[x——(?—)x3+
Determine the radius of convergence of the series.
If n is a non-negative integer, one of the series terminates and the polynomial is denoted by
H,, (x). Calculate the first four polynomials, that is, Hy, Hy, Hy, and H3. To specify H,
completely, the constant a, (or aj) is chosen such that the coefficient of the highest power
of x (x™ is 2" Verify that the polynomials H, to Hj3 are given by Rodrigues’s formula
2
2 ghe X
H (x) = (-D"e*
dx
Use Rodrigues’s formula to deduce that
- 2 2 n
e™ [H,(x)]“dx = (2 n!Vn)
[Hint: Integrate by parts, note that the coefficient of x" in H, is 2" and deduce the nth
oo 2
derivative of H,,. fo e ™ dx =Vrn/2]
Sa. Find a series solution of the following equations
2 2
@ Y yxy=o0 i LY uxy+y=0
dx? dx?
6a. Find the general solutions of the following equations

2
@) xzu +5xd—y—5y =0 Answer: Ax™> +Bx
dx? dx

2
qy k29 3 L4y

dx? dx

Answer: AxZ +Bx*Anx

Il
o
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7Tb.

8a.

9b.

10a.

2d§+u A

dx dx

Answer: A(x-1)+B (x—1)"!

It
]

i) -1

Solve the equation

X2y +xy -y =
subject to

y( =y @ =0

1-x»  x
4

Answer:
Solve the following equations

d’y +3dy

® 4x
dx? dx

+3y =0

2
(i) xzd—)zi—3xd—y+4(x+1)y =

dx dx
(iii) xdy+2dy+xy 0
dx?  dx

Deduce a series solution for the equation

2
2d——y—+(x2+x)d—y—y =0
dx? dx

X

Express the series in a closed form. Determine the solution that satisfies the conditions
y=1, y'(1)=-1.

— (1-x)
x 1)+e

Answer;
nswer "

Show that r =0 is a double root of the indicial equation of
2
x &y +(1_X2)d_y +4xy = 0
dx? dx

Find the solution that is finite at the origin.

Answer: 1 - x2 + x4/8
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11b.

12a.

13b.

Sheppard and Eisenklam (1983) have considered the dispersion of an ideal gas through porous
masses of solid particles. The gas is assumed to be compressible and after some
simplifications (details are given in the paper), the equation to be solved is
d*c By ydC ., [B
Npg (1+Bx) d—z —(1+Bx+ ENDO) oty (1+Bx)
X

Py |c =0

where C is the Laplace transform of the concentration, Npq is the dispersion number, B is
related to the permeability of the porous mass, T, is a residence time, and p is the Laplace

transform variable.

Show that the origin is an ordinary point. On expanding all quantities in powers of x up to

x>, obtain C in a power series of X upto x°.

Deduce that the indicial equation of

2
x2u+(x—x2)d—y—

dx dx

xy =0

is r2=0.
Obtain one series solution which is non-singular at the origin and verify that it is e*. Use the
method of variation of parameters to show that the second solution is f (e */x)dx. By

expanding e™* in powers of x, find the second series solution.

Jenson and Jeffreys (1963) have considered the problem of the temperature distribution in a
transverse fin of triangular cross-section. If T denotes the fin temperature and T, denotes
the air temperature, show from an energy balance that y (=T —Tp ) satisfies the equation

2
x(b—x)d—}zl+(b—2x)d—y—[3(b—x)y "
dx dx

where x is the distance from the rim of the fin, as shown in Figure 2.P-13b. The outer radius
of the finis b, B = h/ksinoa, h is the heat transfer coefficient, k is the thermal
conductivity of the fin, and o is the half angle of the vertex of the triangular fin.

The appropriate boundary conditions are

at x = 0, y remains finite

at x = b—a, y = TB-—TA
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Ty is the temperature of the pipe and a is the radius of the pipe.

Show that the origin (x = 0) is a regular singular point.

Obtain a series solution for y if a=5cm, b=15cm, =380 W/mK, T, =288 K,
and Ty =373 K.

e _ ___‘i____IO

FIGURE 2.P-13b Transverse cooling fin

14a.  Show that the eigenvalues A of the Sturm-Liouville problem

2
d—y—+7uy =0

dx?

o y@+0,y'(@ =0, PBiy@m+pyy @ =0
are given by

(oc1[31+?ua2[32)tanﬂ:ﬁ = ﬁ(|310€2—‘0€1|32)

15b. Consider the following electrostatic problem, where a positive charge e is placed at point A,
a distance a from the origin, as shown in Figure 2.P-15b. A negative charge —e is placed at
B, adistance —a from the origin. The potential u at any point P is given by

u = elry —e/r2
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where r; = AP, 1, =BP. Using the cosine rule, we obtain
_ -1/2
I = =1 [1 = (2a/r) cos 8 + a2/r2] v

..‘
[
I

Use Equation (2.7-14) to express rIl and rgl in terms of the Legendre polynomials.

Hence, show that
_ 2e - a\2s+1
= 2¢ Z P, (cos )

Find the limiting value of u in the case a— 0, ea —> u (#0). This limiting case
corresponds to a dipole.

B a 0 a A

FIGURE 2.P-15b Charges (+e) at A and B

16a. Use Rodrigues’s formula [Equation (2.7-13)] to compute Py, Py, and P,.

17b.  Show that

1
f Pdx = 2/5
-1

[Hint: Use Rodrigues’s formula, integrate by parts, and note that P; = 3.]
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18a.

19b.

20a.

21b.

Calculate the associated Legendre functions P% and P% from Equation (2.7-40). Verify that
they satisfy the associated Legendre equation.

Answer: 3xV1—x2 ; 3(1 —x2)
Apply I’Hopital’s rule to Equation (2.7-68) and deduce that

01 aJ_
=1 lim | &y _y® v
Y0 = T von | OV =D ov

where n is an integer.

Assuming that J, (x) and J_, (x) are given by Equations (2.7-62b, 63), show that Y, (x)
has a 2n(x/2) term.

From Example 2.7-2 and Table 2.7-1, deduce that

M T30 = -/ Z (%X +sinx)

i J (x)=1/~2— 3sinx_3¢osx_sinx
( ) 572 X X2 X
(i) Jo(x) = 1/ 52— (cos x—sinx) = —J; (%)

21X

Choudhury and Jaluria (1994) obtained an analytical solution for the transient temperature
distribution in a moving rod. They assumed the existence of a steady temperature and, to
obtain the steady temperature, they had to solve the equation [their equation (12)]

1.d (4R,
R dR dR

2

where R is the dimensionless radial distance, R; is the dependent variable, and A is a
constant. The boundary conditions [their equation (14)] are

@R[ _, del
dR lgo dR 'gr=y

= —BiR(l)

where Bi is the surface Biot number.

Obtain R; in terms of Bessel functions and show that the eigenvalues A, are given by

A I (A = BiJ,(Ay)
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22b. The generating function for Bessel’s functions of integral order is exp [(x/2) (t—1/t)].
Expanding the generating function yields

exp [6/2) (t-1/0)] = Y (‘1)‘5 (B0 = Y 0

Show that on substituting t=e!® and equating the real and imaginary parts, we obtain

cos (xsin @) = J,(x) +2 2 Jyn(X) cos 2n0

n=1
sin (xsin0) = 2 D T, (X) sin [(2n + 1)0]
n=0

Multiply the first equation by cos m8, the second equation by sin m6, where m is an
integer, and use Equations (2.8-13a to d) to deduce that

T
-1 :
J,x) = Efo cos (N9 — x sinB) dO
This is the integral formula for Bessel’s function.
Verify that
n
T,(x) = %fo cos (x sin@) d@

satisfies Equation (2.4-44).

23a. Represent the function f(x) = 3x3-2x+1 defined in the interval —1 <x < 1 by a linear
combination of Legendre polynomials.
Answer: Py —0.2P; + 1.2 P,

24b. The function f(x) is defined by
[ 1 0<x<I1/2

f(x) = % x=1/2
\0 1/2<x<1
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25a.

26a.

27b.

and is represented by Z c, Jo(A, x), where the &, are the zeros of J,(x). Show that the
n=1
coefficients c, are given by

c, = I, (A /2 /A, T, A1

The function f(x) is periodic and of period 2m. It is defined by

-1 -n<x<0
f(x) =
1 O<x<Tm

Sketch f(x) over the interval —3x to 3. Show that its Fourier series is

- - sin sin (2s+1) x
f0o % T @s+ D

Deduce that

i D* _=m
(2s+1) 4

Represent the function

0 -T<x<0

f(x) =
1 O<x<m

by a complex Fourier series [Equation (2.8-33c)].

Answer: L i e i(2s+Dx

2 1 2s + 1)

S=—o00

The equation governing the motion of a damped harmonic oscillator under the influence of an
external periodic force f(t) is

d g+kdy+n y = f(t)
dt dt

where k and n are constants.
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28a.

29a.

Find the Fourier series of f(t), if f(t) is periodic of period 2T andisequalto ct/2T in the
interval (0, 2T).

Assume that y(t) is also periodic of period 2T and write its Fourier series expansion.
Differentiate the series term by term and substitute the resulting expression in the differential
equation. Determine the Fourier coefficients by comparing the coefficients of the constant

term, the cos terms, and the sin terms.

Answer: a, = c/n?

a, = ksnczT3/[oc§ +k2s2n%1?)

b, = cTzocs/[oc§+k2s27r2T2]
ocg = s%n?-n2T?
Determine the Fourier integral representation of
e x>0
fx) =
0 x<0
Deduce that
- f dao _ & . — 2
@) —Eo =1 Answer: A(a) = 1/(1 +0.%)
JO 1+a 2
(ii) cosoda . T Answer: B(0) = a/(1 +a?)
Jo 1+a% 2

Show that the equation

2
29 Lax- P ay =0
dx?2 dx

has an irregular singular point at the origin.

Find a power series (Z crxr) that satisfies the equation. Calculate the radius of
r=0

convergence of the series and comment on the validity of the series as a solution of the
equation.
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30a.

31b.

32b.

Solve the equation

subject to initial conditions

yo =1, ¥ -9
dxl,_g

by the method of perturbation, assuming € to be small. Calculate the first two terms of the
expansion.
Answer: 1 +e(—1+x+¢e7 %)

Find a two term expansion valid for small € for the solution of

2
d’y + ey2 =0
dx?
y@© =0, y(l+g) =1
[Hint: Expand all quantities in powers of €.] Answer: x — % (11 + x3)

The equation of a simple pendulum is

2
g—1+Ct)28iny =0
d?

where y is the angle of inclination and @ is the frequency.

Substituting the expansion of siny in the equation of motion yields
2
9Y 4 o (y-y¥6+..) = 0
de?

Assuming ®?/6 to be small, the equation governing the motion of a pendulum can be written
as

2

d—y+ cozy—ey3 =0

dt

Suppose that the initial conditions are
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yoO) =1, =0

Show that the solution to order € is

y = cos ot + € [(cos wt — cos 3mt) /320%+ (3t sin wt)/8w]

The presence of the term 3t sin wt (secular term) renders the solution invalid for large values
of t. To obtain a uniformly valid solution, we can use the method of multiple scales. We
introduce two time scales T, and T; and write

Substitute t in the solution and determine T; such that the secular term is eliminated.
Determine the uniformly valid solution to order e.

Answer: T1 = 3T0/8co2



CHAPTER 3

COMPLEX VARIABLES

3.1 INTRODUCTION

The inadequacy of the real number system (rational and irrational numbers) in solving algebraic
equations was known to mathematicians in the past. It therefore became necessary to extend the real
number system, so as to obtain meaningful solutions to simple equations such as

X241 =0 (3.1-1)

For quite sometime, it appears that equations, which could not be solved in the domain of real
numbers, were solved by accepting ¥—1 as a possible number. This notation, however, has had its
own shortcomings. Euler was the first to introduce the symbol i for ¥—1 with the basic property

2= -1 (3.1-2)
(Electrical engineers use j to denote Y—1.)

He also established the relationships between complex numbers and trigonometric functions.
However, in those times, no actual meaning could be assigned to the expression VY-1. It was,
therefore, called an “imaginary” (as opposed to real) number. This usage still prevails in the
literature.

It was not until around 1800 that sound footing was given to the complex number system by Gauss,
Wessel, and Argand. Gauss proved that every algebraic equation with real coefficients has complex
roots of the form c + id. Real roots are special cases, when d is zero. Argand proposed a
graphical representation of complex numbers. The concept of a function was subsequently extended to
complex functions of the type

w = {(z) (3.1-3)
where z (= x +1y) is the independent variable.

The concept of complex variables is a powerful and a widely used tool in mathematical analysis.
The theory of differential equations has been extended within the domain of complex variables.
Complex integral calculus has found a wide variety of applications in evaluating integrals, inverting
power series, forming infinite products, and asymptotic expansions. Applied mathematicians,
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physicists, and engineers make extensive use of complex variables. It is indispensable for students in
mathematical, physical, and engineering sciences to have some knowledge of the theory of complex
analysis.

3.2 BASIC PROPERTIES OF COMPLEX NUMBERS
We can write a complex number z as

2 = x+iy (3:2-1)
where x and y are real numbers.

The numbers x and y are the real and imaginary parts of z respectively and are denoted by Re (z)
and Im (z).

We can also regard z as an ordered pair of real numbers. As in vector algebra, we write z as
(x, ).

Just as a real number can be represented by a point on a line, a complex number can be represented by
apoint in a plane. This representation is the Argand diagram and is shown in Figure 3.2-1.

'

z=x+1iy

<
9 >
X

r
Z=x-1y

FIGURE 3.2-1 Argand diagram

Two complex numbers are equal if and only if (iff) their real and imaginary parts are equal. If z;
(=xqy +1iyy) and z, (=x, +1Yyp) are equal, it implies



COMPLEX VARIABLES 193

X1 = X Y1 =Y2 (3.2-2a,b)

Thus a complex equation is equivalent to two real equations. The addition and multiplication can be
handled in the same way as for real numbers and, whenever i2 appears, it is replaced by —1. The
commutative, associative, and distributive laws hold. We list some of the results

z1+2zy = (X;+X, y1+Y2) (3.2-3a)
z21-7p = (X1 —X, Y1 —¥2) (3.2-3b)
Z1°Zy = (X1 Xp—Y1Yp X1Y2+XY¥)) = Zp° 74 (3.2-3¢,d)

Z_l _ X1+iy1 _ (x1+iy1)(x2—iy2) _ [X1x2+y1y2+i(x2Y1_XIYZ)] (3 2—3efg)
Zy Xyt 1Yy (x2+iy2)(x2—iy2) x2+y2 o

The complex conjugate z of the complex number z (=x +1iy) is defined as
Z=Xx-1y (3.2-4)
In the Argand diagram, it is the reflection of z about the x-axis and it is shown in Figure 3.2-1.

So far we used only the rectangular Cartesian system. We can also use the polar coordinate
system (r, 8). From Figure 3.2-1, we find

X = rcos 0, y = rsin0 (3.2-5a,b)
Inverting Equations (3.2-5a, b), we obtain

r = Vx2+ y2 (3.2-6a)

tan® = y/x (3.2-6b)

The number r is called the modulus or the absolute value of z and is denoted by |z |. It can
be regarded as the length of the vector represented by z. The absolute value of z is also given by

lz| = Vzz (3.2-7)
0 is the argument or amplitude of z. It is written as arg z = 6. Hence we can write
Z = X+1y = r(cos 0 +1sin6) (3.2-8a,b)

Since any multiple of 2n radians may be added to © without changing the value of z, we specify
- <08 <7 as the principal value of arg z, and denote it by Arg z. The polar representation is
useful for computational purposes, as shown next.
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First we calculate the product of two complex numbers. Let

zy = 11 (cos B¢ +1sin 6y), Zy = 15 (c0S 05 +1sin B7) (3.2-9a,b)

Then
21 2y = 1115 [cos 8 cos 8, —sin B} sin B, + i (cos 01 sin 6, + cos O, sin ;)] (3.2-10a)
= 17 1 [cos (81 + 05) +1sin (07 + 6,)] (3.2-10b)

From this equation, we note that
lz1z5]l = 1119 (3.2-11a)
Arg(zyzp) = Argz;+Argzp+2nn, n=0, %], %2, ... (3.2-11b)
Generalizing Equation (3.2-10b), we write

2129723 ... Z, = I I3 ... I [COS (91 + 92 +..+ Gn) + 1 sin (91 + 62 +..+ Gn)]

(3.2-12)
Setting
2] =2 = .. =2, =2 = 1(cos 0 +1isin0) (3.2-13)
in Equation (3.2-12), we obtain
z™ = r" (cos nB + i sin nO) (3.2-14)

This is known as De Moivre’s theorem (formula). We have deduced it for positive integral
exponents, but it is true for all rational values of n.

To perform a division, in polar form, we write

1 (cos 0, +isin 91)

2_1 = (3.2-15a)
2 19} (cos 0, +1isin 92)
_n (cos B, +isin 91)(cos 0, —isin 62) (3.2-15b)
1, (cos 0, +1i sin 92) (cos 0, —isin 62)
_n (cos 8, cos 8, + sin 0, sin 62) +i (cos 8, sin 6, — sin 6, cos 91) (3.2-15¢)

Iy cos? 8, + sin? 0,
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= % [cos (91 - 92)+ i sin (91 ~ 92)] (3.2-15d)

Thus we note that

z, = 0, (3.2-16a)
Arg(—%) = Argz,—Argz, +2nm, n=0, 1, 2, ... (3.2-16b)
If we set z; to be one in Equation (3.2-15d), we obtain
é = flg [cos (~8,) +i sin (-8,)] (3.2-17a)
= é [cos 6, — i sin 6, ] (3.2-17b)
Example 3.2-1. Determine (1 + i)10.000
We use the polar form and write
(1+i) = V2 (cosﬂ +isinE) (3.2-18)
4 4
Therefore
10,000
: (3.2-19a)
1+ 1)10,000 =2 2 (cos 10,000 T +isin 10,000 T
= 2509 (605 2,500 7 + i sin 2,500 ) (3.2-19b)
= 25,000 (3.2-19¢)

To find the nth root of a complex number, we use the polar representation. Suppose we want to find
the nth root of z;. Let z, be the n'h root. By definition

zy = 7, (3.2-20)
Writing z, and z; as

zy = 1y (cos O + 1 sin B) (3.2-21a)
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z; = 11 (cos 87 +1sin 6y¢) (3.2-21b)
Equation (3.2-20) becomes

ry (cos n6, +1isin nGO) = T (cos 8, +isin 61) (3.2-22)
Equating the real and imaginary parts, we obtain

rycos 8, = ry cosnb, (3.2-23a)

r;sin®; = r)sinn@, (3.2-23b)

The solution is

=" e = ?1—1 + 27:11( (3.2-24a,b)
where k is an integer.
Since, for any integer k given by

k = pn+m, 0<m<n (3.2-25)

where m is a remainder, we obtain all the values of 6, which produce the n distinct values of z,
by choosing k=0, 1, 2,3, ... ,n— 1. Any other value of k would yield a value of 6, which
differed from the one obtained earlier by a multiple of 27 radians.

n whose arguments differ by 2T with the first

Geometrically these roots lie on a circle of radius r, <5

. 0 )
argument being —L. Thus the number of nth roots of a complex number is n.
g €5 p

Example 3.2-2. Determine all the nth roots of unity.

Since
I =cosO+isin0 (3.2-26)
we have
1" = cos (0 +22K] 4 j sin (0 + 27K (3.2-27a)
= cos (2B k) + i sin (2% k) (3.2-27b)

Denoting the roots by pg, Py, ---, Pp-1» We obtain from Equation (3.2-27b)
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Ppo = cosO+isin0 =1 (3.2-28a)
p1 = cos (275)+1sm (2%) (3.2-28b)
Py = cos (4n)+1sm (inﬂ) (3.2-28c¢)
o = cos (=D, gin | 0= D7) (3.2-28d)

We list some of the properties of the conjugate of z

1. 2122y = Z1 £ 2, (3.2-29a)

2. Z)°2) = Z;° I, (3.2-29b)

3 (% ) - % (2 #0) (3.2-29¢)

4. (z) =1z (3.2-29d)

and some of the properties of the absolute value of z

1. lz| = |z| (3.2-30a)

2. z+z =]z|? = (Rez)® +(Imz)? (3.2-30b)

3. Rez <1z, IImz} < |zl (3.2-30¢)

4. [z1zy1 = 1z11 (5] (3.2-30d)

5. l-;ﬂ = IZﬁ (z1 #0) (3.2-30¢)

6. {z1+ 271 < 1z11+12] (3.2-30f)

Example 3.2-3. Show that 1z + 25| < 1z11+12,1.

This is the triangle inequality.

We have
12, +2,|% = (2 +2) (7,5 2;) = (2, +2,) (7 + ) (3.2-31a,b)
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= 2021+ 212, +2,2) + 252, (3.2-31¢)
Observe that
Hence
(2125 + 2125) = 2Re(z12,) (3.2-33)
It follows that
2 2 — 2
|21 +2,|" = |z{] +2Re(z,Z,) +| 7, (3.2-34a)
2 — 2
< |z " +2]21Zy| + |2y (3.2-34b)
2 2
S |zy| " +2]z4] [2y] + ]2y (3.2-34¢)
< (lzy] +|z,]) (3.2-34d)
This implies
[lz1+ 25| =(Iz4] +|25]) ] [z + 25| + (24| +]25])] <O (3.2-35a)
Hence
|2y +25| < (2] +]2,]) (3.2-35b)
[

Warning: We emphasize that complex numbers are not ordered. Expressions such as z; >z, or z; <
z3 have no meaning unless z;, z, and zz are all real.

3.3 COMPLEX FUNCTIONS

The concept of functions, limits, continuity and derivatives discussed in the calculus of real variables
can be extended to complex variable calculus. Before considering these concepts, we first define
curves, regions and domains in the complex plane.

Let x(t) and y(t) be two continuous functions of a real parameter t, defined for a <t <b, so that
the equation

z=xM®+1y(®) (3.3-1)
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defines a curve C that joins the point

z(a) = x(@)+1y(a) (3.3-2a)
to the point
z(b) = x(b)+iy(b) (3.3-2b)

If z(a) and z(b) are equal, the curve C is a closed curve. The curve C is simple if it does not
cross itself. For example

z = cost+isint 0<t<2m) (3.3-3a)
is a simple closed curve. It is in fact the unit circle. It can also be expressed as

|z| =1 (3.3-3b)
The set of all points z which satisfy the inequality

|2-20] < 8 (3.3-4)

is called the & neighborhood of the point z,. It consists of all points z lying inside but not on the
circle of radius & with the center at z,. This is illustrated in Figure 3.3-1.

FIGURE 3.3-1 § neighborhood of z,

Similarly, the inequality |z —z,| > & represents the exterior of the circle.
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Apoint z, is said to be an interior point of a set S whenever there is some neighborhood of z,

that contains only points of S ; it is called an exterior point of S if there exists a neighborhood of
z, which does not contain points of S. If z; is neither an interior point nor an exterior point of S,

it is a boundary point of S.

If every point of a set S is an interior point of S, S is an open set. Clearly an open set contains
none of its boundary points. If a set S contains all its boundary points , S is closed. The closure
S of aset S is the closed set consisting of all pointsin S as well as the boundary of S.

An open set S is a connected set if every pair of points z{,z, in S can be joined by a polygonal
line that lies entirely in S. The open set |z| < 1 is connected and so is the annulus 1 <|z|< 2. The
set of all points in the plane that do not lie on |z|=1 is an open set which is not connected. This is
because we cannot join a point inside the unit circle to a point outside the unit circle without crossing
the unit circle. The unit circle does not belong to the set.

An open set that is connected is a domain. A domain together with some, none or all of its boundary
points is a region. A set that is formed by taking the union of a domain and its boundary is a closed
region.

Finally, the set of all points z (= x +1iy) such that y > 0 is the upper half plane. Similarly, for
y <0, we have the lower half plane. The conditions x >0 and x <0 define the right half
plane and the left half plane respectively.

We now define functions of a complex variable.

Let S be a set of complex numbers and let z, which varies in S, be a complex variable. A function
f defined on aset S of complex numbers assigns to each z in S aunique complex number w. We
write

w = f(2) (3.3-5)

The number w is the image of z under f. The set S is the domain of definition of f(z) and
the set of all images f(z) is the range of f(z). Just as the variable z is decomposed into real and
imaginary parts, w can be decomposed into a real and an imaginary part. We write

w=1f(2Z)=uXy+iv(xy) (3.3-6a,b)

The real functions u and v denote the real and imaginary parts of w. We note that a complex valued
function of a complex variable is a pair of real valued functions of two real variables.

Example 3.3-1. Express the function
w=f(z) =22+22-32 (3.3-7a,b)

in the form of Equation (3.3-6b). Then find the value of f (1 +i).
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W= (X+iy)P2+2x+iy)-3(x-iy) (3.3-8a)
= [(x2-y?) +2x - 3x] +i [2xy + 2y + 3y] (3.3-8b)
= (x2-x-y%) +i (2xy + 5y) (3.3-8¢)

Comparing Equations (3.3-6b, 8c), we have
u=x2-x-y? v = 2xy + Sy (3.3-9a,b)
f(l+i) =u(l,D+iv(, 1) = -1+71i (3.3-10a,b)
]

Let f(z) be defined in some neighborhood of z, with the possible exception of the point z,, itself.
We define the limit of f(z) as z approaches z;, to be a number 2, if for any € > O, there is a
positive number & such that

lf(z)—£| < € whenever 0<|z-2,|<d (3.3-11)

We adopt the same notation as in the case of a real variable and write

Iim f(z) = & (3.3-12a)
Z— 2
or f(z)— 2 as z— z, (3.3-12b)

We note that in the present case, z may approach z, from any direction in the complex plane and the
limit is independent of the direction.

An equivalent definition in terms of u (x,y) and v (X, y) is

im f(z) = 2 =2,+i2%, (3.3-13)
274

Equating the real and imaginary parts, we have

lim ulx,y) = &4 (3.3-14a)
(X, y) i (XOs YO)

lim v(x,y) = A (3.3-14b)
(X, ¥) = (X0, ¥0) Y 2

If a limit exists, it is unique. The concept of limit is illustrated in Figure 3.3-2.
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FIGURE 3.3-2 Limit of f(z) defined by Equations (3.3-14a, b)

Let f(z) be a function of the complex variable z defined for all values of z in some neighborhood
of z,. The function f(z) is continuous at z, if the following three conditions are satisfied

1) lim f(z) exists (3.3-15a)
Z—>1Zg

ii) f(z,) exists (3.3-15b)

iii) lim f(z) = f(z,) (3.3-15¢)
Z- Zg

The derivative of f(z) at z, written as f'(z,) is defined as

f'(zg) = ZlgnZO fiz;:% (3.3-16)
provided the limit exists.
An alternative definition is to let

w = f(2) (3.3-17a)

Aw = f(z)-1(zy), Az =2-12, (3.3-17b,c)
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f(z) = lm AW - fy (ALY L AVEGY) (3.3-17d.e)
Az—->0 Az Az—0 Az Az

We also write f'(z) as 9%
dz

If f(z) is differentiable at z, itis continuous at z,. As in the case of real variables, the converse
is not true.

Example 3.3-2. Show that the continuous function
f(z) = 1z12 (3.3-18)
is not differentiable everywhere.

Let z, be any point in the complex plane, then using Equation (3.3-17d) we have

2 2
£z = tm 12 =1%l 3.3-19
29) = Az—0 Az M.
_ um 22207 (3.3-19b)
Az-0 Az
- im (2o + A2) (z) + AZ) - 2, 7, (3.3-19¢)
Az—-0 Az
R g} (3.3-19d)
Az—0 [ 07 70y,

Equation (3.3-19c) is obtained by using Equations (3.3-17c, 2-29a).

If z, is the origin, Z, is also zero and f'(0) exists and is zero. If z, is not the origin, we express
Az in polar form and write

Az = Ar(cos O +isin 0) (3.3-20a)

Az

Ar (cos 8 —1isin 0) (3.3-20b)
Substituting Equations (3.3-20a, b) into Equation (3.3-19d), we obtain

(cos 0 —isin 9)
(cos 0 +1isin 6)

fi(zy) = Alrir_n0 Zy+z (3.3-21a)
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2
7 4y (cos 0 —1isin 9) (3.3-21b)
0 0 cosZ 0 + sinZ 0 |

= Z,+2,(cos 20 — i sin 26) (3.3-21c)

Thus f '(ZO) depends on 6 and is not unique. Also the limit does not exist. For example, if z
approaches z, along the real axis (8 = 0), and along the imaginary axis (6 = 1/2), we obtain
respectively from Equation (3.3-21¢)

f'(zg) = Zy+2, (3.3-22a)
f'(zp) = 7y~ 2, (3.3-22b)

The function f is not differentiable everywhere except at the origin where f'(0) is zero irrespective of

0.

All the familiar rules, such as the rules for differentiating a constant, integer power of z, sum,
difference, product and quotient of differentiable functions as well as the chain rule of differential
calculus of real variables hold in the case of complex variables.

Functions which are differentiable at a single point are not of great interest. We thus define a broad
class of functions. A function f(z) is analytic in a domain D, if f(z) is defined and has a derivative
atevery pointin D. The function f(z) is analytic at z, if its derivative exists at each point z in
some neighborhood of z;. Synonyms for analytic are regular and holomorphic.

If f(z) is analytic for all finite values of z, f(z) is an entire function. Points where f(z) ceases to
be analytic are singular points.

The basic criterion for analyticity of a complex function f(z) is given by the Cauchy-Riemann
conditions.

Theorem 1

A necessary condition for the function f(z) to be analytic in a domain D is that the four partial

derivatives 5—2— %%, % and 3—:7 exist and satisfy the equations
du ov Ju ov
gu _ ov ox . _9¥ 3.3-23a,b
ox dy’ dy ox ( 2,b)

Proof: Since f(z) is differentiable at any point z, in D, then f '(zo) must exist.
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This implies that the ratio [f(z) - f(zo)] / (z —z,) must tend to a definite limit as z —> z,
irrespective of the path taken. We choose to approach z, along a line parallel to the real axis
(y = constant), shown as path 1 in Figure 3.3-3. The increment Az is simplified to

Az = z2-1725 = X=Xy = Ax (3.3-24a,b,c)

y A

Yo | — |
TO
1 >
Xo X

FIGURE 3.3-3 Two paths approaching z,

Using Equation (3.3-17e), f'(z,) is given by

f'(Z ) = lim U(x0+ AX’ yO)_u(XO’ yO) + i llm V(XO+ AX, YQ)—V(XO, Y())
0 Ax—-0 AX Ax—-0 AX
(3.3-25)

Since f'(z,) exists, the two limits on the right side of Equation (3.3-25) exist. They are in fact the
partial derivatives of u and v with respect to x. Equation (3.3-25) can be written as

f'(zg) = g—‘; + ig—} (3.3-26)

Next we approach z,, along a line parallel to the imaginary axis (x = constant), shown as path 2 in
Figure 3.3-3. In this case

Az = i(y—-yg = 1Ay (3.3-27a,b)
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The analogues of Equations (3.3-25, 26) are

u(Xg, Yo+ Ay) -u (X4, y,) V(Xp, Yo+ AY) =V (Xy, ¥g)

f'(zy) = lim + i lim
Ay—-0 iAy Ay-0 iAy
(3.3-28a)
.du | dv
= — i + =— -
i 3y 3y (3.3-28b)
Comparing the real and imaginary parts of Equations (3.3-26, 28b), we obtain

du _ dv
x = 3y (3.3-29a)
Jdu v
3y = Tax (3.3-29b)

These are the Cauchy-Riemann conditions. They are the necessary but not sufficient conditions
for a function to be analytic. This is shown in Example 3.3-3.

Note that f'(z,) is given by Equations (3.3-26 or 28b).

Example 3.3-3. Show that the function

3.3 3,3
XY (22 220
%2+ y2 X2 4+ y2

f(z) = (3.3-30a,b)

0 , z=0

satisfies the Cauchy-Riemann conditions at the origin, but f '(0) does not exist.

From the definition of partial derivatives, we have

du w0 -u0,0 . (-0
0.0 = lim _ = lim TS o (3.3-31a,b,0)
3,.2
9 6.0y = fim LOY-uO0.0 _ Ly'yl)-o _ (3.3-31d,e.f)
ay y—0 y y—0 y
Similarly

av _ av _ _
5 0O =1 5 0,0) =1 (3.3-31g,h)
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Hence, the Cauchy-Riemann conditions are satisfied at (0, 0). We now show that f'(z) does not exist
at (0, 0).

Let z vary along the line

y=x (3.3-32)

fz) =u+iv=0+ix (3.3-33a,b)
' im {@-10) _ L ix i i(1-1) L1

£(0) = 1 ——— - = = = = = 3- -
O = Im =0 o Hix T 141 S {ien(-p ~ 2 Tl (3340

However, if the origin is approached along the x-axis (y = 0), we can write using Equation (3.3-26)
£'(0) —a—u(O O)+i§l(0 0) = 1+i (3.3-35a,b)
T oox ox 7 ) ’
Since the two limits are different, f'(0) does not exist.

Theorem 2

A function f(z) is analytic in adomain D, provided the four first partial derivatives of u (x,y) and
v (X, y) exist, satisfy the Cauchy-Riemann equations at each point of D and are continuous.

Note that, in theorem 2, we require the partial derivatives to be continuous.

The Cauchy-Riemann conditions can also be written in polar form. From Equations (3.2-6a, b) we
obtain

ar _ ar .

5 = cos 0, 3y = sin © (3.3-36a,b)

a_f_)___sine @2_0036 -

- = sing, oy = = (3.3-36¢,d)
Using the chain rule, we have

du _dudr dudb _ o0u sin® du (3.3-37a,b)

ox dr dx d0 9x or r 00

du _ ogdu , cosB du (3.3-37¢)

dy or r 006
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91 = cos@a—‘i—-smei\i
ox or r 06
a—v = sinegl + cos & ﬂ
dy or r 00

Combining Equations (3.3-23a, b, 37b to e) yields

cos 2% _ 5in @ gu _ sineéX 4 cosB dv
or r 00 or T 96

sme—a—u 4+ €os B du _ —cosea—v 4 sin® av
ar T 00 or r 30

(3.3-37d)

(3.3-37e)

(3.3-38a)

(3.3-38b)

Multiplying Equations (3.3-38a, b) by cos 8 and sin 8 respectively, and adding the resulting

expressions yields

du _109v (3.3-392)
dr r 00
.. . . .. odu av . .
Similarly, eliminating a— and 55 from Equations (3.3-38a, b), we obtain
r

dv __10du (3.3-39b)
or r 90

Equations (3.3-39a, b) are the Cauchy-Riemann conditions in polar form.

Combining Equations (3.3-26, 37b, d, 39a, b) yields

‘z) = dw _ising) ¥ ]

f'(z) = iz (cose 1 sin 9) 3 (3.3-40a,b)

Example 3.3-4. Show that the function e* (cos y + i siny) is analytic and determine its derivative.

We have

f(z) =u+iv =eXcosy+ie*siny

i)3=excos —ai——exsin
ox Y y y
g—l=exsiny, %:excosy

(3.3-41a,b)

(3.3-41c,d)

(3.3-41e,1)
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The functions u, v, and their partial derivatives satisfy the Cauchy-Riemann equations and are
continuous functions of x and y. Hence f(z) is analytic.

The derivative

f'(z) = g—i + i g—Z— = e*cosy+ie*siny (3.3-42a,b)
= eX(cosy +isiny) (3.3-42¢)

which is identical to the given function. We will see in Section 3.4 that this function is eZ.

Let f(z) be an analytic function. Assume that the mixed second derivatives of u and v exist and are
equal. From Equations (3.3-29a, b), we have

2 2 2

ov _du _ o (3.3-43a,b)
dx dy ax? dy?

2 2 2

ofu _ v _ 97 (3.3-43c,d)
ox dy oy? ox?

From Equations (3.3-43b, d), we deduce that both u and v satisfy the equations

2 2
o’u  d7u _ . (3.3-442)
axr  9y?

2 2
v 9V _ (3.3-44b)
x> 9y?

Equations (3.3-44a, b) are Laplace’s equations which will be solved in Chapter 5. The solution of
Laplace’s equation is a harmonic function. Both the real and imaginary parts of an analytic
function are harmonic functions. The functions u and v of the analytic function are also conjugate
functions (harmonic conjugates).

If a harmonic function u (X, y) is given in some domain D, we can determine the harmonic conjugate
v (X,y) through the Cauchy-Riemann relations. The analytic function f(z) can then be determined.

Example 3.3-5. Show that

u(x,y) = x3-3xy? (3.3-45)
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is a harmonic function. Find the harmonic conjugate function v (X, y) and the analytic function f(z).

Taking the partial derivatives of u, we obtain

ou

2 2
_ == _3 e -
Iy 3x vy, Jy 6xy (3.3-46a,b)
2 2
CAL R U _ ey (3.3-46¢,d)
9x2 8y2

From Equations (3.3-46¢, d), we deduce that u satisfies Laplace’s equation, and u is harmonic.

From Equation (3.3-29a), we obtain

<
Il

j (3x2-3y2) dy + g (3.3-47a)

3x2y - y3 + g(x) (3.3-47b)
where g(x) is an arbitrary function.
The function v also has to satisfy Equation (3.3-29b) and this implies

—-6xy = —[6xy +g' (x)] (3.3-48)

From Equation (3.3-48), we deduce that g'(x) is zero and g is a constant c. The function v can
then be written as

v=3xty-y3+c (3.3-49)
The function f is given by
f= (x3—3xy2)+i(3x2y—y3)+c (3.3-50a)
= (x+1 y)3 +c=23+c (3.3-50b,¢)
®

Laplace’s equation can be written in terms of z and z. From Equation (3.2-1), we deduce

X = (%Z) y= (Zgiz

(3.3-51a,b)

Therefore
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A I SR R N R 1
32 " 9z9x Tazay - 2lax '3y (3.3-522,0)
R A RN E R
3 ~ 9z ox | oz dy 2 \ox +18y (3.3-53a,)
9,9 L(i_~i)(i a)
dz 0z 4 \0x lay ax T dy (3:3-54)

2 2
4 ai . aa—_ = (a_ + _a_) (3.3-55)
Y z axz ayZ

That is
2 2 2
e o0 _, 00 (3.3-56)
ox2  dy? dz 9z

If @ (x,y) satisfies Laplace’s equation, it follows that
2
I _, (3.3-57)
0z 0z

and the general solution is
¢ =f(z)+g(z) (3.3-58)

This solution is often used in two dimensional physical problems.

Example 3.3-6. Obtain the complex potential @ (z) for a two dimensional irrotational flow of
an incompressible fluid.

We choose the rectangular Cartesian coordinate system and let (vy, vy) be the velocity components.
The flow is irrotational and this implies that the vorticity (curl v) is zero. This can be expressed
as

v av

X

—_— ‘—y~ - -
3y % 0 (3.3-59)

From Appendix I, we obtain the equation of continuity for an incompressible flow as follows

vy L %Yy _ g (3.3-60)
X dy ’
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From Equations (3.3-59, 60), we deduce

A oy (3.3-61
dy ox 3-61a)
v, avy

ox  dy (3.3-61b)

Substituting v, for u and vy for (-v), Equations (3.3-61a, b) are identical to Equations (3.3-29a,
b). That is, the components v, and vy satisfy the Cauchy-Riemann relations.

We introduce two functions ¢ (x,y) and (X, y) such that

0
v, = a_‘}: _ %‘;—l | (3.3-62a,b)
do _ ady

From Equations (3.3-62a to d), we note that ¢ and y satisfy the Cauchy-Riemann relations and are
therefore harmonic functions. This can also be verified by combining Equations (3.3-59, 60, 62a to d).

The function ¢ is the potential and v is the stream function. They are conjugate functions.
The combination ¢ +iy is an analytic function and the complex potential is given by

D@z) =0+ivy (3.3-63)
Differentiating ® (z) with respect to z and using Equations (3.3-26, 62a to d), we have

o 90 .y
E = ﬁ + 1-97(_ = Vx—lvy (33'64a’b)

Similarly using Equation (3.3-28b, 62a to d), we have

Iy

o _ _1‘33 + 27 v _iv (3.3-65a,b)
dy

dz

Using the complex function @, we can obtain both the potential (Re ®) and the stream function
(Im ®). The derivative of @ yields both velocity components.

The concept of a complex potential is widely used in hydrodynamics, and will be discussed further in
this chapter. Applications of complex potential in electrostatics are given in Ferraro (1956).
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3.4 ELEMENTARY FUNCTIONS

The definition of many elementary functions, such as polynomial, exponential and logarithmic, can be
extended to complex variables. It is usually defined such that for real values of the independent
variable z, the functions become identical to the functions considered in the calculus of real variables.
However, the complex functions may have properties which the real functions do not possess. One
such property is the possibility of multiple values mentioned in connection with Equation (3.2-8a, b).

A polynomial function P, (z) of degree n is defined as
P (z) = apz"+a, Z" 1 + ... + a)z+a,
where a, #0,a, 1, .. ,a, are all complex constants. Similarly, a function

w(z) = P2)/Q()

in which P(z) and Q(z) are polynomials, defines a rational algebraic function.

The exponential function is denoted by e [or exp (z)] and is defined as

2

z yA
e =1+z+ — + +

n
— + ..
2! n!

N

i

= 2
n=0

n
!

=

Setting the real part of z to zero, we have

o0

o (1N 2m hod 2m+1

iy _ (y)” _ Y Y ey

© Eo T N A G I A P
= cosy + isiny

Equation (3.4-4c) is Euler’s formula.
The exponential function can be written as

eZ = eXtiY = eX(cosy +isiny)
For real z (y =0), e? reduces to e*.

The moduli

Ieiyl = |cosy+isiny| = 1

(3.4-1)

3.4-2)

(3.3-3a)

(3.4-3b)

(3.4-4a,b)

(3.4-4¢c)

(3.4-5a,b)

(3.4-6a,b)
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le?| = |&¥| 'eiyl =e* (3.4-6¢,d)
The modulus of e* is eX and the argument of e? is y.

If the value of y is increased by 2km (k is an integer), the values of siny and cosy remain
unchanged and e” is periodic with period 27. That is to say,

e? = z+2ikn

e (3.4-7)

Because of the periodicity, we need to consider only the strip

—-MT<y<T (3.4-8)
Some of the properties of e’ are:
(a)  e” is analytic.
(b) e*=1 implies z=2n7i (n is an integer) (3.4-9a,b)
@ f=L (@20 (3.4-9¢)
@ L= (3.4-9d)
(e) If z;(=xy+iy;) and z; (=xy +1y,) are two complex numbers

eflee” = ™12 (3.4-9¢)
® e’ =e? implies z; -2z, = 2nmi (n is an integer) (3.4-91,g)
(&) If w is an analytic function of z

ac_lz_ (%) = &% % (3.4-9h)
Example 3.4-1. Show that e” is not an analytic function of z in any domain.
We have

e? = X 1Y = eXee Y = X (cosy—isiny) = u+iv (3.4-10a,b,c,d)

u = eXcosy, v = —eXsiny (3.4-10e,f)

g—:: = e*cosy, -g—; = —e*siny (3.4-10g,h)
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%;_, = —e*siny, g—; = —e*cosy (3.4-101,))

It can be seen that Equations (3.4-10g to j) do not satisfy Equations (3.3-29a, b) for any finite values
of x. Thus the Cauchy-Riemann relations are not satisfied and e is not analytic.

The trigonometric functions are defined as

iz _—iz iz —iz
) e —e
sinz = ————o, cosz = uz_L (3.4-11a,b)
tanz = ggézz , cotz = ‘;:’;Z (3.4-11c,d)
secz = colsz s cosecz = s1r11—z (3.4-11e,f)

Since e” is analytic for all z, sinz and cosz are also analytic for all z. The complex
trigonometric functions have the same properties as the real functions. We list some of them:

(a) sin z and cos z are periodic with period 21

(b) (f—z (sinz) = cosz (3.4-12a)
(©) ad—z— (cosz) = —sinz (3.4-12b)

(d) cos z is an even function [cos (—z) = cos z] and sin z is an odd function [sin (—z) = —sin z]
(e) elZ = cosz+isinz (3.4-12¢)

Euler’s formula holds for complex variables

® sinz+cos?z = 1 (3.4-12d)
(g)  sin(zy; £zp) = sin zq cos zy + cos z1 Sin Z; (3.4-12¢)
(h)  cos(z; £z9) = coszcoszyxsinzysinz, (3.4-12f)
@) sin [(2n+ 1)7—5— —z] = cos z (n is an integer) (3.4-12g)
G sin(x+iy) = sinxcoshy+icosxsinhy (3.4-12h)

(k) cos (x+1y) = cosxcoshy—isinxsinhy (3.4-12i)
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1)) The zeros of sinz and cos z are respectively

z=nn, z=Cn+ 1)% (n is an integer) (3.4-12 j,k)

Hyperbolic sine (sinh z) and cosine (cosh z) of z are defined as

Z_ oL Z, .~z
e-° coshz = & +¢ (3.4-13a,b)

sinhz = 5 , >

The other hyperbolic functions are

tanhz = SiOhZ cothz = coshz (3.4-13c,d)
cosh z sinh z
_ 1 - 1 -
sechz = “oshz’ cosechz = sinh 2 (3.4-13e,f)

The complex hyperbolic functions have the same properties as the real functions. Some of these are:
(a) They are analytic

(b) é‘—z—(sinh z) = coshz (3.4-14a)
©) (f—z(cosh z) = sinhz (3.4-14b)

(d) cosh z is an even function, sinh z is an odd function

() cosh?z—sinh?z = 1 (3.4-14c)
® sinh (x +i1y) = cosy sinh x +1i sin y cosh x (3.4-144d)
(g) cosh (x +1y) = cosy cosh x + i sin y sinh x (3.4-14¢)
(h) sinh (iz) = isinz, isinh z = sin (iz) (3.4-141,g)
6)) cosh (iz) = cos z, cosh z = cos (iz) (3.4-14h,1)
G)  sinh (lzl ~z) = icoshz (3.4-14j)

k) The zeros of sinh z and cosh z are respectively

Zz=nmi, z=_n+ 1)“7i (n is an integer) (3.4-14k,D)

We recall that for real variables, if x is any positive real number and
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u

X=e (3.4-15)
then

u = Anx (3.4-16)
We now extend the definition of £n to the complex variables and write

z=¢e% (3.4-17)
It follows that we can define 2nz as

w = Anz (3.4-18)
Separating w into its real and imaginary parts (w =u +1Vv), Equation (3.4-17) becomes

zZ = e¥(cos v +isinv) (3.4-19)
From Equation (3.4-19), we obtain

Iz} = e (3.4-20a)

argz = v (3.4-20b)
Combining Equations (3.4-18, 20a, b) yields

Anz = Anlzl+iargz (3.4-21)

Since arg z can differ by multiples of 21, we restrict the definition to the principal values of
arg z (Argz). We then have the principal value of £nz and we denote it by Ln z. That is to say,
Ln z is defined as

Inz = Anlzl+iargz (3.4-22a)
—M<argz<m (3.4-22b)

The function 2n z as defined by Equation (3.4-21) is a multiple-valued function and since the argz
can differ by multiples of 27, we can write

Anz = Lnz*2nmi (n is an integer) (3.4-23)

If z is areal positive number, then Arg z is zero and the definition of Ln z is identical to the 2n in
the theory of real variables.

Some of the properties of £nz (Lnz) are:
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(@

(b)
(©)
(d)
(e)
®

@

An 1 = 2nmi
An(-1) = @n+ )i (n is an integer)

L '_—_'E_
n1 12

Ln(-1-1i) = %an-i%’t

An(z;zy) = Anzy+ Anzy

An(e?) = z+2nwi, Ln(e?) =1z
eAnz - 4

Lo (A = 2 2

n z,) = nz —4nz,

(3.4-24a)
(3.4-24Db)

(3.4-24¢)

(3.4-244)

(3.4-24¢)
(3.4-24f,g)

(3.4-24h)

(3.4-24i)

Note that Ln z is not defined at the origin (1z | = 0). The negative real axis is a line of discontinuity
since the imaginary part of Ln z has a jump discontinuity of 27 on crossing that line. We make a
cut, as shown in Figure 3.4-1, in the complex plane to remove the origin and the negative real axis. In
the resulting domain D, Ln z is analytic. The derivative of Ln z is given by

d =1
47 Lnz) = 7

(3.4-252)

FIGURE 3.4-1 Domain D in which Ln z is analytic
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Since Anz and Lnz differ only by an arbitrary multiple by 2i,

d =1

< (Bnz) = 2 (3.5-25b)
If o is any complex number, we define z%* to be

z% = exp (o £n z) (3.4-26)
Similarly the function o is defined as

of = exp (z An @) (3.4-27)

In general z* and o? are multiple-valued functions since £n z is a multiple-valued function. The
principal values of z* and o are obtained by substituting £nz by Ln z in Equations (3.4-26, 27).

Example 3.4-2. Find the values of (i) &ne, (ii)) Ln(1-1), (iii) (—i)1.

@) Ane = Anlel+iarge (3.4-28a)

= 14+i(0+2nn) = 1+ 2n7i (3.4-28b)

(ii) Ln(1-i) = Anll-il+iArg(1-1i) (3.4-29a)
=1 - -

3 An2 41 (3.4-29b)

(iii)  Taking the principal value, we have
(-i)i = elln (D) (3.4-30a)
= ei(Hn2) _ on2 (3.4-30b,¢)
Example 3.4-3. If o, is a complex number, is 1% always equal to 1?

From Equation (3.4-27) and noting that 1 can be written as e2™i we have

1% = exp [0 An e2™ni] (3.4-31a)
= exp [0 (27ni)] (3.4-31b)
= exp [-2nnf} + 27ni y] (3.4-31c)

exp [-2nnf] {cos 2mny + i sin 2wn v} (3.4-31d)
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To obtain Equation (3.4-31b), we have made use of Equation (3.4-24f) and we have expressed the
complex number o as y+ip.

Thus in general 1% is not equal to 1. Note that if n is zero (consider only the principal value) 1¢ is
equal to 1.

3.5 COMPLEX INTEGRATION

In Section 3.2, we stated that a complex plane is required to display complex numbers. This two
dimensional aspect has an effect on complex integration. A definite integral of a complex function of a
complex variable is defined on the curve joining the two end-points of the integral in the complex
plane.

To begin with, we consider the definite integral of a complex valued function of a real variable t over
agiven interval a<t<b. Let

f() = u(®+iv(), a<t<b (3.5-1)

and we assume that u(t) and v (t) are continuous functions of t. We define

b b b
J f(t) dt =J u(t)dt+if v(t) dt (3.5-2)

b b
Note that both f u(t) dt and f v(t) dt are real.
a a

Several properties of real integrals are carried over to complex integrals. For example, if f(t) and
g(t) are complex functions, then

b b b

I [f() +g®]dt =f f(t) dt +f g(t) dt (3.5-3a)
b c b

j f(t) dt =j f(t) dt +j f(t) dt (3.5-3b)
b b

f afdt = ocf f(t) dt (3.5-3¢)

where o (= +1i7) isacomplex constant, § and vy are real.
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b a
f f(dt = —f f(t)dt (3.5-3d)
a b
n/4 .
Example 3.5-1. Evaluate fo teltde.

Since the integrand is a complex valued function of a real variable t, we use Equation (3.5-2) and

write
n/4 n/4 n/4
f teltdt = f tcostdt + i/ tsint dt (3.5-4a)
0 0 0
/4 n/4
= (tsint+cost) +i(-tcost+sint) (3.5-4b)
0 0
V2 A2 (V2 w2
+ — —1]+1|—= - (3.5-4¢)
8 2 2 8
o
In Section 3.3, a curve C joining the points z(a) to z(b) is given by
z(t) = x()+iy (@), ast<b (3.5-5)

If z(a)=2z(b) is the only point of intersection, C is a simple closed curve. The orientation is
defined by moving from z(a) to z(b) as t increases. This is illustrated in Figure 3.5-1. The unit
circle

z = ¢, 0<t<2n (3.5-6)
is a simple closed curve oriented in the counterclockwise direction. But

z=-el, 0<t<2n (3.5-7)
is a unit circle oriented in the clockwise direction.

The complex function z(t) in Equation (3.5-5) is differentiable if both x (t) and vy (t) are
differentiable for a <t<b. The derivative z'(t) is given by

') =x' O+iy (1), a<t<b (3.5-8)
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y 4

2(b) = x(b), y (b1 |
//27‘
< -

z(o)=[x(o).y(0)]

z=(a)=2z(b)
P

FIGURE 3.5-1 Simple (C;) and simple closed (C;) curves in the complex plane.
Arrows indicate orientation

Curve C is smooth if z'(t) is continuous and non-zero in the interval. If C is smooth, the
differential arc length is given by

as = Vx> +[y'®)? dt = |zo)|dt (3.5-9a,b)

and the length L of the curve C is given by

b
L=j | 20| at (3.5-10)

If C is given by Equation (3.5-5) and if we let (-C) be the curve that traces the same set of points in
the reverse order, curve (—C) is given by

z(t) = x() +iy(-t), -b<t<-a (3.5-11a)

A curve C that is constructed by joining a finite number of smooth curves end to end is called a
contour (or path). A formula for representing the line segment joining two points z; and zy ina
complex plane is

z=z,+t(@x—z;), 0<t<l1 (3.5-11b)
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The integral of f(z) alongacurve C joining the points z(a) to z(b) is a contour (line) integral
and is written as

b
Jf(z)dz =f f(z) z'(t) dt (3.5-12)

C

Differentiating z(t) from Equation (3.5-5), substituting the resulting expression in Equation (3.5-12),
and decomposing f into its real and imaginary parts, yields

(
j f(z)dz = | (u+iv) (dx +idy) (3.5-13a)
C C
i
= | (udx-vdy) + if (vdx +udy) (3.5-13b)
C C

The contour integral has similar properties to those of integrals of a complex function of a real variable.
That is to say, we can replace the real variable t by the complex variable z in Equations (3.5-3a to d).
Contour integration in the real two-dimensional plane will be considered in Chapter 4.

For complex integrals, we have the following inequalities:

b b
o) fydt| < J |£(6)] dt (3.5-14a)
[ (
(i) f(z)dz| < ||f@@]dz < ML (3.5-14b)
C C

where M is the upper bound of If(z){ and L is the length of the contour C. Note that in Equations
(3.5-14a, b), we have taken the moduli of all complex quantities and we are dealing with real
quantities. It was stressed in Section 3.2 that complex numbers are not ordered and inequalities have
meaning only when associated with real numbers. In the theory of definite integrals of real functions,
the length L in Equation (3.5-14b) is replaced by the length of the interval of integration (= b — a,
where a and b are the limits of integration).

Example 3.5-2. Evaluate the integral f (z—2zy)" dz
C
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where n is an integer and C is a circle of radius r with centre at z, and is described in the
counterclockwise direction.

The equation of a circle of radius r with centre at z,, is given by
z = zg+relt, 0<t<2m (3.5-15)
On differentiating, we obtain
dz = ireit dt (3.5-16)
Using Equations (3.5-15, 16), the integral becomes
2n
j (z-2zp)" dz = j M elmtirell dt (3.5-17a)

0
C

e+ Dt g (3.5-17b)

[cos(m+ 1) t+isin(n+1)t]dt (3.5-17¢)

2n
irn+1]
0

2n
irn+lf
0

irl’l+1

27
= o7 [sin(@+Dt—icos@+1)t] (3.5-17d)

Since cos and sin are periodic, the integral is zero except when n is —1. In this case, Equation
(3.5-17c¢) reduces to

2n
j(z—zo)'ldz = if dt (3.5-18a)

0

C

=21i (3.5-18b)

Example 3.5-3. Using Equation (3.5-14b), show that

j_ < 442 (3.5-19)
C

(=9

4

N

where C is the segment joining the point (0, i) to (1, 0) as shown in Figure 3.5-2.
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(O+1)

14/

0 (1+10)

2
X

FIGURE 3.5-2 Path of integration

The closest point on the segment joining the points (0, i) and (1,0) to the origin is the mid-point of the
segment, as shown in Figure 3.5-2. The distance from the origin to that point is 1/ w/2» . As z varies
along the segment, its distance from the origin |z | varies and its minimum value is 1/ V2. The
maximum value of l%' is 1/(1/\/7) and is V2 .

The upper bound M of is given by

1
74

4
M=W2) =4 (3.5-20a,b)
The length L of the segment is W/?Z_ .

It follows from Equation (3.5-14b) that

fdl < 442 (3.5-19)
C

4

We note that a simple closed contour C divides the complex plane into two domains. One domain is
bounded and is referred to as the interior of C, and the other domain is unbounded and is the exterior
of C, as shown in Figure 3.5-3.
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FIGURE 3.5-3 Interior (shaded) and exterior domains

Domain D is simply connected if every simple closed curve C in D encloses only points of D.
In other words, there are no holes in a simply connected domain. A domain that is not simply
connected is multiply connected. Figure 3.5-4 shows examples of simply connected and multiply
connected domains.

(a) (b) (c)

FIGURE 3.5-4 Simply connected (a, b) and multiply connected domains
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Cauchy’s Theorem

If f(z) is analytic in a simply connected domain D and if C is a simple closed contour that lies in
D, then

f f(z)dz = 0 (3.5-21)
C

The integral round a closed contour is also denoted by f f(z)dz.

Proof: The integral can be written as in Equation (3.5-13b). That is to say

f f(z)dz = j (udx-vdy) + if (vdx +udy) (3.5-22)

C C C

We transform each of the integrals on the right side of Equation (3.5-22) to a double integral using the
two-dimensional Stokes (Green’s) theorem (see Section 4.4). We have

( ( dv Jdu

dx -vdy) = —— -] dxd 3.5-23
J(uxvy) L(axay"y ( a)
C S
( (vdx+udy) = h( (—g% —%) dx dy (3.5-23b)
C S

where S is the domain enclosed by C.

Since f(z) is analytic, u and v satisfy the Cauchy-Riemann relations (Equations 3.3-29a, b) and the
right side of Equations (3.5-23a, b) are zero. It follows that Equation (3.5-21) holds.

A consequence of Cauchy’s theorem is the concept of path independence. Consider the integral
round a closed contour C. Let z; and z; be two arbitrary points on C and let them divide C into
two arcs C; and C, as shown in Figure 3.5-5. We have

f f(z)dz =[ f(z)dz +f f(zydz = 0 (3.5-24a,b)

C C C,
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C

FIGURE 3.5-5 Path independence

We deduce
f f(z)dz = —-f f(z)dz = f f@z)dz (3.5-25a,b)
C] C2 _C2

Note that —C, is the arc obtained by changing the orientation of C, and is the curve joining z; and
z. Equation (3.5-25b) implies that the integral of f(z) from z; to z, is the same whether we
integrate along C; or — C,. Thus the value of the integral is independent of the path and depends
only on the end points.

Example 3.5-4. Evaluate f z2 dz along each of the straight lines OA, OB and AB as illustrated in
Figure 3.5-6.

The parametric equations of the lines (Equation 3.5-11b) are
along OA: X(t)=t, y®) =0, 0<t<1 (3.5-26a,b)
along OB: x(t)=t, y () =t, 0<t<1 (3.5-26c¢,d)

along AB: x(t)y=1, y ()=t 0<t<1 (3.5-26e,f)
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Y$ B(I+1i)

0 A(l+io) X

FIGURE 3.5-6 Contour integration

The function z2 can be written as
22 = (x+iy)? = Z-yH)+2ixy = u+iv (3.5-27a, b.c)
with dz = dx+idy (3.5-27d)

Using Equation (3.5-13b), we have

1
f 22dz = I t2 dt =% (3.5-28a,b)
0
OA
r rl 1
22dz = | (2t%)dr+i f (26%)ar = -2 + 2 (3.5-28¢,d)
J Jo 0
OB
22dz = (—2t)dt+iJ (1-tYat = -1+ 23—1 (3.5-28¢.f)
J Jo 0
AB

If C is the closed contour OABO, then
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f z% dz =f zZ dz+f z dz+f 2% dz (3.5-29a)
c OA AB BO
-1 4+ 21 _2 421 _ i
_3+(1 3) (3+3) 0 (3.5-29b,c)

verifying Cauchy’s theorem.
L J

A multiply connected domain can be transformed to a simply connected domain by making suitable
cuts. In Figure 3.5-7, the doubly connected domain has been cut by L and L, and the resulting
domain is simply connected. For a doubly connected region, one pair of cuts is sufficient and for a
triply connected region two pairs of cuts are needed so as to obtain a simply connected region. Note
the orientation of the curves in Figure 3.5-7. As we move along the curves, the area enclosed by them
are on the left. The curve enclosing the simply connected domain D is CL; C; L, C. By Cauchy’s

theorem
f f(z)dz = f f(z)dz +f f(z)dz +f f(z)dz +[ f(z)dz = 0 (3.5-30a,b)
CL,C,L,C C L, C, L,

FIGURE 3.5-7 Transformation of a doubly connected domain
to a simply connected one
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We note that L; and L, are in opposite direction (that is, their limits of integration are interchanged)
and so their contributions will cancel. Equation (3.5-30b) becomes

f f(z)dz = —f f(z)dz (3.5-31)

c C

We note that C is oriented anticlockwise and C; is oriented clockwise. We reverse the orientation of

C; and denote (- C;) by C,, Equation (3.5-31) then becomes

f f(z)dz =j f(z)dz (3.5-32)

C c'1

Equation (3.5-32) can be generalized to the case where there is more than one curve inside C.
Suppose we have n simple closed contours which we denote as C; (j=1,2, ..., n) inside another
simple closed contour C. The regions interior to each contour C; have no common points. That is to
say, the contours Cj do not intersect each other. Let the function f(z) be analytic in domain D

which contains all contours and the region between them. We then write

jf(z)dz = 2 j f(z)dz (3.5-33)

j=1
C G

All the contours C and C; are oriented in the same direction, usually in the anticlockwise direction
which, by convention, is the positive direction.

Example 3.5-5. Evaluate f Eciz—a where C is a simple closed curve. Consider the following two
C

cases:

1) the point z=a is outside C,

(ii) the point z = a is inside C.

® Since the point z =a is outside C, the function . 1 " is analytic everywhere. Via Cauchy’s

theorem

f dz - ¢ (3.5-34)
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(ii) In this case, the function is singular at z = a and we enclose it by a circle C; of radius €
with centre at the point of singularity as shown in Figure 3.5-8. On C and C; and the region
enclosed by the two curves, f(z) is analytic and using Equation (3.5-33), we have

f d =_f dz_ (3.5-35)
Z—a Z—a

C C

FIGURE 3.5-8 Contour integral with point z = a inside C

To evaluate the integral along C;, we write
z =a+¢egeld 0<06<L2n (3.5-36)

The integral then becomes

2rn . i0 2n
_J dz_ =f 1€¢  4¢ = i[ de = 2mi (3.5-37a, b,c)
Z—a 0 8619 0

G

From Equations (3.5-35, 37c), we deduce
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Id = 2mi (3.5-38)

Z—a
C

Cauchy’s Integral Formula

Let f(z) be analytic in a simply connected domain D and let C be a simple closed positively oriented
contour that lies in D. For any point Zq which lies interior to C, we have

j 1@ 4, = 21 f() (3.5-39)
Z—ZO

Cc

In Example 3.5-5, we have verified Equation (3.5-39) for the case f(z) equals to one.

Integral Formulae for Derivatives

If f(z) is analytic in D, it has derivatives of all orders in D which are also analytic functions in D.
The values of these derivatives at apoint z;, in D are given by the formulae

' _ 1 f(z)
f'(zy) = TF f (z—zo)2 dz (3.5-40a)
C
" A f(Z)
f'(z,) = T f -~ )3 dz (3.5-40b)
C 0
(n) _ n! f(z)
f™(z,) = e f (z—z)““ dz (3.5-40c)
0
C

In Equations (3.5-40ato ¢), C is any simple closed path in D which encloses z,.

We omit the proofs of these results but consider their applications. We also note that if one derivative
exists, all derivatives exist. This is only true for complex variables.

Z
e“ cosh
coshz ..

Example 3.5-6. Find the value of the integral [ p
(z-m)
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where contour C is a square whose sides are: x =34 and y = +4, described in the positive
direction.

The region D, the contour C and the point z, are shown in Figure 3.5-9. From Equation
(3.5-40b), we identify

f(z) = eZcoshz (3.5-41a)

zy =T (3.5-41b)

>y

4
=

FIGURE 3.5-9 Integration around a square

The conditions for Equation (3.5-40Db) are satisfied and it follows that

z 2
I ecoshz 4, _ jp 97 (eZcoshz) (3.5-42)
(z-m)’ dz?

Carrying out the differentiation, we obtain

2 e”(sinh z + cosh z) (3.5-43a)

1!

9 (e*cosh z)

d2
d22

=2e?" az=m (3.5-43b,c)
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Combining Equations (3.5-42, 43b) yields
e” coshz cosh z 2T
dz = 2ime (3.5-44)

C

Example 3.5-7. Let f(z) be analytic inside and on the circle of radius R with its centre at the

origin. Let z, (: Ty eieo) be any point inside C as shown in Figure 3.5-10. Show that

- (R?*-12) £(R 1Y)

21t 2
o R —2rocos(60—\|l)+r(2)

f (Zo) dy

\
\
~N

FIGURE 3.5-10 Point z, and its inverse point z;

Obtain the real and imaginary parts of f(z;).

Since z, is inside C, using the Cauchy’s integral formula (Equation 3.5-39), we have

271 z-2,
C

We define the inverse point z; of z, with respectto C to be

(3.5-45)

(3.5-46)
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2
_ R _R
z) = —ZO —ro e (3.4-47a,b)

The point z; is outside C and from Cauchy’s theorem (Equation 3.5-21), we have

1 f@ dz =0
. = (3.5-48)
2mi f - (R¥z,)

Subtracting Equation (3.5-48) from Equation (3.5-46), we obtain

_ 1 1 _ 1 }
fz) = 353 f (Z_ZO e ) f(z) dz (3.5-49a)
C 0
2,_
r I g R3¢ f(z)dz (3.5-49b)
2mi (z—-z,) (z—Rzlio)
C

We change to the polar form and write

z = RelVY (3.5-50a)
dz = iRe Vay (3.5-50b)
zg = 1 et (3.5-50¢)

Equation (3.5-49b) becomes

2R . 2 .
f(zy) = . A (r‘,’ R /r",) (R ) : iReY dy (3.5-51a)
21!:1 0 [R eV _ I, e160] [R oV —(Rzlro) e190]

_ L [ _d@rw(2_r?) f(ReY) dy (3.5-51b)
2n |, (Re“" e )(r eV _ Re‘eo)
(2" ( r2) R&lY)
- 1 -
B 21t JO (R e]\lf 190)0 (Re 1\|l 190) d\ll (3.5 51C)
_ 1 [m (Rz—ro) f(R el\") dy (3.5-51d)
2m 0 R2—2Rr0c0s(60—\|1)+rg
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To obtain the real and imaginary parts of f(z,), we write
f(ZO) =u (ro, 60) +iv (ro, 60) (35'523)
fRelY) = u@® y)+iv (R, V) (3.5-52b)

Substituting Equations (3.5-52a, b) in Equation (3.5-51d) and equating the real and imaginary parts,
we obtain

2n 2 0
u(ry, 8,) = o f (&) u . v) dy (3.5-53a)
T Jo R2—2Rr0cos(90—\y)+rg
2% 2 o)
vty 8,) = L f (R -2) v®. v dy (3.5-53b)
2n Jo R2—2Rr0cos(60—\|f)+rg

Equations (3.5-51d, 53a, b) are Poisson’s integral formulae and are important in potential
theory. We note that the values of f at any point inside C can be determined from the values of f on
C. The functions u and v are harmonic functions, that is to say, are solutions of Laplace’s equation,
and we deduce that the solution of Laplace’s equation is determined by the values of the function at the
boundary only.

Morera’s Theorem

If f is a continuous function in a simply connected domain D and if

f f(z)dz = 0 (3.5-54)

C

for every closed contour C in D, f(z) is analytic in D.

Goursat proved Cauchy’s theorem (Equation 3.5-21) requiring only the existence and not the
continuity of f'(z). Morera’s theorem implies that f(z) is analytic as a consequence of Cauchy’s
theorem.

Maximum Modulus Principle

If f is a continuous analytic function and is not a constant in a closed bounded domain D, then
[ f(z)! has its maximum value on the boundary C and not at an interior point. If M is the maximum
value of If(z)l on C,
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I f(z)l <M forall zin D (3.5-55a)
If f(z) is constant,
[ f(z)] £M forall zin D (3.5-55b)

The maximum modulus principle is true for harmonic functions but not for any smooth real valued
functions of two real variables.

3.6 SERIES REPRESENTATIONS OF ANALYTIC FUNCTIONS

In this section, the equivalence between analytic functions and power series is explored. The concept
of sequences, series and power series of complex numbers are in many cases similar to those of real
variables.

Sequences and Series

Let zy, zy, ..., Z, be a sequence of complex numbers. A sequence {z,} convergesto z, if
lim z, = z, (3.6-1)
n— oo

Alternatively Equation (3.6-1) is stated as z, —» z, as n —> co. Equation (3.6-1) implies that for
every € >0, there corresponds a positive integer N, such that

|z,—2z,| < & foralln>N (3.6-2)
N depends on €.

If the limit does not exist, then the sequence {z,} diverges. Separating z, and z, into their real
and imaginary parts, Equation (3.6-1) becomes

lim x, = X, (3.6-3a)
n-—> oo
Im y, =y, (3.6-3b)
n-— oo

If the sequence {z,} converges, then the sequences {x,} and {y,} also converge.

Example 3.6-1. Discuss the convergence of {(1 +i)"}.

We write z, [=(1+1)"] in its polar form
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z, = [«/2_ (cos % +1i sin %)] " (3.6-4a)
= "2 [cos DL +isin ﬂ4—7t] (3.6-4b)

/2 . .
The sequence 2™ cos % oscillates and does not converge. Since the real part of the sequence {z,}

does not converge, the sequence {z,} diverges. The same thing can be said for the imaginary part.

Let {z,} be asequence and let sy, sy, 83, ..., s, be the partial sum defined as follows
$1=21, $=21+Zy, S3=Z1+Zp+2Z3, S;=Z1+Zp+..+2Z, (3.6-5a-d)
If n—> oo, we have an infinite series.

If the sequence of the partial sums {s,} is convergent, that is to say

lim s, = s (3.6-6)

n— oo

exists, the series 2 z, is convergent and the complex number s is the sum of the series. If {s;}
n

diverges, the series diverges.

©0

A necessary (but insufficient) condition for a complex series > z,, to be convergent is that the
n=1

lim z  vanishes. Thatis tosay, s,—s, | in Equation (3.6-5d) tends to zero for large n.

n-—» oo

The sum of a convergent series of complex numbers can be found by computing the sum of its real and

imaginary parts. A series is absolutely convergent if > | z,,] is convergent.
n=1

Example 3.6-2. Discuss the convergence of the geometric series

(=]

2. = l+z+2%+ . +2"+ .. (3.6-7)
n=0
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The partial sum s, is given by

1- Zl’l+1
Sn = —T:;—— (36-8)

If Iz1<1, we deduce

i _ ]
lim s, = 777 (3.6-9)

The series Y, z" converges to i 1

1

The function 1 is analytic inside the circle 1z1< 1 and has the representation

L _y )
= = n§o z, (3.6-10)

If 1z1>1 , the series diverges.

Comparison Test

(=]

Let X M, be a convergent series with real non-negative terms. If, for all n greater than N,
n=0

Iz, < M, (3.6-11a)

the series 2 z,, also converges absolutely.

Ratio Test

oQ

let X z,, be a complex series and
n=0

fim Zoetl _p (3.6-12)

n—> eo |an

If L <1, the series converges absolutely and if L > 1, the series diverges. No conclusion can be
drawn if L is one.

Note that in both tests we use the absolute value of z, since complex numbers are not ordered.
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Example 3.6-3. Determine the convergence of the series 2, (n +n1) .
n=1 2
Using the ratio test, we have
212 n 2
12,411 _ In+1+i| 2 =l[(n+1) +1} (3.6-13.b)
|Zn| 2n+1 |n+1|2 2 n2+1
Taking the limit as n tends to infinity yields %
Since the limit is less than one, the series converges.
o
A series of the form
¢ (z-2p)" = cy+cy(z—2p) + ... +c,(z-2)" + ... (3.6-14)

n=0

where z is a complex variable, z,, ¢y, ¢y, ... are complex numbers is a power series. By a

change of origin, we can set z, to be zero. In Chapter 2, we have shown that every power series of a

real variable has a radius of convergence R. This result can be extended to complex variables. Every
series has a radius of convergence R (0 <R <) and the series converges absolutely if Iz—z, |<R
and diverges if 1z—z, | >R. On the circle of convergence (I1z —z,, | =R), the series may converge at
some points and may diverge at other points. When R is zero, the series converges only at z, and

when R is infinity, the series converges for all values of z.

n
The radius of convergence depends on the absolute values of Ic,l. If the sequence Y | cql
converges to the limit L, the radius of convergence R is given by

=1 -
R = I (3.6-15)

An alternative equation for R is

C

= lim

n—> oo

1 _
R

n+1 ' (3.6-16)

Cl’l
if the limit exists.

A power series represents a continuous function at every point inside its circle of convergence.
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¢ 1\ ,2n
Example 3.6-4. Determine the radius of convergence of the series Y, (——QZ—
n=0 221’1 (n')2

and determine
the function it represents.
From Equation (3.6-14), we identify

0, if n is odd
(3.6-17a,b)

(_1)1’1/2

, if n iseven
2" [(n/2)!]2

For odd values of n

‘nv leal =0 (3.6-182)

For even values of n

n
im V!l = lim —-1——/— =0 (3.6-18b,c)
n-— oo n— oo 2[(n/2)']2n

Thus R is infinity and the series converges absolutely for all values of z. In Chapter 2, we have
defined Bessel functions of a real variable. Replacing x by z, we find that the series represents the
complex Bessel function of order zero.

Taylor Series

We now consider the expansion of an analytic function f(z) as a power series.

Let f(z) be analytic everywhere inside the circle C with centre at z, and radius R. At each point z
inside C,

o0 f(n)(Z) n
f(z) = 20 n!o (z-zp) (3.6-19)

n=

That is, the power series converges to f(z) when lz—z, | <R.

We first prove the theorem when z, is the origin. Let z be any point inside the circle C of radius
R, as shown in Figure 3.6-1. Let C; be a circle with radius R; <R, and let € denote a point lying
on C;. Since z isinterior to C; and f(z) is analytic, we have, using the Cauchy’s integral formula
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f(€)d
f(z) = L f (&) dg (3.6-20)
271 E_z
G
Note that C; has to be positively oriented.
y A
. R
o X
R,
3
FIGURE 3.6-1 Illustration for the proof of Taylor series
We expand L in powers of Z (< 1), as

-z

1 -1 [1 - l}‘l (3.6-21a)

E-z & g
n
=1 [1 + 2y (2)2 + o (l)“'l + @—} (3.6-21b)
el & g el 1-(erg)
= |14 Lzz+l3z2+ +-Lgnlyn 1 - (3.6-21c)
& & & d e-z)¢
Multiolv; 1{(S) : : :
ultiplying each term by —= and integrating around the circle, we have

21
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I I ff@ & + f f© g, an IR{CHIpE
2nij E-z 2mi 3 & * (&.—z)&

¢ C Cy Cy
(3.6-22)
Using Equations (3.5-39, 40a to c), we obtain
f' f" 0 £r-1(0
f(z) =1(0)+ (O) ( )22+... ( ) + R, (2) (3.6-23a)
2! (n— 1)'
where
n f(€d
R, (2) 2Zm © &n (3.6-23b)
(e-2)¢
G
To evaluate the remainder term R;,, we note that
iE-21 > ||€|-12)| = Ry =1 (3.6-24)

If M denotes the maximum value of If (§)| on C;, we write the absolute value of the remainder as
follows

IR, (@) < MR MRI) (—r—)n (3.6-25)

T
o R, -n)RT  Ry-1) Ry

Since (r/R;) isless than one, it follows from Equation (3.6-25) that

lim R, =0 (3.6-26)
n— oo
We proved that f(z) has a power series representation given by Equation (3.6-23a) with R, tending

to zero as n tends to infinity. That is to say, f(z) has an infinite series representation. The proof
was restricted to the case where z,, is the origin. This infinite series is the Maclaurin series which
is a special case of the Taylor series. To extend the proof to the case where z, is not the origin, we
need to shift the originto z,. We define a function g(z) to be

g(z) = f(z+z2y) (3.6-27)

Since f(z) is analyticin 1z—z, <R, g(z) is analyticin 1(z+zy) ~z,! <R, whichis lz] <R.
Thus g(z) has a Maclaurin series expansion which is written as
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(n)
g (O) Zl'l , ]
n!

g(z) = EO zI1<R (3.6-28)
n=
Replacing z by (z-z,) in Equations (3.6-27, 28) yields

gz-zy = f(2) (3.6-29)

ad (1)
g(Z—ZO) = n§0 g ‘(0)

S (z—2p)", lz-z,I<R (3.6-30)

Combining Equations (3.6-29, 30), we obtain

= @)
f(z) = ZO f nfzo) (z-z)", lz-z31 <R (3.6-31)

Note that in the case of complex variables, if f(z) is analytic in |z —-z,| < R, the Taylor series
represents the function, the remainder term R, tends to zero as n tends to infinity. In the calculus of
real variables, the remainder term R, (Equation 1.2-12) does not have this property. In the theory of
complex variables, an analytic function has a power series representation and the power series is
analytic. If f(z) is analytic in a domain containing z,, and z; is the nearest singular point to z,
the Taylor series (Equation 3.6-31) is convergent in the domain |z —-z,l <iz; —z,1.

Since the Taylor series is convergent for an analytic function, term by term differentiation and
integration are permissible. The radii of convergence of the differentiated and integrated series are the
same as that of the original series.

Example 3.6-5. Expand 1/(1 +z2) in a Taylor (Maclaurin) series about the origin. Determine
its radius of convergence.

The singularities of 1 are
1+z
zZ=1, z=- (3.6-32)
The function —L— is analytic in the domain
1+z
lzl < 1 (3.6-33)

Using Equation (3.6-23a), we obtain

1 = 1-22+2%-26+ .. (3.6-34)
1+ 22
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1
1+2z

Since

is analytic in the domain |zl < 1, the radius of convergence of the series is one.

The radius of convergence can also be deduced from Equation (3.6-15) and is found to be one, as
expected. Note that, in the case of real variables, the radius of convergence can be deduced from

the series expansion only. The function 1/(1 + x2) has no singularity along the real line.

Laurent Series

If the function f(z) is not analytic at a point z,, it does not have a Taylor series about z,. Instead it
can be represented by a power series with both positive and negative powers of (z—z,). This series
is a Laurent series. Laurent’s theorem can be stated as follows. Let D be the annular region
bounded by two concentric circles Cy and C; with centre z, and radii R; and R, respectively,
as shown in Figure 3.6-2. Let f(z) be analytic within D and on C; and C;. At every point z
inside D, f(z) can be represented by a Laurent series which can be written as

f@) = X a,(z-2)" + X n (3.6-35a)
n=0 n=1 (Z—Zo)n
where
a = L [ f@ at , =0,1,2, .. (3.6-35b)
21'C1J (& )n+1
c, =%
.
oL fOAE o (3.6-35¢)
ZTCIJ (é )—l’l+1
c, 2%

The integrals around C; and C; are to be taken in the anticlockwise direction.

The proof of this theorem is similar to that of Taylor’s theorem. We surround the point z by a circle
vy as shown in Figure 3.6-2. Let & be any point on the curves Cy, C; or y. From Equation

(3.5-33), we have

1§(3)

dg
E-z

C

(&)

E—z

Co

dE —

f©

'/

& =0

(3.6-36)

where Cy, C, and v are considered to be in the anticlockwise direction.
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yA

xy

FIGURE 3.6-2 Illustration for the proof of convergence of Laurent series

Using Equation (3.5-39), we write the last integral as

2ri f(z) = f f& d& (3.6-37)

'/

Y

Combining Equations (3.6-36, 37) yields

f(z) = l,f UOLI zl.f OL (3.6-38)
E-z 1 E-z
(& Co

On Cy, 11> 1z and we have the same situation as in the case of the Taylor series. Equations
(3.6-21 to 26) can be carried over and we have

1 f f(&) d‘-;; — Z an(Z—-Zo)n (3.6-39)

2T E-z n=0
¢

where the a,, are given by Equation (3.6-35b).
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On C,, 1zl >1&1 and, in this case, we write

-1
-1 _ 1 - {1_ (i—zo)} (3.6-40a,b)

-z (-z)-(6-2) @-2) | (-2)
n-1 n
T ZOL N L. — & -nZo) (3.6-40c)
(z- z) (z- Zo) (z- Z()) (z~ zy) (z- &)
Mutltiplying Equation (3.6-40c) by —2%1:7 (&) and integrating around C,,, we obtain
fE)d b b b
"211uif &©ds _ b 2T, (3.6-41)
E-z (z-z) (z-2) (z-1z)
Co
where b,, are given by Equation (3.6-35¢).
The remainder T, is given by
n
- f(€)d
T,= L 1 (-2 £ ag (3.6-42)
21i (z-1z) (z - &)
Co
Let K be the maximum value of ‘f (&)I on Cy. Forany & on C,, we have
Iz—c‘,l = I(z—zo)—(ﬁ—zo)l > |Z‘Zol -—|§—zol =r-R, (3.6-43a,b,c)
It follows that
1 KR}2mR, K (Ry)"
[T, | < = —4 (3.6-44a,b)
2n" (r—-Ry) t/Ry—11'r
Since Ry <r, IT,— 0 as n—> . Hence
f&d < -
-1 ©ds 2 b, (z-2z)" (3.6-45)
21 (€-2) n=1
Co

Combining Equations (3.6-38, 39, 45), we obtain Equations (3.6-35a to ¢). The series in Equations
(3.6-39, 45) converges in the domain |z-z, | <R, and |z-z, I >R, respectively. Consequently
the series in Equation (3.6-35a) converges in the annulus R; <lz—-z, | <R5.
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Comments

1. If f(z) is analytic in aregion 1z -z, 1 <R, the coefficients b, in the Laurent series are zero.
The Laurent series reduces to the Taylor series about the point z,.

2. The Laurent series in a specified annulus Ry <lz—-z; [ <R, is unique. That is to say, if, by
any method, we have obtained a series representation for an analytic function in the given
annulus, that series is the Laurent series. In the examples that follow, we shall derive a
representation of f(z) by methods other than via Equations (3.6-35a to c).

3. Since f(z) is analytic in the annulus, the contours C; and C; in Equations (3.6-39, 45) can
be replaced by any circle C lying in the annulus. That is to say, the contour integrals can be

taken around the same curve C, aslongas C lies in the annulus Ry <lz—-z, | <R;.

Example 3.6-6. Expand

fz) = —2*3 (3.6-46)
(22 o 2) z

in powers of z in the following regions
@ within the unit circle about the origin,

(ii) within the annular region between concentric circles about the origin having radii 1 and 2
respectively,

(iii)  exterior to the circle of radius 2.
The function f(z) can be decomposed in partial fractions as

z+3 (3.6-47a)

(@ = T2+

_ .3, 5 2 ]
T T2z T 6(@-2) 3(z+1) (3.6-47b)

@) When O0<lzl<1, we write f(z) as

f(z)

_3 _5(1_zyt 2 ~1 )
1 (1 2) +5(1+2) (3.6-48a)

oo

-3 _ 3 ALY 3 1y _n ]
TR R AU (3.6-48b)
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(ii) When 1<|zl<2, we write

f@= - -t 2 3.6-49a
) = 2z 12(1_%) 3z (1+%) ( )
- _3 _ 5 - AL - [\ R ]
= sl e B (3.6-49b)
(i11) When | z|> 2, we have
f@) = -2+ 2+ 2 ] (3.6-50a)

3.5 Y2, 2y 1 i

2z T 6z ,E’O (Z) 3z § 1" Zn (3.6-500)
Note that the series in Equations (3.6-48b, 49b, 50b) converge in the region indicated. In (i), (ii) and
(iii), we have written f(z) in a form such that when we expand the appropriate expression as a
binomial series, the expansion is valid. The series we have obtained are the Laurent series expanded
about the origin which is a singular point of f(z). The other two singular points of f(z) are at z=-1

and z=?2. The domain is divided into regions such that in each region the function is analytic.

Example 3.6-7. Prove that

cosh(z+ L) = 2+ Z a —1;) 121>0 (3.6-51a)
n=1 Z
where
2n
By = - f cosn6 cosh (2 cos 6) d6 (3.6-51b)
0

The function cosh (z + %) is analytic for all non-zero finite values of z. Therefore it can be expanded

in a Laurent series at any point z about the origin in the region 0 < |z | < . Equation (3.6-35a)
becomes

cosh (z+ 1) = i:) éll by (L) (3.6-52)

where a, and b, are given by Equations (3.6-35b, c).
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To evaluate a, and b,, we choose a common circle C, the unit circle centered at the origin. We note

also that on interchanging z and %, the function remains unchanged and
a, = b, (3.6-53)
On C, the unit circle, we have
7z =elb (3.5-54a)
dz=1¢i0d6 (3.6-54b)

The coefficients a, are given by

2%
i0 , -0
1 cosh(e1 +e ) i0 )
a, = o ei (0r1)0 ie’” de (3.6-55a)
0
2n
= ‘—21?[ cosh (2 cos 6) e "9 4 (3.6-55b)
0
21
= Qlf f cosh (2 cos B) [cos n6 —1isin ne] do (3.6-55¢)
0

To evaluate the second term on the right side of Equation (3.6-55¢), we divide the region of integration
and write

2r n 2n
] cosh(2 cos(—)) sinn® d8 = j cosh(2 cose) sinn@ d6 +f cosh(2 cose) sinn® d6

0 0 b4

(3.6-563a)

0

j cosh (2 cos8) sin n6 do + [ cosh |2 cos(2n-¢)] sin[n(2n—0)] (-d¢)
|

n

(3.6-56b)

R

cosh 2 cose sinn6 dO +f cosh (2 cos ¢) [—sin n ] d¢  (3.6-56c)
0

=0 (3.6-56d)
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Combining Equations (3.6-55c, 56d) yields

on
a, = 2—17; f cosh (2 cos 6) cosnf do (3.6-51b)
0

Example 3.6-8. Deduce the complex potential for a two-dimensional, irrotational, incompressible
flow past an infinite stationary circular cylinder of radius a.

The centre of the cylinder is taken to be the origin. In Example 3.3-6, we have shown that an analytic
function can be a suitable complex potential for an irrotational, incompressible flow. There is no flow
in the region | z | < a and singularities may be present in this region. In the region a <iz| < oo, there
is no singularity and the complex potential ®(z) is analytic and can be represented by a Laurent
series. We start by choosing the simplest Laurent series given by

b
D(z) = az++ (3.6-57)
We have shown in Example 3.3-6 that the potential ¢ and the stream function Wy are given by the

real and imaginary parts of ®(z) respectively. Separating ®(z) into its real and imaginary parts, we
obtain

by
d+iy = a; (x+iy)+—1(—u—y—) (3.6-58a)
(x2+3?)
b
= a;x + by +iy(a1— L ) (3.6-58b)
X“+y )(2+y2

From Equation (3.6-58b), we deduce

b
0 = a;x+—1 (3.6-59a)
X2 + y2
by
v =y(a- (3.6-59b)
Xz-f-y2

The cylinder is a streamline and we can assume that y is zero on the cylinder. This implies that
¥ =0 for x2 + y2 = a2, for all values of y and, from Equation (3.6-59b), we obtain

0= (a] - %) (3.6-60)
a
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Far away from the cylinder, the flow is undisturbed by the cylinder and we assume the velocity
distribution to be

v = (v, 0) (3.6-61)
From Equations (3.3-62a, 6-59a), we obtain as (x2 + y2) tends to infinity

Voo = 81 (3.6-62)
From Equations (3.6-60, 62), we deduce
o (3.6-63)

Equation (3.6-57) can be written as

2
® = v, (z+§Z—) (3.6-64)

The function @ is analytic in the annulus a<|z| < and satisfies all the boundary conditions and is
the complex potential for the present flow.

3.7 RESIDUE THEORY

We have defined the singular point (singularity) z, of f(z) to be the point at which f(z) ceases to be
analytic. If z; is a singular point but f(z) is analytic in the region 0<lz -z, <R for some
positive R, z, is an isolated singular point. The function 1/(z — 2) has a singular point at
z=2 and is analytic in the region 0 <lz — 2| <R. That is to say, f(z) is analytic in a region in
which the point z =2 has been removed. The point z =2 is an isolated singular point. The function
An z is singular at the origin but also along the negative part of the real axis as illustrated in Figure
3.4-1. The origin is not an isolated singular point. There are many other singular points near the
origin.

If z, is an isolated singular point in the annulus 0 <1z -z, 1 <R, f(z) has a Laurent series
representation which can be written as

f(z) = Z‘o a, (z—-z,)" + ; b, (z—2,) " (3.6.352)

where the coefficients a,, b, are given by Equations (3.6-35b, c).
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We consider three types of singularities

@

(ii)

(iii)

If all the coefficients b, are zero, the Laurent series reduces to the Taylor series. The singular
point is a removable singular point. We define
lim f(z) = a, (3.7-1)
7z—> /)
For example, the function Sl% is not defined at the origin. The function has a series

representation

sin z 2 7
f(z) = = 1- 31 + 57 (3.7-2)
The series in Equation (3.7-2) is convergent and we define f(0) to be one. We can also

obtain this result using I’Hopital’s rule. The origin is a removable singularity.

If all but a finite number of the coefficients b, are zero, z, is a pole. The singular point z,
is a pole of order m if (b;, ... ,b,) are non-zero and the coefficients b,, vanish for all
n > m.

If m is one, z, isasimple pole. The coefficient b; is the residue and is denoted as
Res (z;) or Res [f(2), z,]

If all the coefficients b, do not vanish, z, is an essential singular point.

Example 3.7-1. Discuss the nature of the singularities of

@

cosz—1

2 .
, (ii) e1/Z ’ (iii) sinh z
Z2 Z

at the origin.

@

The expansion of cos z in powers of z is known; the expansion of (cosz — 1)/z% can be
deduced to be

cosz—1 _ 1,2z° z° )
——7—_—2+4!—6!+... (3.7-3)

We define the value of (cosz— 1)/z2 at the origin to be (—1/2). In so doing, the function
is analytic everywhere. The origin is a removable singular point. Note that the function is not

defined at the origin. We can also use I’Hopital’s rule to deduce that its value at the origin is
(-1/2).
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(ii) The expansion of the exponential function is

SLCECIEUS IR IR S W (3.7-4)
22 27° n! (z2M)

We have an infinite series, the origin is an essential singular point.

(ili)  The expansion of (sinhz)/z> is obtained by dividing the expansion of sinhz by z° to
obtain

. 2
sinhz _ 1, 1 1 , 2%, (3.7-5)

z° 2 32 5T

The origin is a pole of order four.
o

The zero of a function f(z) is the point at which the value of f is zero. The Taylor series expansion
of f(z) about any point z; (not a singular point) can be written as

oo

f(z) = Z (z—2p)" (3.7-6a)
f(n) (Z )
s (3.7-6b)

If a, is zero and the other coefficients a, do not vanish, f(z,) is zero and z,, is a simple zero. If
ay, a1, ... , a1 are all zero and a;, (n 2 m) are non-zero, f(z) has a zero of order m at Z.
That is to say, the first (m ~ 1) derivatives of f(z) at z, vanish. Equation (3.7-6a) becomes

fz) = a_(z~2) " +a,, (z2-2)™"" +.. (3.7-7a)
= (z-2p)" [ag+ 2, (2—27) + .. (3.7-7b)
= (z-2) i (z-z)"" (3.7-7¢)
= (z-2y)" g() (3.7-7d)
where
g(z) = i a (z-2z)" " = (z-2y) " £(2) (3.7-7e,f)

n=m
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g(zg) =a, #0 (3.7-7g,h)

If h(z) has a pole of order m, its Laurent series can be written as

- b b
h(z) = 2 a, (z—zo)n+ L 4+ .+ ——m; (3.7-8a)
a0 (2~ 2) (2-2)
= (z—zp) " [ Z a, (z- zO)Mm + by (z-1zy) m-ly 4 bm} (3.7-8b)
n=0
= (z-zy)) " £(2) (3.7-8c)
where
2(z) = 2 (2—2)" ™ +b, (2=2)™ " + .. +b, = (z-2)" h(@) (3.7-8d.e)
£(zg) =b_ # 0 (3.7-8f.8)
If f(z) has a zero of order m at z,, f ( @ has a pole of order m at z,.
If h(z) has a pole of order m at z,, o ( ) has a removable singularity at z,.

If f(z) and g(z) have poles of order k and m respectively at z, their product fg has a pole of
order k +m at z,.

Example 3.7-2. Determine the order of the pole of (2 cos z—2 + zZ)"2 at the origin.

Instead of looking at the poles of (2 cos z -2 +z2)~2, it is easier to consider the zeros of (2 cosz —2
+22)2. Expanding the function f(z), we have

2

2 4 6

f(z) = 2cosz~2+12z2)? = [2(1 %—%‘—+...)—2+22 (3.7-9a,b)
2
4 6

= [% -%+ } (3.7-9¢)

2
- zg[}—, 26Z' +} (3.7-9d)
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The function f(z) has a zero of order 8. Therefore, the function 1/f(z) has a pole of order 8.

If all the singularities of f(z) in the finite complex plane are poles, f(z) is a meromorphic function.

Cauchy’s Residue Theorem

Let C be a simple closed contour, positively oriented, within and on which a function f(z) is analytic
except at a finite number of singular points zy, zy, ..., z, contained in the interior of C. Cauchy’s

residue theorem states that

k
[ f(z)dz = 2mi ), Res[f(z), z,) (3.7-10)
C

n=1

Proof. Let Cy, Cy, ..., Cr be k circles each positively oriented, with their centers at the isolated
singular points zy, zy, ..., zx respectively, as shown in Figure 3.7-1. Eachcircle C; (=1, ..., k)
lies inside C and exterior to the other circles. From Equation (3.5-33), we have

k
[f(z) dz = Zf f(z) dz (3.7-11)
C C

i=l Jg

Consider the integral f f(z)dz for a fixed value of i. The residue b; as defined by Equation
G

(3.6-35c) is given by

b, = 2—11?1 f f(z) dz (3.7-12a)

i

2mib; = f f(z)dz (3.7-12b)
G

Equation (3.7-10) is obtained by combining Equations (3.7-11, 12b).
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xy

FIGURE 3.7-1 Illustration for the proof of Cauchy’s residue theorem

Some Methods of Evaluating the Residues

(i) Simple pole at z;

The Laurent series of f(z) about z; can be written as

fz) = 3, a,(z-z;)" AL (3.7-13)
n=0 (Z—Zi)

From Equation (3.7-13), we deduce that by is given by

b, = lim (z-2)f() (3.7-14)

27

If the function f(z) is given in the form of a rational function, that is to say

f@2) = ;‘f—% (3.7-15)

f(z) has a simple pole at z; which implies that h(z) has a simple zero at z; [h(z;) = 0].
Equation (3.7-14) can be written as
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(it)

L (z— Zi) g(z)
. - Zl_lrgi {m} (3.7-16a)
= lim g (3.7-16b)
2=z \[h(z) ~h(z)] /(Z_Zi)
_ &z (3.7-16¢)

h'(z;)
The derivative h'(z;) is non-zero because h(z) has only a simple zero at z;

Pole of order m > 2

The Laurent series of f(z) about z; is

- b b
fz) = 3, a (z—2)" + —1—+ L/ EE (3.7-17a)
2 m
n=0 (z-2) (z- z;) (z-1z)
= (z-2) " g@) (3.7-17b)
where g(z) is analytic and non-zero at z; (see Equations 3.7-8a to g).
Since g(z) is analytic, it has a Taylor series which can be written as
= oMy
g(z) = Z £ nf i) (z-z)" (3.7-18)
n=0
Comparing Equations (3.7-17a, b, 18), we find that the residue by is given by
(m-1)
g7 )
b, = 2 1/ 7-19
1T m-1)! G.7-192)
m-1 o mf
= tim e-2)" 1) (3.7-19b)

27 dz™1 (m-1)!
If f(z) is as given by Equation (3.7-15), we can expand g(z) and h(z) in their Taylor
series. By comparing coefficients of powers of (z — z;) with Equation (3.7-17a), we can

determine by.

In many cases, it is possible to decompose f(z) into its partial fractions.
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(iii) Essential singular point

In this case, we have to expand f(z) in powers of (z - z;), including negative powers, and
obtain b;.

We illustrate the method of calculating residues by evaluating contour integrals.

Example 3.7-3. Use the residue theorem to evaluate the following integrals

¢y ] (2-2)dz ) (11) ] —s (iii) J ze“*dz
C Z(Z_l) C, Z(2+Z—Zz) Cs

where Ci, C; and C3 are circles with center at the origin and of radii 2, 1/2 and 1 respectively.

@ The function z(?z— 21)) has two simple poles, one at the origin and the other at z =1, both are
inside C;.

f %T‘;)J‘IITZ = 2mi{Res[f(z), 0] + Res [f(2), 1]} (3.7-20)
G

The residue at the origin is obtained by using Equation (3.7-14)

b, = lim 2(z-2) _, (3.7-21a,b)
z—0 Z (Z - 1)
Similarly, the residue at z =1 is given by

b, = lim (z-1)(z-2)

= —1 3.7-22a,b
z—1 z(z-1) ( )

Using Equations (3.7-20, 21a, b, 22a, b), we obtain

f % = 27i[2-1] = 2ni (3.7-23a,b)
G

(ii) We rewrite the function as

1 _ 1 (3.7-24)
22+2-22)  z2+2(1-2)
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The function has singularities at the origin, at z=-2 and at z =1, of which only the origin is
interior to C,.

The residue at the origin is given by

b, = im —2 =1 .
17, 0z(2+2)(1-2) 2 (3.7-25a,b)
The integral is
f i = 2|3 = s (3.7-26a,b)
C, Z(2+Z—ZZ)

(iii)  The function z e¥Z has an essential singularity at the origin. We expand the exponential
function and obtain

2z _ s 1 (2\"
22 = zn2=30 L (-Z-) (3.7-272)
- ZI:I + ; + L(;)Z.*. _1_(24)3 + } (3 7‘27b)
= 7 2 7 3! 7z “os .
=z+2+l+—4—2+... (3.7-27c)
z 3z

From Equation (3.7-27c), we find

by = 2 (3.7-28)

I ze??dz = 2mi(2) = 4nmi (3.7-29a,b)
Cs
Example 3.7-4. Evaluate the following

2z
: € . T cot (mz)
® Lcoshnz dz, (i) ]C 2 dz

z

where C is a unit circle with center at the origin.
) The zeros of cosh wz which lie interior to C are

z, = (3.7-30a,b)

1
2 >
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Using Equation (3.7-16c), the residue at i/2 and —i/2 are respectively given by

b, = ___ezz— = —e—i— = —g (3.7-31a,b,c)
'™ msinhrz |,_,, ~ w(isinn2) T T
2z ~1 s -
b - € e ——————-e = 4 1——6 R 2
1 nsinhnz |,_ .,  m[isin(-n/2)] T (3.7-32a.b,0)
The integral is given by
2z 21 s . .
J eh dz = 2n{-& + 1 } = 2[e‘—e—‘} = 4isin 1 (3.7-33a,b,c)
o coshmz i yis
(i1) We write the function as
mcot(nz) _ 7 cos(rnz) (3.7-34)
z? 22 sin (nz)

The only zero of sin wz which is inside C is the origin. The function 7mcot(nz)/z? has a
pole of order three at the origin. The residue b; can be determined using Equation (3.7-19b)

which gives

2 3 2
by = lim S| ZECOSEZ) _ & jim & [zcosmz] (3.7-35a,b)
20 dz% |21 22 sin nz 2 250 g2 L sinmz
_ 1t2 lim |TZCOos Tz —sin Tz (3.7-35¢)
20 sin® 7z
To evaluate the limit in Equation (3.7-35¢), we use I’Hopital’s rule and we obtain
2 —nzz sin wz 2
b, = x° lim = n*|-1] (3.7-36a,b)
20 |37 sin’Tz cos Tz
The integral is given by
2 .. 3
meot(®2) 4, - opil- “—} - _2m (3.7-37a,b)
o 22 3 3

Example 3.7-5. The force F per unit length exerted on a cylinder of infinite length in a steady

irrotational flow can be determined by complex variable methods. Blasius (1908) has shown that if
Fy and Fy are the x and y components of F
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, 2
F —iF = ﬁf (@) dz (3.7-38)
X y c dz ’

where p is the density of the fluid, @ is the complex potential, and C is the curve defining the
surface of the cylinder.

Calculate the force if
® = v, (z+2a%/z) (3.7-39)

In Example 3.6-8, we have shown that Equation (3.7-39) represents the complex potential for a flow
past a circular cylinder of radius a with center at the origin.

Differentiating Equation (3.7-39) and using Equation (3.7-38), we obtain

: 2 4
F,—iF, = Ef vj;(l— 2a 1) dz (3.7-402)
2 2 4
C zZ Z
2
. VOO .
= ip 5 2mi 2 Res (3.7-40b)

The residue is zero and this means that there is no force acting on the cylinder. This surprising result
is known as d’Alembert’s paradox and is discussed at length by Batchelor (1967).

The integral of real variables can be evaluated using the residue theorem. We consider a few
examples.

Triginometric Integrals

To evaluate integrals of the form
2n
I= f F(cos 0, sin 6) d0 (3.7-41)
0

where F (cos 0, sin 0) is a rational function of cos 0 and sin 6, we write
7 = eif (3.7-42)

The trigonometric functions cos 6 and sin 8 can be written as
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cos® = L(z+L),  sino =L (z-1 (3.7-43a,b)

Substituting Equations (3.7-42, 43a, b) into Equation (3.7-41), we obtain
1= f f(z)dz = 2mi 2 Res (f(z), z,)) (3.7-44a,b)
C

where C is the unit circle, z, are the poles of f(z) inside the unit circle.

Note that from Equation (3.7-42) the limits of the integration 0 to 27w correspond to the unit circle
and the integral is taken in the anticlockwise direction.

Example 3.7-6. Show that

2n
I = f e _ __2m a>b>0 (3.7-45a,b)
0

a+bcosH Va2 b2 ’

Substituting Equations (3.7-42, 43a) into Equation (3.7-45a), we obtain

—iz!
I = f ___;Z dz = -2 f e (3.7-46a,b)
c a+—2—(z+z ) c bz“+2az+b
The poles of the function are the zeros of
f(z) = bzZ+2az+b = 0 (3.7-47a,b)
They are
2 12
= o %——b (3.7-48a)
_Va2_p?
= -2 %—b (3.7-48b)

Since a>b>0, |zl <1 and the only pole inside C is z,.

We evaluate the residue b; using Equation (3.7-14) and we have

- 1
S N ) B (3.7-49a,b)

o DE-2)-2) © o
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Combining Equations (3.7-44b, 46b, 49b) results in

1= 2m)(E20) _ om (3.7-50a.b)
24 a2 _p? Va2 _p? ’

Improper Integrals of Rational Functions

We recall from the theory of functions of real variables that if f(x) is a continuous function on
0 < x < oo, the improper integral of f over [0, «) is defined by

f f(x)dx = lim f f(x) dx (3.7-51a)
0 0

a—>oo

provided the limit exists. Similarly if f(x) is continuous on (- e, 0], we have

a— —eo

0 0
f f(x)dx = lim If(x)dx (3.7-51b)

oo

When both limits exist, we write, for an integrable function on the whole real line (—oo, o)

oo 0 a
f f(x)dx = Ilim j f(x)dx + lim f f(x) dx (3.7-52a)
- a—-o | aes J
0 .
= f f(x)dx +I f(x) dx (3.7-52b)
—oo 0

The value of the improper integral is computed as

I f(x)dx = lim f f(x)dx (3.7-53)

a—>o0

oo

a

It may happen that the limit in Equation (3.7-53) exists, but the limits on the right side of Equation
(3.7-52a) may not exist. Consider, for example, the function f(x) defined by

f(x) = x (3.7-54)

The limit
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a a2
lim xdx = lim 5 (3.7-55)
a—e Jo a— oo
does not exist. But
a
lim f xdx = 0 (3.7-56)
a—>oo

This leads us to define the Cauchy principal value (p.v.) of an integral over the interval
(=00, ). This is defined by Equation (3.7-53) if the limit exist. From now on, the principal value of

f f(x) dx is implied whenever the integral appears.

Consider the integral f f(x) dx where

(1) f(x) = Px)/Qx) (3.7-57)
(i1) P (x) and Q(x) are polynomials.

(i)  Q (x) has no real zeros.

(iv)  The degree of P(x) is at least two less than that of Q (x).

The integral is then given by

oo k
f f(x)dx = 2mi 2_:1 Res(f(z), z,] (3.7-58)

where z1, z,, ..., zy are the poles of f(z) that lie in the upper half plane.

Note that the integral on the left side involves the real line. The contour associated with the complex
integration must therefore also include the real line.

The contour we choose is a semi-circle, centered at the origin with radius R in the upper half plane as
shown in Figure 3.7-2. We denote the semi-circle by I' and we choose R to be large enough so that
the semi-circle encloses all the poles of f(z). By the residue theorem, we have

R k
f f(x) dx + f f(zydz = 2mi 21 Res [f(z), z,] (3.7-59)
_ r n=

R
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Equation (3.7-58) implies the integral along I" to be zero and this will be established next.

FIGURE 3.7-2 Contour integral for evaluating infinite integrals

From condition (iv), we deduce that for sufficiently large R

lzf(z)l < € (3.7-60)
for all points of I'. By substituting

z = Rel® (3.7-61)

into the second integral on the left side of Equation (3.7-59), we obtain

(™ . .
ff(z) dz| = f(Re®) iR ¢® do (3.7-62a)
. Jo
rﬂ
<e| do (3.7-62b)
Jo
< ET (3.7-62c)

Equation (3.7-62b) is obtained by using inequality (3.7-60).

As R— o, £ —> 0 and the integral around I" is zero. Equation (3.7-59) reduces to Equation
(3.7-58).
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Example 3.7-7. Show that

f dx  _ 2Zr L5 (3.7-63)

oo x4+a4 2a3

The function

1
f(x) = (3.7-64)
X4 + a4

is in the form of Equation (3.7-57) and using Equation (3.7-58), we have

e k
dx  _ ;
j YR 271 2 Res

w X +2a n=1

1
Z (3.7-65)
i

To determine the zeros of z4 + a4, we write

74 = _a% = a4 ein(1+2n) (3.7-66)
Using De Moivre’s theorem, we find that the zeros are

in/4

z; = ae™?, z, = aedim4

73 = aedin/4 z4 = aelm/4 (3.7-67a-d)

Of the four zeros only z; and z, are in the upper half plane. We denote any one of them by a.
From Equations (3.7-66), we find that

at = -at (3.7-68)
The residue at z = is given by

(z-0)

lim (z-a)f(z) = lim (3.7-69a)
z2oo z>0 Z4 _ 0L4
= lim (z-0) (3.7-69b)
22 (z—a)(z + oc)(zz+ ozz)
-1 - _ o (3.7-69c¢,d)

40> 4a%

Substituting Equation (3.7-69d) into Equation (3.7-65), we obtain
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I dx o _2mi [, gt , 3imd] (3.7-70a)
e X2t 42
= - ;;1% [cos % + cos %Tn +i (sin % + sin 3—479)] (3.7-70b)
_ {2 (3.7-70¢)
2a°

Evaluating Integrals Using Jordan’s Lemma
Let f(x) be of the form given by Equation (3.7-57), P(x) and Q(x) satisfy conditions (ii) and

(iii). Condition (iv) is replaced by the condition that the degree of P (x) is at least one less than that
of Qx). If T is the semi-circle shown in Figure 3.7-2, Jordan’s lemma states

I eMZf(z)dz - 0 as R— (3.7-71)
r
where m is a positive integer.

To evaluate the integral f e!™X f(x) dx, we integrate around the contour shown in Figure 3.7-2 and

we have
R _ r
f eMX £(x) dx + j ei™2f(z)dz = 2mi Y, Res|ei™*f(z), 2] (3.7-72)
-R I n=1

Using Jordan’s lemma and letting R —> oo, Equation (3.7-72) reduces to

- . |
f éM*f(x)dx = 2mi Y Res[e™?f(z),z,] (3.7-73)

— oo n=1

By separating Equation (3.7-73) into its real and imaginary parts, we can evaluate

]m f(x) cosmx dx and j f(x) sin mx dx.

Example 3.7-8. Show that
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- d e—b o2
cosx dx - y14 C _% ), a>b>0 (3.7-74)
—oo (x2 + a2) (x2 + b2) a2-b> \ b a
From Equation (3.7-73), we have
f ) cosx dx 2 i el }
= Re (2mi Res , Z (3.7-175)
oo (x2 + aZ) (x2 + b2) n=1 (22 + az) (22 + b?') "
The four poles of the function are
Z) = ia, Zy = —ia, Z3 = ib, Zy = -ib (37-76a—d)
Of the four poles, only z; and z3 are in the upper half plane.
The residue by at z; is given by
: iz
b o= i (z-ia)e .
1=, Z-ia)(z+ia)(z—ib)(z +ib) (7772
e—a
= — (3.7-77b)
2ia(b - az)
Similarly the residue by at z3 is
b e (3.7-78)
1 = — e -
2ib (a2 - 1?)
Substituting Equations (3.7-77b, 78) into Equation (3.7-75), we obtain
B e’ e®
cos X dx = Re(2mi + (3.7-79a)
—oo (x2 + aZ) (x2 + b2) Zia(b2 - az) 2ib (az - b2)
b a
- s { e e___} (3.7-79b)
(a2 - b2) b a

Poles on the Real Axis

So far, we have assumed that the poles of f(z) were not on the real axis, since we chose Q(x) # 0.

If some of the poles are on the real axis, we indent the contour shown in Figure 3.7-2 by making small
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semi-circles in the upper half plane to remove the poles from the real axis. Suppose f(z) has a pole at
z=a, where a isreal. The contour is indented by making a semi-circle of radius €, centered at z =
a in the upper half plane as shown in Figure 3.7-3. We denote the small semi-circle by <y. The

contour integral given in Equation (3.7-59) is now modified as follows

a—¢€ R
f f(x) dx+j f(z) dz+] f(x) dx+[ f(z) dz
-R Y a+e T

= 2ni X Res[f(z),z]

FIGURE 3.7-3 Contour integral with a pole on the real axis

(3.7-80)

It was shown earlier that in the limit as R — oo, f f(z)dz—> 0. We now consider the integral
r

around 7y. On v, we have
z=a+eged
and the contour integral becomes

0
ff(z)dz =I fla+eel®eiel®do
Y

T

Since f(z) has a simple pole at z =a, we can write

(3.7-81)

(3.7-82)
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f(z) = g@/(z-a) (3.7-83)

where g(z) is analytic and can be expanded as a Taylor series about the point a. The function g(z)
can be approximated by

g(z) = g(a)+0(e) (3.7-84)
Substituting Equations (3.7-83, 84) into Equation (3.7-82), we obtain, as € — 0,

0
ff(z)dz - i[ g(a)do (3.7-85a)
Y

n

— —-img(a) (3.7-85b)

We note from Equations (3.7-14, 83) that g(a) is the residue of f(z) at a and is denoted by R,. In
the limit, as R —> o and € —> 0, Equation (3.7-80) becomes

- k
f f(x)dx = 27i gl Res[f(z),z ] + TiR, (3.7-86)

00

If there is more than one simple pole on the real axis and if we denote these poles by ay, ay, ..., agp,
we replace R, in Equation (3.7-86) by the sum of Rali , that is to say, the sum of the residues at ay,

a,, ... , ap. The same modification can be applied to Equation (3.7-72). We illustrate this by
considering an example.

Example 3.7-9. Show that

f cosxdXx _ msina , jgrea (3.7-87)
iz

We consider the integral I c dz, where C is the indented contour to be defined later. The
c a —Z

function f(z) [= 1/(a% - z2)] has two poles on the real axis, at —a and a. We indent the contour by
making two small semi-circles of radius €, one at z=-a denoted by 7Y;, and the otherat z=a
denoted by ;. The contour C is shown in Figure 3.7-4.
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FIGURE 3.7-4 Contour integral with two poles on the real axis

Equation (3.7-72) is modified to

—a-t ix iz a-e ix iz R ix
f Ze 2dx+f 2e 2dz+f Ze 2dx+f 2e 2dz+j ze 2dx
-R a —X Yl a —Z —a+g a —X 'Yz a —-Z a+¢e a —X

. k .
1Z 1Z
+f © _dz =2mi X Res|—2 ,z} (3.7-88)
2_ 2 n=1 2 2 n
r a“—-z a‘—z
Using Jordan’s lemma, we have as R —> oo
eiZ
dz =0 (3.7-89)
r 3.2—Z2

To evaluate the integral around vy;, we write

z = -a+eed (3.7-90)

elZ ° exp (—ia+ieeie) i0
dz = - ice'” do (3.7-91)

2 .2 Eele(za_eeie)
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In the limit as € —> 0, Equation (3.7-91) simplifies to

. . 0
12 : ,—la
f € _dz —» & f de (3.7-92a)
2 2 2a
’Yl a _Z 1[
imeid
_._) —_ -
5 (3.7-92b)

Using Equation (3.7-14), we find that the residue R_, at z=—a is given by

iz
R. = lm _Zrae’ 3.7-93a
2,2 (a-2z)(a+2) ( )
_ et (3.7-93b)
2a )
From Equations (3.7-92b, 93b), we obtain
. elZ .
lim dz = -iwR_, (3.7-94)
£—0 . Q° - z2
Equation (3.7-94) is a special case of Equation (3.7-85b).
Similarly we have
. elZ )
lim dz = -iwR, (3.7-95)
£—0 5 a2 -— 22

where R, is the residue at z = a.

The function €%/ (a2 —z2) has no other poles except at —a and a, so the right side of Equation
(3.7-88) is zero. In the limiting case R —> o0, € —> 0, Equation (3.7-88) simplifies to

= 1x
f a; > dx = in[R, +R_] (3.7-96)

— 00

The residue R, 1is given by

R = m _z=3¢e”

a” 5. (a-z)(a+2) (3.7-97a)
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= -5 (3.7-97b)
Substituting the values of R, and R_, into Equation (3.7-96), we obtain
= ix . . .
€ dx = LE [gHia_iq (3.7-98a)
a2 x? 2a
= 1;- (sin a) (3.7-98b)
Separating Equation (3.7-98b) into its real and imaginary parts, we have
( COoS X dx = T sina (37-993)
J_Do a2 _ X2 a
[ inx dx = 0 (3.7-99b)

3.8 CONFORMAL MAPPING

In this section, we consider the function f defined by Equation (3.3-5) to be a mapping from one
subset of a complex plane to another. From Equations (3.3-6a, b), we regard one complex plane to be
z [=(x,y)] and the other to be w [=(u, v)] and f establishes the correspondence between the (X, y)
plane and the (u, v) plane. We examine the geometric properties of this mapping. If to each point in
the (u, v) plane there corresponds one and only one point in the (X, y) plane and vice versa, the
mapping is one to one.

In Section 3.3, we have defined a curve in the (x, y) plane by introducing a parameter t. The equation
of acurve C in the (x, y) plane is written as

Z(t) = x({t) +iy(t) (3.8-1)
The curve C is transformed to a curve I' in the (u, v) plane. The equation of T" is written as
w() = f(z) = u®)+iv() (3.8-2a,b)

Suppose the curve C passes through a point P at which t takes the value t,. The tangent to C at
P is given by
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d

_ dx -d_Y| i
dt |, = dt ‘to“ dt | (3.8-3)

to

The tangent to the curve I' in the (u, v) plane at the point [u (t), v (ty)] is

dw | _ du ; dv. -
de |, = el “”dtlt (3.8-4)
0 0 0
Using the chain rule %ﬂt and %% can be written, in matrix form, as
du ] ou  du dx
dt ox dy dt
= (3.8-5)
dv dv. v | | dy
dt dx dy dt

Equation (3.8-5) expresses the transformation of tangent vectors from the z-plane to the w-plane.
The condition for a unique solution is that the determinant

du Jdu
ox  dy
J = # 0 (3.8-6)
ov  dv
Ix  dy

The determinant J is the Jacobian. If it is non-zero, it ensures that non-zero tangent vectors in one
plane are transformed to non-zero tangent vectors in the other plane.

Using the Cauchy-Riemann conditions [Equations (3.3-29a, b)], J can be written as

du dv ou Jv

R (3.8-7a)
- g_i +i % : (3.8-7c)
_ d% 2 (3.8-7d)

The condition that the determinant be non-zero is equivalent to the condition that (_Cili be non-zero.
z
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The curves C; and C, in the z-plane intersect at (X, yg). Let A@ be the angle between the tangent
vectors to C; and C; at (x, , yo), measured from C; to C, as illustrated in Figure 3.8-1.
Suppose C; and C, are mapped by f to I'; and I'; respectively in the w-plane. The curves I
and I", intersectat (u,, vy) and let Aol be the angle between the tangent vectors to I'y and Iy at
(u,, vp), measured from Iy and T, as shown in Figure 3.8-1. If A® is equal to Ac, the
mapping is conformal. If the magnitude of A® is equal to the magnitude Ad, but the sense is not
the same, the mapping is isogonal. Thus, in a conformal mapping, both the magnitude and sense of
angles are preserved. The conditions that f represents a conformal mapping are

(a) f is analytic;
(b) f is single valued,;

(©) % is non-zero.

A8

(xg,Yg) AQ

>y
cy

FIGURE 3.8-1 Conformal mapping

The Jacobian J introduced earlier plays an important role in the theory of transformations. Here, we
briefly review the case of two variables. Further discussions are given in Chapter 4. Let u; and u,
be two differentiable functions of two variables x; and x,. The Jacobian J is defined as
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dup  dy
dx, E
_ duy u,) _
= - (3.8-8a,b)
9(xq, X,)
du 0y
0x, 0X,

J is also known as the functional determinant.
For the inverse function to exist, that is to say, for the possibility to write
u; = uq (Xq, Xp), Uy = up (Xq, Xp) (3.8-9a,b)
we require that the Jacobian to be non-zero.
The points at which J is zero are singular points.

By differentiating Equations (3.8-9a, b) partially with respect to x; and x,, and solving for the

. . dx; )
partial derivatives =1, we obtain

8uj
axl 1 BU2 axl 1 aul
%—1 =3 aX2 ) 5;; = 5 a—xz— (3.8-10a,b)
aXZ _ 1 aU2 axz _ 1 aul
We can also write 1/J as
X 9%y
Ju, du,
—}— = (3.8-11)
0% 9%
Ju, du,

If the Jacobian vanishes, u; and u, are not independent. That is to say, there exists a relationship
between u; and u, and

f(uj,uy) =0 (3.8-12)

In Equation (3.8-12), x; and X, do not occur explicitly. This is analogous to the case in linear
algebra where two vectors a (ay, a;) and b (by, by) are linearly dependent if the determinant
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)
-0 (3.8-13)

If x; and x, are also functions of y; and y,, we have

a(ul u2) a(ul u2) a(xl x2)
5 - 3 2 3.8'14
05y, | Ixpxy) vy (3.8-14)

If a closed region R in the (xy, x) plane is mapped into a closed region R' in the (uj, u,) plane, the
double integral of any function ¢ over R is given by

qu) (X], Xy) dxy dx, = ffq)[xl (ug, uy), X, (uy, w,)] [T} duy du, (3.8-15)

R R'

If ¢ is unity, we obtain the area of the closed region. The Jacobian J gives the magnification of the
area due to the transformation.

We now consider some transformations in the complex plane.

Linear Transformation
Consider the transformation

w=Az+B (3.8-16)
where A and B are complex constants.
If we take A to be unity, Equation (3.8-16) becomes

u+iv = (x+1y)+(B;+iB)) (3.8-17)
where B is written as By +1B;, B; and B, are real constants.
Separating Equation (3.8-17) into its real and imaginary parts, we obtain

(u,v) = x+B,y+By) (3.8-18)

Equation (3.8-18) shows that a point (u, v) in the w-plane is mapped to a point (x + By, y + B,) in the
z-plane. This corresponds to a displacement of (x, y) by (B, B;) as shown in Figure 3.8-2.
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v A w y ) 7
8 |- 8 |-
6 |- ~— (-
B
9+ \\ 4 -—\" :]:2
2 2 .
I N B I - 1 1 1 ] -
0 2 4 6 8 " 0 2 4 6 8 x'
I B '
1
FIGURE 3.8-2 Translation
If we take B to be zero and we write w, A and z in their polar form as
w = peld, A = ael® z =re® (3.8-19a,b,c)
Equation (3.8-16) becomes
pel? = arel©@+9) (3.8-20)
We deduce
p = ar, o0 =0+0 (3.8-21a,b)

Equation (3.8-21a) represents a contraction (a < 1) or an expansion (a > 1) of the radius vector r by
the factor a. Equation (3.8-21b) is a rotation through an angle «. This transformation is illustrated in
Figure 3.8-3. Combining these two cases, we deduce that the linear transformation given by Equation
(3.8-16) represents a displacement, a magnification, and a rotation. The shape of all the figures is
preserved.
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y ? z v w
,,Ov(
R
4 4
4
¢
8 - A -
0 X ) u
FIGURE 3.8-3 Rotation and magnification
Example 3.8-1. A rectangular region R in the z-plane is bounded by
x=0, x=1, y=0, y=2 (3.8-22a-d)

Determine the region R' of the w-plane into which R is mapped under the transformation
w=1+1)z+(1-2i) (3.8-23)

Equation (3.8-23) can be written as

u+iv=>_1+)x+iy)+(1-2i) (3.8-24a)
= xX-y+D+i(x+y-2) (3.8-24b)

It follows that
u=x-y+1, V=x+y-2 (3.8-25a,b)

From Equation (3.8-25a, b), we find that the points (0, 0), (1, 0), (1, 2) and (0, 2) in the z-plane are
mapped into (1, — 2), (2, — 1), (0, 1) and (- 1, 0) respectively in the w-plane. The lines

y=0, x=1, y =2, x=0 (3.8-26a-d)

in the z-plane are mapped into
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u—v=23, u+v=1, u-v=-1, ut+v=-—1 (3.8-27a-d)
respectively in the w-plane.

The rectangle R in the z-plane is mapped into rectangle R' in the w-plane, as shown in Figure 3.8-4.
We note that all the points in the z-plane are displaced by (1, — 2) in the w-plane, the distance between
two points has been magnified by the factor v2 and all the lines have undergone a rotation of 7/4.

YA

xY

FIGURE 3.8-4 Mapping of a rectangle in the z-plane
to another rectangle in the w-plane

The transformation can also be deduced by comparing Equations (3.8-16, 23). We identify A and B
to be

A= (1+i) = V2 ™4 (3.8-28a,b)

i

B =(1-2i) (3.8-28¢)

The transformation is as described earlier.

Reciprocal Transformation
Consider the transformation

w=1 (3.8-29)
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Writing z in its polar form, Equation (3.8-29) becomes
w=1 e 19 (3.8-30)

From Equation (3.8-30), we deduce that the reciprocal transformation consists of an inversion
with respect to the unit circle and a reflection about the real axis. This is illustrated in Figure 3.8-5.
The process of inversion was introduced in Example 3.5-7. We recall that if z, is a point in the

complex plane, its inverse point z;, with respect to the unit circle, is given by

_ L 16 _
7y _Z_O ¢ (3.8-31a,b)
y
Z,
Z,
0
0 X
z,

FIGURE 3.8-5 Reciprocal transformation

On reflecting about the real axis, z; is transformed to w.

We note that, in this case, the inverse mapping is also a reciprocal transformation. That is to say, from
Equation (3.8-29), we obtain

(3.8-32)

z=41
w

On applying the transformation twice in succession, we obtain the identity transformation. The
reciprocal transformation maps circles or straight lines into straight lines and circles. The equation
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a(x2+y?) +bx+by+c =0 (3.8-33)
represents a circle if a is non-zero and a straight line if a is zero.
Equation (3.8-33) can also be written as

azZ+bz+bz+c =0 (3.8-34)
where a and c are real constants and b is a complex constant.

If a is zero, we have a straight line; if a is non-zero and c is zero, we have a circle passing through
the origin.

Substituting Equation (3.8-29) into Equation (3.8-34), we obtain
CWW+bW+bw+a =0 (3.8-35)
From Equations (3.8-34, 35), we deduce the following

1) the straight line not passing through the origin in the z-plane (a = 0, ¢ # 0) is mapped into a
circle passing through the origin in the w-plane;

(i1) the circle passing through the origin in the z-plane (a # 0, ¢ = 0) is mapped into a straight line
not passing through the origin in the w-plane;

(iii)  the straight line passing through the origin in the z-plane (a = ¢ = 0) is mapped into a straight
line passing through the origin in the w-plane;

(iv)  the circle not passing through the origin in the z-plane (a # 0, ¢ # 0) is mapped into a circle not
passing through the origin in the w-plane.

Note that the unit circle, center at the origin in the z-plane, is mapped into a unit circle, center at the
origin in the w-plane. But the points inside the circle in the z-plane are mapped to points outside the
circle in the w-plane.

Bilinear Transformation
The bilinear (M0bius) transformation is given by

_ az+b -
W = crtd (3.8-36)

where a, b, ¢, d are complex constants and (ad — bc) is non-zero.

Equation (3.8-36) can be written as
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_ a , (bc—ad)
W= Cc + C(CZ+d) (3.8-37a)
bc—ad
-2, (__*C ) ,* (3.8-37b)
2" =L (3.8-37¢)
W
w' =cz+d (3.8-374d)

The bilinear transformation is a combination of a translation, a rotation, a magnification, and an
inversion. If c is zero, Equation (3.8-36) reduces to Equation (3.8-16).

Simplifying Equation (3.8-36) yields
czw +dw—-az-b =0 (3.8-38)
Equation (3.8-38) is bilinearin z and w (linear in both z and w).

From Equation (3.8-38), we can obtain the inverse transformation

b-dw
cw—a

zZ=+

(3.8-39)

which is again a bilinear transformation.

Let zy, z,, z3 and z4 be any four points in the z-plane and w;, w;, w3 and wy be the
corresponding points in the w-plane. Using Equation (3.8-36), we have

azr+b azs+b

(3.8-40a)

T 78T ez +d  czg+d
_ (ad—bc)(z,~zy) 3
= cz+d(cz.+d)’ r,s=1,2,3,4 (3.8-40Db)
From Equation (3.8-40b), it follows that
(Wl — W4) (W3 — WZ) = (Zl — Z4) (Z3 - ZZ) (38-41)

(wy —wy) (W3 —wy) (21 - 29) (23~ 24)

The ratio in Equation (3.8-41) is the cross ratio of the four points and the cross ratio is an invariant
under a bilinear transformation. If three points (z{, z;, z3) in the z-plane are known to map to three
points in the w-plane, we obtain via Equation (3.8-41) a unique relationship between w (=w,) and
VA (= Z4).
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Example 3.8-2. Determine the bilinear transformation that maps the points (1 + i, —i, 2 — 1) in the
z-plane into (0, 1, 1) in the w-plane.

From Equation (3.8-41), we obtain

w-1) _  (1+i-7)(2)
DG-w)  (1+2)2-i-2) (3.8-42)

On simplifying Equation (3.8-42), we obtain

_ 2(1-i+iz)
v (5-3i)-z(1+1) (3.8-43)

Example 3.8-3. Find the bilinear transformation that maps the upper half plane Im (z) =2 0 into the
unit circle [wl<1.

From Equation (3.8-36), we deduce
1) the point z=—b/a corresponds to w =0;
(i1) the point z = —d/c corresponds to w = co,

We denote —b/a by z, and —d/c by Zz,, with the condition that Im (z,) is positive. The point z,
is then mapped to the origin which is inside the unit circle, and the lower plane (z;) is mapped into
the outside of the unit circle. The bilinear transformation can be written as

~—

W = o (z—zO

(3.8-44)

—_—
—

The origin in the z-plane is mapped into a point on the unit circle in the w-plane. Using Equation
(3.8-44), we have

Iwl =lal =1 (3.8-45a,b)

Combining Equations (3.8-44, 45a, b), we obtain

10
W= 22%) (3.8-46)
The real axis of the z-plane is mapped into
i6
w =2 X-%) (3.8-47)

(x ~Z)
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From Equation (3.8-47), we obtain

elf(x - z,) e 10(x - z,)

WWwW =

— =1 3.8-48
k_zg) (x-z) ( )

Thus the real axis of the z-plane is mapped into the unit circle in the w-plane. It has already been
shown that a point on the upper z-plane is mapped into a point inside the unit circle in the w-plane.
Equation (3.8-46) is the required transformation.

Schwarz-Christoffel Transformation

Suppose we have a polygon with interior angles oy, 0 ... and we wish to map its boundary into the
real axis (v = 0) of the w-plane. The Schwarz-Christoffel transformation is the required
transformation and is given by

((11—‘: = K(w—a) "™ (w—a) %™ (3.8-49)

where K is a constant and a;, a, are the real values of w (=u) corresponding to the vertices of the
polygon.

If one vertex of the polygon is at infinity, its interior angle is zero and we may take the corresponding
point a in the w-plane to be infinity. The factor (w —a_ ) in Equation (3.8-49) may be considered to

be a constant which can be absorbed in K.

Example 3.8-4. An ideal fluid is bounded by a semi-infinite rectangle given by

x>0, 12y>0 (3.8-50)

(1 +1)
2
potential @, which would allow the determination of the velocity and of the streamlines, as shown in

Example 3.3-6.

The motion of the ideal fluid is due to a source of strength m at

. Determine the complex

The semi-rectangular channel ABCD is shown in Figure 3.8-6. We map the vertices A, B, C, and
D to the points (- o, 0), (-1, 0), (1,0), and (0, 0) respectively in the w-plane. In this example,
Equation (3.8-49) becomes

f(iTVZV = K(w+ 1) w-1!"? (3.8-51)
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yA

[ 17,]
>
p @,
a
<

o
c

\j

FIGURE 3.8-6 Mapping a rectangle into the upper half plane

Integrating Equation (3.8-51), we have

= dw -
z= T (3.8-52a)
= ié“ cosh™ w + K, (3.8-52b)
where K, is a constant.
Inverting Equation (3.8-52b) yields
w = cosh (Kz-KKj) (3.8-53)
The mapping of the point B (=i) to B' (=-1) and C (=0) toC' (=1) implies
-1 = cosh(iK-KKj) (3.8-54a)
1 = cosh (-KKj) (3.8-54b)

From Equations (3.8-54a, b), we obtain

K; =0, K=mn (3.8-55a,b)
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Substituting Equations (3.8-55a, b) into Equation (3.8-53), we have

w = cosh (7 z) (3.8-56)
. (1+1) . :
The source in the z-plane at 5 s mapped into a source at
w = cosh [ﬂ— (1+ i)} (3.8-57a)
2
= cosh 2 coshig- + sinh 2 sinh%‘ (3.8-57b)
= isinh & (3.8-57¢)

2

The source at S |= (1;1) in the z-plane is mapped into a source at S' |=isinh | in the w-plane,
2 P P 5 P

as shown in Figure 3.8-6.

The complex potential @ due to a source of strength m at i sinh% and a wall along the real axis is

[Milne-Thomson, 1965, p. 210]

— _ . . E _ . . —E- _
® = -min (w i sinh 2) m An (w+1smh 2) (3.8-58a)
25 cinh? X :
= —m An (w + sinh 5) (3.8-58b)
= —m An (coshznz + sinh? %) (3.8-58¢c)

Joukowski Transformation

The Joukowski transformation plays an important role in aerodynamics. It transforms an aerofoil
into a circle. The transformation can be written as

W= z+ % (3.8-59)

The singular points of the transformation are the points at which %—VZV is zero. From Equation

(3.8-59), we find that the singular points are
z=%1 (3.8-60)

Consider a circle of radius a with center at the origin in the z-plane. In the w-plane, we have

. -6
w=aed%+ ‘?a— (3.8-61)
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Separating Equation (3.8-61) into its real and imaginary parts, we obtain

2 2
_ la :1) ey v = (aT—l) sin® (3.8-62a,b)

Eliminating 0 from Equations (3.8-62a, b) yields
a% u? a2 v2
(a2 + 1) (8.2 - 1)

=1 (3.8-63)

A circle in the z-plane is mapped into an ellipse in the w-plane, as long as the radius of the circle is not
one, which is equivalent to saying that the circle does not pass through the singular points. If the
radius of the circle is one (a = 1), Equations (3.8-62a, b) become

u=2cos0, v=0 (3.8-64a,b)

The circle passing through both singular points in the z-plane is mapped into a segment of the real axis
in the w-plane, as shown in Figure 3.8-7. A circle passing through one singular point and enclosing
the other singular point in the z-plane is mapped into an aerofoil in the w-plane.

74 !

FIGURE 3.8-7 Mapping of a unit circle into a segment of the real line

Example 3.8-5. Discuss the transformation of the circles Cy, C,, and Cj in the z-plane into the
w-plane under the Joukowski transformation [Equation (3.8-59)]. The center of C; and Cj is at the
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origin and their radii are one and two respectively. The center of C, is on the real axis at (1/2, 0) and
its radius is 3/2.

The circles Cy, C,, and Cj3 are shown in Figure 3.8-8. The circle C, passes through one singular
point (z =-1) and encloses the other singular point (z = 1). It also intersects C; at the singular point
A and Cj atthe point B [= (2, 0)].

FIGURE 3.8-8 Mapping of the circles Cy, C,, and C3 from the z-plane
to the w-plane

The unit circle C; is mapped into I'j, a segment of the real axis in the w-plane [Equation (3.8-
64a, b)] and can be written as

-2<u<g2, v=0 (3.8-65a,b)

The circle C5 is mapped into T'3, an ellipse [Equation (3.8-63)] and, in this example, can be written
as

2 2
u”  ve 1 ]
R (3.8-66)

[\

The equation for C, is given by

10

+ 3 (3.8-67)

N p—
N [
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Substituting Equation (3.8-67) into Equation (3.8-59) yields

[(1 + 3cosG)+ 3isin®) + 2[(1 +3 cose)—3i sin6)

B [—

10 + 6 cosO

Separating w into its real and imaginary parts, we obtain

u = (1+3c059)(L + —1-—)
2 54+3cosO
v=3sin9(l-————1 )
2 5+ 3 cosB

(3.8-68)

(3.8-69a)

(3.8-69b)

The circle C, in the z-plane is transformed into an aerofoil I'; in the w-plane. From Equations

(3.8-69a, b), it is seen that I is symmetrical about the real axis.

The points A and B in the z-plane are mapped into the points A' and B' in the w-plane. The
mapping of the three circles from the z-plane to the w-plane is shown in Figure 3.8-8.

In Table 3.8-1, we list some useful transformations which map a domain in the z-plane conformally to

a domain in the w-plane. A more extensive table is given in Kober (1952).

TABLE 3.8-1

Some useful transformations

z-plane w-plane Transformation
Upper half plane y =0 unitcircle |wl<1 = 11—:_5
z
. . . .. . . 1+1 eiZ
Infinite strip of finite width unitcircle |wil<1 w = -
—0<y<oo, OSXST 1-ie'”
Region outside the ellipse unit circle |w <1 1 [(a ~b)w + (a+ b)]
2 2 2 W
Z(__ + y__ =1
a2 b2
n 2
n half plane v >0 w= |2 *]
Sector 1zI1<1, 0<08<j upper hall plane v = 1
Strip 0<y<mw upper half plane v=0 w =e”




COMPLEX VARIABLES 293

In Section 3.3, we have mentioned the importance of Laplace’s equation and have shown that an
analytic solution is a solution of Laplace’s equation. In all physical problems, the solution has to
satisfy certain boundary conditions. If the geometry of the region of interest is complicated, the
problem of imposing the boundary conditions can be demanding. By using a conformal
transformation, we can map the complicated region into a simpler region, such as the unit circle. Let
¢ be a harmonic function satisfying conditions at the boundary, such as

¢=¢, or 3—2 =0 (3.8-70a,b)

do

where ¢ is areal constant and an is the derivative of ¢ with respect to the normal to the boundary

curve.

Using a conformal transformation to the w-plane, the transformed function ¥ (u, v) {=¢ [x (u, v),
y (u, v)]} is also harmonic satisfying the same boundary conditions [Equations (3.8-70a, b)] at the
transformed boundary. If we need to solve Laplace’s equation subject to a boundary condition in a
complicated domain D, we can transform the domain to a simpler one D' and solve the problem in
D'. We can then invert back to D. The main problem is to determine the suitable transformation from
D to D'. Riemann has shown that, for any simply connected domain which is not the whole complex
plane, there exists a transformation that can map it into a unit disk (lz|< 1). Unfortunately it is not
shown how the transformation can be obtained.

We have applied this technique in Example 3.8-4. In Example 3.5-7, we have shown that if the value
of a harmonic function is given on a circle of radius R, its value at any other point is known. In
theory, the solution of Laplace’s equation is known for any domain, since we can map the domain into
a unit circle.

PROBLEMS

la. Write z = 4 \/2‘ +4+/2 i in polar form. Determine all three values of z/3 and plot them in
the Argand diagram.

2a.  The complex viscosity n* of a linear viscoelastic liquid is given by

n* =f f(s) e 19S5 ds
0

where f, ®, and s are real.
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3b.

4a.

Sa.

6b.

7b.

If we write
* ' R
n =nN-1n
f(s) = Ke s/

where K and A are constants, calculate ' and 1". The quantities 1’ and n" are the
dynamic viscosity and dynamic rigidity respectively.

2
Answer: ALK , KA
1+ 0% 1+2%0?

Determine and plot the curve given by

z+1]| - 4o

z—-1

Discuss the continuity and differentiability of the following functions
G  f(z) = 22 (i) f(z) = 2%+ —}i
@ f@ =1 ) @ =lz|

Starting form the definition of f '(zo) given by Equation (3.3-26), use the Cauchy-Riemann
conditions to obtain two other expressions for f '(zo), one in terms of u only and the other in
terms of v only.

Show that the equation

u(x,y) = £n’Vx2+y2

is a harmonic function.

Obtain the harmonic conjugate v (x, y) and the function f(z). If f(z) is the complex
potential @, identify the potential ¢ and the stream function . The stream lines are given
by y = constant, what are the stream lines in this case? Do they represent the flow due to a
source at the origin?

Answer: arctan (y/Xx)

If f(z) is an analytic function, show that

2 2 ‘ 9
9 9 t@)|? = 4|f @]
ox%  9y?
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8a.

9a.

10a.

11b.

Determine the real and imaginary parts of

f(z) = ez_z

Are the Cauchy-Riemann conditions satisfied? Compute f'(z). Is the origin a singular point?

If f(z,z) is an analytic function, show that g—f = 0.
z

Calculate lim sinz

L along the real and imaginary axes.
Z—>

1
Evaluate f zdz along the semi-circles C; and C,.
-1

C; is the upper semi-circle of unit radius, centered at the origin traversed in the clockwise
direction from (-1, 0) to (1,0) and C, is the image of C; about the real axis. This is
shown in Figure 3.P-11b.

If C is the closed curve (C; —C,), what is the value of f zdz ? Is the integral zero? If not,

C
what condition(s) in the Cauchy’s theorem is (are) not satisfied?

>y

FIGURE 3.P-11b  Integration around semi-circles
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12a.

13b.

14a.

15b.

Evaluate the integral [ —sinz gy, , where C is a simple closed curve for the following

2
(z-24)
cases
@) z, isnotenclosed by C Answer: O
(ii) Z, is enclosed by C Answer: 2Ticosz,

The circulation I" round a closed curve C in a two-dimensional flow is given by

r=Ref@dz
dz

C

where @ is the complex potential.
If C is the unit circle with center at the origin, for which of the following ® is ' zero?
1) b =z

i) @ =ilogz

o = L
(iii) —)
If T is not zero, evaluate I

What is the value of T" if the radius of C is changed from 1 to 3/2?

Evaluate the integral

dz

4
f (cos’z + 2005h4z)
z

C

where C is any simple closed curve that encloses the origin.
Answer: 162mi

Show that the expansion of 1—1—— about the origin is

1

=l+z+..+2"+.., |z|<]1
l1-z
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16a.

17a.

18a.

19a.

20a.

21a.

22a.

23b.

Expand the same function about the point (0, 1/2). Note that this point lies inside the circle of
convergence and is not on the line joining the origin to the singular point. Determine the radius
of convergence of the new series.

Sketch the circles of convergence of the two series. Do they coincide? If not, are there points
at which the series about the point (0, 1/2) is convergent while the series about the origin is
not convergent? This process of extending the region of convergence is called the analytic
continuation of the function.

Find the Taylor series of sin z about the point z = /2.

2z
Obtain the Laurent series of about the point z=1. What is its radius of
@-1°
convergence?
Find the Laurent series of (Z_—lm

) in powers of z,

(ii) in powers of (z —1).

Expand Ln(lzz) for |z| > 1.

Locate the poles of the following functions and specify their order
z(z-2) e”

(ii)
z+ 1> @2 +9) cos?z

()

Locate the singularities of the following functions and discuss their nature
i  el/z (i)  z sin (1/2)
() e?/z] (iv) (cosz)/(z—m)>

The function cosec (1/z) has singularities at the origin and at points on the real axis given by
z=1/nm . Is the origin an isolated singular point?

To describe the behavior of a function f(z) at infinity, we make the transformation {=1/z
and the point at infinity in the z-plane is mapped to the origin in the {-plane. Discuss the
behavior of the following functions at infinity

@ e’ (iliy  zsin (1/z)

G) z'/2 iv) z/[z-1)(z-3)]
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24a.

25a.

26b.

27a.

Find the residues at the poles of the following functions

(i) 1/(1-2) (iv) e*/sinz
i) 1/(-2% v) cosz/z?
(i) cosz/sinz vi) 1/[z2@z-1@z-2)]
Answer: (1) -1 (iv) 1
G) -1/2,-1/2 (v) =1/2
(iii) 1 (vi) 3/4,-1,1/4

Evaluate the following integrals by means of the Cauchy residue theorem

(1) j‘ ( 2ZZ 0 dz, C isthe unit circle centered at the origin Answer: im/2

C
[ @2 +52+11)

(ii) dz, C isthecircle |z| = 2 Answer: -35im/6
J z2z-1%@z-3)
C

(1i1) j( —2__dz, C is any closed contour in the upper plane Answer: 0

1-2e7'%

C

The complex potential @ of a two-dimensional motion of a fluid is given by
d=v_(z+ a2/z) +ik An (z/a)
where v, k, and a are constants (real).

Determine the velocity components and show that there are two stagnation points (v = 0) on
C, the circle of radius a centered at the origin if v, > k/(2a). Verify that the stream
function is zero on C. Calculate the components F, and Fy of the force acting on C.

Answer: 0, 2npv_k

Show, by the method of contour integration, that

2n
@ doe - _T
fo 3-cos® A2
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28a.

29b.

30a.

(2% 2
(ii) -Szl‘ﬁ—d% = n@4-2v3)
Jo — COS
2n
gy [ _cos’ede  _ma-pepd) o
Jo 1-2pcos® +p? 1-p

Evaluate, using a semi-circle in the upper half-plane, the following integrals

) f X dx (i) ] x_dx (i) f Andx
o 14x? e (X244 x% 1 9) —eo (1+x2)?

Answer: (i) mV2 /2, (i) m/5, (i) T/2

Show that

f dx = 27
oo ax2+bx+c A/ (4ac—b2)
For what values of a, b, and c is the result valid?

What modifications need to be made to the contour if the conditions on a, b, and c are not
satisfied?

Use Jordan’s lemma to calculate

fm eiax dx
oo (x2 + a2)
Deduce

(i) f cos ox dx (ii) f sin o dx

oo )(2+E12 o0 x2+32

Answer: (i) me %%/a, (ii) 0






CHAPTER 4

VECTOR AND TENSOR ANALYSIS

4.1 INTRODUCTION

In this chapter, we will be dealing mainly with vectors and second order tensors. A vector is defined
as a quantity that has both magnitude and direction. In a three-dimensional space, it is described by
three numbers (components). For example, velocity is a vector and, when referred to rectangular
Cartesian axes, it is specified by its three components (vy, vy, v;). A vector is also defined as a
tensor of order one. A scalar has only magnitude and is completely characterized by one number.
It is a tensor of order zero and temperature is an example of a scalar. A second order tensor, in

a three-dimensional space, is represented by nine numbers (components). The extra stress tensor in
fluid mechanics is an example of a second order tensor and can be denoted by 1 T

T

XX? Txy’ Xz’ Tyx’

and T, Third and fourth order tensors will also be introduced.

Yy Tyz> Taxo Tzy

4.2 VECTORS

In this section, we briefly review some of the known and useful results of vector algebra and of vector
calculus. In Table 4.2-1, v, a and q are vectors, ¢; and c, are scalars and ¢ and y are

differentiable scalar functions of position x, y, z,ortimet. i, j and k are unit vectors along the x,

y, Z axes respectively.

TABLE 4.2-1

Results of vector analysis

a+y=v+a (4.2-1)
v+@+q)=(x+a)+g (4.2-2)
Cl¥y=vc 4.2-3)
(ci+cy)y=c y+cyv 4.2-4)
a*yv=yve*a (dotor scalar product) (4.2-5)

a*v=|allv|cos® (8 isthe angle between a and y) (4.2-6)
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axXy=-vXa (cross or vector product)

axyv=|al]|v|(sin®)n, n isaunit vector orthogonal to v and a

ci(¥yXxXa)=(c;¥)xXa=yx(c a)

ve(axq)=ac(gxy)=qe(yxa)
VX Vy VZ
y°(a><g)= a, a, a,
dx 9y 9
d _dv  da
o Y=gty
i L ] = lg.% S‘l.
at (vea)=y Cty e
Q(vxa)=xxd—%+(—1% Xa
d _ody L do
g V=0 vy Y
dq d
_d._ [ = L] —_— O_Q_ p—
dt(x axq) yeaX oty X g+ axq
d
d _ _ﬂ_) (da dv
it [gx(gx@]-yx(gx g R 2al B x9)+dt x(axq)
. 0 .0 0
V=i— Z =
- lax +l&y +kaz
. 90 10 0]
\Y = 1= —_ =
Vo=1i x+l y+k - grad @

(4.2-7)
(4.2-8a,b)
(4.2-9)

(4.2-10)

(4.2-11)

(4.2-12)
(4.2-13a,b)

(4.2-14a,b)

(4.2-15)

(4.2-16)

(4.2-17)

(4.2-18)

(4.2-19)

(4.2-20)

(4.2-21)

(4.2-22)

(4.2-23a,b)
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av av ov
Ve = X Y Z
Y= T ady >
(4.2-24a,b)
= divergence v or (div v)
ik
Vxyv = i _8_ _8_
XY =15 3y ax (4.2-25a,b)
Ve Yy Vg
= curlv or (roty)
Vip+y)=VYe+Vy (4.2-26)
Ve(v+a)=Vev+Veq (4.2-27)
Vx(v+a)=V¥Xxv+Vxa (4.2-28)
Yx(yxa)=(@a*YV)v-a@ey)-(v*Y)a+v(V-a) (4.2-29)
2 2 2
Ve (Vg)=vip=22,270 0% (4.2-30a,b)
oxZ 9y? 9z?
2 2 2
v2 = J + d + J is the Laplacian operator (4.2-31)
oxZ oy? oz?
Example 4.2-1. Show that Vev # yeV
V e v is a scalar quantity and is given by
ov, OV, v
Vey = x4 ¥, 9% 4.2-32
=T ay "% ( )
On the other hand v * V is a scalar operator and is given by
d 0 d
veV = VX§;+VYW+VZa_z (4.2-33)

Thus Vevz#yveV

Example 4.2-2. If r=(X,y,z)=ix+jy+kz, r=Ir! and @ is a constant vector, show that
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® Yem=1 d (4.2-34)
o r dr ~
i Ye(axr)=0 (4.2-35)
(i) ¥Yx(@xr1)=20 (4.2-36)
. 0@ .
M  Yo@ = Lif:+ i a—$+h%§ (4.2-37a)
d d
- (4o or do o, d or (4.2-37b)
dr ox =dr dy r 0z
2
_aa_; =E;ix (x24y2+22)" (4.2-382)
-172
=(x2+y2+22) x (4.2-38b)
=2 (4.2-38c¢)
We have similar expressions for g;— and a%r— and, on substituting these expressions into
Equation (4.2-37b), we obtain
_do(x .Yz
Y o(r) —E(;u;y;k) (4.2-39a)
=1do (4.2-39b)
I dr
(i1) V-(mxr)~i(z - (1))+—a—(xm -z )+i(m—x ) (4.2-40a)
___—ax(ﬂyyz dy z(’)xazyxmy )
=0 (4.2-40b)
(iii)  From Equation (4.2-29), we have
Vx(@x1) = VVa-rVe)-(@*Vr+o¥-r1) (4.2-41)

The first two terms on the right side of Equation (4.2-41) are zero since ¢ is a constant.

(*V)r={|o i+oa d 0

X35t Oyt Oug 1 (4.2-42a)

= (ioy+jo,+ko) = @ (4.2-42b,¢)
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J .9 0 . .
o7 = s I 4.2-43
Ver l8x+J—ay+Kaz (x;+yj_+zk) ( a)
=1+1+1 (4.2-43b)
=3 (4.2-43¢)

Combining Equations (4.2-41, 42c, 43c) yields
VX(@Xr)=-0+30 (4.2-44a)

=2 (4.2-44b)

4.3 LINE, SURFACE AND VOLUME INTEGRALS

Line Integral of a Scalar Function

In the definite integral defined by Equation (1.3-2), the integration is along the x-axis. We now
consider the integral of a scalar function ¢ (X, y, z) along a curve C from the point A to the point
B as illustrated in Figure 4.3-1.

FIGURE 4.3-1 Integral along a curve C
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Let the curve C be represented parametrically by
r(s)=x(s)i+y(s)j+z(e)k (4.3-1)

where s is the arc length of C and the points A and B correspondto s =a and s=b
respectively. We assume that 1 (s) is continuous and has continuous first derivatives for all values of
s under consideration. This means that C has a unique tangent at each point and such a curve is
referred to as a smooth curve. We shall consider only smooth curves. The line or curvilinear
integral of ¢ along the curve C from s=a to s=b is defined as

b
I= fa ¢[x(s), y(s), z(s)] ds (4.3-2a)
= J-AB o(s) ds (4.3-2b)
= fc(p(s) ds (4.3-2¢)

If the curve C is closed, then A coincides with B and the line integral around a closed curve C is
usually denoted by

I =§ o(s) ds (4.3-3)

where a modified integral sign is introduced.

Unless otherwise specified, the integral is taken along the positive direction. The positive direction
along a closed curve is the direction such that as we move around the curve, the region enclosed is to
our left.

The properties of ordinary definite integrals are equally valid for line integrals. Thus
b a
[ owas = -[ 0w ds (4.3-4a)
a

fAB o(s)ds = fAP(p(s) ds + fPB ®(s) ds (4.3-4b)

where P is a point on the curve between A and B.

The evaluation of the line integrals is done by writing them as ordinary integrals. The representation of
the curve C by the arc length s is not always simple for integration. It might be more convenient to
use a new parameter t instead of s. Then in Equation (4.3-1), the variable is t and not s. The line
element ds is then given by
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ds = Vdredr . (4.3-5a)
= A/dr  dr -
T d dt (4.3-5b)

—

S]] o

Example 4.3-1. Evaluate the line integral

I = fccp [x(s), y(5), 2(s)] ds (4.3-6)

where @ =x2+y% and C is the triangle OAB with O the origin, A the point (1,0,0) and B the
point (0, 2, 0) as shown in Figure 4.3-2.

FIGURE 4.3-2 Integral of ¢ around the closed curve C

From Figure 4.3-2, it can be seen that the integral I may be written as

sz d f d+f d 437
OA(PS"‘AB‘PS BO(PS ( )

Along OA, y=2z=0, so
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1 3
OA(pds = fo X2 dx = [%L = % (4.3-8a,b,¢)

The line AB is given by
y=-2(x-1) (4.3-9a)
z=0 (4.3-9b)

Equations (4.3-9a, b) may be written in parametric form as

x=1-t (4.3-10a)
y=2t (4.3-10b)
z=0 (4.3-10c)

where the points A and B correspondto t=0 and t=1 respectively.

If s is the arc length of AB, then

ds) = A/ (dx\2, (¥ )*, (dz)?

(8] = A/ () (2] () @311
= V(-1 + (27 (4.3-11b)
=5 (4.3-11c)

! 2 4¢27ds
fAB @ds =f0 [(1-t)"+4t ]E dt (4.3-12a)
1
= «/?fo [1-2t+5t%]dt (4.3-12b)
= S—%E (4.3-12¢)
Along BO, x=z=0, so
0 2
Bocp ds = f2 y “dy (4.3-13a)

(4.3-13b)

|
W oo
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Combining Equations (4.3-7, 8a, b, ¢, 12¢, 13b), we obtain

[ = % + 5? _g (4.3-14a)
SEREEY (43-14)

Line Integral of a Vector Function

Let v [x(s), y(s), z(s)] be a vector field defined at all points of a smooth curve C and T be the
unit tangent to C. The tangent to C at the point P is by definition the line joining P to a
neighboring point P' as P' approaches P. Thus T is by definition given by

r(s+As)-1(s)

T = lim (4.3-15a)
As—0 As
_ dr
3-1
= 35 (4.3-15b)

If C is defined in terms of t instead of s, then

dr
T = dt/( dr' (4.3-16)
dt

The scalar line integral of v along C is then defined as

I= fc veT ds (4.3-17a)

- f vedr (4.3-17b)
C

where dr=T ds.

If v is avelocity and C is a closed curve then I, in fluids mechanics, is known as the circulation
around C. If F (=y) is aforce, then I represents the work done by F in moving a particle along
C.

Example 4.3-2. Evaluate

B
1 =f vedr (4.3-18)
A
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where v = (2x, 0, 2x + 2y + 2z) = 1 (2x) + k(2x + 2y + 2z), and along the arc of the circle
x2+y2=1, z=0 joining A =(1,0,0) to B=(0, 1,0).

The path of integration is shown in Figure 4.3-3. The vector position 1 of any point on C which is
part of a circle can be given by

r=cos®i+sin@j+0k (4.3-19)

Z A

9 \

FIGURE 4.3-3 Line integral along curve C

B /2
f vedr =f0 [2cosBi+(2cos@+2sinB)k]e[-sin®i+cosBj]dO (4.3-20a)

A
/2
= fo ~2 cos 6 sin 6 dO (4.3-20b)
= —%— [cos 2 6] 8/2 (4.3-20c¢)
= -1 (4.3-20d)

Example 4.3-3. Calculate the work done by the force F = (x, -z, 2y) in displacing a particle along
the parabola y = 2x2, z =2 from the point (0, 0, 2) to (1, 2, 2).
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The path of integration is shown in Figure 4.3-4 with point A = (0, 0, 2) and point B = (1, 2, 2).

*Z

FIGURE 4.3-4 Line integral along a parabola

The vector position r of any point on the parabola may be written as

r=ti+2t% j+2k (4.3-21)

This has been obtained by choosing x =t. It then follows that y = 2t2  since y = 2x%. Such
parametrization is usually done via educated guessing. The more practice one has, the luckier one
gets.

The point A corresponds to t=0 and the point B corresponds to t= 1.

B 1
f Fedr =f0 [ti-2j+ 4%k ] [i+4tj]dt (4.3-22a)
. ] ]

1
=f0 [t—8t]dt =—

S

(4.3-22b,c)

The evaluation of vector line integrals, such as
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1= fc vds (4.3-23a)

or

l= fc v X dr (4.3-23b)
can be done by integrating each component separately. This is illustrated in the next example.

Example 4.3-4. Evaluate f c rds and fC r X dr from the point (a, 0, 0) to the point (a, 0, 21b)

on the circular helix illustrated in Figure 4.3-5, given by

r=(x,y,z)=(acost,asint, bt) (4.3-24)

FIGURE 4.3-5 Line integral along a helix
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We note that the point (a, O, 0) corresponds to t =0 and the point (a, 0, 21tb) corresponds to t = 27.
The line element ds is given, via Equation (4.3-5¢), by

ds = V (Casin® +(acos > +b? dt (4.3-252)
= Va2 +b? dt (4.3-25b)
2n
f rds = fo [(@cost)i+(asint)yj+(bt)k]V a2 +b% dt (4.3-26a)
c 1
9 27
2 . . . bt
= Val+b (asmt);—(acost)l+(—i—)k}0 (4.3-26b)

= Va2+b? [272bk] (4.3-26¢)

2n
f rxdr =f0 [acosti+asintj+btk]x[-asinti+acostj+bk]dt (4.3-27a)
C = d
21 5
=f0 {ab(sint—tcos t)i —ab(tsint+cost)j +a L(_] dt (4.3-27b)
, . . .9 2n
= {ab(—t sint—2cost)i —ab(~tcost+2sint)j+a tlg] 0 (4.3-27¢)
= [2mabj + 2m a2k | (4.3-27d)

Repeated Integrals

In Equation (1.8-3), we have defined a function I(x) by integrating a function f(x, y) with respect
to y between y=u(x) to y =v(x). If we now integrate I1(x) with respect to x between the limits
x=a and x =b, we have

b b v(x)
f I(x) dx =f f f(x,y) dy|dx (4.3-28a)
a a u(x)
b ,vx)
= f f f(x,y) dy dx (4.3-28b)
a Ju(x)

The above integral is an example of a repeated integral and is evaluated by integrating in the order
given in Equation (4.3-28a). If u(x)=c and v(x)=d where c and d are constants, then the order
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of integration is not important. If further f(x,y) is separable and may be written as a product of a
function of x and a function of y, then

fab fcd f(x,y) dy dx = fab fcd o(x) W (y) dy dx (4.3-29a)

b d
= [Tooax|| [Tweray (4.3-29b)

Thus in this case the repeated integral becomes the product of two single integrals.

In a single integral the integration is taken along a curve. In a double integral the integration is taken
over an area. Thus, in Equation (4.3-28b), the area A over which the integration is to be performed
is the area bounded by the curves y =u(x), y=v(x), x=a and x =b. Thus an alternative notation
is

b v
f f £(x, y) dy dx = f f £(x, ) dy dx (4.3-30)
a Ju(x) A

If f(x,y) =1, then the double integral in Equation (4.3-30) is the area A. If z =f (X, y) then the
double integral is the volume of the cylinder formed by lines parallel to the z-axis and bounded by
z=0 and z=f. The area of the base of the cylinder is A.

We can extend the process of double integration to triple or higher integration. Thus a triple integral
can be defined as

* b v(x) qxy)
1 =f f f f(x,y,z)dz ;dy|dx 4.3-3D)
a u(x) p(x.y)

In Equation (4.3-31), we integrate f (X, y, z) with respect to z between the limits z = p(x,y) to
z=q(X, y) resulting in a function of x and y, say g(x,y). The triple integral is thus reduced to
a double integral and can be evaluated as shown before.

Example 4.3-5. A thin plate is bounded by the parabola y = 2x — x2

mass if the density at any point (x,y) is 1/(1 + x).

and y = 0. Determine its

The equation of the parabola may be written as
y=1-x>+2x-1 (4.3-32a)

=1-(x-1)? (4.3-32b)



VECTOR AND TENSOR ANALYSIS 315

The parabola intersects y =0 at

0 (4.3-33a)

X

2 (4.3-33b)

X

The shape of the plate is shown in Figure 4.3-6. The mass M of the plate of unit thickness is given
by

2 2x-x2 1
= d 4.3-
M fo fyi) o dy | dx (4.3-34)

Note that the double integral results from the fact that we consider a plate of unit thickness.
"

l y=2x-x2

O y=0 ‘2’0)*)(

FIGURE 4.3-6 Shape of the flat plate. The integral with respect to y
is indicated by the arrow

2 as can be seen

In Equation (4.3-34), we integrate with respect to y first from y=0 to y=2x-x
from Figure 4.3-6. Then we integrate with respectto x from x =0 to x =2. Since the density is

independent of y, we obtain on integrating with respect to y

2

2 y 2X-x
M = f [ dx (4.3-352)
oll+xlg
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2x@2~x)
- fo Gy O (4.3-35b)
2 3x
- [0 [ x| ax (4.3-35¢)
5 2
X
= [—7 +3x-34n (1 +x) } . (4.3-35d)
=4-34n3 (4.3-35¢)

Example 4.3-6. Find the area bounded by the curves y =x2, y=0, x=0 and x = 1.
y

Figure 4.3-7 illustrates the area. If we integrate with respect to y first, then the area A is given by

1‘: x2 }
A= fo fo dy| dx (4.3-362)
P > {XQ’JI 1
- [O x| X =1 (4.3-36b,¢,d)
YA
Y'-‘xz
| 4

FIGURE 4.3-7 Sketch of the area
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We can interchange the order of integration, then A is given by

1 1
A =f f dx | d 43-37
0 { 5 X} y ( a)
1
=[ a-way (4.3-37b)
=[y _2 y3/2]1 =1 (4.3-37¢,d)
3 o 3 ) ’

In this example we have seen that it is easier to integrate with respect to y first and then with respect
to x. The limits of integration can be inferred from the diagram. It is always useful to sketch the
region of integration.

A change of variables may sometimes make the evaluation of a double integral easier. If u and v are
two new variables such that

x=x(u,vVv), y=y(u, v) (4.3-38a,b)
then

f f f(x,y) dx dy = f f f{x(u, v), yu, v)] 17| dudv (4.3-39)

A Al

where A is the area of integration in the xy-plane and A" is the corresponding area in the uv-plane.
The Jacobian J is given by

ox  dx
Ju o
ooy |9 (4.3-40a,b)
d(u, v) dy dy
odu ov

Similarly for a triple integral, we have

f[ff(x, y,z) dx dy dz =f]f [ £(x(u, v, W), y(u, v, w), z(u, v, w)) | T | du dv dw] (4.3-41)
\ V'

where V is the region of integration in the xyz-space and V' is the corresponding region in the uvw-
space. The variables u, v, w are defined by
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X =x(u,v, w), y=y(u,v,w), z=z(, v, w) (4.3-42a,b,c)
The Jacobian J is

2
Jdu oJv JIw

J_a(x,y,z) B a_y dy dy

T 0w, v,w) [du dv ow (4.3-432,)
9z 9z 0z
du oJv oJw

Example 4.3-7. Evaluate the triple integral, by a suitable change of variables.

fff [xz +y2+ 22] dx dy dz

A"
where V is the region bounded by the ellipsoid
2 2 2

S A (4.3-44)

a2 p2 o2
The ellipsoid given by Equation (4.3-44) can be written in a parametric form as

X = ar sin 6 cos ¢ (4.3-452)

y = br sin 6 sin ¢ (4.3-45b)

X =crcos 0 (4.3-45¢)
The relations between (x, y, z) and (r, 6, ¢) are illustrated in Figure 4.3-8.
It can be seen from Figure 4.3-8 that the range of r, 6, ¢ is

0<r<1, 0<6<m, 0<6<2n (4.3-46a,b,c)
The Jacobian J is given by

asin@cos¢p arcosBcos¢ —arsin O sin ¢
J =| bsin@sin¢ brcosOsing  brsin 6 cos ¢ (4.3-47a)
ccos —cr sin 0 0

=abcr? sin 6 (4.3-47b)
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FIGURE 4.3-8 Relations between (x, y, z) and (r, 0, ¢) for an ellipsoid
fff [x2+y2+z2} dxdydz
A

T 2r 1
=f f f [rz(a2sin29 C052¢+b28in26 sin2¢+02c0329 ) aber2sin® dr d¢d9] (4.3-48a)

6=0 ¢=0 r=0
5 1 W 2n
= abc{: %} f f a%sin>0 cosz¢+b7‘sin36 sin2¢+0200529 sine] d$ do (4.3-48b)
0
0=0 ¢=0
T 2n 2%
= a_sc_f aZsin>0 [gﬁ% sin 2¢} .t b2sin30 B _ZII sin 2¢} .
0
27
+ c?cos?0 sin® M 0 (48 (4.3-48¢)
T
= al;L f sin®8 (a2r + b2w) + (c2cos20 sin 8) (27) | dO (4.3-484)
0
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T 3 [F
= Tabe {32 4 bz)[ -1 (cos 8 sin?0 + 2 cos 6)} +2¢2 [ _cos® } (4.3-48¢)
5 3 0 3 o
=-iﬁ§b°(a2+b2+c% (4.3-48f)

Surfaces
The equation of a surface S may be written as

o (X, y, z) = constant (4.3-49a)
or

z=1(x,y) (4.3-49b)
or in parametric form as

x=x(u,v), y =Yy (u, v), z=z(u, v) (4.3-49c,d,e)

Equation (4.3-49c, d, e) defines a mapping (projection) of a region A in the xyz-space into a region
A' in the uv-plane.

Thus the equation of the surface of a sphere of radius a and center at the origin may be written as

x2+y2 +72=a2 (4.3-50a)
z=%vVa?-x2-y? (4.3-50D)
X = a sin O cos ¢, y = asin 0 sin ¢, Zz=acos 0 (4.3-50c,d,e)

We note that the surface of a sphere of radius a, in the xyz-space is mapped into a rectangle,
0<06<m 0<¢<2m inthe B¢-plane.

Let P be a point with vector position r on a general surface S given by Equations (4.3-49c to e). If

we keep the value of v fixed and let u vary, then P will trace out a curve C as shown in Figure
4.3-9. Similarly by fixing the value of u and letting v vary, a curve C, will be traced out. The
tangent to C, is given by —aa-—i— (=r,) and the tangentto C, is _8_[_ (=r,). A unit normal n to

av

the surface S is a vector which is perpendicular to the tangents to C, and C, and is given via
Equation (4.2-10) by

ili—i)r (4.3-51)

n =

=t | =
=t |i=
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zZ A
S
j'-v n Lu
cV
p
/
Ly
/
0] >
y

FIGURE 4.3-9 Curves C, and C; on surface S

The curve C, can also be given by Equation (4.3-1) and since C, lies on the surface S,

[x(s), y(s), z(s)] satisfy Equation (4.3-49a). On differentiating with respect to s and using the
chain rule we obtain

dp dx d¢ dy d¢ dz _

a—x —(TS_+W a;+ 3z ds = (43-52)

From the definition of grad @ and the tangent to C, we find that Equation (4.3-52) can be written as
grad p*T =0 (4.3-53)
where T is the unit tangentto C,,.
Similarly we can deduce that
grad T, =0 (4.3-54)

where T

T, isthe unit tangentto C,.

From Equations (4.3-53, 54), we deduce that grad ¢ is perpendicular to both T, and T, and thus
is a normal to the surface S. That is to say, n is also given by

__grado (4.3-55)
"~ |grad o]



322 ADVANCED MATHEMATICS

If r, and r, are interchanged in Equation (4.3-51), the sign of n is reversed. Therefore, we need
to establish a convention to label one side of S to be positive. If S is a closed surface, n is chosen

to be positive if it points outwards.

The surfaces we shall consider are two-sided surfaces. However, there are surfaces which have one
side only. A Mobius strip illustrated in Figure 4.3-10 is an example of a one-sided surface. It is
obtained by twisting a strip of paper once and gluing the ends together. An insect can crawl on that
strip and reach all points on the strip without ever having to cross an edge! Thus the strip has only one
side. In such a case we cannot designate a positive side. If we cut the strip along the centre line, we
obtain one circle.

FIGURE 4.3-10 Mobius strip

A surface is said to be smooth if its unit normal exists and is continuous everywhere on the surface.
The union of a finite number of smooth surfaces forms a simple surface.

Example 4.3-8. Find the unit normal n to the surface of a sphere of radius a, centered at the
origin, using Equations (4.3-51, 55).

The equation of the surface of the sphere is given by Equations (4.3-50c to e)

ot = acos@cospi+acosOsing)-asinBk (4.3-56a)

a9
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ar

— =~—asin O sin ¢1 + a sin O cos ¢;j (4.3-56b)
0o -
(TgXrg)
p=_—2 "¢ (4.3-57a)
|19XI¢|
22 26120 o 2q;
_ (a“sin“0 cos ¢, a“sin“0 sin ¢, a<sin O cos O) (4.3-57b)
a2sin 6
= (sin O cos ¢, sin O sin ¢, cos 0) (4.3-57¢)
=1L 4.3-57d
=L (4.3-57d)

The equation of the surface of the sphere is also given by Equation (4.3-50a) and ¢ is given by

¢ = x2+y2+72 = a® = constant (4.3-58)
grad @=2xi+2yj+2zk (4.3-59a)
=2r (4.3-59b)

From Equation (4.3-55) we have

n = (4.3-60a)

I
= = (4.3-60b)

since lgl = a.

Surface and Volume Integrals

The surface integral is an extension of the double integral to an integration over a surface S. If
© (X, y,z) is ascalar function, then the surface integral of ¢ over S is denoted by

I =f o(x,y,z)dS (4.3-61)
S

In Equation (4.3-61), z is not an independent variable, it has to satisfy the equation of the surface.
That is to say, it is given by Equation (4.3-49b). If S is given in parametric form, then the surface
element dS is given by

dS = [r xr,ldudv (4.3-62)
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The surface integral 1 given by Equation (4.3-61) becomes

I= ff o[x(w, v), y@, v), z(u, ] |z x| dudv (4.3-63)
S'

where S' is the region in the uv-plane corresponding to S in the xyz-space.

If v is a vector field, then from Equations (4.3-51, 62), we deduce the following relations

[[ens = ([ corrp s wsen
;fzds =ffs<vxi+vy1+vzx>ds (43-653)
S - }f (e i+ vy j+v, k) legxr lduav (4.3-65b)
[[onas [f o e, anar 366
| 4

Example 4.3-9. Evaluate ffx *ndS where v is the vector (4%, y, z) and S is the plane
S

2x +y + 2z =6 in the positive octant.

The region S over which the integration is carried out is shown in Figure 4.3-11a. On S
2=3-x-y/2 (4.3-67)
The original inclined plane in the xyz-space is replaced by its projection in the uv-plane and we write
u=x, y=v (4.3-68a,b)
It follows from Equation (4.3-67) that
z=3-u-v/2 (4.3-68c)

S', the corresponding region of S in the uv-plane, is shown in Figure 4.3-11b. The vector position
r of any pointon S is

r=ui+vj+@B-u-v/2)k (4.3-69)
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r,=i-k (4.3-70a)
r,=j-1k (4.3-70b)
1,X1, =i+l j+k (4.3-70c)

(a)

2x+y+22 =6

2u+v 6

(b)

c¥

FIGURE 4.3-11 (a) Region S in the xyz-space, (b) Region S' in the uv-plane

Using Equation (4.3-65), we have

{fxq;ds =!f (4u, V,3—u—%)°(1,

3 6-2u
=j I 3u+1)dvdu

u=0 v=0

=3f03 [uv +v]

=3f03[-2u2+4u+6]du =54

I)dv du

(4.3-71a)

(4.3-71b)

(4.3-Tlc)

(4.3-71d.e)
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If ¢ (x,y,z) is a scalar function defined throughout a volume V, then the volume integral of ¢
over V is a triple integral of ¢ and is written as

”f Q(X,y,z)dx dy dz =Uf o(x,y,z)dV (4.3-72)
v \%

Some authors use only a single integral sign ( f ©(x, y,z) dV) , instead of three, for the volume

\"
integral as written on the right side of Equation (4.3-72).

Evaluation of volume integrals can sometimes be simplified by a transformation of variables. Thus if
we make the transformation from the xyz-space to the uvw-space, then the vector position r of any
point can be written as

r=x@vVv,wWi+y@v,wj+z(,v,wk (4.3-73)

The tangent to the C, curve, the curve generated by allowing u to vary while keeping v and w

fixed, is r . Similarly, one defines the tangents r, and r,, . Thus the volume element dV is

given by

dv = | (ty Xr,)er,, | du dv dw (4.3-74)
The integral given in Equation (4.3-72) becomes
ff 0(x,y,2) dx dy dz =ff o[x(u, v, w), y(u, v, w), z(u, v, w)] | (T, Xr,)e Lwl du dv dw
\'% \'A

(4.3-75)

where V' is the volume in uvw-space corresponding to V in xyz-space. Equation (4.3-75) is
identical to Equation (4.3-41).

If v(x,y,z) is a vector function, then the volume integral of v is evaluated by decomposing v into
its components and evaluating each component separately. Thus

”f”“”f [ive+jvy+kv,]dxdyde (4.3-762)
\% \Y

=ﬁf [ivetjvy+kv,] )(LUXLV)’LW, du dv dw (4.3-76b)
v

Examples of volume integrals are given in the next section.
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4.4 RELATIONS BETWEEN LINE, SURFACE AND VOLUME INTEGRALS

Two important theorems in vector analysis are Gauss’ theorem and Stokes’ theorem. We shall
state these theorems without proof. They are also known by other names and the origins of these
theorems were summarized by Ericksen (1960).

Gauss’ (divergence) Theorem

If a vector field v and its divergence are defined throughout a volume V bounded by a simple closed
surface S, then

Ug-gds =fffdivde =Hf Veydv (4.4-1ab)
S Vv Vv

where n is the unit outward normal to S.

Example 4.4-1. Verify Gauss’ theorem if v = (x,y,2)/r? and V is the volume enclosed by the

spheres x2+y2+22=1 and x2+y2+2z%2=¢2 e < 1.
divy = 2 (X\49 l)+i z (4.4-2a)
ox \r*) oy \rt) o\
2 2 2
1o 1yt 1 227 (4.4-2b,c)
r2 r4 rz r4 r2 r4 r2

We make a change of variables from (x, y, z) to (1, 0, ¢) and these two sets of variables are related by
an equation similar to Equations (4.3-50c to e), which is

X =r sin 0 cos ¢, y =15in O sin ¢, Zz=rcos 0 (4.4-3a,b,c)

The tangent vectors are

1, =sinfcosdi+sinOsingj+cosBk (4.4-4a)
1g =rcosBcosdpi+rcosOsingj-rsinOk (4.4-4b)
Iy = —r sin® sin ¢ i +rsin 6 cos ¢ j (4.4-4¢)
V= |(r, x1g)* 1y | drde do = r2 sin 0 dr do do (4.4-5a,b)

The volume V is enclosed by two spheres, S, withradius 1 and S. withradius €, as shown in
Figure 4.4-1.
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Z )

FIGURE 4.4-1 Shaded volume V enclosed by sphere S; and S,

| 2n 1
f”divgdv =f f f L r2in 0 dr ) dp |6
v 0=0| ¢=0 \r=¢ '
[ 2n
=f f (1 -¢)sin 6 do | dO
8=0 | ¢=0

T
=f 27 (1 —€) sin 6 dO
0

=4n (1 —¢€)

(4.4-62)

(4.4-6b)

(4.4-6¢)

(4.4-6d)

The unit normal to a sphere is given by Equation (4.3-60b). We also note that v may be written as

I
V==
2

Using Equation (4.3-64), we obtain

(4.4-7)
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ffv n dS f ] rersin6do | do (4.4-8a)
8=0 | $=0
T
= f 27 sin 6 dO (4.4-8b)
0
=4r (4.4-8c¢)
Note that in Equation (4.4-8b), rer =1 since Sy has radius 1.
On S, the outward normal is towards the origin as shown in Figure 4.4-1. In this case
= _1 R
n = : (4.4-9)
n| 2n
ffy°ndS =f L+~ sin 0 dg) do (4.4-10a)
Se 0=0 | ¢=0 &
[ 2=n
_ f _g sin 0 do| d6 (4.4-10b)
6=0 | ¢=0
—-4T € (4.4-10¢)
From Equations (4.4-6d, 8c, 10c), it can be seen that
fffdivde =[fy-gds+[fx°gds (44-112)
\% S4 Se
(4.4-11b)

Thus the divergence theorem is verified.

In this example, divy (= 1/r2) is not defined at the origin and so we cannot apply Gauss’ theorem in
a region that includes the origin. We circumvent this problem by enclosing the origin with a sphere of
radius €. To obtain the volume integral of div v in a region that includes the origin, we let € — 0.

In this example, we obtain from Equation (4.4-6d) with € — 0
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fff divvdV = 4x (4.4-12)
v

We can deduce the following from Gauss’ theorem.
) ff(pgdS =Hf2<pdv (4.4-13)
S v

where, as usual, S is the surface that encloses volume V.

Let q be an arbitrary constant vector.

d 0 d
Vel = 5- (a0 +57 (@) +5- (99, (4.4-14a)
L A )
= dx 3 * 9y 3y 43, (4.4-14b)
=q*Y¥¢ (4.4-14c¢)

From Gauss’ theorem, we have

”(P qe°nds =” div (¢ q) dV (4.4-15a)
S A\

=ff q*Ydv (4.4-15b)
A%

Equation (4.4-15b) may be written as

Q'Ufcpnds ~[[[zoav]=g-E=0 (4.4-16a,b)
S A%

Since q is arbitrary, it is not necessarily perpendicular to

E. However, since the right side of

Equation (4.4-16a) is zero, it follows that F =0, verifying Equation (4.4-13).

(ii) ” (n X v) dS =f” (¥ x v) dV (4.4-17)
S Vv

From Equations (4.2-14a, b), we can deduce that
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Ve(yxq) = qg* (¥ Xw) (4.4-18)
where q is an arbitrary constant vector.
Gauss’ theorem yields
ff(XXg)‘IldS =Uf2°(y><g)d\/ (4.4-19)
S A%
Using Equations (4.2-14a, b, 4-18), Equation (4.4-19) becomes
g*f (nXy)dS =g°ff ¥ xv)dv (4.4-20)
S A%

It follows as in (i) that Equation (4.4-17) is true.

(4.4-21)

(i) ”cpa“’ ds _” (©Viy + Yo +Yy)dV
A%

where —Q— is the directional derivative and is defined in Equation (1.5-10).

on

Equation (4.4-21) can be derived as in cases (i) and (ii) by considering a vector ¢ Yy and
applying Gauss’ theorem. Equation (4.4-21) is the mathematical statement of Green’s first
theorem. Green’s second theorem is obtained by interchanging ¢ and y in Equation
(4.4-21) and subtracting the resulting expression from Equation (4.4-21). The result is

[ 30 i) os = ff 0%t var
S v

. aV aVy
(iv) ff _87:(_+§)/—)dXdy =4;(vxdy—vydx)
A C

where C is the curve enclosing the area A in the xy-plane.

Equation (4.4-23) is the statement of Gauss’ theorem in two-dimensions.

(4.4-22)

(4.4-23)

Example 4.4-2. Apply Gauss’ theorem to a right circular cylinder bounded by the planes z =0 and
z=h, as shown in Figure 4.4-2. The vector field v is a function of x and y only and v, =0.
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z A
n
h T s'
h L~ Sc
N N
_ y
!
X c
n
N, ~

FIGURE 4.4-2 Right circular cylinder bounded by planes S, S,,
and curved surface S,

The three surfaces that enclose the volume V are S; (the plane z=h), S, (the plane z=0) and the

curved surface S.. The unit outward normal to S;, n; is in the positive z-direction whereas n,,
the unit outward normal to S, is in the opposite direction.

ffz'n dS=ffg'g1 dS+f[x~gz dS+Hx-g ds (4.4-24)
s S, S, S,

Since n; and n, are of opposite sign and v is independent of z, the first two integrals on the right
side of Equation (4.4-24) cancel each other. Applying Gauss’ theorem yields

[[venas =[ffaivyav (4.4-252)
S, v

-f Vf | (%‘;—X+§§§¥)dv (4.4-25b)

Since we are considering a right circular cylinder of height h,

dV =hdS; (4.4-26a)
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dS¢=hds (4.4-26b)
where ds is the line element along the circle that encloses the surface S».

Substituting Equations (4.4-26a, b) into Equation (4.4-25b), we obtain

hf *nds =h ff )dxdy (4.4-27)
The normal n to the curve C is given by
dy dx )
=L _2% 9 -
(as T3 (4.4-28)

Combining Equations (4.4-27, 28) and dividing by h, we obtain

f(v dy - v, dx) ”
-JI 5

where we have replaced S, by A. We have thus deduced Gauss’ theorem in two dimensions
[Equation (4.4-23)] for this simple geometry.

dxdy (4.4-29)

) dxdy (4.4-23)

Stokes’ Theorem

If the vector field v and curl v are defined everywhere on a simple open surface S bounded by a
curve C, then

% veTds = fj curlvendS (4.4-30)
C S

where T is a unit tangent to C and n a unit outward normal to the surface S.

If the surface S is enclosed by two curves C and Cj, then at a point A on C we make a cut and
draw a curve from A to apoint B on Cj. We then go around C; in the positive direction once and
leave C; at B torejoin C at A and proceed along C in the positive direction until completion of the
circuit. This is illustrated in Figure 4.4-3. The direction of AB from C to C; is opposite to the
direction from Cj to C. Therefore, the line integrals along AB will cancel. Thus we only need to
evaluate the integrals along C and C;. We have to ensure that the direction of integration is chosen
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properly. The same technique of making appropriate cuts can be extended to surfaces enclosed by
more than two simple curves.

FIGURE 4.4-3 Surface S enclosed by two curves C and C,

Example 4.4-3. Verify Stokes’ theorem in the case where v =(-y3, x3,0) and S is the circular
disk x24+y2=1 with z=0.

Equations (4.2-25a, b) define curl y as

Pk
0 0 0
curlv = P E % (4.4-31a)
B8
=[0,0,3(x2+y?)] (4.4-31b)
n = (0,0, 1) (4.4-32)

curlvendS = || 3(x2+y2)ds (4.4-332)
[ s -
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2n 1
3 f f r2rdrdo (4.4-33b)
(o] (6]
3

= (4.4-33¢)

The curve C enclosing S is the unit circle (r = 1). In parametric form, the unit tangent T is given

by

dx d
T = (—x : l) (4.4-34a)
de do
= (—sin 6, cos O) (4.4-34b)
2R 3 3
f veTds = f (— sin” 0, cos” 0O, 0) . (— sin 0, cos 0, O) doe (4.4-35a)
0
- .
27
- f (sin% 6 + cos*8) 8 (4.4-35b)
(8]
cos Osin> 0  sin 6 cos> O o 2 2 2
=|- + +3 f (sin? 0 +cos2@)dp|  (4.4-35¢)
4 a1, Talk
= 37n (4.4-35d)

Thus Equation (4.4-30) is verified.

The following can be deduced from Stokes’ theorem.

@

(ii)

If the line integral f v+ T dsis independent of the path of integration and depends only on its

C
end points, then the line integral of v around a closed curve C (a curve with coincident end

points) is zero. Such a vector v is called a conservative vector. Since the line integral is
zero, it follows, from Stokes’ theorem, that curl v=0. v is then said to be irrotational.

H ndsS = %fﬁ r xdr (4.4-36)
S C

Let q be an arbitrary constant vector. From Equation (4.2-29), we have

curl(gxg) =(t*Yg-r(¥*q)-(q*Y)r+q(¥-1) (4.4-37a)
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-q+3qg (4.4-37b)
=2gq (4.4-37¢)

From Stokes’ theorem

ff curl q><r = % q>< r r (4.4-38)
C

From Equations (4.4-37c, 2-14), we deduce that Equation (4.4-38) may be written as

2g'ffnds=g°§ rXdr (4.4-39)
S C

Since q is an arbitrary vector, Equation (4.4-36) is satisfied.

(iii)  Stokes’ theorem in two-dimensions is given by

0
f (v dx + vy dy) = f f (—avxl - QYL) dx dy (4.4-40)
A

dy
C
where A is the area in the xy-plane enclosed by curve C.
4.5 APPLICATIONS

Conservation of Mass

Consider a fixed volume V of a fluid of density p enclosed by a surface S. The mass m of the
fluid is
m = U pdV 4.5-1)

The rate of influx of mass
f f f P gy (4.5-2a,b)

where Q = —ff pvendS (4.5-3)
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and v is the velocity of the fluid.
The minus sign indicates that n is an outward normal.

Combining Equations (4.5-2a, b, 3) yields

Hf P gy = —f py *ndS (4.5-4a)
S

_ f f div (p v)dV (4.5-4b)
\'%

We have applied Gauss’ theorem to the right side of Equation (4.5-4a) to transform the surface integral
to the volume integral and as a result we obtain Equation (4.5-4b) which can be written as

Iz

Since Equation (4.5-5) is valid for any arbitrary volume V it must true at every point. (This is similar

=—+div(p v}dv 0 (4.5-5)

b
to f f(x) dx = O for any limits a and b, f(x) must be zero). Therefore
a

%P

3t div(pv)=0 (4.5-6)

Expanding div (p v), we have

. d d d
div(py) = 5 Pvd+5 (Pvy)+g, V) (4.5-7a)
v, Py ov,] o dp . 9p dp
[ax ay + == aZ +V §—+Vy5;+v -éz— (45—7b)
=pdivy+yegradp (4.5-7c)

Combining Equations (4.5-6, 7c) yields

%‘z— +vegradp+pdivy=0 (4.5-8a)

which can be written as

D
Lo+ pdivy=0 (4.5-8b)
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) . . .
where i% = §+ v * grad 1s the material or substantial derivative.

Equation (4.5-8b) is the equation of continuity in fluid dynamics, which for incompressible fluids
(p = constant) simplifies to

divyv =Vev =0 (4.5-9a,b)

Solution of Poisson’s Equation
In many applications, such as electrostatics, the potential ¢ satisfies the equation
VZp=p(x,y,2) (4.5-10)

Equation (4.5-10) is known as Poisson’s equation and if p = 0, we have Laplace’s equation,
which is a homogeneous equation.

We propose to solve the inhomogeneous Equation (4.5-10) using the method of Green’s functions
which was introduced in Section 1.18 for ordinary differential equations.

We want to determine the value of ¢ at a point P, inside a volume V enclosed by a surface S.
We assume the boundary condition to be
¢=1f(x,y,z) on S (4.5-11)

The boundary condition given by Equation (4.5-11) which gives the value of ¢ on S is known as
the Dirichlet condition, which is sufficient to ensure a unique solution to Equation (4.5-10). In

some problems, 99 s given at the boundary and this condition is the Neumann condition.

dn

We recall from Section 1.18 that we need to construct a Green’s function G that satisfies the

homogeneous equation, in the present case, V3G = 0, everywhere except at P. We choose P to be
the origin. We also assume that G satisfies the homogeneous boundary condition, that is to say

G=0 on S (4.5-12)

Replacing y by G in Equation (4.4-22) we have

I

(p%—ii—G%(g)dS = Hf ((szG—GVZ(p)dV (4.5-13)
A%
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Since G and V2G are not defined at the origin, we need to isolate the origin by enclosing it with a
sphere of radius €, surface S¢ and volume Vg as in Example 4.4-1.

In V — Vg, the region enclosed by S and S¢, G satisfies Laplace’s equation, Equation (4.5-12) and
¢ satisfies Equations (4.5-10, 11). Equation (4.5-13) becomes

G oG 00 B
f 5 dS+ff[(pa—n—Ga—n}dS——ff Gpdv (4.5-14)
S Se V-V,

1

Near the origin we assume Tt be the dominant term of G.

G is singular at the origin. As in Example 4.4-1, we work in terms of spherical coordinates. On Sg
we have

r==¢ (45-153)
3 0 ]
3= = -3 (4.5-15b)
G = _% (4.5-15¢)
oG 3o .. ("I, 199| 2 .
ff I:(p 5; -G a_n dS = —L L 8—2— ¢+ E'gr— e sin d¢ do (45'15d)
S8
T 21 a(p )
= - ©+¢& =—| sin 0 do| do (4.5-15¢)
A or
= —4n ¢ (0), ase—>0 (4.5-15f)

To evaluate the right side of Equation (4.5-14) as € — 0, we write

”f GpdV:f”GpdV—I8 (4.5-16)
VLV, v

where I is the contribution from Ve.

To evaluate I, we note that p is finite everywhere and let its upper bound in V¢ be M. Thenin Vg
we have

lplsM (4.5-17a)
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Ve = Sme’ (4.5-17b)
G~=1
. (4.5-17¢)
I, < Mg—n g3l (4.5-17d)
< ‘;inMe2 (4.5-17¢)
Thusas ¢ >0, I = 0. (4.5-18)

Combining Equations (4.5-14, 15f, 16, 18), we obtain
=-L Gpdv f f 96
90 = ;L W pav+[[ 1% as
v S

Equation (4.5-19) gives the value of ¢ at P in the form of an integral involving the Green’s function
G. We will be in a position to construct G, following Chapters S and 6 on partial differential
equations.

(4.5-19)

Non-Existence of Periodic Solutions

Many dynamical systems to be covered in Chapter 10 are governed by a non-linear autonomous
system

dx

X = fx,y) (4.5-20a)
dy
3 = gXxy) (4.5-20b)

where f(x,y) and g(x,y) are continuous functions with continuous partial derivatives. The system
is said to be autonomous because f and g do not depend explicitly on time t. If we can solve
Equations (4.5-20a, b), we obtain x and y as functions of t. On eliminating t between them, we
generate a relationship between x and y. We can plot x versus y and the obtained curve is the
path or trajectory. The xy-plane is known as the phase plane. If x and y are periodic and of
period T, then

x(t+TD=x(® (4.5-21a)

yt+T)=y(@® (4.5-21b)
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The path in the phase plane will then be a closed curve. The closed curve will be traversed once as t
increases from t, to t, + T, for every ty. Thus a periodic solution corresponds to a closed path in
the phase plane. If in Equation (4.4-23) we set vy =f and vy =g, then we can write

of 0
ff (——+—§) dx dy = f (fdy - gdx) (4.5-22a)
C
_ to+T dy dx
- L (& Y g dt)d (4.5-22b)
=0 (4.5-22¢)

Equation (4.5-22c) follows from using Equations (4.5-20a, b). Equation (4.5-22b) is obtained by
introducing the variable t. Integrating once around the closed curve C corresponds to integrating
from t=t, to t=ty, +T.

If of + Jg is of one sign only in the phase plane, that is of + Jg is either positive or negative

ox dy ox 9y
throughout the phase plane, then the left side of Equation (4.5-22c) cannot be zero. So this leads to a
contradiction which implies that there is no closed curve. In other words there is no periodic solution.

of og
Thus if (—.9—)(—+a

(4.5-20a, b) does not have a periodic solution. This is Bendixson’s negative criterion. Other
criteria for determining the existence or non-existence of periodic solutions are given in Cesari (1971).

does not change sign in the phase space, then the system given by Equations

It should be pointed out that the non-linear Equations (4.5-20a, b) are usually difficult to solve exactly
and only approximate solutions can be obtained. Thus it is of interest to have analytical criteria to
determine the existence of periodic solutions.

Maxwell’s Equations

Faraday discovered that if a closed circuit is being moved across a magnetic field or if the circuit is
placed in a varying magnetic field, a current is generated in the loop. This experimental observation is
usually stated as Neumann’s law and Lenz’s law.

® Neumann’s law: if the magnetic flux N through a closed circuit varies with time, then an

additional electromotive force (e.m.f.) is set up in the circuit and is of magnitude (gj

(ii)  Lenz’slaw: the current induced in the circuit opposes the change in N.

Thus laws (i) and (ii) can be expressed as
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- _dN
e.m.f. dt (4.5-23)

provided both the e.m.f. and N are measured in the same system of units. Since the e.m.f. around a
closed circuit is equal to the change in potential in going around the circuit once, we have

em.f. = 56 E+Tds (4.5-24)
C

where E is the electric field.

The total normal magnetic induction N across any surface S is

N = ” B+ndS (4.5-25)
S

where B is the magnetic induction. Since S is a fixed surface, we obtain by combining Equations

(4.5-23 to 25)

ﬁ E°Ids=—f aa%°nds (4.5-26)
C S

Applying Stokes’ theorem, we write

ff necurl EdS = —f aa% *n dS (4.5-27)
S S

Since Equation (4.5-27) holds for every S, it follows that

JB
curl B = -5 (4.5-28)

Equation (4.5-28) is one of Maxwell’s equations in electromagnetic field theory.

4.6 GENERAL CURVILINEAR COORDINATE SYSTEMS AND HIGHER ORDER
TENSORS

Cartesian Vectors and Summation Convention

A vector v is represented by its components which depend on the choice of the coordinate system. If
we change the coordinate system, the components will generally change. The vector v however is
independent of the coordinate system. Thus there is a relationship between the components of v in
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one coordinate system and the components of the same vector v in another coordinate system. It is
the object of this section to establish such relationships.

We start by considering a transformation from one Cartesian coordinate system (X, y, z) to another
Cartesian coordinate system (X, y, z) obtained by rotating the (x,y, z) system as shown in Figure

4.6-1. Vector v has components v, Vy, Vv, in the (X, y, z) system and components V,, Vy, v, in

the (X, ¥, z) system. We wish to relate those components, and this can be achieved as follows.

{

v
+ y

=

+v, (4.6-1a,b)

1t v f

vV = Vxl+Vyl+Vzk =V,

[t

Pix,y,z)
_ ¥y

<

FIGURE 4.6-1 Vectors v and r in two coordinate systems

The component vy is obtained by forming the dot product of Equations (4.6-1a, b) with the unit
vector 1.

e VX_1_°L+ Vy_]_'L-f-VZ

.i ' (4.6-22)

=1

Similarly, vy and v, are obtained through forming dot products with unit vectors j and k

respectively.
VoEVelejr vy jeitv,kej (4.6-2b)
V,=Veick+ Vv jrk+V,k*k (4.6-2¢)
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Note that in the rectangular Cartesian system

i*j=j*k=1k =0 (4.6-3a,b,¢)

e}

jej=kek=1 (4.6-3d,e,f)

Inverting the set of Equations (4.6-2a to c), we obtain

Vy 1l b3 | [Yx
Vol = | 1 s ||V (4.6-4)
v, b1 f3p by ) \ V2

where £;; = 1+i = |1] |1 cos (1, 1) (4.6-5a,b)
by =jei=1][1cos(j,i) (4.6-5¢,d)

cos (i, i_) is the cosine of the angle between the unit vectors iandi. The nine quantities £11, ¢21, ...
are the direction cosines and can be represented in a more compact form by /4, where both
indices m and n take the values 1, 2 and 3.

In Equation (4.6-4), the indices in £ are written as numbers instead of as x, y, z and this

notation has the following advantages

(1) in the case of an extension to an n dimensional space, where n can be greater than 26, we
would run out of letters. Indeed, we can extend it to an infinite dimensional space;

(i) the notation is more compact.

Similarly a vector v with components (vy, Vy, vz) can be represented by vy, where m takes the
values 1,2 and 3. In this notation, v; =v,, v, =v, and v3=v,. The components (v ,V,,V,)will

y 3 _Z X y z
be denoted by (v, V,, V5), the unit vectors (i, j> k) and (i, J» l;) will be denoted by (§ 198508 3)
and (5 s 5 5 § 3) respectively. The coordinates (x, y, z) and (X, Y, z) will be relabelled as
(x1, x2, x3) and (i 1x2,x 3) respectively. Note that the indices in (x1, x2, x3) are written as
superscripts and the reason for this notation will be explained later. Thus x2 is not x squared and
we shall denote x2 squared as (x2)? with a bracket round x2.

The three equations given in matrix form in Equation (4.6-4) can now be written as

3

Vm = 2 Vo Lom (4.6-6a)
n=1

=V, lom (4.6-6b)
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In Equation (4.6-6a), the index m is known as the free index and it can take any of its possible
values. In our case, m can take the values of 1, 2 or 3. Once a value of m is chosen, we must apply
the same value to m wherever m occurs. Thus the three equations represented by Equation (4.6-6a)
are obtained by assigning the value of m= 1,2 and 3 in turn. The index n is called the dummy
(repeated) index and the right side of Equation (4.6-6a) is a summation over all the possible values of
n as indicated by the X sign. The summation sign occurs so frequently that it is useful to adopt a
convention, known as the Einstein summation convention. According to this convention,
whenever an index occurs twice and twice only in an expression it implies summation over all the
possible values of that index, unless stated otherwise. Thus in Equation (4.6-6b), the index n is a
dummy index and the expression on the right side of Equation (4.6-6b) implies summation over all
possible values of n. Since n is a dummy suffix, we can replace it by other letter, p say, and
Equation (4.6-6b) can equally well be written as

Vo, = Vp Epm (4.6-7)
The right side of Equation (4.6-7) is a summation over all the possible values of p, which is the same
as the summation over all the possible values of n as implied by Equation (4.6-6b). To obey the
summation convention, we should not replace the dummy index n (or p) by the free index m.
Similarly the free index m in Equation (4.6-7) can be replaced by any other letter except n (or p).

The components (v, V,, V3) can be expressed in terms of (v, v,, v3) by inverting Equation
(4.6-7), making use of the properties of /pm, or by repeating the process used in obtaining Equation
(4.6-7). We shall adopt the second procedure to demonstrate the elegance and conciseness of the
summation convention. Equations (4.6-1a,b) can be written as

v (4.6-1a,b)

v=v_ 8 =V 8,

Forming the dot product with 6 _ (we cannot use 8 n OF 8 1 due to the summation convention), we

obtain

VO me8,=9,8,°8, (4.6-8)
Since the (i 1x2x 3) coordinate system is an orthonormal coordinate system

8 ,.*8,. =58, (4.6-9)
where Op is the Kronecker delta and is equal to 1 if n=r, andisequalto O if n#r.
From the definition of /,,, Equations (4.6-5a,b), we have

S me 8, =t (4.6-10)
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Note that the first index in /ry,, whichis r, is associated with 8 . and the second index, m, is
associated with § ;, of the unbarred coordinate system.

Substituting Equations (4.6-9, 10) into Equation (4.6-8), we obtain

b v. =V_0 (4.6-11a)

rm m n -nr

=V (4.6-11b)

r

On summing the right side of Equation (4.6-11a) for all possible values of n, we find, due to the
definition of &y, that the only surviving termis v, .

2, X 3) relative to the

If P is any point in space, and the coordinates of P are (x!, x2, x3) and (i 1 x
O x!x2x3 and OX 1 X 2X 3 coordinate systems respectively, then the components of the vector
position OP (=r) will transform from the barred to the unbarred system or vice-versa, according to

Equations (4.6-7, 11b). That is to say

x™ = xP me (4.6-12a)

¢ x™ =xT (4.6-12b)

rm

Here we have freely written the indices as superscripts and subscripts. Although this is permissible in
our present coordinate transformation, it is not generally permissible to do so in a general coordinate
transformation, as we shall discuss in the next section.

Because the direction cosines £ are constants, the transformation, as defined by Equations

(4.6-12a,b), from Ox1x2x3 to OX 13X 2% 3 is a linear transformation. Further we note from
Equation (4.6-12b) that

ot
rm axm

(4.6-13a)

Note that £~ can also be obtained via Equation (4.6-12a) by replacing the dummy index p by r, to
yield
m
0 = 9% (4.6-13b)

mo9x T

Equations (4.6-13a, b) imply that

ox T’ _ aox™m
oxm ox T’

(4.6-13¢)
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This is only true in the case of a Cartesian transformation.
Substituting Equations (4.6-13a, b) into Equation (4.6-11b), we obtain

ax™
oxt "
ox '

oxm ™

<
]

(4.6-14a,b)

Equations (4.6-14a, b) describe two types of transformation laws. Components that transform
according to Equation (4.6-14a) are called covariant components (v_) and the indices are written
as subscripts; components that transform according to Equation (4.6-14b) are known as
contravariant components and the indices are written as superscripts. Thus in proper tensor
notation, Equation (4.6-14b) should be written as
x r
vr=9%" im (4.6-15)
ax™

Note the symmetry in the notation. In Equation (4.6-14a), m is a dummy index, it occurs once as a
. .oox™ . gx™m . .
superscript in %; (in the expression —aT; we regard m as a superscript and r as a subscript) and

X X

once as a subscript in vy,. We can consider them as “cancelling” each other. On the right side, we are
left with a subscript r and on the left side we also have only a subscript r. The superscript m is
associated with O x! x2x3 and the subscript r with Ox ! X 2x 3. Similarly in Equation (4.6-15), the
index m “cancels” and we have the superscript r on both sides of the equation. Thus in a general
coordinate transformation, we need to distinguish between covariant and contravariant components.
But for Cartesian components, both laws of transformation are equivalent [Equations (4.6-14a, b)] and
thus there is no need to make a distinction between subscripts (covariant components) and superscripts
(contravariant components).

General Curvilinear Coordinate Systems

The rectangular Cartestan coordinate system is not always the most convenient coordinate system to
use in solving problems. The laminar flow of a fluid in a circular pipe is solved using a cylindrical
polar coordinate system. The velocity is then a function of the radial position r only and not of two
variables x1 and x2. Similarly the spherical polar coordinate system is chosen for solving flow past a
sphere. The choice of coordinate system depends on the geometry of the problem.

We now consider a general curvilinear coordinate system (q!, g2, g3) as shown in Figure 4.6-2.
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FIGURE 4.6-2 Generalized coordinate system

This coordinate system is related to the rectangular Cartesian coordinate system (x!, x2, x3) by

x! = x! (¢!, @ ¢ (4.6-16a)
Xz = X2 (ql, q2’ q3) (46'16b)
x3 = x3(ql, 4% ¢3) (4.6-16¢)

or in concise notation
xm = xm (gn) (4.6-17)

We assume that the transformation from (x1, x2, x3) to (q!, q2, q3) is one-to-one and it can be
inverted as

qr = q° (x™) (4.6-18)

The base vectors 9 p, of the orthonormal coordinate system can be defined as being tangent to the
coordinate axes x™. Likewise, we define a set of base vectors g of the generalized curvilinear

coordinate system as being tangent to the coordinate axes q™, as illustrated in Figure 4.6-3. The
vector connecting the origin to point P is r.
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FIGURE 4.6-3 Generalized coordinate system and base vectors

The base vectors g . are given by

o _ oxP

Em = 3gm = 3qm Ov (4.6-19a,b)

Base vectors defined as tangents to coordinate curves are covariant base vectors.

The base vectors 8 ;, can also be considered as being normal to the planes x™ = constant. For
example the base vector 83 is normal to the surface x3 = constant, that is to say, it 1s parallel to the
x3-axis. In the particular case of the rectangular Cartesian coordinate system, the tangent and the
normal coincide, which explains why Equation (4.6-13c) is valid. This is not generally the case. Base
vectors defined as normal to coordinate surfaces qM" = constant are contravariant base vectors
and are denoted by g" as illustrated in Figure 4.6-3. They are given by Equation (4.3-55) and, in the

present notation, they are written as

n
gh =Vq" = gradq" = %‘17 S, (4.6-20a,b,c)
X

Note that both g ,, and g" are not necessarily unit vectors.

Example 4.6-1. Obtain the covariant and contravariant base vectors for the spherical polar
coordinate system.
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The transformation from the rectangular Cartesian coordinate system (x1, x2, x3) to the spherical polar
coordinates system (r, 0, ¢) is

x1 = r sin 6 cos 0, x2 =r sin O sin O, x3=rcos® (4.6-21a,b,c)
(In our notation, gl =1, q2=0, ¢3 =0).
The covariant base vectors are given by Equation (4.6-19b)

_ ox1 5 +ax2 5 ox3

Er or — 17 or "2+—§—§3 (4.6-22a)
= sinBcos ¢ &, +sinBsind §,+cosO J, (4.6-22b)

1 2 3
§e=%—§1+%§2+% 8, (4.6-22¢)
=rcosBcosdp 8,+rcosOsindpd,-rsin0d, (4.6-22d)

1 2 0 3
g =%L¢§1+%L¢§2+_a% 5 (4.6-22¢)
=—rsin®sing §,;+rsinBcospd, (4.6-22)

To obtain the contravariant base vectors g" we have to invert Equations (4.6-21a, b, ¢). We then

obtain
r = \/(xl)z + (x2)2 +(x3)2 (4.6-23a)
2 2
0 = arc tan \/ @(*3—()’;2)—) (4.6-23b)
X
5
¢ = arctan|— (4.6-23¢)
x 1

We calculate gn from Equation (4.6-20c)

gh = G or 8, + or 8, (4.6-24a)

ox! ox2 ox3

= sin@cos$ &, +sinBsindpd,+cos09, (4.6-24b)
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g0 =9 5 , 99 5 905 (4.6-24c)
N ox! ox2 ox3
_ cos ¢rCOS 5 L+ %‘L}‘i@. 8, - Sirlge 3, (4.6-24d)

o - _SnQ 5 L COSO 4 4.6-24

g rsin® ! rsin® 2 ( ?
Note that
g=g, (4.6-25a)
=L g, (4.6-25b)
r

o _ 1
g0 = 1 ¢ (4.6-25¢)
- r2sin%@ ¢

Thus gg, g ¢ are parallel to ge, g ¢ respectively, but they are not generally equal in magnitude.

We now consider the transformation from one generalized coordinate system qm to another
generalized coordinate system q ", where as usual, the indices m and n can take the values 1, 2 and
3.

The relation between these coordinate systems is
qm =q™(q ") (4.6-26)
or g"=q"(qM (4.6-27)

The base vectors will be given by

_ 3
B = aq_im (4.6-28)
~ I
and g" aaq -8,=Vq" (4.6-29a,b)
X

We will now establish the relationship between the components of a vector v in the two generalized

curvilinear coordinate systems q™ and q . Any vector v may be written as

E:vmgm: R

(4.6-30a,b)

log|

n
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Since in the general case, covariant and contravariant base vectors are different, one has to pay special
attention to the position of the indices. As far as the summation convention is concerned, repeated
indices should appear as subscript-superscript pairs.

In the general case, we can no longer take dot products, as in Equation (4.6-8), to establish the relation

between components v™ and v ™. General coordinate systems are not necessarily orthogonal and
g 1° g, isnot necessarily zero.

Those relationships are obtained via the definitions [Equations (4.6-19, 20)] and the chain rule, as

follows
~ N
g =t % (4.6-31a)
= aq" oq™
— dqn
gn ajq‘; (4.6-31b)
Substitution in Equation (4.6-30a, b) yields
oqn _ —n —
v =vm 8—;1; g,=V"%, (4.6-32a,b)
It now follows that
q I
gnz 90 om (4.6-33)

aq™

Components of vectors which transform according to Equation (4.6-33) are contravariant
components. See also Equation (4.6-15).

Example 4.6-2. Obtain the law of transformation of the velocity components vi.

The velocity components v™, inthe q™ coordinate system, are defined as

m

vm = fm 24C (4.6-342)
At—o At

_ 9q™
== (4.6-34b)
On transforming to the q 3 coordinate system, the components v § are defined as

-~ S

vS = lim 29 (4.6-35a)

At—o At
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9%

3 (4.6-35b)

According to the chain rule
oq S

AqS=
a°= 5gm

Aq™ (4.6-36)

Substituting Equation (4.6-36) into (4.6-35a), we obtain

S = lim dq % Agq™

= (4.6-37a)
At—o ggm At

v

= 9% m (4.6-37b)
aq™

Thus the components v $ transform as contravariant components.
®

We further note from Equation (4.6-36) that the components Aq™ also transform as contravariant
components. Although the coordinates g™ are not components of a vector, Aq™ are contravariant
components and the indices are written as superscripts. The transformation from g™ to @ " is
arbitrary, as can be seen from Equation (4.6-26, 27), but we still write the indices as superscripts
because AgM are contravariant components.

In Equations (4.6-30a, b), we have expressed the vector v in terms of the covariant base vectors
g m- We could equally have expressed v in terms of the contravariant base vectors g”. That is

n (4.6-38)

= m_vy
Y=Vm8 =V,

foaf

The relation between g " and g ™ can be deduced, using the chain rule, as follows

gm=Vqm (4.6-39)
aq™ o —
= a% -V gn (4.6-40a)
m
- Zfl_ ~ g (4.6-40D)
i ©

Substituting Equation (4.6-40b) into Equation (4.6-38), we obtain

aq™
og"

vhogh=v g" (4.6-41)
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We then deduce
m
Vn = %%'H Vo (4.6-42)

Components of vectors which transform according to Equation (4.6-42) are known as covariant
components [see, also Equation (4.6-14a)].

Example 4.6-3. Show that the components of V ¢, where ¢ is a scalar function of ql, g2 and
g3, transform as covariant components of a vector.

Let
u=Vo (4.6-43a)

then we define uy, as

u_ = gqi (4.6-43b)

In the (q 13249 3) coordinate system, the components u_ are given by

d
q'n

U.n=

(4.6-44)

QU

Applying the chain rule to Equation (4.6-44), we have

= - 99 dq™

D 3™ aq (4.6-452)

a m
- a%n u (4.6-45b)

Thus the components u, transform as covariant components.

Tensors of Arbitrary Order

So far we have considered only scalars and vectors. A scalar is a tensor of order zero and its
numerical value at a point remains invariant when the coordinate system is transformed. A vector has
both a magnitude and a direction and its components transform according to Equations (4.6-33, 42)
when the coordinate system is transformed. One index is sufficient to specify its components. It is a
tensor of order one. In Example 4.6-3, we have seen that V @ is a vector but @ is a scalar. Thus
the quantity V v is a tensor of order two and is known as the velocity gradient. In fluid mechanics,
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the rate of deformation tensor, which is a tensor of order two, is equal to the sum of the velocity
gradient and its transpose. The stress tensor, which is another tensor of order two, maps linearly the
surface force on the surface of a deformable continuum to the unit normal on the surface. Thus a
tensor of order two transforms a vector u linearly to another vector v. This can be written as

Um = Typ VR (4.6-46)

In Equation (4.6-46), we have adopted the summation convention by writing the dummy index as a
subscript-superscript pair. The components of u are written as covariant components and the

components of v are written in contravariant form. The quantities Tp,, are the components of a
second order tensor which we denote as T. Ina three-dimensional space, m and n can take the

values 1,2 and 3 and T has nine components. We need two indices to specify the components of a

second order tensor.
In the (q 1324 3) coordinate system, Equation (4.6-46) becomes
U, =T, V" (4.6-47)

Using Equations (4.6-33, 42), Equation (4.6-47) becomes

o qr _ a q n
aq m ur = Tmn ﬁ Vs (4'6-48)
N . . aqm .
Multiplying both sides of Equation (4.6-48) by Eyra we obtain
q
" m r _ ~ m A n
097 99" | _ g 9947 99" (4.6-49)
dqP oq™ dqP dq*
T r ~ M
Note that 9q can, according to the chain rule, be written as g_-‘%— aq_ One recognizes the
aqP aq™ dqP
T
quantity gqp (in the unbarred coordinate system) as representing the Kronecker delta. Similarly,
aq § S . . a qi . . 1
. would represent 6, while a quantity such as s not in general & ,. It thus follows that
aq q
F 994M 99" o _ s, =
Tmn 'a?)_— 'a—c‘l—s— vS = 8p ur = up (46-503,b)

In Equation (4.6-46), we are at liberty to change the free index m to p and the dummy index n to
s, we then obtain

up = Tps VS (4.6‘51)
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Comparing Equations (4.6-50b, 51), we deduce

_ 9q™dq" =
ps = éq—P P Tun (4.6-52)

Interchanging (q1, q2, q3) and (q 1327 3) in Equation (4.6-52), it becomes

. m n
Tps = ——g(_lp —325 T (4.6-53)
qP 9q

Components that transform according to Equation (4.6-52) are known as covariant components.
Note the similarity to Equation (4.6-42).

Contravariant components T ™" transform according to

N —m 350
Tmn o 997937 s (4.6-54)
9q" 9q°
For second order tensors, in addition to covariant and contravariant components, we can have mixed
components T ' which transform according to

Tmo 997 96° g (4.6-55)
dq" dq"

Tensors of order higher than two also exist and are frequently used. An example of a tensor of order
three is the permutation tensor, which will be defined in the next section. A tensor that maps linearly a
second order tensor to another second order tensor is a tensor of order four. The constitutive
equation of a linear elastic material may be written as

Tj = Cijke ¥ < (4.6-56)

where Tjj, vk¢ and ¢ jk¢ are the stress tensor, the infinitesimal strain tensor and the elastic tensor
respectively. The components cjjk¢ need four indices and are the components of a fourth order

tensor.

The law of transformation for a fourth order tensor can be obtained by generalizing Equations (4.6-53
to 55) as follows
_ %' 3g) og* o7’ &
prSt aqp aqr aqs aqt ljkf

(4.6-572)
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P t .
st 98 9¢ dgs 8111 T ijke (4.6-57b)
aq' ag’ ag® 9q

P 3gi dak dal i
_ 99" 9q) dgk dg° e (4.6-57¢)
aq! 94" 99¢° aq'

TP

rst —

A second order tensor may also be defined as the juxtaposition of two vectors u and yv. The second
order tensor T may be defined as the dyadic product of vectors u and v.

=uv=u®y (4.6-58a,b)

I~

Equation (4.6-58) can also be written as

T=ug;v] gi=un g My gt (4.6-59a,b)
=ulvig,g;=u,vygmgn (4.6-59¢,d)
= TU g£i8j= Ty g™ g" (4.6-59¢,f)

A second order tensor T is also known as a dyad and the notation adopted in Equations (4.6-59a

to f) is called the dyadic notation. The juxtaposition of the two vectors u and v is also known as the
outer product of the two vectors. The commutative law does nothold and g, g j isin general

not equal to g i &i The component Tj; is not necessarily equal to the component Tj;. If they are
equal, T is a symmetric tensor. Tensors of higher order can likewise be defined.

Metric and Permutation Tensors

Equation (4.6-19a) defines the covariant base vector g ... If P and Q are two neighboring points
with vector positions r and r +dr with coordinates (qi) and (q! + dqi) respectively, then the square

of the distance, ds2, between P and Q is

ds2 = dredr (4.6-60a)

= 0L O gam ggn (4.6-60b)
oqg™ oJq"

=8m°8, dg™ dq" (4.6-60c)

= gmn dg™ dq" (4.6-60d)
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The second order tensor gmp is known as the metric tensor and in general is a function of (qi). In
an orthonormal coordinate system, the metric tensor simplifies to the Kronecker delta. In an
orthogonal coordinate system

=0 if m#n
_ (4.6-61a,b)
Smn #0 if m=n
Since the dot product is commutative, gmp 1S symmetric.
The dual (conjugate or associate) of gmy, which is denoted by g is defined as
g =g -g (4.6-62a)
=Vq' -V (4.6-62b)
From Equation (4.6-19b), we have
g, 8. = 9x" o, 8_xé_ 3 (4.6-63a)
2m 2] aqm - P aqj =1 .
4
LA (4.6-63b)
aqm an P
P p
o oxP oxP (4.6-63¢)
g™ 9g

Equation (4.6-63b) shows that the components of the metric tensor gpmj transform as covariant
components, hence the subscript notation.

Starting from Equation (4.6-20c), we can deduce an expression for gi? in terms of (x1) as follows

aq"h

gleg' = ™, By S50 (4.6-642)
_ 99 99" ¢ o (4.6-64b)

ox% Ox'
_9¢’ dq” (4.6-64¢)
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It can be seen from Equation (4.6-64b) that gi® components transform as contravariant components.
The relationship between gmj and gin can be established by combining Equations (4.6-63c, 64c) and
the result is

oxP oxP E)LJ oq"

gl = (4.6-65a)
Smj 8 dq™ 9ql oxT ox'

= 9xP 0xP dq" (4.6-65b)
oq™ ox' oxrf

_ dxP dq"

i~ 8, (4.6-65¢)

_ 9x" dq” (4.6-65d)
oq™  ox!

=8, (4.6-65¢)

In Equation (4.6-65¢), we have written the Kronecker delta as a mixed tensor so as to conform to the
convention that an index appearing as a subscript (superscript) on one side of the equation should also
appear as a subscript (superscript) on the other side of the equation. The fundamental reason for
writing the Kronecker delta as a mixed tensor is because it transforms as a mixed second order tensor.
The convention is framed so as to be compatible with the rules of transformation.

The permutation tensor is an example of a third order tensor which in an orthonormal coordinate
system is denoted by ejjk, and is defined as

0, if any two indices are equal
Cjk = 1, if the indices 1, 2, 3 appear in the clockwise direction (4.6-66a,b,c)

-1, if the indices 1, 2, 3 appear in the anticlockwise direction

Thus, for example,

€112 = €20 = 0 (4.6-67a,b)
€123 = €312 = 1 (4.6-67¢,d)
€331 = €313 =—1 (4.6-67e,f)

Let w be the vector product of two vectors u and v. Then in an orthonormal coordinate system, w;
is given by

Wi = Gk Vi (4.6-68)
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If Q_ is a (3% 3) matrix, with elements djj, then the determinant of D can be written as

We extend the definition of the permutation tensor to a general curvilinear coordinate system and we
denote it by €, .. We put a bar over the components of the vectors in the present coordinate system,

so as to avoid confusion with the Cartesian components. Thus w, is expressed in a general barred
coordinate system as

W, = gmyn (4.6-70)

8Emn

Transforming (Wg, u™ and Vn) to the orthonormal coordinate system using Equations (4.6-33, 42),
identifying the coordinates q™ as x™ and q " as g0, Equation (4.6-70) becomes

T m n
i—)—x—w—s 9q™ usaivt

3q’ r = Sfmn §s P (4.6-71a)

m n
= ¢, 9q™ 99" s\t (4.6-71b)

mn axs axt

o : . dq? .
Multiplying both sides of Equation (4.6-71b) by PR we obtain
X
£ T £ m n

9q° ox’ wl = ¢ 99" dq™ dq us vt (4.6-72)

axP 3qf ™ 9xP 3xS yyt

Using the chain rule on the left side of the equation and noting that in an orthonormal coordinate
system, we do not distinguish between covariant and contravariant components, Equation (4.6-72)
becomes

_ dq’ 9q™ oq™
Wy = €gmn P Ix® oyl s Vi (4.6-73a)
= €pst Us Vi (4.6-73b)
From Equations (4.6-73a, b), we deduce that
_ dq’ 9g™m dq”
epst - Efmn axp axs axt (4.6‘74)

which is the law of transformation of covariant components. Alternatively €, = may be written as

8[rnn = v_g— efmn (46‘75)
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where g is the determinant of the metric tensor gmpn. The contravariant form of the permutation
tensor is

elik = Tlg_ Ciik (4.6-76)

Example 4.6-4. Calculate the metric tensor gjj, its dual g8 and its determinant g for the
spherical polar coordinate system.

The base vectors have been obtained in Example 4.6-1.

The components of the metric tensor are given by

By = 8,°8; =1 (4.6-77a,b)
oo = £0°809 T r2 (4.6-77c,d)
809 = B¢y = r2sin?0 (4.6-T7¢,f)

gl = glegl =1 (4.6-78a,b)

gee - g9.56 - Lz (4.6-78c,d)
r

00 . =1 4.6-78e,

& S r2sin2 @ ( Y

The determinant g is given by

g =r1r4sin20 (4.6-79)

Covariant, Contravariant and Physical Components

It has been noted that the covariant and contravariant base vectors do not in general have the same
dimensions and it is not surprising that the covariant and contravariant components of a vector also do
not have the same dimensions. Via the metric tensor it is possible to establish a relationship between
these two types of components and this is done as follows

v=v, gt=vlg, (4.6-80a,b)

m

Forming the dot product with g ., we have
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Vm 8T g =Vig, g, (4.6-81a)
v, o = vlg (4.6-81b)
Vr = gnr Vn (4.6‘810)

Equation (4.6-81c) shows the transformation from contravariant components to covariant components.
Similarly for higher order tensors we have

Trs = gnr gms T (4.6-82a)
T = ghr gns Ty (4.6-82b)
The = g7 g™ g gqr Thg (4.6-82¢)

In a space in which a metric is defined, it is possible to transform covariant components to
contravariant components and vice versa. This process is known as lowering and raising
indices. It was pointed out in Example 4.6-1 that g = and gg do not have the same magnitude and
they have different dimensions. This makes it necessary to define the so called physical components.
The physical components of a vector are expressed in terms of normalized base vectors. The
normalized covariant base vectors are given by

g En _ &n
=M Ign! V&nn

(4.6-83a,b)

Note that in Equations (4.6-83a, b) there is no summation and the index n is contained in brackets to
designate physical components. A vector v may be written as

v=vilg = V) & m) (4.6-84a,b)
Vin) 8
(n)& n
= (4.6-84c¢)
~N&nn
Combining Equations (4.6-84a, c), noting that m is a dummy index, yields
v
Vo —("L) g =0 (4.6-85)
( NEmn/
Since the vectors g . are base vectors and are linearly independent, Equation (4.6-85) implies that for
each n,
v
Vi = (n) (4.6-86a)

V&

nn
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or Vi) = VE&m vh (4.6-86b)

That is to say, the physical components v(y) can be obtained via the metric tensor. Note that in
Equation (4.6-86a, b) there is no summation over n. The index n occurs three times!

The contravariant component v can be written as

vl = ghl vy, (4.6-87)
Substituting Equation (4.6-87) into Equation (4.6-86b), we obtain

Yy = VEm 8™ Vi (4.6-88)
In an orthogonal coordinate system, combining Equations (4.6-61a, b, 88), we obtain

Jng Vo = Vi (4.6-89)

Similarly the physical components of higher order tensors are defined. For an orthogonal coordinate
system we have

Ty = Vemm Ve T (4.6-902)
Vg g T (4.6-90b)
= Vg g TE (4.6-90¢)

So far, we have defined the physical components, in terms of normalized covariant base vectors. We
could equally have chosen to define physical components via normalized contravariant components. In
the framework of an orthogonal coordinate system, both are identical. In the case of a non-orthogonal
coordinate system, they may not be identical since Equation (4.6-89) could not be obtained from
Equation (4.6-88). Indeed, for a non-orthogonal system, g™ in Equation (4.6-88) represents three
non-zero components for each value of n. In Equation (4.6-89), there is no summation over n.

Example 4.6-5. Obtain the contravariant, covariant and physical components of the velocity vector
v of a particle in the spherical polar coordinate system.

oq™

In Example 4.6-2, we have shown that 'S transforms as contravariant components. The
contravariant components of v are
vi=4dr -} (4.6-91a,b)
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8 _do _ q 4.6-91c.d
v—t—G (4.6-91c,d)
do .
¢ _ BY _ 4.6-91e,f)
A = ¢ ( e

Using Equation (4.6-81c), we have

vo=g V=1 (4.6-92a,b)
vg = ggg Vv = 1260 (4.6-92¢,d)
Vo = 2go V¥ = 2lsin?6) § (4.6-92¢.f)

The physical components are given by Equation (4.6-86b)

Vi) = Ve Vi =i (4.6-93a,b)
Ve = Vego v® = 16 (4.6-93¢,d)
Vo) = V8so v® = r(sin0) § (4.6-93¢,f)

Example 4.6-6. Calculate the covariant, contravariant and physical components of V. f in the
spherical polar coordinate system.

L)

In Example 4.6-3, we have shown that é—q—nT is a covariant component. If we denote V f by u, then
u, = % (4.6-94a)
ug = % (4.6-94b)
uy = % (4.6-94c¢)

The contravariant components are

. of

uf = gfu = ™ (4.6-95a,b)
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0 = o060, _ 1 of 4.6-95¢,d
of
b =gt y, =1 & (4.6-95¢.f)
¢ r2sin29 99
The physical components are
Ugy = g u = % (4.6-96a,b)
_ /o008 , _ 1 9f
U(e) =Vg Ug = T ’a—e (46-96C,d)
— g0y = 1 9f 4.6-96
Y 7% % ne a0 ( eh)

In Examples 4.6-5 and 6, we note that the r covariant and contravariant components do not have the
same dimension as the 6, ¢ components, whereas the r, & and ¢ physical components, all have
the same dimension. In a space in which a metric tensor exists, a tensor can be represented in terms of
covariant, contravariant or physical components. They can be transformed from one to the other by
the process of raising or lowering the indices, as shown in Examples 4.6-5 and 6.

The laws of physics are independent of the coordinate system and they should be written in tensorial
form. The quantities that enter into the equations expressing these laws should be in covariant or
contravariant components. Each expression in the equation should be a tensor component of the same
kind and order. That is to say, if on the right side of the equation we have a mixed component which
is covariant of order m and contravariant of order n, then on the left side we must also have a mixed
component, covariant of order m and contravariant of order n.

Finally the components of a tensor have to be measured in terms of certain units and it is desirable to
express all the components in terms of the same physical dimensions.

In the rectangular Cartesian coordinate system, there is no distinction between covariant, contravariant
and physical components. The metric tensor is the Kronecker delta. Many authors omit the word
physical when referring to physical components of a tensor. Thus it is safe to assume that unless
otherwise stated, the components of a tensor refer to physical components.
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4.7 COVARIANT DIFFERENTIATION

. . ) ) 0 . .
We have shown in Example 4.6-3 that if ¢ is a scalar function, _(p is a covariant component of a
dq!
e . ovi
vector. We shall presently show that if v! is the contravariant component of a vector v, — does
oql

not transform as tensor.

Consider the transformation given by Equations (4.6-26, 27). On transforming from (q!, 92, ¢3) to
(q L q 2, q 3), we have

. . .
ovi _ 9 (ai V@) d9q° (4.7-1a)
ogf  9q° \og‘ | 9’

v aqi aqs Lot ani Qq—s

= — : . (4.7-1b)
03 * ag¢ ag 0qtaq’ aq)

i

Comparing Equations (4.6-55, 7-1b), we note that ov

- transforms as a mixed component if
0q’

2.1 Jvi
—j—q—g = 0. That is to say, .
d9q ° 9q dq’
given by Equation (4.6-26) is a linear transformation. In general the partial deviative of the
components of a vector is not a tensor. This is because the base vectors are in general not constants,

transforms as a component of a tensor only if the transformation

but functions of (ql, q2, q3) . On taking the partial deviative of a vector there is a contribution from
the base vectors and this has to be taken into account.

From Equation (4.6-30a), we obtain

m 0
N M ym Em (47-2)
g A )
Using Equation (4.6-19b), we find
d 2¢p
Em _ OXP 5 (4.7-3)

g’ g™ agl P

Note that & p» the base vector in the rectangular Cartesian coordinate system is a constant. The
transformation of the covariant base vector 8, to g , is given by Equation (4.6-31b)
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m 2 p 14
§¥=al_-gm+vmax ,gg-_g_[ (4.7-5a)
o) og’ dq™og oxP
[l 2 p ¢
_ 9 gm 9 _Eﬂ}gé (4.7-5b)
Loq’ dq™ag P
WA
= a_\i_ + { 14 . vm gz (47-50)
Laqj m ] =
= [Vg,j] &y (4.7-5d)

In going from Equation (4.7-5a to b), we have replaced the dummy index m in the first term on the
right side of the equation by £, allowing us to factor out g ,. The quantity

/ 2 Y
{ } _ 0P dq’ (4.7-6)

m j|  da™ ag} AP

is known as the Christoffel symbol of the second kind and is also denoted by I“ﬁl i The

covariant derivative of v/ with respect to qi is denoted by v* j or v i From Equations
(4.7-5¢, d), it is given by
¢ 1
vl = LA { } ym (4.7-7)
aq? m

The notation correctly suggests that v/ . represents a mixed component of a second order tensor.

]
/
nyand{f.
aq’ m j

do not transform as tensors.

The Christoffel symbol of the first kind, denoted by [rs, t] (or '), is defined as

/
[1s, t] = g, } (4.7-8)

The covariant derivative of the covariant component v, is given by

v, m '
L= = = Vv 47‘9
Y] dq’ {f i " o :

The covariant derivative of higher order tensors are
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fm ¢
’ doq’ S ) t]
aT s t
T, : = —i& T, - T
{m, j aqj {f J} sm {m ]} £t
{
/ oT ¢ S t V
Ty = —58 { ,}Tm—{ }Tt
oq S ] m j
fm
1 oT ¢ sm my ./t u fm
T, = 4 .}T o+ _}T ) AT
an S ] t g n j
£l
T .= mn f A—— T - T
mn, j aqj S J} mn {m J} m i, J} mu

(4.7-10a)

(4.7-10b)

(4.7-10c)

(4.7-10d)

(4.7-10e)

The covariant derivative of tensors of arbitrary order can be written down by observing the pattern

shown in Equations (4.7-10a to e).

Properties of Christoffel Symbols

@A) The Christoffel symbol of the second kind can be calculated in terms of the metric tensor and is

given by

g g .
{£_>=%_gfk{glk+agmk_gmj

. < Z } {J E }
(i1) 1= 9. (symmetry)
m j m

(iii)  If the coordinate system is orthogonal

{mf j} v

¢ - Lgu 984y
2] 27 g

e\ _ 1 e 98
T 58 r
J ] dq

if £/, m, and j are all different

(4.7-11)

4.7-12)

(4.7-13a)

(4.7-13b)

(4.7-13c¢)
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(iv)

Rules

M)

(ii)

(iii)

4
L7

1 00 98 g i}
78 . (4.7-13d)

In Equations (4.7-13a to d), no summation is implied.

On performing the transformation given by Equations (4.6-26, 27), the Christoffel symbol
transforms as

¢ —{ t — ¢ 2.t
b : r } 0g_09° dq° , 99" 07q" (4.7-14)
m j s 0" oq™ 35 9q' ag™ag!

82qt

dq ™ aq J
transform as a mixed third order tensor. In the rectangular Cartesian coordinate system, all the

Note that only for the linear transformation ( = 0), does the Christoffel symbol

Christoffel symbols are zero, since the metric tensors are constants.

of Covariant Differentiation

The covariant derivative of the sum (or difference) of two tensors is the sum (or difference) of
their covariant derivatives

(T + Sijhk = Tix + Sijk (4.7-15)

The covariant derivative of a dot (or outer) product of two tensors is equal to the sum of the
two terms obtained by the dot (or outer) product of each tensor with the covariant derivative of
the other tensor

V4 — £ V4
(Ti, S j),k =TSk + (Tigl) S (4.7-162)
(TieSmi).k = TieSmjk *+ (Tie,k) Smj (4.7-16b)

Note that in Equation (4.7-16a), ¢ is a dummy index and the dot product of the two second
order tensors is another second order tensor. In Equation (4.7-16b), we have formed the outer
product of two second order tensors resulting in a fourth order tensor.

/m

The metric tensors gij» 8 and the Kronecker delta 8; are constants with respect to

covariant differentiation
gk = gfm’k = Srs’k =0 (4.7-17a,b,c)

A consequence of this result is that the metric and Kronecker tensors can be put outside the
covariant differentiation sign. That is to say
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(iv)

(gij szm),k = (ijm,k) gij (4.7-18)

The covariant derivative of v, with respectto g’ is a second order tensor and we can take its

covariant derivative with respect to gk. Combining Equations (4.7-9, 10b), we obtain

9
ogk

"o gj _{ij}vm} " E:_J Ll L

S
(Vej)x = (Vz,j)—{ ; }Vs,j -{j k}vg,s (4.7-192)

¢k

(4.7-19b)
=82vg_8{m\v_{m}a_vm_{s %—{S}&
akagd  [agk ¢ ] T e jlagk ¢ klagh i k[ ag®
S m S m
* ! k} {s j}vm+ j k} ; }vm = Ve ik (4.7-19c, d)
If we interchange the order of differentiation, Equation (4.7-19¢) becomes
v __82v£ B{m}v{m8vm{s %_{Saﬂ
b an 3qk an { k ™ ek an ¢ jaqk k j aqs
' fsj} {smk} m* ksj} {gms Ym (4.7-19%)

On the right side of Equation (4.7-19¢), m is a dummy index in the third term and it can be

replaced by s, likewise in the fourth term s can be replaced by m. Noting that the
Christoffel symbol is symmetric (Equation 4.7-12), and assuming that v, is continuous with

continuous second partial derivatives, it follows from Equations (4.7-19c, d, e) that

J ( m Jd (m S m S m
Vo —Vpi: = |— - + - \Y (47—203
A [aqj {f k} ok {e j {e k {s j} ¢ j} {s J " )
= R Vi (4.7-20b)

The left side of Equation (4.7-20b) is a covariant component of a third order tensor. R™ lik is

a mixed fourth order tensor, contravariant of order one and covariant of order three. The dot
product le,jk vm 1S a covariant component of a third order tensor. Thus the terms on both

sides of Equation (4.7-20b) are covariant components of third order tensors. The fourth order
tensor Rmfjk is the Riemann-Christoffel tensor.
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We can interchange the order of covariant differentiation if R™, ik = 0. The Riemann-

Christoffel tensor is a property of the space and is independent of the vector v. In a Euclidean

space, we can always set up a rectangular Cartesian coordinate system and the Christoffel
symbols are zero, consequently the Riemann Christoffel tensor is zero. R’méjk is a fourth

order tensor and transforms according to Equation (4.6-57c) and is thus zero in all coordinate
systems. We conclude that in a Euclidean space, R™ tik is zero and the order of covariant

differentiation is not important as long as the components of the tensor have continuous second
partial derivatives.

Example 4.7-1. Calculate the Christoffel symbols of the second kind for the spherical polar
coordinate system (1, 0, 0).

Since the coordinate system is orthogonal, we make use of Equations (4.7-13a to d). The metric
tensors are given by Equations (4.6-77a to f, 78a to f). The only non-zero Christoffel symbols are

<ere =-Lgm g_r (860) = —T (4.7-21a,b)
r _ 1 0 - )

{¢ ¢} = -5 8" 3 (8gg) = —rsin”® (4.7-21c,d)
O 1_1 009

{q)eq)} = - -;— g8 éa-e— (8o¢) = —sinBcos @ (4.7-21g,h)
¢ 1 9 1 )

{(b r} = 5 g¢’¢ a_r (g¢¢) = T (4.7-211,])
¢ 1 )

= L o606 Z_ = -
{q) 9} 2 8% % (g¢¢) cot 6 (4.7-21k,1)

Example 4.7-2. Let vi be the contravariant components of the velocity vector v. Obtain v! ; In

spherical polar coordinate system. That is to say, calculate v’ + v o + vé o Rewrite this

expression in physical components.

From Equations (4.7-7, 21a to 1), we have
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r
o=y { T lym (4.7-22a)
or m r
T
_%L+{f P B I L (4.7-22b)
T rr e r q) I
T
- _g_:_ (4.7-22¢)
6
V'ee=§1—+{e}vr+{6 }Ve+ o vo (4.7-23a)
’ 0 v o 0 0 o 0
0
LA I (4.7-23b)
» T
¢
v¢¢=§i—+{¢}vr+{¢}ve+{¢}v¢ (4.7-242)
’ 00 r o 8 ¢ o 0
0
= QBX— + %vr + cot@v® (4.7-24b)
¢
r 6 0
vr,r + Ve’e + v¢’¢ = aalr + aBLG + Han) + %vr+ cot 6 v® (4.7-25)

Rewriting in physical components, using Equation (4.6-86b), we have

0
vl = Vo, V= %v(e) ., vl = Vo) (4.7-26a,b,c)

rsin 0

Substituting Equations (4.7-26a to c) into Equation (4.7-25), we obtain

2v 0
0 Ly0 -9 9 (1 9 (1 @ , ot
VitV gt v = o V) + 30 (?V«») BT (r sin © V<¢>) A ()

(4.7-27)

We note that on the right side of Equation (4.7-27) every term has the same physical dimension,
namely the reciprocal of time. Equation (4.7-27) expresses the divergence of the velocity vector v
and is a scalar, which is shown in the next example.

Example 4.7-3. Show that v .

; is a scalar.
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The component vi, i is a mixed tensor and will transform according to Equation (4.6-55)
vii= gq_ri 99° v (4.7-28)
q dq’
Setting j =1 and summing
vii= %q—: a-ili, v (4.7-292)
9" oq'
= 8" V' (4.7-29b)
= Vo (4.7-29c¢)
= vi (4.7-29d)

Equations (4.7-29b, c) are obtained by using the usual chain rule, and the property of the Kronecker

delta respectively. The indices i and s are dummy and can