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PREFACE

The objective of this book is to provide a mathematical text at the third year level and
beyond, appropriate for students of engineering and sciences. It is a book of applicable mathematics.
We have avoided the approach of listing only the techniques followed by a few examples, without
explaining why the techniques work. Thus we have provided not only the know how but also the
know why. Equally it is not written as a book of pure mathematics with a list of theorems followed
by their proofs. Our emphasis is to help students develop an understanding of mathematics and its
applications. We have refrained from using cliches like "it is obvious" and "it can be shown", which
might be true only to a mature mathematician. In general, we have been generous in writing down all
the steps in solving the example problems. Contrary to the opinion of the publisher of S. Hawking's
book, A Short History of Time, we believe that, for students, every additional equation in the worked
examples will double the readership.

Many engineering schools offer little mathematics beyond the second year level. This is not a
desirable situation as junior and senior year courses have to be watered-down accordingly. For
graduate work, many students are handicapped by a lack of preparation in mathematics. Practicing
engineers reading the technical literature, are more likely to get stuck because of a lack of
mathematical skills. Language is seldom a problem. Further self-study of mathematics is easier said
than done. It demands not only a good book but also an enormous amount of self-discipline. The
present book is an appropriate one for self-study. We hope to have provided enough motivation,
however we cannot provide the discipline!

The advent of computers does not imply that engineers need less mathematics. On the
contrary, it requires more maturity in mathematics. Mathematical modelling can be more
sophisticated and the degree of realism can be improved by using computers. That is to say,
engineers benefit greatly from more advanced mathematical training. As Von Karman said: "There
is nothing more practical than a good theory". The black box approach to numerical simulation, in
our opinion, should be avoided. Manipulating sophisticated software, written by others, may give the
illusion of doing advanced work, but does not necessarily develop one's creativity in solving real
problems. A careful analysis of the problem should precede any numerical simulation and this
demands mathematical dexterity.

The book contains ten chapters. In Chapter one, we review freshman and sophomore calculus
and ordinary differential equations. Chapter two deals with series solutions of differential equations.
The concept of orthogonal sets of functions, Bessel functions, Legendre polynomials, and the Sturm
Liouville problem are introduced in this chapter. Chapter three covers complex variables: analytic
functions, conformal mapping, and integration by the method of residues. Chapter four is devoted to
vector and tensor calculus. Topics covered include the divergence and Stokes' theorem, covariant
and contravariant components, covariant differentiation, isotropic and objective tensors. Chapters
five and six consider partial differential equations, namely Laplace, wave, diffusion and Schrodinger
equations. Various analytical methods, such as separation of variables, integral transforms, Green's
functions, and similarity solutions are discussed. The next two chapters are devoted to numerical
methods. Chapter seven describes methods of solving algebraic and ordinary differential equations.
Numerical integration and interpolation are also included in this chapter. Chapter eight deals with



id ADVANCED MATHEMATICS

numerical solutions of partial differential equations: both finite difference and finite element
techniques are introduced. Chapter nine considers calculus of variations. The Euler-Lagrange
equations are derived and the transversality and subsidiary conditions are discussed. Finally, Chapter
ten, which is entitled Special Topics, briefly discusses phase space, Hamiltonian mechanics,
probability theory, statistical thermodynamics and Brownian motion.

Each chapter contains several solved problems clarifying the introduced concepts. Some of
the examples are taken from the recent literature and serve to illustrate the applications in various
fields of engineering and science. At the end of each chapter, there are assignment problems labeled
a or b. The ones labeled b are the more difficult ones.

There is more material in this book than can be covered in a one semester course. An
example of a typical undergraduate course could cover Chapter two, parts of Chapters four, five and
six, and Chapter seven.

A list of references is provided at the end of the book. The book is a product of close
collaboration between two mathematicians and an engineer. The engineer has been helpful in
pinpointing the problems engineering students encounter in books written by mathematicians.

We are indebted to many of our former professors, colleagues, and students who indirectly
contributed to this work. Drs. K. Morrison and D. Rodrigue helped with the programming associated
with Chapters seven and eight. Ms. S. Boily deserves our warmest thanks for expertly typing the
bulk of the manuscript several times. We very much appreciate the help and contribution of Drs. D.
Cartin , Q. Ye and their staff at World Scientific.

New Orleans C.F. Chan Man Fong

December 2002 D. De Kee

P.N. Kaloni
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CHAPTER 1

REVIEW OF CALCULUS AND ORDINARY
DIFFERENTIAL EQUATIONS

1.1 FUNCTIONS OF ONE REAL VARIABLE

The search for functional relationships between variables is one of the aims of science. For simplicity,
we shall start by considering two real variables. These variables can be quantified, that is to say, to
each of the two variables we can associate a set of real numbers. The rule which assigns to each real
number of one set a number of the other set is called a function. It is customary to denote a function
by f. Thus if the rule is to square, we write

y = f(x) = x2 (l.l-la,b)

The variable y is known as the dependent variable and x is the independent variable. It is
important not to confuse the function (rule) f with the value f(x) of that function at a point x. A
function does not always need to be expressed as an algebraic expression as in Equation (1.1-1). For
example, the price of a litre of gas is a function of the geographical location of the gas station. It is not
obvious that we can express this function as an algebraic expression. But we can draw up a table
listing the geographical positions of all gas stations and the price charged at each gas station. Each gas
station can be numbered and thus to each number of this set there exists another number in the set of
prices charged at the corresponding gas station. Thus, the definition of a function as given above is
general enough to include most of the functional relationships between two variables encountered in
science and engineering.

The function f might not be applicable (defined) over all real numbers. The set of numbers for which
f is applicable is called the domain of f. Thus if f is extracting the square root of a real number, f
is not applicable to negative numbers. The domain of f in this case is the set of non-negative
numbers. The range of f is the set of values that f can acquire over its domain. Figure 1.1-1
illustrates the concept of domain and range. The function f is said to be even if f (-x) = f (x) and
odd if f(-x) = -f(x). Thus, f(x) = x2 is even since

f(-x) = (-x)2 = x2 = f(x) (l.l-2a,b,c)

while the function f(x) = x3 is odd because

f(-x) = (-x)3 = - x 3 = -f(x) (l.l-3a,b,c)
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A function is periodic and of period T if

f(x + T) = f(x) (1.1-4)

y ;,

RANGE I i \ y = f ( X )
OF f \ I >w

" I " " " •
I L _ j ^

DOMAIN OF f X

FIGURE 1.1-1 Domain and range of a function

An example of a periodic function is sinx and its period is 2K.

A function f is continuous at the point x0 if f(x) tends to the same limit as x tends to x0 from
both sides of x0 and the limit is f(x0). This is expressed as

lim f(x) = f(x0) = lim f(x) (l.l-5a,b)
X—^XQ_J_ X — ^ X Q _

The notation lim means approaching x0 from the right side of x0 (or from above) and lim
x—>x0+ x—>xo_

the limit as x0 is approached from the left (or from below). An alternative equivalent definition of
continuity of f (x) at x = x0 is, given e > 0, there exists a number 8 (which can be a function of
8) such that whenever I x - xol < 8, then

| f (x ) - f (x o ) | <£ (1.1-6)

This is illustrated in Figure 1.1-2.

If the function f (x) is continuous in a closed interval [a, b], it is continuous at every point x in the
interval a < x < b.
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^ o + € y^

ijl
*o-a! i !««*> ^

X

FIGURE 1.1-2 Continuity of a function

1.2 DERIVATIVES

We might be interested not only in the values of a function at various points x but also at its rate of
change. For example, waiting at the corner of "walk and don't walk", one might want to know, not
only the position of a car but also its speed before crossing the road. The average rate of change of
f (x) in an interval [x0 + Ax, x0] is defined as

Af = f (xQ + Ax) - f (x0) ( i 2 i )

Ax Ax

The rate of change of f at x0, which is the derivative of f at x0, is defined as

f ( } = l i m *L = l i m f(xo + Ax)-f(xo) ( i 22ah)

Ax->0 Ax Ax-*O A X

We have assumed that the limit in Equations (1.2-2a,b) exists and f is thus differentiable at x = x0.

The derivative of f with respect to x is also denoted as 4*-.
dx

d2f
The second derivative of f is the derivative of f and is denoted by f" or . Likewise higher

dx2

derivatives can be defined and the nth derivative is written either as f ̂  or .
dxn

Geometrically, f'(x0) is the tangent to the curve f(x) at the point x = x 0 .
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Rules for Differentiation

(i) If y is a function of z and z is a function of x

^ = ^ ^ (chain rule) (1.2-3)
dx dz dx

(ii) If u and v are differentiable functions of x

vdu_ _ u dv
jL(ii) = _ d x _ ^ x ( L 2 . 4 )

(iii) f(uv) = u^v+vdu (1.2-5)
dx dx dx

(iv) d > ) = u d % + n d u d ^ _ v + + ( n ) d ^ u d ^ v + + d % _ y d - 2 " 6 )

dx11 dx11 dx dx""1 " r d x r dxn"r ' " d x n

where ( n ) = &L— , n! [= n (n - 1). . . 1] is the factorial of n.
1 (n-r)!r!

Rule (iv) is known as Leibnitz rule (one of them!).

Mean Value Theorem

If f(x) is continuous in the closed interval a<x<b , and f(x) is differentiable in the open interval
a < x < b, there exists a point c in (a, b), such that

f'(c)-M (1.2-7)
b — a

From Equation (1.2-7), we deduce that if f'(c) = 0 for every c in (a, b), then f is a constant. If
f'(c) > 0 for every c in (a, b), then f(x) is an increasing function, that is to say, as x increases
f(x) increases. Conversely, if f'(c)<0 for every c in(a,b), f(x) is a decreasing function of x.

Cauchy Mean Value Theorem

If f and g are continuous in [a, b] and differentiable in (a, b), there exist a number c in (a, b) such
that

f(b)-f(a) =f '(c) ( 1 2 8 )

g(b)-g(a) g'(c)

If g(x) = x, then Equation (1.2-8) reduces to Equation (1.2-7).
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L'Hopital's Rule

lim f(x) = 0 and lim g(x) = 0, the lim -y-^r is indeterminate. But if the lim —— exists
x->x0 x->x0 x->x0 g(x) x->xo g'(x)

lim ^ = lim I M (1.2-9)
x^x0 g(x) x ^x 0 g'(x)

f'(x) f(n) (x)
If lim ——-1- does not exist but lim — exists for some value of n, Equation (1.2-9) can be

x^x0 g (x) x->x0 g(n) ^
replaced by

to M. = ,ta V®. (1.2.10)
x-^xog(x; x-»xog(n)(x)

ffx)
The same rule applies if the lim f (x) = °° and lim g(x) = °o, the lim ~~- is indeterminate. The

x-»x0 x-^xo x~*xo S(x)

rule holds for x —> °° or x —> -°°. Other indeterminate forms, such as the difference of two
quantities tending to infinity, must first be reduced to one of the indeterminate forms discussed here
before applying the rule.

Taylor's Theorem

If f(x) is continuous and differentiable

f (x) = f (x0) + (x - x0) f'(x0) + (X "2XQ) f "(X0) + ... + (X " J ° ) n f(n) (x0) + Rn (1.2-11)

where Rn is the remainder term.

There are various ways of expressing the remainder term Rn. The simplest one is probably

Lagrange's expression which may be written as

( \n+^
R ° - (n+1)! f ( n + 1 ) [*o + 6 ( * - x o ) ] 0-2-12)

where 0 < 6 < 1.

Rn is the result of a summation of the remaining terms, and represents the error made by truncating
the series at the n* term. Note that we are expanding about a point x0 which belongs to an interval
(x0, x). Therefore, the remainder term for each point x in the interval will generally be different. The
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maximum truncation error, associated with the evaluation of a function, at different values of x within
the considered interval, determines the value of 0 in Equation (1.2-12).

In Equation (1.2-11), we have expanded f(x) about the point xQ, and if x0 is the origin, we are
dealing with Maclaurin series. The Taylor series expansion is widely used as a method of
approximating a function by a polynomial.

Maximum and Minimum

We might need to know the extreme (maximum or minimum) values of a function and this can be
obtained by finding the derivatives of the function. Thus, if the function f has an extremum at xQ

Af = f(xo + h ) - f (x o ) (1.2-13)

must have the same sign irrespective of the sign of h.

If Af is positive, f has a minimum at x0 and if Af is negative, f has a maximum at x0. Figure

1.2-1 defines such extrema. From Equation (1.2-11), we see that Equation (1.2-13) can be written as

h2
Af = hf(xo) + ̂ - f"(x0) + ... (1.2-14)

where h = x - x0 .

y <

MAX.

y = f ( x ) /\ j |̂

A f \ ^ l j j I

h h h h x

FIGURE 1.2-1 Extremum of a function f
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From Equation (1.2-14) we deduce that the condition for f to have an extremum at xQ is

f'(xo)=O (1.2-15)

The conditions for f to have a maximum or minimum at x = x0 are

f"(xo)>O, fhasaminimum (1.2-16)

f"(xo)<O, f hasamaximum (1.2-17)

But if f "(xo) = 0> we cannot deduce that f has an extreme value at xQ. We need to consider higher
derivatives until we obtain a f(n)(x0) which is non-zero. Thus, the general criteria for extreme values
are

if f(x) is defined in [a,b] and x0 is an interior point of (a,b), and if f ^ ( x 0 )
exists and is non-zero, but f'(x0) = f"(x0) = ... = f ̂ ~^ (x0) = 0, f (x) has an
extreme value at x0 if n is even. If f(n)(x0)<0, f has a maximum at x = xo

and if f (n) (x0) > 0, f has a minimum at x = xQ. If n is odd, f(x) does not
have an extreme value at x = x 0 .

Example 1.2-1. Find the extreme values of f (x) = x3, if they exist.

On differentiating, we have

f'(x) = 3x2, f"(x) = 6x, f'"(x) = 6 (1.2-18a,b,c)

From Equation (1.2-18 a, b), we see that

f(O) = f"(O) = O (1.2-19a,b)

Thus we need to consider higher derivatives and the next one f"'(0) happens to be non-zero. From
the criteria given earlier we deduce that f does not have an extreme value at the origin. The origin is
neither a maximum nor a minimum, it is a point of inflection, as can be seen by drawing the curve
given by f (x) = x3.

1.3 INTEGRALS

An integral can be considered to be an antiderivative. Thus, if we know that the derivative of F (x)

is f(x) [=F'(x)], an integral of f(x) is F(x). For example, the derivative of ^-x3 is x2, and an

integral of x2 is -̂ x3. Note that we have used the article an. Since the derivative of a constant is

zero, F (x) is arbitrary to the extent of an arbitrary constant. The integral we have defined is known

as an indefinite integral which is usually denoted by the symbol I . Thus, we write
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F(x)= I f(x)dx= I f(t)dt (1.3-la,b)

where a is an arbitrary constant of integration. Equations (1.3-la,b) define a function of x in terms
of a dummy variable t.

The integral may be interpreted as the area enclosed by the curve y = f(x) and the x-axis. For the area
to be definite, we need to fix the ordinates, such as, x = a and x = b. Thus, if A is the area
bounded by the curve y = f(x), the x-axis and the ordinates x = a, x = b

A= f(x)dx (1.3-2)
/a

Equation (1.3-2) defines a definite integral; the limits x = a and x = b are given. We can convert
the indefinite integral in Equation (1.3-1) to a definite integral if x = b. In this case, we usually write

F(b)-F(a) = f(x)dx = [F(x)Ja (1.3-3a,b)
J a

Thus to evaluate a definite integral analytically, we first need to find an indefinite integral. There are
tables of integrals, where the indefinite integrals of standard functions are given. Below we list some
of the general methods of integration.

Integration by Parts

If f and g are functions of x

£-(fg) = fg + fg' (1.3-4)

It follows from Equation (1.3-4) that

| f |dx = [fg]-|f gdx (1.3-5)

Example 1.3-1. Integrate I eax sin bx dx.

We integrate by parts, identifying from Equation (1.3-5) eax as f(x) and sinbx as -§- . Carrying
Q.X

out the integration, we have
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I e^ sin bx dx = [ "eaX^OSbx + J I eax cos bx dx (1.3-6)

On integrating I eax cos bx dx by parts again, we obtain

I e^cosbxdx = \~- sinbx - ^ I ea xsinbxdx (1.3-7)

Combining Equations (1.3-6, 7) yields

1 + — I e^ sin bx dx = - 1 [eax cos bx] + -3- jeax sin bx] (1.3-8)

Hence

(
I e^ sin bx dx = — [a sin bx - b cos bx] (1.3-9)

J a2 + b2

Integration by Substitution

Certain integrals I f(x) dx can be easily evaluated if we substitute x by a function (j) (z) say. Since

x = <|>(z), dx = 4i'(z)dz (1.3-10a,b)

It follows from Equations (1.3-10a,b) that

I f(x) dx = I f [<|)(z)] Q (z) dz (1.3-11)

Example 1.3-2. Integrate I V a 2 - x 2 d x , where a is a constant.

Substitute x by asinz, so that

dx = acoszdz (1.3-12)

I Va2 - x2 dx = I (Va2 - a2 sin2 z ) a cos z dz (1.3-13a)
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= a2 I cos2z dz = y I (cos 2z + 1) dz (1.3-13b,c)

= | - [ i s i n 2 z + z] (1.3-13d)

Returning to the original variable x, we have

z = arcsin(|-) (1.3-14a)

sin2z = 2 sin z cos z = a V 1 ~ ( f ) (1.3-14b,c)

Thus

r 2

I Va2 - x2 dx = §- -*- Va2 - x2 + arc sin (*-) (1.3-15)
J 2 [a2 a

•
In evaluating finite integrals, it is often simpler to express the limits of integration in terms of the new
variable z.

In the method of substitution, the key is to find a substitution such that the integral is reduced to a
standard form.

Integration of Rational Functions

A rational function of x is a function of the form f(x)/g(x), where f(x) and g(x) are polynomials
in x. The rational function can be expressed as a sum of partial fractions and can thus be integrated.

Example 1.3-3. Integrate I 5x + 2 dx.
J x3-8

The function 5x + 2 can be expressed as a sum of partial fractions as follows.
x 3 - 8

5* + 2 = 5x + 2 = _A__ + Bx + C (1.3-16a,b)

x 3 - 8 (x-2)(x2 + 2x + 4) x - 2 x2 + 2x + 4

where A, B and C are constants.

By comparing powers of x, we obtain



REVIEW OF CALCULUS AND ORDINARY DIFFERENTIAL EQUATIONS ]±

A = l , B = - l , C = l (1.3-17a,b,c)

Thus

f 5x+^ dx = f _dx_ + [ d - x ) d x (1.3-18)
J x 3 - 8 J x -2 j x2 + 2x + 4

The integral I " x is standard and
j x Zt

I ^ =*n(x-2) (1.3-19)

The second integral on the right side of Equation (1.3-18) can be evaluated as follows

f (l-x)dx = J (x+l-2)dx = ( (x+l)dx ( 2 I" dx = _ r + 2 I

J x2 + 2x + 4 j x2 + 2x + 4 j x2 + 2x + 4 J (x+l)2 + 3
(1.3-20a,b,c)

To evaluate Ij, we make the following substitution

z = x2 + 2x + 4 , dz = (2x + 2)dx (1.3-21a,b)

( (x+l)dx = 1 [ dj = l i n ( x 2 + 2 x + 4 ) (1.3-22a,b)
J x2 + 2x + 4 2 J Z 2

To evaluate I 2 , we let

(x + 1) = V3~ tan 0 , dx = V3" sec2 9 d9 (1.3-23a,b)

I dx _ [ V3 sec29d6 _ t J3 sec29d9 = i Q ^ arc tan [ x + 1 \
j ( x + l ) 2 + 3 j 3(tan29 + l) j 3 sec29 VI VJ ' VI '

(1.3-24a,b,c,d)

Combining Equations (1.3-19 to 24d), we obtain

I 5x + 2 dx = i n (x - 2) - -̂ i n (x2 + 2x + 4) + -2= arc tan ( ^ l j (1.3-25)
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In the past, considerable efforts were devoted to finding methods to express integrals in closed form
and in terms of elementary functions. Contour integration, in the theory of complex analysis
(Chapter 3) can be used to evaluate real integrals. Currently, a popular approach is to resort to
numerical methods (Chapter 7).

Some Theorems

, b , a

(i) f ( x ) d x = - | f(x)dx (1.3-26)
Ja Jb

r (b r
(ii) I f(x)dx=j f (x)dx+ | f (x) dx (1.3-27)

Ja Ja Jb

2 I f(x)dx, if f(x) is even

f(x)dx= \ (1.3-28a,b)

- a 0, if f(x) is odd

(iv) I f(x)dx= I f(a-x)dx (1.3-29)

JO Jo

(v) First mean value theorem

If M and m are the upper and lower bounds respectively of f(x) in (a,b)

m(b - a) < I f(x) dx < M(b - a) (1.3-3Oa,b)

J a

(vi) Generalized first mean value theorem

Under the conditions on f(x) given in (v), and for g(x)>0 every where in (a, b)

,b , b , b

m g(x)dx < I f (x )g (x )dx<M g(x) dx (1.3-3 la,b)
J a J a J a

The above mean value theorems provide bounds on integrals and can be useful in error analysis.



REVIEW OF CALCULUS AND ORDINARY DIFFERENTIAL EQUATIONS 13.

1.4 FUNCTIONS OF SEVERAL VARIABLES

So far, we have considered functions of one variable only. In science and engineering, we often
encounter one variable which depends on several other independent variables. For example, the
volume of gas depends on the temperature and the pressure. For simplicity, we shall consider
functions of two independent variables x and y. In most cases, the extension to n variables
Xj, x2, ... , xn is obvious.

The dependent variable u is said to be a function of the independent variables x and y if to every
pair of values of (x, y) one can assign a value of u. In this case we write

u = f(x,y) (1.4-1)

The domain of f is the set of values of (x, y) over which f is applicable. The range of f is the set
of values that u may have over the domain of f.

The function f (x, y) is continuous at (x0, y0) if given e > 0, there exists a 8, such that whenever

V ( x - x o ) 2 + (y -y o ) 2 < 5 (1.4-2)

| f (x ,y ) - f (x 0 , y o ) | <£ (1.4-3)

1.5 DERIVATIVES

Since u is a function of two variables x and y, we may calculate the rate of change of u with
respect to x, holding y fixed. This is the partial derivative of u with respect to x and is

denoted by r̂—. Other notations are: ^—, f or uY. Thus
J dx dx x x

df=]im f(x + Ax,y)-f (x ,y) ( 1 5 1 )

ox AX->0 Ax

Similarly, ^— is defined as
dy

9f = l i m f(x,y + Ay)-f(x,y) ( 1 5 2 )

oy Ay-40 Ay

8f
The computation of —̂ is the same as in the case of one independent variable. Here, y is treated as a

constant. Similarly to compute jr-, we consider x to be a constant. Since fx and f are functions

of x and y, their partial derivatives with respect to x and y may exist. They are defined as
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j - ( £ U lim f.(^Ax.y)-f.(x,y)
dx \ dx / AX->0 Ax

a [*) = lm y ^ ± M z i f c y > (1.5.4)
dy \ dx / Ay->0 Ay

The second-order partial derivatives are denoted as

|_(|L]=^Uf (l-5-5a,b)
dx \dx ) 5 x 2 x x

f f|f)=-^-=f (1.5-6a,b)
dy \ dx / dydx ^x

d7(d7)=axay-=fxy (L5"7a'b)

|_f|l)=^l=f (i.5-8a,b)

We note that f means taking the partial derivative of f with respect to x first and then with respect

to y, whereas for f the order of differentiation is reversed. One may wonder if the order of

differentiation is important. If f is continuous then the order is not important. In practice, this is

generally the case and

fxy = fyx (1.5-9)

Likewise higher partial derivatives can be defined and computed. If the partial derivatives are
continuous, then the order of differentiation is not important.

In an xy-coordinate system, the first order partial derivatives fx and f may be regarded as the rate of

change of f along the x and y-axis respectively. We can also define and compute the rate of change

of f along any arbitrary line in the xy-plane. Such a rate of change is known as a directional

derivative and is denoted by 5—, where the vector n is parallel to the line along which we wish to

determine the rate of change. Thus 5— at a point (x0, y0) along a line that makes an angle 0 with

the x-axis is defined as

<*L = Urn f ( X ° + P C0S 6 ' Yo + P Sl" 6 ) ~ f ( X ° ' y o ) (1-5-10)
dn p_>o L P J

(1.5-3)
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where p is the distance of any point on the line from (x0, y0). This situation is illustrated in Figure

1.5-1.

y *

i
i
i

I i ^
x0 x

FIGURE 1.5-1 Directional derivative along a line parallel to n

We can rewrite Equation (1.5-10) as

0
II

9f _ f (xo+pcos6, yo+p sin6)- f(x0, yo+psin9) + f (x0, yo+psin6) - f (x Q , y0)

an p->o L p
(1.5-1 la)

Note that, in the first two terms on the right side of Equation (1.5-1 la), we have kept
y0 + p sin 6 = y} constant.

3f = ] i m f (xQ + p cos 6, y{) - f (xQ, y i ) + f (xQ, y i ) - f (x0, y0) (1 5-llb)
dn p->0 L P J
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This amounts to considering f to be a function of x only in the first two terms. Expanding this

function of x in a Taylor series yields: f(xQ, yj)+ ^—p cos 0. Similarly, one can consider f to be

9f
a function of y only in the last two terms, resulting in: f (xQ, y0) + —̂ p sin 0. We deduce that

f (x0, y!) + ^ p c o s 0 - f ( x o , y2) -,
lim = ^ - c o s 0 (1.5-12a)
p->0 L P J °x

and similarly

f(x0, yo) + ~ p s i n 0 - f ( x o , yo) .
lim ^ = ^ - s i n 0 (1.5-12b)
p->0 L p J dy

Therefore

~ =~ cos0 + ̂  sin0 (1.5-13)
dn dx dy

Thus if fv and fv are known, we can compute ^r-.
A y an

Total Derivatives

We now determine the change in u, Au, when both x and y change simultaneously to x + Ax and
to y + Ay respectively. Then

Au = f (x + Ax, y + Ay) - f (x, y) (1.5-14a)

= f (x + Ax, y + Ay) - f (x, y + Ay) + f (x, y + Ay) - f (x, y) (1.5-14b)

The observations made following Equation (1.5-11) are applicable to Equation (1.5-14b), and on
taking the limits Ax —> 0, Ay —> 0, we obtain

du = df = ^ dx + ̂  dy (1.5-15a,b)
dx dy

The existence of df guarantees the existence of fx and f , but the converse is not true. For df to
exist we require not only the existence of fx and f , but we also require f to be continuous.

The differential df may be regarded as a function of 4 independent variables x, y, dx and dy.
Higher differentials d2f, d3f, ... , dnf can also be defined. Thus
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d 2 f = d(df) = d ( ^ dx) + d ( ^ dy) (1.5-16a,b)

Substituting d by —̂ dx + —̂ dy yields
dx dy

A2* ^ / d f , \ , d [df A , d /df , \ , d (df A\A „ * , ^
d f = T -U—dx dx + ̂ - U - d x dy + ^ - —-dy dx + ^ - ^-dy dy (1.5-16c)

dxldx J dy\dx j J dx\dy Jj dy \ dy J
0 0 0

= — (dx)2 + 2 ^ ^ d x d y + — (dy)2 (1.5-16d)
3x2 d x dy 9y2

It can be shown by induction that

dnf = ̂  (dx)n + f " ) - ^ L _ (dx)11"1 dy + ... + ( n ) -^*- (dx)n-r (dy)r+ ... + ̂ L ( d y ) »
axn I ! / a x ^ ^ y l r ; dxn-rdyr y ay n y '

(1.5-17)

In order to remember Equation (1.5-17), one can rewrite it as

d n f = ( s d x + i H " f (15-18)
In Equation (1.5-18), the right side can be expanded formally as a binomial expansion.

If both x and y are functions of another variable t, then from Equation (1.5-15) we have

*L = 3£dx | £ & (1.5.19)

dt 3x dt dy dt v '
If x and y are functions of another set of independent variables r and s, then

dx = ^ d r + ^ - d s (1.5-20a)
dr ds

dy = ̂ d r + ̂ - d s (1.5-20b)
3r ds

Substituting dx and dy in Equation (1.5-15), we obtain

/ df 8x 8f 3y \ , I df dx df dy \ ,

du =(d7 ar-+d7 ^ ) d r + [dx- a^+d7 i)ds (L5-21)

It follows from Equation (1.5-21) that
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* * * * t | L | l (1.5-22a,b)
dr dr dx dr dy dr

3u = 3f = 3£3x + 3f 3y (15-22cd)
9s ds 3x 3s 3y 3s

Equations (1.5-22a, b, c, d) again express the chain rule.

Example 1.5-1. In rectangular Cartesian coordinates system, f is given by

f=x 2 + y2 (1.5-23)

We change to polar coordinates (r, 9). The transformation equations are

x = rcos0, y = rsin0 (1.5-24a,b)

n , , , 3f , 3f
Calculate —̂ and — .

dr 30

From Equations (1.5-22a, b, c, d), we have

3 f _ 3 f 3x 3f 3y
3r "3x 3 r + 3 y 3r (1.5-25a)

3 f = 3 f 3 x + 3 f 3 y ( 1 5 2 5 b )

30 3x 30 3y 30

Computing the partial derivatives yields

^ = 2 x , ?-=2y (1.5-26a,b)
dx dy

~ = cos 0 , ^ = sin 0 (1.5-26c,d)
dr dr

— = - r sin 0 , ^ = r cos 0 (1.5-26e,f)
30 30

Substituting Equation (1.5-26a to f) into Equations (1.5-25a, b), we obtain

3f
j - = 2x cos 0 + 2y sin 0 = 2r (1.5-27a,b)

— = 2x (-r sin 0) + 2y (r cos 0) = 0 (1.5-27c,d)
30
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Equations (1.5-27a, b, c, d) can be obtained by substituting Equations (1.5-24) into Equation (1.5-23)
and thus f is expressed explicitly as a function of r and 0 and the partial differentiation can be
carried out. In many cases, the substitution can be very complicated.

1.6 IMPLICIT FUNCTIONS

So far we have considered u as an explicit function of x and y [u = f (x, y)]. There are examples
where it is more convenient to express u implicitly as a function of x and y. For example, in
thermodynamics an equation of state which could be given as T = f (P, V) is usually written,
implicitly as

f(P,VT) = 0 (1.6-1)

where P is the pressure, V is the volume and T is the temperature.

The two-parameter Redlich and Kwong (1949) equation is expressed as

P + — [V-nb]-nRT = 0 (1.6-2)

T1 / 2V(V + nb)

where a and b are two parameters, R is the gas constant and n the number of moles.

In theory, we can solve for T in Equation (1.6-2) and express T as a function of P and V. Then
rfT

by partial differentiation, we can obtain ^- and other partial derivatives. But as can be seen from

Equation (1.6-2) it is not easy to solve for T, it implies solving a cubic equation. Even if we solve

for T, the resulting function will be even more complicated than Equation (1.6-2), and finding ^ r
or

(say) will be time consuming. It is simpler to differentiate the expression in Equation (1.6-2) partially
oT

with respect to P and then deduce 5= . We shall show how this is done by reverting to the variables

x, y and u.

We now consider an implicit function written as

f(x,y,u) = 0 (1.6-3)

In terms of the thermodynamic example, we can think of

x = P, y = V, u = T (1.6-4a,b,c)

The variables x, y and u are not all independent. We are free to choose any one of them as the
dependent variable. Since f = 0, df = 0 and from Equation (1.5-15), we obtain
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df = ^ d x + ^ d y + ^ d u = O (1.6-5a,b)
3x dy du

Equation (1.6-5) is still true for f = constant, since df = 0 in this case also.

du
The partial derivative ĉ— is obtained from Equation (1.6-5) by putting dy = 0 (since y is kept as a

constant). So

5 - = - 5 - / 5 - (1.6-6)
ox ox I \ du

Similarly

I~(S)'(I)
3u du

We could equally obtain 5—, v~ by differentiating f from Equation (1.6-3) and using the chain rule

(Equations 1.5-22a, b). Thus taking u as the dependent variable and differentiating partially with
respect to x, we have

It then follows that

i-d)/(l)
Similarly —̂ and higher derivatives such as can be computed.

If, in addition to Equation (1.6-3), the variables x, y and u are related by another equation written as

g(x,y, u) = 0 (1.6-10)

we essentially have two equations involving three variables. We choose the only independent variable
to be x. Differentiating f and g with respect to x, yields

<* + «* %L+* ^ = o (1.6-lla)
dx dy dx du dx

3 g + 9 g 3 y + a g du = 0 (16-l lb)
3x dy dx 3u dx

(1.6-7)

(1.6-8)

(1.6-9)
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Equations (1.6-1 la, b) form a system of two algebraic equations involving two unknowns ^- and

^—. The solutions are
dx

fx fy

J = fy fu (1.6-12c)

g o v '
y &u

3y 9u
Thus for —̂ and —̂ to exist, the Jacobian J must not vanish.

3x dx

1 .7 SOME THEOREMS

Euler's Theorem

A function f (x, y, u) is a homogenous function of degree n if

f(ax, ay, au) = a n f (x , y, u) (1-7-1)

Defining new variables, which we indicate by a star (*), we write

x* = ax, y * = a y , u* = au (1.7-2a,b,c)

Equation (1.7-1) becomes

f(x*,y*,u*) = anf(x,y,u) (1.7-3)

Differentiating Equation (1.7-3) with respect to the parameter a yields

df dx df dy df du n-l c( , ,+ n .,
+ —- -J—Jr— = n a f(x, y, u) (1-7-4)

dx* da By* da du* da

Choosing a = 1, Equation (1.7-4) becomes

x H + y | + u d l = n f ( x ' y ' u ) (L7-5)

(1.6-12a)

(1.6-12b)
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-\ *
Note that we substitute (= x) etc. into Equation (1.7-4) before setting a = 1, otherwise we

would be trying to differentiate by a constant.

Equation (1.7-5) is known as Euler's theorem.

The generalization of Equation (1.7-5) is

x ^ + y ^ + u ^ - f (x, y, u) = n ( n - 1) ... ( n - r + 1) f (x, y, u) (1.7-6)

Taylor's Theorem

Taylor's theorem for functions of one variable can be extended to functions of several variables.
For simplicity we give the formula for two independent variables.

f(x0+h,y0+k) = f(x0,y0) + {h^ + k | } + l j h 2 g + 2 h k ^ + k 2 g j + ...

... + _L (h» ^L + (n\ hn-lk __lL_ + + (n) hn-r kr _ 3 ^ _ + ... + k" ll\ + R

(1.7-7)

The remainder term Rn is given by

R = _ _ L - hn+1 ^—I + hn k 1-JL + + kn+1 ^—^ (1 7-8)
n (n+1)! \ 9xn+l 3xna y dyn+l f ^ }

The derivatives in Equation (1.7-7) are to be evaluated at the point (x0, y0) and those in Equation

(1.7-8) at the point (x0 + 0h, y0 + Ok) and 0 < 9 < l .

1.8 INTEGRAL OF A FUNCTION DEPENDING ON A PARAMETER

The function f (x, y) is a function of two variables x and y and we may integrate the function with
respect to y holding x fixed. We then obtain an integral which is a function of x and we may
consider x as a parameter. Thus if we integrate f(x, y) between two fixed points y = a and y = b,
we have

IW = f(x,y)dy (1.8-1)
J a
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Differentiating I with respect to x results in

J a

If the limits of integration are not fixed but are functions of x, we integrate with respect to y from a
point on a curve given by y = u (x) to a point on another curve given by y = v (x)

/•v(x)

I (x )= | f(x, y)dy (1.8-3)
;U(X)

Note that if we were integrating at another point on the same curve, the limits of integration would read
u(xi) and u(x2) which is equivalent to integrating from a to b.

I may be treated as a function of three variables x, v(x) and u(x). Using the results in Section 1.5,
dL is given by
dx

di_ = a i_ + a] [dv + ai_du
dx dx dv dx du dx

31 dl 91
From the definitions of the partial derivatives 5—, 5— and v~, we have, via Equation (1.8-2)

/•v(x)

yu(x)

Note that u(x) and v(x) are not fixed!

To evaluate the partial derivative —-, we fix the variables x and u(x). Equation (1.3-1) yields
dv

f x

^ p = | - f(t)dt = |^[F(x)-F(a)] =F'(x) = f(x) (l.8-6a,b,c,d)
) a

Therefore, identifying y with t and v (x) with x, we have

| 1 = | - I f(x,y)dy = f[x, v(x)] (l.8-7a,b)
Ju (x)

Similarly

(1.8-4)

(1.8-5)

(1.8-2)
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!?- =-f[x, u(x)] (1.8-8)
oil

After appropriate substitution, Equation (1.8-4) becomes

/u(x)

Equation (1.8-9) is known as Leibnitz rule.

Example 1.8-1. Let I be given by

/•y=x2

1 = 1 xydy (1.8-10)
/ y=x

Calculate -dL by
dx

(a) using Equation (1.8-9),

(b) integrate and obtain I explicitly as a function of x and then differentiate. Figure 1.8-1 shows
a projection in the xy-plane of the integration path.

From Equation (1.8-9)

r2
A = I y dy + (x) (x2) (2x) - (x) (x) (1.8-1 la)

J X

= \~\ +2x4-x2 (1.8-1 lb)

= ~ - ^ - (1.8-llc)

On integrating directly

2

1 = Mr = ^---T (1.8-12a,b)
L / J X z z

It follows from Equation (1.8-12b) that

(1.8-9)
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dL = 5 x l _ 3 x ^ (1.8-12C)
dx 2 2

Both methods result in the same expression for dL ? as they should. There are instances when it is
dx

not possible to evaluate I explicitly and one has to use Leibnitz's rule.

y f y = x2

x

FIGURE 1.8-1 Integration described by Equation (1.8-10)

1.9 ORDINARY DIFFERENTIAL EQUATIONS (O.D.E.) - DEFINITIONS

A differential equation is an equation involving one dependent variable and its derivatives with respect
to one or more independent variables. If only one independent variable is involved, it is an ordinary
differential equation (O.D.E.) and if more than one independent variable is involved, it is a
partial differential equation (P.D.E.). Many laws and relations in science, engineering,
economics, and other fields of applied science are expressed as differential equations.

The highest order derivative occurring in the differential equation determines the order of the
differential equation. The degree of a differential equation is determined by the power to which the
highest derivative is raised. A differential equation is linear only if the dependent variable and its
derivatives occur to the first degree. Otherwise it is non-linear.
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For example, y' = 5y is an O.D.E. (y is a function of x only) of order one (y' is the highest order
derivative) and of degree one (y' is raised to the power one) and is linear, (y " )3+ y = x is of order
two, of degree three and is non-linear.

A function f(x) is a solution of a given differential equation on some interval, if f(x) is defined and
differentiable on that interval and if the equation becomes an identity when y and y ^ are replaced
by f(x) and f^(x) respectively.

For example, we can easily verify that f (x) = eax is a solution of the equation y' = ay. Indeed,
f'(x) = a e a x = y' and the right side (ay) is of course af (x) = aeax. There are several types of
ordinary differential equations. Examples of first-order differential equations are separable equations,
exact differential equations, linear differential equations, homogeneous linear equations, etc. For each
of these types, there exists a known, standardized, procedure to arrive at a solution. Starting at
Section 1.10, we summarize the approach, leading to the solution of several of the types of ordinary
differential equations encountered in practice. In Section 1.19, we look at the modeling problem.

1.10 FIRST-ORDER DIFFERENTIAL EQUATIONS

The standard form of a first-order differential equation is as follows

M(x, y) dx + N(x, y) dy = 0 (1.10-1)

or y '= -^H (1.10-2)
N(x, y)

Equations of this type occur in problems dealing with orthogonal trajectories, growth, decay, and
chemical reactions.

1.11 SEPARABLE FIRST-ORDER DIFFERENTIAL EQUATIONS

For the case where M is a function of x only and N is a function of y only, a straightforward
integration will yield a result, as follows

I M(x)dx = - I N(y)dy (1.11-1)

Example 1.11-1. Solve y dx - x2 dy = 0. (1.11-2)

Dividing both sides of the equation by x2 y results in the appropriate form

^ - ^ = 0 (1.11-3)
* y
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Integration yields

i n y = i n c - Y (1.11-4)

where c is the constant of integration.

This can be written as

iny-inc = - \ (1.11-5)

that is

in£ =-\ (1.11-6)

or y = ce" 1 / x (1.11-7)

Example 1.11-2. In a constant volume batch reactor, the rate of disappearance of reactant A can be
given by

- ^ =-kf (c A ) (1.11-8)

Solve Equation (1.11-8) for the case where f (cA) = cA.

dcA

- ^ = - k d t (1.11-9)

i n cA =-kt + i n c (1.11-10)

in^=-kt (1.11-11)

cA = ce~kt (1.11-12)

1.12 HOMOGENEOUS FIRST-ORDER DIFFERENTIAL EQUATIONS

If M(x, y) and N(x, y) in Equation (1.10-1) are homogeneous polynomials of the same degree,
then the substitution y = ux or x = vy will generate a separable first-order differential equation.

x2 - 3 xy + Y' is an example of a homogeneous polynomial of degree two. x + y - 1 is not a
homogeneous polynomial.
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Example 1.12-1. Solve

(x + y)dy-(x-y)dx = O (1.12-1)

dy ( x - y )
dx ~ (x+y) (1.12-2)

The substitution y = ux defines y' as

g.(dj)x + 0 ) I 1 a.,2-3)

We now have

x ( d u ) + u = ^ i H = M l ^ l (L12.4,5)
vdx/ x + ux x(l+u)

x(du)+ u = £ ^ ( U 2_6 )

\dx/ (1+u)

*[^) = ^-"=l-?U-u2 d-12-7,8)
Idx/ (1+u) 1+u

^ = ( 1 + U ) , d n (1.12-9)
x l _ 2 u - u 2

Integration yields

i n x + i n c = I - ^ (1.12-10)

where P = 1 - 2u - u2.

Therefore

incx = - ^ - i n ( l - 2 u - u 2 ) (1.12-11)

in ex"2 = i n ( l - 2 u - u 2 ) (1.12-12)

-^r = l - 2 u - u 2 (1.12-13)
x

y
Replacing u by — , we finally obtain
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^ - = l - 2 y _ y ! (1.12-14)
x x x

or x 2 - 2 x y - y 2 = c (1.12-15)

NOTE: An equation such as

d y a1x + b 1 y + c 1

dx ~ a 2 x + b 2 y + c2 (1.12-16)

where a}, bj, c1? a^ b2 and c2 are constants can be reduced to a homogeneous equation if
through a change of variables, we manage to do away with the constants Cj and c2.

Think of the numerator and the denominator as representing two intersecting straight lines. If we
translate the origin of the coordinate system to their point of intersection, that is to the solution (a, p)
of the system

{ajX +bjy +Cj =0

a2x+b2y + c2 = 0 (1.12-17,18)

we then obtain a situation where the directions of the lines are preserved (aj and fy remain unchanged)

and the coefficients Cj vanish. Since the coordinates of this point of intersection are (a, P), we

perform the following change of variables

JX=x-a
{ Y =y-p (1.12-19,20)

Substitutions in Equation (1.12-16) yields

d(Y+p) d Y _ a1(X + a ) + b 1 ( Y + p ) + c 1

d(X + a) = dX = a2(X + a) + b2(Y + p) + c2 (1.12-21a,b)

, Y ajX+bjY+aja + bjP + Cj

dX = a2X + b2Y+a2a+b2p+c2 (1.12-22)

where the underlined terms add up to zero by virtue of system (1.12-17,18) with solutions x = a and
y = p. We are left with the homogeneous equation
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dY a l X + b l Y

d X ~ a 2 X + b2Y (1.12-23)

The solution of such a reducible equation is thus obtained by

i) solving equation (1.12-23) [a first-order homogeneous equation],

ii) determining the solution (a and (3) of system (1.12-17,18). This requires the determinant

a l b l
* 0 and

a2 b2

iii) replacing X and Y in the solution of (1.12-23) by x - a and y - p respectively.

Example 1.12-2. Solve

£ - ^ 4 d.12-24)
dx x + y - 1

dY X — Yi) We first solve -rrr = ——— using the substitution Y = u X. This leads to Equation
QA. A. + Y

(1.12-15).

ii) Next we determine the values a and (3 by solving the system

[ x - y = 3
| x + y = 1 (1.12-25,26)

We obtain a = 2 and P = - l .

iii) We now substitute X and Y in the solution of part (i) by (x - 2) and (y + 1). The final
solution is thus given by

x 2 - 2 x y - y 2 - 6 x + 2y = c - 7 = constant (1.12-27)

A problem arises if the determinant (ajb2 - bja2) = 0; that is, the coefficients of x and y in the

linear equations are multiples of one another. That is to say, the two lines are parallel and do not

intersect.

Introducing a variable z = ajx + bjy yields a relation of the form —— = f and f is a function of z

only, a separable first-order equation.
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Example 1.12-3. Solve

dy _ 2x-7y + 1
dx~ " 6x -21y- l (1.12-28)

Note that

2 -7 1
6 = I2}- = J (1.12-29a,b)

Let z = 2x - 7y then

dz = 2 - 7 ^
dx dx (1.12-30)

^ 2 x - 7 y + n
= 2 - 7 U x - 2 i y - i J a-12-31)

= 2"7(^^r) (1.12-32)

or dJ = -f^x (112"33)
This equation can be solved by separating the variables to yield

3z-28in(z+9)= - x + c' (1.12-34)

where c' is a constant.

Replacing z by 2x - 7y yields the solution to the problem

6x-21y-28/en(2x-7y + 9) = -x + c' (1.12-35)

or 7x-21y-28 in (2x-7y + 9) = c' (1.12-36)

or x - 3 y - 4 i n ( 2 x - 7 y + 9) = c (1.12-37)

1.13 TOTAL OR EXACT FIRST-ORDER DIFFERENTIAL EQUATIONS

A given differential equation, could have been obtained by differentiating an implicit function. For
example, one can determine by inspection that the equation

xdy + ydx = 0 (1.13-1)

results from expanding
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d(xy) = O (1.13-2)

Integration yields

xy = constant (1.13-3)

or y = f (1.13-4)

An equation such as

x2dy + 2xdx = 0 (1.13-5)

can be solved by inspection, after multiplication by an appropriate "integrating" factor. In this
particular case, multiplication by e^ results in the following total differential equation

d(x 2 e y ) = 0 (1.13-6)

thus x2ey = c (1.13-7)

and y = i n - ° - = -2 i n ex (1.13-8,9)
x2

The following test allows one to determine if the equation

Mdx + Ndy = 0 (1.10-1)

is a total (or exact) differential equation. We suspect that the equation is exact. That is, Equation
(1.10-1) could be represented by dF (x, y) = 0. This can be written as

f dx+^dy=0 ( U 3 _ 1 O )

Therefore

M = | | and N = J £ (1.13-11,12)

So M and N are partial derivatives of the same function F. Furthermore, assuming that F and its
partial derivatives, of at least order two, are continuous in the region of interest, we note that

2 2
d F _ 3 F
dxdy ~ dydx (1.13-13)

That is to say
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If our starting equation satisfies relation (1.13-14), we know that we are dealing with the total
derivative of a function of two variables. Equating that function to a constant yields the solution

F(x, y) = constant. One way of determining F is as follows: since •?- = M, a "partial" integration

with respect to x (keep y constant) yields F. The "constant" of integration will in general be an
arbitrary function of y, which will disappear on differentiating with respect to x. That is to say

F = | M d x + f(y) (1.13-15)

3Ff (y) can then be determined from 3— = N, as illustrated next.

Example 1.13-1. Solve

(3x2- 6xy + 4cosy)dx + (2y-3x2-4xsiny-J-)dy = 0 (1.13-16)

| ^ = - 6 x - 4 s i n y (1.13-17)

4g- = - 6 x - 4 s i n y (1.13-18)

Therefore

J £ = 3x2-6xy +4cosy (1.13-19)

and F = I (3x2 - 6xy + 4 cos y) dx = x3 - 3x2y + 4x cos y + f(y) (1.13-20)

r)F
f (y) is now determined by substitution of the previous equation for F in 3— = N .

That is

y - [ x 3 - 3x2y +4xcosy + f(y)] = 2y - 3 x 2 - 4xsiny - y (1.13-21)

or - 3 x 2 - 4 x s i n y + f ( y ) = 2 y - 3 x 2 - 4 x s i n y - y (1.13-22)
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f'(y) = 2 y - J - (1.13-23)

f(y) = y 2 - i n y + c (1.13-24)

Hence, the solution is

x3 - 3 x2y + 4 x cos y + y2 - Jin y = constant (1.13-25)

•

If Equation (1.10-1) is not exact, we can try to make it exact by multiplying with an integrating
factor I. Equation (1.10-1) becomes

IMdx + INdy = 0 (1.13-26)

which is exact if

j - (IM) = ^ (IN) (1.13-27)

That is

T 3 M A/rai T 3 N XTai
dy dy dx dx (1.13-28)

or

I \ dx dy j ~ dy dx (1.13-29)

In genera] it is not easy to find I but there are special cases when there is a standard procedure to
obtain I.

(i) I is a function of x only. Then 5— = 0 , and Equation (1.13-29) becomes

1 dl _ dM/dy-dN/dx
I dx N̂  (1.13-30)

The assumption that I is a function of x only implies that the right side of Equation (1.13-30)
is also a function of x only. Therefore, the integrating factor I can be determined and
Equation (1.13-26) is exact and can be solved.
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(ii) I is a function of y only. Then as in (i), we have

{ d I _ 3N/9x-3M/3y

i" dy ~ M (1.13-31)

The right side is a function of y only and allows I to be determined, leading to a solution.

Example 1.13-2. Solve

(3x2 - y2) dy - 2xydx = 0 (1.13-32)

by finding an appropriate integrating factor.

^ = - 2 x
dy (1.13-33)

3N ,
• 3 - = 6x
»x (1.13-34)

In this case the equation is not exact, we note that

fiN | ! ] / M = -&L = -± (1.13-35a,b)

\dx dy J -2xy y

is a function of y only.

From Equation (1.13-31), we obtain
l i L = _ 4 ^ dl = _ 4 d

1 dy y I y (1.13-36a,b)

I = y"4 (1.13-37)

Multiplying Equation (1.13-32) by the integrating factor y~ , we have

( 3 x V 4 - y~2) dy - 2xy~3 dx = 0 (1.13-38)

Equation (1.13-38) is exact, we can proceed as in Example 1.13-1.
^ = -2xy-3
3x (1.13-39)

F = -x2y~3 + f(y) (1.13-40)
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^ = 3x2y-4 + f = 3x2y"4-y-2 (1.13-41a,b)
dy dy

Therefore

df = _ y -2

dy (1.13-42)

f = y - ! +c (1.13-43)

The solution is

F = constant => - x V ^ + y"1 = c (1.13-44a,b)

1.14 LINEAR FIRST-ORDER DIFFERENTIAL EQUATIONS

The standard form is given by

^ + P(x)y =Q(x) (1.14-1)

Note that P and Q are not functions of y. The integrating factor I (x) is given by

I(x) = exp I P(x)dx (1.14-2)

d(Iy)
Multiplying both sides of Equation (1.14-1) by I(x) yields a left side which is equal to — .

Direct integration produces the solution as follows

^-[y l ] = Q(x)I(x) (1.14-3)

and

r /-x
y = I"1 Q®I($)d$ + c (1.14-4)

Example 1.14-1. Solve

y'-2xy = x (1.14-5)

I(x) = exp I -2xdx = e x p - ^ (1.14-6, 7)
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Multiplying both sides of the equation by e~x yields

e - x V - 2 x e - x 2 y = x e~x2 (1.14-8)

or - p (ye"x2) = xe~x2 (1.14-9)

Integrating yields

I - ^ - ( y e " x 2 ) d x = I xe~ x dx (1.14-10)

- x 2 1 -x 2

ye x = - y e x + c (1.14-11)

and finally

x2 1y = c e x - - 2

•

Another procedure which will generate a solution for Equation (1.14-1) is as follows: first one solves
the homogeneous equation

y' + P(x)y = 0 (1.14-13)

to yield the homogeneous solution yh. We then propose the solution of Equation (1.14-1) to be of the

form of yh , where we replace the constant of integration by a function of x, as illustrated in

Example 1.14-3. This method is known as the method of variation of parameters.

Example 1.14-2. The rate equations for components A, B and C involved in the following first-
order reactions

ki k2

A -> B -> C

are written as

dcA

dt ~ ICA (1.14-14)

dcB

~df " k l c A " k 2 c B (1.14-15)
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dt 2 B (1.14-16)

We wish to solve for the time evolution of the concentration cB, given that at t = 0, cA = cA and

cB = c c = 0.

Equation (1.14-14) has been treated in Example 1.11-2 and yields

CA = % e " k l t (1.14-17)

Combining Equations (1.14-15, 17) leads to

^ + k 2 c B = klCA (e-k ' t ( 1 1 4 _ 1 8 )

which is of the form of Equation (1.14-1) with P(t) = k2 and Q(t) = kx cA e~klt.

Note that the independent variable is now t. The integrating factor I(t) = ek 2 t .

Multiplying Equation (1.14-18) by I (t) leads to

^tae^kiC^efe*)* (1.14-19)

Integration yields

k c e ( k r~k l ) t

cBek2t = ,A° , + c (1.14-20)
k 2 - k 1

The constant c is evaluated from the condition cB = 0 at t = 0. That is

k 1 CA
0 = l f° +c (1.14-21)

k2-kj

Finally we obtain

/e-kit_ -k2t\

c^k^hpir) (U4"22)

Example 1.14-3. Solve

y ' - ^ T = ( X + 1 ) 3 (1.14-23)
X "T 1

The homogeneous equation
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y'--^y = 0 (1.14-24)
J\. "l 1

v ' 2
or i - = —=— (1.14-25)

v x+ 1
results in the solution

yh = c ( x + l ) 2 (1.14-26)

We now propose the solution of the given problem to be of the form y = u (x + I)2 where u is a
function of x which is to be determined. Substitution of this solution, in the given problem results in
the following expression

u ' ( x + l ) 2 + 2 u ( x + l ) - 2 u / X + 1 ) = (x+1)3 (1.14-27)

(x + lj

Note that since (x+1)2 is the homogeneous solution, the terms in u have to cancel.

We then obtain

u ' = x + l (1.14-28)

and on integrating, we can write u as

u = y ( x + l ) 2 + c (1.14-29)

The solution to the problem is thus given by

y = U ( x + l ) 2 + c ] ( x + l ) 2 (1.14-30)

or y = c ( x + l)2 + Y ( x + 1)4 (1.14-31)

The second term on the right side (that is choosing c = 0) is a particular solution y . The general
solution y = yh + y .

1.15 BERNOULLI'S EQUATION

The standard form of this equation is given by

y '+P(x)y = Q(x)yn (1.15-1)
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This equation can be reduced to the form of a linear first-order equation through the following
substitution

y1"" = v (1.15-2)

First one divides both sides of the equation by yn. This yields the following equation

^ S " + P(X) y l " = Q W (1.15-3)

Then let v = y1"". This means that

dv = A. ( y 1 " n ) = ( l - n ) y - n i y (1.15-4,5)
dx dx dx

Equation (1.15-3) reduces now to the following linear first-order equation

( r ^ r ) i - + P(x)v=Q(x) (L15-6>
or ^ - + ( 1 - n ) P(x)v = ( l - n ) Q(x) (1.15-7)

which is linear in v.

Example 1.15-1. Solve

^ - y = xy5 (1.15-8)

Dividing by y-5 yields

y"5^-y"4 = x (1.15-9)
Q.X

Let

v = y-4 => 4^ = -4y"5 p- (1.15-10, 11)
dx dx

Combining Equations (1.15-9 to 11), we obtain

~ i d x ~ ~ V = X ° r dx" + 4 v = ~ 4 x (1.15-12,13)

This equation can now be solved with the following integrating factor

I(x) = e4^d x = e4x (1.15-14, 15)
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to yield

ve4x = _xe4x + 1 e4x + c (1.15-16)

Substituting y~ for v produces

y- 4 e 4 x = - x e 4 x + l e 4 x + c ( L 1 5 " 1 7 )

and finally

- i - = _ x + \ + ce - 4 x (1.15-18)
y4 4

1.16 SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS WITH CONSTANT
COEFFICIENTS

The standard form is given by

y " + A y ' + By = Q(x) (1.16-1)

where A and B are constants.

An alternative form of Equation (1.16-1) is

L(y) = Q(x) (1.16-2)

where the linear differential operator L (y) is defined by

L(y) = y " + A y ' + B y (1.16-3)

The homogeneous differential equation is

L(y) = 0 (1.16-4)

If yj and y2 are two linearly independent solutions of the homogeneous equation L(y) = 0, then by

the principle of superposition, Cjy j+c 2 y 2 is also a solution where Cj and c2 are constants. That

is

L (cl yx + c2 y2) = Cj L(yj) + c2 L(y2) = 0 (1.16-5a,b)

As mentioned earlier, the general solution to L (y) = Q (x) is given by

y = yh + yp (1.16-6)
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Solving the homogeneous equation

y " + A y ' + B y = 0 (1.16-7)

will generate yh.

We propose yh to be of the form ea x . Substitution of this function and its derivatives into the

homogeneous equation yields

eax(oc2 + Aa + B) = 0 (1.16-8)

Since e a x * 0 , we have that

a 2 + Aot + B = 0 (1.16-9)

This is known as the characteristic or auxiliary equation. This equation has two solutions, (Xj
and 0C2. Since we are dealing with a second order equation, we also have two constants of integration
and the solution yh is given by

yh = C l e a i x + c2ea2X (1.16-10)

The second order characteristic equation could have

2 2
i) two real and distinct roots (the case where D = A - 4B > 0).

In this case, yh is given by equation (1.16-10).

ii) two equal real roots (the case where D = 0).

In this case, yh is given by

yh = c1e0ClX + c2xeaiX (1.16-11)

iii) two complex conjugate roots (the case where D2 < 0)

yh is now given by

yh = Cj e(a+ib>x + c2 e(a-ib>x (1.16-12)

where (Xj 2 = - y ± i z = a ± ib

This complex solution can be transformed into a real one, using the Euler formula to yield
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yh = eM (c3 cos bx + c4 sin bx) (1.16-13)

where c3 and c4 are constants and real. (1.16-14, 15)

Next we have to determine the particular solution y . This can be done by proposing a solution,
based on the form of Q(x), the right side of the equation. Substitution of the proposed form and of
its derivatives into the equation to be solved followed by equating the coefficients of the like terms
allows one to determine the values of the introduced constants as illustrated next. This solution
technique is referred to as the method of undetermined coefficients.

Example 1.16-1. Solve

y " - 3 y ' + 2y = x2 + 1 (1.16-16)

The characteristic equation

a 2 - 3 a + 2 = 0 (1.16-17)

has the following roots: a1 = 1 and a 2 = 2 so that

yh = C l e x + c2e2 x (1.16-18)

Since the right side of the equation is of order two, we propose for y the quadratic polynomial

ax2 + bx + c, and proceed via substitution in the given equation to determine the values of the

constants a, b and c.

yp = ax2 + bx + c (1.16-19)

yp = 2ax + b (1.16-20)

yp'= 2a (1.16-21)

Substitution yields

2a-3(2ax + b) + 2(ax2 + bx + c) = x2 + 1 (1.16-22)

2a - 6ax - 3b + 2ax2 + 2bx + 2c = x 2 + l (1.16-23)

2ax2 + x(2b-6a) + 2 a - 3 b + 2c = x 2 + l (1.16-24)

Equating the coefficients of x2 yields

2a = 1 and a= y (1.16-25a,b)
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Equating the coefficients of x yields

2 b - 6 a = 0 (1.16-26)

2b = 6a = 3 and b = - | (1.16-27a,b, 28)

Equating the coefficients of x° yields

2a - 3b + 2c = 1 (1.16-29)

l - | + 2 c = l or c = - | (1.16-30a,b)

y is thus given by

v 2 3 Q

y P = 2 + 2 X + 4 (1.16-31)

and the solution to the problem is

y = yh + yp = Cl ex + c2 e2x + j (2x2 + 6x + 9) (1.16-32)

The form of the y to be chosen depends on Q (x) and on the homogeneous solution y^, which in

turn depends on L(y). Examples are

(a) Q (x) is a polynomial.

Q(x) = q0 + qlX + q2x2 + .... + qnxn (1.16-33)

Try

yp = a0 + alX + .... + anxn (1.16-34)

if A * 0, B * 0.

If B = 0, A * 0, try

yp = x (a0 + axx + .... + anxn) (1.16-35)

If both B and A are equal to zero, then the solution can be obtained by direct integration.

(b) Q (x) = sin qx or cos qx or a combination of both. (1.16-36)
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In this case an appropriate y is

yp = a0cosqx + b 0 s inqx (1.16-37)

If cos qx (or/and sin qx) is not a solution of the homogeneous equation. If cos qx (or/and
sin qx) is present in yh then we need to try

yp = x (a0 cos qx + b0 sin qx) (1.16-38)

(c) Q(x) = e^ . (1.16-39)

The particular integral will be of the form

yp = aoe«lx (1.16-40)

if e^* is not a term in yh.

If e1x occurs in yh, then y is

yp = x(aoe(lx) (1.16-41)

If xeqx is also part of the homogeneous solution, then

yp = x2 (a0 e1x) (1.16-42)

We can also determine the particular solution for a combination of the cases examined in (a to c) by
intelligent guess work. We need to find the number of undetermined coefficients that can be
determined to fit the differential equation. The particular solution can also be obtained by the method
of variation of parameters (see Examples 1.14-3, 18-1).

Example 1.16-2. Levenspiel (1972) describes a flow problem with diffusion, involving a first-
d c A

order chemical reaction. The reaction is characterized by the rate expression — ^ = - k c A .

The average velocity in the tubular reactor is (vz). The concentration of A is given at the inlet

(z = 0) of the reactor by cA and at the outlet (z = L) by c ^ .

A mass balance on A leads to the following differential equation which we wish to solve

- J 9 CA I / v \ CA I i{C - o (] 16.431
^AB 2 \ z ' dz A ~ U - i o is)

We can write Equation (1.16-43) in standard form as follows
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^ _ K i d e A _ ^ _ C A = 0 (1.16-44)
dz ^ ^ az JJ^

We now propose a solution of the form cA = eaz. As before, substitution leads to the characteristic

(or auxiliary) equation

a2- ^ - a - - ^ - = 0 (1.16-45)

The result in terms of the concentration cA is given by

cA = c 1 e a i z + c 2 e a 2 z (1.16-46)

where a, 2 = - ^ - 1 ±A / I + ^ ® A B

The constants Cj and c2 are evaluated from the conditions

cA = CAQ at z = 0 (1.16-47)

CA = CAL at z = L (1.16-48)

This leads to the following final result

/ c A L - c A e a i M l c A I - c A e a i L

c - cA - ^ A° e a i z + ^ A o e a2z (1.16-49)
A A° e a 2 L - e a i L e a 2 L - e a i L

1.17 SOLUTIONS BY LAPLACE TRANSFORM

Linear differential equations can sometimes be reduced to algebraic equations, which are easier to
solve. A way of achieving this is by performing a so called Laplace transform.

The Laplace transform L[f(t)] of a function f(t) is defined as

L[f(t)] = F(s) = I f(t)e-stdt (1.17-1)

Jo

where the integral is assumed to converge.

The Laplace transform is linear. That is to say
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Lfcjf^O + c / ^ t ) + ....] = CjLffjCOj + ̂ Lf^Ct)] + .... (1.17-2)

where Cj, c2 are constants.

For a given differential equation, the procedure to follow is

i) take the Laplace transform of the equation,

ii) solve the resulting algebraic equation; that is to say, obtain F(s),

iii) invert the transform, to obtain the solution f (t). This is usually done by consulting tables of
Laplace transforms.

The Laplace transform of a variety of functions are tabulated in most mathematical tables. Table
1.17-1 gives some useful transforms. Next, we state some theorems without proof.

i) Initial-value theorem

lim f(t) = lim s F(s) (1.17-3)
t—»0 S—>«>

ii) Final-value theorem

lim f(t) =lim s F(s) (1.17-4)
t-»oo s->0

iii) Translation of a function

L[e-atf(t)] = F(s + a) (1.17-5)

iv) Derivatives of transforms

L[tnf(t)] = (_l ) n ^ZM ( 1 . 1 7 . 6 )

dsn

v) Convolution

E(s) = F(s)G(s)

fl (1.17-7)
= L I f(t-u)g(u)du

_ Jo

Convolution is used when E (s) does not represent the Laplace transform of a known function
but is the product of the Laplace transform of two functions whose transforms are known.
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TABLE 1.17-1

Laplace Transforms

Function Transform

I 1
s

t" -J lL n = l , 2 , . . .
sn + l

eat _ 1 _
s-a

sin at — r
s2 + a2

cos at —- r
s2 + a2

^ s n F ( s ) _ y s n - k d^f(O)

dt" F(S) j £ d t t - l

r t F(s)
I f(t)dt s

-j= exp (-x2/4t) Y(fj" exp (-x V7)

—-— exp (-x2/4t) Vft exp (-x Vs )
2t3/2

erfc (x/2VT) -L exp (-x Vs~)

o x V~s~
(t + ̂ - ) erfc (x/2Vt~) - x i/-L exp (-x2/4t) 5

2 V 7t S 2

l e a t ( e " x V i e r f c [ - ^ _ _ ^ T ) l + e ^ e r f c r ^ ^ + f ^ y l j e ~ x ^
2 I L2 VT J L2VT Jl s _ a

( 0 , 0 < t < k e"ks/s^, }X>0

( ( t - ^ ^ V n ^ i ) , t>k

a"Jn(a t ) (Vs2 + a 2 - s ) n

— , n>-l
4J7^
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Heaviside Step Function and Dirac Delta Function

The Heaviside step function is a function which is equal to zero for -°o < t < 0 and is equal to 1 for
all positive t. This can be expressed as

[ 0, -°°<t<0
H(t) = (1.17-8a,b)

I 1 , t > 0

H (t) is discontinuous at t = 0.

The Laplace transform of H (t) is given by

r
L[H(t)] = I e~stH(t)dt (1.17-9a)

Jo
= [-|e-st]°° (1.17-9b)

L S J Q

= \ (1.17-9c)

We can generalize the Heaviside step function for the case where the discontinuity occurs at t = a. In
this case, we have

I 0, t<a
H(t-a) = { (1.17-10a,b)

I 1 , t > a

L[H(t-a)] = I e~stH(t-a)dt (1.17-1 la)

Jo

= f e~stdt (1.17-1 lb)
•/a

= [-|e-st]°° (1.17-llc)

= -J-e~sa (1.17-lld)

An arbitrary function f(t) can be shifted over a distance a, by multiplying f(t) by H(t -a) . This
will result in the quantity f (t - a) H (t - a). Figure 1.17-1 illustrates this translation graphically.
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f i t ) >

/fit) /f(t-a)

I _ / / H(t-a)

o a t

FIGURE 1.17-1 Translation of a function f (t) over a distance a

Taking the Laplace transform, we obtain

r
L[f(t-a)H(t-a)] = I e"stf(t-a) H(t-a)dt (1.17-12a)

JO

= I e~stf(t-a)dt (1.17-12b)
J a

r°°
= I e-s( t l+a)f(t')dt' (1.17-12C)

JO

= e s a I e-st1f(t')dt' (1.17-12d)

Jo
= e-saF(s) (1.17-12e)

where F is the Laplace transform of f.

In Equation (1.17-12c) we have used the transformation

t' = t - a (1.17-13)
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The Dirac delta function is defined as

8(t) = 0, everywhere except at t = 0 (1.17-14a)

I 5(t) dt = 1 (1.17-14b)
J —oo

I f(t)5(t)dt =f(0) (1.17-14c)
J — oo

The Laplace transform of 8(t) can be obtained using Equation (1.17-14c).

L[8(t)l = e~st6(t)dt (1.17-15a)
L J Jo

, o o

= I e~stS(t)dt (1.17-15b)
J -oo

= 1 (1.17-15c)

The limits in Equation (1.17-14b, c) need not to be (-oo, oo), they could be (-Ej, e2) for any positive

el> e 2 -

Thus

I 8(t)dt = 0, if x < 0 (1.17-16a)
J -oo

= 1, i f x > 0 (1.17-16b)

= H(x) (1.17-16c)

where H (x) is the Heaviside step function.

By formally differentiating both sides of Equation (1.17-16c) we obtain, via Equation (1.3-1)

8(x) = && (1.17-17)

Equation (1.17-17) indicates that 8(x) is not an ordinary function, because H(x) is not continuous at
x = 0 and therefore does not have a derivative at x = 0. The derivative dK is zero in any interval that

dx
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does not include the origin. For formal computational purposes, we may regard the derivative of the
Heaviside step function to be the Dirac delta function.

If the discontinuity is at t = a, then

8 (t - a) = 0 , everywhere except at t = a (1.17-18a)

I 5( t -a)d t = 1 (1.17-18b)
J -oo

f °° f a + e2
I f (t) 5(t - a) dt = I f (t) 8(t - a) dt = f (a) (1.17-18c,d)

/—oo /a-Ej

L[8(t-a) l = I e~st 8(t - a) dt = e"sa (1.17-18e,f)
JO

8(t-a) = ^ (t-a) (1.17-18g)
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does not include the origin. For formal computational purposes, we may regard the derivative of the
Heaviside step function to be the Dirac delta function.

If the discontinuity is at t = a, then

8 (t - a) = 0 , everywhere except at t = a (1.17-18a)

I 5( t -a)dt = 1 (1.17-18b)
J _oo

f °° f a + e2
I f (t) 5(t - a) dt = I f (t) 8(t - a) dt = f (a) (1.17-18c,d)

/—oo /a-Ej

L[8(t-a)l = I e~st8(t-a)dt = e"sa (1.17-18e,f)
JO

8(t-a) = $& ( t -a ) (1.17-18g)

We may interpret 8 (t - a) to be an impulse at t = a and this will be considered in the next section.
We will illustrate the usefulness of the Heaviside and Dirac functions in Example 1.17-4 and in
Problems 35a and 36b.

Example 1.17-1. Compute the Laplace transform of sin (at).

Applying the definition, we write

f°°
L[sin (at)] = I e~stsinatdt (1.17-19)

JO

Referring to Equation (1.3-9) we observe that the integral on the right side is given by

, oo
e-st

[-s sin at - a cos at]
9 9

s2 + a2 0

Evaluation of this term for t = °° and t = 0 yields the solution — - — as given in Table 1.17-1.
s2 + a2

Example 1.17-2. Solve the following second order differential equation
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^ + » * 1 h = f ( t )

dt2 X dt X2

subject to the conditions h = 0 at t = 0 and ^ =0 at t = 0.

Using Table 1.17-1, we determine the following Laplace transform

^ 4 -» s 2 H(s)-sh(0)-h ' (0) = s2H(s) (1.17-21a,b)
dt2

f -> sH(s)-h(0) = sH(s) (1.17-21c,d)

dt

h -» H(s) (1.17-22a)

f(t) -> F(s) (1.17-22b)

Substituting into Equation (1.17-20) yields the following algebraic equation

s2H(s) + a§- H(s) + ^ = F(s) (1.17-23)
X X2

Solving for H(s), we obtain

TT/ , X F(s)
H(s) = ^ — (1.17-24)

1 +a>-s + X, s2

To invert H(s) requires knowledge of F(s) and therefore of f(t). For the simplified case where
c

f(t) is assumed to be a constant, say c0 , F(s) equals -^ .

Equation (1.17-24) can then be written as

H(s) = ^ 2 = ^ Q (1.17-25a,b)
s (1 + aX,s + X2s2) 5 ( 8 - 5 ^ ( 8 - 8 2 )

where s{ 2 = l-aX±X V(a2-4J \/2X (1.17-26)

This can be further expressed in terms of partial fractions, which are easier to invert. That is

(1.17-20)
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H(s) = A + _ B _ + _ O _ (1.17-27)
S S — Si S — So

We determine the constants A, B and C by multiplying Equation (1.17-27) respectively by (s - s2),
(s - S|) and s and setting in turn s = s2, s = s1 and s = 0. This leads to

C = (s - s2) H(s) | = C° (1.17-28a,b)
i S2 vs2 "" s\)

B = (s-Sl)H(s)| = C° (1.17-29a,b)
s l *• 1 "" 2^

A = s H(s) | s = 0 = ^ (1.17-30a,b)

Equation (1.17-27) becomes

»2 2 2

H(s) = A ^ L + . A 'o -+ . ^ ^ (1.17-31)
S Sj S2 Sj (Sj - S 2 ) ( S - S j ) S2 ( S 2 - S j ) ( S - S 2 )

Inversion results in h (t) which is given by

2 2 2

h(t) = ^ o + A °o e 5 ' ^ ^ C° es^ (1.17-32)
s l S2 s i (si ~ S2^ S2 (S2 ~ S F

The behavior of h(t) depends on the values of Sj and s2 and therefore on the values of a and X

[see Equation (1.17-26)].

In particular, if a > 2, Sj and s2 are real and h changes with t in a non-oscillatory fashion. If

a < 2, Sj and s2 are complex and one has an oscillatory response (see Section 1.16 iii). For

a = 2, a critically damped response is obtained.

Example 1.17-3. Solve the kinetic expression given by Equation (1.14-18), subject to the condition
cB = 0 at t = 0, by Laplace transform. Invert using convolution.

The Laplace transform of the equation is

sCB(s) + k2CB(s) = k j c ^ j ^ ^ ) (1.17-33)
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k c
CB(s) = , 1WA° , N (1.17-34)

B W (s + k1)(s + k2)

Using convolution (Equation 1.17-7), we write

cB(t) = klCAo f ' e ^ ^ e - ^ d u (l.l7-35a)
Jo

I -k,t-u(k9-ki)
= klCA( ) e 1 2 v du (1.17-35b)

Jo

= k1cA()e-kit ( e ^ ^ d u (1.17-350

Jo

- k c e~kll l

= rl \ \ e""(k2"kl) (l-17-35d)
(k2 - ^i) o

yk2~KV (1.14-20)

Example 1.17-4. A slab of a viscoelastic material was at rest and at time t = 0, it is suddenly
sheared by an amount y0, as illustrated in Figure 1.17-2. Determine the shear stress in the material

as a function of time.

We assume the relation between the shear stress (T ) and the shear rate (yv x) to be given by

x +Xx = - u V (1.17-36)
xyx +A0Tyx - n yyx

(I, X.Q are the viscosity and relaxation time respectively, and the dot over the quantities denote

differentiation with respect to time.
The shear is given by

Yyx = Y0H(t) (1.17-37)

Using Equation (1.17-17), we have

Yyx = Tb»(t) ( 1 - 1 M 8 )
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I | 7 1 - 7

yf / /
1 _ 0V V

X

FIGURE 1.17-2 Shear deformation of a slab

Substituting Equation (1,17-38) into Equation (1.17-36), we obtain

Tyx + A < oV = -JLt y0 6(0 (1.17-39)

Taking the Laplace transform of Equation (1.17-39) and assuming that t = 0 at t = 0, we get

Tyx(s) + V T y x ( s ) = -^Yo (1.17-40)

T (s), the Laplace transform of x , is given from Equation (1.17-40) by

T (s) = = ^ 2 (1.17-41)
X0(s + l/X0)

The inverse of T (s) can be seen from Table 1.17-1 to be

tyx(t) = ^ ^ e~t/X° (1.17-42)
Xo

Thus the shear stress decays to zero exponentially.
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1.18 SOLUTIONS USING GREEN'S FUNCTIONS

The Green's function method is a powerful method to solve boundary value problems and can be used
not only for ordinary differential equations but also for partial differential equations and integral
equations. Our purpose in introducing the Green's function now is to show the generality of the
method. Once a Green's function has been obtained for a given operator and a set of boundary
conditions, then the solution to the boundary value problem can be written as an integral. Thus the
Green's function is equivalent to the integrating factor in the first-order equation.

The solution of a non-homogeneous boundary value problem can be obtained if the Green's function
G is known for the homogeneous equation.

The solution of Equation (1.16-1) with Q(x) replaced by f(x), subject to the conditions y = 0 at
x = xQ and x = Xj can be written as

Py(x) = G(x,t)f(t)dt (1.18-1)

where G (x, t) is the Green's function for this problem.

The Green's function is a function of two variables, x and t. In Equation (1.18-1), we integrate with
respect to t so as to obtain a solution y at point x. This requires that during the process of
constructing G, we regard the differential equation which G has to satisfy, as a differential equation
in t. The boundary conditions will be applied at t = x0 and t = Xj .

The Green's function for any x has to satisfy conditions such as

i) G(x, t) is a solution of the homogeneous Equation (1.16-4), except at t = x. That is to say

d_G_ + AdG_ + BG = o (1.18-2)

dt2 d t

ii) G satisfies the boundary conditions. That is G = 0 at t = xQ and t = x1.

iii) G is continuous at t = x. That is

G = G (1.18-3)
t= x_ t= x +
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iv) The first derivative is discontinuous at t = x.

dG - dG = 1 (1.18-4)
d t t=x+ d t t=x_

More generally, this difference equals the reciprocal of the coefficient of the highest derivative
in Equation (1.18-2).

v) G is symmetric.

G(x, t) = G(t, x) (1.18-5)

Example 1.18-1. Solve the equation

d2v
H r + Y = f(x) (1.18-6)
dx2

subject to y (0) = y (1) = 0 and identify the Green's function.

The solution to the differential equation is given, in general, by Equation (1.16-6). Having obtained
the solution to Equation (1.18-6), it will be possible to deduce the Green's function for the operator

d2L = \- 1. We can then show that the Green's function satisfies conditions (i to v). Having
dx2

obtained the Green's function allows us to write down the solution to Equation (1.18-6) for any f (x).

The solution to the homogeneous equation is

yh = Cj cos x + c2 sin x (1.18-7)

The particular solution yp can be obtained via the method of variation of parameters, as follows. We

try a solution of the form

yp = a (x) cos x + b (x) sin x (1.18-8)

where we replace the constants Cj and c2 by functions of x.

We then calculate

yp = -a(x) sin x + b(x) cos x + a'(x) cos x + b'(x) sinx (1.18-9)
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Note that yp has to satisfy Equation (1.18-6). However, yp contains two unknown (arbitrary)

functions, a(x) and b(x). One should realize that on substituting yp and yp in Equation (1.18-6)
one generates only one equation to determine the functions a(x) and b(x). It becomes therefore
necessary to impose one additional condition. Such a condition should be chosen to simplify the
problem. The obvious condition is

a'(x) cos x + b'(x) sin x = 0 (1.18-10)

Next, we compute yp

yp = -a ' (x)sinx + b ' (x)cosx-a(x)cosx-b(x) sin x (1.18-11)

Substitution into Equation (1.18-6) yields

- a ' (x) sin x + b1 (x) cos x = f (x) (1.18-12)

We can now use Equation (1.18-10) to replace a'(x) or b'(x). Replacing b1 (x), Equation (1.18-12)
becomes

2
- a ' ( x ) s i n x - a ' ( x ) ^ _ ^ = f(x) (1.18-13)

sin x

which reduces to

a'(x) = -f(x)sinx (1.18-14)

Integration yields

r
a(x) = - f(t)sintdt (1.18-15)

As in Equation (1.3-1), t is a dummy variable.

Also, from Equation (1.18-10), we have

= - a ' W c o s x
sin x

On integrating, we obtain

(1.18-16)
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[x (1.18-17)
b(x) = f(t)costdt

The constants Cj andc2 can be determined from the boundary conditions.

We note that when f(x) = 0, a' = b'=O. That is, a and b are constants (say Cj and c2 respectively)
and we obtain yh.

In other words, introducing Cj and c2 as limits of integration in Equations (1.18-15, 17) will

generate a solution yp which in fact includes yh. A similar situation was encountered in Example

1.14-3.

Thus the general solution of Equation (1.18-6) may be written as

r r
y = - c o s x j f(t)sintdt + sinx I f(t)costdt (1.18-18)

)cx h2

The boundary condition y = 0 at x = 0 implies

r
0 = I f(t)sintdt (1.18-19)

which leads to Cj = 0.

Imposing the boundary condition at x = 1 yields

0 = - c o s ( l ) l f(t)sintdt + sin(l) I f(t)costdt (1.18-20)
;o Jc2

This may be written as

I1 \l° I1
0 = - c o s ( l ) | f(t)sintdt + sin(l) f ( t ) c o s t d t + | f(t)costdt (1.18-21a)

JO Jc2 JO

C C 1°
= - cos (1)1 f(t)sintdt + sin(l) f(t) cost dt +sin (1)1 f(t)costdt (1.18-21b)

JO JO Jc2
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, 1 , 0

f(t) sin (1-t) dt + sin (1) I f(t)costdt (1.18-21c)
Jo Jc2

Thus

f(t)costdt = --r-J— f(t)sin(l-t)dt (1.18-22)

Jc2 Sm(1) Jo
Recall that we are in the process of determining G, in order to write the solution as in Equation
(1.18-1). To achieve this, we wish to determine G in two regions: t < x and t > x , because G has
several properties to satisfy at the points t = x_ and t = x + .

Thus we write Equation (1.18-18) as

y (x) = -cos x I f(t) sint dt + sin x I f(t) cost dt + I f(t) cost dt (1.18-23)
Jcx )c2 JO

Combining Equations (1.18-19, 22), we obtain

r r il
y (x) = -cos x f (t) sint dt + sin x f (t) cost dt - -^Z- f (t) sin (1 - t) dt (1.18-24a)

Jo Jo s i n ( 1 ) Jo
r c

f(t)sin(x-t)dt--Su^- f(t)sin(l-t)dt (1.18-24b)
Jo sm(1) Jo

r • \r fl
= \ f(t)sin(x-t)dt-4mjV f(t)sin(l-t)dt+ f(t)sin(l-t)dt (1.18-24c)

Jo Sm(1) [Jo Jx

c r • tl
f (t) sin(x-t) dt - -MUL- f (t) sin( 1 -t) dt - - ^ ^ f(t) sin(1 -t) dt (1.18-24d)

Jo S i n ( 1 ) Jo S i n ( 1 ) Jx

= 1 f (t) [ sin(1^ s"1^-1) ~ s in x s i n ( 1 — 0 "I d t I [ f(t) sinx sin(l-t) 1 d l g

J o L sin(l) J J x [ sin(l) j
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= ( X f ( t ) [ s i n t s i n ( x - l ) d t l d t + fl r s i n x s i n ( t - l ) l d t ^
Jo L sin(l) J ) x [ sm(l) J

y(x) = I f(t) G(x, t) dt (1.18-1)

where G (x, t) is the Green's function and is given by

/s i rU^inCx^) Q ^ x

sin(l)
G(x, t) = (1.18-25a, b)

sinx s in( t - l ) Y < t < 1

sin(l)

From Equations (1.18-25a, b) we can deduce that G satisfies conditions (iv, v) given earlier. In
particular, we deduce that

r 1 _ cosx s in(x- l ) n is o&»\
G t=x_" sinTI) ( L 1 8 ' 2 6 a )

G . = sinx cos(x-1)
t=x+ sm(l)

and

G' - G1 = sinx cos ( x - 1 ) - c o s x sin (x -1 ) = { ^
t= x + t=x_ sin(l)

The solution to the problem therefore is given by Equation (1.18-1) where G(x, t), which is
independent of f (t), is given by Equation (1.18-25a, b). As mentioned earlier, the solution of
Equation (1.18-6) can now be determined for any f (x), via Equations (1.18-25a, b). The boundary
conditions will be satisfied automatically. The Green's function can of course also be constructed
from the condition given by Equations (1.18-2 to 5). This exercise is addressed in Example 1.18-2
and in Problem 37b.

The Green's functions for several frequently used operators and boundary conditions are given in the
following table. The boundaries in Table 1.18-1 are all chosen to be x = 0 and x = 1. That is to say,
the solution to a given problem is to be written as in Equation (1.18-24f) where the appropriate
function G(x, t) should be chosen from the right side column in Table 1.18-1.
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TABLE 1.18-1

Green's Functions

Operator L(y) Boundary Conditions G (x, t)

l . y" y(O) = y(l) = O t ( x - l ) , x > t
x ( t - 1), x < t

2. y" y(O) = y'(l) = O - t , x > t
-x , x < t

3. y" + A2y y(0) = y(l) = 0 sin At sin A (x - 1)
A sin A

sin Ax sin A (t - 1)
A sin A

4. y" -A 2 y y(0) = y(l) = 0 sinh At sinh A (x - 1) ^ ^
A sinh A

sinh Ax sinh A (t - 1)
A sinh A

Example 1.18-2. Consider the transverse displacement of a string of unit length fixed at its two
ends, x = 0 and x = 1. If y is the displacement of the string from its equilibrium position, as a
result of a force distribution f(x), then y satisfies

- T ^ - =f(x) (1.18-28)

dx2

where T is the tension in the string.

The boundary conditions are

y(0) = y(l) = 0 (1.18-29a,b)

We now construct the Green's function for the operator
,2

L(y) = y " = - 5 - (1.18-30a,b)
dx2
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Since G has to satisfy

d2G ft

- ^ - = ° (1.18-31)

G (x, t) is given by

G(x, t) = C!(x) + c2(x)t , t < x (1.18-32a)

= c3(x) + c4(x) t , t > x (1.18-32b)

Applying the boundary conditions on t yields

Cj = 0 (1.18-33a)

c3 + c4 = 0 (1.18-33b)

The continuity condition implies

xc2 = c3 + xc4 (1.18-34)

The jump discontinuity can be expressed as

c 4 - c 2 = 1 (1.18-35)

From Equations (1.18-33 to 35) we can solve for c1 toc4. The result are

Cj=O, c2 = ( x - l ) , c3 = - x , c4 = x (1.18-36a,b,c,d)

Thus G (x, t) is given by

G(x,t) = t ( x - l ) , t < x (1.18-37a)

= x ( t - l ) , t > x (1.18-37b)

which is given in Table 1.18-1.

The displacement y at any point x is then given by Equation (1.18-1) as

/•I
y(x)= - | G(x,t) ^ dt (1.18-38)

Jo
As an example, we can consider f (x) to be an impulsive force. That is to say, the force acts at one
point only, say at x = £. Thus f(x) will be zero every where except at the point x = £, where it is
not defined. Mathematically f(x) can be represented by the Dirac delta function 8. We write f(x) as
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f(x) = 5 ( x - 5 ) (1.18-39)

The delta function is not an ordinary function but it can be regarded as a limit of a sequence of
functions. An example of such a sequence is

lim - U e x p - ( M 2 = 5(x) (1.18-40)
e->0 VTCE L v e ;

An alternative approach, introduced by Schwartz (1957), is to consider the Dirac delta function as a
functional or distribution, given by Equations (1.17-14c). Both approaches produce equivalent
results. The main properties of the Dirac delta function are given in Section 1.17.

Combining Equations (1.18-38, 39), we obtain

y(x) = - f ' G ( *-" T 5 ( -^d. (,,8-4^)
Jo

- 5 % i 2 (U8-4,b)

Equation (1.18-41b) provides a physical interpretation of the Green's function. G represents the
displacement at x due to a point force applied at "t,.

1.19 MODELLING OF PHYSICAL SYSTEMS

In order to generate the equation(s) representing the physical situation of interest, it is useful to proceed
according to the following steps.

1. Draw a sketch of the problem. Indicate information such as pressures, temperatures, etc.

2. Make sure you understand the physical process(es) involved.

3. Formulate a model in mathematical terms. That is to say, determine the equation(s) as well as
the boundary and/or initial condition(s).

4. Non-dimensionalize the equation(s). This may reduce the number of variables and it allows for
the identification of controlling variables such as, for example, a Reynolds number. It also
allows one to easily compare situations which are dimensionally quite different. For example,
one can compare flow situations in pipes of small to very large diameters in terms of a
dimensionless variable £, = £ which will always vary from 0 to 1.

R
5. Determine the limiting forms (asymptotic solutions).
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6. Solve the equation(s).

7. Verify your solution(s)! Do they make sense physically? Do all terms have the same
dimensions?

As a first example, we consider the flow of a Newtonian fluid in a pipe. We can imagine thin
concentric cylindrical sheets of liquid sliding past each other. Figure 1.19-1 illustrates the problem
which is to be modelled subject to the following assumptions

- steady-state flow;

- laminar flow: Re = —̂——— < 2100 and vz is a function of r only;

- the fluid is incompressible: p = constant;
- there are no end effects; that is, the piece of pipe of length L which we are considering is located

far from either end of the pipe which is very long.

< i

FIGURE 1.19-1 Flow in a pipe with associated velocity profile vz (r)
and shear stress profile xrz
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Cylindrical coordinates are used since the geometry of the problem is cylindrical. This makes it
mathematically easier (less calculations) to apply the boundary conditions.

The differential equation representing this physical situation is obtained by applying a momentum (or
force) balance on a shell of thickness Ar. The balance is given as follows

/ rate of z \_l rate of z \ + [net sum of forces] _ Q Q 19-1)
vmomentumin/ Imomentum out/ I in z-direction / "

The right side of Equation (1.19-1) is zero because of the steady-state assumption (no accumulation!).
Analyzing the problem, one has to realize that z momentum is transported according to two
mechanisms: (i) by convection due to bulk flow, and (ii) by viscous (molecular) transport. The forces
acting on the system (cylindrical shell of thickness Ar and length L) are: (i) the pressure force in the
z-direction, and (ii) the z-component of the gravity force.

The individual contributions making up the force balance are

a) z-momentum in by convection at z = 0.

This contribution is obtained by multiplying the volumetric flowrate associated with the
appropriate area (27trAr), with pvz. That is

z-momentum in

(vz27crAr)pvz|z = o

by convection at z = 0

b) Similarly we write

z-momentum out

(vz27trAr)pvz|z = L

by convection at z = L

Note that the quantities 2, n, r, Ar and p are not changing. Since the flow is laminar, vz

is not going to change with z so that the net contribution to the force balance of the z-
momentum associated with convection is zero.

c) z-momentum in by viscous transport at r.

This contribution is obtained by multiplying the shear stress xrz (force per area) by the
appropriate area (2 TtrL). That is

z-momentum in
Trz(27crL)|r

by viscous transport at r
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d) Similarly we write

z-momentum in
Tr z(27irL) | r + A r

by viscous transport at r + Ar

Note that since we are dealing with a Newtonian fluid, the shear stress t rz is given by

dv^
XfZ ^ dr (1.19-2)

dv
vz is a function of r, otherwise —-̂  would be zero. The Newtonian viscosity |I is constant

and therefore the left side of Equation (1.19-2) has to be a function of r and we will have a net
contribution from the z-momentum by viscous transport to the force balance.

e) The contribution from the pressure force is obtained by multiplying the pressure (force per
area) at z = 0 (Po in Figure 1.19-1) by the appropriate area (27trAr). That is

pressure force at z = 0 PQ (27trAr)

f) Similarly we write

pressure force at z = L PL (27rrAr)

g) The z-contribution to the force balance due to the gravity acting on the system (shell) is given
by the weight of the fluid in the shell. That is, the volume (2rcrArL) multiplied by pg and by
cos a (z-contribution)

gravity force (27trArL) pg cos a

Note that L cos a = h0 - hL, the difference in height of the positions at z = 0 and z = L in
Figure 1.19-1. The gravity force can therefore be written as: 2nr pg (h0 - hL) Ar.

Substitution of the terms in c), d), e), f) and g) into the force balance yields

t r z (27crL) | r -x r z(27trL) | r + A r+(P0-PL)27crAr + 27crpg(h0-hL)Ar = 0 (1.19-3)

We can divide Equation (1.19-3) by 2ftLAr to obtain

[ ^ - ^ U A , J g ^ ) r + rpgKz!!L) = 0 (1.19.4)
Ar L ' ^ L '

Note that we did not divide by r. We established earlier that Trz is a function of r.
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We are in the process of setting up a differential equation relating xrz to r! Recall that the derivative
of a function y = f(x) with respect to x at the point x = x0 is defined by

f(xo + Ax)-f(xo) Ay df
lim — = lim -^- = (1.19-5a,b)

Ax->0 Ax Ax->0 AX dx

In Equation (1.19-4), we have a term involving the quantity r Trz | r - r t r z | r + A r , that is, rxrz initial

(at r) - rxrz final (at r + Ar), so that we are dealing with -A(rxr z) .

Taking the limit for Ar —> 0 of Equation (1.19-4) yields

Urn ( r T r z l r - r T r Z l r + A r | +j_ [(p P ) + P g ( h 0 - h L ) ] = 0 (1.19-6)
Ar->0 \ Ar / L

or via Equation (1.19-5)

- ^ ( ^ J + r ( I P ^ P L ) = 0 (1.19-7)

Equation (1.19-7) is the desired differential equation with the potential F defined by

IP = P + pgh (1.19-8)

So the potential at z = 0 is given by: F o = Po + pgh0 and the potential at z = L is: P L = PL + pghL.

/F - tP \
Note that the potential drop per length I—2-——I becomes the pressure drop per length when

h0 = hL (horizontal flow).

The differential Equation (1.19-7) is solved as follows, to yield the linear shear stress profile shown in
Figure 1.19-1.

£<riy = r(^L) (1.19-9)

I d(ny = I r(^i)dr (1.19-10)

, ^ - £ ( ^ ) + C l d.19-11)

V^f^L)^ (1.19-12)



70 _ _ ADVANCED MATHEMATICS

To evaluate Cx, we look at the physical situation for r = 0. We cannot accept an infinitely large force
(per area). Therefore Q = 0 and Trz is a linear function of r.

\z = § Px^) (1.19-13)

dv
The velocity profile is obtained by replacing the left side of Equation (1.19-13) by -fi —£ . The

minus sign is as a result of following the convention by Bird et al. (1960).

We now have a differential equation relating vz to r given by

This equation is solved as follows

\dv*" " F i ^ ) Irdr (119-15)

^ - ( ^ M T ^ (U9-I6)

The physics of the situation allows us to assume that the velocity is zero at the wall. That is, vz = 0 at
r = R. Applying this to Equation (1.19-16) allows us to evaluate the integration constant C2.

° = -(^)f+c^ " 1 9 - 1 7 >
So

H ^ M R 2 (ii9-i8)
Substitution into Equation (1.19-16) yields

Vi = |?ci)R'Jti|r> (L19.19)

That is, vz is related to the square of r (a parabola as in Figure 1.19-1).

The relation for vz is usually written as

(1.19-14)

(1.19-20) 
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Note that the maximum velocity occurs at the center of the tube. That is, at r = 0.

The average velocity (vz) is obtained by dividing the flow rate by the cross-sectional area, as follows

e2n /-R

I v rd rdG
<vz) = *>-» (1.19-21)

I r dr d6
Jo Jo

The denominator yields n R2, as it should. The numerator is the product of a point velocity (vz) and

an infinitesimal area (r dr d0). Integrating this product yields a flow rate, as it should.

Combining Equations (1,19-20, 21) yields

= \ 4,0. ) h 1 lR>] (1 19_22)

TCR2

We introduce a dimensionless variable £, = £•. The integral can then be written as
R

I (l-^2)^d^ = l (1.19-23)
Jo

The constant R2 necessary to non-dimensionalize r dr is obtained from the denominator.

Note also that the limits of integration have to be adjusted according to the newly introduced variable
£. Indeed, as the upper limit goes to R, the new variable £, goes to one. The lower limit remains
unchanged.

Note that this integral is now independent of R and is valid for pipes of any radius. Equation

(1.19-22) reduces to

Example 1.19-2. As a second example, we consider the flow of a non-Newtonian fluid in a pipe.

We will assume the fluid to obey the power-law. That is to say

\z = - ^ | n a-19-25)

(1.19-24a,b)
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At this point, one should realize that Equation (1.19-13) is still valid. In fact, it is valid for any fluid,
since no assumption as to the type of fluid has to be made to derive the shear stress distribution. We
now proceed by computing the velocity distribution. Equation (1.19-13) now becomes

/dv \
and the shear rate —— is given by

Integration yields the velocity profile.

vz = i^f^f11 | -r1/n dr (1.19-28a)

(p _ p \1/n _ r l / n + l \

- f en TTT +C2 <119"28b)
n /

The constant C2 is obtained, using the same (no slip) boundary condition as in Example 1.12-1, and

the velocity profile is

Note that for n = 1, the power-law fluid reduces to the Newtonian fluid. That is to say, Equation
(1.19-29) reduces to Equation (1.19-20).

The average velocity is obtained by substituting Equation (1.19-29) into Equation (1.19-21), following
the procedure given in Example 1.19-1.

1 + 3 2\iL J
n

(1.19-26)

(1.19-27)

(1.19-30a)

(1.19-30b)

(1.19-29)
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We are now in a position to compare the velocity profiles in dimensionless form and to evaluate
y

asymptotic behavior, as n tends to zero and to infinity. To achieve this, we plot j-^-r versus —.
\vz) R

Dividing Equation (1.19-29) by Equation (1.19-30c) yields

i = 2a±jJi_(i.)1/n+1] (L19-31)
(vj n + 1 [ lR) J v '

Different values of n yield different profiles. The ones of interest are tabulated in Table 1.19-1 and
are shown in Figure 1.19-2.

TABLE 1.19-1

Velocity profiles

n Vz

r -, (l, 0<JL< 1

0 1 l-(if = R

\ R

2['-(it)2

We note that for n = 1, we obtain the Newtonian result (parabolic profile). The asymptotic solutions
(linear profiles) are obtained for n = 0 and n = <x>. These profiles are illustrated in Figure 1.19-2.
For n = 0, the slope is zero and for n = °°, we obtain a maximum slope of 3. For intermediate
values of n, the slope must lie between 0 and 3. In practice, n is usually between 0 and 1 and the
observed velocity profiles are indeed more blunt than the Newtonian one.

In this example, we continued to use parameter \JL as in Example 1.19-1. However, note that the
dimensions of ji depend on n and jx has the same dimension in both examples when n = 1.
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/An = oo

— / V-n=i
<v"z> 2 - l/^<&

I / n=o \

0 _r I

R

FIGURE 1.19-2 Dimensionless velocity profiles

PROBLEMS

1 a. Differentiate the following functions with respect to x

(i) arc sin x

(ii) arc cos Vl -x2

(iii) in (x2 in x)

Answer: (i) and (ii) l/V 1 - x2

(iii) (1 + 2 / e n x ) / x i n x

2a. The circumference C and the area A of a circle of radius r are given respectively by

C = 2rcr, A = 7tr2

Use the chain rule to compute ^ . Answer: r

3b. If y = e " a x / ( l - x)°\ where a is a constant, show that

(1 -x)-p- = ocxy
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Use Leibnitz rule to show that

( l _ x ) y ( " + l ) _ ( n + a x ) y W _ n a y ( n - l ) = 0

where y ^ = —— .
dxn

4a. Find the limit as x —> 0 of the following functions

(i) S i ^ (ii) xcosjc ( i i i ) ^ 1 (iv ) xx
w x w sinx v ; sinhx v '

(Hint: in (iv), take in) Answer (i) to (iv): 1

5a. Use Taylor's theorem to obtain an expression for cos x about x = n/2. Find the remainder
term if only the first three terms are retained. What is the maximum error if we use the
expansion you have derived to compute the value of cos x in the interval n/4 < x < 3n/4 ?

6b. The viscosity r\ of a non-Newtonian fluid is an even function of the shear rate 7. If 7 is

small, such that "y4 and higher powers of 7 can be neglected, express TJ as a polynomial in

7, using Maclaurin's expansion. If it is known that r\ is given by the rational function

a + bY2

Tl = —
1 + c 7 2

write down the coefficients of the expansion you have obtained in terms of a, b, and c.

7 a. Integrate the following

(i) I xexdx (ii) I cos(inx)dx (iii) I xVx2+l dx

(iv) I e x s ine x dx (v) f 2x2 + x + 1 - dx
J ) ( x - l ) 2 ( x + 3)

r 1 1 / i\ 3/2
Answer: (i) ex (x - 1); (ii) ^[cos ( in x) + sin ( in x)j ; (iii) Ml + xzj

(iv) - cos ex ; (v) i n (x2 + 2x - 3) - (x - I)"1

8a. Sketch the curve y = cos x in the range 0 < X < T C . Find the area of the region enclosed by
y = cos x, the x-axis, x = 0, and x = K.
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9b. The area of the surface of revolution S obtained by rotating the curve y = f(x) about the
x-axis from x = a to x = b is given by

8 = 2)1 y V " + I f d x
J a

Compute S for y = e~x, 0 < x < ° ° . Answer: n (V2 + sintr1 1)

10a. Find fx, fy, fxy for the following functions

(i) f(x, y) = x 3 - x 2 y 2 + y3

(ii) f(x,y) = in( X 2 + y2)

(iii) f (x, y) = x cos y + y sin x

l ib . The pressure P, volume V, and temperature T for 1 mole of an ideal gas are related by the
equation

PV = RT

where R is a constant.

Find the change in volume if both the temperature and pressure are increased by 1%.

12b. The temperature T in a body is given by

T = T 0 ( l + a x + by)ecz

where a, b, c, and To (> 0) are constants. Find the rate of change of T along x, y, and
z-axes at the origin. In addition, find the direction in which the temperature changes most
rapidly at the origin.

. (a, b, c)
Answer: n = - —

Va2 + b2 + c2

13 a. Show that if the independent variables x and t are changed to
t, = X + Ct, Tl = X-Ct,

the wave equation
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a2u 2a2u
= c , c is a constant,

3t2 3x2

is transformed to

35 an
dy

14a. Compute —^ if
dx

y2 - sin xy + x2 = 4 .

15 a. The pressure P, the volume V and the temperature T are given by

|p + -0LJ(V-p) = RT

where a, (3, and R are constants. This is the Van der Waals' equation.

„ 3T , 9 V
Compute ^p- and -^ .

16b. The volumetric flow rate Q of a non-Newtonian fluid in a circular tube of radius R is given
by

Q(R,xR) = ^ [ R Y r z t r 2 z d t r z

TR JO

where t R and t r z are the shear stress at the wall and at any point in the tube respectively, y ^
is the shear rate, which is a function of the shear stress. By differentiating with respect to i R ,

show that the shear rate at the wall YR is given by

y = J M 3 Q + dQ-l
TtR3 k d t J

Also, show that the viscosity r\ (yR), which is defined as the ratio of the shear stress to the
shear rate, can be written as
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(Q/TCR3) L d(inTR)

The above result is known as the Weissenberg-Rabinowitsch equation.

17 a. Determine the order and degree of

2

(i) ^ + 3 ^ = cosx (ii) ( y ' ) 2 - x y ' = 0
dx2 d x

18a. Verify that e~2x (cj cos x + c2 sin x) is a solution of y " + 4 y' + 5y = 0.

19a. Solve the following separable first-order differential equations

3
(i) x2 dx + 3y3 dy = 0 Answer: — = - ^ y4 + c

(ii) xydx + V l - x 2 d y = 0 Answer: y = c e ' ' " x

(iii) y' = s i n x (given that at x = n, y = -̂1 Answer: sin y = - cos x
cos y \ 2 '

20b. In a constant-volume batch reactor, the rate of disappearance of reactant A can be given by

^ - kCn
dt " ~ k C A

Solve for CA given that CA = CA o at t = 0. Discuss the obtained result for the cases n >1

and n < 1.

î

21b. In the reversible chemical reaction A _̂ B + C , the amount of component A, broken

down at time t is represented by %.

^ = k 1 ( A 0 - X ) - k 2 X 2

with Ao representing the initial concentration of chemical A.

Assuming the rate constants kj and k2 to be related as follows: kj = —- k2 , show that
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given the initial condition that % = 0 at t = 0.

22a. Solve the following homogeneous first-order differential equations

(i) (x + y) dx + x dy = 0 Answer: x2 + 2 x y = c

(ii) x dy - y dx = Vx2 + y2 dx Answer: y + Vx2 + y2 = c x2

(iii) (2 VST - S) dt + t dS = 0 Answer: t exp i /^" = c

23b. A mixture of liquids A and B is boiling in a vessel. The volumes of the components are
VA(t) and VB(t). At t = 0, the initial volumes are VA(0) and VB(0). The evaporation of
component A is proportional to the volume VA (t) of A.

That is to say, — ^ - = -a VA(t)
dt

The evaporation of component B is related to the evaporation of component A as follows

£M> , 1M> _ pvB(.).
dt dt H B W

Show that

p i n vA(t) = a i n [«VA(t) + (P-«)vB(t)'
V A(° ) [a VA(0) + (p - a) VB (0)

24a. Solve the following reducible first-order differential equations

(i) (y - 3x) dy + (y - 3x + 2) dx = 0 Answer: 2 (y + x) - i n (2y - 6x + 1) = c

(ii) (2y + x + 1) dx = (2x + 4y + 3) dy Answer: 4x - 8y - i n (4x + 8y +5) = c

25a. Solve the following exact first-order differential equations

(i) x dx + y dy = (x2 + y2) dy Answer: i n (x2 + y2) = 2y +c

(ii) y exy dx + x exy dy = 0 Answer: exy = c

26a. Solve the following linear first-order differential equations
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0) y ' + ^ y = x ; y(l) = O Answer: y = ]- (-x~2 + x2)
A 4

(ii) y' - 7y = ex Answer: y = c e7x - — ex

6

27b. Viscoelastic behavior can be described via a Maxwell model given by

where Tyx is the shear stress, Yyx is the shear rate, \i is the viscosity, and Xo is the

relaxation time. Show, using the appropriate integrating factor that the Maxwell model can be
written as

x = _ \]L e-(l- OAol y ( t ' ) d t -
/ Oo

where the dummy integration variable t' is interpreted as a time in the past. That is, t' < t.

28a. Complete Example 1.14-2 by computing the time evolution of c^. Discuss the particular cases

where k2 » k^ and k 2 « k i .

29b. Solve the following Bernouilli equations

(i) - ^ + 2xy = - x y 4 Answer: y~3 = - l + c e 3 x

(ii) 2 (x2+ 7x - 8) p- + (6x + 21) y = 3 (x + 8)2 y5/3

Answer: y~2/3 = (x + 8) [1 + c ( x - 1)]

30a. Solve the following second-order differential equations with constant coefficients

,— ,— g2x
(i) y " - 4 y ' + 7y = e2x Answer: y = e2x (cjcos V3 x+ C2sin V3 x)+ -—

(ii) y " + 4y = 4 cos 2x Answer: y = (c^ + x) sin 2x + c2 cos 2x

31a. Solve the following differential equations via Laplace transform

(i) y ' ( t ) -5y( t ) = 0 (subject to initial condition y (0) = 2) Answer: y (t) = 2 e5t

(ii) y"(t) + y (t) = 2 (y (0) = 0 and y1 (0) = 3) Answer: y (t) = 2 + 3 sin t - 2 cos t
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32b. Solve the following system of differential equations via Laplace transform

y i = yi + 3y2

y"2 = 4 y 1 - 4 e t

for the following initial conditions: y^O) = 2, y\ (0)= 3, y2(0) = 1 , y2 (0) = 2.

Answer: yj = el + e2t

y2 = e2t

33a. The differential equation, describing the motion of a manometer fluid, subject to a sudden
pressure difference AP = Pa - Pb is given by

d2k 6|i dk 3gk _

d r R2p dt 2L

where k = 2h - A^-
\Pg/

p is the density of the fluid, [i is the fluid viscosity, L is the length of the manometer fluid,
R is the manometer tube radius, and 2h is identified in Figure l.P-33. Determine the relation
between k and t, for a step change in AP, at t = 0. The conditions on h at t = 0 are: h =

0 and ^h = 0.
dt

34a. The differential equation governing the mixing process, illustrated by Figure 1 .P-34, is given
by the following unsteady-state macroscopic mass balance

^ t o t = -Aw

where mtot = V p0 (t) is the total mass, and where w = p Q. Q is the volumetric flow rate
and p is the density.

At steady state, the mass balance reduces to

Wis-wOs = 0

At time t = 0, a step change AWJ is imposed.

Determine wo(t), the mass flow rate at the outlet, using the Laplace transform method.

Answer: wo(t) = (wis + AW i)+ ^ e~5 l (wOs - wi s - Awj)
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P I

FIGURE l.P-33 Motion of a manometer fluid

35a. In Problem 27b, it was deduced that the constitutive equation of a Maxwell fluid can be written
as

v - f f<=-(t-t')A»v<t'>d'1
A Maxwell fluid has been at rest and, at time t = a, a shear of magnitude Yo w a s suddenly

imposed. Using the properties of the Heaviside and Dirac functions, deduce the shear stress
Tyx at time t. Consider separately the cases when t > a and t < a.
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FIGURE l.P-34 Mixing process at constant volumetric flow rate

36b. Solve the differential equation

£ + y = «(.-a)

with y(0)= 1, a > 0 ,

(i) by the Laplace transform method,

(ii) by finding the integrating factor.

Consider the cases t > a and t < a separately. Answer: t > a, y = e~l + ea - t

t < a, y = e-1

37b. Construct the Green's function, needed to solve Equation (1.18-6), by applying the conditions
given by Equations (1.18-2 to 5). That is to say

(i) determine the solution to the homogeneous equation for the cases t < x and t >x;

(ii) use the boundary and continuity conditions to determine the relations which have to be
satisfied by the constants;

(iii) use the jump discontinuity condition of Equation (1.18-4) to determine the remaining
equation needed to solve for the constants that were generated in step (i).
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Then solve Equation (1.18-6) for f (x) = sin x, using Equation (1.18-1).

Answer: -L c o s } sin x - 1- x cos x
2 sin 1 2

38 a. Solve the boundary-value problem

y " _ y = e x , 0<X< 1

y(0) = y ( l ) = 0

by the Green's function method. Choose the appropriate Green's function from Table 1.18-1.
Verify that the Green's function you have chosen satisfies conditions (i) to (v).

Answer : y = — ex - e s m n x
J 2 2 sinh 1

39b. A uniform string of unit length and of mass m lies along the x-axis. Its two ends x = 0 and
x = l are fixed. The tension is T. A periodic force f (x) cos cot is applied to the string. co is
a constant and t is the time. If y is the vertical displacement of the string, then y satisfies
the following equations

o a y d y
cz — = f (x) cos cot

3x2 9t2

C2 = T / m

y(O,t) = y ( l , t ) = 0.

Assume that y is of the form

y (x, t) = h (x) cos cot

and determine the differential equation and the boundary conditions that h has to satisfy.
Solve for h using the appropriate Green's function. Hence determine y for the following f

(i) f(x) = a o 8 ( x - l / 2 j , aQ is a constant and 8 is the Dirac delta function,

(ii) f(x) = x.

40b. A first-order reaction A —> products takes place in a tubular reactor of radius R and length
L in the z direction.

Perform a mass balance over a differential element of thickness Az, to generate the
appropriate expression for the flux NA z defined by Bird et al. (1960).

Differentiate NA z with respect to z to generate Equation (1.16-44).
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41b. In order to accelerate the aeration of a Newtonian fluid, a continuous belt has been introduced
in the fluid reservoir, as shown in Figure l.P-41. The belt has a width W and a velocity V.
The belt transports a laminar film of liquid, up to a wall C as illustrated. As the air penetration
in the liquid film depends on the film thickness, we wish to establish a relation between the
film thickness 8 and the velocity V. Show that this can be done in the following way.

(i) Perform a momentum (or force) balance over a length L to obtain the following shear
stress distribution

t x z = pgxcosp

List all assumptions made.

(ii) Combine Newton's law with this equation and show the velocity profile to be

Vz = _ v + p g c o s P ( g 2 _ x 2 )

(iii) Calculate the flow rate

r f8
Q = vzdxdy

Jo Jo
and deduce from the physics of the situation that

62 = _ 3 M V _

p g cos P

FIGURE l.P-41 Aeration of a fluid
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42b. In the design of spray dryers, one is interested in knowing the time required to solidify the
liquid droplets. Estimate the time tf required to solidify a droplet of radius R if

(i) the droplet is initially at the melt temperature To and the surrounding air is at T^ as

shown in Figure 1 .P-42,

(ii) the heat transfer coefficient h at the solid gas interface is constant,

(iii) the sensible heat required to cool the droplet from To to TM is negligible compared to

the latent heat of fusion.

Perform an energy balance on the solidified spherical portion and show that the temperature
profile is given by

T - T o = R'f1-!-1

T — T 1 1
ls l0 R ^ - R - 1

In performing this calculation, note that the heat flux qr is linearly related to the temperature

gradient ^J. as follows
dr

4 r dr

This is Fourier's law. The constant k is the thermal conductivity.

Show that the heat loss to the surrounding air is given by

9 4 7 t R 2 h ( T n - T j

Given that the heat loss at the liquid-solid interface (Rf) is -pAHf47tRf —j-£, show that the

time required to solidify the droplet is given by

tf = /lRJi+l|[pRAfif
f \6 k S / ^ T o - T j

where AHf is the latent heat of solidification per unit mass.
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FIGURE l.P-42 Solidification of a droplet





CHAPTER 2

SERIES SOLUTIONS AND SPECIAL FUNCTIONS

2.1 DEFINITIONS

In Chapter 1, we reviewed several of the standard techniques used to solve ordinary differential
equations (O.D.E.'s). In particular, we have seen that second order linear differential equations with
constant coefficients admit a solution in the form of an exponential function. Since the derivatives of
exponential functions are also exponential functions, the differential equation reduces to an algebraic
equation [see Equations (1.16-8, 9)]. If the coefficients of the differential equation are not constants,
then the solution is not of an exponential form. In this chapter, we develop methods of solving
O.D.E.'s with variable coefficients. As in Chapter 1, we consider second order O.D.E.'s. Higher
order O.D.E.'s can be solved by the same method.

A second order O.D.E. can be written as

a2(x)y" + a1(x)y' + ao(x)y =a(x) (2.1-1)

where a2 (x) * 0 and ' denotes differentiation with respect to x.

Equation (2.1-1) can be written in standard form as

y " + p 1 y 1 + p 2 y =b (2.1-2a)

where pj = aj /a2 , p 2 = aQ/a2, b = a / a 2 (2.1-2b,c,d)

We recall that if b is zero, Equation (2.1-2a) is homogeneous. The solution of Equation (2.1-2a) can
be written as

y = yh + yP (2-i-3)

where y^ is the homogeneous solution and yp is the particular integral. If b is zero, we have only
the homogeneous solution. The particular integral (or particular solution) is usually obtained by the
method of variation of parameters which is described in Example 1.18-1 and Section 2.5.

The solution of the homogeneous equation in the neighborhood of a point x0 is assumed to be given
by a power series in (x - x0). The form of this series depends on the nature of the point xQ. The
point x0 is an ordinary point if both pj and p2 are analytic at the point xQ. We recall that a
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function f(x) is analytic at x0 if its Taylor series about x0 exists. That is to say, f(x) can be

represented by the series

oo

f(x) = X an(x-x0)n (2.1-4a)
n=0

an = f ( n ) (x 0 ) /n! (2.1-4b)

If one or the other (or both) coefficients (pi,P2) is not analytic at x 0 , xQ is a singular point.
From Equations (2.1-2b, c), it can be seen that if a2(x0) is zero and either â  (x0) or a o (x o ) is
non-zero, then x0 is a singular point.

Example 2.1-1. Analyze the following equations for ordinary and singular points.

i) y " + x y ' + ( x 2 - 4 ) y =0 (2.1-5a)

ii) ( x - l ) y " + x y ' + i y = 0 (2.1-5b)

iii) x 2 ( x - 2 ) 2 y " + 2 ( x - 2 ) y ' + (x + l )y = 0 (2.1-5c)

We proceed by evaluating the functions p^, P2, and b and by determining the presence or absence

of singular points.

i) This equation is in standard form and

P! = x , P2 = x 2 - 4 , and b = 0 (2.1-6a,b,c)

These functions are analytic everywhere and all points are ordinary points,

ii) The standard form of this equation is given by

""•TV+M^T)^0 (21-7a)

p-=^T- ^2-3^). «"••» <2-'-™.cd)

Pl is not analytic at x = 1 and P2 is not analytic at x = 0 and at x = 1. The singular

points are therefore at x = 0 and at x = 1 and all other points are ordinary points.

iii) The standard form of this equation is given by

x2(x-2)2 x2(x-2r

(2.1-8a)
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Pj = ^ , p 2 = — ^ ± J — , and b = 0 (2.1-8b,c,d)
x 2 (x -2) x 2 ( x - 2 ) 2

Here, the singular points are at x = 0 and at x = 2.

If x0 is a singular point of the differential equation and (x-xo)pj as well as (x -x o ) 2 p 2 are both
analytic at x0 , x0 is a regular singular point of the differential equation. If not, x0 is an
irregular singular point.

Example 2.1-2. Determine which of the singular points in Example 2.1-1 are regular singular
points, assuming x0 = 0.

i) All points are ordinary points.

x2ii) ( x - x o ) P l = x P l = -?— (2.1-9a,b)
/v J.

( x - x o ) 2 p 2 = x 2 p 2 = ^ y (2.1-9c,d)

Both (x - x0) pi and (x - x0)2 p2 are analytic at x = 0 and therefore x0 = 0 is a
regular singular point.

hi) ( x - x o ) P l = x P l = 2 (2.1-10a,b)
X (A L)

( x - x o ) 2 p 2 = x 2 p 2 = x + 1 (2.1-10c,d)
(x-2)1

xpi is not analytic at x = 0 and therefore xo = O is an irregular singular point.

Note that had we chosen x0 = 2 in part (iii), we would be dealing with

( x - 2 ) P l = ^ and ( x - 2 ) 2 p 2 = £ i i (2.1-1 la,b)
x x

which are analytic at x0 = 2 and therefore x0 = 2 would be a regular singular point.

In this chapter, we use power series extensively and we next summarize their properties.
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2.2 POWER SERIES

The series on the right side of Equation (2.1-4a) is a power series in (x - x0). By translating the
oo

origin to x0, we can write the series as ^ an xn. The series converges at a point x if the
n=0

m
lim 2L an x " e x i s t s a nd the sum of the series is the value of this limit. Every power series

m - > 0 ° n=0

converges at x = 0 and its sum is a0- Not all power series converge for all non-zero values of x.
There are three possibilities: (a) the series converges for all values of x, (b) the series converges for
some values of x and diverges for other values of x, and (c) the series diverges for all non-zero
values of x. We illustrate this situation by the following examples.

00

(a) ]£ x"/(n !) = 1+x + x2/2!+x3/3! + ... (2.2-1 a)
n=o

00

(b) 2L x " = l + x + x2 + x3 + ... (2.2-lb)
n=0

00

(c) £ n ! x n = l + x + 2 ! x 2 + 3 ! x 3 + ... (2.2-lc)
n=0

The first series represents exp (x) and is convergent for all values of x. The second series is a
geometric series and its sum is 1 /(I - x) and is convergent if |x| < 1 and diverges if | x| > 1. The
third series diverges for all values of x (* 0). If a series converges for |xj < R and diverges for
I x I > R, R is the radius of convergence. It is usual to state that R is zero for series that converge
only at x = 0 and R is infinite for series that converge for all values of x. Thus all power series
have a radius of convergence. A series may or may not converge at its radius of convergence.

In many cases, the radius of convergence R can be determined by the ratio test. We recall that the
00

series X un is convergent if the ratio
n=0

lim Hfl±i _ L (2.2-2)
n —> 00 u n

is less than one (L < 1). If L > 1, the series is divergent. No conclusion can be drawn if L = 1.
00

Applying this test to the series ^ an xn, we have (x * 0)
n=0
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a x n + 1 a
l j m tn±l = lim _JI±1 |x| = L (2.2-3a,b)

n—>o° a n x" n— >o° an

Thus if

Urn ^ O - |x| < 1 => |x| < lim - ^ - (2.2-4a,b)
n-> o° an n — an + 1

the series is convergent. If

|x| > lim - ^ - (2.2-5)
" - > - an + 1

the series is divergent. It follows that the radius of convergence R is given by

R = lim - ^ L _ (2.2-6)
n->~ an + 1

The comparison test is another simple method of determining whether a series is convergent or
oo co oo

divergent. If ^ un is convergent, the series ^ vn is convergent if vn < Ku n ; if ^ un is
n=0 n=0 n=0

OO

divergent, the series ^ vn is divergent if v n > K u n for all n and any positive constant K. This
n=0

test can also be stated as follows. If the ratio vn/un tends to a finite non-zero limit as n—> °°, then
oo oo

2_j vn converges or diverges according as ^ un converges or diverges.
n=0 n=0

OO OO

The series ^ 1 /n is divergent and the series j ^ 1 /n is convergent.
n = l n = l

Example 2.2-1. Discuss the convergence of the following power series.

oo oo oo

a) ]Txn/(l+n)2 b) £xn/( l+n) c) £ (x-2)2n/(l + 2n)
n=0 n=0 n=0

.. (2 + n)2 ,. (1+2/n) 2 , ,. _ _ , .
a) R = km — = lim — = 1 (2.2-7a,b,c)

n-> o° (1+n) 2 n~>o° (1 + 1/n)2
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The series is convergent if |x| < 1 and is divergent if |x| > 1. For x = 1, the series
oo oo

becomes jT 1 / ( I + n ) and by comparison with the convergent series ^ 1/n , we
n=0 n=l

deduce that the series is also convergent if |x| = 1.

b) R = Urn f ± J l = 1 (2.2-8)
n —> oo 1 + n

As in a), the series is convergent if | x| < 1 and divergent if | x| > 1. For x = 1, the series
oo oo oo

becomes ^T 1/(1 + n) and since ^ 1/n is divergent, it follows that ^ 1/(1 + n) is also
n=0 n=l n=0

OO

divergent. If x = - l , the series ^ ( - l ) n / ( l+n) is an alternating series. We apply
n=0

oo

Leibnitz's test, which states that for an alternating series j ^ ( - l ) n un, if un > u n + 1 > 0
n=0

and lim u is zero, the series is convergent. In the present example, the series is convergent
n—>~

if x = - l .

c) In this case, we translate the origin and write

x* = x-2 (2.2-9)
oo

The series becomes £ (x*)2n/(l +2n).
n=0

R = lim 3 + 2n _ j (2.2-10a,b)
n —>~ l + 2n

The series is convergent if |x | < 1 or |x - 2| < 1 and is divergent if |x | > 1 or |x - 2| > 1.
In this example x* is raised to an even power and there is no need to separately consider the
cases x = 1 and x = - 1 . To x =1 corresponds x = 1 or x = 3. At both of these

oo

values of x, the series behaves as ^ 1/n and is divergent.
n=0

We make use of the following properties of power series.

oo

If the series ^ an xn converges for | x | < R (R •£• 0) and its sum is denoted by f (x), that is to say
n=0
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oo

f(x) = X anx" (2.2-11)
n=0

the series can be differentiated term by term as many times as is required. The differentiated series
have the same radius of convergence R and converge to the corresponding derivatives of f (x). The
series can also be integrated term by term and the resulting series represents the integral of f (x).

oo oo

If ^ b n x n is another power series with radius of convergence R, the two series ^ a n x n and
n=0 n=0

OO

^ b n xn can be added and multiplied in the same way as polynomials.
n=0

If two power series converge to the same sum throughout their interval of convergence, their
coefficients are equal. Further discussions on power series are given in Chapter 3.

2.3 ORDINARY POINTS

Consider the standard form of the second order O.D.E. as given by Equation (2.1-2a). We seek a
solution in the neighborhood of XQ. Without loss of generality, we can set x0 to be zero. If x0 is
non-zero, we can translate the origin and write

x* = x - x 0 (2.3-la)

In the new variable x , x = x0 corresponds to x = 0 .

If we are required to find the solution at points near infinity, we change the independent variable from
x to Xj and write

X! = 1/x (2.3-lb)

To points near x at infinity correspond to points near Xj at the origin.

The functions pj and P2 are analytic at x0 (= 0) and their Taylor series are

oo

Pi 00 = X PlnX" <2-3"2a)
n=0

oo

P200 = Z P2nx" (2.3-2b)
n=0

where p l n = pf°(O) and p 2 n = p f (0) (2.3-2c,d)
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The homogeneous form of Equation (2.1-2a) can be written as

y"+ X Pmx" yf+ X P 2 « 4 = ° (2-3"3)
\n=0 / Vn=O /

The solution y also has a Taylor series near the origin and y can be expressed as

y = X cnxn (2.3-4a)
n=0

where cn (n = 0, 1,...) are constants.

Differentiating term by term yields

oo

/ = X ^ n ^ " 1 (2-3"4b)
n = l

oo

y" = X n(n-l)cnxn-2 (2.3-4c)
n=2

Substituting Equations (2.3-4a to c) into Equation (2.3-3) results in an equation of the form

k 0 + kj x + k2 x2 + ... + kn xn + ... = 0 (2.3-5)

where kj are known expressions in terms of p^:, P2k , and c^ .

Equation (2.3-5) is true for all x and this implies that each of the kj (i = 0, 1, ... ) is zero. The
recurrence equation (kj = O) allows us to determine cn in terms of pjj and P2j . The next
example illustrates the method of obtaining a series solution.

Example 2.3-1. Obtain the power series solution of

( l + x 2 ) y " + 2 x y ' - 2 y = 0 (2.3-6)

in the neighborhood of the origin.

In standard form, Equation (2.3-6) is written as

y"+ 2 x y' 2 — y = o (2.3-7)
1 + x 2 1 + x 2
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The functions pj [ = 2 x / ( l + x 2 ) ] and p2 [= -2 / (1 + x2)] are analytic at the origin. We seek a
solution given by Equation (2.3-4a) with y' and y" given by Equations (2.3-4b, c) respectively.
For ease of computation, we write Equations (2.3-4a to c) such that the summation index starts from
zero. To achieve this, we write (n = r, n = r + l , n = r + 2) in Equations (2.3-4a, b, c)
respectively. These equations are now written as

oo

y = X CrxI" (2.3-8a)
r=0

OO

y1 = X ( r + l ) c r + 1 x r (2.3-8b)
r=0

OO

y" = ]T (r + 2)(r+l)cr+2xr (2.3-8c)
r=0

To avoid having to expand (1 + x2)"1, we work with Equation (2.3-6) rather than with Equation
(2.3-7). Substituting Equations (2.3-8a to c) into Equation (2.3-6), we obtain

oo

X [(r + 2)(r+l)cr + 2xr + (r + 2)(r+l)cr + 2xr + 2 + 2 ( r+ l )c r + 1 x r + 1 -2c r x r ] = 0
r=0

(2.3-9)

Comparing powers of x, we have

x°: 2 c 2 - 2 c 0 = 0 => c2 = c0 (2.3-10a,b)

x1: 6C3 + 2CJ-2CJ = 0 => c3 = 0 (2.3-10c,d)

x2: 12c4 + 2c2 + 4 c 2 - 2 c 2 = 0 => c4 = -c2/3 (2.3-10e,f)

xs: (s + 2 ) ( s + l ) c s + 2 + s ( s - l ) c s + 2 s c s - 2 c s = 0 => c s + 2 = - ( s - l ) c s / ( s + 1) (2.3-10g,h)

We note from Equation (2.3-10h) that we have a formula relating cs+2 and cs and this implies that
we can separate the solution into an even and an odd solution. That is to say, we obtain c2, C4, eg,
... in terms of c 0 and C3, C5, c-j, ... in terms of Cj. In the present example, C3 is zero and
consequently all the coefficients with an odd index greater than or equal to three are zero. It follows
that the solution can be written as

y = c o [ l + x 2 - x 4 / 3 + x 6 / 5 - . . . ] +CjX (2.3-11)
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where c 0 andcj are arbitrary constants.

•

Note that Equation (2.3-6) is a second order O.D.E and has two linearly independent solutions yj and
y2. The general solution is given by the linear combination of yj and y2. There is no loss of
generality in setting c0 and Cj to be equal to 1. The fundamental solutions y^ and y2 can be
written as

yj = 1 + x2 - x4/3 + x6/5 - ... , y2 = x (2.3-12a,b)

The general solution y is expressed as

y = A y 1 + B y 2 (2.3-13)

where A and B are arbitrary constants.

The general solution of a second order equation involves two arbitrary constants (A and B) and they
are determined by the initial conditions [y (0) and y'(0)] or by the boundary conditions.

In Example 2.3-1, y2 (= x) has only one term and is a valid solution for all values of x. The
solution yi is in the form of an infinite series and is valid as long as the series is convergent. From
Equation (2.3-11), it can be seen that yj can be written as

yx = 1 + x (x - x3/3 + x5/5 - ... ) (2.3-14)

The infinite series is convergent for |x| < 1. At |x| = 1, the series is an alternating series and by
Leibnitz's test, it is convergent. The solution yj is valid for | x | < l .

On expanding p^ (x) and p2 (x) in powers of x, we obtain

Pj (x) = 2x (1 - x2 + x4 - x6 + ... ) (2.3-15a)

p2(x) = - 2 (1 - x2 + x4 - x6 + ...) (2.3-15b)

We note that the series in Equations (2.3-15a, b) are convergent for | x| < 1 and pj (x) and p2(x)
are analytic in the interval | x| < 1. The point ( x = l ) is a singular point (see Example 3.6-5). We
observe that the series solution about an ordinary point is valid in an interval that extends at least up to
the nearest singular point of the differential equation. This observation is not restricted to Example
2.3-1 and can be generalized to all power series solutions about an ordinary point. It must be pointed
out that it does not follow that there is no analytic solution that goes beyond the critical point of the
differential equation. In Example 2.3-1, the solution y2 (= x) is valid for all values of x. The
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presence of singular points in a differential equation does not imply that all the solutions are singular at
the singular points. Further examples will follow to illustrate this statement.

2.4 REGULAR SINGULAR POINTS AND THE METHOD OF FROBENIUS

We recall that x0 (=0) is a regular point if xpj(x) and x2p2(x) are analytic. That is to say,
xpi (x) and x2p2 (x) can be expanded as

xpj(x) = aQ + ajX + a2x + ... (2.4-la)

x2p2(x) = b o + b1x + b 2 x 2 + ... (2.4-lb)

Substituting Equations (2.4-la, b) into Equation (2.1-2a) and considering the homogeneous case, we
obtain

y" + (ao/x + aj + a2x + ...) y' + (bQ/x2 + bj/x + b 2 + ...) y = 0 (2.4-2)

We seek a solution in the neighborhood of the origin and the leading terms of Equation (2.4-2) are

y" + (ao/x)y1 + (bo/x2)y = 0 (2.4-3a)

or x 2 y " + a 0 x y ' + b o y = 0 (2.4-3b)

Equation (2.4-3b) is Euler's (Cauchy's) equidimensional equation. It admits a solution of the
form

y = xr (2.4-4)

On differentiating and substituting into Equation (2.4-3b), we obtain

xr [r (r -1) + aor + b0] = 0 (2.4-5)

To obtain a non-trivial solution (xr ^ 0), we require

r ( r - l ) + aor + b o = 0 (2.4-6)

Equation (2.4-6) is a quadratic in r and has two roots rj and r2. The two linearly independent

solutions are xr' and xr2.

Alternatively Equation (2.4-3b) can be transformed to an equation with constant coefficients by writing

x = el (2.4-7)

Using the chain rule, we obtain
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dy _t dy

^ = e - t ( - e -^ + e - t ^ ) (2.4-8b)
dx2 \ dt dt2/

Combining Equations (2.4-3b, 8a, b) yields

i ^ . + ( a o - l ) ^ + boy = 0 (2.4-9)
dr dt

The coefficients in Equation (2.4-9) are constants and can be solved by the methods described in
Chapter 1.

Example 2.4-1. Solve the following Euler equations.

a) 4 x 2 y " + 4 x y ' - y = 0 (2.4-10a)

b) x 2 y " - x y ' + y = 0 (2.4-10b)

a) In this example, Equation (2.4-6) is

4 r ( r - l ) + 4 r - l = 0 (2.4-11)

The two roots are

vx = 111 and r2 = -1 /2 (2.4-12a,b)

The two linearly independent solutions are

1/9 — 1/9

Yl = * , y2 = x 1/z (2.4-13a,b)

The general solution is a linear combination given by

y = C l x 1 / 2 + c 2 x- 1 / 2 (2.4-13c)

b) In this case, Equation (2.4-6) becomes

r ( r - l ) - r + l = 0 (2.4-14a)

or ( r - 1 ) 2 = 0 (2.4-14b)

We have a double root (r = 1) and we have only one solution

(2.4-8a)
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Yl = x (2.4-15)

To obtain the other solution, we note that if f (r) has a double root at r0, then

f(r0) = 0, f (r0) = 0 (2.4-16a, b)

This means that if Equation (2.4-6) has a double root, xr and ^r- (xr) are solutions of the
or

differential equation. To differentiate with respect to r, we write xr as exp (r i n x). That is
to say

j - (xr) = j - [exp (r i n x)] (2.4-17a)

= ( in x) exp (r i n x) (2.4-17b)

= x r i n x (2.4-17c)

The other linearly independent solution is

y2 = x i n x (2.4-18)

Alternatively, by changing the independent variable x to t [Equation (2.4-7)], Equation
(2.4-10b) can be written as

*-JL _ 2 ^ + y = 0 (2.4-19)
d r dt

The solutions are [see Equation (1.6-11)]

Yi = el = x (2.4-20a,b)

y2 = t e l = x i n x (2.4-20c,d)

•

Note that the exponent r is not necessarily an integer. This suggests that if we retain all the terms on
the right side of Equation (2.4-la, b), we should try a solution of the form

CO

y = x r X cnxn (2.4-21)
n=0

where c0 is not zero and r is any real or complex number.
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The series is differentiated term by term and substituted in the differential equation. On comparing
powers of x, we obtain a set of algebraic equations. The equation associated with the lowest power
of x is a quadratic equation in r [see Equation (2.4-6)] and is the indicial equation. The other
equations are the recurrence formulae and are used to determine the coefficients cn [see Equations
(2.3-9atoh)]. In general, the indicial equation yields two distinct values of r which are denoted rj
and r2. The two linearly independent solutions are

oo

yi = S Cnx"+Fl (2.4-22a)
n=0

yi = X c n x " + r 2 (2.4-22D)
n=0

If the two roots coincide (see Example 2.4-lb) or the two roots differ by an integer, yj and y2 are
not linearly independent and we have to modify our method. In the examples that follow, we consider
the three possible cases: the roots of the indicial equation are distinct and do not differ by an integer;
the two roots are coincident; and the two roots differ by an integer. This method of solving a
differential equation is called the method of Frobenius.

Example 2.4-2. Obtain a power series solution to the following equation

2xy" + (x + 1) y' + 3y = 0 (2.4-23)

in the neighborhood of the origin.

In this example

p:(x) = (x+l) /2x, p2(x) = 3/2x (2.4-24a,b)

xpj(x) = (x+l ) /2 , x2p2(x) = 3x/2 (2.4-24c,d)

From Equations (2.4-24a to d), we deduce that x = 0 is a regular singular point. We seek a solution
of the form

oo

y = Z c n* n + r (2-4-25)
n=0

On differentiating, we obtain

oo

y1 = X (n + r)cnxn+T-1 (2.4-26a)
n=0
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DO

y" = £ (n + r)(n + r - l ) c n x n + r - 2 (2.4-26b)
n=0

Substituting Equations (2.4-25, 26a, b) in Equation (2.4-23) yields

oo

J [2 (n + r) (n + r - 1) cn xn+T~l + (n + r) cn xn+r+ (n + r) cn xn + r"1 + 3cn xn + r] = 0
n=0

(2.4-27)

We compare powers of x. The lowest power of x is x r - 1

xr -1: 2 r ( r - l ) c 0 + rc0 = 0 => c0 [r (2r- 1)] =0 => T1 = 1/2 and r2 = 0 (2.4-28a-d)

xr: 2( l+r) ( r )c 1 +rc 0 + (l+r)c1 + 3c0 = 0 => cx =-[(3+r)co]/[(r+1) (2r+1)]
(2.4-28e,f)

x : 2(r+s + l)(r+s)cs + 1+(s+r)cs + (s+r+l)cs+1 + 3cs = 0 =>

cs+1 = - [(s+r+3) cs]/[(s+r+1) (2s+2r+1)] (2.4-28g,h)

Substituting the value of r = 1/2 into Equation (2.4-28h) leads to

c s + 1 = - [(2s + 7) cs]/[2 (2s + 3) (s + 1)] (2.4-29)

We can compute C\, C2, C3, ... and they are

c1=-7c0/[2«3] (2.4-30a)

c2 = - 9c2 /[2 • 5 • 2] = 7 • 9 co/[22 • 5 • 3 • 2] (2.4-30b,c)

c3 = - l l c 2 / [2«7»3] = - 7 » 9 « l l c o / [ 2 3 » 7 « 5 « 3 » 2 - 3 ] (2.4-30d,e)

We denote the solution corresponding to r = 1/2 by yj and it can be written as

y , = v / T [ l - Z * + 21*'-jGL*» + ...] (2.4-3!)

From Equations (2.4-29, 30a to e), we deduce that

c ( - l ) s + 1 (2S + 7)(2s + 5 ) - l l - 9 . 7 c 0

Cs+1 - — - (Z.<t-3Z)
2S + 1 (2s + 3) (2s + 1)... 7 • 5 • 3 • (s + 1) (s)... 3 • 2
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The right side can be simplified by the following identities

(2s + 7) ... 7 = ( 2 s + 7 ) ! 3 ! (2.4-33a)
6! 2s(s + 3)!

(2s + 3) ... 3 = ( 2 s + 3 ) ! (2.4-33b)
2 S + I ( s + 1)!

Combining Equations (2.4-32, 33a, b) yields

_ ( - ! ) » • (2s + 7)1 ca

2s 5! (s + 3)! (2s+ 3)!

Setting n = s + 1, Equation (2.4-34) becomes

Cn . _ ^ ( 2 n + 5V.ca ( 2 4 3 5 )

2 n " j 5 ! (n + 2)! (2n+l)!

The solution ŷ  can be written as

y , = c 0 V 7 i (-D°(2n + 5 ) ! x ° _ (24_36)

n=o 2 n " 1 5 ! (n + 2)! (2n+l ) !

To obtain the other solution y2, we consider the case r2 = 0. We substitute this value of r2 in
Equation (2.4-28h) and to avoid confusion we denote cs by bs for the case r2 = 0. Equation
(2.4-28h) becomes

bs + 1 = - ( s + 3 ) b s / [ ( s + l ) ( 2 s + l ) ] (2.4-37)

The coefficients bj, b2, b3, ... are

bl = - 3 b 0 (2.4-38a)

b 2 = - 4 b 1 / [ 2 - 3 ] = 4 - 3 b o / [ 2 - 3 ] (2.4-38b,c)

b 3 = - 5b2/[3 • 5] = - 5 • 4 • 3 bo/[2 • 3 • 3 • 5] (2.4-38d,e)

From Equations (2.4-37, 38a to e), we deduce that

b - ( - l ) S + 1 ( s + 3)(s + 2 ) . . . 5 . 4 . 3 b 0

s + 1 ( s + l ) s . . . 3 - 2 - ( 2 s + l ) ( 2 s - l ) . . . 5 - 3 V '

(2.4-34)



SERIES SOLUTIONS AND SPECIAL FUNCTIONS 105

( - l ) s + 1 (s + 3)! 2 S + I ( s + 1)! bn

= ~ 2 ( , + l)l (2s + 2)f A ( 2 - 4 " 3 9 b )

= ( - i r 1 2 s ( s + 3)!b0

(2s+ 2)! U - 4 ^ c ;

Again setting s + 1 = n, we find that the solution y2 can be written as

n = 0 V ''

The general solution y is a linear combination of y^ and y2 and can be written as

y = C o V 7 £ <-'>n'2" + 5 > U — + b 0 £ ^ ° 2 n - ' < " + 2>!*n (2.4-4,,
n=o 2 n " 1 5 ! (n + 2)! ( 2n+ l ) ! n=o (2n)!

The arbitrary constants c 0 and b 0 are determined from the initial conditions or the boundary

conditions.

From Equations (2.2-6,4-29, 37), we deduce that the radii of convergence of the two series are

r> r C s r 2 ( 2 S + 3 ) ( S + 1 ) ,- . ._ , .
R = k m — § — = lim — ~ - = oo (2.4-42a,b,c)

s —> oo c s —> ~ (2 s + 7)

_ ,. b (s+l)(2s + l) . . . Ar. , .
R = bm — s - = lim / v = oo (2.4-43a,b,c)

S >oo ^ S >o° (S + 3)

The solutions yj and y2 are valid for all values of x.

Example 2.4-3. Obtain a series solution to the equation

x 2 y " + x y ' + x2y = 0 (2.4-44)

in the neighborhood of the origin.

In this example, we have

px = 1/x, p2 = 1 (2.4-45a,b)

xpj = 1, x2p2 = x2 (2.4-45c,d)

The origin is a regular singular point and the series solution is of the form

(2.4-40)
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CO

y = X C n x n + I (2.4-46)
n=0

Differentiating and substituting in Equation (2.4-44) yields

oo

£ [(n + r) (n + r - 1) cn xn + r + (n + r) cn xn + r + cn xn + r + 2] = 0 (2.4-47)
n=0

Comparing the powers of x, starting with the lowest power (n = 0), we have

xr: c o [ r ( r - l ) + r] = 0 => r = 0 (double root) (2.4-48a,b)

x r + 1 : cx [(1 + r ) r + (l +r)] = 0 =» Cj = 0 (r = 0) (2.4-48c,d)

x r + 2 : c2[(2 + r ) ( l + r ) + (2 + r)]+c0 = 0 => c2 = -c o / (2 + r)2 (2.4-48e,f)

x r + s : cs [(s + r) (s + r - 1) + (s + r)] + cs_2 = 0 => cs = - cs_2/(s + r)2 (2.4-48g,h)

Note that with r = 0, we deduce that Cj is zero. From Equation (2.4-48h), we deduce that if s is
odd, cs is zero. We consider the case where s is even and we write s = 2m and Equation
(2.4-48h) becomes

C2m = - c 2 m - 2 / ( 2 m ) 2 (2-4 '49)

The coefficients c2, c4, eg ... are given by

c - c / 2 2 (2.4-50a)
C2 c 0 / 2

c4 = - c 2 / 4 2 = co/[22«42] (2.4-50b,c)

c6 = - c 4 / 6 2 = -c o / [2 2 -4 2 »6 2 ] (2.4-50d,e)

From Equations (2.4-49, 50 a to e), we deduce that

C2m = ( - l ) m c 0 / [2 2 «4 2 .6 2 ... (2m)2] (2.4-51a)

= (-l)mc0/[(22m)(m!)2] (2.4-51b)

One series solution can be written as
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~ r _ n m 2m

XiW = c oZ V T (2-4-52)
m=o 2 2 m (m!) 2

Equation (2.4-44) is Bessel's equation of order zero and the equation of arbitrary order will be
considered later. It is customary to set c 0 = 1 and to denote yi (x) by J0(x). Equation (2.4-52)
becomes

~ /_nm 2m

W - I ^r~I (24-53)
m=o 2 (m!)

In this example, the indicial equation [Equation (2.4-48a)] has a double root and the second linearly
independent solution is not readily available. Example 2.4-lb suggests that we look for a solution of
the form

oo

y = inxJ 0 (x )+X bnxn (2.4-54)

n = l

Note that if the double root of the indicial equation is r0 (*= 0), the form of the series solution is

oo

y = (in x) y! (x) + X bn x n + r° (2.4-55)
n=0

Differentiating y, we obtain

oo

y1 = i n x JQ(X) + J0(x)/x + X n ^ x " " 1 (2.4-56a)
n = l

OO

y" = i n x Jo (x) + 2JQ (X)/X - J0(x)/x2 + ^ n (n - 1) b n x n " 2 (2.4-56b)
n=2

Substituting Equations (2.4-54, 56a, b) in Equation (2.4-44) yields

-. oo oo oo

inx[x2Jo+xj;+x2Joj + 2xj;+ X n(n-l)bnxn+X nbnxn+X bnxn+2 = 0
n=2 n=l n=l

(2.4-57)

The function Jo is a solution of Equation (2.4-44) and the terms inside the square bracket equal zero.

From Equation (2.4-53), we obtain
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m=l 2 (m!)

Substituting Equation (2.4-58) in Equation (2.4-57) and changing the indices appropriately such that
the summation index s starts from one (see Example 2.3-1), we obtain

£ — ^ - ^ + s ( s + l ) b s + 1 x s + 1 + s b s x s + b s x s + 2 = 0 (2.4-59)
s = i | .22 s~2s! (s-1)!

To obtain the coefficients bs , we compare powers of x.

x1: b] = 0 (2.4-60a)

x2: - l + 2 b 2 + 2b2 = 0 => b2 = 1/4 (2.4-60b,c)

x3: 6b3 + 3b3 + b1 = 0 => b3 = - b : / 9 = 0 (2.4-60d,e,f)

One observes that bs is zero if s is odd and we need to consider the even powers of x only.

x2m: 9 , ' + 2m (2m-l) b 2 m + 2m b 2 m + b 2 m _ 2 = 0 (2.4-61)
2 2 m m! (m- l ) !

The recurrence formula is

\ (-l)m 1 /
b2m ~ 2^7^ +b2rn-2 (2m)2 (2 4-62)

L22m m!(m-l)! J/Um) ^.4 sz)
The coefficient b2 is known [Equation (2.4-60c)] and from Equation (2.4-62), we can obtain b4,
bg, ... as follows

b4 = - [4^ + b 2 ] />"=-T |8 (2.4-63a,b)

b6 = - | .243!2! j / 3 6 = m 2 4 (2.4-63c,d)

The second solution, which is linearly independent of Jo, is denoted by y2 and is given by

y 2 = i n x J 0 ( x ) + ^ - | l + 1 ^ . . . (2.4-64)

From Equations (2.4-62, 63a to d), we can verify that the general term b2m can be written as

(2.4-58)
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The solution y2 is

oo

y2 = i n x J0(x) + X b2m x2m (2.4-66)
m = l

The general solution of Equation (2.4-44) is the linear combination of Jo and y2 and is

y = AJ0 + By2 (2.4-67)

where A and B are constants.

Note the presence of Jtn x in y2. This implies that y2 is singular at the origin. If the physics of the
problem require y to be finite at the origin, we require B to be zero.

Example 2.4-4. Solve the equation

x2 (x2 - 1) y" - (x2 + 1) x y' + (x2 + 1) y = 0 (2.4-68)

in the neighborhood of the origin.

In this example, pi and p2 are given respectively by

p , - - - ^ - . P2 = f ^ (2.4-69a,b)
x ( x 2 - l ) x 2 ( x 2 - l )

The singular points are at x = 0, x = 1, and x = —1. We further note that x = 0 is a regular
singular point and we assume a solution of the form

oo

y = X c n x F + n (2.4-70)
n=0

Differentiating and substituting the resulting expressions in Equation (2.4-68) yields

oo

£ [(n+r) (n+r-1) cn x r + n + 2 - (n+r) (n+r-1) cn xr + n - (n+r) cn x r + n + 2 - (n+r) cn x r + n

n=0
+ c n x r + n + 2 + cnxr+n] = 0 (2.4-71)

Comparing powers of x, we obtain

(2.4-65)
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xr: c o [ - r ( r - l ) - r + 1 ] = 0 => r 2 - l = 0 => r = ±1 (2.4-72a,b,c)

xr + 1: C j t - O + r J r - r + l ] = 0 => ct (r2 + 2 r - 1 ) = 0 => c1 = 0 ( r = +l) (2.4-72d,e,f)

xr + 2: c o [ r ( r - l ) - r + l ] + c 2 [ - (2+r) ( l+r ) - (2+r)+l ] = O => c2 = c0 ( r - l ) 2 / [ (2+r) 2 -1]

(2.4-72g,h)

xr + s: c s_2[(s+r-2)(s+r-3)-(s+r-2)+l] + c s [ - ( s+r ) ( s+r - l ) - ( s+r )+ l ] = 0

=> S = cs_2 [(s+r-2) (s+r-4)]/[(s+r)2- 1] (2.4-721 j)

We deduce from Equations (2.4-72f, j) that c^= c3 = C5 = ... = 0. Substituting the value of r = 1 in
Equation (2.4-72h) leads to c2 = 0 and Equation (2.4-72J) implies that c4 = c6 = ... = 0. The
solution yi corresponding to r = 1 is a polynomial (one term only) and is

yi = c o x (2.4-73)

To determine y2, the solution corresponding to r = - 1 , we substitute this value of r in Equation
(2.4-72h) and we observe that the numerator ( r - 1 ) 2 is non-zero and the denominator
[(2 + r)2 - 1] is zero. This implies that c2 is infinity and we must seek a solution of the form

00

y = Y l i n x + £ bn x""1 (b0 * 0) (2.4-74a)
n=0

OO

= c o x i n x + J bn x""1 (2.4-74b)
n=0

On differentiating term by term, we obtain

00

y1 = c0 ( in x + 1) + ]T (n - 1) bn x11"2 (2.4-75a)
n=0

OO

y" = co/x + £ (n " 1) (n - 2) bn x11"3 (2.4-75b)
n=0

Substituting y, y', and y" in Equation (2.4-68) yields

00

X [(n-l)(n-2)bnxn+1-(n-l)(n-2)bnxn-1-(n-l)bnxn+1-(n-l)bnx11-1

n=0
+ bn x n + 1 + bn x"-1] - 2c0x = 0 (2.4-76)
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We now compare powers of x.

x"1: b0 (-2 + 1 + 1) = 0 (2.4-77a)

x°: b! = 0 (2.4-77b)

x1: 2b0 + b 0 - b 2 + b0 + b 2 - 2 c 0 = 0 => b0 = cQ/2 (2.4-77c,d)

x3: - ( 3 ) ( 2 ) b 4 - b 2 - 3 b 4 + b2 + b4 = 0 => b4 = 0 (2.4-77e,f)

From Equations (2.4-76, 77a to f), we deduce that

b 1 = b 3 = ... = O, b o * O , b2 = b4 = ... = 0 (2.4-78a,b,c)

The solution y2, corresponding to r = - l , is given by

y2 = c0 x i n x + bo/(2x) (2.4-79)

Without loss of generality, we can set c 0 = b Q = 1 and the two linearly independent solutions y\ and
y2 can be written as

y i = x, y2 = x i n x + 1/(2x) (2.4-80a,b)

The general solution of Equation (2.4-68) is

y = A y i + B y 2 (2.4-81)

where A and B are arbitrary constants.

Note that y2 is singular at the origin and if the general solution y is finite at the origin, B has to be

zero.

Example 2.4-5. Find a series solution to the equation

x2 y" + x y ' + ( x 2 - l / 4 ) y = 0 (2.4-82)

valid near the origin.

The origin is a regular singular point [xpj(x) = 1, x2p2(x) = (x2 - 1/4)] and we seek a

solution in the form of Equation (2.4-70). Proceeding as in the previous example, we obtain

oo

]£ [(n +r) (n + r -1) cn xn + r + (n + r) cn xn + r + cn x n + r + 2 - (1/4) cn xn+r] = 0 (2.4-83)
n=0



112 ADVANCED MATHEMATICS

Comparing powers of x yields

xr: c o [ r ( r - l ) + r - l / 4 ] = 0 => r = ±1/2 (2.4-84a,b)

xr+1: cY [r(l + r) + ( l + r ) - l / 4 ] = 0 => c{ = 0 if r= 1/2 2.4.84c)

=> Cj is arbitrary if r = -1/2 (2.4-84d)

xr+s: cs[(s+r)(s+r-l) + (s+r)- l /4]+cs_2 = 0 => cs = -cs_2/[(s+r)2-1/4] (2.4-84e,f)

We now substitute the value of r = 1/2 in Equation (2.4-84f) and we obtain

cs= -cs_2/[s (s + 1)] (2.4-85)

From Equations (2.4-84c, 85), we note that all the coefficients with an odd index are zero. Writing
s = 2m, we obtain

C2m = -C2(m-l)/[(2m) ( 2 m + Dl (2.4-86)

From Equation (2.4-86), we compute the first few coefficients and they are

c2 = -co /[2-3] (2.4-87a)

c4 = _c2/[4«5] = co/5! (2.4-87b,c)

c6 = -c 4 / [6-7] = co/7! (2.4-87d,e)

From Equations (2.4-86, 87a to e), we deduce that

C2m = ( -D m c 0 / (2m+l)! (2.4-88)

The solution yj is given by

f ( - l ) m x 2 m + ^ 2 _ 1/2 f (-l)mx2m+1
yi - co L ( 2 m + 1 ) ! - c o x 2, ( 2 m + l ) ! (2.4-89a,b)

m=0 m=0

In Equation (2.4-89b), the sum is sin x and yj can be written in closed form as

yj = c0x-1 / 2sinx (2.4-90)

To obtain y2, we substitute the value of r = -1/2 in Equation (2.4-84f) and we obtain
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cs = - c s _ 2 / [ s ( s - l ) ] (2.4-91)

The denominator is zero if s = 1 and it is not possible to determine c^. From Equation (2.4-84c),
we deduce that C] is arbitrary and we can compute cj, c5, ... All these coefficients are non-zero.
The coefficients with even indices can be written as multiples of c0 and those with odd indices are
multiples of q . We compute the first few coefficients as follows

c2 = - c 0 / ( 2 ) , c4 = -c2 / (4«3) = c0/4! , c6 = -c 4 / (6 • 5) = -cQ/6!, ... (2.4-92a)

c3 = -c 1 / (3»2) , c 5 = - c 3 / ( 5 - 4 ) = c1/5! , c7 = -c5/C7-6) = - c 1 /7 ! , ... (2.4-92b)

From Equations (2.4-91, 92a, b), we verify that

C2m = (-Dmc0/(2m)! , c 2 m + 1 = ( - l ) m C l / ( 2m+1) ! (2.4-93a,b)

The solution y2 can be written as

y2 2^[ (2m)! + (2m+l)r J (2A 94)

Note that the second term on the right side of Equation (2.4-94) is ŷ  (with Cj replacing c0). The

summation ^ ( - l ) m x2m/(2m)! is cos x and the two linearly independent solutions y^ and y2

m=0
are, to the extent of a multiplicative constant,

yx = x^ 1 / 2 s inx , y2 = x"1 / 2cosx (2.4-95a,b)

The general solution of Equation (2.4-82) is

y = A y ! + B y 2 (2.4-96)

where A and B are arbitrary constants.

Observe that y2 is singular at the origin and y^ is finite at the origin. For solutions which remain

finite at the origin, we require B to be zero.

Example 2.4-6. Gupta and Douglas (1967) considered a steady state diffusion problem, associated
with a first order irreversible reaction involving isobutylene and spherical cation exchange resin
particles.

Equation (1) of their paper can be written as (see Equation A.IV-3)
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|_r dr v dr /

where RA = - k c A (2.4-97b)

Assuming cA to be a function of r only (symmetry!), Equation (2.4-97a) reduces to an O.D.E. given

by

^AB r 2 i - ^ + 2 r ^ A - k r 2 c A = 0 (2.4-98a)
\ dr dr

The boundary conditions are

cA = cA. at r = R (2.4-98b)

^ = 0 at r = 0 (2.4-98c)
dr

We now solve Equations (2.4-98a-c) for cA via the method of Frobenius.

Note that the origin (r = 0) is a regular singular point. We seek a solution of the form

oo

CA= X C n r " + P (2-4-99)
n=0

In Equation (2.4-99), the exponent involves p, so as to avoid confusion with the radial variable r.

Differentiating Equation (2.4-99) and substituting the resulting expressions in Equation (2.4-98a)
yields

oo

£ [cn(n+p)(n+p-l)rn+P + 2(n+p)cnrn+P-Kcnrn+P+2] = 0 (2.4-100a)
n=0

where K = k / , 0 ^ (2.4-100b)

Comparing powers of r, we have

rp: co(p) (p - l ) + 2pc0 = 0 =» p(p + l) = O => p = 0 a n d p = - l (2.4-101a,b,c,d)

r1 + P: c 1 ( l + p)(p) + 2 ( l + p ) c 1 = 0 => cx (1+p) (2+p) = 0

( C l = 0 , if p = 0
=> (2.4-101e,f,g,h)

| Cj is arbitrary , if p = - 1

(2.4-97a)
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rs+P: c s ( s + p ) ( s+p- l ) + 2 ( s + p ) c s - K c s _ 2 = 0 => c .= ( g J ^ + 1 ) (2.4-101ij)

To determine cs, we substitute the values of p in Equation (2.4-lOlj)

c^T^ry forp=0 <24-102)

Equation (2.4-101h) states that q =0 if p = 0.

Therefore, cs = 0 if s is odd. We proceed by replacing s by 2m and Equation (2.4-102)

becomes

C ^ 2 - O m + l ) ( 2 - 4 " 1 0 3 )

We compute the first few coefficients as follows

r - K c 0 c _ K c 2 _ K Co f2 4 104a hi
C 2 ~ 2 . 3 ' 4 " 4 ^ 5 " " 5! U.4-iU4a,Dj

and deduce that

Kmc

c^=^TTjT <2 4-1 0 5>

One solution is

~ K m 2m

m=0

Substituting the other value of p in Equation (2.4-101 i), we obtain

K c . 2

c s = 7 wh (2.4-107)
s (s - 1) (s)

In this case, we have two arbitrary constants, c0 and C}. This implies an even as well as an odd

solution. To compute the even solution, we replace s by 2m and Equation (2.4-107) becomes

(2.4-106)

(2.4-108)
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As before, we obtain

K m c
c2m=^/ (2-4-109)

For the case where s is odd, we write

^ " ( 2 m ) ( 2 ^ 1) ( 2 - 4 - U 0 )

In terms of c^, we obtain

K m c

C *-=(2^7TJ! <2-4-ul)

Another solution to Equation (2.4-98a) is

'A ," c. 2 £ ^ - + 0 , 5 ) ^ ^ (2.4-112)
m=0 m=0

Note that the second term on the right side of Equation (2.4-112) is equal to the right side of Equation
(2.4-106).

Therefore, Equation (2.4-112) is the general solution of Equation (2.4-98a).

The solution can be written in a closed form by observing that

~ 2m " 2m+l

- h x = X ( f ^ • - h x = X (tTJv (2-4-H3a,b)
m=0 v ' m=0 v

Equation (2.4-112) can be written as

CA = T" c o s h r ^K~ + 7- sinhrVKT (2.4-114)

Differentiation yields

^ A = _ £Q. c o s h r ^ + c X ^ s i n h r V ^ - ^ - s i n h r V ^ + C j ^ ^ cosh TVKT
dr r2 r rz r

(2.4-115)

and applying the boundary conditions requires

cA = ^ - c o s h R V ^ + ̂ - s i n h R V F (2.4-116a)
Ai R R
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0 = [-c0 cosh r VK + c0r VK sinh r V K - c j sinh r VK + c l r VK cosh r V K ~ ] / r 2

(2.4-116b)

On evaluating Equation (2.4-116b), as r—> 0, we obtain c0 = 0.

We now have

cA. = ^-sinhRVKf (2.5-117)

and substituting for cj in Equation (2.4-114) yields the final result

cA R sinh r VK
c A = _ i (2.4-118)

r sinh R VK

which is Equation (2) in Gupta and Douglas (1967).

Before summarizing the Frobenius method, we note that Equation (2.4-98a) can be transformed to a
much simpler equation involving constant coefficients.

Replacing cA by —— transforms the equation to

2

— - K u = 0 (2.4-119)
dr2

with solution

u = c0 cosh r-v/K~ + c1 sinh rVfT (2.4-120)

and with cA correctly given by Equation (2.4-114).

•

We summarize Frobenius's method of finding a solution near a regular singular point as follows. We
assume that the solution is of the form

oo

y = Z c n x n + r ' c0*° (2.4-121)
n=0

We differentiate the series term by term and substitute the resulting expressions in the differential
equation. On setting the coefficient of the lowest power of x to zero, we obtain a quadratic (for a
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second order equation) equation in r. We denote the two solutions by rj and r2. We now consider

the following three cases.

(a) rj and r2 are distinct and do not differ by an integer. By comparing powers of x, we obtain
a recurrence formula that allows us to obtain cj, c2, c3,... in terms of c 0 and r\ (or r2).

The two linearly independent solutions are

oo

yi = X ^ ( r ^ x 1 1 ^ (2.4-122a)
n=0

yi = X c n( r 2) x " + r 2 (2.4-122b)
n=0

(b) ?i = r2. In this case, one solution yj is given by Equation (2.4-122a). To obtain the other

solution, we assume a solution of the form

oo

y = y i i n x + £ bnxn+r> (2.4-123)
n=0

We proceed as in case (a) to obtain bn.

(c) rj and r2 differ by an integer. Let us assume that r t > r 2 . The solution y1 can be obtained
as in (a). We try to compute the coefficients cs with the value of r = r2. If all the
coefficients can be computed as in Examples 2.4-5 and 6, the second linearly independent
solution y2 is obtained. If, in the computation of c s , we have to divide by zero as in
Example 2.4-4, we assume a solution in the form of Equation (2.4-123) and proceed to
calculate bn. Note that in case (b) one of the solutions always has a i n x term whereas in
case (c) this is not the case (see Examples 2.4-5 and 6).

If one solution is known, we can obtain the second solution by the method of variation of
parameters and this is explained in the next section.

2.5 METHOD OF VARIATION OF PARAMETERS

We use the method of variation of parameters to find a second linearly independent solution of
Equation (2.1-2a) if one solution is known. Let yj be a solution of Equation (2.1-2a) and we assume
a second solution to be given by

y(x) = u (x ) y i ( x ) (2.5-1)

On differentiating and substituting y, y1, and y" in Equation (2.1-2a), we obtain



SERIES SOLUTIONS AND SPECIAL FUNCTIONS 7/g

u(yi' + Piyj + p 2 y i ) + u1(2y; + p 1 y 1 ) + u"y1 = 0 (2.5-2)

Since yj is a solution of Equation (2.1-2a), Equation (2.5-2) simplifies to

u ' (2y ; + p 1 y 1 ) + u"y1 = 0 (2.5-3)

We substitute u1 by v and Equation (2.5-3) can be written as

j^=-j(^H<fx (2.5-4)

On integrating, we obtain

i n v = - 2 i n y 1 - I p j d x (2.5-5a)

or v = (l/y 2) exp - J P l dx (2.5-5b)

One further integration yields

u= I (l/yf) exp - | p ^ x dx (2.5-6)

The function u is generally not a constant and the second linearly independent solution y2 is

y2 = u(x) Y l (x) (2.5-7)

Example 2.5-1. Obtain a second linearly independent solution of Equation (2.4-68) given that one
solution yi is x.

We assume that the second solution is

y = x u (x) (2.5-8)

We substitute y, y', and y" from Equation (2.5-8) in Equation (2.4-68) and we obtain

u" [x3 (x2 - 1)] + u1 [2x2 (x2 - 1) - x2 (x2 + 1)] = 0 (2.5-9)

We denote u' by v and Equation (2.5-9) becomes

x (x2 - 1) p- + (x2 - 3) v = 0 (2.5-10)
dx



UQ ADVANCED MATHEMATICS

Equation (2.5-10) can be written as

^ = ^ > d * (2.5-1 la)
V X(X2-1)

= [—^ + —L-r - 2- dx (2.5-1 lb)
\ x - 1 x + 1 x J v '

On integrating, we obtain

v = cl(x2-l)/\3 (2.5-12)

where C\ is a constant.

The function u is obtained by integrating v and is found to be

u = cj [ i nx + l/(2x2)] + K (2.5-13)

where K is a constant.

Combining Equations (2.5-8,13) yields

y = c j x [in x + l/(2x2)] + K x (2.5-14)

The second linearly independent solution can now be identified to be

y2 = x [ i n x + l / ( 2 x 2 ) ] (2.5-15)

There is no loss of generality in setting cj = 1 and Kx is y j . Equation (2.5-15) is exactly

Equation (2.4-80b).

2.6 STURM LIOUVILLE PROBLEM

In the previous section, it is stated that the general solution of a second order O.D.E. is a linear
combination of two linearly independent solutions. To determine the two constants, we need to
impose two conditions. In many physical problems, the conditions are imposed at the boundaries and
these problems are boundary value problems. Many of the second order boundary value problems can
be stated as follows

(r y') '+ (q + A,p) y = 0, a < x < b (2.6-la)

subject to

a i y ( a ) + a2y'(a) = 0 (2.6-lb)

b1y(b) + b2y'(b) = 0 (2.6-lc)
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where r, p, and q are continuous real functions of x, A, is a constant parameter (possibly
complex), aj, a2, bj, and b2 are constants.

The system defined by Equations (2.6-la to c) is the Sturm Liouville problem. Equation (2.6-la) can
be written as

r y " + r ' y ' + (q + Ap)y = 0 (2.6-ld)

Many of the equations in mathematical physics are special cases of Equations (2.6-la or d) and some
of them are given next.

(a) Simple harmonic equation

y"+ ly = 0 (2.6-2a)

(In this case, r = p = 1, q = 0.)

(b) Legendre equation

(1 - x2) y" - 2xy' + Z (Z + 1) y = 0 (2.6-2b)

or [ ( l - x 2 ) y ' ] ' + i ( i + l )y = 0 (2.6-2c)

[In this case, r = ( l - x 2 ) , q = 0, p = l , X= Z (Z + 1).]

(c) Bessel equation

We denote the independent variable by x and write Bessel's equation as

2
- 2 <^J_ + x ^ I + ( x 2 - v 2 ) y = 0 (2.6-2d)

d x 2 dx

On setting x = x VX,, Equation (2.6-2d) becomes

x2y"+xy' + (Xx2-v2)y = 0 (2.6-2e)

or (xy')' + (-v2/x + ?ix)y = 0 (2.6-2f)

2
(In this case, r = x, q = - v /x, p = x.)
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(d) Hermite equation

y " - 2 x y ' + ny = 0 (2.6-2g)

2 2

or (e~x y') ' + )J,e"xy = 0 (2.6-2h)

2

(In this case, r = p = e~x , q = 0, X = |Li.)

In general, the non-trivial solution (y # 0) of Equation (2.6-la) depends on X and it is only for some
values of X that the boundary conditions [Equations (2.6-lb, c)] can be satisfied.

These values of X are the eigenvalues (characteristic values) and the corresponding functions
y (x, X) are the eigenfunctions (characteristic functions).

Example 2.6-1. Solve the equation

y" + Xy = 0 (2.6-3a)

subject to the conditions

y(0) = 0, y'(7t) = 0 (2.6-3b,c)

We assume X to be real and it can be positive, zero, or negative. We consider these three cases
separately.

(a) X,<0. For convenience, we set A. = - m 2 and the solution of Equation (2.6-3a) is

y = c 1 e m x + c 2 e - m x (2.6-4)

where Cj and c2 are constants.

To satisfy Equations (2.6-3b, c), we require

0 = C!+c 2 (2.6-5a)

0 = m (c, emn-c2 e~mn) (2.6-5b)

The only solution of Equations (2.6-5a, b) is

cl = c2 = 0 (2.6-6a,b)

This leads to the trivial solution (y = 0).
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(b) X = 0. The solution is now given by

y = c3 + c4 x (2.6-7)

where C3 and C4 are constants.

The boundary conditions imply

c3 = c4 = 0 (2.6-8a,b)

Again the only possible solution is the trivial solution.

(c) X,>0. We set X = n2. The solution is

y = c5 sin nx + c6 cos nx (2.6-9)

where C5 and eg are constants.

Applying Equations (2.6-3b, c) yields

0 = c6 (2.6-10a)

0 = c5ncosn7c (2.6-10b)

Equation (2.6-10b) implies that either C5 is zero which leads to a trivial solution or that
cos nn is zero which provides the non-trivial solution. The cos function has multiple zeros and
cos n7t is zero if

n = ( 2 s + l ) / 2 , s = 0, 1,2, ... (2.6-11)

The system defined by Equations (2.6-3a to c) has an infinite number of eigenvalues and they are
given by

Xs = f 2 ^ 1 ) ' s = 0 ' 1 ' 2 ' - (2.6-12)

The corresponding eigenfunctions are

ys = sinf^s^J-jx (2.6-13)

Note that the eigenvalues are real, positive, and discrete. Such properties are associated for example
with discrete energy levels in quantum mechanics.

•

Next we discuss the general properties of the Sturm Liouville problem.
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The Eigenvalues Are Real

Suppose X is complex and this implies that y is also complex. Taking the complex conjugate of
Equations (2.6-la to c) and noting that r, p, q, aj, a2, bj and b2 are real, we obtain

(ry1) ' + ( q + I p ) y = 0 (2.6-14a)

a1y(a) + a2y ' (a) = 0 (2.6-14b)

b 1 y ( b ) + b 2 y ' ( b ) = 0 (2.6-14c)

where y is the complex conjugate of y.

We multiply Equation (2.6-la) by y and Equation (2.6-14a) by y and subtract one from the other to
yield

( X - X ) p y y = y ( r y ' ) ' - y ( r y ' ) ' (2.6-15)

On integrating, we obtain

- rb (h
(X-X)l p y y d x = [ y f r y ^ ' - y C r y ' V l d x (2.6-16a)

/a /a

= [ y r y ' - y r y ' ] a - I (y'r y ' - y ' r y') dx (2.6-16b)
Ja

= 0 (2.6-16c)

To obtain Equation (2.6-16c), we have used boundary conditions [Equations (2.6-lb, c, 14b, c)].

Since the eigenfunctions are non-trivial, Equation (2.6-16c) implies that X = X, that is to say, X is

real.

The Eigenfunctions Are Orthogonal

Let Xn and Xm (Xn ^ Xm) be two eigenvalues and their corresponding functions are yn and ym.
The functions yn and ym satisfy

( r y ; ) I + (q + Xnp)yn = 0 (2.6-17a)

a i y n ( a ) + a2y;(a) = 0 , b1 yn(b) + b 2 y'nQo) = 0 (2.6-17b,c)
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( r y ^ ) ' + (q + ^ m p ) y m = 0 (2.6-18a)

a 1 y m (a) + a 2 y^ (a ) = 0 , bl ym(b) + b 2 y ^ ( b ) = 0 (2.6-18b,c)

We proceed as in (i), that is to say, we multiply Equations (2.6-17a, 18a) by ym and yn

respectively, subtract one from the other and integrate the resulting expression to yield

(a-n-a-m)l pyny m d x = 0 (2.6-19)

Ja

We have assumed that Xn * Xm and it follows that

rb
P y n y m d x = ° (2-6-20)

Ja
The functions yn and ym are orthogonal with respect to the weight p(x). If Xn = Xm, Equation

(2.6-20) is no longer true and

pyn 2dx = In2 (^0) (2.6-21)
Ja

The eigenfunctions can be normalized and we define the normalized eigenfunction yn to be

yn* = y n ^ n (2-6-22)

Equations (2.6-20, 21) can be expressed as

f P yn* ym dx = f ^ V dx = 5nm (2.6-23a,b)

Ja Ja n m

where 8nm is the Kronecker delta and is defined by

0 , if n ^ m

5 n m = (2.6-24a,b)
1 , if n = m
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2.7 SPECIAL FUNCTIONS

The solutions of Equation (2.6-3a) are hyperbolic functions (k < 0), polynomial (A, = 0), and
trigonometric functions (k > 0). The properties of these functions are well known. The solutions of
Equations (2.6-2b, e, g) are referred to as special functions and their properties have been investigated
and recorded. Since the beginning of the eighteenth century, many such functions have been
considered and their properties are listed in Erdelyi et al. (1953, 1955) and in Abramowitz and Stegun
(1970). In this section, we consider Legendre polynomials and Bessel functions.

Legendre's Functions

Legendre's equation can be written as

(1 - x2) y" - 2 xy1 + ky = 0 (2.7-1)

where k is a constant.

In Chapter 5, it is shown that if Laplace's equation in spherical coordinates is solved by the method of
separation of variables and if axial symmetry is assumed, the equation in the 9-direction is Legendre's
equation with x = cos 0. Thus the poles (0 = 0,7t) correspond to x = ±1.

We seek a solution near the origin, which is an ordinary point, and propose y to be of the form

oo

Y = X c n x " (2-7-2)
n=0

On differentiating term by term and substituting y, y', and y" in Equation (2.7-1), one obtains

oo oo oo oo

X n(n- l ) c n x n - 2 -£ n ( n - l ) c n x n - 2 ^ ncnxn + k £ cnxn = 0 (2.7-3)
n=2 n=2 n=l n=0

Following the procedure described in Example 2.3-1, we make a change in the indices so that in all
cases the summation starts from r = 0 to °°. Equation (2.7-3) becomes

oo

]T [(r+2)(r+l)cr+2xr-(r+2)(r+l)cr+2xr+2-2(r+l)cr+1xr+1+kcrxr] = 0 (2.7-4)
r=0

We now compare powers of x

x°: 2c2 + kc0 = 0 => c 2 = - (k/2) c0 (2.7-5a,b)
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x1: 3«2 c 3 - 2 c ! + k c j = 0 => c3 = c 1 ( 2 - k ) / 6 (2.7-5c,d)

x2: 4 « 3 c 4 - 2 c 2 - 2 - 2 c 2 + kc2 = 0 => c4 = c 2 ( 6 - k ) / 1 2 (2.7-5e,f)

xs: ( s + 2 ) ( s + l ) c s + 2 - s ( s - l ) c s - 2 s c s + kcs = 0 =} c s + 2 = cs ( s 2 +s-k) / ( s+2)(s+l )

(2.7-5g,h)

The solution can be separated into an even function and an odd function. The even function involves
c 0 , c2 , c4 , ... and we denote this function by yj. The odd function y2 is in terms of Cj , c3 ,
c5, ... From the recurrence formula [Equation (2.7-5h)], c2, c4, ... can be expressed in terms of
c 0 and C3, C5, ... in terms of Cj. The general solution can be written as

y = c 0 y i + c i y 2 (2.7-6)

where c 0 and cj are arbitrary constants.

From Equation (2.7-5h), we deduce that the radius of convergence R is

2

R = Um ^ ± 2 = 1 ^ n + n ~ k = 1 (2.7-7a,b,c)
n_>Oo cn n_>TO n 2 + 3 n + 1

To examine the validity of the solution at x = 1, we consider the special case of k = 0.

Equation (2.7-5h) now becomes

cs+2 = sc s / (s + 2) (2.7-8)

We note from Equation (2.7-5b) that in this case c2 is zero and this implies c4 = c6 = ... = 0 and
Yl is given by

yi = c 0 (2.7-9)

In this case, the even solution is a constant and is valid for all values of x including x = ±1. From
Equation (2.7-8), we deduce that y2 is given by

y2 = Cj x (1 + x2/ 3 + x4/5 + x6/7 + ... ) (2.7-10)

For values of x = ±l , we determine that the series diverges by comparing it with ^ 1/n. We note
that x = ±1 are singular points and, for this special value of k, one solution is valid at the singular
points and the other is not. This result can be extended to general values of k. For convenience, we
set k = Z (Z + 1) and Equation (2.7-5h) becomes
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cs + 2= c s ( s 2 +s- i 2 - i ) / ( s+2) (s+l ) = c s ( s - i ) ( s+ i + l)/(s+2)(s+l) (2.7-11)

From Equation (2.7-11), we observe that if Z is a non-negative integer, c^+2 is zero and so are
CZ+A' ci+6> •• ^nus tnc mfiniie series becomes a polynomial and the solution is valid for all values
of x. In particular, if i is even, the even solution (a polynomial) is valid for all values of x and, if
i is odd, the odd solution is a polynomial. The case we considered earlier is k = 0 {Jt = 0) and
the even solution is a constant. In general, for any integer i , the degree of the polynomial is i .
These polynomials are the Legendre polynomials and are denoted by P^ (x). The constants c 0

(or q ) are chosen such that P^ (1) is unity. The first few Legendre polynomials are shown in

Figure 2.7-1 and are

P0(x) = 1 , P^x) = x (2.7-12a,b)

P2 (X) = 1 (3x2 - 1), P3 (x) = 1 (5x2 - 3x) (2.7-12c,d)

P.U)
PpU) *

i\ ' P|(xJ//yf

l \ / \ P*(XX ///

- l (

FIGURE 2.7-1 Legendre polynomials

A relatively easy method of computing P̂  (x) is to use Rodrigues' formula which can be written

as

P^ (X) = - J— A _ (x 2 - l / (2.7-13)
2ZJt\ dxZ
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The Legendre polynomials can also be obtained by using the generating function (l-2xt+t ) .
Expanding this function in powers of t yields

oo

, l = X l * pi to (2-7-14)
V l-2xt+t2 i=o

Another method of determining P^ (x) is to use the recurrence formula which can be written as

( i + l)Pj + 1(x) = (2i + l ) x P i ( x ) - i P i _ 1 ( x ) (2.7-15)

Knowing Po and Pj, we can calculate ?2, P3,...

An important property of the Legendre polynomials is the orthogonal property. From Equations
(2.6-2c, 20, 21), we deduce that the Legendre polynomials are orthogonal with respect to weight one.
The orthogonal property can be written as

( P i (x) Pm(x) dx = — 1 — 8em (2.7-16)
J-l 2 i + l

where 8^ m is the Kronecker delta.

The second linearly independent solution of Equation (2.7-1) can be obtained by the method of
variation of parameters. We denote the solution by Q^ (x) and assume that

Qi(x) = u(x)Pi(x) (2.7-17)

On differentiating Q^ (x) twice and substituting the resulting expressions in Equation (2.7-1) with

k = i ( i + 1), we obtain

u [(1-x2) PJ - 2xP/J + i ( i + 1) Pj] + (1-x2) (u"Pi+ 2u'P<J) - 2xu'Pi = 0 (2.7-18)

Since P^ is a solution of Legendre' s equation, Equation (2.7-18) simplifies to

( l -x 2 )P i u"+u I [2 ( l -x 2 )P / J -2xP i ] = 0 (2.7-19)

On writing u' = v, Equation (2.7-19) can be written as

4 x + 2v[ (P l /P . ) -x / ( l -x 2 ) ] = 0 (2.7-20)
dx A *

Equation (2.7-20) is a first order O.D.E. and the integrating factor IF. is
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IF. = exp [(2P/J/P/(;)-2x/(l-x2)]dx (2.7-2 la)

= exp [IJlnPjt + in (1-x2)] (2.7-21b)

= (1-x2) P / (2.7-21c)

Equation (2.7-20) can be written as

-jL [V (1-x2) P / ] = 0 (2.7-22)

The solution is

v = C/[(l-x2) P / ] (2.7-23)

where C is a constant.

It follows that Q^ (x) is given by

/•x

Q^ (x) = CP; (x) I ^ (2.7-24)

] ( i - $ ) p ? ( $ )

The functions P^ (x) and Q^ (x) are Legendre's polynomials of the first and second kind.

Example 2.7-1. Calculate the Legendre polynomials of the second kind, Qo (x) and Qj (x).

From Equations (2.7-12a, 24), we have

/•x

Qo (x) = C I ^ (2.7-25a)
; ( 1 - $ )

/•x

= %} [ T ^ + T 7 i ] d 5 (2'7-25b)
= fin[j^] (2.7-250)

It is usual to choose C to be one and Qo (x) is given by
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Qo (x) = 1 in [ 1 ± A ] (2.7-26)

Expanding Qo (x) about the origin yields

Q0(x) = l [ x - x 2 / 2 + x3 /3-x4 /4 + ... - ( - x - x 2 / 2 - x 3 / 3 - x 4 / 4 - ...)] (2.7-27a)

= x + x3/3 + ... (2.7-27b)

From Equations (2.7-12b, 24), we obtain

Q1(x) = C x | ^ (2.7-28a)

= C xJ p + * ( T ^ + T T $ p (2-7-28b)

= Cx[-Min(T^)] <2-7"2 8 c»
As in the case of Qo (x), we choose C to be one and Q^ (x) is given by

Qx(x) = 2LinJ j i i ) - l (2.7-29)

Expanding the Jin function in powers of x, we obtain

Qx (x) = -1 + 1 (x2 + x4/3 + ... ) (2.7-30)

From Equations (2.7-26, 29), we note that Qo and Qj have singularities at x = ±1. The infinite
series given by Equations (2.7-27b, 30) are the infinite series solutions of Legendre's equation and are
valid for | x | < 1. For I = 0 ( i is even), the even solution P0(x) (=1) is valid at | x | = 1 and the
odd solution Qo (x) is not valid at | x | = 1. Likewise for i = 1 ( i is odd), the odd solution Pj(x)
(= x) is valid at | x | = 1 and the even solution Qj (x) is not valid at | x | = 1.

•

The other Legendre functions of the second kind can be computed from the recurrence formula

( i + 1) Qj,+ 1 = x (1 + 2X) Q; - X Q ^ j (2.7-31)
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Note that the recurrence formulae for both P^ [Equation (2.7-15)] and Q^ [Equation (2.7-31)] are
identical.

The general solution of Legendre's equation can be written as

y = A Pj, (x) + B Q ,̂ (x) (2.7-32)

where A and B are constants and Z is a non-negative integer.

The function Q^ (x) is singular at | x | = 1 and if we require the solution y to be finite at | x | = 1, B

has to be zero.

The associated Legendre equation can be written as

(1 - x2) ^ - 2x ^ + [Z (Z + l)- m2/(l - x2)] y = 0 (2.7-33)
dxz dx

where Z and m are integers.

If m is zero, Equation (2.7-33) reduces to the standard Legendre equation [Equation (2.7-1)].
Equation (2.7-33) is derived from Laplace's equation in spherical coordinates [see Equation
(5.5-37b)]. The additional term m2 y / (1 - x2) represents the non-symmetric contribution.

We start by considering the simplest case (m = 1) and Equation (2.7-33) becomes

(1 - x2) ^ - £ - 2x ^ + [X ( i + 1) - (1 - x2)"1] y = 0 (2.7-34)
dxz dx

One would be tempted to introduce a series solution; however, the following procedure provides us
with an ingenious way of solving the problem.

The Legendre polynomials Pg (x) satisfy the equation

( l - x 2 ) P j - 2 x P j +Z (Z + l)Yz = 0 (2.7-35)

Differentiating with respect to x yields

( l - x 2 ) P 7 -4xPJ' + i ( i + l)Pj = 0 (2.7-36)

A new function w (x) is defined by

w(x) = ( l - x 2 ) 1 7 ^ (2.7-37a)
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or P^ = ( l - x 2 r ! / 2 w ( x ) (2.7-37b)

On differentiating, we obtain

p]' = (l _ x 2 r 1 / 2 w' + x (1 - x2)~3/2 w (2.7-38a)

P^" = (l - X 2 ) - I / 2 w"+ 2x (1 - x2)~3/2 w'+ w (1 + 2x2) (1 - x 2 r 5 / 2 (2.7-38b)

Substituting Equations (2.7-37b, 38a, b) in Equation (2.7-36) yields

( l - x 2 ) w " - 2 x w ' + w [ i ( i + l ) - ( l - x 2 ) " 1 ] = 0 (2.7-34)

This is Equation (2.7-34) with y = w. By convention, the solution of the associated Legendre
equation is denoted by P^ (x). From Equation (2.7-37a), we deduce that

PJ(x) = (l-x2)1/2P](x) (2.7-39)

In the general case, P. (x) is given by

dmP
P^(x) = ( l - x 2 ) m / 2 (2.7-40)

*• d x m

Similarly the associated Legendre function of the second kind can be computed from the
formula

d m O
Q?(x) = ( l - x 2 ) m / 2 - ^ - (2.7-41)

The functions Q™ (x) are singular at | x | = 1.

The general solution of Equation (2.7-33b) is

y = AP™(x) + BQ™(x) (2.7-42)

where A and B are constants. If y is finite at | x | = 1, B has to be zero.

The polynomial P . is of degree Z and we note from Equation (2.7-40) that if m > Z, P^1 (x) is

zero. The function P™ is defined for Z > m. Note that due to the term (1 - x 2 ) m in Equation

(2.7-40), P™ is a polynomial iff m is even.
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Properties of the Legendre and the associated Legendre functions of both kinds are listed in the
references cited earlier.

Bessel Functions

Bessel functions were introduced by Bessel in 1824, in the discussion of a problem in astronomy.
Bessel's equation occurs in the solution of Laplace's equation in cylindrical coordinates [see Equation
(5.5-8a, lb)]. It can be written as

x2y" + xy' + (x2 - v2) y = 0 (2.7-43)

where v is a constant.

The origin is a regular singular point and we seek a solution of the form

oo

y = X cnx"+ r (2.7-44)
n=0

Differentiating term by term and substituting the resulting expressions in Equation (2.7-43) yields

oo

£ [(n+r)(n+r-l)cnxn+r + (n+r)cnxn+r + cnxn + r + 2 -v2cnxn + r ] = 0 (2.7-45)
n=0

Comparing powers of x, we obtain

xr: c o [ r ( r - l ) + r - v 2 ] = 0 => r = ±v (co*O) (2.7-46a,b)

xr + 1 : cx [ r ( r + l) + (r+ l ) - v 2 ] = 0 => cl = 0 (2.7-46c,d)

xr + s : cs[(s + r)(s + r - l ) + (s + r ) - v 2 ] + c s _ 2 = 0 => cs = -c s _ 2 / [ ( s + r)2 - v2]

(2.7-46e,f)

For r = v, Equation (2.7-46f) becomes

cs = - c s _ 2 / [ s ( s + 2v)] (2.7-47)

From Equation (2.7-47), we can compute the even terms C2, C4, eg,... Writing s = 2p, Equation

(2.7-47) can now be written as

C2p = ~c2p-2 / P 2 P (P + v)l (2.7-48)
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The first few coefficients are

c2 = - c0 /[22 (1 + v)] (2.7-49a)

c4 = -c 2 / [2 2 (2) (2 + v)] = co / [24(2)( l+v)(2 + v)] (2.7-49b,c)

c6 = - c 4 /[22 (3) (3 + v)] = - c 0 /[26 (2) (3) (1 + v) (2 + v) (3 + v)] (2.7-49d,e)

Equations (2.7-49a to e) suggest that

C2P = ( - l )Pc0 / [22 p(p!)( l+v)(2+v) . . . (p + v)] (2.7-50)

It can be verified that Equation (2.7-50) satisfies Equation (2.7-48). One solution of Equation
(2.7-43) can be written as

oo

y = c o X ( -D P x 2 p + v / [2 2 p (p! ) ( l+v)(2 + v)... (p + v)] (2.7-51)
p=0

If v is a positive integer, the product (1 + v) (2 + v) ... (p + v) can be written as (p + v)! /v! . To
give a meaning tov! when v is not an integer, we define the gamma function F(v) by

r(v) = I t ^ e ^ d t , v>0 (2.7-52)

Jo
The condition that v is positive is necessary so as to ensure the convergence of the integral.

r (v + 1) = I tv e~l dt (2.7-53)
Jo

On integrating by parts, we obtain

r (v + 1) = [-tv e~l] o + v I t v - 1 e~l dt (2.7-54a)

JO

= vT(v) (2.7-54b)

From Equation (2.7-53), we deduce that

f°°
F(l) = e"ldt = 1 (2.7-55a,b)

JO
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Combining Equations (2.7-54b, 55b) yields

T (2) = 1, T(3) = 2 F(2) = 2 • I, r(4) = 3 r(3) = 3 • 2 • 1 (2.7-56a-e)

Generalizing Equations (2.7-56a to e), we obtain

r ( v + l ) = v! and 0! = 1 (2.7-57a,b)

for v > 0.

Equation (2.7-54b) can be used to define F(v) for all values of v (* 0, - 1 , -2 , ...)• That is to say,
we define F(v) as

F(v) = [ r ( v + l)]/v (2.7-58)

If - l < v < 0 , then 0 < v + l < l and T(v + l) is defined. It follows from Equation
(2.7-58) that F(v) is defined. Similarly if - 2 < v < - l , then v + 1 lies between -1 and 0,
and F(v + 1) has just been defined. Similarly, the function F(v) is defined for all negative non-
integers. From Equation (2.7-58), we deduce that F(0) can be defined as

F(0) = lim F(v) = Iim r ( v + 1 ) = ± ~ (2.7-59a,b,c)
v—>0 v—>0 V

It follows from Equation (2.7-58), that F(v) is ±°° for all negative integers. The graph of F(v) is
shown in Figure 2.7-2. We note that (see Chapter 4, Problem 9b)

F(l/2) = VTC (2.7-60)

Equation (2.7-51) can be written, in terms of gamma functions, for all positive v, as

y = c o X ( - l ) P x 2 p + v r ( v + l ) / [ 2 2 p ( p ! ) F ( p + v + l ) ] (2.7-61)
p=0

By choosing c 0 to be 1/[2V F(v+1)], we obtain the Bessel function of the first kind of order v
and it is denoted by Jv (x). That is to say

oo

Jv(x) = X ( - l ) P x 2 p + v / [ 2 2 p + v ( p ! ) F ( p + v + l ) ] (2.7-62a)
p=0

oo

= £ ( - l ) p ( x / 2 ) 2 p + v / [ ( p ! ) F ( p + v + l ) ] (2.7-62b)
p=0
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FIGURE 2.7-2 Gamma function

Thus one solution of Equation (2.7'-43) is Jv (x). If v is not an integer or zero, the other solution is

obtained by considering the other root of the indicial equation [Equation (2.7-46b)]. That is to say, the
other solution is J_v (x) and is written as

oo

J_v(x) = X (-DP(x/2)2p-v/[(p!)r(p-v+l)] (2.7-63)

Note that whereas Jv (x) has no singularity at the origin, J_v (x) is singular at the origin.

For v (* 0 or an integer), the general solution of Equation (2.7-43) is

y = AJv(x) + BJ_v(x) (2.7-64)

where A and B are constants.

If the solution is finite at the origin, B must be zero.

We recall that if the two roots of the indicial equation are coincident or differ by an integer, the two
linearly independent solutions are not obtained in a straight forward manner as described earlier for
non-integral values of v. If v is zero, the two roots are coincident and this case has been considered
in Example 2.4-3. If the two roots differ by an integer, this implies that 2v (rl=v, r2 = - v ) is
an integer. We consider the two cases where 2v is an odd or an even integer separately. In Example
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2.4-5, we solved the case where 2v is one. We recall that if 2v is one, q is not necessarily zero
[see Equation (2.4-84d)] and we have one solution starting with c0 and the other starting with cj .
By assigning to c 0 and Cj the values given earlier, we obtain J1 / 2 ( x) a n ^ -L1/2 00- Similarly,
Jv (x) and J_v (x) are obtained in the case where 2v is an odd integer. If 2v is an even integer, v

is an integer and from Equation (2.7-63) we note that the series starts from p = v since
F ( p - v + l) is ±°° for p < v . Writing q = p - v , Equation (2.7-63) can be written as

oo

L V W = X (-Dq+V(x/2)2q+V/[(q + v)!(q!)] (2.7-65)
q=0

Comparing Equations (2.7-62b, 65), we deduce that

J_VW = ( -D V J v (x ) (2.7-66)

If v is an integer, Jv (x) and J_v (x) are not linearly independent.

Since Jv (x) is known, the other linearly independent solution can be obtained by the method of

variation of parameters. This method yields

yi = Jv 00 I d]L—; (2-7-67)
J x[Jv(x)]2

The solution y2 is usually not considered. Instead, the Bessel function of the second kind
Yv (x) is defined as

Yv(x) = [Jv (x) cos v% - J_v (x)] / sin vn (2.7-68)

From Equation (2.7-66), we conclude that both the numerator and the denominator on the right side of
Equation (2.7-68) are zero. By applying l'Hopital's rule, we deduce that Yv (x) exists in the limit as
v tends to an integer. Thus, the general solution is

y = AJv(x) + BYv(x) (2.7-69)

where A and B are constants.

The function Yv(x) has a in(x/2) term (see Problem 19b) and is singular at the origin. If y is

finite at the origin, B is zero.

If v is not an integer, the solution of Equation (2.7-43) is given by Equation (2.7-64 or 69), but if v
is an integer only Equation (2.7-69) is valid.
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We recall that there are circumstances when it is preferable to work with exp (± ix) rather than with

sin x and cos x. Equally, there are circumstances when it is preferable to choose Hankel
functions (Bessel functions of the third kind) of order V as solutions of Equation (2.7-43) instead

of Jv(x) and Yv(x). These Hankel functions H^ and H*, are defined by

H^ } = Jv(x) + iYv(x) (2.7-70a)

H f = J v (x)- iY v (x) (2.7-70b)

The functions H^ and H^ are linearly independent and the general solution of Equation (2.7-43)

is a linear combination of H ,̂ and H^ . From Equations (2.7-70a, b), we obtain

Jv(x) = i-(Ht1) + Hf) (2.7-71a)

Yv(x) = i ( H f - < } ) (2.7-7 lb)

The functions Jo and Jj are shown in Figure 2.7-3 and Yo and Yl in Figure 2.7-4. Table 2.7-1

lists some properties of Bessel functions.

JuU)

FIGURE 2.7-3 Bessel functions of the first kind
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FIGURE 2.7-4 Bessel functions of the second kind

The functions J_v (x), Yv (x), H^ (x) and H^ (x) have the same recurrence relations as the

function Jv(x).

TABLE 2.7-1

Properties of Bessel functions

(i) [xvJv(x)]' = xv Jv_!(x)

(ii) [x-vJv(x)]' = - x - v J v + 1(x)

(iii) J ^ W + J^Cx) = ^ J v ( x )

( i v ) J v _ i W - J v + 1 ( x ) = 2J^(x)

^v) I xv Jv_1 (x) dx = xv Jv (x) + constant

(v i ) I x"v Jv + j (x) dx = x~v Jv (x) + constant
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The function Jv (x) has an infinite number of zeros and we denote the zeros by Xn, n = 1, 2,.. .

That is to say

J v (^ n ) = 0, n = l , 2, ... (2.7-72)

The orthogonal property of Jv (x) can be written as

(l 0 if m * n
I x Jv (Imx) Jv (Xnx) dx = (2.7-73a,b)

J° i - [ J v + i ( ^ n ) ] 2 i f m = n

Example 2.7-2. Compute J3/2(x), using the results of Example 2.4-5.

In Example 2.4-5, we have solved the Bessel equation for the case v = +1/2 and the two linearly
I/O 1 fj

independent solutions were x sin x and x cos x [Equations (2.4-95a, b)]. We recall that in

the definition of Jv (x), the multiplicative constant (c0) is 1/[2V F(v+1) ] .

Using the properties of the gamma function, we deduce that J1 / 2 (x) and J_ I / 2 (x) are given by

JmW = {£*>* (2.7-74)

J-"2(X) = V ^ C ° S X (2.7-75)

From Table 2.7-1, we obtain

J 3/2 00 = k J1/2 (x) " J-1/2 to (2.7-76a)

= \H^ (siSJL _ c o s x) (2.7-76b)
V ir.x v x /

Modified Bessel's Equation

The modified Bessel's equation is of frequent occurrence in applied mathematics [see Equation
(5.5-8a)] and can be written as

x 2 y " + X y' - (x2 + v2) y = 0 (2.7-77)

Comparing Equations (2.7-43, 77), we note that they differ only in the coefficient of y. By writing
z = ix, Equation (2.7-77) becomes
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2

z2 ^ + z ^ + (z2 - v2) y = 0 (2.7-78)
dz dz

Equation (2.7-78) is exactly Equation (2.7-43) with z being replaced by x and the linearly
independent solutions of Equation (2.7-77) are Jv (ix) and J_v (ix). That is to say, they are Bessel

functions with purely imaginary argument. Usually, the solution needs to be given in the form of real
variables and Jv (ix) and J_v (ix) are not in a suitable form.

We seek a series solution as described previously for Bessel's equation. The solution we obtain can
be denoted by Iv (x) as follows

Iv(x) = ]T (x/2)2 p + v/[(p!) r ( p + v+ 1)] (2.7-79)
p=0

Comparing Equations (2.7-62b, 79), we deduce that

Iv (x) = T v Jv (ix) = e - i 7 l v / 2 Jv (ix) (2.7-80a,b)

Note that we have already established that the solution of Equation (2.7-77) is Jv (ix) and to obtain

the real part of the solution we multiply Jv (ix) by a complex constant (i~V). The function Iv (x),

defined by Equation (2.7-79), is real. If v is not an integer, the two linearly independent solutions
are Iv (x) and I_v (x). If v is an integer, we define a new function Kv as

The function Kv (x) is linearly independent of Iv (x) and the limit as v tends to an integer is
defined. The two linearly independent solutions of Equation (2.7-77) for all values of v (including
integral values) are Iv (x) and Kv (x). The properties of all Bessel functions are given in Watson
(1966).

Many second order linear differential equations can be transformed to Bessel's equation (or to another
standard equation) by a suitable substitution. Kamke (1959) and Murphy (1960) list several such
possibilities.

Example 2.7-3. A simplified form of the equation governing the linear stability of a Newtonian
fluid flowing between two parallel walls can be written as (Rosenhead, 1963, p. 524)

d 4 Y d 2 Y
—*A- -iri — ^ - = 0 (2.7-82)
dr|4 dr|2

(2.7-81)
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where % 0 is related to the stream function and r\ is related to the distance from the centre of the

channel. Both quantities are complex and we wish to solve Equation (2.7-82).

Equation (2.7-82) can be reduced to a second order equation by writing

d2Yn

u = —*&• (2.7-83)
dri2

Equation (2.7-82) becomes

2

— - - i T i u = 0 (2.7-84)
dTi2

We now write

u = ri1 / 2v (2.7-85)

Differentiating and substituting into Equation (2.7-84), we obtain

n 1 / 2 ^ + T T 1 / 2 <*v - l T T ^ v - i T ^ v = 0 (2-7-86)
dT)2 dri 4

We further transform the independent variable TI by introducing z as

z = | ( iT l ) 3 / 2 (2.7-87)

The chain rule yields

Substituting Equations (2.7-88b, c) in Equation (2.7-86) yields

,2 .
z 2 — + z - + ( z 2 - l / 9 ) v = 0 (2.7-89)

dz2 dz

Equation (2.7-89) is Bessel's equation of order 1/3. Since we are dealing with complex functions, we
write the solution in terms of Hankel functions. The two linearly independent solutions of Equation

(2.7-88a,b)

(2.7-88c)
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(2.7-89) are H ̂ 3 (z) and H1 / 3 (z). It follows that the fundamental (linearly independent) solutions
of Equation (2.7-84) are

» l=V / 2 H«[ f ( in ) 3 / 2 ] (2.7-90a)

u2 = VCH(»[|(i11)3 /2] (2.7-90b)

On integrating twice, we obtain two solutions for % 0.

2.8 FOURIER SERIES

In Section 2.6, we have seen that the Sturm-Liouville system generates orthogonal eigenfunctions.
Trigonometric functions sin nx, cos nx, Legendre polynomials P^ (x) and Bessel functions

Jv (^mx) are among the eigenfunctions we have encountered. We recall that the eigenfunctions yn (x)
and ym (x) are orthogonal with respect to weight p (x) if

-b / 0 if m ^ n

I p(x)yn(x)ym(x)dx = (2.8-la,b)
Ja \ In if m = n

We assume that the integral exists and this means that the functions are square integrable. These
square integrable functions generate a space (L 2 space) and since n can be infinity, the dimension
of the space is infinite.

The orthogonal property of yn reminds us of the property of orthogonal vectors and we state some of

the properties of vectors, which are presented in more detail in Chapter 4. Usually, the dimension of
the space is finite and if the dimension is n, we can choose n vectors g j , g 2 , ••• , g n which are

linearly independent as bases. These bases are orthogonal (not orthonormal) if

0 if i * j

g i - g j = ( g i . g j ) = (2.8-2a,b)
I ; 2 (*0) i f i = j

The product g j ' g ; ( o r / g j , g : \ ) is the scalar (dot or inner) product and Ij is the

magnitude of the vector g j . If u is any vector in the space, u can be expressed as

u = X ci l i (2-8"3)
i = l

w h e r e q are cons tan t s a n d are ob ta ined b y forming the do t p r o d u c t of u w i th g - . T h a t is to s ay
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(U, gj) = X c i ( l i ' I j ) = c j I j 2 (2.8-4a,b)
i = l

We deduce that

Cj = (u , g j ) / I j 2 = ( H . g j ) / ( g j . g j ) (2.8-5a,b)

Having been inspired by these properties of vector spaces, we now continue with function spaces and
we regard the functions yn as the basis of the infinite space, and the integral in Equations (2.8-la, b)
as the inner product. The magnitude yn, which is denoted by | |y n | | is the norm of yn. That is to
say

l |ynl l 2 = (y n . yn ) = p(x)yn2(x)dx = i 2 (2.s-6a,b,C)

We now represent a function f(x) by a linear combination of yn and write

N

f(x)« X c nyn(x) (2-8-7)
n = l

To determine the constants c n, we make use of the orthogonal property of yn. Forming the inner
product, we find that c n is given by

cn = { f>yn) / | | ynH 2 (2.8-8a)

(f, y n ) = p(x)f(x)yn(x)dx (2.8-8b)
Ja

(b
llynll2 = p(x)[yn(x)]2dx (2.8-8c)

/a

We need to examine in what sense the sum (letting N —> «>) approximates f (x) in the interval
[a, b], with c n defined by Equation (2.8-8a). Usually, we consider pointwise approximation
and the difference between the sum and the function f (x) is small for all values of x in the interval.
The sum converges to f (x) if

f ( x ) - J cnyn < e (2.8-9)
n = l
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for each e > 0 whenever N > Ne and for all x in the interval.

Another approximation which is widely used in the treatment of experimental data is the least square
approximation. Using the least square criterion, we require that the integral

I p (x) [f (x) ~2J cn yn] dx be a minimum. We demonstrate that this is the present case. Let
Ja

(b N 2 (h N N 2
D = P«[f-Xcnyn] dx = P(x)[f2-2f X cnyn+(X cnyn) ]dx

Ja n=l Ja n=l n=l
(2.8-10a,b)

D is a function of c n and D is a minimum if

| 5 . = 0, s = l , 2, ... (2.8-1 la)

On differentiating, we obtain

an (b N

j ~ = p(x)[-2fys + 2 y s X c n y n ] d x (2.8-1 lb)
s Ja n=l

and using the orthogonal property of yn, we write

f ^ - = ( p(x)[-2fys + 2csys2]dx (2.8-llc)
acs Ja

Minimizing D implies that cs is given by Equation (2.8-8a). The approximation in this case is in the
N

least square sense. If D —> 0 as N —> °°, the sum ^ cn yn converges in the mean to
n = l

f (x). The series is the Fourier series and the coefficient c n is the Fourier coefficient. If for

rb 2 £
every f (x) for which j p (x) f dx is finite, X cn vn c o n v e r g e s m the mean to f (x), the set of

•'* n = l
functions (yl5 y2,...) is complete and the space they span is a Hilbert space.

Note that in this case the requirement is that the integrals exist and the function can have a jump
discontinuity in the interval. The function yn can be continuous though f (x) can be discontinuous.

N

If f(x) has a jump discontinuity at x0, the sum ^ c n v n c o n verges to -̂ [f(x0+) + f (xo_)],
n=l 2

that is to say, to the mean value of f(x) as x approaches x 0 from the left and from the right.
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Trigonometric Fourier Series

The trigonometric functions sin x and cos x are periodic with period 2TC. A periodic function f(x)
of period T is defined by Equation (1.1-14).

For simplicity, we assume f (x) to be defined in the interval [-%, 7t]. If f (x) is defined in the
interval [a, b], then the transformation

x* = 27t[x-(a + b ) /2 ] / (b - a ) (2.8-12)

transforms the interval [a, b] to [-n , n].

The orthogonal property of cos x and sin x can be written as

r
I sinnxcosmxdx = 0, for all m and n (2.8-13a)
J-n

r r
I sinnxsinmxdx = I cosnxcosmxdx = n 8nm (2.8-13b,c,d)

J-n J-n

where 8nm is the Kronecker delta.

The functions sin x and cos x form an orthogonal basis in the interval [-71,7t] with unit weight

fK 2[p(x)=l ] . If f(x) is periodic and of period 2TC and I f dx is bounded, the Fourier series
J-n

converges in the mean to f (x). That is to say
oo

f(x) = i- a0 + 2^ [ancosnx + bnsinnx] (2.8-14a)
2 n = l

,n

a = 1 f(x)cosnxdx (2.8-14b)
71 I

J-n
,n

bn = J- f(x)sinnxdx (2.8-14c)
J-n

The coefficients an and b n given by Equations (2.8-14b, c) are special cases of Equation (2.8-8a).

Note that we have written j - aQ and not a0 so that the formula for an [Equation (2.8-14b)] is
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applicable to a0. Recall that if f(x) has a jump discontinuity at x0, the series converges to

^ [ f (x o + ) + f(xo_)].

Example 2.8-1. Determine the Fourier series for the function f (x) defined in the interval (-TT, %) by

f(x) = x, -7 t<x<7i (2.8-15)

and periodic with period 2TE.

To what value does the series converge at x-n/2 and at x = n ?

From Equations (2.8-14b, c), we obtain

a0 = 1 x dx = 1 [-|-| = 0 (2.8-16a,b,c)
J-n "K

i-Tt i-71

an = l j xcosnxdx = l[xsinnxj n _ 1 I shmx d x = 0 (2.8-16d,e,f)
J-n ~n J-K

J" 71 e 71

xsinnxdx = IF-Xcosnxj" + 1 cosnx d x = , 2 ( ^ 1 (2.8-16g,h,i)
- 7 1 /-7C

Substituting an and b n in Equation (2.8-14a), we obtain

x - -2 ]T t ^ - sinnx (2.8-17)
n = l

The periodic function f(x) is sketched in Figure 2.8-1. The function is continuous at x = 7c/2 and
the series converges to the function. That is to say

7X/2 = - 2 ^ ^-—- sin (im/2) (2.8-18a)

n = l

°° . n 2 s + l

= -2 ^ ( ^ T l T S i n [ ( 2 s + 1 ) 7 C / 2 ] (2.8-18b)
s=0

= 2 i (5TTT) (2-8"18c)
s=0
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We note that sin (nrc/2) is zero when n is even and if n is odd, we write n = (2s + 1 ) with

s = 0, 1,2, ... and sin [(2s + 1 ) T C / 2 ] = ( - l ) s .

f ( x ) ;

-37T -ZTT/ -IT / IT ZTy 3 7 r

FIGURE 2.8-1 Periodic function of period In

From Equation (2.8-18c), we deduce that

X S T = 7C/4 (2-8"19)
S=0

At x = 71, the function is discontinuous and the sum converges to j - [f (K - 0) + f (% + 0)]. That is

to say

)- [f (7t - 0) + f (JI + 0)] = - 2 ] £ ^ - sin n7t (2.8-20)
n = l

From Figure 2.8-1, f(7i-0) is n, f(7C + 0) is -it, and sinn7C is zero. Both sides of Equation
(2.8-20) are zero.

•

Even and odd functions are defined in Chapter 1.
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The functions cos x, x2n (n is an integer) are even functions and the functions sin x, x^2n + 1̂  are
odd functions. If f(x) is an even function

f'(0) = 0 (2.8-21)

and if f(x) is odd

f(0) = 0 (2.8-22)

The product of two even (or odd) functions is an even function and the product of an even and an odd
function is an odd function. If f (x) is an even function, all coefficients bn are zero and Equations
(2.8-14atoe) reduce to

oo

f (x) * 1 a0 + £ an cos nx (2.8-23a)
n = l

an = 2. I f(x)cosnxdx (2.8-23b)
n Jo

bn = 0 (2.8-23c)

Similarly, if f (x) is an odd function, we obtain

oo

f(x) » £ bnsinnx (2.8-24a)
n = l

fn
b n = 2. I f (X) sin nx dx (2.8-24b)

n Jo
Note that we have made use of the fact that

f n 0 , if f (x) is odd
I f(x)dx = I (2.8-25a,b)
J-n r 7C

21 f(x)dx, if f(x) is even
Jo

In many situations, it is known that f (x) has a period of 2% but is defined only in the interval
0 < x < 7C. Mathematically, it is possible to define f (x) to be even or odd, but usually the physics
of the problem dictates whether f (x) is even or odd (see Chapter 5).
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Consider a rod of length K in the interval 0 < x < 71 with temperature distribution T(x). If the
end x = 0 is insulated, it implies that at x = 0, dT/dx is zero. From Equation (2.8-21), we
deduce that T is even. If the temperature at x = 0 is kept at a constant temperature To, by writing

f(x) = T - T o (2.8-26)

we obtain f (0) = 0. From Equation (2.8-22), we deduce that T is an odd function.

Example 2.8-2. The function f (x) is periodic and of period 2K. It is defined by

f(x) = x, 0 < x < r c (2.8-27a)

Obtain the Fourier series of f (x) if: (a) f is odd; and (b) f is even.

Case (a) is considered in Example 2.8-1. The function f in case (b) is sketched in Figure 2.8-2.

From Equations (2.8-16e, f, 23b), we obtain

an = 2. I x cos nx dx (2.8-27b)

n h

= -2- \QQ^L] n (2.8-27c)

n\- n Jo
= 4 ~ , s = 0, 1,2, ... (2.8-27d)

7t(2s+ l ) z

a0 = 2- x dx = 71 (2.8-27e)

71 Jo
Substituting an in Equation (2.8-23a) yields

a _ 4 y cos(2s+l)x

2 «.tj (2s+l)2

(2.8-28)
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f ( x ) ,

-27T -7T 0 7T 27T x

FIGURE 2.8-2 Even function

Note that both series on the right side of Equations (2.8-17, 28) represent the same function in the
interval 0 < x < K, but not in the interval -K < x < 0.

At x = 0, the function is continuous and from Equation (2.8-28), we deduce that

y l—- = — (2.8-29)
s T o ( 2 s + l ) 2 8

If f (x) has a Fourier series, that is to say, f (x) can be represented by Equations (2.8-14a to c), the
series can be integrated term by term. This means that

t x e x oo f x

I f(x)dx = i - | a odx+^T I (ancosnx + bnsinnx)dx (2.8-30)
/x0 /x0 n = l /x0

where x0 is arbitrary.

If f(x) has a Fourier series, the series can be differentiated term by term, if f'(x) is piecewise
continuous and f (—TC) = f (n).

Under the conditions stated earlier, we can write
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oo

i-[f (x - 0) + f' (x + 0)] = ]T [n(-ansinnx + bncosnx)] (2.8-31)
n = l

where an and b n are defined by Equations (2.8-14b, c).

Equations (2.8-14a to c) can be written in an alternative form. Recall that

cosnx = 1 [e i n x + e" i n x] (2.8-32a)

sinnx = JL [ e i n x - e~ i n x ] (2.8-32b)

Substituting Equations (2.8-32a, b) in Equation (2.8-14a) yields

oo

f(x) - l a o + l j [an(einx + e-inx)-ibn(einx-e-inx)] (2.8-33a)

n = l

OO

- \ ao + \ Z P™ K - ibn> + e~inX (an + ibn)] (2.8-33b)
n = l

oo

- X c n e i n X (2.8-33C)

n=-oo

where

cn = ^ ( a n - i b n ) = ^ I f (x) [cos nx - i sin nx] dx = ±- I f ( x ) e - i n x d x

(2.8-33d,e,f)

Note that Equation (2.8-33f) is valid for both positive and negative values of n.

Example 2.8-3. Determine the Fourier series for f(x) defined by

f(x) = ex, -TU<X<7C (2.8-34)

and with period 2n. This function is shown in Figure 2.8-3. Calculate the sum of the series at
X = 7 1 .
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f ( x )

-T 0 V 3 IT x

FIGURE 2.8-3 Periodic function ex

The coefficients c n are given by [Equation (2.8-33f)]
, n

cn = - ^ \ ex e" i n x dx
2n J_K (2.8-35a)

" 2n[ l - i n J (2.8-35b)
- ^ 1 + i n ) [e71 (cos nit - i sin nic) - e~n (cos nre + i sin nn)] (2.8-35c)

2TI (1+n 2 )
= ( 1 + i n ) [(_i)n sinh 7C] (2.8-35d)

7C(l+n2)
Combining Equations (2.8-33c, 35d) yields

ex „ sinhjt f ( -D n ( l+ in)e i n *

71 »r . U+n2)

(2.8-35a)

(2.8-35b)

(2.8-36a)
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sinhrc y , ^ n (cos nx - n sin nx) + i (n cos nx + sin nx) (2 8-36b)

11 „=— d + n 2 )

Taking the real part, we obtain

ex s sinhrc y (-l)n(cosnx-nsinnx) (2.8-37a)

« sinhTT j + 2 V (-l)n(cosnx-nsinnx) (2.8-37b)

The imaginary part can be shown to be zero in the following way.

oo — 1 oo

^ (n cos nx + sin nx) = ^ (n cos nx + sin nx) + jT (n cos nx + sin nx) (2.8-38a)
n=—oo n=— oo n = l

1 °°

= 2^ l(~m)cos (~mx) + s i n (-mx)j + 2^ (ncos nx + sin nx)
m=oo n = l

(2.8-38b)

= 7 (-mcos mx-sin mx) + V^ (ncos nx+sin nx) (2.8-38c)
m=l n = l

= 0 (2.8-38d)

We replaced n by - m in the first sum on the right side of Equation (2.8-38b) and we made use of
the fact that cos is an even function and sin is an odd function.

At x = 7t, the function is discontinuous and the series converges in the mean. That is to say

oo «

1 [f(71 - 0) + f(71 + 0)] = Sinhjrc 1 + 2 Y ( - 1 ) c o s n 7 t (2.8-39)
2 * L n=i 1 + n 2 .

From Figure 2.8-3, we deduce

oo

L[en + e~n] = sinh_7t 1 + 2 ^ — 1 — (2.8-40a)
L n=i 1 +n _
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cosh n = sinhJL l + 2 V — 1 — (2.8-40b)

Example 2.8-4. The deflection w of a uniform beam of length Z with an elastic support under a
given external load p is given by

E I ^ + kw = p(x) (2.8-41)

dx4

where EI is the flexural rigidity and k is the modulus of the elastic support.

If the beam is supported at the ends, the boundary conditions are
2

w = d_w _ 0 (2.8-42a,b)
dx2

at x = 0 and x = JL.

Assume that the load is constant and is applied on the interval Jt /3 < x < 2Z13, as shown in Figure
2.8-4. Obtain the deflection w (x). The derivation of Equation (2.8-41) is given in von Karman and
Biot(1940).

W

mini .

FIGURE 2.8-4 Beam on elastic foundation under an external load
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The function p (x) can be written as

/ 0, 0 < x < X13

p(x) = pQ, i / 3 < x < 2 i / 3 (2.8-43a,b,c)

0, 2X /3 < x < X

where p0 is the constant external load.

The function p (x) can be considered to be an odd function of period IX. Its Fourier series is given
by

oo

p(x) = £ bjjSinfi^ (2.8-44a)
n = l ^

tZ ,2ZI3

bn = ~ I P(x)sinn^x-dx = (2po/i) I sin B̂ Lx d x (2.8-44b,c)
* JO * Ji /3 ^

= _ ?£Q. [cos ^2L _ Cos nffl-1 = iPfi. s i n DJL s i n DJL (2.8-44d,e)
nTi L 3 3 J nn 2 6 v

We seek a solution of the form

oo

w = ]T w n s i n n J ^ (2.8-45)
n = l *

Note that w automatically satisfies the boundary conditions. Differentiating w four times and
substituting the resulting expression in Equation (2.8-41) yields

E l ] £ 5_5_ W n S i n l f f lx + k ^ W n S i n m c x = ^ b n S i n m c x (2.8-46a)

_n = l X * J n = l * n = l ^

We deduce that

n4_4
w EIE_ZL_ + k = b (2.8-46b)

[ X4 J
or wn = bn^ /(EIn47c4 + k^ ) (2.8-46c)
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The coefficients bn are given by Equation (2.8-44e), wn can be calculated from Equation (2.8-46c).
On substituting wn in Equation (2.8-45), we obtain w.

Fourier Integral

The transformation from a function f(x) having a period 2n to a function f(x*) having a period 2L
is obtained by writing

x = x*7t/L (2.8-47)

Combining Equations (2.8-33c, f, 47) yields

oo r L \

f (x*) ~ Z ^ \ f(x*)exp(-ianx*)dx* exp(ianx*) (2.8-48a)

where a n = nrc/L (2.8-48b)

Let A a n = (n+l)7t/L-n7C/L = 7U/L (2.8-49a,b)

Substituting Equation (2.8-49b) in Equation (2.8-48a), we obtain

f(x*> ~ X ^ r ) f(^)exp(-ian^)d^exp(ianx*) (2.8-50a)
n = - o o / — L

oo e L

18 S - ^ I f(^)exP[ian(x*-^)]d^ (2.8-50b)

On letting L —> °°, Equation (2.8-50b) becomes

f°° f (^ )e i o t ( x * -^d^ d a (2.8-51a)
/-co

- o o L" J

J/» oo ^ oo

I f (^)[cosa(x*-^) + isina(x*-^)]d^da (2.8-5lb)

— oo J —oo

« - I I f(^)cosa(x*-E)d^ da (2.8-51c)
n Jo I / - J
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* 00

~ — I I f (£) (cos ax* cos at, + sin ax* sin a£) dt, da (2.8-5Id)
K Jo LJ-°°

f°°
~— I [A(a) cos ax* + B (a) sin ax*J da (2.8-5le)

71 Jo

where

A(a)=| f(£)cosa£d£, B(a)=l f©sina^d^ (2.8-51f,g)

f°°
Note that sin a is an odd function so j sin a d a is zero. The quantities A (a) and B(a) exist

J-00

if J |f(^)|d^ converges. The right side of Equations (2.8-5 la to e) is the Fourier integral of

f (x ). If f (x ) has a jump discontinuity at a point x0, the integral converges to j - [f (x0+) + f (xo_)].

If f(^) is even, B(a) is zero and if f(^) is odd, A (a) is zero.

Example 2.8-5. Determine the Fourier integral of the following functions

11, | x | < l

(a) f(x) = (2.8-52a,b)

1 0 , I x I > 1

/ 1, 0 < x < l

(b) f(x) = / - 1 , - l < x < 0 (2.8-53a,b,c)

( 0 , I x I > 1

Figure 2.8-5 illustrates these two functions,

(a) f(x) is even and B(a) is zero.

A (a) = 2 I f (£) cos a^ d£ = 2 I cos a^d£ = 2 s i n a (2.8-54a,b,c)

Jo Jo a
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f (X) = 1 I 2 sin a c o s a x d a (2.8-55)

The function is continuous everywhere except at x = ±l. We deduce that

In/2, 0 < | x | < l

I sin a cos ax d a = n/^ x = ± 1 (2.8-56a,b,c)

Jo a

\0, | x | > l

On setting x = 0, we obtain

r .
I sin_a d a _ n/2 (2.8-57)

f ( x ) i

(o)

1 1 •
-I I X

FIGURE 2.8-5 (a) Even function; (b) Odd function

(b) f(x) is odd and A (a) is zero.

B(a) = 21 sina£d£ = ^-(1-cosa) (2.8-58a,b)

Jo a
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f ( x ) « 2 . j (1 ~ c o s a ) sin ax da (2.8-59)
K Jo a

The function is continuous everywhere except at x = 0 and at x = ±1. We deduce that

/ 0, x = 0

-so 7t /2, 0 < x < 1

(1-cos a) sin ax d / (2.8-60a-d)
) 0 « JC/4, x = l

0, x > 1

Example 2.8-6. Extend the problem considered in Example 2.8-4 to an infinite beam extending
from -°° to oo. The appropriate boundary condition is that w vanishes at infinity. Assume that
p (x) is given by

Po> l x l < a

p(x) = (2.8-6 la,b)
0, | x | > a

where p0 and a are constants.

We represent p (x) and w (x) by their Fourier integrals and write

r
p(x) ~ -i- I [A (a) cos ax + B (a) sin ax] da (2.8-62a)

n k

w (x) « -1- [C (a) cos ax + D (a) sin ax] da (2.8-62b)

n h
Differentiating w (x) four times and substituting the resulting expression together with the expression
for p in Equation (2.8-41) yields

A t 0 0 t°°

I [C(a)cos ax + D(a) sin ax] da = J- I [A(a) cos ax + B(a) sin ax] da
n Jo n)o

(2.8-63)

We deduce that



1SZ ADVANCED MATHEMATICS

(a4EI + k)C(oc) = A (a) (2.8-64a)

(a4EI + k)D(a) = B(a) (2.8-64b)

From Equations (2.8-51f, g, 61a, b), we obtain

r r
A(a) = I p(x)cosaxdx = 2p0 I cos ax dx = (2p0 sin cca)/a (2.8-65a,b,c)

J-oa JO

r r
B(a) = I p(x)sinaxdx = p0 I sin ax dx = 0 (2.8-65d,e,f)

J-oo J-a

Combining Equations (2.8-64a to 65f) yields

C(a) = 2 p 0 s i n a a / [ a ( a 4 E I + k)] (2.8-66a)
D(a) = 0 (2.8-66b)

Substituting Equations (2.8-66a, b) in Equation (2.8-62b) yields

/•oo

w(x) = ^ - I sin aa cos ax d a (2.8-67)
71 Jo a ( a 4 E I + k)

Examples of Legendre-Fourier and Bessel-Fourier series are given in Chapter 5.

2.9 ASYMPTOTIC SOLUTIONS

We have obtained convergent series solution in the neighborhood of x 0 (= 0) if x 0 is an ordinary or
regular singular point. If x 0 is an irregular singular point, there is no method of generating a
convergent series solution. In some cases, we can obtain a formal series solution which is a good
approximation for small values of x. This is illustrated in the next example.

Example 2.9-1. Find a power series that satisfies the equation

x3y" + (x2 + x )y ' -y = 0 (2.9-1)

The origin (x = 0) is an irregular singular point, that is to say, x (x +x)/x and x (- l ) /x do
not have a Taylor series about x = 0. We seek a formal series solution as given by Equation
(2.3-8a). Substituting Equations (2.3-8a to c) in Equation (2.9-1) yields



SERIES SOLUTIONS AND SPECIAL FUNCTIONS /££

oo

]T [(r + 2)(r+l)cr + 2xr + 3 + (r+l)c r + 1x r + 2 + ( r+l)c r + 1x r + 1 -c rx r ] = 0 (2.9-2)
r=0

Comparing powers of x, we obtain

x°: c0 = 0 (2.9-3a)

x1: c j - c j = 0 => cj is arbitrary (2.9-3b)

x2: CJ+2C2-C2 = 0 => c2 = - c x (2.9-3c,d)

x3: 2c2 + 2c2 + 3c3-C3 = 0 => c3 = -2c 2 = 2c2 (2.9-3e,f)

xs: ( s - l ) ( s - 2 ) c s _ 1 + ( s - l ) c s _ 1 + s c s - c s = 0 => cs = - ( s - 1) cs_! (2.9-3g,h)

The formal series that satisfies the differential equation is

oo

c 1 [ x - x 2 + 2x3 + ( - l ) s + 1 2-3-4 ... (s-1) xs + ...]= cl £ ( - l ) s + 1 (s-1)! xs (2.9-4)
s = l

Can this divergent series [Equation (2.9-4)] be used to calculate the values of y for small values of
x ? The answer is yes. Using the divergent series, we find that y (0.1) can be written as

y (0.1) - Cj [10"1 - 10"2 + 2 x 10~3 - 6 x 10"4 + 2-4 x 10~4 + ... ] (2.9-5)

We note that the magnitude of the terms decreases as the order increases and if we require y (0.1) to
be accurate to two decimal places, the first two terms are sufficient and y(0.1) = 0.99 Cj.

n

The divergent series sn(x) [= X c r x F ] is an asymptotic series expansion of a function f(x).
r=0

The power series sn(x) represents f(x) asymptotically as x—>0 if

x~ n [ f (x ) - s n ] —> 0, for all n > 0 as x—>0 (2.9-6)

The error in approximating a function by a convergent series decreases as the number of terms
increases. We are certain of attaining the required accuracy by taking a sufficient number of terms.
From Equation (2.9-6), it is seen that the approximation improves as the magnitude of x decreases for
a fixed value of n. Since the asymptotic series is divergent, the error may increase as n increases.
Usually, for asymptotic series, only a few terms are required. We can increase the value of n as long
as the value of the nth term is less than the value of the (n - l) th term. We stop at the (n - l ) t h term
if the value of the n* term is greater than that of the (n - l) th term.
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Asymptotic series are widely used in the solution of differential equations and for evaluating integrals.
In applied mathematics, one often neither knows nor cares if the series converges or not [Van Dyke
(1975)]. Even if a convergent series is available, it is sometimes profitable to consider an asymptotic
series as shown in the next example.

Example 2.9-2. Solve Bessel's equation of order zero [Equation (2.4-44)] for large values of x.

We first transform Equation (2.4-44) to its normal form. A second order differential equation is in
its normal form if the first derivative (dy/dx) is not present. To achieve this, we write

y = u(x)v(x) (2.9-7)

Differentiating and substituting the resulting expressions in Equation (2.4-44) yields

x2 (u" v + 2u' v1 + u v") + x (u1 v + u v') + x2u v = 0 (2.9-8a)

or x 2 v u " + u ' (2x 2 v '+xv) + u ( x 2 v " + x v ' + x 2 v ) = 0 (2.9-8b)

We now impose the condition

2x2v'+ xv = 0 (2.9-9)

The solution is

v = x~1/2 (2.9-10)

Equation (2.9-8b) becomes

u" + u ( l + l /4x2) = 0 (2.9-11)

For large values of x, Equation (2.9-11) is approximately the simple harmonic equation [Equation
(2.6-3a)] and the solution is elx. This suggests that we seek a solution of the form

oo

u = eix £ cnx"n (2.9-12)
n=0

Note that, in this case, we look for a solution as x —> °°, therefore we expand in reciprocal powers
of x.

On differentiating, we obtain

oo oo

u' = ieix X cnx-n-e i x £ nc^-""1 (2.9-13a)
n=0 n=l
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oo oo

= i e i X X Cr x~r ~ e lX X (r + ^ Cr+ 1 x~r~2 (2.9-13b)
r=0 r=0

oo

= eix]T [ ic rx- r - ( r+l)c r + 1x- r - 2 ] (2.9-13c)
r=0

The second derivative u " is given by

oo

u " = e i x J [ - c r x - r - 2 i ( r + l ) c r + 1 x - r - 2 + ( r + l ) ( r + 2 ) c r + 1 x - r - 3 ] (2.9-13d)
r=0

Substituting Equations (2.9-13a, d) in Equation (2.9-11) and multiplying by e~ix, we obtain

oo

£ [-crx~r-2i(r+ l)cr+1x~r-2+(r+ 1) (r + 2)cr+1 x-r-3+crx~r+ (1/4) crx~r~2] = 0
r=0

(2.9-14)

Comparing powers of x yields

x°: - c o + co = 0 => c0 is arbitrary (2.9-15a)

x"1: - C i + c j = 0 => Cj is arbitrary (2.9-15b)

x~2: - 0 2 - 2 4 0 ^ 0 2 + -̂0(3 = 0 =» c 1 = - i c 0 / 4 » 2 (2.9-15c,d)

x~3: - c 3 - 4 i c 2 + 2 c 1 + c 3 + i -c 1 = 0 =* c 2 = - i ( 9 0 ^ 4 ) / 4 (2.9-15e,f)

x~s: - c s — 2i (s — 1) cs_j + (s - 2) (s - 1) cs_2 + cs + 1/4 cs_2 = 0

=> 2 i ( s - l ) c s _ ! = cs_2 (s2 - 3s + 9/4) => cs_j = - i c s _ 2 ( s -3 /2 ) 2 /2 ( s - 1 )

(2.9-15g,h,i)

We note that the coefficients cs are alternately real and imaginary.

As usual, to allow for the tabulation of Bessel functions, we set c0 to be equal to one and u can be

written as

i x L i 3 2 i » 3 2 « 5 2 3 2 - 5 2 - 7 2 1 ^ n , £ s
u = e 1 + + + ... (2.9-16a)

4 « 2 x 4 2 «2 2 «2x 2 4 3 « 2 3 - 3 ! x 3 4 4 - 2 4 » 4 ! x 4
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= e i x (w r - iWi) (2.9-16b)

where wr = 1 - 32/[42» 2 2 - 2x2] + 32» 52« 72/[44« 24« 4! x4] + ... (2.9-16c)

wj = l / [ 4 » 2 x ] - 3 2 « 5 2 / [ 4 3 « 2 3 » 3 ! x 3 ] + ... (2.9-16d)

Combining Equations (2.9-7, 10, 16b) yields

y = x ~ 1 / 2 e i x ( w r - i w i ) (2.9-17a)

= x~1/2(cosx + i s inx ) (w r - iw i ) (2.9-17b)

= x [wf cos x + Wj sin x + i (wr sin x-Wj cos x)] (2.9-17c)

The two real fundamental solutions y^ and y2 are given by

y j = (y + y)/2 = x~1 / 2(wrcosx + w; sin x) (2.9-18a,b)

y2 = ( y - y ) / 2 i = x~1 / 2 (wrs inx-Wj cos x) (2.9-18c,d)

where y is the complex conjugate of y.

The general solution of Equation (2.4-44), as x —> °°, is given by the linear combination of yj and
y2. The solution of Equation (2.4-44) is the Bessel function of order zero. That is to say, as
x —> °o

J0(x) - A y 1 + B y 2 (2.9-19)

where A and B are arbitrary constants.

From Equations (2.9-16c, d), we deduce that

lim w = 1 , lim W: = 0 (2.9-20a,b)

Differentiating both sides of Equation (2.9-19) yields

J^(x) « A y ' 1 + B y 2 (2.9-21)

From Equations (2.9-16c, d, 18b, d, 20a, b), we deduce that the leading terms of y'j and y2, as

x —> °°, are
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y\ « x"1 / 2 (-wrsinx) - -xT1 / 2sinx (2.9-22a,b)

y'2 « x~1/2cosx (2.9-22c)

Combining Equations (2.9-19 to 22c) yields

Urn x1 / 2Jn(x) = Acosx + Bsinx (2.9-23a)

lim x 1 / 2 j ' (x ) = -As inx + Bcosx (2.9-23b)
X >°°

The solution is

A = Urn x m [ Jo (x) cos x - J' (x) sin x] (2.9-24a)
X >~

B = lim x m [ J0(x) sin x + jj,(x) cos x] (2.9-24b)

The integral representation of Jo (x) is (see Problem 22b)

r
Jn(x) = J- cos (x cos 9) dG (2.9-25)

It follows that

Jjj(x) = - J- I [sin (x cos 9)] cos 9 d9 (2.9-26)

n Jo
Substituting Equations (2.9-25, 26) in Equation (2.9-24a) yields

xi/2 r
A = lim I [cos x cos (x cos 9) + sin x cos 9 sin (x cos 9)] d9 (2.9-27a)

x->~ 7C JQ

xi/2 r
= lim I [cos (x + x cos 9) + cos (x - x cos 9)

x_>~ In ) Q

+ cos 9 {cos (x - x cos 9) - cos (x + x cos 9)}] d9 (2.9-27b)

xi/2 r
= lim - — I [(l-cos9)cos(x+xcos9)+(l+cos9)cos(x-xcos9)]d9 (2.9-27c)

x->~ 271 j o
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xl/2 (K 7 0 2
= lim - — [(sin20/2)cos(2xcos20/2)+(cos20/2)cos(2xsm 8/2)]d9 (2.9-27d)x->~ n j Q

To evaluate the first integral on the right side of Equation (2.9-27d), we write

(j) = {4lx) cos 6/2 (2.9-28)

On differentiating, we obtain

d<|> = - ! • (V2x~) sin 8/2 d9 (2.9-29)

It follows from Equations (2.9-28, 29) that

n 1 / 2

f f / 2\
I sin2 9/2 cos (2xcos2 0/2) d9 = (cos <^) f- \T^) h _ 1_ d<|) (2.9-30a)
Jo JV27 V I 2x/

r ^ / 2\1/2
= -yT I 1 - — (cos f) d(t) (2.9-30b)

Jo V 2x/
Therefore

xi/2 r 2 2
lim - — sin29/2 cos(2xcos28/2)d0

x->~ n jQ

,nr~ 1/2

x 1 / 2 m 1 / 2 f / 621 2
= l im-—M- 1--1- (cos<|))d(|) (2.9-3 la)

x->~ K x Jo I 2x/

= i^- I cos^d^) (2.9-3 lb)
K Jo

= TV (2.9-31c)

Similarly, B and the associated integrals can be evaluated. It is found that

A = B = -jL (2.9-32a,b)

Combining Equations (2.9-18a, b, 19, 32a, b) yields
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-1/2
Jo ~ [wr (cos x + sin x) + Wj (sin x - cos x)] (2.9-33a)

V JL

* M - [wr cos (x - 7t/4) + wf sin (x - n/4)] (2.9-33b)
Wv A.'

From Equation (2.9-15i), we deduce, using the ratio test, that the series representations of wr and wj
[Equations (2.9-16c, d)] are divergent. However, to determine J0(6) accurate to five places of
decimals, we need to consider only the first seven terms of the series (four for wr and three for Wj)
and we obtain

Jo(6) = 0.15064 (2.9-34)

The function Jo (x) can also be represented by a convergent series [Equation (2.4-53)] and, after

adding the first twenty one terms, we obtain

Jo(6) = 0.15067 (2.9-35)

and this value is accurate to four decimal places only.

•

An asymptotic series is often more useful than a convergent series. Since Poincare's pioneering work,
considerable progress has been made in the understanding of the asymptotic series. From the two
examples we have considered, we can postulate that the asymptotic solution of a differential equation
can be of the form

y - {exp [X(x)]} xr £ cn x"n (2.9-36)
n=0

as x —> °°.

In Example 2.9-1, X = r = 0 and it is not common for an asymptotic solution to be simply a power
series. Usually, exponential functions are involved as in Example 2.9-2, where

X(x) = ix, r = - l / 2 (2.9-37a,b)

Further details on asymptotic expansions can be found in Cesari (1963), Nayfeh (1973), Van Dyke
(1964), and Wasow (1965).
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Parameter Expansion

Many physical problems involve a parameter which can be small or large. In fluid dynamics, we have
the Reynolds number which can be small (Stokes flow) or large (boundary-layer flow). We consider
the case when the parameter is small and we denote it by 8. If the parameter is large, we consider its
reciprocal. We seek a solution in powers of £ and often the series solution is an asymptotic series.
The next example illustrates the method of parameter expansion.

Example 2.9-3. A particle of unit mass is thrown vertically upwards (y-direction) with an initial
velocity v0. If the air resistance at speed v is assumed to be ev2, where e is a small positive
constant, determine the maximum height ym reached by the particle at time t m.

We take the origin at the surface of the earth. The equation of motion (Newton's second law of
motion) is

y = - [ g + e y 2 ] (2.9-38)

where g is the gravitational acceleration and the dot denotes differentiation with respect to time.

The initial conditions are

y(0) = 0, y(0) = v0 (2.9-39a,b)

We have identified e to be a small parameter and we start by expanding all functions of interest in
powers of e. That is

y (t) = yo(t) + eyi(t) + ... (2.9-40a)

t m = tQ + etj +. . . (2.9-40b)

Substituting Equation (2.9-40a) in Equations (2.9-38, 39a, b), we obtain respectively

y ' o + e y j + ... = - [g + e ( y 2 + 2ey 0 y j +...)] (2.9-41a)

yo(O) + eyi(O) + ... = 0 (2.9-41b)

yo(O) + ey !«)) + ... = v0 (2.9-41c)

At time tm, the particle is at rest and this is expressed, using Taylor's expansion, as

y (tm) = y0 (t0 + etj + ...) + ey l (t0 + ztl + ...) + .. (2.9-42a)
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= y0 (t0) + e t ^ (t0) + ... + ey x (t0) + e2t i y x (t0) + ... (2.9-42b)

= yo(to) + e t t iy0(to) + yi(to)] + - = ° (2.9-42c,d)

Comparing powers of e, we obtain from Equations (2.9-4la to c)

e°: y o = - g , yO(°) = °' yo(°) = vo (2.9-43a,b,c)

e1: y ' i = - y o 2 . Yi(0) = 0, y x(0) = Q (2.9-43d,e,f)

From Equations (2.9-43a to c), we deduce

yo = -gt + vo (2.9-44a)

Yo= ~^g t 2 + v0t (2.9-44b)

Substituting Equation (2.9-44a) in Equation (2.9-43d) yields

y'l = - [g 2 t 2 -2v o g t + vo2] (2.9-45)

The solution subject to Equations (2.9-43e, f) can be written as

y l =-l\ g2t3 - v0gt2 + v 2 t ] (2.9-46a)

Yl = - [ - ^ - g 2 t 4 - ^ v o g t 3 + l v 2 t 2 ] (2.9-46b)

From Equations (2.9-42c, 44a), we obtain

t0 = vo/g (2.9-47)

Combining Equations (2.9-42d, 43a, 46a, 47) yields

ti = - y i ^ / y ' o C o ) = - ^ ( v 0 3 / g 2 ) (2.9-48a,b)

Substituting Equations (2.9-47, 48b) in Equation (2.9-40b) yields

tm = v o / g - e [ i ( v o 3 / g 2 ) ] + ... (2.9-49)

The effect of the air resistance is to reduce tm.
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The maximum height ym is obtained from Equations (2.9-44b, 46b, 49) and can be written as

Ym = -^g[v 0 /g - (8 /3 ) (v 0 3 /g 2 ) + . . . ] 2 + v0[v0/g-(e/3)(v0 3 /g2) + ...]

- e [ ^ g2 (vo/g + ...)4 - L vog (vo/g + ...)3 + \ v 2 (vo/g + ...)2] (2.9-50a)

= (v0/2g)-e(v0 4/4g2) (2.9-50b)

As expected, the air resistance lowers the maximum height.

The present problem can be solved exactly. Replacing y by (v dv/dy), Equation (2.9-38) becomes

v ^ = -[g + ev2] (2.9-5 la)
dy

or v d v = -dy (2.9-5 lb)
g + ev2

The solution of Equation (2.9-5 lb) subject to Equations (2.9-39a, b) is

y = J_ i n ili^O. (2.9-52)
2? 2

^fc Lg + ev _

The maximum height ym is given by

ym = ^ n ( l + e v o 2 / g ) (2.9-53a)

= ^ [evo2/g-e2v4/2g2 + ...] (2.9-53b)

= v 2 /2g-ev4/4g 2 + ... (2.9-53c)

Equation (2.9-50b) is exactly Equation (2.9-53c).
•

It is not uncommon for the small parameter to be associated with non-linear terms, as in Example
2.9-3, and unlike the present example, it is often impossible to obtain an exact solution. By the
perturbation method, the non-linear system reduces to a linear system. The non-linear terms become
the non-homogeneous terms [Equation (2.9-43d)]. The equations can then be solved and an
approximate solution is obtained.
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The regular perturbation (straight forward expansion) method as described in the preceding
example may generate a solution which is not valid throughout the region of interest (usually at infinity
or at the origin). In this case, we have a singular perturbation. We next introduce several
examples involving a singular perturbation.

i) The function exp (-ex) can be approximated as

oo

exp (-ex) = ^ (-l)n(ex)n/n! = 1-ex + e2x2 + ... (2.9-54a,b)
n=0

The infinite series is convergent and, as an asymptotic expansion, we consider the first three
terms as shown in Equation (2.9-54b). If x < (1/e), the approximation is valid, but if
x » (1/e), the approximation is no longer valid and the magnitude of the first three terms can
exceed one while exp (-ex) < 1 for all x > 0. Thus the approximation of exp ( -ex) ,
( e « l ) by the first three terms, is valid for x<( l /e) but not for x » ( l / e ) . In the case
of a convergent series, we need to include more terms as the value of x increases. There is a
limit to the number of terms that can be included. If we are required to evaluate exp (-ex) for
large values of x, the convergent series [Equation (2.9-54a)] is not useful (see Example
2.9-2).

ii) The function Vx + e can be approximated as

VxT~e = Vx" (1 + e / x ) m = VxT (1 + e/2x - e2/8x2 + ...) (2.9-55a,b)

Except for the first term, (e = 0), all the other terms are singular at the origin.

iii) If the coefficient of the highest derivative in a differential equation is e, the solution in powers
of e is often singular (see Section 2.4 and Example 2.9-4).

Several methods have been developed to extend the validity of the solution. The basic idea is to use
more than one scale. This is discussed in the next example.

Example 2.9-4. In Example 1.14-2, the rate equations for components A, B, and C involved in
first order reactions are solved. In more complicated cases, it is not possible to obtain the analytic
solution and the quasi-steady state approximation is introduced. This implies that the left side in
Equation (1.14-15) is set to zero. Discuss the validity of this approximation. Follow Bowen et al.
(1963) and write Equations (1.14-14 to 16) in dimensionless form. Show that the solution by the
regular perturbation is singular.

Setting dB/dt = 0, we deduce from Equation (1.14-15) that

cB = (k j /k 2 )c A (2.9-56)
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From the exact solutions [Equations (1.14-17, 22)], we obtain

_ M A t l - e x p C l ^ - k ^ t ]
Cfi " k^l-k^) ( 2 ' 9 }

Comparing Equations (2.9-56, 57), we find that the approximate solution [Equation (2.9-56)] is valid
if

kj/kj « 0, e x p ( k j - k 2 ) t « 0 (2.9-58a,b)

The approximation is valid if k2 » ^ and t—> «>. Even if k 2 » k j , the approximation is not

valid for small values of t and this restriction will be discussed later.

We introduce the following dimensionless quantities

CA = c A / c A 0 ' CB = cB/cA0 ' CC = cC/cA0 (2.9-59a,b,c)

e = kj /kj , t* = kjt (2.9-59d,e)

Using Equations (2.9-59a to e), Equations (1.14-15 to 16) becomes

^ A = - c * (2.9-60a)
* i\

dt

e ^B_ = _ c ^ + e c ^ (2.9-60b)
dt*

e ̂ f = c * (2.9-60c)
dt*

The initial conditions are

<£(0) = 1 , Cg(0) = cJ(O) = 0 (2.9-6 la,b,c)

On solving Equations (2.9-60a to c) subject to Equations (2.9-6la, b, c), we obtain

c*A = e~l* (2.9-62a)

c* = e (1 - e)"1 [e"1* - e"1*76] (2.9-62b)

c* = (1 - e)"1 [e-1* - ee"1*78] - 1 (2.9-62c)
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For simplicity, we consider only Equations (2.9-60a, b) and solve them by the regular perturbation

method. We express cA and Cg as

c I = c I 0 + e c i , + 8 2 c A 2 + " (2.9-63a)

CB = CBO + e c B , + e 2 c B 2 + - (2.9-63b)

Substituting Equations (2.9-63a, b) in Equations (2.9-60a, b) and comparing powers of e, we obtain

eo. % = -c^ (2.9-64a)
dt

0 = c*Q (2.9-64b)

e1: —^- = - % (2.9-64c)
dt*

dCr> * *

- ^ = - c B , + c I 0 (2-9"64d>
dt

o dcA *
e2: - ^ = - c A 2 (2.9-64e)

dt

%--^2+% (2.9-64f)
dt

The initial conditions are

CIO(°) = L CA,(°) = CA2(°> = - = 0 (2.9-65a,b,c)

CBO(°) = C B V ° ) = CB2(°) = • = ° (2.9-65d,e,f)

Solving Equations (2.9-64a to 65d), we obtain

C ; o = e"1*, c ^ = c ^ = 0 (2.9-66a,b,c)

CBO = ° ' CB, = CAO' CB2 = ° (2.9-66d,e,f)
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The approximate solutions for cA and cB are

c*A « e~l , cB « ee~l (2.9-67a,b)

Equation (2.9-62b) can be written as

cB - e(1 + e + ...) [e"1 - e"1 / £ ] (2.9-68)

Comparing Equations (2.9-67b, 68), we note that Equation (2.9-67b) is a valid approximation in the

case 8 —> 0, t * 0. At time t ~ 0, the approximation is not valid. The solutions given by

Equations (2.9-56, 67b) are not uniformly valid and do not satisfy the initial condition [cB(0) = 0].

The coefficient of dcB/dt is e. Expanding cB in powers of 8, the differential equation [Equation

(2.9-60b)] reduces to a system of algebraic equations [Equations (2.9-64b, d, f)] and no arbitrary

constant can be introduced so as to satisfy the initial conditions. Note that in Equations (2.9-64d, f),

cB and cB are known quantities and are defined in Equations (2.9-64b, d) respectively. We further

note that the zeroth approximation

C I O = e~l*> CBO = ° (2.9-69a,b)

is uniformly valid. This zeroth order solution cannot be improved because cB is not uniformly valid.

This implies that the quasi-steady state method is valid for the zeroth approximation and not for higher
approximations.

A similar situation exists in fluid mechanics. The Stokes solution of the flow past a sphere is
uniformly valid but the higher approximation is not valid and is known as the Whitehead paradox.
A thorough discussion on the Whitehead paradox is given in Van Dyke (1975).

-t*/fIt is the presence of the term e in Equation (2.9-62b) that contributes to the singularity. On

taking the limit as e —> 0 first and then as t* —> 0, the limit of e~l is zero. On reversing the

-t*/F

limiting process, the limit of e is one. This implies that

lim e-l*/e * lim e"l*/£ (2.9-70)
e->0 t*->0 t*->0 e->0

*
We further note that e~l changes rapidly near t* = 0. This suggests that to obtain a uniformly
valid solution we need to seek the solution in two separate regions. We obtain a solution near t* = 0,
which is the inner region or boundary layer where 8 is important, and a solution for t* » 0,
which is the outer region. We use two different time scales, one for the inner solution and one for
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the outer solution. This perturbation method is the matched asymptotic expansion method
(boundary layer method) and was introduced by Prandtl to resolve d'Alembert's paradox in fluid
mechanics (see Chapter 3).

In the present example, cA [Equation (2.9-67a)] is uniformly valid and we need to solve only

Equation (2.9-60b) by the method of matched asymptotic expansion.

The time scale for the inner region is

T = t*/e (2.9-71)

Using Equation (2.9-71), Equation (2.9-60b) becomes

^ = - C B + ECA (2.9-72)

Note that, by our choice of T, the coefficient of dcB/dT is one and not e. The independent variable

for the inner region is chosen such that the coefficient of the highest derivative is not e. We denote the

inner solution by ci and it is expanded as

of =c<»* + < + . . . ,2.9-73,

Substituting Equation (2.9-73) in Equation (2.9-72) and comparing powers of e, we obtain

E°: T £ - - - < * (29-74a)

dc®*

The initial conditions can be applied in the inner region and they are

4i}o*(O) = c®*(0) = 0 (2.9-74c,d)

The solution of Equation (2.9-74a) that satisfies Equation (2.9-74c) is

<$* = 0 (2.9-75)

Combining Equations (2.9-66a, 71, 74b) yields
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dc®*
— ^ - + 4 1 J = e " e l = 1-ET + ... - 1 (2.9-76a,b,c)

dT c i

On solving Equation (2.9-76c) subject to Equation (2.9-74d), we obtain

c£j* = l - e ~ T (2.9-77)

The inner solution c^J can be written as

c£°* = E(l-e"T) + ... (2.9-78)

For the outer region, t is the time scale and the solution given by Equation (2.9-67b) is valid for
* (o) *

t » 0. The outer solution Cg' is given by Equation (2.9-67b). Note that since all conditions are
at time t = 0, no condition can be imposed on the outer solution. As mentioned earlier, the outer
solution is determined by an algebraic equation and there is no arbitrary constant. If the outer solution
is obtained by solving a differential equation, the arbitrary constant is determined by using a
matching principle. The simplest one was proposed by Prandtl and can be expressed as

Km 4 ° * = Jim c£o)* (2.9-79)
T—>oo B t * _ > 0 B

In the present example, Equation (2.9-79) is identically satisfied. That is to say

T t*
lim £ ( l - e l) = lim ee~l = E (2.9-80a,b,c)

T—>~ t*—>0

The matching principle can be interpreted as follows. There exists a region where both the outer and
the inner solutions are valid and are equal. The solution which is uniformly valid is the composite

solution and is denoted by CA . This solution is given by

[ /•«. +"i o r /o\*~] i

ci j and [ci J denote the outer limit (T —> °°) of the inner solution and the inner limit
(t* —> 0) of the outer solution respectively. Equation (2.9-79) implies

Combining Equations (2.9-67b, 78, 80c, 81a) yields

c£c)* = £ ( l - e - T ) + £e - t * -£+O(£ 2 ) (2.9-83a)

(2.9-81a.b)

(2.9-82)



SERIES SOLUTIONS AND SPECIAL FUNCTIONS 779

- e[e"1 - e " 1 / e ] (2.9-83b)

Note that Cg satisfies condition cB = 0.

For further details on singular perturbation, one can consult Nayfeh (1973) or Van Dyke (1975).

PROBLEMS

la. Determine the singular points of the following equations. Are the singular points regular or
irregular?

(i) ( l - x 3 ) ^ + x 2 ^ + x4y = 0
dx2 dx

.... dy . dy _
(n) x —̂ - + sin x -— + y cos x = 0

dx dx

..... 9 d y dy . „
(in) x —— + cos x — + y sin x = 0

dx2 dx

(iv) x ^ + e x d ^ + x3y = 0
dx2 dx

2a. Determine the radius of convergence of the following series. Do they converge on the circle of
convergence?

oo oo

n=0 2 n=0 (2n+ 1)Z

oo £ ^ av) x < = ^
v ' 4-i n v ' *-> n

n= l n=0

3a. Compute a series solution of the equation

(1 + x ) y ' - ( x + 2)y = 0

Compare the series solution with the exact solution.
Answer: (1 + x ) e x

4b. Hermite's equation can be written as
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^ - 2 x ^ + 2ny = 0
dx2 dx

Show that its general solution can be written as the sum of two infinite series and are of the
form

, 2n 2 22n(n-2) 4 [ 2 ( n - l ) 3 1

y = a o [ 1 " 2 T X + 4! X - J + a H x - 3! X + - J
Determine the radius of convergence of the series.

If n is a non-negative integer, one of the series terminates and the polynomial is denoted by
Hn(x). Calculate the first four polynomials, that is, H 0 , H i , H2, and H3 . To specify Hn

completely, the constant a0 (or aj) is chosen such that the coefficient of the highest power
of x (xn) is 2n. Verify that the polynomials Ho to H3 are given by Rodrigues's formula

2

Hn(x) = ( - l ) n e x 2 ^ ^
dx

Use Rodrigues's formula to deduce that

(°° 2
e-x [Hn(x)]2dx = (2nn!V^)

j-00

[Hint: Integrate by parts, note that the coefficient of x n in Hn is 2n and deduce the nth

/•oo 2

derivative of Hn. I e~x dx = in/2]

5 a. Find a series solution of the following equations

d2v d2v
(i) —— - xy = 0 (ii) —— + xy + y = 0

dx2 dx2

6a. Find the general solutions of the following equations

2

(i) x2——+5x — - 5 y = 0 Answer: Ax~5 + Bx
dx2 dx

2

(ii) x 2 — ^ - 3 x - ^ + 4 y = 0 Answer: Ax2 + Bx2Jinx
dx2 dx
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(iii) (x - I)2 ^-Z- + (x - 1) — - y = 0 Answer: A(x- l ) + B (x-1)"1

dx 2 dx

7b. Solve the equation

x2 y" + x y ' - y = x

subject to

y ( l ) = y ' ( l ) = 0

Answer: ( 1 ~ X I + - i n x
4x 2

8 a. Solve the following equations

(i) 4X1_I+3^Z + 3y = o
dx2 dx

(ii) x2^-3x^+4(x+l)y = 0
dx2 dx

(iii) x ^ + 2 ^ + x y = 0
dx2 dx

9b. Deduce a series solution for the equation

X 2d!y + ( X 2 + X ) d y _ y = Q

dx2 dx

Express the series in a closed form. Determine the solution that satisfies the conditions
y ( l ) = l, y ' ( l ) = - l .

. ( x - 1 ) , e(1~x)

Answer: x + x

10a. Show that r = 0 is a double root of the indicial equation of

2

x^+(l-x2)^+4xy = 0
dx2 dx

Find the solution that is finite at the origin.

Answer: 1 - x2 + x4/8
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1 lb. Sheppard and Eisenklam (1983) have considered the dispersion of an ideal gas through porous
masses of solid particles. The gas is assumed to be compressible and after some
simplifications (details are given in the paper), the equation to be solved is

ND O(l+Bx)^-|-(l+Bx+|ND O)d^ + [S-(l+Bx)3/2(T0)(p)]c = 0
\X A.

where C is the Laplace transform of the concentration, Npo is the dispersion number, B is
related to the permeability of the porous mass, x0 is a residence time, and p is the Laplace
transform variable.

Show that the origin is an ordinary point. On expanding all quantities in powers of x up to
x5, obtain C in a power series of x up to x5.

12a. Deduce that the indicial equation of

2 d y , 2^ dy „
xz —'- + (x - xz) — - xy = 0

dx2 dx

is r 2 = 0.

Obtain one series solution which is non-singular at the origin and verify that it is ex. Use the

method of variation of parameters to show that the second solution is I (e~x/x) dx. By

expanding e~x in powers of x, find the second series solution.

13b. Jenson and Jeffreys (1963) have considered the problem of the temperature distribution in a
transverse fin of triangular cross-section. If T denotes the fin temperature and TA denotes
the air temperature, show from an energy balance that y (= T - TA) satisfies the equation

x (b - x) ^ + (b - 2x) ^ - 0 (b - x) y = 0
dx 2 dx

where x is the distance from the rim of the fin, as shown in Figure 2.P-13b. The outer radius

of the fin is b, p = h /ks ina , h is the heat transfer coefficient, k is the thermal

conductivity of the fin, and a is the half angle of the vertex of the triangular fin.

The appropriate boundary conditions are

at x = 0, y remains finite

at x = b - a , y = T B - T A
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Tg is the temperature of the pipe and a is the radius of the pipe.

Show that the origin (x = 0) is a regular singular point.

Obtain a series solution for y if a = 5 cm, b = 15 cm, (3 = 380 W/mK, TA = 288 K,
and TB = 373 K.

—/TCL
__!___ j°

FIGURE 2.P-13b Transverse cooling fin

14a. Show that the eigenvalues A, of the Sturm-Liouville problem

dx2

a i y ( O ) + oc2y'(O) = 0 , ^ y(7c) + p 2 y1 (TC) = 0

are given by

(al Pj + A , a 2 P 2 ) t a n 7 t *^ ~ " ^ ( P i a 2 ~ a i P2)

15b. Consider the following electrostatic problem, where a positive charge e is placed at point A,
a distance a from the origin, as shown in Figure 2.P-15b. A negative charge - e is placed at
B, a distance - a from the origin. The potential u at any point P is given by

u = e/rj - e / r 2
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where i^ = AP, r2 = BP. Using the cosine rule, we obtain

r~! = r - 1 [ l - ( 2 a / r ) c o s 0 + a 2 / r 2 ]~ 1 / 2

r"1 = r"1 [1 + (2a/r) cos 9 + a 2 / r 2 ] " 1 / 2

Use Equation (2.7-14) to express r̂ " and r2 in terms of the Legendre polynomials.

Hence, show that

" = ¥i(f)2s+lp2S+1<cose)
s=0

Find the limiting value of u in the case a —> 0, e a —> \i (* 0). This limiting case
corresponds to a dipole.

P

y r / \ n

B a 0 a A

FIGURE 2.P-15b Charges (±e) at A and B

16a. Use Rodrigues's formula [Equation (2.7-13)] to compute Po, P j , and P2.

17b. Show that

I P2dx = 2/5

[Hint: Use Rodrigues's formula, integrate by parts, and note that P 2 = 3. ]
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1 2

18a. Calculate the associated Legendre functions P 2 and P | from Equation (2.7-40). Verify that

they satisfy the associated Legendre equation.

Answer: 3 x V l - x 2 ; 3 ( l - x 2 )

19b. Apply l'Hopital's rule to Equation (2.7-68) and deduce that

Yn(x) = l lim [ ^ - ( - 1 ) " ^
n K v->n [ 3V dv

where n is an integer.

Assuming that Jv (x) and J_v (x) are given by Equations (2.7-62b, 63), show that Yn (x)

has a i n (x/2) term.

20a. From Example 2.7-2 and Table 2.7-1, deduce that

(i) J-3/2W = - f ^ ( e f J L + sinx)

(ii) J5/2(x) = AT2T f3-mx _ 3cosi _s inx\
' 7tX | X z X j

(iii) Jo' (X) = VT~— (COS X-s in X) = - J j ( x )
V ^£>7L X

21b. Choudhury and Jaluria (1994) obtained an analytical solution for the transient temperature
distribution in a moving rod. They assumed the existence of a steady temperature and, to
obtain the steady temperature, they had to solve the equation [their equation (12)]

where R is the dimensionless radial distance, R] is the dependent variable, and A, is a

constant. The boundary conditions [their equation (14)] are

*L | =0, ^ | --BiRl(l)
dR R = o dR R = 1

where Bi is the surface Biot number.

Obtain Rj in terms of Bessel functions and show that the eigenvalues Â  are given by

M i ( X B ) = BiJ0(*,n)
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22b. The generating function for Bessel's functions of integral order is exp [(x/2)(t- 1/t)].
Expanding the generating function yields

exp[(x/2)(t-l/t)] = £ t±f(f)r+V-S = I t"Jn(x)
r=0 n=-<*>
s=0

Show that on substituting t = e*e and equating the real and imaginary parts, we obtain

oo

cos (x sin 0) = Jo (x) + 2 ^ J 2 n (x) cos 2n9
n = l

sin (x sin 9) = 2 ]jT J 2 n + 1 (x) sin [(2n + 1)9]
n=0

Multiply the first equation by cosm9, the second equation by sin m9, where m is an
integer, and use Equations (2.8-13a to d) to deduce that

j (x) = J- cos (n0 - x sin9) d9
% Jo

This is the integral formula for Bessel's function.

Verify that

J (x) = J- I cos(xsin9)d9
71 Jo

satisfies Equation (2.4-44).

23a. Represent the function f (x) = 3x - 2x + 1 defined in the interval -1 < x < 1 by a linear
combination of Legendre polynomials.

Answer: Po - 0.2 Pj + 1.2 P3

24b. The function f(x) is defined by

1 0 < x < l / 2

f(x) = i- x = l / 2

0 1 / 2 < X < 1
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oo

and is represented by ^ cn JQ (kn x) , where the ^n are the zeros of JQ(X). Show that the
n = l

coefficients cn are given by

cn = J i ( V 2 ) / [ ^ n J i ( M 2

25a. The function f(x) is periodic and of period 2n. It is defined by

-1 - T C < X < 0

f (x) =
1 0<X<7t

Sketch f(x) over the interval -37tto37i. Show that its Fourier series is

f^ - i f sin (2s + 1) x
H x ) ~ n ± (2s+1)

s=0

Deduce that

oo c

V (-D = £
^ ( 2 s + 1 ) 4

s=0

26a. Represent the function

0 -n < x < 0
f(x) =

1 0 < x <%
by a complex Fourier series [Equation (2.8-33c)].

. ~ ei(2s+l)x
Answer: A—— >

2 % *-i (2s + 1)
S=-oo

27b. The equation governing the motion of a damped harmonic oscillator under the influence of an
external periodic force f(t) is

d V k d y + n 2 y = f(t)

dt2 dt

where k and n are constants.



188. ADVANCED MATHFMATICS

Find the Fourier series of f(t), if f(t) is periodic of period 2T and is equal to ct/2T in the
interval (0, 2T).

Assume that y (t) is also periodic of period 2T and write its Fourier series expansion.
Differentiate the series term by term and substitute the resulting expression in the differential
equation. Determine the Fourier coefficients by comparing the coefficients of the constant
term, the cos terms, and the sin terms.

Answer: a0 = c/n2

as = ks7tc2T3/[a2 + k2s27C2T2]

bs = c T 2 a s / [ a 2 + k 2 s V T 2 ]

a* = sV-n2T2

28 a. Determine the Fourier integral representation of

e"x x > 0

f(x) =
0 x < 0

Deduce that

r
(i) I d o c = 2E. Answer. A (a) = 1 / (1+a 2 )

Jo 1 + a 2 2

(ii) I c o s a d a = -S- Answer: B(a) = a / ( l + a 2 )
Jo 1 + a 2 2e

29a. Show that the equation

X 2 d i + ( 3 x _ 1 ) d y + y = o

dx2 dx

has an irregular singular point at the origin.

I ~ \
Find a power series I ^ c r x I t n a t satisfies the equation. Calculate the radius of

\r=0 j
convergence of the series and comment on the validity of the series as a solution of the
equation.
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30a. Solve the equation

2
d y dy 2 n

—:- + — - Eyz = 0

dx2 dx

subject to initial conditions

y (0) = 1 , p- = 0
d x x=0

by the method of perturbation, assuming e to be small. Calculate the first two terms of the
expansion.

Answer: l + e ( - l + x + e~x)

31b. Find a two term expansion valid for small £ for the solution of

^ + Ey2 = 0
dx2

y(0) = 0 , y ( l + e ) = 1

[Hint: Expand all quantities in powers of £.] Answer: x - e - x - ( l l + x 3 )

32b. The equation of a simple pendulum is

— - + CO sin y = 0
dt2

where y is the angle of inclination and co is the frequency.

Substituting the expansion of sin y in the equation of motion yields

2
^ + C 0 2 ( y - y 3 / 6 + ...) = 0
dt2

Assuming co2/6 to be small, the equation governing the motion of a pendulum can be written
as

2

— - + co 2 y-ey 3 = 0
dt2

Suppose that the initial conditions are
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y (0) = 1 , ^ = 0
d t t=0

Show that the solution to order e is

y = cos cot+ e [(cos cot-cos 3 cot)/32 co + (3tsin cot)/8co]

The presence of the term 3t sin cot (secular term) renders the solution invalid for large values
of t. To obtain a uniformly valid solution, we can use the method of multiple scales. We
introduce two time scales To and T] and write

t = To + 8 Tj

Substitute t in the solution and determine Tj such that the secular term is eliminated.

Determine the uniformly valid solution to order e.

Answer: Tl = 3To/8co2



CHAPTER 3

COMPLEX VARIABLES

3.1 INTRODUCTION

The inadequacy of the real number system (rational and irrational numbers) in solving algebraic
equations was known to mathematicians in the past. It therefore became necessary to extend the real
number system, so as to obtain meaningful solutions to simple equations such as

x 2 + 1 = 0 (3.1-1)

For quite sometime, it appears that equations, which could not be solved in the domain of real
numbers, were solved by accepting V-T as a possible number. This notation, however, has had its
own shortcomings. Euler was the first to introduce the symbol i for i^A with the basic property

i2 = - 1 (3.1-2)

(Electrical engineers use j to denote i^T.)

He also established the relationships between complex numbers and trigonometric functions.
However, in those times, no actual meaning could be assigned to the expression V^T. It was,
therefore, called an "imaginary" (as opposed to real) number. This usage still prevails in the
literature.

It was not until around 1800 that sound footing was given to the complex number system by Gauss,
Wessel, and Argand. Gauss proved that every algebraic equation with real coefficients has complex
roots of the form c + i d. Real roots are special cases, when d is zero. Argand proposed a
graphical representation of complex numbers. The concept of a function was subsequently extended to
complex functions of the type

w = f(z) (3.1-3)

where z (= x + i y) is the independent variable.

The concept of complex variables is a powerful and a widely used tool in mathematical analysis.
The theory of differential equations has been extended within the domain of complex variables.
Complex integral calculus has found a wide variety of applications in evaluating integrals, inverting
power series, forming infinite products, and asymptotic expansions. Applied mathematicians,
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physicists, and engineers make extensive use of complex variables. It is indispensable for students in
mathematical, physical, and engineering sciences to have some knowledge of the theory of complex
analysis.

3.2 BASIC PROPERTIES OF COMPLEX NUMBERS

We can write a complex number z as

z = x + iy (3.2-1)

where x and y are real numbers.

The numbers x and y are the real and imaginary parts of z respectively and are denoted by Re (z)
and Im(z).

We can also regard z as an ordered pair of real numbers. As in vector algebra, we write z as

(x, y).

Just as a real number can be represented by a point on a line, a complex number can be represented by
a point in a plane. This representation is the Argand diagram and is shown in Figure 3.2-1.

y .>

z=x+Ly

A ^
N. X

2 = x-Ly

FIGURE 3.2-1 Argand diagram

Two complex numbers are equal if and only if (iff) their real and imaginary parts are equal. If ẑ

(=Xj + i y i ) and Z2 (=X2 + iy2) are equal, it implies
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M = x2, yi = y2 (3.2-2a,b)

Thus a complex equation is equivalent to two real equations. The addition and multiplication can be
handled in the same way as for real numbers and, whenever i2 appears, it is replaced by - 1 . The
commutative, associative, and distributive laws hold. We list some of the results

zj + z2 = (xt + x2, yi + y2) (3.2-3a)

z2 - z2 = (x2 - x2, y} - y2) (3.2-3b)

•LX • z2 = (xT x2 - yj y2, xj y2 + x2 y{) = z2 • zx (3.2-3c,d)

z l = x l + iy i = (x i+iy i ) (x2- iy 2 ) = [x1x2 + y1y2 + i (x 2 y 1 -x 1 y 2 ) ] ( 3 2 3 e f }

Z2 x2 + iy2 (x2 + iy 2 ) (x 2 - iy 2 ) X2 + y2

The complex conjugate z of the complex number z (= x + i y) is defined as

z = x - i y (3.2-4)

In the Argand diagram, it is the reflection of z about the x-axis and it is shown in Figure 3.2-1.

So far we used only the rectangular Cartesian system. We can also use the polar coordinate
system (r, 9). From Figure 3.2-1, we find

x = r cos 0, y = r sin 6 (3.2-5a,b)

Inverting Equations (3.2-5a, b), we obtain

r = Vx2 + y2 (3.2-6a)

tan9 = y / x (3.2-6b)

The number r is called the modulus or the absolute value of z and is denoted by I z I. It can
be regarded as the length of the vector represented by z. The absolute value of z is also given by

|z| = VzT (3.2-7)

0 is the argument or amplitude of z. It is written as arg z = 0. Hence we can write

z = x + iy = r (cos 0 + i sin 0) (3.2-8a,b)

Since any multiple of 2K radians may be added to 0 without changing the value of z, we specify
-K < 0 < n as the principal value of arg z, and denote it by Arg z. The polar representation is
useful for computational purposes, as shown next.
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First we calculate the product of two complex numbers. Let

zj = rj (cos 0j + i sin 0j), z2 = r2 (cos 02 + i sin 02) (3.2-9a,b)

Then

z l Z2 = r l r2 t c o s ®1 c o s ^2 ~ s m ®1 s m ®2 + i (c o s ^1 s m ^2 + c o s ®2 s m ^l)] (3.2-10a)

= n r2 [cos (0j + 62) + i sin (0t + 02)] (3.2-10b)

From this equation, we note that

I zj z2 I = rj r2 (3.2-1 la)

Arg(z2z2) = Argz1 + Argz2 + 2n7t, n = 0, ±1, ±2, ... (3.2-llb)

Generalizing Equation (3.2-10b), we write

zx z2 z3 ... zn = r i r2 r3 ... rn [cos (Ql + 02 + ... + 9n) + i sin (0! + 02 + ... + 0n)]

(3.2-12)

Setting

Z| = z2 = ... = zn = z = r (cos 0 + i sin 0) (3.2-13)

in Equation (3.2-12), we obtain

zn = r n (cos n0 + i sin n0) (3.2-14)

This is known as De Moivre's theorem (formula). We have deduced it for positive integral
exponents, but it is true for all rational values of n.

To perform a division, in polar form, we write

z, = r jcoset + isine!) ( 3 2 1 5 a )

Z2 r2 (cos 02 + i sin 02)

h. (cos 9 i + i s i n 9 i ) (cos 92 ~ *sin 92) (rt 9 1 CM

r2 (cos 02 + i sin 02j (cos 02 - i sin 02j

r̂  (cos 0^ cos 02 + sin 0j sin 02) + i (cos 02 sin 0^ - sin 02 cos Q^)

r2 cos2 02 + sin2 02

(3.2-15c)
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= |J- [cos (©i - 6 2 ) + i sin (BJ - 92)] (3.2- 15d)

Thus we note that

z, r,

r2 = r2 (3-2-16a)
A r g ( ^ ) = ArgZ l-Argz2 + 2n7t, n = 0, ±1, ±2, ... (3.2-16b)

If we set z\ to be one in Equation (3.2-15d), we obtain

±- = J- [cos(-02) + isin(-e2)] (3.2-17a)

= J- [cos 62 - i sin 62] (3.2-17b)

Example 3.2-1. Determine (1 + i)10-000.

We use the polar form and write

(1+i) = V2~(cosJ +is in j ) (3.2-18)

Therefore

n .10,000 .rf^l 10,000 . . 10,000 \ (3.2-19a)
( l+ i ) ' = 2 2 cos—-A—K + is in— -—7t

\ 4 4 /

= 25 ' 0 0 0 (cos 2,500 it + i sin 2,500 TC) (3.2-19b)

= 25>00° (3.2-19c)

•

To find the nlil root of a complex number, we use the polar representation. Suppose we want to find
then* root of zj. Let z0 be the n* root. By definition

z£ = zx (3.2-20)

Writing z0 and z\ as

z0 = r0 (cos 90 + i sin 60) (3.2-2la)
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zx = rl (cos Ql + i sin 0j) (3.2-21b)

Equation (3.2-20) becomes

I-Q (cos n60 + i sin n0o) = rl (cos 0j + i sin 0j) (3.2-22)

Equating the real and imaginary parts, we obtain

rt cos 0j = r" cos n0o (3.2-23a)

rjsinOj = rj}sinnG0 (3.2-23b)

The solution is

r0 = r,1/n, 90 = ^ + ^ (3.2-24a,b)

where k is an integer.

Since, for any integer k given by

k = pn + m, 0 < m < n (3.2-25)

where m is a remainder, we obtain all the values of 0O which produce the n distinct values of z0

by choosing k = 0, 1, 2, 3, ... , n - 1. Any other value of k would yield a value of 0O which
differed from the one obtained earlier by a multiple of 2n radians.

Geometrically these roots lie on a circle of radius r̂  whose arguments differ by ^-, with the first

argument being —. Thus the number of n^1 roots of a complex number is n.

Example 3.2-2. Determine all the nth roots of unity.

Since

1 = cosO + isinO (3.2-26)

we have

11/n = cos (0 + 2ffifc) + i sin (0 + ^ k ) (3.2-27a)

= cos (^p- k) + i sin (2j£ k) (3.2-27b)

Denoting the roots by p0, p i , . . . , p n . j , we obtain from Equation (3.2-27b)
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p0 = cos 0 + i sin 0 = 1 (3.2-28a)

p! = cos ( ^ ) + i sin (^t) (3.2-28b)

p2 = cos (4ffi) + i sin (±&) (3.2-28c)

Pn.1 = cos [ f c^ ] + isin[(HzM] (3.2.28d)

We list some of the properties of the conjugate of z

1. zx ± z2 = z2 ± z2 (3.2-29a)

2. z j - z2 = Zj • z2 (3.2-29b)

3. (1 ) = ^ ^ l ^ 0 ) (3.2-29c)

4. ( z j = Zj (3.2-29d)

and some of the properties of the absolute value of z

1. | z | = | z | (3.2-30a)

2. z - z = | z | 2 = (Rez)2+(Imz)2 (3.2-30b)

3. R e z < l z l , l lmzl < Izl (3.2-30c)

4. I zx z21 = Izil lz2l (3.2-30d)

5. T =rL; ( z l ^ ° ) (3.2-30e)
z l |z , |

6. I z 1 + z 2 l < \zx\ + \z2\ (3.2-30f)

Example 3.2-3. Show that I zx + z2 I ^ I Zj I + lz2l.

This is the triangle inequality.

We have

| Z l + z 2 | 2 = (zj + z2)(z1 + z 2 ) = (zj + z2) (z^ + z2) (3.2-3 la,b)
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= ZJZJ+Z2Z2 + z 2 Z j + z 2 z 2 (3.2-31c)

Observe that

Z J + Z J = 2Re(zj) (3.2-32)

Hence

(zjZ2 + ZjZ2) = 2 Re (zjz2) (3.2-33)

It follows that

I zx + z21 2 = I zx\ 2 + 2 Re (Zlz2) +1 z2| 2 (3.2-34a)

< I Zj| 2 + 21 ZjZ2| + I z2| 2 (3.2-34b)

< | z 1 | 2 + 2 | z 1 | | z 2 | + | z 2 | 2 (3.2-34c)

< ( | Z l | -1- | z 2 | ) 2 (3.2-34(1)

This implies

[ | Z l + z 2 | - ( | Z l | + | z 2 | ) ] [ | z 1 + z 2 | + ( | z 1 | + | z 2 | ) ] < 0 (3.2-35a)

Hence

| z 1 + z 2 | < ( | Z l | + | z 2 | ) (3.2-35b)

•

Warning: We emphasize that complex numbers are not ordered. Expressions such as Z j>z 2 or zj <
Z3 have no meaning unless z\, z2 and Z3 are all real.

3.3 COMPLEX FUNCTIONS

The concept of functions, limits, continuity and derivatives discussed in the calculus of real variables
can be extended to complex variable calculus. Before considering these concepts, we first define
curves, regions and domains in the complex plane.

Let x (t) and y (t) be two continuous functions of a real parameter t, defined for a < t < b, so that
the equation

z = x(t) + iy(t) (3.3-1)
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defines a curve C that joins the point

z(a) = x(a) + iy(a) (3.3-2a)

to the point

z(b) = x(b) + iy(b) (3.3-2b)

If z (a) and z (b) are equal, the curve C is a closed curve. The curve C is simple if it does not
cross itself. For example

z = cost + i sin t (0<t<27i) (3.3-3a)

is a simple closed curve. It is in fact the unit circle. It can also be expressed as

|z | = 1 (3.3-3b)

The set of all points z which satisfy the inequality

| z - z o | < § (3.3-4)

is called the 5 neighborhood of the point zQ. It consists of all points z lying inside but not on the
circle of radius 5 with the center at zQ. This is illustrated in Figure 3.3-1.

*~

X

FIGURE 3.3-1 6 neighborhood of z0

Similarly, the inequality | z - z o | > 8 represents the exterior of the circle.



2Q0 ADVANCED MATHEMATICS

A point z0 is said to be an interior point of a set S whenever there is some neighborhood of z0

that contains only points of S ; it is called an exterior point of S if there exists a neighborhood of
z0 which does not contain points of S. If z0 is neither an interior point nor an exterior point of S,
it is a boundary point of S.

If every point of a set S is an interior point of S, S is an open set. Clearly an open set contains
none of its boundary points. If a set S contains all its boundary points , S is closed. The closure
S of a set S is the closed set consisting of all points in S as well as the boundary of S.

An open set S is a connected set if every pair of points z i ,z 2 in S can be joined by a polygonal
line that lies entirely in S. The open set | z | < 1 is connected and so is the annulus 1 < | z | < 2. The
set of all points in the plane that do not lie on | z | = 1 is an open set which is not connected. This is
because we cannot join a point inside the unit circle to a point outside the unit circle without crossing
the unit circle. The unit circle does not belong to the set.

An open set that is connected is a domain. A domain together with some, none or all of its boundary
points is a region. A set that is formed by taking the union of a domain and its boundary is a closed
region.

Finally, the set of all points z (= x + i y) such that y > 0 is the upper half plane. Similarly, for
y < 0, we have the lower half plane. The conditions x > 0 and x < 0 define the right half
plane and the left half plane respectively.

We now define functions of a complex variable.

Let S be a set of complex numbers and let z, which varies in S, be a complex variable. A function
f defined on a set S of complex numbers assigns to each z in S a unique complex number w. We
write

w = f(z) (3.3-5)

The number w is the image of z under f. The set S is the domain of definition of f(z) and
the set of all images f (z) is the range of f (z). Just as the variable z is decomposed into real and
imaginary parts, w can be decomposed into a real and an imaginary part. We write

w = f (z) = u (x, y) + i v (x, y) (3.3-6a,b)

The real functions u and v denote the real and imaginary parts of w. We note that a complex valued
function of a complex variable is a pair of real valued functions of two real variables.

Example 3.3-1. Express the function

w = f(z) = z2 + 2 z - 3 z (3.3-7a,b)

in the form of Equation (3.3-6b). Then find the value of f (1 + i).
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w = (x + i y)2 + 2 (x + i y) - 3 (x - i y) (3.3-8a)

= [(x2 - y2) + 2x - 3x] + i [2xy + 2y + 3y] (3.3-8b)

= (x2 - x - y2) + i (2xy + 5y) (3.3-8c)

Comparing Equations (3.3-6b, 8c), we have

u = x 2 - x - y 2 , v = 2xy + 5y (3.3-9a,b)

f ( l +i) = u ( l , l) + i v ( l , 1) = - l + 7 i (3.3-10a,b)

•

Let f (z) be defined in some neighborhood of z0 with the possible exception of the point zQ itself.
We define the limit of f (z) as z approaches z0 to be a number Z, if for any e > 0, there is a
positive number 8 such that

| f (z) - Z | < e whenever 0 < | z - zo| < 6 (3.3-11)

We adopt the same notation as in the case of a real variable and write

lim f(z) = Z (3.3-12a)
z->z0

or f(z)— >Z as z— > z0 (3.3-12b)

We note that in the present case, z may approach z0 from any direction in the complex plane and the

limit is independent of the direction.

An equivalent definition in terms of u (x, y) and v (x, y) is

Urn f(z) = Z = Zx + iZ2 (3.3-13)
Z-> Zo

Equating the real and imaginary parts, we have

lim u(x, y) = Z1 (3.3-14a)
(x, y)-> (xo,yo)

lim v(x, y) = i , (3.3-14b)
(x, y)-> (xo,yo)

If a limit exists, it is unique. The concept of limit is illustrated in Figure 3.3-2.
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y A V i,

• ' •
X U

FIGURE 3.3-2 Limit of f (z) defined by Equations (3.3-14a, b)

Let f(z) be a function of the complex variable z defined for all values of z in some neighborhood
of zQ. The function f(z) is continuous at z0, if the following three conditions are satisfied

i) lim f(z) exists (3.3-15a)

z->z0

ii) f(z0) exists (3.3-15b)

iii) lim f(z) = f(z0) (3.3-15c)
Z->ZQ

The derivative of f(z) at zQ written as f'(zQ) is defined as

f (z 0 ) = lim f ( z ) - f ( Z o } (3.3-16)

z->z0
 z ~ z o

provided the limit exists.

An alternative definition is to let

w = f(z) (3.3-17a)

Aw = f ( z ) - f ( z 0 ) , Az = z - z 0 (3.3-17b,c)
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f'(z) = ta A w = fa [ A u O ^ O + j AvOcoOJ (3.3-17d,e)
A z - > 0 ^ z A z - > 0 | _ ^ z A Z _

We also write f'(z) as ^—-.
dz

If f(z) is differentiable at z0, it is continuous at z0. As in the case of real variables, the converse

is not true.

Example 3.3-2. Show that the continuous function

f(z) = Izl2 (3.3-18)

is not differentiable everywhere.

Let z0 be any point in the complex plane, then using Equation (3.3-17d) we have

I I 2 - I I2

f'(z0) = lim ^ ^ o L (3.3-19a)
Az->0 Az

= lim Z Z " Z o Z o (3.3-19b)
A z -> 0 ^ z

= Um ( zo + A z ) fzQ + A z ) ~ ZQ Zo (3.3-190
A z -> 0 ^ z

Mm z^ + Z o ^ (3.3-19d)

A z - > 0 [ ° ° A z J

Equation (3.3-19c) is obtained by using Equations (3.3-17c, 2-29a).

If z0 is the origin, z0 is also zero and f'(0) exists and is zero. If zQ is not the origin, we express

Az in polar form and write

Az = Ar (cos 0 + i sin 6) (3.3-20a)

Az = Ar (cos 0 - i sin 9) (3.3-20b)

Substituting Equations (3.3-20a, b) into Equation (3.3-19d), we obtain

, , , , .. - ( cos0- i s in9) .. n O1 .
f (z 0 ) = km ZQ + ZQ) f (3.3-2la)

A r - > 0 L (cos 9 + i sin0)
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• ^ + Zo ( c ° S 2 e - i S i n , e > 2 l (3.3-21b)
cos 9 + sin 9 .

= z0 + z0 (cos 29 - i sin 29) (3.3-21c)

Thus f '(z0) depends on 9 and is not unique. Also the limit does not exist. For example, if z
approaches z0 along the real axis (9 = 0), and along the imaginary axis (0 = n/2), we obtain
respectively from Equation (3.3-2lc)

f'(z0) = z0 + z0 (3.3-22a)

f(z0) = z o - z o (3.3-22b)

The function f is not differentiable every where except at the origin where f'(0) is zero irrespective of
9.

•

All the familiar rules, such as the rules for differentiating a constant, integer power of z, sum,
difference, product and quotient of differentiable functions as well as the chain rule of differential
calculus of real variables hold in the case of complex variables.

Functions which are differentiable at a single point are not of great interest. We thus define a broad
class of functions. A function f (z) is analytic in a domain D, if f (z) is defined and has a derivative
at every point in D. The function f(z) is analytic at z0 if its derivative exists at each point z in
some neighborhood of z0. Synonyms for analytic are regular and holomorphic.

If f (z) is analytic for all finite values of z, f (z) is an entire function. Points where f (z) ceases to
be analytic are singular points.

The basic criterion for analyticity of a complex function f(z) is given by the Cauchy-Riemann
conditions.

Theorem 1

A necessary condition for the function f (z) to be analytic in a domain D is that the four partial
j • <.- du du dv , dv , . c .
derivatives r̂— , ^— , =— and ^— exist and satisfy the equations

dx 3y dx dy

9u _ 3v du _ 9v H 3 23aM

Proof: Since f(z) is differentiable at any point z0 in D, then f'(zo) must exist.
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This implies that the ratio [f(z) - f(z0)] / (z - z0) must tend to a definite limit as z —> z0,
irrespective of the path taken. We choose to approach zQ along a line parallel to the real axis
(y = constant), shown as path 1 in Figure 3.3-3. The increment Az is simplified to

Az = z - z 0 = X - X 0 = AX (3.3-24a,b,c)

y n

2

1
yo • - + z < r i

t

1 ^
X o X

FIGURE 3.3-3 Two paths approaching z 0

Using Equation (3.3-17e), f '(z0) is given by

f(z ) = Jim u(x o +Ax, y o ) - u ( x o , y0) + . ^ v (xQ+ Ax, y 0 ) - v (x0, y0)
0 Ax->0 ^ X Ax->0 Ax

(3.3-25)

Since f '(z0) exists, the two limits on the right side of Equation (3.3-25) exist. They are in fact the

partial derivatives of u and v with respect to x. Equation (3.3-25) can be written as

f ( z o } = K + l Bi (3-3"26)

Next we approach z0 along a line parallel to the imaginary axis (x = constant), shown as path 2 in

Figure 3.3-3. In this case

Az = i ( y - y 0 ) = iAy (3.3-27a,b)
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The analogues of Equations (3.3-25, 26) are

f(z ) = iim u ( x o , y o + Ay)-u(xQ >yo) + . ^ v (xQ> yQ + Ay) - v (xQ, yQ)
° Ay->0 j ^ y Ay->0 j Ay

(3.3-28a)

= - i ^ + ^ (3.3-28b)
dy ay

Comparing the real and imaginary parts of Equations (3.3-26, 28b), we obtain

^ = ^ (3.3-29a)
dx dy

1± = -P- (3.3-29b)
dy dx

These are the Cauchy-Riemann conditions. They are the necessary but not sufficient conditions
for a function to be analytic. This is shown in Example 3.3-3.

Note that f'(z0) is given by Equations (3.3-26 or 28b).

Example 3.3-3. Show that the function

x3 - y3 . |x3 + y3 _
— +1 J— , z ^ 0

7 7 1 2 2
x + y \x + y

f(z) = (3.3-30a,b)
0 , z = 0

satisfies the Cauchy-Riemann conditions at the origin, but f (0) does not exist.

From the definition of partial derivatives, we have

| i (0, 0) = lim "" '• ("-"<0-0> = Km ( - " 3 / f - ° = 1 (3.3-31a,b,c)
dx x->0 x x->0 x

»i (0, 0) = lim u ' 0 -y>-" ' ° ' 0 ) = Um l y 3 ^ - 0 = -1 (3.3-31d,e,f)
5y y->o y y->o y

Similarly

| ^ (0,0) = 1 , ^ ( 0 , 0 ) = l (3.3-31g,h)
dx dy



COMPLEX VARIABLES 207

Hence, the Cauchy-Riemann conditions are satisfied at (0, 0). We now show that f'(z) does not exist
at (0, 0).

Let z vary along the line

y = x (3.3-32)

f(z) = u + iv = 0 + ix (3.3-33a,b)

f'(0) = lim M l M = to _UL_ = ^ L = i ( l - i ) = 1 + l j (3.3-34a-e)
z->0 z - 0 x->0 x + ix l + i ( l + i ) ( l - i ) 2 2 '

However, if the origin is approached along the x-axis (y = 0), we can write using Equation (3.3-26)

f'(0) = | ^ (0, 0) + i |^- (0, 0) = l + i (3.3-35a,b)

Since the two limits are different, f'(0) does not exist.

Theorem 2

A function f (z) is analytic in a domain D, provided the four first partial derivatives of u (x, y) and
v (x, y) exist, satisfy the Cauchy-Riemann equations at each point of D and are continuous.

Note that, in theorem 2, we require the partial derivatives to be continuous.

The Cauchy-Riemann conditions can also be written in polar form. From Equations (3.2-6a, b) we
obtain

P- = cos 6, I1- = sin 9 (3.3-36a,b)
dx dy

ae=_sin-^ | 9 = c o ^ (3.3-36c,d)

dx r 3y r

Using the chain rule, we have

du du dr du 30 „ du sin 0 du ,_ _ _„ , .
— = 1 = cos 0 (3.3-37a,b)
dx dr dx 30 dx 3r r 90
^ = sin 0 *L + c o s i 9u ( 3 3 _ 3 7 c )

oy 3r r dd
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^ = cose^-^i^ (3.3-37d)
3* 9r r 90

^ = s i n 0 ^ + ^ l ^ (3.3-37e)
3y 9r r 99

Combining Equations (3.3-23a, b, 37b to e) yields

c o s e ^ - M *L = s i n 9 ^ + ™ ^ ^ (3.3-38a)
3r r 90 3r r 80

s i n 9 ^ + «*«. au = _ c o s e av + sine, av ( 3 3 3 8 b )

3r r 30 3r r 30

Multiplying Equations (3.3-38a, b) by cos 0 and sin 0 respectively, and adding the resulting
expressions yields

3r r 30

Similarly, eliminating — and — from Equations (3.3-38a, b), we obtain
3r 90

£ = -i p- (3.3-3*)
3r r 30

Equations (3.3-39a, b) are the Cauchy-Riemann conditions in polar form.

Combining Equations (3.3-26, 37b, d, 39a, b) yields

f'(z) = ^ = (cos0-is in0) ^ (3.3-40a,b)
dz or

Example 3.3-4. Show that the function ex (cos y + i sin y) is analytic and determine its derivative.

We have

f(z) = u + iv = excosy + i ex sin y (3.3-41a,b)

9u v 9u v
^— = excosy, — = -e x s iny (3.3-41c,d)

~ = exsiny, ^ = ex cos y (3.3-41e,f)

(3.3-39a)
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The functions u, v, and their partial derivatives satisfy the Cauchy-Riemann equations and are
continuous functions of x and y. Hence f(z) is analytic.

The derivative

f'(z) = Y~ + i^- = excosy + ie x s iny (3.3-42a,b)

= ex (cos y + i sin y) (3.3-42c)

which is identical to the given function. We will see in Section 3.4 that this function is ez.

•

Let f (z) be an analytic function. Assume that the mixed second derivatives of u and v exist and are
equal. From Equations (3.3-29a, b), we have

fi- = ^ = - ^ (3.3-43a,b,

ax3y ax2 ay2

ax ay ayz axz
From Equations (3.3-43b, d), we deduce that both u and v satisfy the equations

^ + ^ = 0 (3.3-44a)
ax2 a y 2

^ + ^ = 0 (3.3-44b)

ax 2 a y 2

Equations (3.3-44a, b) are Laplace's equations which will be solved in Chapter 5. The solution of
Laplace's equation is a harmonic function. Both the real and imaginary parts of an analytic
function are harmonic functions. The functions u and v of the analytic function are also conjugate
functions (harmonic conjugates).

If a harmonic function u (x, y) is given in some domain D, we can determine the harmonic conjugate
v (x, y) through the Cauchy-Riemann relations. The analytic function f (z) can then be determined.

Example 3.3-5. Show that

u(x, y) = x 3 -3xy 2 (3.3-45)

(3.3-43c,d)
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is a harmonic function. Find the harmonic conjugate function v (x, y) and the analytic function f(z).

Taking the partial derivatives of u, we obtain

| ^ = 3 x 2 - 3 y 2 , |H. = _ 6 x y (3.3-46a,b)

-a -a
— = 6x , — = -6x (3.3-46c,d)

3x2 dy2

From Equations (3.3-46c, d), we deduce that u satisfies Laplace's equation, and u is harmonic.

From Equation (3.3-29a), we obtain

v = I ( 3 x 2 - 3 y 2 ) d y + g(x) (3.3-47a)

= 3x2y - y3 + g(x) (3.3-47b)

where g (x) is an arbitrary function.

The function v also has to satisfy Equation (3.3-29b) and this implies

-6xy = - [6xy + g'(x)] (3.3-48)

From Equation (3.3-48), we deduce that g'(x) is zero and g is a constant c. The function v can
then be written as

v = 3 x 2 y - y 3 + c (3.3-49)

The function f is given by

f = (x 3 -3xy 2 ) + i (3x 2 y-y 3 ) + c (3.3-50a)

= (x + i y)3 + c = z3 + c (3.3-50b,c)

Laplace's equation can be written in terms of z and z. From Equation (3.2-1), we deduce

x = ( * ± i ) , y = (^r) (3.3-51a,b)

Therefore
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di = a¥ a7 + a l a7 = 2 (a7 ~ * ay) (3.3-52a,b)

9z dz dx dz dy 2 \dx dy)

3 . 3 . I ( 9 . i 3 ) ( 3 + i 9 ) (3.3-54)
dz dz 4 \dx 3y/ \dx dyj

4f4,M (3.3-55)
a z a z (ax2 dy2!

That is

^ p + 3 ^ = 4 ^ ( 3 3 j 6 )

9x2 dy2 3z9z

If (p (x, y) satisfies Laplace's equation, it follows that

92(P
— ^ - = 0 (3.3-57)

dzdz

and the general solution is

<p = f(z) + g(z ) (3.3-58)
This solution is often used in two dimensional physical problems.

Example 3.3-6. Obtain the complex potential O(z) for a two dimensional irrotational flow of
an incompressible fluid.

We choose the rectangular Cartesian coordinate system and let (vx, vy) be the velocity components.
The flow is irrotational and this implies that the vorticity (curlv) is zero. This can be expressed
as

d vv d v
_ * . - — ^ = 0 (3.3-59)
9y dx

From Appendix I, we obtain the equation of continuity for an incompressible flow as follows

d vY d v
^ + - ^ = 0 (3.3-60)
dx dy

(3.3-53a,b)
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From Equations (3.3-59, 60), we deduce

d v 3 v

3 vY 3 v

it =-i? (3-3-61b>
Substituting vx for u and vy for (-v), Equations (3.3-61a, b) are identical to Equations (3.3-29a,
b). That is, the components vx and vy satisfy the Cauchy-Riemann relations.

We introduce two functions (j) (x, y) and \|/ (x, y) such that

vx = £ = J f . (3.3-62a,b)

vy . | £ = - | f (3.3-62c,d)

From Equations (3.3-62a to d), we note that <|> and \|/ satisfy the Cauchy-Riemann relations and are
therefore harmonic functions. This can also be verified by combining Equations (3.3-59, 60, 62a to d).

The function <|) is the potential and \|/ is the stream function. They are conjugate functions.
The combination ty + i \|/ is an analytic function and the complex potential is given by

O(z) = <|> + iY (3.3-63)

Differentiating O(z) with respect to z and using Equations (3.3-26, 62a to d), we have

^= |^+i^=v x - iv v (3.3-64a,b)
dz dx dx x y

Similarly using Equation (3.3-28b, 62a to d), we have

* • = _ , ! • + ! ? . vx-ivy (3.3-65a,b)
dz 8y dy x y

Using the complex function 3>, we can obtain both the potential (Re O) and the stream function
(Im O). The derivative of O yields both velocity components.

•

The concept of a complex potential is widely used in hydrodynamics, and will be discussed further in
this chapter. Applications of complex potential in electrostatics are given in Ferraro (1956).

(3.3-61a)
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3.4 ELEMENTARY FUNCTIONS

The definition of many elementary functions, such as polynomial, exponential and logarithmic, can be
extended to complex variables. It is usually defined such that for real values of the independent
variable z, the functions become identical to the functions considered in the calculus of real variables.
However, the complex functions may have properties which the real functions do not possess. One
such property is the possibility of multiple values mentioned in connection with Equation (3.2-8a, b).

A polynomial function Pn (z) of degree n is defined as

Pn(z) = anzn + an.1zn-1+ ... + a j z + ao (3.4-1)

where an * 0, an_j, ... , a0 are all complex constants. Similarly, a function

w(z) = P(z)/Q(z) (3.4-2)

in which P (z) and Q (z) are polynomials, defines a rational algebraic function.

The exponential function is denoted by ez [or exp (z)] and is defined as

ez = l + z + £ + ... + 4 + - (3-3'3a>
2! n!

oo

" nto n! (3-4-3b)

Setting the real part of z to zero, we have

n=o n! m=o (2m)! m=o (2m+1)!

= cos y + i sin y (3.4-4c)

Equation (3.4-4c) is Euler's formula.

The exponential function can be written as

ez _ ex + i y _ ex ( c o s y + j S i n y) (3.4-5a,b)

For real z (y = 0), ez reduces to ex.

The moduli

| eiy | = | cos y + i siny | = 1 (3.4-6a,b)

(3.4-4a,b)
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ez | = | e x | | e i y | = ex (3.4-6c,d)

The modulus of ez is ex and the argument of ez is y.

If the value of y is increased by 2krc (k is an integer), the values of sin y and cos y remain
unchanged and ez is periodic with period 2%. That is to say,

ez = ez+2ikJi ( 3 4 _ 7 )

Because of the periodicity, we need to consider only the strip

- 7 i < y < 7 t (3.4-8)

Some of the properties of ez are:

(a) ez is analytic.

(b) e z = l implies z = 2mti (n is an integer) (3.4-9a,b)

(c) e"z = -L (ez*0) (3.4-9c)
ez

(d) -d-(ez) = ez (3.4-9d)
dz

(e) If z\ (= x^ + i y^) and Z2 (= X2 + i y2) are two complex numbers

ezi • eZ2 = eZl+Z2 (3.4-9e)

(f) eZl = eZ2 implies z j - z 2 = 2n7ti (n is an integer) (3.4-9f,g)

(g) If w is an analytic function of z

_d_ (ew) = ew i w (3.4-9h)
dz dz

Example 3.4-1. Show that ez is not an analytic function of z in any domain.

We have

ez = ex~iy = e x »e~ i y = ex(cos y - i siny) = u + iv (3.4-10a,b,c,d)

u = ex cos y, v = - ex sin y (3.4-10e,f)

^- = excosy, -^- = - e x s i n y (3.4-10g,h)
Bx ay
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^ - = - e x s i n y , ^ - = - e x c o s y (3.4-10ij)

It can be seen that Equations (3.4-10g to j) do not satisfy Equations (3.3-29a, b) for any finite values

of x. Thus the Cauchy-Riemann relations are not satisfied and ez is not analytic.

•

The trigonometric functions are defined as

eiz_e-iz eiz + e-iz
sinz = — , cosz = (3.4-1 la,b)

tanz = sinz.? cotz = CO"- (3.4-1 lc.d)cos z sm z

s e c z = 5 o l T ' C ° S e C Z = i (3.4-1 le,f)

Since ez is analytic for all z, sin z and cos z are also analytic for all z. The complex
trigonometric functions have the same properties as the real functions. We list some of them:

(a) sin z and cos z are periodic with period 2%

(b) 4~ (sin z) = cos z (3.4-12a)
dz

(c) •£- (cos z) = - sin z (3.4-12b)
dz

(d) cos z is an even function [cos (-z) = cos z] and sin z is an odd function [sin (-z) = -sin z]

(e) elz = cos z + i sinz (3.4-12c)

Euler's formula holds for complex variables

(f) sin2z + cos2z = 1 (3.4-12d)

(g) sin(zj±Z2) = sin ẑ  cos Z2 ± cos zj sin Z2 (3.4-12e)

(h) cos (zi ± Z2) = cos Z\ cos z2 + sin Zj sin z2 (3.4-12f)

(i) sin (2n+ 1 ) ^ - z = cosz (n is an integer) (3.4-12g)

(j) sin (x + i y) = sin x cosh y + i cos x sinh y (3.4-12h)

(k) cos (x + iy) = c o s x c o s h y - i sinxsinhy (3.4-12i)
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(1) The zeros of sin z and cos z are respectively

z = nn, z = (2n+ l )^ - (n is an integer) (3.4-12 j,k)

Hyperbolic sine (sinh z) and cosine (cosh z) of z are defined as

e z - e~z PZ -u p~z

sinhz = — - — , coshz= e + e (3.4-13a,b)

The other hyperbolic functions are

t a n h z = sinlLz ? c o t h z = c Q s h _ z (3.4-13c,d)
coshz sinhz

sechz = — \ — , cosechz = -r\— (3.4-13e,f)
coshz sinhz

The complex hyperbolic functions have the same properties as the real functions. Some of these are:

(a) They are analytic

(b) 4~ (sinhz) = coshz (3.4-14a)
dz

(c) -{L (coshz) = sinhz (3.4-14b)

(d) cosh z is an even function, sinh z is an odd function

(e) cosh2 z - sinh2 z = 1 (3.4-14c)

(f) sinh (x + i y) = cos y sinh x + i sin y cosh x (3.4-14d)

(g) cosh (x + i y) = cos y cosh x + i sin y sinh x (3.4-14e)

(h) sinh(iz) = isinz, i sinhz = sin(iz) (3.4-14f,g)

(i) cosh (iz) = cosz, coshz = cos (iz) (3.4-14h,i)

(j) sinh(iS- - z ) = icoshz (3.4-14j)

(k) The zeros of sinh z and cosh z are respectively

z = nrci, z = ( 2 n + l ) ^ i (n is an integer) (3.4-14k,l)

We recall that for real variables, if x is any positive real number and
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x = e " (3.4-15)

then

u = i n x (3.4-16)

We now extend the definition of Jin to the complex variables and write

z = ew (3.4-17)

It follows that we can define Jin z as

w = i n z (3.4-18)

Separating w into its real and imaginary parts (w = u + iv), Equation (3.4-17) becomes

z = eu (cos v + i sin v) (3.4-19)

From Equation (3.4-19), we obtain

Izl = eu (3.4-20a)

argz = v (3.4-20b)

Combining Equations (3.4-18, 20a, b) yields

i n z = in l z l + iargz (3.4-21)

Since arg z can differ by multiples of 2n, we restrict the definition to the principal values of
arg z (Arg z). We then have the principal value of Jin z and we denote it by Ln z. That is to say,
Ln z is defined as

Lnz = in l z l + iargz (3.4-22a)

-7t<argz<7i; (3.4-22b)

The function i n z as defined by Equation (3.4-21) is a multiple-valued function and since the argz
can differ by multiples of 2K, we can write

i n z = Lnz±2n7ti (n is an integer) (3.4-23)

If z is a real positive number, then Arg z is zero and the definition of Ln z is identical to the /8n in
the theory of real variables.

Some of the properties of Jin z (Ln z) are:
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(a) i n 1 = 2njci (3.4-24a)

i n ( - l ) = (2n+l)rci (n is an integer) (3.4-24b)

(b) Ln i = i | - (3.4-24c)

(c) Ln (-1 - i) = 1 Ln 2 - i 2Jt (3.4-24d)

(d) i n (zj z2) = i n zj + i n z2 (3.4-24e)

(e) i n (ez) = z + 2n7ti, Ln (ez) = z (3.4-24f,g)

(f) e i n z = z (3.4-24h)

(g) inW = inzrinz2 (3.4-24i)

Note that Ln z is not defined at the origin (I z I = 0). The negative real axis is a line of discontinuity
since the imaginary part of Ln z has a jump discontinuity of 2K on crossing that line. We make a
cut, as shown in Figure 3.4-1, in the complex plane to remove the origin and the negative real axis. In
the resulting domain D, Ln z is analytic. The derivative of Ln z is given by

-d-CLnz) = 1 (3.4-25a)
dz z

D

x

FIGURE 3.4-1 Domain D in which Ln z is analytic



COMPLEX VARIABLES 219.

Since i n z and Ln z differ only by an arbitrary multiple by 27ti,

^ ( i n z ) = 1 (3.5-25b)

If a is any complex number, we define za to be

za = exp (a i n z) (3.4-26)

Similarly the function ocz is defined as

az = exp (z i n a) (3.4-27)

In general z a and ocz are multiple-valued functions since i n z is a multiple-valued function. The
principal values of za and ocz are obtained by substituting in z by Ln z in Equations (3.4-26, 27).

Example 3.4-2. Find the values of (i) i n e, (ii) L n ( l - i ) , (iii) (-i)1.

(i) i n e = i n I eI + i arg e (3.4-28a)

= 1 + i (0 + 2nK) = 1 + 2n7ti (3.4-28b)

(ii) Ln (1 - i) = i n 11 - i I + i Arg (1 - i) (3.4-29a)

= l i n 2 - ^ i (3.4-29b)

(iii) Taking the principal value, we have

(-i)i = e i L n ^ (3.4-30a)

_ ei (-iic/2) _ en/2 (3.4-30b,c)

Example 3.4-3. If a is a complex number, is l a always equal to 1?

From Equation (3.4-27) and noting that 1 can be written as e2nm, we have

l a = exp [a i n e2raii] (3.4-3la)

= exp [a (27tni)] (3.4-31b)

= exp [-27inp + 27tni y] (3.4-31 c)

= exp [-2n;np] {cos 27Cny+ i sin 27tn'y} (3.4-31d)
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To obtain Equation (3.4-3lb), we have made use of Equation (3.4-24f) and we have expressed the
complex number a as y + i p .

Thus in genera] l a is not equal to 1. Note that if n is zero (consider only the principal value) l a is
equal to 1.

3.5 COMPLEX INTEGRATION

In Section 3.2, we stated that a complex plane is required to display complex numbers. This two
dimensional aspect has an effect on complex integration. A definite integral of a complex function of a
complex variable is defined on the curve joining the two end-points of the integral in the complex
plane.

To begin with, we consider the definite integral of a complex valued function of a real variable t over
a given interval a < t < b. Let

f(t) = u(t) + iv(t), a < t < b (3.5-1)

and we assume that u (t) and v (t) are continuous functions of t. We define

r fb tb
f(t)dt = u(t)dt + i | v(t)dt (3.5-2)

Ja Ja la

fb fb

Note that both I u(t)dt and I v(t) dt are real.
Ja Ja

Several properties of real integrals are carried over to complex integrals. For example, if f (t) and
g(t) are complex functions, then

I [f(t) + g(t)] dt = I f ( t ) d t + I g(t)dt (3.5-3a)
Ja Ja Ja

, b ,c , b

f(t) dt = f(t)dt + f(t)dt (3.5-3b)
Ja Ja Jc

af(t)dt = a f (t) dt (3.5-3c)
Ja Ja

where a (= p + i y) is a complex constant, P and y are real.



f(t)dt = - f(t)dt (3.5-3d)
A Jb

rnIA
Example 3.5-1. Evaluate I t e dt.

Jo

Since the integrand is a complex valued function of a real variable t, we use Equation (3.5-2) and
write

/•Ti/4 rn/4 tnIA

I t e : t d t = I t c o s t d t + i | t s i n t d t ( 3 . 5 - 4 a )
Jo Jo Jo

nlA JI/4

= (t sin t +cost) + i (-t cos t + sin t) (3.5-4b)
0 0

In Section 3.3, a curve C joining the points z(a) to z(b) is given by

z(t) = x(t) + i y ( 0 , a < t < b (3.5-5)

If z (a) = z (b) is the only point of intersection, C is a simple closed curve. The orientation is
defined by moving from z (a) to z(b) as t increases. This is illustrated in Figure 3.5-1. The unit
circle

z = eil, 0<t<2;u (3.5-6)

is a simple closed curve oriented in the counterclockwise direction. But

z = - e k , 0 < t < 2 n (3.5-7)

is a unit circle oriented in the clockwise direction.

The complex function z (t) in Equation (3.5-5) is differentiable if both x (t) and y (t) are
differentiable for a < t < b . The derivative z'(t) is given by

z (t) = x1 (t) + i y' (t), a < t < b (3.5-8)

(3.5-4c)
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y "

z (b )= [x (b ) . y (b ) ]

/ ( ( -
z(a) = [x(o),y(a)] V I

^ - - -̂  z = ( a ) = z ( b )
c2

FIGURE 3.5-1 Simple (Cj) and simple closed (C2) curves in the complex plane.
Arrows indicate orientation

Curve C is smooth if z (t) is continuous and non-zero in the interval. If C is smooth, the

differential arc length is given by

ds = V[x'(t)]2 + [y'(t)f dt = |z'(t)|dt (3.5-9a,b)

and the length L of the curve C is given by

, b

L = I |z '(t) |dt (3.5-10)
J a

If C is given by Equation (3.5-5) and if we let (-C) be the curve that traces the same set of points in

the reverse order, curve (- C) is given by

z(t) = x(-t) + iy(-t), - b < t < - a (3.5-1 la)

A curve C that is constructed by joining a finite number of smooth curves end to end is called a
contour (or path). A formula for representing the line segment joining two points zt and z2 in a
complex plane is

z = zx + t (z2 - zx), 0 < t < 1 (3.5-1 lb)
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The integral of f (z) along a curve C joining the points z(a) to z(b) is a contour (line) integral
and is written as

I f(z)dz = I f(z)z'(t)dt (3.5-12)

c

Differentiating z(t) from Equation (3.5-5), substituting the resulting expression in Equation (3.5-12),
and decomposing f into its real and imaginary parts, yields

I f(z)dz = I (u + iv) (dx + idy) (3.5-13a)

c c

= I (udx-vdy) + i I (v dx + u dy) (3.5-13b)

c c

The contour integral has similar properties to those of integrals of a complex function of a real variable.
That is to say, we can replace the real variable t by the complex variable z in Equations (3.5-3a to d).
Contour integration in the real two-dimensional plane will be considered in Chapter 4.

For complex integrals, we have the following inequalities:

(i) f (t) dt < |f(t) |dt (3.5-14a)
Ja Ja

(ii) I f(z)dz < J |f(z) |dz < ML (3.5-14b)

c c

where M is the upper bound of lf(z)l and L is the length of the contour C. Note that in Equations
(3.5-14a, b), we have taken the moduli of all complex quantities and we are dealing with real
quantities. It was stressed in Section 3.2 that complex numbers are not ordered and inequalities have
meaning only when associated with real numbers. In the theory of definite integrals of real functions,
the length L in Equation (3.5-14b) is replaced by the length of the interval of integration (= b - a,
where a and b are the limits of integration).

Example 3.5-2. Evaluate the integral I ( z - z o ) n d z

c
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where n is an integer and C is a circle of radius r with centre at z0 and is described in the
counterclockwise direction.

The equation of a circle of radius r with centre at z0 is given by

z = zo + r e i t , 0<t<27t (3.5-15)

On differentiating, we obtain

dz = i re J t dt (3.5-16)

Using Equations (3.5-15, 16), the integral becomes

( f2n . .
l ( z - z o ) n d z = I rn e i n t i r e11 dt (3.5-17a)

c

Ji-271

ei ( n + 1 ) tdt (3.5-17b)

o
, 2 K

= i r n + 1 [cos (n + 1) t + i sin (n + 1) t] dt (3.5-17c)
Jo

: r n + l r -,2K
= ^ — - Ls in (n+ l ) t - i cos (n + l ) t J 0 (3.5-17d)

Since cos and sin are periodic, the integral is zero except when n is - 1 . In this case, Equation
(3.5-17c) reduces to

I {z-zoyl dz = i dt (3.5-18a)

c

= 27Ci (3.5-18b)

Example 3.5-3. Using Equation (3.5-14b), show that

I dz < 4V2" (3.5-19)
i z4
c

where C is the segment joining the point (0, i) to (1, 0) as shown in Figure 3.5-2.
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y ^

( O + L )

_̂ -^ »~
0 ( I + L O ) X

FIGURE 3.5-2 Path of integration

The closest point on the segment joining the points (0, i) and (1,0) to the origin is the mid-point of the

segment, as shown in Figure 3.5-2. The distance from the origin to that point is 1 /V2 . As z varies

along the segment, its distance from the origin I z I varies and its minimum value is l /Vz . The

maximum value of — is l / ( l /V2j and is V2 .

The upper bound M of — is given by
z4

M = lV2 j = 4 (3.5-20a,b)

The length L of the segment is v2 .

It follows from Equation (3.5-14b) that

I d i < 4V2" (3.5-19)

c

•

We note that a simple closed contour C divides the complex plane into two domains. One domain is
bounded and is referred to as the interior of C, and the other domain is unbounded and is the exterior
of C, as shown in Figure 3.5-3.



226 ADVANCED MATHEMATICS

' f '
M
m

X

FIGURE 3.5-3 Interior (shaded) and exterior domains

Domain D is simply connected if every simple closed curve C in D encloses only points of D.
In other words, there are no holes in a simply connected domain. A domain that is not simply
connected is multiply connected. Figure 3.5-4 shows examples of simply connected and multiply
connected domains.

^ — ^ — — . ^ _ ^v , J » n_ >.

— F^ ^ ^ F^ \=\

(a) (b) ( c )

FIGURE 3.5-4 Simply connected (a, b) and multiply connected domains
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Cauchy's Theorem

If f (z) is analytic in a simply connected domain D and if C is a simple closed contour that lies in
D, then

I f(z)dz = 0 (3.5-21)

c

The integral round a closed contour is also denoted by (j) f (z) dz.

Proof: The integral can be written as in Equation (3.5-13b). That is to say

I f(z)dz = I ( u d x - v d y ) + i | (vdx + udy) (3.5-22)

c c c

We transform each of the integrals on the right side of Equation (3.5-22) to a double integral using the
two-dimensional Stokes (Green's) theorem (see Section 4.4). We have

| (u dx - v dy) = II (- j £ - |H) dx dy (3.5-23a)

c s

I (v dx + u dy) = \\ ( |^ - jp) dx dy (3.5-23b)

c s

where S is the domain enclosed by C.

Since f(z) is analytic, u and v satisfy the Cauchy-Riemann relations (Equations 3.3-29a, b) and the
right side of Equations (3.5-23a, b) are zero. It follows that Equation (3.5-21) holds.

A consequence of Cauchy's theorem is the concept of path independence. Consider the integral
round a closed contour C. Let z\ and Z2 be two arbitrary points on C and let them divide C into
two arcs Cj and C2 as shown in Figure 3.5-5. We have

I f(z)dz= I f(z)dz+ I f(z)dz = 0 (3.5-24a,b)

c C! c2



228 ADVANCED MATHEMATICS

22

I ^ - ^ C,

FIGURE 3.5-5 Path independence

We deduce

I f(z)dz = - l f(z) te = I f(z)dz (3.5-25a,b)

c, c2 -c 2

Note that - C 2 is the arc obtained by changing the orientation of C2 and is the curve joining z^ and
z2. Equation (3.5-25b) implies that the integral of f(z) from zj to z2 is the same whether we
integrate along Cj or - C2. Thus the value of the integral is independent of the path and depends
only on the end points.

Example 3.5-4. Evaluate I z2 dz along each of the straight lines OA, OB and AB as illustrated in

Figure 3.5-6.

The parametric equations of the lines (Equation 3.5-1 lb) are

along OA: x (t) = t, y (t) = 0, 0 < t < 1 (3.5-26a,b)

along OB: x(t) = t, y (t) = t, 0 < t < 1 (3.5-26c,d)

along AB: x (t) = 1, y (t) = t, 0 < t < 1 (3.5-26e,f)
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y • B(i + i)

c. »» i ^
0 Ad+Lo) X

FIGURE 3.5-6 Contour integration

The function z2 can be written as

z2 = (x + i y)2 = (x2 - y2) + 2 ixy = u + i v (3.5-27a, b,c)

with dz = dx + idy (3.5-27d)

Using Equation (3.5-13b), we have

[ z2dz = | t2dt = 1 (3.5-28a,b)

OA

f z2dz = ( (-2t2)dt + i [ (2t2)dt = - | + 21 (3.5-28c,d)
J Jo Jo
OB

I z 2 dz = I (-2t)dt + i I ( l - t 2 ) d t = - 1 + 21 (3.5-28e,f)
J Jo Jo
AB

If C is the closed contour OABO, then
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I z 2 d z = I z 2 d z + | z 2 d z + | z 2 d z (3.5-29a)

C OA AB BO

= 3 + (" l + ¥ ) " (~f + ¥ ) = ° (3.5-29b,c)

verifying Cauchy's theorem.

•

A multiply connected domain can be transformed to a simply connected domain by making suitable
cuts. In Figure 3.5-7, the doubly connected domain has been cut by Lj and L2 and the resulting
domain is simply connected. For a doubly connected region, one pair of cuts is sufficient and for a
triply connected region two pairs of cuts are needed so as to obtain a simply connected region. Note
the orientation of the curves in Figure 3.5-7. As we move along the curves, the area enclosed by them
are on the left. The curve enclosing the simply connected domain D is C L j C ^ I ^ C . By Cauchy's
theorem

I f(z)dz = I f ( z ) d z + | f ( z ) d z + | f ( z ) d z + | f(z)dz = 0 (3.5-30a,b)

CLjQL^C C L! C[ L2

FIGURE 3.5-7 Transformation of a doubly connected domain
to a simply connected one
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We note that Lj and L2 are in opposite direction (that is, their limits of integration are interchanged)
and so their contributions will cancel. Equation (3.5-30b) becomes

I f(z)dz = - I f(z)dz (3.5-31)

c c,

We note that C is oriented anticlockwise and Cj is oriented clockwise. We reverse the orientation of

C\ and denote (-Cj) by Cj, Equation (3.5-31) then becomes

I f(z)dz = I f(z)dz (3.5-32)

Equation (3.5-32) can be generalized to the case where there is more than one curve inside C.
Suppose we have n simple closed contours which we denote as C; (j = 1, 2, ..., n) inside another
simple closed contour C. The regions interior to each contour C; have no common points. That is to
say, the contours C; do not intersect each other. Let the function f(z) be analytic in domain D
which contains all contours and the region between them. We then write

I f(z)dz = X I f(z)dz (3.5-33)
J j=i j
C Cj

All the contours C and C; are oriented in the same direction, usually in the anticlockwise direction

which, by convention, is the positive direction.

Example 3.5-5. Evaluate I -^z— where C is a simple closed curve. Consider the following two
J Z — 3.

c

cases:

(i) the point z = a is outside C,

(ii) the point z = a is inside C.

(i) Since the point z = a is outside C, the function —±— is analytic everywhere. Via Cauchy's
z — a

theorem

I Az_ = 0 (3.5-34)

J 2"a
c
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(ii) In this case, the function is singular at z = a and we enclose it by a circle Q of radius e
with centre at the point of singularity as shown in Figure 3.5-8. On C and Cj and the region
enclosed by the two curves, f (z) is analytic and using Equation (3.5-33), we have

I -dZ- = - I -dz_ (3.5-35)
I z-a I z-a
c c,

FIGURE 3.5-8 Contour integral with point z = a inside C

To evaluate the integral along Cj, we write

z = a + e e i 6 , 0<6<27C (3.5-36)

The integral then becomes

_ _dz_ _ i_e±_ d 6 = i d e = 2TI i (3.5-37a, b,c)
J z~a Jo £elfl Jo
c,

From Equations (3.5-35, 37c), we deduce
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I -&- = 2%\ (3.5-38)
I z —a
c

Cauchy's Integral Formula

Let f(z) be analytic in a simply connected domain D and let C be a simple closed positively oriented
contour that lies in D. For any point zQ which lies interior to C, we have

1 M _ dz = 2 n i f ( z n ) (3.5-39)
J z ~ z o
c

In Example 3.5-5, we have verified Equation (3.5-39) for the case f (z) equals to one.

Integral Formulae for Derivatives

If f (z) is analytic in D, it has derivatives of all orders in D which are also analytic functions in D.
The values of these derivatives at a point z0 in D are given by the formulae

f'(Zo) = ̂  / ( 7 v d z <3'5"40a)

; (z-z0)

f(n)(z0) = ^ ( f ( Z ) , dz (3.5-40C)

In Equations (3.5-40a toe), C is any simple closed path in D which encloses zQ.

We omit the proofs of these results but consider their applications. We also note that if one derivative
exists, all derivatives exist. This is only true for complex variables.

Example 3.5-6. Find the value of the integral I e c o s h z dz

c

(3.5-40b)
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where contour C is a square whose sides are: x = ±4 and y = ±4, described in the positive
direction.

The region D, the contour C and the point z0 are shown in Figure 3.5-9. From Equation

(3.5-40b), we identify

f(z) = ezcoshz (3.5-4 la)

z0 = n (3.5-41b)

y '•

D ' C

7T~4 x

FIGURE 3.5-9 Integration around a square

The conditions for Equation (3.5-40b) are satisfied and it follows that

f e Z c o s h z dz = in - ^ - (ezcoshz) (3.5-42)

1 (z-nf dz2
c

Carrying out the differentiation, we obtain

2
— (ez cosh z) = 2 ez (sinh z + cosh z) (3.5-43a)
dz2

= 2e27r a t z = 7C (3.5-43b,c)
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Combining Equations (3.5-42, 43b) yields

[ eZ c o s h z dz = 2irce271 (3.5-44)

c {z~n)3

Example 3.5-7. Let f (z) be analytic inside and on the circle of radius R with its centre at the

origin. Let z0 (= r0 ei0°) be any point inside C as shown in Figure 3.5-10. Show that

p (R^)f(R^)
27C JQ R 2 -2r 0 cos(e 0 - ¥ ) + r5

/ y V z'
L/^ o

ro

FIGURE 3.5-10 Point z 0 and its inverse point z1

Obtain the real and imaginary parts of f (z0).

Since z0 is inside C, using the Cauchy's integral formula (Equation 3.5-39), we have

f (z } = ^ f ffldz (3.5.46)
v °; 2TII J z -z 0

c
We define the inverse point Z\ of z0 with respect to C to be

(3.5-45)
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2 2
zj = | - = f- ei9° (3.4-47a,b)

zo o

The point z\ is outside C and from Cauchy's theorem (Equation 3.5-21), we have

Subtracting Equation (3.5-48) from Equation (3.5-46), we obtain

f(z°} = M I t V — T ~ f(z)dz (3-5"49a)
c

= ^ f k°~R2/*°] , f(z)dz (3.5-4%)
2 ™J (z-zo)(z-R2/z0)

c

We change to the polar form and write

z = Reivt/ (3.5-50a)

dz = i R e ^ d \ ) / (3.5-50b)
z0 = roe i e" (3.5-50c)

Equation (3.5-49b) becomes

f(Zo) = ^ C I e^o(ro R X ) f ( R ^ ) ) [R^^ (3,.51a)

° 27C1 Jo \ [R e ^ - r0 eieo] [R j v _ ( R ^ / J e^o] /

Z-2* I" e i ( 6 0 + V ) ( r 2 _ R 2 ) f ( R i V )
= J L ® \r0 Kj tVKe / (3.5-51b)

27C Jo [ (R e*V - r0 ei6o) (r0 j * - R eieo)J

. JL r 7 < R a - f / f e ^ d¥ (3,.51c)
2» Jo (R eiV _ f() ei60) (R e-iV _ ro e-iOo)

= ^ p (R2-r02)f(Re^) ^ a5.51d)

271 Jo R2-2Rr0cos(e0-\l/) + r2

(3.5-48)

(3.5-49a)

(3.5-50a)
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To obtain the real and imaginary parts of f (z0), we write

f (z0) = u (r0, 60) + i v (r0, 80) (3.5-52a)

f ( R e i v ) = u (R, \\f) + i v (R, \|/) (3.5-52b)

Substituting Equations (3.5-52a, b) in Equation (3.5-5Id) and equating the real and imaginary parts,
we obtain

u(r0,90) = £ f 2 ^ ° ^ \ d¥ (3,-53a,
Z71 Jo R - 2 R r0 cos (60 - \|/j + r^

v(r0,9j = JL I'" te-4)^*> d¥ (3.5.53b)
111 Jo Rz - 2 R r0 cos (60 - \|/j + r£

Equations (3.5-5Id, 53a, b) are Poisson's integral formulae and are important in potential
theory. We note that the values of f at any point inside C can be determined from the values of f on
C. The functions u and v are harmonic functions, that is to say, are solutions of Laplace's equation,
and we deduce that the solution of Laplace's equation is determined by the values of the function at the
boundary only.

Morera's Theorem

If f is a continuous function in a simply connected domain D and if

I f(z)dz = 0 (3.5-54)

c

for every closed contour C in D, f (z) is analytic in D.

Goursat proved Cauchy's theorem (Equation 3.5-21) requiring only the existence and not the
continuity of f'(z). Morera's theorem implies that f(z) is analytic as a consequence of Cauchy's
theorem.

Maximum Modulus Principle

If f is a continuous analytic function and is not a constant in a closed bounded domain D, then
I f (z) I has its maximum value on the boundary C and not at an interior point. If M is the maximum
value of lf(z)l on C,
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I f(z)l < M for all z in D (3.5-55a)

If f (z) is constant,

lf(z)l < M for all z in D (3.5-55b)

The maximum modulus principle is true for harmonic functions but not for any smooth real valued
functions of two real variables.

3.6 SERIES REPRESENTATIONS OF ANALYTIC FUNCTIONS

In this section, the equivalence between analytic functions and power series is explored. The concept
of sequences, series and power series of complex numbers are in many cases similar to those of real
variables.

Sequences and Series

Let Zj, Z2,..., zn be a sequence of complex numbers. A sequence {zn} converges to zQ if

lim zn = z0 (3.6-1)
n-> oo

Alternatively Equation (3.6-1) is stated as zn —> z0 as n —> °°. Equation (3.6-1) implies that for

every e > 0, there corresponds a positive integer N, such that

| z n - z 0 | < e fora l ln>N (3.6-2)

N depends on e.

If the limit does not exist, then the sequence {zn} diverges. Separating zn and z0 into their real

and imaginary parts, Equation (3.6-1) becomes

lim xn = x0 (3.6-3a)
n-> °°

lim yn = y0 (3.6-3b)
n-> oo

If the sequence {zn} converges, then the sequences {xn} and {yn} also converge.

Example 3.6-1. Discuss the convergence of {(1 + i)n}.

We write zn [= (1 + i)n] in its polar form
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zn = \4l (cos 3L + i sin EJ]" (3.6-4a)

= 2n/2[coSnJt + i " n Y ] (3-6"4b)

The sequence 2n cos * ^ oscillates and does not converge. Since the real part of the sequence {zn}

does not converge, the sequence {zn} diverges. The same thing can be said for the imaginary part.

Let {zn} be a sequence and let S], s2, s3,..., sn be the partial sum defined as follows

s l = z l > S2 = z l+ Z2 ' S3 = z l+ Z2 + Z3 ' sn = z l+ Z2 + ••• + zn (3.6-5a-d)

If n—> °°, we have an infinite series.

If the sequence of the partial sums {sn} is convergent, that is to say

lim sn = s (3.6-6)
n-> oo

exists, the series X zn is convergent and the complex number s is the sum of the series. If {sn}

diverges, the series diverges.

oo

A necessary (but insufficient) condition for a complex series X zn to be convergent is that the
n = l

lim zn vanishes. That is to say, s n - s n . j in Equation (3.6-5d) tends to zero for large n.
n —> oo

The sum of a convergent series of complex numbers can be found by computing the sum of its real and
oo

imaginary parts. A series is absolutely convergent if X | z | is convergent.
n = l

Example 3.6-2. Discuss the convergence of the geometric series

oo

X zn = 1 +z + z2+ ... +z n + ... (3.6-7)
n=0 n
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The partial sum sn is given by

l - z n + 1
sn = 1 - z (3.6-8)

If I z I < 1, we deduce

l i m sn = 7 T 7 (3-6"9)
n —> oo i z,

The series £ zn converges to —^—.
1 - z

The function —-— is analytic inside the circle I z I < 1 and has the representation
1 Z

oo

j 1 - = X zn (3.6-10)
1-Z n=0 "

If I z I > 1 , the series diverges.

Comparison Test
oo

Let X M be a convergent series with real non-negative terms. If, for all n greater than N,
n = 0

lznl < Mn (3.6-1 la)

the series X zn also converges absolutely.

Ratio Test

oo

Let X z be a complex series and
n = 0 n

lim J-^fL = L (3.6-12)
n -> oo | Z n I

If L < 1, the series converges absolutely and if L > 1, the series diverges. No conclusion can be
drawn if L is one.

Note that in both tests we use the absolute value of zn since complex numbers are not ordered.
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Example 3.6-3. Determine the convergence of the series X —.
n = l 2 n

Using the ratio test, we have

J z ^ = | n + l + i | 2 _ ^ _ . i t ( n + l ) 2 + l ] 6_,3
lznl 2 n + 1 |n + i | 2 2 n 2 + l

Taking the limit as n tends to infinity yields ^

Since the limit is less than one, the series converges.

A series of the form

oo

Z c n ( z - z / = co + Cl(z-zo)+ ... +cn(z-z0)n+ ... (3.6-14)
n = 0

where z is a complex variable, z0, c0, Cj, ... are complex numbers is a power series. By a

change of origin, we can set z 0 to be zero. In Chapter 2, we have shown that every power series of a

real variable has a radius of convergence R. This result can be extended to complex variables. Every

series has a radius of convergence R (0 < R < «>) and the series converges absolutely if I z - z0 I < R

and diverges if Iz - zQ I > R. On the circle of convergence (Iz - z0 I = R), the series may converge at

some points and may diverge at other points. When R is zero, the series converges only at z 0 and

when R is infinity, the series converges for all values of z.

The radius of convergence depends on the absolute values of lc n l . If the sequence y | c n l

converges to the limit L, the radius of convergence R is given by

R = f (3.6-15)

An alternative equation for R is

1 = lim - ^ ± 1 . (3.6-16)

if the limit exists.

A power series represents a continuous function at every point inside its circle of convergence.
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~ (-l)n Z 2 n

Example 3.6-4. Determine the radius of convergence of the series 2 J -— and determine
n = 0 2 2 n ( n | ) 2

the function it represents.

From Equation (3.6-14), we identify

0, if n is odd
c = (3.6-17a,b)

( - l ) n / 2 .f .
—-— , if n is even

2n[(n/2)!]2

For odd values of n

V lcnl = 0 (3.6-18a)

For even values of n

lim V ' c n l = lim 1 = 0 (3.6-18b,c)
n->oc n->~ 2 [ ( n / 2 ) ! ] 2 / n

Thus R is infinity and the series converges absolutely for all values of z. In Chapter 2, we have
defined Bessel functions of a real variable. Replacing x by z, we find that the series represents the
complex Bessel function of order zero.

Taylor Series

We now consider the expansion of an analytic function f (z) as a power series.

Let f (z) be analytic everywhere inside the circle C with centre at z0 and radius R. At each point z

inside C,

f(z)= X ^ - fMz-z o ) n (3.6-19)
n = 0 n!

That is, the power series converges to f (z) when I z - z0 I < R.

We first prove the theorem when z0 is the origin. Let z be any point inside the circle C of radius
R, as shown in Figure 3.6-1. Let C\ be a circle with radius Rj < R, and let £, denote a point lying
on Cj. Since z is interior to Cj and f(z) is analytic, we have, using the Cauchy's integral formula
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f(z) = JL f ^ J (3.6.20)
27C1 ] ^ _ z

c,

Note that Cj has to be positively oriented.

y '•

FIGURE 3.6-1 Illustration for the proof of Taylor series

We expand —-— in powers of — (< 1), as

-L- = I f l - ^ r 1 (3.6-2la)

= 1 i + i + i \ 2 + ... + /z\n-l + (z/^) (3.6-21b)

= J - + - L z + -Lz 2 + ... t - L z ^ ' + z" 1 1 (3.6-21c)

Multiplying each term by ——r and integrating around the circle, we have
ZJll
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2*1 J ^_z 27C! J <: J 2 J ( ) n

(3.6-22)

Using Equations (3.5-39,40a to c), we obtain

f(z) = f(0) + ^ z + ^ z 2 + . . . + ^ ^ z n - 1 + R n ( z ) (3.6-23a)
1! 2! (n —1):

where

Ci

To evaluate the remainder term Rn, we note that

I S - Z I > | | ^ | - | z | | = R j - r (3.6-24)

If M denotes the maximum value of If (^) I on C\, we write the absolute value of the remainder as

follows

rn M2TCRI MR, it \ n

Rn(z) < I L- = - — L — (3.6-25)

2TC ( R i - r j R ; ( R l " r ) lR l /

Since (r/Ri) is less than one, it follows from Equation (3.6-25) that
lim Rn = 0 (3.6-26)

n-> °°

We proved that f(z) has a power series representation given by Equation (3.6-23a) with Rn tending
to zero as n tends to infinity. That is to say, f (z) has an infinite series representation. The proof
was restricted to the case where z0 is the origin. This infinite series is the Maclaurin series which
is a special case of the Taylor series. To extend the proof to the case where z0 is not the origin, we
need to shift the origin to z0. We define a function g(z) to be

g(z) = f(z + z0) (3.6-27)

Since f (z) is analytic in I z - z0 I < R, g (z) is analytic in I (z + z0) - z0 I < R, which is I z I < R.

Thus g (z) has a Maclaurin series expansion which is written as

(3.6-23b)
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g(z) = E ^ - r ^ - z " , l z l < R (3.6-28)
n=0 n!

Replacing z by ( z - z 0 ) in Equations (3.6-27, 28) yields

g ( z - z o ) = f(z) (3.6-29)

g ( z - z 0 ) = Z o ^ - ^ ( z - z o ) n , l z - z o l < R (3.6-30)

Combining Equations (3.6-29, 30), we obtain

f(z) = Z - — ^ ( z - z o ) n , l z - z o l < R (3.6-31)
n=0 n!

Note that in the case of complex variables, if f (z) is analytic in I z - z0 I < R, the Taylor series
represents the function, the remainder term Rn tends to zero as n tends to infinity. In the calculus of
real variables, the remainder term Rn (Equation 1.2-12) does not have this property. In the theory of
complex variables, an analytic function has a power series representation and the power series is
analytic. If f (z) is analytic in a domain containing z0, and zj is the nearest singular point to z0,
the Taylor series (Equation 3.6-31) is convergent in the domain I z - z0 I < I Zj - z0 I.

Since the Taylor series is convergent for an analytic function, term by term differentiation and
integration are permissible. The radii of convergence of the differentiated and integrated series are the
same as that of the original series.

Example 3.6-5. Expand 1 / ( I + z2) in a Taylor (Maclaurin) series about the origin. Determine
its radius of convergence.

The singularities of —-— are
1+z 2

z = i, z = -i (3.6-32)

The function —-— is analytic in the domain
1+z 2

Izl < 1 (3.6-33)

Using Equation (3.6-23a), we obtain

— 1 — = l - z 2 + z 4 - z 6 + .... (3.6-34)
1+z 2
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Since —-— is analytic in the domain I z I < 1, the radius of convergence of the series is one.
1 + z2

The radius of convergence can also be deduced from Equation (3.6-15) and is found to be one, as
expected. Note that, in the case of real variables, the radius of convergence can be deduced from

the series expansion only. The function l / ( l + x2) has no singularity along the real line.

Laurent Series

If the function f(z) is not analytic at a point zQ, it does not have a Taylor series about z0. Instead it
can be represented by a power series with both positive and negative powers of (z - z0). This series
is a Laurent series. Laurent's theorem can be stated as follows. Let D be the annular region
bounded by two concentric circles Co and C^ with centre z0 and radii Rj and R.2 respectively,
as shown in Figure 3.6-2. Let f(z) be analytic within D and on Co and C^. At every point z
inside D, f(z) can be represented by a Laurent series which can be written as

f(z) = X an(z-z0)n + X n— (3.6-35a)
n=0 n = l (z_Z ( ))n

where

an = T^ I f ( ^ ^ , . n = 0, 1, 2, ... (3.6-35b)

bn = - L ( f & ^ , n = 1, 2, ... (3.6-350

The integrals around Co and C^ are to be taken in the anticlockwise direction.

The proof of this theorem is similar to that of Taylor's theorem. We surround the point z by a circle
y as shown in Figure 3.6-2. Let £ be any point on the curves Co, Q or y. From Equation
(3.5-33), we have

[tJL^-ilGLK- (1^=0 (3.6-36)
J S-z J S-z J S-z
C, Co Y

where C\, Co and y are considered to be in the anticlockwise direction.
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yt

\ . D y

•
X

FIGURE 3.6-2 Illustration for the proof of convergence of Laurent series

Using Equation (3.5-39), we write the last integral as

27U f (z) = [ ^ ^ (3.6-37)

Y

Combining Equations (3.6-36, 37) yields

f(z) = ^ [ m«k _ J , ( £ ^ i 0.6-38)
27C1 J ^ _ z 2711 J ^ _ z

c, c0

On C], 11, I > I z I and we have the same situation as in the case of the Taylor series. Equations

(3.6-21 to 26) can be carried over and we have

1 I f (5) d^ _ y , ,n r 3 6_39v
27Ti J ^ 7 " n t t ) ^ 1 2 " ^ ( }

c,

where the an are given by Equation (3.6-35b).
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On Co, I z I > 11,1 and, in this case, we write

-^- = L = _JL_ L M"1 (3.6.4oa,b)
£-z (z-zo)-^-zo) (z-z0) L (z-z0)

= _ i _ + j^-zj + +fezzQT + fe-z/ (36.4Oc)

(z-z 0 ) (z -z 0 ) 2 (z -z o ) n ( z - z o ) n ( z - ^ )

Multiplying Equation (3.6-40c) by -~ f(^) and integrating around Co, we obtain

where bn are given by Equation (3.6-35c).

The remainder Tn is given by

Tn = -L ^ _ ( fe-fff^ (3.6.42)
27ti (z-zo)n j (z-^)

Co

Let K be the maximum value of I f(^) | on Co. For any £ on Co, we have

z - $ | = |(z-zo)-fe-zo) | > I z-z01 - I^-z01 = r - ^ (3.6-43a,b,c)

It follows that

Since Rj < r, I Tn I —> 0 as n —> °°. Hence

-2^7/£f - . | , M ^ - 0.6-45)
Co

Combining Equations (3.6-38, 39, 45), we obtain Equations (3.6-35a to c). The series in Equations
(3.6-39, 45) converges in the domain Iz - z0 I < R2 and Iz - z0 I > R} respectively. Consequently
the series in Equation (3.6-35a) converges in the annulus Rj < Iz - z0 I < R2.

(3.6-41)

(3.6-44a,b)
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Comments

1. If f(z) is analytic in a region l z - z o l < R , the coefficients bn in the Laurent series are zero.
The Laurent series reduces to the Taylor series about the point z0 .

2. The Laurent series in a specified annulus Rj < Iz - z0 I < R/> is unique. That is to say, if, by
any method, we have obtained a series representation for an analytic function in the given
annulus, that series is the Laurent series. In the examples that follow, we shall derive a
representation of f (z) by methods other than via Equations (3.6-35a to c).

3. Since f(z) is analytic in the annulus, the contours Cj and Co in Equations (3.6-39, 45) can
be replaced by any circle C lying in the annulus. That is to say, the contour integrals can be
taken around the same curve C, as long as C lies in the annulus Rj < Iz - z0 I < R2.

Example 3.6-6. Expand

f(z) = z + 3 (3.6-46)

( z 2 - z - 2 j z

in powers of z in the following regions

(i) within the unit circle about the origin,

(ii) within the annular region between concentric circles about the origin having radii 1 and 2
respectively,

(iii) exterior to the circle of radius 2.

The function f (z) can be decomposed in partial fractions as

f ( z ) • -,(,-z2)(!+n (3-6-47a)

= 'h + eltl) * 3(£i) (36-47b)

(i) When 0 < I z I < 1, we write f (z) as

f(2) = ~h ~ VI I1 " f)"1 + 3 (1 + z)-1 (3.6-48a)

= -f-^£(f)n + |£(-l)nzn (3.6-48D)
2z 12 n=0 V2/ 3 n=0
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(ii) When 1 < I z I < 2, we write

f(z) = - ^ - i # l ) + i(riij (3-6-49a)

= " i - 4 nf0(t)"+ £„?„<-')>)-" (3-6-4%)
(iii) When I z I > 2, we have

= "£• £j.©"+&.I H)^ <3.6-5 O b,
Note that the series in Equations (3.6-48b, 49b, 50b) converge in the region indicated. In (i), (ii) and
(iii), we have written f (z) in a form such that when we expand the appropriate expression as a
binomial series, the expansion is valid. The series we have obtained are the Laurent series expanded
about the origin which is a singular point of f (z). The other two singular points of f (z) are at z = -1
and z = 2. The domain is divided into regions such that in each region the function is analytic.

Example 3.6-7. Prove that

oo

cosh(z+ i ) = a o + I a n | z n + - L | , I z I > 0 (3.6-5 la)

where

, 2 n

an = - L I cos n6 cosh (2 cose) d0 (3.6-5 lb)
% JO

The function cosh (z + —) is analytic for all non-zero finite values of z. Therefore it can be expanded

in a Laurent series at any point z about the origin in the region 0 < I z I < °°. Equation (3.6-35a)
becomes

00 00

cosh (z + 1) = Xo anzn + ^ bn (I)" (3.6-52)

where an and bn are given by Equations (3.6-35b, c).

(3.6-50a)
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To evaluate ^ and bn, we choose a common circle C, the unit circle centered at the origin. We note

also that on interchanging z and —, the function remains unchanged and

a,, = bn (3.6-53)

On C, the unit circle, we have

z = eie (3.5-54a)

dz = i e i e d 8 (3.6-54b)

The coefficients a^ are given by

J ^ f cosh(e'° + e-">).e,ed9

n 2ni I ei(n+i)e v '

Jo
tin

= - L I cosh (2 cos 0J e"in9 d0 (3.6-55b)
2% I

JO

tin

= - L I cosh (2 cos 0) [cos n0 - i sin ne] d9 (3.6-55c)
71 Jo

To evaluate the second term on the right side of Equation (3.6-55c), we divide the region of integration
and write

J
f2n rn rln

cosh(2cos0) sinn0 d0 = I cosh (2 cosG) sinn0 d0 + I cosh(2cos0J sinnG d0
0 JO in

(3.6-56a)

J fn rO

cosh (2 cos©) sin n0 d0 + I cosh [2 cos(2n-§)] sin [n(27t-(|))] (-d(|))
0 h

(3.6-56b)

cosh (2 cosG) sin n0 d0 + I cosh (2 cos ((>) [-sin n§\ d<|) (3.6-56c)

0 Jo

= 0 (3.6-56d)
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Combining Equations (3.6-55c, 56d) yields

an = - L cosh (2 cos e) cos n9 d6 (3.6-5 lb)
Jo

Example 3.6-8. Deduce the complex potential for a two-dimensional, irrotational, incompressible
flow past an infinite stationary circular cylinder of radius a.

The centre of the cylinder is taken to be the origin. In Example 3.3-6, we have shown that an analytic
function can be a suitable complex potential for an irrotational, incompressible flow. There is no flow
in the region I z I < a and singularities may be present in this region. In the region a < I z I < °o, there
is no singularity and the complex potential O(z) is analytic and can be represented by a Laurent
series. We start by choosing the simplest Laurent series given by

O(z) = al Z + ^L (3.6-57)

We have shown in Example 3.3-6 that the potential <j) and the stream function \|/ are given by the
real and imaginary parts of <E>(z) respectively. Separating O(z) into its real and imaginary parts, we
obtain

<|> + i \ | /= a1(x + iy) + b l ( x " 1 ^ (3.6-58a)
U + y )

= a l x + -~~ + i y fal - - ^ - r ) (3.6-58b)
xz + yz \ xz + y1}

From Equation (3.6-58b), we deduce

$ = a t x + b l X (3.6-59a)
x2 + y2

¥ = Y fa! - - ^ - ) (3.6-59b)
I xz + yz/

The cylinder is a streamline and we can assume that \|/ is zero on the cylinder. This implies that
\j/ = 0 for x2 + y2 = a2, for all values of y and, from Equation (3.6-59b), we obtain

0 = L - M (3.6-60)
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Far away from the cylinder, the flow is undisturbed by the cylinder and we assume the velocity
distribution to be

v = (v^, 0) (3.6-61)

From Equations (3.3-62a, 6-59a), we obtain as (x2 + y2) tends to infinity

vM = &\ (3.6-62)

From Equations (3.6-60, 62), we deduce

t>! = a2v00 (3.6-63)

Equation (3.6-57) can be written as

^) = v0O(z + | - ) (3.6-64)

The function O is analytic in the annulus a < I z I < « and satisfies all the boundary conditions and is
the complex potential for the present flow.

3.7 RESIDUE THEORY

We have defined the singular point (singularity) zQ of f(z) to be the point at which f(z) ceases to be
analytic. If z0 is a singular point but f(z) is analytic in the region 0 < Iz - zQ I < R for some
positive R, z0 is an isolated singular point. The function 1 / (z - 2) has a singular point at
z = 2 and is analytic in the region 0 < I z - 21 < R. That is to say, f (z) is analytic in a region in
which the point z = 2 has been removed. The point z = 2 is an isolated singular point. The function
i n z is singular at the origin but also along the negative part of the real axis as illustrated in Figure
3.4-1. The origin is not an isolated singular point. There are many other singular points near the
origin.

If z0 is an isolated singular point in the annulus 0 < Iz - z0 I < R, f (z) has a Laurent series
representation which can be written as

oo oo

f(z) = X a n ( z - z / + X bn(z-zorn (3.6.35a)
n=0 n=l

where the coefficients an, bn are given by Equations (3.6-35b, c).
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We consider three types of singularities

(i) If all the coefficients bn are zero, the Laurent series reduces to the Taylor series. The singular

point is a removable singular point. We define

lim f(z) = aQ (3.7-1)
z->z0

For example, the function &&%. j s n o t defined at the origin. The function has a series

representation

f(z) = s i | z = 1 - ^ + | ^ .... (3.7-2)

The series in Equation (3.7-2) is convergent and we define f (0) to be one. We can also
obtain this result using 1'Hopital's rule. The origin is a removable singularity.

(ii) If all but a finite number of the coefficients bn are zero, z0 is a pole. The singular point z0

is a pole of order m if (bj, ... , bm) are non-zero and the coefficients bn vanish for all
n > m.

If m is one, z0 is a simple pole. The coefficient bj is the residue and is denoted as
Res (z0) or Res [f (z), z0]

(iii) If all the coefficients bn do not vanish, z0 is an essential singular point.

Example 3.7-1. Discuss the nature of the singularities of

( i ) c o s z - 1 , (ii) e1/z2, (iii) M ^
z2 z5

at the origin.

(i) The expansion of cos z in powers of z is known; the expansion of (cosz - l ) / z 2 can be
deduced to be

c o s z ~ 1 = _ l + ^ _ ^ + (37-3)
z2 2 4! 6! { }

We define the value of (cos z - l ) /z 2 at the origin to be (-1 IT). In so doing, the function
is analytic everywhere. The origin is a removable singular point. Note that the function is not
defined at the origin. We can also use l'Hopital's rule to deduce that its value at the origin is
(-1/2).
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(ii) The expansion of the exponential function is

e 1 / z = 1 +-i-H—1—h ... + 1 + ... (3.7-4)
z2 2z 4 n!(z2n)

We have an infinite series, the origin is an essential singular point.

(iii) The expansion of (sinh z) / z5 is obtained by dividing the expansion of sinh z by z5 to
obtain

sinhjz = J_ + _ J _ + JL+A + ... ( 3 7 _ 5 )

z5 z4 3!z2 5! 7!

The origin is a pole of order four.

•

The zero of a function f (z) is the point at which the value of f is zero. The Taylor series expansion
of f (z) about any point z0 (not a singular point) can be written as

f(z) = X an(z-z0)n (3.7-6a)

n=0

f(«)/7 )

an = LJM (3.7-6b)
If a0 is zero and the other coefficients an do not vanish, f (z0) is zero and z0 is a simple zero. If
a0, al5 ... , am_1 are all zero and an (n > m) are non-zero, f (z) has a zero of order m at z0.
That is to say, the first (m-1) derivatives of f(z) at zQ vanish. Equation (3.7-6a) becomes

f(z) = am (z - zo)m + am+ j (z - zo)m+* + - (3.7-7a)

= (z - zo)m [am+ am+1 (z - zo) + - ] (3-7-7b)

= ( z - z o ) m I a n ( z - z o ) n " m (3-7-7C)

n=m

= (z-zo)mg(z) (3.7-7d)

where

g(z) = X an(z-zo)n"m = (z-zormf(z) (3.7-7e,f)
n = m
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g(z0) = am * 0 (3.7-7g,h)

If h (z) has a pole of order m, its Laurent series can be written as

h(z) = £ an (z - z / + - \ - + ... + — ^ - (3.7-8a)
n=0 (Z-ZO) ( z - z o )

OO

= (z - z 0 r m I > n (z ~ z o ) n + m + b l (z - zo) m " ! + - + b m (3.7-8b)

-n=0

= (z-zormi(z) (3.7-8c)

where
oo

X (z) = X an (z - z o ) n + m + bx (z - z / 1 - 1 + ... + b m = (z - zo)m h(z) (3.7-8d,e)
n=0

i(z0) = bm ^ 0 (3.7-8f,g)

If f(z) has a zero of order m at zQ, -j— has a pole of order m at z0.
i (z)

If h(z) has a pole of order m at z 0 , —j— has a removable singularity at z0.
n (z)

If f(z) and g(z) have poles of order k and m respectively at z0, their product fg has a pole of
order k + m at z0.

Example 3.7-2. Determine the order of the pole of (2 cos z - 2 + z2)~2 at the origin.

Instead of looking at the poles of (2 cos z - 2 + z2)"2, it is easier to consider the zeros of (2 cos z - 2
+ z2)2. Expanding the function f (z), we have

f(z) = ( 2 c o s z - 2 + z2)2 = [ 2 ( l - ^ - + ^ - ^ + . . . ) - 2 + z2j (3.7-9a,b)

[2z4 2z6 I 2

= z*\h.-24-+-\ (3-7-9d)

(3.7-9c)
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The function f(z) has a zero of order 8. Therefore, the function l/f(z) has a pole of order 8.

•

If all the singularities of f(z) in the finite complex plane are poles, f(z) is a meromorphic function.

Cauchy's Residue Theorem

Let C be a simple closed contour, positively oriented, within and on which a function f (z) is analytic
except at a finite number of singular points zl5 Z2,..., zn contained in the interior of C. Cauchy's
residue theorem states that

[ k
f(z)dz = 2ni £ Res[f(z),zJ (3.7-10)

Jc n = l

Proof. Let C\, C2,... , Q, be k circles each positively oriented, with their centers at the isolated
singular points z1; z2, ... , z^ respectively, as shown in Figure 3.7-1. Each circle Cj (j = 1, ... , k)
lies inside C and exterior to the other circles. From Equation (3.5-33), we have

I f(z)dz = X I f ( z ) d z (3.7-11)
Jc j=i JCJ

Consider the integral I f(z) dz for a fixed value of i. The residue bj as defined by Equation
JCi

(3.6-35c) is given by

bj = - L I f(z)dz (3.7-12a)

27tl Jq

27uib1 = I f(z)dz (3.7-12b)

Equation (3.7-10) is obtained by combining Equations (3.7-11, 12b).



228 ADVANCED MATHEMATICS

y i

_ ^ .

X

FIGURE 3.7-1 Illustration for the proof of Cauchy's residue theorem

Some Methods of Evaluating the Residues

(i) Simple pole at n

The Laurent series of f(z) about Zj can be written as

f(*)= £ a n ( z - z i ) n + - ^ - 0.7-13)
n=0 ( z~z i )

From Equation (3.7-13), we deduce that bj is given by

bj = lim (z-Zj)f(z) (3.7-14)
Z—>Zj

If the function f (z) is given in the form of a rational function, that is to say

f(z) = S j l (3.7-15,

f(z) has a simple pole at z, which implies that h(z) has a simple zero at zj [h(Zj) = O].

Equation (3.7-14) can be written as
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b, - Km fef^M (3.7.16a)
1 z^Zi [h(z)-h(zi)J

= lim / i ^ - \ (3.7-16b)
*->* \[h(z)-h(zi)]/(z-zi)/

= ^ L (3.7-16c)
h'(Zi)

The derivative h'(zj) is non-zero because h(z) has only a simple zero at zy

(ii) Pole of order m > 2

The Laurent series of f (z) about Zj is

f(z) = £ an(z-zi)n + - A - + - ^ + . . . + - * » - (3.7-17a)
n=0 (Z- Z i ) (z -z j ) 2 ( Z - Z i ) m

= ( z - Z i r m g ( z ) (3.7-17b)

where g (z) is analytic and non-zero at Zj (see Equations 3.7-8a to g).

Since g (z) is analytic, it has a Taylor series which can be written as

g(z)= I ^ r^ -Z i ) " (3-7-18)
n=0 n-

Comparing Equations (3.7-17a, b, 18), we find that the residue b} is given by

(m-l)( \

b> = i s d y r ("-19a)

. ,ta J^L kzj£ld ( 3 . 7 . 1 9 b )
z^^i dz1""1 (m-1) !

If f (z) is as given by Equation (3.7-15), we can expand g(z) and h(z) in their Taylor
series. By comparing coefficients of powers of (z - zj) with Equation (3.7-17a), we can
determine bj.

In many cases, it is possible to decompose f (z) into its partial fractions.
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(Hi) Essential singular point

In this case, we have to expand f (z) in powers of (z - z;), including negative powers, and
obtain bj.

We illustrate the method of calculating residues by evaluating contour integrals.

Example 3.7-3. Use the residue theorem to evaluate the following integrals

where Cj, C2 and C3 are circles with center at the origin and of radii 2, 1/2 and 1 respectively.

(z-2)
(i) The function -^ f- has two simple poles, one at the origin and the other at z = 1, both are

z ( z - l )
inside Cj.

I ^ Z 7 2 ) ^ Z = 2ni{Res [f(z), 0] + Res[f(z), 1]} (3.7-20)

The residue at the origin is obtained by using Equation (3.7-14)

bt = lim Zif~2\ = 2 (3.7-21a,b)
1 z_>0 z ( z - l )

Similarly, the residue at z = 1 is given by

b = lim ( Z ~ 1 ) ( Z " 2 ) = -1 (3.7-22a,b)
z-»i z (z - l )

Using Equations (3.7-20, 21a, b, 22a, b), we obtain

I (z-2)dz = 2 7 c i [ 2 - l ] = 27ti (3.7-23a,b)

/ c z ^ z '

(ii) We rewrite the function as

—1 1—vT = 1 (3.7-24)

z(2 + z-z 2 ) z(2 + z)( l -z)
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The function has singularities at the origin, at z = -2 and at z = 1, of which only the origin is
interior to C2.

The residue at the origin is given by

bi = lim — — \ - r = I- (3.7-25a,b)
1 2 ^ 0 z(2 + z)( l -z) 2

The integral is

I / 5dz ^ = 27c ifJ] = 5™ (3.7-26a,b)
ic2 z(2 + z-z 2 ) L2J

(iii) The function z e2/z has an essential singularity at the origin. We expand the exponential
function and obtain

"*•* . ! ,£ (£) • ( 3 - 7 - 2 7 a »

= z + 2 + ^ - + ^ - + . . . (3.7-27c)
z 3z2

From Equation (3.7-27c), we find

b2 = 2 (3.7-28)

I ze2 / zdz = 27ci(2) = 4ni (3.7-29a,b)

ic3

Example 3.7-4. Evaluate the following

r\ I e2z ^ r-\ I 7tcot(7tz)(1) I — ; dz, (11) I —- dz
JcCOSh7lZ J c Z2

where C is a unit circle with center at the origin.

(i) The zeros of cosh rcz which lie interior to C are

z 1 = i - , z2 = - i - (3.7-30a,b)

(3.7-27b)
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Using Equation (3.7-16c), the residue at i /2 and - i / 2 are respectively given by

p2z i : i
b, = —r-r = —TT-f—^ = -— (3.7-31a,b,c)

1 n sinh TCZ z = i / 2 n (I sin TC/2) TC

e2z p - i i e"1
bj = — ~ = e . = + ^ — (3.7-32a,b,c)

1 n sinh TCZ z=_i/2 rc [i sin (—7C/2)] TC

The integral is given by

e, Z dz = 2;ui - — + 1-^- = 2[e i -e~ i l = 4i sin 1 (3.7-33a,b,c)
Jccosh7tz [ 7i n J L J '

(ii) We write the function as

rccotfoz) _ n cos (TCZ) 7 3

z2 z2sin(7iz)

The only zero of sin TCZ which is inside C is the origin. The function 7tcot(7tz)/ z2 has a
pole of order three at the origin. The residue bj can be determined using Equation (3.7-19b)
which gives

b - Hm A . [Z3TCCOS71Z1 = 7L i im ^ i Tzcosjizl (3.7-35a,b)
^ o d z2 [2! Z2 s i n TCZJ 2 z ^ 0 d z2 L sin TCZ J

= TC2 lim [ ^ cos TCZ - sin TTZI ( 3 7 3 5 c )

z ^ ° [ sin3 TCZ

To evaluate the limit in Equation (3.7-35c), we use l'Hopital's rule and we obtain

bj = TC2 lim [ - ^ z s i ^ z j = rt2Lll (3.7-36a,b)
z - > 0 |_3TC sin2TCz COSTCZJ 3

The integral is given by

[ ™f& dz = 2TCi[-̂ ] = -*f (3.7-37a,b)
Jc z

Example 3.7-5. The force F per unit length exerted on a cylinder of infinite length in a steady

irrotational flow can be determined by complex variable methods. Blasius (1908) has shown that if
Fx and Fy are the x and y components of F
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F*-iFy= T [ tefdz (3-7"38)
Jc

where p is the density of the fluid, O is the complex potential, and C is the curve defining the
surface of the cylinder.

Calculate the force if

O = -Voo(z + a2/z) (3.7-39)

In Example 3.6-8, we have shown that Equation (3.7-39) represents the complex potential for a flow
past a circular cylinder of radius a with center at the origin.

Differentiating Equation (3.7-39) and using Equation (3.7-38), we obtain

FX ~' ̂  = ̂  l V~ I' " ̂  + ̂  ̂  (3"7"40a)
v 2

= i p ^27Ui SR.es (3.7-40b)

The residue is zero and this means that there is no force acting on the cylinder. This surprising result
is known as d'Alembert's paradox and is discussed at length by Batchelor (1967).

•

The integral of real variables can be evaluated using the residue theorem. We consider a few
examples.

Triginometric Integrals

To evaluate integrals of the form

Jf27t

F (cos 6, sin e) d6 (3.7-41)

o

where F (cos 9, sin 9) is a rational function of cos 9 and sin 9, we write

z = eie (3.7-42)

The trigonometric functions cos 0 and sin 9 can be written as

(3.7-40a)
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cosG = 1 (z + l ) , sine = ±-{ ( z -1 ) (3.7-43a,b)

Substituting Equations (3.7-42, 43a, b) into Equation (3.7-41), we obtain

1 = I f(z)dz = 27ciERes(f(z), zn) (3.7-44a,b)
Jc

where C is the unit circle, zn are the poles of f (z) inside the unit circle.

Note that from Equation (3.7-42) the limits of the integration 0 to 2n correspond to the unit circle
and the integral is taken in the anticlockwise direction.

Example 3.7-6. Show that

J
l»2rc

^ = 2n a>b>0 (3.7-45a,b)
0 a + bcose Va2-b2

Substituting Equations (3.7-42, 43a) into Equation (3.7-45a), we obtain

I = f "'f*' = -2i f - ^ (3.7-46a,b)
Jc a + l l z + z"1) Jc bz 2 + 2az + b

The poles of the function are the zeros of

f(z) = bz2 + 2az + b = 0 (3.7-47a,b)

They are

z, = _ti^Z (3.7.48b)

Since a > b > 0, I z2 I < 1 and the only pole inside C is z2.

We evaluate the residue bj using Equation (3.7-14) and we have

bj = lim - ( Z ~ Z 2 ) T = l (3.7-49a,b)
Z^Z2 b(z-z1)(z-z2) 2^1 a2~b2

(3.7-48a)
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Combining Equations (3.7-44b, 46b, 49b) results in

I = i ^ M = E = -TM= (3.7-5Oa,b)
2Va2-b2 Va2-b2

Improper Integrals of Rational Functions

We recall from the theory of functions of real variables that if f (x) is a continuous function on
0 < x < oo, the improper integral of f over [0, °°) is defined by

r r
f(x)dx = lim f(x)dx (3.7-51a)

Jo a-*°° Jo
provided the limit exists. Similarly if f(x) is continuous on (- °°, 0], we have

f(x)dx = lim I f(x)dx (3.7-5 lb)

J— a^-°°A

When both limits exist, we write, for an integrable function on the whole real line (—°°, °°)

r f r
f(x) dx = lim f(x) dx + lim f(x) dx (3.7-52a)

J-oo a ^ / a a^°° Jo

= I f(x)dx + f(x)dx (3.7-52b)
J-oo JO

The value of the improper integral is computed as

r r
f(x)dx = lim f(x)dx (3.7-53)

J-c a^°° J-a

It may happen that the limit in Equation (3.7-53) exists, but the limits on the right side of Equation
(3.7-52a) may not exist. Consider, for example, the function f(x) defined by

f(x) = x (3.7-54)

The limit
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T a2
lim xdx = lim =- (3.7-55)

a — > ° o / 0 a - > ~ 2

does not exist. But

r
lim I xdx = 0 (3.7-56)

/-a

This leads us to define the Cauchy principal value (p.v.) of an integral over the interval
(-oo, c»). This is defined by Equation (3.7-53) if the limit exist. From now on, the principal value of

I f (x) dx is implied whenever the integral appears.
J-oo

f°°
Consider the integral I f (x) dx where

J— oo

(i) f(x) = P(x) /Q(x) (3.7-57)

(ii) P (x) and Q(x) are polynomials.

(iii) Q (x) has no real zeros.

(iv) The degree of P (x) is at least two less than that of Q (x).

The integral is then given by

J r°° k

[ f(x)dx = 2ni X Res[f(z), z ] (3.7-58)
n = 1

- o o

where zl5 z2, . . . , z^ are the poles of f (z) that lie in the upper half plane.

Note that the integral on the left side involves the real line. The contour associated with the complex
integration must therefore also include the real line.

The contour we choose is a semi-circle, centered at the origin with radius R in the upper half plane as
shown in Figure 3.7-2. We denote the semi-circle by F and we choose R to be large enough so that
the semi-circle encloses all the poles of f (z). By the residue theorem, we have

,R , k

f(x)dx+| f(z)dz = 27ti X Res[f(z), zj (3.7-59)
J-R Jr n = 1
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Equation (3.7-58) implies the integral along F to be zero and this will be established next.

I , > 1

-R 0 R
FIGURE 3.7-2 Contour integral for evaluating infinite integrals

From condition (iv), we deduce that for sufficiently large R

I z f (z) I < 8 (3.7-60)

for all points of F. By substituting

z = Re i e (3.7-61)

into the second integral on the left side of Equation (3.7-59), we obtain

I f(z)dz = I f(Reie)iReied6 (3.7-62a)
Jr Jo

r
< £ d9 (3.7-62b)

Jo
< en (3.7-62c)

Equation (3.7-62b) is obtained by using inequality (3.7-60).As R—> oo, e—>0 and the integral around F is zero. Equation (3.7-59) reduces to Equation(3.7-58).

(3.7-60)

(3.7-61)
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Example 3.7-7. Show that

,«

-d*— = &f, a>0 (3.7-63)
J_«,x4 + a4 2a3

The function

f(x) = — 1 - ~ (3.7-64)
x4 + a4

is in the form of Equation (3.7-57) and using Equation (3.7-58), we have

To determine the zeros of z4 + a4, we write

z4 = - a 4 = a4e i 7 t ( 1 + 2 n) (3.7-66)

Using De Moivre's theorem, we find that the zeros are

zt = aei7t/4, z2 = ae3i7t/4, z3 = ae5i l t /4, z4 = a e W 4 (3.7-67a-d)

Of the four zeros only Zj and z2 are in the upper half plane. We denote any one of them by a.

From Equations (3.7-66), we find that

a 4 = - a 4 (3.7-68)

The residue at z = a is given by

lim (z-a) f (z) = lim ^Z~a^ (3.7-69a)
z -> a z -»a z 4_ 0 c 4

= lim ^ ^ 1 (3.7-69b)
z-^a (z-a)(z + a)(z2+a2)

= -J- = --S- (3.7-69c,d)
4a 3 4a4

Substituting Equation (3.7-69d) into Equation (3.7-65), we obtain

(3.7-65)
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f°°
-&— = - 2 E i [aei7c/4 + ae3i7t/4] (3.7-70a)

J_oo x4 + a4 4a4

= _ _i2L [cos & + c o s 3iL + i (Sin 2L + s i n 3TL)1 (3.7-70b)
2 a3 L 4 4 V 4 4 n

= ^ J L (3.7-70c)
2 a3

Evaluating Integrals Using Jordan's Lemma

Let f(x) be of the form given by Equation (3.7-57), P(x) and Q(x) satisfy conditions (ii) and
(iii). Condition (iv) is replaced by the condition that the degree of P (x) is at least one less than that
of Q(x). If F is the semi-circle shown in Figure 3.7-2, Jordan's lemma states

I e i m zf(z)dz -> 0 as R -> °° (3.7-71)

ir
where m is a positive integer.

f°° •
To evaluate the integral I e i m xf(x)dx, we integrate around the contour shown in Figure 3.7-2 and

J-oo
we have

fR f k
eimxf(x)dx + eimzf(z)dz = 27ii £ Res[eimzf(z), z j (3.7-72)

i-R ir n = i

Using Jordan's lemma and letting R —> «>, Equation (3.7-72) reduces to

f°° k

I eimxf(x)dx = 27ii £ Res[eimzf(z), z j (3.7-73)
J-oo n=l

By separating Equation (3.7-73) into its real and imaginary parts, we can evaluate

I f (x) cos mx dx and I f (x) sin mx dx.
J—oo J—oo

Example 3.7-8. Show that
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cosxdx = _n__ e ^ _ e ^ _ a > b > 0 (3.7-74)
J - (x2 + a2) (x2 + b2) a 2 - b 2 b a)

From Equation (3.7-73), we have

I 1 COS^dx „, = Re 27ci X Res -. fy -r , J 1 (3.7-75)
L ( x 2 + a2)(x2 + b2) \ nTi [(z2 + a2)(z2 + b2) J /

The four poles of the function are

zj = i a, Z2 = -i a, Z3 = i b, Z4 = -i b (3.7-76a-d)

Of the four poles, only zj and z3 are in the upper half plane.

The residue b\ at Zj is given by

, V ( Z ~ i a ) e l Z /O -7 T7 \

b i = ^n1 ? • \( • \t—^w ^rr (3.7-77a)
1 z-Ma (z-ia)(z + ia)(z-ib)(z + ib)

= —f^T-A (3-7"77b)
2ia(b 2 -a 2 )

Similarly the residue b} at z3 is

b, = e ^ (3.7-78)
2ib(a 2 -b 2 )

Substituting Equations (3.7-77b, 78) into Equation (3.7-75), we obtain

I cosxdx = R e l2 jc i e^ + e^ I (3.7-79a)
J - (x2 + a2) (x2 + b2) 1 |_2ia (b2 - a2) 2ib (a2 - b2)j /

= 7—&—- 5 ?_!. (3.7-79b)
(a2-b2) Lb a J

Poles on the Real Axis

So far, we have assumed that the poles of f (z) were not on the real axis, since we chose Q (x) ^ 0.
If some of the poles are on the real axis, we indent the contour shown in Figure 3.7-2 by making small
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semi-circles in the upper half plane to remove the poles from the real axis. Suppose f (z) has a pole at
z = a, where a is real. The contour is indented by making a semi-circle of radius e, centered at z =
a in the upper half plane as shown in Figure 3.7-3. We denote the small semi-circle by y. The
contour integral given in Equation (3.7-59) is now modified as follows

J f ( x ) d x + | f(z)dz+ I f ( x ) d x + ( f(z)dz = 2ni X Res[f(z), zn] (3.7-80)
- R Jy A+e Jr n = 1

-R 0 R

FIGURE 3.7-3 Contour integral with a pole on the real axis

It was shown earlier that in the limit as R —> °°, I f (z) dz —> 0. We now consider the integral

around y. On y, we have

z = a + e e i e (3.7-81)

and the contour integral becomes

I f(z)dz = I f(a + e e i e ) e i e i e d 0 (3.7-82)
Jy Jn

Since f(z) has a simple pole at z = a, we can write
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f(z) = g ( z ) / ( z - a ) (3.7-83)

where g(z) is analytic and can be expanded as a Taylor series about the point a. The function g(z)
can be approximated by

g(z) = g(a) + 0(e) (3.7-84)

Substituting Equations (3.7-83, 84) into Equation (3.7-82), we obtain, as £ —> 0,

I f(z) dz -> i I g(a) de (3.7-85a)
Jy Jn

-> -iicg(a) (3.7-85b)

We note from Equations (3.7-14, 83) that g(a) is the residue of f(z) at a and is denoted by Ra. In

the limit, as R —> °o and e —> 0, Equation (3.7-80) becomes

J f oo k

! f(x)dx = 2ni 2 Res[f(z),z] + 7tiRa (3.7-86)
n = l

- o o

If there is more than one simple pole on the real axis and if we denote these poles by aj, ^ ••• > a i >
we replace Ra in Equation (3.7-86) by the sum of R , that is to say, the sum of the residues at aj,
a2, ... , a^ . The same modification can be applied to Equation (3.7-72). We illustrate this by

considering an example.

Example 3.7-9. Show that

cosjLdx = TLjsrnâ  a i s r e a l (3.7-87)
) - ~ a 2 - x 2 a

I e i zWe consider the integral I dz, where C is the indented contour to be defined later. The
1 2 2
Jc az-zz

function f(z) [=l / (a 2 -z 2 ) ] has two poles on the real axis, at -a and a. We indent the contour by
making two small semi-circles of radius e, one at z = -a denoted by Ji, and the other at z = a
denoted by y2. The contour C is shown in Figure 3.7-4.
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r

-R -o 0 a R

FIGURE 3.7-4 Contour integral with two poles on the real axis

Equation (3.7-72) is modified to

/•-a-e . f . ra.-E . r fR
I elx I elz / elx / elz I elx

I — d x + | — dz+ — d x + l — d z + l — dx
J_R a 2 - x 2 ]yi a 2 - z 2 J_a+e a 2 - x 2 }y2 a 2 - z 2 J a + e a 2 - x 2

/ iz k r iz
+ I e 'Z dz = 2 Tci X Res ^ , zn (3.7-88)

/ „ O2 r,2 n = 1 O2 r,2
7 r " —^ l_d —z

Using Jordan's lemma, we have as R —> °°

t eiz
— dz = 0 (3.7-89)

h a2-z2

To evaluate the integral around yj, we write
z = -a + ee i e (3.7-90)

f -¥- dz = [° exP(- ia + i £ e i 9 | i £eie d0 (3.7-91)
JYl a2-z2 1 eeie(2a-eeie)
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In the limit as e —> 0, Equation (3.7-91) simplifies to

I e i z i p~ l a /f-ziz - 4 r de (3J-92a)
Jyi a - z j n

-» " ^ ^ (3.7-92b)

Using Equation (3.7-14), we find that the residue R_a at z = - a is given by

R . = lim / Z + f ) £ l Z , (3.7-93a)
- a z_^_a (a-z)(a + z)

e~ia
= ^ - (3.7-93b)

From Equations (3.7-92b, 93b), we obtain

f e i z
lim ^ - r d z =-i7rR_a (3.7-94)
^o j Y l a 2 - z 2

Equation (3.7-94) is a special case of Equation (3.7-85b).

Similarly we have

I e i z
Urn - ^ - d z = - i 7 t R a (3.7-95)
^ 0 JY2 a 2 _ z 2

where Ra is the residue at z = a.

The function e i z / (a2 - z2) has no other poles except at - a and a, so the right side of Equation

(3.7-88) is zero. In the limiting case R—> <*>, e—> 0, Equation (3.7-88) simplifies to

- ^ - d x = i7c[Ra + R_J (3.7-96)
;_<*, a - x z

The residue Ra is given by

(3.7-97a)
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eia
= -~^ (3.7-97b)

Substituting the values of Ra and R_a into Equation (3.7-96), we obtain

- ^ d x = i ^ [ e - i a - e i a ] (3.7-98a)
J_ooa2-x2 2 a

= J (sin a) (3.7-98b)

Separating Equation (3.7-98b) into its real and imaginary parts, we have

I _cos_x_ d x = ILsin_a (3.7-99a)
;_ooa2-x2 a

_sinjL_ dx = 0 (3.7-99b)
I fl2 Y 2y_oo a — x

3.8 CONFORMAL MAPPING

In this section, we consider the function f defined by Equation (3.3-5) to be a mapping from one
subset of a complex plane to another. From Equations (3.3-6a, b), we regard one complex plane to be
z [= (x, y)] and the other to be w [= (u, v)] and f establishes the correspondence between the (x, y)
plane and the (u, v) plane. We examine the geometric properties of this mapping. If to each point in
the (u, v) plane there corresponds one and only one point in the (x, y) plane and vice versa, the
mapping is one to one.

In Section 3.3, we have defined a curve in the (x, y) plane by introducing a parameter t. The equation
of a curve C in the (x, y) plane is written as

z(t) = x(t) + iy(t) (3.8-1)

The curve C is transformed to a curve T in the (u, v) plane. The equation of T is written as

w(t) = f(z) = u(t) + iv(t) (3.8-2a,b)

Suppose the curve C passes through a point P at which t takes the value tQ. The tangent to C at

P is given by
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d* = <£ + i % (3.8-3)
at t dt t at t

l o l o l o
The tangent to the curve T in the (u, v) plane at the point [u (tQ), v (t0)] is

£o to [o

Using the chain rule "-^ and ^ can be written, in matrix form, as
at at

" d u l r^L ^L 1 [ dx 1
dt 3x 9y dt

(3.8-5)
dv. 3v 3v dy

- dt J \_dx dy J L dt -

Equation (3.8-5) expresses the transformation of tangent vectors from the z-plane to the w-plane.
The condition for a unique solution is that the determinant

du du
dx dy

J = # 0 (3.8-6)
9v 3v
dx 9y

The determinant J is the Jacobian. If it is non-zero, it ensures that non-zero tangent vectors in one
plane are transformed to non-zero tangent vectors in the other plane.

Using the Cauchy-Riemann conditions [Equations (3.3-29a, b)], J can be written as

a_u a_v a u a_v
J ~ ax ay ay ax (3-8"7a)

_ /3u\2 /av)2

= ^ + i | ^ 2 (3.8-7c)
ax ax

= - ^ (3.8-7d)
dz

The condition that the determinant be non-zero is equivalent to the condition that — be non-zero.
dz

(3.8-4)

(3.8-7b)
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The curves Cj and C2 in the z-plane intersect at (x0, y0). Let A9 be the angle between the tangent
vectors to Cj and C2 at (x0 , y0), measured from Cj to C2 as illustrated in Figure 3.8-1.
Suppose Cj and C2 are mapped by f to Fj and F2 respectively in the w-plane. The curves Fj
and F2 intersect at (u0 , v0) and let Aa be the angle between the tangent vectors to Fi and F 2 at
(u0 , v0), measured from Fj and F 2 , as shown in Figure 3.8-1. If A0 is equal to Aa, the
mapping is conformal. If the magnitude of A0 is equal to the magnitude Aa, but the sense is not
the same, the mapping is isogonal. Thus, in a conformal mapping, both the magnitude and sense of
angles are preserved. The conditions that f represents a conformal mapping are

(a) f is analytic;

(b) f is single valued;

(c) 4^ is non-zero,
dz

y A VJ

uo.yo) ^ V La

r,
1 ^ 1 +.

X U

FIGURE 3.8-1 Conformal mapping

The Jacobian J introduced earlier plays an important role in the theory of transformations. Here, we
briefly review the case of two variables. Further discussions are given in Chapter 4. Let Uj and u2

be two differentiable functions of two variables xj and x2. The Jacobian J is defined as
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3xj 3x2
3(u, u2)

J = d(x x = (3.8-8a,b)
d(x1?x2j

du2 du2

3xj 3x2

J is also known as the functional determinant.

For the inverse function to exist, that is to say, for the possibility to write

u: = U! (x!,x2), u2 = u2(x1 (x2) (3.8-9a,b)

we require that the Jacobian to be non-zero.

The points at which J is zero are singular points.

By differentiating Equations (3.8-9a, b) partially with respect to Xj and x2, and solving for the
dx-

partial derivatives v-1 , we obtain
aU j

dxl _ 1 9u2 9xl _ 1 9ul n o 1 O a M

dUj J dx2 du2 J dx2

pl = .Lpl, pi = L*± (3.8-10cd)
duj J dxj du2 J dxj

We can also write 1/J as

3xj 3x1

3uj 5u2

y = (3.8-11)

3x2 3x2

dUj 9u2

If the Jacobian vanishes, uj and u2 are not independent. That is to say, there exists a relationship
between uj and u2 and

f( U l ,u 2 ) = 0 (3.8-12)

In Equation (3.8-12), Xj and x2 do not occur explicitly. This is analogous to the case in linear
algebra where two vectors a (a1? a2) and b (bj, b2) are linearly dependent if the determinant
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a l ^2
= 0 (3.8-13)

b l b 2

If Xi and x2 are also functions of yj and y2, we have

a ( U l , U 2) = 5 K U 2 ) a ( x l , x 2 ) 8 j

d(yi>Y2) 3(X1'X2) ^(yi'Y2)

If a closed region R in the (xl5 x2) plane is mapped into a closed region R' in the (uj, u2) plane, the
double integral of any function (j) over R is given by

I I (J)(x1,x2)dx1dx2 = I I ^[xj fuj ,^) , x2(u!,u2)] | J | duj du2 (3.8-15)

R R-

If <]) is unity, we obtain the area of the closed region. The Jacobian J gives the magnification of the
area due to the transformation.

We now consider some transformations in the complex plane.

Linear Transformation

Consider the transformation

w = Az + B (3.8-16)

where A and B are complex constants.

If we take A to be unity, Equation (3.8-16) becomes

u + i v = (x + i y) + (Bj + i B2) (3.8-17)

where B is written as B j + i B 2 , B^ and B2 are real constants.

Separating Equation (3.8-17) into its real and imaginary parts, we obtain

(u,v) = (x + B1,y + B2) (3.8-18)

Equation (3.8-18) shows that a point (u, v) in the w-plane is mapped to a point (x + Bj, y + B2) in the
z-plane. This corresponds to a displacement of (x, y) by (Bj, B2) as shown in Figure 3.8-2.
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V I v "
w ' z

8 - 8 -

2 - i. ~

1 1 1 1 » • I I I I I ^
0 2 4 6 8 0 2 4 6 8

FIGURE 3.8-2 Translation

If we take B to be zero and we write w, A and z in their polar form as

w = pe'*, A = ae i a , z = r e i e (3.8-19a,b,c)

Equation (3.8-16) becomes

pe j * = are**0""9* (3.8-20)

We deduce

p = ar, <|> = a + 9 (3.8-21a,b)

Equation (3.8-21a) represents a contraction (a < 1) or an expansion (a > 1) of the radius vector r by
the factor a. Equation (3.8-21b) is a rotation through an angle a. This transformation is illustrated in
Figure 3.8-3. Combining these two cases, we deduce that the linear transformation given by Equation
(3.8-16) represents a displacement, a magnification, and a rotation. The shape of all the figures is
preserved.
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y 4 v>
z w

k:—1 ». It—1—1 ».
0 X O U

FIGURE 3.8-3 Rotation and magnification

Example 3.8-1. A rectangular region R in the z-plane is bounded by

x = 0 , x = l , y = 0 , y = 2 (3.8-22a-d)

Determine the region R' of the w-plane into which R is mapped under the transformation

w = (l + i)z + ( l - 2 i ) (3.8-23)

Equation (3.8-23) can be written as

u + i v = (1 + i) (x + i y) + (1 - 2i) (3.8-24a)

= (x - y + 1) + i (x + y - 2) (3.8-24b)

It follows that

u = x - y + l , v = x + y - 2 (3.8-25a,b)

From Equation (3.8-25a, b), we find that the points (0, 0), (1, 0), (1, 2) and (0, 2) in the z-plane are
mapped into (1 , -2) , (2, - 1), (0, 1) and (-1,0) respectively in the w-plane. The lines

y = 0, x = l , y = 2, x = 0 (3.8-26a-d)

in the z-plane are mapped into
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u - v = 3, u + v = l , u - v = - l , u + v = - l (3.8-27a-d)

respectively in the w-plane.

The rectangle R in the z-plane is mapped into rectangle R' in the w-plane, as shown in Figure 3.8-4.
We note that all the points in the z-plane are displaced by (1, - 2) in the w-plane, the distance between
two points has been magnified by the factor V2" and all the lines have undergone a rotation of n/4.

v i *

B'

c .B y \

c1/ \ ^

R \ ^ R1 >v

0 A X Nv /

VY/4
o1

FIGURE 3.8-4 Mapping of a rectangle in the z-plane
to another rectangle in the w-plane

The transformation can also be deduced by comparing Equations (3.8-16, 23). We identify A and B
to be

A = (1+i) = n ei7tM (3.8-28a,b)

B = ( l - 2 i ) (3.8-28c)

The transformation is as described earlier.

Reciprocal Transformation

Consider the transformation

w = 1 (3.8-29)
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Writing z in its polar form, Equation (3.8-29) becomes

w = 1- e"i e (3.8-30)

From Equation (3.8-30), we deduce that the reciprocal transformation consists of an inversion
with respect to the unit circle and a reflection about the real axis. This is illustrated in Figure 3.8-5.
The process of inversion was introduced in Example 3.5-7. We recall that if z0 is a point in the
complex plane, its inverse point Zj, with respect to the unit circle, is given by

z, = J - = ± e i e (3.8-31a,b)
zo r

y

z,

/ 1%/ \

I Xe \
r ^7 1 r

z.

FIGURE 3.8-5 Reciprocal transformation

On reflecting about the real axis, z\ is transformed to w.

We note that, in this case, the inverse mapping is also a reciprocal transformation. That is to say, from

Equation (3.8-29), we obtain

z = -1 (3.8-32)

On applying the transformation twice in succession, we obtain the identity transformation. The
reciprocal transformation maps circles or straight lines into straight lines and circles. The equation
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a (x2+ y2) + bxx + b2y + c = 0 (3.8-33)

represents a circle if a is non-zero and a straight line if a is zero.

Equation (3.8-33) can also be written as

azz + bz + bz + c = 0 (3.8-34)

where a and c are real constants and b is a complex constant.

If a is zero, we have a straight line; if a is non-zero and c is zero, we have a circle passing through
the origin.

Substituting Equation (3.8-29) into Equation (3.8-34), we obtain

cww + b w + bw + a = 0 (3.8-35)

From Equations (3.8-34, 35), we deduce the following

(i) the straight line not passing through the origin in the z-plane (a = 0, c ± 0) is mapped into a
circle passing through the origin in the w-plane;

(ii) the circle passing through the origin in the z-plane (a ^ 0, c = 0) is mapped into a straight line
not passing through the origin in the w-plane;

(iii) the straight line passing through the origin in the z-plane (a = c = 0) is mapped into a straight
line passing through the origin in the w-plane;

(iv) the circle not passing through the origin in the z-plane (a ^ 0, c * 0) is mapped into a circle not
passing through the origin in the w-plane.

Note that the unit circle, center at the origin in the z-plane, is mapped into a unit circle, center at the
origin in the w-plane. But the points inside the circle in the z-plane are mapped to points outside the
circle in the w-plane.

Bilinear Transformation

The bilinear (Mobius) transformation is given by

w = ^ ± 4 (3.8-36)
cz + d

where a, b, c, d are complex constants and (ad - be) is non-zero.

Equation (3.8-36) can be written as
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w = a + i ^ M (3.8-37a)
c c(cz + d) v '

= | + ( ^ M Z * (3.8_37b)

z* = - 1 - (3.8-37C)
w*

w* = cz + d (3.8-37d)

The bilinear transformation is a combination of a translation, a rotation, a magnification, and an
inversion. If c is zero, Equation (3.8-36) reduces to Equation (3.8-16).

Simplifying Equation (3.8-36) yields

czw + d w - a z - b = 0 (3.8-38)

Equation (3.8-38) is bilinear in z and w (linear in both z andw).

From Equation (3.8-38), we can obtain the inverse transformation

z = + ^ ^ (3.8-39)
cw - a

which is again a bilinear transformation.

Let zj , Z2, Z3 and Z4 be any four points in the z-plane and wj, W2, W3 and W4 be the

corresponding points in the w-plane. Using Equation (3.8-36), we have

az_ + b az_+ b ,„ „ arK x

w.-w_ = —E—- s — j (3.8-40a)
1 s czr + d czs + d

= ( a d - b c ) ( Z r - Z ) b )

(czr + d) (czs + d)

From Equation (3.8-40b), it follows that

K ~ w 4) (W3 ~ W2) = (z i -z 4 ) ( z 3 - z 2 ) (3 8-41)
(wj - w2) (w3 - w4) (zj - z2) (z3 - z4)

The ratio in Equation (3.8-41) is the cross ratio of the four points and the cross ratio is an invariant
under a bilinear transformation. If three points (zj, z2, Z3) in the z-plane are known to map to three
points in the w-plane, we obtain via Equation (3.8-41) a unique relationship between w (= W4) and
z (=z4).
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Example 3.8-2. Determine the bilinear transformation that maps the points (1 + i, - i, 2 - i) in the
z-plane into (0, 1, i) in the w-plane.

From Equation (3.8-41), we obtain

hzHln!) _ (i + i-z)(2)
( - l ) ( i - w ) ( l + 2 i ) ( 2 - i - z ) ( ' - * 4 2 J

On simplifying Equation (3.8-42), we obtain

2 ( l - i + iz)
( 5 - 3 i ) - z ( l + i ) P-84JJ

Example 3.8-3. Find the bilinear transformation that maps the upper half plane Im (z) > 0 into the
unit circle I w I < 1.

From Equation (3.8-36), we deduce

(i) the point z = - b/a corresponds to w = 0;

(ii) the point z = - d/c corresponds to w = °o.

We denote - b/a by z0 and - d/c by z0, with the condition that Im (zQ) is positive. The point zQ

is then mapped to the origin which is inside the unit circle, and the lower plane (z0) is mapped into
the outside of the unit circle. The bilinear transformation can be written as

(z - zn)
w = a )—=&• (3.8-44)

(z~zo)
The origin in the z-plane is mapped into a point on the unit circle in the w-plane. Using Equation
(3.8-44), we have

Iwl = loci = 1 (3.8-45a,b)

Combining Equations (3.8-44, 45a, b), we obtain

e i e ( z -z n )
w = . v _ ,0> (3.8-46)

( z - z 0 )

The real axis of the z-plane is mapped into

w = e ' 6 (X I ^ (3.8-47)
(x - z0)
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From Equation (3.8-47), we obtain

_ e i e (x -z 0 ) e~ i e (x-z0) 1

Thus the real axis of the z-plane is mapped into the unit circle in the w-plane. It has already been
shown that a point on the upper z-plane is mapped into a point inside the unit circle in the w-plane.
Equation (3.8-46) is the required transformation.

Schwarz-Christoffel Transformation

Suppose we have a polygon with interior angles o^, (X2 ... and we wish to map its boundary into the
real axis (v = 0) of the w-plane. The Schwarz-Christoffel transformation is the required
transformation and is given by

iw- = K(w-a 1 ) 1 - a i / 7 t (w-a 2 ) 1 - c t 2 / 7 C ... (3.8-49)

where K is a constant and a1; a2 are the real values of w (= u) corresponding to the vertices of the
polygon.

If one vertex of the polygon is at infinity, its interior angle is zero and we may take the corresponding
point a in the w-plane to be infinity. The factor (w - a^) in Equation (3.8-49) may be considered to

be a constant which can be absorbed in K.

Example 3.8-4. An ideal fluid is bounded by a semi-infinite rectangle given by

x > 0 , l > y > 0 (3.8-50)

The motion of the ideal fluid is due to a source of strength m at -. Determine the complex

potential <&, which would allow the determination of the velocity and of the streamlines, as shown in
Example 3.3-6.

The semi-rectangular channel ABCD is shown in Figure 3.8-6. We map the vertices A, B, C, and
D to the points (- °o, 0), (-1, 0), (1,0), and (<*>, 0) respectively in the w-plane. In this example,
Equation (3.8-49) becomes

&£- = K ( w + l ) 1 / 2 ( w - l ) 1 / 2 (3.8-51)

(3.8-48)
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B A g.

S A' B1 c' D'
• » I » ^

0 u

C D X

FIGURE 3.8-6 Mapping a rectangle into the upper half plane

Integrating Equation (3.8-51), we have

z = - H ; d w (3.8-52a)

K J v ^ n
= -1- cosh"1 w + K, (3.8-52b)

K

where Kj is a constant.

Inverting Equation (3.8-52b) yields

w = cosh(Kz-KK!) (3.8-53)

The mapping of the point B (=i) to B' (=-1) and C (=0) toC' (=1) implies

- 1 = cosh(iK-KK!) (3.8-54a)

1 = cosh(-KK!) (3.8-54b)

From Equations (3.8-54a, b), we obtain

Ki=0 , K = TC (3.8-55a,b)
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Substituting Equations (3.8-55a, b) into Equation (3.8-53), we have

w = cosh (TCZ) (3.8-56)

The source in the z-plane at ^——- is mapped into a source at

w = cosh[|-(l +i)l (3.8-57a)

= cosh^ c o s h ^ + sinh^ s i n h ^ (3.8-57b)

= i s i n h | (3.8-57c)

The source at S = ^ ' in the z-plane is mapped into a source at S' = i sinh & in the w-plane,

as shown in Figure 3.8-6.

The complex potential <E> due to a source of strength m at i sinh ~ and a wall along the real axis is

[Milne-Thomson, 1965, p. 210]

0> = - m i n [w - i s inh2 . ) -min |w + i sinh%\ (3.8-58a)

= -m i n (w2 + sinh21) ' (3.8-58b)

= -m i n (cosh2rcz + sinh2 £•) (3.8-58c)

Joukowski Transformation

The Joukowski transformation plays an important role in aerodynamics. It transforms an aerofoil
into a circle. The transformation can be written as

w = z+ 1 (3.8-59)

The singular points of the transformation are the points at which ^- is zero. From Equation

(3.8-59), we find that the singular points are

z = ± l (3.8-60)

Consider a circle of radius a with center at the origin in the z-plane. In the w-plane, we have

w = a e i 9 + — (3.8-61)
a.
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Separating Equation (3.8-61) into its real and imaginary parts, we obtain

u = ' a + 1 ' cos9, v = l l J l i l sine (3.8-62a,b)
a a

Eliminating B from Equations (3.8-62a, b) yields

j ^ r + j ^ = 1 (3.8-63)
( a 2 + l ) ( a 2 - l )

A circle in the z-plane is mapped into an ellipse in the w-plane, as long as the radius of the circle is not
one, which is equivalent to saying that the circle does not pass through the singular points. If the
radius of the circle is one (a = 1), Equations (3.8-62a, b) become

u = 2cos6, v = 0 (3.8-64a,b)

The circle passing through both singular points in the z-plane is mapped into a segment of the real axis
in the w-plane, as shown in Figure 3.8-7. A circle passing through one singular point and enclosing
the other singular point in the z-plane is mapped into an aerofoil in the w-plane.

rTT 71 "x -2 2 *u

FIGURE 3.8-7 Mapping of a unit circle into a segment of the real line

Example 3.8-5. Discuss the transformation of the circles Cj, C2, and C3 in the z-plane into the
w-plane under the Joukowski transformation [Equation (3.8-59)]. The center of Cj and C3 is at the
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origin and their radii are one and two respectively. The center of Ci is on the real axis at (112, 0) and

its radius is 3/2.

The circles C\, C2, and C3 are shown in Figure 3.8-8. The circle C2 passes through one singular
point (z = -1) and encloses the other singular point (z = 1). It also intersects C^ at the singular point
A and C3 at the point B [=(2,0)].

y i v i.

FIGURE 3.8-8 Mapping of the circles Cj, C2, and C3 from the z-plane
to the w-plane

The unit circle Cj is mapped into Fj , a segment of the real axis in the w-plane [Equation (3.8-

64a, b)] and can be written as

-2 < u < 2, v = 0 (3.8-65a,b)

The circle C3 is mapped into F3, an ellipse [Equation (3.8-63)] and, in this example, can be written

as

u2 v2 1

h + V = 1 (38-66)
The equation for C2 is given by

z = \ + | e i e (3.8-67)
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Substituting Equation (3.8-67) into Equation (3.8-59) yields

1 I7i o a\ T • ft I 2 [ ( l + 3 cose)-3i sine]
w = J- [(1 +3cosej + 3isinej + —^ '- (3.8-68)

2 10+ 6 cos6

Separating w into its real and imaginary parts, we obtain
u = (l + 3 cose) ( 1 + 1 ) (3.8-69a)

V2 5 + 3cose/

v = 3 sine (1 1 ) (3.8-69b)
\ 2 5 + 3 cos6/

The circle C2 in the z-plane is transformed into an aerofoil F 2 in the w-plane. From Equations
(3.8-69a, b), it is seen that F2 is symmetrical about the real axis.

The points A and B in the z-plane are mapped into the points A1 and B' in the w-plane. The
mapping of the three circles from the z-plane to the w-plane is shown in Figure 3.8-8.

•

In Table 3.8-1, we list some useful transformations which map a domain in the z-plane conformally to
a domain in the w-plane. A more extensive table is given in Kober (1952).

TABLE 3.8-1

Some useful transformations

z-plane w-plane Transformation

j 2
Upper half plane y > 0 unit circle I w I < 1 w =

i + z

1 + i e i zInfinite strip of finite width unit circle I w I < 1 w = —
_ o o < y <oo, 0<X<TC l - i e 1 Z

Region outside the ellipse unit circle I w I < 1 z _ 1 [/a _ ^\ w + (a + b)j

* i + y— = 1 2
a2 b2

Sector I z I < 1, 0 < Q < J uPPer half plane v > 0 w = ^~A

Strip 0 < y < n upper half plane v > 0 w = e z
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In Section 3.3, we have mentioned the importance of Laplace's equation and have shown that an
analytic solution is a solution of Laplace's equation. In all physical problems, the solution has to
satisfy certain boundary conditions. If the geometry of the region of interest is complicated, the
problem of imposing the boundary conditions can be demanding. By using a conformal
transformation, we can map the complicated region into a simpler region, such as the unit circle. Let
<|) be a harmonic function satisfying conditions at the boundary, such as

dd>
(j) = <|>0 or -p- = 0 (3.8-7Oa,b)

dn

d<b
where §0 is a real constant and — is the derivative of § with respect to the normal to the boundary

curve.

Using a conformal transformation to the w-plane, the transformed function K (u, v) {= § [x (u, v),
y (u, v)]} is also harmonic satisfying the same boundary conditions [Equations (3.8-70a, b)] at the
transformed boundary. If we need to solve Laplace's equation subject to a boundary condition in a
complicated domain D, we can transform the domain to a simpler one D1 and solve the problem in
D'. We can then invert back to D. The main problem is to determine the suitable transformation from
D to D'. Riemann has shown that, for any simply connected domain which is not the whole complex
plane, there exists a transformation that can map it into a unit disk (I z I < 1). Unfortunately it is not
shown how the transformation can be obtained.

We have applied this technique in Example 3.8-4. In Example 3.5-7, we have shown that if the value
of a harmonic function is given on a circle of radius R, its value at any other point is known. In
theory, the solution of Laplace's equation is known for any domain, since we can map the domain into
a unit circle.

PROBLEMS

la. Write z = 4Y2 + 4 V 2 i in polar form. Determine all three values of z1/3 and plot them in
the Argand diagram.

2a. The complex viscosity T] of a linear viscoelastic liquid is given by

TI* = I f(s)e-i (Osds
Jo

where f, CO, and s are real.
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If we write

n* = Ti'-iri"

f(s) = Ke~s/X

where K and X are constants, calculate r|' and r|". The quantities r\ and r\" are the

dynamic viscosity and dynamic rigidity respectively.

Answer: ^ K ^ (oKX2

l+X2(a2 l+X2®2

3b. Determine and plot the curve given by

z - 1

4a. Discuss the continuity and differentiability of the following functions

(i) f(z) = z2 (iii) f(z) = z2 + |

(ii) f(z) = 1 (iv) f ( z ) = | z |

5a. Starting form the definition of f'(z0) given by Equation (3.3-26), use the Cauchy-Riemann

conditions to obtain two other expressions for f'(z0), one in terms of u only and the other in

terms of v only.

6b. Show that the equation

u(x, y) = inVx2 + y2

is a harmonic function.

Obtain the harmonic conjugate v (x, y) and the function f (z). If f (z) is the complex
potential O, identify the potential <j) and the stream function \|/. The stream lines are given
by \}/ = constant, what are the stream lines in this case? Do they represent the flow due to a
source at the origin?

Answer: arctan (y / x)

7b. If f (z) is an analytic function, show that

—7 + —r If (z) I = 4 f (z)

3xz dyz
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8a. Determine the real and imaginary parts of

f(z) = ^
Li

Are the Cauchy-Riemann conditions satisfied? Compute f'(z). Is the origin a singular point?

9a. If f ( z , z ) is an analytic function, show that -"4 = 0.
dz

10a. Calculate lim s i n z along the real and imaginary axes.
z->0 z

l i b . Evaluate I zdz along the semi-circles Cj and C2.

Cj is the upper semi-circle of unit radius, centered at the origin traversed in the clockwise
direction from ( -1 , 0) to (1, 0) and C2 is the image of Cj about the real axis. This is
shown in Figure 3.P-llb.

If C is the closed curve (Cj - C2), what is the value of I z dz ? Is the integral zero? If not,

c
what condition(s) in the Cauchy's theorem is (are) not satisfied?

y "

- I t x

FIGURE 3.P-llb Integration around semi-circles
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12a. Evaluate the integral I —sin z AZ ^ where C is a simple closed curve for the following
1 (z-z0)2
C

cases

(i) z0 is not enclosed by C Answer: 0

(ii) z0 is enclosed by C Answer: 27iicosz0

13b. The circulation T round a closed curve C in a two-dimensional flow is given by

r = Re I ^ dz
I dz

C

where O is the complex potential.

If C is the unit circle with center at the origin, for which of the following <E> is T zero?

(i) O = z

(ii) O = i log z

(iii) * = ^

If F is not zero, evaluate T.

What is the value of T if the radius of C is changed from 1 to 3/2 ?

14a. Evaluate the integral

I (cos2z + 2cosh4z)

1 l z
C

where C is any simple closed curve that encloses the origin.
Answer: \62ni

15b. Show that the expansion of —̂ — about the origin is

- J— = l + z + . . .+z n + ... , | z | < l
1 - z



Expand the same function about the point (0, 1/2). Note that this point lies inside the circle of
convergence and is not on the line joining the origin to the singular point. Determine the radius
of convergence of the new series.

Sketch the circles of convergence of the two series. Do they coincide? If not, are there points
at which the series about the point (0, 1/2) is convergent while the series about the origin is
not convergent? This process of extending the region of convergence is called the analytic
continuation of the function.

16a. Find the Taylor series of sin z about the point Z = K/2.

e2z
17a. Obtain the Laurent series of about the point z = 1. What is its radius of

( z - 1 ) 3

convergence?

18a. Find the Laurent series of
( z - l ) ( z - 3 )

(i) in powers of z,

(ii) in powers of (z -1) .

19a. Expand Ln ( z \ for | z | > 1.

20a. Locate the poles of the following functions and specify their order

rs z ( z - 2 ) ,... ez

( z + i r ( z 2 + 4) coszz

21a. Locate the singularities of the following functions and discuss their nature

(i) e1 / z (iii) zsin(l/z)

(ii) e z / z 3 (iv) (cos z)/(z-7c)2

22a. The function cosec (1 /z) has singularities at the origin and at points on the real axis given by
z = 1 /nn . Is the origin an isolated singular point?

23b. To describe the behavior of a function f(z) at infinity, we make the transformation £ = l / z
and the point at infinity in the z-plane is mapped to the origin in the ^-plane. Discuss the
behavior of the following functions at infinity

(i) ez (iii) zsin(l/z)

(ii) z 1 / 2 (iv) z / [ ( z - l ) ( z - 3 ) ]
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24a. Find the residues at the poles of the following functions

(i) l / ( l - z ) (iv) e z / s inz

(ii) l / ( l - z 2 ) (v) c o s z / z 3

(iii) cos z / sin z (vi) 1 / [z2 ( z -1 ) (z-2) ]

Answer: (i) - 1 (iv) 1
(ii) - 1 / 2 , - 1 / 2 (v) - 1 / 2
(iii) 1 (vi) 3/4, - 1 , 1/4

25a. Evaluate the following integrals by means of the Cauchy residue theorem

(i) I z dz , C is the unit circle centered at the origin Answer: in;/2
I (Zz — 1)

c

(ii) I — — d z , C is the circle | z | = 2 Answer: - 3 5 i n / 6
J z(z-l)2(z-3)
c

(iii) I - dz , C is any closed contour in the upper plane Answer: 0
) l - 2 e " i z

c

26b. The complex potential <J> of a two-dimensional motion of a fluid is given by

<E> = Voo (z + a2/z) + i k i n (z/a)

where v^, k, and a are constants (real).

Determine the velocity components and show that there are two stagnation points (v = 0 ) on
C, the circle of radius a centered at the origin if v^ > k/(2a). Verify that the stream
function is zero on C. Calculate the components Fx and Fy of the force acting on C.

Answer: 0 , 2 n p v^ k

27a. Show, by the method of contour integration, that

(i) d9 = j ^
Jo 3 - cos 0 Vz
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(ii) sm29d9 = 7 I ( 4 _ 2 ^ " )
Jo 2 - cos 6

(iii) I c o s 3 e d e = ^ ( i - p + p 2 ) ^ Q < p < 1

Jo l - 2 p c o s 9 + p 2 1 - P

28a. Evaluate, using a semi-circle in the upper half-plane, the following integrals

a) r ^ x (ii) r—x^dx— (iii) r x2dx
J — l + x 4 J_co (x2 + 4) (x2 + 9) J-ooCl+x2)2

Answer: ( i)7cVT72, (ii) n/5 , (iii) n/2

29b. Show that

I dx _ 2n

J_oo ax2 + bx + c V74ac-b2)

For what values of a, b, and c is the result valid?

What modifications need to be made to the contour if the conditions on a, b, and c are not
satisfied?

30a. Use Jordan's lemma to calculate

f eictxdx
J_oc (x2 + a2)

Deduce

f OO A OO

fi) ( cos ax dx /jj\ I sin a dx
I 22 1 2 2
y-oo x +a y_oo x +a

Answer: (i) ne~aa/a, (ii) 0





CHAPTER 4

VECTOR AND TENSOR ANALYSIS

4.1 INTRODUCTION

In this chapter, we will be dealing mainly with vectors and second order tensors. A vector is defined
as a quantity that has both magnitude and direction. In a three-dimensional space, it is described by
three numbers (components). For example, velocity is a vector and, when referred to rectangular
Cartesian axes, it is specified by its three components (vx, vy, vz). A vector is also defined as a
tensor of order one. A scalar has only magnitude and is completely characterized by one number.
It is a tensor of order zero and temperature is an example of a scalar. A second order tensor, in
a three-dimensional space, is represented by nine numbers (components). The extra stress tensor in
fluid mechanics is an example of a second order tensor and can be denoted by T,,V, xv,,, t v , , x,,v,

A.A. ^ y Aj£ J

x,,,,, x,,7, T_Y, T__,, and % „ . . Third and fourth order tensors will also be introduced.

4.2 VECTORS

In this section, we briefly review some of the known and useful results of vector algebra and of vector
calculus. In Table 4.2-1, v, a and q are vectors, Cj and c2 are scalars and cp and \)/ are
differentiable scalar functions of position x, y, z, or time t. i, j and k are unit vectors along the x,
y, z axes respectively.

TABLE 4.2-1

Results of vector analysis

a + v = v + a (4.2-1)

v + (a + q) = (v + a) + q (4.2-2)

c 1 v = vc 1 (4.2-3)

(Cj + c2) Y = c1 v + c2v (4.2-4)

a«v = v«a (dot or scalar product) (4.2-5)

a • v = | a | | v | cos 0 (0 is the angle between a and v) (4.2-6)
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Y # ( a + q ) = v » a + y » q ( 4 . 2 - 7 )

Cj (v • a) = (cj v) • a = v • (Cj a) (4.2-8a,b)

a x v = - v x a (cross or vector product) (4.2-9)

a x v = | a | | v | (sin 0) n, n is a unit vector orthogonal to v and a (4.2-10)

i j k

a x v = ax ay az (4.2-11)

V V V
x y z

v x ( a + q) = v x a + v x q (4.2-12)

Cj (vxa) = (cj v)xa = vx(cja) (4.2-13a,b)

Y ' ( a x q ) = a » ( q x v ) = q « ( v x a ) (4.2-14a,b)

V V V
x y z

Y«(axq)= ax ay az (4.2-15)

q x q y q z

i f e + a ) = f + | (4.2-16)

i (v .a ) = v . | + | . a (4.2-17)

A(vxil = vx|t|xa (4.2-18)

A ( r i x q ) = v - a x ^ + v 4 x q + ̂ - a x q (4.2-20)
dt - dt dt - dt -

i [vx(axq) ] = v x ( a x 4 ) + v x ( | xq ) + | x ( a x q ) (4.2-21)

V = i A + j | _ + j 3 (4.2-22)
dx - oy dz

Vcp = i ^ - + j§2- + k ^ - =grad(p (4.2-23a,b)
dx - dy dz

(4.2-19)
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dvx dv dv7

dx dy dz
(4.2-24a,b)

= divergence v or (div v)

i j k

v _ d d d
~X-~ 37 37 d7 (4.2-25a,b)

v x vy v z

= curlv or (rotv)

V(cp + \|/) = V(p + V\|/ (4.2-26)

Y«(v + a) = V-v + V . a (4.2-27)

Yx(v + a) = Y x v + Y x a (4.2-28)

Y x (v x a) = (a • Y) v - a (Y • v) - (v • Y) a + v (Y • a) (4.2-29)

Y • (Y 9 ) = V2cp = ^ > + ^ + ^ (4.2-30a,b)
dx2 dy2 dz2

7)2 ?2 rl2

V2 = — + i i _ + -2_ is the Laplacian operator (4.2-31)
ax2 dy2 az2

Example 4.2-1. Show that Y*v ^ v«Y

Y • v is a scalar quantity and is given by

dv dvw 3v
V . Y = ^ - + - ^ - + ^ (4.2-32)

dx dy dz

On the other hand v • Y is a scalar operator and is given by

Y-Y = v x ~ + v v ^ - + v z | - (4.2-33)
x 3x y dy z dz

Thus Y • v t- v • Y.

Example 4.2-2. If r = (x, y, z) = i x + j_ y + k z, r = I r I and © is a constant vector, show that
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0) Y(p(r) = l ^ - r (4.2-34)

(ii) V.(©xr) = O (4.2-35)

(iii) Vx(fflxr) = 2ro (4.2-36)

(i) Ycp(r) = i ^ + j | P + k |P (4.2-37a)
ax -ay dz

| , | ( l 2 + y 2 + l J r ( 4 , . 3 8 a )

= ( x2 + y2 + z2 ) x (4.2-38b)

= j (4.2-38c)

We have similar expressions for ^ - and =- and, on substituting these expressions into

Equation (4.2-37b), we obtain

Ycp(r) = ̂  (fi + j l + Yk) (4.2-39a)

= T ^ I (4.2-39b)

(ii) Y • (co x r) = ^ - (zcoy - yooz) + ̂ - (xcoz - zcô ) + ̂ - (ycox - xcoy) (4.2-40a)

= 0 (4.2-40b)

(iii) From Equation (4.2-29), we have

Yx(Gjxr) = (r-Y)G3-r(Y.G))-(co.V)r + ra(Y-r) (4.2-41)

The first two terms on the right side of Equation (4.2-41) are zero since ro is a constant.

(co.Y)r = ( c o ^ + o o ^ + c o ^ j r (4.2-42a)

= ( i cox + j^ (Oy + k ODZ) = CQ (4.2-42b,c)

(4.2-37b)
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Y«r = ( i ^ - + j ^ - + k^-)»(xi+yj+zk) (4.2-43a)

\ ox - oy oz } —

= 1 + 1 + 1 (4.2-43b)

= 3 (4.2-43c)

Combining Equations (4.2-41, 42c, 43c) yields

Yx(coxr) = -co+3co (4.2-44a)

= 2Gi (4.2-44b)

4 .3 LINE, SURFACE AND VOLUME INTEGRALS

Line Integral of a Scalar Function

In the definite integral defined by Equation (1.3-2), the integration is along the x-axis. We now
consider the integral of a scalar function (p (x, y, z) along a curve C from the point A to the point
B as illustrated in Figure 4.3-1.

• B

A

FIGURE 4.3-1 Integral along a curve C
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Let the curve C be represented parametrically by

r (s) = x(s) i + y(s)j_ + z(s) k (4.3-1)

where s is the arc length of C and the points A and B correspond to s = a and s = b
respectively. We assume that x (s) is continuous and has continuous first derivatives for all values of
s under consideration. This means that C has a unique tangent at each point and such a curve is
referred to as a smooth curve. We shall consider only smooth curves. The line or curvilinear
integral of (p along the curve C from s = a to s = b is defined as

I = I <p[x(s), y(s), z(s)] ds (4.3-2a)
/a

= [ (p(s) ds (4.3-2b)
JAB

= f ©(s) ds (4.3-2c)
Jc

If the curve C is closed, then A coincides with B and the line integral around a closed curve C is
usually denoted by

I = (f <p(s) ds (4.3-3)

where a modified integral sign is introduced.

Unless otherwise specified, the integral is taken along the positive direction. The positive direction
along a closed curve is the direction such that as we move around the curve, the region enclosed is to
our left.

The properties of ordinary definite integrals are equally valid for line integrals. Thus

f (p(s) ds = - f <p(s) ds (4.3-4a)
Ja Jb

f q)(s) ds = f (D(s) ds + f q)(s) ds (4.3-4b)
JAB JAP JPB

where P is a point on the curve between A and B.

The evaluation of the line integrals is done by writing them as ordinary integrals. The representation of
the curve C by the arc length s is not always simple for integration. It might be more convenient to
use a new parameter t instead of s. Then in Equation (4.3-1), the variable is t and not s. The line
element ds is then given by
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ds = Ydr»dr (4.3-5a)

= Vt7! * (4-3-5b)
• V ( ¥ ) 2 + ( ! ) 2 + ( f ) 2 *

Example 4.3-1. Evaluate the line integral

I = [ <p [x(s), y(s), z(s)] ds (4.3-6)

where (p = x2 + y2, and C is the triangle OAB with O the origin, A the point (1, 0, 0) and B the
point (0, 2, 0) as shown in Figure 4.3-2.

t2

X

FIGURE 4.3-2 Integral of q> around the closed curve C

From Figure 4.3-2, it can be seen that the integral I may be written as

I = f cp ds + f ( p d s + f (pds (4.3-7)
Jok JAB /BO

Along OA, y = z = 0, so

(4.3-5c)
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f <pds = ( x2dx = U - = 1 (4.3-8a,b,c)

JOA JO L 3 Jo 3

The line AB is given by

y = - 2 (x - 1) (4.3-9a)

z = 0 (4.3-9b)

Equations (4.3-9a, b) may be written in parametric form as

x = l - t (4.3-10a)

y = 2t (4.3-10b)

z = 0 (4.3-10c)

where the points A and B correspond to t = 0 and t = 1 respectively.

If s is the arc length of AB, then

(£ ) -V(£ ) 2 + (£ f + (£ ) 2 <4-3-lla)
= V(-l)2 + (2)2 (4.3-1 lb)

= VT (4.3-1 lc)

f (pds = f [ ( l - t ) 2 + 4 t 2 ] ^ dt (4.3-12a)
JAB JO dt

= V ? f [ l-2t + 5t2]dt (4.3-12b)
Jo

— ^ (A T>-\2C\
— y+.j l i t ;

Along BO, x = z = 0, so

f (pds = f y2dy (4.3-13a)
JBO JI

= - | (4.3-13b)
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Combining Equations (4.3-7, 8a, b, c, 12c, 13b), we obtain

I = 3 + 3 ~ ~ 3 (4.3-14a)

5 41> - 1
= 3 (4.3-14b)

Line Integral of a Vector Function

Let v [x (s), y (s), z (s)] be a vector field defined at all points of a smooth curve C and T be the
unit tangent to C. The tangent to C at the point P is by definition the line joining P to a
neighboring point P1 as P' approaches P. Thus X is by definition given by

T = lim E ( S + A S ) - £ ( S ) (4.3-15a)
As->0 As

= ^ (4.3-15b)

ds

If C is defined in terms of t instead of s, then

di /
I = dt/ dr (4.3-16)

/ "dT
The scalar line integral of v along C is then defined as

I = f Y ' T d s (4.3-17a)
Jc

= f Y»dr (4.3-17b)
Jc

where dr = T d s .

If v is a velocity and C is a closed curve then I, in fluids mechanics, is known as the circulation
around C. If F (=v) is a force, then I represents the work done by F in moving a particle along
C.

Example 4.3-2. Evaluate

I = j Y»dr (4.3-18)
JA
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where v = (2x, 0, 2x + 2y + 2z) = i (2x) + k (2x + 2y + 2z), and along the arc of the circle
x2 + y2 = 1, z = 0 joining A = (1, 0, 0) to B = (0, 1, 0).

The path of integration is shown in Figure 4.3-3. The vector position r of any point on C which is
part of a circle can be given by

l = c o s 0 i + s ine^ + Ok (4.3-19)

B

X

FIGURE 4.3-3 Line integral along curve C

/• B rn/2
I v - d r = | [ 2 c o s 8 i + ( 2 c o s 8 + 2 s i n 8 ) k ] « [ - s i n 8 i + cos8j ] d 8 (4.3-20a)

JA JO

fit/2
= I - 2 cos 0 sin 0 dG (4.3-20b)

Jo

= i-[cos2e][J/2 (4.3-20C)

= -1 (4.3-20d)

Example 4.3-3. Calculate the work done by the force F = (x, - z , 2y) in displacing a particle along
the parabola y = 2x2, z = 2 from the point (0, 0, 2) to (1, 2, 2).
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The path of integration is shown in Figure 4.3-4 with point A = (0, 0, 2) and point B = (1, 2, 2).

AZ

/

) •

y

FIGURE 4.3-4 Line integral along a parabola

The vector position r of any point on the parabola may be written as

r = t i + 2 t 2 2 + 2k (4.3-21)

This has been obtained by choosing x = t. It then follows that y = 2t2 since y = 2x2. Such
parametrization is usually done via educated guessing. The more practice one has, the luckier one
gets.

The point A corresponds to t = 0 and the point B corresponds to t = 1.

f B F - d x = f [ t i - 2 j + 4 t 2 k ] » [ i + 4tj]dt (4.3-22a)
J A J Q -

= f1 [t-8t]dt =-l (4.3-22b,c)
JO 2

The evaluation of vector line integrals, such as
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I = f Y ds (4.3-23a)
Jc

or

I = f vxdr (4.3-23b)
Jc

can be done by integrating each component separately. This is illustrated in the next example.

Example 4.3-4. Evaluate I £ ds and I £ x d£ from the point (a, 0, 0) to the point (a, 0, 2rcb)
Jc Jc

on the circular helix illustrated in Figure 4.3-5, given by

X = (x, y, z) = (a cos t, a sin t, bt) (4.3-24)

(a,o,2TTb)l
( t = 2 7 T ) '

I
I

/ o ( N y

x

FIGURE 4.3-5 Line integral along a helix
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We note that the point (a, 0, 0) corresponds to t = 0 and the point (a, 0, 2Kb) corresponds to t = 2K.
The line element ds is given, via Equation (4.3-5c), by

ds = 7 ( - a sin t)2 + (a cos t)2 + b2 dt (4.3-25a)

= Va2 + b 2 dt (4.3-25b)

f L ds = f [(a cos t) i + (a sin t) j + (bt) k ] Va2 + b2 dt (4.3-26a)
Jc Jo

= Va2 + b2 (a sin t) i - (a cos t) j + ^ - k (4.3-26b)
L — \ 2 ' J 0

= Va2 + b 2 [ 2 K2 b k ] (4.3-26c)

I £ x djr = I [a cos t i + a sin t j + bt k ] x [-a sin t i + a cos tj^ + b k ] dt (4.3-27a)

= I [ab (sin t - 1 cos t) i - ab (t sin t + cos t) j + a2 k J dt (4.3-27b)

r 9 i 2 n

= [ab (-t sin t - 2 cos t) i - ab (-t cos t + 2 sin t) j + az t k J 0 (4.3-27c)

= [2n 3bi + 2K a2 k ] (4.3-27d)

Repeated Integrals

In Equation (1.8-3), we have defined a function I(x) by integrating a function f (x, y) with respect
to y between y = u (x) to y = v (x). If we now integrate I (x) with respect to x between the limits
x = a and x = b, we have

I I ( x ) d x = | I f(x, y)dy dx (4.3-28a)
Ja J a. yJ\x{x)

/•b /-v(x)
= 1 I f (x, y) dy dx (4.3-28b)

Ja Ju(x)

The above integral is an example of a repeated integral and is evaluated by integrating in the order
given in Equation (4.3-28a). If u (x) = c and v (x) = d where c and d are constants, then the order
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of integration is not important. If further f (x, y) is separable and may be written as a product of a
function of x and a function of y, then

f f f(x, y) dy dx = f f <p(x) V|/ (y) dy dx (4.3-29a)
J a J c J a J c

r b l [ f d
(p(x)dx y(y)dy (4.3-29b)

_ J a. J L ; :

Thus in this case the repeated integral becomes the product of two single integrals.

In a single integral the integration is taken along a curve. In a double integral the integration is taken

over an area. Thus, in Equation (4.3-28b), the area A over which the integration is to be performed

is the area bounded by the curves y = u(x) , y = v(x) , x = a and x = b. Thus an alternative notation

is

/•b i-v(x) re
f(x,y)dydx= f(x,y)dydx (4.3-30)

J a Ju(x) JJ
A

If f (x, y) = 1, then the double integral in Equation (4.3-30) is the area A. If z = f (x, y) then the
double integral is the volume of the cylinder formed by lines parallel to the z-axis and bounded by
z = 0 and z = f. The area of the base of the cylinder is A.

We can extend the process of double integration to triple or higher integration. Thus a triple integral
can be defined as

* rh fv(x) / /•q(x.y) \
I = I I f(x, y, z) dz J dy dx (4.3-31)

Ja. [yu(x) (./p(x,y) )

In Equation (4.3-31), we integrate f(x, y, z) with respect to z between the limits z = p(x, y) to
z = q (x, y) resulting in a function of x and y, say g (x, y). The triple integral is thus reduced to
a double integral and can be evaluated as shown before.

Example 4.3-5. A thin plate is bounded by the parabola y = 2x - x2 and y = 0. Determine its
mass if the density at any point (x, y) is 1/(1 + x).

The equation of the parabola may be written as

y = 1 - x2 + 2x - 1 (4.3-32a)

= l - ( x - l ) 2 (4.3-32b)
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The parabola intersects y = 0 at

x = 0 (4.3-33a)

x = 2 (4.3-33b)

The shape of the plate is shown in Figure 4.3-6. The mass M of the plate of unit thickness is given

by

f2 f2x-x2 1

M = I I - J— dy dx (4.3-34)
Jo [Jy=O 1 +x J

Note that the double integral results from the fact that we consider a plate of unit thickness.

y=2x-x2

y ŷ o \(2,o) **

FIGURE 4.3-6 Shape of the flat plate. The integral with respect to y
is indicated by the arrow

In Equation (4.3-34), we integrate with respect to y first from y = 0 to y = 2x - x2 as can be seen
from Figure 4.3-6. Then we integrate with respect to x from x = 0 to x = 2. Since the density is
independent of y, we obtain on integrating with respect to y

M = r 2 r ^ q 2 x - x 2 d x (4.3.35a)
JO L 1 + x J o
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= f2^x)dx (4.3-35b)
JO (1+x) v }

= ( f -x + - 2 x - l dx (4.3-35c)
7o L l + x J v

r 2 i 2

= [ - y + 3x-3in(l+x)j (4.3-35d)

= 4 - 3 in 3 (4.3-35e)

Example 4.3-6. Find the area bounded by the curves y = x2, y = 0, x = 0 and x = 1.

Figure 4.3-7 illustrates the area. If we integrate with respect to y first, then the area A is given by

A =J J dy dx (4.3-36a)

^ O ^ M T J O ^ (4-3-36b,c,d)

/ \

/ _ j

^—L{ •.

FIGURE 4.3-7 Sketch of the area
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We can interchange the order of integration, then A is given by

A = / o 1 [ / ^ d T y (43"3?a)

/ • I

= 1 ( l - V y ) d y (4.3-37b)

Jo

= [y - | y 3 / 2 ] 0 =\ (4.3-37c,d)

In this example we have seen that it is easier to integrate with respect to y first and then with respect
to x. The limits of integration can be inferred from the diagram. It is always useful to sketch the
region of integration.

•

A change of variables may sometimes make the evaluation of a double integral easier. If u and v are
two new variables such that

x = x (u, v) , y = y (u, v) (4.3-38a,b)

then

jj f(x, y) dx dy = jj f [x(u, v), y(u, v)] IJ I du dv (4.3-39)
A A'

where A is the area of integration in the xy-plane and A' is the corresponding area in the uv-plane.
The Jacobian J is given by

dx dx
3C V) 3u dv

J = g ^ - = _ _ (4.3-40a,b)
d(u, v) 3y_ 3y

3u 3v

Similarly for a triple integral, we have

Iff f(x, y, z) dx dy dz =jj j [f(x(u, v, w), y(u, v, w), z(u, v, w)) I J | du dv dw] (4.3-41)
V V

where V is the region of integration in the xyz-space and V' is the corresponding region in the uvw-
space. The variables u, v, w are defined by
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x = x (u, v, w), y = y (u, v, w), z = z (u, v, w) (4.3-42a,b,c)

TheJacobian J is

dx dx dx
du dv dw

j = | ^ 4 = *L |y |y (4 3.43 b)
d(u, v, w) du dv dw

dz dz dz
du 8v 3w

Example 4.3-7. Evaluate the triple integral, by a suitable change of variables.

/ / / [x2 + y2+z2]dxdydz
V

where V is the region bounded by the ellipsoid

x 2 V2 z 2

^ - + y - + z - = l (4.3-44)

a2 b 2 c2

The ellipsoid given by Equation (4.3-44) can be written in a parametric form as

x = ar sin 0 cos § (4.3-45a)

y = br sin 0 sin § (4.3-45b)

x = cr cos 0 (4.3-45c)

The relations between (x, y, z) and (r, 0, §) are illustrated in Figure 4.3-8.

It can be seen from Figure 4.3-8 that the range of r, 0, (|> is

0 < r < l , O<0<7C, 0 < ( J ) < 2 T I (4.3-46a,b,c)

The Jacobian J is given by

a sin 0 cos § ar cos 0 cos § -ar sin 0 sin §

J = b sin 0 sin § br cos 0 sin (() br sin 0 cos (j) (4.3-47a)

c cos 0 -cr sin 0 0

= a b c r 2 s i n 0 (4.3-47b)
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c

# ^ 1

FIGURE 4.3-8 Relations between (x, y, z) and (r, 9, <j)) for an ellipsoid

i f f [x2+y2+z2]dxdydz
v

71 27C 1

= | I I [r2(a2sin26cos2(|)+b2sin2esin2(()+c2cos2e)abcr2sinedrd(j)de] (4.3-48a)

6=0 (|)=0 r=0

-.1 n 2TI

= abc — I I [a2sin30cos2<|>fb2sin3esin2(l>fc2cos2e sine] d())de (4.3-48b)
5 \0 J ] I J

0=0 <|>=0

it / r n27t r -]2TC

= a b c | |a2sin3e | + i-sin2(j) +b2sin39 ^-Is in2( | )

0 I

+ c2cos20 sinO [ J Q \ d6 (4.3-48c)

= a M j j s i n 3 0 ^2n + b27 t ) + ( c 2 C 0 S 2 e s i n e ) ( 2 j c ) j d e (4.3-48d)

0
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= &&£- | (a2 + b2} [ _ 1 ( c o s e s i n 2 e + 2 CQS e ) l " + 2c21 c o s e I (4.3-48e)
J \ l * J0 L 3 Joj

= 4rcabc ( a2 + h2 + C2} (4.3-48f)

Surfaces

The equation of a surface S may be written as

<p (x, y, z) = constant (4.3-49a)

or

z = f(x, y) (4.3-4%)

or in parametric form as

x = x (u, v), y = y (u, v), z = z (u, v) (4.3-49c,d,e)

Equation (4.3-49c, d, e) defines a mapping (projection) of a region A in the xyz-space into a region
A' in the uv-plane.

Thus the equation of the surface of a sphere of radius a and center at the origin may be written as

x2 + y2 + z2 = a2 (4.3-50a)

z = ± Va2 - x2 - y2 (4.3-50b)

x = a sin 9 cos <|>, y = a sin 0 sin (j), z = a cos 0 (4.3-50c,d,e)

We note that the surface of a sphere of radius a, in the xyz-space is mapped into a rectangle,
0 < 0 < K, 0 < <|> < 2n, in the 0<|)-plane.

Let P be a point with vector position r on a general surface S given by Equations (4.3-49c to e). If
we keep the value of v fixed and let u vary, then P will trace out a curve Cu as shown in Figure
4.3-9. Similarly by fixing the value of u and letting v vary, a curve Cv will be traced out. The

tangent to Cu is given by ~~ (=!„) and the tangent to Cv is — (=I V ) . A unit normal n to

the surface S is a vector which is perpendicular to the tangents to Cu and Cv and is given via

Equation (4.2-10) by

n=f^4 (4.3-5!)
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Z -i

\ >/

oJ^ •

/ y

x r

FIGURE 4.3-9 Curves Cu and Cv on surface S

The curve Cu can also be given by Equation (4.3-1) and since Cu lies on the surface S,

[x(s), y(s), z(s)] satisfy Equation (4.3-49a). On differentiating with respect to s and using the

chain rule we obtain

| c p d x + 3 « p d y + 3 c p d z = 0

dx ds dy ds dz ds

From the definition of grad (p and the tangent to Cu, we find that Equation (4.3-52) can be written as

gradcp«Tu=O (4.3-53)

where T u is the unit tangent to Cu.

Similarly we can deduce that

grad(p»Tv=O (4.3-54)

where T v is the unit tangent to Cv.

From Equations (4.3-53, 54), we deduce that grad cp is perpendicular to both T_u and T v and thus

is a normal to the surface S. That is to say, n is also given by

a = _ g r a d ( L ( 4 3 . 5 5 )

I grad <p |

(4.3-52)
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If r u and r v are interchanged in Equation (4.3-51), the sign of n is reversed. Therefore, we need
to establish a convention to label one side of S to be positive. If S is a closed surface, n is chosen
to be positive if it points outwards.

The surfaces we shall consider are two-sided surfaces. However, there are surfaces which have one
side only. A Mobius strip illustrated in Figure 4.3-10 is an example of a one-sided surface. It is
obtained by twisting a strip of paper once and gluing the ends together. An insect can crawl on that
strip and reach all points on the strip without ever having to cross an edge! Thus the strip has only one
side. In such a case we cannot designate a positive side. If we cut the strip along the centre line, we
obtain one circle.

FIGURE 4.3-10 Mobius strip

A surface is said to be smooth if its unit normal exists and is continuous everywhere on the surface.
The union of a finite number of smooth surfaces forms a simple surface.

Example 4.3-8. Find the unit normal n to the surface of a sphere of radius a, centered at the
origin, using Equations (4.3-51, 55).

The equation of the surface of the sphere is given by Equations (4.3-50c to e)

—̂- = a cos 0 cos §i + a cos 0 sin <|)j - a sin 0 k (4.3-56a)
30
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— = - a sin 9 sin §i + a sin 6 cos (j)j (4.3-56b)

a = f ^ 4 (4.3.57a)

_ (a2sin29 cos <|), a2sin20 sin §, a2sin 0 cos 0)
— — {H.J-J/UJ

a^sin 0

= (sin 0 cos ((), sin 0 sin §, cos 0) (4.3-57c)

= § (4.3-57d)

The equation of the surface of the sphere is also given by Equation (4.3-50a) and cp is given by

(p = x2 + y2 + z2 = a2 = constant (4.3-58)

grad (p = 2x i + 2y j + 2z k (4.3-59a)

= 2r (4.3-59b)

From Equation (4.3-55) we have

n = -p^j- (4.3-60a)

= I (4.3-60b)

since I r I = a.

Surface and Volume Integrals

The surface integral is an extension of the double integral to an integration over a surface S. If
cp (x, y, z) is a scalar function, then the surface integral of cp over S is denoted by

I =J|(p(x,y,z)dS (4.3-61)
s

In Equation (4.3-61), z is not an independent variable, it has to satisfy the equation of the surface.
That is to say, it is given by Equation (4.3-49b). If S is given in parametric form, then the surface
element dS is given by

dS= | r u x r v l d u d v (4.3-62)
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The surface integral I given by Equation (4.3-61) becomes

I = ff cp[x(u, v), y(u, v), z(u, v)] I r ux r v| du dv (4.3-63)
S'

where S' is the region in the uv-plane corresponding to S in the xyz-space.

If v is a vector field, then from Equations (4.3-51, 62), we deduce the following relations

ffv* ndS =J*Jv(u,v)-(ruxrv)dudv (4.3-64)
S S'

[JvdS = rj(vxi + vyĵ  + vzk)dS (4.3-65a)
S S

= ff (vx i + vy j^ + vz k ) I r ux r J du dv (4.3-65b)
S'

ff (p n dS = ff cp(u, v) (rux rv) du dv (4.3-66)
s s1

Example 4.3-9. Evaluate I I v • n dS where v is the vector (4x, y, z) and S is the plane

S
2x + y + 2z = 6 in the positive octant.

The region S over which the integration is carried out is shown in Figure 4.3-1 la. On S

z = 3-x-y/2 (4.3-67)

The original inclined plane in the xyz-space is replaced by its projection in the uv-plane and we write

u = x, y = v (4.3-68a,b)

It follows from Equation (4.3-67) that

z = 3 - u - v / 2 (4.3-68c)

S', the corresponding region of S in the uv-plane, is shown in Figure 4.3-1 lb. The vector position
r of any point on S is

X = u i + vĵ  + ( 3 - u - v/2) k (4.3-69)
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ru = i - k (4.3-70a)

Xv = i - ^ - k (4.3-70b)

l u x i v = i + i-i + k (4.3-70c)

z A v . .

1 2x+y+2z =6 X

A^~~z^^—t '—*-̂  *•
J^S—— u

i o ) (b )

FIGURE 4.3-11 (a) Region S in the xyz-space, (b) Region S' in the uv-plane

Using Equation (4.3-65), we have

j7v«ndS =JY(4u,v,3-u-|)»(l,±-, ljdvdu (4.3-71a)
S S'

3 6-2u

= [ f 3(u+l)dvdu (4.3-7 lb)

u=0 v=0

= 3 ( [uv + v]6"2u du (4.3-7 lc)
JO 0

= 3 f [- 2u2 + 4u + 6] du = 54 (4.3-7ld,e)
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If cp (x, y, z) is a scalar function defined throughout a volume V, then the volume integral of cp
over V is a triple integral of cp and is written as

JJJ Cp(̂ X' Y' ^ d x d y d z = JJJ (P(X' y ' ^ d V (4.3-72)
V V

Some authors use only a single integral sign ( I cp(x, y, z) dV) , instead of three, for the volume

V
integral as written on the right side of Equation (4.3-72).

Evaluation of volume integrals can sometimes be simplified by a transformation of variables. Thus if
we make the transformation from the xyz-space to the uvw-space, then the vector position r of any
point can be written as

r = x (u, v, w) i + y (u, v, w)j + z (u, v, w) k (4.3-73)

The tangent to the Cu curve, the curve generated by allowing u to vary while keeping v and w
fixed, is ru . Similarly, one defines the tangents r_v and r w . Thus the volume element dV is

given by

dV = I (ru x rv) • rw | du dv dw (4.3-74)

The integral given in Equation (4.3-72) becomes

iff cp(x, y, z) dx dy dz =jjj cp[x(u, v, w), y(u, v, w), z(u, v, w)] I (r ux r v) • r wl du dv dw
V V

(4.3-75)

where V' is the volume in uvw-space corresponding to V in xyz-space. Equation (4.3-75) is
identical to Equation (4.3-41).

If v (x, y, z) is a vector function, then the volume integral of v is evaluated by decomposing v into
its components and evaluating each component separately. Thus

fff Y dV = Iff [ i vx + j vy + k vz ] dx dy dz (4.3-76a)
V V

= fff [ i v x + j vy + k v z ] | ( r u x r v ) « r j du dv dw (4.3-76b)
V

Examples of volume integrals are given in the next section.
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4.4 RELATIONS BETWEEN LINE, SURFACE AND VOLUME INTEGRALS

Two important theorems in vector analysis are Gauss' theorem and Stokes' theorem. We shall
state these theorems without proof. They are also known by other names and the origins of these
theorems were summarized by Ericksen (1960).

Gauss' (divergence) Theorem

If a vector field v and its divergence are defined throughout a volume V bounded by a simple closed
surface S, then

(fv'ndS = f ff divvdV = (ft V.y_dV (4.4-la,b)
S V V

where n is the unit outward normal to S.

Example 4.4-1. Verify Gauss' theorem if v = (x, y, z) /r2 and V is the volume enclosed by the
spheres x2 + y2 + z2 = 1 and x2 + y2 + z2 = £2, e < 1.

diw = A / M + A ( M + A / M ( 4 .4_2 a )

3x \r2) dy U 2 ] 3z Ir2 j

1 ?x2 1 2v2 1 ?72 1

rz r4 r z r4 r z r4 r z

We make a change of variables from (x, y, z) to (r, 0, (j)) and these two sets of variables are related by
an equation similar to Equations (4.3-50c to e), which is

x = r sin 0 cos (j), y = r sin 0 sin (|), z = r cos 0 (4.4-3a,b,c)

The tangent vectors are

£r = sin 0 cos § i + sin 0 sin § j + cos 0 k (4,4-4a)

LQ = r cos 0 cos (() i + r cos 0 sin (() j - r sin 0 k (4.4-4b)

XA = - r sin 0 sin (|) i + r sin 0 cos 0 j (4.4-4c)

dV = | (j:r x xe) • r^ | dr d0 d<J) = r2 sin 0 dr d0 d<|) (4.4-5a,b)

The volume V is enclosed by two spheres, St with radius 1 and S£ with radius e, as shown in

Figure 4.4-1.

(4.4-2b,c)
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FIGURE 4.4-1 Shaded volume V enclosed by sphere Sj and Se

7i r 2TI / 1 \

f ( [d ivvdV = f f J -1- r2sin 6 dr # d6 (4.4-6a)

v e=o L 4> =o \r=e r /

7C I" 27C

= f f (1 - e ) sin 6 d<|) d9 (4.4-6b)

e = o L <t> = o

n
= f 2% (1-8) sine d6 (4.4-6c)

0

= 4 J C ( 1 - E ) (4.4-6d)

The unit normal to a sphere is given by Equation (4.3-60b). We also note that y may be written as

v = -L (4-4-7)
- r2

Using Equation (4.3-64), we obtain
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u r 2i

JJ v»ndS =J I r»rsin6d<|> d6 (4.4-8a)
S! 9=0 L <>=0

7t

= J In sin 9 de (4.4-8b)
0

= 471 (4.4-8c)

Note that in Equation (4.4-8b), r » r = 1 since S1 has radius 1.

On S £ , the outward normal is towards the origin as shown in Figure 4.4-1. In this case

n = - = (4.4-9)

% r 2n

If Y • n dS = f f JL , - L E2sin e ^ d9 (4.4-10a)
S e 9=0 [_ <(»=0 £

ji r 27i

= J f -£sin0d(()de (4.4-10b)

e=oL<()=o

= - 4 T I e (4.4-10c)

From Equations (4.4-6d, 8c, 10c), it can be seen that

f f f divvdV = f f v«ndS+ f f v - n d S (4.4-1 la)
V Sl S £

= (fv-ndS (4.4-1 lb)
S

Thus the divergence theorem is verified.

In this example, div v (= 1 /r ) is not defined at the origin and so we cannot apply Gauss' theorem in
a region that includes the origin. We circumvent this problem by enclosing the origin with a sphere of
radius e. To obtain the volume integral of div v in a region that includes the origin, we let 8 —> 0.
In this example, we obtain from Equation (4.4-6d) with e —> 0
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I I I div v dV = 4TC (4.4-12)

V

•

We can deduce the following from Gauss' theorem.

(i) ff <p n dS = fff Y 9 dV (4.4-13)
S V

where, as usual, S is the surface that encloses volume V.

Let q be an arbitrary constant vector.

Y • (<p q) = _ (<pqx) + — (cpqy) + — (<pq_) (4.4-14a)

3(p 3cp dtp ,A , 1A, x

= q * I + qy 87 + ^ ~ i (4-4"l4b)

= q«Y(p (4.4-14c)

From Gauss' theorem, we have

ff(pq»ndS = ((( div (<p q) dV (4.4-15a)
S V

= J f f q • Yep dV (4.4-15b)
V

Equation (4.4-15b) may be written as

q - ff <pndS - J f f Y ( p d V = q « F = O (4.4-l6a,b)
. S V

Since q is arbitrary, it is not necessarily perpendicular to F. However, since the right side of

Equation (4.4-16a) is zero, it follows that F = 0, verifying Equation (4.4-13).

(ii) JJ(nxv)dS =j"JJ(Yxv)dV (4.4-17)
S V

From Equations (4.2-14a, b), we can deduce that
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Y . (v x q) = q • (V x v) (4.4-18)

where q is an arbitrary constant vector.

Gauss' theorem yields

J J (vxq)-ndS =JJJv.(vxq)dV (4.4-19)
S V

Using Equations (4.2-14a, b, 4-18), Equation (4.4-19) becomes

q • jj (n X v) dS = q • [ [ [ (V x v) dV (4.4-20)
S V

It follows as in (i) that Equation (4.4-17) is true.

(Hi) (( cp ^ dS = ((( (<p V2 v + V cp • V \|/) dV (4.4-21)

S V

where -̂— is the directional derivative and is defined in Equation (1.5-10).
on

Equation (4.4-21) can be derived as in cases (i) and (ii) by considering a vector cp Y \j/ and
applying Gauss' theorem. Equation (4.4-21) is the mathematical statement of Green's first
theorem. Green's second theorem is obtained by interchanging cp and \j/ in Equation
(4.4-21) and subtracting the resulting expression from Equation (4.4-21). The result is

// ( 9 ^ ~ ¥ l ? ) d s =SSJ{(?V^' v v 2 ( p ) d v (4-4-22)
S V

(iv) jf - ^ +-^- dxdy =i> (vxdy-vydx) (4.4-23)
A C

where C is the curve enclosing the area A in the xy-plane.

Equation (4.4-23) is the statement of Gauss' theorem in two-dimensions.

Example 4.4-2. Apply Gauss' theorem to a right circular cylinder bounded by the planes z = 0 and
z = h, as shown in Figure 4.4-2. The vector field v is a function of x and y only and vz = 0.
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/

y

FIGURE 4.4-2 Right circular cylinder bounded by planes S1 ? S 2 ,
and curved surface Sc

The three surfaces that enclose the volume V are Sj (the plane z = h), S2 (the plane z = 0) and the
curved surface Sc. The unit outward normal to S j , nj is in the positive z-direction whereas n2 ,
the unit outward normal to S2 is in the opposite direction.

f f v - n d S = [ [ v - n j dS + ( ( v » n 2 dS + ff v » n dS (4.4-24)
S Sj S2 Sc

Since n j and n2 are of opposite sign and v is independent of z, the first two integrals on the right

side of Equation (4.4-24) cancel each other. Applying Gauss' theorem yields

[ f Y»n dS =fffdivvdV (4.4-25a)
Sc V

-///fe^H (4-4-25b)
V

Since we are considering a right circular cylinder of height h,
dV = h dS2 (4.4-26a)
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dSc = h ds (4.4-26b)

where ds is the line element along the circle that encloses the surface S2.

Substituting Equations (4.4-26a, b) into Equation (4.4-25b), we obtain

h J v-nds =h jf (-^f+ ^ dxdy (4.4-27)
c s2

The normal n to the curve C is given by

Combining Equations (4.4-27, 28) and dividing by h, we obtain

f (vx dy - vy dx) = ff ( ^ + ̂ ) dxdy (4.4-29)
c s2

= / / & + ^ l d x d y (4-4-23)
A

where we have replaced S2 by A. We have thus deduced Gauss' theorem in two dimensions
[Equation (4.4-23)] for this simple geometry.

Stokes' Theorem

If the vector field v and curl v are defined everywhere on a simple open surface S bounded by a
curve C, then

<f v • T ds = f f curl v • n dS (4.4-30)

C S

where T is a unit tangent to C and n a unit outward normal to the surface S.

If the surface S is enclosed by two curves C and Ci, then at a point A on C we make a cut and
draw a curve from A to a point B on Ci. We then go around Ci in the positive direction once and
leave C\ at B to rejoin C at A and proceed along C in the positive direction until completion of the
circuit. This is illustrated in Figure 4.4-3. The direction of AB from C to Cj is opposite to the
direction from Ci to C. Therefore, the line integrals along AB will cancel. Thus we only need to
evaluate the integrals along C and C\. We have to ensure that the direction of integration is chosen

(4.4-28)
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properly. The same technique of making appropriate cuts can be extended to surfaces enclosed by
more than two simple curves.

FIGURE 4.4-3 Surface S enclosed by two curves C and Cx

Example 4.4-3. Verify Stokes' theorem in the case where v = (-y3, x3, 0) and S is the circular
disk x2+ y2 = 1 with z = 0.

Equations (4.2-25a, b) define curl v as

i j k

curlv = | - | - | - (4.4-3 la)
ox ay az
- y 3 x3 0

= [0, 0, 3 (x2 + y2)] (4.4-3lb)

n = (0, 0, 1) (4.4-32)

fj curl v • n dS = [ f 3 (x2 + y2) dS (4.4-33a)
s s
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f2K r 1 9
= 3 rz r dr d0 (4.4-33b)

Jo Jo

= ~ (4.4-33c)

The curve C enclosing S is the unit circle (r = 1). In parametric form, the unit tangent T is given
by

1 = — ,-*-] (4.4-34a)
Ue de/

= (-s ine , cos 9) (4.4-34b)

£ v • T ds = f (- sin3 0, cos3 0, 0) • (- sin 0, cos 0, 0) d0 (4.4-35a)

C

= f (sin4 0 + cos4 0) d0 (4.4-35b)
Jo

= f_ cos 0 sin 3 0 + sin 0 cos3 0] '* + 3 [ & (^ Q + ̂ 2 ^ J ^ ^ ^
L 4 4 J 0 4 L̂ o J

= ^ (4.4-35d)

Thus Equation (4.4-30) is verified.

The following can be deduced from Stokes' theorem.

(i) If the line integral I v • T ds is independent of the path of integration and depends only on its

C

end points, then the line integral of v around a closed curve C (a curve with coincident end
points) is zero. Such a vector v is called a conservative vector. Since the line integral is
zero, it follows, from Stokes' theorem, that curl v = 0. v is then said to be irrotational.

(ii) (( ndS = i-(f r x d r (4.4-36)

S C

Let q be an arbitrary constant vector. From Equation (4.2-29), we have

curl(qxr) = (r • Y ) q - r (Y»qJ-(q • V)r + q(Y«r) (4.4-37a)
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= - q + 3q (4.4-37b)

= 2q (4.4-37c)

From Stokes' theorem

\\ curl (q x r) • n dS = j> (q x r) • dr (4.4-38)

S C

From Equations (4.4-37c, 2-14), we deduce that Equation (4.4-38) may be written as

2 q « | * J n d S = q-<£ r x dr (4.4-39)
S C

Since q is an arbitrary vector, Equation (4.4-36) is satisfied,

(iii) Stokes' theorem in two-dimensions is given by

<f (vx dx + vy dy) = If - ^ - - ^ dx dy (4.4-40)
C A

where A is the area in the xy-plane enclosed by curve C.

4.5 APPLICATIONS

Conservation of Mass

Consider a fixed volume V of a fluid of density p enclosed by a surface S. The mass m of the
fluid is

m = ((( pdV (4.5-1)

V

The rate of influx of mass

Q • t - /// l d V (45-2a'b)
V

where Q = - | | p Y « n d S (4.5-3)

S
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and v is the velocity of the fluid.

The minus sign indicates that n is an outward normal.

Combining Equations (4.5-2a, b, 3) yields

/ / / lf~dV = - / / P x # n d S (4.5-4a)
V S

= - ((( div(p v)dV (4.5-4b)

V

We have applied Gauss' theorem to the right side of Equation (4.5-4a) to transform the surface integral
to the volume integral and as a result we obtain Equation (4.5-4b) which can be written as

/// [ df + diV (P ~i dV = ° (4-5'5)
V

Since Equation (4.5-5) is valid for any arbitrary volume V it must true at every point. (This is similar

rb
to I f (x) dx = 0 for any limits a and b, f(x) must be zero). Therefore

J a

-^- + div(pv) = 0 (4.5-6)

Expanding div (p v), we have

div (p v) = J - (p vx) + A. (p Vy) + ^ (p v j (4.5-7a)

dv ^vy ^v 7] 3p 9p 9p ,A * ™,

= p div v + v • grad p (4.5-7c)

Combining Equations (4.5-6, 7c) yields

-J- + v • grad p + p div v = 0 (4.5-8a)
at

which can be written as

Dp
—^ + p d i v v = 0 (4.5-8b)



£M . ADVANCED MATHFMATICS

where £• = — + v • grad is the material or substantial derivative.
LX at

Equation (4.5-8b) is the equation of continuity in fluid dynamics, which for incompressible fluids
(p = constant) simplifies to

div v = V • v = 0 (4.5-9a,b)

Solution of Poisson's Equation

In many applications, such as electrostatics, the potential (p satisfies the equation

V2 9 = p (x, y, z) (4.5-10)

Equation (4.5-10) is known as Poisson's equation and if p = 0, we have Laplace's equation,
which is a homogeneous equation.

We propose to solve the inhomogeneous Equation (4.5-10) using the method of Green's functions
which was introduced in Section 1.18 for ordinary differential equations.

We want to determine the value of (p at a point P, inside a volume V enclosed by a surface S.

We assume the boundary condition to be

(p = f(x, y, z) on S (4.5-11)

The boundary condition given by Equation (4.5-11) which gives the value of (p on S is known as
the Dirichlet condition, which is sufficient to ensure a unique solution to Equation (4.5-10). In

some problems, ~- is given at the boundary and this condition is the Neumann condition.

We recall from Section 1.18 that we need to construct a Green's function G that satisfies the

homogeneous equation, in the present case, V G = 0, everywhere except at P. We choose P to be
the origin. We also assume that G satisfies the homogeneous boundary condition, that is to say

G = 0 on S (4.5-12)

Replacing \|/ by G in Equation (4.4-22) we have

/ / ( ^ - G ! ) d S = / / / U 2 G ^ V2<p)dV (4.5-13)
S V
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Since G and V G are not defined at the origin, we need to isolate the origin by enclosing it with a
sphere of radius e, surface Se and volume Ve as in Example 4.4-1.

In V - Ve, the region enclosed by S and Se, G satisfies Laplace's equation, Equation (4.5-12) and
cp satisfies Equations (4.5-10, 11). Equation (4.5-13) becomes

s se v-ve

Near the origin we assume ~ to be the dominant term of G.

G is singular at the origin. As in Example 4.4-1, we work in terms of spherical coordinates. On Se

we have

r = e (4.5-15a)

| - = -f- (4.5-15b)
dn dr

G - - 1 (4.5-15c)

//[^-<#s=-f ff M^lkHd e
s e L J

= - J I j 9 + £ ^ 1 sin 0 d(j) d0 (4.5-15e)

= -47U(p(0), a s e - > 0 (4.5-15f)

To evaluate the right side of Equation (4.5-14) as e —» 0, we write

f f f G p dV = ((( G p dV - 1 £ (4.5-16)

V-Ve V

where I£ is the contribution from Ve.

To evaluate I£ we note that p is finite everywhere and let its upper bound in Ve be M. Then in Ve

we have

I p | < M (4.5-17a)

(4.5-15d)

(4.5-14)
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Ve = ^ r t e 3 (4.5-17b)

G = ̂  (4.5-17c)

I e < M | 7 i e 3 l (4.5-17d)

^ | 7 t M e 2 (4.5-17e)

Thus as e -^ 0, Ie -> 0. (4.5-18)

Combining Equations (4.5-14, 15f, 16, 18), we obtain

<p<0) = i f / / / G p d V + / / f ^ d S ] (45-19)
. V S

Equation (4.5-19) gives the value of 9 at P in the form of an integral involving the Green's function
G. We will be in a position to construct G, following Chapters 5 and 6 on partial differential
equations.

Non-Existence of Periodic Solutions

Many dynamical systems to be covered in Chapter 10 are governed by a non-linear autonomous
system

4r = f (x, y) (4.5-20a)
dt

^ = g (x, y) (4.5-20b)

where f (x, y) and g(x, y) are continuous functions with continuous partial derivatives. The system
is said to be autonomous because f and g do not depend explicitly on time t. If we can solve
Equations (4.5-20a, b), we obtain x and y as functions of t. On eliminating t between them, we
generate a relationship between x and y. We can plot x versus y and the obtained curve is the
path or trajectory. The xy-plane is known as the phase plane. If x and y are periodic and of
period T, then

x(t + T) = x(t) (4.5-2 la)

y(t + T) = y(t) (4.5-21b)
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The path in the phase plane will then be a closed curve. The closed curve will be traversed once as t
increases from t0 to t0 + T, for every t0. Thus a periodic solution corresponds to a closed path in
the phase plane. If in Equation (4.4-23) we set vx = f and vy = g, then we can write

// ( fx~ + I f ) d x dy = §(f dy -gdx) (4-5-22a)
A C

= f T ( f * - g t ) d t (4'5-22b)
= 0 (4.5-22c)

Equation (4.5-22c) follows from using Equations (4.5-20a, b). Equation (4.5-22b) is obtained by
introducing the variable t. Integrating once around the closed curve C corresponds to integrating
from t = t0 to t = t0 + T.

If ^— + ~ is of one sign only in the phase plane, that is •=— + ~ is either positive or negative
dx dy dx dy

throughout the phase plane, then the left side of Equation (4.5-22c) cannot be zero. So this leads to a
contradiction which implies that there is no closed curve. In other words there is no periodic solution.

Thus if 5— + ^p does not change sign in the phase space, then the system given by Equations
OX 0 y

(4.5-20a, b) does not have a periodic solution. This is Bendixson's negative criterion. Other
criteria for determining the existence or non-existence of periodic solutions are given in Cesari (1971).

It should be pointed out that the non-linear Equations (4.5-20a, b) are usually difficult to solve exactly
and only approximate solutions can be obtained. Thus it is of interest to have analytical criteria to
determine the existence of periodic solutions.

Maxwell's Equations

Faraday discovered that if a closed circuit is being moved across a magnetic field or if the circuit is
placed in a varying magnetic field, a current is generated in the loop. This experimental observation is
usually stated as Neumann's law and Lenz's law.

(i) Neumann's law: if the magnetic flux N through a closed circuit varies with time, then an

additional electromotive force (e.m.f.) is set up in the circuit and is of magnitude ~-.

(ii) Lenz's law: the current induced in the circuit opposes the change in N.

Thus laws (i) and (ii) can be expressed as
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e-m.f. = - d N (4.5-23)

provided both the e.m.f. and N are measured in the same system of units. Since the e.m.f. around a
closed circuit is equal to the change in potential in going around the circuit once, we have

e.m.f. = (t E»Tds (4.5-24)

c

where E is the electric field.

The total normal magnetic induction N across any surface S is

N = [ [ B»ndS (4.5-25)
S

where B is the magnetic induction. Since S is a fixed surface, we obtain by combining Equations
(4.5-23 to 25)

£ E • T ds = - [ [ ?= • n dS (4.5-26)
c s

Applying Stokes' theorem, we write

jf n»curlEdS = - jf ?= «n dS (4.5-27)
s s

Since Equation (4.5-27) holds for every S, it follows that

curlE = - 2 = (4.5-28)
at

Equation (4.5-28) is one of Maxwell's equations in electromagnetic field theory.

4.6 GENERAL CURVILINEAR COORDINATE SYSTEMS AND HIGHER ORDER
TENSORS

Cartesian Vectors and Summation Convention

A vector y is represented by its components which depend on the choice of the coordinate system. If
we change the coordinate system, the components will generally change. The vector v however is
independent of the coordinate system. Thus there is a relationship between the components of v in
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one coordinate system and the components of the same vector v in another coordinate system. It is
the object of this section to establish such relationships.

We start by considering a transformation from one Cartesian coordinate system (x, y, z) to another

Cartesian coordinate system (x, y, z) obtained by rotating the (x, y, z) system as shown in Figure

4.6-1. Vector v has components vx, vy, vz in the (x, y, z) system and components vx, v , vz in

the (x, y, z) system. We wish to relate those components, and this can be achieved as follows.

v = vxi + vyj + vzk = vxi + vyj + vzk (4.6-la,b)

z i

^ 7
X. / PCx.y.z)

/I
/ I

: h

FIGURE 4.6-1 Vectors v and r in two coordinate systems

The component vx is obtained by forming the dot product of Equations (4.6-la, b) with the unit

vector i .

v x = v x i » i + v y j / i + v z k • i (4.6-2a)

Similarly, vy and vz are obtained through forming dot products with unit vectors j_ a n d k

respectively.

vy = ^x i * I + Vy I * I + ^z £ * I (4.6-2b)

vz = vx I • k + vy J • k + vz k • k (4.6-2c)



344 ADVANCED MATHEMATICS

Note that in the rectangular Cartesian system

i»j_ = j _ - k = i - k = O (4.6-3a,b,c)

i - i = j - j = k « k = 1 (4.6-3d,e,f)

Inverting the set of Equations (4.6-2a to c), we obtain

K\ I hi hi hi \ /M

v y = £2l £22 £23 v y (4.6-4)

\vj \ £3l £32 £33 I \vz/

where £n = I « i = |1 | 111 cos ( I , i ) (4.6-5a,b)

£2l = J ' i = |1 | | l | c o s ( J , i ) (4.6-5c,d)

cos (i, i) is the cosine of the angle between the unit vectors i and i . The nine quantities £ \ \, £21, ...
are the direction cosines and can be represented in a more compact form by £mn, where both
indices m and n take the values 1, 2 and 3.

In Equation (4.6-4), the indices in £mn are written as numbers instead of as x, y, z and this

notation has the following advantages

(i) in the case of an extension to an n dimensional space, where n can be greater than 26, we
would run out of letters. Indeed, we can extend it to an infinite dimensional space;

(ii) the notation is more compact.

Similarly a vector v with components (vx, vy, vz) can be represented by vm, where m takes the
values 1, 2 and 3. In this notation, vt = vx, v2 = vy and v3 = vz. The components (vx, v vz) will

be denoted by (vj, v2, v3), the unit vectors (i, j , k) and (i, j , k) will be denoted by (6. j , 5. 2, 6. 3)

and (5. 1? 8. 2 > <3 3) respectively. The coordinates (x, y, z) and (x, y, z) will be relabelled as

(x1, x2, x3) and (x *, x 2, x 3) respectively. Note that the indices in (x1, x2, x3) are written as

superscripts and the reason for this notation will be explained later. Thus x2 is not x squared and

we shall denote x2 squared as (x2)2 with a bracket round x2.

The three equations given in matrix form in Equation (4.6-4) can now be written as

3

vm = X ^n ^nm (4.6-6a)
n=l

= % inm (4.6-6b)
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In Equation (4.6-6a), the index m is known as the free index and it can take any of its possible
values. In our case, m can take the values of 1, 2 or 3. Once a value of m is chosen, we must apply
the same value to m wherever m occurs. Thus the three equations represented by Equation (4.6-6a)
are obtained by assigning the value of m = 1, 2 and 3 in turn. The index n is called the dummy
(repeated) index and the right side of Equation (4.6-6a) is a summation over all the possible values of
n as indicated by the £ sign. The summation sign occurs so frequently that it is useful to adopt a
convention, known as the Einstein summation convention. According to this convention,
whenever an index occurs twice and twice only in an expression it implies summation over all the
possible values of that index, unless stated otherwise. Thus in Equation (4.6-6b), the index n is a
dummy index and the expression on the right side of Equation (4.6-6b) implies summation over all
possible values of n. Since n is a dummy suffix, we can replace it by other letter, p say, and
Equation (4.6-6b) can equally well be written as

v m = V p m (4.6-7)

The right side of Equation (4.6-7) is a summation over all the possible values of p, which is the same
as the summation over all the possible values of n as implied by Equation (4.6-6b). To obey the
summation convention, we should not replace the dummy index n (or p) by the free index m.
Similarly the free index m in Equation (4.6-7) can be replaced by any other letter except n (or p).

The components (vj, v2, v3) can be expressed in terms of (vl 5 v2, v3) by inverting Equation
(4.6-7), making use of the properties of £pm, or by repeating the process used in obtaining Equation
(4.6-7). We shall adopt the second procedure to demonstrate the elegance and conciseness of the
summation convention. Equations (4.6-la,b) can be written as

^ = v m £ - m = % ^ n (4.6-la,b)

Forming the dot product with 5. r (we cannot use 5. n or 5_ m due to the summation convention), we

obtain

v m 5 m - 5 r = v n 6 n . 5 r (4.6-8)

Since the (x ', x ^ x 3) coordinate system is an orthonormal coordinate system

§ n - I r = 8nr (4.6-9)

where 8nr is the Kronecker delta and is equal to 1 if n = r, and is equal to 0 if n ^ r.

From the definition of £mn, Equations (4.6-5a,b), we have

& m - S r = ^ r m (4.6-10)
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Note that the first index in £rm, which is r, is associated with 6. r and the second index, m, is
associated with 8 m of the unbarred coordinate system.

Substituting Equations (4.6-9, 10) into Equation (4.6-8), we obtain

^rmvm = % 5nr (4-6-1 la)

= vr (4.6-1 lb)

On summing the right side of Equation (4.6-1 la) for all possible values of n, we find, due to the
definition of 5nr, that the only surviving term is vr.

If P is any point in space, and the coordinates of P are (x1, x2, x3) and (x *, x 2, x 3) relative to the
Ox1 x2x3 and Ox 1 x 2 x 3 coordinate systems respectively, then the components of the vector
position OP (= r) will transform from the barred to the unbarred system or vice-versa, according to
Equations (4.6-7, 1 lb). That is to say

xm = x P | p m (4.6-12a)

^ r m x m = x r (4.6-12b)

Here we have freely written the indices as superscripts and subscripts. Although this is permissible in
our present coordinate transformation, it is not generally permissible to do so in a general coordinate
transformation, as we shall discuss in the next section.

Because the direction cosines £rm are constants, the transformation, as defined by Equations

(4.6-12a,b), from Ox*x2x3 to Ox 1 x 2 x 3 is a linear transformation. Further we note from
Equation (4.6-12b) that

Note that £Tm can also be obtained via Equation (4.6-12a) by replacing the dummy index p by r, to
yield

r)xm

' n n = | = 7 ( 4 - 6 ' 1 3 b )

Equations (4.6-13a, b) imply that

dxT 8xm tAr^ ,
= (4.6-13c)

dxm dlr

(4.6-13a)
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This is only true in the case of a Cartesian transformation.

Substituting Equations (4.6-13a, b) into Equation (4.6-1 lb), we obtain

f dx m

a x r Vm
vr = (4.6-14a,b)

3x r

dxm Vm

Equations (4.6-14a, b) describe two types of transformation laws. Components that transform
according to Equation (4.6-14a) are called covariant components (vm) and the indices are written

as subscripts; components that transform according to Equation (4.6-14b) are known as
contravariant components and the indices are written as superscripts. Thus in proper tensor
notation, Equation (4.6-14b) should be written as

v r = — vm (4.6-15)
dxm

Note the symmetry in the notation. In Equation (4.6-14a), m is a dummy index, it occurs once as a
dxm Bxm

superscript in —=— (in the expression—=—, we regard m as a superscript and r as a subscript) and
dxT dx r

once as a subscript in vm. We can consider them as "cancelling" each other. On the right side, we are
left with a subscript r and on the left side we also have only a subscript r. The superscript m is
associated with Ox1 x2x3 and the subscript r with Ox 1 x 2 x 3. Similarly in Equation (4.6-15), the
index m "cancels" and we have the superscript r on both sides of the equation. Thus in a general
coordinate transformation, we need to distinguish between covariant and contravariant components.
But for Cartesian components, both laws of transformation are equivalent [Equations (4.6-14a, b)] and
thus there is no need to make a distinction between subscripts (covariant components) and superscripts
(contravariant components).

General Curvilinear Coordinate Systems

The rectangular Cartesian coordinate system is not always the most convenient coordinate system to
use in solving problems. The laminar flow of a fluid in a circular pipe is solved using a cylindrical
polar coordinate system. The velocity is then a function of the radial position r only and not of two
variables x1 and x2. Similarly the spherical polar coordinate system is chosen for solving flow past a
sphere. The choice of coordinate system depends on the geometry of the problem.

We now consider a general curvilinear coordinate system (q1, q2, q3) as shown in Figure 4.6-2.
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q2

Q /

q1

FIGURE 4.6-2 Generalized coordinate system

This coordinate system is related to the rectangular Cartesian coordinate system (x1, x2, x3) by

x1 = x1 (q1, q2, q3) (4.6-16a)

x2 = x2(q1 ,q2 , q3) (4.6-16b)

x3 = x3(q! ,q2 , q3) (4.6-16c)

or in concise notation

xm = xm(qn) (4.6-17)

We assume that the transformation from (x1, x2, x3) to (q1, q2, q3) is one-to-one and it can be
inverted as

qn = qn(xm) (4.6-18)

The base vectors 8 m of the orthonormal coordinate system can be defined as being tangent to the
coordinate axes xm. Likewise, we define a set of base vectors g m of the generalized curvilinear

coordinate system as being tangent to the coordinate axes qm, as illustrated in Figure 4.6-3. The
vector connecting the origin to point P is r.
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V3

q1

FIGURE 4.6-3 Generalized coordinate system and base vectors

The base vectors g m are given by

Base vectors defined as tangents to coordinate curves are covariant base vectors.

The base vectors 8 m can also be considered as being normal to the planes xm = constant. For
example the base vector 5 3 is normal to the surface x^ = constant, that is to say, it is parallel to the
x3-axis. In the particular case of the rectangular Cartesian coordinate system, the tangent and the
normal coincide, which explains why Equation (4.6-13c) is valid. This is not generally the case. Base
vectors defined as normal to coordinate surfaces qn = constant are contravariant base vectors
and are denoted by gn as illustrated in Figure 4.6-3. They are given by Equation (4.3-55) and, in the
present notation, they are written as

gn = V q n = gradq" = ^ 6^ (4.6-20a,b,c)

Note that both g m and gn are not necessarily unit vectors.

Example 4.6-1. Obtain the covariant and contravariant base vectors for the spherical polar
coordinate system.

(4.6-19a,b)
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The transformation from the rectangular Cartesian coordinate system (x1, x2, x3) to the spherical polar
coordinates system (r, 0, ty) is

x1 = r sin 9 cos (|), x2 = r sin 0 sin <|>, x3 = r cos 0 (4.6-21a,b,c)

(In our notation, q1 = r, q2 = 0, q3 = (|)).

The covariant base vectors are given by Equation (4.6-1%)

^x1 ?)x2 ?\3

gr = ̂ 8 1 + ^ £ 2 + ̂ 8 3 (4.6-22a)

= sin 0 cos § 8 ! + sin 0 sin 0 8 2 + cos 0 8 3 (4.6-22b)

?xl 7)\2 ?x3

8° = lra>+tr^+lr£3 (4-6"22c)
= r cos 0 cos cf> 8 j + r cos 0 sin § 8 2 - r sin 0 8 3 (4.6-22d)

i*-%&-'+W^+%^ (46-22e)

= - r sin 0 sin (j) 8 j + r sin 0 cos (|) 8 2 (4.6-22f)

To obtain the contravariant base vectors gn we have to invert Equations (4.6-2la, b, c). We then

obtain

r = V f x f + f x ^ + fx3)2 (4.6-23a)

/ ( X 1 ) 2 + (X2)2

0 = arc tan A / l ' l ' (4.6-23b)

V (xf

§ = arc tan — (4.6-23c)

We calculate gn from Equation (4.6-20c)

g - l M i 8 2 + A83 (4.6_24a)
dx dx dx

= sin 0 cos <|) 8 l + sin 0 sin ty 8 2 + cos 0 8 3 (4.6-24b)
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g8 = r T s i + T 7 s 2 + r T S 3 (4.6-24c)
dx dx dx

= cos J^cos 6 g ^ + sin ^cos 6 g 2 _ si^e. g 3 (4.6-24d)

A sin 6 c cos <b ~ . . , _ . .
g* = r^i^—^-8 2 (4.6-24e)
~ r sin 0 r sm 0

Note that

gr = g r (4.6-25a)

lQ = ~ Ie (4.6-25b)
xl

g • = — J — - g + (4.6-25c)
r 2 s in 2 0

Thus g Q , g A are parallel to ge, g^ respectively, but they are not generally equal in magnitude.

•

We now consider the transformation from one generalized coordinate system qm to another
generalized coordinate system q n, where as usual, the indices m and n can take the values 1, 2 and
3.

The relation between these coordinate systems is

qm = q m(qn) (4.6-26)

or q n = q n (qm) (4.6-27)

The base vectors will be given by

and g n = ^ S ^ V q " (4.6-29a,b)
3x£

We will now establish the relationship between the components of a vector y in the two generalized
curvilinear coordinate systems qm and q n. Any vector v may be written as

v = v m g m = v n g n (4.6-30a,b)

(4.6-28)
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Since in the general case, covariant and contravariant base vectors are different, one has to pay special
attention to the position of the indices. As far as the summation convention is concerned, repeated
indices should appear as subscript-superscript pairs.

In the general case, we can no longer take dot products, as in Equation (4.6-8), to establish the relation
between components v m and v m . General coordinate systems are not necessarily orthogonal and
g j • g 2 is not necessarily zero.

Those relationships are obtained via the definitions [Equations (4.6-19, 20)] and the chain rule, as
follows

«- = a ? ^ (4Mla)

- S . f g (4.6-3!b)

Substitution in Equation (4.6-30a, b) yields

^ = v m ^ I n = v n g n (4.6-32a,b)

It now follows that

_ da n
v n = ^— v m (4.6-33)

dqm

Components of vectors which transform according to Equation (4.6-33) are contravariant
components. See also Equation (4.6-15).

Example 4.6-2. Obtain the law of transformation of the velocity components v\

The velocity components vm, in the qm coordinate system, are defined as

Aam
vm _ jjm _ J _ (4.6-34a)

At-»o At

8qm
= - | - (4.6-34b)

On transforming to the q s coordinate system, the components v s are defined as

- s ,. Aq s

v = lim - J - (4.6-35a)
At->o At
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= ^ - (4.6-35b)

According to the chain rule

Aq s = ^5_L Aqm (4.6-36)
dqm

Substituting Equation (4.6-36) into (4.6-35a), we obtain

v ^ - lim ^ ^ (4.6-37a)
At->o dqm At

= ^ 1 vm (4.6-37b)
dqm

Thus the components v s transform as contravariant components.

•

We further note from Equation (4.6-36) that the components Aqm also transform as contravariant
components. Although the coordinates qm are not components of a vector, Aqm are contravariant
components and the indices are written as superscripts. The transformation from qm to q n is
arbitrary, as can be seen from Equation (4.6-26, 27), but we still write the indices as superscripts
because Aqm are contravariant components.

In Equations (4.6-30a, b), we have expressed the vector v in terms of the covariant base vectors
g m . We could equally have expressed v in terms of the contravariant base vectors gn. That is

v = v m g m = v n g n (4.6-38)

The relation between g n and g m can be deduced, using the chain rule, as follows

g r a = V q m (4.6-39)

= ^ Y q n (4.6-40a)

= ^ - g n (4.6-40b)
dq n ~

Substituting Equation (4.6-40b) into Equation (4.6-38), we obtain

^ v m g n = vn g« (4.6-41)
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We then deduce

% = f ^ vm (4.6-42)

Components of vectors which transform according to Equation (4.6-42) are known as covariant
components [see, also Equation (4.6-14a)].

Example 4.6-3. Show that the components of V(p, where cp is a scalar function of q1, q2 and
q3, transform as covariant components of a vector.

Let

u = V cp (4.6-43a)

then we define um as

um = | ^ (4.6-43b)

In the (q 1, q 2, q 3) coordinate system, the components un are given by

Applying the chain rule to Equation (4.6-44), we have

9cp 9qm

8qm
= ^ »m (4-6-45b)

Thus the components un transform as covariant components.

Tensors of Arbitrary Order

So far we have considered only scalars and vectors. A scalar is a tensor of order zero and its
numerical value at a point remains invariant when the coordinate system is transformed. A vector has
both a magnitude and a direction and its components transform according to Equations (4.6-33, 42)
when the coordinate system is transformed. One index is sufficient to specify its components. It is a
tensor of order one. In Example 4.6-3, we have seen that V_ (p is a vector but (p is a scalar. Thus
the quantity V̂  v is a tensor of order two and is known as the velocity gradient. In fluid mechanics,

(4.6-44)

(4.6-45a)
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the rate of deformation tensor, which is a tensor of order two, is equal to the sum of the velocity
gradient and its transpose. The stress tensor, which is another tensor of order two, maps linearly the
surface force on the surface of a deformable continuum to the unit normal on the surface. Thus a
tensor of order two transforms a vector u linearly to another vector v. This can be written as

um = Tmn v" (4.6-46)

In Equation (4.6-46), we have adopted the summation convention by writing the dummy index as a
subscript-superscript pair. The components of u are written as covariant components and the
components of v are written in contravariant form. The quantities Tm n are the components of a
second order tensor which we denote as T. In a three-dimensional space, m and n can take the
values 1, 2 and 3 and T has nine components. We need two indices to specify the components of a
second order tensor.

In the (q *, q 2, q 3) coordinate system, Equation (4.6-46) becomes

um = Tm n v n (4.6-47)

Using Equations (4.6-33, 42), Equation (4.6-47) becomes

l £ ». " ^ | ^ V (4.6-48,

da m
Multiplying both sides of Equation (4.6-48) by —-—, we obtain

3qP

dqm 9qr = 3 q m dqn s

a V ^u' = T- a ^ a ^ v (4-6"49)
d q r d a r d a m

Note that —^- can, according to the chain rule, be written as —^ — . One recognizes the
3qP 3 q m 9qP

quantity —-— (in the unbarred coordinate system) as representing the Kronecker delta. Similarly,
3qp

—5— would represent 5 s t , while a quantity such as —~— is not in general 8 \. It thus follows that
9q l 9q

T ™ | r 1 ^ v S = 8 p u ' = Up (46-5Oa-b)

In Equation (4.6-46), we are at liberty to change the free index m to p and the dummy index n to
s, we then obtain

up = Tps vs (4.6-51)
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Comparing Equations (4.6-50b, 51), we deduce

dqm Ml T (4 6-52)

Interchanging (ql, q2, q3) and (q l, q 2, q 3)in Equation (4.6-52), it becomes

- 3a m da n

T = ZH ° 4 T f4 6-53^
1 P S - , _ D - A - S m n ^ }

y dq p dqs

Components that transform according to Equation (4.6-52) are known as covariant components.
Note the similarity to Equation (4.6-42).

Contravariant components T m n transform according to

T mn = 3<L^ <*iil T rs (4.6-54)
dqr dqs

For second order tensors, in addition to covariant and contravariant components, we can have mixed
components T ™ which transform according to

Tensors of order higher than two also exist and are frequently used. An example of a tensor of order
three is the permutation tensor, which will be defined in the next section. A tensor that maps linearly a
second order tensor to another second order tensor is a tensor of order four. The constitutive
equation of a linear elastic material may be written as

tij = Ciju yu (4.6-56)

where tjj, yk^ a nd cyk^ are the stress tensor, the infinitesimal strain tensor and the elastic tensor
respectively. The components Cjjk^ need four indices and are the components of a fourth order

tensor.

The law of transformation for a fourth order tensor can be obtained by generalizing Equations (4.6-53
to 55) as follows

T -SiSiH!5lTiw (4.6-57a)
prSt 3qP 3qr 3qs 3q> ""

(4.6-55)
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Tprst = 3 £ M_ _Bql M_ T ijk̂  (4.6-57b)
dq[ 9qj dqk dq£

v *tmLWL%!_Ti (46.57c)
rSt a q 1 3qr 3qS 3ql j W

A second order tensor may also be defined as the juxtaposition of two vectors u and v. The second
order tensor T may be defined as the dyadic product of vectors u and v.

T = uv = u ® v (4.6-58a,b)

Equation (4.6-58) can also be written as

I = u ig jvJ gj = u m g m v n g n (4.6-59a,b)

= u i V J I i I j = um vn I m I " (4.6-59c,d)

= T i j l i I j = Tmn I m I " (4.6-59e,f)

A second order tensor T is also known as a dyad and the notation adopted in Equations (4.6-59a

to f) is called the dyadic notation. The juxtaposition of the two vectors u and v is also known as the
outer product of the two vectors. The commutative law does not hold and g j g • is in general
not equal to g : g j . The component Tjj is not necessarily equal to the component Tjj. If they are
equal, T is a symmetric tensor. Tensors of higher order can likewise be defined.

Metric and Permutation Tensors

Equation (4.6-19a) defines the covariant base vector g m . If P and Q are two neighboring points
with vector positions r and r + dr with coordinates (q1) and (qJ + dqi) respectively, then the square
of the distance, ds2, between P and Q is

ds2 = dr«dr (4.6-60a)

= T*k ' TT d q m d q n (4.6-60b)
dqm dqn

= g m ' g n d q m d q n (4.6-60C)

= gmn dqm dqn (4.6-60d)
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The second order tensor gmn is known as the metric tensor and in general is a function of (q1). In
an orthonormal coordinate system, the metric tensor simplifies to the Kronecker delta. In an
orthogonal coordinate system

( = 0 if m ^ n

< 4 M l a ' b )

Since the dot product is commutative, gmn is symmetric.

The dual (conjugate or associate) of gmn which is denoted by grs is defined as

§rS = I r ' I s (4.6-62a)

= Vq r • Vq s (4.6-62b)

From Equation (4.6-19b), we have

9xp s 3x^ 5 .. , ,„ .

fi»"£JBa^*''a7*' (4'6-63a)

= | ^ ^ 8p, (4.6-63b)
3qm 9qJ P£

3xp dxP .. , , . .
= (4.6-63c)

9qm 3qJ

Equation (4.6-63b) shows that the components of the metric tensor gmj transform as covariant
components, hence the subscript notation.

Starting from Equation (4.6-20c), we can deduce an expression for gJn in terms of (x*) as follows

*j • * " - $ * ' • ! £ * ' (4-6-64a)

= 3qi_ 3 ^

dx* 3x' ir

= B-3L ^ (4.6-64C)
dxr dxr

(4.6-64b)
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It can be seen from Equation (4.6-64b) that gJn components transform as contravariant components.
The relationship between gmj and gJn can be established by combining Equations (4.6-63c, 64c) and
the result is

i n dxP dxP dq) dqn tAtzcs

Smjg a ^ ^ a ^ ^ (4-6"65a)

= M ^ *£L (4.6-65b)
dqm 9xr 3xr

= —— hnr (4.6-65c)
dqm 3xr pr

= - ^ 1 ^ (4.6-65d)
dqm 9xr

= K (4.6-65e)

In Equation (4.6-65e), we have written the Kronecker delta as a mixed tensor so as to conform to the
convention that an index appearing as a subscript (superscript) on one side of the equation should also
appear as a subscript (superscript) on the other side of the equation. The fundamental reason for
writing the Kronecker delta as a mixed tensor is because it transforms as a mixed second order tensor.
The convention is framed so as to be compatible with the rules of transformation.

The permutation tensor is an example of a third order tensor which in an orthonormal coordinate
system is denoted by ejjk, and is defined as

0, if any two indices are equal

ejjk = 1, if the indices 1, 2, 3 appear in the clockwise direction (4.6-66a,b,c)

- 1 , if the indices 1, 2, 3 appear in the anticlockwise direction

Thus, for example,

e l l2 = el22 = ° (4.6-67a,b)

e123 = e312 = l (4.6-67c,d)

e321 = e213 = - ! (4.6-67e,f)

Let w be the vector product of two vectors u and v. Then in an orthonormal coordinate system, Wj

is given by

wi = eijkujvk (4.6-68)
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If D is a (3 x 3) matrix, with elements dy, then the determinant of D can be written as

Ig l = e i jk d i l d j2 d k3 (4-6-69)

We extend the definition of the permutation tensor to a general curvilinear coordinate system and we
denote it by e^mn. We put a bar over the components of the vectors in the present coordinate system,

so as to avoid confusion with the Cartesian components. Thus w"̂  is expressed in a general barred

coordinate system as

W£ = e£mn " *" ^ " (4.6-70)

Transforming (w^, u m and vn) to the orthonormal coordinate system using Equations (4.6-33, 42),

identifying the coordinates qm as xm and q n as qn, Equation (4.6-70) becomes

f 7 »r = e,mn f £ »• flf V (4.6-71a,
dqe 3xs 3xl

= Bta^ff«'v' (4.6-71b)

Multiplying both sides of Equation (4.6-71b) by ——, we obtain
9xP

dqe 3xr r dqe dqm dqn s t

^ H w £̂ mn j V 1T7 TT u v (4-6-72)
dxP 3q£ dxP dxs 3 x l

Using the chain rule on the left side of the equation and noting that in an orthonormal coordinate
system, we do not distinguish between covariant and contravariant components, Equation (4.6-72)
becomes

dqe dqm dqn

wp = e ^ a x V ^ ^ U s V t (4-6"73a)

= epst u s v t (4.6-73b)

From Equations (4.6-73a, b), we deduce that

dq£ dqm dqn

epst = *«» ivit^ (4-6"74)

which is the law of transformation of covariant components. Alternatively e^mn may be written as

eAnn = ^ eAnn (4.6-75)
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where g is the determinant of the metric tensor gm n. The contravariant form of the permutation
tensor is

E1* = j= eijk (4.6-76)

Example 4.6-4. Calculate the metric tensor gjj, its dual grs and its determinant g for the
spherical polar coordinate system.

The base vectors have been obtained in Example 4.6-1.

The components of the metric tensor are given by

gr r = g r • g r = 1 (4.6-77a,b)

See = I e * I e = f 2 (4.6-77c,d)

g«x|> = g<t>-g<t> = r 2 s i n 2 e (4.6-77e,f)

All the other gjj are zero since the spherical polar coordinate system is orthogonal.

gr r = g r - g r = l (4.6-78a,b)

g ee = gG.gG = X (4.6-78c,d)
r2

g** = g * ' g < , =^TLV- (4.6-78e,f)
Y ~* r 2 s i n 2 9

The determinant g is given by

g = r 4 s i n 2 0 (4.6-79)

Covariant, Contravariant and Physical Components

It has been noted that the covariant and contravariant base vectors do not in general have the same
dimensions and it is not surprising that the covariant and contravariant components of a vector also do
not have the same dimensions. Via the metric tensor it is possible to establish a relationship between
these two types of components and this is done as follows

v = vm gm = vn g n (4.6-80a,b)

Forming the dot product with g r , we have
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Vm §m ' §r = v " I n * I r (4.6-8la)

vm 8™ = vn gm (4.6-81b)

vr = gnr vn (4.6-8 lc)

Equation (4.6-8lc) shows the transformation from contravariant components to covariant components.
Similarly for higher order tensors we have

Trs = gnr gms Tnm (4.6-82a)

Tnm = gnr gms T f s (4.6-82b)

T™ = gnr gms gpk gqi TJ* (4.6-82C)

In a space in which a metric is defined, it is possible to transform covariant components to
contravariant components and vice versa. This process is known as lowering and raising
indices. It was pointed out in Example 4.6-1 that g r and g Q do not have the same magnitude and

they have different dimensions. This makes it necessary to define the so called physical components.
The physical components of a vector are expressed in terms of normalized base vectors. The
normalized covariant base vectors are given by

Kn^lfVvf^ (4.6-83a,b)
|S nl °nn

Note that in Equations (4.6-83a, b) there is no summation and the index n is contained in brackets to
designate physical components. A vector v may be written as

v = v m g m = v(n) g ( n ) (4.6-84a,b)

= V-^M (4.6-84C)
v =>nn

Combining Equations (4.6-84a, c), noting that m is a dummy index, yields

(vn--^l)gn = O (4.6-85)

Since the vectors g n are base vectors and are linearly independent, Equation (4.6-85) implies that for

each n,

vn _ ^ n ^ (4.6-86a)
&nn
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o r v(n) = ^ n v " (4.6-86b)

That is to say, the physical components V(n) can be obtained via the metric tensor. Note that in
Equation (4.6-86a, b) there is no summation over n. The index n occurs three times!

The contravariant component vn can be written as

vn = gnm Vm (4.6-87)

Substituting Equation (4.6-87) into Equation (4.6-86b), we obtain

v(n) = ^ g"m vm (4-6-88)

In an orthogonal coordinate system, combining Equations (4.6-6la, b, 88), we obtain

Vg™~ vn = v(n) (4.6-89)

Similarly the physical components of higher order tensors are defined. For an orthogonal coordinate
system we have

V) = ^ ^ ^ ^ (4.6-90a)

= V g 1 ^ Vg^ T m (4.6-90b)

= V g ^ V g ^ T ^ (4.6-90c)

So far, we have defined the physical components, in terms of normalized covariant base vectors. We
could equally have chosen to define physical components via normalized contravariant components. In
the framework of an orthogonal coordinate system, both are identical. In the case of a non-orthogonal
coordinate system, they may not be identical since Equation (4.6-89) could not be obtained from
Equation (4.6-88). Indeed, for a non-orthogonal system, gnm in Equation (4.6-88) represents three
non-zero components for each value of n. In Equation (4.6-89), there is no summation over n.

Example 4.6-5. Obtain the contravariant, covariant and physical components of the velocity vector
v of a particle in the spherical polar coordinate system.

dqm
In Example 4.6-2, we have shown that -^— transforms as contravariant components. The

at
contravariant components of v are

vr = ^ = f (4.6-9 la,b)
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ve = 4s- = e (4.6-91c,d)at

v* = - ^ = 4 (4.6-91e,f)at

Using Equation (4.6-8 lc), we have

vr = gr rvr = f (4.6-92a,b)

ve = g e e v e = r20 (4.6-92c,d)

v<(, = &w v* = f2(sin2 e) i (4.6-92e,f)

The physical components are given by Equation (4.6-86b)

v(r) = Vg^v r = r (4.6-93a,b)

> ) = ^ g e e v 6 = f 9 (4.6-93c,d)

v«j,) = ^ 7 V < 1 > = r (sin 6) i (4.6-93e,f)

Example 4.6-6. Calculate the covariant, contravariant and physical components of V f in the
spherical polar coordinate system.

In Example 4,6-3, we have shown that —— is a covariant component. If we denote V f by u, then
3qm

ur = ^ (4.6-94a)

ue = H (4.6-94b)

u, = ^ (4.6-940

The contravariant components are

ur = grr ur = ~ (4.6-95a,b)
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u e = g ee u e = -L ^ (4.6-95c,d)

u«> = g<* u^ = — - 1 — ^ (4.6-95e,f)
v r 2s in20 5(t>

The physical components are

u(r) = Vg" ur = jjp (4.6-96a,b)

> ) = V g ^ u0 = 1 H (4.6-96c,d)

» = ^»* = 7±eH (4-6"96e'f)
In Examples 4.6-5 and 6, we note that the r covariant and contravariant components do not have the
same dimension as the 9, 0 components, whereas the r, 9 and (j) physical components, all have
the same dimension. In a space in which a metric tensor exists, a tensor can be represented in terms of
covariant, contravariant or physical components. They can be transformed from one to the other by
the process of raising or lowering the indices, as shown in Examples 4.6-5 and 6.

•

The laws of physics are independent of the coordinate system and they should be written in tensorial
form. The quantities that enter into the equations expressing these laws should be in covariant or
contravariant components. Each expression in the equation should be a tensor component of the same
kind and order. That is to say, if on the right side of the equation we have a mixed component which
is covariant of order m and contravariant of order n, then on the left side we must also have a mixed
component, covariant of order m and contravariant of order n.

Finally the components of a tensor have to be measured in terms of certain units and it is desirable to
express all the components in terms of the same physical dimensions.

In the rectangular Cartesian coordinate system, there is no distinction between covariant, contravariant
and physical components. The metric tensor is the Kronecker delta. Many authors omit the word
physical when referring to physical components of a tensor. Thus it is safe to assume that unless
otherwise stated, the components of a tensor refer to physical components.
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4.7 COVARIANT DIFFERENTIATION

We have shown in Example 4.6-3 that if cp is a scalar function, —-— is a covariant component of a
dq*

dv1
vector. We shall presently show that if v1 is the contravariant component of a vector v, does

aqj
not transform as tensor.

Consider the transformation given by Equations (4.6-26, 27). On transforming from (q1, q2, q3) to

(q *, q 2, q 3 ) , we have

dvJ 3 (dql -i dq s (An , ,= —-*- v --L- (4.7-la)
3qj 3 q s [dq1 3qJ

3 q s dq£ 3qJ 9q s 3q ' 3qi

3v i
Comparing Equations (4.6-55, 7-lb), we note that transforms as a mixed component if

9qj

32qi dvi
— = 0. That is to say, transforms as a component of a tensor only if the transformation

3q s dq £ dqi
given by Equation (4.6-26) is a linear transformation. In general the partial deviative of the
components of a vector is not a tensor. This is because the base vectors are in general not constants,
but functions of (q1, q2, q3). On taking the partial deviative of a vector there is a contribution from
the base vectors and this has to be taken into account.

From Equation (4.6-30a), we obtain

h~-JTs-™ + vmjf (4J"2)
dqJ dqJ dqJ

Using Equation (4.6-19b), we find

^ = - ^ S p (4.7-3)
dqJ dqm 3qJ P

Note that 5 p , the base vector in the rectangular Cartesian coordinate system is a constant. The
transformation of the covariant base vector 5 p to g ^ is given by Equation (4.6-3 lb)

(4.7-1b)
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dv dwm m 32xP dq£

-=: = — r g m + vm : - 3 - g£ (4.7-5a)

3v£ m a V dqe]
= + v m - 4 - g (4.7-5b)

_3qJ 3qm9qJ 3xpJ ~ '

= [v'Jg/ (4.7-5d)

In going from Equation (4.7-5a to b), we have replaced the dummy index m in the first term on the
right side of the equation by I, allowing us to factor out g £. The quantity

m j{ 3q m 3qJ ^?

is known as the Christoffel symbol of the second kind and is also denoted by T£ •. The

covariant derivative of v^ with respect to q-i is denoted by v^ • or v^ •. From Equations

(4.7-5c, d), it is given by

-, £ I I \
vl . = — + Jvm (4.7-7)

' J dq) lm jj

The notation correctly suggests that \e ^ represents a mixed component of a second order tensor.

and { z . do not transform as tensors.
3qj lm J)

The Christoffel symbol of the first kind, denoted by [rs, t] (or r r s t ) , is defined as

I
K t] = Su r s (4.7-8)

The covariant derivative of the covariant component v^ is given by

d\e I m j
w£ i = —• v (4.7-9)

'J aqj \i j !

The covariant derivative of higher order tensors are

(4.7-6)

(4.7-5c)
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T , m = 9 T ^ + t T S m + m Ttt (4.7-10a)
' J 3qJ s j t j

T t a - i = ^ - U T ™ " ( m M T « (47-10b)

T'- i=^+UlJ-"l".tj|T''
Tlm 3 T \ + I T S m m l f t | u l T < m

T ~ - J - 3qJ . j J T " - m j T » n i l ™ (4J"10e)

The covariant derivative of tensors of arbitrary order can be written down by observing the pattern
shown in Equations (4.7-10a to e).

Properties of Christoffel Symbols

(i) The Christoffel symbol of the second kind can be calculated in terms of the metric tensor and is
given by

m j 2 ^qm 9qJ 3qkJ

/ M / M(ii) = ( (symmetry) (4.7-12)

lm jj VJ mj

(iii) If the coordinate system is orthogonal

/ l \
( ) = 0, if t, m, and j are all different (4.7-13a)

lm j)

i £ ) = 1 g / / *SlL (4.7.13b)

. . = -y g" - 4 (4.7-13c)
J J 2 dq£

(4.7-10c)

(4.7-10d)

(4.7-11)



VECTOR AND TENSOR ANALYSIS 369

1 = U"^? (4.7-13d)

In Equations (4.7-13a to d), no summation is implied.

(iv) On performing the transformation given by Equations (4.6-26, 27), the Christoffel symbol
transforms as

ti\ __ jMaq^aq^^^L
\m j) Is t/ 3qr 3 q m 3qj 9qt 9q m 3 - j

Note that only for the linear transformation 3 = 0 , does the Christoffel symbol
\3qm3qJ /

transform as a mixed third order tensor. In the rectangular Cartesian coordinate system, all the
Christoffel symbols are zero, since the metric tensors are constants.

Rules of Covariant Differentiation

(i) The covariant derivative of the sum (or difference) of two tensors is the sum (or difference) of
their covariant derivatives

(Tij + Sij),k = Tij>k + Sij(k (4.7-15)

(ii) The covariant derivative of a dot (or outer) product of two tensors is equal to the sum of the
two terms obtained by the dot (or outer) product of each tensor with the covariant derivative of
the other tensor

(Ti£ S^j),k = T i i s \ k + (TiAk) S^j (4.7-16a)

(Ti^ Smj),k = Ti£ Smj,k + (Ti£,k) Smj (4.7-16b)

Note that in Equation (4.7-16a), £ is a dummy index and the dot product of the two second
order tensors is another second order tensor. In Equation (4.7-16b), we have formed the outer
product of two second order tensors resulting in a fourth order tensor.

(iii) The metric tensors gy, g^m and the Kronecker delta 8|j are constants with respect to

covariant differentiation

Sij.k = g ^ , k = °rs,k = 0 (4.7-17a,b,c)

A consequence of this result is that the metric and Kronecker tensors can be put outside the
covariant differentiation sign. That is to say

(4.7-14)
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( g i j T J ^ k = ( T W ) g i j (4-7-18)

(iv) The covariant derivative of v̂  with respect to qJ is a second order tensor and we can take its

covariant derivative with respect to qk. Combining Equations (4.7-9, 10b), we obtain

K i) k = ^ T (vt\) - I S vs j - ( S ) vt s (4.7-19a)

d ldve | m | 1 | s f3vs | m \ 1 | s \ \dv£ I m \

= d^W~\t jim\~U k [aqT "(s j|Vmj~(j kHa^"U s)Vm

(4.7-19b)

~ aqk8qj ~ b q k ^ j /J ^ (^ j / 3qk (̂  k) 3qJ j k 3qs

^/Jloh-HMr.h-1"^ (4-7"19Cid)
If we interchange the order of differentiation, Equation (4.7-19c) becomes

v = ^yi r 3 ( m i i v i m i 3 v m f s ^ - / s ^
lM 3qJ 3qk [dqj U k/J m U k| 3qJ U j 3qk \k j 3qs

/ s | m \ s | m
+ v m + vm (4.7-19e)

U j U k/ m k j U s m

On the right side of Equation (4.7-19e), m is a dummy index in the third term and it can be
replaced by s, likewise in the fourth term s can be replaced by m. Noting that the
Christoffel symbol is symmetric (Equation 4.7-12), and assuming that v^ is continuous with

continuous second partial derivatives, it follows from Equations (4.7-19c, d, e) that

' d m | d | m Is I in I I s ( m il //t ^, ^n ^

"<*-"<*=[rt t J - ^ L j + U L j } - ! / j { . J j v ™ <4-7-20a)
= R ° V vm (4.7-20b)

The left side of Equation (4.7-20b) is a covariant component of a third order tensor. Rm^ | k is

a mixed fourth order tensor, contravariant of order one and covariant of order three. The dot

product Rm^jk vm is a covariant component of a third order tensor. Thus the terms on both

sides of Equation (4.7-20b) are covariant components of third order tensors. The fourth order

tensor R111^ is the Riemann-Christoffel tensor.
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We can interchange the order of covariant differentiation if R " 1 ^ = 0. The Riemann-

Christoffel tensor is a property of the space and is independent of the vector v. In a Euclidean

space, we can always set up a rectangular Cartesian coordinate system and the Christoffel

symbols are zero, consequently the Riemann Christoffel tensor is zero. R " 1 ^ is a fourth

order tensor and transforms according to Equation (4.6-57c) and is thus zero in all coordinate

systems. We conclude that in a Euclidean space, R111^ is zero and the order of covariant

differentiation is not important as long as the components of the tensor have continuous second

partial derivatives.

Example 4.7-1. Calculate the Christoffel symbols of the second kind for the spherical polar
coordinate system (r, 0, §).

Since the coordinate system is orthogonal, we make use of Equations (4.7-13a to d). The metric
tensors are given by Equations (4.6-77a to f, 78a to f). The only non-zero Christoffel symbols are

( 9 r e ! = -2« r r | r t eee ) = - r (4.7-21a,b)

{ /J -4« I I ! («**> = -"in2e (4-7-21c-d)
( e 8 H «"!«*»>•* «™°*>

i 9 j = " 2 g e e !<«••> = - S i n 9 c ° S e (4-7"21g'h)

{/ j " 2 g++ I M = t <4-™iJ)

j / 6 ) - 2 « * * l r ( 8 « ) - c < * e <4-7-21M)

Example 4.7-2. Let v* be the contravariant components of the velocity vector v. Obtain v' j in

spherical polar coordinate system. That is to say, calculate vr r + v e 0 + v^ x . Rewrite this

expression in physical components.

From Equations (4.7-7, 21a to 1), we have
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-r dr (m rj

= ^ + ( r )v' + ( f ve + / M v * (4.7-22b)

= ~ (4.7-22c)
dr

'e ae \r e/ le el foe/

= — + i- vr (4.7-23b)

ae r

v* 3v*+Mvr + M v e + M v t (4.7.24a)

= ^ - + ^ v r + cotev6 (4.7-24b)
a^ r

vVv% + v V ^ + g + ^ + lv'+co,eve <4.7-25,

Rewriting in physical components, using Equation (4.6-86b), we have

vr = v( r ) , v9 = 1 v ( e ) , v^ = - J — v w (4.7-26a,b,c)
r sin 6

Substituting Equations (4.7-26a to c) into Equation (4.7-25), we obtain

r e * a / x 9 n \ a / i \ 2 v(r) c o t ©
v ' . . + ' % + v*.* • ^ (v«) + ^ (}v(e,) + ^ ( - ^ vw) + ^ U + _ v(6)

(4.7-27)

We note that on the right side of Equation (4.7-27) every term has the same physical dimension,
namely the reciprocal of time. Equation (4.7-27) expresses the divergence of the velocity vector v
and is a scalar, which is shown in the next example.

Example 4.7-3. Show that v1 ; is a scalar.

(4.7-22a)

(4.7-23a)
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The component v* • is a mixed tensor and will transform according to Equation (4.6-55)

v i V 3ql vr ( 4 7 . 2 8 )

'J 3qr 3qJ 'S

Setting j = i and summing

V i ^ ! M vr (4.7.29a)

'' a q ' d q 4 'S

= 8srvr>s (4.7-2%)

= v s s (4.7-29c)

= v^j (4.7-29d)

Equations (4.7-29b, c) are obtained by using the usual chain rule, and the property of the Kronecker
delta respectively. The indices i and s are dummy and can be interchanged freely. The sum v* i is

independent of the coordinate system and is a scalar or an invariant. That is to say, we obtain the same
value in the barred and in the unbarred coordinate system.

Grad, Div, and Curl

The operator V in a general curvilinear coordinate system can be defined as

V = g r i L (4.7.30)
dqr

If cp is a scalar function

gradcp = Vcp = gr ^SL (4.7-3 la,b)
- aq r

In Example 4.6-3, we have shown that —J— transforms as a covariant tensor.
3qr

If v is a vector

1 v = gr f - vs gs = gr | - vl g t (4.7-32a,b)
~ dqr ~ ~ dqr ~

= g r ! S Vs,r = I ' I t yt,r (4.7-32c,d)
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The components vS) r and v1 r are the covariant and mixed components respectively of a second

order tensor. This confirms the statement made earlier that the operation of taking the grad of a tensor
raises the order of the tensor.

In Example 4.7-3, we have calculated the divergence of a vector, which in the V notation is written as

V . y = gr — »v s g (4.7-33a)

= v s r gr • g s (4.7-33b)

= v s r 8r s (4.7-33c)

= v s s (4.7-33d)

The divergence of a second order tensor is defined as

Z " l = g r | ~ 7 - T s t g s g t (4.7-34a)
- dqr ~ -

= TSt,r I r # I s I t (4.7-34b)

= Tst>r 8rs g t (4.7-34c)

= Tst>s g t (4.7-34d)

The component Tst s is the contravariant component of a vector, since t is the only free index.

The divergence of a tensor of order n is a tensor of order n - 1 . Thus the divergence of a vector is a
scalar and the divergence of a tensor of order two is a vector.

The Laplacian of a scalar function cp is given by

V2 <p = div (grad <p) = V • (V cp) (4.7-35a,b)

If we denote grad cp by v, then

Vi = ^ (4.7-36)
dql

V2 cp can be written as
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V2(p = V-v = \ s s (4.7-37a,b)

= gsi — (4.7-37c)

= gsi — (4.7-37d)

= g 4 - ^ - - .M^-l (4.7-370

Note that V • v is defined as the covariant derivative of contravariant components. In Equation
(4.7-37c), we have used Equation (4.6-8 lc) to transform the covariant components VJ to contravariant
components vs. The metric tensor is a constant with respect to the covariant derivative and Equation
(4.7-37d) follows from Equation (4.7-37c). If the coordinate system is orthogonal, Equation
(4.7-37e) simplifies to

v-2cp = g i i U ! ! _ _ / J . ) ^ ] (4.7-38)
W aq1 ll l] aqj.

If u is curlv

u- = I r T 7 x vs § S (4.7-39a)

dqr

= v s , r I r x I S (4.7-39b)

= vs>r ers t g t (4.7-39c)
9vs ( n \ 1 erct

= ^-!sPrKJ#g_t (4.7-39d)

Note that u is expressed in terms of contravariant components and Equation (4.7-39d) may be written
as

u'= [ ^ " ( s P r ) Vp] ff (4'7"40)

If the coordinate system is orthogonal, then { I is zero if all three suffixes are different but if

r = s, the permutation tensor erst is zero. The only possibility of non-zero contributions from the
Christoffel symbol arises when p = s and p = r. The Christoffel symbol is symmetric [Equation
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(4.7-12)], erst = - esrt, and the contributions from the Christoffel symbol cancel out. To clarify this
point further, consider the case t = 1. The only non-zero contribution from erst arises when r = 2,
s = 3 and when r = 3, s = 2. Thus Equation (4.7-40) becomes

U Vg [dq2 13 2/V3 »3 2 / V 2 J + fg [dq3 \2 3 r 2 12 3 / ^ ] (4>/ ^

From the definition of the permutation tensor

e231 = * ' e321 = ~ l (4.7-42a,b)

Using Equations (4.7-42a, b), we find that the contributions from the Christoffel symbols cancel out
and Equation (4.7-41) reduces to

Ul = JL fe _ *2.| (4.7.43)
^g [8q2 aq3j

In an orthogonal coordinate system, Equation (4.7-40) simplifies to

u t = ^ M <!ls. (4.7.44)

Example 4.7-4. If f is a scalar function of position, write down V2f in the spherical polar
coordinate system (r, 0, (()).

Since the spherical polar coordinate system is orthogonal, we can then use Equation (4.7-38) and we
have

v2f = g r r [ ^ _ ( J ) K] + g e e f e _ ( J I K] + g n [ ^ l - J I *L
Lar2 V r< aqjj [a82 \Q Bl dqi\ [^2 $ )j Bqj

(4.7-45)

Using Equations (4.6-78a to f, 7-2la to 1), Equation (4.7-45) becomes

V2f a2f 1 \d2f ^ 3fl 1 \d2f . 2n 3f • o o 3f
v f = + — + r — + + r sin 6 — + sin 0 cos 0 —

dr2 r2 [a©2 9rJ r2 sin2 0 a^2 9r 30
(4.7-46a)

= ^ f + l A + _ ^ _ 3 ? f + 2 3 f + Q a t A a f (47_46b)

3 r 2 r 2 3 9 i ^ s i ^ B 3 i | > 2 r 3 r ^ 3 6
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Example 4.7-5. Calculate the physical components of curl v in the spherical polar coordinate
system.

If we denote curl v by u, we have from Equations (4.6-79, 7-44)

Ur = — L - t*- - ̂  (4.7.47a)
r2 sin 9 39 d<|>

ue = — L _ ^ _ ^ i ) (4.7-47b)
r2sin9 ^ dr I

u* = — 1 — f^ft - ^ | (4.7-470
r 2 s i n 6 \ 3 r 99/

Transforming all the components to physical components via Equations (4.6-86b, 89), we obtain

uw = ^ [ l < r s i n 9 v < « > - ^ H <4-7-48a)
= ^ e [ s i n e ^ L + c o s e v » » - l f ] (4-7'48b)

Um = ^ u [ ^ ¥ » " s ( " i l l e v » ) ) ] <4-7-48c)
= r±?[lf ^-e^»-sin8vwj (4.7-48d)

u<«-^&(rv«>-^M (4-7-48e)
1 \ 3V/QX 3 v M

= H r " ^ " + v « - - / J (4-7"48f)
Example 4.7-6. The equation of motion for slow flows may be written as

gradp = d iv i (4.7-49)

where p is a scalar (pressure) and 1 is the stress tensor. Write down Equation (4.7-49) in

component form for the spherical polar coordinate system.

Assume that p and %_ are functions of r and 9 only, and that x is symmetric. Equation (4.7-49) is
written in the so-called coordinate free form. For a general curvilinear coordinate system (q1, q2, q3),
the equation can be written in component form as
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-fr = *ij,j (4-7-50)
dq1

From Example 4.6-2, it is known that —*- is a covariant component of order one, as is the right side
dq1

of Equation (4.7-50).

Expanding Equation (4.7-50), we have

~ = V,l + *12,2 + V,3 (4-7-51a)
dq1

W M \ s t \ i 3T,2 2 I s I t \ 2

= 7 T + |s l V - l i V + - V + s 2) V - 1 2) *t

dq 3qz

^ 1 3 / 3 | s M l 3
+ T V + U 3 1̂ " 1 3 V (4-7-51b)

^ = V , l +^22,2 + t23,3 (4.7-5 lc)

^ 2 ! / 1 \ s / t \ 1 d%22 M i s I t \ 2
= - T + I s 1/ T 2 " 2 l } \ + 7 7 + s 2 / V - 2 2 V

3 q 9 q

8 x 2 3 M i s I t 1 3
+ T ~ + |s 3h2 " 2 3/ xt (4.7-5Id)

^q

7 T = V , l + ^32,2 + T33,3 (4.7-51e)
dq3

W M l s I t I 1 dx,2 / 2 1 s / t \ 2

dq 3qz

^ 3 3 / 3 1 s / t 1 3
+ - V + s 3 T3 - 3 3 V (4.7-51f)

^q

For the spherical polar coordinate system we identify

ql = r , q2 = 6, q3 = <|> (4.7-52)

Making use of Equations (4.7-2la to 1), Equations (4.7-5 lb, d, f) become



VECTOR AND TENSOR ANALYSIS 272

dp 3Trr 3tr9 1? tB9 t J „ „ ij

i = ^ - T + l t + ^ + " r 6 ^ + COte(^-V) W.7-53W

+ r sin2 0 Tr* + sin 6 cos 9 T ^ (4.7-53c)

Transforming all the covariant and mixed components to physical components, we obtain

I = I M + h ^ + (2T(rr)"Tr"^) + XJ^ ^^
±$e = l*% (r t(er)) + ̂  + 2 T(er>+ cot e (T(0e) - x«4 (4J"54b)

° = " ^ 5r" (f S ln 9 ^ r ) ) + ^ (Sln 9 X(*0)) + 2 s i n 6 X«|.r) + c o s 6 x(6$) (4.7-54C)
r sin 6 o9

Note that in Equations (4.7-54a to c) every term has the same dimension.

4.8 INTEGRAL TRANSFORMS

The divergence theorem which transforms a volume integral to a surface integral and Stokes' theorem
which transforms a surface integral to a line integral can be extended to higher order tensors and higher
dimensional spaces. In this section, we state the divergence theorem and Stokes' theorem for a first
and second order tensor in a generalized coordinate system.

We recall that the divergence theorem for a vector u is

J d ivudV = J u - n dS (4.8-la)

V S

or

[ uJ,j dV = fuinj dS (4.8-lb)
V S

(4.7-53a)
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where V is the volume enclosed by the surface S whose outward unit normal is n .

To extend the theorem to a second order tensor T, we may replace u by T in Equation (4.8-la)

and, in component form, we obtain

f T^j dV = f T'Jnj dS (4.8-2)
V S

We note that Equation (4.8-2) is a vector equation. Both sides, contain one free index (i) and it
represents three equations for i = 1, 2 and 3. Equation (4.8-lb) is one scalar equation, containing no
free index.

Stokes' theorem may be written as

/ ( e i j k u k , j ) n i d S = l u j d q 1 (4.8-3)

S C

where, as usual, C is the closed curve bounding the surface S.

For a second order tensor T, Equation (4.8-3) becomes

/ ( £ i J k T k J n i dS = f T^dqk (4.8-4)
S C

Again, Equation (4.8-4) represents three equations {£ = 1,2 and 3).

Example 4.8-1. Show that

I curl udV = J n x u dS (4.8-5)

V S

Let

T»i = e i J k u k (4.8-6)

On substituting Equation (4.8-6) into Equation (4.8-2) and noting that e 1 ^ is a constant with respect
to covariant differentiation, we obtain the following

f (e1 J k uk) ,j dV = j e[i k uk n j dS (4.8-7a)

V S
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f e[ikukj dV = f EiikniukdS (4.8-7b)
V S

Equation (4.8-7b) is the component form of Equation (4.8-5).

Example 4.8-2. Applying the law of conservation of momentum to a volume of a continuous
medium in motion, Bird et al. (1987) have obtained the equation

A J p v d V = - J [ n • p v v ] dS - J a • TC dS + J p g d V (4 .8 -8 )
V S S V

where v is the velocity, p is the density, 7t is the stress tensor and g is the gravity force.

Write down the equation in component form and hence deduce the equation of motion at each point in
space.

We choose to write the components as contravariant components and hence Equation (4.8-8) becomes

jL J p v1 dV = -j n- p v-i v1 dS - f n^ n'i'1 dS + f p g1 dV (4.8-9)
V S S V

To obtain the equation of motion at each point, we need to use the divergence theorem to transform the
surface integrals to volume integrals. Since the volume V is fixed in space, we may include the time
derivative inside the volume V. Equation (4.8-9) now becomes

f i (p v1) dV = -f (p VJ v'Jj dV - [ 71 J1 j dV + j p g1 dV (4.8-10)
V V V V

Since V is an arbitrary volume, Equation (4.8-10) holds at every point and we obtain

j£ (p v1) + (p vJ v1) j = -ni'1 ; j + p g1 (4.8-11)

Expanding the left side of Equation (4.8-11), we obtain

p!r+ v i ! !r+ p v J VVpvVi +pjv J v i ^^
(4.8-12)

From the mass balance, we obtain the equation of continuity which may be written as

^ +(pvJ) ; j = 0 (4.8-13)
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Combining Equations (4.8-12, 13), Equation (4.8-11) becomes

p ^ + vJ v1 ti = -TCJ1 j + p g1 (4.8-14)

The left side of Equation (4.8-14) is often written as —— ——I where 2_ is known as the

substantial (material) derivative. It is the time derivative following a material element.

4.9 ISOTROPIC, OBJECTIVE TENSORS AND TENSOR-VALUED FUNCTIONS

Isotropic Tensors

Many materials are isotropic, that is to say, their properties are independent of direction. Thus if
these properties are described by tensors, the components of these tensors are identical in all
rectangular Cartesian coordinate systems. To find out if a tensor is isotropic or not, we express its
components in a rectangular Cartesian coordinate system (x1, x2, x3) and rotate the axes to obtain a
new coordinate system (x1, x2, x3). If in the new coordinate system the components are identical, the
tensor is isotropic. Below we list the isotropic tensors of order zero to four. Here we consider only
Cartesian coordinate systems.

i) All tensors of order zero are isotropic. Since tensors of order zero are scalars and are
independent of direction, they are isotropic.

ii) 0 is the only isotropic tensor of order one. If (Uj, u2, u3) are the components of a tensor of

order one (a vector) in the (x1) coordinate system, and (u ') are the components of the same

vector in the (x 1) coordinate system, we can write

"m = ^mnun (4-9-1)

Let [x 1) be the coordinate axes obtained by rotating the (x*) system through n rad about the
x3-axis, then

•*H=-1, ^22 = ~1' f 3 3 = 1 ' the other 4 j = 0. (4.9-2a,b,c,d)

Combining Equations (4.9-1, 2a to d) yields

ul = -Uj , u2 = - u 2 , u3 = u3 (4.9-3a,b,c)

From Equations (4.9-3a, b), we deduce that for u to be isotropic

Uj = Uj = 0, u2 = u2 = 0 (4.9-4a,b,c,d)
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By rotating the axes about the x^axis through n radians, we obtain

u3 = 0 (4.9-5)

Thus 0 is the only isotropic tensor, that is to say, there is no non-zero isotropic vector.

iii) The Kronecker delta 8j: is isotropic. If T- is a component of a second order tensor in the

(x*) coordinate system and Trs is a component of the same tensor in the (x J) coordinate

system, then

T = I • I • T - - (A 9-6\

Letting Tj: be the Kronecker delta, Equation (4.9-6) becomes

Tr , = ' r i ' s j S i j ( 4 ' 9 " 7 a )

= ^ri^si = S r s (4.9-7b,c)

Thus the Kronecker delta transforms into itself and is thus an isotropic tensor.

In fluid mechanics, the isotropic part of the stress tensor 7U-• can be written as

rc[j0) = - p S j j (4.9-8)

where p is a scalar.

Any second order isotropic tensor can be expressed in terms of the Kronecker delta,

iv) The permutation tensor e} • k is an isotropic tensor of third order.

A useful relation between ê  j k and 8r s is

e i j k e r s k = 5 i r 5 j s - 5 i s 5 j r (4-9"9)

v) Any fourth order isotropic tensor c} • k £ may be expressed as

cHk£ = ^ 5 i j 5 k ^ + ^ 8 i k 5 j ^ + v 5 i ^ 5 j k (4.9-10)

where X, \i and v are scalars.

Example 4.9-1. For a Newtonian fluid, the deviatoric stress tensor x_ depends linearly on the rate-

of-deformation y . Obtain the constitutive equation of an isotropic, incompressible Newtonian fluid.
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The constitutive equation of a Newtonian fluid may be written as

Since the fluid is isotropic, we obtain using Equation (4.9-10)

*ij = i ^ j S ^ + ^ k ^ + vfii/̂ jYw (4-9-12a)

= ± [ X Y k k 5 i J + ^ y i , 8 j , + VY k i 5 j k ] (4.9-12b)

= ± [ X y k k 6 i j + ^Yi j + VYji] (4.9-12c)

= ±(v + M,)Vij (4.9-12d)

Equation (4.9-12d) follows from Equation (4.9-12c) since the fluid is incompressible. That is to say,

Ykk is zero. Also j - is symmetric. The coefficient (v + |i) is known as the viscosity of the fluid.

Some authors adopt the positive sign in Equation (4.9-12a) and others (Bird et al., 1987) adopt the
negative sign.

Objective Tensors

The constitutive equation of a material should be independent of the motion of the material.
Alternatively we may state that the constitutive equation should be the same for all observers,
irrespective whether they are at rest or in motion. Quantities which are indifferent to the motion of the
observers are known as objective quantities.

Consider two observers, one at rest (coordinate system x = x1), and the other in relative motion
(coordinate system x*1 = x*). Since the second observer is both translating and rotating relative to
the first one, we can relate these two systems by

x* = c(t) + Q(t)«x (4.9-13)

The vector c (t) in Equation (4.9-13) denotes the translation of the second observer relative to the first

observer. The matrix Q (t) denotes the rotation of the second observer relative to the first one and the

elements of Q are the £-, the direction cosines of the axes x** relative to x*. Note that in the

present transformation, both c and Q are functions of time t. Such transformation is known as a

transformation of frames of reference. Q is orthogonal at all times.

(4.9-11)
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Objective tensors are thus tensors which are invariant under a change of frame of reference. If we
denote the components of a vector u relative to the x1 coordinate system as u1 and the components
of the same vector u relative to the x** coordinate system as u*', then if

u* = Q«u (4.9-14)

u is an objective tensor (vector).

Note that due to the rotation of the axes, the components u*1 transform to components uJ under the
usual tensor transformation laws.

Equally a second order tensor T is an objective tensor if

T* = Q « T » Q t (4.9-15)

We now examine the objectivity of some tensors,

i) Velocity vector v

Differentiating Equation (4.9-13), we obtain

v* = c (t) + Q (t) • v + Q (t) • x (4.9-16)

Since c (t) and Q (t) do not vanish at all times, v is not an objective vector. This

observation is a common experience. Sitting in a moving bus and watching the passenger
sitting opposite to us, we seem to be at rest, but to an observer standing on the road we are
travelling at a finite velocity.

ii) The line element (ds)2

From Equation (4.9-13), we have

dx* = Q ' d x (4.9-17)

(ds*)2 = dx*t dx* = dx*«dx* (4.9-18a,b)

= d x t Q t . Q d x (4.9-18c)

= dxt dx = (ds)2 (4.9-18d,e)
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Equation (4.9-18d) follows since Q is orthogonal (i.e. Q ' Q = 1 ) .

Thus (ds)2 is an objective quantity. The length of an object in non-relativistic mechanics does

not depend on the motion of the observer.

iii) The rate-of-deformation y

Let

L*=^\, L = ^ (4.9-19a,b)

3x* "^

Using Equation (4.9-16), L becomes

h * = I - [£ (t) + Q * Y + Q • x ] — (4.9-20)
d2L = 9x*

Inverting Equation (4.9-13), we obtain

Q f «x* - Q f « c = x (4.9-21)

Note that ^ - = Q t.
3x* =

Combining Equations (4.9-20, 21) yields

L*= Q ' L " ^ ^ Q'Q1^ (4.9-22)

* * +

L is not an objective tensor since Q • Q is not zero at all times.

The rate-of-deformation y is defined as

Y = L +L T (4.9-23a)

= Q ' L ' Q 1 ^ Q » Q f + Q « L t » Q t + Q»Q f (4.9-23b)

= Q*(L + L t ) - Q + + Q . Q f + Q . Q t (4.9-23c)
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= Q . y . Q t + i_JQ.Qtj (4.9-23d)

= Q-Y'Q 1 " (4.9-23e)

Equation (4.9-23e) follows since Q is orthogonal. Thus y is an objective tensor and is an

admissible quantity in a constitutive equation.

Not all equations in physics are objective. The equation of motion is not objective, because velocity
and acceleration are not objective quantities. The equation of motion holds only relative to an inertial
frame of reference. If the motion of the earth can be neglected then a frame of reference fixed on the
surface of the earth can be considered to be an inertial frame.

Tensor-Valued Functions

As indicated earlier, the invariants of a tensor are scalar quantities which remain unchanged when
the coordinate system is transformed. They have an important role in tensor-valued functions. The
scalar product of u and u (u1 Uj) is an invariant. For second order tensors, we have three principal

invariants. These invariants arise naturally when we consider the eigenvalues and eigenvectors of a

second order tensor. A non-zero vector u is said to be an eigenvector of a second order tensor T if

the product T • u is parallel to u. This can be expressed as

T-u = Xu (4.9-24)

where A- is a scalar and is an eigenvalue of T .

The condition for the existence of a non-zero solution to Equation (4.9-24) is

d e t [ T - ^ I . ] = 0 (4.9-25)

On expanding the determinant, we obtain

- X3 + Ix X2 - 1 2 X + 1 3 = 0 (4.9-26)

where I2 = tr T , I2 = l [ ( t r I ) 2 - t r ( T 2 ) ] , I3 = det T .

The trace of tensor T (tr T ) is the sum of the diagonal elements.

The functions Ij, I2 and I3 are known as the principal invariants of T , and Equation (4.9-26)

is its characteristic equation.
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Another set of invariants is defined as

I = tr T = Ij (4.9-27a,b)

II = tr T 2 = I2 - 2 I2 (4.9-27c,d)

III = t r T 3 = l"(6I3 + 2 l J - 6 I 1 I 2 ) (4.9-27e,f)

If T is a symmetric tensor, then its eigenvalues are real and it is diagonalisable. That is to say, if

X-y, X2 anc* ^3 are its eigenvalues, T can be transformed to a diagonal matrix with Xy, X2 and

Xg as its diagonal elements. Then

I = A.j + X2 + X3 (4.9-28a)

12 = XXX2 + Xfa + X2X?) (4.9-28b)

13 = \{kfa (4.9-28c)

Further if cp is a scalar function of T , then (p is a function of the invariants of T , which in turn

is a function of A,j, X-^ and X3 in the case of a symmetric tensor T .

We also need to consider tensor-valued functions of T and we write

S = F ( T ) or Sjj = Fjj (T k e ) (4.9-29a,b)

If S can be expressed as a polynomial in T , then the Cayley-Hamilton theorem can be used to

simplify the representation of S .

The Cayley-Hamilton theorem can be stated as follows.

Every matrix satisfies its own characteristic equation.

That is to say, T satisfies Equation (4.9-26) and substituting T for X yields

- T 3 + I 1 T 2 - I 2 T + I 3 J = 0 (4.9-30)

Expanding F as a polynomial in T , we have

S = a o | : + a 1 T + a 2 T 2 + a 3 T 3 + . . . . + a n T n (4.9-31)

where a0, a1 ? . . . , a n are constants.
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Using the Cayley-Hamilton theorem [Equation (4.9-30)], we find that T can be replaced by

T , T , I_ and I1? I2 and I3 . Similarly, all powers of T higher than two in Equation (4.9-31)

can be replaced by T 2, T , \_ , and the three invariants of T . Thus Equation (4.9-31) simplifies to

§ = P 0 I + P i T + P 2 T 2 (4.9-32)

where Po, |3j, and P2 are functions of the invariants of T .

In continuum mechanics, it is not uncommon to restrict attention to isotropic materials and F is then

an isotropic function; that is to say, F is the same in all Cartesian coordinate systems. Thus, on

rotating the axes, we have

S = Q 5 Q t = Q F ( T ) Q f (4.9-33a,b)

T = Q T Q t (4.9-33c)

where Q is the orthogonal matrix defined in Equation (4.9-13).

Since F is the same in both coordinate systems,

| = F(I) (4.9-34)

Combining the two sets of equations, we deduce

Q F ( T ) Q1" = F I Q T QtJ (4.9-35)

Equation (4.9-35) defines an isotropic second order tensor-valued function F .

If F is isotropic, and S and T are symmetric, Equation (4.9-32) is a representation of S

without requiring that it can be expressed as a polynomial in T .

We note that T 2 may be written in terms of T , I and the inverse of T I T "M if it exists. On

premultiplying Equation (4.9-30) by T , we obtain

- T 2+ Ii T - 1 2 I + I3 T 4 = 0 (4.9-36)

Thus an alternative representation of S is

| = T o l + Y l l + Y - 1 1 ' 1 (4.9-37)
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where y0, Yj and y j are functions of 1 ,̂ I2 and I3.

The function F can be a function of more than one tensor. In the case where F is an isotropic

function of two symmetric tensors, T 1 and T 2,

S = F j T j , T2) (4.9-38a)

= V 0 I + V i T 1 + V2T2 + V3T? + V4T2 + V 5 ( T 1 T 2 + T 2 | i )

+ ¥ 6 ( T ? T 2 + T2T]) + V7(T1II+ T ^ T 1 ) + V 8 ( T 5 T 1 + lllfj (4.9-38b)

The quantities \|/0,..., \|/g are functions of the invariants of T j , T 2 and their products.

The ten principal invariants are

tr(Ti), t r ( j j ) , t r f j j ) , (i = 1,2)

t r (TiT 2 ) , t r ( | ? T 2 ) , t r f T i j j ) , t r (T? j j )

In extending from one tensor to two tensors, we have increased the number of functions from three to
eight. The number of arguments of each function has increased from three to ten.

The results for a function of an arbitrary number of tensors can be found in Truesdell and Noll (1965).

Example 4.9-2. A Stokesian fluid is a fluid whose deviatoric stress tensor t depends on the rate-

of-deformation y . Obtain a representation for T .

x is a tensor-valued function of y and if we assume that x can be expanded as a power series of y

we obtain Equation (4.9-32) which, in this case, is written as

I = P1Y + P2Y2 (4.9-39)

The term P o .1 has been dropped since we are considering the deviatoric stress.

A Stokesian fluid is isotropic. Since both x and y are symmetric, Equation (4.9-39) is an exact

representation of t . If the fluid is incompressible, the first invariant of y is zero because the
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equation of continuity has to be satisfied. In some flows, such as shear flows, the third invariant is

also zero. Thus, in shear flows, Pj and P2 can be functions of the second invariant of y .

As a matter of historical interest, we observe that Stokes proposed his constitutive equation in 1845,
Hamilton stated the Cayley-Hamilton theorem in 1853 for a special class of matrices, generalized by
Cayley in 1858, but it was only in 1945 that Reiner combined both results to obtain Equation (4.9-39).
Rivlin obtained Equation (4.9-39) two years later without requiring the polynomial approximation. It
is thus not surprising that Equation (4.9-39) is known as the constitutive equation of a Reiner-Rivlin
fluid.

It is perhaps appropriate to close this chapter by observing that Lord Kelvin (Crowe, 1967) did not
believe vectors would be of the slightest use to any creature. Can we imagine a present-day physicist
not using vectors at all? Many engineers believe tensors are of no use. Are they better prophets than
Lord Kelvin?

PROBLEMS

da1 a. If the magnitude of a vector a (t) is a constant, show that a (t) is perpendicular to ——.

2a. If v x a = q x a, determine the relation between v and q.

3 a. Determine V cp in each of the following cases

(i) cp = ax + by + cz

(ii) cp = ax2 + 2bxy + 2cz2

(iii) (p = f(r), r2 = x2 + y2 + z2 Answer: r f'(r)/r

4b. Show that

Y (v • v) = 2 (v • V) v + 2 v x curl v

If v = V cp, deduce that curl v = 0, that is to say, v is a conservative field. If v is a
conservative field, show that the acceleration defined by

a = -== + (v • V) v
at

is also a conservative field. Determine the acceleration potential cp.

5 a. I f v = 2 y z j _ - x y j + x z k and cp=xyz, calculate the following

(i) (v«V)cp, (ii) y«(V<p), (iii) (vxVJcp, (iv) (v»V)V<p
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6a. Evaluate the following

M
(i) I (x + y + z)ds

Jo
along the line joining the origin 0 to the point A (1, 1, 1). Answer: 3V3~/2

(ii) f (x2 + y2)ds
Jc
along the semi-circle x2 + y2 = 1, y > 0, z = 0. Answer: K

(iii) i) xy ds

along the sides of the square of unit length. That is to say, along the 4 lines given by
(a)y = 0, 0 < x < l , ( b ) x = l , 0 < y < l , (c) y = I, 0 < x < 1, (d) x = 0, 0 < y < 1.

Answer: 0

7a. If v = (x, y, z), evaluate the following

/•A
(i) I v • dr Answer: 42

Jo
/•A

(ii) I v x dr Answer: ^r- i - 8 j + -̂ k
Jo 5 - 3

along the curve given in parametric form by x = t, y = t2, z = t3 from the origin 0 to point A
(2, 4, 8).

8b. By inverting the order of integration, evaluate

(i) I I v d y d x Answer: 2 i n 2 - 1
Jo Jx y

r1 r1 3
(ii) I I dxdy Answer: 7i/12

Jo )y (x2 + y 2 )

[Hint: sketch the area of integration, split the area into two parts, if necessary.]

9b. By means of the transformation

x = r cos 0, y = r sin 0

evaluate
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jf e(x2 + y2)dxdy
A

where A is the positive quadrant (x > 0, y > 0) of the xy-plane.

Hence, deduce the value of

(i) I" e^dx, (ii) f°° e ^ d x
Jo Jo

where a is a constant. Answer: (i) ±&-, (ii) irV —

10b. Evaluate

///ydV

v

where v = 2xzi - x j +y2k and V is the region bounded by the surfaces x = 0, y =0,

y = 6, z = x2, z = 4.

[Hint: V is shown in Figure 4.P-10b.] Answer: (128, -24, 384)

tZ

FIGURE 4.P-10b Volume of integration

l la . S is the complete surface of a cube whose sides are of length 2a. Evaluate
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(i) | J ( x 2 + y2)dS
s

(ii) J I (xi + y j+zk )»n dS

s

where n is the unit normal. Answer: (i) **O a t (ii) 24 a3

12a. Use the divergence theorem to evaluate

ff v - a d S
s

O O T

where v = x i + y j + z k and S is the surface of a sphere of radius a, n is the unit

outward normal to S. Answer: *^a

13b. Verify the divergence theorem in each of the following cases, by evaluating both the volume
and surface integrals.

(i) v = xi + 4yj + zk , the volume V is bounded by the coordinate planes and the plane

2x + y + 2z = 6 in the positive octant.

(ii) v = xi + y j + (z - 1 j k , V is the region occupied by the circular cylinder x2 + y2 < 1,

z = ±l.

14a. Show that Equation (4.3-75) is identical to Equation (4.3-41).

15a. Show that Equation (4.4-40) is equivalent to Equation (4.4-23).

16b. Bird et al. (1960) obtained the equation of continuity for a binary mixture by considering a
volume element Ax Ay Az fixed in space. We can equally consider an arbitrary volume V
fixed in space. The volume V is enclosed by a surface S. The time rate of change of mass of

A in V is —̂ I pA dV, where pA is the density of A. The output of A across the surface
at J\

is I nA • n dS, n A (= pA v A) is the mass flux vector and n is the unit outward normal to

S. The rate of production of A by chemical reaction in volume V is I r. dV. Using the
Jv

mass balance and the divergence theorem to transform the surface integral to a volume integral,
deduce the equation
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17a. The set of axes Ox y z is obtained by rotating the set of axes Oxyz through an angle of 60°
about the z-axis, the direction of rotation being from the x-axis to the y-axis. Write down the
set of direction cosines which corresponds to this rotation. Hence, show that

"xi r i n. o 1 [x~
2 2

y = _ s i o y
2 2

z 0 0 1 z

If the coordinates of a point P are x =1, y = 2, z = 3, find x, y, z. Calculate

Vx2 + y2 + z2 and V x 2 + y 2 + z 2 . Explain your result.

18a. The set of axes Oxyz, Ox y z are as defined in Problem 17a. If the vectors u and v have
components (2, 3, 4) and (4, 5, 6) when referred to Oxyz, obtain their components when
referred to O x y z . Calculate the sum of the products ujVi and UjVj. Verify that
uivi = u i v i .

19a. The transformation from the rectangular Cartesian coordinate system (xJ, x2, x3) to the
elliptical coordinate system (£, T|, z) is

x1 = cosh 4 cos r), x2 = sinh \ sin r), x3 = z ; 0 < t, <«, -n <r\ <K, -°°<Z<°°.

Determine the geometrical shapes of the ^ and r\ coordinate curves.

Calculate the covariant and contravariant base vectors of the elliptical coordinate system. Is it
an orthogonal coordinate system?

20b. Calculate the metric tensor gij and its dual grs for the (£, r\, z) coordinate system considered
in Problem 19a, by using the results obtained in Problem 19a.

Also obtain gij by using the transformation given by Equation (4.6-53) and the fact that in a
rectangular Cartesian coordinate system the metric tensor is the Kronecker delta 5ij.

21a. Let m = n in Equation (4.6-55). Using the summation convention, show that Tnn is a scalar.
This process of setting a superscript equal to a subscript is known as the process of
contraction.

22a. Let Tjj be a covariant tensor of order two. v<j> is a quantity whose tensorial properties are
not known. But the inner product Tij v<j> is known to be a covariant vector (tensor of order
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one). Show that v<j> is a contravariant vector. That is to say, v<j> transforms as given by
Equation (4.6-33).

This method of ascertaining whether a quantity is a tensor or not is known as the quotient law.

23 a. The Taylor (1934) four-roll mill consists of four infinitely long cylinders immersed in a fluid.
The axes of the cylinders pass through the corners of a square as shown in Figure 4.P-23a.
Each cylinder rotates in the direction opposite to the two adjacent cylinders. The resulting flow
field is a point of stagnation at O; the fluid is drawn in at A and C and is expelled at B and
D. The stagnation point O is taken to be the origin of a rectangular Cartesian coordinate
system Ox1 x2, as shown in Figure 4.P-23a. The velocity components are

Vl = - C X 1 , V 2 = CX2

where c is a constant.

The transformation from the polar coordinate system (r, 0) to the Cartesian coordinate system
is given by

x1 = r cos 9, x2 = r sin 0.

Obtain the physical components of the velocity in the polar coordinate system.

Answer: [cr (sin2 0 - cos2 0), cr sin 0 cos 0]

o|f'o
—A 2 c — „ .

FIGURE 4.P-23a Four-roll mill
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24b. In Bird et al. (1987), Appendix E, it is required to evaluate the volume integral of the dyad
u u, where u is a unit vector, over a unit sphere. In the sperical polar coordinate system (see
Example 4.4-1), the volume integral may be written as

/•I rn fin
I I I u u rz sin 6 dr d0 d<b
h k Jo

Show that the volume integral is equal to ^JL j .

25 a. Show that the only non-zero Christoffel symbols of the second kind corresponding to the

cylindrical polar coordinate system (r, 0, z) are / \ and / \. Determine them.

le el Ir e l
The transformation from the Cartesian coordinate system (x1, x2, x3) to the cylindrical
coordinate system (r, 0, z) is

x1 = r cos 0, x2 = r sin 0, x3 = z.

The (r, 0, z) system is orthogonal and the metric tensors are gn = gzz = 1, geg = r2.

26b. In modelling a vibrating jet, Chan Man Fong et al. (1993) assumed that the physical
components of the velocity field, in the cylindrical polar coordinate system (r, 0, z), may be
written as

V« = 2 d J + U l ( r ' z ) C O S 0

v(0) = - ^ ( r u i ) s i n 0

v(z) = ~ w ( z ) -

The covariant component of the rate-of-strain tensor y- is defined as

Yij = vi,j + vj,i

Show that the physical components of j (denoted by A j in the original paper) are
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dw -, du1 r, / d U1 du,N . r d2W du,
^ + 2 -^r1- cosG - (r L + ^-L) sinG j - =-^ + -=-i cos6
dz dr 3r2 dr y 2 dz2 dz

- (r L + V - ) sinG aw _ 2 _ J , c o s e - (r - ^ J - + -—L) sine
^r2 dr dz 3r 3r3z 3z y

i ^ + ^ c o s e - ( r ^ I + ^ I ) S i n e - 2 d w
2 dz2 3z 3r3z 3z y dz

27a. Starting from the definition of div v given by Equation (4.7-33d), show that for an orthogonal
coordinate system, div v may be written as

divv = -—-L-— (h9hoVn^ + fh,hc.vns) + (h,h9v,o^
~ h l h 2 h 3 [ a q l U 3 W) 3q2 l l 3 (2)' 8 q 3 U 2 0))

where gi{ = h2.

28 a. Show that for any vector v

5 v i 9 v j
(l) Vj • - V: ; = - 4 f

dqJ dq

(ii) e1J (v: : - V; :) is a vector. Is it a covariant or a contravariant vector?

29a. Write the covariant derivatives with respect to qk of each of the following

(i) gij vJ, (ii) gij VJ , (iii) Tij vJ

30a. Calculate the physical components of grad cp in the cylindrical polar coordinate system (see
Problem 25a).

2
31a. Find V (p in the cylindrical polar coordinate system.

32a. If Ty is a symmetric tensor, show that EijkTy = 0.

33b. The symmetric stress tensor Ttjj satisfies the equation

K=ij, j = °-

Show that
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1 j " TCij yij dV = j v^ijnJdS
V S

where V is the volume enclosing the surface S, v* are the velocity components and

Y- • = V- • + V- •
r U i,J J . I '

34b. By considering the transformation of coordinates given in Problem 17a, show that if Ty is an
isotropic tensor, it is necessarily of the form A, 8jj.

35b. The rate-of-deformation tensor y has been shown to be objective. Show that

(i) -j— = -^— + v s y1J s is not objective;

•ij 3Yij s3Yi j dv1 .Sj 3vj -ii • u- •(n) v r?i = —— + vs — ySJ v J is objective.
(2) at axs dxs dxs

[Note that in (ii) we have ordinary partial derivatives and not covariant derivatives as in (i).
Verify that the Christoffel symbols cancel. The derivative defined in (ii) is known as the
Oldroyd contravariant upper convected derivative.]

36a. The rate-of-deformation tensor y for (i) a simple shear flow and (ii) an uniaxial elongational

flow are given respectively by

TO 1 0"
(i) Y = T 1 0 0

L0 0 0-

. H ° °
(ii) y = e 0 - 1 0

[ 0 0 2

Compute the principal invariants of y for the two flows. Answer: (i) 2 "f, (ii) 6 E

37b. The scalar function ty (I\, I2) is a function of the first two principal invariants of a second
order tensor T. Working with Cartesian components, show that

dty dty dty 1 \
3T^ = a!76-+ai^^6rs-Trs)





CHAPTER 5

PARTIAL DIFFERENTIAL EQUATIONS I

5.1 INTRODUCTION

In the first two chapters, we have considered ordinary differential equations (O.D.E.). An
O.D.E. is one in which there is only one independent variable and all derivatives are ordinary
derivatives. A partial differential equation (P.D.E.) is one in which there are two or more
independent variables and the derivatives that occur in it are partial derivatives.

Most processes that are of interest to engineers and scientists take place in a two or three-dimensional
space. Frequently, time may also be involved. The number of independent variables is usually more
than one and the equations governing these processes are partial differential equations.

In Chapter 3, we have seen that to determine the velocity field of an incompressible and irrotational
flow, we have to solve Laplace's equation, which is a partial differential equation. The equation
describing the vibrations of a string can be written as

—T = c ^ (5-1-D
at2 ax2

where y is the displacement of the string from its equilibrium position, t is the time, x is the
coordinate of a point on the string, and c is a constant. The diffusion of a material in a homogeneous
medium is governed by the equation

^ = « 2 ^ (5-1-2)
at ax2

where a is a constant, c is the concentration, t and x are time and position as in Equation (5.1-1).
In Chapter 10, we shall see that, in mechanics, Hamilton's equations of motion are given by a set of
partial differential equations. Other examples of P.D.E. and their solutions will be given in this and
the next chapter.

For simplicity, we consider only two independent variables , which we denote by x1 and x2 . We
denote the unknown function by u (Xj, x2). A P.D.E. can be written as
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f(Xl,x2;u,^-,^-,^,...) = 0 (5.1-3)
dXj dx2 9xj

where f is a function.

The order of the equation is defined to be the order of the highest order partial derivative in the
equation. If f is linear in u and its derivatives, that is to say, the coefficients of u and its
derivatives are only functions of the independent variables Xj and x2 , the equation is linear.

Equations (5.1-1, 2) are of second order and are linear. If f is linear only in the highest order partial
derivatives, the equation is quasi-linear. An example is

3u 3u _ ._ . „
j - + u r - =0 (5.1-4)
dXj dx2

If the equation is neither linear nor quasi-linear, it is non-linear. An example of a non-linear equation
is

3u (du \ n , . , -,
v— + 3— = 0 (5.1-5)
dxj dx2/

Just as for ordinary differential equations, a homogeneous P.D.E. is an equation in which there is
no term which is a function of the independent variables only. A first order linear non-
homogeneous partial differential equation can be written as

a^x j , x2) ̂ - + a2(xl 5 x2) ̂ - + a3(x1? x2)u = g ( x 1 > x 2 ) (5.1-6)

If g is zero, the equation is homogeneous.

5.2 FIRST ORDER EQUATIONS

In this section, we present several methods of solving first order partial differential equations.

Method of Characteristics

Consider the linear homogeneous equation which is written as

a l ( x l ' x 2 ) ^ ~ + a 2 ( x l ' x 2 ) ^ - = ° C5-2"1)

where &i and a2 are given functions.
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The solution of Equation (5.2-1) is a function u that satisfies Equation (5.2-1) in the (xls x2) plane.
Geometrically, we regard u as a surface in the (xj, x2) plane and the surface is generated by a family
of curves, F1? F2, ... Let Fj be a curve in the (x1? x2) plane, defined in parametric form by [see
Equations (4.3-1, 15)]

dxi , .
-j± = a1(x1,x2) (5.2-2a)

dx
^ 2 . = a 2 (x 1 ,x 2 ) (5.2-2b)

Along Fj, u is a function of one variable s and we can write

du 3u dx, 3u dx9

ds 3xj ds 3x2 ds

Combining Equations (5.2-2a, b, 3) yields

411 = 0 (5.2-4)
ds

The solution of Equation (5.2-4) is

u = C (5.2-5)

where C is a constant.

Along Fj, u is a constant and Fj is a characteristic curve. The characteristics are obtained by

solving Equations (5.2-2a, b) which, by eliminating s, can be written as

^ - ^ (5-2-6)
a l a 2

The solution has an arbitrary constant and the characteristics form a one-parameter family of curves.
To obtain a solution, additional conditions need to be prescribed. For a first order ordinary differential
equation, we need to impose an initial condition, that is to say, we need to know the value of the
function at a given point. For a partial differential equation, we prescribe the value of the function u
along a curve.

Example 5.2-1. Solve the equation

g- + x, I"- = 0 (5.2-7)
9xj l dx2

given that

(5.2-3)
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u (0, x2) = 1 + x2 , 0 < x2 < 2 (5.2-8)

The equations for the characteristics are [Equations (5.2-2a, b)]

£ =' • % - x> (5-2-9-b)
Combining Equations (5.2-9a, b) yields

517 = x> ( 5-2-1 0>

The solution is

xf-2x2 = K (5.2-11)

where K is a constant.

The characteristics are parabolas and are shown in Figure 5.2-1. On each of the parabolas, the value
of u is constant. The values of u are given along the x2-axis in the interval 0 < x2 < 2 and we have

denoted this line segment by y in Figure 5.2-1. The values of u in the region bounded by the
characteristics passing through the origin and (0, 2) can be determined. We denote this region by R
which is shaded in Figure 5.2-1. Let (xj, x2) be any point in R. The equation of the characteristic
that passes through (xj, x2) is given by Equation (5.2-11), which is

x j - 2 x 2 = Xj2-2x2 = K (5.2-12)

On this parabola, u is a constant and we write

u = C (5.2-13)

The parabola will intersect y at the point

xx = 0, X2 = 2 fe-^l2) (5.2-14a,b)

The value of u along y is given by Equation (5.2-8) and combining Equations (5.2-8, 13, 14b)
yields

C = 1 + 1 (2x2-xj2) (5.2-15)

Since (x"j, x2) is any point in R, we can replace it by (x1? x2) and the solution in R is

u = 1 + 1 (2x2-xf) (5.2-16)
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0 X,

FIGURE 5.2-1 Characteristics F of the differential equation and the line y
along which initial data are given

•

Note that y is not a segment of a characteristic F. If y is part of F, the conditions must be
consistent. That is to say, since u is constant on F, u must also be constant on y, otherwise there
is no solution.

This method can be applied to a quasi-linear equation which can be written as

f 1 ( x 1 , x 2 , u ) ^ - + f2(x1 ,x2 , u ) j ^ - = g ( x l 5 x 2 , u ) (5.2-17)

Suppose the solution can be written in an implicit form as

O ( X l , x 2 , u ) = 0 (5.2-18)

Differentiating with respect to xx and x2, we obtain

3O + 3O 8u_ = Q (5.2-19a)
9xj 9u 3x2

i * + ^ ^L = o (5.2-1%)
3x2 3u 8x2
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Assuming that -̂— is not identically zero, we deduce
all

p- = - ! * / £ (5.2-20a)
dXj dXj du

^ - = -jrL / jr (5.2-20b)
dx2 dx2 du

Substituting Equations (5.2-20a, b) into Equation (5.2-17), we obtain

3cb 3o 3o
f l ^ - + f 2 5 ^ + g ^ = ° (5.2-21)

1 dXj z dx2 du

Equation (5.2-21) is now a linear equation in O. However, it now involves three variables xt, x2,
and u. We consider all three as independent variables (in the original problem, only Xj and x2 are

independent variables and u is the dependent variable). The characteristics of Equation (5.2-21) are
given by

^ = ^1 = dL (5.2.22a,b )

f l f2 §

The characteristics of Equation (5.2-17) are obtained by solving Equation (5.2-22a). Solving Equation
(5.2-22b) yields the values of u along the characteristics and Equation (5.2-17) is solved.

Note that, in this case, f| and f2 are also functions of u and that the characteristics depend on u.

The initial values of u are given along the curve y and the solution (u) is defined along the

characteristics that pass through y, as shown in Figure 5.2-2.

The characteristics can also be given in parametric form and Equations (5.2-22a, b) can be written as

dx
-^J- = f j (x , ,x2 ,u) (5.2-23a)

dxo

-^- = f2(x1 ,x2 ,u) (5.2-23b)

g - = g ( X l , x 2 , u ) (5.2-23c)

Note that in this case ^U. j s not zero, unless g is zero. If g is zero, u is a constant along the

ds
characteristics.
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U

/ r '

FIGURE 5.2-2 Characteristics Tj of the differential equation
and the initial data curve y

Example 5.2-2. Model the movement of cars at a traffic light

We model the automobile traffic on the road by considering the flow to be one-dimensional and the
road to be the x-axis. We denote the local density (number of automobiles per unit length) by p (x)
and the velocity by vx. The principle of the conservation of the number of cars (Equation A.I-1)

implies that

^ + A ( p v x ) = O (5.2-24)

Our driving experience leads us to believe that vx is a decreasing function of p. If p is zero, we can
travel at the maximum allowable speed vm and if p reaches a critical value p c , we have a traffic jam
and vx reduces to zero. A simple function that describes this situation is

vx = v m d - p / p c ) (5.2-25)

We non-dimensionalize Equations (5.2-24, 25) by introducing

u = X <J = -^-, t = V ' ^ = T (5.2-26a,b,c,d)
vm Pc L L

where L is a typical length, which can be the distance between two traffic lights (i.e. a block).
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Equations (5.2-24, 25) now become

a7 + ^ M ) = 0 (5.2-27a)

u = ( l - o ) (5.2-27b)

Combining Equations (5.2-27a, b) yields

| | + ( l - 2 o ) g - 0 (5.2-28)

We now assume that at the origin (£, = 0) there is a traffic light which turns green at T = 0. The road
in front of the traffic light is free of vehicles and behind the traffic light the automobiles are bumper-to-
bumper. The density a initially can be written as

a (£,0) = { ' ^ < (5.8-29a,b)
1 0, £ > 0

The characteristics of Equation (5.2-28) are given by

f = T ^ (5-2-3 O a>
dt

or _J = i_2o (5.2-30b)

We note that the slopes of the characteristics change sign at a equals to a half. Also along each
characteristic, a is a constant (g = 0). The factor (1 - 2a) can be interpreted as the speed of the
propagation of the state a. This can be shown by differentiating c along a characteristic curve. We
have

da = 0 = ~ dx + | | d£ (5.2-3la,b)

The speed of propagation c of the state c is given by

c = -ji (5.2-32)

From Equations (5.2-3la, b), we deduce
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= ( l - 2 o ) (5.2-33b)

Equation (5.2-33b) is obtained from Equation (5.2-28).

Comparing Equations (5.2-27b, 33b), we find that the velocity of the vehicles is greater than the speed
of propagation of o. That is to say, u > c.

We now draw the characteristics which are shown in Figure 5.2-3. The initial conditions are given
along the ^-axis. For positive values of %, a is zero and we deduce from Equation (5.2-30b) that
the slopes of the characteristics are one. Let Fj be the characteristic that passes through the origin.
For negative values of £, the slopes are -1 and we denote by T2 the characteristic that passes
through the origin. The characteristics Fj and F2 divide the (£, T) upper half plane into three
regions which we denote by I, II, and III as shown in Figure 5.2-3. On the characteristics, the value
of o is a constant; in I and in, the values of a are zero and one respectively. In II, the slopes of the
characteristics vary from one to minus one and this implies (Equation 5.2-3Ob) that the values of a
vary from zero to one. The x-axis corresponds to a value of o equals to one half.

0 0 £

FIGURE 5.2-3 Characteristics and path of vehicles (...)
for the continuum traffic model

(5.2-33a)
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Let D be any point on a characteristic in II, as illustrated in Figure 5.2-3. Integrating Equation
(5.2-30b) and imposing the condition that the characteristic passes through the origin yields

£ = (1 -2a) x (5.2-34)

From Equation (5.2-34), we deduce that the value of a on the characteristic through D is

o= ^(l-|) (5.2-35)

The equations for Fj (a = 0) and F2 (a = 1) are respectively

£ = T (5.2-36a)

S = - x (5.2-36b)

Having obtained a description of a, we now consider the path of an individual automobile. In this
model, the car at the origin takes off at maximum speed since the state a associated with it is always
zero (along Fj). The car initially at A (£ = -a ) in Figure 5.2-3 is associated with the condition
a = 1. That is to say, it cannot move. It has to wait a finite time for the car density a to become
less than one, before it can move. This is associated with point B in the figure. The time it has to
wait can be obtained from Equation (5.2-36b) and is

x = a (5.2-37)

From now on as it moves forward in space and time, the value of a is given by Equation (5.2-35).
The speed u of the car is given by Equation (5.2-27b) and is written as

Note that, in Equation (5.2-30b), -— refers to the slope of the characteristics which are defined by the
dx J

P.D.E. [Equation (5.2-28)]. In Equation (5.2-38b), - ^ refers to the speed of the car and is defined
dx

by the trajectory of the car, as shown by the broken line in Figure 5.2-3. Note also that, in the case of
the first car, a = 0 and u = c. That is to say, the slope of the characteristic is also the velocity of
the car.

Integrating Equation (5.2-38b) yields

£ = X+KVIT (5.2-39)

where K is an arbitrary constant.

(5.2-38a,b)
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Imposing the condition that the vehicle passes through B [= (-a, a)], Equation (5.2-39) becomes

£ = t -2Va7 (5.2-40)

Equation (5.2-39) is the equation of a parabola and is the path of the vehicle shown as a broken line in
Figure 5.2-3. The time required for the vehicle to reach the traffic light (£ = 0) from B can be
obtained from Equation (5.2-40) and is given by

x = 4 a (5.2-41)

The last vehicle in the block (£, = -1) crosses the traffic light after five units of time (5a) and if the light
changes in less than five units of time, the car has to wait for the next change.

The typical path of a vehicle starting at point A can be summarized as follows. After the light turns
green, it remains stationary (AB) for a finite time (a), after which it starts to accelerate to cross the
traffic light after a further 4a units of time at point C. It continues to accelerate until it reaches its
maximum speed asymptotically.

•

The quasi-linear equation considered in this example can be used to describe the movement of glaciers
and floods. Further details are given in Rhee et al. (1986); see Problem 3b.

Lagrange's Method

Lagrange's method is similar to the method of characteristics. Equation (5.2-17) is now also solved
via Equations (5.2-22a, b). The latter equations are now referred to as the auxiliary (or subsidiary)
equations. They can also be written as

dxj fj dxj fj

Instead of defining the solution along the characteristics, in Lagrange's method the solutions of
Equations (5.2-42a, b) are written in implicit form as

O 1 (x 1 ,x 2 ,u) = Cj (5.2-43a)

O2 (xb x2, u) = C2 (5.2-43b)

where C^ and C2 are the arbitrary constants of integration.

The functions Oj and O2 are integrals of the auxiliary equations and are solutions of Equation
(5.2-17). This can be shown by differentiating ®i to yield

(5.2-42a,b)
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0 = dxt + — - dx2 + du (5.2-44)

9xj 9x2 3u

Using Equations (5.2-42a, b), Equation (5.2-44) becomes

- BO, 3$ , 9$ ,
flT-1 + ^ 7 - ^ + 8 ^ =° (5-2-45)

aXj dx2 ou

From Equations (5.2-20a, b), we deduce that Oj is a solution of Equation (5.2-17). Similarly, O2

is a solution and a general solution can be written as

F ( O b O 2 ) = 0 (5.2-46)

where F is an arbitrary function.

The system of Equations (5.2-22 a , b) might not be easy to integrate. A possible method of solving
the equations involves writing Equations (5.2-22 a, b) as follows

dx, dx9 du X,dx,+Lidx? + vdu
-7+ = -j2- = — = l * 2 (5.2-47a,b,c)

where we used the following relation

a r Xa + lie
r = J = — (5.2-48a,b)
b d Xb + |id

We now choose the functions X, \x, and v such that

Xf1+^if2 + vg = 0 (5.2-49)

Since we are now dividing by zero, we have to require that

A,dxj+Lidx2+vdu = 0 (5.2-50)

Comparing the exact differentials [Equations (5.2-44, 50)], we identify

X = ™±, n = ^ I , v - ^ I (5.2-51a,b,c)
dxj 3x2 du

Since X, Li and v are known functions of xl5 x2 and u, we can integrate Equations (5.2-5 la toe)
to obtain Oj. A different choice for the set {X, Li, v} in Equation (5.2-49) will provide a different
function O2.
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The general solution will be given by Equation (5.2-46) which implicitly determines u as a function
of Xj and x2. The arbitrary function F is determined by the initial conditions. Different choices of
3>j will generate different functions F, but the initial conditions will ensure that the solution is unique.

Example 5.2-3. Chromatography is widely used as a method of separation of chemical species and
references are given in Rhee et al. (1986). The simplest case is the chromatography of a single solute.
Suppose that the solution flows along the z-direction through a bed with void fraction e at a constant
superficial velocity v0. If c is the concentration in the fluid phase and n is the concentration in the
stationary phase, a mass balance [Rhee et al. (1986) or Bird et al. (I960)] yields

We assume a linear relation between n and c and write

n = Kc (5.2-53)

where K is a constant.

Combining Equations (5.2-52, 53) yields

v o | ^+[e + K ( l - e ) ] | ^ = 0 (5.2-54)

The initial and boundary conditions are assumed to be

c (z, 0) = 0 , c (0, t) = c0 H(t) (5.2-55a,b)

where c 0 is a constant and H(t) is the Heaviside function. [Equation (1.17-8a, b)].

The auxiliary equations are

dz _ dt _ dc

v0 a 0 (5.2-56a,b)

where <x = e + K ( l - e ) (5.2-56c)

From Equation (5.2-56a), we have
d i = a. = p (5.2-57a,b)

On integrating, we obtain

t - p z = Cj (5.2-58)

(5.2-52)
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where C\ is a constant.

From Equation (5.2-56b) , we deduce that

i £ _ o => c = C2 (5.2-59a,b)

The general solution is

F ( t - p z , c) = 0 (5.2-60a)

or c = f ( t - p z ) (5.2-60b)

Our aim is now to determine the form of the function f. That is to say, we want to know if f is an
exponential function, a trigonometric function, etc. To determine the form of the function, we use
Equations (5.2-55a, b). From Equation (5.2-55b), we determine that the unknown function f has to
be a Heaviside function. The solution is given by Equation (5.2-61). The reader should verify that
this equation satisfies the other boundary condition.

From Equations (5.2-55a, b), we deduce that

c = c 0 H ( t - p z ) (5.2-61)

Transformation Method

We illustrate this method by considering a first order partial differential equation which can be written
as

al (xl ' X2> 57~ + a2 (xi» X2) a~ + a3 (xl ' X2) u = f (xl> X2> (5.2-62)

We make a change of independent variables and write

£ = ^ (x 1 ,x 2 ) , r| = r((x1,x2) (5.2-63a,b)

Using the chain rule, we obtain

|3L = f£ 1 1 + | £ p . (5.2-64a)
9xj 9q dxl dr\ 8x1

|3L . | » | L + | i |!L (5.2-64b)
dx2 dc, dx2 dT) 3x2

Substituting Equations (5.2-64a, b) into Equation (5.2-62) yields
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We now choose £ and r\ such that we reduce the P.D.E. to an equation which involves only one
derivative. One possibility is to choose

% = xx (5.2-66a)

and to require the coefficient of 3— to be zero. That is to say

a'!̂ 7 + a ^ = 0 (5-2"66b)

This allows us to obtain r\ by solving

P- = ^ (5.2-67)

dx2 a2

Along each of the characteristics given by Equation (5.2-67), T| is constant.

Equation (5.2-65) simplifies to

&1 fe, n) | | + a3 fe, TI) u = f fe, TI) (5.2-68a)

o r ^L + £ i u = 1 (5.2-68b)
3 ^ aj ax

Equation (5.2-68b) can be solved by introducing an integrating factor I defined as

I = exp I 52- d^ (5.2-69)

Equation (5.2-68b) can now be written as

4-(uI) = —I (5.2-70)
3^ aj

On integrating, we obtain the solution to the problem.

u = I — Id£ + F(r|) (5.2-71)
1 I) al

(5.2-65)
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where F (r\) is an arbitrary function of r), which is determined from the initial (boundary)
conditions. The solution in terms of x{ and x2 is obtained via Equations (5.2-66a, b).

The transformation from (xj, x2) to (£, r|) is valid as long as the Jacobian

ii ii
8xj 9x2

J = (5.2-72)

9xj dx2

is non-zero.

Example 5.2-4. Solve the problem considered in Example 5.2-3 by the present method. Equations
(5.2-54) can be written as

01 §7 + v° I f = ° <52-73)
We identify aj to be a , a2 to be v0, ^ to be t, and T| is obtained by solving

£ - VQ <«-74>

Solving Equation (5.2-74), we find that r) is given by

•H = f t" ^ 1 = t - p z = constant (5.2-75a,b,c)
v vo /

Equation (5.2-73), in terms of £ and TJ, becomes

| - 0

The solution is

c = F(TI) (5.2-77)

where F is an arbitrary function.

Combining Equations (5.2-55a, b, 75b, 77) yields

c = c 0 H ( t - P z ) (5.2-78)

which is the solution obtained by Lagrange's method.

(5.2-76)
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Example 5.2-5. Solve the following equation using the three methods described in this section

subject to the condition

u = 2 on x2 = xf (5.2-80)

In this example, Equations (5.2-22a, b) are

dx, dx9 du

•at= ~H = 2^2 (52-81a'b)

From Equation (5.2-8la), we deduce that the characteristics are

x2 = Kxj (5.2-82)

where K is a constant.

The characteristics are straight lines through the origin, with slope K. Combining Equations
(5.2-8 lb, 82), we obtain

*± = — (5.2-83)

X! 2Kxj2

Solving Equation (5.2-83), we obtain along each characteristic

u = KxJ + C (5.2-84)

where C is a constant.

The constant C depends on the characteristic; that is to say, it is a function of K (= X2/X1). Using

Equation (5.2-82), Equation (5.2-84) can be written as

u = x1x2 + f(x2/x1) (5.2-85)

Imposing the condition given by Equation (5.2-80) yields

2 = xf + fCXi) (5.2-86)

We deduce

f(xj) = 2-Xj3 (5.2-87)

(5.2-79)
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Substituting f into Equation (5.2-85), we obtain

u = x1x2 + 2-(x2/xl)3 (5.2-88)

We now solve Equation (5.2-79) by Lagrange's method.

From Equations (5.2-47a to c, 81a, b), we note that by choosing

X = x2, M- = xi> andv = - l (5.2-89a,b,c)

we obtain

x2 dx: + Xj dx2 - du = 0 (5.2-90)

Equation (5.2-90) is an exact differential and can be written as

d ( x 1 x 2 - u ) = 0 (5.2-91)

Equation (5.2-91) implies that

x ^ - u = constant (5.2-92)

The two solutions of the auxiliary equations are given by Equations (5.2-82, 92). The general solution
[Equation 5.2-46)] can be written as

X l x 2 - u = g(x 2 / X l ) (5.2-93)

where g is an arbitrary function.

Using Equation (5.2-80), we find, as in the previous method, that g is given by

g(x2/xj) = ( x 2 / X l ) 3 - 2 (5.2-94)

It follows that Equation (5.2-88) is the solution of Equations (5.2-79, 80).

We now use the transformation method. We introduce two new variables £, and r\ and choose ^ to
be Xj. The variable T| is given by Equation (5.2-66b) and in this example, it is

The characteristics of Equation (5.2-95) are

^ = ^ (5.2-96)
x2 x2

(5.2-95)
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The solution of Equation (5.2-96) is

x9

- ^ = constant (5.2-97)
x l

The variable r\ is given by

Tl = xj/xj (5.2-98)

Equation (5.2-79) becomes, in terms of \ and T|,

„ du Jl

\— = 2£ Tl (5.2-99)

Solving Equation (5.2-99), we obtain

u = £ 2 r |+h( r | ) (5.2-100)

where h is an arbitrary function of r\.

Equation (5.2-80) now becomes

u = 2 on 4 = TI (5.2-101a, b)

Combining Equations (5.2-100, 101a, b) yields

h (TI) = 2 - r | 3 (5.2-102)

It follows that the solution is

u = 2 + £ 2 r | - r | 3 (5.2-103)

Reverting to the original variables (replacing £ by xj and r\ by x2/x!) , Equation (5.2-103)

becomes Equation (5.2-71). As expected, all three methods yield the same solution.
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5.3 SECOND ORDER LINEAR EQUATIONS

Second order linear partial differential equations are frequently encountered in the applications of
mathematics. They are classified into three types: hyperbolic, parabolic, and elliptic. Each type
describes a different physical phenomenon. Hyperbolic equations describe wave phenomena,
parabolic equations describe diffusion processes, and elliptic equations describe equilibrium
conditions.

We next deduce the canonical form of each type via a transformation of independent variables.

Classification

The general second order linear partial differential equation in two independent variables (xp x2) can

be written as

0 0 0
d u d u 3 u , 3 u , 9 u . , , ,,-<-, ,^

a n ^ T + a i 2 - , ^ + a 2 2 ^ T + b j - — + b 2 ^ — +cu = f(X l ,x2) (5.3-1)
dXj dXjdx2 ox2 dXj dx2

where a^, a12, a22, bj, b2, and c are functions of Xj and x2.

We simplify Equation (5.3-1) by changing the variables (xj, x2) to (£, T|), in an attempt to reduce the

number of higher derivatives. This transformation is given by Equations (5.2-63a, b). From Equation

(5.2-64a), we have

9jj_ = a ^ du_ _a_§_ T_a_ /au\ d^_ _a_ (du\ dr\] B\ du_

ax? = ax? K + 5xi k N a x i +9T1 \^)dxi\ + ax? ^

+ a ^ r̂ _ /3uj d$_ + d_ id_u\ a^ j 3

axj &̂ ^arijax! ari \arijaxj

= f l i . ) 2 ^ J L + 2-^i- ^ - a2u + f i n f ^u_ | a2^ du ( a2Ti au
[dxJ ^ 2 aX l a X l d^dr] + [dxJ dy]i 9 x2 a ^ + 9x2 an

(5.3-2b)

9 9

Similarly, we can compute and . Equation (5.3-1) now becomes
3xj dx2 dx\
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d2u\a (3M2+a ^ ^ + a fdM2l + -^H_[2a ^ ^ +a (^ ^
^ L M a ^ J 123*i 3x2 + a 2 2 f e J j % ^ J 2 a ^ a ^ + M a ^ a ^

3x2 3xj / 2 23x2 3x2 -i 2 ^ ^ X j / 1 23xj 3x2 2 2\3x2/

a u I" d2^ d2^ d2^ , dt, , a^l 9u [ a2ri a2-n
+ — a l l - ^ + a 1 2 — T ~ + a 2 2 - l - + b l T ~ + b 2 — + ^ T a l l ^ + a127 —

+ a 2 2 - 4 + b 1 — + b 2 — +cu = f (5.3-3)
9x2 dxl dx2

The transformation (Xj, x2) to (^, r|) is not yet defined. As mentioned earlier, the aim of the

transformation is to simplify Equation (5.3-1). We examine the possibility of defining a

d2u
transformation such that the coefficient of vanishes. This does not affect the generality of the

a2u
equation. That is to say, Equation (5.3-3) with the coefficient of = 0 will be equivalent to

a^2

Equation (5.3-1). An example is provided by Equations (5.4-6b, 21).

That is to say, we seek the conditions under which it is possible to have

J&t a12ii i i + ajiif - 0 (5.3-4,
\dx1/ axj ax2 \ax2/

The solution of Equation (5.3-4) provides the desired transformation for £.

Assuming that is non-zero, Equation (5.3-4) can be written as
3x2

a n ( | l / i iy+ a i 2 f i i / i i )+ a 2 2 = O (5.3-5,
\oxi 0x2/ \dxi 3x2/

The solution is

C i l / i l ^ = ~ai2± V a1|-4a11a22 (5 3 6 )

\aX l ax2/ 2an
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Consider the following cases,

(i) ax | > 4 a n a 2 2

In this case, we have two distinct roots and this is the hyperbolic case. Consider the curve

E, = constant (5.3-7)

On differentiating, we obtain

^ - dx, + ^ - dx9 = 0 (5.3-8)
3xj l dx2 l

It follows that

i i / i l = _d̂  (5.3-9)
9x] 3x2 dxj

Substituting Equation (5.3-9) into Equation (5.3-6) yields

dx^ = a12 + V a 1 2 - 4 a n a 2 2

dXl 2 a n

We have two possible solutions; that is to say, we have two possible curves (t, = constant),
one corresponding to the positive root and the other to the negative root. Noting that the

coefficient of is identical to that of — - if we replace S, by r|, we choose one root for

the curve % (= constant) and the other root for r\ (= constant), since r\ is also a function of Xj
and x2. These two curves are the characteristics of the partial differential equation. For
different values of the constants, these characteristics span a two-dimensional space. For a
hyperbolic equation, we have two real characteristics (^ = constant, r\ = constant) and they are
obtained by solving the equations

dxo_ = a12 + V a 1 2 - 4 a 1 1 a 2 2 (5.3-1 la)

dxl 2 a l l

dx^ = a 1 2 - V a 1 2 2 - 4 a n a 2 2 (5 3-llb)

dxj 2 a l l

respectively.

(5.3-10)
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With the coefficients of — - and equal to zero, we obtain the canonical form of a

as ^2
hyperbolic equation which is written as

J ^ + P l ^ + P 2 ^ + Yu - o (5.3-12)

where P l 5 P2, Y> a nd o are functions of t, and TJ.

Note that Equation (5.1-1) is hyperbolic.

In Equation (5.3-6), we have assumed ajj to be non-zero; but if a^ is zero, we can still

solve for = — / = — from Equation (5.3-5) and finally obtain Equation (5.3-12). If both ajj

and a22 are zero, the equation is already in the canonical form.

(ii) a12 = 4 a n a 2 2

This is the parabolic case and the two characteristics are coincident. We choose £

(= constant) to be a characteristic and the coefficient of to be zero. The coefficient of

32u
, which we denote by B, can be written as

B = (2.n *L ( | i / | l) + a,2fe f|i/|l-)+|S-l +2a22|̂ } | t
( X1 3xj v9xj 9x 2 / L^X2 R 3 x 2 / 3xxJ 3x2j 5x2

(5.3-13)

Substituting Equation (5.3-6) into Equation (5.3-13), we have

B= 2a11|3L(-^2-) + a1 2f | l ( -^2-) + |Hl+2a2 2 | lL)i§- (5.3-14a)
Udxl\2an) U[dx2 \ 2au) d x j 22 dx2 j dx2

= |n(.A + 2J l | i (5.3-14b)
9x2 \ 2an 22/J 3x2

= 0 (5.3-14c)

The canonical form of a parabolic equation is
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^ + P 3 ! + P 4 ^ + Y l » = ° 1 (5-3-15)

where P3, P4, Yi> a nd aj are functions of £ and TJ.

Equation (5.1-2) is a parabolic equation,

(iii) a12 < 4 a u a 2 2

This is the elliptic case and the characteristics are complex. Since the coefficients a;; are

real, the characteristics are complex conjugates [Equations (5.3-1 la, b)] and we write

£ = a + if* (5.3-16a)

ri = a - ip (5.3-16b)

where a and P are real.

Writing Equation (5.3-4) in terms of a and P and equating the real and imaginary parts to
zero yields

3a\2 8a 3a (3a\2 (d$\2 3p 3p /3p\2
a l l + a12 + a22 = a l l + a12 + a22

dXj/ dXj dx2 \"X2/ \ d x i / " x i "X2 \3X2/
(5.3-17a)

2 a i l ^ L ^ + a i 2 ( ^ ^ + * L iL + 2 a 2 2 ^ ^ ,o (5.3-Hb)
3xj 3xj \8xj 3x2 3x2 8xj 8x2 9x2

Rewriting Equations (5.3-3) in terms of a and P and using Equations (5.3-17a, b), we find
2 9 9

that the coefficient of is zero and the coefficients of and are equal. The
3a 3P 3a2 3p2

canonical form of an elliptic equation is

^ | + ^ | + P 5 ^ + P 6 ^ + y 2 u = a 2 (5.3-18)

3 a 2 3 p 2 5 a 3p

where P5, P^, y2, and a2 are functions of a and p.

Laplace's equation is an elliptic equation.
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As usual, we require the transformations from (xl5 x2) to (£, r\) to be non-singular; that is to say,

the Jacobian J, given by Equation (5.2-72), is non-zero. In the elliptic case, we replace the complex

functions £ and r\ by the real quantities a and (3 and this is implied in all subsequent discussions.

Let the coefficients of—-, , and be denoted by a11? a12, and a 2 2 respectively. By

direct computation from Equations (5.2-72, 3-3), we obtain

a12 - 4 a i l a 2 2 = j 2 ( a12 - 4 a n a 2 2 ) (5.3-19)

The Jacobian J is real, its square is positive, and Equation (5.3-19) implies that the sign of

al2 ~ 4 a l l a 2 2 is preserved on a transformation of coordinates. That is to say, the type (hyperbolic,

parabolic, or elliptic) of a P.D.E. is independent of the coordinate system. The quantity

al2 ~ 4a1 1a2 2 can be a function of (x1? x2), its sign can depend on the region of the (xj, x2) plane.

The type of an equation may change on moving from one region to another.

Example 5.3-1. Reduce the equation

^ + x2^=0 (5.3-20)
3xj 3x2

to its canonical form.

Equation (5.3-20) is elliptic in the region x2 > 0, hyperbolic in the region x2 < 0, and parabolic
along the Xj-axis.

In this example, Equations (5.3-1 la, b) become

dx /
—2- = - V - x 2 (5.3-21b)
QXi

We consider the regions (x2 > 0 and x2 < 0) separately.

In the upper half plane (x2 > 0), the characteristics are complex. On integrating Equations

(5.3-2la, b), we obtain

o . 1/2 . . (5.3-22a)
xj = 2ix2 + constant '

(5.3-21a)
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x 1 = - 2 i x ^ 2 +constant ( 5 - 3 " 2 2 b )

The solutions are

^ = X ] - 2 i x ^ / 2 = constant (5.3-23a,b)

Ti = x1 + 2ix;/2 = constant (5.3-23c,d)

We deduce that
i / T

a = Xj , P = 2x2 (5.3-24a,b)

Using Equations (5.3-24a, b), Equation (5.3-20) becomes

ĴL + ^ L _ _ I ^ = 0 (5.3-25)

3a2 3(32 P W

In the region x2 < 0, the characteristics are real and the solutions of Equations (5.3-21a, b) are

^ = X l - 2 x ^ / 2 = constant (5.3-26a,b)

n = x 1 + 2 x ; / 2 = constant (5.3-26c,d)

On transforming to ^ and x\, Equation (5.3-20) becomes

- ^ H _ + * _ ( *L _ M = o (5.3-27)

Equations (5.3-26a, c) show that the characteristics are parabolas.

On the x^-axis (x2 = 0), the equation is parabolic and Equation (5.3-20) reduces to the canonical form

~ = 0 (5.3-28)
3xj

We note that Equations (5.3-25, 27) have singularities at

p = 0 , ri = % (5.3-29a,b)

In both cases, the singularities correspond to the xj-axis (x2 = 0). That is to say, both hyperbolic
and elliptic equations have singularities on the Xj-axis and it is across this axis that Equation (5.3-20)



PARTIAL DIFFERENTIAL EQUATIONS I 427

changes from elliptic to hyperbolic. In a given problem, the boundary and initial conditions will have
to change according to the region in the (Xj, x2) plane. This will be addressed later.

5.4 METHOD OF SEPARATION OF VARIABLES

This method relies on the possibility of writing the unknown function u (xj, x2) as the product of two
functions f1 (Xj) f2(x2). In many cases, the partial differential equation reduces to two ordinary
differential equations for fl and f2. We can extend this method to more than two variables. We
illustrate this method by solving the following equations.

Wave Equation

An elastic string is tied at its ends (x = 0, x = L). The displacement from the equilibrium position is y,
as shown in Figure 5.4-1. We assume that the tension T in the string is uniform and the density of
the string is p. Consider a small element PQ of the string of length 5s. At equilibrium, it is at
P0Q0, as shown in Figure 5.4-1. The tension T acts along the tangents at P and Q.

y J k

\s I iS/v^ + S^

0 Po Q o L x

FIGURE 5.4-1 Vibrating string

The angles these tangents make with the x-axis are \|/ and y + 8y. The y component of the equation
of motion is
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a 2 y
p 8 s ^ - = Tsin(\|f+5\|/)-Tsin\|/ (5.4-la)

at2

= T(sin\|/cos 8\j/+cos\|/ sin 8\|/) - T sin \|/ (5.4-lb)

= T5\ | /COS\| / + 0(5\|J?>2 (5.4-lc)

By definition

p - = tan \|> (5.4-2)

On differentiating, we obtain

—¥- 8x = sec2\|f8\|/ (5.4-3a)
3x2

= l + ( | i ) 2 ] 5 v (5.4-3b)

- 8y (5.4-3c)

3y
Equation (5.4-3c) is obtained by assuming that •— is small. Its square and higher powers can then be

neglected. Similarly

21-l/2

cos y = 1 + l l^ l (5.4-4a)

- 1 (5.4-4b)

8s = 8x 1+R^ (5.4-5a)

\dx)

- Sx (5.4-5b)

Substituting Equations (5.4-3c, 4b, 5b) into Equation (5.4-lc) yields
d2y T 92y 9 32y / c , <• , ,
—]- = 3- = c2 — - (5.4-6a,b)
3t2 P 3x2 3x2

Note that Equation (5.4-6b) is identical to Equation (5.1-1).
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To complete the problem, we need to impose additional conditions. The string is tied at its ends, so
there is no displacement at these two points. This condition is written as

y (0, t) = y (L, t) = 0 (5.4-7a,b)

The vibrations depend on the initial shape of the string and the speed at which the string is released.
These are expressed as

y(x, 0) = f(x), -£ = g(x) (5.4-8a,b)
d t t=0

where f (x) and g (x) are given functions of x.

The conditions given by Equations (5.4-7a, b) are the boundary conditions and those given by
Equations (5.4-8a, b) are the initial (Cauchy) conditions.

We now seek a solution of the form

y = X(x)T(t) (5.4-9)

Differentiating and substituting into Equation (5.4-6b), we obtain

X ^ = c2^fT (5.4-10)
dt2 dx2

The function XT is not identically zero; dividing Equation (5.4-10) by XT yields

1 d2T c2 d2X t t ,* A *„= = constant (5.4-11)
T dt2 X dx2

Since the left side of Equation (5.4-11) is a function of t only and the right side a function of x only,
where x and t are independent variables, each side is equal to a constant. We choose the constant to
be - n2, so as to satisfy the boundary conditions.

Equation (5.4-11) represents two ordinary linear equations which can be written as follows

d 2 T 9
5_L+n 2 T = 0 (5.4-12a)
dt2

, 2 Y 2
^ A + n _ ^ x = 0 (5.4-12b)
dx2 c2
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The P.D.E. in two independent variables has been transformed to a pair of O.D.E.'s. Equations
(5.4-12b, 7a, b) form a Sturm-Liouville problem which is discussed in Chapter 2. The solutions of
Equations (5.4-12a, b) depend on the constant n and can be written as

Tn = A n cos (n t )+B n s in (n t ) (5.4-13a)

Xn = Cn cos (If) + Dn sin (*f) (5.4-13b)

where An, Bn, Cn, and Dn are arbitrary constants.

Equations (5.4-7a, b) imply

Cn = 0 (5.4-14a)

sin(DjL) = 0 (5.4-14b)

Note that we do not impose both Cn and Dn to be zero because we are not interested in the trivial

solution (y = 0). From Equation (5.4-14b), we deduce

(ILL) = s n ( S = l , 2 , ...) (5.4-15)

where s is an integer.

Using the principle of superposition, we express the solution as

oo

y = Y | A S COS fsS£l) + Bs sin fsitct1)] s i n (SEX) (5.4-16)
^•^ L V L / V L /J v L /
s = l

Assuming term-by-term differentiation to be permissible, we have

h. = V sice [_As s in (sEctj + Bs c o s (s^ctjl s in to] (5.4-17)
s = l

Imposing the initial conditions [Equations (5.4-8a, b)] yields

oo

f(x) = ^ A s s i n ( ^ ) (5.4-18a)
s = l

oo

g(x) = J Sffi£ B s s i n ( ^ ) (5.4-18b)
s = l



PARTIAL DIFFERENTIAL EQUATIONS I 431

The right sides of Equations (5.4-18a, b) are the Fourier series of f (x) and g(x) and the Fourier
coefficients are given by

As = f f(x)sinfesx) d x (5.4-19a)
L Jo L

(L
B s = - 2 - g (X) Sin (Sffii) dx (5.4-19b)

S7CC J V L /

The solution y is periodic both in x and t. Its period in x is (2L) and in t, it is I—). If the string

is released from rest [g(x) = 0], the coefficients B s are zero for all s. We note that we first impose

the boundary conditions and then the initial conditions. This procedure is necessary because the initial

conditions are given as functions and not as constants. The P.D.E. is decomposed in two O.D.E.'s

and on integrating, we obtain constants and not arbitrary functions. It is necessary to use the

superposition principle, that is to say, to expand the functions given in the initial conditions in terms of

appropriate eigenfunctions. The coefficients of the expansion are then determined. In this case, the

eigenfunctions are the trigonometric functions and we obtain a Fourier series.

D'Alembert's Solution

D'Alembert proposed a solution to the wave equation by transforming Equation (5.4-6b) to its
canonical form [Equation (5.3-12)].This is accomplished by introducing the characteristics, which are
[Equations (5.3-1 la, b)]

£ = x + ct, ri = x - c t (5.4-20a,b)

From Equation (5.3-3) with xl (= x), x2 (= t), we find that Equation (5.4-6b) becomes

82v
- ^ J L - = 0 (5.4-21)

The solution is

y = F ( 0 + G Cn) (5.4-22a)

= F (x + c t) + G (x - c t) (5.4-22b)

where F and G are arbitrary functions.

On differentiating y partially with respect to t, we obtain
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| = cF'(x + c t ) - cG ' (x -c t ) (5.4-23)

where the prime ( ' ) denotes differentiation with respect to the argument [(x + c t) or (x - c t)].

The initial conditions [Equations (5.4-8a, b)] imply

f(x) = F(x) + G(x) (5.4-24a)

g(x) = cF'(x)-cG'(x) (5.4-24b)

Integrating Equation (5.4-24b) yields

1 I g(QdC = F(x)-G(x) (5.4-24c)

7x0

where x0 is arbitrary.

From Equations (5.4-24a, c), we obtain

F(x) = j - [f(x) + l J g(QdC] (5.4-25a)
JX-0

G(x) = i - [f(x)-^ I g(Qd£] (5.4-25b)

Jxo

Substituting Equations (5.4-25a, b) into Equation (5.4-22b) yields

/•X + Ct i-X-Ct

y = j - [f(x + ct) + f(x-ct) + ̂  g ( O d C - l | g(OdC] (5.4-26a)
JXO •'XO

/•x+ct rxo

= X [f(x + ct) + f(x-ct) + l I g(QdC + l j g(OdC] (5.4-26b)

/•x+ct

= j - [f(x + ct) + f(x-ct) + l I g(Q<] (5.4-26c)
Jx-ct
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This solution is d'Alembert's solution and is equivalent to Equation (5.4-16). We note in this case
that, on integrating Equation (5.4-21), we obtain arbitrary functions and these functions are determined
by using the initial conditions. The functions f (x) and g (x) are defined only in the interval

0 < x < L (5.4-27)

We need to extend the range of the interval when (x + c t) exceeds L and when (x - c t) is negative.
To do this, we need to impose the boundary conditions [Equations (5.4-7a, b)] and from Equation
(5.4-22b), we deduce

F(ct) + G ( - c t ) = 0 (5.4-28a)

F(L + ct) + G ( L - c t ) = 0 (5.4-28b)

If we replace L + ct by o, Equation (5.4-28b) becomes

F (a) + G (2L - a) = 0 (5.4-29)

The value of t is not fixed and Equations (5.4-28a, 29) are valid for any t and a. We deduce that,
for any a,

G(-a) = G ( 2 L - a ) (5.4-30)

Equation (5.4-30) shows that G is periodic with period 2L. Similarly, F is also periodic with
period 2L. The solution can now be extended for all values of (x - c t) and (x + c t).

To examine further the physical significance of the solution, we consider the simpler case where the
string is released from rest. From Equation (5.4-8b), it is seen that this implies that g is zero.

Equation (5.4-26c) is then written as

y = X [ f ( x + c t ) + f(x-ct)] (5.4-31)

Consider a function f(r|). For a fixed value of TJ, f(r|) is constant. The transformation rj
[= (x - c t)] represents a displacement to the right at a speed c. That is to say, if initially (t = 0) the
point xj corresponds to a constant value r|, then at time t the point x that corresponds to the same
value of TI is Xj + ct. Thus f (x - ct) is a pattern moving to the right at a speed c without
changing shape. From Equation (5.4-31), we observe that initially the shape of the string is given by
f (x). Afterwards (t > 0), the original pattern breaks up into two similar patterns but only half the size
(amplitude) of the initial one. One pattern moves to the right and the other [f (£,)] to the left as shown
in Figure 5.4-2. Equation (5.4-31) represents the superposition of two waves, one moving to the right
and the other to the left, and at the end points (x = 0 and x = L), they are reflected. They are periodic
and of period 2L.
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y "

t = o

1 1 1 ^~
X

y J

t >o

X

FIGURE 5.4-2 Displacement of an initial pattern

Next we consider the case where f is zero and g is non-zero. Equation (5.4-26c) simplifies to

yx+ct

y(x,t) = ± I g(C)dC (5.4-32)
Jx-ct

The value of y at (x, t) depends only on the interval (x - c t) and (x + c t). This is the domain of
dependence and it is shown in Figure 5.4-3. It can be seen from Equation (5.4-26c) that the domain
of dependence is the same in the case f ^ 0.

Motivated by physical considerations, boundary and initial conditions [Equations (5.4-7a, b, 8a, b)]
have been imposed. These conditions are sufficient and necessary to determine a unique solution.
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l x , t )

L A •
x-ct x+ct x

FIGURE 5.4-3 Domaine of influence

Diffusion Equation

Diffusion is a process by which matter is transported from one part of a system to another. Consider
the diffusion of chemical species A in a binary system of A and B. Under appropriate conditions,
Equation (A.IV-1) simplifies to

^ A = j c , ^ ^ A (5.4-33)
at 3x2

where cA is the concentration of A, &p& is the diffusivity, t is the time and x is the position.

For simplicity, we write Equation (5.4-33) as Equation (5.1-2) which is reproduced here for

convenience

i£ = a2— (5-1-2)
9t 3x2

Equation (5.1-2) also describes the conduction of heat in an isotropic medium. In this case, c is the

temperature and a2 is the thermal diffusivity.
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We consider the diffusion out of a plane sheet of finite thickness L. Initially the distribution of the
diffusing substance is f(x). The surfaces are kept at zero concentration at all times. The initial and
boundary conditions can be written as

c(x,0) = f(x) , 0 < x < L (5.4-34a)

c(O,t) = 0 , c(L, t) = 0 , t > 0 (5.4-34b,c)

We seek a solution of the form

c (x, t) = X(x) T(t) (5.4-35)

Proceeding as in the case of the wave equation, we find that the partial differential equation leads to
two ordinary differential equations. They are

d j + n2T = 0 (5.4-36a)

2 9
— ' + — X = 0 (5.4-36b)

dx2 a 2

where n2 is a positive constant which is determined by the boundary conditions.

Equations (5.4-36b, 34b, c) constitute an eigenvalue problem. The solution is

Xn = A n c o s ~ + B n s i n ^ f (5-4-37)

Imposing the boundary conditions, we deduce

An = 0 , n = ^ a , s = l , 2, ... (5.4-38a,b,c)

The solution of Equation (5.4-36a) is

Tn = Cn e"11'1 (5.4-39)

where Cn is a constant.

Using the principle of superposition, the general solution of Equation (5.1-2) subject to Equations
(5.4-34b, c) is

c = ^ B s exp(-s 2 7 i 2 a 2 t /L 2 ]s in^^- (5.4-40)
s = l

The Fourier coefficients Bs are obtained from the initial conditions and they are given by
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Bs = f f (x) sin S ? 2 L d x (5.4-41)
Wo L

The solution is sinusoidal in x, as in the case of a vibrating string, decaying exponentially in time,
unlike the case of a vibrating string. It decays more rapidly with increasing a in agreement with
physical expectation.

Laplace's Equation

We consider the steady temperature in a semi-infinite rectangular solid. Historically, this is the first
problem considered in detail by Fourier, as pointed out in Carslaw and Jaeger (1973). The solid is
bounded by the planes

x = 0, x = L, y = 0, y—>oo (5.4-42a,b,c,d)

The two dimensional heat equation is given by (see Appendix HI)

Kma*lil + tl) (5.4-43)

where T is the temperature and a2 is the thermal diffusivity.

At steady state, Equation (5.4-43) reduces to

^ 1 + ^ 1 = 0 (5.4-44)
dx2 dy2

The walls (x = 0, x = L) are kept at zero temperature and the wall (y = 0) is kept at a temperature f (x).
As y tends to infinity, the temperature tends to zero.

The boundary conditions are

T (0, y) = T (L, y) = 0 (5.4-45a,b)

T (x, 0) = f (x), T —> 0 as y —> 00 (5.4-45c,d)

We employ the method of separation of variables and write

T = X(x)Y(y) (5.4-46)

Differentiating, substituting the resulting expression into Equation (5.4-44), and dividing by XY
(* 0) yields
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^-4 + n2X = 0 (5.4-47a)
dx2

^ - n2Y = 0 (5.4-47b)
dy2

The solution of Equation (5.4-47a) satisfying Equations (5.4-45a, b) is, as in the previous two cases,

X n = s innx , n = ^ (5.4-48a,b)

where s is an integer.

The solution of Equation (5.4-47b) is

Yn = An en y + Bn e-ny (5.4-49)

To satisfy Equation (5.4-45d), we require An to be zero. Using the principle of superposition, T is

given by

oo

T = X Bs e"s7ty/L sin SfL (5.4-50)
s = l

Combining Equations (5.4-45c, 50) yields

oo

f(x) = X B s s i n ^ - (5.4-51)
s = l

From Equation (5.4-51), we deduce

fL
B = ^ f (x) sin ^ ^ dx (5.4-52)

L j 0 L

Substituting Equation (5.4-52) into Equation (5.4-50), we obtain

L stt JO L I L

The temperature is sinusoidal in x and decays exponentially to zero with increasing y as required by
the boundary conditions.

(5.4-53)
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We have so far considered the dependent variable to be a function of two independent variables. In a
three-dimensional space, the wave equation, the diffusion equation, and the Laplace equation are
written respectively as

v 2 l 32u
V u = — —7 (5.4-54a)

cl 3t

V u = — — (5.4-54b)
or at

V u = 0 (5.4-54c)

2
where V is the Laplacian operator [Equation 4.2-31)] and u is the dependent variable.

We note that at steady state, both the wave and diffusion equations reduce to Laplace's equation. The
rectangular Cartesian coordinate system is not always the most suitable coordinate system to refer to.
In many cases, it is more appropriate to choose the cylindrical polar or the spherical polar coordinate
system. We next solve Laplace's equation in these two coordinate systems.

5.5 CYLINDRICAL AND SPHERICAL POLAR COORDINATE SYSTEMS

Cylindrical Polar Coordinate System

In Chapter 4 (Problem 25a), we have defined the cylindrical polar coordinate system (r, 0, z). Using
Equation (4.7-38), we deduce (Chapter 4, Problem 31a) that Laplace's equation can be written as

J2- 3 2 U 1 9u 1 92u 32u _ . . . , , .
V u = — - + + — — + — - = 0 (5.5-la,b)

dr2 r dr r2 dQ2 dz2

We assume that u is of the form

u = F(r, G)Z(z) (5.5-2)

Differentiating, substituting the resulting expression into Equation (5.5-lb), and dividing by FZ
{it 0), we obtain

X ^ + J _ 3 F + J _ ^ F s_J_d?Z = n 2 (55_3ajb)

F 9r2 rF dr r2F dQ Z dz2

where n2 is a constant.
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Note that the left side is a function of r and 8 and the right side is a function of z, and since r, 0,
and z are independent variables, each side must be equal to a constant, which we denote by n2.
From Equations (5.5-3a, b), we obtain two equations which can be written as

— + n2Z = 0 (5.5-4)
dz2

^ + l ^ + l ^ - n ^ F = 0 (5.5-5)
3r2 r dr r2 39

We now write F as

F = R(r)0(6) (5.5-6)

Proceeding in the usual manner, we obtain

r ! d^R + r. dR _ n V = _d2© = m2 ( 5 5 . 7 a b )

R dr2 R dr d6

Equations (5.5-7a, b) can be written as

r2d*R + r d R _ ( n V + m 2 ) R = 0 ( 5 5 . g a )

dr2 dr

2
^ - y + m 2 0 = 0 (5.5-8b)
d9

Solving Equation (5.5-lb) implies solving Equations (5.5-4, 8a, b). We consider the simpler case
where u is not a function of z. That is to say, we consider the two-dimensional case. The constant
n2 is zero and Equation (5.5-8a) simplifies to

r 2 d 2 R 1 + r d R _ m 2 R = 0 ( 5 5 _ 9 )

dr2 dr

Equation (5.5-8b) remains unchanged and its solution is

0 = AcosmG + B sinmG, m * 0 (5.5-10)

where A and B are constants.

The function 0 must be single valued, that is to say
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cosmB = cos m (9 + 2 s %) (5.5-11)

where s is an integer.

This implies that m must be an integer. Equation (5.5-9) is the Euler (unidimensional) equation and
its solution is

R = Crm + Dr~m, m * 0 (5.5-12)

where C and D are constants.

If m is zero, 0 and R are given by

0 = Ao0 + Bo (5.5-13a)

R = Coinr + Do (5.5-13b)

where Ao, Bo, Co, and Do are constants.

The solution /En r is the fundamental solution and is singular at the origin. If the function has no
singularity and is periodic in 0, the constants D, Ao, and Co are zero. Using the principle of
superposition, F is given by

F = Eo + X LAm cos m6 + Bm sin mBj rm (5.5-14)
m = l

where Eo, Am, and Bm are constants.

In the three-dimensional case (m # 0), we have to solve Equations (5.5-4, 8, 9). The solution of
Equation (5.5-4) is

Z = Hcosnz + Gsinnz (5.5-15)

where H and G are constants.

To solve Equation (5.5-8a), we make a change of variable and write

a = inr (i = / r T ) (5.5-16)

Equation (5.5-8a) becomes

a 2 d ^ R + a d R + ( a 2 _ m 2 ) R = 0 ( 5 5 _ 1 ? )

da2 da
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Equation (5.5-17) is the Bessel equation with complex argument. Its solution is

R = L I m ( n r ) + M K m ( n r ) (5.5-18)

where I m and Km are the modified Bessel functions of the first and second kind respectively. L
and M are constants.

The function Km has a singularity at the origin. We assume that the function remains finite at the
origin. The constant M must then be zero. If the radius of the cylinder is a, there is no loss of
generality in assuming that R(a) is one and Equation (5.5-18) becomes

I m(na)

The constants A, B, H, K, and n are to be determined from the boundary conditions. To complete
the problem, we assume the boundary conditions to be

u (r, 6, 0) = u (r, G, n) = 0 (5.5-20a,b)

u(a, 6, z) = f(8, z) (5.5-20c)

Equations (5.5-20a, b) imply that H is zero and that n is an integer.

The general solution is

u = X G n s i n n z ^ | + X £ Gn sin nz[Amcosm9 + Bm sin me] ^ |
n = l 0 n = l m=l m

(5.5-2 la)

= \ X An0 sin n z f ^ | + £ K m c o s m 6 + Bnm sin **] ^ nz ^ |

(5.5-21b)

Applying Equation (5.5-20c) to Equation (5.5-21b) yields

CO OO

f (0, z) = i- ]£ An0 sin nz + ^ [Anm cos m6 + Bn m sin me] sin nz (5.5-22)
n = l m,n = l

The right side of Equation (5.5-22) is the (double) Fourier series of f (6, z). The coefficients
Anm and B n m are given by

(5.5-19)
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A n m = -2- I I f (6, z)sinnz cosmG d0 dz (5.5-23a)
K2 JO JO

rn ,2n

Bnm = \ I I f (0' z> s in n z s i n m e d e d z (5.5-23b)
n Jo Jo

We have assumed the height of the cylinder to be n for convenience. If the height is L, it can be

scaled to n by introducing z 1= ^j. If the cylinder is semi-infinite, and u tends to zero as z

tends to infinity, the solution cannot be sinusoidal in z as given here. The sign of n2 in Equations
(5.5-3a, b) has to be changed. Equations (5.5-4, 8) become

5 - ^ - n 2 Z = 0 (5.5-24a)
dz2

r2 d*R + r dR + (n2r2 _ m2) R = o (5.5-24b)
dr2 dr

Equation (5.5-8b) remains unchanged. The solution of Equation (5.5-24a) that satisfies the condition
Z tends to zero as z tends to infinity is

Z = Ke~n z (5.5-25)

where K is a constant.

Equation (5.5-24b) is the Bessel equation and the solution that remains finite at the origin is

R = LJ m (nr) (5.5-26)

where Jm is the Bessel function of the first kind, and L is a constant.

We have already assumed that u is finite as r tends to zero, and u tends to zero as z tends to
infinity. The remaining conditions are assumed to be

u (a, 0, z) = 0 , u (r, 9, 0) = f (r, 0) (5.5-27a,b)

Equation (5.5-27a) implies that n a are the zeros of Jm. There are an infinite number of them and we

denote them as Xnm (knl, Xn2, ...)

Jm(na) = Jm(A,nm) = 0 (5.5-28a,b)
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The general solution is given by

( \ \ i\ \
11 - V F pvn nOz T % 0 r

n - 2u KnexPl—i~/Jol^r/
n = l

+ X I Kn exp (- ̂ f\ Jm (hf) [Am cos mO + Bm sin me] (5.5-29a)
n = l m = l

- 1 Y A exn ( ^ ^ ) T K ° r
~ 2 ^ On p \~ a / ol a /

n = l

/ . \ /-

+ I [Anm c ^ me + Bnm sin me] exp [- -^) Jm ( W ) (5.5-29b)
m,n = l

Equation (5.5-27b) implies that

f (r, 0) = 1 £ AOn Jo [hjQL) + £ [Anm cos m0 + Bnm sin me] Jm pf) (5.5-30)
n = l m , n = l

Equation (5.5-30) is the (double) Fourier-Bessel series expression of f (r, 6).

We recall that the Bessel functions are orthogonal and their properties are discussed in Chapter 2. The
coefficients Anm and B n m are given by

/•a f2n U \
Anm = — - — 2 f (r, 0 ) j m ^m!_J c o s m 6 r d r d e (5.5-31a)

Bn m = — - — 2 f (r> 0) j jmi_ s i n m e r d r d 0 (5.5-3lb)

^ 2 a 2 ^ + i ( ^ n m ) )o )o

Spherical Polar Coordinate System

Laplace's equation in the spherical polar coordinate system (r, 0, <|>) was deduced in Example 4.7-4
and can be written as

a\ + 29u + i _^u +Cote au + _L_a!u = Q ( 5 5 3 2 )

3r2 r dr r2 30 r2 dQ r2sin26 d<|>

We assume that u can be written as
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u = F (r, 9) O (<|>) (5.5-33)

In terms of F and <&, Equation (5.5-32) becomes

r2sin29 (d2F 2 9F 1 92F cot 9 9 F ) 1 d2O 2 , c <- ,„ u,
+ + — —y"1" —, = 2 = m (5.5-34a,b)

F 9r2 r 9r r2 99 r2 99 O dd>
v /

where m2 is a constant.

Equations (5.5-34a, b) can be written as

2
— + m2O = 0 (5.5-35a)
d<|)2

/ 9 0 \
o n fl F 2 9F 1 9 F cot 9 9F T

r2 s i n20 5Lil + A ^ L + _ L ^ _ L + £°1?. ^ £ _ m 2 F = 0 (5.5-35b)
9r2 r 9r r2 99 r2 99

/

We now write F as

F = R(r)0(9) (5.5-36)

Equation (5.5-35b) can be written as two ordinary differential equations. They are

2
r2 d_R + 2 r dR _ ^ R = Q (5.5-37a)

dr2 dr

2 I 2 \
d _ | + c o t e d e _ _m__XQ = 0 (5.5-37b)
d9 d9 \sin29 )

In many physical situations, u is independent of <|>, and we first consider this case. This implies that
m is zero and we need to solve Equation (5.5-37a) and

d - y + cot 9 — + ^ 0 = 9 (5.5-37c)
d9 d9

We transform Equation (5.5-37c) into the standard form of a Legendre equation by writing x as
cos 9 and we obtain
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( l -x 2 )^ - f - -2x — + XQ = 0 (5.5-37d)
dx dx

By writing X as n (n + 1), Equation (5.5-37d) becomes the standard Legendre equation discussed in
Chapter 2. The solution is

0 = APn(x) + BQn(x) (5.5-38)

where A and B are constants and Pn and Qn are the Legendre functions of the first and second

kind respectively.

The singular points of the equation are at x (= ± 1) which corresponds to 0 (= 0,7t). If the solution
is finite for all values of 0, B must be zero, Pn are the Legendre polynomials, and n is an integer.

Equation (5.5-37a) is the Euler equation and its solution is

R = Crn + ^ - (5.5-39)
n+l

Note that we have replaced X by n (n+ 1) and n is an integer. If R is finite at the origin, D must
be zero. The general solution is

oo

u = X AnrnPn(cos0) (5.5-40)
n=0

Suppose the boundary condition on the sphere of radius a is specified as

u (a, 0) = f (0) (5.5-41)

Combining Equations (5.5-40, 41) yields

oo

f(6) = £ AnanPn(cos0) (5.5-42)
n=0

Equation (5.5-42) shows that f(0) is expressed as a Fourier-Legendre series and the coefficients An

can be determined using the orthogonal properties of Legendre polynomials. The coefficients A n are
given by

A n = (2n+l) I f ( e ) p n ( c o s 0 ) s i n e d e (5.5-43)
2an Jo
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We have now obtained the solution inside the sphere. If the region of interest is outside the sphere, the
condition at the origin cannot be imposed and D is not necessarily zero. The solution is then given as

u = X [Cnrn + -^j") P n( c o s e ) (5.5-44)
n=o I rn + /

The coefficients Cn and Dn are determined from the boundary conditions. The region can be

enclosed by surfaces of spheres of radii a and b with the possibility that b tends to infinity. When

n is zero, the solution is — and it is the fundamental solution. In the general case, u is a

function of all three variables, and we have to solve Equations (5.5-35a, 37a, b). The solution of
Equation (5.5-35a) involves sin m§ and cos m(j) and we require the function to be single valued.
Therefore, m has to be an integer. The solution of Equation (5.5-37b) is the associated Legendre
function. The problem can be completed by imposing appropriate boundary conditions.

The method of separation of variables consists of writing the unknown function of two or more
independent variables as a product of two or more functions, such that each of these functions is a
function of one variable only. The partial differential equation is transformed to two or more ordinary
differential equations. Together with the boundary conditions, the differential equations form
eigenvalue problems which generate eigenfunctions. The initial conditions are expanded in terms of
these eigenfunctions in the form of Fourier series. The constants generated by the solutions of the
ordinary differential equations are identified as the coefficients of the Fourier series and they can be
determined. In general, the solution of a partial differential equation involves undetermined functions
rather than undetermined constants. In the method of separation of variables, the undetermined
functions are expressed as Fourier series. Possible base functions for the series are trigonometric
functions, hyperbolic functions, and orthogonal functions considered in Chapter 2. The functions to
be chosen depend on the coordinate system.

5.6 BOUNDARY AND INITIAL CONDITIONS

The three types of second order linear partial differential equations have been derived in a physical
context and the prescribed boundary and initial conditions have been based on physical considerations.
Each type of equation requires different conditions. These are shown in Figure 5.6-1. For

convenience, we denote the dependent variable by u. For a hyperbolic equation, both u and -̂— are
at

given initially and at the boundaries only u is given. In the case of a parabolic equation, only u needs

to be known initially. The initial value of -=— can be determined from Equation (5.1-2). In addition,

the values of u are given at the boundaries. These two types of equations describe evolutionary
processes and, from the initial conditions, we can integrate forward to determine the values of u at a
later stage. Laplace's equation characterizes the steady state and u is prescribed on the surfaces that
enclose the region of interest. In Example 3.5-7, we have shown that the solution of Laplace's
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equation in two-dimensions is determined by the values of the function on the boundary curve. The
conditions to be specified have to be compatible with the particular type of equation. We elaborate the
importance of imposing the appropriate boundary and initial conditions by considering two examples.

l f to) M (b)

u u u u

o u ow) j j j [ L x o u L x
dt

y l _ . U . . . , (C)

u u

o u L x

FIGURE 5.6-1 Prescribed conditions for (a) hyperbolic, (b) parabolic,
and (c) elliptic equations

Example 5.6-1. Solve the equation

^H. + t l = o (5.6-1)
3x2 3y2

subject to

u (x, 0) = 0 , p- = S i a ^ (5.6-2a,b)
rfy y=o n
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This example was first considered by Hadamard.

Note that we have to solve an elliptic equation and that we did not impose conditions on the curve
enclosing the region required. Instead, we have imposed initial conditions; that is to say, conditions at
y = 0. Using the method of separation of variables and writing u as X(x)Y(y), Equation (5.6-1)
is transformed to

X " + n 2 X = 0 (5.6-3a)

Y " - n 2 Y = 0 (5.6-3b)

The solution that satisfies Equations (5.6-2a, b) is

sinhny sin nx ,_ ^ AS

u = 3— (5.6-4)
n

As n tends to infinity, both u and =— tend to zero but the solution u oscillates with increasing
dy

amplitude. The solution does not approach zero as the initial conditions tend to zero, as a result of
having imposed the wrong type of boundary conditions. In most cases, we expect that a small change
in the initial conditions leads to a small change to the corresponding solution. This example violates
this rule and the problem is not well posed.

Example 5.6-2. Solve the equation

^ - = 0 (5.6-5)
dxdt

subject to

u (x, 0) = f2 (x) , u (x, 1) = f2(x) (5.6-6a,b)

u (0, t) = g l (t) , u (1, t) = g2(t) (5.6-6c,d)

Equation (5.6-5) is a hyperbolic equation and we have prescribed boundary conditions, as opposed to
the required initial conditions.

The solution of Equation (5.6-5) is

u = F(x) + G(t) (5.6-7)

Imposing Equations (5.6-6a to d) yields

F(x) + G(0) = fj(x) (5.6-8a)
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F(x) + G( l ) = f2(x) (5.6-8b)

F(O) + G(t) = g^t) (5.6-8c)

F(l) + G(t) = g2(t) (5.6-8d)

From Equations (5.6-8a, b), we deduce that both f j (x) - F(x) and f2(x) - F(x) are constants and
this implies that fj(x) and f2(x) can differ only by a constant, and are therefore not arbitrary. In
most physical problems, the boundary conditions can be imposed arbitrarily, that is to say, the
condition imposed at one end (x = 0) is independent of the condition at the other end (x = 1). This
is another example of an ill posed problem.

Hadamard has proposed the following conditions for a well posed problem:

(i) the existence of a solution;

(ii) the solution is unique;

(iii) small changes in initial and boundary conditions as well as in the coefficients of the equations
lead to small changes in the solution.

The equations solved in Section 5.4 satisfy Hadamard's conditions. In Section 4.5, we have defined

Dirichlet's problem (u is given on the boundary) and Neumann's problem (̂ — is given on the
on

boundary). If u is given on part of the boundary and ^— on the remaining part of the boundary, we
on

have Robin's problem.

5.7 NON-HOMOGENEOUS PROBLEMS

The method of separation of variables was used to solve homogeneous partial differential equations
with homogeneous boundary conditions. For some non-homogeneous problems, we can introduce an
auxiliary function and the problem can be reduced to a homogeneous problem. We illustrate this
method by considering a few examples.

Example 5.7-1. Chan Man Fong et al. (1993) considered the transient flow of a thin layer of a
Maxwell fluid on a rotating disk. In dimensionless form, the equations governing the motion are

I T - 1 - i !
-v 3 t 3 f ._ „ .,, N

(5.7-1a)
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where tj and z are the dimensionless time and height respectively; Xj is a dimensionless number

characterizing the relaxation time of the fluid. The functions f and x are related to the dimensionless
radial velocity u0 and the dimensionless shear stress T(rz) by

u0 = rj f ( z , tj), T(rz) = r ^ l z , ^ ) (5.7-2a,b)

where rj is the dimensionless radial distance.

The initial and boundary conditions are

f (z , 0) = T(Z , 0) = f (0, tj) = T(1 , tj) = 0 (5.7-3a,b,c,d)

Combining Equations (5.7-la, b) yields

^ • * . * . , ( 5 . 7 . 4 )

3tf 3tj 3 z 2

Equation (5.7-4) is non-homogeneous and the method of separation of variables cannot be applied
directly. We introduce another function and write

ffz.tj) = f^zj + g ^ ) (5.7-5)

Note that this choice introduces one extra degree of freedom. That is to say, one function on the left
side is replaced by two functions on the right side.

Substituting Equation (5.7-5) into Equation (5.7-4) and separating the resulting equation into an
equation for f j and another one for g, we obtain

A
— r = -1 (5.7-6a)
dz

dt] at! dz2

As a result of having introduced an extra degree of freedom, we are allowed to choose Equation
(5.7-6a) so as to remove the inhomogeneity.

Equations (5.7-lb, 3d) imply

ff( l , t l ) = O (5.7-7)

We assume that fj satisfies boundary conditions (5.7-3c, 7), namely

(5.7-6b)
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fjCO) = ^ = 0 (5.7-8a,b)
a z z=0

The solution of Equation (5.7-6a) subject to Equations (5.7-8a, b) is

- 2
fj = - | - + z (5.7-9)

The boundary conditions that g has to satisfy are deduced from Equations (5.7-3c, 7) and are

g(0, t j = | | ( 1 , ta) = 0 (5.7-10a,b)

The method of separation of variables can now be used to solve the boundary value problem defined
by Equations (5.7-6b, 10a, b) and we write

g(z, tj) = ZC^TCtj) (5.7-11)

Substituting Equation (5.7-11) into Equation (5.7-6b) and separating the resulting expression into
functions of z and tj, we obtain

rp II mt ry II O

^ l ^ + Y = | _ = _ a 2 (5.7-12a,b)

Equations (5.7-12a, b) can be written as

X1T"+T' + a 2 T = 0 (5.7-13a)

Z " + a 2 Z = 0 (5.7-13b)

The solutions of Equations (5.7-13a, b) are respectively

T = Kje-at l +K 2 e- b t l (5.7-14a)

Z = K3 cos az + K4 sin az (5.7-14b)

where the Kj are constants and where a and b are given by

a = [l - Vl-4A1a2]/2^1 (5.7-14c)

b = [l + Vl-4^!a 2 ] /2Xl (5.7-14d)

Imposing Equations (5.7-10a, b) yields
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K3 = 0 (5.7-15a)

a = —-—, n is an integer (5.7-15b)

From Equations (5.7-9, 11, 14a to d, 15a, b) and using the principle of superposition, we find that f
can be written as

f = - ^ - + z + ]T [Ane-ai>tl+Bne-b"tl]sinanz (5.7-16)
n=0

where An and Bn are constants (Fourier coefficients), a n is given by Equation (5.7-15b), and
an and b n are given by Equations (5.7-14c, d) with a, a, and b being replaced by ocn, an , and

bn-

Substituting Equation (5.7-16) into Equation (5.7-lb) and solving the resulting equation subject to
Equation (5.7-3d), we obtain

x = l - z + X M " e ~ a " t + b"B"e~b n1 cos anz (5.7-17)
n=0 L "n J

Applying the initial conditions given by Equations (5.7-3a, b) on f and x yields

A_ - z = £ [An + B n ] s i na n z (5.7-18a)
n=0

Z_l = £ anAn + b n B n | c o s a ^ (5.7-18b)
n=0 " n J

The Fourier coefficients An and Bn are determined in the usual manner, that is to say, by multiplying
both sides of Equations (5.7-18a, b) by sin a n z and cos a n z and integrating with respect to z
between 0 and 1. The coefficients An and Bn are found to be

An . 2&Z&, Bn . I ^ i ! (5.7-19a,b)
aA\-K) KK-K)

We can now substitute An and Bn into Equations (5.7-16, 17) and f and t are given in the form of

an infinite series.

We next consider an example where the boundary condition is non-homogeneous.
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Example 5.7-2. The diffusion of oxygen into blood is important in surgery. Hershey et al. (1967)
have modelled this process as a wetted-wall column. It is illustrated in Figure 5.7-1. A film of blood
of thickness L flows down along the z-axis and is in direct contact with a rising stream of oxygen.

0 L x
y ^
/
/
f

/
f
f

i*—Column wall
Oxygen Blood ^

/
/

/

z?

FIGURE 5.7-1 Cross section of a wetted-wall column

The diffusion equation can be written as [Equation (A.IV-1)]

where «0OB is the diffusion coefficient which is assumed to be constant, c is the concentration of

oxygen in the blood, and — is the substantial (material) derivative. It is given by

TT = ^ + v«gradc (5.7-20b)
Dt at

where y is the velocity of the blood.

In this problem, the following assumptions are made:

(i) the system is at steady state 3 - = 0 ,

(5.7-20a)
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(ii) negligible diffusion in the z-direction,

(iii) vz is constant,

(iv) no change in concentration in the y-direction.

Equations (5.7-20a, b) can be simplified to yield

3c m 3 c
v z 7 - = ^ O B - ^ (5-7-21)

The appropriate boundary and initial conditions are

c (0, z) = c f , c (x, 0) = q , ^ = 0 (5.7-22a,b,c)
d x x=L

where cf is the concentration at the blood /oxygen interface, q is the concentration at the inlet.

Note that Equations (5.7-22a, b) are non-homogeneous. To reduce Equation (5.7-22a) to a
homogeneous equation, we write c as

c(x,z) = f(x,z) + g(x) (5.7-23)

Substituting Equation (5.7-23) into Equation (5.7-21), we write

vz f" = <®0B f i (5-7-24a)

^-f = 0 (5.7-24b)
dx

Again, since we have introduced an extra function g, we are allowed to impose an extra condition.
This condition is given by Equation (5.7-24b) and g also satisfies

g (0) = cf , ^ = 0 (5.7-25a,b)
a x x=L

The solution of Equation (5.7-24b) subject to Equations (5.7-25a, b) is

g = cf (5.7-25c)

Combining Equations (5.7-22a to c, 23, 25a, b) yields the boundary conditions on f and they are
given by
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f(O,z) = O, f(x,O) = Cj-Cf , ££- = 0 (5.7-26a,b,c)
d x x=L

We can now use the method of separation of variables to solve Equation (5.7-24a) subject to Equations
(5.7-26atoc). We write f as

f = X(x)Z(z) (5.7-27)

Substituting Equation (5.7-27) into Equation (5.7-24a) and separating the variables, we obtain

I = ^f- = -"' (5.7-28a,b)

where n2 is the separation constant.

Equations (5.7-28a, b) can be written as

Z' + n2 Z = 0 (5.7-29a)

X " + ^-^ X = 0 (5.7-29b)

The solutions of Equations (5.7-29a, b) are respectively

2

Z = A e~n z (5.7-30a)

/ V / V

X = Bcosn/\/ —z— x + C s i n n / \ / —^- x (5.7-30b)

V <O0 B V <©0 B

where A, B and C are constants.

Imposing conditions (5.7-26a, c) yields

B=0, n = ^ ^ J ^ (5.7-31a,b)
ZL, » v z

where s (= 0, 1, 2, ...) is an integer.

Combining Equations (5.7-23, 25c, 27, 30a, b, 31a, b) and applying the principle of superposition,
we obtain
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V A - ( 2 s + l ) 2 r c 2 J 9 0 B z . ( 2 S + 1 ) J C X ,*^n™
c = X A s e x P — ~z m~ s i n " ^T + cf (5.7-32)

S I 4L2vz J 2L
The boundary condition (5.7-22b) implies

c,-c,>2A1rt,M5i (5.7-33)
s=0

The Fourier coefficients As are given by

2(cj-c f ) f (2s + l)nx
As = - ^ — 2 - sin i —^ dx (5.7-34a)

L JQ 2L

= 4 ( c i "^ f ) (5.7-34b)
(2S+1)7C

Substituting Equation (5.7-34b) into Equation (5.7-32), we obtain

The average concentration across the film at a point z is defined as

rL
I c(x, z) dx

(c) = (5.7-36a)
8 (c: - cf) v 1 f-(2s + i ) ^ 2 ^OR zl (5.7-36b)

= —K-i fl > * exp —^—— 2e— + c f

K2 s = 0 (2s + I ) 2 L 4L 2 v z

Equation (5.3-36b) is obtained by integrating Equation (5.3-35) and is identical to Equation (6) of
Hershey et al. (1967), except for a difference in notation.
•

In the two examples so far considered, the non-homogeneous terms are constants. The method can be
extended to the case where the non-homogeneous terms are functions of one of the independent
variables. We illustrate this method in the following example.

(5.7-35)

(5.7-36a)

(5.7-36b)
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Example 5.7-3. Wilson (1979) solved the problem of film boiling on a sphere in forced convection.
We simplify the problem by considering the steady state case. The equation of energy [Equation
(A.III-3)] can be simplified to yield

a!l+23I + ^ A s i n e 3 I = 0 (5.7-37)

3r2 r 9r r2sin0 30 30

where T (r, 0) is the temperature.

The boundary conditions are: on the surface of the sphere (r = 1)

| 1 = f(9) = | s i n 2 9 ( l - | c o s 0 + i-cos30) (5.7-38a,b)

T is finite at the origin.

Note that there is a typographical error in the expression for f(0) in Wilson (1979).

We use the method of separation of variables and write T as

T = R(r)0(0) (5.7-39)

Substituting T and its derivatives into Equation (5.7-37), we obtain

r 2 d R + 2 r d R _ n ( n + 1 ) R = 0 (5.7-40a)
dr2 dr

2

M | + cot0 — + n ( n + l ) 0 = 0 (5.7-40b)
d0 d0

The solution of Equations (5.7-40a, b) are given in Section 5 [Equations (5.5-40)]. The general
solution which is finite at the origin is

oo

T = A0 + X An r" Pn(cos 0) (5-7"41)
n = l

where Pn (cos 0) are the Legendre polynomials.

We note that Equation (5.7-40b) generates Legendre polynomials and it is appropriate, as discussed in
Section 6, to expand f(0) as a series expansion in Legendre polynomials. We express f(0) as
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oo

f(6) = X Bn Pn(c o s e) (5.7-42)
n = l

The coefficients Bn are determined using the orthogonal properties of Pn (cos 0). We recall that

[l 0 if m^n
Pm(cos 6) Pn(cos 0) d(cos 0) = ( (5.7-43a,b)

l-l —2— if m = n
V 2n+ 1

Multiplying both sides of Equation (5.7-42) by Pm(cos 0) and using Equations (5.7-43a, b), we
deduce

Bn = ^ " + ^ 1 f(0)Pn(cos0)d(cos0) (5.7-44a)

- ( 2 n + 1 ) . I f(e)Pn(Cos0)(-sin0)d0 (5.7-44b)
Jn

= ( 2 n + 1 I I f(0)Pn(cos0)(sin0) d0 (5.7-44c)

Jo
The function f (0) is given, Pn (cos 0) are known in terms of powers of cos 0 and the integral can
be evaluated. We calculate Bo in detail. We know that Po is one, f(0) is given by Equation
(5.7-38b), and Bo can be written as

B o B l f 3(sin^0)sin0d0 _ (5 ? 4 5 a )

Jo 4Yl-|cos0+l-cos30

= f f y(l-x2)dX (5.7-45b)

= \[ ^ (5.7-450
8 Jo 3V^

= ±2- (5.7-45d)
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Equations (5.7-45b, c) are obtained by making the following substitutions respectively

x = cos 6 (5.7-46a)

y = l - | x + £x3 (5.7-46b)

Similarly Bj , B2, ••• can be calculated. The boundary condition given by Equation (5.7-38a) can
now be written as

00

3f = Z B n P n ( c o s 9 ) (5-7-47)
r = 1 n=0

Differentiating T from Equation (5.7-41) and using Equation (5.7-47), we obtain

00 00

£ n An Pn (cos 9) = £ Bn Pn (cos 0) (5.7-48)
n=0 n=0

We deduce that

An = ^ (5.7-49)

for all n> 1.

The coefficients Bn are known and so the An (n > 1) can be determined. The constant Ao is
arbitrary. This is not surprising because, for a Neumann problem, the solution is arbitrary to the
extent of a constant.

The method of integral transforms, introduced next, can be used to solve partial differential
equations, including non-homogeneous problems.

5.8 LAPLACE TRANSFORMS

In Chapter 1, we have used Laplace transforms to simplify an ordinary differential equation to an
algebraic equation. It is equally possible to use Laplace transforms to reduce a partial differential
equation in two independent variables to an ordinary differential equation. We recall that the Laplace
transform of a function f (t) was defined by Equation (1.17-1).

Likewise, if u (x, t) is a function of two independent variables x and t, we define the Laplace
transform of u with respect to t by

, 0 0

L[u(x, t)] = U(s, x) = I e"stu(x,t)dt (5.8-1)
JO
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Other properties of Laplace transforms are listed in Chapter 1. We illustrate the method of Laplace
transforms by solving a few partial differential equations.

Example 5.8-1. Wimmers et al. (1984) studied the diffusion of a gas from a bubble into a liquid in
which a chemical reaction occurs. If the bubble is at rest and has a constant radius R, the
concentration of the absorbed gas in the liquid phase is found, by simplifying Equation (A.IV-3), to be

^^J-Lffr 2 ^]*^ (5.8-2)

where cA is the concentration of gas A in the liquid, JS A B is the diffusion coefficient of solute A
in solvent B, RA is the production rate of A, t is the time, and r is the radial distance.

We assume that the rate equation is first order and RA is given by

RA = - k c A (5.8-3)

where k is the rate constant.

Combining Equations (5.8-2, 3) yields

The boundary and initial conditions are

cA(R, t) = c0, cA(r, 0) = 0 ( r>R) , cA — > 0 as r — > °° for all t (5.8-5a,b,c)

We denote the Laplace transform of cA by C (= I e~st cA (r, t) dt). Taking the Laplace

transform of Equation (5.8-4) and using the initial conditions [Equation (5.8-5b)], we obtain

(s + k) C - J9 I" 1 d (r2 dCW _ ro d2C , 2 dC (* R , , ,
(.S + KJL, - "^AB T 7 r T~ ~ AB — 7 + p.S-oa,b)

[rz dr \ dr }\ [dr 2 r dr

We make the substitution

C = £ (5.8-7)

and Equation (5.8-6b) reduces to the following equation with constant coefficients

(5.8-4)
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?-± - or C = 0 (5.8-8a)
dr2

a2 = (s + k ) / . © ^ (5.8-8b)

The solution of Equation (5.8-8a) satisfying Equation (5.8-5c) is

C = A e~ar (5.8-9)

From Equation (5.8-7), we obtain

C = f<TaT (5.8-10)

The constant A is obtained by using Equation (5.8-5a). The Laplace transform of cA (R, t) is co /s .

Substituting this into Equation (5.8-10) yields

^ 4 e " a R (5-8-iia)
s K

A = ^ 0 e « R (5.8-1 lb)
The solution can now be written as

C = ^ o e - « ( r - R ) (5.8-12a)

= ^ exp - [^+^|1/2 (r - R) (5.8-12b)

= ^ ( ^ n r ) e x p [ - ^ T ^ l (5-8"12c)

Equation (5.8-12c) is in a standard form and is obtained by substituting

a = s + k (5.8-13)

From the table of Laplace transforms given in Table 1.17-1, we find that cA is given by

cA = 5^0 ekt /e-xVk e r f c r _ ^ _ V k T J + exVF e r f c [ ^ - + V k t i l (5.8-14a)

x = (r-Rj/Vj^B (5.8-14b)
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where erfc is the complement of the error function (erf). These functions are defined by

erf x = 3= e~u du (5.8-15a)

^ Jo

erfcx = 1-erfx = -L e~u du (5.8-15b)
in I

Jx

(To show that — ( e~u du is one, see Problem 9b in Chapter 4.)
Vif Jo

If no chemical reaction occurs, k is zero and Equation (5.8-12b) reduces to

C = ^ o exp - J - 1 - (r-R) (5-8-16)
L ^ «®AB

From the table of Laplace transforms, we obtain

cA = ^ erfc ( ' ~ R ) (5.8-17)

•

In using the method of Laplace transforms, we need to invert the transform F (s) so as to obtain the
solution f (t). The method we have used is to read the inversion from the table of transforms. There
is a general inversion formula which can be written as

f(t) = L-1[F(s)] = ±r e s tF(s)ds (5.8-18)
Jy-ioo

where s (= x + iy) is a complex variable and the path of integration is along a straight line L in the
complex s-plane, as shown in Figure 5.8-1. The constant y is chosen so that all singularities of F(s)
are to the left of L. The integration is usually done by taking L to be a finite line, closing the
contour, then letting the contour tend to infinity, and evaluating the integral using the Cauchy residue
theorem [Equation (3.7-10)]. One method of obtaining a closed contour C is by joining the line L to
an arc of a circle centered at the origin and of radius R. This is illustrated in Figure 5.8-2.
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y t L

: r r

FIGURE 5.8-1 Path of integration (L) in the inversion of Laplace transforms.
The dots (•) are singularities of F(s)

I R /

^ ~ ^ P Q

FIGURE 5.8-2 Closed contour in the inversion of Laplace transforms
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From Equation (3.7-10), we have

^-r estF(s)ds = £ Res[estF(s), s j (5.8-19)
1 JC n

where sn are the singularities of estF(s).

The integral around C can be decomposed as

I es tF(s)ds = I es tF(s)ds + e s t F ( s ) d s + | e s t F ( s ) d s + | es tF(s)ds
Jc JL JMN JNP JPQ

(5.8-20)

On the semicircle NP, we have

s = R e i e , f < 0 < ^ (5.8-21a,b)

f /•3JC/2

I estF(s)ds = 1 exp[Rt(cosG + isine)] F(Rei0)iReied0 (5.8-22a)
/NP Jn/2

r 371/2

exp(Rtcos0) exp(iRtsin0) F (R elG) i R e10 d0 (5.8-22b)
Jn/2

r 37t/2
eRtcos0 F ( R e i e ) | R d e (5.8-22C)

Jn/2

since e i a = 1 for all real a.

We assume that, on the arc of the circle, F satisfies the inequality

| F ( s ) | < - ^ - (5.8-23)
Rm

where a and m are positive constants. That is to say, when R —> <», F (s) —> 0.

From Equations (5.8-22a, b, c, 23), we deduce that, because cos 0 is negative, the integral tends to
zero as R tends to infinity.

On the arc MN, we have the following inequalities
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I estF(s)ds < I |estF(s)ds| (5.8-24a)
JMN JMN

fn/2

< e R t c o s e - ^ R d 9 (5.8-24b)
J% R

rn/2

< _QL_ e R t c o s e d0 (5.8-24c)

rn/2

< _ o _ e R t ^ / R d9 (5.8-24d)

Rm-! ho

<^(|-00) (,B-24e)

where

e0 = cos'^y/R) (5.8-24f)

If we let R tend to infinity, (y/R) will tend to zero. Expanding c o s ^ y / R ) about zero in a Taylor

series yields

cos"1 (y/R) = | - | + ... (5.8-25)

From inequality (5.8-24e) and Equation (5.8-25), we deduce

es tF(s)ds < ^— y (5.8-26)
JMN K

The integral I e s tF(s) ds tends to zero as R tends to infinity. Similarly, the I e s t F ( s )ds
JMN J P Q

tends to zero as R tends to infinity.

If F(s) satisfies inequality (5.8-23), Equation (5.8-19) becomes

±r I estF(s)ds = ^ Res[estF(s), s j (5.8-27)
JL n
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Combining Equations (5.8-18, 27) yields

f(t) = £ Res[estF(s), s j (5.8-28)
n

We have assumed that estF(s) has no branch points inside the region enclosed by C. If estF(s)
has branch points, the appropriate cuts should be made as discussed in Chapter 3. We illustrate this
point by the following example.

Example 5.8-2. We consider the heat conduction problem of a semi-infinite region x > 0. The
governing equation, obtained by simplifying Equation (A.III-1), is

^ = k* t l (5.8-29)
dt 3x2

where k (= k/pC ) is the thermal diffusivity and T is the temperature.

The initial and boundary conditions are

T(x, 0) = 0 , T(O,t) = c0 sin (cot + e ) , T— >0 as x— > °° (5.8-3Oa,b,c)

where c0, CO, and e are constants.

Taking the Laplace transform of Equation (5.8-29) and using Equation (5.8-30a), we obtain

2 —

ST = k*~ (5.8-31)

dx2

where T is the Laplace transform of T.

The solution of Equation (5.8-31) is

T = A exp[(Vs/k* ) x] + B exp[-(Vs/k* ) x] (5.8-32)

where A and B are constants.

The condition that T —> 0 as x—> «> implies that T —> 0 as x—> «>. The constant A has to be
zero. The condition at the origin (x = 0) implies that T at the origin is given by

r
T = e~st c0 sin (cot + e) dt (5.8-33a)

Jo
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= Q— (s sine + cocos e) (5.8-33b)
s2 + co2

Applying the boundary conditions on T, we obtain

Q r i -i

T = 2—(s sine + cocos e) exp[-xVs/k* J (5.8-34)
s2 + co2

The inversion formula [Equation (5.8-18)] gives

/•y + ioo

T (x, t) = -K I est — ^ — (s sine + co cos e) exp [-x Vs/k* ] ds (5.8-35)
711 Jy-ioo S2 +C0

To evaluate the integral, we transform it to a closed contour integral as explained earlier. We note that
the integrand has a branch point at the origin (s = 0) and simple poles at

Sj = ico, s2 = - ico (5.8-36a,b)

The contour shown in Figure 5.8-2 is no longer appropriate. We have to remove the origin and the
negative part of the real axis. The resulting contour is illustrated in Figure 5.8-3. The integrand is a
single-valued function of s on and inside contour C. Contour C consists of the line L, the arc
MN, the line Lj, the small circle Cj, the line L2, and finally the arc PQ. On letting the radius R

tend to infinity, the integrals along the arcs MN and PQ are zero, as shown previously. Similarly,
as e tends to zero, the integral around Cl tends to zero. On Lj, the argument of s is n and on
L2, it is -7t. On Lj and L2, we write

s = p ei7t, s = p e"i7t (5.8-37a,b)

where p is real and positive.

The square roots of s on Lj and L2 are given respectively by

Vs~ = iVp~, Vs~ = -iVp~ (5.8-38a,b)

We now evaluate the integrand of Equation (5.8-35) along Lj and L2. We denote the integrals by Ij
and I2. From Equations (5.8-35, 37a, b, 38a, b), we obtain

I : = I e"p t C° (-p sine + cocos e) exp[-i(Vp/k*j xj (-dp) (5.8-39a)
J°° p 2 + co2
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= I e " p t — ^ — ( - p sine + cocos e)exp[-i(Vp/k*)xj dp (5.8-39b)
JO p 2 + a)2

I2 = I e ~ p t — ^ — ( - p sine + cocos e) exp[i(Vp/k jx] (-dp) (5.8-39c)
JO p 2 + (o2

Combining Equations (5.8-39b, c) yields

I = l1 +i2 = I e-P1—^— (-p sine+cocos E ) ^ ^ * - ^ ^ * ] dp (5.8-40a,b)
•'O p2+ co2

= j e-pt —^o— (_p s i n e + (acos e^ (_2j) s i n [(Vp/k* ) xj dp (5.8-40c)
^0 p 2 + o 2

^ - — T|M

1 L.

^ Q

FIGURE 5.8-3 Contour integral with a branch point at the origin

From Equation (3.7-14), we find that the residue Rj at s1 is given by

(s — ico)es*c f / I *"\ 1

R, = lim T±—^r, ^ ( s sine + co cos e)exp[-\Vs/k j xj (5.8-41a)
1 s—>iro (s-ico)(s + ico)v
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c e i c o t r i /—^\ i
= -Q-. (ico sine + cocos e)exp|_-vvico/k ] xj (5.8-41b)

= C^r.— (cos e + i sine) exp - Q±J± (Vco/k*) x (5.8-41c)

L V 2

= £ o | p eie e-(VS/2F)x e x p [_ i (Vco/2k* ) x] (5.8-41(1)

Similarly, the residue R2 at s2 is found to be

R 2 = _eo£^!e-iee-(V^72k^)x exp[i(Vco/2k*)x] (5.8-41e)

The sum of residues R is given by

c0 [expi (cot + e-xVco/2k*)-exp-i (cot + e-xVco/2k*)] _xVco72k*'
R = R 1 + R 2 - — e

(5.8-42a,b)

= c0 sin (cot + 8 - xVco/2k*) e~x Vco/2k* (5.8-42c)

Using Cauchy's residue theorem [Equation (3.7-10], we can write

1 = 1 + 1 + | + I + 1 + j (5.8-43a)

Jc JL /MN JL, JCX JL2 JVQ

= 27tic0 sin (cot + e - xVco/2k*) e~x Vco/2k* (5.8-43b)

We have shown that f , f , and f are equal to zero. The function T given in Equation

(5.8-35) is -J— I . From Equations (5.8-40c, 43b), we deduce that T is given by
2ni JL

T = c0 sin (cot + e - x V co/2k*) e"x Vco/2k*

+ ^o _e_^—(_p sine + co cose) sin (x Vp/k* ) dp (5.8-44)

71 Jo P 2 + C O 2
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We note that as t tends to infinity, the integrand on the right side of Equation (5.8-44) tends to zero.
For sufficiently large t, the solution is given approximately by the first term on the right side of
Equation (5.8-44).

Example 5.8-3. Model the smoke dispersion from a high chimney and solve it by the method of
Laplace transforms.

Smoke diffuses from a chimney of height h into the atmosphere. Suppose the prevailing wind is in
one direction only (x-direction) and has a constant velocity V. The vertical axis is the z-axis and the
base of the chimney is at the origin, as shown in Figure 5.8-4. The average cross-sectional
concentration c (x, z), obtained by simplifying Equation (A.IV-1), is

V ^ = D [ ( ^ ) + ( ^ 1 (5.8-45)
3x L\ax2/ \3z2 .

where vx = V, RA = 0, and the diffusion coefficient «©AB = D (a constant).

Z

wind ^
velocity h smoke

>»
x

FIGURE 5.8-4 Smoke dispersion from a chimney

We further assume that the derivative with respect to x is small compared to the derivative with
respect to z. Then Equation (5.8-45) simplifies to
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V ^ = D ^ (5.8-46)
3x dz2

The inversion height (where there is no transport of smoke) is at infinity and the rate of deposit of
smoke at ground level is negligible. Under these assumptions, the boundary conditions are

at z = 0, ^- = 0 ; at z—>oo, - ^ = 0 (5.8-47a,b)
dz dz

at x = 0, c = (Q/V) 5(z - h) ; at x — > « , c = 0 (5.8-48a,b)

where Q is the source strength (flowrate) emanating from the chimney and 8 is the Dirac delta
function.

We introduce the dimensionless quantities x, z, and c by writing

x = m . 5 z = U". 5 = 7 ? (5.8-49a,b,c)
Vh2 h Q

Equations (5.8-46 to 48b) become

^ = *°- (5.8-50)

8x dz

| | _ = °' | f _ = °' 5 lx=0= S ^ " 1 ) (5.8-51a,b,c)

The Laplace transform C is defined by

r -
C = e~ s x c (x , z ) d x (5.8-52)

Jo
Equation (5.8-50) transforms to

5 - ^ - s C = - 8 ( z - l ) (5.8-53)
d z 2

This is a second order equation which we solve for z < 1 and for z > 1 separately because the delta
function introduces a singularity at z = 1. For both z < l and z > l , 8 ( z - l ) = 0. The solutions
are given in terms of exponential functions, keeping in mind that a second order equation is associated
with two arbitrary constants.
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The solutions satisfying Equations (5.8-5la to c) are

C = A e~zVi, z > 1 (5.8-54a)

= B(e i V i + e-iVi), z < l (5.8-54b)

where A and B are constants.

We further assume that C is continuous at z = 1 and this implies that

A = B(e2 V 5+l) (5.8-55)

The derivative of C at z = 1 is not continuous and to evaluate it, we integrate Equation (5.8-53) and
obtain

[iC-1 - s i Cdz = - 8 ( z - l ) d z = - 1 (5.8-56)

Combining Equations (5.8-54a, b, 56) and letting e —> 0, we deduce that

Vs~ [Ae"^ + BCe^-e"^) ] = 1 (5.8-57)

Note that the second integral on the left side of Equation (5.8-56) is zero because C is continuous at
z= 1.

The values of A and B are found to be

-Vs
A = —±= ( e ^ + e " ^ ) , B = ~= (5.8-58a,b)

2 Vs 2 Vs

To determine the concentration at ground level (z = 0), we determine C (0, s) and this is given by

C(0,s) =e-^/Vs~ (5.8-59)

Using Equation (5.8-18), we invert C and obtain

1 1 esx e~"^
c (x, 0) = - i v e %. ds (5.8-60)

2111 Jy_ioo VT
We note that the integrand has a branch point at s = 0 and we proceed to evaluate the integral as in
Example 5.8-2. The only non-zero contribution to the integral is along Lj and L2 (Figure 5.8-3).
On Lj and hj, the square roots of s can respectively be written as



474 ADVANCED MATHEMATICS

V7 = ip, Vs~ = -ip (5.8-61a,b)

Substituting Equations (5.8-61a, b) into Equation (5.8-60) yields

c(x, 0) = J- I exp[-(p2x + ip) ]dp-J - I exp [-(p2x-ip)] dp (5.8-62a)
n ./-co n Jo

/• oo

= ^ | exp[-(p2x + ip)]dp (5.8-62b)

J -oo

/.oo

= - \ exp[-(pV^" + i /2V^) 2 - l /4x]dp (5.8-62c)
J —oo

= e X p ( " 1 M x ) exp[-(pV^ + i/2V^)2]dp (5.8-62d)
71 J-oo

= «P(-1^> (5.8-62e)
VTCX

The maximum concentration cmax is given by

l̂i V *v A.

The solution is

x = 1/2, cmax = J±- (5.8-64a,b)

1/2 2

In dimensional variables, the maximum concentration is (Q/V) (2/TU e) at a distance Vh /2D from
the chimney. From Equations (5.8-49a, b), it is seen that the assumption 9 / B z » 3 / 3 x requires that
V h / D » l .

5.9 FOURIER TRANSFORMS

From Section 2.8, we deduce that if f (x) is an odd periodic function of period 2L, its
Fourier series can be written as

oo

f(x) = 2 bn5511111^ (5.9-la)
n=l L

(5.8-63a,b)
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bn = f I fOOsinQp dx (5.9-lb)
L Jo L

We can regard bn as the finite Fourier sine transform of f (x). In keeping with the notation
used in Laplace transforms, we write

Fsn = f f O O s i n ^ d x (5.9-2)
L Jo L

From Equation (5.9-la), we deduce that the inverse is

CO

n = l

Similarly if f (x) is an even periodic function of period 2L, we can define its finite Fourier
cosine transform as

Fcn = ? I f00cosli?L dx (5.9-4)
Jo

Its inverse is given by

oo

f(x) = ^ F C O + X F c n ^ 8 1 1 ^ <5-9"5)
Z n = l *-

The Fourier sine and cosine transforms can be used to solve ordinary and partial differential equations.
The procedure is similar to that employed when Laplace transforms are adopted. We solve an
electrostatic problem using the method of Fourier transforms.

Example 5.9-1. In the semi-infinite space bounded by the planes x = 0, x = %, and y = 0 as
shown in Figure 5.9-1, there is a uniform distribution of charge of density (p/47i). If u is the
potential, u satisfies the equation

9 u 9 u , , . . .
+ = _p (5.9-6)

3x2 3y2

(5.9-3)
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V t

I 1 »>
0 IT x

FIGURE 5.9-1 Semi-infinite region

The boundary conditions are

u (0, y) = 0 , u (7t, y) = 1 , u (x, 0) = 0 (5.9-7a,b,c)

We assume u to be bounded throughout the region.

The region is bounded in x and we use the finite sine transform method to solve Equation (5.9-6).

We multiply both sides of Equation (5.9-6) by — sin nx and integrate from 0 to n.

2- I sin nx dx + — I sin nx dx = —— I sin nx dx (5.9-8)

K h 3x2 * Jo 9y2 « Jo
The first integral can be integrated by parts and we obtain

2- I sinnxdx = — U-—sinnx - n I r̂— cosnxdx} (5.9-9a)

* Jo dx2 * L3x Jo Jo 3x |

I n (* \
= — \-n [u cosnx]"-n2 I u sinnxdx} (5.9-9b)

71 I J o J
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= _2IL (_!)"_ n 2 U s n ( 5 9 . 9 c )

where Usn is the finite sine transform of u.

Substituting Equation (5.9-9c) into Equation (5.9-8) and carrying out the remaining integration yields

(_l)-i2n _n2u ^ k = 2pK-Vn-V ( 5 9 . 1 0 )

K ^ y 2 nTU

The solution of Equation (5.9-10) is

Us n = Aeny + B e - n y - 2 p [ ( ~ 1 ) n ~ 1 ] - ^ = ^ (5.9-11)

7i n3 nn

The condition that u is bounded implies that A is zero. From Equation (5.9-7c), we deduce

y = 0 , Usn = 0 (5.9-12a,b)

From Equations (5.9-11, 12a, b), we obtain

B = 2 p [ ( - I ) ' - l ] +2fcl ) ! <5.9-13)
Ten3 n K

Equation (5.9-11) simplifies to

u,ii = 2 ( P l H ^ l l + H):\(e-.y .1} (5.9.14)

K \ n3 n /

Using Equation (5.9-3), we express u as

oo

u(x,y) = X u s n s i n n x (5.9-15a)
n = l

= 2. | ( P " - ' ) " - " + L J l ! | { e - ^ - l } sin nx (5.9-lSb)

So far we have assumed that the function is defined in a finite interval. In many physical problems,
the region can be considered to be infinite. The Fourier series is then extended to a Fourier
integral. The function f (x) can be represented in complex form as
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f(x) = -L. I F(a)eiaxdoc (5.9-16a)
2K I

J — oo

r
F(a) = f(x)e~iaxdx (5.9-16b)

We define F(a) as the Fourier transform of f (x) and its inverse is given by Equation (5.9-16a).
An alternative form of writing Equation (5.9-16a) is

f (x) = -L I [A (a) cos ax + B(a) sin ax] da (5.9-17a)
n Jo

r
A(a) = I f(x)cosaxdx (5.9-17b)

J-oo

r
B(a) = f(x)sinaxdx (5.9-17c)

J -oo

If f(x) is odd, A (a) is zero and Equations (5.9-17a, c) become

f (x) = 2L I B(a)s inaxda (5.9-18a)
n Jo

r
B(a) = f(x)sinaxdx (5.9-18b)

Jo
We define B(a) as the Fourier sine transform of f(x) and Equations (5.9-18a, b) can be
written as

f(x) = -2- I Fe (a) sin ax da (5.9-19a)
% Jo

r
Fs(a) = I f(x)sinaxdx (5.9-19b)

Jo
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The inverse of the Fourier sine transform Fs(oc) is given by Equation (5.9-19a). Similarly the

Fourier cosine transform and its inverse are defined by

r
Fc(cc) = I f(x)cosaxdx (5.9-20a)

Jo

f(x) = -2- I Fc(a)cosaxda (5.9-20b)
Jo

The definitions given by some authors differ from those given here by having different factors in front
of the integral. For the sake of symmetry, some authors define the Fourier cosine transform and its
inverse as

f°°
Fc(cc) = 4^ I f(x)cosaxdx (5.9-21a)

11 Jo

f(x) = J ^ I Fc (a) cos ax da (5.9-21b)
Jo

Note that both sets of Equations (5.9-20a, b, 21a, b) lead to

p oo ^ oo

f(x) = — I I f(x)cosaxdx cos ax da (5.9-22)
n Jo Jo

Similarly the Fourier transform [Equation (5.9-16b)] and the Fourier sine transform [Equation

(5.9-19b)] can be defined with the factor v — in front of the integral.
V 7E

Example 5.9-2. Sedahmed (1986) studied the rate of mass transfer at a cathode. The mass
diffusion equation is determined by simplifying Equation (A.IV-1) with R^ = 0 to yield

^ = J9 *?- (5.9-23)

dt dy2

where c is the concentration and J9 is the diffusivity.

The initial and boundary conditions are
c = Cj for y = 0 at t > 0 (5.9-24a)
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c—>cb as y — > ° o a t t > 0 (5.9-24b)

c = cb for y > 0 at t = 0 (5.9-24c)

For simplicity, we write

c* = ( c b - c ) / ( c b - C i ) (5.9-25)

Equations (5.9-23, 24a to c) become

^ = J S . ^ . (5.2-26a)
dt dyz

c* (0, t) = 1 , c* — > 0 as y — > °° , c* (y, 0) = 0 for y > 0 (5.2-26b,c,d)

We take the Fourier sine transform of Equation (5.9-26a); that is to say, we multiply both sides of the

equation by sin ay and integrate with respect to y from 0 to infinity. The right side is now

—%- sinocydy = «© (U—sin ay - I a ^ - c o s a y d y ) (5.9-27a)

o ay2 p y Jo Jo dy j

= «© l-a [c* cos ay] ~ - a2 I c* sin ay dy > (5.9-27b)

= JS) [a -a 2 C s ] (5.9-27c)

where Cs is the sine transform of c .
Using Equation (5.9-27c), Equation (5.9-26a) becomes

dC o
—-^ + a <®CS = a<0 (5-9-28)

The solution is

Cs = J- + A e x p [ - ( a 2 t J9)] (5.9-29)

where A is an arbitrary constant.

From Equation (5.9-26d), we deduce that

at t = 0, Cs = 0 (5.9-30)

Applying Equation (5.9-30), we find that Cs is given by
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r = i- ( l - e - a t J 9) (5.9-31)
s a

To obtain c , we can either look up in a table of sine transforms or use the inversion formula
[Equation (5.9-19a)]. Using the inversion formula, we obtain

c* (y, t) = 2- I ^ — - sin ay da (5.9-32)
71 Jo a

From the table of Fourier sine transforms (see Table 5.9-1), we find that the inverse of Cs is

c* = erfc(y/2fjS)T) (5.9-33)

which is the solution quoted by Sedahmed (1986).

•

In Examples 5.9-1 and 2, we have used the sine transform because the values of u and c are given at
the origin. We choose the cosine transform if the first derivative is given at the origin. If the region of
interest is the whole infinite space (-«> to <»), the Fourier transform [Equations (5.9-16a, b)] is used.
This is shown in the next example.

TABLE 5.9-1

Fourier sine transform

f(x) Fs(ct)

1, 0<x<a \ J-fl-cos(aa)]

0, a < x < °° j

e"x a / ( l + a 2 )

xe"x 2a/(l + a2)2

erfc ax X [1 _ eXp (-a2/4a2)]

x~a, 0 < a < l -^cosNr(l-a)
a l - a V 2 ;

r is the gamma function
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Example 5.9-3. Solve the wave equation

^JL_c2 3jL = o, -oo<x<oo (5.9.34)

3t2 3x2

subject to the initial conditions

u(x,O) = f(x) (5.9-35a)

^ = 0 (5.9-35b)
dt t=0

Taking the Fourier transform of Equation (5.9-34) and integrating by parts, as before, we obtain

2
Ht +c2a2U = 0 (5.9-36)
dt2

r°°
where U (= I u (x, t) e~mxdx) is the Fourier transform of u.

J-oo

The solution is

U = Aeiccct + B e - ica t (5.9-37)

where A and B are constants.

Differentiating U with respect to t yields

^ = i a c ( A e i c a t - B e - i c a t ) (5.9-38)

The initial conditions imply

F(a) = A + B (5.9-39a)

0 = A - B (5.9-39b)

where

F(a) = I f(x)e-iaxdx (5.9-39c)
J-oo
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Solving Equations (5.9-39a, b), we obtain

A = B = l F ( o c ) (5.9-40a,b)

Equation (5.9-37) becomes

U = i - F ( a ) [ e i c a t + e-icoct] (5.9-41)

Using the inversion formula [Equation (5.9-16a)], we obtain

u = J _ . 1 I F(oc) [e i c a t + e - i c a t ] e i a x d a (5.9-42a)
271 1 I

J _oo

= _i_ I F(a)[eicc(x+ct) + e i a(x-c t)]da (5.9-42b)
4TC I

J -<x>

Equation (5.9-16a) allows one to write Equation (5.9-42b) as

u = 1 [f(x + ct) + f(x-ct)] (5.9-43)

Equation (5.9-43) is d'Alembert's solution.

5.10 HANKEL AND MELLIN TRANSFORMS

We have seen that the solution of Laplace's equation in cylindrical polar coordinates involves Bessel
functions. In problems formulated in cylindrical polar coordinates and if the radial distance r is from
0 to infinity, the derivatives with respect to r can be removed by the application of the Hankel
transform. We define the Hankel transform of f (r) by

Fn(a) = f ( r ) rJ n (ar )dr (5.10-1)
Jo

where Jn (ar) is the Bessel function of the first kind of order r.

The inverse is given by

r
f(r) = aFn(a) Jn(ar)da (5.10-2)

Jo
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The Mellin transform is defined by

F(m) = I xm-1f(x)dx (5.10-3)

Jo
Its inverse is given by

/•Y+i~

f(x) = -L- I x-mF(m)dm (5.10-4)
Z7C1 I

/y-ioo

The exponent m in Equation (5.10-3) is chosen such that the integral exists. The contour integral in
Equation (5.10-4) is similar to the contour used in the inversion formula for the Laplace transform
[Equation (5.8-18)]. As an example of the use of the Hankel transform, we consider the problem of a
charged disk.

Example 5.10-1. The potential u due to a flat circular disk of unit radius satisfies Laplace's
equation and the following boundary conditions

^ + I ^ L + ^ J 1 = O (5.1O-5a)
dr2 r dr dz2

o n z = 0, u = u n , 0 < r < l ; ^ = 0 , r > 1 (5.10-5b,c)
u dz

u—>0 as z—><» (5.1O-5d)

Equation (5.10-5a) suggests that we take the Bessel function of order zero. Multiplying every term of
Equation (5.10-5a) by rJo(otr) and integrating with respect to r from zero to infinity, we obtain

f°° / 2 \ 2 f°°
r — + - — J0(ar)dr + — I r u (r, z) J0(ar) dr = 0 (5.10-6)

Jo W r dx) dz2jo

The first integral can be written as

f r ( & + ^)J»( a r ) d r = f^ ( r ^ J ° ( a r ) d r (5.10-7a)
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r^-J0(ar) - ar^-j:(ar)dr (5.10-7b)

0 Jo dr

= - [ a r u Jo(ar)J Q + I au [J0(ar) + r a JQ (ar)] dr
Jo

(5.10-7c)

= - I a 2 ru J0(ar)dr (5.10-7d)

Jo

= - a 2 U (5.10-7e)

The terms inside the square brackets are zero because of the boundary conditions. Equation (5.10-7d)
is obtained by recognizing that J0(cxr) satisfies the following equation

a r JQ + J o + a r J o = 0 (5.10-8)

Equation (5.10-6) becomes

2

^ - a 2 U = 0 (5.10-9)
dz2

The solution that satisfies Equation (5.10-5d) is

U = A e ~ a z (5.10-10)

where A is a constant.

To obtain u, we use Equation (5.10-2) which leads to

u = I aA(a )e - a z J 0 ( a r )dcc (5.10-11)

Jo
Differentiating with respect to z yields

— = - I a 2 A(a )e - a z J o ( a r )dcc (5.10-12)

9z Jo

Imposing the boundary condition on z = 0, we have
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r
I a A ( a ) J 0 ( a r ) d o c = u 0 , 0 < r < l (5.1O-13a)

Jo

I a 2 A ( a ) J 0 ( a r ) d a = 0 , r > l (5.1O-13b)
Jo

We make the substitution

a 2 A(a) = ^-uf tB(a) (5.10-14)

Equations (5.10-13a, b) become

I a~lB(a)JQ{ai)da = ^, 0 < r < l (5.10-15a)
Jo

r
B ( a ) J 0 ( a r ) d a = 0, r > l (5.10-15b)

Jo

From the integral properties of Bessel functions [see Watson (1966), p. 405], we note that

I a " ! J 0 ( a r ) s i n a d a = | , 0 < r < l (5.10-16a)
Jo

r
I J 0 ( a r ) s i n a d a = 0, r > l (5.10-16b)

Jo

Comparing Equations (5.10-15a, b, 16a, b), we deduce that

B(a) = sin a (5.10-17)

From Equations (5.10-11, 14, 17), we obtain

u = ^ 2 - 1 a ~ 1 s i n a e " a z J o ( a r ) d a (5.10-18)

K h
Note that in this example, the boundary conditions are of the Robin type (u is given on a section of the

boundary and -=— on the remaining part of the boundary) and we determine A (a) after the inversion,
oz
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If the boundary conditions are of the Dirichlet or Neumann type, we determine A (a) and then carry
out the inversion.

Example 5.10-2. The steady heat flow problem in a wedge, as shown in Figure 5.10-1, consists of
solving Laplace's equation, which can be obtained from Equation (A.IH-2)

r 2 ^ T + r 3 T +dh = Q ( 5 1 O 1 9 )

3r2 9r 3 6 2

where T is the temperature, subject to

on e = ±9 0 , T = l , 0 < r < a ; T = 0, r > a (5.1O-2Oa,b)

y"

1/ \T=o

FIGURE 5.10-1 Heat flow in a wedge

Taking the Mellin transform of Equation (5.10-19), we obtain

rm-l r2 3 _ T + r 3 l U + A _ r m - 1 Tdr = 0 (5.10-21)
Jo 3r2 dtf d02Jo

We integrate the first integral by parts and Equation (5.10-21) becomes
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d2T 9 —
^ +m 2 T = 0 (5.10-22)
d02

where T is the Mellin transform of T.

From Equations (5.10-20a, b) we deduce that T and T are even functions of 8.

The appropriate solution of Equation (5.10-22) is

T = A cos m0 (5.10-23)

On 0 = ± 0O, T is given by

— I 1 1 r ia n m

T = r ^ d r = Jr[rm]0 = ^ - (5.10-24a,b,c)
Jo

Substituting Equations (5.10-24a to c) into Equation (5.10-23), we obtain

^ - = Acosm0o (5.10-25)

Substituting the value of A into Equation (5.10-23) yields

T = a ^ £ ° s M (5.10-26)
mcosm0o

Using the inversion formula [Equation 5.10-4)], T is expressed as

r - m a m c o S m 0 d m ( 5 1 0 2 ? )

y_i<x, mcosm0o

The integrand has a simple pole at the origin. We choose the line integral to be along the imaginary
axis of m with an indenture at the origin, as shown in Figure 5.10-2. The indenture is in the form of
a semi-circle of radius £. Equation (5.10-27) can be written as

T = - L [ " ( y cosmO d m + / " £ ( y cosmO d m + <" (a)™ cosrnO d m

J-ioo mcosm80 J_ie mcosm0o J i e mcosm0o

(5.10-28)
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I m (m)< >

i1

f) -
Z/ Re(m)

FIGURE 5.10-2 Contour integral for the evaluation of the inverse
of Mellin transform

To evaluate the middle integral, we write

m = eei e (5.10-29)

/•is rn/2
U m ( a p cos m9 d m = l j m i 8 e ^ _ d e (5.10-30a)

£ - > 0 J - i e " mcosme0 e ^ ° J_,/2 eeie

= in (5.10-30b)

The first and last integrals are evaluated by substituting

m = iy (5.10-31)

j . m I " ( a p cos m9 d m = [ (a)iy cos(iye) . d y (5.10-32a)
e->0J_ioo mcosme0 ] _ „ ' * iycos(iye0)

= 1 exp [iy In (a/r)] c o s h y 9 dy (5.10-32b)
J-oo y cosh y 6 0
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f°°
= - exp [-iy In (a/r)] C O s h ( y 9 ) dy (5.10-32c)

Jo ycosh(y0 o )

Equation (5.10-32b) is obtained by using Equation (3.4-27) noting that cosh is an even function.

Similarly, we find

lim f ( f ) m c o s m 9 dm = f exp [iy In (a/r)] C O s h y 9 dy (5.10-33)
£—>0 } i e mcosm8 0 Jo y c o s h y 0 o

Substituting Equations (5.10-30b, 32c, 33) into Equation (5.10-28) yields

T = - i - [in + f" C O S h y 9 [e*ln<a'r> - e"^111^]dy! (5.10-34a)
2%1 \ Jo ycoshy60 j

( 0 OO

i n + I y 9 [2i sin (y In (a/r)] dy (5.10-34b)

Jo ycoshy9 0

= 1 + 1 j c o s h y e [Sin ( y in (a/r)] dy (5.10-34c)

1 n Jo ycoshy9 0

We have the solution in the form of an integral.

•

So far, we have considered partial differential equations in two independent variables. Applying the
integral transform method, we have reduced a partial differential equation to an ordinary differential
equation. Similarly, if we start with a partial differential equation involving three independent
variables, we need to apply two transforms to reduce it to an ordinary differential equation. In general,
an equation in n independent variables needs (n - 1) transforms to reduce it to an ordinary differential
equation. We need to invert (n - 1) times so as to obtain the solution. This process is illustrated in the
next example.

Example 5.10-3. Stastna et al. (1991) considered the diffusion of a cylindrical drop through a
membrane. A circular cylindrical drop Kj of radius a and height h diffuses into a circular
membrane K2 of infinite radius and of thickness Z as shown in Figure 5.10-3. It is assumed that
Kj is filled with a penetrant of concentration c1 which is a function of z and t only. In the
membrane K2, the concentration is c2 and it is a function of z, r, and t. Symmetry is assumed
and there is no dependence on 0. The diffusivities are assumed to be constant and we denote them by
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<©! and <02 in Ki and K2 respectively. The relevant equations are obtained via Equation

(A.IV-2).

I
* —»H T

a '
l h

I C« ,o H ,_

f

FIGURE 5.10-3 Cylinder Kt and membrane K2

In K ,̂ we have

^ - = ^ ^ 1 (5.10-35a)
at dz2

C l | t = 0 = cj (5.10-35b)

^ 1 = o , ^ l - = Kf(t) (5.10-35c,d)
3 z z=-h dz z=0

where c^ is a constant, K (= J92/J9i) is the ratio of the diffusivities.

In K2, we have

9 c 2 1 3 / 3c 2 \ 3 2 c 2

— L = JS2 r — - + (5.10-36a)

3t Lr 3r ' 9r ' 9z2-
c 2 | t = 0 = 0 (5.10-36b)
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a ( f ( t ) , 0 < r < a
- ^ = { (5.10-36c,d)

d z z=0 ( 0 , r > a

C2 |z=i = ° (5.10-36e)

Taking the Laplace transform with respect to t of Equations (5.1O-35a to d), we obtain

d2C
s C j - c f = JS)Y — - 1 (5.10-37a)

dC, dC,
-r-L = 0, -^-L = KF(s) (5.10-37b,c)

d z z=-h a z z=0

/•oo

where C^ (=1 e"stCj (z, t) dt ) is the Laplace transform of c^ Likewise F(s) is the Laplace

transform of f (t).

The solution of Equation (5.10-37a) is

, . . . co
C, = Acosh Z . / - S - +Bsinh lz A -&- + - 1 (5.10-38)

I V «©! ) I V JS>, ) s

where A and B are constants.

Imposing conditions (5.10-37b, c), we obtain

Ci = K p J a 7 c o s h ( ^ V s ^ 7 + c f ( 5 1 M 9 )

sinhChVs/JS)! )

From the table of the Laplace transforms, we find that cj is given by

°1 = irf0 m 1 + 2 f (-^"^{-(if f (t-^JSiJcosHILi2-^ dx + cf
(5.10-40)

To solve Equation (5.10-36a), we first take its Hankel transform. Proceeding as in Example 5.10-1,
we obtain

— 2 . = J92 _ a / c 2 + 2. (5.10-41)
3t [ 3 z 2
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f°°
where C 2 (= I rc 2 Jo(otr) dr) is the Hankel transform of c 2. Note that C2 is a function of z and t.

The Hankel transforms of Equations (5.10-36b to e) are given by

C 2 | t = 0 = 0 , C 2 | z = i = 0 (5.10-42a,b)

—2- = I r J 0 (ar ) f ( t )dr (5.10-42c)
dz z=0 Jo

= f(t) I rJ0(ar)dr (5.10-42d)
JO

= f<W-> <5.10-42e)

Equation (5.10-42e) is obtained by using the properties of Bessel functions. To remove the time
derivative in Equation (5.10-41), we take its Laplace transform. The resulting equation is

s C 2 = JE)2 -cc2C2 + 2- (5.10-43)

L d z 2 .

j» 00

where C2 (= I e~ s t C 2 d t ) is the Laplace transform of C2.

Equations (5.10-42b, e) become, on taking their Laplace transforms,

n n d ^ 2 F(s)aJ1(qa) . . , „ , . , .
C 2 z=i = 0 ' -AT = zr (5.10-44a,b)

a z z=0 a

where F (s) is the Laplace transform of f (t).

The solution of Equation (5.10-43) is

C2 = A cosh pz + B sinh pz (5.10-45)

P = V a 2 + s/«©2 (5.10-46)

where A and B are constants.

Using Equations (5.10-44a, b), we obtain
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C2 = F ( s ) a J ' ( a a ) s i n h P ( Z - - e ) (5.10-47)
ap cosh |3i

From the table of Laplace transforms, we find that

s . n (2n - l ) ( z - - e ) t t d x

2 i

Using Equation (5.10-2), we obtain

r
c2 = aC2J0(ar)da (5.10-49a)

Jo

= 2â  f^^j^f^jr^n-l
* '° '° nTl

f [ 2 2 /2n - 1 \2 . . _ \ . (2n - 1) (z - X) n , , ... , . ....
exp{- a +7T ( t - T ) <O7> sm — '— dx da (5.10-49b)

I L \ 2 i / J | 2i

which is the solution given by Stastna et al. (1991).

If f(t) is specified, then c1 and c2 can be determined from Equations (5.10-40, 49) respectively.

5.11 SUMMARY

The method of separation of variables is suitable for homogeneous equations with homogeneous
boundary conditions. The solution is often expressed as an infinite series. If the equations are non-
homogeneous, the method of separation of variables cannot be applied directly. We need to introduce
an auxiliary function and the method can be complicated.

The method of integral transforms can be applied to linear differential equations (ordinary or partial)
with arbitrary boundary and initial conditions. The problems solved by the method of separation of
variables can be solved by the method of integral transforms. The various transforms F(s) of a
function f(t) introduced in this chapter can be written as

rb
F(s) = K(t, s)f(t)dt (5.11-1)

Ja

(5.10-48)
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where K (t, s) is the kernel.

Table 5.11-1 lists the kernel corresponding to various transformations.

The inverse process, that is to say, finding f(t) given F(s), can be complicated. If f(t) can be read
from a table, the solution is obtained immediately. Otherwise, it might involve evaluating an integral
which cannot be written in a closed form. Numerical methods can be used to evaluate the integral.
Extensive tables of integral transforms are given by Erdelyi et al. (1954). Other kernels than those
discussed in this chapter have been considered by Latta in the handbook edited by Pearson (1974).

The methods of separation of variables and of integral transforms are applicable to linear equations
only. In the next chapter, we shall consider methods which can be used to solve non-linear equations.

TABLE 5.11-1

Kernels of various transforms

Transforms a b K (t, s)

Laplace 0 °° e~st

Fourier -<*> oo e~ist

Fourier sine 0 °° sin (st)

Fourier cosine 0 °° cos (st)

Fourier finite sine 0 L sin £2Ei

Fourier finite cosine 0 L cos^i
J—/

Hankel 0 oo t J n (st)

Mellin 0 °° ts~l
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PROBLEMS

1 a. Solve the following equations

(i) | H - + | H - = 0

1 2
given that u(xj,0) = Xj Answer: (x j -x 2 )

.... du du

given that u = 5 on x2 = x^ Answer: 5 x i / x 2

,••-, du n du „
(m) x 2 ^ - - 2 X l x 2 ^ - = 2xl U

given that u(0, x2) = (sinhx2)/x2 Answer: -L sinh (X2 + x2)

2b. The equations governing one-dimensional compressible flow are the equations of continuity
and motion given in Appendix I and II. They can be written, in the absence of a pressure
gradient, as

8vY 3vv
—— + v —— = 0
at x dx

where p is the density and vx is the velocity.

Obtain p and vx if initially (t = 0), p and vx are given by

P = P o ( 1 + X ) . vx = v o ( l +x)

where p0 and v0 are constants. Answer: vo(l + x ) / (1 + tvQ)

p o ( l + x ) / ( l + t v o ) 2

3b. We model the downhill movement of a glacier as the sliding of a block of height h down a
plane surface of constant slope a. The direction of flow is taken to be the x-axis and the flow
velocity vx is assumed to be a function of x and t. As a first approximation, the shear stress
x between the glacier and its bed is given by

t = p g h a
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where p is the density and g is the gravitational acceleration.

It is further assumed that the relationship between t and vx is

vx = kTn

where k and n are constants.

The equation of continuity [Equation(A.I-l)] can be written as

dh d ,. . n

Assuming that h is a function of x and t, obtain h.

4a. Show that the non-homogeneous equation

8u 3u 2 2

reduces to

3 v d v _
x ,^— + x 2 3 — + v = 0

if we assume

u = v + i- (X!2 + X22)

Obtain u if on x = 1, u is given by

u = e *2 cosx2 + -̂ (1 + x 2 )

i 2 2N exp(-x2 2 /x1 2)cos(x2 /x l )
Answer: J- (x, + x f ) + — — — - — ^ -^—lL

3 l z x j

5a. Determine the regions where the following equations are hyperbolic, parabolic, and elliptic.

d2u . d2u . 82u _
(I) + 4 + 4 = 0

dxf dxldx2 ax2

32u 32u 82u _
(n) + x j + x2 = 0

3X l 2 a X l ax 2 a x |
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92u a2u 3u
(ill) X , + Xo h X, X7 + U = 0

l _ o Z o 1 / - ,
dxf 9x22 5x2

6a. Find the characteristic coordinates £, rj for

o 9 0
, i . 2 x ^ u - 9 u 3 u _
(cos X, - sin Xo) + 2 cos x 7 v 1- u = 0

2 2 3 x 2 2 3 X l 3 x 2 3 x 2

Rewrite the equation in terms of L, and r\.
Answer: sin x 2 - c o s x 2 - x 1

sin x2 + cos x2 - Xj

7a. Use d' Alembert's method and the method of separation of variables to solve the wave equation
[Equation (5.4-6b)] given that the initial conditions are

3vy (x, 0) = sin x , -^- = 0
d t t=o

Answer: sin x cos c t

8 a. Solve the equation

^ L + ^H_ = o
9x| Bx2

by the method of separation of variables.

Compare the solution with the solution obtained in Problem la (i).

What condition(s) has (have) to be imposed to satisfy

u(xj,0) = Xj2

9a. Solve the following equations, subject to the given conditions

(i) ^ = ^ 0 < X < 7 l , t > 0
9t2 3x2

u (0, t) = u (rc, t) = 0 ; ~ = 0 ; u (x, 0) = x (n - x)
9 t t=0

Answer : & Y cos (2s + l ) t s i n ( 2 s + l ) x

K s =o (2 s + I ) 3
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(ii) — = k , 0 < x < n, t > 0, k is a constant
at ax2

u (0, t) = U(TI, t) = 0; u(x, 0) = sin 3x Answer: e~9ktsin3x

9 9..... 3 u a u „ „ „(m) + = 0 , 0 < x < 7t, 0<y<7t,
3x2 3y2

u (0, y) = u (71, y) = u (x, rc) = 0 ; u (x, 0) = sin2 x

Answer: - 1 Y , s i n h ( 2 s ~ ^ f r - y ) s in(2s- l )x
n ~l (4s 2 - l ) (2s -3)s inh(2s - l )7 t

10b. In deriving the wave equation, we have assumed that the frictional resistance is negligible. If
the resistance is assumed to be proportional to the velocity, the wave equation becomes

^y + k^y = c2^y

at2 at ax2

where k is a constant.

Obtain the solution if y satisfies the following conditions

y (0, t) = y (1, t) = y (x, 0) = 0 ; | f = v0 5 ( x - l )
d t t=0 l

where v0 is a constant and 8 is the Dirac function.
oo

Answer: Y vo e ~ k t / 2 sinq2s+1t sin(2s + l)7cx
s=0

q2s+1 = c 2 (2s+ l ) 2 7C 2 -k 2 /4

lla. The one-dimensional heat equation can be written as (see Appendix III)

dT 32T— = a

3t 3x2

where T (x, t) is the temperature and a is the thermal diffusivity.

Solve the heat equation for a rod of unit length. The boundary and initial conditions are
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2x, O<X<1
T (0, t) = T (1, t) = 0 ; T (x, 0) = 2

2( l -x) , ^ x < l

Q V (-I)se^2s+1)2a7l2tsin(2s+l)7cxAnswer: 8 > -—-
s = 0 7C 2 (2s+ l ) 2

12a. Hershey et al. (1967) considered the transport of oxygen into blood down a wetted wall
column. A film of blood of uniform thickness falls with velocity vz. The blood is in direct
contact with a rising stream of oxygen, as shown in Figure (5.7-1). The equation governing
the diffusion process is (see Appendix IV)

9cA IT. d2°A
i — * ^ ATI

z Ac 9

dz dxz

where cA is the concentration of oxygen in the blood and «©AB *S the diffusion coefficient.

The appropriate boundary conditions are

cA (0, z) = cf, cA (x, 0) = c0

and at the wall x = L , ~^ = 0
dx

Assuming that the oxygen does not penetrate very far into the blood, the velocity vz may be
approximated by the velocity at the interface which we denote by vm, which is the maximum
velocity. By writing

c = cA~cf
c o - c f

obtain the partial differential equation governing the process of diffusion. Deduce the
boundary conditions. Note that the boundary conditions are now homogeneous at x = 0 and
at x = L.

An^en i ^ i t l f exp [-(2s + 1)2K2 J3ABz/4L2vz] ^ Oi + i l " + C f

K tZ (2s + 1) 2L

13a. The steady temperature T (x, y) in a square 0<x<a , 0 < y < a is given by
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^1 + ̂ 1 = 0

3x2 dy2

Obtain the temperature T for the following boundary conditions:

(i) T (0, y) = T (a, y) = T (x, 0) = 0 , T (x, a) = x ( a - x)
°°

A • **f*_ V* s i n ( 2 s + l)7tx/a sinh (2s + l)7ty/a

K3 s = 0 (2s + I ) 3 sinh (2s + 1)71

(ii) T ( x , 0 ) = ^ = ^ I = 0 , T(x,a) = x ( a - x )
d x x=0 d x x=a

-z °°
A 8a "V cos (2s + l)7tx/a sinh (2s + l)7ty/a
Answer: -=— > ^ — l—

7t2 s = 0 (2s + I ) 2 sinh (2s + 1)K

14b. In Chapter 3, it is shown that the potential cp associated with the flow of an incompressible
inviscid fluid satisfies Laplace's equation. Consider the flow past a circular cylinder of radius
a with its centre at the origin. In the polar coordinate system, Laplace's equation is written as

9r2 r 3r r2 dQ2

The appropriate boundary conditions are

9q>
r = a, ^— = 0 ; r —> °°, cp —> r vx cos 9

dr

where vx is constant (velocity far from the cylinder).

Obtain (p and compare your answer with that given in Example 3.6-8.

Answer: vx (r + a2/r) cos 0

15a. Determine the potential cp for the flow of an inviscid, incompressible fluid past a sphere of
radius a. Laplace's equation in the spherical polar coordinate system, assuming spherical
symmetry, is written as

r2 3r \ 3r / r2sin 8 36 \ 36 /
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Choosing the centre of the sphere to be the origin of the coordinate system, the boundary
conditions are

=— = 0 , (p —> v^ r cos 6 as r —> °°
3 r r=a

Answer: vTO (r - a3 / 2r 2) cos 0

16a. To find the temperature inside the earth, we consider a very simple model. We assume the
earth to be a sphere with constant thermal properties. There is no source of heat. The
temperature is at steady state. The temperature distribution on the surface of the earth has a
maximum at the equator and a minimum at the poles. For such a model, the temperature T
satisfies the following equations

i a / 2dT\ i _ a / . oaT _
-^— r — + -= sin 0 — = 0
r2 dr\ drl r2sin 0 dQ \ 90

T is finite at the centre of the earth (r = 0). T = sin2 0 on the surface of the earth (r = 1).

Determine the temperature at the centre of the earth.
Answer: 2/3

17b. The molecular diffusion of species A inside a spherical drop is described by (see Appendix
IV)

at " ^ [ r ^ d r l dr )_

where cA (r, t) is the concentration, «©AB *S ^ne diffusivity.

The initial and boundary conditions are

t = 0, cA = c0 ; on the surface (r = 1), cA = c s ;

cA is finite at the origin. The quantities cQ and cs are constants.

By writing u = r c A , show that the equation is reduced to one with constant coefficients.
Determine the initial and boundary conditions on u. Apply the appropriate substitution such
that the boundary condition at r = 1 is homogeneous. Determine cA.

E
( 1 \S+1 2 2

i r i i e~s n ^^l sin srcr + cc
sTtr s

s = l
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18b. The equation governing the diffusion of species A in a medium B and reacting with it
irreversibly according to a first order reaction is given by (see Appendix IV)

^CA _ ra v 2 c k c^ j ~ ~ ~ d JABv CA~K1CA

where cA is the concentration, «©AB *S the diffusivity, and kj is the rate constant for the

reaction.

The initial and boundary conditions are

t = 0, cA = 0 ; at the surface, cA = cs

Verify that if f is the solution of

I - *«*
then cA is given by

cA = k j fe- '̂dt'+fe"1"1

Jo

Show that cA and f satisfy the same initial and boundary conditions.

19b. If heat is produced at a rate proportional to the temperature T, then T satisfies the equation

where a and kj are constants.

Assume that the initial and boundary conditions are

T(x,0) = 0 , T(0,t) = 0 , T ( l , t ) = Tj

Solve the differential equation, subject to the given initial and boundary conditions, for the case
kj = 0. Then, use the result given in Problem 18b to obtain the solution for non-zero values
of k^. Verify that the solution satisfies the differential equation, the initial and the boundary
conditions.

20b. Can you use the method of separation of variables to solve the equation
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d U d U .0 2\2 ~
-—- + — - + (xz + yl) u = 0
ax2 a y 2

Transform to the polar coordinate system and show that the equation can be written as

1 d I du\ 1 d2u 4
r — + + r u = 0

r 9r * dr > r2 902

By writing u = R (r) 0 (0), deduce that F and 0 are solutions of

r f ( r d R ) + ( r 6 _ n 2 ) R = 0> ^ 0 + n 2 0 = 0

dr I dr) d 0 2

where n2 is the separation constant.

Obtain a series solution for R (see Chapter 2).

If the region of interest is 0 < r < 0.5 and given that

u (0.5, 6) = sin 20

obtain an approximate solution for u.

Answer: 4r2 (1 - r 6 / 6 0 ) sin20

21b. The velocity component vz of a Newtonian fluid flowing in a long circular pipe of unit radius

under a pressure gradient is given by [see Equation (1.19-20)]

vz = v m ( l - r 2 )

where vm is the maximum velocity (velocity along the centre line).

If the pressure gradient is stopped, then the transient velocity vzt is given by

3t r ar \ dr j

where v is the kinematic viscosity.

The initial and boundary conditions are

vzt(r, 0) = v m ( l - r 2 ) , v z t ( l , t ) = 0 , vzt is finite at the origin
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Solve for vzt. By considering only the first term of the infinite series, estimate the time

required for the velocity at the centre line to be reduced by 90%.

4vmJ2(2.4)e-(2-4)2 v tJ0(0)
Answer: — n L ^ y

[2.4J1(2.4)]2

22b. Chiappetta and Sobel (1987) have modeled the combustion-gas sampling probe as a
hemisphere whose flat surface is kept at a constant temperature T c . Gas at constant
temperature TQ > TQ is flowing over the probe. The system is steady and the temperature T
at any point inside the hemisphere satisfies Laplace's equation, which in spherical polar
coordinate, can be written as (see Appendix HI)

dr I dr / sin 0 30 36 J 2 2

where a is the radius of the hemisphere.

The boundary conditions are

on the flat surface: T (r, ^ ) = T (r, - f ) = T c ;

dT

on the curved surface: k -^- (a, 0) = h [Tr - T (a, 0)]
dr u

where k is the thermal conductivity and h is the heat transfer coefficient; T is finite
everywhere in the hemisphere.

Note that the boundary conditions are not homogeneous and we introduce u defined by

u = T - T c

Solve for u and then, obtain T.

23b. Burgers (1948) has proposed the equation

9v 3v d v
— + v — = v — -
3t dx 3xz

where v is a positive constant, as a model for a turbulent flow in a channel.

Show that the transformation (Cole-Hopf transformation)
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V (X, t) = A ~ [in 9 (X, t)]
dx

transforms Burger's equation to the diffusion equation for a suitable choice of constant A.

Determine A and solve for 9 by the method of separation of variables. Obtain v (x, t) if
the initial and boundary conditions are

v (x, 0) = v0, 0 < x < a; v (0, t) = v (a, t) = 0

~ 2 2 2

Answer: 2 J A s e s " v t / a cosrcsx/a
s=0

As = ^ [ l / ( v 2 / 4 v 2 + s V / a 2 ) ] [ l - ( - l ) V a v < > / 2 v ]

24b. By introducing a suitable auxiliary function, solve the following equations by the method of
separation of variables, subject to the given conditions:

/•x 5 u 2 d u n 1
(l) = c + x , 0 < x < I

at2 ax2

u(0,t) = u(l , t) = 0; u(x,0) = ^ - = 0
dt t=0

x ( l - x 2 ) V (~l)S2Answer: — + > cos sTCct sm srcx
6c2 s=1 (sn)3

..... d u d u - t o(n) — = — - + e sin 3 x
at ax2

U (0, t) = 0 , U (7t, t) = 1 , U (X, 0) = X/7T

Answer: — + ^ (e~l - e~9t) sin 3x

25a. Use the method of Laplace transforms to solve the following equations:

(i) —• + x | ^ = 0 ; u (x, 0) = 0 , u (0,t) = t

Answer: 0, 0 < t < x 2 / 2
t - x 2 / 2 , t>x 2 /2
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(ii) ^ - + 2 x ^ - = 2x; u(x,O) = u (O, t )= l
ox at

Answer: t + 1 , 0 < t < x 2

( t + l ) - ( t - x 2 ) , t > x 2

(in) ^ = c 2 ^ - g ; u(x,O) = ̂  = 0 , x > 0
dt2 dx2 dt t=0

u (0, t) = 0, lim r̂— = 0, t > 0 ; c and g are constants.
x—>oo d x

Answer: -g t /2, 0 < t < x / c

- | [ t 2 - ( t - x / c ) 2 ] , t > x / c

26b. A composite solid is made of two layers Kj and K2. Layer Kj (0 < x < a) is initially
kept at a temperature To and is in perfect thermal contact with layer K2 (a < x °°) which is
initially kept at zero temperature. The face x = 0 is insulated. The thermal conductivity and
diffusivity in Kj and K2 are respectively ki, a j and k2, a2. The problem can be
expressed as (see Appendix III)

9T 32T
— = a , , 0 < x < a , t > 0
at 3x2

dT 32T .
— = ou , x > a , t > 0
at ax2

T(x, 0) = To, 0 < x < a ; T (x, 0) = 0 , x > a

^ - = 0 , lim T(x, t) = 0
d x x=o x~>o°

T (a - 0, t) = T (a + 0, t) (continuity of temperature at the interface)

k j 3— = k2 3— (continuity of heat flux at the interface)
d x x=a_ d x x=a+

Solve for T using the method of Laplace transform.

. _ T 0 ( l - X ) v , n { ^ (2s + l ) a - x l . [ (2s + l ) a + x l | .
Answer: T n ^—- > X erfc -1—— +erfc , 0 < x < a

0 2 La \ 2VaTT 2 VaTt
s = 0 1 J L 1 J ;
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l o l L t ^ V Xn e r f c [ 2 s a + H ( x - a ) l _ e r f c r ( 2 s + 2 ) a + H ( x - a ) l ) x > &

s=0 L 1 J L 1 J /

27b. Show that the solution of

32u 32u 34u
= + , x > 0 , t > 0

at2 dx2 ax2at2

subject to

u = ^- = 0 , t = 0 , x > 0
at

u ( 0 , t) = 1, u — > 0 as x—>c» for all t > 0

can be written as

JrY+i°°

J - e x p ( - s x / V l + s 2 + s t ) d s
s F V

Y_loo
Deduce that

d x x=0

[Hint: Use the table of Laplace transforms.]

28b. Use the method of Fourier transform to solve Poisson's equation

^ H . + ^ H . = _ p , 0 < X < T T , y > 0

ax2 a y 2

u (0, y) = 0 , u (re, y) = 1 , u (x, 0) = 0

u is bounded throughout the region.

Answer: - ; B . (e~s y - 1) sin sx
7U *-* s

B s = ^ { ( - l ) S s + p [ l - ( - l ) s ] / s )
s
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2 , 2

29b. Show that the Fourier transform of e"ax is y j - e~a ' .

[Hint: Complete the square in the exponential term and use the appropriate contour.]

Solve by the method of Fourier transform the equation

— - + — — - u = 0 , - o o < x < o o , 0 < y < l

3x 2 3y 2

subject to

~ = 0, u (x, 1) = e"x , u (x, y) —> 0 as x —> ±<*>
°y y=o

Leave your answer in integral form.





CHAPTER 6

PARTIAL DIFFERENTIAL EQUATIONS II

6.1 INTRODUCTION

In Chapter 5, we have used the method of separation of variables and transform methods to solve
partial differential equations. In this chapter, we introduce additional methods which can be used to
solve P.D.E.'s. We consider also non-linear equations.

P.D.E.'s can be classified in three types, hyperbolic, elliptic, and parabolic, and for each type we
discuss one method. Here, the hyperbolic equations are solved by the method of characteristics,
a method which has been encountered in Chapter 5. The method of Green's function which was
employed in Chapter 1 to solve non-homogeneous O.D.E.'s is now extended to solve elliptic
P.D.E.'s, and a similarity variable is introduced to solve parabolic equations.

The equations we considered in Chapter 5, namely the wave equation, the diffusion (heat) equation,
and Laplace's equation are all important equations in classical physics. In this chapter, we seek the
solution of Schrodinger's equation which is one of the most important equations in quantum
mechanics.

6 . 2 METHOD OF CHARACTERISTICS

In Chapter 5, we have used the method of characteristics to solve first order partial differential
equations and the wave equation (d'Alembert's solution). We recall that the characteristics are the
curves along which information is propagated. Discontinuous initial data are carried along the
characteristics. It is also shown that hyperbolic equations have real characteristics. We now describe
Riemann's method of solving hyperbolic equations.

The canonical form of a linear hyperbolic equation is

3 2 r) 3
L(u) = ^ d + a ( x ' y ) a ^ ~ + b < X y ) ^ p +c(x, y)u = p(x, y) (6.2-la,b)

We assume that the prescribed conditions are on a curve y and that they can be written as

u = g(x, y ) , ^ = h(x, y) (6.2-2a,b)
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where ^— is the normal derivative of u on y.
on

We also assume that y is not a characteristic of Equations (6.2-la, b), as shown in Figure 6.2-1.

y l

y0 • ° V — • * —

1 ^
x0 *

FIGURE 6.2-1 Characteristics Tx and T2 and curve y
along which conditions are prescribed

The characteristics are given by [Equations (5.3-1 la, b)]

Fj : x = constant, F2 : y = constant (6.2-3a,b)

We now determine the value of u at a point P (x0, y0) which is a point of intersection of two

characteristics. The solution at P is determined by the domain of dependence A (see also Figure

5.4-3).

The adjoint operator L* of the operator L defined by Equations (6.2-la, b) is [see Equation
(6.5-1) for the general case]

L* W = iNr - T~(av) " T"( b v ) + cv (6-2"4)
dxdy ox ay

If L* = L, L is self-adjoint.
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From Equations (6.2-la, b, 4), we obtain

v L (u) - u L* (v) = ~ (auv - u p-) + ̂ - (buv + v ~) (6.2-5)
dx dy dy dx

Applying Gauss' two-dimensional theorem [Equation (4.4-23)] to Equation (6.2-5), we obtain

| J [vL(u)-uL*(v)]dxdy = <f [ ( a u v - u ^ ) dy -(buv + v—-) dx] (6.2-6)

A C

where C is the closed curve formed by y, T2, and Fj , as shown in Figure 6.2-1. Noting that on
Ti, dx = 0 and on F2, dy = 0, it follows that

/ r/ dv N , ., du. , , / r, 3v. , ,, 3u. , ,
d) [(auv-Ur-) dy -(buv + v^—) dx] = [(auv-u^r—) dy-(buv + v^—-) dx]
I dy dx I dy dx

C Y

+ 1 (auv-u^)dy - I (buv + v^-)dx (6.2-7)

JR °y h dx

lQ du
Integrating I v 3— dx by parts yields

Jp dX

Combining Equations (6.2-6 to 8), we obtain

\l [vL(u)-uL*(v)]dxdy = I [ ( a u v - u | ^ ) dy -(buv + Vy-) dx]

A Y

+ 1 ( a u v - u ^ ) d y - v(Q)u(Q) + v(P) u(P) - I (buv - u | ^ ) dx (6.2-9)

Equation (6.2-9) expresses the value of u at P in terms of v and the sum of integrals. By choosing
v appropriately, we can reduce some of the integrals to zero. Following Riemann, we impose on v
(the Riemann function) the following conditions

(6.2-8)
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(a) v satisfies the adjoint equation, that is to say

L*(v) = 0 (6.2-10a)

(b) along x = constant (Fj)

j p = av (6.2-10b)

(c) along y = constant (F2)

| ^ = bv (6.2-10c)

(d) at the point P

v ( x o , y o ) = 1 (6.2-lOd)

Substituting Equations (6.2-10a to d) into Equation (6.2-9) yields

u(P) = v(Q)u(Q)-J [(auv-u^-)dy-(buv + v|^)dx]+j j vpdxdy (6.2-11)

Y A

Equation (6.2-11) is not symmetrical in the sense that it only involves the point Q and the derivative

3— but not R and ^—. To obtain a more symmetric expression, we consider the identity

fR ? ? fR

[ / - (uv) dx + ̂ - (uv) dy] = d(uv) = u(R) v(R) - u(Q) v(Q) (6.2-12a,b)
;Q dx dy JQ

Substituting u(Q) v(Q) from Equations (6.2-12a, b) into Equation (6.2-9) and using conditions
(6.2-10a to d), we obtain

u(P) = u(R)v(R)- I [ ( auv -u^ - )dy - (buv + v^- )dx]
J dy dx

Y

- | f^-(uv)dx + ̂ -(uv)dy]+(I vpdxdy (6.2-13a)

Y A

= u(R)v(R)-| [(auv + v^-)dy-(buv-u^)dx]+ I I vpdxdy (6.2-13b)

Y A
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Adding Equations (6.2-11, 13b) yields

u(P) = i-[u(R)v(R) + u(Q)v(Q)]+ I vpdxdy

A

- i - f [(2auv-u|^ + v^-)dy-(2buv + v^- -u |^ )dx] (6.2-14)

Y

The function u and its first partial derivatives on y are given by Equations (6.2-2a, b), R and Q
are on y; that is, u(R) and u(Q) are known, p is given in A, and if the Riemann function v is
known, u(P) can be evaluated. The problem of obtaining a solution to Equations (6.2-la, b, 2a, b)
has now been transformed to finding the Riemann function v satisfying Equations (6.2-10a to d).
Once v is found, u(P) can be obtained from Equation (6.2-14). Note that Equation (6.2-14) can be
written in a general form as

u(P) = J K£,P)p($)dS (6.2-15)

where the kernel K depends on the operator and the boundary conditions, and is independent of p.
The Riemann method is similar to the Green's function method [see Equation (1.18-1)].

Note that we have assumed that each characteristic intersects y at no more than one point. This
condition is necessary, otherwise the problem might have no solution.

Example 6.2-1. Solve the following equation using Riemann's method

J-H_-J-*i = O (6.2-16)
dxdy 2x 3y

subject to

u (x, y) = f (x, y ) , | ^ = h(x, y) (6.2-17a,b)

on the line y = - x + c, where c is a positive constant.

The characteristics are given by Equations (6.2-3a, b) and the adjoint operator [Equation (6.2-4)] is

J ^ + ±?I=0 (6.2-18)
dxdy 2x dy
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On integrating with respect to y, we obtain

£ + £ = F W (6.2-19)

where F (x) is an arbitrary function.

The integrating factor of Equation (6.2-19) is Vx and the solution is

Vx~ v = I Vx~ F (x) dx + G (y) (6.2-20a)

or v = F1(x) + G(y)/Vx" (6.2-20b)

where Fj and G are arbitrary functions.

The function v has to satisfy Equations (6.2-10b to d) and this implies that

on x = constant, G'(y)/Vx~ = 0 (6.2-2la)

on y = constant, -r-1 - r G ( y ) / x 3 / 2 = -v/(2 x) (6.2-21b)
\X A. £*

at the point P(x0, y0) , v(x0, yo) = l (6.2-21c)

From Equations (6.2-2la, b), we deduce that G is a constant and

dF, F,
-r-1- + TT = ° (6.2-22)
dx 2x v '

The solution is

Fj = K o / V 7 (6.2-23)

where KQ is a constant.

Combining Equations (6.2-20b, 21c, 23) yields

v = Vxo/x (6.2-24)

The solution u (x0, y0) is given by Equation (6.2-14) and, in this example, it simplifies to

u(x0>y0) = ^[u(R)v(R) + u(Q)v(Q)] + l | ( v | ^ + ~ - + v | ^ - - u — ) dx (6.2-25)

7
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where y is the line y = - x + c and on y, dx = -dy.

From, Figure 6.2-1, we deduce that Q and R have coordinates ( c - y 0 , y0) and (x0, c - x0)

respectively. From Equations (6.2-17a, 24), we obtain

u(R) = f ( x 0 , c - x 0 ) , u(Q) = f ( c - y o , y o ) (6.2-26a,b)

v(R) = 1, v(Q) = V x o / ( c - y o ) (6.2-26c,d)

Using Equation (1.5-13), Equation (6.2-17b) can be written as

^ - + ^ - = V2"h(x,y) (6.2-27)
ox ay

Combining Equations (6.2-17a,b, 24, 25, 26a to d, 27) yields

u ( x o , y o ) = i- f ( x o , c - x o ) + Vx o / ( c -y o ) f (c-y 0 , y o ) + I [(V2xQ/x) h(x, c-x)

•/c-y0

+ | (Vxo/x3) f (x, c-x)] dx (6.2-28)

The functions f and h are given and the value of u at any point (x0, y0) can be calculated.

Example 6.2-2. Solve the telegraph equation

^ - c 2 ^ + a ^ + Pu = 0 (6.2-29)
at2 ax2 at

subject to

u (x, 0) = f! (x), ^ = f2(x) (6.2-30a,b)
dt t=0

by Riemann's method.

Equation (6.2-29) arises in the transmission of electrical impulses in a long cable with distributed
capacitance, inductance, and resistance. Note that if a = P = 0 (no loss of current and no resistance),
Equation (6.2-26) reduces to the wave equation [Equation (5.1.1)].

We can simplify Equation (6.2-29) by assuming that u is of the form
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u(x, t) = 0(t) w(x, t) (6.2-31)

In terms of 6 and w, Equation (6.2-29) becomes

U 2 d*2 at ' at ' at2 dt /

Replacing u (x, t) by two functions 9 and w in Equation (6.2-31) allows us to impose an additional
condition on say 9 so as to simplify Equation (6.2-32).

3w
We choose to set the coefficient of to zero. That is to say,

3t

2d0~ + a9 = o (6.2-33)
dt

The solution of Equation (6.2-33) is

G = C 0 e - a t / 2 (6.2-34)

where Co is a constant.

Substituting Equation (6.2-34) into Equation (6.2-32) yields

a w 2 a w „ ! , c .
c + K w = 0 (6.2-35a)

at2 ax2

where

K' = p - a 2 / 4 (6.2~35b)

The characteristics of Equation (6.2-35a) are [Equations 5.4-20a, b)]

^= x + ct = constant, r| = x - ct = constant (6.2-36a,b,c,d)

Using £ and r\ as the new variables, Equations (6.2-30a, b, 35a) become

— - + Kw = 0, K = K'/4c2 (6.2-37a,b)
a^dn

w U=n = f l ^ ) (6.2-38a)

(6.2-32)
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C[lT ~ ^ ) = f2& + 2 " ^ = S l ^ (6.2-38b,c)

We note from Equations (6.2-36a, c) that t = 0 corresponds to £, = TJ.

We evaluate the value of w at a point P(£0,r | 0 ) . The point P, the characteristics, and the curve y

on which w and its derivatives are prescribed by Equations (6.2-38a to c) are shown in Figure 6.2-2.

V

% - I •—y*
p /

r, /

/

FIGURE 6.2-2 Characteristics r x and T2 of the telegraph equation

The Riemann function v has to satisfy Equations (6.2-10a to d) and the operator L defined by
Equation (6.2-37) is self adjoint. The function v is a function of £, and r) and depends also on t,0
and r\ 0 . We write v as v (£, rj; £0, r\ 0). The characteristics Fj and T2 are given by

J^: ^ = ^0 ; T2: T I=TI 0 (6.2-39a,b)

The conditions that v has to satisfy can be written as

J^L. + Kv = 0 (6.2-40a)
dfcdTi

- [v (^ ,T i o ; ^ ,T i o ) ] = 0 (6.2-40b)
9^
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^ [ v ( £ 0 , T i ; $ 0 , T I 0 ) ] = 0 (6.2-40C)

V ( ^ 0 , T I 0 ; ^ 0 , T I 0 ) = 1 (6.2-40d)

Rather than solving Equation (6.2-40a) right away, we first examine the form that v might take. We
expand v about (^0, r\ 0) in a Taylor series and we obtain

Be, O | l z d£,

+ ^ (T1-T1 O ) 2 ^ - + ( ^ - ^ ) ( T 1 - T V ) ) - ^ - + ... (6.2-41)

All the derivatives are evaluated at the point (^0,f\0). From Equations (6.2-40b, c), we deduce that

and are zero at (%0> T)n)- From Equations (6.2-40a, d), we obtain
3Tin a^n

- ^ - = - K v U _ = - K (6.2-42a,b)

82nv
We deduce that are the only non-zero terms and, from Equation (6-2-41), we deduce

that v is of the form

v = f [ ($-£ 0 ) (TI -TI 0 ) ] = f (s) (6.2-43a,b)

On differentiating, we have

3v df 9s , . df . , _ . . , .
— = = (r\ - rj0) — (6.2-44a,b)
3£ ds 3^ ds

I b u . « + (n _ „„) ft _ 4o) 4 = « + . d!i (62.44c4)
9 ^ 3 T I ds d s 2 ds d s 2

Substituting Equations (6.2-44a to d) into Equation (6.2-40a), we obtain the following ordinary
differential equation



 

s d _ l + d f + K f = O (6.2-45)
ds 2 ds

We make a change of variable and write

X = (4Ks)1 / 2 (6.2-46)

Using the chain rule, we have

d l = df dX = 2 K ( 4 K s ) - 1 / 2 - ^ (6.2-47a,b)
ds dX ds dX

2 2
— = -4K 2 (4Ks)" 3 / 2 — +4K 2 (4Ks)~ ! ^ -4 (6.2-47c)
ds2 dX dX

Equation (6.2-45) becomes

d 2 f + l d f + f = Q

dX2 X dX

Equation (6.2-48) is Bessel's equation of order zero and the solution which is regular at the origin
(X = 0) is Jo (A,). The Riemann function v is

v = 3Q(k) = Jo [ V 4 K ( £ - £ 0 ) ( n - T i 0 ) ] (6.2-49a,b)

We use Equation (6.2-14) to determine w(P). We note that p, a, and b are zero. On y (t, = r\),
we find that w (P) is given by

w(P) = 1 [w(R) v(R) + w(Q) v(Q)] - 1 [vff5-- — U w f^-- ^ 1 d^ (6.2-50)
2 2 JQI \dr^ 5 W l ^ 3TVJ

The points Q and R are respectively (^0, 40) and (T)0, T|O). The functions v and w required in
Equation (6.2-50) are given respectively by Equations (6.2-38a to c, 49a, b). The required values of
v, w, and their derivatives are

v(Q) = v(R) = J0(0) = 1 (6.2-5 la,b,c)

w(Q) = f i ^ o ) , w(R) = fjCrio) (6.2-52a,b)

  

(6.2-48)
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3v = [VT(n-i,) = , ; ( J (6 2.54)

^ _ r vTg-g.) J ; J (6 2_55)

•a»_3i] . [ V i M W ,-,»] (6.2.56)

La^ 3 TU ̂  Kft-5o)(Ti-Ti0) Jn = 4

Substituting Equations (6.2-5 la to 56) into Equation (6.2-50) and replacing the integration variable ̂
by z, to avoid confusion, yields

w(P) = i-[f1(^0) + f 1 (r i 0 ) ]+^ I" " j Q ^ g ^ d z
•So

.ipf.w^Mg)!;^),, (6-2.57a)
2 ^ 0 V(Z-^O)(Z-T1O)

where

?4 = V4K(z-^0)(z-T!0) (6.2-57b)

We revert to the x and t variables, £ 0 an^ "H o a r e replaced by

^0 = x + ct, T|o = x-c t (6.2-58a,b)

The quantity Xj in Equation (6.2-57b) is now written as

X.J = Y4K(z-x-ct)(z-x+ct) = /V4K[(z-x)2-c2t2] (6.2-59a,b)

Substituting Equations (6.2-58a to 59b) into Equation (6.2-57a), we obtain

/•X-Ct

w (P) = A- [f j (x + ct) + f! (x - ct)] + \ \ F (x, t, z) dz (6.2-60a)

where

(6.2-53)
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F(x,t,z) = l - J o ( ? i 1 )g 1 ( z ) - [VK"(2c t ) f 1 ( z ) Joa i ) ] / [ ( Z -x ) 2 - c 2 t 2 ] (6.2-60b)

The solution u is obtained from Equations (6.2-31, 34) and is

u = e " a t / 2 w (6.2-61)

Comparing Equations (6.2-61, 5.4-31, 32), we realize that, in the present example, u is damped.

•

An extension of the method described here to higher order problems is given in Courant and Hilbert
(1966). Abbott (1966) has described and solved several problems of engineering interest by the
method of characteristics. In Chapter 8, a numerical method for solving hyperbolic equations based on
characteristics is presented.

6.3 SIMILARITY SOLUTIONS

In many physical problems, the solution does not depend on the independent variables separately but
on a combination of the independent variables. In this case, a similarity solution exists and the
existence of a similarity solution is usually associated with the process of diffusion. We describe the
method of obtaining a similarity solution by considering a few examples.

Example 6.3-1. Look for a similarity solution for the diffusion problem obtained by considering a
generalized form of Equation (A.IV-1)

^ = A [ D ( c ) | ^ | , X > 0 , t > 0 (6.3-1)
dt dx L dxj

c(0, t) = c 0 , lim c (x, t) = c, , c(x, 0) = c2 (6.3-2a,b,c)

We introduce a similarity variable by writing

ri = xat^ (6.3-3)

where a and p are constants.

We assume c to be a function of r\ only. Its derivatives are given by

^ = ^ = d c _ P x « t P - l 6 3 . 4 b

dt dr\ dt dr) '

f ( D | ° ) = a (a - l )x«- 2 tPD^ + a2x2«-2t2PAfD^\ (6.3-4c)

3x \ dx! dr| dr) \ dr|j
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Substituting Equations (6.3-4a to c) into Equation (6.3-1) yields

P x « t P - 1 ^ = a ( a - l ) x a - 2 t 0 D ^ + a 2 x 2 a - 2 t 2 e A ( D l i ] (6.3-5)
dt| dr| dri \ dTjj v '

We now substitute, wherever possible, the combination of x and t by T| and Equation (6.3-5)
becomes

Both sides of Equation (6.3-6) are functions of Tj only if (x2/t) is a function of TJ. We choose r|
to be

r\ = x/VT (6.3-7)

This choice implies that

a = 1, p = - 1 (6.3-8a,b)

Substituting Equations (6.3-8a, b) into Equation (6.3-6) yields

-1-qi f i . = J L ( D ^ - 1 (6.3-9)
2 dt| dr| \ dr\J '

Note that the value of a has been chosen so that the first term on the right side of Equation (6.3-6)
vanishes.

We now check that the initial and boundary conditions are consistent with the choice of TJ. From
Equation (6.3-7), we deduce

x = 0 = » T | = 0 , x — > O O = > T | — > o o , t = O=>T|—>«> (6.3-lOatof)

Equations (6.3-2a to c, 10a to f) imply that a similarity solution exists if

ci = c2 (6.3-11)

If D is a function of c, Equation (6.3-9) is a non-linear equation and we can solve it numerically. It

is generally easier to solve an O.D.E. than a P.D.E. Thus, looking for a similarity solution can

simplify the problem. On the curves (TJ = x/Vt = constant), c(r|) is a constant, hence the name

similarity solution.

To simplify the problem, we assume D to be constant and

(6.3-6)
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c\ = c2 = 0 (6.3-12a,b)

Equation (6.3-9) becomes

2

^ 4 + - l - T i ^ = 0 (6.3-13)
dr,2 2D dr| ^ J

The solution is

P 2
c = c3 exp(-£ /4D)d^ + c4 (6.3-14)

Jo

where C3 and C4 are constants.

Note that the lower limit of integration in Equation (6.3-14) is arbitrary. That is to say, had we
integrated between the limits 1 and T|, the constants C3 and C4 would have been adjusted
accordingly. However, since the boundary conditions refer to r\ = 0, the obvious choice for the
lower limit is zero.

Imposing the initial and boundary conditions [Equations (6.3-2a to c, 10a to f, 12a, b)] yields

exp(-£ /4D)d£ = - c o i / - W (6.3-15a,b,c)

0 v 7tu

Equation (6.3-14) can now be written as

rx/it 2

c = co 1 - \ H K \ exp(-^ /4D)d^ (6.3-16)
v nu j 0

Example 6.3-2. Obtain similarity solutions for the two-dimensional boundary layer flow over a flat
plate of a Newtonian fluid. The two-dimensional boundary layer equation of a Newtonian fluid can be
written via Equations (A.I-1, II-1) as

3v 3v
-3-^ + ̂  = 0 (6.3-17)
dx dy

dv dv dv^ 9 v

V ^ + V y ^ = v - T + V 7 T (6-3"18)

dx dy dx dy

where vx and vy are the x and y components of the velocity, v^ is the free stream velocity, and

v is the kinematic viscosity (see also Rosenhead, 1963). We define a stream function \|/(x, y) by
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vx = ir-' v v = - ? (6.3-19a,b)
x dy y dx

Equation (6.3-17) is satisfied automatically and Equation (6.3-18) becomes

3v_aY_8vKa^ = v ^ + v aV ( 6 3 2 0 )

dy dxdy dx dy2 dx 3y3

The appropriate boundary conditions are

y = 0 , | ^ = ^ = 0 , lim ^ = VTO (6.3-21a,b,c,d)
dx dy y—>°° dy

We assume T| to be of a more general form than Equation (6.3-3) and write

Tl = y / $ 0 0 (6.3-22)

where t, is to be specified later. Equation (6.3-20) suggests that \|/ can be written as

V = v00(x)^(x)f(Ti) (6.3-23)

Computing the derivatives of \|/, we have

^ = l ^ ^ f + v ^ f + v 4 « ^ = ^ f + v ^ f - v ^ ^ f (6.3-24a,b)
dx dx ^ " d x °°^ dr| 3x dx ^ °° dx °° dx drj

^ = v ^ , ^ = ^ ^ - ^ ^ ^ 1 (6.3-24c,d)
3y °°dr| ' dxdy dx dr] £ dx dr|2

?!?.̂ i!f, ^ = ^ 4 (6.3-24e,f,
3y2 ^ dri2 3y3 £ &x\

Substituting Equations (6.3-24a to f) into Equation (6.3-20), we obtain after some simplification

i!l + fejL (gv ) f ^ I + ( ^^ )h - f f f] = 0 (6.3-25)
dr)3 Lv dx vs °°; d r |2 V v dx /[ Ur| j J

For the existence of similarity solutions, we require that

| ^ ( ^ v j = a (6.3-26a)
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V I T = P <6'3'26b)

where a and P are constants.

Equation (6.3-25) can now be written as

i!l + af4+P[l-(£fl = ° (6-3-27)
dr(3 dT]2 L l d T l / J

Equation (6.3-27) is the Falker Skan equation. Various values of a and (3 are associated with
various outer flow situations. The following cases have been examined.

Blasius Flow

In this case, we choose

a = 1 p = 0 (6.3-28a,b)

From Equations (6.3-26a, b, 28 a, b), we deduce

vx = constant, £ = (vx/vj (6.3-29a,b)

This flow corresponds to the flow over a flat plate and Equation (6.3-27) simplifies to

£+lf£-0 (6.3-30)

The boundary conditions [Equations (6.3-2la to d)] are

f(0) = f'(0) = 0 , f—>1 as r|—>oo (6.3-31a,b,c)

where the prime denotes differentiation with respect to T|.

Equation (6.3-30) is a third order non-linear O.D.E. and its solution, subject to the three boundary
conditions, can be obtained numerically.

Stagnation Flow

Substituting the values of

a = 1 , p = 1 (6.3-32a,b)
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into Equations (6.3-26a, b) leads to

The solution can be written as

£ = V T ' voo = cx (6.3-34a,b)

where c is a constant.

Equation (6.3-27) and the boundary conditions are now

^f+f^Hff+l=O (6.3-35)
dr^ dt|2 Idty

and f(0) = f'(0) = 0 , f' —> 1 as r|— >~ (6.3-36a,b,c)

The system defined by Equations (6.3-35, 36a to c) can be solved numerically.

The solution of various flows is discussed in Rosenhead (1963).

Example 6.3-3. Stefan problems are concerned with the phase change across a moving
boundary. We consider the phase change from a solid to a liquid. The boundary between the solid
[x < s (t)] and the liquid [x > s (t)] is given by

x = s(t) (6.3-37)

and is shown in Figure 6.3-1.

We assume that there is no motion and that the temperature T, in both phases, satisfies a simplified
form of Equation (A.III-1)

p c ? I = k ̂ 1 (6.3-38)
dt 9xz

where p is the density, c is the specific heat, and k is the thermal conductivity. We assume that
they are constants and have the same values in both phases.

At the interface, the temperature is at the melting point Tm.

(6.3-33a,b)
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t "

X = S ( t )

SOLID / LIQUID

0 I ^ — »•
x

FIGURE 6.3-1 Solid and liquid phase

An energy balance yields the Stefan condition

^ T -i X=S,

-k ^ - = L 4s. (6.3-39)
8xJx = s_ dt

where L is the latent heat.

We use Birkhoff s method to obtain the similarity variables.

A parameter a is introduced and all variables are written as

t = a"11 , x = a"2 x , T = a"3 T (6.3-40a,b,c)

where a\, CC2, and 0C3 are constants.

In terms of the new variables, Equation (6.3-38) becomes

^
p c aai-«3 <*I = k a2a2-«3 LI (6.3-41)

9t 3x2

The equation should be independent of a and this implies that

a2 - a3 = 2 a2 - a3 (6.3-42)
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We now combine the variables x, t, and T in such a way as to reduce the number of variables.

We introduce a set of new variables defined by

Ti = —^—, T = — 3 — (6.3-43a,b)
ta2/ai ta3/a]

The ratios OC2/CC1 and aL^/CLy can be obtained from Equation (6.3-42), leading to

1_^= 2^-21 (6.3-44)
a1 a{ a j

One possible solution is

^ = 0, £2. = 1 (6.3-45a,b)

Combining Equations (6.3-43a, b, 45a, b), we obtain

T\ = -X.; x = T (6.3-46a,b)

Note that the same TJ was obtained in Example 6.3-1.

We define

f(Tl) = T - T m (6.3-47)

Equation (6.3-38) is reduced to an O.D.E. and is written as

^ + J - T I ^ = 0 (6.3-48)
dr|2 2D dr)

where D = k/pc.

For the interface, we assume that s is given by

s = soff (6.3-49)

where s0 is a constant.

The interface (x = s) is now given by

r\ = s0 (6.3-50)

The conditions at the interface are
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f(s») = o' ffl!;/-1^ (6-3-5ia-b)
where sQ is in the solid phase and s0 is in the liquid phase.

To complete the problem, we need to define the domain which we assume to be semi-infinite
(0 < x < oo). The additional boundary conditions we impose are

f(0) = - 1 , lim fCn) = 0 (6.3-52a,b)
T) >oo

Equations (6.2-52a, b) imply that, at x = 0, the temperature is one degree below the melting point and
beyond the interface, we have the liquid phase and the temperature is at the melting point (f = 0).

The solution of Equation (6.3-48) is

f = CJ + CQ f e-^/4Dd^ (6.3-53)
JO

The constants C o and Cj are determined from Equations (6.3-5la, 52a) and f becomes

P e-^/4Dd^
f = _ l + l 2 , 0<"n<s0 (6.3-54a)

JoSo e"^ /4D d$

f = 0,- r| > s0 (6.3-54b)

Imposing Equation (6.3-5 lb) yields

L!o e s J /4D[ S ° e -^ /4D^ = j (6>3.55)

2k Jo

The interface (s0) is obtained by solving Equation (6.3-55).

Crank (1984) has discussed Stefan problems in detail.

In this section, we have introduced three methods of obtaining similarity variables. These methods can
be extended to more than two independent variables. Further details can be found in Ames (1972) and
in Bluman and Cole (1974).



532 ADVANCED MATHEMATICS

6.4 GREEN'S FUNCTIONS

Dirichlet Problems

Green's functions were used to solve boundary value problems in Chapter 1. This method is widely
used to solve elliptic partial differential equations. In Chapter 4, it is shown, as an application of
Green's theorem, that the solution of Poisson's equation is known if the Green's function for that
problem is available. In particular, the Dirichlet problem defined by

V2u = p (x, y, z) , in V (6.4-la)

u = f (x, y, z ) , on S (6.4-lb)

where S is the surface enclosing V. The value of u at a point P is given by

u<P) = ^ [ / / / G p d V + / / f l M (6-4-2>
_ V S

where G is the Green's function for the problem.

Similarly, in a plane, if

V2u = p (x, y), in A (6.4-3a)

u = f(x, y), on C (6.4-3b)

where C is the curve enclosing the domain A,

U(P) = 2K \\ G P d A + I f | f ds (64"4)
-A C

G is the two-dimensional Green's function.

Note that some authors include the factors (1/471, 1/2TC) in the definition of G. These factors are then
absent in Equations (6.4-2, 4).

We now have to compute G. The conditions which G has to satisfy in the case of ordinary
differential equations are stated in Chapter 1. These conditions can be extended to partial differential
equations. In Chapter 4, it is stated that G has to satisfy the following conditions

(a) V G = 0 , everywhere in V except at P (6.4-5a)
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(b) G = 0 , on S (6.4-5b)

(c) G « - 1 / r , near P (6.4-5c)

where r is the radial distance from P.

A simple physical interpretation of G is that it is the potential due to placing a unit charge at P and
earthing the surface S. We can rewrite Equation (6.4-5a) in terms of the Dirac delta function. The
two-dimensional delta function 8 (x - x0, y - y0) is written as a product of two delta functions in the
following manner

8 (x - x0, y - y0) = 8 (x - x0) 5 (y - y0) (6.4-6)

Using the definition of the delta function [Equation (1.17-18d)], we have for any differentiable
function f (x, y)

oo oo

\\ f (x, y) 8(x - x0, y - y0) dx dy = \\ f (x, y) 5(x - x0) 5 (y - y0) dx dy (6.4-7a)

—oo —oo

= ( f(x0, y) 8(y - y 0 ) dy = f (x0, y0) (6.4-7b,c)
/-oo

Similarly, in the three-dimensional case,

8 ( x - x 0 , y -y 0 , z -z 0 ) = 8 (x -x 0 ) 8(y-y0) 8 (z -z 0 ) (6.4-8a)

oo

i l l f(x, y, z) 8(x-x0) 8(y-y 0 ) 8(z-z0) dx dy dz = f(x0, y0, z0) (6.4-8b)

— oo

If P is the point (x0, y0, z0), Equation (6.4-5a) can be written as

(a') V2G = 4JC 8(x - x0) 8(y - y0) 8(z - z0) (6.4-5a')

In the two-dimensional case, G satisfies the following conditions

(a) V2G = 2K 8 (X - x0) 8(y - y0) (6.4-9a)

(b) G = 0 , on C (6.4-9b)

(c) G = i n r , near P (6.4-9c)
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where r is the radial distance from P.

Note that near P, G behaves as the fundamental solution of Laplace's equation [Equations (5.5-13b,
39)] and G satisfies Equations (6.4-5a' or 9a).

Condition (c) for the three and two-dimensional cases can respectively be replaced by

I I ^p- dS = An (6.4-5c')

se

I y^- ds = 27t (6.4-9c')

where Se and Ce are respectively the spherical surface and circumference that enclose the point P.

Each is of radius e with e —> 0.

Since the Laplacian is self-adjoint, G is symmetric, that is

G (x, y, z; x0, y0, z0) = G (x0, y0, z0; x, y, z) (6.4-10)

This can be deduced from physical considerations. The potential at (x, y, z) due to a unit charge at
(x0, y0, zQ) is the same as the potential at (xQ, y0, z0) due to a unit charge at (x, y, z).

It is generally not easy to calculate G, except for simple domains such as a half space or a circle. We
next deduce G for simple geometries by the method of images.

Upper half plane

Consider the upper half plane z > 0. The function G is the potential of a unit charge placed at
(x0, y0, ZQ) and the plane z = 0 is kept at zero potential. To maintain the plane z = 0 at zero
potential, we place a unit charge of opposite sign at (x0, y0, -z 0 ) . The Green's function
G (x, y, z; x0, y0, zQ) is given by

G = - i - - 1 (6.4-1 la)
r r

r = V ( x - x o ) 2 + ( y - y o ) 2 + ( z - z o ) 2 (6.4-1 lb)

r' = V ( x - x o ) 2 + ( y - y o ) 2 + ( z + z0)2 (6.4-1 lc)

In the two-dimensional case (y > 0), G is given by
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G = ^in[(x-xo)2+(y-yo)2]-i-in[(x-xo)2+(y + yo)2] (6.4-12)

Sphere and circle

Consider a sphere of radius a with a unit negative charge placed at P. The point P is at a distance b
from O, the centre of the sphere, as shown in Figure 6.4-1. The image system that produces a zero
potential on the surface of the sphere is a charge a/b placed at the inverse point P' of P. The
inverse point P' is defined such that

OP* OP' = a2 (6.4-13)

o p 1 P1

FIGURE 6.4-1 Image system for a sphere and a circle

If Q is any point, G is given by

G = - ± + v^- (6.4-14)
r2 brj

where rj and r2 are the distances from Q to P' and P respectively.

On introducing spherical polar coordinates (r, 0, ())), the vector positions of Q, P, and P' can be
written respectively as

OQ = r[sin9 cos()), sinG sin(J), cos0] (5.4-15a)
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OP = b[sin0o cos(|)0, sin9o sin())0, cos0oJ (6.4-15b)

2
O P ' = ^-[sin60 cos())0, sin0o sin<|)0, cos60j (6.4-15C)

It follows that

r 2 = (OQ-OP ' )»(OQ-OP ') = r2 + a 4 / b 2 - 2 O Q » 6 P ' (6.4-15d,e)

= r2 + a4/b2 - 2 (a2r/b) cosG (6.4-15f)

r 2 = (OQ-OP)« (OQ-OP) = r2 + b 2 -2 rbcosG (6.4-15g,h)

cos© = sin0 sin0o cos ((|)-(|)0)+ cos9 cos0o (6.4-15i)

In the two-dimensional case, we suppose the circle to be of radius a with a unit charge placed at P.
Again, the point P is at a distance b from O, the centre of the circle. The image system is a charge
of opposite sign placed at P' , the inverse of P. Equation (6.4-13) defines the point P ' . The
appropriate G at any point Q which satisfies G = 0 on the circle is

G = i n a ^ / C b ^ ) (6.4-16)

where r̂  and r2 are the distances from Q to P1 and P respectively.

In polar coordinates (r, 9), r̂  and r2 are given by

r 2 = r2 + a 4 /b 2 -2(a 2 r /b)cos(0-0 o ) (6.4-17a)

r | = r2 + b 2 - 2 r b c o s ( 9 - 0 o ) (6.4-17b)

where 0 and 0O are the polar angles of OQ and OP (OP1) respectively.

The method of images is simple and the image system for other simple boundaries can be found in
Ferraro (1956). There are other techniques of obtaining G. Among them are splitting G into the
sum of two functions Gj and G2. We can expand G in terms of eigenfunctions. We illustrate these
methods by considering the following examples.

Example 6.4-1. Determine the Green's function for the Dirichlet problem in the unit circle.

We need to find a function G that satisfies Equations (6.4-9a to c). We write G as a sum of two
functions

G = Gj +G 2 (6.4-18)
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Let Gj be the fundamental solution. It satisfies Equations (6.4-9a, c). If P is the point (x0, y 0 ) ,
Gj is given by

Gl = i n r : (6.4-19a)

where

ri = V ( x - x o ) 2 + (y -y o ) 2 (6.4-19b)

The function Gj does not satisfy the boundary condition. We choose G2 such that the boundary

condition is satisfied. That is to say, on C, the unit circle, we have

G2 = - G ! (6.4-20)

In addition, G2 has to satisfy Laplace's equation and should not have a singularity inside the unit
circle. In Chapter 5, using the method of separation of variables, we have found that G2 is given by
Equation (5.5-14) and, for convenience, it is reproduced here.

00

G2 = E o + X [Am cosmG + Bm sinm0] rm (5.5-14)
m=l

Using the polar coordinate system, we denote (xQ, y0) by (b cos0o, b sin90) and rj is given by

rj = V (r cosG - b coseo)2 + (r sin0 - b sin0o)2 (6.4-21a)

= Vr 2 + b 2 - 2 r b c o s ( 0 - 0 o ) (6.4-2 lb)

Combining Equations (6.4-19a, 20, 21a, b) yields

00

Eo + X tAm c°sm0 + Bm sinm0] = - ±. i n [1 + b2 - 2b cos(0 - 90)] (6.4-22a)
m=i 2

= - 1 in [(1 - be1 (0-eo)) (l _ be"1 (e-0o))] (6.4-22b)

= - i - [ in ( l -be i ( 9 " e o ) ) + in ( l -be" i ( e " 0 o ) ) ] (6.4-22c)

= 1 ^ ^ (eim(0-eo) + g-imCB-eo)) (6.4-22d)
Lm=l

~ . m
= X ^-cosm(0-0o) (6.4-22e)

m=l
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°° h m= 2^ — (cosmG cosm0o + sinmG sinm0o) (6.4-22f)
m=l

Comparing the coefficients of cos mG and sin mG, we obtain

Eo = 0, A m = (b m cosm6 0 ) /m, B m = (bmsinmG0)/m (6.4-23a,b,c)

Combining Equations (5.5-14, 6.4-23a to c) yields

G2 = X IJf [ c o s m 9 o c o s m e + s i n m 6 o s i n m 9 l r m (6.4-24a)
m=l

= ^ ^—^— [cosmG0 cosmG + sinmG0 sinmG] (6.4-24b)
m=l

= - i- i n [1 + b2r2 - 2br cos(G - 60)] (6.4-24c)

From Equations (6.4-18, 19a, 21b, 24c), we deduce that G is given by

G = 1 i . [ r 2 + b2-2rbcos(9-e0)l (6 4_25)

Li + b 2 r 2 - 2 b r c o s ( G - 6 0 )

We have obtained G inside the unit circle, and we note that G obtained by this method [Equation
(6.4-25)] is identical to the one obtained by the method of images [Equations (6.4-16, 17a, b)]. We
can equally derive G for the region outside the unit circle. In this case, Equation (5.5-14) is no
longer appropriate and the expansion in Equation (6.4-22c) has to be modified.

Example 6.4-2. Solve Poisson's equation

2

V u = p inside the unit circle (6.4-26a)

u = f on the unit circle (6.4-26b)

Equation (6.4-4) enables us to write the value of u at a point P as follows

r\ tin ,2% -.

U(P) = -L- p G r d G d r + f ~ dG (6.4-27)

271 Jo Jo Jo dr
From Equation (6.4-25), we obtain
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*° = ^ (6.4-28)
3r r = 1 l -2bcos (9 -6 0 ) + b2

The combination of Equations (6.4-25, 27, 28) yields the value of u at (bcos0o, b sin90). If p is

zero, u reduces to

u(bcoseo,bsin60) = - L f ( l - b ) d0 (6.4-29)
271 Jo l-2bcos(0-eo) + b2

Equation (6.4-29) is Poisson's integral which is the solution of Laplace's equation satisfying
Equation (6.4-26b).

Example 6.4-3. Obtain the Green's function G inside the rectangle 0 < x < a, 0 < y < b for the
Dirichlet problem.

We expand G (x, y; x 0 , y0) as

oo

oo

G (x, y; x0, y0) = £ cmn(*0' YQ) Vmn(x- y) (6-4-3°)
m=l
n = l

where Vm n are the eigenfunctions defined by

V 2 V m n = ^ m n V m n (6.4-31a)

Vm n (0, y) = Vmn (a, y) = Vmn (x, 0) = Vmn (x, b) = 0 (6.4-3lb,c,d,e)

By the method of separation of variables or by inspection, the eigenfunctions V m n and the
eigenvalues A,mn are given by

V^CsinfEflsinjSM) (6.4.32a)

where C is a constant, m and n are integers.

(6.4-32b)
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We normalize the eigenfunctions, that is to say, we require

a b a b

I I Vmn dy dx = 1 = C I I sin sin —-^ dy dx = C ^ (6.4-33a,b,c)

0 0 0 0

The normalized eigenfunctions are then

V^^sinpfjsinj^) (6.4-34)
Vab d

From Equations (6.4-9a, 30, 31a, 34), we obtain

V2G = 27C 5 (x - x0) § (y - y0) = -2= £ cmn Xmn sin ( ™ p ) sin i^-\ (6.4-35a,b)
Vab m,n

The Fourier coefficients cmn are given by

a b

cmn = — ^ — = I I sin p « ) sin fe) 5 (x - x0) 5 (y - y0) dx dy (6.4-36a)
\ n n V a b J J

0 0

= -4B= sin ( ^ sin fe) (6.4-36b)

Substituting cmn into Equation (6.4-30), we obtain

8K "V sm (m7tx^a) sm (m7rxo/a) sin (n7ty/b) sin (nKyo/b)
(j = __ 7̂ ^ - - (O.4-O I)

a D m, n (m7c/ar + (nre/br

Neumann Problems

In this case, it is the normal derivative 3u/9n which is given on the surface. It is tempting to extend

the theory developed for Dirichlet problems to this case, by simply changing the boundary condition

G = 0 to 3G/9n = 0. This is not as straightforward as it may seem. We examine some of the

causes.

From Equation (4.4-22), we deduce by setting cp = 1 and \\i = G

I I ~ d S = I I I V2G dV (6.4-38)
S V
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//^dS = / / / v 2°d V <S4-38)
S V

2
Let P be the singular point. By definition V G = 0 everywhere except at P. Enclose P by a
sphere of radius e, denote the surface of this sphere by Se and the volume by Ve. In the volume

2
V - Ve, V G is zero and, from Equation (6.4-38), we obtain

s se

Imposing the condition 3G/8n = 0 on S, implies

J J ^ - dS = 0 (6.4-40)

Equation (6.4-5c') contradicts Equation (6.4-40). Note that if G satisfies Laplace's equation
everywhere in V, the boundary condition must satisfy the left side of Equation (6.4-38). One
possible physical interpretation is to consider the problem of heat conduction. At steady state, the
temperature satisfies Equation (5.4-44) which is Laplace's equation. To maintain a steady
temperature, the heat flux across the boundary must be zero and this is expressed by the left side of
Equation (6.4-38) where G is the temperature.

In Example 5.7-3, it is stated that the solution to a Neumann problem is arbitrary to the extent of a
constant. It follows that, if we use the method adopted in Example 6.4-1 to determine G, the
function G2 will not be uniquely defined. Also, in Example 6-4-3, for a Neumann problem the
eigenfunctions Vmn are of the form cosnmx cosnfty and one of the eigenvalues 'kmn can be zero
(m = 0, n = 0) leading to the impossibility of determining cm n. Thus, modifying the boundary
condition is not sufficient and we need to impose additional conditions. One possibility is to modify
condition (a) [Equation (6.4-5a or 9a)]. We impose the following conditions on the Green's function
for the Neumann problem (N)

2
(a) V N = A (constant), everywhere in V except at P (6.4-4la)

= A + 4 T T 8 ( X - £ 0 ) (6.4-41b)

(b) ^ = 0 , on S (6.4-4lc)
on

(c) N - - l / r , n e a r P (6.4-41d)

(6.4-39)
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In Equation (6.4-41 b), x is the vector position of any point and L 0 is the vector position of P.
From Equations (6.4-5c\ 38, 41a, c), we deduce that

I I I A dV = A V = 4K (6.4-42a,b)

v

The two-dimensional Neumann function satisfies the following conditions

(a) V N = A 1 + 2 7 i 8 ( x - r 0 ) (6.4-43a)

(b) ^ - = 0 , o n C (6.4-43b)
on

(c) N - i n r , near P (6.4-43c)

where Aj is a constant.

Poisson's equation along with the Neumann condition are written as

2
V u = p (x, y, z) , in V (or S in a plane) (6.4-44a)

^— = h (x, y, z) , on S (or C in a plane) (6.4-44b)
on

Substituting Equations (6.4-41b, c, 44a, b) into Equation (4.4-22) and setting \|/ = N and cp = u
yields

- | | Nh dS = I I I [Au + 4 7 t u 8 ( x - x o ) - N p ] dV (6.4-45a)

s v

= A i J j u d V + 4?cu(P)- [ ( I Np dV (6.4-45b)

v v

From Equation (6.4-45b), we obtain

u(P) = _L 11 I Np dV- I | Nh dS + constant (6.4-46)

- V S
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where the constant term is A Jjj u d V. This term can be ignored since the solution to a Neumann
V

problem is arbitrary to the extent of a constant. The solution of Equations (6.4-44a, b) is given by
Equation (6.4-46) and can be calculated once N is known.

The analog of Equation (6.4-46) in two-dimensions is

u(P) = -L I I Np dS - I Nh ds (6.4-47)

_S C

Neumann problems are usually associated with hydrodynamics where the usual boundary condition is

that the normal velocity (3u /dn, u is the potential) at the boundary is zero. We can determine N by

the method of images. We illustrate this method in the next example.

Example 6.4-4. Find the Neumann function N for the plane y > 0.

A source is placed at (x0, y0). In order for the fluid not to cross the line y = 0, we need to place
another source of equal strength at (x0,-y0) . If N is the potential, N is given by (Milne-Thomson,
1967)

N = 1 i n [(x - x0)2 + (y - y0)2] + 1 i n [(x - x0)2 + (y + y0)2] (6.4-48a)

= 1 i n [(x - x0)2 + (y - y0)2] [(x - x0)2 + (y + y0)2] (6.4-48b)

On differentiating partially with respect to y, we obtain

^ L = <±zi& + (y±zo) (6.4_49)

dy (x - x0)2 + (y - y0)2 (x - x0)2 + (y + y0)2

It follows that

^ = 0 (6.4-50)
dy y=0

•

Note that, in hydrodynamics, the image of a source is another source and not a sink. This is the
difference between hydrodynamics and electrostatics. Further discussions on the image system in
hydrodynamics can be found in Milne-Thomson (1967). Neumann's functions can also be
constructed by the method of eigenfunction expansion as explained in the next example.
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Example 6.4-5. Find Neumann's function N inside the rectangle 0 < x < a , 0 < y < b.

In Example 6-4-3, Green's function for the Dirichlet problem was derived. We use the same method
to determine N. In this example, the eigenfunctions wmn have to satisfy

^ L = ^ = 0 (6.4-51a,b)

y=b X=a

The appropriate eigenfunctions are

wmn = C cos " ^ cos ^ , m = 0, 1, ... , n = 0, 1, ... (6.4-52)
11111 a o

Note that, in this case, unlike in Example 6-4-3, m and n can be zero. The normalized
eigenfunctions are

wmn = - 2 — cos mJI-X cos ^ , m * 0 , n * 0 (6.4-53a)
Vab

wmft = \[^r cos ^ 2 ^ , m * 0 , n = 0 (6.4-53b)
V ab a

wnn = \[\- c o s 1 ^ , m = 0, n * 0 (6.4-53c)
UH V ab b

Proceeding as in Example 6.4-4, we obtain

CXJ

g^ ^ i cos (mjcx/a) cos (m7txo/a) cos (n7ty/b) cos (n7cyo/b)
IN —- — • /

a b m=i (m7t/a)2 + (n7t/b)2
n = l

4 j t ^ cos(m7ix/a)cos(mKx0/a) 47C ^ cos (nrcy/b) cos (n7iyo/b)

a b m=i (mjc/a)2 a b n=i (nrt/b)2

N is defined to the extent of an arbitrary constant.

Once N is known, the solution of Poisson's (or Laplace's) equation is found by substituting N into
Equation (6.4-46 or 47).

(6.4-54)
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Mixed Problems (Robin's Problems)

For mixed problems, (u is given in parts of the boundary and 3u/3n in the remaining parts of the
boundary), we combine the techniques explained previously. The extension is straightforward and is
illustrated in the next example.

Example 6.4-6. Solve the equation

iLn. + iLn = o, x > o, y > o (6.4-55)

dx2 dy2

subject to

u = f (x) , on y = 0 (6.4-56a,b)

p- = h (y) , on x = 0 (6.4-56c,d)

by the method of Green's functions.

We first determine the Green's function G for this mixed boundary value problem by the method of
images. Let P be the point (x0, y0) as shown in Figure 6.4-2. The function G has to satisfy

G = 0 , o n y = 0 , x > 0 (6.4-57a,b)

Tp- = 0 , o n x = 0 , y > 0 (6.4-57c,d)
OX

Relative to x = 0, we have a Neumann problem and the image system is another source at Q
(-x0, y0). The boundary y = 0 defines a Dirichlet problem and the image system are charges of
opposite sign at R ( -x 0 , -y0) and S(x 0 , -y 0 ) . The function G (x, y; x0, y0) is given by

G = 1 i n [(x - x0)2 + (y - y0)2] + ±- i n [(x + x0)2 + (y - y0)2]

- 1 i n [(x + x0)2 + (y + y0)2] - 1 i n [(x - x0)2 + (y + y0)2] (6.4-58a)

= 1 i n t ( x - x 0 ) 2 + (y -y 0 ) 2 ] [ (x + x0)2 + ( y - y 0 ) 2 ] ( 6 4 5 8 b )

2 [(x + x0)2 + (y + y0)2] [(x - x0)2 + (y + y0)2]
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Q P
y0

—i 1 ^

~ X Q X Q X

R y° s

FIGURE 6.4-2 Image system of a mixed boundary value problem

From Equations (6.4-4,47), we deduce that u (P) is given by

u (P) = ^ [ (f H - Gh) ds (6.4-59)

c

where C is the contour enclosing the positive quadrant. That is to say, along the positive x and y
axes. From Equations (6.4-57a to d), we deduce that Equation (6.4-59) can be written as

u(P) = J - f ^ - d x - l Ghdy (6.4-60)
2K JO dn Joo

Note that the contour integral is taken in the counter clockwise sense, so that the integral along the
y-axis is from °° to 0. On the x-axis

f = -~ (6.4-61)
an ay

Combining Equations (6.4-60, 61) yields
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u(P) = i - [ f H d x + f G|x=ohdy (6.4-62)

Jo y y=° •'o

From Equation (6.4-58b), we obtain

3°_ = -2y 0 [ (x + x0)2 + (x-x 0 ) 2 +2y 0 2 ] (6.4-63a)

3 y y=0 [(x + xo)2 + y o 2 ] [ (x -x o ) 2 +y 2 ]

G | x O = i n [ x o + ( y - y o ) 2 ] (6.4-63b)
[x2 + (y + y0)2]

Substituting Equations (6.4-63a, b) into Equation (6.4-62), we obtain

p oo

u(x v ) - l 2 y [(x + x0)2 + (x-x0)2 +2y0 2]
u(.x0, y0; - \ /y 0 rax

271 [(x + xo)2+yo2][(x-xo)2+y2]
\ Jo

+ f i n [xo2+(y-yo)2] h d y (6.4.64)

Jo [x02 + (y + y0)2]

•

So far, we have obtained Green's (or Neumann's) functions by the method of images, by expansion in
eigenfunctions, and by separation of variables. The method of transforms discussed in Chapter 5 can
also be used to determine G (see Problems 12b, 13b).

Conformal Mapping

In two-dimensional cases, we can use conformal mapping to find G. If G, for the Laplacian
operator, is known in a certain domain R' and if R' can be mapped into R, G is known in R. We
illustrate this method by an example.

Example 6.4-7. Determine G for the Dirichlet problem in the case y > 0, given that G is known
for a unit circle.

Let P be the point (x0, y0) which we denote by zQ. In Example 3.8-3, we have shown that the

mapping
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w = 71ZJ^. (6.4-65)
z - z 0

maps the upper half plane into a unit circle. The point zQ is mapped to the centre of the unit circle and
the complex conjugate zQ is mapped to the region outside the circle. Thus, the singular point
(x0, y0) is mapped to the origin. The Green's function for a unit circle with the singular point at the
origin (b = 0) is given by Equation (6.4-25) and can be written as

G = i n r = in lwl (6.4-66)

Combining Equations (6.4-65, 66) yields

G = i n ^
z - z 0

= Zn * + | y - * o - i y O (6.4.67b)
x + i y - x o + iyo

= i n i * -*o ) 2 + (y-yo)2 ( 6 4 . 6 7 c )

( x - x o ) 2 + (y + yo)2

Equation (6.4-67c) is Equation (6.4-12), as expected.

6.5 GREEN'S FUNCTIONS FOR GENERAL LINEAR OPERATORS

The method involving Green's functions can be extended to the wave and the diffusion equations as
well. We now discuss the case of the general second order linear differential operator in two variables
(xj, X2) which is given by Equation (5.3-1). For convenience, we reproduce it here.

0 0 0

T , x 3 u 3 u 3 u , 3u , 3u £( . ._ . ,.
L(u) = a n — r + a12 + a 2 2 — 2 + b i + b2 + c u = f ( x l ' x 2 ) (5.3-1)

3xj 3xj3x2 3x2 3xj 3x2

The adjoint operator L is defined by

0 0 0

L*(v) = - ^ - ( a n v ) + — (a12v) + - ^ - ( a 2 2 v ) - — ( b 1 v ) - - ^ - ( b 2 v ) + cv (6.5-1)
9xj 3xj3x2 9x2 dx^ 3x2

We can verify that

3 u o , . 3 \ 3u 3 , J ,, _ _.
a l l v — - u —J (allv) = r— a n v —- - u —- (anv) (6.5-2)

3xj 3xj 3xj [ dx2 dxj
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Similarly, we deduce that

v L (u) - u L* (v) = 1^ - + |^- (6.5-3a)
dXj dx2

ri = a 1 1 v^- -u 5 _(a 1 1 v ) + ^ v ^ - - - ^ - ( a 1 2 v ) + b1uv (6.5-3b)

f2 = ~ 2 3x7 ( 12V) + ̂  " ^ 7 + 822V ^ " U ̂  ^ ^ + 2UV ( }

Note that the right side of Equation (6.5-3a) is div x and the two components of £ (rj, r2) are given

by Equations (6.5-3b, c). Equation (6.5-3a) can be written as

vL(u) -uL*(v) = divr (6.5-3a')

The operator L is self-adjoint iff

L = L* (6.5-4)

From Equations (6.5-3a, 4.4-23), we obtain

I I [v L (u) - u L*(v)] dx{ dx2 = I I U±- + ^ . J dxj dx2 = I (rx dx2 - r2 dxx) (6.5-5a,b)

A A C

The adjoint Green's function is defined as

L* (G*) = 2K 8(XJ - x10) 8(x2 - x20) (6.5-6)

The function G also satisfies certain homogeneous boundary conditions to be defined in conjunction
with the boundary conditions associated with Equation (5.3-1).

Replacing v by G* and using Equations (5.3-1, 6.5-6), Equations (6.5-5a, b) become

tt * I
I I G f dx^ dx2-27r u (XJQ, x20) = I (rj dx2 - r 2 dxj) (6.5-7)
A C

The functions rj and r2 are given by Equations (6.5-3b, c) with G replacing v and are to be
evaluated on the boundary C. If u satisfies homogeneous boundary condition (u = 0 on C), rj and
r2 simplify to

_ * / 3u a12 du \ / / I C O N

f i = G [a"d^+-f BT2) (6"5-8a)
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We impose the condition that G vanishes on the boundary, resulting in the line integral in Equation
(6.5-7) to be zero. The value of u at (x10, x20) is then given by

u (x10, x20) = ^L I I G * ( X l , x2; x10, x20) f dx, dx2 (6.5-9)

A

If the boundary conditions on u are non-homogeneous,

u (x10, x20) = ^ I I G*fdx!dx2- I (r1dx2-r2dx1) (6.5-10)

_A C

The boundary conditions to be imposed on G are of the same type as those imposed on u.

However, for G*, they are homogeneous. That is to say, if u (or3u/3n) is given on C, then G*

(or 3G /3n) is zero on C.

We now show that

G (xj, x2; XJQ, X2Q) = G (XJQ, X2Q ; Xj, x2)

where G is the original Green's function. The function G (Xj, x2; Xj, x2) satisfies the equation

L(G) = 27u5(x 1 -x 1 )5(x 2 -x 2 ) (6.5-12)

Multiply Equation (6.5-12) by G* and Equation (6.5-6) by G, subtract the products, and integrate
the difference over A, to obtain

2K I I [G*(X1 ? X 2 ; X 1 0 , X 2 0 ) 8(XJ - X J ) 8 ( X 2 - X 2 ) - G ( X 1 , X 2 ;XJ , X2) 8(XJ - X 1 0 )

A
8(x2 - x20)] dxj dx2 = 2;t[G*(x], x 2 ;x 1 0 , x 2 0 ) - G ( x 1 0 , x 2 0 ; x j , x2)] (6.5-13)

From Equation (6.5-5a, b) and the homogeneous boundary conditions imposed on G and G , we
deduce that the integral in Equation (6.5-13) is zero. It follows that

G (x^, x2 ; XJQ, X2Q) = G(XJQ, X2Q ; Xj, x2)

Replacing ( X j , ^ ) by (x1;x2), we obtain Equation (6.5-11). In the self-adjoint case, we have

(6.5-11)

(6.5-14)

(6.5-8b)
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G ( x 1 , x 2 ; x 1 0 , x20) = G(x1 0, x2 0; x1 ;x2) (6.5-15)

that is to say, G is symmetric in (xi,x2) and (xio>x2o)-

The function G in Equations (6.5-9, 10) can be replaced by G via Equation (6.5-11) and, in self-
adjoint cases, both G and G* are equal.

Note that the heat (diffusion) equation is not self-adjoint whereas the Laplace and wave equations are
self-adjoint.

The method of Green's functions is applicable to hyperbolic, parabolic, and elliptic equations but the
method involving Riemann's functions is restricted to hyperbolic equations. Only hyperbolic
equations have two real characteristics.

Further details on Green's functions can be found in Morse and Feshbach (1953), Courant and Hilbert
(1966), Greenberg (1971), and Zauderer (1983).

6.6 QUANTUM MECHANICS

Limitations of Newtonian Mechanics

Newton's law of motion are adequate to describe the motion of bodies on a macroscopic scale usually
encountered in everyday life. They fail to describe the motion of bodies traveling at high speeds, that
is to say, at speeds approaching the velocity of light. In this case, the laws of relativity, as
developed by Einstein at the turn of the twentieth century, have to be applied. For micro particles,
such as atoms and their constituents, Newton's laws have to be replaced by the laws of quantum
mechanics.

The importance of quantum mechanics needs no stressing. It provides explanations for a variety of
physical phenomena ranging from the structure of the atoms to the beginning of the universe. It has
led to a number of applications, such as lasers, electron microscopes, silicon chips, and non-linear
optics. New devices based on the principles of quantum mechanics are still being developed.

To formulate the laws of quantum mechanics on an acceptable basis, two approaches were adopted in
the 1920's. Heisenberg proposed the theory of matrix mechanics, though at that time, he was not
aware of the existence of the matrices. It was the mathematician Jordan who saw the connection
between the theory proposed by Heisenberg and the theory of matrices. This led to the publication of
the famous Born-Heisenberg-Jordan (1926) paper.

At about the same time, Schrodinger, from an apparently different starting point and using the classical
continuous formalism, provided an alternative foundation for quantum mechanics. His theory is based
on the possibility that matter can have particle and wave properties. In 1924, de Broglie suggested that
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atomic particles might behave as waves. The relationship between the momentum p of the particle
and the wavelength A. of the "particle wave" is

p = h/X (6.6-1)

where h is Planck's constant.

From Equation (6.6-1), we can deduce that, for macroscopic particles (p is large), the wavelength A.
has to be small and the wave properties can be neglected. Thus, the wave properties have to be
considered for microscopic particles only.

For a short period, the matrix and the wave mechanics were thought to be unrelated until Schrodinger
showed the equivalence of the two formalisms.

We state some of the basic assumptions of quantum mechanics.

(i) Electromagnetic energy occurs in discrete quantities. The energy E is related to the frequency
v by

E = h v = h co (6.6-2a,b)

where h is the Planck's constant, GO = 2TZV, h = h/2n.

(ii) Heisenberg's uncertainty principle

It is not possible to simultaneously measure the momentum p and the position x to arbitrary
precision. If Ap and Ax are the errors in the measurements of p and x respectively,

ApAx = h (6.6-3)

Schrodinger Equation

It was stated earlier that Schrodinger based his theory on the possibility of matter having both particle
and wave properties. He proposed that the wave function V|/(x, t) obeys a diffusion equation
which can be written as

-TT~ V2V|/ + Oi)/ = i h - ^ (6.6-4)
2m at

2
where m is the mass of the particle, <& is the potential energy, and V is the Laplacian. The wave

function \|/ is complex and the observable quantity is not \|/ but |\|/| . The quantity | \ | / ( x , t ) | is

the probability density of the particle being at x at time t. The function \j/ is normalized such that
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| |v | / (x , t ) | 2dx = 1 (6.6-5)

V

where V is the whole space.

Note that it is not claimed that the particle has become a wave but rather that its position is not known
with certainty. Its position is given by a probability density and it is this probability density which is
associated with a wave. That is to say, \}/ can be considered to be a wave of probabilities. These
waves are abstract waves in the same sense that crime waves are abstract waves. Equally, a photon,
which is an electromagnetic wave, does not have a visible orbit as a particle but its presence can be
detected when it hits a target and acts as a particle. Thus, we have a coexistence of wave and particle
properties. The property which is manifested depends on the situation under consideration.

Equation (6.6-4) can be solved by the method of separation of variables. We write

\ | / (x, t) = u(x) f ( t ) (6.6-6)

Substituting \|/ into Equation (6.6-4) and assuming a static potential O (x), we have

\-t,2 2 ]

u ["25T V U + ° ( 2 ° U' = ^ dt = E (6.6-7a,b)

where E is a constant representing the total energy (kinetic + potential). Equations (6.6-7a, b) lead to

-h2 2
- — V u + Ou = Eu (6.6-8a)
2m

f = C e-[Ei/n (6.6-8b)

where C is a constant.

The wave function \|/(x, t) can be written as

V|/ = u (x) e-iEt/n (6.6-9)

The probability density Pr is given by

Pr = |v|/ |2= | u ( x ) | 2 (6.6-10a,b)

and is independent of time.

Equation (6.6-8a) is the time-independent Schrodinger equation. The solution \ | / (x , t )

depends on the potential <P and if O is time independent, the solution is of the form given by
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Equation (6.6-9) and stationary states exist. In the next two examples, we consider the case of the
hydrogen atom.

Example 6.6-1. Obtain the wave function in the case of an electron moving radially in a potential <E>
given by

C> = - e 2 / r (6.6-11)

Angular variables can be neglected.

Since the potential is time independent, ij/ is given by Equation (6.6-9). The function u depends on
r only. From Equations (6.6-8a, 11, 5.5-32), we deduce that u satisfies

_ | l ( £ i + 2^]_eiu=Eu
2m [dr2 r dry r

To simplify Equation (6.6-12), we introduce the following variables

p = ccr, a 2 = -8mE/ / i 2 , X = 2me2/ah2 (6.6-13a,b,c)

Equation (6.6-12) becomes

d V 2 d u + ^ _ l | u = 0 ( 6 6 H )

dp2 p dp \p 4/

We require that u —> 0 as p —> °° and this suggests that we look for a solution of the form

u = e~p pv(p) (6.6-15)

where p1 is a positive constant.

Combining Equations (6.6-14, 15) yields

d!x + 2(I_p)dX + (p 2 _ l + ^ _ ? l ) v = O (6.6-16)
dp2 lp I dp \ 4 p p /

The number of terms in Equation (6.6-16) will be reduced, if we choose

( 3 = 1 / 2 (6.6-17)

Equation (6.6-16) now becomes

(6.6-12)
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dp2 lp i dp I p /

We seek a series solution and, since we are interested in the region p —> <», we expand v in an
inverse power series of p and write

oo

v = X c mP k ~ m (6-6-19)
m=0

where k is a constant.

On differentiating term by term and substituting the result into Equation (6.6-18), we obtain

oo oo

X cm[(k-m)(k-m-l) + 2(k-m)]pk-m-2- X cm [(k-m) -(A,- 1)] p^"1"1 = 0
m=0 m=0

(6.6-20)

On comparing powers of p, we deduce that

c o [ k - ( A , - l ) ] = 0 (6.6-21)

For a non-trivial solution cQ ^ 0 and this implies that

X = 1 + k (6.6-22)

k—s—2Equating terms of p leads to

c s [ ( k - s ) ( k - s - l ) + 2 ( k - s ) ] = c s + 1 [ ( k - s - l ) - ( A , - l ) ] (6.6-23a)

Substituting Equation (6.6-22) into Equation (6.6-23a), we obtain

c s + 1 = - ( k - s ) ( k + l - s ) c s / ( s + l) (6.6-23b)

From Equation (6.6-23b), we note that the series solution does not converge. If k is an integer
(k = 0, 1, ...). the infinite series becomes a polynomial. The valid solution is the polynomial
solution. If k is zero (the ground state), Cj = C2 = ... = 0 and the solution is given by

v = constant = v0 (6.6-24a,b)

For any value of k, we can calculate the coefficients cs from Equation (6.6-23b) and the solution is
given by Equation (6.6-19) in the form of a polynomial of degree k. We recall a similar situation in
Chapter 2 concerning the Legendre equation.

(6.6-18)
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From Equations (6.6-13b, c, 22), we deduce that

E = E k = - m e 4 / 2 / i 2 ( k + I)2 (6.6-25a)

Equation (6.6-25a) gives the energy levels and, in quantum mechanics, the energy levels are discrete
and not continuous as in classical mechanics. There are an infinite number of energy levels and they
get closer and closer as k —> °°. The lowest energy level Eo is given by

Eo = -me4/2h2 (6.6-25b)

The corresponding wave function \|/0 can be obtained from Equations (6.6-9, 15, 24b) and can be

written as

V|/o = v 0 e - P / 2 e - i E ° t / S (6.6-26)

The probability density Pr is given by

Pr = \%\2 = v ? e ~ P (6.6-27a,b)

Applying the normalization condition [Equation (6.6-5)] and noting that V is the volume of a sphere
of infinite radius, we obtain

f°°
4TI I r2v2e~a rdr = 1 (6.6-28)

Jo

On integrating by parts, we find that v0 is given by

v2 = a3/87t = C6O/8TC (6.6-29a,b)

cc0 = 2 me2//?2 (6.6-29c)

Equation (6.6-29c) is obtained from Equations (6.6-13b, 25b). Combining Equations (6.6-27b, 29)
yields

Pr = ^o e -a o r (6.6-30)
O7C

The probability P^ of finding an electron in the spherical shell between r and r + Ar is given by

PA = 47t r 2 P r Ar = r 2 a3Q e " a ° r Ar 12 (6.6-31a,b)

The maximum value of PA is given by
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^ = 0 (6-6-32)

On differentiating P^, we find that the maximum value of P^ is at

r = 2 / a 0 (6.6-33)

The most probable radial distance of the electron from the nucleus is 2 / (XQ .

Example 6.6-2. Solve the Schrodinger equation for the potential given in Example 6.6-1 without
assuming radial symmetry.

In spherical polar coordinates (r, 0, (|>), Equation (6.6-8a) can be written as

1 3 / 2 3u\ 1 3 / . „ 3u\ 1 3 u 2m /T, _. _ , , , _ ..
r — + s m G — + + ( E - O ) u = 0 (6.6-34)

r 2 3 r ^ 3 r ' r2sine 30 I 3 8 / r2sin20 3<|>2 h2

We seek a solution of the form

u = R(r)F(0, (j)) (6.6-35)

On differentiating u, substituting the results into Equation (6.6-34), and separating the functions of r,
0, and ((), we obtain

1 A (r2 dR) + 2m ( E _ O ) R = i ( i + 1)R ( 6 6 3 6 a )

r2 dr V d r ; h2 r2

_ ! _ A. Sin0 ^L + _ J _ ^_Z = _ x (i + i) F (6.6-36b)
sin0 30 30 sin20 3 r

where Z (Jt + 1) is the separation constant.

The function F (0, 0) is assumed to be given by

F(8 , <|>) = G(0)H(4>) (6.6-37)

Proceeding in the usual manner, we find that G and H satisfy

sin0 - i - (sin0 &G] + [ i ( i + 1) sin20 - n2] G = 0 (6.6-38a)
d0 \ d 0 /
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2
^ + n 2 H = 0 (6.6-38b)
d C

where n is another separation constant.

The solution of Equation (6.6-38b) is

H = A e i n * + B e - i n * (6.6-39)

where A and B are arbitrary constants. For H to be single valued, n has to be an integer.

Equation (6.6-38a) is transformed to the standard form by setting x = cos 0 and it becomes

-f- [d - x2) iS.] + [i (i + 1) - n2/(l - x2)] G = 0 (6.6-40)
dx L dxJ

If n is zero (axial symmetry), Equation (6.6-40) is the standard Legendre equation [Equation (2.7-1)]
and the solution is given by Equation (5.5-38). If n is non-zero, Equation (6.6-40) is the associated
Legendre equation [Equation (2.7-33)] and the solution can be written as

G(x) = CP{(x) (6.6-41)

where C is a constant. The associated Legendre functions PJ? (x) are defined by

Pj?(x) = - t i l l d - x 2 ) " - 2 AJ^_[ix2_l)*] (66.42)

2* ( i !) dx i + n

We note the following properties of PJ?

(i) n and Jt are integers, Z is positive [see Equation (2.7-11)].

(ii) P7n = ( - l ) nH=Jl21p" (6.6-43)
* ( i + n ) !

This shows that P» is a multiple of PJ? and we need to consider only positive n.

(iii) If n > i , we deduce from Equation (6.6-42) that PJ? is zero. [Note that the term inside the

square bracket is of order 2/2 and its (/6 + n) derivative is zero if n > i ] .

The function F can now be written as
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F = (A ein* + B e"in*) P^ (cos9) (6.6-44)

Combining Equations (6.6-11, 13a, b, c, 36a) yields

d!|+2dR+^_l)R = AM±l)R

dp z p dp Ip 4/ p z

Equation (6.6-45) is similar to Equation (6.6-14) and we assume that R is of the form

R = e " p / 2 v (p) (6.6-46)

Substituting Equation (6.6-46) into Equation (6.6-45), we obtain

d!vt|2_,)ivt[ft^l)_iii+i)l¥ = 0 (66.47 )

dp z \p / d p p p z

Equation (6.6-47) can be reduced to a standard form by writing

v = p/)!w(p) (6.6-48)

Substituting v into Equation (6.6-47), we obtain

p^4 + (c-p)^-aw = 0 (6.6-49a)
dp2 dp

where c = 2 ( i + 1), a = (Jt + l-X) (6.6-49b,c)

Equation (6.6-49a) is the confluent hypergeometric differential equation and its solution can be written
as

w = JFJ (a, c, p) (6.6-50)

The properties of confluent hypergeometric functions are given in Slater (1960).

The solution \|/ is obtained by combining Equations (6.6-9, 35, 44, 46, 50) and is

Y|/ = e-iEt/h e - ( a r / 2 ) ( a r ) i 1 F 1 ( i + 1 - X, 2 i + 2, ar) [A ein(f + B e"1"*] P^ (cosG)

(6.6-51)
•

One important result of Schrodinger's theory is the prediction of the energy levels given by Equation
(6.5-25a) which are observed in spectroscopic measurements of moderate resolution. The splitting of

(6.6-45)
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the energy level observed in high resolution measurements can be accounted for by including the spin
effects. Interested readers can consult Eisberg and Resnick (1985). We next consider an example
which leads to an application.

Example 6.6-3. Solve the one-dimensional Schrodinger equation for a potential given by

f0, x<0
O(x) = (6.6-52a,b)

\%, x > 0

where O0 (constant) is greater than the total energy E.

In this example, the potential has a jump discontinuity at the origin. This potential function can
represent the motion of a charged particle between two electrodes kept at different voltages.

Since O is time independent and is discontinuous, we need to solve Equation (6.6-8a) in the regions
x < 0 and x > 0 separately. Equation (6.6-8a) can be written for the given O as

t,2 <\2
_ « _ i l = E u ! x < 0 (6.6-53a)

2m dx2

ft2 H2

- ^ — ^ + %u = E\x, x > 0 (6.6-53b)
2m dx2

The solution of Equation (6.6-53a) is

u = Ae i X l " + B e " a i X (6.6-54a)

where A and B are constants and A-j is given by

Xj = (V2mE )lh (6.6-54b)

Since O0 > 0, the solution of Equation (6.6-53b) can be written as

u = Ce^2X + D e ^ 2 X (6.6-55a)

where C and D are constants and \^ is given by

%2 = V2m (O0 - E) Ih (6.6-55b)

The condition that u tends to zero as x tends to infinity implies that C is zero. The conditions
requiring u and du / dx to be continuous at the origin yield the following
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A + B = D (6.6-56a)

i?4(A-B) = - ? i 2 D (6.6-56b)

On solving Equations (6.6-56a, b), we obtain

A = -£- (Xl + i X2), B = -E-(A,,-iA,2) (6.6-57a,b)
2Xl 2XX

The constant D can be obtained by applying the normalization condition.

The probability Pr of finding the particle in the region x > 0 is

Pr = | u | 2 = | D | 2 e " 2 ^ x (6.6-58a,b)

The probability Pr decreases rapidly with increasing x. For small values of x, there is a finite
probability of finding a particle in this region. This is not predicted in classical mechanics where the
total energy E is constant. That is to say, if the potential energy is greater that E, the kinetic energy
must be negative which is physically impossible. The particle does not enter the region x > 0. In
quantum mechanics, there is a finite probability that the particle may penetrate the classically excluded
region and this phenomenon is called penetration (tunneling). This phenomenon can be observed
experimentally and has found an application in the tunnel diode which is used in modern electronics.
For details, see Eisberg and Resnick (1985).

Note that the statement O0 is greater than E should be subjected to the uncertainty principle. If the

depth of penetration is Ax, we deduce from Equations (6.6-55b, 58a, b) that

Ax - 1/A,2 « / i /V2m(O 0 -E) (6.6-59a,b)

The uncertainty in the momentum Ap can be obtained from Equation (6.6-3) and is

Ap = h/Ax - V2m(O 0 -E) (6.6-60a,b)

The total energy E is proportional to p2/2m and it follows that

AE - O 0 - E (6.6-61)

In quantum mechanics, it is not possible to state that O0 is definitely greater than E and that the

particle cannot enter the region x > 0.
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PROBLEMS

1 a. Determine the Riemann function v for the wave equation

r>2 -v2

= C , - o o < X < ° o , t > 0
at2 dx2

Obtain the solution u that satisfies the following conditions using Riemann's method

u(x,0) = f(x), ^ = g(x)
d t t=0

Answer: v = 1

2b. Show that the characteristics of the equation

2 3 u 2 3 u _
t = X , - ° o < X < ° o , t > 0

at2 ax2

can be written as

t, = t /x , rj = xt

Deduce that the Riemann function v satisfies the equation

J ^ + A ( JL\ = A [3v + .v_\ o

Integrate the partial differential equation and show that v is given by

v = Voy-n)

Obtain u by Riemann's method if at time t = tj (#0), u and du/at are given by

u(x, t2) = f(x), ^ - = g(x)
"'• t=t ,

3a. Show that on introducing a new variable r) = x a t , the partial differential equation

9 x ^ L _ ^ _ = o , 0 < x < o o , t > 0

at ax2
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can be transformed to

^ f + 3 T i 2 ^ = 0
drf dri

The boundary and initial conditions are

u(0, t) = C, , lim u (x, t) = C9 , u(x, 0) = C,

where C\, C2, and C3 are constants.

State the conditions that C j , C2, and C3 have to satisfy in order that a similarity solution
can exist. Assuming that these conditions are satisfied, find u and express it in the form of an
integral.

, * / t " 3 3

Answer: C x + [3 (C2 - C t) I T(l/3)] exp (-£ ) d£,
JO

4b. Balmer and Kauzlarich (1971) considered a two-dimensional steady flow of a viscoelastic fluid
between two non-parallel walls with suction or injection at the walls. Referred to a Cartesian
coordinate system (x, y), the walls are given by y = ±R (x). It is assumed that the velocity
component in the y-direction (vy) is small. The viscoelastic model they chose was a modified
form of the White-Metzner model (Carreau et al., 1997). In a viscometric flow [vx = vx(y),
v = vz = 0], the stress components x^ are given by

Xxy = y ' ^ R e ' Txx~Tyy = Y ' N , Tyy = Xzz

where y = dvx/dy, N = pU 2 ~ s L s /^ , N R e (Reynolds number) = pU 2 ~ n L n / | i , p is the
density, U and L are a characteristic velocity and length respectively, £, and JLX are
constants.

From the symmetry of the problem, we need to consider only the region 0 < y < R (x). The
boundary conditions are

vx = 0 , vy = g(x), at y = R(x)

xxy = 0 , at y = 0

On introducing a stream function \j/ (x, y) defined by

vx = 3\|//3y , v = -d\\f/dx
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and making appropriate assumption, \\f was found to satisfy

dy dxdy dx dyz [ dyz J dy3 \ [ dy2 dy2dx

where f(x) = — ^—[p (x, 0) - T (x, 0)] and p is the pressure.

The following similarity transformation was proposed

\|/ = g(x)F(r | ) , r\ = y/R(x)

Determine the conditions that g, R, s, n, and f have to satisfy so that the P.D.E. can be
transformed to an O.D.E.

Verify that if R = kj x + k2, g = k3, n = s= 1, where kl 5 k2, and k3 are constants, the

equation for \(/ becomes

( l - k 1 T i N w s ) H m - 2 N w s k 1 H " + N R e k 1 k 3 a ( H 1 ) 2 = 1

where H = F/a , a = -N R e R 3 f (x ) /g , N w s = N R e /N.

Deduce the boundary conditions in terms of F.

The non-linear O.D.E. has to be solved numerically.
Answer: F(0) = F'(l) = F"(0) = 0

5a. Use Birkhoff's method to obtain the similarity variables for the boundary layer system defined
by

dy dxdy dx 3y2 By3

V - = V - = 0 at y = 0 , l i m ^ - = 0
dx dy y—>oo dy

Transform the P.D.E. to an O.D.E. and obtain the associated boundary conditions.

[Hint: write x = a a i x , y = a a 2 y , y = aa3\|/, r\ = y / ( x a z / a i ) , 4>Cn) = \ ( / / (xa 3 / a i ) ]

Answer: l - a 2 / a i = oc3/a1

6b. The heat equation in a cylindrical polar coordinate system can be written as
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3u 3 u 1 3u „ . . _
— = — - + , 0 < r < o o , t > 0
at 3r2 r 3r

The initial and boundary conditions are

u (0, t) = t , lim u (r, t) = 0 , u (r, 0) = 0
r—> oo

The time dependent condition at r = 0 can be transformed to a constant boundary condition by
writing

u (r, t) = t v (r, t)

Determine the partial differential equation, the boundary and initial conditions that v has to

satisfy. Show that by introducing the variable Ti = r / V t , v(r|) has to satisfy

d!l+dv(in + i)_v = 0
dt|z dr| \2 IV

Obtain the boundary conditions on v(r|).

7a. The function u satisfies Laplace's equation inside and on a unit sphere. On the surf ace of the
sphere, u = f (0, <))). Use Equations (6.4-2,14) to obtain u in the form of an integral
(Poisson's integral).

A ^ o A ^ ( b 2 - D (2n (K f(9,(j))sin9d9d(l)Answer: u (b, 6 0 , )Q) = ^ - —
47t ;o jo ( i + b 2 - 2 b c o s e ) 3 / 2

8a. Show, using the Green's function given by Equation (6.4-12), that the solution of the
boundary value problem

d2u 32u , ,
— - + — - = p (x, y ) , -°o < x < oo, y > 0

3xz dyz

u = f (x) on y = 0

is

K 3— ( x - x o ) 2 + y 2 47U ^0 J-oo [ ( x - x o ) 2 + ( y + y o ) 2

9a. Show that the solution of the boundary value problem
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— - + — - = p (x, y) , -oo < x < °°, y > 0
3x z dyz

3 - = h (x, y) on y = 0
dy

can be written as

u(xo'yo) = ^ l l p('gn[(x-xo)2+(y-yo)2][(x-xo)2+(y + yo)2])dxdy

f°°

~ \ h{jn[(x-xo)2+yjj]}dx
J-00

10b. Use the method of images to show that Neumann's function (N) for the interior of the unit
circle is

N = i n (b r : r2)

in the notation of Equation (6.4-16).

If u satisfies Laplace's equation inside and on the unit circle and if on the unit circle

show that u is given by

u(b, 60) = - y - I h(e){in[l+b2-2bcos(9-eo)]}d0
2% Jo

Verify that u satisfies Laplace's equation,

l i b . Show that the Neumann function for the three-dimensional upper half plane z > 0 is

Ir r /

where r and r' are defined by Equations (6.4-1 lb, c).

Obtain u (x, y, x) if u satisfies the following conditions



PARTIAL DIFFERENTIAL EQUATIONS II 567

2
V U = 0 , Z > 0 , -oo < X < oo , -oo < y < oo

9u = ( l , if (x2 + y 2 ) < l

" z z=0 | 0, otherwise

12b. The Green function G associated with the wave equation satisfies the equation

32G 1 92G x . . s . t t .
— - - — —r- = 8(x-xo)8(t-t0)
ax2 c2 at2

Solve for G by first taking the Laplace transform of G with respect to t and verify that G
(the Laplace transform of G) satisfies the equation

3 G S G _stn S , x

— - - - — = e s t ° 8 ( x - x 0 )

Next, take the Laplace transform of G with respect to x and verify that G is given by

G = -(ce-st<>e-s!x-xo|/c)/2s

Deduce that G can be written as

( -c /2 , if [ c ( t - t o ) > | x - x o | ]
G(x, t ;x0, t0) = (

\ 0, otherwise

Is G finite at (xo,tQ)? Discuss the discontinuity of G.

13b. The one-dimensional Schrodinger equation for a free particle of mass m is [Equation (6.6-4)]

.,_ aw %2 a2\i/
l f c — = - - jr, - o o < X < o o , t > 0

at 2m ax2

aw
y (x, 0) = f (x) , V|/ and — > 0 as | x | —> °°

Cf X

Take the Fourier transform with respect to x [Equations (5.9-16a, b)] and show that
*F (a, t), the Fourier transform of V|/, is

*F(a,t) = F(a)e~i Y a l

where F is the Fourier transform of f and y=h/2m.
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On inverting and using the convolution theorem, i|/ can be written as

[ oo * oo

¥ = 2^ I F ( a ) e ~ i Y a 2 t e i a X d « = 1 f(^)G(x-^)d^
J —oo J—oo

The function G is Green's function. Show that G is given by

G(x) = [(1 - i) exp (ix2/4yt)] / 2 V2rcyt

Deduce \\f if f(x) = 5(x - xQ).



CHAPTER 7

NUMERICAL METHODS

7.1 INTRODUCTION

Many engineering problems can not be solved exactly by analytical techniques. The knowledge of
numerical methodology is essential for determining approximate solutions. Numerical methods, in one
form or another, have been studied for several centuries. We will look, for example, at Newton's
method of approximating the solution of an algebraic or transcendental equation, at the Gaussian
elimination method for solving linear systems of equations and at the Euler and Runge-Kutta methods
for solving initial-value problems. Since the arrival of computers, the potential of these methods has
been realized and the entire character of numerical methods has changed. We can now use iterative
methods with much greater speed. We can also solve large systems of equations numerically. Many
non-linear equations which were intractable in the past can now be solved approximately by numerical
methods. As a result of these possibilities, mathematical modelling is now more realistic and a new
field of numerical simulation has been opened up. Successful simulations of complex processes in
science and engineering are now being achieved. In this chapter, we present different methods which
will be useful to applied science students.

We first briefly examine the possible sources of error that may occur in the solutions obtained by
numerical methods. Most numbers have an infinite decimal representation and for computational
purposes they have to be rounded to a finite number of decimal places. This type of error is known as
round off error and is unavoidable. During the process of calculation, we generate errors. If we
subtract two almost equal numbers, the number of significant digits will be reduced. This type of error
is known as loss of significance. As an example, we consider the function f (x) given by

f(x) = x - s i n x (7.1-1)

We now evaluate f(x) when x is equal to 0.150 radians.

f (0.150) = 0.150-0.149 (7.1-2a)

= 0.001 (7.1-2b)

In Equation (7.1-2a), the value of sin (0.150) is correct to three significant figures but f (0.150) is
correct to at most one significant figure. Losing all significant figures during machine computations is
not unheard of. It is therefore necessary to check the numbers during the calculations. In some cases,
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it is possible to rewrite the function to be evaluated in such a way that the loss of significant figures
does not occur. For example, we can approximate sin x by its Taylor series and f (x) is
approximated as

f(x) - x - ( x - I X 3 + ... ) (7.1-3a)
o

- ^ x 3 (7.1-3b)
o

Using Equation (7.1-3a), we find that

f (0.150) = 0.000562 (7.1-4)

The value of sin (0.150) correct to five significant figures is 0.14944 and it can be seen that Equation
(7.1-4) gives a better approximation to f (0.150) than Equation (7.1-2b).

In classical analysis, we consider infinite processes, such as infinite sums. In computational
mathematics, we can consider only finite sums. This results in an error called the truncation error.
It is often possible to provide an estimate of such errors.

As mentioned earlier, iterative methods are used to solve equations numerically. These methods
generate a sequence of numbers. We need to establish that the sequence converges to the solution.
Ideally we should always perform an error analysis before accepting a particular solution which was
generated numerically. Often this is not possible as the problem is too complicated. In such a case,
we can rely on intuition and past experience and hope that the results obtained are reliable and useful.
In this sense, numerical analysis is an art and not a science. A more detailed discussion on error
analysis can be found in Hildebrand (1956) and Elden and Wittmeyer-Koch (1990).

7.2 SOLUTIONS OF EQUATIONS IN ONE VARIABLE

We begin our discussion by considering equations of the form

f(x) = 0 (7.2-1)

where x and f (x) are real or complex. We need to find values of the variable x that satisfy
Equation (7.2-1) for a given f. This equation could be algebraic or transcendental. If x is a real or
complex number satisfying Equation (7.2-1), we say that x is a root of the equation. Alternatively
we will also say that x is a zero of the function f. Next we present four different methods of solving
Equation (7.2-1).
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Bisection Method (Internal Halving Method)

This method is based upon the use of the intermediate mean-value theorem which states that for
a continuous function f, defined on the closed interval [a, b], with f(a) and f(b) having opposite
signs, there exists at least one number x such that a < x < b for which f (x) = 0. The method
consists of a repeated halving of the interval [a, b] with f(a) and f(b) having opposite signs. One
starts by letting Xj be the mid-point of [a, b]. If xj satisfies Equation (7.2-1), xj is the required
root. If not, f(xj) has the same sign as either f(a) or f(b). If f(xj) and f(a) have the same sign,
the required root lies in the interval (xj,b), as illustrated in Figure 7.2-1. We then proceed to find the
mid-point of (xj, b). Similarly if f (xj) and f (b) have the same sign, the required root lies in the
interval (a, xj) and in this case x2 is the mid-point of (a, xj). We repeat this process of halving
until a satisfactory value of the root is obtained. That is to say, until the difference between two
consecutive values of xj is within the required accuracy.

f ( x ) i,

f ( a ) ^ r ^

f *x, ) -T - -V
0 -J L \ nr-*

a x, \ jb x

FIGURE 7.2-1 Identification of the root (•) of the equation
via the bisection method
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Example 7.2-1. Solve the following equation via the bisection method

f(x) = x3 + 4 x 2 - 1 0 = 0 (7.2-2a,b)

We note that f (1) is negative (-5) and that f (2) is positive (14). Thus, at least one root lies in the
interval (1,2) and x1? the mid-point of (1,2), is 1.5. We calculate f (1.5) which is found to be
positive (2.37) and the root lies between 1 and 1.5. The second approximation X2 is 1.25. We
continue this process. The values of xk and f (xk) are given in Table 7.2-1 for various values of k.

TABLE 7.2-1

Values of x^ and f(x^)

k xk f(xk)

1 1.5 2.37

2 1.25 -1.797

3 1.375 0.162

4 1.3125 -0.848

5 1.3437 -0.351

6 1.3593 -0.102

7 1.3671 0.029

8 1.3632 -0.048

9 1.3651 -0.0038

10 1.3661 0.0127

11 1.3655 0.0045

12 1.3652 0.0003

13 1.3651 -0.0017

From Table 7.2-1, we see that the root accurate to three decimal places is 1.365. Note that as k
increases the difference x k - x k _ 1 decreases and f(xk) approaches zero.

Secant Method

Consider the graph of the function f as shown in Figure 7.2-2.

In this method, we consider two points [xQ, f (x0)] and [xj, f (xj)]. It is not necessary that x0 < Xj
or that f(xQ) and f(xj) have different signs. That is to say, it is not necessary that the root lies in the
interval [xQ, x j . We draw the secant line, that is the line passing through points [x0 , f (x0)] and
[xj, f (X])] which will intersect the x-axis at some point X2. The equation of the secant line is



NUMERICAL METHODS 573

f(x)-f(x1) = f ( ' ° ) " ^ l ) ( x - x 1 ) (7.2-3)

f(x),

X #„ \

Xp %*/?Y I

f (XQ)

FIGURE 7.2-2 Identification of the root (•) of the equation via the secant method

The point x2 for which f (x2) is zero is given from Equation (7.2-3) by

f(X l)(X l-x0)
X 2 " X 1 - f O ^ - f ^ ) ( 7 - 2 4 )

If f(x2)*0, we draw the secant line joining the points [xj, f (xj)] and [x2, f (x2)] and determine
X3 as

f (x2) (x2 - xt)
X3 - X2 " fCx^-fC^) ( ? - 2 5 )

Proceeding in this manner, we find in general

f(xv) (xk - x t 1)

xk+1 = xk - : k ; \( k - i ; , (k > i) (7.2-6)
k + 1 k f (Xk) - f (Xk_!)

The root is determined to the desired degree of accuracy.

Example 7.2-2. Use the secant method to solve the equation given in Example 7.2-1.
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Taking x0 to be 1 and x2 to be 2, we obtain from Equation (7.2-4)

_ 2 14(2-1)
X2 " 2 - 14-(-5) ( 7 - 2"7 a )

= 1.26 (7.2-7b)

Via Equation (7.2-6), we generate

(-1.649) (1.26-2)
X3 " L 2 6 -1.649-14 ( 7 - 2 " 8 a )

= 1.338 (7.2-8b)

x - 1 338 - (-0-44368) (1.338-1.26)
x4 - 1.338 _o.443678 + 1.649 ( 3

= 1.3667 (7.2-8d)

, , „ _ (0.024291) (1.3667 - 1.338) ,_ . _ .
X5 = L 3 6 6 ? - 0.024291+0.443678 ^ ^

= 1.3652 (7.2-8f)

We can calculate xg and it is found that x6 is also 1.3652. Thus the root accurate to three decimal
places is 1.365. We note that we achieve this accuracy in five iterations whereas in the bisection
method we needed twelve iterations.

Newton's Method

This is a popular and widely used method. In this method, we start with only one point, which we
denote by x0. We assume that f (x) is differentiable in the interval containing xQ and the root.
Expanding f(x) in a Taylor series about the point x0 yields

f (x) = f (x0) + f' (x0) (x - x0) + ... (7.2-9)

We assume xj to be an approximate root and set f (x^) to be zero in Equation (7.2-9) yielding

x l = xo - 7^7 (7-2" l 0 )

f (x0)

Generalizing, we obtain

*k+l = x k - ^ - > (k*<>) (7.2-H)
f (xk)
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Again, the root can be determined to the desired degree of accuracy.

Example 7.2-3. Solve Equation (7.2-2) using Newton's method.

On differentiating Equation (7.2-2), we obtain

f'(x) = 3x2 + 8x (7.2-12)

We start the iteration with

x0 = 1 (7.2-13)

From Equations (7.2-10, 11), we have

xl = 1 + ^ (7.2-14a)

= 1.4545 (7.2-14b)

x2 = 1.4545-0.0856 (7.2-14c)

= 1.3689 (7.2-14d)

x3 = 1.3689-0.0037 (7.2-14e)

= 1.3652 (7.2-14f)

Using Newton's method, we obtain the root 1.365 accurate to three decimal places after three
iterations.

•

Newton's method is also used to extract the n^1 root of real numbers. Suppose that the n* root of a
number A is x. That is

xn = A (7.2-15a)

or f(x) = x n - A = 0 (7.2-15b,c)

Taking the derivative, we have

f'(x) = nx""1 (7.2-16)

From Equation (7.2-11), we deduce
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xk+i = xk--^~r ( 7 - 2 - 1 7 )

nx k

In the case of a square root, we have n = 2 and Equation (7.2-17) becomes

xk+l = X k - H h r ^ (7.2-18a)
zxk

= l ( x k + A ) ( 7 . 2 . 1 8 b )

Example 7.2-4. Find the square root of 3.

Here A = 3, and we start with

x0 = 1.5 (7.2-19a)

Xl = 2 ( L 5 + f j ) = L 7 5 (7.2-19b,c)

x2 = 1 (l.75 + j^) = 1.73214 (7.2-19d,e)

x3 = 1 (1.73214+ t ?33214) = 1.7320508 (7.2-19f,g)

which approximates the actual root to six decimal places.

Fixed Point Iteration Method

In this method, we rewrite Equation (7.2-1) in the following form

x = g(x) (7.2-20)

If Equation (7.2-20) holds, x is said to be a fixed point of g(x).

As in Newton's method, we choose a starting point x0 and then compute g(x0). We now label
g(x0) as xj and compute g(xj). We continue this process by writing

*k+l = g(Xk), k = 0,1,2,... (7.2-21)

until the root to the desired degree of accuracy is obtained.

The conditions on g which will ensure converge are

(i) there is a closed interval I = [a, b] such that for x e I, g (x) is defined and g (x) e I,
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(ii) g (x) is continuous on I, and

(iii) g (x) is differentiable on I, g' (x) | < k for all x e I and k is a non-negative constant less
than one. If g satisfies conditions (i to iii), Equation (7.2-20) has exactly one solution. The
mapping g is said to be a contraction mapping in I.

Example 7.2-5. Using the fixed point iteration method, solve

f(x) = x - c o s x = 0 (7.2-22a,b)

We rewrite Equation (7.2-22b) as

x = cosx (7.2-23)

In this example, g(x) is cosx. In the interval [0, TC/2], g(x) satisfies all the conditions stated
earlier. Thus, there is exactly one solution in [0, K/2]. Starting with the initial value TC/4, we can,
via Equation (7.2-21), generate the values of x^ as given in Table 7.2-2.

TABLE 7.2-2

Values of x^ and g ( x ^ )

k x k § (xk) = c o s x k

0 71/4 0.707
1 0.707 0.760
2 0.760 0.725
3 0.725 0.748
4 0.748 0.733
5 0.733 0.743
6 0.743 0.736
7 0.736 0.741
8 0.741 0.738
9 0.738 0.740
10 0.740 0.738

From Table 7.2-2, we deduce that the root correct to two decimal places is 0.74, which is achieved
after six iterations.

•
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The transformation from Equation (7.2-1) to Equation (7.2-20) is not unique for any given f. We
should choose g so that all the conditions on g stated earlier, are satisfied, in order to ensure that the
iterations converge. We note that for the secant method (Equation 7.2-6), g (x^) is given by

In the case of Newton's method (Equation 7.2-11), g(xy) is

, x f(xt)
g(xk) = xk - T T ^ (7-2-25)

f (xk)

Example 7.2-6. Solve Equation (7.2-2) by the fixed point iteration method.

We can rewrite Equation (7.2-2) as

x = i - V l O - x 3 (7.2-26)

The iteration function g (x) is

g(x) = i - V l O - x 3 (7.2-27)

The iteration formula is

xk+l = ^ V l O - x 3 . (7.2-28)

Starting with the initial value x0 = 1, we generate, via Equation (7.2-28), the following

xx = 1 . 5 (7.2-29a)

x2 = 1.287 (7.2-29b)

x3 = 1.402 (7.2-29c)

x4 = 1.345 (7.2-29d)

x5 = 1.375 (7.2-29e)

x6 = 1.360 (7.2-29f)

x7 = 1.368 (7.2-29g)

x8 = 1.364 (7.2-29h)

x9 = 1.366 (7.2-29i)

x10 = 1.365 (7.2-29J)

(7.2-24)
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We note that the iteration given by Equation (7.2-28) converges to the solution 1.365 in ten iterations.
We can verify that g (x) satisfies the conditions for the convergence of the iteration.

An alternative form for Equation (7.2-2) is

X = ^ x T 4 ) <7-2-30)

In this case, the iteration formula is

Again, starting with an initial value equal to 1, we obtain

xi = 2 (7.2-32a)

x2 = 0.833 (7.2-32b)

x3 = 2.484 (7.2-32c)

x4 = 0.621 (7.2-32d)

From Equations (7.2-32a to d), we note that the x^ are not converging to the solution (1.365) but
they are oscillating. We now examine the properties of the iteration function g (x). The function g (x)
and g'(x) are given by

g(x) = roTT4) <7-2-33>

g-00 = ~ ^ ± ^ (7.2_34)
(x2 + 4x)2

From Equation (7.2-34), we find that | g'(x)|, in the interval (1, 1.5), is greater than one and

condition (iii) is violated. The sequences generated by Equation (7.2-31) do not converge to the root.

Other forms of g(x) can be chosen. For Newton's method, g(x), computed via Equation (7.2-25)
is given by

g(x) = 2xi±ixi±I0 (? 2 3 5 )

3x2 + 8x

It is shown in Example 7.2-3 that the root is obtained after three iterations whereas in Example 7.2-6
ten iterations are needed to achieve the same accuracy. However, it is faster to compute g (x) as given
in Equation (7.2-27) compared to that in Equation (7.2-35).

•

(7.2-31)
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For human computers, it is recommended to start with the bisection or secant method. Once a
reasonably good approximation is obtained, Newton's method is used for faster convergence. To
avoid dividing by zero, Newton's method should be avoided if f' (x) is close to zero near the root.

7.3 POLYNOMIAL EQUATIONS

We now apply the discussion of the previous section to the special case where f (x) is a polynomial of
degree n. We want to find the roots (real or complex) of the polynomial equation

f (x) = an xn + an.! x""1 + ... + aj x + a0 = 0 (7.3-la,b)

where an * 0, n > 0.

We note the following facts regarding Equations (7.3-la,b) with real or complex coefficients.

1) There are n (not necessarily distinct) real or complex roots.

2) If n is odd and all coefficients are real, there is at least one real root.

3) If all the coefficients are real and complex roots exist, they occur as conjugate pairs.

4) If xQ is a root of Equation (7.3-1 a,b), then necessarily

f(x) = (x-x o )g(x) (7.3-2)

where g (x) is a polynomial of degree (n - 1).

Newton's Method

To use Newton's method for computing the root of an equation [Equation (7.2-11)], we need to
evaluate f(xjc) and f'(xk). We describe a method, known as Horner's method, for calculating
f (xfc) and f' (xk) where f is a polynomial. Recall that for any polynomial as given in Equations
(7.3-la,b) we can write

f(x) = (x -x o )q (x ) + R (7.3-3)

where

q (x) = bn_! x""1 + bn_2 xn"2 + ... + t>! x + b0 (7.3-4)

and R is a constant. Equations (7.3-la, b, 3, 4) are compatible provided

V i = an (7.3-5a)
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bn-2 = an_i + xobn_i (7.3-5b)

b0 = a\ + x o b 1 (7.3-5c)

R = a0 + x 0 b 0 (7.3-5d)

Thus if (x - x0) is not a factor of f (x), we have from Equation (7.3-3)

f(x0) = R = ao + x o b o (7.3-6a,b)

In Equations (7.3-5a to d), the bj are given in terms of an and xQ. Therefore, starting from
Equation (7.3-5a), we can successively compute b n . j , . . . , b 0 . We can then determine f(x0) from
Equation (7.3-6a, b).

To compute f' (x0), we first differentiate Equation (7.3-3) and obtain

f' (x) = q(x) + (x - x0) q' (x) (7.3-7)

Thus

f'(x0) = q(x0) (7.3-8)

Example 7.3-1. If

f (x) = 3x3 - 4x2 + x - 3 = 0 (7.3-9a,b)

find f (2) and f' (2).

For x0 = 2, we first obtain the constants bj using Equations (7.3-5a to c)

b2 = 3 (7.3-10a)

bj = - 4 + 2(3) = 2 (7.3-10b,c)

b0 = 1+2(2) = 5 (7.3-10d,e)

Hence

f(2) = R = - 3 + 2 ( 5 ) = 7 (7.3-10f,g,h)

and f'(2) = b2Xo + b i x o + bo = 21 (7.3-10i,j)
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Example 7.3-2. Solve

x 3 -3x2 + 3 = 0 (7.3-11)

given that a root is near x = 2.5. Use Newton's method to evaluate it.

We note that

a3 = l, a2 = - 3 , ai = 0, ao = 3 (7.3-12a to d)

We first need to calculate f(2.5) and f'(2.5). Equations (7.3-5a to d) yield

b2 = 1 (7.3-13a)

b! = -3 + 2.5 = -0.5 (7.3-13b,c)

b0 = l+2.5(-0.5) = -1.25 (7.3-13d,e)

f(2.5) = R = ao + x o b o = -0.125 (7.3-13f,g,h)

f (2.5) = b2x2 + b i x 0 + b0 = 3.75 (7.3-131 j )

According to Equation (7.2-11), we obtain as a first approximation for the root

Xj = 2 . 5 - = ! ^ - = 2.533 (7.3-14a,b)

We now compute f (2.533) and f'(2.533) in a similar manner to obtain

f (2.533) = -0.008423 (7.3-15a)

f (2.533) = 4.0227 (7.3-15b)

Hence the second approximation for the root is

x2 = 2.533 - 0 4 ° Q ? 2 7 3 = 2 - 5 3 2 0 9 8 (7.3-16a,b)

We find that the root, accurate to two decimal places is 2.53.

We can improve the accuracy of the root to any desired number of decimal places by proceeding to
compute X3, X4, ...

•
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We now briefly outline a method for locating intervals containing the zeros of Equation (7.3-1) where

f(x) is a polynomial of degree greater than 2. We note that if x € (0, 1], J- e [1,°°); and if

x e [-1,0), 1 e (-oo,-l) . Also

f( i) = an(i)n + Vl ( x - r 1 + - ^ 0 (7.3-17a)

= ^ k + a n - l x + - + a l x n"1 + aO^] (7.3-17b)

= -Lf(x) (7.3-17c)
x

We note that changing the variable x to 1/x allows us to look for solutions on the intervals [-1,0)
and (0,1] instead of on the original interval (-<», »). Furthermore if x is a zero of f(x), x ^ 0,
1/x is a zero of f. The converse is also true. It thus follows that to approximately determine all the
real zeros of Equation (7.3-1), it suffices to search in the intervals [-1,0) and (0,1] evaluating both

•s

f and f to determine sign changes. Recall that if f(xj) f (xp < 0, f has a zero between Xj and Xj.

Similarly if f (xp f (xA < 0, f has a zero between x, and x; and consequently Equation (7.3-1) has
a zero between -L and —.

i Xj

Example 7.3-3. Locate the roots of the polynomial equation

f(x) = 16x4-40x3 + 5x2 + 20x + 6 = 0 (7.3-18a,b)

As previously noted, we consider the reciprocal variable —, in order to consider the finite intervals

[-1,0) and (0,1].

f (1) = f (X) = 6x4 + 20x3 + 5x2 - 40x + 16 (7.3-19a,b)

We note that

f ( - l ) = 47, f(0) = 6 (7.3-20a,b)

f (_1) = 47, f (0) = 16 (7.3-21a,b)

From Equations (7.3-18 to 21b), we deduce that there is no change of sign in the interval [— 1, 0).
Consequently, the zeros of f are in the interval (0,1]. To determine them we evaluate f at several
points, to identify sign changes. For example, we find

f (0.5) = 0.125 (7.3-22a)
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f (0.75) = -0.8516 (7.3-22b)

f (1) = 7 (7.3-22c)

Thus f has at least one zero in the interval (0.5, 0.75) and at least one other in the interval

(0.75,1). It then follows that f has at least one zero in the interval l—^— , —L) = (— , 2) and at

least one other in the interval ( l ,^ ) - We have identified two approximate roots. The quartic can be

written as a product of two quadratic expressions. One of them is known and the other is obtained by
division.

7.4 SIMULTANEOUS LINEAR EQUATIONS

We now describe methods of solving systems of linear equations which are written as

a n x 1 + a 1 2 x 2 + ... + a l n x n = bj

a21 x l + a22 X2 + - + a2n xn = b2 (7.4-la,b,c)

a n l x l + a n2 x 2 + - + annxn = bn

A more compact form of writing Equations (7.4-la,b,c) is

n

X a i j x j = b i ' i = l , 2 , 3 , ... , n (7.4-2a)
i = i

or A x = b (7.4-2b)

where A = (ay) is the coefficient matrix, and x and b are column matrices. Equation

(7.4-2b) has a unique solution if the inverse of A exists. The conditions for the existence of A"1

can be stated in the following alternate forms.

1) The determinant of A is not zero.

2) The columns of A are linearly independent.

3) The rows of A are linearly independent.

4) The homogenous system (A x = 0) has only the trivial solution (x = 0).

5) The rank of A is n.
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If A" exists, we say that the matrix A is non-singular; otherwise A is said to be a singular

matrix. Thus the linear system (7.4-2b) has a unique solution iff A is non-singular. Recall also that

if {vj, v 2 , ... , v n } is a set of vectors in Rn, the following statements are equivalent.

1) Vectors {vj, v 2 , ... >v n} are linearly independent.

2) Vectors {vj, v2 , -•• , v n } span Rn.

3) Vectors {v2, v 2 , ... , vn} form a basis for Rn.

We now discuss a standard method of solving the set of Equations (7.4-1).

We note that the following operations on a system of linear equations do not change the solution of the

system

1) interchanging two rows,

2) multiplying a row by a non-zero constant,

3) adding a multiple of one row to another row.

Gaussian Elimination Method

The basic idea behind this method is to convert the n x n coefficient matrix of the given system to an
upper triangular matrix. We reduce the matrix A to a triangular form by the following

elementary operations. We choose an as a pivot and keep the first row unchanged. We multiply
the first row by an appropriate factor and add it to the second row so as to reduce the coefficient of xi
in the second row to zero. Similarly we reduce the coefficients of xj in all subsequent rows to zero.
We then choose the new coefficient of x2 in the second row as pivot and reduce the coefficient of x2

to zero in row three as well as in the subsequent rows. We continue this process until we have only
one unknown xn in the nth row. We can solve for xn. By backward substitution, we can determine
the solutions for xn . j , ... , x2, xj.

The row operations described earlier are to be applied to column b as well. It is economical to

consider the matrix A and the column b simultaneously. We then operate on the augmented

matrix Ag, which is obtained by combining A and b , where b is the (n+l)th column of Ag. The

matrix Ag is now a rectangular matrix with n rows and (n+1) columns.

Example 7.4-1. Solve the following system of equations via the Gaussian elimination method.
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Xj + 2x 2 + 3x3 = 5

x1 + 3x2 + 3x3 = 4 (7.4-3a)

2xj +4x 2 + 7x3 = 12

We rewrite Equations (7.4-3a) in matrix form as follows

1 2 3 1 P1] [ 5
1 3 3 x2 = 4 (7.4-3b)

2 4 7 12
L J LX3J L J

To carry out the required operations, we write the augmented matrix

" 1 2 3 5 "

Ag = 1 3 3 4 (7.4-3c)

2 4 7 12

For the row operations on the augmented matrix, we choose a^ = 1 as pivot and we do not change

the first row. Multiplying row 1 by - 1 and adding it to row 2, as well as multiplying row 1 by - 2

and adding it to row 3, yields the modified augmented matrix A
— ©

" 1 2 3 5 "

A(g1} = 0 1 0 - 1 (7.4-3d)

0 0 1 2

The matrix

" 1 2 3

A(1) = 0 1 0 (7.4-3e)

0 0 1

is the required triangular form. Since a32 was already zero, we did not need to carry out further

manipulations. From row 3 of Equation (7.4-3d) we can identify

x3 = 2 (7.4-4a)

From row 2, we obtain
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X2 = - 1 (7.4-4b)

Substituting the values of x2 and X3 in row 1 yields

X ! + 2 ( - l ) + 3(2) = 5 (7.4-4c)

and the value of Xj is

xx = 1 (7.4-4d)

•

The following observations concerning this method are important. At each stage in the Gaussian
elimination procedure, a pivot row must be selected. Appropriate multiples of the pivot row are added
to other rows to perform the desired elimination. The selection of this pivot row is very important.
We illustrate a problem which could arise by considering the following non-singular matrix

1 2 4 "

A = 1 2 - 5 (7.4-5a)

5 1 10

Choosing the first row as a pivot row yields

" 1 2 4 "

A(1) = 0 0 - 9 (row 2 - row 1) (7.4-5b)

0 - 9 -10 (row 3 - 5 x row 1)

If, in the usual manner, we were to choose the second row as the pivot row, we would not be able to
proceed, since the coefficient a22 is zero. However, interchanging rows 2 and 3 allows us to
eliminate the coefficient of x2 in such a way as to proceed towards the computation of the required
triangular matrix. That is, we write Equation (7.4-5b) as

" 1 2 4 "

A(2) = 0 - 9 - 1 0 (7.4.5c)

0 0 - 9

and this allows us to determine X3, x2 and Xj provided the vector b is known.



588 ADVANCED MATHEMATICS

This example illustrates the need for adopting an appropriate pivoting strategy. One such strategy is as
follows.

(i) Scan the first column to find the largest absolute value | a j j |.

(ii) Exchange this row with the first row.

(iii) After the first column of zeros has been determined, scan the second column below the first
row to find the largest absolute value | a i 21, i * 1.

(iv) The row in which this element is found now becomes the second row.

This process is continued until the matrix has been transformed into an upper triangular matrix. If the
matrix is non-singular, this strategy will always work.

Example 7.4-2. Solve the following system of equations using the Gaussian elimination method.

Xj + 5x2 + 4x3 = 23

2xj + i-x2 + x3 = 6 (7.4-6a,b,c)

5xx + 2 x 2 - 3 x 3 = 0

Here the largest absolute value in the first column occurs in the third row. We interchange the third
row with the first row and write the augmented matrix as

5 2 - 3 0

Ag = 2 2 l 6 (7.4-6d)

1 5 4 23

Choosing the first row as the pivot row, we proceed to generate zeros in the first column, as
described.
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5 2 - 3 0

3 22
A(g1} = ° " T o To 6 (row 2 - 1 r o w 1) (7.4-6e)

ft 46 46
° 10 10 23 J (row 3 - 1 row 1)

We now look at the second column and note that ~- > - -*- . We then interchange the second and

third rows leaving the first row unchanged. Performing the elimination, as stated earlier, we find the
new matrix to be

" 5 2 - 3 0 "

A<2) = 0 4.6 4.6 23 (7.4_6f)

0 0 2.5 7.5

The last row identifies X3 as 7.5/2.5. Substituting this value of X3 in the second row, we obtain X2
and finally, from the first row, we obtain x^ , yielding

X l = 1 , x2 = 2 , x3 = 3 (7.4-7a,b,c)

The second kind of problem that can arise in the solution of a system of linear equations deals with
singular or ill-conditioned (nearly singular) matrices. When the matrix is singular, we do not
have a unique solution. We examine the case of ill-conditioning by considering the following two
systems of equations

x l + X2 = 1
(i) (7.4-8a,b)

Xj + 1.01x2 = 2

and

xt + x2 = 1

(ii) (7.4-9a,b)
1.01x1 + x2 = 2

The exact solution of Equations (7.4-8a,b) is

X! = - 9 9 , x2 = 100 (7.4-10a,b)

The exact solution of Equations (7.4-9a,b) is
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X! = 100, x2 = -99 (7.4-1 la,b)

Note that for a small change in the value of the coefficient in the second equation, the solution
(-99, 100) is changed to (100, -99). That is to say, from one quadrant to another quadrant!

Consider the system of equations

Xj + x2 = 2

(7.4-12a,b)
1.001 Xj+ x2 = 2.001

The exact solution here is

X! = 1 , x2 = 1 (7.4-13a,b)

The equations are also satisfied approximately by

xx « 0 , x2 * 2 (7.4-14a,b)

Here, we find that Equations (7.4-12a,b) can have an incorrect approximate solution.

The above examples are cases of ill-conditioning. Ill-conditioning is thus in a sense a measure of the
closeness of the coefficient matrix to a singular matrix. The coefficient matrices in the three previous
cases were

' i i i r I l i r I I

1.01 1 ' 1 1.01 ' 1.001 1

r i ii
which are, in a sense, close to the singular matrix . The determinant of each of the coefficient

L l iJ
matrices is nearly zero. We define the closeness of two matrices by the condition number which in

turn is expressed in terms of the norm of the matrices. Vector and matrix norms are defined as

follows.

To each vector (or matrix) x, we assign a real number which we call a norm and denote it by II x II.

A norm shares certain properties with absolute values. A norm satisfies the following properties.

1) llxll > 0 for all x , 11x1 = 0 iff x = 0.

2) II c x II = I c III x II for any real constant c.

3) II x + y II < II x II + II y II (triangle inequality).



NUMERICAL METHODS . 591

The first condition states that all non-zero vectors have a positive norm. The second property implies
that the norm of a vector is invariant, irrespective of the direction. The third property is the usual
triangle inequality.

The L p norm is defined as

L p = II x lip = ( X l x i l P ) 1 / P for p > l (7.4-15 a,b)

where Xi are the components of x.

For p = 1, the Lj norm is the sum of the absolute values of the components of x .

The familiar Euclidean norm, which is the length of the vector x, is obtained by setting p = 2. In

this case, Equation (7.4-15b) becomes

llxll 2 = Vx} + x^ + ... + xl (7.4-16)

The II x II x norm is defined as

11x11^= max |Xj| (7.4-17)
~ l<i<n

The II x II ^ chooses the maximum absolute value of x, as a measure of x. It is easier to compute

II x II ^ than II x II2 and it is not surprising that II x II ^ is preferred to II x II2 in numerical analysis.

The Lj and L^ norms of a matrix are defined as

n

Lj = HAH, = max V aH (7.4-18a,b)
l < j < n i = 1 J

L^ = HAIL = max X aii (7.4-19a,b)
~ l<i<n j = 1 J

The II A. II j norm, as defined by Equation (7.4-18b), is obtained by adding the absolute values of the

elements of each column of A. The maximum value of the column sum is IIAII1. To calculate

II A. II ̂  we interchange the roles of columns and rows and repeat the process described earlier in the

determination of IIAII j .

Example 7.4-3. Calculate IIAII j and IIAII^ if
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1 2 - 2 '

A = 0 - 3 2 (7.4-20)

- 4 3 2

The sum of the absolute values of the columns is 5, 8, and 6 respectively. The maximum is 8 and

HAIIj = 8 (7.4-21)

Similarly, the rows yield a maximum of 9, that is

IIAIIM = 9 (7.4-22)

•

A norm of a vector or a matrix may be considered to be a measure of its size.

We now investigate the effect of slightly changing the vectors x and b in Equation (7.4-2b).

Suppose x is perturbed to x + 5 x and b to b + 5 b. Then

A(x + 5x) = b + 8b (7.4-23)

Combining Equations (7.4-2b) and (7.4-23) yields

A 5 x = 5 b (7.4-24a)

and 5x = A'1 8 b (7.4-24b)

In terms of norms, we have

IIA x II = libII (7.4-25a)

and lib II < HAH llxll (7.4-25b)

We can then write

115x11 < II A"1 II II 8b II (7.4-26a)

II 5x II II A"1 II II 5b II

or HAlFimF - = iibi. ' (7-4"26b)



NUMERICAL METHODS 593

118x11 i II 5b II
or -Jff * HA II II A'1 I I - - -

11 - " - " (7.4-26c)

Equation (7.4-26c) shows that a relative change in the solution vector is given by the product of

IIAII II A." II with the relative change of vector b. This quantity IIAII II A" II is called the condition

number or COND ( A ) and is denoted by K ( A ) . If K ( A ) is large we say that the matrix is ill-

conditioned. We can then expect that a small change in b will produce a large change in x resulting

in loss of accuracy. The choice of norm is not important. Note that K( A) is undefined for a

singular matrix.

Example 7.4-4. Determine K ( A ) using the Lj and L ^ norms where

^ - [ i.oi i ' ] <7-4"27)

The Lj and L^ norms are

n

Li = HAH, = max Y a-- = max(2.01, 2) = 2.01 (7.4-28a,b,c)
i^j<2 i = 1 J

n
^ = UAH = max T a-- = max(2, 2.01) = 2.01 (7.4-29a,b,c)

= ° ° 1 ^ 2 j = 1 J

To obtain the inverse of A, we use the Gauss-Jordan method which proceeds as follows. To the

matrix A, we adjoin the identity matrix I and we obtain a n x 2n matrix which we write as

y A : I_ j . We separate the matrices A and 1 by a dotted line. We use the Gaussian elimination

method to reduce A to the usual triangular form, performing simultaneously the same operations on

I. We divide the resulting last row by an appropriate number so that the element of the last row and

last column is one. The other elements in the last row are zeros. We then perform the Gaussian
elimination process from the nth row upwards until A has been transformed to I and I is then

transformed to A" . The resulting n x 2 n matrix is I_ • A"1 . Below we illustrate the method

in the case of the matrix A given by Equation (7.4-27).

r • i T 1 1 : 1 0 "

[ A ^ ] = [i .oi i : o i ] (7-4"3Oa)
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i

" 1 1 : 1 0 "

0 -0.01 : -1.01 1 J (row 2-1 .01 row 1) (7.4-30b)

I

" 1 1 : 1 0
• rj 4_30c)

0 1 : 101 -100 J (divide row 2 by-0.01)

I

* 1 0 : -100 100 1 (row 1-row 2)

o i : io , -loo J (7-4-30d>

The inverse of A is

T-100 100"

t'1 • [ 1Oi -100J (7-4-31)

The norm II A llj is given by the maximum of the column sum, (201, 200)

WA'l\\l = 201 (7.4-32)

II A" IIOQ is given by the maximum of the row sum (200, 201)

II A'1 IL = 201 (7.4-33)

Using the Lj norm, we find that K(A) is given by

K(A) = IIAIIj II A"1 llj (7.4-34a)

= 2.01 x 201 = 404.01 (7.4-34b,c)

Similarly using the LM norm, K(A) is

K(A) = 2.01x201 = 404.01 (7.4-35a,b)
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We conclude this section by stating the nearest singular matrix theorem which helps to circumvent the

cumbersome problem of finding A" .

If A and B are a non-singular and a singular matrix respectively

^ B T £ " ^ ' " ( 7 ' 4"3 6>

Using this result in the above example, we choose B to be

" 1 1
B = i i (7.4-37)

IIA-BII = 0.01 (7.4-38)

So that

II A"1 II > - } — = 102 (7.4-39a,b)

With II A II = 2.01, we have K(A) > 2.01 x 102 which is of the same order of magnitude as that

obtained earlier.

Iterative Method

When the dimension of the system of linear equations to be solved is small, the Gauss elimination
method is useful. However, when the number of variables is large and when the coefficient matrix is
sparse (has many zero entries), iterative techniques are preferable in terms of computer storage and
time requirements.

Sparse matrices of high order are of frequent occurrence. An example is when partial differential
equations are solved numerically (see Chapter 8).

When using an iterative method, the coefficient matrix A is written as the difference of two matrices

B o and Co. Equation (7.4-2b) is now written as

B o x = b + C o x (7.4-40)

Premultiplying Equation (7.4-40) by the inverse of B o we obtain
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x = BQ1 b + Bo! (:O X (7.4-4la)

= Bx + £ (7.4-4 lb)

Starting from an initial guess x 0 , we can generate a sequence of values of x from Equation

(7.4-4 lb) as follows

xk+l = i x k + £ (7.4-42)

A judicious choice of BQ and CQ will lead to a sequence of x k which will converge to the required

solution x. We first consider the method of Jacobi and then the Gauss-Seidel method.

Jacobi's method

In Jacobi's method, we solve each equation for only one of the variables, choosing whenever

possible, to solve for the variable with the largest coefficient. That is to say, § 0 is chosen to be a

diagonal matrix. We begin with some initial approximate values for each variable. Each component of

x on the right side of Equation (7.4-42) may be taken equal to zero if no information is available.

Substituting these values into the right side of the set of equations generates new approximations that

are closer to the required value. These new values are then substituted in the right side of each

equation to generate successive approximations until the difference of two successive approximations

of each variable is within the desired degree of accuracy, as shown in the next example.

Example 7.4-5. Using Jacobi's iteration method, solve the system of equations

o X i 4" X<2 — Xo — O

2x 1 + x 2 + 9x3 = 12 (7.4-43a,b,c)

x l ~ ^ X 2 + ^X3 = " ^

We first write Equations (7.4-43a, b, c) for one variable in each row, with the largest coefficient

x l = l ~ IX2 + IX3 (lSt r o w ) (7.4-44a)

X2 = 7 + 7 x l + f X3 (3rd r o w ) (7.4-44b)
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X3 = f - | xl - \ X2 (2nd row) (7.4-44C)

We interchange the second and third equations of Equations (7.4-43) so that the diagonal elements of
the coefficient matrix A are the elements that have the maximum absolute value for each row. The

matrix A is

" 8 1 -1 "

A = 1 - 7 2 (7.4-45)

2 1 9

The matrices B o and Co are chosen to be

' 8 0 0 "

B o = 0 - 7 0 (7.4-46a)

0 0 9

" 0 - 1 1 "

Co = - 1 ° ~2 (7.4-46b)

-2 -1 0

and A = B o - Co (7.4-46c)

Equations (7.4-44a to c) are obtained by substituting Equations (7.4-46a, b) into Equations
(7.4-41a, b).

We denote the i* component of x k by xV and the iterative formulae [Equations (7.4-44a to c)

or Equation (7.4-42)] are

x{k+1) = 1 - 1 ^ + 1 ^ (7.4-47a)

X(k+1) = A l x ( k ) + 9 (k) ( 7 4 _ 4 ? b )

x(k+l) = 4__2.x(k)_ix(k) ( 7 4 . 4 7 c )
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As a first approximation, we take

xf» = x f = xf = 0 (7.4-48a,b,c)

Substituting Equations (7.4-48a to c) into Equations (7.4-47a to c) generates

xf = 1 , xf = i , xf = I (7.4-49a,b,c)

Substituting the values of x[ ' into Equations (7.4-47a to c), we obtain

x f = 1.095 , x f = 1.095 , x f = 1.048 (7.4-50a,b,c)

Repeating this procedure, we eventually obtain the exact solution which is

Xj = x2 = x3 = 1 (7.4-5 la,b,c)

•

With the choice of B o as described in Example 7.4-5, Equation (7.4-42) can be written in component

form as

*!k+I> = ^ - t r 1 * * (7-4-52)
ii ;_i ii J

Equation (7.4-52) is the Jacobi's iteration formula for solving the system of Equations (7.4-2a).

Gauss-Seidel method

(k+1 ^ (k*)

In Equation (7.4-52) to compute x> , we have made use of the values of x. only, although the

values of x. + ^ (j < i) are already known. For example, in computing x^ + , we can substitute

the values of x{k+1) and x£k+1) in Equation (7.4-52) instead of x|k ) and x^k). By so doing, we

hope to be able to accelerate the convergence.

Equation (7.4-52) is modified to

*sk+i> - ^ - 1 £ *r° - i ^ *r <7.4-53)
11 j = l n j=i+l n

Equation (7.4-53) is the Gauss-Seidel iteration method.
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Example 7.4-6. Solve the system of Equations (7.4-43) by the Gauss-Seidel method.

The coefficient matrix is rewritten as in Example 7.4-5.

Equation (7.4-47a) remains unchanged. Equations (7.4-47b, c) are modified to

x(k+l) = i + l x ( k + l ) + l x ( k ) ( 7 4 _ 5 4 a )

x ( k + i ) = ^ 2 x ( k + i ) _ i x ( k + i ) ( 7 4 _ 5 4 b )

Using the same initial values (x 0 = 0), the first iteration gives the same values for x j . Using

Equations (7.4-47a, 54a, b), we obtain

xj2) = 1.095, x® = 1.109, xf] = 0.967 (7.4-55a,b,c)

Continuing the process, we obtain, after five iterations, the exact solution (1, 1, 1) whereas Jacobi's
method requires seven iterations.

Table 7.4-1 gives the values of x ® generated by Equations (7.4-47a to c, 47a, 54a, b).

TABLE 7.4-1

Values of x. generated by the methods of Jacobi's and Gauss-Seidel

Jacobi Gauss-Seidel

, Y(k) Y(k) (k) Y(k) (k) (k)
K. Ai A/x Ao A« A^ Ao

0 0 0 0 0 0 0
1 1.000 0.571 1.333 1.000 0.571 1.333
2 1.095 1.095 1.048 1.095 1.109 0.967
3 0.994 1.027 0.968 0.982 0.988 1.005
4 0.993 0.990 0.998 1.002 1.002 0.999
5 1.001 0.998 1.003 1.000 1.000 1.000
6 1.001 1.001 1.000
7 1.000 1.000 1.000
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7.5 EIGENVALUE PROBLEMS

Problems involving the determination of eigenvalues and eigenvectors often arise in science and
engineering. For example, eigenvalues arise in connection with vibration problems in mechanical
engineering, in discussing the stability of an aircraft in aeronautical engineering and in quantum
mechanics. In this section, we study the problems of calculating the eigenvalues of a square matrix.
The general problem of finding all eigenvalues of a non-symmetric matrix is much more difficult as it
easily leads to stability problems with respect to perturbations. Most of the algorithms for estimating
eigenvalues of a symmetric matrix A make use of similarity transformations and are therefore carried

out in two stages. In the first stage, the matrix is reduced to a suitable form and, in the second stage,
the method of determining the eigenvalues is executed. Before proceeding with the method, we briefly
summarize the basic results and definitions.

We say that a matrix A is similar to another matrix B if there exists a non-singular matrix P such

that

A = P " ' B P (7.5-1)

If A. is an eigenvalue of A and x is the corresponding eigenvector

Ax^ = lx_ (7.5-2)

Suppose that matrix A is similar to B. If A, is an eigenvalue of A with associated eigenvector x,

then A is also an eigenvalue of B with P x as the associated eigenvector of B .

If A is triangular or diagonal, the diagonal entries of A are the eigenvalues of A.

A real matrix Q is orthogonal iff

Q"1 = Qf (7.5-3)

If A is a real symmetric matrix, there exists an orthogonal matrix Q such that

Q"1 A Q = C (7.5-4)

where C is a diagonal matrix. Thus the diagonal entries of C, in this case, are the eigenvalues of

A -
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The eigenvalues of a real symmetric matrix are real numbers and their corresponding eigenvectors are
mutually orthogonal.

If A is a matrix with complex entries, the Hermitian transpose of A is the transpose of the

complex conjugate of A and is denoted by A .

If A = AH (7.5-5)

the eigenvalues of A are all real and A is known as a Hermitian matrix.

A matrix U is a unitary matrix iff

U"1 = U H (7.5-6)

A matrix A (= a^) is tridiagonal if

a^ = 0 whenever I i - j I > 1 (7.5-7)

The only entries in A that could be non-zero are the elements along the diagonal, the subdiagonal and

the super diagonal. Examples of tridiagonal matrices are

- 1 2 0 0 0"
3 1 0 ] 2 1 3 0 0
1 2 4 . 0 3 4 2 0

-0 4 5J 0 0 2 1 5
_ 0 0 0 5-l_

We next describe a method of transforming a real symmetric matrix to a tridiagonal matrix.

Householder Algorithm

It was stated earlier that for any real symmetric matrix A, there exists a real orthogonal matrix Q

such that Q A Q is diagonal. The diagonal elements of A are then its eigenvalues, and the

columns of Q are the eigenvectors. Attempts at diagonalizing A have not always been successful.

The methods proposed so far do not always converge. Instead we transform A to a tridiagonal form

via the method of Householder which is economical and reliable.

Let v be a unit vector (column matrix). Consider the matrix

Q = I - 2 v vf (7.5-8)
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To verify that Q is orthogonal, we note

QQ1" = ( ^ - 2 v y t ) ( I - 2 v v f ) (7.5-9a)

= I - 4 v v t + 4 v v t v y t = I (7.5-9b,c)

Equation (7.5-9c) follows from Equation (7.5-9b), since v is a unit vector.

Note that v v ' is a symmetric matrix and its transpose is v v ' . The product v ' v is a scalar.

To transform a matrix A to a tridiagonal form, we perform the following sequence of transformations

Ao = A (7.5-10a)

Ak = Q k A k _!Q£ (7.5-10b)

Qk = I - 2 v k v J (7.5-lOc)

XkXk = l (7.5-10d)

We choose v k such that its first k elements are zero. After (n - 2) operations, the matrix A n 2

will be a tridiagonal matrix. We illustrate the method by the following example.

Example 7.5-1. Reduce the matrix A to a tridiagonal matrix by the method of Householder, if A

is given by

a l l a12 a13

A = a12 &22 a23 (7.5-11)

a13 a23 a33

We choose v j to be

0"

v } = v2 (7.5-12a)

_V3_

V2 + V3 = 1 (7.5-12b)
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From Equation (7.5-10c), we have

" 1 0 01 0 0 0

Ql = 0 1 0 - 0 2v\ 2v2v3 (7.5-13a)

. 0 0 1 J [ 0 2v2v3 2vf

1 0 0

0 1-2 v2. -2v2v3 (7.5-13b)

0 -2v2v3 l-2v3

Applying Equation (7.5-10b), we obtain

1 0 0 I" a n ai2 a13 1 1 0 0

Ai = 0 1-2V2. -2v2v3 al2 ^2 ^ 3 0 1-2 v^ -2v2v3

0 -2v2v3 1-2v| J L a13 ^ 3 ^ 3 J [ 0 -2v2v3 l -2v2

(7.5-14a)

" a(1) a(1) aU) "
a l l a12 a l3

= a^ a^ aS (7.5-14b)

a(1) a(1) a(1)_ a13 a23 a33 _

where

a™ = a n (7.5-15a)

a(12} = a12 (1-2v\) + a13 (-2v2v3) (7.5-15b)

a(13} = a12 (-2v2v3) + a13 (1-2v^) (7.5-15c)

^ 2 = a 2 2 ( l -2v2) 2 + 2a 2 3 ( l -2v2) ( -2v 2 v 3 ) + a 3 3 ( -2v 2 v 3 ) 2 (7.5-15d)

a g = a23 (1-2v2)2 + ( 1 - 2 $ (-2v2v3) (a22 + a33) + a23 (-2v2v3)2 (7.5-15e)

Ql = a33 (1-2v2)2 + 2 ( 1 - 2 $ (-2v2v3) a23 + a22 (-2v2v3)2 (7.5-15f)

For A(i) to be tridiagonal, we have from Equation (7.5- 15c)
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a 1 3 - 2 v 3 (a12v2 + a13v3) = 0 (7.5-16)

Since Q is an orthogonal matrix, it follows that

a ^ + a n ^ n f + ̂ l 2 (7-5-17)

Note that aJ3 is zero

Using Equations (7.5-15a, b), Equation (7.5.17) becomes

[a1 2 -2v2(a1 2v2 + a13v3)] =a122 + a123 (7.5-18a)

= s\ (7.5-18b)

Equation (7.5-18b) implies

a 1 2 -2v 2 (a 1 2 v 2 + a13v3) = ±Sl (7.5-19)

Multiplying Equations (7.5-16, 19) by v3 and v2 respectively, adding the resulting expressions and

using Equation (7.5-12b), we obtain

a1 2v2 + a1 3v3 = +SjV2 (7.5-20)

Substituting Equation (7.5-20) into Equation (7.5-19) yields

* = k[l * If) (7'5-21)
From Equations (7.5-16, 20), we deduce

v3 = ~+ ^ - (7.5-22)

Since we have v2 in the denominator, we choose the sign in Equation (7.5-21) such that the absolute
value of v2 is the larger of the two possible values to achieve the best accuracy. That is to say, if aj2
is negative, we choose the negative sign and if aj2 is positive, we choose the positive sign. From
Equation (7.5-21), we obtain

v2 = ± / l [i i al2 (sig" al2)j (7.5-23)
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We choose the positive sign in Equation (7.5-23) and it follows that we take the negative sign in
Equation (7.5-22). Substituting v2 and v3 into Equation (7.5-15a to f), the matrix A(1) is

tridiagonal.

•

In Example 7.5-1, we have considered a ( 3 x 3 ) matrix. If the matrix A is a (n x n) matrix
(n > 2), we start with v j given by

l \ = ( ° ' v l 2 ' v 1 3 ' - ' v l n ) (7-5-24)

Then from Equation (7.5-10c), Qj will be of the form

1 0 0 .... 0

0 x x x

Ql = 0 x x .... x (7.5-25)

0 x x x

where the x denote non-zero entries.

Let Sj be given by

S l = a122 + a123 + ... +a i 2 n (7.5-26)

Then

v,22 - 1 [l + *•»<*•»")] (7.5-27a)

ah (sign a12)
vij = J 2 S v > J ^ 3 (7.5-27b)

Note that Equation (7.5-27b) is valid only for j > 3. The choice of v12 ls different from Vjj (j > 3)
because we want to reduce the matrix A to a tridiagonal form [see also Equations (7.5-22, 23)].

The orthogonal matrix Qj is now constructed (Equation 7.5-10c) and the operations defined by

Equations (7.5-10a, b) can be performed.

A j will then be of the form
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X X 0 . . . . 0

X X X . . . . X

Aj = 0 x x .... x (7.5-28)

0 x x x

In Aj, the first row and column are of the desired form. We now proceed to reduce the second row
and column to the form of a tridiagonal matrix. We write v 2 as a row vector

y j = (0, 0, v23, ... , v2n) (7.5-29)

We then proceed to construct Q2 and obtain A2 as described earlier. The process is continued until

we obtain A n 2 which will be of the tridiagonal form, as shown in the next example.

Example 7.5-2. Use the Householder method to find a tridiagonal matrix similar to the matrix

" 1 -1 2 2

- 1 2 1 - 1
A = (7.5-30)

2 1 3 2

2 - 1 2 1

S as defined by Equation (7.5-26) is given by

S^ = (-l)2 + 22 + 22 = 9 (7.5-31a,b)

The Vj: are given by Equations (7.5-27a, b)

V12 = V H 1 + 1 ] = V l (7.5-32a,b)

v13 = - - J L = - ^ - (7.5-32c,d)
6(V2/3) 6

v14 = - " A . = -^f (7.5-32e,f)
6(V273 ) 6

From Equation (7.5-10c), Ql is



NUMERICAL METHODS 607

~ 3 0 0 0

t 0 - 1 2 2
Ql = T (7-5-33)
= 3 0 2 2 - 1

0 2 - 1 2

9 27 0 0

! 27 34 7 1
Aj = 1 (7.5-34)

9 0 7 25 10
0 1 1 0 - 5

The first row and column in Aj are in the desired form. We now proceed to reduce to zero the

element a2 4. We can partition Aj into a (3x3) matrix B, choosing B to be

34 7 1

B = 1 7 25 10 (7.5-35)

. 1 1 0 - 5

The matrix B can be reduced to a tridiagonal form as in Example 7.5-1. Alternatively, we can
proceed as before by writing v 2 as a row vector

y j = (0, 0, v22, v23) (7.5-36)

2
S2 is now given by

S ^ ( a £ ) 2 + (a<'4>)2=(!f+(if=5a (7.5.37a,b)C)

The elements v22 and v23 are

= V 0.99497 (7.5-38b)

= 0.9975 (7.5-38c)

V23 = ^ / [ 2 ( ^ ) V 2 2 ] (7-5-38d)

= 0.0709 (7.5-38e)
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The orthogonal matrix Q2 is given by

?2 =1 " 2l2l\ (7.5-39a)

1 0 0 0

0 1 0 0
(7.5-39b)

0 0 -0.9899 -0.1414

0 0 -0.1414 0.9899

A2 is then calculated and is

1 3 0 0

3 3.7778 -0.7857 0
A, = (7.5-40)

0 -0.7857 3.0222 -0.6000
0 0 -0.6000 -0.8000

The tridiagonal matrix A2 is obtained by the similarity transformation

A2 = Q2 Aj Q | (7.5-41 a)

= Q 2 Q I A Q 1 Q J (7.5-41b)

= P A Pf (7.5-41c)

•

We note that in the Householder method, the elements which have been reduced to zero in the first
column and row at the first iteration remain zero at the second and subsequent iterations. In general,
all the zeros created in previous iterations are not destroyed in subsequent iterations. This property
made Householder's method very reliable.

Once the matrix has been reduced to a tridiagonal matrix, the most efficient method of obtaining all the
eigenvalues is the QR method.

The QR Algorithm

We now discuss the powerful QR algorithm for computing eigenvalues of a symmetric matrix. The
main idea is based upon the following result of linear algebra.
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If A is an (n x n) real matrix, there exists an upper (right) triangular matrix R and an orthogonal

matrix Q such that

A = Q R (7.5-42)

Since rotation matrices are orthogonal matrices, we use rotation matrices to transform A to the

triangular matrix R.

In the case of a (3 x 3) matrix, a rotation matrix may be one of the following

c -s o I r i o o i r c o -s

Pj = s c 0 , P2 = 0 c -s , P3 = 0 1 0

_ 0 0 1 J [ 0 s c J [ s 0 c _
(7.5-43a,b,c)

where c = cos 0 and s = sin 0 (7.5-43d,e)

Let A be a (3 x 3) tridiagonal matrix and form the product of A with the rotation matrix P j

c - s 0 1 f a n a12 0

P j A = s c 0 a i2 a22 a23 (7.5-44a)

0 0 1 J |_ 0 a23 a33 _

= s a n - c a 1 2 sa1 2+ca2 2 ca23 (7.5-44b)

0 a23 a33

We set the element in the second row and first column of P l A to be zero, that is

s a j j - c a 1 2 = 0 (7.5-45)

From Equation (7.5-45), we deduce that

c = a n (7.5-46a)

V Al + a?2
s = a i 2 (7.5-46b)

V a?i + a ? 2

With this choice of c and s and denoting Pj A by Aj , we write
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" CD (1) (1) "
a l l a 12 a13

(1) (1)
Aj = 0 a22 a23 (7.5-47)

(l) CD
. ° a32 a33 _

We now form the product P 2 A} as follows

~ ( i ) ( i ) ( i ) "

1 0 0 1 11 12 13
(1) (1)

? 2 A l = ° C2 ~S2 0 a22 a23 (7.5-48a)

0 s9 c 7 (l) (l)

L 2 2 J L 0 a 3 2 a 3 3 _
( l ) (1) ( i )

a l l a l 2 a13 (7.5-48b)

(l) (i) (l) CD
0 c 2 a 22~ S 2 a 32 C2a23~S2a33

(1) (1) (1) (1)
0 ^2a22"*" ^ 2 a 3 2 ^2a23"^"' '2a33

where c2 and s2 are cos 92 and sin 02.

If we denote the product P 2 A j by A2, we have to set

s2a22) + c2a(32) = 0 (7.5-49)

(2)
for the element a32 to be zero.

To satisfy Equation (7.5-49), we require

(1)

c2 = a22 (7.5-50a)
J . (1),2 , (1),2
M (a22) + (a32)

( i )

s2 = 3 2 (7.5-5Ob)

/V(a2 2) +(a 3 2 )

Thus A2 is now of an upper triangular form and we denote it by R. Summarizing we have

R = P 2 A ! = P 2 P j A (7.5-51a,b)

Generalizing to a (n x n) matrix, we state that
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R = gn-l An-2 = Pn_! P n . 2 - g i A (7.5-52a,b)

The matrices P r (r = 1, ... , n - 1) will be of the form given in Equation (7.5-43a, b, c) except that

they will be (n x n) matrices. We note that in Equations (7.5-43a, b, c), the c is along the diagonal
elements and the s is off diagonal. Similarly we choose P r so as to reduce the element aj; of any

matrix Ar (r = 0, l , . . . , n - 2 ) to zero. The elements of P r are zero every where except

(i) along the diagonal where they are one with the exception of P^ where they are c ;
.... _(r) . (r) .

(11) P-j is s and Pj- is - s .

The terms c and s are given by

c = , a[[ (7.5-53a)

s = j l (7.5-53b)

Vafi + afi

By this process, we can successively reduce the non-diagonal elements in the lower triangular section
of the matrix to zero. An upper triangular matrix R is then obtained and the eigenvalues are the

diagonal elements. In a tridiagonal matrix, many of the elements are already zero, and the reduction to
an upper triangular matrix is fast.

A standard text on the eigenvalues of a matrix was written by Wilkinson (1965).

7.6 INTERPOLATION

In this section, we address the following problem. We wish to estimate the value of f (x) for some x
in the interval (x0, xn), given a collection of experimental data points [xk, f (xk)] , k = 0, 1, ... , n.
This problem has been studied by well known mathematicians such as Gauss, Lagrange, and Newton.
The earliest method requires one to fit a polynomial (an interpolation function) that approximates the
function f over (x0, xn) or a curve that passes through the data points. The points x k are sometimes
called the nodes.

Lagrange Interpolation

This method is based on choosing a polynomial pn (x) of degree n for which

p n (x k ) = f(xk), k = 0 , 1 , 2 , . . . (7.6-1)



612 ADVANCED MATHEMATICS

An existence theorem for polynomial interpolation states that given (n + 1) points {x0, x j , ... , xn} in
the domain of a function f with n > 1 and x0 < Xj, ... , < xn , there exists at least one polynomial
pn(x) of degree less than or equal to n such that Equation (7.6-1) holds. Moreover, if x0, x^, ... , xn

are distinct points on the domain of f, pn (x) exists for any function f.

A polynomial of degree one (linear polynomial) has the form

Pj(x) = ao + alX (7.6-2)

This equation has two coefficients and, therefore, two points (x0, f0) and (x1? fj) will define a0 and

aj as follows

Pl(x0) = ao + a i x o = f0 (7.6-3a)

Pl(xi) = aQ + ajXi = fi (7.6-3b)

Solving for aj and a0, we find

ao = ^i loZ^L, a = iozlL (7.6-4a,b)
XJ-XQ xo~xl

Thus, the linear polynomial for the points (x0, f0) and (x^, fj) is

p (x) = xlfo~xofl + x lozlL (7.6.5)
X l~ x 0 X0~Xl

This equation can also be written as

M^fof^+fl^ C7.6-6a)
x0~xl xl~x0

= foio(x)+f1i1(x) (7.6-6b)

where

io(x) = - i -^L and i^x) = ̂ - ^ - (7.6-7a,b)
XQ X1 X J XQ

Observe that

io(xo) = 1 , io(x1) = 0 (7.6-8a,b)

ijCx,,) = 0, i,(xj) = 1 (7.6-8c,d)

Generalizing, we can write
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(0 if j * k
*j(xk) = (7.6-9a,b)

J \\ if j = k

Similarly generalizing the concepts involved in Equation (7.6-6b), we can construct a polynomial of
degree n, which passes through (n + 1) points [(x0, f0), (xl5 fj), ... , (xn, fn)] of the form

pn(x) = f(x0) i 0 + f(Xl) i j (x) + ... + f(xn) i n(x) (7.6-10)

The i ; (x) are quotients which have to satisfy Equations (7.6-9a, b) and are of degree n. A natural

choice is

X,(x) = ( ^ ( x - x j . (x-x .̂Hx-x^O (x-xj

J (xj-xo)(xj-xl)-(xj-Xj-l)(xj-xj+l)-(xj-xn)

= 11 / ' I for each j = 0, 1,2, ... , n (7.6-1 lb)
i=o (xj~xi)

Equation (7.6-10) is the Lagrange interpolating polynomial of degree n with i j (x) given by

Equation (7.6-1 lb), which passes through (n + 1) points.

Example 7.6-1. Construct a Lagrange polynomial that passes through the points 12, }-),

(§. | ) and (4.1).

c 1 0 1

Here the nodes are 2, ̂  and 4 andf(x0), f(x^ andf(x2) are ~, jr and jr respectively. Since we

have three points, the polynomial will be of degree 2.

p2(x) = f (x o ) i o (x) + f(x1) i 1 (x) + f (x 2 ) i 2 (x) (7.6-12)

Now

» M - ( x ~ x i ) ( x - x 2 ) - ( x - 2 . 5 ) ( x - 4 ) _ 2 6 S x 1 0 (16 n ,
' ° ( X ) " rxo-xl)(xo-x2) " (2-2.5) (2-4) " X " 6 - 5 x + 1 ° (7-6"13a)

^ W = (2(5Z2)(2 5-}4) =- 1 - 3 3 3 x 2 + 8 x - 1 0 - 6 6 7 (7.6-13b)

i2(x) = ^ 12) [4 I 25) = 0-33x2-1.5x+1.667 (7.6-13c)

and

(7.6-11a)
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p2(x) = 0.05 x2 - 0.425 x + 1.15 (7.6-14)

An approximation of f (3) [= p 2 (3)] is

p2(3) = 0.05 (9)-0.425 (3)+1.15 = 0.325 (7.6-15a,b)

We note that the three points lie on the curve

f(x) = 1 (7.6-16)

and hence

f(3) = 1 = 0.3333 (7.6-17a,b)

A comparison between Equations (7.6-15a, b) and Equations (7.6-17a,b) shows that the value
obtained by interpolation is correct to the first two decimal places.

Newton's Divided Difference Representation

Before we discuss this method we shall state some definitions and introduce the accompanying
notation.

The zeroth divided difference of the function f with respect to Xj is denoted by f [xj and is
simply the value of f at Xj.

f[Xi] = f(Xi) (7.6-18)

The first divided difference of f with respect to Xj and Xj is denoted by f [XJ, Xj] and is

defined as

f x i ' x i = t T ^ = , T ^ (7.6-19a,b)
L JJ (xj-xi) (xj-xi)

Similarly the nth divided difference is

f rx x 1 - f tXl ' "• ' Xn-l] ~ f lX0' X 1 ' "• ' Xn-J n fi 20^
ILx0' x l ' - ' xn-lJ - ix „ \ W.ozu;

For specific values of Xj and x,-, we have from Equation (7.6-20)

f[*o xll = f{^-[iXo) (7.6-2U)
xi ~xo
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f rY Y Y I _ f [ x l ' x 2 ]~ f [ x 0 ' x l ] n f- 911V.
t L x 0 ' x l ' x 2J - 7Z 7 1 (7.6-21b)

vx2~x0'
We recall that the definition of the derivative of f (x) at x0 is

f(Xo) = Um f N - f K ) (76.22)
xi -> x0 x l ~ x 0

In the limit as xj tends to x0 , f[x0, xj] is the derivative of f at xQ. The second difference
(Equation 7.6-2 lb) is the difference of the first difference and can be associated with the second
derivative of f. The derivative can be discretized in terms of finite differences. In Section 7.7, we
shall approximate the derivative by the finite difference.

Noting that the nth difference is the difference of the (n - l) th difference, the divided difference can be
tabulated as in Table 7.6-1.

TABLE 7.6-1

Divided difference

X; f [Xj] f [Xj, Xj] f [Xi, Xj, Xk]

(zeroth difference) (first difference) (second difference)

xo fOo> f( , f( ,
f(x1)-f(xQ)

Xl f(Xl) l ° f̂ xj-f̂ .xp]
f(x2)-f(xl) X 2~ x o

X2~xl
x 2 f(x2) f[x3, x 2 ] - f [x 2 , xt]

f(x3)-f(x2) X3~xl
x3-x2

x3 f(x3) f[x4, x 3 ] - f [x 3 , x2]

f (x 4 ) - f (x 3 ) X4~X2
x 4 - x 3

x4 f(x4)

This divided difference scheme lends itself to the construction of a polynomial through the points
{XJ, f(Xi)}. We write
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PnW = a0 + a l(x-xo)+ a2(x-xo)(x-xl)+ - + an-l(x-xo)(x-xl) - (x-xn-l)

+ a n (x-x 0 ) (x-x , ) . . . (x-x n . 1 ) (x-x n ) (7.6-23)

and require this polynomial to pass through the points {xj, f (xj)}.

We note that using Equation (7.6-1)

po(xo) = a0 = f(x0) = f[x0] (7.6-24a,b,c)

Vx{\l) = ao + a1(x1-xo) = f(xj) (7.6-25a,b)

and via Equation (7.6-24b), we get

a i = ^ " f o ) =f[xo'xl] (7.6-26a,b)
Xj - X Q

Similarly

p2 (x2) = a0 + ax (x2 - x0) + a2 (x2 - x0) (x2 - xj) = f (x2) (7.6-27a,b)

With the use of Equations (7.6-24 to 27), we find

a _ f (x 2 ) - f (x o ) - f [x o ,x 1 ] (x 2 -x Q ) _ r7 6?8ah^
a2 - 7Z VYhc V~\ - U x 0 ' X l ' X 2 J (/.O-Z8a,D)

vx2 ~xti> vx2~xl ' )

Equations (7.6-24 to 28) can be generalized and

an = f[x0, x1 ; . . . ,x n ] (7.6-29)

Substituting the values of a0, a1; ... , an in Equation (7.6-23), we obtain Newton's forward
divided difference formula which can be written as

PnW = f [ xo] + f [ x O ' X l K x - x o ) + f [ x O ' x l ' x 2 ] ( x - x o ) ( x - x 1 )

+ ... + f [x 0 , x1? ..., x j ( x - x o ) ( x - x j ) ... ( x - x , , . ! ) (7.6-30)

Note that it is easier to construct the polynomial by first constructing a table of divided differences.

Example 7-6-2. Given the four values of {XJ, f (XJ)} as (0,1) , (1, 1), (2, 2) and (4, 5); construct a
divided difference table and then use formula (7.6-30) to find the third degree polynomial through the
given points.
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TABLE 7.6-2

Zeroth to third difference

Zeroth First Second Third
Xj difference difference difference difference

0 1

¥•»
1 1 I " 0 ^ 1

2 - 1 2 ~ ° 2 1/6 - 1/2 i
2 - 1 ~ 4 - 0 ~~12

2 2 3/2-1 = !
5 - 2 _ 3 4~l " 6

4 - 2 2

4 5

Note that the points Xj are not equidistant.

From Table 7.6-2, we obtain

a o =l , a i = 0 , a2 = l a 3 = ~ ^ (7.6-31atod)

Equation (7.6-23) yields

p3(x) = l + l ( x - 0 ) ( x - l ) - ^ . ( x - 0 ) ( x - l ) ( x - 2 ) (7.6-32a)

= X (_X3 + 9x2 _ gx + 12) (7.6-32b)

We next give an example to show the difference between the two methods discussed so far.

Example 7.6-3. Use Newton's and Lagrange's formulas to evaluate V 1.12 , given the following:

{xj, f(Xj)} values where f(x) = Vx~. (1, 1), (1.05, 1.02470), (1.1, 1.04881), (1.15, 1.07238),

(1.20, 1.09544), (1.25, 1.11803) and (1.30, 1.14017).

To apply Newton's divided difference formula, we construct the table of differences.
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TABLE 7.6-3

Divided differences for Vx

X f(x) 1s t 2«d 3rd 4th 5th gth

1 1

2470

-59

1.05 1.02470 5

2411 -1

-54 -1

1.10 1.04881 4 4

2357 -2

-50 3

1.15 1.07238 2

2307 1

-48

1.20 1.09544 3

2259

-45

1.25 1.11803

2214

1.30 1.14017

Note: We have omitted the decimal point and the leading zeros. This is customary in writing tables of
differences.

Using Equation (7.6-30), we have

p6(x) = 1 + 2470 (x - 1) - 59 (x - 1) (x - 1.05) + 5 ( x - l ) ( x - 1 . 0 5 ) (x-1.10)

- 1 (x - 1) (x - 1.05) (x - 1.10) (x - 1.15) - 1 (x - 1) (x - 1.05) (x - 1.10)
(x - 1.15) (x - 1.20) + 4 (x - 1) (x - 1.05) (x - 1.10) (x - 1.15) (x - 1.20)
(x-1.25) (7.6-33)

p6(1.12) - Vl.12 (7.6-34a)

= 1 + 2470 (.12) - 59 (.12) (.07) + 5 (.12) (.07) (.02) - 1 (.12) (.07) (.02) (-.03)
- 1 (.12) (.07) (.02) (-.03) (-.08) + 4 (.12) (.07) (.02) (-.03) (-.08) (-.13)

(7.6-34b)

= 1.05735 (7.6-34c)
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For Lagrange's formula, we approximate Vx by a third degree polynomial involving four points.
The points closest to 1.12 are: 1.05, 1.10, 1.15 and 1.20. We could consider all the given points but
the calculations become lengthy. We write

n M = ( X - X l ) ( x - X 2)( x ~ x 3) f / x ^ , (x-x o ) (x-x 2 ) (x-x 3 )

P 3 W (xo-xi)(xo-*2)(*o-x3) (x^x^-x^-x/^

+ ( X - X Q ) ( X - X I ) ( X - X 3 ) f ( x } + (x-xQ)(x-Xl)(x-x2)
(x2-x0)(x2-x1)(x2-x3) 2> (x3-x0)(x3-x1)(x3-x2) 3l

Thus

n 1O. (1.12-1.10)(U2-1.15)(1.12-1.20) n n _ . _ n w n , w >
P 3 ( L 1 2 ) = (1.05-1.10)(1.05-1.15)(1.05-1.20) ( L ° 2 4 7 0 ) + {1 ^ ^

= 1.05830 (7.6-36b)

We note that Lagrange' s formula produces a more accurate value for V1.12 than Newton's formula,
although we have used fewer points in Lagrange's method. Using Lagrange's method, we have to
decide at the outset of the degree of the polynomial to be considered. If subsequently we wish to
improve the approximation by using a higher degree polynomial, we have to perform the calculations
again, since we cannot make use of the values already computed. Using Newton's method, we only
have to calculate the higher differences.

Spline Functions

A high degree polynomial interpolation method is not satisfactory when the number of data points
becomes too large, or when the data points are associated with a function whose derivatives are large
or do not exist. In the recent past, piecewise polynomial approximations have become prominent.
Instead of trying to approximate a function over the entire interval by a single polynomial of a high
degree, it is more convenient to approximate the function by a piecewise polynomial function in a small
interval. Such piecewise low degree polynomials are called splines. A spline function is a function
consisting of polynomial pieces joined together with certain smoothness conditions. The points at
which the low degree polynomials are joined are termed knots.

First degree polynomials (straight lines) are continuous but not smooth functions. Their first
derivatives are discontinuous at the knots. Second degree polynomials (parabolas) allow us to impose
continuity and slope conditions at the knots but the curvature changes abruptly at the knots. Cubic
splines are the most commonly used splines. The above conditions of continuity, slope and
curvature at the knots can be easily satisfied.

(7.6-35)
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Let (x0, f0), (xj, fj),... , (xn, fn) be the given data points. Instead of using a high degree polynomial
to pass through the (n + 1) points, we choose a set of cubic splines Sj(x). Each Sj(x) joins only
two points Xj andxi + 1. Thus over the whole interval (x0, xn), the function is approximated by n
cubic splines. This is illustrated in Figure 7.6-1.

V I
y f ( x )

f^r^C. !
i ! '• i
i I I i
i . i i
i l l *
i i i •
i i i ! _ •

0 X-, x-^, xi + 2 xn X

FIGURE 7.6-1 Approximating f (x) by a set of cubic splines

We write Si(x) as

Si(x) = aA + bi (x - Xi) + q (x - Xj)2 + di(x- Xi)3, i = 0, 1,. . . , (n - 1) (7.6-37)

where the coefficients aj, bj, cj and dj are to be determined from the definition of cubic splines and
the following continuity, slope and curvature conditions.

Continuity at the knots requires

S;(xi+1) = Si+1(xi+1) (7.6-38a)

Combining Equations (7.6-37, 38a) yields

aj + bihi + Cih?+ dihf = a i + 1 (7.6-38b)

where

h i = x i + l ~ x i (7.6-38c)
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At the knots, the values of S; (x) are equal to f (x).

Si(xi) = f; (7.6-39a)

Using Equation (7.6-37), Equation (7.6-39a) becomes

ai = fj (7.6-39b)

The continuity of the slopes at the knots imposes

S|(xi+1) = S;+1(xi+1) (7.6-40a)

On differentiating Sj and Sj+1, we obtain from Equation (7.6-40a)

bj +2c i h i + 3djhf = b i + 1 (7.6-40b)

Similarly the continuity of the curvature at the knots leads to

s"(x i + 1) = S"+I(xi + 1) (7.6-41a)

Ci + Sdjhj = c i + 1 (7.6-41b)

The derivatives of f are not known, the conditions (7.6-40a, b) are applied at the interior points and
the two end points (x0, xn) have to be excluded. We need to impose two additional conditions which
are

S"Q (x0) = 0 (7.6-42a)

S;_i(xn) = 0 (7.6-42b)

Combining Equations (7.6-37, 42a, b) yields

c0 = 0 (7.6-43a)

C n - i + S d ^ h , , . ! = 0 (7.6-43b)

Equations (7.6-38b, 39b, 40b, 41b, 43a, b) form a set of 4n equations to be solved for the 4n
unknowns (aj, bj, Cj and dj).

Example 7.6-4. Use cubic splines to determine an interpolation formula for the function Vx .
Consider three points (knots).

We choose the three knots to be 100, 121 and 144. The values of the function are 10, 11 and 12.
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S0(x) and Sj(x) are given by Equation (7.6-37) and are written as

S0(x) = a0 + bo(x - 100) + co(x - 100)2 + do(x - 100)3 (7.6-44a)

SjCx) = zl+bx{x-\2\) + cl{x-l2\)2 + &x{x-\2\f (7.6-44b)

From Equation (7.6-38c), we have

h0 = 121 - 100 = 21 (7.6-45a,b)

hi = 144-121 = 23 (7.6-45c,d)

Equation (7.6-39b) yields

a0 = 10, a! = 11 , a2 = 12 (7.6-46a,b,c)

From Equation (7.6-38b), we obtain

10 + 21b0 + (21)2 c0 + (21)3 d0 = 11 (7.6-47a)

11 + 23b! + (23)2 cx + (23)3 dx = 12 (7.6-47b)

Similarly Equations (7.6-40b, 41b) yield respectively

b0 + 42 c0 + 3 (21)2 d0 = bj (7.6-48a)

co + 63do = C! (7.6-48b)

Finally Equations (7.6-43a, b) give respectively

c0 = 0 (7.6-49a)

cj + 63 dT = 0 (7.6-4%)

The six unknowns (b0, c0, d0, bj, cj, dj) are to be determined from Equations (7.6-47a, b, 48a, b,

49a, b).

The solution is

b0 = 0.0486 , bj = 0.0456 (7.6-50a,b)

co = O, C] = -0.0001 (7.6-5 la,b)

d0 = - 0.0000022 , d! = 0.0000022 (7.6-52a,b)
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Substituting Equations (7.6-46a, b, 50a, b, 51a, b, 52a, b) into Equations (7.6-44a, b), we obtain So

and Sj. For the interval 10 < x < 11, we use So, and for the interval 11 < x < 12, we use Sj.

Least Squares Approximation

The concept of least squares approximation was introduced in Chapter 2. Here, we start with the
simplest case of a linear polynomial (y = ax + b). We assume that the x's are exact.

Suppose we have a set of n data points {XJ, yj}, where n is greater than 2, and a set of weights
{Wj}. The weights express our confidence in the accuracy of the points. If we think that they are all
equally accurate, we set Wj = 1 for all i.

We want to obtain the best values of a and b to fit the data. The deviation at each point is

8j = a + b x j - y i (7.6-53)

The weighted sum of the squares of the deviation is

f(a,b) = X efwj (7.6-54a)
i = l

= Z ( a + b x i -y i ) 2 w i (7.6-54b)

i = l

The best values of a and b imply that we choose a and b such that f(a, b) is a minimum. That is

of of „ ,_ , __ , N

r, = 3b = ° (7-6-55a'b)
Combining Equations (7.6-54a, b, 55a, b) yields

2 X ( a + bx i -y i )w i = 0 (7.6-56a)

2 X (a + b x i - yi) xi wi = ° (7.6-56b)

Equations (7.6-56a, b) can be rewritten respectively as

n n n

a X wi + b X xiwi = X viwi (7.6-57a)
i = i i = i i = i

n n n

a X xiwi + b X x?wi = X xiyiwi (7.6-57b)
i = i i = i i = i

If all the points are equally weighted (w, = 1, for each i), we have
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n n
n a + b ^ x j = £ Yj (7.6-58a)

i = l i = i

n n n

a 2 xi + b Z x? = X xiYi (7.6-58b)
i= i i= i i= i

Solving for a and b from Equations (7.6-58a, b), we obtain the desired linear expression, which
represents the best fitting regression line.

Example 7.6-5. Find the best fitting regression line through the set of points (1, 1), (2, 1.5),
(3, 1.75) and (4, 2).

We have

n = 4 , S xi = 10 ' X vi = 6-25 (7.6-59a,b,c)

X x? = 30 , £ x{ y - 17.25 (7.6-59d,e)

Substituting these values in Equations (7.6-58a, b), we obtain

4a + 10b = 6.25 (7.6-60a)

10a + 30b = 17.25 (7.6-60b)

The solution of Equations (7.6-60a, b) is

a = 0.75, b = 0.325 (7.6-6 la,b)

The equation for the regression is

y = 0.75 + 0.325x (7.6-62)

•

The above method can be extended to multiple regression. In this case, y is a linear function of r
variables x1; X2, ••• , xr and is written as

y = b0 + bi Xj + .... + br xr (7.6-63)

We can then form the square of the deviations at each of the n points [xj , x2 , .... , x~J ,

i = 1, 2, ... , n, and obtain
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i (b0, b1; ... , br) = £ [b0 + bjx^ + ... + brx(r° - yj (7.6-64)
i = l

As in the case of one variable, we choose b0, b1? ... , br such that e2 is a minimum with respect to
the constants b0, bj , ... , b r . This implies that

§ £ = 2 l [ b 0 + b1x(;) + ...+brx®-yi][x®] = 0 (7.6-65a,b)

where X = 0, 1,. . . , r and x ^ = 1 for all i.

Equations (7.6-65a, b) can be written as

b0 1 *? + b, X x» x® + .... + br X x® x® = i y, x» (7.6-66)
i = l i = l i = l i = l

where Jt = 0, 1, ... , r.

Equations (7.6-66) represent (r + 1) equations, from which we can obtain the (r + 1) constants,
b 0 , b j , ... , b r .

The least squares approximation is not restricted to linear functions only. We can choose polynomials
of degree higher than one, orthogonal functions such as Legendre polynomials and trigonometric
functions. We refer the readers to Chapter 2 and Hildebrand (1956) for further details.

7.7 NUMERICAL DIFFERENTIATION AND INTEGRATION

Numerical Differentiation

In this section, we describe methods of calculating the derivatives of a function f using only its values
at (n + 1) distinct points. We approximate the function by a polynomial and we assume that the
derivatives of the function are approximately equal to the derivatives of the polynomial.

Recall that a polynomial of first degree passing through the points [x0, f (x0)] and [xj, f (xj)] is

^^rr^^TT^ (7-6-7)

Differentiating p}(x) with respect to x, we obtain

p[(x) = j j ^ + <j^ ( 7 . 7 . l a )
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f(x,)-f(x0)
= h (7.7-lb)

where h (= xj - x0) is the distance between the points xj and x0 .

A formula for f' (x0) is then given approximately by

f.(Xo) . ffro-no-ffro) ( 7 7 . 2 )

The formula given by Equation (7.7-2) is known as the two-point formula since it involves two
points XQ and x^. It is also known as the forward difference formula, as the derivative at x0

depends on the forward point xj.

From Equations (1.2-11, 12), we have

2

f(xo + h) = f(xo) + hf'(xo) + | - f " ( x o + 0h) (7.7-3a)

where 0 < 9 < 1.

Equation (7.7-3a) may be written as

f'^.^^-^-tfV+eh) (7.7-3b)

By comparing Equations (7.7-2, 3b), we find that the error is of the order h.

The error can be reduced by taking h to be smaller, provided f behaves well in the interval. Since

f is generally not known, we cannot estimate the error.

Similarly if we approximate f(x) by a polynomial of second degree p2(x) and differentiate p2(x),

we obtain

f'(x0) - f ( X ° + h ) 2-h f ( X 0"h ) (7-7"4)

Equation (7.7-4) is known as the three-point formula as it involves the three points
(x0 - h, x0, x0 + h). It is also referred to as the central difference formula, since the derivative
at x0 depends on the value of f at (x0 - h) and at (x0 + h).

A four-point formula is obtained by considering a third degree polynomial. It is found to be (see
Problem 16a)
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f'fT ) - - f (x o + 2h) + 6 f ( x o + h ) - 3 f ( x o ) - 2 f ( x o - h )

Formulas for approximating higher derivatives of f (x) can be obtained in a similar way. Thus by
differentiating p2(x) twice, we obtain

f . . f ( x 0 + h ) - 2 f ( . o ) + f(x0-h) ( ? 7 6 )

h2

Example 7.7-1. The distance-time (s, t) relation for a moving body is given by (4.807, 0.99),
(4.905, 1.00), (5.004, 1.01), (5.103, 1.02) and (5.204, 1.03). Find the velocity at each instant of
time.

The velocity v is given by ~ . We use Equation (7.7-2) to find v at various times t. In this case,

h is 0.01.

v(0.99) = 49050-014-807 =9.8 (7.7-7a,b)

5 004 - 4 905
v(1.00) = o 0 | = 9.9 (7.7-7c,d)

v(1QI) = 5 i5 | -pO4 = w (77.7e>0

Using the three-point formula (Equation 7.7-4), we obtain

v(1.00) = 5 - 0 0 4 0 - 2 4 - 8 0 7 =9.85 (7.7-7g,h)

v(1.01) = 5 1 O 3 O ' Q 2 9 0 5 = 9.9 (7.7-7i,j)

Comparing Equations (7.7'-7c to j), we find that in this case the difference between using two or three-

point formulas is small.

•

In Table 7.7-1, we list the formulas giving the first and second derivatives of f. We use f+k to
denote f(x0 ±kh).

(7.7-5)
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TABLE 7.7-1

Formulas for f' and f

f'(x0) f"(x0)

two-point hzk + 0 ( h ) f2 ~ 2 f 1 ~ fo + 0 ( h )

h h2

three-point f l " f - l + 0 (h2) f l - 2 f 0 + f-l + 0 (h2)
(central) 2 n h2

three-point -h + 4fl~3fo + 0 (h2) ~h + 4 f 2 ~ 5 f l + 2 f o + 0 U\
2h V ; h2 V '

four-point -f2 + 8 f l - 8 f - l + f - 2 , 0(h4) - f 2 + 1 6 ^ - 3 0 ^ + 1 6 ^ - ^ / 4)
19h 9
i/n 12h2

Example 7.7-2. Given the values of [xk , f(xk)] to be (1.3, 3.669), (1.5, 4.489), (1.7, 5.474),

(1.9, 6.686) and (2.1, 8.166), find the derivative of f at 1.7.

Using the formulas in the order given in Table 7.7-1, we obtain

f'(1.7) - - 1 - (6.686-5.474) = 6.06 (7.7-8a,b)

f'(1.7) « J j (6.686-4.489) = 5.390 (7.7-8c,d)

f'(1.7) - -L- (-8.166 + 4 x 6.686 - 3 x 5.474) = 5.490 (7.7-8e,f)

f'(1.7) - - J j (-8.166 + 8 x 6.686 - 8 x 4.489 + 3.669) = 5.475 (7.7-8g,h)

We note that f(x) is ex and its derivative is also ex. Thus f'(1.7) is 5.474 and not surprisingly the
four-point formula gives the most accurate result.
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Numerical Integration
/•b

We consider numerical methods of evaluating the integral I f (x) dx. These methods are called
Ja

numerical quadratures. We need to resort to numerical integration when the integral cannot be
evaluated exactly or f(x) is given only at a finite number of points. Unlike numerical differentiation,
numerical integration is a smooth operation and many adequate formulas exist.

A common practice in numerical methods is to approximate the function by a polynomial and then
carry out the mathematical operation. If we approximate f (x) by a polynomial of first degree
[Equation (7.6-5)], we have

fXl [Xl I - \
f (x) dx « p - ^ - f (x0) + ^ o f ( X i ) d x ( 7 7 . 9 a )

Jx0 Jxo

» ~ n r ( V x i ) d x + ^ir ( (x-xo)dx (?-7-9b>

x 0 x 0

-£[f (x o ) + f(*i)] (7.7-9d)

Equation (7.7-9d) is known as the Trapezoidal rule.

To improve on the Trapezoidal rule, we approximate the function f (x) by a polynomial of second
degree. The polynomial p2 (x) may be written as [Equation (7.6-12)]

, . _ ( x - X l ) ( x - x 2 ) ( x -x o ) (x -x 2 ) ( x - x o ) ( x - x 1 )
P 2 W " (Z 7XIZ TT [ °' (x X UX x \ *• U (x x Ux x 1 ^ ^vxO~xlMxo~x2^ lxl ~ xoMxl ~ X2i Vx2~xoAx2~xlJ

(7.6-12)

Let the limits of integration be a and b. We denote a by x0, b by x2 and we let xj be the
midpoint of (x0, x2). As usual we denote the distance between (XJ, x0) and (x2, xj) by h.

Approximating the integral of f (x) by the integral of p2 (x), we have

I f(x)dx - P2(x)dx (7.7-10a)
Ja Ja

(7.7-9c)
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J ' I(x-x1)(x-x9) (x-xn)(x-x9) „. , (x-xft)(x-x,) , ,1

I (-h)(-2h) f ( X ° ) + (h)('h) f(x') + (2h)(h) f H d X <77-10b)
xo

~ ^ [ 2(x-x1)(x-x2)dx - ^ f Vxo)(x-x2)dx + ^ ) [ 2(x_x )(x_x ) d x
2h2 Jx0 h 2 JX o 2 h 2 JXo

(7.7-lOc)

« | [ f ( x o ) + 4f(x1) + f(x2)] (7.7-10d)

Formula (7.7-10d) is the well known Simpson's rule.

If we approximate f(x) by a third degree polynomial p3(x), we obtain the 3/8 rule which is given

by

f (x) dx « ^ [f (x0) + 3 f (Xl) + 3 f (x2) + f (x3)] (7.7-11)
•'Xo

In Equation (7.7-11), the limits of integration are (xQ, x3). The points Xj and x2 are in the interval
(x0, X3) such that the points x0, xl5 x2 and x3 are equidistant points and the distance between two
consecutive points is h.

If the interval [a, b] is large, the formulas given so far will not generate good result. We may be
tempted to approximate f(x) by a high degree polynomial. This should be resisted. As pointed out in
the previous section, it is better to divide the interval into subintervals and approximate the function by
a low degree polynomial (cubic splines, for example) over the subintervals. Equally, in the present
section, we subdivide the interval [a, b] into N subintervals of equal length h. We apply the
formulas given earlier to each subinterval and the desired result is the sum of the integrals of each
subinterval.

We denote the break-points by xj , that is to say, we write

xj = a + ih, i = 0, 1, ... ,N (7.7-12a)

h = ^ (7.7-12b)

rb
The integral I f (x) dx can be written as

Ja
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[b N fx'
f(x)dx = X f(x)dx (7.7-13)

A i = l A M

We now apply the Trapezoidal rule [Equation (7.7-9d)] to each subinterval [XJ.J, x j . Equation

(7.7-13) becomes

fh N
f(x)dx = X y [f(*i-i) + f(*i)] (7.7-14a)

A i = J

»frZ[f(Xi.i) + f(Xi)] (7.7-14b)
z i = i

r N-i
« h- f(xo) + f(xn) + 2 X f ( x i ) (7.7-14c)

z L i = i

r N-I

- b. f(a) + f(b) + 2 X f(Xj) (7.7-14d)
z L i=i

Equation (7.7-14d) is referred to as the Trapezoidal composite rule. Similarly Simpson's
composite rule can be deduced and is given by

Jrb r N-I N

f(x)dx - I f(a) + f(b) + 2 X f(Xj) + 4 X f(Xi.1/2) (7.7-15a)
a L i = l i = l

We note that in Simpson's rule [Equation (7.7-10d)], we need to evaluate the function at the mid-
points which we have denoted in Equation (7.7-15a) by Xj 1/2 • To apply Simpson's rule , we need
to have an odd number of points and an even number of intervals. Thus we divide the interval [a, b]
into 2N subintervals and each subinterval is of length h. Equation (7.7-15a) can then be written as

Jrb r N-I N

f(x)dx - h- f(a) + f(b) + 2 £ f(x2j) + 4 £ f(x2-_l) (7.7-15b)
5 L j=i j=i J

Example 7.7-3. The values of f(x^) for various values of x k is given in Table 7.7-2. Use the
r l .3

Trapezoidal rule and Simpson's rule to evaluate I f(x) dx.
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TABLE 7.7-2

Values of f(xk) for various x^

xk 1 1.05 1.10 1.15 1.20 1.25 1.30

f(xk) 1 1.02470 1.04881 1.07238 1.09544 1.11803 1.14017

In this case, h is 0.05. Using Equation (7.7-14d), we have

,1.3

I f(x)dx = ^ - { f ( l ) + f(1.30) + 2[f(1.05) + f(1.10) + f(1.15) + f(1.20) + f(1.25)]}

(7.7-16a)

= 0.33147 (7.7-16b)

We note that the number of points is seven, which is an odd number and we can directly apply
Simpson's rule. From Equation (7.7-15b), we have

, 1 . 3

f(x)dx = ^p-{ f ( l ) + f(1.30) + 2[f(1.10) + f(1.20)] + 4[f(1.05) + f(1.15) + f(1.25)]}

(7.7-17a)

= 0.32149 (7.7-17b)

The function given in Table 7.7-2 is Vx and by direct integration, we obtain

,1.3 ,1.3

I f(x)dx = I Vx~dx (7.7-18a)
) \ J\

= f[x3 / 2 ] ; - 3 (7.7-18b)

= 0.32149 (7.7-18c)

By comparing Equations (7.7-16b, 17b, 18c), we find that Simpson's rule yields the exact solution
whereas the Trapezoidal rule is incorrect in the last decimal place.

•
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The error involved in evaluating the integral depends on h, the length of the gap. If we denote the

rb

exact value of I f(x) dx by I and the value obtained using the Trapezoidal formula [Equation

(7.7-14d)] by Th , we may write
I = Th + O(h2) (7.7-19)

We now assume that the error which is of O(h2) is proportional to h2. Equation (7.7-19) can then be
written as

I = Th + Ch 2 (7.7-20)

where C is a constant and is assumed to be independent of h.

We now recalculate the integral using the same Trapezoidal rule but halving h. We denote the value
obtained with a gap h/2 by T^^- Thus I is given by

I = T h / 2 + Ch2/4 (7.7-21)

From Equations (7.7-20, 21), we obtain

C = ^ ( T h / 2 - T h ) (7-7-22)
3h2

Substituting C into Equation (7.7-21), we obtain an improved value of the integral which we denote
by T(2). Thus T( 2 ) (=1) is given by

T ( 2 ) = Th/2 + ^ ( T h / 2 - T h ) (7.7-23)

We can repeat this process of halving the interval, that is to say, using intervals of h, h/2, h/4, . . . ,
h/2n successively until two improved values of the integral are within the desired degree of accuracy.

This method of obtaining an improved value of the integral from two approximate values is known as
the Romberg method (extrapolation method). It is widely used in computer programs.

We recall that the Lagrange interpolation formula for the polynomial pn (x) can be written as

PnW = Xf( x i )4 ( x ) (7.6-10)
i=0

fhThe integral I f(x) dx can then be approximated by
/a
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C f
f(x)dx - pn(x)dx (7.7-24a)

Ja Ja

n [b

= X f(xi)ii(x)dx (7.7-24b)
i=0 Ja

fb
~ S f ( x i ) ^iWdx (7.7-24C)

i=0 Ja

« Z f(xi) Ai (7.7-24d)
i=0

Note that f(Xj) are the values of f at the points Xj and are constants. They can therefore be taken

I rb \
out of the integral sign. The Aj 1= I /8j(x) dx are known as the weights. So far the points Xj

\ Ja. j
are given and are equally spaced. We now assume that the Xj are not given. We choose Xj such that
Equation (7.7-24d) is "exact" or "best" in a sense to be defined later. For simplicity, we transform the
interval [a, b] to [- 1, 1]. This can be achieved by writing

_ _2x-(a + b)
(b-a) {l.l ^)

We now have to determine the points Zj which lie in the interval [-1, 1] such that

c
f(z)dz - X f ( z i ) A i (7.7-26)

J.i i=o

We consider the case where f(z) is approximated by p3(z). It can be written as

p3(z) = ao + a1z + a2z2 + a3z3 (7.7-27)

We now choose z0, z1; Ao and Aj such that Equation (7.7-26) is "exact". That is to say

p3(z)dz = p3(zo)Ao + p3(z1)A1 (7.7-28)

Carrying out the required integration, Equation (7.7-28) becomes

2 a o + ^ 2 . = A0[a0 + a1z0 + a2z2 + a3z3] + A1[a0 + a1z1 + a2z2 + a3z3] (7.7-29)
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Equation (7.7-29) holds for all a0, a1( a2 and a3 and, by comparing the coefficients of a0, als a2

and a3, we obtain respectively

2 = Ao+A! (7.7-30a)

0 = AQZQ+AJZJ (7.7-30b)

| = Aozo + A l z l (7.7-30c)

0 = AozJ + AjzJ (7.7-30d)

The set of Equations (7.7-30a to d) involves four unknowns (Ao, A1; z0, Zj) and we have exactly four
equations to solve. Multiplying Equation (7.7-30b) by z\ and subtracting the resulting expression
from Equation (7.7-30d) yields

A o z o ( z l " z o ) = ° (7.7-31)

The possible solutions of Equation (7.7-31) are

A0 = 0, z 0 = °> z i = z o ' z l = - z o (7.7-32a,b,c,d)

The first solution (Ao = 0) implies, from Equation (7.7-30b), that either A1 or z1 is zero and
Equation (7.7-30c) cannot be satisfied. Of the four possible solutions, the only valid solution is the
last one.

Form Equation (7.7-30b or d), we deduce

A0 = A! (7.7-33)

Combining Equations (7.7-30a, 30c, 33), we obtain

A 0 = l , A1 = l , z o = - - L , z\=-}= (7.7-34a,b,c,d)
V3 V3

Substituting Equations (7.7-34a - d) into Equation (7.7-26), we obtain

1 f(z)dZ = f( ^ r )+f / -Lr) (7.7-35)
J-i \ V3 / W3 j

Equation (7.7-35) is the Gaussian two point formula and it involves evaluating the function at
two points. Thus the number of evaluations of the integrand is the same as in the Trapezoidal rule, but
in this case, we have approximated the function f (x) by a third degree polynomial and we expect
better accuracy. This is illustrated in the next example.



636 ADVANCED MATHEMATICS

rl.3 r—
Example 7.7-4. Evaluate I Vx dx using the Romberg method and the Gaussian method.

We use the trapezoidal rule to evaluate Tjj using h = 0.3.

Using Equation (7.7-9d) and the values given in Table 7.7-2, we have

T 0 3 = 03- (1 + 1.14017) = 0.32103 (7.7-36a,b)

We now halve the gap and the interval is now 0.15.

From Equation (7.7- 14d) and Table 7.7-2, we have

To 15 = 0^5- (l + 2 x 1.07238 + 1.14017) = 0.32137 (7.7-37a,b)

The improved value T1-2-1 is given from Equation (7.7-23)

T( 2 ) = 0.32137 + 1(0.32137-0.32103) = 0.32148 (7.7-38a,b)

Comparing T ' ' with the values obtained in Example 7.7-3, we find the Romberg method gives an
answer nearer to the exact values, though the number of points considered is less. To use the
Gaussian quadrature, we have to change the interval from [1, 1.3] to [—1, 1]. From Equation
(7.7-25), we have

x = O.15z+1.15 (7.7-39)

By direct substitution, we have

I Vx~dx = 0.15 I Vo.l5z+ 1.15 dz (7.7-40)

Combining Equations (7.7-35,40) yields

/ • I . 3

I V7dx = 0.15 / o . l 5 / - - y + 1.15 + . /o . l5 / -y+ 1.15 (7.7-4la)

= 0.32149 (7.7-41b)

The value we obtain for the integral using only two points is as accurate as Simpson's rule using seven
points.

•
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We can generalize the two-point formula to an n-point formula. In this case, we have 2n unknowns
(z0, ... , zn.1 ; Ao, ... , An_i) and we have to choose them such that Equation (7.7-26) is "exact" if
f (x) is a polynomial of degree (2n - 1). This is possible because a polynomial of degree (2n - 1) has
2n constants which exactly corresponds to the number of unknowns. The determination of Zj and
Aj is simplified by considering Legendre polynomials, which are discussed in Chapter 2. For further
details, see Hilderbrand (1956) or Stroud and Secrest (1966).

7.8 NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS,
INITIAL VALUE PROBLEMS

The order and the degree of an ordinary differential equation (O.D.E.) have been discussed in
Chapter 1.

An O.D.E. (or a system of O.D.E.'s) with all conditions specified at one value of the independent
variable is called an initial value problem. In the case where time is the independent variable, all
conditions may be specified at t = 0. However if the conditions are specified at more than one point,
the O.D.E. with the conditions specified at different points represents a boundary value problem.

For example, the differential equation

a2y" + a 1 y l + aoy = g(x) (7.8-1)

subject to

y (a) = Yo, y (b) = Y: (7.8-2a,b)

is a two point boundary value problem whereas if the conditions to be satisfied were

y(a) = Y0, y'(a) = Y2 (7.8-2c,d)

it would be an initial value problem.

Similarly

y" = ( z 2 + l ) y , 0 < x < l (7.8-3a)

z" = z + 1 (7.8-3b)

with y (0) = 1, y' (0) = 2, z (0) = 0, z (0) = 1 (7.8-3c to f)

is an initial value problem of a second order system of differential equations, whereas

y" = f (x ,y ,y ' ) , a < x < b (7.8-4a)
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a1y(a) + a2y'(a) = c : , bj y(b)+ b2y'(b) = c2 (7.8-4b,c)

is a boundary value problem (Sturm-Liouville problem).

In this section, only initial value problems will be considered.

First Order Equations

A first order initial value problem can be written as

^ = f(x, y) (7.8-5a)

y(a) = y0 (7.8-5b)

Formally integrating Equation (7.8-5a) subject to the initial condition given by Equation (7.8-5b), we
obtain

yOO = y o + I f(t,y)dt (7.8-6)
Ja

Note that the unknown variable y is inside the integral sign in Equation (7.8-6) and we cannot
evaluate such an integral. Equation (7.8-6) is known as an integral equation. We have
transformed the differential equation [Equation (7.8-5a)] into an integral equation.

There is a similarity between Equations (7.8-6, 2-20). As suggested by the iteration given by Equation
(7.2-21), we seek a solution of Equation (7.8-6) by considering

yk+1 to = y0 + I f & yfc) d t ' k = 0, 1, 2, ... (7.8-7)
Ja

Since y0 is given, we can determine y^ and subsequently y2,... . The iteration will converge if

(a) f(x, y) is continuous in the interval a < x < b , -oo<y<oo

(b) there is a constant L, such that for any two numbers y, z and any x e [a, b]

I f (x, y) - f (x, z) I < L I y - z I (7.8-8)

Condition (7.8-8) is the Lipschitz condition.
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Picard's method involves solving Equations (7.8-5a, b) using Equation (7.8-7). Although it
ensures that if f satisfies the conditions stated earlier a solution is generated, it is not suitable for
numerical computation because it requires the evaluation of many integrals.

Other numerical methods are available and are considered next.

Euler's method

We subdivide the interval [a, b] into subintervals [xv xj+1] and assume that in each subinterval, which

is of length h, f (x, y) is constant. Integrating Equation (7.8-5a), we obtain

Yi+l = yi + hf(Xi,y i) (7.8-9)

where y(x,) is denoted by y;.

Equation (7.8-9) is Euler's formula. Its accuracy is not very good. Figure 7.8-1 illustrates this
method.

y i L

/yU)

i !
1—i ^

0 X; X | + , X

FIGURE 7.8-1 Euler's method, x : exact value of yj+x;
• : approximate value of yi+l
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Example 7.8-1. Solve the initial value problem using Euler's method.

^ = xy , y ( 0 ) = l (7.8-10a,b)
dx

We assume h to be 0.1. Starting with y(0) (= y0) equals to 1, x0 (= a) equals to 0, denoting ih
by Xj and using Equation (7.8-9), we generate Table 7.8-1.

TABLE 7.8-1

Values of x { , yj

i xj yj f(Xi,yi) yi+i Exact y{

0 0 1 0 1 1
1 0.1 1 0.1 1.01 1.005
2 0.2 1.01 0.202 1.0302 1.020
3 0.3 1.0302 0.30906 1.0611 1.046
4 0.4 1.0611 - - 1.083

The exact solution of Equations (7.8-10a, b) is

y = exp(x2/2) (7.8-11)

The exact solution, accurate to three decimal places, is given in the last column of Table 7.8-1. It can
be seen that the numerical solution differs significantly from the exact solution.

Taylor's method

We expand the function y (x) in f [x, y (x)] in a Taylor series about the point x0 and we obtain

y(x) = y(xo) + y I (x o ) (x-x o ) + ^ ^ ( x - x o ) 2 + ... (7.8-12)

From Equation (7.8-5a), we have

y' (= ̂  = f (X, y) and y' (x0) = f (x0, y0) (7.8-13a,b)

Differentiating Equation (7.8-13a) with respect to x, yields

, . W = » t » * = * 3 r (7.8-,4a,b)
dx dy dx dx dy
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y"(x0) = fx(x0, y0) + fy (x0, y0) f(x0, y0) (7.8-15)

We introduce the following notation

y'(x) = f (x, y) = f (0)(x, y) (7.8-16a,b)

y"(x) = — + f — = f ( V y ) (7.8-16c,d)
dx dy

ym(x) = f(2)(x, y) (7.8-16e)

y(k+1)(x) = f°°(x, y) (7.8-16f)

We define

Tp(x,y,h) = f ( 0 ) (x,y)+^f ( 1 ) (x,y) + | r f ( 2 ) (x ,y ) + . . . + ^ r f ( p - 1 ) ( x , y ) (7.8-17)

Since

y(Xl) = y(xo+h) = yo + hy'(xo) + | r y " ( x o ) + | y y m ( x o ) + ... (7.8-18a,b)

we obtain from Taylor's formula

y(xj) = yo + hTp(xo,yo, h) (7.8-19)

In general

Yn+1 = yn + hTp(xn,yn,h) (7.8-20)

Example 7.8-2. Use Taylor's method to solve

y' = l + y 2 , y (0)=l (7.8-21a,b)

Using the notation given by Equations (7.8-16a to f), we have

f (x, y) = 1 + y2 = f (0)(x, y) (7.8-22a,b)

f (1)(x, y) = y"(x) = 2y (1 + y2) (7.8-22c,d)
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f (2)(x, y) = y"' (x) = 2 (1+ y2) (1 + 3y2) (7.8-22e,f)

f (3)(x, y) = y"" (x) = 8y (1+ y2) (2 + 3y2) (7.8-22g,h)

T4(x,y,h) = ( l + y 2 ) + ^ 2 y ( l + y 2 ) + | ? - 2 ( l + y 2 ) ( l + 3 y 2 ) + ^ 8 y ( l - f y 2 ) ( 2 + 3y2)

(7.8-22i)

With h = 0.1, x0 = 0, y o = l , we have

T4 (x0, y0, h) = 2 + .05 (2) (2) + ^ 2 (16) + 4gL (80) - 2.23042 (7.8-22j,k)

and

y i = y0 + h T4 (x0, y0, h) (7.8-221)

= 1+0.1 (2.23042) « 1.22304 (7.8-22m,n)

Next we compute

y2 = y 1 +hT 4 (x 1 , y 1 , h ) (7.8-22o)

= 1.22304 + 0.1 T4 (0.1, 1.22304, 0.1) (7.8-22p)

Since

T4 (0.1, 1.22304, 0.1) = 2.4958 + .05 (6.1050218) + 4 ^ (27.391174)
6

+ ^-(158.42532) - 2.8543 (7.8-22q,r)

y2 - 1.22304 + 0.1(2.8543) « 1.50847 (7.8-22s,t)

Note that the exact solution of the initial value problem is

y(x) = t an (x+j ) (7.8-22u)

and the values accurate to five decimal places are y (0.1) = 1.22305 and y (0.2) = 1.50848.

•

Taylor's method has the disadvantage of having to differentiate f (x, y). For computational purposes,
Heun's method is more economical.
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Heun's method

In Euler's method [Equation (7.8-9)], we only used the value of f (x, y) (= y', the slope of y) at the
point X; to determine the value of y at xi+1. We can improve the accuracy of Euler's method by
replacing f (xj, yj) by the average value of f (xi? yt) and f (xj+i, y-l+\). Equation (7.8-9) now
becomes

Yi+l = yi + | [ f (Xi ,yi) + f (x i + 1 ,y i + 1 ) ] (7.8-23)

We determine yi+j using Equation (7.8-9). We can then calculate f (x;+1, Vj+i), and finally using
Equation (7.8-23), we obtain an improved value of yj+ 1.

Example 7.8-3. Solve the initial value problem of Example 7.8-1 via Heun's method. Use the
same value of h.

The values of yj, obtained by using Euler's method, are given in Table 7.8-1. Combining Table

7.8-1 and Equation (7.8-23), we generate Table 7.8-2.

TABLE 7.8-2

Values of xj and improved values of yj

i X i f(xj, yj) f ( x i + 1 , y i + 1 ) y i + 1

0 0 0 0.1 1.005

1 0.1 0.1 0.202 1.020

2 0.2 0.202 0.3091 1.046

3 0.3 0.3091 0.4244 1.083

Comparing the last column of Tables 7.8-1 and 2, we find that Heun's method gives the exact solution

to three decimal places. It represents an improvement over Euler's method.

Runge-Kutta methods

The Runge-Kutta methods are extensions of Heun's method. They are more accurate than Euler's
method and do not involve finding derivatives as in Taylor's method. We only need to evaluate the
function f (x, y) at selected points on each subinterval. We derive the formula for the Runge-Kutta
method of order two by generalizing Equation (7.8-23). We assume that yl+\ is given by

yi+1 = yi + a k 1 + b k 2 (7.8-24)
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where

k 1 =hf (x i ,y i ) . (7.8-25a)

k2 = hf(xi + a h , yj + pkj) (7.8-25b)

with a, b, a, (3 as constants.

Expanding yi+1 [= y (xi+1)] in a Taylor series about xi; we have

vi+1 = Yi + h Vi + y y" + \ y'i + - (7.8-25c)

= yi + hff4f«4ff> + ... (7.8-25d)

= yi + hfi + ^ ( | I + f | I ) + ^ ^ l + 2 f ^ ! L + f ^ + | f | t + f ( | f ] 2 ] + ...
1 2\dx ay/i 6 [8x2 a x 3 y 9 y 2 3x 9y |3yj J .

(7.8-25e)

We have used the notation introduced in Equations (7.8-16a to d). All the functions on the right side
of Equations (7.8-25c to e) are to be evaluated at (XJ, yj).

Expanding f(x; + a h , yj + (3 kj) about (XJ, yj) yields

f(xi + ah,yl + pkl) . fi + ah(|I) + Pk, (|I) + ^ ( ^ f ) + a p h k l ( ^ - )

+ -—L — +... (7.8-26a)
2 \dy2 j

Wi I 3y)i 2 X̂2J. ^ ax9yj.

+ P ^ f f ^ | + . . . (7.8.26b)

We have substituted kj by hfj.

Substituting Equation (7.8-26b) into Equation (7.8-24) yields
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yi+1 = yi + (a + b)hfi + bh2(afl + e f | + b h 3 k ^ + a p f ^ + ^ f 2 ^ ] + . . .
1 d x dy i |_ 2 9x2 dxdy 2 3y2Ji

(7.8-27)

We choose the constants a, b, a and P such that Equation (7.8-25e) matches exactly Equation
(7.8-27) up to the terms of order h . By comparing powers of h, we obtain

(a + b) = 1 (7.8-28a)

b a = 1 (7.8-28b)

b p = 1 (7.8-28c)

We have three equations [Equations (7.8-28a to c)] to solve for four unknowns. It is clear that it is
impossible to match Equations (7.8-25e, 27) for all f. Thus there is an infinite number of solutions to
Equations (7.8-28a to c). We may choose, for example,

a = b = 1 (7.8-29a,b)

a = p = 1 (7.8-29c,d)

Substituting Equations (7.8-29a to d) into Equation (7.8-24) results in Equation (7.8-23) which is the
formula for Heun's method. Note also that when a and b are set to one and zero respectively, we
obtain Euler's formula.

Other sets of values of a, b, a and P can be chosen. The most widely used formula is not of order
two, but of order four, and is written as

yi+1 = Yi + k k j + 2k2 + 2k3 + k4) (7.8-30a)
o

where

k 1 =hf (x i , y i ) (7.8.30b)

k2 = h f (Xi + h/2 , y; + kj IT) (7.8.30c)

k3 = h f (Xj + h/2 , yj + k2/2) (7.8.30d)

k4 = h f (xj + h , yj + k3) (7.8.30e)

Knowing the initial values (xQ, y0), we can calculate kj, then k2 and successively k3, k4 andyj.
We can then determine y2, y3, ..., yn.
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Example 7.8-4. Solve the initial value problem

y' = x2 + y2 (7.8-3 la)

y(0) = 0 (7.8-3 lb)

using the fourth order Runge-Kutta method. Take h to be 0.1.

The values of kj - IC4 are given by

ki = x2 + y2 = 0 (7.8-31c,d)

k2 = 0.1 (^J-)2 = 0.00025 (7.8-3 le,f)

k3 = 0.1 (^-) +(°-°Q25) = 0.00025 (7.8-31g,h)

k4 = 0.l[(0.1)2 + (0.0025)2] = 0.0010 (7.8-31ij)

From Equation (7.8-30a), we have

y i = y(0.1) = 1(0.0005 + 0.0005 + 0.001) = 0.00033 (7.8-31k)

We now use (xj, yj) to determine k1;... , k4 and then y2 [= y (0.2)] and so on until we have values

of y for the required interval.

Adams-Bashforth method

We divide the interval [a, b] into subintervals [xj, XJ+J]. Equation (7.8-6) becomes

y i + l = y i + f(x,y)dx (7.8-32)
hi

We now approximate f (x, y) by an interpolation formula as discussed in Section 7.6, assuming that
somehow we can determine the values of f at some points in the interval. We can then integrate the
interpolation polynomial and obtain the Adams-Bashforth formula, which can be written as (see
Problem 17b)

y i + i = y i + ^ [55fi - 5 9 f i - i + 3 7 f i-2 - 9fi-3] (7-8-33)
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Note that in Equation (7.8-33), we not only need to know (xj, ŷ ) to calculate yi+1 but also (XJ.J, yj.j),
(xi-2> Yi-2) a nd (xi-3' Yi-3)- This type of formula is known as a multistep formula. The methods
considered previously are self-starting methods as they require only the values of (XJ, yj) to
determine yj+1. To use the Adams-Bashforth method, we need to use other methods, such as Runge-
Kutta methods, to determine ( y ^ , Vj_2, yi-3), prior to applying Equation (7.8-33). This is the
disadvantage of this method, but it involves less computation than the Runge-Kutta methods of order
four. The Adams-Bashforth method requires only one computation of f per step, once the
computation can be started, whereas the Runge-Kutta method of order four requires four evaluations
of f at each step.

Several multistep formulas have been proposed [see, for example, Gerald and Wheatley (1994)]. In
Problem 17b, we indicate the derivation of the Adams-Moulton formula.

A common practice is to start with a Runge-Kutta method and once the values of f at a sufficient
number of points have been generated, a multistep methods is used. This is illustrated in Examples
7.8-5 and 7.

Example 7.8-5. Solve the initial value problem

y' = 2x + y (7.8-34a)

y(0) = 1 (7.8-34b)

using the Adams-Bashforth method. Take h to be 0.1.

To get the method started, we need to know f0, f\, f2 and f3 so as to be able to calculate y4, as can
be seen from Equation (7.8-33). We use the Runge-Kutta method of order four to calculate y^ - V3.
The calculations are given in Table 7.8-3.

TABLE 7.8-3

Values of Xj, yj using the Runge-Kutta method

i xj kx k2 k3 k4 yi + 1

0 0.0 0.10000 0.115000 0.11575 0.131575 1.1155
1 0.1 0.13155 0.148125 0.14896 0.166450 1.2642
2 0.2 0.16642 0.184740 0.18566 0.204990 1.4496
3 0.3 0.20496 -
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From Equation (7.8-33), we have

Y4 = y3 + ̂  [55f3 - 59f2 + 37fx - 9f0] (7.8-35)

From Table 7.8-3, we obtain f0 - f3. From Equation (7.8-30b), we have

f(xj, y i) = kj /h (7.8-36)

Equation (7.8-35) becomes

y4 = 1.4496 + ^ [112.728-98.1878 + 48.6735-9] (7.8-37a)

= 1.6754 (7.8-37b)

Continuing, we have

Y5 = Y4 + ̂  [55f4 - 59f3 + 37f2 - 9fj] (7.8-38a)

= 1.6754 +Q-L [136.147-120.891 +61.5754- 11.8395] (7.8-38b)

= 1.9462 (7.8-38c)

We can similarly proceed to calculate yg,.... Note that to determine y5, we need to evaluate only
f4, since f̂  ... f3 have previously been evaluated. As stated earlier, at each step, we need to
perform only one calculation.

•

We next extend the methods employed to solve first order equations to higher order equations.

Higher Order or Systems of First Order Equations

Any r t h order differential equation can be written as a system of r first order
equations. For example, the third order differential equation

^+y^i+h)2+y =g(x) (7.8.39)

dx3 dx2 \dx /

can be written as
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Yi = y

y i = y 2 ( = y < ) (7.8-40a,b,c,d)

yi= y3 (=y")

Y3 = -yiYs-yf-yi + sw

Equations (7.8-40b to d) form a system of three first order equations. Instead of considering higher
order differential equations, we consider systems of first order equations which are written as

y- = fj(x, y l 5 . . . , y j . . . ) , j = l , 2 , .... (7.8-41)

Equation (7.8-41) can be written in vector form as

y' = f (x, y)
- - (7.8-42)

Since we are dealing with initial value problems only, all conditions are given at x = x0 and they can

be written as

y>o) = y o (7.8-43)

All the formulas considered earlier can be extended to the present case. The Runge-Kutta method of
order four [Equations (7.8-30a to e)] becomes

y i + 1 = Y i + ^ ( k 1 + 2 k 2 + 2 k 3 + k 4 ) (7.8-44a)
— — O — — — —

where

k i = f (x;, y ; )
- 1 - v -l (7.8-44b)

k 2 = h f (xj + h/2, yj + kj /2) (7.8-44c)

k 3 = h f (xA + h/2, y { + k 2 /2) (7.8-44d)

k 4 = h f ( x i + h , y i + k 3 ) (7.8-44e)
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To clarify the notation in Equations (7.8-44a to e), we consider a second order differential equation or
equivalently a system of two first order equations.

The system of equations [Equation (7.8-42)] is

yl = fj(x, y l s y 2 ) (7.8-45a)

y2 = f2(x, y1?y2) (7.8-45b)

We denote yi(xj) and y2(xj) by y H and y 2 i respectively.

Equations (7.8-44a to e) in component form become

- y l i i + 1 "I Ty1 ; i I r k 1 1 + 2 k 1 2 + 2k13 + k1 4"

+ \ (7.8-46a)
y2,i+l y2,i b [k 2 1 + 2k22 + 2k23 + k 2 4

where

k n = hfjxj.y^j.y^); k21 = h f2(x{, y u , y2i) (7.8-46b,c)

kl2 = h h(xi+|, y 1 > i + ^ , y 2 > i + ^ l ) ; k 2 2 = h f2(x. + k y u + k l L , y 2 i . + ^ l )

(7.8-46d,e)

kn = h f!(xi + ^, y u + ^ , y 2 > i + ^ ) ; k23 = h f2(x1+^, y u + ^ , y ^ . ^ )

(7.8-46f,g)

k14 = n f l ( x i + h ' y i , i + k 1 3 ' y 2 , i + k 2 3 ) ; k24 = h f 2 ( x i + h ' yi,i + k 1 3 ' V2,i + k23)

(7.8-46h,i)

The order of computation is to calculate kjj (j = 1,2), then kj2, kj3, kj4 and finally Yj, i+i • The
index j in k j m is associated with the j in f; and the m is associated with the k m in Equations
(7.8-30a to e).

Example 7.8-6. Solve the initial value problem

y " - (1 - y2) y' + y = 0 (7.8-47a)

y(0) = 1, y'(0) = 0 (7.8-47b,c)

We rewrite Equations (7.8-47a to c) as a system of first order equations
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yi = y (7.8-48a)

yj = y2 (7.8-48b)

y'2 = ( 1 -y? )y2-y i (7.8-48c)

yi(O)(=y1;O) = 1 (7.8-48d)

y2(o)(=y2)o) = ° (7.8-48e)

We choose h to be 0.2 and we compute kj m, identifying

f i = y2' f2 = (1-yf)y2-yi (7.s-49a,b)

kn=0.2(0) = 0; k21=0.2[(-l)]=-0.2 (7.8-50a,b)

k12 = 0.2 (-0.1) = -0.02; k22 = 0.2[(l-l)(-^]-l] = -0.2 (7.8-50c,d)

k13 = 0.2 (- °̂ -) = - 0.02 ; k23 = 0.2 [(1-0.992) (- 0.1) - 0.99] = - 0.1984 (7.8-50e,f)

k14 = 0.2 (-0.1984) = - 0.03968 ; k24 = 0.2 [(1-0.982) (- 0.1984) - 0.98] = - 0.1976

(7.8-50g,h)

Substituting Equations (7.8-50a to h) into Equation (7.8-46a) yields

~ y i , i ] r i i r - 0 . H 9 6 8 "

+ 1 (7.8-5 la)
V2,l 0 6 -1.1944

0.98
(7.8-51b)

-0.199

The solution is

y(0.2) = 0.98, y'(0.2) = -0.199 (7.8-52a,b)

Example 7.8-7. Solve the set of equations proposed by Hodgkin and Huxley (1952).

They studied the phenomenon of electric signaling by individual nerve cells and were awarded a Nobel
prize for their work. In a state of rest, a nerve cell has a resting potential difference and this potential
difference is attributed to the unequal distribution of ions across its membrane,. When activated by a
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current, the permeability properties of the membrane change resulting in an alteration of the potential
difference across the membrane. This change in potential can be measured. Based on experimental
observations, Hodgkin and Huxley (1952) assumed that the mechanism that determines ionic fluxes
across the membrane can be described by a set of first order equations where the rate constants depend
on the voltage. The equations they proposed are

^L= a^l-Y^-b^! (7.8-53a)

- ^ = a 2 ( l - Y 2 ) - b 2 Y 2 (7.5-53b)

^ - = a 3 ( l - Y 3 ) - b 3 Y 3 (7.8-53c)

C ^ = ~ P N a <Y4 - VNa) - P K (Y4 - VK) - PL (Y4 - VL) (7.8-53d)

where C is the capacitance, P N a , P K , P L , VNa, VK, VL are the permeability coefficients and
resting potentials for Na+, K+, and another unspecified ion respectively. Y4 is the potential
difference across the membrane, Yj , Y2, Y3 represent the mole fractions of unspecified chemicals
that regulate ionic permeability. The coefficients aj and b; ( i = l , 2 , 3) are empirical constants and
are functions of Y4. The permeabilities Pj^a a nd PK are assumed to be given by

PNa = g N a Y 2Y 3 , P K = g K Y l (7.8-54a,b)

where gN a and gK are the conductance for Na+ and K+ respectively. For computational purposes,

we have set

g N a = 1 2 0 , gK = 36, P L = 0.6, VNa = - 1 1 5 , VK = 12, VL = - 1 0 . 6 ,

a^O.Ol (Y4+10)/[exp(0.1Y4+l)-1], a2 = 0.1 (Y4+25)/[exp (0.1 Y4+2.5) - 1] ,

a3 = 0.07exp(Y4/20), b , =0.125 exp (Y4/80), b 2 = 4exp (Y4/18) ,

b 3 = l/[exp(0.1Y4 + 8) + l].

The initial conditions are assumed to be

Y, = 0.318 , Y2 = 0.053 (7.8-55a,b)

Y3 = 0.596 , Y4 = -6.507 (7.8-55c,d)

Equations (7.8-53a to d) are solved numerically. A Runge-Kutta formula is used to generate values of
Yj at a sufficient number of points. A multistep formula (Adams-Moulton) is then applied to obtain
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values of Y; up to t = 20. The following FORTRAN program is used to compute Yj. The results
are shown in Figure 7.8-2.

C PROGRAM TO SOLVE EXAMPLE 7.8-7

REAL Y1,Y2,Y3,Y4,Y1K,Y2K,Y3K,Y4K,Y1P,Y2P,Y3P,Y4P
REAL YIPZ,Y2PZ,Y3PZ,Y4PZ

REALD11,D12,D13,D14,D21,D22,D23,D24,D31,D32,D33,D34,D41,D42,D43,D44
REAL T,R,TAU
INTEGER I,J,K
OPEN(UNIT=1 ,FILE='A:/RESULT.DAT' ,STATUS='NEW)

C INITIALIZATION OF THE VARIABLES

Yl=0.318
Y2=0.053
Y3=0.596
Y4=-6.507
TAU=0.0005
T=0.0
WRITE(6,*)T,Y4
1=1

C STARTUP WITH RUNGE-KUTTA 44

D11=TAU*F1(Y1,Y4)
D12=TAU*F2(Y2,Y4)
D13=TAU*F3(Y3,Y4)
D14=TAU*F4(Y1,Y2,Y3,Y4)

D21=TAU*F1(Y1+D1 l/2,Y4+D14/2)
D22=TAU*F2(Y2+D12/2,Y4+D14/2)
D23=T AU*F3( Y3+D13/2, Y4+D14/2)
D24=TAU*F4(Yl+Dll/2,Y2+D12/2,Y3+D13/2,Y4+D14/2)

D3 l=TAU*Fl(Yl+D21/2,Y4+D24/2)
D32=TAU*F2(Y2+D22/2,Y4+D24/2)
D33=TAU*F3(Y3+D23/2,Y4+D24/2)
D34=TAU*F4(Yl+D21/2,Y2+D22/2,Y3+D23/2,Y4+D24/2)

D41=TAU*F1(Y1+D31 ,Y34+D34)
D42=TAU*F2(Y2+D32,Y4+D34)
D43=TAU*F3(Y3+D33,Y4+D34)
D44=TAU*F4(Y1+D31 ,Y2+D32,Y3+D33,Y4+D34)
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Y1K=Y1+(D1 l+2*D21+2*D31+D41)/6
Y2K=Y2+(D 12+2*D22+2*D32+D42)/6
Y3K=Y3+(D13+2*D23+2*D33+D43)/6
Y4K=Y4+(D 14+2*D24+2*D34+D44)/6

C ADAMS-MOULTON

U=2*TAU

DO 10 T=U,20,TAU

Y1P=Y1K
Y2P=Y2K
Y3P=Y3K
Y4P=Y4K

R=1.0
WHILE(R.GT.lE-5)

Y1PZ=Y1K+TAU/12*(5*F1(Y1P,Y4P)+8*F1(Y1K,Y4K)-F1(Y1,Y4))
Y2PZ=Y2K+TAU/12*(5*F2(Y2P,Y4P)+8*F2(Y2K,Y4K)-F2(Y2,Y4))
Y3PZ=Y3K+TAU/12*(5*F3(Y3P,Y4P)+8*F3(Y3K,Y4K)-F3(Y3,Y4))
Y4PZ=Y4K+TAU/12*(5*F4(Y1P,Y2P,Y3P,Y4P)+8*F4(Y1K,Y2K,Y3K,Y4K)-

EF4(Y1,Y2,Y3,Y4))

R=(Y1PZ-Y1P)**2+(Y2PZ-Y2P)**2+(Y3PZ-Y3P)**2+(Y4PZ-Y4P)**2
R=SQRT(R)

C WRITE(6,1OOO)Y1PZ,Y2PZ,Y3PZ,Y4PZ
C WRITE(6,1OOO)Y1P,Y2P,Y3P,Y4P

1000 FORMAT(F9.6,3X,F9.6,3X,F9.6,3X,F9.6)

Y1P=Y1PZ
Y2P=Y2PZ
Y3P=Y3PZ
Y4P=Y4PZ

ENDWHILE

J=I/10
IF(J.EQ.1)THEN
WRITE(1,*)T,Y4P
1=0
ENDIF
1=1+1
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Y1=Y1K
Y2=Y2K
Y3=Y3K
Y4=Y4K

Y1K=Y1P
Y2K=Y2P
Y3K=Y3P
Y4K=Y4P

10 CONTINUE
STOP
END

FUNCTION F1(X,Y)
REALA1,B1,X,Y
Al=0.01*(Y+10)/(EXP(0.1*Y+l)-l)
Bl=0.125*EXP(Y/80)
F1=A1*(1-X)-B1*X
RETURN
END

FUNCTION F2(X,Y)
REAL A2,B2,X,Y
A2=0.1 *(Y+25)/(EXP(0.1 *Y+2.5)-l)
B2=4*EXP(Y/18)
F2=A2*(1-X)-B2*X
RETURN
END

FUNCTION F3(X,Y)
REAL A3,B3,X,Y
A3=0.07*EXP(Y/20)
B3=l/(EXP(0.1*Y+3)+l)
F3=A3*(1-X)-B3*X
RETURN
END

FUNCTION F4(W,X,Y,Z)
REAL W, X, Y,Z,
F4=-36*W**4*(Z-12)-0.3*(Z+10.6)-120*X**3*Y*(Z+115)
RETURN
END
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FIGURE 7.8-2 Plot of Yj , Y 2 , Y3 and Y4 versus time

Example 7.8-8. Compute the shape of a drop in an extensional flow of a viscoelastic fluid.

Gonzalez-Nunez et al. (1996) studied the deformation of nylon drops in an extensional flow of a
polyethylene melt. The drop is assumed to be spherical of radius R prior to entering the extensional
flow. Choosing the centre of the drop as the origin of a spherical polar coordinate system (r, 0, {(>),
the radial distance r of any point on the surface of the deformed drop in the extensional flow can be
written as

r = R + ̂  (7.8-56)

We assume the velocity field to be continuous across the boundary and a force balance yields

fem-(W)«d]*5 = k C a E (7-8"57)

where nm, nd are the stress fields associated with the matrix (polyethylene) and the dispersed phase

(nylon) respectively, T)m, r)d are the viscosities of the matrix and dispersed phase respectively, n is

the unit outward normal to the surface, k is the surface curvature and Ca is the capillary number.

For small deformations, k is approximately given by

k = !_2£_J-[_J—iLe^i)] (7.8-58)
R R2 R2 LsinB d8 V d6/J
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The stress fields are calculated by assuming that the polymer melts can be modeled as upper convected
Maxwell fluids (Carreau et al., 1997). Substituting the values of nm, Kd, and k, we obtain the

following equation for ^

—- | + cot e — + 2b, - 2R - R2 Ca (1 - r\d/r\m) To exp [(TQ/L) (R+^) cosG] = 0 (7.8-59)
d0 d0

Assuming the deformed drop is symmetrical, the two appropriate boundary conditions are

% = Ro , — = 0 , at 0 = 71/2 (7.8-60a,b)
d0

Equations (7.8-59, 60a, b) are solved numerically using a Runge-Kutta formula. Having found £,
the major (L1) and the minor (B1) axes of the drop can be calculated. The deformation D1 is given by

D1 = ( L ' - B ' ) / ( L ' + B') (7.8-61)

Figure 7.8-3 illustrates D' as a function of Ca for various values of R.

C PROGRAM TO SOLVE EXAMPLE 7.8-8 USING RK22

IMPLICIT NONE
INTEGER N,I,J
REAL*8PHIl(5000),PHI2(5000),Zl(500O),Z2(5000),RR(50OO),TE(50OO)
REAL*8 TAU,TAU2,TEST 1 ,TEST2,FUNC2,TEMP,X,XK,TO,R,CA,D,R0
COMMON R,XK,TO

C DATA

R=3.35D0
DO 1 J=l,10
CA=0.1D0*J
TO=2.967D0
XK=R*R*0.01D0*CA*TO

R0=l.D0/(4.D0*CA)

C INITIAL VALUES

PHI1(1)=RO-R
PHI2(l)=0.D0
TAU=0.00157
TAU2=TAU/2.D0
N=1000
X=1.57D0
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C START INTEGRATION

DO99I=1,N+1
TEST 1 =PHI 1 (I)+TAU*PHI2(I)
TEMP=FUNC2(PHI1(I),PHI2(I),X)
TEST2=PHI2(I)+TAU*TEMP
PHI1(I+1)=PHI1(I)+TAU2*(PHI2(I)+TEST2)
PHI2(I+1)=PHI2(I)+TAU2*(TEMP+FUNC2(TEST1,TEST2,X))
IF(ABS(PHI1(I+1)).1E.1.0D-4)GO TO 100
RR(I)=R+CA*PHI1(I)
TE(I)=X
Z1(I)=RR(I)*COS(X)
Z2(I)=RR(I)*SIN(X)
X=X-TAU

99 CONTINUE

C RESULTS

100 WRITE(6,*)R,X
DO 110I=l,N+l,100
D=(Z1 (I)-R0)/(Zl(I)+R0)

110 CONTINUE
WRITE(6,*) CA,D

1 CONTINUE

STOP
END

C FUNCTION

REAL*8 FUNCTION FUNC2(Y1,Y2,X)
IMPLICIT NONE
RERAL*8 Y1,Y2,X,C1,C2,C3
COMMON C1,C2,C3
FUNC2=0.D0
FUNC2=2*C1-(COS(X)/SIN(X))*Y2-2*Y1-C2*EXP(C3*(C1+Y1)*
1 COS(X)/24.D0)
RETURN
END
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FIGURE 7.8-3 Deformation of D' versus capillary number Ca
for various values of radius R

7.9 BOUNDARY VALUE PROBLEMS

Boundary value problems have been discussed in Chapter 2. Unlike initial value problems,
the conditions here are given at more than one point and the formulas given in Section 7.8 cannot be
applied. We described two methods which can be used to solve boundary value problems.

Shooting Method

This method is widely used. It consists of transforming the boundary value problem to an initial value
problem.

We consider a second order linear equation

^ - + p ( x ) ^ +q(x)y = r(x), a < x < b (7.9-la)
dx2 d x

y(a) = A , y(b) = B (7.9-lb,c)

We convert the boundary value problem to an initial value problem by dropping the boundary
condition given by Equation (7.9-lc) and replacing it by imposing a condition at x = a. We assume
that
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y'(a) = (*! (7.9-2)

Equations (7.9-la, b, 2) form an initial value problem and we can integrate the differential equation
using one of the formulas given in the previous section. Since oci is a guessed value of y'(a), it is
unlikely that the boundary condition given by Equation (7.9-lc) will be satisfied. We now guess
another value of y'(a) (say a2) and we proceed with the integration. Unless we are lucky, Equation
(7.9-lc) will still not be satisfied.

In the linear case, from these two values of a (ocj and a 2) it is possible to obtain the exact value of

y'(a). Let y1 be the solution obtained by using (Xj and y2 be the solution with a 2 , as illustrated

in Figure 7.9-1. Since the system is linear, a linear combination of yj and y2 is also a solution of

Equation (7.9-la). That is to say

y = c 1 y 1 + c 2 y 2 (7.9-3)

where c1 and c2 are constants, is a solution of Equation (7.9-la). Both y1 andy2 satisfy Equation

(7.9-lb) and y must also satisfy this condition. Combining Equations (7.9-1 b, 3) yields

1 = cx + c2 (7.9-4)

Imposing condition (7.9-lc), we have

B = c i y i (b ) + c2y2(b) (7.9-5)

From Equations (7.9-4, 5), we obtain

_ B-y 2 (b ) _ Yi(b)-B
Cl " y i ( b ) -y 2 (b ) ' °2 " y l ( b ) -y 2 (b) ( 7 - 9 " 6 a ' b )

Differentiating y in Equation (7.9-3) and using Equations (7.9-6a, b), we obtain

y ' w = y ; ( a ) + S ^ l k < a ) - y > ( a ) ] <7-9-7)
In Equation (7.9-7), all the terms on the right side are known, and the value of y'(a) that will satisfy
Equation (7.9-lc) is known. With y'(a) given by Equation (7.9-7), we compute the solution y that
satisfies Equations (7.9-la to c).

The above method is applicable only for linear equations. For non-linear equations, we cannot apply
the principle of superposition and Equation (7.9-3) is not valid. However, we can compute yj and
y2 as in the linear case and we use Equation (7.9-7) to obtain an improved value of y'(a) which we

denote as y3(a). Note that y3(a) is not the exact value of y'(a)- Using y3(a), we can compute y3
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in the same way as yj and y2 were computed. We repeat this process until successive solutions yj
and yi+1 are within the required degree of accuracy.

y '

V2lb)" v*V '

V | ( b ) " / / ^ * 1

i [
i J
i i
i ,

I 1 1 ^
0 o b x

FIGURE 7.9-1 Shooting method

On generalizing Equation (7.9-7), we obtain

yi+2(a) = y; (a) + y . ^ ^ l b ) k i (a ) -y[ (-1 i = L 2, ... (7.9-8)

Equation (7.9-8) can also be obtained as follows. The solution y is a function of y'(a) (= a) and the
solution can be written as y(oc, x). We need to determine a such that Equation (7.9-1 c) is satisfied.
Equation (7.9-lc) can be written as

g(cc) = y(cc, 1 ) - B = 0 (7.9-9a,b)

Equations (7.9-9a, b) can be solved by the secant method [Equation (7.2-6)] and the result is Equation

(7.9-8).

Example 7.9-1. Solve the boundary value problem

y" = x + ( l - x / 5 ) y (7.9-10a)

y( l ) = 2 , y(3) = - l (7.9-10b,c)
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We start the process of integration with the guessed value of y'(l) (= o^) to be -1 .5 . The resulting
yj (-1.5, 3) is 4.811. Next, we take y'(l) (= a 2 ) to be -3.0 and we obtain y^ (-3, 3) which is
0.453. Then using Equation (7.9-7), we obtain the value of y' (1) which is - 3.5, and y (-3.5, 3)
satisfies Equation (7.9-10c). Values of y (a, x) for various values of a and x are given in Table
7.9-1. Equation (7.9-10a) is written as a set of first order equations and the integration formula used
is that of Heun [Equation (7.8-23)].

TABLE 7.9-1

Values of y (a, x)

x y(-1.5, x) y(-3.0, x) y(-3.5, x)

1.0 2.000 2.000 2.000
1.2 1.751 1.499 1.348
1.4 1.605 0.991 0.787
1.6 1.561 0.619 0.305
1.8 1.625 0.328 -0.104
2.0 1.803 0.118 -0.443
2.2 2.105 -0.007 -0.712
2.4 2.542 -0.045 -0.908
2.6 3.128 0.013 -1.026
2.8 3.880 0.175 -1.000
3.0 4.811 0.453 -1.000

•

Equations (7.9-9a, b) can also be solved by Newton's method. Combining Equations (7.2-11,
9-9a, b), we obtain

«k+l = « k - V ^ (7-9-11)
g (ock)

where the prime denotes differentiation with respect to a.

To apply Equation (7.9-11), we need to determine g'(ock) and since B is constant, g'(ock) is given,

from Equation (7.9-9a), by

g'(cck) = y ' ( a k , 1) (7.9-12)
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To obtain g'(ock), we need to solve an initial value problem. We demonstrate this by considering the

boundary value problem given by

4=f(x,y,^) (7.9-13.)

dx2 x d x /

y(a) = A, y(b) = B (7.9-13b,c)

We replace Equation (7.9-13c) by the initial condition

P- = a (7.9-13d)
dx a

Equations (7.9-13a, b, d) define an initial value problem. We need to obtain a good approximation to

a via Equation (7.9-11), which in turn implies finding g'(ak). We denote ^ - by ^(oc, x). Then

on differentiating £, with respect to x and interchanging the order of differentiation, we obtain

£'(a,x) = ~[y'(a,x)] (7.9-14)

The prime denotes differentiation with respect to x and this notation will be kept from now on.

Differentiating Equation (7.9-13a) with respect to a and using Equation (7.9-14) yields

^'(a,x) = ^ ^ + i L 3Z1 (7.9-15a)
dy da dy' da

= ^ + ^ ' (7.9-15b)

dy dy

Similarly differentiating Equations (7.9-13b, d) with respect to a yields

£(cc, a) = 0 (7.9-16a)

£ ' (a , a) = 1 (7.9-16b)

The initial value system defined by Equations (7.9-15b, 16a, b) can be solved and ^ ( a , b) is
obtained. From Equation (7.9-12), we note that g'(a) is £(a, b) and then g'(a) is obtained. This
can be substituted in Equation (7.9-11) to obtain an improved value of a. The iteration is repeated
until two iterates yield values within the desired degree of accuracy.

Equations (7.9-15b, 16a, b) are the associated variational equations which need to be solved
simultaneously with Equations (7.9-13a, b, d).
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Example 7.9-2. Use the shooting method to solve the non-linear boundary value problem

,2
y" = ^ - - y , - 1 < X < 1 (7.9-17a)

y ( - l ) = (e+e"1) (7.9-17b)

y(l) = (e+e-1) (7.9-17c)

The associated variational equations are

= - 2 ^ ) + 1 ^ + ^ ' (7.9-18b)

£(-1) = 0 (7.9-18c)

£ ' ( -1) = 1 (7.9-18d)

We denote y by y\ and ^ by y3- Equations (7.9-17a, 18a) can now be written as a system of four

first order equations as follows

yl = Y2 (7.9-19a)

yi = ^ - - y \ (7.9-19b)

y'3 = Y4 (7.9-19c)

y4 = ~ r ( y l ) + 1 J y 3 + 4 ( y r ) y 4 (7-8~19d)

Equation (7.9-17c) has to be replaced by the initial condition

y ' ( - l ) = a (7.9-20)

Equations (7.9-17c, 18c, 18d, 20) are written as

y i ( - l ) = (e+e-1) (7.9-21a)
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y2(-l) = « (7.9-21b)

y 3 ( - 0 = 0 (7.9-21c)

y4(-!) = 1 (7.9-2 Id)

The initial value problem given by Equations (7.9-19a to d, 21 a to d) can be solved using the Runge-
Kutta method with an initial value of a (= a0). The value of a0 chosen is 0.2 and after six iterations
the value of y (1) was found to converge to 0.324, which is close enough to the value given by
Equation (7.9-17c).

•

A method widely used to solve boundary value problems is the method of finite differences which is
considered next.

Finite Difference Method

In transforming a two-point boundary value problem to an initial value problem, we have replaced the
boundary condition(s) at one end by guessed initial condition(s) at the other end. If the order of the
differential equation is high, the number of initial conditions to be guessed is also high. The shooting
method can then be very laborious. Further, if we did not make a good guess of the initial conditions,
the convergence might be slow.

An alternative numerical method of solving boundary value problems is the method of finite
differences. In this method, we replace the derivatives by finite differences.

We again consider the boundary value problem given by Equations (7.9-la to c). We divide the
interval [a, b] into (n + 1) equal intervals, each of length h. We denote a by xQ and b by xn + 1.
We use the central difference scheme and the derivatives at x; (= x0 + jh) are given by

dy| = ^ l H M = a i C i l (7.9.22a,b)

dx Y 2h 2h
xj

d*y = VjH-l-^j + yj-l (7-9-23)

dx2 h2
xj

Substituting Equations (7.9-22b, 23) into Equation (7.9-la), we obtain

^ [ y j + l - 2 y j + yj.1] + 2t[p(xj)(yj + 1-y j .1)] + q(xj)yj = r(Xj) (7.9-24)
h
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On multiplying throughout by h2 and collecting like terms together, Equation (7.9-24) becomes

aj yj-l + bj yj + cj yj+l = h 2 r ( x P (7.9-25a)

aj = 1 ~ 2 P ( X J ) (7.9-25b)

bj = - 2 + h2q(Xj) (7.9-25c)

Cj = l + | p ( X j ) (7.9-25d)

The boundary conditions (Equations 7.9-lb, c) are now written as

y0 = A (7.9-26a)

yn+l = B (7.9-26b)

Substituting Equations (7.9-26a, b) into Equation (7.9-25a), and writing out the first two and the last
two lines of the latter, we have

a1A + b 1 y 1 +c 1 y 2 = h2r(xx) (7.9-27a)

a2yj + b 2 y 2 + c2y3 = h r(x2) (7.9-27b)

VlYn-2 + bn-iyn-l + Cn-iyn = h ^ n - l ) {1.9-21c)

W l + V n + Cn6 = *»2r(xj (J.9-21d)

Equation (7.9-27a to d) can be written in matrix form as

Ay = s (7.9-28a)

Yll f s l l [ r (x l) l [ a i A
0

y = ! s = : = h2 - | (7.9-28b,c,d)

0

_ynj LSnJ Lr(Xn)J L c n B ^
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t>l Cj 0 0 . . . 0 0 0

h b2 C2 0 ... 0 0 0

0 a , b o Co ••• 0 0 0

A =
• • • : ... : : : ( 7 . 9 - 2 8 e )

0 o o o •• V i V i cn.!

0 0 0 0 ... 0 an bn

The matrix A is a tridiagonal matrix whose elements are known.

Equation (7.9-28a) can be solved by the method of Gaussian elimination (discussed in Section 7.4).
The unknown values of y at intermediate points (y1;.. . , yn) can thus be determined.

Example 7.9-3. Solve the boundary value problem

d2y
- ^ - y = 0 (7.9-29a)
dx2

y(0) = 0 , y( l ) = sinh 1 (7.9-29b,c)

by the method of finite difference. Choose h to be 0.25.

The exact solution of the boundary value problem is

y = sinhx (7.9-30)

The finite difference equation [Equation (7.9-25a)] is

yj-l - (2 + h2) y j + yj+1 = 0 (7.9-31)

Since h is 0.25, we divide the interval into four equal intervals and label the points x0 (= 0), x1?

x2, x3 and x4 (= 1).

In matrix form [Equation (7.9-28a)], Equation (7.9-31) can be written as
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- (2+h2) 1 0 ?1 °

1 - (2 + h 2 ) 1 Y2 = 0 (7.9-32)

o l -(2+h2) J |_y3j L - s i n h l _

Solving Equation (7.9-32), we obtain yj, y2 and y3 and their values are given in Table 7.9-2 together

with the values of the exact solution.

TABLE 7.9-2

Values of y;

Numerical Exact
solution solution

0.25 0.2528 0.2526
0.50 0.5214 0.5211
0.75 0.8226 0.8223

For non-linear equations, Equation (7.9-28a) will be non-linear. Thus by discretizing Equation
(7.9-13a), we obtain, using Equations (7.9-22b, 23),

.̂1-2̂  + ̂ -1 = ̂ 4 ,^ ,^^ . ) (7.9-33)

The boundary conditions are given by Equations (7.9-26a, b). For a given f, Equation (7.9-33) can
be written out for each value of j (j = 1, 2, ... , n) resulting in a set of non-linear algebraic (or
transcendental) equations. This set of equations are solved by iteration techniques, some of which are
described in Sections 7.2 and 7.4.

Nowadays numerical software is available which implements the formulas given in this chapter.
However, we still have to use our judgment in choosing the appropriate method. This is illustrated in
the next example.

Example 7.9-4. Spence et al. (1993) modeled a catalytic combustion in a monolith reactor.
Catalytic monoliths are widely used in the automobile industry to control the emissions from the
vehicle exhaust systems. The monolith usually consists of a number of cells through which the
exhaust gases flow. We consider only a single cell and a schematic diagram of such a cell is shown in
Figure 7.9-2.
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FIGURE 7.9-2 Schematic diagram of a cell

The reaction considered is the combustion of propane and is given by

C3H8 + 5O2 —> 3CO2 + 4H2O (7.9-34)

The heterogeneous reaction rate rc at the catalytic surface is assumed to be

rc = Zcexp[-Ec /RTi(x)]Cw(x) (7.9-35)

where Zc is a pre-exponential factor, Ec is the activation energy, R is the ideal gas constant,

Cw (x) is the fuel concentration at the wall, and Tj is the reacting wall temperature as shown in Figure

7.9-2.

For simplicity, a one-dimensional model is considered. This implies that all variables are functions of
x only and only a cross-section of a single cell is considered for deriving the basic equations. Using a
series of energy and mass balances, Spence et al. (1993) deduced that the equations to be solved are

2

- J _ A i _• 2y 6) - w 6) - 60 G), 0 < £ < 1 (7.9-36a)

^ 2 _ JH[w(©-X2©] (7.9-36b)
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~- = - J D [ x l ( ^ ) - a w ^ ) ] (7.9-36c)

° = J H [ x 2 ^ ) - w ( ^ ) ] + J k [ y ^ ) - w ^ ) ] - r D c e x p [ y c ( w - 1 ) / w ] a w (7.9-36d)

aw = xj {1 + (DC/JD) exp [yc (w - 1) /w]}" (7.9-36e)

where £ = x/L, L is the length of the cell, y = Tm(x)/TB0, x2 = TB(x)/TB0, w = Ti(x)/TB0,
0Q = T O / T B O , X J = C B ( X ) / C O , TQ, Tm, Tj are the temperatures at the outer wall, the mean solid
wall temperature, and the temperature at the inner wall, as shown in Figure 7.9-2. TB(x) is the bulk
gas temperature and TB0 is TB(0). CB(x) is the fuel concentration in the bulk gas and Co is
CB(0). Pe is the Peclet number, Jk, JH, JD, F, Dc, and yc are dimensionless parameters.

The associated boundary conditions are

^ = ^ = 0 (7.9-37a,b)
d£ i;=0 d£ ^=1

Xl(0) = x2(0) = 1 (7.9-37c,d)

Note that Equation (7.9-36d) is an algebraic equation and allows us to determine w(0). Equation
(7.9-36a) is written as a system of first order equation as follows

^ L = y (7.9-38a)
d^

^ 2 . = P e J k { 2 y i - w - e 0 ) (7.9-38b)
d£

The boundary value problem defined by Equations (7.9-36b to 38b) can be solved by the shooting
method. As an initial guess, y j (0) is assumed to be

Y l(0) = [w(O) + eo(O)]/2 (7.9-39)

The shooting method is found to work only for Pe < 1 and Pe > 500. The reasons for the failure
are as follows. The outside wall temperature (0O) is given and Equations (7.9-36a, 37a, b) form a
standard boundary value problem for a known w(x). The complementary function of Equation

r / 1
(7.9-36a) is a linear combination of exp [± ̂ V2Pe Jk J and, in the shooting method, round off errors
propagate as multiples of these exponentials. For small values of Pe, the errors remain small and the
method works. For large values of Pe, the left side of Equation (7.9-36a) is almost zero and the
starting value of yj(O) given by Equation (7.9-39) is almost exact and the method works, though
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unreliable. Spence et al. (1993) have used alternative methods to overcome this instability problem. In
the next section, we discuss the problem of instability in more details.

7.10 STABILITY

In Example 7.9-4, we have seen that due to round-off errors, the shooting method does not work
when the Peclet number is in the range of 1 and 500. This is an example of instability. The round-off
errors (or truncation errors) amplify as the integration proceeds and the magnitude of the errors
exceeds the solution. We illustrate this situation further by considering the following example.

Example 7.10-1. Write the finite difference equation for the system

P- = -2y (7.10-la)
dx

y(0) = 1 (7.10-lb)

Examine the stability of the system.

The exact solution is

y = e~2x (7.10-2)

We note that y is a decreasing function of x.

Using Equation (7.9-22b), the finite difference equation is

y j + i -y j - i = - 2 h y j (7-10-3)

Instead of solving Equation (7.10-3) numerically, we seek an analytic solution. The solution is of the
form

y- = C 1 a J 1 +C 2 a^ (7.10-4)

Substituting Equation (7.10-4) into Equation (7.10-3), we obtain

Cjoc^"1 [04+21104-l ] + C 2 a 2 1 [«2 + 2 h a 2 - l ] = 0 (7.10-5)

From Equation (7.10-5), we deduce that a j 2 are the roots of

a 2 + 2 h a - l = 0 (7.10-6)

The values of a j 2 are
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al2 = -2h ± Vl+4h 2 (7.10-7)

Since h is assumed to be small, we expand V1 + 4h in powers of h.

The roots are then approximately given by

«1 = l - 2 h (7.10-8a)

a2 = - (1 +2h) (7.10-8b)

The solution is given approximately by

yj = C 1 ( l - 2 h ) j + C 2 ( - l ) j ( l+2h) j (7.10-9)

Replacing j by Xj (Xj=jh), and noting that

lim (1 -2h)2 xJ / 2 h = e"2xJ (7.10-10a)
h->0

lim (1+2h)2xJ/2h = e2xJ (7.10-10b)
h->0

The solution y; can be written as

^ = qe"2*) +C2(-l) je2 xJ (7.10-11)

Applying boundary condition (7.10-1 b), we find C2 to be zero and y; is a decreasing function of

X J-

In an actual computation, there is round-off error and the value of C2 will not be exactly zero, but
will be small. It is multiplied by an exponentially increasing function of x,-. When x,- exceeds a
certain critical value, the second term (which is the error term) on the right side of Equation (7.10-11)
becomes the dominant term and the solution yj oscillates. This shows that the difference equation is
unstable. This arises because of the error in the initial condition and of replacing the first order
differential equation by a two-point difference equation.

If Equation (7.10-3) were solved numerically, the solution would be oscillatory for some values of X;
greater than a certain value. Instability depends on the differential equation and the method used. If
one method is unstable, choose another one.
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PROBLEMS

la. One root x^ of a quadratic equation

ax 2 + bx + c = 0

is xl = [-b + V b 2 - 4 a c ] / 2 a .

Calculate xx if a = 1.11, b= 111 and c = 0.111.

Is the answer reliable? Note that Xj is given by the difference of two almost equal numbers

and this could result in loss of significant figures.

By expanding V b - 4ac , show that xj can be approximated by

xl a = - c / b

By multiplying the numerator and denominator by b + V b - 4ac , show that x^ can be

written as

x l b = [ -2c/(b + V b 2 - 4 a c ) ]

For the given values of a, b, c, calculate xj a and xjt,. Evaluate a x ^ + b x + c for
x = Xj, x = x l a , and x = x^,. Comment on the results.

2a. The equation e x - 4 x = 0 has a root in the interval [0,1]. Obtain the root (i) by the method
of bisection and (ii) by Newton's method.

Answer: 0.7148

3a. The cubic x3 - 2x - 1 has a root in the interval [1, 2]. Use (i) the secant method and (ii)
Newton's method to find the root.

Answer: 1.618

4a Deduce that an iterative formula for finding the cube root of a real number A is

xk+l = x k - ( x ^ - A ) / 3 x £

Use the formula to calculate the cube root of 30. Answer: 3.107

5a. Obtain the three roots of x3 - 4x + 1 by the fixed point iteration method. Test the
convergence in each case.

Answer: -2.1149, 0.2541, 1.8608
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6b. The Redlich-Kwong equation [Equation (1.6-2)] can be written as

P = RT A
V - b V(V + b)

Calculate b if P = 87, T = 486, V= 12, A = 0.08, and R = 1.98.

7b. Try to solve the equation x3 - x - 1 = 0, using Newton's method with starting values of
x0 = 0 and x0 = 1. Plot the function f (x) = x3 - x - 1 and explain why Newton's
method does not work with x0 = 0. Are the other two roots real or complex? Compute
them.

Answer: 1.3247

8 a. Write the following set of equations in matrix form and solve by the method of elimination

Xj + x2 + x3 = 0

Xj + x 2 + 3x3 = 0

3 x j + 5 x 2 + 7x3 = 1 Answer: — -jr, i-, 0

9a. Show that the following set of equations has no solution

x1 + x2 + x3 = 0

Xj + 2 x 2 + 3x3 = 0

3x1 + 5 x 2 + 7x3 = 1

Is the coefficient matrix A singular? What is the rank of A?

1 Ob. Solve the following two sets of equations

(i) 28x j+25x 2 = 30

19xj + 17x2 = 20

(ii) 28x! + 25x2 = 30

19x! + 17x2 = 19

Note that the two sets are almost identical. Are their solutions almost identical? Compute the
determinant of the coefficient matrix A. Did you expect this value of IA I? Compute the

condition number K (A).

Answer: 2491



NUMERICAL METHODS j ^

l i b . Compute the inverse of

1 1/2 1/3 "

A = 1/2 1/3 1/4

_ 1/3 1/4 1/5 .

by the method of elimination in (a) exact computation, (b) rounding off each number to three
figures. The matrix A is a Hilbert matrix and its elements a- = l / ( i + j - l ) . Calculate its
condition number K (A).

12a. In structural mechanics, the flexibility matrix F of a cantilever is given by

L/(EA) 0 0

F = 0 L3/(3EI) L2/(2EI)

0 L2/(2EI) L/(EI)

where L is the length of the cantilever, E is Young's modulus, A is the cross-sectional area,
and I is the second moment. Compute the stiffness matrix K, which is the inverse of F .

13 a. Solve the system of equations

-Xj + 4 x 2 - x 3 = 1

- x 2 + 4x3 - x 4 = 1

4xj - x2 = 1

- x 3 + 4 x 4 = 1

by (i) Jacobi and (ii) Gauss-Seidel iteration methods. Compare their rates of convergence.

Answer: 0.3636, 0.4545, 0.4545, 0.3636

14a. Use the QR method to find the eigenvalues of the tridiagonal matrix

"2 1 0 "
1 2 1

-0 1 2J
Answer: 2, 2 ± il
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15b. Show that the matrices A and B defined by Equation (7.5-1) have the same eigenvalues.

The Gaussian elimination method transforms a matrix to an upper diagonal matrix. Can we

replace the QR method by the Gaussian elimination in the calculation of eigenvalues?

16a. From Equation (7.6-10), deduce the expressions P2(x) and P3(x) for equidistant points
x0, x1? x2, and x3. Choose x̂  = x0 - h, x2 = x0 + h, and x3 = x0 + 2h. Calculate

• it

i j (x 0 ) and i j (x0) and verify Equations (7.7-5, 6).

17b. The solution of the differential equation

subject to the condition

y(*i) = yj
/*xi+i

is y (x i + 1 ) = yi + i = y ; + I f(x,y)dx

Approximate f(x, y) by a polynomial pn(x), in the form given by Equation (7.6-10), taking
the interpolation points to be Xj, Xj+1,... with a constant stepsize h. Denote f (XJ, ŷ ) by fj.

By approximating f by a polynomial of degree 2 (through 3 points) and of degree 3 (through
4 points), show that Vj+1 is given respectively by

y i + i = y 1 +^- (23f i - i6 f I _ 1 + 5fi_2)

y i + i = y i + ^ ( 5 5 f i - 5 9 f i - i + 3 7 f i -2 -9 f i_ 3 )

These formulae are the Adams-Bashforth formulae [Equation (7.8-33)]. In the derivation of
the Adams-Bashforth formulae, we have interpolated f through the points Xj, x ^ , . . . and
not through the point Xj+i. If the point XJ+J is included, we obtain the Adams-Moulton
formulae. Show that if f is approximated by a quadratic expression passing through xj+1, Xj
and Xj_l5 yi+1 is given by

y i + i = y i + ^ ( 5 f i + i + 8 f i - f i _ 1 )

18 a. Show that the following functions are not cubic splines
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I l - 2 4 x + 1 8 x 2 - 4 x 3 , l < x < 2

(i) f(x) =

- 5 4 + 7 2 x - 3 0 x 2 + 4 x 3 , 2 < x < 3

1 3 - 3 1 x + 2 3 x 2 - 5 x 3 , l < x < 2

(ii) f(x) =

- 3 5 + 5 1 x - 2 2 x 2 + 3 x 3 , 2 < x < 3

19a. The viscosity r| of water at various temperatures T is given in the following table

T("C) 10 20 30

Ti(cp) I 1.3 L0 0.8

Compute the cubic splines that pass through the three given points. Evaluate the viscosity at

25°C. The measured value has been reported to be 0.8904 cp.

20b. The function f(x) = e x , 0 < x < l is approximated by y(x) = ao + a 1 x + a 2 x 2 . Obtain

/•I 2

a0, &\, and a2 such that I [f (x) - y (x)] dx is a minimum (least squares

approximation). Expand f(x) in a Taylor series about x = 0.5 up to the term x2. Compare
this series with y (x).

21a. The demand for a certain product is a linear function of the price. The sales of the product for
three different prices are given in the following table

Price ($) 1.00 1.25 1.50

Demand | 450 375 330

Find the least squares regression line and estimate the demand when the price is $1.40.

Answer: 349

22b. Show that the recurrence formula for evaluating the integral In defined by

* In = n- -10I n _ i

Use this formula to calculate I4 retaining (i) three significant and (ii) five significant figures.
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Use Simpson's rule to evaluate I4.

Compare the two methods and proposed a modified recurrence formula so as to avoid loss of

significant figures.

[Hint: I [xn / (10+x)] dx = I [ l -10/ (10+x)] x n - 1 dx] Answer: 0.0185
JO JO

t\ __ 2
23a. Evaluate I e x dx (a) by the trapezoidal rule, (b) by the Simpson's rule, (c) by the

Romberg's method, and (d) by the Gaussian method.
Answer: 0.7468

24a. Show, using Euler's method, that the initial value problem

dv
_^- = -ay + b , a > 0 , 0 < x < ° o
dx
y (0) = 1 + b/a

leads to the difference equation

y i + 1 - ( l - a h ) y i = bh

where yj~y(xj) , Xj = ih, h is the constant interval (x i + 1 -Xj ) . Verify that

yj = ( l - a h Z + b/a is a solution of the difference equation. Find conditions on h such that
yy tends to the proper limit as i tends to infinity.

25a. Use Euler's and Heun's methods to solve the equation

^ = x + y , y(0) = 1

with h = 0.01.

Solve the equation analytically and compare the values of y at x = 0.1.
Answer: 2ex - x - 1

26a. Solve the equation

dv
-f- = x + y + xy , y (0) = 1
dx

using (i) Euler's method with h = 0.025 and (ii) the fourth Runge-Kutta method with
h = 0.1 to find y(0.1).
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Work to five decimal places, compare the accuracy and amount of computations required
associated with the two methods, given that y(0.1), accurate to four decimal places, is
1.11587.

Use the Adams-Bashforth method to obtain y at x = 1 with h = 0.1.

27 a. A vibrating system with a periodic forcing term is given by

^ + 64y = 16cos8t
dt2

y(0) = y'(0) = 0

Find y (0.5), analytically and numerically, using the Runge-Kutta method.
Answer: -0.3784

28b. The steady one-dimensional heat equation can be written as

2

— - 0 . 0 1 (T-20) = 0
dx2

The boundary conditions are

T(0) = 40, T(10) = 200

Find the analytical solution and solve the problem numerically using (a) the shooting method,
and (b) the finite difference method. Compare the results obtained by the three methods.

29a. Solve the boundary value problem

^ - + 2 ( 2 - x ) ^ = 2 ( 2 - x ) , 0 < x < 4
dx2 dx

y(0) = - l , y(4) = 3

by the method of finite differences.

Choose an appropriate value of h. Is h = 1 appropriate?

30b. In Problem 17b, we can integrate from Xj_j to xi+1 instead of from Xj to x,+1. Show that,
under certain conditions which should be stated, we obtain a multistep formula which can be
written as
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yi + i = yi_i + 2hfi

where h = Xj+j - Xj.

Solve the initial value problem

^ = - 2 y + l , y(O) = l

by the formula obtained in this problem and by Euler's formula. Which of the two methods
gives the correct solution? Discuss the stability of the two methods.



CHAPTER 8

NUMERICAL SOLUTION
OF PARTIAL DIFFERENTIAL EQUATIONS

8.1 INTRODUCTION

In Chapters 5 and 6, we have discussed several analytical methods for solving P.D.E.'s. These
methods cannot be used to solve all P.D.E.'s. For example, the method of separation of variables can
generally be applied only to linear homogeneous equations with homogeneous boundary conditions.
Under favorable conditions, non-homogeneity can be transformed to homogeneity via auxiliary
functions as shown in Section 5.7.

Many equations cannot be solved exactly and we have to be satisfied with approximate solutions.
Even some of the exact solutions given in Chapter 5 are in reality approximate solutions. For instance,
the infinite Fourier series solution obtained in Chapter 5 has the appearance of an exact solution, but,
in many cases, we can sum only a finite number of terms. The solution is then an approximate
solution. Also, the Fourier coefficients are expressed as integrals and some of them cannot be
evaluated analytically, and we have to integrate them numerically.

Using computers, numerical methods are the most appropriate methods of solving some P.D.E.'s. In
this chapter, we shall extend the method of finite differences described in Chapter 7 to P.D.E.'s.
We shall also consider the method of finite elements.

8.2 FINITE DIFFERENCES

For simplicity, we consider the unknown function u to be a function of two variables x and y. We
divide the xy-plane into a grid consisting of (n x m) rectangles with sides Ax = h and Ay = k as
shown in Figure 8.2-1. We denote the value of u(x i ;y j )by u^, the value of u(Xj+h,y|) by
ui + 1 j , the value of u(xi? yj+k) by u i j + 1 , and that of u(xi+h, yj+k) by u i + 1 j + 1 . Similarly,
ui + s j + t denotes the value of u(xj+sh, y^+tk), where s and t are integers.

Using Taylor's theorem, we have

d h2 d2

u(Xi+h, Vj) = u i + l i j = ui,j + h ^ - . + Y a ^ + R " (8.2-la,b)
1>J i,j

where Rn is the remainder term.
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FIGURE 8.2-1 Grid system

Similarly,

u(xrh,yj) = Ui_1;j = u i ; j - h ^ | . + y 0 +Rn (8-2-2a,b)
i.j x jj

From Equations (8.2-la,b), we deduce that — can be approximated as
9x i,j

P- - < u i + l i j - u i t j ) / h (8-2"3a)
3x i,j

The partial derivative 3u /9x can also be approximated from Equations (8.2-2a,b) by

! r - ( U i j - U i - u ) / h (8-2-3b>
dx i,j

In deriving Equations (8.2-3a, b), we have neglected terms of O (h2). To include term of O (h ), we
find that the difference of Equations (8.2-la, b, 2a, b) yields

— = ( u i + l j - u i _ l j ) / 2 h + O(h2) (8.2-3c)
ax i j >J
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Formulae (8.2-3a, b, c) are the forward, backward, and central difference forms of du/dx

respectively.

Adding Equations (8.2-la, b, 2a, b) yields

0 ~ (u1 + l ,J-2 u 1,j + u i - l , J ) / h 2 (8-2-4)
i.j

Similarly, — and — - can be approximated as
dy dy

(u i , j + l - u i , j ) / k

— « ( U i j - U i - j J / k (8.2-5a,b,c)

dy ij

(u i , j+i-u i j- i) / 2 k

~ ^ ~ ("ij + l-ZUij+Uij.^/k2 (8.2-6)

y i.j

Using the central difference form, the mixed second order derivative is given by

82u
^ y - (ui + l,j + l -u i- l , j + l ~u i+l , j - l + u i - l , j - l> / 4 h k <8-2-7)

The partial derivatives are replaced by the finite differences and a partial differential equation becomes a
finite difference equation. We now consider the parabolic, elliptic, and hyperbolic types of
equations.

8.3 PARABOLIC EQUATIONS

The canonical form of the parabolic equation is

^ = « 2 ^ (8.3-1)

at dx2

where a is a constant.

We suppose the region of interest is
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0 < x < a , t > 0 (8.3-2a,b)

The boundary and initial conditions are assumed to be given by

u (0, t) = g l (t), u (a, t) = g2 (t), u(x,0) = f(x) (8.3-3a,b,c)

We subdivide the region of interest into rectangles as shown in Figure 8.2-1 with the y-axis being
replaced by the t-axis. In this case, we have a semi-finite region with tm tending to infinity and
x n (=nh) = a.

Explicit Method

Using Equations (8.2-4, 5a), Equation (8.3-1) becomes

«ij + l - « i . j = ^ ( » i + l j - 2 u i j + u i _ 1 > j ) (8.3-4a)
h

= r(ui+l , j-2 ui , j + ui-l,j) (8-3'4b)

where r = a 2 k/h 2 . (8.3-4c)

Equation (8.3-4b) can be written as

ui,j + l = ( 1 - 2 r ) u i , j + r ( u i + l , j + u i - l j ) (8-3-5)

Equation (8.3-5) gives the value of Uj : + 1 in terms of Uj • , u J + 1 •, andui_1 •• that is to say, the

values of u along the (j + l) th row can be determined if the values of u along the j t h row are known.
The initial condition gives the values of u along the zeroth row, so the values of u along the first row
can be computed. Once the values of u along the first row are known, we can compute u along the
second row. This process can be repeated for the subsequent rows.

Formula (8.3-5) which gives the value of Uj ; + 1 in terms of known values of M^ • u i + 1 :,
anduj j j is an explicit formula.

Note that Equations (8.3-3a, b, c) can be written respectively as

u o j = g1(kj) , u n j = g2(kj) , u i 0 = f(ih) (8.3-6a,b,c)

Example 8.3-1. Solve Equation (8.3-1) with a = 1 by the method of finite differences. The
boundary and initial conditions are

u(0,t) = u ( l , t ) = 0 , 0 < x < l (8.3-7a,b)



NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS 681

2x, 0 < x < i -
u(x,O) = (8.3-8a,b)

2 ( 1 - x ) , ^ x < l

Choose

(a) h = 0.1, k = 0.005; (b) h = 0.1, k = 0.01 (8.3-9a,b,c,d)

In case (a)

r = k/h2 = 0.5 (8.3-10a,b)

Equation (8.3-5) can be written as

ui,j + l = 0 . 5 ( u i + 1 J + u i _ l j ) (8.3-11)

From Equations (8.3-8a, b), we can calculate the values of Uj 0 and substituting these values into
Equation (8.3-11) yields the values of U| j . The values of Uj j then generate the values of Uj 2 ,
and this process is repeated to obtain the values of Uj m , that is to say, the values of u at time t m .

We note that, in this example, u is symmetrical about the midpoint (x = 0.5) and so we need to
compute the values of u in the interval 0 < x < 0 . 5 . By symmetry, u (0.6, t) is equal to
u (0.4, t).

The computed values of u are given in Table 8.3-1.

TABLE 8.3-1

Values of u for two values of r, (a) r = 0.5, (b) r = 1.0

xo = O.O X!=0.1 x2 = 0.2 x3 = 0.3 x4 = 0.4 x5 = 0.5
tj (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b)

0.0 0.0 0.0 0.2 0.2 0.4 0.4 0.6 0.6 0.8 0.8 1.0 1.0

0.005 0.0 0.0 0.200 — 0.400 — 0.600 — 0.800 — 0.800 —

0.010 0.0 0.0 0.200 0.200 0.400 0.400 0.600 0.600 0.700 0.800 0.800 0.600

0.015 0.0 0.0 0.200 — 0.400 — 0.550 — 0.700 — 0.700 —

0.020 0.0 0.0 0.200 0.200 0.375 0.400 0.550 0.600 0.625 0.400 0.700 1.000

0.025 0.0 0.0 0.187 — 0.375 — 0.500 — 0.625 — 0.625 —

0.030 0.0 0.0 0.187 0.200 0.344 0.400 0.500 0.200 0.563 1.200 0.531 -0.200

0.035 0.0 0.0 0.172 — 0.344 — 0.453 — 0.516 — 0.531 —

0.040 0.0 0.0 0.172 0.200 0.312 0.000 0.430 1.400 0.492 -1.200 0.484 2.600
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In case (b)

r = l (8.3-12)

Equation (8.3-5) becomes

ui,j + l = - u i , j + (ui+l,j + ui-l,j) (8.3-13)

Proceeding as in case (a), we can compute the values of Uj l , Uj 2 , ••• from Equation (8.3-13) and

these values are also tabulated in Table 8.3-1.

From Table 8.3-1, it can be seen that the values of u obtained in case (b) cannot be the solution of
Equations (8.3-1, 7a, b, 8a, b). The analytical solution [see Problem 1 la, Chapter 5] is

u (x, t) = -£- Y — ^ sin [(2n + 1) Ttx] exp [- (2n + I ) 2 7C2t] (8.3-14)
7 i 2 n = 0 ( 2 n + l ) 2

Equation (8.3-14) predicts that u is an exponentially decreasing function of t. The values of u
obtained in case (a) are in qualitative agreement with the analytical solution whereas the values of u
obtained in case (b) are not. This example can be associated with the heat transfer in a rod of unit
length with its two ends kept at zero degrees. Initially, the temperature distribution is given by
Equations (8.3-8a, b) and the temperature is positive. From the physics of the problem, the
temperature can never be negative and we conclude that the values of u in column (b) are
unacceptable.

This example shows the importance of the choice of the value of r and the explicit method is not valid
for all values of r. A convergence, stability, and compatibility analysis is necessary. Such an
analysis can be found in a more advanced text, such as the one by Richtmyer and Morton (1967).

In the present example, the explicit method is valid only when 0 < r < 1/2. We next consider an
implicit method which is valid for a wider range of values of r.

Crank-Nicolson Implicit Method

Crank and Nicolson (1947) proposed that be approximated by the mean value of

3 x 2 i.j

32u d2u
and . Equation (8.3-4b) is now replaced by

3 x 2 i,j dx2 i,j + i

u i , j + l - u i , j = f ( u i + l , j - 2 u i , j + u i - l , j + u i + l , j + l - 2 u i , j + l + u i - U + l ) ( 8 . 3 - 1 5 )
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On simplifying Equation (8.3-15), we obtain

- r u i - l j + l + 2 ( 1 + r ) u i , j + l - r u i + l , j + l = ru i_1 j + 2(1 - r ) U i j + ru i + 1 j (8.3-16)

In the explicit method, the right side of Equation (8.3-5) involves three known terms, while the left

side contains one unknown term. In the implicit method [Equation (8.3-16)], the right side also

involves three known terms, but the left side contains three unknown terms. To simplify the writing

of Equation (8.3-16), we introduce the following notation

ui,j + l = vi a n d ui,j = wi (8.3-17a,b)

Equation (8.3-16) can be written as

- r ^ +2(1 + r )Vj - rv i + 1 = rwi_1 + 2 ( l - r ) w i + rw i + 1 = c{ (8.3-18a,b)

In Equations (8.3-18a, b), the left side is in terms of V J J , Vj, and vJ + 1 only, which are values of

u at time (j + 1) at points XJ_J, Xj, and xi + 1. On the right side, we have only the values of u at

an earlier time t;. From the initial conditions, we can calculate the initial values of c j .

We write the first few as well as the last few rows of Equation (8.3-18b) and we obtain

- r v o + 2 ( l + r ) v j - r v 2 = cj (8.3-19a)

- r v 1 + 2 ( l + r ) v 2 - r v 3 = c2 (8.3-19b)

- r v 2 + 2 (1 + r) v3 - rv4 = c3 (8.3-19c)

- r v n _ 3 + 2 ( l + r ) v n _ 2 - r v n _ 1 = cn_2 (8.3-19d)

- rv n _ 2 + 2 ( l + r ) v n _ 1 - r v n = c ^ (8.3-19e)

If the boundary conditions are given in terms of u, then v0 (= uQ - + 1) and vn (= un : + 1 ) are

known and the unknowns are vj, v2, ... , vn_j. Writing all the known quantities on the right side,

Equations (8.3-19a to e) become

2 ( l + r ) V j - r v 2 = CJ+TVQ = dj (8.3-20a,b)

- r v t +2(1 + r ) v 2 - r v 3 = d2 (8.3-20c)

- r v 2 + 2 ( l + r ) v 3 - r v 4 = d3 (8.3-20d)



688 ADVANCED MATHEMATICS

- rv n _ 3 + 2(l + r ) v n _ 2 - r v n _ 1 = dn_2 (8.3-20e)

- r v n - 2 + 2 ( 1 + r ) y n - l = c n - l + r v n = d n - l (8.3-20f,g)

Equations (8.3-20 a to g) can be written in matrix form as

Av = d (8.3-21a)

where

2 (1 + r) - r 0 0 0 - - - 0

- r 2 ( l + r ) - r 0 0 - - - 0

0 - r 2 ( l + r ) - r 0 - - - 0
A =

0 0 0 0 0 0 - r 2 ( 1+ r) - r

0 0 0 0 0 0 0 2 (1 + r) - r

(8.3-21b)

v l d l

V2 d 2

v = '. , d = i (8.3-21c,d)

vn-2 dn-2

_vn-lj Ld»-1_

The matrix A is a (n - 1) x (n - 1) tridiagonal matrix, v and d are column vectors, each having

(n - 1) elements. Equation (8.3-2la) can be solved by one of the methods discussed in Chapter 7.
Among the most widely used methods are the Gaussian elimination method and the iterative Gauss-
Seidel method. If the Gauss-Seidel method is chosen [Equation (7.4-53)], the (k + 1) iterate of Vj is
given by

(8.3-22)



NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS 689

From the initial and boundary conditions, we can calculate dj at time to(=O) and solving Equation
(8.3-2la), we obtain vj which are the values of u; at time t j . These values can be used to compute
dj at time tj and from Equation (8.3-21a), we can obtain the values of Uj at time t2. This process
can be repeated to obtain the values of uj at time t3, . . . , tm .

Example 8.3-2. Solve Equation (8.3-1) subject to Equations (8.3-7a, b, 8a, b), using the Crank-
Nicolson formula. Assume a to be unity and choose h = 0.1 and k = 0.01.

With the given choice of h and k, the value of r is unity. From the symmetry of the problem, we
need to calculate up to x = 0.5 only.

In this case, using the symmetry property (v6 = v4), A can be written as

" 4 - 1 0 0 0
-1 4 - 1 0 0

A = 0 - 1 4 - 1 0 (8.3-23)
0 0 - 1 4 - 1
0 0 0 - 2 4

From Equations (8.3-18b, 20a tog), we find that initially the dj are

" 0.4 "
0.8

d = 1.2 (8.3-24)
1.6

- 1.6 -

For the given A. and d [Equations (8.3-23, 24)], we can solve, by the elimination method, Equation

(8.3-21a) to obtain Vj which are the values of u at points Xj at time t = 0.01. We can now
calculate dj at time t = 0.01 and solving Equation (8.3-21a), we obtain the values of u at time
t = 0.02. We can repeat this process and obtain the values of u at subsequent times.

Table 8.3-2 gives the values of u at various times t; and the analytical solution at the point x = 0.5.

TABLE 8.3-2

Numerical (N) and analytical (A) values of u

N N N N N x5 = 0.5
tj xo = o Xi=0.1 x2 = 0.2 x3 = 0.3 x4 = 0.4 N A

0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.0
0.01 0 0.1989 0.3956 0.5834 0.7381 0.7691 0.7743
0.02 0 0.1936 0.3789 0.5400 0.6461 0.6921 0.6809
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We noted that for r = 1, the explicit method did not generate a meaningful solution, but the implicit
method does. From Tables 8.3-1 and 2, it is seen that the Crank-Nicolson formula provides more
accurate values of u than the explicit method for r = 0.5. The Crank-Nicolson formula is
convergent for all values of r, though the smaller the value of r the better the accuracy.

•

Compared to the explicit method [Equation (8.3-5)], the Crank-Nicolson method [Equation (8.3-18a)]
involves more computation; however, in the Crank-Nicolson method, there is no restriction on r, the
time interval can be larger, and this generally compensates for the increase in computational effort at
each grid point.

Derivative Boundary Conditions

So far we have assumed that u is given on the boundary. In some cases, it could be that the
derivative of u is given on the boundary. For example, in the heat conduction problem, if the material
is insulated, there is no heat flow across the surface and the boundary condition is

^ = 0 (8.3-25)

on

where n is the unit outward normal to the surface.

We now replace the boundary condition (8.3-3a) by
^ = Pu, t > 0 (8.3-26)
d x x=0

where (3 is a constant.

Equation (8.3-25) corresponds to the case J3 = 0.

To obtain better accuracy, we use the central difference form of du/dx [Equation (8.2-3c)] and
Equation (8.3-26) becomes

( U l J - u _ 1 ; j ) = 2 h p u 0 j , j = 0, 1,2, ... (8.3-27)

We note that u^ • is outside our region and can be eliminated via Equation (8.3-1) as shown later.

If we employ the explicit formula, the difference equation at the origin (x0 = 0) is given by [Equation
(8.3-5)]

uo,j + i = ( 1 - 2 r ) u o , j + r ( u l , j + u - l , j ) (8.3-28)
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Combining Equations (8.3-27, 28), we eliminate u_j : to obtain

uo,j + l = ( 1 - 2 r ) u o , j + r ( u l , j + u l , j - 2 h P u o , j ) (8.3-29a)

= uO J + 2 r [ u 1 J - ( l + h p ) u O J ] (8.3-29b)

From the initial condition u0 0 , Uj 0 are known and from Equation (8.3-29b), the values of u at

later times at the origin can be computed. Suppose that at the other end (xn =1) the boundary

condition is given by

^ = yu, t > 0 (8.3-30)
d x x=l

where y is a constant.

Using the same technique as at the origin, we deduce that

un,j + l = un,j + 2 r [ U n - l , j - O + h y ) u n , j ] (8.3-31)

From Equation (8.3-31) and using the initial condition, the values of u at subsequent times can be
computed.

If the Crank-Nicolson formula is used, we obtain from Equation (8.3-18a)

- r v _ j + 2 ( 1 + r ) v o - r v j = rw_j + 2 (1 - r ) wQ + rw, (8.3-32)

Equation (8.3-27) is true for all times and we have

V J - V ^ J = 2hpv0 (8.3-33a)

w 1 - w _ 1 = 2hpw0 (8.3-33b)

Combining Equations (8.3-32, 33a, b) yields

( 1 + r + r h p ) v o - r v j = (1 - r - hPr) w0 + rwj = c0 (8.3-34a, b)

The boundary condition at the other end (xn =1) can be treated similarly.

We have two equations to determine v0 (= u0 - + l) and vn (= un - + 1) .

The matrix A has been augmented by two columns and two rows, the vector v has two new

elements (v0 and vn) , and similarly vector c is increased by two elements (c0 and cn). Note that
v0 and vn are not given and we work with Equations (8.3-19a to e) instead of with Equations
(8.3-20a to g).
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Example 8.3-3. Solve the equation

9H. = i J i > 0 < x < l (8.3-35)
9t 3x2

subject to the conditions

/2x, 0 < x < l / 2
u(x, 0) = ( (8.3-36a,b)

\ 2 (1 - x), 1/2 < x < 1

^ = § 5 . = o , for all t (8.3-36c,d)
ax x=0 ax x=1

Use the Crank-Nicolson formula and the central difference scheme for the boundary conditions.
Choose h = 0.1 and k = 0.01. As discussed before, the problem is symmetrical about x = 0.5
and we need to compute the values of u between 0 < x < 0.5. The value of r is one and the
value of P is zero. Equations (8.3-34a, b) become

2 v o - V l = wl = c0 (8.3-37a,b)

Equations (8.3-37a, b, 19a to e) can be written as

" 2 - 1 0 0 0 0 1 r v o l [co~
- 1 4 - 1 0 0 0 v i c i
0 -1 4 -1 0 0 v2 _ c2

0 0 - 1 4 - 1 0 v3 " c3 <8-3-38)
0 0 0 - 1 4 - 1 V 4 C 4
0 0 0 0 - 2 4 J LV5J L C 5 -

The initial values of Cj can be computed from the initial conditions [Equations (8.3-36a, b)] and
Equation (8.3-37b). Writing Cj as a row vector, we have

Ci = [0.2, 0.4, 0.6, 0.8, 1.0, 0.8], (i = 0, ... , 5) (8.3-39)

Solving Equation (8.3-38) with the given values of Cj [Equation (8.3-39)], we obtain vj which are
the values of û  at time tj (= 0.01). With these values of Vj, we can compute Cj at time tj and, on
solving Equation (8.3-38), we obtain the values of Uj at time t2 (= 0.02). We repeat the process and
we obtain the values of u at times t3, t^,... , t m . Table 8.3-3 gives the values of u; at various
times.
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TABLE 8.3-3

Values of u for r = 1

tj xo = o x 1 = 0 .1 x2 = 0.2 x3 = 0.3 x4 = 0.4 x5 = 0.5

0.0 0.0 0.2 0.4 0.6 0.8 1.0
0.01 0.212 0.234 0.274 0.390 0.454 0.427
0.02 0.176 0.140 0.151 0.189 0.214 0.214

Example 8.3-4. Solve the heat equation

— = — , t > 0, 0 < x < 1 (8.3-40)
at 9x2

subject to

u(x, 0) = 0 , u(0,t) = u( l , t ) = 1 (8.3-41a,b,c)

Using the Crank-Nicolson method, Equation (8.3-40) is replaced by the finite difference Equation
(8.3-16) which on dividing by r can be written as

-Ui- l ) j + l + 2 ( l + l / r )u i J + 1 - u i + 1 ) J + 1 = u i _ l f j - 2 ( l - l / r ) u i > j + u i + 1 > j (8.3-42)

It is Equation (8.3-42) which is adopted in the following program. The results are illustrated in Figure
8.3-1.

The analytical solution is

u = 1 _A£""P[-^On| ' ) 2 t ] s i n ( 2 l l + 1 ) l I X (83.43)

n=0 ^ '

From Equation (8.3-43), we deduce that u—>1 as t—> °o. This is confirmed in Figure 8.3-1.

C MAIN PROGRAM TO SOLVE EXAMPLE 8.3-4
C SOLUTION METHOD IS CRANK-NICOLSON

C Y - THE SOLUTION VECTOR
C A,B ,C - THE COEFFICIENTS OF THE TRIDIAGONAL SYSTEM OF EQUATIONS
C D -THE RIGHT SIDE OF THE EQUATIONS
C YNEW -THIS VECTOR WILL CONTAIN THE NEW SOLUTION VECTOR
C BETA,GAMM - WORK SPACE FOR THE EQUATION SOLVER
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C FOR ILLUSTRATIVE PURPOSES ALL VECTORS HAVE THE SAME DIMENSIONS
C ALTHOUGH SOME ELEMENTS ARE NOT USED

REAL*8Y(21),YNEW(21),BETA(21),GAMM(21),A(21),B(21),C(21),D(21)
REAL*8 DT,DX,ALPHA,CF1,CF2

C INITIALIZE THE SOLUTION VECTORS

DO1 1=1,21
Y(I)=0.D0
YNEW(I)=O.D0

1 CONTINUE

C BOUNDARY CONDITIONS AND INTEGRATION PARAMETERS

YNEW(1)=1.DO
YNEW(21)=l.D0
DT=.002D0
DX=.05D0
T=0.
NITER=25
ALPHA=DT/(2.D0*(DX**2))
CFl=2.D0+(l.D0/ALPHA)
CF2=2.D0-( 1 .DO/ALPHA)

C INITIALIZE THE VECTORS FOR THE TRIDIAGONAL SYSTEM

DO2 1=1,21
A(I)=-1.DO
B(I)=CF1
C(I)=-1.DO
D(I)=O.DO
BETA(I)=O.DO
GAMM(I)=0.D0

2 CONTINUE

C INITIAL OUTPUT

WRITE(6,998)

WRITE(6,999)T,Y(1),Y(6),Y(11),Y(16),Y(21)

C START INTEGRATION

DO3 L=l,10
DO 31 K=l,NITER
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C THE RIGHT SIDES FOR THE FIRST AND LAST EQUATIONS

D(2)=Y( 1)+Y(3)-CF2* Y(2)+YNEW( 1)
D(20)=Y( 19)+Y(21 )-CF2* Y(20)+YNEW(21)

C THE RIGHT SIDES FOR THE OTHER EQUATIONS

DO 311 J=3,19
D(J)=Y(J-1 )+Y( J+1 )-CF2* Y(J)

311 CONTINUE

C SOLVE THE EQUATIONS AND UPDATE TIME

CALLTRDIAG(19,A(2),B(2),C(2),D(2),YNEW(2),BETA,GAMM)
T=T+DT

C UPDATE THE SOLUTION VECTOR

DO 312 J=l,21
Y(J)=YNEW(J)

312 CONTINUE

31 CONTINUE

C OUTPUT RESULTS

WRITE(6,999) T,Y(1),Y(6),Y(11),Y(16),Y(21)

3 CONTINUE

STOP

998 FORMAT(7X,'T',7X,'X=0',7X,'X=0.25',4X,'X=0.5',5X,'X=0.75',4X,
* 'X=1.07)

999 FORMAT(1X,6F10.5)

END

C SUBPROGRAM TRDIAG SOLVES A TRIDIAGONAL SYSTEM OF EQUATIONS

C N -THE NUMBER OF EQUATIONS

C A,B,C - THE VECTORS OF COEFFICIENTS OF THE LEFT SIDE
C D -THE RIGHT SIDE VECTOR
C BETA,GAMM - WORK SPACE VECTORS
C YNEW - THE SOLUTION VECTOR

SUBROUTINE TRDIAG(N,A,B,C,D,YNEW,BETA,GAMM)
REAL*8 A(N),B(N),C(N),D(N),YNEW(N),BETA(N),GAMM(N)
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BETA(1)=B(1)
GAMM(1)=D((1)/BETA(1)
DO 1 1=2,N
BETA(I)=B(I)-(A(I)*C(I-1)/BETA(I-1))
GAMM(I)=(D(I)-(A(I)*GAMM(I-1)))/BETA(I)

1 CONTINUE
YNEW(N)=GAMM(N)
DO 2 J=1,N-1
I=N-J
YNEW(I)=GAMM(I)-(C(I)*YNEW(I+1)/BETA(I))

2 CONTINUE
RETURN
END

\ \ • - , * * A A * * . , - • / /

\ \ • * _ . . _ . A . A - * A • / / /

0.8 - \ - - ^ ----TK: :«^:' -=r /
m N . " - -^ _ i ' ' ^ ^

3 \ x s /

p { \ /

0 . 2 -I 1 1 1 1 < 1 1 1 *

0 0.2 0.4 0.6 0.8 1
X

-*-1=0.05 -*-1=0.10 * t=0.15 -*••• t=0.20 « t=0.25 -»-1=0.30 -»•• t=0.35

FIGURE 8.3-1 Temperature distribution at various times

8.4 ELLIPTIC EQUATIONS

An example of an elliptic equation is Laplace's equation which can be written in two-dimensions as

_ _ + _JL _ 0 (8.4-1)
3x2 dy2
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Substituting Equations (8.2-4, 6) into Equation (8.4-1), we obtain the difference form of Laplace's
equation and it is

U; , i ; - 2 U j : + U : i : Uj • , - 2 U : • +U- • ,

h2 k2

It is usual to take h = k and Equation (8.4-2) simplifies to

Uj+ij + u j , ! ;j + u i J + 1 + u i J _ 1 - 4 u i j = 0 (8.4-3a)

or

ui,j = 4 (ui+l,j + u i - l . j + u i , j + I + u i , j - l ) (8"4"3b)

Equation (8.4-3a) is known as a five-point formula as it involves five points. Equation (8.4-3b)
shows that the value of u at point (i, j) is the average value of u computed from its four nearest
surrounding points, as shown in Figure 8.2-1. This implies that the value of u at an interior point
cannot be a maximum or a minimum (see Chapter 3, maximum modulus principle).

The appropriate boundary conditions associated with elliptic equations are (see Chapter 5, Section 6):

(i) values of u given on the boundary (Dirichlet problem);

(ii) normal derivative of u given on the boundary (Neumann problem);

(iii) a combination of u and its normal derivative is given on the boundary (Robin problem).

Dirichlet Problem

We assume the region to be rectangular and given by 0 < x < a, 0 < y < b .

We subdivide the region into small squares each of length h (= k), such that

xn = a> ym = b ' xo = yo = ° (8.4-4a,b,c,d)

The boundary conditions can be written as

u0,j = «0,j ' Un,j = an,j ' Ui,0 = ai,0 ' ui,m = ai ,m (8.4-5a,b,C,d)

where (Xj : are given.

For simplicity, we consider a coarse mesh and assume m = n = 3.

Equation (8.4-3a) now becomes, using the row-by-row ordering,

(8.4-2)
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- 4 u l , l + u 2 , l + u 0 , l + u l , 2 + u l ,0 = ° (8.4-6a)

- 4 u 2 i + u 3 2 + u 1 1 + u 2 2 + U2 o = ^ (8.4-6b)

- 4 u l ) 2 + u 2 , 2 + u 0 ; 2 + u l , 3 + u l , l = ° (8.4-6c)

- 4 u 2 2 + u3 2 + u l 2 + U2 3 + U 2 1 = ^ (8.4-6d)

We label the four unknowns (u j j , u2 j , u^ 2> a nd U2 2) a s (vi> V2> V 3 ' anc* V4^- Combining

Equations (8.4-5a to d, 6a to d), we obtain

- 4 V J + V 2 + V 3 = - a o > 1 - a l j O = rx (8.4-7a,b)

V l ~ 4 v 2 + V 4 = ~ a 2 , 0 ~ a 3 , l = r2 (8.4-7c,d)

V l - 4 v 3 + v 4 = - a 1 3 - a 0 2 = r3 (8.4-7e,f)

V2+ v 3 - 4 v 4 = - a 3 , 2 ~ a 2 , 3 = r4 (8.4-7g,h)

Equations (8.4-7a to h) can be written in matrix form as

" - 4 i . i o i r v i ] r r i"

1 - 4 . 0 1
V 2 r 2

= (8.4-8a)
Vo r ,

1 0 . - 4 1 3 3

0 1 . 1 - 4 J [_V4J Lr4_

or A v = x (8.4-8b)

Note that the matrix A can be partitioned into four matrices as shown in Equation (8.4-8a). An

alternative way of writing Equation (8.4-8b) is

" B I '
7 " v = r (8.4-9)
L _

where ]_ is the (2 x 2) identity matrix and B is another (2 x 2) matrix.

For any value of n and m, A is a (n - 1) (m - 1) rows * (n - 1) (m - 1) columns matrix. It can be

partitioned into (m - 1) identity matrices each of size ( n - l ) x ( r i - l ) and (m - 1) square matrices
each of size ( n - 1 ) x ( n - 1 ) denoted by B . A and B are of the form
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"1 i 0 "
I B I

A = '. (8.4-10a)

o i l l
i -

--4 1 Q "

1 - 4 1

B = '. (8.4-10b)

o l -4 l
1 - 4

If the size of A is small, Equation (8.4-8b) can be solved by the method of Gaussian elimination. But

if A is large, and given that it is sparse, it is more economical to adopt the method of iteration. This

method is discussed in Chapter 7, Section 4. In this chapter, we describe the method of successive
over relaxation (S.O.R.).

The S.O.R. method is essentially a modified version of the Gauss-Seidel method (see, Section 7.4).

We use the same notation as in Chapter 7 and the kth iterate is written as u. .. From Equation

(8.4-3b), we see that a possible iteration formula is

Note that, as in the Gauss-Seidel method, we have used the new values (k + 1 iterate) of u: i ; and

U i , j - 1 "

Equation (8.4-11) can also be written as

(k+l) (k) i (k) (k+i) (k) (k+i) (k) ,o , . . .
Ui,j = Ui,j + 4 [ u i + l , j + U i - l , j + u i , j + l + u i , j - l - 4 u i , j ] <8-4-1 2)

To improve convergence, Equation (8.4-12) is modified to

(k+l) (k) „ (k) (k+l) (k) (k+l) (k)
ui,j = Ui,j +f [ u i+ l , j + u i - l , j + u i , j+ l + u i , j - l - 4 u i , j 3 <8-4-13)

(8.4-11)
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The optimum value of GO depends on the mesh size and lies between 1 and 2. For the Dirichlet
problem in a rectangular region, the optimum value of GO (coop) is given by

coop = 4 ( 8 . 4 _ 1 4 )

2 + ^4-(cos J + cosJ^r

For details on coop, see Hageman and Young (1981).

To start the iterative process, we need to assume the values of the zeroth iterative of the interior points.
One possibility is to assume that the value of all the interior points is the same and equal to the average
value of the boundary points.

Example 8.4-1. Solve the equation

U i + ^ J i = 0 , 0 < x < 3 , 0 < y < 3 (8.4-15)

3x2 9y2

subject to

u ( x , 0 ) = 1 0 , u(x, 3) = 90, u(0,y) = 70, u (3, y) = 0 (8.4-16a,b,c,d)

We divide the region into 9 unit squares. The values of u at the four interior points are given by
Equations (8.4-7a to h). The transpose of the column vector x is given by

LT = [ -80,-10,-160,-90] (8.4-17)

Solving Equation (8.4-8a) directly (Gaussian elimination), we obtain

V][ = u u =41.25 , v2 = u 2 1 = 23.75 (8.4-18a,b)

v3 = Uj 2 = 61.25, v4 = u2>2 = 43.75 (8.4-18c,d)

We now solve the same set of equations by the S.O.R. method. From Equation (8.4-14), we deduce
that G0Op is given approximately by

coop= 1.156 (8.4-19)

Taking into account the boundary conditions, Equation (8.4-13) for the four unknowns
(Uj j , u 2 j , Uj 2 ' a n d U2 2) c a n ^ e written as

U<U U = U U + ° ' 2 8 9 [u2ki + 70 + uik2 + 10 - 4 u U ] (8.4-20a)
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u £ 1 } = u™ + 0.289 [u(£ \ u £ + 10 - 4u£ ] (8.4-20b)

u(jk2+1} = u ^ + 0.289 [ u ^ + 70 + 90 + u £ * 1 } - 4u(jk)2] (8.4-20c)

- S ^ = u £ + 0.289 [u(^+1) + 90 + u * + 1 ) - 4 u ® ] (8.4-20d)

To start the iteration, we assume that the value of u at the interior points is equal to the average value
at the boundary points. The average value in this case is 42.5. The values of Ujj at subsequent
iterations are given in Table 8.4-1. It can be seen that the convergence is rapid.

TABLE 8.4-1

Values of u j : using the S.O.R. method

u g k = 0 k = l k = 2 k = 3 k = 4

uu 42.5 41.055 41.039 41.277 41.252
u2 ) i 42.5 20.407 24.197 23.689 23.761
"1,2 42.5 63.757 60.784 61.331 61.240
u2 ( 2 42.5 43.703 43.752 43.755 43.750

Neumann Problem

In this case, the values of u at the boundary points are not given and have to be determined at the
same time as the interior points. We can proceed in the same way as in the case of parabolic equations
and write the normal derivative in a finite difference form. This will introduce points which are outside
the region of interest and these fictitious outside points can be eliminated as previously shown in the
parabolic case. The next example shows how this is done.

Example 8.4-2. Solve the equation

— + — = 0 , 0 < x < l , 0 < y < l (8.4-21)
ax2 dy2

subject to the conditions

^ = ^ - = 0 (8.4-22a,b)
dx x=0 3 y y=0
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P- = 1, ~ = -1 (8.4-22c,d)
5 x x=l ^ y=l

We subdivide the region of interest, which is a unit square, into four squares, each of size (1/2 * 1/2).
That is to say

h = k = 1/2 (8.4-23a,b)

Equation (8.4-21) in difference form is given by Equation (8.4-3a). Note that only the single interior
point (1,1) has all its surrounding points in the region of interest, as shown in Figure 8.4-1. On
writing the difference equation for points on the boundary, we will introduce fictitious outside points
which lie on the dotted lines as shown in Figure 8.4-1. The first and last few difference equations
[Equation (8.4-3a)] are

u l ,0 + u - l , 0 + u 0 , l + u 0 , - l - 4 u 0 , 0 = ° (8.4-24a)

u2)0 + u0)0 + u l ) l + u l , - l - 4 u l , 0 = ° (8.4-24b)

u2,2 + u0,2 + u l ) 3 + u l ! l - 4 u l ) 2 = ° (8.4-24C)

U32 + U12 + U2 3 + U2 1~ 4 u 2 2 = ° (8.4-24d)

y

H,3)_ J_-5. |Oj3)_ 0,3) (2i3)_ (3,3)

I '
(-1,2). | <0.2) (1,2) (2,2) 1(3,2)

(-1,1)1 Q .5 , t 0 '" l±*l i l 3 l l )

1 I

(-1,0) i |(0,0) 1(1,0) |(2,0) |(3,O)t

| 0 0.5 I 1.5 x

I I
I . . i

10,-1) (1,-1) (2 , -1 ) ( 3 , - 1 )

FIGURE 8.4-1 Grid for solving Laplace's equation in the Neumann case
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We eliminate u_j 0 , u Q _ j , u3 2 , and u2 3 in Equations (8.4-24a to d) via the boundary

conditions. Using the central difference form for the derivatives [Equations (8.2-3c, 5c)], the
boundary conditions [Equations (8.4-22a to d)] can be written respectively as

u l j - u _ l j = 0, u j j - u j ^ j = 0 (8.4-25a,b)

u 3 , j - u l J = 1. u i ,3- u i , l = - 1 (8.4-25c,d)

The values of u at the outside points (u_j •, Uj _ j , u3 :, and Uj 3) can be replaced by
(Uj :, Uj 1 , 1 + Uj •, and -1 + Uj j) respectively. We now have a set of 9 equations to solve for
the 9 unknowns (u0 0 , u j 0 , ... , u2 2). This set of 9 equations is

- - 4 2 0 2 0 0 0 0 0 ^ 1 r u o , o l [ ~ 0 ~

1 - 4 1 0 2 0 0 0 0 u l , 0 0

0 2 - 4 0 0 2 0 0 0 u 2 , 0 - 1

1 0 0 - 4 2 0 1 0 0 u 0 , l 0

0 1 0 1 - 4 1 0 1 0 u l , l = 0

0 0 1 0 2 - 4 0 0 1 U 2 , l - 1 ( 8 . 4 - 2 6 a )

0 0 0 2 0 0 - 4 2 0 u 0 , 2 1

0 0 0 0 2 0 1 - 4 1 u l , 2 1

_ 0 0 0 0 0 2 0 2 - 4 J Lu2,2j L0_

or A u = b (8.4-26b)

Equation (8.4-26a) can be solved either by a direct method or an iterative method. Since the size of A

is manageable, we have obtained the solution by a direct method and it is

ST = [ftM--£-*|--2--f'°] (8-4"27)

Poisson's and Helmholtz's Equations

Poisson's equation can be written as

V u - g (x, y) = 0 (8.4-28)

Proceeding as in the case of Laplace's equation, the finite difference form for Equation (8.4-28) can be
written as

ui + l,j-4ui,j + ui-l,j + ui,j + l+ u i , j - l-h 2gij = 0 (8.4-29a)
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where g i j = g (xi; y;) (8.4-29b)

Helmholtz's equation is

V2u + f (x, y) u - g (x, y) = 0 (8.4-30)

Its finite difference form is

u i + l , j - ( 4 - h 2 f i j ) u i ; j + u i - l , j + u i ; j + l + u i , j - l - h 2 g i j = ° (8.4-3 la)

where f-j = f(xi? yf) (8.4-3lb)

The difference equations [Equations (8.2-29a, 31a)] can be solved by the methods discussed earlier.

Example 8.4-3. Solve the equation

— + — = 0 , 0 < x < 1 , 0 < y < 1 (8.4-32)
3x 2 3y 2

subject to the following boundary conditions

u(x,0) = x 2 , u(x, 1) = x 2 - l (8.4-33a,b)

u(0,y) = - y 2 , u(l ,y) = 1 -y 2 (8.4-33c,d)

The finite difference form of Equation (8.4-32) can be written in the form of Equation (8.4-13), that is

(k+1) , (k) (k) (k) (k) s / (k)

u!,j = «> ( » L u + - L i j + u i / i + u i A i > / 4 + < x °̂> ui.j ( 8-4-3 4 )

The value of CO is chosen to be 1.5. The program used to solve the present problem is next listed.
The results are shown in Figure 8.4-2.

The analytical solution is

u = x 2 - y 2 (8.4-35)

C MAIN PROGRAM FOR SOLUTION OF EXAMPLE 8.4-3 USING SIMULTANEOUS
C OVER-RELAXATION TO SOLVE THE FINITE DIFFERENCE EQUATION

REAL*8U(11,11),OMEGA,X,Y,TEMP
OPEN(UNIT=3,FILE='MATRIX3.OUT)

C SET BOUNDARY CONDITIONS
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DO 1 1=2,10
DO1 J=2,10

1 U(J,I)=0.D0
DO 2 1=1,11
TEMP=(I-1)**2/1.D2
U(1,I)=-TEMP
U(I,1)=TEMP
U(11,I)=1. DO-TEMP
U(I,11)=TEMP-1.DO

2 CONTINUE

C SET OVER-RELAXATION PARAMETER AND ITERATE THE SOLUTION

OMEGA=1.5D0
DO 3 NITER=l,40
CALL SOR(U,OMEGA,2,11,2,11)

3 CONTINUE

C OUTPUT THE FINAL RESULTS

WRITE(3,999)U
STOP

999 FORMAT(11E12.3)
END

C SUBROUTINE SOR FOR SIMULTANEOUS OVER-RELAXATION

C THE CALCULATIONS ARE DONE IN PLACE RATHER THAN COPYING TO
C ANOTHER MATRIX

SUBROUTINE SOR(U,OMEGA,NSTART,N,MSTART,M)
REAL*8 U(N,M),OMEGA

C LOOP THROUGH THE MATRIX

DO 1 I=NSTART,N-1
DO 1 J=MSTART,M-1
U(I, J)=OMEG A*(U(I-1, J)+U(I+1, J)+U(I, J-1 )+U(I, J+1 ))/4.D0

* +(l.D0-OMEGA)*U(I,J)
1 CONTINUE

RETURN
END
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1 ^ ^ ^ - ^ " \ .

0 5 ^ ~ " \ _ ^ ^ ^ 0.5

y x

FIGURE 8.4-2 Values of u as a function of x and y

8.5 HYPERBOLIC EQUATIONS

Difference Equations

The wave equation [Equation (5.1-1)] is an example of a hyperbolic equation. Associated with this
P.D.E. is a set of boundary and initial conditions. We write the whole system as

^ - = c 2 ^ - , t > 0 , 0 < x < J ! (8.5-la)
9t2 3x2

u(0,t) = u ( i , t ) = 0 (8.5-lb,c)

u (x, 0), = f (x), ^ = g ( x ) (8.5-ld,e)
dt t=0

where c and Jt are constants.

The finite difference form of Equation (8.5-la) is

Ui,,j + l - 2 " i j + u i , j - l = c2(Ui+l,j-2ui,j+Ui-l,,i) ( g 5 2)

k2 I h2 j
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where the first subscript denotes position (x) and the second subscript denotes time (t). As usual, the
space of interest (x, t) is subdivided into rectangles of size (h x k). Recall that

xo = O, xn = J, to = O (8.5-3a,b,c)

Equations (8.5-lb to e) are now written as

uo,j = V j = °' V J ^ ° (8.5-4a,b)

ui,o = f ( x i ) = fi (8.5-4c,d)

" ^ ^ k 1 ' " " g ( X i ) = g i (8.5-4e,f)

Note that Equations (8.5-4e, f) involve the fictitious point of t_ j . Equation (8.5-2) can be written as

ui,j + l = 2 u i j - u i ) j - l + r 2 ( u i + l , j - 2 u i j + u i - l j ) (8-5"5a)

where r2 = c 2 k 2 /h 2 (8.5-5b)

We choose r to be unity and combining Equations (8.5-4c to f, 5a) yields

ui , l = 2 u i > 0 - u i , - l + u i + l ) 0 - 2 u i , 0 + u i - l ,0 (8.5-6a)

= f i + i + f i _ i - u i > 1 + 2 k g i (8.5-6b)

Equation (8.5-6b) simplifies to

ui , l = ^ ( f i + l + f i - l + 2 k g i ) (8-5-7)

Note that uQ j and un j are given by Equations (8.5-4a, b) and need not be computed.

Having determined the value of u at time ti, we can similarly determine the values of u at
subsequent times t2, t3,...

Example 8.5-1. Solve the equation

^ = ^ (8.5-8a)

at2 ax2

subject to

u(0,t) = u( l , t ) = 0 (8.5-8b,c)
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u (x, 0) = 1 x (1 - x), ^ = 0 (8.5-8d,e)
2 dt t=0

We choose

h = k = 0.1 (8.5-9a,b)

The value of r is then unity. In this example, g is zero and Equation (8.5-7) simplifies to

u u = i ( * i + i + * i - i - x i 2 + i - * i - i ) <8-5-10)

Equation (8.5-5a) simplifies to

ui , j+ l = u i + l , j + u i _ l , j - u i , j - l (8.5-11)

The initial condition [Equation (8.5-8d)] provides u i 0 , Equation (8.5-10) determines Uj j , then
from Equation (8.5-11), the values of u at all positions and subsequent times can be computed. The
values of u from time t = 0 to t = 0.5 are tabulated in Table 8.5-1. From the symmetry of the
problem, we need to compute for the interval 0 < x < 0.5 only.

TABLE 8.5-1

Values of u at various positions and times

x 0 0.1 0.2 0.3 0.4 0.5
t

0 0 0.045 0.080 0.105 0.120 0.125
0.1 0 0.040 0.075 0.100 0.115 0.120
0.2 0 0.030 0.060 0.085 0.100 0.105
0.3 0 0.020 0.040 0.060 0.075 0.080
0.4 0 0.01 0.02 0.03 0.04 0.045
0.5 0 0 0 0 0 0

Equation (8.5-8a), subject to Equations (8.5-8b to e), can be solved analytically (see also Chapter 5,
Problem 9a) and the solution is

4 V cos (2 s + 1) 7tt sin (2s + 1) %x ,
u = —- > (*O-12)

7T s = 0 (2s+ I ) 3

From Equation (8.5-12), we can deduce that at
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t = 0.5, u = 0 (8.5-13a,b)

From Table 8.5-1, we observe that there is complete agreement between the analytical and numerical
results.

•

We now show that Equation (8.5-11) is an exact difference equation of the problem. D'Alembert's
solution (Chapter 5, Section 4) of Equations (8.5-la to e) with g (x) = 0 can be written as

u = f (x- t ) + f (x + t) (8.5-14)

Using Equation (8.5-14), the right side of Equation (8.5-11) is

ui + l , j + u i - l , j - u i , j - l = f ( x i + i - t j ) + f(xi + 1+t j) + f(xi_1-t j) + f(xi_1+tj)

- f (x i - t j _ 1 ) - f (x i + tj_1) (8.5-15a)

= f (xj + h - tp + f (xj + h + tp + f (xj - h - tp + f (xj - h + tp

- f ( x i - t j + h)-f(x i + t j - h ) (8.5-15b)

= f(xi + h + tj) + f (x i -h - t j ) (8.5-15c)

= ui>j + 1 (8.5-15d)

We note that the right side of Equation (8.5- 15d) is exactly the left side of Equation (8.5-11). This
result is due to r being unity (h = k).

Another way of showing that Equation (8.5-11) provides an exact solution of the problem is to
consider the domain of dependence of the solution. This concept is discussed in Chapter 5, Section 4.

In Figure 8.5-1, we have marked the pivotal triangular domains which determine the value of Uj - + 1.

Noting that the characteristics in this case have gradients ± 1, we observe by comparing Figures 8.5-1

and 5.4-3 that the domain of dependence of Equation (8.5-11) is exactly that of Equation (8.5-8a).

The parameter r is the Courant parameter and it has been shown by Courant et al. (1928) that if r
is less than or equal to one, Equation (8.5-5a) is a stable algorithm for solving Equation (8.5-la). In
Chapters 5 and 6, we have used the method of characteristics to solve hyperbolic equations. This
method has the advantage that discontinuities in the initial data are propagated along the characteristics.
Thus, this method is generally more suitable for cases of discontinuities in the given data.
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t

j+l

• • •

• • • •

• • • • •

• • • • •

i x

FIGURE 8.5-1 Pivotal points determining Ujj + 1

Method of Characteristics

We consider a quasi-linear P.D.E. which can be written as

a l l — 7 + a i2 — + a 22—7 = f (8.5-16)
dxz dxdy dyz

where a;: and f are functions of x, y, u, r̂— and -̂— .
J dx dy

For simplicity, we denote

3u 3u ._ _ ._ , .

P = d 7 ' q = 37 (8.5-17a,b)

Writing out the differentials of p and q yields

dp = ̂ . d x + ̂ d y (8.5-18a)

dx dy
= 3jidx + J jL d y (8.5-18b)

dx dxdy
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dq = ^L d x + p. dy (8.5-18c)
dx dy

= ^ _ d x + ^ d y (8.5-18d)
8x dy dy

From Equations (8.5-18b, d), we deduce

a2u _ dp d2u dy

3x2 dx dxdy dx

^ u = d q _ J 2 J L d x (8.5-19b)
3y2 dy 9x9y dy

Substituting Equations (8.5-19a, b) into Equation (8.5-16) yields

dp dq 9 u / dy dx\ . ,o _ __.
a.i-r^ + a ^ - p 1 - — ^ — a 1 1 -^--a 1 2 + a22-— = f (8.5-20)

11 dx ll dy 3x9y\ dx 1Z zz dy/

Equation (8.5-20) can be written as

dp dy dq dy . dy d2u [ (dy\2 (dy\ 1 n ,o - O1.
al1 7 ^ ^ + a 2 2 T ^ ^ - f ^ " - ^ - ^ T " a l l 7 " - a 1 2 r + a22 = ° (8.5-21)

11 dx dx ll dy dx dx 3x3y L Vdx/ l z \dx/ ZZJ

We now define a curve F in the xy-plane, as shown in Figure 8.5-2, such that the slope of the
tangent at every point of F is a root of the equation

Equation (8.5-22) has two roots

dy = a 1 2 ± V a 2 2 - 4 a l i a 2 2 _ = m (8.5-23a,b,c,d)
dx 2ajj

Since the equation is hyperbolic, the two roots are real. We denote the root given by the positive sign

by m + and the curve corresponding to m + by F + . Similarly, m_ and F_ denote the root and the

curve corresponding to the negative sign. F+ are the characteristics of Equation (8.5-16) and are

discussed in Chapter 5, Section 3.

(8.5-19a)

(8.5-22)
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^—P ' ^ \
c

FIGURE 8.5-2 Method of characteristics

It follows from Equation (8.5-21) that along a characteristic

a n ^ ^ + a 2 2 ^ - f ^ = 0 (8.5-24a)
11 dx dx l l dx dx

or a n T^-dp + a22 dq - f dy = 0 (8.5-24b)
LI A.

Let C be a curve along which initial values for u, p, and q are known. C is not a characteristic.

Let P and Q be two neighboring points on C. The characteristic F+ through P intersects F_

through Q at R, as shown in Figure 8.5-2. As a first approximation, we assume PR and QR as

straight lines with slopes m+ and m_. The equation of these lines are

Y R - Y P = m + p ( x R - x p ) (8.5-25a)

Y R - Y Q = m-Q(xR~xQ) (8.5-25b)

where the suffixes P, Q, and R denote that the quantities are evaluated at P, Q, and R
respectively.

From Equations (8.5-25a, b), we can determine (XR, y^) and they are

(YQ-Yp) + ( m + x p - m - x Q ) /««<v^
xR = —^ r ^ (8.5-26a)

R (m+-m_)
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m + m _ ( x p - x Q ) + ( m + y Q - m _ y p )
y R - (m + -m_) (8.5-26b)

where m+ and m_ denote m + p and m_p.

Equation (8.5-24b) along F+ and F are respectively given by

a n m+ dp + a22 dq - f dy = 0 (8.5-27a)

aj 1 m _ d p + a22 dq - f dy = 0 (8.5-27b)

Equations (8.5-27a, b) can be approximated by

a! i m+ (pR - pp) + a22 (qR - qp) - f (yR - y p ) = 0 (8.5-28a)

a j ! m_ (pR - pQ) + a22 (qR - qQ) - f (yR - yQ) = 0 (8.5-28b)

Combining Equations (8.5-26a, b, 28 a, b) yields values of pR and qR. The values of p p , pq ,
qp, and qq are known. To determine uR we use the relation

du = ^ dx + p- dy (8.5-29a)
dx dy

= p dx + q dy (8.5-29b)

The values of p and q along PR are assumed to be given by the average values evaluated at P and
R. Equation (8.5-29b) is then approximated by

UR - UP = 2 (pR + ^ *-XR ~ XP-* + 2 ^ R + qp^ (-YR ~ Yp' ) (8.5-30a)

or uR = u p + i - (p R + p p ) ( x R - x p ) + l ( q R + q p ) ( y R - y p ) (8.5-30b)

To improve the accuracy, we replace the values of m + and m_ evaluated at P in Equations
(8.5-25a, b) by the average values of m + and m_ evaluated at P and R. Equations (8.5-25a, b)

now read

y R - y p = ^ ( m + p + m + R ) ( x R - x p ) (8.5-3 la)

yR - y<2 = 2 ( m - Q + m - R } (xR ~ XQ} (8.5-31b)

The value of UR is obtained as described earlier. This process can be repeated until the required
accuracy is achieved. Similarly, by considering other points along C, the solution u in the xy-plane
can be determined.
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Example 8.5-2. Solve the problem stated in Example 8.5-1 by the method of characteristics.

In this problem, y is replaced by t. The characteristics are given by

r . : #L = m . = 1 (8.5-32a,b)
+ dx +

T : 41 = m_ = - 1 (8.5-32c,d)
dx

The initial values of u are given along the x-axis which is not a characteristic. We choose the points
P and Q to be (0.1,0) and (0.3,0) respectively as shown in Figure 8.5-3. The values u, p ,
and q at P and Q can be computed from Equations (8.5-8d, e) and are

Up = 0.045, u Q = 0.105, p p = 0.4 (8.5-33a,b,c)

p Q = 0.2, qp = qQ = 0 (8.5-33d,e,f)

t

.2 - r_ / * *

.i - /W*

iZ_ 1 _ v < 1 ^
0 .1 .2 .3 .4 x

P Q

FIGURE 8.5-3 Numerical solution of the wave equation
by the method of characteristics

The point (xR, yR) is determined from Equations (8.5-26a, b) and is found to be

xR = 0.2, yR = 0.1 (8.5-34a,b)

This can also be seen from Figure 8.5-3.
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Equations (8.5-28a, b) reduce to

P R - ° - 4 - q R = 0 (8.5-35a)

° - 2 ~ P R - q R = ° (8.5-35b)

On solving Equations (8.5-35a, b), we obtain

p R = 0.3, qR = -0.1 (8.5-36a,b)

The approximate value of uR is given approximately by Equation (8.5-3Ob) and is found to be

uR = 0.075 (8.5-37)

From Table 8.5-1, we note that this is exactly the value obtained by the finite difference method. The
values of u at other points in the xt-plane can similarly be obtained.

8.6 IRREGULAR BOUNDARIES AND HIGHER DIMENSIONS

So far, we have considered only the case where the grid points lie on the boundaries. This is usually
the case where the geometry is simple. For curved boundaries, it is not always possible to arrange for
the grid points to be on the boundaries. Figure 8.6-1 shows an example of such a situation.

y -•

S P Q^S

_ _ \ c

X

FIGURE 8.6-1 Irregular boundary
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We consider Laplace's equation with Dirichlet boundary conditions. The value of u is given on the
boundary and let Q and R be two points on C. The points P, S and T are grid points as shown in
Figure 8.6-1. Let the length of PQ and PR be 0jh and 62k respectively, where, as usual, h and
k refer to the grid size and where 9j and 62 satisfy the inequality

0 < 9 1 < l , 0 < 6 2 < l (8.6-la,b)

For points next to the boundary, the grid is not rectangular and we cannot use Equation (8.4-2).
Instead we need to deduce the difference form of Laplace's equation at the point P involving the given
values of u at R and Q. For compactness, we use the suffixes, P, Q, ... to denote that the
quantities are evaluated at P, Q,... Expanding UR in a Taylor series about P, we have

2 2 2
u R = u (Xp, y p + 92k) = Up + 92k — + -2 j + ... (8.6-2a,b)

dy 2 9y

Similarly, uT , UQ , and u s are given by

uT = u (xp, yrk) = u p - k^+^-~ (8.6-3a,b)
dy 2 dyz

2 2 2
uQ = u (Xp + Bjh, yp) = Up + 0 ^ -5- + -1 ^ (8.6-4a,b)

ox 2 dx

, . x , 8 u h 3 u /o , c ,.
us = u(xp-h, yp) = up-h—- + — -—^ (8.6-5a,b)

ox 2 ox

In Equations (8.6-2b, 5b), the partial derivatives are evaluated at P. From Equations (8.6-2b, 3b),
we deduce that

8^u = 2[uR + 9 2 u T - ( l + 0 2 ) u p ] ( 8 6 6 )

dy2 k202( l+02)

Similarly, we have

9^u = 2[uQ + 0 1 u s - ( l+9 1 )u p ]

dx2 h 2 e 1 ( i + e1)

The difference form of Laplace's equation at P is

(8.6-7)
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[iiQ + e ^ s - q + e^up] + [uR + e 2 u T - ( i + e2)U p] = Q ( g 6 _g)

h2el(i + el) k2e2( i + e2)

The difference equation for the other points closest to the boundary are deduced in the same way.

For Neumann conditions, the difference equation is complicated and it is preferable to use the finite
elements method which will be described later.

The derivation of the difference equation for three and higher dimensional problems is straightforward.
Laplace's equation in three dimensions for a cubical grid of size h3 is

ui+l,j,k-2ui,j,k + ui-l,j,k , ui,j + l,k-2ui,j,k + ui,j-i,k { ui,j,k+l-2ui,j,k + ui,j,k-l = ( )

h2 h2 h2

(8.6-9)

From Equation (8.6-9), we deduce that

ui, j ,k = ^ [ u i + l , j , k + u i - l , j , k + u i , j + l,k + u i , j - l , k + u i , j ,k+l + u i , j , k - l ] (8.6-10)

As in the two-dimensional case, the value of u at the point (i, j , k) is the average of the values of u at
the six neighboring points that surround it.

Equation (8.6-10) can be solved by the methods described earlier, however it involves a larger number
of points and the direct method is not recommended. Other methods are available and are described in
more advanced books.

8.7 NON-LINEAR EQUATIONS

One of the advantages of numerical methods is that many of the methods based on linear equations
with constant coefficients can be carried over directly to non-linear equations. Some of the methods
described in this chapter can be used for non-linear equations.

The difference form of the quasi-linear equation

3T = s r l D ( x - t i U ) d (8-7-l)
can be written as

Ui'J + 1 ~ U i ' J = D(X i , t j , Ui ) h + l J - 2 u i > i + U i - u ] (8.7-2a)
k J >J L h 2 J
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o r ui,j+l = u i j + J ^ D ( x i . t j . u i , j ) ( u i + l o - 2 u i . j + ui-l.j) (8"7"2b)
h

Equations (8.7-2a, b) are the simplest form of the explicit difference for Equation (8.7-1). In fact, we
have approximated Equation (8.7-1) by

^ = D(x,t ,u)% (8.7-3)
at dx2

We have evaluated D (x, t, u) at the grid point (i, j). Note that Equation (8.7-2b) is linear. Using the
initial and boundary conditions, Equation (8.7-2b) generates values of u at all points for subsequent
times. Comparing Equations (8.7-2b, 3-4b), we expect the numerical scheme to be stable if

4D(xi,t j ,ui j) < 1 (8.7-4)
h z

Experience has shown that this expectation is justified.

Example 8.7-1. Ames (1969) has considered the flow past a solid plate in the region -Z < x < 0
and over a porous plate in the region x > 0, as shown in Figure 8.7-1. The velocity components
along the x and y axes are respectively (vx, vy). The equation of continuity and the equation of
motion, assuming no pressure gradient and making the usual boundary layer approximations, are
obtained form Equations (A.I-1, II-1) and are

3vY 3vv

- 2 1 + ̂  = 0 (8.7-5a)
dx dy

3vY 3vY 9 vY /n

vx - ^ + v —^ = v — f (8.7-5b)
dx y dy dy2

where v (=fl/p) is the kinematic viscosity.

The appropriate boundary conditions are

y = 0, vx = 0 , vy = V (a constant), for x > 0 (8.7-6a,b)

y —> oo ? vx —> v^ (free stream velocity), for x > 0 (8.7-6c)

x = 0 , vx = Blasius solution (Rosenhead, 1963) (8.7-6d)
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y <•

l 0 X

FIGURE 8.7-1 Flow over a solid plate and a porous plate

We introduce a stream function \|/ (x, y), defined by

3\|/ d\if

Combining Equations (8.7-5a, b, 7a, b) yields

d\\f d2\\f d\J 92\|/ 33\i/
__v ¥ ^ _ ^ = v ^ _ ( 8 - 7 _ 8 )

dy dx dy dx dy dy

Equation (8.7-8) is a third order equation and it can be reduced to a second order equation by the von
Mises transformation which makes a change of variables from (x, y) to (x, \|/). The components
vx and vy can be functions of x and y or functions of x and \|/.

Using the chain rule, we can write

3vx Q' y) = 5vx (x> v) + 3vx & v) <?j_ ( 8 7_9)

dx dx d\\f dx

Using Equation (8.7-7b), Equation (8.7-9) can be written as

3vY 3vv 3vY

3 J L = V L - v v ^ A (8.7-10)
dx dx y 3v|/

(8.7-7a,b)



720 ADVANCED MATHEMATICS

Similarly

3vY 3vv 3vi/ 3vY

Ti = TiT-=vxTi (8.7-1 la,b)
dy d\]f dy x 3\|/

32vx 3 / 3vx\

7? = W'-£) (8J-llc)
Note that in Equations (8.7-9 to lie), vx is a function of x and y on the left side and a function of
x and \|/ on the right side.

Substituting Equations (8.7-9 to lie) into Equation (8.7-5b), we obtain

^ x = V A ( V ^ A (8-7-12>
dx d\|/ \ x 3\|/j

The boundary conditions also have to be transformed to (x, \|/) coordinates. Integrating Equations
(8.7-7a, b), we obtain respectively

fy
V = vx(x,£)d£ + f(x) (8.7-13a)

JO

¥ = - | v (5,y)d$ + g(y) (8.7-13b)

Jo

where f(x) and g(y) are arbitrary functions.

Imposing the conditions given by Equations (8.7-6a, b), we obtain

f(x) = - f Vd^ + g(0) (8.7-14a)
Jo

= - V x + g(0) (8.7-14b)

Since \|/ is defined to the extent of an arbitrary constant, we can choose g (0) to be zero and
\|/ (x, y) is given by

r
\|f = vx(x,£)d^-Vx (8.7-15)

JO

The conditions at y = 0 and y —> °° correspond to \|/ = -Vx and \|/ —> °° respectively and
the boundary conditions [Equations (8.7-6a, b, c)] are transformed to
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V = - V x , vx = 0 (8.7-16a)

y _ > oo, vx—> vM (8.7-16b)

Equation (8.7-6d) remains unchanged.

We now introduce the following dimensionless variables

1/2

n-J. *.£&) • " = '-fe)2 (3,-™
Equation (8.7-12) can now be written as

*L = /TTIT A (8.7.18)

The boundary conditions become

\l/2

/6 = _ pn , u = 1 , P = V" ^ T / (8.7-19a,b,c)

A — > » , u = 0 (8.7-19d)

r| = 0 , u is given by the Blasius solution (8.7-19e)

Equation (8.7-18) can be approximated as

ui,j + l = U i j + ^ V l - U j j [ u i + 1 J - 2 u i i j + u i _ 1 > j ] (8.7-20)
h

In discretizing Equation (8.7-18), we have divided the region of interest into rectangles each of size
(h x k). The quantity Uj; refers to the value of u {/&v x\).

From Equations (8.7-19a to 20), we can compute the values of u j ; . As expected, it is found that if

k Vl-Uj • ,
^ < 1 (8.7-21)

h2 2

we have computational stability.

Note that Equations (8.7-19a to c) imply that we have irregular (triangular) boundaries and we need to
make the modifications proposed in Section 6. Further details can be found in Ames (1969).
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The accuracy of Equation (8.7-2b) can be improved by replacing D (Xj, t:, Uj :) by an average value
of D over the points considered. Several formulae have been proposed which are more complicated
than Equation (8.7-2b) but which give results closer to the solution of Equation (8.7-1). Implicit
formulae which are unconditionally stable have also been derived. These formulae can be found in
more advanced books on numerical solutions of P.D.E.

8.8 FINITE ELEMENTS

The finite element method was developed to study the stresses in complex discrete structures.
More recently, it has been widely used to obtain approximate solutions to continuum problems. The
battle between finite differences and finite elements is over. For regular boundaries and simple
equations, the method of finite differences is preferable because finite difference equations are easier to
set up. It was pointed out earlier that if the boundary is irregular, the finite element method is the
obvious choice. The reason for this choice will become apparent after we have introduced the method.

Zienkiewicz and Morgan (1983) have shown that a generalized finite element method can be
defined which includes all the numerical methods and it is left to the user to choose the optimum
method.

We introduce the basic concepts of the finite element method by considering one-dimensional
problems. It must be pointed out that one does not usually solve one-dimensional problems by this
method. The one-dimensional case is used to ease the way to the understanding of two and higher
dimensional problems.

One-Dimensional Problems

In a one-dimensional problem, we have only one independent variable and the equation we need
to solve is an ordinary differential equation. We consider the differential equation

,2
^ L = _g(x), 0 < x < l (8.8-1)

dx2

subject to

u (0) = A, u (1) = B (8.8-2a,b)

By an appropriate scaling, we can always transform any arbitrary interval into an interval of [0, 1].
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Variational method

In the finite difference method, we replace the derivative by a finite difference. In the finite element
method, we reformulate the problem into a variational problem. In Chapters 9 and 10, we give
examples of such variational formulations. Instead of looking for a function that satisfies the
differential equation, we look for a function that extremizes an integral. In Chapter 9, it is shown that
the function y (x) that yields the extreme values of the integral I, defined by

I = I f (x, y, y ')dx (8.8-3)
J a

is

^1 _ A. i l = 0 (8.8-4)
9y dx 9y'

Consider the integral

i = / o t e ) 2 - s u ] d x (°-5)
Applying the condition given by Equation (8.8-4) yields

srHnr) - g r ^ ^ ( i u -H]-° (88-6)
Simplifying Equation (8.8-6), we obtain Equation (8.8-1). This means that the solution of Equation
(8.8-1) is the function that extremizes the integral I defined by Equation (8.8-5).

We approximate u by

m

u - X a i N iW (8-8"7)
i = l

where a, are constants and the Nj(x) are the shape (trial) functions. They can be polynomials,
trigonometric functions, or other functions whose properties are known. They are usually chosen
such that the boundary conditions are satisfied.

On substituting Equation (8.8-7) into Equation (8.8-5), we obtain an expression of the form

I = F ( a 1 ) a 2 g (8.8-8)
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It can now be considered as a function of a; and the extreme values of I are given by

dF
^ - = 0 , i= 1,2, ... ,m (8.8-9)

From Equation (8.8-9), we obtain the coefficients a; and on substituting them into Equation (8.8-7),
we obtain an approximate solution for Equation (8.8-1). This method is known as the Rayleigh-
Ritz method (see Example 9.11-2).

In the finite element method, we subdivide the interval [0, 1] into a number of subintervals and each
subinterval is called an element. In each element, we approximate u by Equation (8.8-7). Since
each element is shorter than the whole interval, we can expect that a better accuracy can be obtained for
the same number of terms in Equation (8.8-7). We illustrate this method in Example 8.8-1.

Galerkin method

Not all problems can be formulated as extremum problems. We now describe a method which
provides a weak solution to Equation (8.8-1). We approximate the solution u in the interval
0 < x < l by u(x). The function u generally does not satisfy Equation (8.8-1) and we write

~ + g(x) = R (8.8-10)
dx2

where R is the residual. If R is identically zero, then u is an exact solution of Equation (8.8-1).
The function u is a weak solution if the integral of R with respect to a weight function w (x) is
zero. That is to say

C Td2~ 1 (l
w(x) —^ + g(x) dx = w(x)R(x)dx = 0 (8.8-1 la,b)

Jo Ldx2 J Jo

In the Galerkin method, we choose the weight function to be the approximate solution (w = u). In
the method of finite elements, we subdivide the interval [0, 1] into subintervals (elements) and on each
element, u is approximated by Equation (8.8-7).

Suppose we subdivide the interval [0,1] into [0, x0) and (x0, 1] and assume that two terms in

Equation (8.8-7) provide sufficient accuracy. On the first interval, Equation (8.8-1 la) becomes

/"xo
I N : [ajN^' + a2N2' + g] dx = 0 (8.8-12a)
JO
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I N j ^ N ' i + a2N2' +g] dx = 0 (8.8-12b)
JO

Integrating Equations (8.8-12a, b) by parts yields

a l i N l N l J o + a2LNiN2J0 - a i K l l - a 2 K 1 2 + G l = ° (8.8-13a)

r jxo r ,ixo
a U N 2 N lJo +a2LN2N2Jo - a l K 1 2 - a 2 K 2 2 + G2 = ° (8.8-13b)

where

K n = Nj dx K12 = I NxN2dx K22 = N2 dx (8.8-14a,b,c)
JO Jo Jo

J'Xf) [X0

gNjdx G2 = gN2dx (8.8-14d,e)
0 Jo

Similarly, for the interval (x0, 1], we obtain another set of equations. We can generalize Equations
(8.8-13a, b) for any interval x^ < x < x^+i and for any number of shape functions Nj (i = 1, ... ,
m) and we obtain

i K i j - l N i N j Jx k aj = G i (8-8-15a)

where

Kjj = I NjNjdx, Gj = gNjdx (8.8-15b,c)

A k J\k

The quantities Kjj are the elements of the stiffness matrix K and Gj are the components of the

force vector G . The shape functions Nj are usually chosen such that K can be evaluated easily

(analytically or numerically), is sparse, and well conditioned. The coefficients aj can be determined

by assembling Equation (8.8-15a) for all the elements, subject to the boundary and continuity

conditions. Once a; have been obtained, the approximate solution u is given by Equation (8.8-7).

Note that, on integrating Equations (8.8-12a, b) by parts, we have avoided having to evaluate the
second derivative of the shape functions. This implies that we can choose linear functions as shape
functions.

Example 8.8-1. Solve the equation
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2

— + x = 0 (8.8-16a)
dx2

subject to the conditions

u(0) = 0, u( l ) = 1 (8.8-16b,c)

by the method of finite elements.

We subdivide the interval [0, 1] into three elements of equal length [0, 1/3), (1/3, 2/3), and (2/3, 1].
We denote the elements by Ej, E2, and E3 and the values of u at the nodal points Xj by Uj.

We approximate the function u by a piecewise linear function. In E1; E2, and E3 , u is
approximated respectively by

u « 3ujX (8.8-17a)

u » U 1 (2-3x) + u 2 ( 3 x - l ) (8.8-17b)

u « 3 u 2 ( l - x ) + (3x-2) (8.8-17c)

Note that in Equations (8.8-17a to c), u satisfies the boundary and the continuity conditions at the
nodal points (Problem 14a shows how these functions are derived).

We solve the problem by the variational method. Equation (8.8-16a) is equivalent to finding the
extremum of

I = I l f d u ) 2 _ x u dx (8.8-18)

Substituting Equations (8.8-17a to c) into Equation (8.8-18) yields

I = I j + ^ + Ig (8.8-19a)

•(¥-£Mi<^-£-£Mi<>--.>2-£-^ <•«»>
The extremum of I is given by

^ - = j ^ - = 0 (8.8-20a,b)

On carrying out the differentiation, we obtain
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6uj-3u2 = 1/9 (8.8-2 la)

-3uj + 6u2 = 29/9 (8.8-21b)

The solution is

u2 = 62/162 = 0.383 (8.8-22a)

u2 = 59/81 = 0.728 (8.8-22b)

The exact solution is

u = * - (7 -x 2 ) (8.8-23)
o

By comparing Equations (8.8-22a, b, 23), we note that the solution we have obtained by the finite
element method is exact! The exact solution is cubic, the approximate solution is linear, and at the
nodal points, the two coincide. This is not generally true. Strang and Fix (1973) have observed that in
general, if the shape functions satisfy exactly the homogeneous differential equation, the nodal values
are the exact values.

Two-Dimensional Problems

In two-dimensional problems, we subdivide the domain into elements and we consider triangular
elements. We can also consider rectangular or other geometrical shapes. Triangular elements allow
for an easier fit to non-rectangular domains. This is shown in Figure 8.8-1.

We propose linear shape functions. Consider a typical element E with nodes i, j , and k as shown
in Figure 8.8-1. We choose the shape function Nj such that at node i, it is one and at nodes j and
k, it is zero. That is, Nj (x, y) has the following properties

Nj(x, y) = aj + biX + q y (8.8-24a)

Ni (xj, yi) = 1 , Nj (Xj, yj) = 0 , N{ (xk, yk) = 0 (8.8-24b,c,d)

Combining Equations (8.8-24a to d) yields

1 x i yj 1 T a i l I" i "
1 Xj y j bi = 0 (8-8-25)

1 x k y k J L c i J L o -

Solving Equation (8.8-25), we obtain
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a{ = (x j y k -xkyj) /D, bj = ty - y k ) / D , ci = (xk-x j ) /D (8.8-26a,b,c)

1 xi yi

D = l x y- = 2 (area of element E) = 2 A (8.8-26d,e,f)

1 xk ?k

y

o x

FIGURE 8 8-1 Domain subdivided into triangular elements.
E is a typical element with nodes i, j , and k

For each element E, we define a shape function Nj given by Equations (8.8-24a to e) and if i does
not belong to E, then we set Nj to be zero. With this definition of N,, we can approximate u as

u = £ Uj Nj (8.8-27)
i

where Uj is the value of u at node i.

Next, we generalize the variational and the Galerkin methods to two-dimensional problems.

We consider Poisson's equation which can be written as
+ = -g(x, y) (8.8-28a)

dx2 dy2

u = 0 on the boundary (8.8-28b)

(8.8-28a)

(8.8-27)
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The function u that satisfies Equation (8.8-28a) is the function that extremizes the integral [see
Equation (9.11-13)]

Substituting Equation (8.8-27) into Equation (8.8-29) yields

- g (u1Nl + ... + umNm) ] dx dy (8.8-30a)

(( fl 2 P N i 3 N i 3 N I 5 N I ) / 3 N I 3N2 3Ni 8N2\

+ 2 u M ^ ^ + ^ F ^ y L ) " ( U l g N l + -" + U m g N m ) ] d x d y (O"30b)

Equation (8.8-30b) can be written in a compact form as

I = X K i j u i u j - X u i G i (8.8-31a)

or I = u T K u - u T G (8.8-3 lb)

where

Gj = I I gNj dxdy (8.8-31d)

The extreme values of I are given by

^~ = 0 (8.8-32)

Combining Equations (8.8-3la, 32) yields

^Kj jUj -Gi = 0 (8.8-33a)

j

(8.8-29)

(8.8-31c)
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or Ku - G = 0 (8.8-33b)

To obtain a weak solution u (x, y), we define a weight function w (x, y), such that

w(x, y ) p 4 + ^ - 4 + g(x, y) dxdy = 0 (8.8-34)

On integrating by parts and assuming that w vanishes on the boundary, Equation (8.8-34) becomes

It Idw du dw du , ,

JJ ( a r a ^ + 3 7 5 7 - w s dxdy = 0 (8-8'35)
The function u is chosen to be given by Equation (8.8-27) and using Galerkin's method (setting
w = Nj in turn), Equation (8.8-35) can be written as

(t\l 9N, 3Nm\8Nj / 3N, 5Nm\aN: X T 1 J JJJ [(u^+"-+ u-^)^+hV"+-"+ U m^f)^"s N iJd x d y = 0
(8.8-36a)

(( /3N, 3Nj 3N, aNj\ /3Nm 9N- 3N_ dNA XT , A

or )) u i ( ^ ^ + ^ V ) + --- + U m (^r^r + ^V)- g N i d x d y = 0

(8.8-36b)

In the usual compact form, Equation (8.8-36b) can be written as

X K J J U J - G J = o (8.8-37)
j

where Kjj and Gj are defined by Equations (8.8-31c, d).

Note that in this case both the variational and the Galerkin methods yield the same discretized equations
[Equations (8.8-33b, 37)].

This is true for all symmetric problems. For non-symmetric problems, the variational method may not
be applicable but the Galerkin method can still be used. In this case, the matrix K is no longer

symmetric.

By combining Equations (8.8-3lc, 24a), we find that for each element E, Kjj is given by

K i j = J / [bibj + c i c j ] d x d y (8.8-38a)
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= [bjbj + c j Cj] (area of the element) (8.8-38b)

= Afbjbj + CjCj] (8.8-38c)

Using Equation (8.8-24a), Equation (8.8-31d) can be written as

G i = I I g ^ j + bjx + cjy] dxdy (8.8-39)

which simplifies the computation of Gj.

If the triangular element is small enough, then g can be approximated by its values at the centre of
mass of the triangular element and we denote it by g(c). Similarly, x and y can be approximated as
the average values at the nodes. That is to say, x and y are approximated as

x « x = i- (xj + Xj + xk) (8.8-40a,b)

y « y = j (Yi + yj + yk) (8.8-4ia,b)

The approximate value of Gj is thus

G| - g ( c ) [aj + bjx + Cjy ] I I dx dy (8.8-42a)

- g (c ) [aj + bjx + cjy ] A (8.8-42b)

« ^ - g ( c ) A (8.8-42c)

Equation (8.8-42c) is obtained by substituting Equations (8.8-26a to c) into Equation (8.8-42b).

Thus using Equations (8.8-38c, 42c), we can compute Kjj and gj for each element E. We then
have to assemble them to obtain the global K, , and G , y We note that since each triangular

element has three nodes, K is a (3 x 3) matrix for each element, and G is a vector with three

components. If the domain has m nodes, then the global matrix K. ^ is a (m * m) matrix and the

global G/ >, is a vector with m components. By numbering the nodes appropriately, we can obtain

a sparse matrix K, •>.

Example 8.8-2. Solve the equation
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^ J l + i - H . = - 1 , - 2 < x < 2 , - 2 < y < 2 (8.8-43)

3x2 dy2

subject to the condition

u = 0 on the boundary (8.8-44)

From the symmetry of the problem, we may limit our calculations to one octant only. We subdivide
this reduced domain in four triangles and label the elements and nodes as shown in Figure 8.8-2.
Node 1 is the origin of the coordinate system. The coordinates of the nodes are

1(0,0), 2 (1 ,0 ) , 3 (1 ,1) , 4 (2 ,0 ) , 5(2 ,1) , and 6(2,2)

y '

J2.2)

3/ 5 ( 2 , 1 )

E3 /

. / A
(0,0) (1,0) (2 ,0 ) X

FIGURE 8.8-2 Division of a domain in triangular elements

We now use Equations (8.8-26a to c, 38c, 42c) to calculate K and G for each element starting with

element Ej. The area of each triangular element is 0.5.

Ej: aj = 1 , W = -1 , q = 0 (8.8-45a,b,c)

a2 = 0 , b 2 = l , c2 = - l (8.8-45d,e,f)

a3 = 0 , b3 = 0 , c 3 = l (8.8-45g,h,i)
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K l l = 2 ' K12 = ~ i ' K 1 3 = 0 > K 2 2 = 1 ' K 2 3 = - ^ ' K33 = ^ (8.8-46a to f)

Gl = G2 = G3 = ^ (8.8-47a,b,c)

E^ a2 = 2 , b2 = - l , c2 = 0 (8.8-48a,b,c)

a4 = - l , b 4 = l , c4 = - l (8.8-48d,e,f)

a5 = 0 , b5 = -1 , c5 = 0 (8.8-48g,h,i)

K22 = ^> K24 = - ^ ' K25 = ^> K 4 4 = l ' K45 = " £ • K55 = ^ (8.8-49a to f)

G9 = G4 = G, = 1 (8.8-5Oa,b,c)
J 6

Similarly, for E 3 and E4, we have

E3: K22 = i , K 2 3 = - l , K25 = - l , K33 = l , K35 = - l , K55 = l (8.8-51atof)

G9 = G, = G, = -L (8.8-52a,b,c)
^ J J 6

E4: K3 3 = l , K35 = - l , K36 = 0 , K55 = 1 , K56 = - l , K6 6 = l (8.8-53atof)

G3 = G5 = G6 = 1 (8.8-54a,b,c)

We assemble the K and G from each element so as to obtain the global K/ ^ and G(g)- The result

is

~ 1 _ 1 0 I 0 0 0 l f u i l 1
2 2

- 1 2 -1 I - 1 0 0 u2 3

0 - 1 2 1 0 - 1 0 u3 3

_ 1
6

0 - 1 0 I 1 - 1 0 u4 1 (8.8-55)

0 0 -1 I - 1 2 - 1 u5 3

0 0 0 I 0 - 1 -1 J [u6j |_ 1_
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Note that the matrix K, , in Equation (8.8-55) is singular and this implies that the uj cannot be

determined. The components u 4 , u 5 , and u 6 are the values of u on the boundary and are

known. The only unknowns are U p u 2 , and u 3 which can be determined by partitioning the

matrix K, x into four (3 * 3) matrices. The vectors u and G , s are each divided into two vectors

each with three components as shown by the dotted lines in Equation (8.8-55). We choose to consider
the upper half of K, , u and G ̂  <. since we require only three equations to solve for Uj , u 2 , and

u 3 . Equation (8.8-55) now reduces to

" i _ i o i fuji To o o i ru4i r i
2 2

- 1 2 - 1 u2 + - 1 0 0 u5 = 1 3 (8.8-56)

0 - 1 2 u3 0 - 1 0 u6 3

Using the boundary conditions (u4 = u 5 = u 6 = 0), we deduce from Equation (8.8-56) that

"uji r i _ i o T 1 r i i [ i~
2 2 6 4

u2 = - 1 2 -1 1 = 11 (8.8-57a,b)

ui\ I ° -1 2 J L i l [%_
Note that the matrix in Equation (8.8-57 a) is non-singular (its inverse exists) and Uj , u 2 , and u 3

can be determined.

K and G are calculated for each element, they are transferred to K/ ^ and G/ y. that is to say,

K( x and G /gx are being assembled as the calculation for each element proceeds. Thus K and G

for each element need not be stored. Strang and Fix (1973) have discussed the computational aspects
of finite element methods.

PROBLEMS

1 a. Use the explicit method to solve the initial-boundary value problem defined by

^ = ^ 4 , t > 0 , 0 < x < l
at ax2

u(x,0) = x 2 , u(0,t) = 0 , u( l , t ) = 1

Choose h = 0.1 and k = 0.05 so as to ensure the validity of the method.
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2b. Solve the non-linear parabolic partial differential equation

9U 3 U . x n e rx 1
— = — - - (u + cos u) , 0 < x < 5 , 0 < t < I
at 9x2

subject to the following conditions

u(x, 0) = I , 0 < x < 5 ; u(0, t) = u(5, t) = I , 0 < t < I

3a. Solve the following initial-boundary problem

^ = ^ J L , 0 < x < i , t > o
at a x 2

u(x ,0 ) = 0 , u ( l , t ) = I , ^ = 0
5 x x=0

by the method of Crank-Nicolson.

4b. Use the Crank-Nicolson method to solve the problem examined in Example 5.7-2. By
introducing the following dimensionless variables

c = ( c - c f ) / ( c j - c f ) , x = x/L, z = z/L

show that Equations (5.7-21, 22 a to c) become

- = D - ^ | , D = J9 0 B / (Lv z )
3z dx

c (0, z) = 0 , c (x, 0) = I , ^ = 0
5 x x=l

Obtain c for D = 10 and calculate the average concentration (c) defined by Equation
(5.7-36a) by numerical integration.

5a. Use the finite difference method to solve the following elliptic equation

d u 9 u 3u 9u
+ y x u = 0 , 0 < x < l , 0 < y < l

ax2 a y 2 ax ay

u = x - y on the boundary of the square.

Choose h = k = 0.5.
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6a. Solve Poisson's equation

^ 4 + ^ i = - 2 , 0<x<6 , 0<y<8
dx2 dy2

u = 0 on the boundary

(i) by direct elimination and (ii) by the S.O.R. methods.

Choose h = k = 2, and GO = 1.383.

7b. Obtain a central difference approximation to the biharmonic equation

:J4 -}4 -.4
d-i + 2 3 u +JJL = o
dx4 dx2dy2 3y4

8b. Derive a finite difference approximation to Laplace's equation in the polar coordinate system.
The Laplacian is

32u | 1 du 1 32u

3r 2 r 3r r2 dQ2

9a. Use the finite difference method to solve the hyperbolic equation

^ = % 0 < x < l , t > 0

at2 ax2

subject to

u(O, t ) = O , u ( l , t ) = l , u ( x , O ) = x , ^ = 0
a t t=0

Choose h = k = 0.2. Is it possible to choose k > h?

10b. Show that by approximating (9 u /3x ) at (i, j) by its mean value at (i, j) and (i, j + 1 ) ,

an implicit formula for Equation (8.5-la) is

ui_1 ; j + 1 - 2 [ l + (h /ck) 2 ]u i j + 1 + u i + l j + 1

= - ^ i - l j - l - " i + i j _ i - 4 (h/ck)2 ui ; j + 2 [1 + (h/ck)2] U J J . !



NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS 737

Use the implicit formula to solve

^ = % 0 < x < l , t > 0
at2 ax2

u(0 , t ) = u ( l , t ) = t ( l - t ) , u(x,O) = x ( l - x ) , ^ = 1
d t t=o

Choose h = 1/4 , k = 1/8.

l i b . The function u (x, t) satisfies the following conditions

92u | 9 2 u 9 2 u = 1

3x2 dxdt dt2

u(x,0) = 0, ^ - = x ( l - x )
d t t=0

Use the method of characteristics to find u at the intersection of the characteristics through
(0.4, 0), (0.5, 0) and (0.6, 0).

Answer: 0.01, 0.01, 0.02

12a. Show that the solution to the following boundary value problem

2

d-^- + a0(x)u = r(x)
dx2

u (a) = a , u (b) = p

is given by the extremum of the integral I which is defined by

/•b r

I = fdi) - a n u 2 + 2ru dx
I L^dx/ u
Ja.

13 a. Solve the boundary value problem

^ = 3 x + l
dx2

u(0) = u( l ) = 0

(i) by the Rayleigh-Ritz method and (ii) by the Galerkin method.
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Use a quadratic in x as the approximating function.

Compare the approximate solutions with the exact solution.

Answer: 5 x ( x - l ) / 4 ; x(x2 + x - 2 ) / 2

14a. Deduce Equations (8.8-17a, b, c). Note that u is approximated by a linear function pi (x)
and, from Section 7.6, one deduces that pj (x) can be written as

Pi 00 = Ui + Cuj+j-UjXx-XjJ/h

in the interval [XJ, x ^ ] .

Impose the boundary conditions and obtain the required results.

15a. Solve the boundary value problem defined in Problem 13a by the method of finite elements.
Consider three elements and approximate u by a piecewise linear function. Compare the
values of u (1 /3)) and u (2/3) with those obtained in Problem 13a.

16b. Solve the non-linear system

d!u+0.5[(djM2 + u2 = l f o<x<rc/2
dx2 Hdx'

u(0) = 1 , u(7i/2) = 0

by the method of finite elements.

Divide the domain into five elements and choose linear shape functions.

Verify that 1 - sin x is a solution of the boundary value problem. Compare the analytical
solution with the numerical one.

17a. The temperature u (x, y) on a square plate of size 2m x 2m has reached a steady state and
satisfies the equation

^ . + ^ = 0 , 0 < x < 2 , 0 < y < 2
9 x 2 8y 2

The sides x = 0 and x = 2 are kept at 0°C and 100°C respectively. The sides y = 0 and
y = 2 are insulated (3u/3y = 0). Use the method of finite elements to find u at the points
(1,0), (1,1) and (1,2).

Answer: 50°C



CHAPTER 9

CALCULUS OF VARIATIONS

9.1 INTRODUCTION

Calculus of variations was introduced by Johann Bernouilli two centuries ago and is now widely used
in optimization, control theory, and for computing approximate solutions of differential equations. In
differential calculus we learned to determine the extreme values (maxima or minima) of a function. For
example, the function f (x) = x2 has a minimum at x = 0, where its value is 0, f (x) is greater
than zero everywhere else.

Calculus of variations is an extension of the above concept. Suppose we wish to determine the
shortest plane curve joining two points A and B in the xy-plane as shown in Figure 9.1-1. If the
coordinates of A and B are (a, y (a)) and (b, y (b)) respectively, then the length s of the curve
y = y (x) joining A and B is given by

s = f V r + ( l ) 2 d x (9-'-»
J a

y ,

y(b) J *s/Uy

y(a) ^ ^ ;

a b x

FIGURE 9.1-1 Curves joining two points A and B
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For each curve y (x), we can obtain the corresponding value of s and we have to determine the curve
y(x) which yields the minimum value of s. Figure 9.1-1 shows two such curves, y0 and y,. In

variational calculus we need to determine a function, if it exists, such that an integral is an extremum.
That is to say, we wish to find the extreme values of a functional, where a functional can loosely be
defined as a rule which assigns a real number to a function. In this example, we assign a number s to
each function y (x) and the rule refers to an integration with respect to x from a to b. The integral
on the right side of Equation (9.1-1) is referred to as a functional.

In engineering we encounter similar variational problems. In kinetics we can consider the reactions
A —» B —> C. The reaction rates rA, rB and rc may be functions of temperature and concentration.

We may wish to determine the reaction temperature that will produce the maximum amount of B in a
fixed time interval from 0 to tj. The production I of B in the time interval (0, tj) is given by

P
1 = rBdt (9.1-2)

JO

Equation (9.1-2) is similar to Equation (9.1-1). We need to determine the function rB that will

maximize the integral.

Prior to considering variational calculus, we review the theory of extreme values in differential
calculus.

9.2 FUNCTION OF ONE VARIABLE

In Chapter 1, it is stated that a function of one variable f(x) has an extreme value in the
neighborhood of x0 if Af given by

Af = f(xo + Ax)-f(xo) (9.2-1)

retains the same sign for all small values of Ax, irrespective of the sign of Ax. Figure 9.2-1
illustrates this for the situations where x0 is at P (both Af and Ax change sign) or at Q (only Ax
changes sign). Hence Q represents an extremum. Expanding the right side of Equation (9.2-1) about
x0 yields

f (x) - f (x0) = Af = f' (x0) Ax + 1 f "(x0) (Ax)2 + ... (9.2-2a,b)

where ( ' ) denotes differentiation with respect to x and Ax = x - x0 .

It can be seen from Equation (9.2-2) that the condition for Af to preserve its sign, irrespective of the
sign of Ax is

f '(xo) = O (9.2-3)
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y |

V -»«/!*y
\ -ayl/jax

i 1 1 -
Q P X

FIGURE 9.2-1 Extremum for a function of one variable

Thus the condition for point x0 to give an extremum of f is given by Equation (9.2-3). It follows
from Equation (9.2-2) that f(x0) is a maximum if f"(x0) is negative and f(x0) is a minimum if
f "(x0) is positive. In Figure 9.2-1, Q represents a minimum since Af is always positive.

Example 9.2-1. Find the extreme values of f (x) = sin x.

On differentiating, we have

f'(x) = cos x and f "(x) = -sin x (9.2-4, 5)

Thus the extreme values of sin x are at f' (x) = 0; that is, cos x = 0, so that

xn = (2n + 1) 7C/2 , n = 0, 1,2, ... (9.2-6)

At these points

f "(xn) = -sin xn = -sin (2n + 1) 7t/2 = -sin %I2 cos tin = (- l ) n + 1 (9.2-7a,b,c,d)

These extreme values are maxima when n is even and minima when n is odd. Thus x o = 7 t / 2 is
maximum (sin %I2 = 1) and Xj = 3rc/2 is a minimum (sin 37t/2 = -1).
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9.3 FUNCTION OF SEVERAL VARIABLES

If f is a function of several variables x ,̂ x2,... , xn then f is said to have an extreme value in the
neighborhood of Xj, x2, ... , xn if Af defined as

Af = f (Xj +Ax1,x2 + Ax2, ... xn + Axn)-f(x1 ;x2, ... xn) (9.3-1)

preserves its sign for all Axi; i = 1,... n.

Expanding the right side of Equation (9.3-1), we obtain

Af=S^Ax1 + l iS^A X i Ax j + ... (9.3-2,

1 = 1 l 1 = 1 J = l 1 J

In Equation (9.3-2), all the derivatives are to be evaluated at Xj = Xj, i = 1, ... n.

From Equation (9.3-2), we deduce the condition for f to have an extremum at x̂  = Xj is

p- _ = 0 , for all i= 1,2, ... n (9.3-3)

n n -̂ 2r-

The function f will be a minimum if the quadratic expression ^ ^ 5—^— Axj AXJ is
i=l j=l d x i d x j

positive definite. The conditions for this are

D 1 = ^ - > 0 (9.3-4)
0X1

A _^f_

D2= 1 \ 2 >0 (9.3-5)
32f _^f

Bx^xj 3x2
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3^f 32f 92f

a2f a2^ a2f
3x^x2 ax2 ax2axn

Dn= . >0 (9.3-6)

a2f a2!
axjaxn ax2

All the derivatives are to be evaluated at Xj = Xj.

The conditions for f to have a maximum at x; is that the quadratic expression must be negative

definite, that is

Dj < 0 , D2 > 0 , D3 < 0 ... (9.3-7a,b,c)

and so on with the sign of the determinant alternating.

When the quadratic expression is not definite we have to use ad hoc methods or consider higher order
terms to determine the nature of the extrema.

Example 9.3-1. Find the extreme values of

f (x1>x2) = x2 + x2 + x1x2 (9.3-8)

On differentiating, we obtain

i ! = 2 x 1 + x 2 , - ^ = 2 x 2 + X l , — = 2 , ^ = 2 , - ^ - = 1 (9.3-9atoe)
3xj 3x2 3x2 dx\ dxxdx2

The extreme values of f are at

2x1 + x2 = 0 , 2x2 + x 1 = 0 (9.3-10a,b)

The solutions are

x^x^O, x2 = x2 = 0 (9.3-1 la,b,c,d)

So the extreme value of f is at the origin. At the origin, both Dj and D2 are positive and f has a

minimum at the origin.
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Example 9.3-2. Find the extreme values of

f(x1,x2) = x^ + xfx2 + xj (9.3-12)

The partial derivatives of f are

= 2xjx2 + 4x], = 2x2 + x2 , = 2x2 + 12x2 (9.3-13a,b,c)
dxj dx2 9X2

^ 4 = 2 , - ^ f - = 2 X l (9.3-13d,e)
3x| 3x^x2

The extreme values of f are given by

— L = 0 => 2Xlx2 + 4xf = 0 (9.3-14a,b)
OXi

-L = 0 => 2x2 + xf = 0 (9.3-14c,d)
2

The solutions are

x 1 = 0 , x2 = 0 (9.3-15a,b)

Thus f has its extreme value at the origin. Both Dj = D2 = 0 at the origin, and so we need to

investigate further to determine if the origin is a maximum, a minimum or neither.

Af is given approximately by

Af = (Ax2)2 + (AXl)2 (Ax2) + ( A x / = [ Ax2 + 1 ( A x / ] 2 + | (A x i)4 (9.3-16a,b)

and Af will always be positive and the origin is a minimum.

Example 9.3-3. Find the extreme values of

f (x 1 , x 2 ) = x 1 x 2 (9.3-17)

On differentiating, we obtain

^ - = x 2 , - ^ - = x 1 , ^ = 0 , ^ = 0 , - ^ L . = l (9.3-lSatoe)
3xj 9x2 9X 2 3X2 3x^x2
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The extreme value of f is at the origin where Dj and f are zero and the quadratic expression is not
definite, f is greater than zero if Xj and x2 are of the same sign and less than zero if Xj and x2 are
of opposite sign. The origin is a saddle point, it is a maximum along one line and a minimum along
another line, in the neighborhood of the origin.

9.4 CONSTRAINED EXTREMA AND LAGRANGE MULTIPLIERS

We have assumed earlier that Xj, x2,... , xn are all independent and can take any arbitrary value.
This might not necessarily be the case. For example, if Xj is the cost of a product, then Xj cannot be
negative. There might be a relationship between the Xj. Thus if Xj represents the length of a rod and
x2 is the temperature, then x̂  is a function of x2, Xj and x2 are not completely independent. In
theory it is possible to eliminate all dependent variables and retain only the independent variables. In
practice, this can be very cumbersome and the process of elimination can be very time consuming. It
is preferable to use the method of Lagrange multipliers.

Suppose we wish to find the extremum of f (xj, x2, ..., xn) subject to the condition

g ( X l , x 2 , ... ,xn) = 0 (9.4-1)

We now consider the function L, sometimes called a Lagrangian, and is given by

L (xj, x2, ... , xn, X) = f (x1? x2, ... , xn) + Xg (xj, x2, ... , xn) (9.4-2)

where X is the Lagrange multiplier.

The extremum of L is then given by

| ^ = 0 , i = l ,2 , ... ,n (9.4-3a)

— = 0 (9.4-3b)
dX

From the (n + 1) equations [Equations (9.4-3a,b)], we can solve for Xj = Xj and X.

If we have m constraints, instead of one, and the constraints are given by

g j (x 1 ,x 2 , ... ,xn) = 0 , j = l ,2 , ... ,m (9.4-4)

The Lagrangian becomes

m
L = f (xj, x2, ... , xn) + ]T, Xj gj (xlf x2, ... , xn) (9.4-5)

j= l



746 ADVANCED MATHEMATICS

The extremum of L is then given by

^ = 0 , i = 1,2, ... ,n (9.4-6a)

— = 0 , j = l ,2, ... ,m (9.4-6b)

From the (n + m) equations, we can solve for Xj and A,:.

Since the g: (xj, x2, ... , xn) are identically equal to zero, the extremum of L is the extremum of f

and the Lagrangian has been introduced to ensure that the conditions of constraints are automatically
satisfied.

Example 9.4-1. Find the extremum of

f (x1,x2) = x1x2 (9.4-7)

subject to

xf + x\ = 1 (9.4-8)

In this example, we are required to find the maximum or minimum of the rectangle inscribed in a circle
of unit radius. The equation of constraint is

g(x1,x2) = xJ + x | - l = 0 (9.4-9)

The Lagrangian and its derivative are

L = x1x2 + X(x^ + x ^ - l ) (9.4-10)

=— = x2 + 2?ix1 , ^— =xl+ 2Xx2 , — =Xj + x 2 - l = 0 (9.4-1 la,b,c)
d x l d x2 dX

From Equations (9.4-6a, lla, b), we deduce that

x1 = x2 (9.4-12)

Substituting Equation (9.4-12) in Equation (9.4-1 lc), we obtain

X ! = - ^ r , f = ;[- (9.4-13a,b)
V2 l
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Note that, in this example, the point (x1? x2) has to be on the circle of unit radius with the centre
located at the origin. In Example 9.3-3, (Xj, x2) can be any point and thus f = XjX2 has a saddle
point at the origin. In the present problem, (Xj, x2) cannot be the origin.

9.5 EULER-LAGRANGE EQUATIONS

We now deduce the conditions for the functional (integral) I given by

I"1= f(x, y, y')dx (9.5-1)

/a

to have an extreme value. The points a and b are fixed and we also assume y (a) and y (b) to be
fixed. Let the function y0 (x) represent an extreme value for I. We can consider a neighboring curve
yj = yQ + er| (x) as shown in Figure 9.1-1. The increment AI is given by

i-b rb

AI = I f[x,yo + ETi(x),y' + eTi(x)]dx-l f[x, yo(x), y^(x)]dx (9.5-2)
Ja Ja

where e is a small quantity and r\ is an arbitrary continuous function of x.

On expanding the function f [x, yo+ er|(x), y^ + er|'(x)] in powers of e, according to the Taylor

expansion [Equation (1.7-7)] and substituting into Equation (9.5-2), we obtain

i-b

AI = I eri |^- + eif - ^ + O(e2) dx (9.5-3)

Integrating the second term by parts yields

/•b . fb

en' — dx = [ETI-^-1 - eri-jU-^- dx (9.5-4)

Since y (a) and y (b) are fixed, r\ (a) = r\ (b) = 0. Substituting Equation (9.5-4) into Equation
(9.5-3), we obtain

,b

A I = [eT] K^.±IK ]dx + O(82) (9.5-5)
; a L ^y dx \dy' .

From Equation (9.5-5), we deduce that AI preserves its sign for all arbitrary functions erj (x) if
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£-± ^ =0 (9.5-6)
dy dx dy' t

Equation (9.5-6) is the Euler-Lagrange equation and gives the condition for I to have an
extremum. We can also deduce Equation (9.5-6) by considering I to be a function of e. The
extremum of the integral

(h1 = f(x, yo + eri,yo + eTi')dx (9.5-7a)
Ja

is given by

41 =0 (9.5-7b)
d e e=0

S = d t [ f (x> y ° + eT1' y ° + e T 1 ' ) ] dx (95'8a)
/a

= f b [ i L ^ i + i L ? y i ] d x (9.5.8b)

Ja [By! 9e dyj 3e

= \nJ*L +T1'_§Lldx (9.5-8c)

ia [ ayi 3 y ;
We recall that ŷ  = y0 + £T) and, on setting e = 0, we obtain yj = y0 • We now denote y0 by

y. Equation (9.5-8c) becomes
rb

il = ^^1 + ̂ iLldx (9.5.9)
e=0 Ja [ ^y a y '

On again integrating I T)1 dx by parts, we obtain

A ay'

dl = f J*L _ A f i L \ l dx = 0 (9.5-10a,b)
de e=o Ja [ay dx (ay1 j j
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Thus the condition for ^ = 0 for all r\ (x) is also given by Equation (9.5-6). The variation ~
d£ e=o d£

is also known as the Gateaux variation.

Expanding Equation (9.5-6), we have

af a2f . a2f .. a2f n , f t e 1^
- - y y - = 0 (9.5-11)

By dxdy' ay8y' Oy')2

Hint: Note that can be written as g [x, y (x), y' (x)] and compute -^-.
dy' dx

Thus to determine the extremum of the functional I, we need to solve a second-order differential
equation [Equation (9.5-11)], subject to the boundary conditions

at x = a, y = y (a); at x = b, y = y (b) (9.5-12a, b)

In practice, not all the arguments x, y, y' of f are present and Equation (9.5-11) is then simplified.
We now consider these special cases.

9.6 SPECIAL CASES

Function f Does Not Depend on y' Explicitly

In this case, f is a function of x and y only and it follows

% = 0 (9.6-1)
ay

Equation (9.5-11) reduces to

| = 0 (9.6-2)

From Equation (9.6-2), we obtain the relation y = y (x). The solution y = y (x) has to satisfy the
boundary conditions [Equations (9.5-12a, b)].

If y does not satisfy Equations (9.5-12a, b), y is not an admissible solution and the functional I
does not have an extreme value.

Example 9.6-1. Find the extreme values of
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I" 2
1=1 (xyz-y)dx (9.6-3)

The boundary conditions are

(a) y(l) = l, y(2)=l (9.6-4a)

(b) y(l)= 1/2, y(2) = l/4 (9.6-4b)

In this problem

f = x y 2 - y (9.6-5)

which is not an explicit function of y1.

The extremum of I is then given by Equation (9.6-2), which yields

2 x y - l = 0 (9.6-6)

The solution of Equation (9.6-6) [y = (l/2x)] does not satisfy Equation (9.6-4a) and, in this case, I
has no extremum. However, it satisfies Equation (9.6-4b) and y = (l/2x) gives the extreme value of
I. In this case

, 2 ,2

1 = 1 = [ X J Udx = - -L dx (9.6-7a,b,c)
Jl I 4x2 2x) Ji 4 x

= - 1 in 2 = -0.1733 (9.6-7d,e)

For the purpose of comparison, suppose we have a straight line joining the points (1, 1/2) to (2, 1/4).
The equation of such a line is

y = l ( 3 - x ) (9.6-8)

Substituting this y into I, we obtain

f2

I = I2 = 1 { ^ ( 3 - x ) 2 - l (3-x) jdx = - 1 1 =-0.1719 (9.6-9a,b,c,d)

Comparing Equations (9.6-7e, 9d), it is seen that ^ is a minimum.
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This means that there is no function (curve) y (x) that extremizes I and satisfies Equation (9.6-4a).
Of all the functions that satisfy Equation (9.6-4b), the function y = (l/2x) minimizes I.

Function f Does Not Depend on y Explicitly

In this case, Equation (9.5-6) simplifies to

f ( ! M = o (96-io)
dx \dy J

which on integrating yields
= constant = Cj (9.6-11)

dy'
From Equation (9.6-11), we can solve for y' and y' can be further integrated to obtain y. Since we
have integrated twice, we introduce two arbitrary constants which are determined by the end conditions
[Equations (9.5-12a, b)]. Unlike the previous case, here we always have a solution.

Example 9.6-2. Find the extremum of

i = C H ^ L dx (9.6.12)

\ V 1 + (v')2 1In this example, f = ^—^— is not an explicit function of y. Equation (9.6-11) yields

^ x x V l + ( y ' ) 2

Solving for y' , we obtain

y' = hi (9.6-14)

Vl-c2x2

Integrating yields

y = I C ] X dx = - J - V1 -c?x 2 + c2 (9.6-15a,b)

I / T ^ 2 ? Cl

where c 2 is a constant.

(9.6-13a,b)
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We may rewrite Equation (9.6-15b) as

c2 ( y - c 2 ) 2 = ( l - c 2 x 2 ) (9.6-16)

and this represents a family of circles with centres along the y-axis. The constants c1 and c2 are

determined by the boundary conditions. If the curve passes through the origin (0, 0) and the point

(1, 1), we obtain from Equation (9.6-16)

C j = c 2 = l (9.6-17a,b)

Substituting the values of Cj and c2 into Equation (9.6-16), we obtain

( y - l ) 2 + x 2 = l (9.6-18)

which is the equation of unit circle with centre at (0, 1).

Function f Does Not Depend on x Explicitly

Since f is not an explicit function of x

I " 0 (96-19)
Equation (9.5-11) simplifies to

df . a2f .. a2f _ ,n£*ns
y T ^ T - y —T7 = ° (9.6-20)

By 8ydy 0y ' ) 2

Multiplying Equation (9.6-20) by y1, we find that the resulting expression is an exact differential
which may be written as

-f- [ f - y l ^ r l = o (9.6-21)
L dy

The solution of the above equation is

f - y ' - ^ - = constant = Cj (9.6-22)
dy'

From Equation (9.6-22), we can solve for y' and this can be integrated so as to obtain the required y
as a function of x. As usual, the two integration constants are determined from the boundary
conditions.



CALCULUS OF VARIATIONS 7J1

Example 9.6-3. Find the extremum of

, ^ f Vl + (y')2 dx

This example is known as the brachistochrone problem. It was first proposed by Johann
Bernouilli in 1696. It is usually accepted that this problem marks the beginning of calculus of
variations. In this example, we have to determine the path that a particle will take, while falling under
gravity, so that the time taken is a minimum. If we take one of the points to be the origin of the
Cartesian coordinate system, x the horizontal axis, and y the vertical axis, then the velocity v at
height y is computed through the conservation of energy (potential + kinetic = constant) to be

v = /2gy (9.6-24)

where g is the gravity. Then the time t needed for the particle to fall from the origin (0, 0) to a
point (a, b) is, using Equations (9.1-1, 6-24)

t = fa ds = J L f3 Vl+(y')2 dx (9.6-25a,b)
Jo v ^ Jo V 7

Since

f = ^ ( l + ( y ' ) 2 ) 1 / 2 y - l / 2 (9.6.26)
V2g

i l . yT" 2 ( i + (/>2)-'/2 (9.6.27)

8y' V2g

Substituting f and and absorbing V2g into the constant c1; Equation (9.6-22) becomes
dy'

(i + (y ')2)1 / 2 y'm - (y1)2 0 + (y')2)~m y~m = Cl (9.6-28)

On simplifying the above expression, we obtain

I = c i y 1 / 2 ( l + ( y ' ) 2 ) 1 / 2 (9.6-29)

Squaring both sides of the above expression, we can then solve for y'. Integrating y' yields

I A / -^— dy = I dx (9.6-30)
J V l - c 2 y ]

(9.6-23)
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To evaluate the integral on the left side of the above equation, we use the substitution

y = J - sin20 (9.6-31)

I A / C l Y dy = -2- I ^isS- sinG cos9 d9 = -±- [e - 1 sin 20] (9.6-32a,b)

/ V 1 - c f y c2 J cosG c 2 L 2 J

Equation (9.6-30) can now be written as

-M© - y sin 29J = x + c2 (9.6-33)
c2 Z

where c2 is a constant. The curve has to pass through the origin, (0, 0). Therefore, 9 = 0, and
c2 = 0. The parametric equation of the curve is

X = X f e - l sin 29] (9.6-34)

y = J - sin29 = - J - [l - cos 29] (9.6-35a,b)
C l ^ C l

The constant Cj is to be determined from the condition x = a, y = b. The parametric equations of

the curve as given above is that of a cycloid. Thus the curve of quickest descent is a cycloid.

Function f Is a Linear Function of y'

Let us write f as

f = p(x,y) + y ' q (x ,y ) (9.6-36)

Then

-^T = q (x, y) (9.6-38)
dy

Equation (9.5-6) becomes

l+y'l^y^fM/ (9.6-39a,b,

 

(9.6-37)
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The condition for I to be an extremum is

dp da

Equation (9.6-40) gives y as a function of x and there is no integration constant. Thus an extremum
of I will exist only if y satisfies the end conditions [Equations (9.5-12a,b)]. This is similar to the
case where f is not an explicit function of y'.

If Equation (9.6-40) is identically satisfied, then the expression given by Equation (9.6-36) is an exact
differential, and there exists a function <]> such that

dd>

The integral becomes

I = | f (x, y, y') dx = I ^ dx = ())b - <j)a (9.6-42a,b,c)
Ja Ja ax

Thus I is independent of the path taken and all curves yield the same value of I.

The above result is equivalent to the statement in mechanics, that the work done by a conservative

force is independent of the path taken. If we take (p, q) to be the components of a vector a in a two-

dimensional space, then

«-.-(£-£) (9.6-43)

If Equation (9.6-40) is identically satisfied, then

curl a = 0 (9.6-44)

So a is a conservative force and there exists a potential <|), such that

a = ± grad <|> (9.6-45)

Then the work done by a from one point to another is independent of the path and is only a function

of the difference of potential between the two points.

Example 9.6-4. Find the extremum of

(9.6-41)

(9.6-40)
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1=1 (y2 + x2y')dx (9.6-46)

Jo
The requirement for an extremum of I is given by Equation (9.6-40) with

p = y2 and q = x2 (9.6-47a,b)

Thus the condition is

2y = 2x or x - y = 0 (9.6-48a,b)

If the end conditions are represented by the points (0, 0) and (1,2), then the first end condition is
satisfied, but the second one is not. So in this case there is no extremum. If the second end condition
is modified to (1, 1), then the curve y = x will give the extremum of I.

Example 9.6-5. Find the extremum of

r1
1=1 (y + xy')d* (9.6-49)

; o

In this example, p = y, q = x, so Equation (9.6-40) is identically satisfied. In this case, there is no
extremum.

f1 fl fl
1= (y + xy')dx= [ydx + xdy] = d (xy) = [xy]^ = y (1) (9.6-50atoe)

Jo Jo Jo
Therefore, I does not depend on which curve y (x) is taken.

•

In general, if f is an explicit function of all three variables x, y, and y', then we have to solve the
second order differential Equation (9.5-11) and the two end conditions will determine the two arbitrary
constants.

9.7 EXTENSION TO HIGHER DERIVATIVES

We extend the theory to f being an explicit function of higher derivatives of y, such as

y ", y ' " , . . . , y ̂ n\ Thus we find the extremum of
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I = f(x,y, y1, y " , y " \ . . . y ( n ) ) d x (9.7-1)
/a

If y = yo(x) is the function that will make I an extremum, then by considering another function

y = yo + eii(x) (9.7-2)

where e is small and r\ (x) is an arbitrary function of x and proceeding as in Section 9.5, we can
show that the condition for I to be an extremum is

dy dx Uy ' dxMay" dx3 (ay111 "" dxn \ 3y(n) j

This equation is essentially a generalization of Equation (9.5-6). The alternating signs are a result of
several integrations by parts of the derivatives of T|.

In deducing Equation (9.7-3), we have assumed that y, y', y", ... are given at x = a and x = b.
The existence and continuity of y and its derivatives, as required, are assumed to be satisfied.

9.8 TRANSVERSALITY (MOVING BOUNDARY) CONDITIONS

We reconsider the problem of finding the extremum of I [see Equation (9.5-1)] with the end points
x = a and x = b fixed, but the values of y and its derivatives at the end points not specified. The
y-coordinate of the curve will have its ends at any point along the ordinates x = a and x = b as
shown in Figure 9.8-1. The extremum curve has a greater degree of freedom and we cannot determine
the two arbitrary constants in the solution of the Euler-Lagrange equation from the end conditions.
Instead we need to deduce two new conditions.

We proceed as before by considering two curves y0 and y0 + £T|. We obtain Equations (9.5-3, 4),
but we can now no longer impose the boundary conditions r| (a) = r\ (b) = 0, since y (a) and y (b)
are not fixed. We impose a new transversality condition

Tl-2-7 = 0 (9.8-1)
L dy Ja

Using Equation (9.8-1), we obtain Equations (9.5-5, 6). Thus the conditions for I to be an
extremum are now given by Equations (9.5-6, 8-1). If the value of y is fixed at one of the end points
(say at x = a) and is free at the other end, then the condition given by Equation (9.8-1) simplifies to

- ^ = 0 (9.8-2)
V x=b

(9.7-3)
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y

^J L_^
a b x

FIGURE 9.8-1 Variable values of y and its derivatives at constant x

Example 9.8-1. Find the extremum of

1=1 [(y')2+l]2dx (9.8-3)

Jo

given y(O)=l but y(l) is not prescribed.

Since f = [(y') +1] is not an explicit function of y, Equation (9.6-11) implies

4 y ' [ ( y ' ) 2 + l ] = Cl (9.8-4)

At x = 1, the transversality condition imposes

i l = 0 => cj = 0 (9.8-5a,b)

9y'

It follows that

y '= 0 , y = constant = c2 (9.8-6a,b,c)
The solution that satisfies the prescribed condition [y (0) = 1] is
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y = 1 (9.8-7)

Thus the extremum of I is given by

I = dx = 1 (9.8-8)
70

Let us determine I when the values of y are specified at both ends. We suppose y (1) = a. The
condition for I to be an extremum is still given by Equation (9.8-4), which is a cubic equation in y'.
At least one of the roots must be real and since c1 is an arbitrary constant, we can assume that y ' is a
constant. Thus

y = k1x + k0 (9.8-9)

where kj and kQ are arbitrary.

Imposing the end conditions

y ( 0 ) = l , y(l) = a (9.8-10a,b)

we find that

k o = l , k1 = ( a - l ) (9.8-1 la,b)

The function y and the integral I are given by

y = ( a - l ) x + l (9.8-12)

I = [a2 - 2 a + 2] I dx = [ a 2 - 2 a + 2] (9.8-13a,b)
Jo

We regard a as a variable and determine the values of a that will make I a minimum. That is

^ = 0 (9.8-14a)

or 2 [ a 2 - 2 a + 2] [2a-2] = 0 (9.8-14b)

The solution is a = 1 and I = 1 which is the solution given by Equation (9.8-6). Using the
transversality condition, we obtain automatically the value of y(l) which renders I an extremum.
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9.9 CONSTRAINTS

So far we have been concerned with finding the extremum of

(b
1= f(x, y, y ')dx (9.5-1)

J a

with y satisfying certain end conditions.

However, in many problems y has to satisfy additional conditions and these conditions may take the
form of integral relations, algebraic equations or differential equations. If the supplementary
conditions are of an integral type, then they are known as isoperimetric constraints which we
shall consider next.

Suppose we have to find the extremum of I as given by Equation (9.5-1), subject to the constraint

J = I g (x, y, y')dx = constant = C (9.9-la,b)

We assume that yo(x) is the function that extremizes I. Consider a neighboring curve to y0 given

by

y = yo(x) + e1r|1(x) + e2r|2(x) (9.9-2)

In this case, we have introduced two parameters £l and £2. The functions Tj^x) and T|2(x) are
arbitrary functions. In extremizing I we can allow £j to be completely arbitrary as before and then
adjust e2 so that the condition given by Equation (9.9-lb) is satisfied.

We define I* and J* as

/•b
I = 1 f(x, yo+ EJTIJ+ e2ri2, y o +e 1 r ) j+e 2 r i 2 )dx (9.9-3)

/a

J* = I g(x, y o +e 1 r | 1 +8 2 r i 2 , y'Q+elr\[+e2ri'2)dx = C (9.9-4a,b)
Ja.

I* and J* can be considered as functions of £j and £2 and the extremum of I* is given by

£j = e2 = 0. We need to find the extremum of I subject to the constraint given by

Equation (9.9-4b). This problem is equivalent to the case of finding the extremum of a function of two
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variables subject to a constraint as discussed in Section 9.4. The method of Lagrange multipliers can
thus be used. We therefore define a function H* as

H* = I*+AJ*=I (f+X,g)dx (9.9-5a,b)
Ja

= 1 L(x, yo+81ri1+e2Ti2, yo+£1rij+82Ti2)dx (9.9-5c)
Ja

where A, is a constant.

The extremum of I* is given

^ - = 0 (i = l,2) (9.9-6)
aei e;=0

— = C (9.9-7)

Following the development leading to Equation (9.5-8), we obtain

JT- = Ui — + T\\— dx (9.9-8a)

= fTli[^-^(^]jdx (9.9-8b)
Ja [3y0 dx \dy'o)

fb
as a result of integrating I rij dx by parts and using the boundary conditions

ia 3yo

•ni(a) = Tli(b) = 0 (9.9-9a,b)

Thus the extremum of I is given by

^ k _ A 3L =O=d-(f + Xg)-±\lT(f + Xg)\ (9.9-10a,b)
9y dx 3y 3y dx [ 3y
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and gdx = C (9.9-11)

Example 9.9-1. Given a curve of fixed length s joining the points (0, 0) and (1, 0) as shown in
Figure (9.9-1), find the extremum of the shaded area enclosed by the curve and the x-axis.

y

o i *

FIGURE 9.9-1 Area (shaded) enclosed by a curve of length s
The area

A = I ydx (9.9-12)

Jo

and the length s is given by Equation (9.1-1). Using Equation (9.9-10), the extremum is given by

-My + x V l + t y f l - ^ f - M y + W l + t y 1 ) 2 ) ] ^ (9.9-13)
dy dx [ dy

Taking the partial derivatives, remembering that y and y' are to be treated as independent variables,
we obtain
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\-\4- Y =0 (9.9-14)
dx L V l + ( y ' ) 2 _

This can be integrated to yield

y ' = ^ 1 > (9.9-15)

V l + ( y ' ) 2 X

where Cj is an arbitrary constant.

On squaring both sides of Equation (9.9-15), we obtain

m \ ( "-C ' ) 2 (9.9-16)
l d J ^ - ( x - c , ) 2

To integrate the above expression, we use the substitution

z = (x-c1) (9.9-17)

Then the integral becomes

y = ± I , z d z (9.9-18)

On further substituting

z = ?,cose (9.9-19)

we obtain

y = + I X cos6 d6 = + X sin 6 + c2 (9.9-20a,b)

On squaring both sides of Equations (9.9-20a, b) and returning to the original variables, we finally
obtain

( y - c 2 ) 2 + ( x - C l ) 2 = X2 (9.9-21)

Thus the curve is an arc of a circle. The end conditions implies

c2 + c 2 = X2 (9.9-22)
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cf + ( l - C l ) 2 = l 2 (9.9-23)

with solutions Cj = }- and c2 = ± V A, - j .

To obtain X, we impose the isoperimetric constraint given by Equation (9.1-1). Differentiating
Equation (9.9-21) with respect to x and substituting y' into Equation (9.1-1) yields

s = X I d x — (9.9-24)
jo y?i2-(x-i/2)2

This integral is of a standard form and its value is

s^fsin-1^^]1 (9.9-25a)
I X J o

= 2A,siiT1( -J-) (9.9-25b)
\2X>

[since sin"1 (-x) = -sin"1 (x)].

We can now express X in terms of s and the required curve is a circle with centre

(1/2, ±V X2- 1/4) ) and radius X.

If s = K/2, X - 1/2 and the equation of the curve is given by

y 2 + ( x - l / 2 ) 2 = 1 (9.9-26)

Thus the required curve is the semi-circle with centre (1/2,0) and radius 1/2. This result can also be
obtained from geometrical considerations.

•

If the constraint is of algebraic type or in the form of a differential equation, then we have to choose the
Lagrange multiplier as a function of x, instead of a constant. The constraints can be of the form

f (x, y, y') = constant (9.9-27a)

or y1 =g(x,y) (9.9-27b)

Example 9.9-2. Find the extremum of
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1 = 1 [l+(y")2]dx (9.9-28)

Jo

We reduce the integrand to the usual form in terms of y'. We write

yi = y" (9.9-29)

Equation (9.9-28) becomes

1 = 1 [ l+(yi ) 2 ]dx (9.9-30)
JO

Subject to the constraint

y i - y ' = o (9.9-31)

The Lagrangian L now is given by

L = ( l + ( y i ) 2 ) + ? i (y 1 -y ' ) = 0 (9.9-32)

Thus the problem of having a higher derivative in the integrand has been transformed to one involving
two dependent variables y and y^ subject to a constraint. We first extend the theory of calculus of

variations to the case of more than one dependent variables, and then we shall be able to complete the
above example.

9.10 SEVERAL DEPENDENT VARIABLES

We generalize to the case of several dependent variables. The function f depends on n dependent
variables yJ; y2, ... , yn. We need to determine the n functions y1; y2, ... , yn that extremize the

functional I given by

i = | f(x, yi, y2. - . yn. yi' yi» - • y i i ) d x (9.10-1)

} a

We assume the end points are fixed and the conditions are

y1(a) = a1, y2(a) = a2, ... , yn(a) = an (9.10-2a,b,c)

y1(b) = b 1 , y2(b) = b 2 , ... , yn(b) = bn (9.10-3a,b,c)
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We proceed as in the case of one variable. Suppose y01, yo2, ... , yOn are the functions that

extremize I and consider the functions

yi = yoi + e i r l i ( x ) ' i = 1 n (9.10-4)

where the r^ are arbitrary functions, satisfying the conditions

Tii(a) = Tii(b) = 0 (9.10-5a,b)

The functional I* (£j) is given by

!*(%) = f (x, yoi+ejTi!, ... , yon+EnV yii+eiTll, ... , y;n+enTi;)dx (9.10-6)

/a

The extremum of I is then given by

ft*
aT = (9.io-7)

aei £i=0

Equation (9.10-7) can be written, again following the development leading to Equation (9.5-9), as

Tli — + ^ T L d x = 0 (9-10"8)
Ja [ ^i hi

The conditions for I to be an extremum are obtained by integrating the second term in Equation
(9.10-8) by parts and the result is

i L _ _ l ( _ * U 0 , i=l,2,...,n (9.10-9)
dy{ dx \ dy[ j

Example 9.10-1. Complete Example 9.9-2. The extremum of I is now given by

*_A(ik\ = 0 (9.10-10)
8y dx 1 dy' I

^-±(^) = 0 (9.10-11)
3Yl dx [ dy[ J

Using Equation (9.9-32), Equations (9.10-10, 11) become
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^-(?l) = 0 (9.10-12)

? i -^ (2y | ) = 0 (9.10-13)

Equation (9.10-12) implies that X is a constant and we can integrate Equation (9.10-13) to obtain

y = a3x3 + a2x2 + a1x + a0 (9.10-14)

where a0, a ,̂ a2, a3 are constants. Remember that y ^ y ' .

If the end conditions were

y(0) = 0 , y ' ( 0 ) = l , y ( l ) = l , y ' ( l ) = l (9.10-15a,b,c,d)

then the constants a0 to a3 will be given by

ao = a2 = a3 = O and al = \ (9.10-16a,b,c,d)

Thus, the function that will extremize I [Equation (9.9-30)], subject to the end conditions given by
Equation (9.10-15a to d), is

y = x (9.10-17)

Example 9.10-2. Find the extremum of

l-Tt/2

I = [(y;)2 + (yi)2 + 2yiy2]dx (9.10-18)

Jo

subject to the following conditions

yi (0) = y2(0) = 0 , Y l (Ti/2) = y2(7c/2) = 1 (9.10-19a,b,c,d)

Via Equation (9.10-9), we compute

| f = 2y2 , | L = 2yJ (9.10-20, 21)

| f = 2 y i , ^T=2y2 (9.10-22,23)

Thus the extremum of I are given by
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2 y 2 - ^ (2yi) = 0 =» y 2 - 2 y ; = 0 (9.1O-24a,b)

2yi - ^ (2y2) = 0 =» yt - y 2 = 0 (9.10-25a,b)

Eliminating yj from this system, we obtain

y 2 " - y 2 = 0 (9.10-26)

The solution of Equation (9.10-26) is

y2 = &i cos x + a2 sin x + a3 cosh x + a4 sinh x (9.10-27)

where a1 to a4 are arbitrary constants.

From Equation (9.10-25), we deduce that

y2 = - a1 cos x - a2 sin x + a3 cosh x + a4 sinh x (9.10-28)

Imposing the boundary conditions given by Equations (9.10-19a to d) yields

a i = a2 = a3 = 0 , a4 = s , n h 1 7 t / 2 (9.10-29a,b,c,d)

Thus yj and y2 are given by

Yi = y? = s iuh K.n (9.10-30a,b)
1 l smhrc/2 v J

I is given by

fK/2 2 2
j = 2 cosh x + sinh x d x = 2 cosh nil (9.10-31a,b)

)o sinh2K/2 S l n h 7 t / 2

Example 9.10-3. Derive Lagrange's equations.

In elementary mechanics, one usually starts with Newton's laws of motion. It is also possible to
develop a theory of mechanics starting from a variational principle and this type of mechanics is
known as analytical mechanics. In advanced mechanics, the variational approach has certain
advantages [Lanczos (1966)]. One of the possible variational principles we may start with is
Hamilton's principle, which may be stated as follows.

The path that a dynamical system takes in moving from one point at time tj to another point at time t2

is such that the line integral
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1 = I L d t (9.10-32)

in an extremum. L is the Lagrangian and is given by

L = K-q> (9.10-33)

where K is the kinetic energy and cp is the generalized potential energy.

The generalized coordinates of the dynamical system are q1, q2, ... , qn and the generalized
* 1 * 2 * n

velocities are q , q , ... , q . The dot denotes differentiation with respect to time. L is then a
* j

function of q1 and q . Thus the condition for I to be an extremum is

^ L - A / ^ M o, i=l,2,...,n (9.10-34)
Bq1 d t \ 9 q ' j

The n equations given by Equation (9.10-34) are known as Lagrange's equations.

Example 9.10-4. A particle P of mass m lies on a smooth horizontal table and is connected to
another particle Q of mass 3m by an inextensible string which passes through a smooth hole in the
table as shown in Figure 9.10-1. If the particle P is projected from rest with a speed V8ag along the
table at right angle to the string when it is at a distance a from the hole, determine the ensuing motion
of P and Q.

Let O, the position of the hole, be the origin. The polar coordinates of P are (r, 0) as shown. The

components of the velocity of P are (r, r 0). Taking the level of the table to be the zero-level of
potential energy, the potential energy of particle Q is - 3 mg(/8 - r), where k is the length of string.

Since the string is inextensible, Q will move up or down with speed r. The kinetic energy of the
system is

K= i- m ( r 2 + r 2 0 2 ) + 3m ( f 2 ) (9.10-35)

The potential energy cp is

q> = - 3 m g ( i - r ) (9.10-36)

TheLagangian L becomes

L = \ m( f 2 + r 2 0 2 ) + 2 l l l r 2 + 3 m g ( , e - r ) (9.10-37)
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FIGURE 9.10-1 Particles P and Q connected by a string of constant length,
passing through a hole in the table

The Lagrange equations are therefore given by

— -— ( ^ ) = 0 => m r e 2 - 3 m g - - f (4mr) = 0 (9.10-38a,b)
dx dt 3r d t

^k-±(^k)=0 => -f(mr2e) = 0 (9.1O-39a,b)
ae dt ae dt

Integrating Equation (9.10-39b) yields

r 2 6 = constant = C^ (9.10-40)

Initially r = a, a 0 = V8ag, so

C^afs^ (9.10-41)

Combining Equations (9.10-40, 41), we find that 9 is given by
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6 = ^ (9.10-42)

Substituting the value of 0 into Equation (9.10-38b), we obtain

4 - r ' = 8 a _ g _ 3 g (9.10-43)
r3

The term r can be written as

" = i <h = i <f>$ ' ^ • 2 t ( f 2 ) (9.10-44a,b,c,d)

Equation (9.10-43) may now be written as

2dr^2) = ^ 3 ^ ~ 3 g (9.10-45)

which can be integrated to yield

• 9 4 a p
2 r 2 = _ ^ - & - 3 g r + C2 (9.10-46)

r2

where C2 is a constant.

From the initial conditions r = a, r = 0 , C2 is calculated to be

C2 = 7ag (9.10-47)

From Equations (9.10-46, 47), we find that r is given by

r . 2 = 7 a g _ 2 * j g _ 3 g r ( 9 1 0 4 g )

2 r2 2

We can deduce from Equation (9.10-43), that initially since r = a, r* is positive. That is to say,
although the radial velocity is zero initially (at time t = 0), this does not imply that the radial
acceleration at t = 0 is zero. Consequently, the particle Q will initially more up and r will increase.

r" will be zero when r3 = 8a3/3. From Equation (9.10-48), we deduce that r = 0, when r = 2a

and Q will come momentarily to rest. At r = 2a, r* is negative (-2g) [see Equation (9.10-43)] and
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so Q will fall. Thus Q will oscillate between the heights ( i - a) and (Z - 2a). That is to say,
because of the lack of friction, we allow the cycle to repeat when r is again equal to a. The particle P

aV̂ gaŝ
has a radial velocity given by Equation (9.10-48) and a tangential velocity — ~ - . The radial position

of P lies therefore between a and 2a.

9.11 SEVERAL INDEPENDENT VARIABLES

The integrand might be a function of two or more independent variables. Geometrically it means that
we are considering a surface instead of a curve. For simplicity, let us consider a function u (xj, x2)
which is a function of two independent variables Xj and x2. We now have to find the extremum of

I = l | f [xv\2, u(Xj,x2), uXi(x!,x2), uX2(Xj,x2)] dxj dx2 (9.11-1)

R

where ux. = =— (i = 1, 2), and R is a region in the XjX2-plane bounded by a curve C as shown in
1 O A.'

Figure 9.11-1. The value of u (xj, x2) is given on C.

Q ^
FIGURE 9.11-1 Region R bounded by curve C

We need to find the function u which extremizes I over the region R and satisfies the boundary
condition
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u(x1 )x2) = g ( x 1 , x 2 ) o n C (9.11-2)

where g is a given function.

Suppose uo(x1, x2) is the function that renders I an extremum. We consider another function
ul(xl,x2) (a neighboring surface) given by

u1(x1 ,x2) = u 0 (x 1 ,x 2 ) + eTi (xl7x2) (9.11-3)

where e is a constant and r\ is an arbitrary function satisfying the condition

T)(x1,x2) = 0 on C (9.11-4)

Then the extremum of I is given by

A l ( u o + £Tl) = 0 (9.11-5)

a e e=0

Substituting Equation (9.11-3) into Equation (9.11-1), we obtain

^ I K + e i ) | e _o= ^JJf(Xl 'X2'U0+e il 'UOx1+enx1'UOx2+eTlx2)dxldx2|e=0

R

(9.11-6)

Since e is independent of Xj and x2, we can introduce the operator -— inside the integration. Note

that

df 9f 9u, ^ df d"ix au, /ft 1 1 ^
— ==: T ^ + X ^ ^—i w i t h ^ - J - = r ) (9.11-7)

1 1 = 1 IXj

Equation (9.11-6) now becomes

-f-I(ui) = fr|^- + riXi 4Ĵ —+ ri ^ - ] d X l d x 2 (9.11-8)
de ^e^o / / [ x 2 ^ux

R

Making use of the fact that

3f d df d I df . , _
ri 5 — = 5— Tj^ ^ 5 — 5 — . i = l , 2 (9.11-9)

xi 3uY dX: duY dx- duv

we finally obtain
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dl(ut) =((\ df 8 8f \ 8 8f \

dE e=0 J) [̂  3u 8Xl 8uxJ 9x2 8uxJ
R

+ ^ " l 1 ! ^ - + ^ - T l ^ l d x l d x 2 (9.11-10)
3x^ 3uXj 8x2 3uX2 j ]

We can write the terms inside the second brace of the double integral as a line integral using Green's
theorem. We are interested in converting the double integral to a line integral, because the condition on
T] is given on the curve C, by Equation (9.11-4). Green's theorem may be stated as follows

Hi^-lk)*1***=/<pdXl +QdX2) (9"-n)
R C

The double integral becomes

//[sr("^K^)]^-/[^^-"tH (9""12)
R C

The boundary condition given by Equation (9.11-4) implies that the integral in Equation (9.11-12) is
zero. From Equation (9.11-10), we deduce that the condition for I to be an extremum is

9u 3x, 3uv 3x7 9uv I
1 X] 2 x 2 /

We can extend to m independent variables x^, x2,. . . , xm. Then we consider the functional

I = j I ... I f (x1? x2, ... , xm, u, uXj, uX2, ... , u x j dxj, ... , dxm (9.11-14)

R

The condition for I to be an extremum is

3f _J_ i ! d_idf_ _ J _ _a^ = 0 ( 9 1 1 . 1 5 )

du 8x, 3uY 9x 9 19uY 3x m 3uY
1 x l z \ X2 m xm

where, as before, uY = ^—.
x i dXj

Example 9.11-1. Find the minimum surface area of the surface x3 = u (xj, x2) bounded by a

curve C as shown in Figure 9.11-2. This problem is known as Plateau's problem. Plateau, a

Belgian physicist (1801-1883), did many experiments with soap films to determine minimal surfaces.

(9.11-13)
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We shall first derive the formula for the surface element AS, enclosed by the points PQ, Pj, P2 and
P3. That is to say, we consider four neighboring points Po, Pj ,P2 and P3 on the surface as shown
in Figure 9.11-2. The projections of these points on the XjX2-plane are denoted by primes. Let the
vector positions of OP0, OP1; OP2, OP3 be r 0 , r j , r 2 and r 3 respectively.

S

FIGURE 9.11-2 Surface S bounded by curve C

Further let

£ 0 =_r (Xj, x2) , £ i = r_(xj + A x ^ x ^ (9.11-16a,b)

r 2 = r (xj, x2 + Ax2), r 3 = r (Xj + Axj, x2 + Ax2) (9.11-16c,d)

The vectors P0P^ and P 0 P 2 are given by

. dr
P Q P J = (£j - £ 0 ) = £ (xj + Axj, x2) - £ (x1; x2) « ^-=- Ax: (9.11-17a,b,c)

• dr
P 0 P 2 = ( r 2 - r 0 ) = r (x1?x2 + A x 2 ) - r (xl5 x2) « ^ — Ax2 (9.1 l-18a,b,c)

according to Taylor's expansion.
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The surface element AS, neglecting curvature, is

. . 3r 5r
AS = P Q P J A P ^ = j — A 5— AxjAx2 (9.11-19a,b)

OXi O X^

On the surface, the vector r can be written as

r = Xj i_ + x2 j +u(x 1 > x 2 )k (9.11-20)

where i, j , and k are the unit vectors along the coordinate curves.

From Equation (9.11-20), we obtain

^ - = i +^- k (9.11-21)

dx^ - oxj -

U-2 = L+t^ <911-22)
Substituting Equations (9.11-21, 22) into Equation (9.11-19) and carrying out the cross product, we
find

The surface area S is given by

S = jf V 1 + u^ + u^2 dxj dx2 (9.11-24)

From Equation (9.11-13), we deduce the condition for the extremum of S to be

l V l + u 2 x +u2x - J - | - - g - f # ^ — | = n (9.11-25)
9 U 3 X l V l + U 2 x + U 2 x 3 X 2 V l + U 2 x + U 2 x

x l X 2 / V x l X 2 /

Noting that V l + u 2 + u 2 is a function of ux. only and differentiating the last two terms of

Equation (9.11-25), we find that Equation (9.11-25) simplifies to

", +(^f] ilJt +(|i|2j ^ _2|L *L 3 ^ = o (9.11-26)

(9.11-23)
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In general the non-linear Equation (9.11-26) is difficult to solve. We shall consider a special case
when the surface is a surface of revolution with the x3-axis as the axis of symmetry. In this case the

equation of the surface is given by

x3 = u(r) (9.11-27)

where r = Vx2 + x2 .

We have

to _ du * = a du (9.11-28a,b)
3xj dr dXj r dr

dx2 r dr

t± = A £ u + 1 û _^1 du = xf d̂ u + x | du (9.11-30a,b)
dx\ r2 dr2 r dr r3 dr r2 dr2 r3 dr

A =xld\+x|du ( 9 n 3 1 )

dxj r2 dr2 r3 dr

92u = xt x2 d 2 u X! x2 du (9.11-32)

8xj 3x2 r2 dr2 r3 dr

Substituting Equations (9.11-28 to 32) into Equation (9.11-26) and simplifying, we obtain

r d J L + d i + ( d i ) 3 = 0 (9.11-33)
dr2 dr V dr ;

Equation (9.11-33) can be transformed to a first order equation, by substituting

^ = v (9.11-34)

dr

Equation (9.11-33) becomes

r d v + v + v3 = 0 (9.11-35)
dr

(9.11-29)
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Equation (9.11-35) is a separable equation and we have

( dv - = - f ft (9.11-36)
1 vd+v2) i

which on integrating yields

i n v - i - i n ( l +v2) = - i n r + in c (9.11-37)

where c is an arbitrary constant.

This can also be written as

v - = £ (9.11-38)

Vl+v2 r

We can solve for v and "-0- is then given by

^ = c (9.11-39)
dr y r 2 _ C2

Integration gives u as

u = c cosh"1 (r/c) + k (9.11-40)

where k is a constant.

Thus the generating curve is

r = ccoshf 1 ^) (9.11-41)

This is the equation of a catenary. Thus the minimum surface is a catenoid.

The extension to several functions (uj5 u2,... , un) of several independent variables (xj, x2, ... , xm)

is straight forward. In this case, the functional is given by

I 1 ri 9ui 3ui dun dun

j m . j f ( x 1 . . . X m , u 1 . . . u m , s i . . . s X , . . . ^ . . . 5 i dXl...dxm ( 9 , , . 4 2 )

The conditions for I to be an extremum are then
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where V;i = =—*- .
j

Example 9.11-2. Show that the equations governing the slow flow of a generalized Newtonian
fluid are equivalent to extremizing a functional.

The equations of motion, neglecting inertia, can be written, when referred to a rectangular Cartesian
coordinate system Ox^Xg, as

g + ^ _ p f l = 0. 1 = 1,2.3 (9.1.-44)

where p is the pressure, x^ is the deviatoric stress tensor, p is the density and fj are the external

applied forces (usually only gravity). Remember the convention, requiring summation over repeated

indices.

The equation of continuity is given by

-^i- = v H = 0 (9.11-45a,b)
dXj M

The constitutive equation of a generalized Newtonian fluid may be written a

Tij = - 1 1 ( 1 1 . ) ^ (9.11-46)

. / 3v- dv: \
where y-- \ = ^rL +^- is m e r a t e °f deformation tensor, v- are the velocity components, and

II . = 1 / 1 y.. y. is the second invariant of y- .

Let V be the flow region (volume) bounded by two non-overlapping surfaces Sv and St . The
velocity is given on Sv and the traction (surface) force tj [= - (p ns + x- n:)] is given on St , ni is

the component of the unit normal to the surface St. Note that in this example, we consider different

boundary conditions on different parts of the enclosing surface.

The system given by Equations (9.11-44, 46) subject to the boundary conditions stated above will be
shown to be equivalent to finding the extremum of

(9.11-43)
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I [gaiO-pfiVi-pVjiJdV-l tiVidS (9.11-47)
Jv Jst

where g (II.) = I u T| (u) du .

Y Jo
The functions inside the integral are functions of the velocity components Vj and the pressure p. The

quantities fj and tj are given. To find the extremum of I, we consider neighboring functions v*

and p* which are given by

v ^ V j + ewj, p* = p + eq (9.11-48a,b)

where Vj and p extremize I.

Substituting Equations (9.11-48a, b) into Equation (9.11-47) yield

I*=l g ( I i : ) -p f i (v i + ewi)-(p + eq)(vi + ewi),i d V - l t^Vj + ew^dS (9.11-49)
Jv Jst

The extremum of I is given by

^ - = 0 (9.11-50)
de e=o

In the computation of this extremum, we will have to determine :——. Since II . is defined in
de y

* ds. dg
terms of Vj , we will be required to calculate —^_ an(j hence -j-. Next we illustrate these

3II.
Y

manipulations.
From the definition of I I . , we have

1 - J L r l .1. v . . l 1 / 2 - 1 r l v . Y-.r1/2Y- - -tO- f9 11-51abc)
. Y " . Y L2 Y'J Y J l J " 2 L2 YlJ Y J J YlJ " 211. ( ' ' }

oiij o ' i j Y

Since g (II -) = I ur)(u)du, so
7 ; o
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ag ag an. n.Ti(ii.)Tji , . .
— = ~- = — 1-^~ = J-Tl(n.)T§i = - ^ i j (9.11-52a,b,c,d)
aYij dIU 3Yij 211^ 2 Y J 2

— = - ^ - ^ = - 1 Ty (wifj + wjfi) = -xy wifj (9.11-53a,b,c)
9e 3Yij 3e

since TJ; is symmetric.

Combining Equations (9.11-50, 53), we obtain

I [ - x i j w i , j - P f i w i - P w i , i - q v i f i ] d V - | t iWidS = O (9.11-54)

Recognizing that

(XjjWj)^ = XjjjWi + XjjWjj (9.11-55a)

or T i j W i j = (TijW^.j-TijjWi (9.11-55b)

It follows that

I x i j w i , j d V = I [ ( w i^ i j ) ' j - ' c i j J w i ] d V (9.11-56a)
Jw Jv

= 1 ( w i t i j ) n j d S - ( Tjj)jWidV (9.1156b)
yst+sv Jv

where we used the divergence theorem on the first integral on the right side.

On the surface Sv , the velocity is prescribed, and so Wj = 0. Equation (9.11-56b) can then be

written as

x i j W i j d V = I ( w i T i j ) n j d S - j ( T i j j ) w i d V (9.11-57)
Jv /s t Jv

Similarly the integral



782 ADVANCED MATHEMATICS

I pw i ; i dV= I (pw^^dV-J p.jWjdV (9.11-58a)
Jv ' Jv Jv

= I pWjnjdS-l p.jWjdV (9.11-58b)
yst Jv

Substituting Equations (9.11-57, 58b) into Equation (9.11-54), we obtain

I [{-^ijJ + Pfi-P'iJwi + q v d d V + l [{Cijj + pSijJnj + tiJJwidS = 0 (9.11-59)
Jv Jst

Since ŵ  and q are arbitrary it follows that

t i j j - p f i + Pu = 0 (9.11-44)

v i ; i = 0 (9.11-45)

tj = - ( i j j+pSipnj (9.11-60)

Thus instead of solving Equations (9.11-44, 46), we can instead extremize the integral I given by
Equation (9.11-47). Note that the boundary conditions are satisfied automatically, since we used them
in formulating the integral given by Equation (9.11-47).

Example 9.11-3. Use the variational method to solve the axial annular flow of a power law fluid
between two co-axial cylinders, as illustrated by Figure 9.11-3.

We assume the flow to be in the z-direction. The velocity distribution is

vr = 0 , ve = 0 , vz = vz(r) (9.11-61a,b,c)

The radii of the inner and outer cylinders are k R and R. The flow region to be considered is defined
by

k R < r < R , 0<9<27 t , 0 < z < L (9.11-62)

The boundary conditions are

r = kR , vz = 0 (9.11-63a,b)

r = R, vz = 0 , for all 6 and z (9.1 l-64a,b)
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- —kR
—* |—R

FIGURE 9.11-3 Annular flow bounded by cylindrical surfaces Sv

and end surfaces St

On the shaded surfaces at z = 0 and z = L, the pressure is given. Suppose the potential drop from
z = 0 to z = L to be AP, where the potential IP combines the effects of pressure and gravity
according to

F = p + pgh (9.11-65)

The viscosity function r\ for a power-law fluid may be written as (Carreau et al., 1997)

ri(y) = mlyl""1 (9.11-66)

We non-dimensionalize r by writing

r = | (9.11-67)

We select a trial solution which satisfies automatically the boundary conditions [Equations
(9.11-64,65)]. This is the usual procedure in variational calculus. Thus an appropriate vz can be

chosen to be

I ,(l+n)/n,
vz = a ( l - \o\ ) (9.11-68a)
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2 r - ( l +k)
q = ( 1 _ k ) (9.11-68b)

where a is a constant to be determined.

Then y is given by

, dv7 1 dv7 , 2 dv7 2a (1 + n) i 11/n
T = *"df = *R Iff = ±^1^10 to = 'nRTTTky W (9..1-69a,b,c,d)

where the upper sign is for a < 0 and the lower one for a > 0.

From Equation (9.11-66), we have

n
g(Y) = uti(u)du = ^ E y yn + 1 (9.11-70a,b)

/o

Thus the integral I [Equation (9.11-47)] we need to extremize is now given by

1 = I ^ j Y n + l d V - | A P v z d S (9.11-71)
iv n )st

where the mass balance for an incompressible fluid (vj j = 0) eliminates the pressure term in the first

integral of Equation (9.11-47) and where the boundary conditions on the surface St result in a

potential drop. We now rewrite I as follows

rL flit fR tin rR

I = l I I -JBLT Yn+lrdrd9dz-AF I I v7rdrd0 (9.11-72a)

h JO JkRn + 1 Jo L Z

2 f l f l

= l n T i r Yn+1Fdr-AF27tR2 rvzdr (9.11-72b)
Jk Jk

- a - A F R ^ 1 v z [ ( i ^ a+<i±i>] ( l ^ ) d o (9.11-72C)
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Since we have defined 7 and vz as functions of \a\, the first term in both integrals of Equation

(9.11-72) will be zero when integrated from a = - l to a = 1, since they are odd functions of a.

Integration yields

I = CopaCn + l f l ^ - q a (9.11-73)

2 2
where Co = rcLRm(l-k)n , C l = £ ± £ KAP R2(l -k2) .

° ( n + l ) ( l + 2n)[nR(l-k)]n + 1 ' < 2 n + 1 )

The integral I is now a function of a. This integral has to be minimized and we need to compute ^ .
da

Differentiating yields

4 1 = Cn(n+l)[2a(n+l)]n»2(n + l ) - C 1 = 0 (9.11-74a,b)
da

Hence

RAF )1/n R(l-k)<l4*>/nn ,Q 1 , „ ,
a = 2 ^ 7 / 2 ( n + l ) ( 9 - H - 7 5 )

We can now calculate the volumetric flow rate Q, which is given by

^/R^-«fer(i-c;rk)
J K R

using vz, given by Equations (9.1 l-68a, b, 75).

In Bird et al. (1987), the value of Q for various values of n and k are compared with the exact
solution. The above approximate solution is within 2% of the exact solution for k > 0.5 and
n > 0.25. For smaller values of k and n, the approximate solution gets worse and could probably
be improved by considering more terms in the trial solution.

•

The method we have used to solve the present boundary-value problem consists of rewriting the
governing differential equations and boundary conditions as a variational problem. This is followed
by expressing the unknown functions as a series of simple functions that satisfy the boundary
conditions. The unknown coefficients are determined by satisfying the variational principle. This
technique is known as the Rayleigh-Ritz method.

(9.1-76a,b)
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Although simple problems, such as this flow problem, can be solved exactly via the equations of
continuity and motion, more complex problems require the use of an approximate solution. Variational
methods are widely used to obtain approximate solutions to boundary value problems in continuum
mechanics.

9.12 TRANSVERSALITY CONDITIONS WHERE THE FUNCTIONAL DEPENDS
ON SEVERAL FUNCTIONS

We extend the theory considered in Section 9.8 to the case where the functional depends on n
functions, yj, y2, ... , yn. We further relax the condition that the end points can move only along

the ordinates (that is, only along the straight lines x = a, x = b). We allow the end points to move
along given curves or surfaces and we label the end points as P and Q.

For simplicity we derive the transversality conditions for the case of two functions y1 and y2. We

aim to find the extremum of

r Q
1= f(x,yi ,y2,y;, y2)dx (9.12-1)

Jp
The end points P and Q are not fixed nor are the values of y1; y2 at these points. We assume that

P and Q lie on two surfaces respectively given by

x = <l>(yi>y2)' x = \|/(y1,y2) (9.12-2a,b)

We proceed as in Section 9.10, but now the end points are free to move on the surfaces given by
Equation (9.12-2a, b). Using Leibnitz's rule, Equation (9.10-7) becomes

* /Q

| L = l ^ d x + f ^ - f | * = 0 , i = l,2 (9.12-3a,b)

where P and Q are functions of 8j.

The quantity 3— is given by
d8j

df J, [ df dy: df dy': ]
| ^ = 2 + (9.12-4a)
<*ei j = 1 3 y j 9£j dy- aej

= 2 ^^+r^^ :r (9-12"4b)
j = 1 dy- dB{ 9yj d^ v dx '
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& F 3f ty d df dy: dy- d / df
= 2. i + _ ^ _ i 1 _ (9.12-4c)

j=i pYj ^ dx ayj 3e; 9^ dx ^ 3 y j

Substituting Equation (9.12-4c) into Equation (9.12-3) and simplifying, we obtain

0 = -^ I dx + l i + f ^ -f^- (9.12-5)

J P a£i J 9 Y j dx a y ; | j [a y j - a £ i j p ^ Q a^ P
using the convention of summation over repeated indices. At any point in space, except at P and Q,
y i and y2 are independent. It can be seen from Equation (9.10-4) that

where d^ is the Kronecker delta.

Substituting Equation (9.12-6) into Equation (9.12-5), we deduce the extremum conditions to be

K_±(K\ = 0, i=l,2 (9.12-7)
3Yi dx [ dy[ J

Next, we deduce the transversality conditions.

The transversality conditions are to be imposed at the points P and Q which are on the surfaces
given b y Equation (9.12-2a, b). Thus y i , y 2 and x are related through Equation (9.12-2a, b) and
we can regard y j and y2 to be functions of x and e instead of considering them individual^ as
functions of £j and e2. That is to say, if equations y\ and y 2 [see Equation (9.10-4)] are related

2 2for example b y an expression such as y ^ + y2 = c, then a change in £j automatically induces a
change in e2 and we can indeed consider the y; to be functions of x and e. Therefore, derivatives
with respect to £j are now replaced by derivatives with respect to e. The transversality conditions
may now be written as

"iL^L+iL^+f3Ql = 0 (9.12-8)
dy\ de dy'2 de 5e _

' ^^L + ^_^ l + f aP] = 0 (9.12-9)
dy[ 9e 3y2 9e de

Since y^ is a function of x and e, we differentiate to obtain

 

(9.12-6)
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dy, dyi , dx

We can also do this for y2.

The point Q is given by Equation (9.12-2b) and - ^ is given by

| 2 = dx = |Mi ^ + | V <^2 (9.12-lla,b)
de de dy{ de dy2 de 7

Substituting Equations (9.12-10, lla, b) into Equation (9.12-8), we obtain

' # |dyi_ v ' /_?V dll + iV ^ 2 . ] ! _3f_ I^Xl _ v ' ( ^V dYi ay dY2 \ 1
3y ; 1 de yMdy1 de dy2 de // a y ' \ de y 2 \ 3y i de dy2 de / /

+ f j |^f l + ̂ ^ ) l =0 (9.12-12)
\dyi de 8y2 d e | J Q

Collecting similar terms, Equation (9.12-12) becomes

.de \ay l a y i l ayj ! ayi 2 J )

dE \ a y 2 a y 2 1 a y i ^ 2 j / J Q

Thus, the transversality conditions at Q are given by

" df dy / , , 3f . 3f \ l n ,n^ 1/1N

+ ^ L f_y _ y = 0 (9.12-14)
3 y i 8Y l ^ 3 y i 3y2 j J Q

r+rh^-j5r)l =0 (9m5)

3 y 2 3y2 \ 3 y i a y 2 j j Q

Similarly, the transversality conditions at P are given by

rr+:r4-yi]F "y^)i =° (912"l6)
a y i a y i \ a y i a y 2 j j p

+— - f - y , y7 = 0 (9.12-17)
9y2 9y2 3y i a y 2 j j p

(9.12-10)

(9.12-13)
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The above derivations can be extended to more than two functions. Thus if f is a function of
yj, y2, . . . , yn, the transversality conditions at Q are

"iL 3 ( f _ £ , ; £ . ] ] =0, i=1 „ (9..2-18)
_ 3 y i 3y , \ j=i J 3 y j j J Q

Similar expression for the condition at P can be established.

If f is a function of only one dependent variable y, then the end points P and Q will be free to
move on the curves, respectively given by

x = 9 ( y ) , x = \j/(y) (9.12-19a,b)

The extremum condition will be given by Equation (9.12-7) with ŷ  = y. The transversality conditions

then reduce to

"iL+?l(f-y'it] .„ (912.20)
L3y dy \ 3y' j Q

" j L + ? l f _ y ' i L l = o (9.12-2!)
3y' dy dy' JP

Example 9.12-1. Find the shortest distance from the origin to a point on the circle of radius 3 and
centre (4, 0). The equation of the circle is

( x - 4 ) 2 + y 2 = 9 (9.12-22)

The distance from the origin to any point Q on the circle is

S = I Vl+(y')2 dx (9.12-23)
JO

Since y does not appear explicitly in the integrand, Equation (9.12-7) simplifies to

— — = 0 => ^ = constant (9.12-24a,b)
dx dy' 3y'

With f given by Equation (9.12-23), we have

?

y = Co => y' = k1 (constant) (9.12-25a,b)
V l + y ' 2
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Integrating Equation (9.12-25b) and using the end condition at the origin (x = 0, y = 0) yields

y = kjx (9.12-26)

To determine the slope k j , we make use of Equation (9.12-20). Q lies on the circle given by

Equation (9.12-22) as well as on the line given by Equation (9.12-26). Thus

f . *L = ^ L = dil± (9.12-27a,b,c)
dy dy (x -4 ) ( x - 4 )

Substituting the value of y into Equation (9.12-20), we obtain

2 \

k l - - * 1 J - Vl + kf - k l = 0 (9.12-28)
V1 +kf (x-4) Vl+kf ,

The solution is kj = 0, y = 0 and the point Q is on the x-axis. From Equation (9.12-22), we deduce

that Q is the point (1,0). Then the minimum distance is 1.

9.13 SUBSIDIARY CONDITIONS WHERE THE FUNCTIONAL DEPENDS ON
SEVERAL FUNCTIONS

In Section 9.9, we established the conditions for the extremum of a functional which depends on only
one function. The function was subjected to certain supplementary conditions, in addition to the end
points conditions. In this section, we consider the case of a functional which depends on several
functions. We shall, as in Section 9.9, consider two types of constraints: an integral type and an
algebraic type.

We now look for an extremum of the functional

1 = f(x, y l 5 y 2 , ..., yn, yj, ..., y ^ d x (9.13-1)
/a

subject to

Jj = I gj (x, y}, ..., yn, yj, ..., y^) dx = constant = Cj , j = i, ..., k (9.13-2a,b)
J a

The end conditions are prescribed.

We use the method of Lagrange multipliers and introduce ?ij, X2, ... , A,k. The condition for the

extremum of I subject to the isoperimetric constraint is
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Mf4M-i[iHM}--°' i"i--n
We have to solve Equations (9.13-2a, b, 3). Equation (9.13-3) is in general a second order differential
equation. The 2n arbitrary constants resulting from the solution of the n differential equations are to
be determined from the end point conditions. The k Lagrange multipliers can be determined from
Equations (9.13-2a,b).

Example 9.13-1. Find the extremum of

i - 1

I = k 2 + y2 2 - 4 x y2- 4 y2] d x (9.13-4)
Jo

subject to

J = I [y 1 2 - xyI - y2 2 ] d x = 2 (9-13-5a>b)

Jo

The end point conditions are

y1(0) = y2(0) = 0 , y i ( l ) = y 2 ( l ) = l (9.13-6a,b,c,d)

We have one constraint and so we need to introduce only one Lagrange multiplier X. Substituting f
and g from Equations (9.13-4, 5) into Equation (9.13-3) and noting that f and g are not explicit
functions of yj, we have for i = 1 and 2

- [ A { ( y i 2 + y22-4xyi-4y2) + ^(y;2-xy;-y'2)}j = 0 (9.13-7)
dx 3yj

- 4 - A [ - i r { ( y ; 2 + y22-4xy2-4y2) + X(y;2-xy;-y22)}l = 0 (9.13-8)

dx 9y2

Carrying out the differentiations in Equations (9.13-7, 8) and simplifying, we write

-d- [2yJ + 2^yJ - A.x] = 0 (9.13-9)

4 + -d-[2y2-4x-2?iy2] = 0 (9.13-10)
OX

Integrating Equations (9.13-9, 10) yields

(9.13-3)
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2y; + 2XyJ-Xx = Cl (9.13-11)

2y 2 -2? iy 2 = c2 (9.13-12)

where Cj and c2 are arbitrary constants.

On further integrating Equations (9.13-11, 12), we obtain

2y 1 ( l+X) = ^ ~ + c l X + c3 (9.13-13)

2 y 2 a - X ) = c2x + c4 (9.13-14)

where c3 and c4 are constants.

The constants Cj to c4 can be determined from the end point conditions given by Equations

(9.13-6atod)andare

c l = ( 4 +23X) » C2 = 2 ( l - X ) , c 3 = c 4 = 0 (9.13-15a,b,c,d)

Substituting the values of C| and c2 into Equations (9.13-11, 12) respectively, we find that yj and

y2 are given by

Yl = ^ - , y 2 = 1 (9.13-16a,b)
4(1+X.)

The Lagrange multiplier can now be determined from Equation (9.13-5) since y J and y2 are known

in terms of X. The value of A, is

X = -10/11 (9.13-17)

Thus the required functions yj and y2 are

Y l = ~ 2 x 2 + 2 X ' y 2 = X (9.13-18a,b)

If the constraint is not of an integral form, we introduce Lagrange multipliers which are functions of x
rather than being constants as in the case of a functional with only one function. Suppose we need to
find the extremum of
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1 = f(x, y ] , y 2 , ..., y n ,y j , ..., y ^ d x (9.13-19)
J a

Subject to the constraints

g j (x, y i , . . . , yn, yj, ..., y^) = 0 , j = 1, 2, ..., m (9.13-20)

The end point conditions are given as follows

y i (a) = a{ , ... , yn(a) = an (9.13-21a,b)

Y l (b) = b, , ... , yn(b) = bn (9.13-22a,b)

We now introduce a Lagragian function L given by

m

L = f + £ A-jtogj (9.13-23)
j=l

The conditions for the extremum can be shown to be

?L-±l*L) = 0t i=l,2,.. . ,n (9.13-24)
3yj dx \dy' J

Finding of the extremum of I now consists of solving Equation (9.13-24) subject to Equations
(9.13-20, 22).

Example 9.13-2. Determine the shortest curve between two fixed points on the surface of a sphere
of unit radius and centre at the origin.

In a rectangular Cartesian coordinate system, the equation of the sphere is

x2 + y2 + z 2 = l (9.13-25)

If the curve joins the points (x0, y0, z0) and (XJ, yj, zj), the distance s is given by

p i
s = | V l + ( y ' ) 2 +(z')2 dx (9.13-26)

The Lagrangian function L is then

L = V l + ( y ' ) 2 +(z')2 +^(x)(x2 + y2 + z 2 - l ) (9.13-27)
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It is useful to introduce the parametric representation of the curves as

x = x(t), y = y(t), z = z(t) (9.13-28a,b,c)

where t is now the independent variable and x, y, z are the dependent variables. Noting that

d ^ = dxĵ  & E q u a t i o n (9.13-26) becomes
dXj dt dXj 4 '

s = I Vx 2 + y2 + z2 dt = I adt (9.13-29a,b)
it0 /to

where the dot denotes differentiation with respect to t. The fixed points are

x(to) = t o , x(t1) = t1 (9.13-30a,b)

Equation (9.13-27) can be written as

L = V x 2 + y2 + z2 +n( t ) (x 2 + y2 + z2) (9.13-31)

where [i (t) is the t-dependent Lagrange multiplier.

Equation (9.13-24) identifies the extremum conditions as

f- -± (^) = 0 i.e. 2nx-A [j] = 0 (9.13-32a,b)
3x dt dx at CT

^ - ~ (^) = 0 i.e. 2 n y - A U] = 0 (9.13-33a,b)
dy dt 8y a t a

and — - — (—) = 0 i.e. 2^iz-f [ i ] = 0 (9.13-34a,b)
3z dt V3z dt L a J

Eliminating |l(t) yields

d. r i i d_ r i i A r i ]
d l io i = dtLoi = dtLgJ. (9.13-35a,b)

2x 2y 2z

On differentiating [ — J , we obtain
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I [i] - ^

We have similar terms for -"- \ — 1 and — \ — 1.
dt L o J dt L a J

Equation (9.13-35a,b) becomes

•• • • •• • • •• • •
ox-ox = ay-ay = oz-oz (9.13-37a,b)

2xa 2ya 2ZO2

From the first two sets of terms in Equation (9.13-37), we have

y (ox -ox) = x ( a y - a y ) (9.13-38a)

or a (xy-xy) = a (xy-xy) (9.13-38b)

or £ = & ^ (9.13-38C)
a (xy-xy)

Similarly, from the last 2 sets of terms in Equation (9.13-37), we find

£ = (zjr^ ( 9 1 3 3 9 )

o (zy-zy)

Also, from Equation (9.13-38, 39), we deduce

£ (xy-xy) -J (zy-zy)
~ ; = d Li ; (9.13-40)

(xy-xy) (zy-zy)
Note that in deriving Equation (9.13-40), we have made use of the following expressions

~ (xy-xy) = xy + x v - x y - x y = xy-xy (9.13-41a,b)
dt

Integrating Equation (9.13-40), we obtain

^n (xy-xy) = in (zy-zy) + in Cj (9.13-42a)

(9.13-36)
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or xy -xy = c^zy-zy) (9.13-42b)

where Cj is a constant.

Equation (9.13-42b) may be written as

yCx-Cjz) = y(x-cjz) (9.13-43a)

• • •
X-Ci Z V

or l— = 5- (9.13-43b)
x-CjZ y

Equation (9.13-43b) can be integrated to yield

inCx-CjZ) = i n y + /8nc2 (9.11-44a)

or x-CjZ = c2y (9.11-44b)

or x - c 2 y - c 1 z = 0 (9.13-44c)

Equation (9.13-44c) is the equation of a plane passing through the origin. The arbitrary constants Cj
and c2 can be determined if the fixed points (x0, y0, z0) and (xj, yj, Zj) are given. The intersection
of the plane given by Equation (9.13-44c) and the sphere given by Equation (9.13-25) is the arc of the
great circle.

Example 9.13-3. Formulate the problem of silastic implant and determine the optimum design of
the implant.

Silastic implants are widely used in plastic surgery (Atkinson, 1988). The technique consists of
inserting a deflated silastic balloon underneath the skin. The balloon is then filled with saline over a
period of several weeks until the skin has been sufficiently stretched so as to cover an adjacent defect
area. The plastic surgeon needs to know the optimum design of the implant so as to cover the
damaged area for a given volume of saline. This problem is similar to the Plateau problem considered
in Section 9.11.

Let A be the area of the base of the implant which is in the xy-plane, as shown in Figure 9.13-1.



CALCULUS OF VARIATIONS 797
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FIGURE 9.13-1 Geometry of an implant

The base of the implant is PQRP and the defect area to be covered is PTRP. Once the skin has been
sufficiently expanded, the surgeon will perform the operation and advance the skin to cover the defect
area. Let h (x, y) be the height of the expanded skin above the base, then the surface area S
according to Equation (9.11-24) is given by

S = j | [ l + h 2 + h2]1/2dxdy (9.13-45)

A

. , 9h , dh
where h =^-, h = 5 - .

x dx " dy

The volume V of saline is

V = I I h (x, y) dx dy = Vo (9.13-46a,b)

A

To ensure that the defect area will be covered we need to know the minimum surface S for a given
volume V. This isoperimetric problem can be solved by introducing the Lagrange multiplier and is
equivalent to finding the extremum of

L(h, I) = S-IV (9.13-47a)
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= | l (l+h^ + hy) -Xhjdxdy (9.13-47b)

A

= 11 Fdxdy (9.13-47C)

A

The condition for L to be an extremum is given by Equation (9.11-13), that is

3F 3 / 3F \ 9 / 3F . . . _ ...
9 h - 3 ^ ( 3 ^ ) - 8 7 (as; = 0 (9-13"48)

Substituting F from Equation (9.13-47b) into Equation (9.13-48) yields

^ [ ( 1 + h x + h y r 2 h x ] + | 7 [ ( 1 + h x + h yr 1 / 2 h y ] = ^ P-13^9)

We assume that the implant is made up of sections of ellipses and the curves PQR and PSR are
given respectively by

2

PQR: y2 = 1 - (X ~ d ) (9.13-50)
a2

2 R2x2
PSR: y2 = (3 - - (9.13-51)

a2

where a, p\ otj and d are constants and a - a j < d < a + a j .

Further we assume that the y-axis is the axis of symmetry for PSRTP and thus the equation of the
curve PTR is given by Equation (9.13-51) with - x replacing x. We now use the Rayleigh-Ritz
method to solve for h. We choose the trial function for h to be

h = ( A i + B i x + c iy ) (P2x2+ a V - a2P2) (ai - a?y2 - (x - d>2) ( 9 1 3_52)

2 (a 2 y 2 + (32x2)

The boundary conditions h = 0 on the perimeters PQR and PSR are automatically satisfied by our
choice of h. The constants Aj, Bj and C^ are to be determined by satisfying the variational
condition of Equation (9.13-49). This non-linear minimization problem is solved numerically.
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The parameter X can be determined in terms of Vo, since once h has been obtained in term of X, it
can be substituted into Equation (9.13-46) and the relation between A, and Vo can be obtained. Thus
varying the values of X is equivalent to varying the values of Vo. The shape of the implant is
determined by the values of a, p\ d and a j .

The values of Ai, Bj and Cj are obtained numerically for various values of a, (3, d, ocj and X.
The length of the curve L on the inflated balloon corresponding to a horizontal (y = constant) section
PiP2 (Figure 9.13-1) is given by

I t ? \ m
L = l (1+h^ j dx (9.13-53)

where the coordinates of Pj and P2 are (x1? y) and (x2, y) respectively.

The extension E produced by the inflation of the balloon in the x-direction for a given y is

E = L - ( x ! - x 2 ) (9.13-54)

The balloon must be inflated to a volume such that E is sufficient to cover the defect.

For the values of a = oil = d = 1.5, (3 = 1, X = 2.85, Atkinson has found the following values for
A1; Bj and Q : A{ = 1.8186, Bj = 0.4632, Cj = 0.2192. For other values of the geometric
parameters and X, the reader is referred to the original paper. Also the values of E and the required
values of E for various conditions are tabulated in Atkinson's paper.

Example 9.13-4. Solve the problem of optimization of thermal conductivities of isotropic solids.

We consider an isotropic body of volume V with non-homogeneous thermal conductivity k(Xj)
which is unknown. We need to determine the optimal distribution of k(Xj) such that it satisfies a
desired distribution kd(Xj) and a desired temperature distribution Td(Xj) in the body. This is a
problem in the manufacture of composite insulating materials. This problem has been considered by
Meric (1985). Mathematically we are required to minimize the so-called performance index J
defined by

J = | [(T-Td)2 + p(k-kd)2]dV (9.13-55)

where T is the temperature and (3 is a weighting factor.

Small values of (3 imply that more weight is given to attaining the desired temperature distribution
Td. At the other extreme, large values of (3 imply that more importance is given to achieving the
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desired thermal conductivity distribution kd. At steady state, the equation governing the temperature

throughout the body of volume V is

Y - ( k Y T ) + Q = 0 (9.13-56)

where Q is the energy, associated with the heat source.

We assume that the body (V) is enclosed by two surfaces Sj and S2 and the boundary conditions
on Sj and S2 are given by

onSj: T = TS (9.13-57)

onS2: k ^ - + q + a ( T - T o o ) = 0 (9.13-58)
on

where Ts is the prescribed temperature on Sj, —̂ is the directional derivative along the outward

normal to S2, q is the boundary heat flux, a is the heat transfer coefficient and TM is the ambient

temperature.

Finding the minimum of J subject to the constraint given by Equation (9.13-56) is equivalent to
finding the extremum of

I = J + | X [ V . ( k Y T ) + Q]dV (9.13-59)

where X is the Lagrange multiplier.

To show this equivalence we proceed as in Example 9.11-2 and consider the neighboring functions

T* = T + e T \ k* = k + e k \ X* = l + el' (9.13-60a,b,c)

I*= I h j(T*-Td)2 + P(k*-kd)2} + A,*(Y.(k*VT*) + Q)]dV (9.13-61)

Then the extremum condition, = 0, leads to
d e e=0

I ( T ' ( T - Td) + |3k'(k - kd) + X'(Y • k YT + Q) + X [Y . (k' YT+ k Y T ' ) ] \ dV = 0

(9.13-62)
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We now apply Green's generalized first and second identities to transform part of the volume integral
to a surface integral because the conditions are specified on the surface. The Green's identities may be
written as follows

I [w VU «Yv + uV .(wYv)] dV = I w u ^ d S (9.13-63)

iv is dn

I [uV.(wVv)-vV.(wVu)]dV = I w ( u ^ - v ^ - ) d S (9.13-64)

Jv is l dn dnj

Using Equations (9.13-63, 64), we have

I A.V.(k'YT)dV = I k ' X ^ d S - l k'YA.-YTdV (9.13-65)

V S1+S2 V

I A,V.(kVT')dV = I k L ^ - T ' y 1 d S + l T'Y*(kYA.)dV (9.13-66)

V S\ + S2 V

Substituting Equations (9.13-65, 66) into Equation (9.13-62), we have

I {T ' (T - Td + Y • (k Y X)) + k' [p (k - kd) - Y X • Y T] + X' [Y . (k V T) + Q]J dV

V

I . i^ a T . r, o T „ ! oh , „ I , i ^ o T , L a T _,i oA, J O „
+ 1 k A, ^— + k A, -^ T ^— dS + I k A, -=r— + k A- ^r T r̂— dS = 0

I dn on dn I dn \ dn dn
Si S2

(9.13-67)

On Sj, T is prescribed (= Ts) and T* = 0. On S2, the boundary condition given by Equation

(9.13-58) must also be satisfied by k* and T*. This implies that

(k + e k ' ) ^ - (T + eT') + q + a ( T + e T ' - T J = 0 (9.13-68)
dn

Expanding and comparing powers of e, we deduce from Equation (9.13-68) that on S2

k ' ^ - + k ^ - + a T ' = 0 (9.13-69)
dn dn
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Equation (9.13-67) reduces to

I JT'(T - To + Y . (k V X,)) + k' [(3(k-kd) - Y X• VT] + X'[Y • (k YT) + Q]) dV

V

+ 1 k ' ? i ^ dS - I T' Xa + k ^ dS = 0 (9.13-70)

J dn J dn
Si S2

Since T', k' and X' are arbitrary, Equation (9.13-70) implies that Equations (9.13-56, 58) have to
be satisfied, in addition to an extra set of equations which may be written as

inV: Y«(kYX) + (T-T 0 ) = 0 (9.13-71)

( 3 ( k - k d ) - Y X « Y T = 0 (9.13-72)

onS^ X = 0 (9.13-73)

onS2: Xcc + k ^ - = 0 (9.13-74)
dn

We note that Equations (9.13-71, 74) are the equations governing A,. They are similar to Equations
(9.13-56, 58). Equation (9.13-72) is the so-called gradient condition.

This non-linear system has been solved numerically and details are given in the original paper by Meric
(1985). Numerical results for two geometries, an infinite plate and an infinite cylinder with
Td = Ts = kd = 1, Q = 0.01, q = T^ for various values of a, (3 and for several layers of
material are discussed.

In the case of the infinite plate, the average optimal thermal conductivity decreases slowly with
increasing number of layers and increases with increasing heat transfer coefficient.
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PROBLEMS

la. A processing operation produces twenty cups per minute at 420 K. An extra two cups per
minute can be produced for each degree above 420 K. At a given temperature T, it costs

(T - 420)2
15 + -———— dollars per minute to operate the machine. If the cups are sold at one dollar

each, determine the profit as a function of T. What is the most profitable temperature to run
the machine?

Answer: T = 450K

2a. A cylindrical can holds Vm3 of soup. Find the radius r and the height h so that the surface
area of the can is a minimum. Use the following methods

(i) determine the surface area of the can in terms of r and h and substitute r or h in
terms of V and hence write the surface area as a function of one variable only. Then
determine the minimum surface area;

(ii) use the method of Lagrange multipliers. The constraint is the fixed volume V.

Answer: h = 2r

3a. A volume temperature profile is represented by n experimental points (Vj, Tj), i = 1,2,..., n.

We are required to find the straight line V = mT + c which will "best" approximate the data.
That is, if we denote the error at the point Vj by e;, then ej = (V(Tj) - Vj) = (mTj + c - Vj).

n
The "best" line can be defined such that E = ̂  e2 is a minimum. By considering E 2 as a

i=l
function of m and c, show that for E to be a minimum, m and c must satisfy the
equations

n n

m^Tj + nc = X v i
i=l i=l

mlT^cXTj^TjVj
i=l i=l i=l

The above equations are known as normal equations (see Section 7.6).

4a. Evaluate the integral

I = I (y2 + x2y')dx

Jo
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along the following curves joining the points (0, 0) to (1, 1):

(i) y = x Answer: 0.667

(ii) y = x2 Answer: 0.700

(iii) y = 1/2 (x + x2) Answer: 0.675

Find the curve that will extremize I. From the values of I determined using (i to iii), deduce
if I is a maximum or a minimum.

Answer: y = x

5a. The curve y = y (x) passes through the points (a, c), (b, d) and is rotated about the x-axis.
The surface area S thus generated is given by

/•b

S = 27C I y V l + ( y ' ) 2 dx
Ja

(x — c )
Find the curve y (x) which will extremize S. Answer: y = c, cosh —

cl

6b. Any point (x, y, z) on the surface of a sphere of radius a can be expressed in a spherical polar
coordinate system (r, 9, (])) as

x = a sin § cos 0 , y = a sin § sin 0 , z = a cos (|)

Let 0 = F((|>) be a curve lying on the surface of the sphere joining two points A and B. The
length of the curve is given by

/•B rB
I ds = I Vdx2 + dy2 + dz2

JA JA

Show that in the spherical polar coordinate system

/•B , B

I ds = a I V 1 + (F'(<(>))2 sin2^ d^
JA JA

By solving the Euler-Lagrange equation, determine the function F (())) that minimizes the
length of the curve.

Answer: cot (() = a cos (0 + c2)

7a. Find the curve y (x) which extremizes the functional
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I = ( [y' + (y")2]dx
Jo

by the following methods

(i) using Equation (9.7-3),

(ii) using the method of constraints explained in Sections 9.9 and 9.10.

The boundary conditions are

y(O) = y(l) = 0 ; y'(0) = y ' ( l ) = l . Answer: y = 2 x 3 - 3 x 2 + x

8 a. Find the extremum of

/•I

1 = 1 (^- y ' 2 + y 'y+y ' +y)dx

The boundary conditions are

(i) y (0) = y (1) = 1 Answer: y = ^ - - | + 1

x2 7*(ii) y (0) =1 , y (1) is unspecified. Answer: y = — — y + 1

9a. Show that the boundary-value problem

y " - y = x, y(O) = y(l) = O

is equivalent to finding the extremum of

I = I [y'2+y2 + 2xy]dx
Jo

An approximate solution ya that satisfies the boundary conditions is given by

ya = c o x ( l - x )

Substitute ya into I. I can now be considered as a function of cQ. Determine c0 by
extremizing I. Compare the approximate solution ya with the exact solution.

Answer: ya = - ^ - x ( l - x )
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10a. Find the shortest distance from the origin (0, 0) to any point P on the line 2y = x - 4 .
/•P / —^

Hint: the distance s = I V 1 + (y ) dx, y (0) = 0 and the point P is on the line

x = 4 + 2y = <|>(y).

Answer: -̂V~5

l ib . Show that extremizing the functional

1 = 111 I In" K + ^ 2 + ^ 3 ) + ^ dxl dx2 dx3
R

subject to the condition

(II 2
I I I \|/ dxl dx 2 dx 3 = 1

R

leads to
k2 2

~2nT V V+9¥ = - ^

/ 3 d2 \
The operator V2 is the Laplacian = ^ . The differential equation is known as the

V i=l dxf I
Schrodinger equation (see Section 6.6). The constraint is known as the normalization
condition, (p is the potential, k and m are constants.

12b. Consider the irreversible reaction A —> B in a tubular reactor of length Z. We wish to
determine the best operating temperature T as a function of the axial position x along the tube
so as to maximize the production of B. If CA is the concentration of A, then the relation
between CA and T is given by a kinetic equation of the form

dCA _ e(C T)

~dT " g ( C A ' T )

The production of A is given by

1 = f (C A ,T)dx

Jo
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Thus to maximize the production of B, we have to minimize the production of A, that is to
say, we have to extremize I subject to the kinetic equation.

In this example, the dependent variables are CA and T. The equation of constraint is in the
form of a differential equation and has to be satisfied at each point along the tube. The
Lagrange multiplier is thus a function of x and is not a constant. Write down the Lagrange
function L. Show that the Euler-Lagrange equations are

3CA 9CA dx

2 2 /
Determine T if f = CA + T , g = T - V 3 CA and the boundary conditions are: CA = 1 at
x = 0 and T = To at x = i .

Answer: T = 2 sinh 2x + V T cosh 2x + C (2 cosh 2x + V T sinh 2x)

C = [T 0 - (2s inh2 i +V3~ cosh 2Jt)] / (2 cosh 21 +V3~ sinh 2 i )

13b. In Example 9.11-3, we used a variational method to solve the axial flow of a power-law fluid
between two co-axial circular cylinders. In the present problem we consider the axial flow of
two immiscible fluids in a circular pipe of radius a and length Z. This flow situation was
investigated by Bentwich (1976). Bentwich has shown that the power required to transport a
required volume of liquid, such as crude oil, is reduced if a small volume of less viscous liquid
is added to the crude.

The flow is still an axial flow but the interface between the two liquids is not circular and the
axial velocity vz is a function of r and 0. If vz is non-dimensionalized and Ap is the

pressure drop, then vz = vz ^ ^ / ( a Ap) has to satisfy the following equations of motion

2 _
V vz = - 1 in phase (liquid) 1

2 _
r^/r^V vz = -1 in phase (liquid) 2

2 Tp. 1 3 1 7p-
where r\: is the viscosity of liquid i (i = 1, 2), V = 1 ^ is the

9r2 r 3r r2 dQ2

Laplacian.

The boundary conditions are
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v = 0 on the surface of the pipe which is taken to be at r = — = 1.^ a

At the interface

Vzl 1 = V Z | 2

9vz 3v z

ni^rT j ^ ^ r T 2

where n is the outward normal to the surface, 1 and 2 indicate the evaluation is to be made at
the interface in liquid 1 and 2 respectively.

Show that the above boundary value problem corresponds to extremizing the functional

Rj Rj+R.2

where Rj denote the surface occupied by liquid i. An approximate solution can be expressed

as

N M

Vz = A0 % + X X Anm V
n=0 m=l

where ())0 = 1 - 7 2 , (j)nm = Jn (A,nm7) cosn0, Jn is the Bessel function of the first kind of
order n, ^n m are the roots of the equations Jn (knm) = 0 and the coefficients Ao, An m are
constants which are to be determined. On substituting the expression for vz in the double
integral, we obtain I as a function of Ao and An m. We now require to extremize I with
respect to Ao and Anm (properties of Jn are given in Section 2.7).

Find the equations that extremize I and write down the algebraic equations that Ao and A ^ ,

have to satisfy.

Note that for one phase flow vz is given by: vz = 1 - 7 2

For a fixed 7, the above expansion of vz corresponds to a Fourier series expansion.



CHAPTER 10

SPECIAL TOPICS

10.1 INTRODUCTION

It is not uncommon nowadays to require students in engineering to take a course in statistical
mechanics. The present chapter does not intend to provide such a course. Our aim is more modest.
We plan to provide the necessary background for the students to be able to follow with ease a more
demanding course in statistical mechanics.

In the first few sections, we shall extend the analytical mechanics introduced in Chapter 9.
Hamiltonian mechanics will be introduced. This can also be used to pave the way for a course in
chaos, a topic which is gaining widespread popularity. Next, we shall consider probability. It will be
at an elementary level, but we shall emphasize the interpretation of probability. Students used to
deterministic concepts find it hard to think in terms of probability. The idea of an ensemble average
will be discussed. Finally, some topics in thermodynamics and Brownian motion will be examined.

10.2 PHASE SPACE

Consider a system consisting of N particles. Let the vector position of particle i be denoted by r j

relative to an origin O. In a three-dimensional space, each particle is defined by three coordinates. If
there is no constraint between the particles, we need 3N quantities to describe the configuration of the
system. We denote these 3N quantities by q1, q2,... , q3N. The q1 are independent variables and
are known as generalized coordinates. We may regard the system to be in a 3N dimensional
space and to have 3N degrees of freedom. If there are m constraints, the number of generalized
coordinates will be reduced to 3N - m. The generalized coordinates, unlike the Cartesian coordinates
need not all have the same physical dimension. The choice of the generalized coordinates depends on
the geometry of the problem under consideration. Thus if a particle is forced to move on the curved
surface of a cylinder of radius a, as shown in Figure 10.2-1, the only two generalized coordinates are

q l = z , q2 = 6 (10.2-la,b)

If the particle is constrained to move on a flat surface of the cylinder, say the surface z = h, then the
two generalized coordinates are, as shown in Figure 10.2-1,

q l = r , q2 = 6 (10.2-2a,b)
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X

FIGURE 10.2-1 Motion of a particle on the curved and flat surface
of a circular cylinder

We now consider the system to have n (= 3N - m) degrees of freedom and we have n generalized

coordinates which are related to the N vector positions r l 5 r 2 , — , r N . The relationship can be

expressed as (see Section 4.6)

r j = r ^ q ^ q 2 , ... ,qn , t) (10.2-3a)

IN = rj^Cq^q2, ... ,qn , t) (10.2-3b)

where t is the time.

The velocity of particle i can be obtained by differentiating r j and we obtain
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Vj = £ j = — q ] + ^ (10.2-4a,b)
3qJ 9t

In Equation (10.2-4b), we have adopted the summation convention.

Note that the indices on the vectors Vj and r i appear as subscripts, as they refer to a particle i.

Following the notation introduced in Chapter 4, the indices denoting generalized coordinates are
written as superscripts. Some authors dealing with analytical mechanics, adopt a different notation.
They employ subscripts throughout. As they consider mostly scalar quantities such as kinetic and
potential energies, there is less of a compelling need to distinguish between subscripts and
superscripts.

The kinetic energy of the system is given by

K = 2 £ m i - i ' - i (10.2-5a)

1 _ , l _ 9 r . dr. • , k dr. dr. I

In Example 9.10-3, we have deduced Lagrange's equation which is

^ - A / i M = 0 (9.10-34)
aq1 dt \aqJ j

where L = K - cp is the Lagrangian and (p is the generalized potential.

Consider a single particle of mass m moving in a potential field which depends on the position only,
then in Cartesian coordinates (x, y, z), L is given by

L = i - m ( x 2 + y 2 + z 2 ) - ( p (10.2-6)

It follows that

^ = mx = px (10.2-7a,b)

dx

In Equation (10.2-7b), px is the x-component of the momentum.

This suggests that a generalized momentum associated with the q1 coordinate can be defined as

(10.2-5b)
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P1 = -77 (10.2-8)
dq

If the coordinate qj does not appear explicitly in L (qJ may be present in L), q-i is known as a
cyclic (or ignorable) coordinate. Equation (9.10-34) simplifies to

= pJ = constant (10.2-9)
aqj

Thus the generalized momentum of a cyclic coordinate is a constant.

The configuration of the system is specified by the n generalized coordinates q1, ... , qn and the
momenta (mass x velocity) by the n generalized momenta p 1 , . . . , pn. The dynamical state of the
system is thus defined by the 2n quantities, q1,..., qn, p1, . . . , pn, which defines a space of 2n
dimensions. The motion of the system is thus described by a path (trajectory or orbit) in this 2n-
dimensional space, known as the phase space.

Example 10.2-1. A particle of mass m is attached to the end of a linear spring of natural length /Co

and of negligible mass. The spring is fixed at the other end and lies on a smooth horizontal table. The
mass is displaced from its equilibrium by a distance q0 along the length of the spring and is then
released from rest. Determine the subsequent motion.

Let q be the displacement of the particle from its equilibrium position at any time t. The kinetic
energy

K = ±-m(q)2 (10.2-10)

The potential energy is

9 = i-G(q)2 (10.2-11)

where G is the modulus of the spring.

The Lagrangian is given by

L = \ [m(q) 2 -G(q) 2 ] (10.2-12)

The equation of motion is
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1 ^[m(q)2-G(q)2] - ^ [ ^ - [ m ( 4 ) 2 - G ( q ) 2 ] | = 0 (10.2-13a)

or - G q - A(mq) = 0 (10.2-13b)

or q+co2q = 0 (10.2-13c)

where co2 = —.m

Equation (10.2-13c) is the simple harmonic equation and is the equation governing the motion of all
linear oscillators.

The solution of Equation (10.2-13c) is

q = A cos cot + B sin cot (10.2-14a)

q = -A CO sin cot + B co cos cot (10.2-14b)

where A and B are constants.

Using the initial conditions

q = q0 (10.2-15a)

q = 0 (10.2-15b)

we obtain

q = q0 cos cot (10.2-16a)

p = — = mq = -mcoq0sincot (10.2-16b,c,d)
3q

Eliminating the time t between Equations (10.2-16a, d) yields

f—) +(—-— \ = 1 (10.2-17)
\q0/ \mq0co/

Thus the trajectory in the phase space is an ellipse (closed curve), as shown in Figure 10.2-2. At any
time t, the position and momentum of the particle is given by a point on the ellipse. Thus the ellipse
describes the dynamical state of the particle (or oscillator). All oscillators with the same total energy
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describe the same ellipse. The starting point on the ellipse depends on the initial conditions. If we
have n oscillators not necessarily all with the same energy, we have 2n variables (q1, p1), ... ,
(qn, pn). Each set of (q1, pi) corresponds to an oscillator.

f

FIGURE 10.2-2 The trajectory of an oscillator

10.3 HAMILTON'S EQUATIONS OF MOTION

In Lagrangian dynamics, the variables are (q1, q1, t). In the phase space, the variables are (q1, pJ). It

is desirable to transform from the (q1, q1, t) system to the (q1, p1, t) system. This can be
accomplished by the use of the Legendre transformation. A new function H known as the
Hamiltonian is defined as

H(pJ, qj,t) = p m q m - L ( q J , q J , t ) , j = l ,2 , . . . ,n (10.3-1)

and we sum over m.

The differential of H is given by

ffi = 9H + 3H d q j + 3H d pJ (10.3-2)
dt 3qJ 9pJ

Differentiating Equation (10.3-1), we have
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dH = pmdqm + q m d p m - ^ d q j - 4 1 d q j - ^ (10.3-3a)
9qJ 3qJ 9t

= fpi - ^-\ dqj + qm dpm - ^ dqJ - ^ (10.3-3b)
\ aqJj aqj at

= q m d p m - - ^ d q J - ^ (10.3-3C)
aqj at

Equation (10.3-3c) is obtained using Equation (10.2-8).

From Equations (9.10-34, 10.2-8), we have

*h=*m (10.3-4a)
aqJ d t [ a q J |

= ft (Pj) = Pj (10.3-4b,c)

Substituting Equation (10.3-4c) into Equation (10.3-3c) yields

dH = qj dpj - p j dqj - ^ (10.3-5)
at

Comparing Equations (10.3-2, 5), we deduce

qj = — (10.3-6a)
aPJ

pj = - — (10.3-6b)
aqj

3L 3H „ . . , N

- ar = ̂  (103-6c)

Equations (10.3-6a to c) are known as Hamilton's equations of motion. They are a set of first
order equations, whereas Lagrange's equations are second order equations. Note also the symmetry in
pj and qj. We now consider the case where t does not occur explicitly in Equation (10.2-3). Such a
situation may arise if the constraints are time independent. Then from Equation (10.2-5b), we deduce

that K is a quadratic function in qJ. We also assume that the system is conservative, then <p is a

function of qj but not of qJ. It then follows that Equation (10.2-8) may be written as
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Pm = A ( K ~ < P ) = : ~ (10.3-7a,b)
dq dq

K is a quadratic in qm. Using Euler's theorem (Section 1.7), we have

qmpm = q m 4 | - = 2K (10.3-8a,b)
3q

Substituting Equation (10.3-8b) into Equation (10.3-1) yields

H = 2K-(K-(p) (10.3-9a)

= K + (p (10.3-9b)

Thus the Hamiltonian H represents the total energy of the system and is a constant for the system
under consideration.

Example 10.3-1. Obtain the Hamiltonian H from Equation (10.3-1) for the oscillator described in
Example 10.2-1. Write down Hamilton's equations of motion and show that they reduced to Equation
(10.2-13c).

The Lagrangian L is given by Equation (10.2-12). The generalized momentum p is given by

p = — = mq (10.3-10a,b)
dq

Thus H is given by

H = p q - L = m(q) 2 -±-[m(q) 2 -G(q) 2 ] (10.3-lla,b)

= ±-[m(q)2 + G(q)2] (10.3-1 lc)

= \ ^ T + G(q)2 (10.3-1 Id)

From Equations (10.3-6a, b), we have

q = £ (10.3-12a)

p = - G q (10.3-12b)
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Eliminating p between Equations (10.3-12a, b), we obtain the result. Equation (10.2-17) can also be
deduced from Equation (10.3-1 Id). Since H is a constant, Equation (10.3-1 Id) may be written as

Gq2 + ^ - = Co (10.3-13)

where Co is a constant depending on the initial conditions.

At time t = 0, we have

P = 0, q = q0 (10.3-14a,b)

and Co = Gq 0 2 (10.3-14c)

Substituting Equation (10.3-14c) into Equation (10.3-13) and dividing both sides of the resulting
equation by Gq0 2, we obtain Equation (10.2-17). From Equations (10.3-13, 14c), we observe that
the level of energy determines the ellipse.

10.4 POISSON BRACKETS

Let f be a function of p1, p2, . . . , pn, q1, q2,..., qn and t. Then

df df df - i , df - i , 1 A . 1N

= + rD + rO (10.4-1)

dt 3t dp1 9qJ

Combining Equations (10.3-6a, b, 4-1) yields

df = 3f+^3H_iLM (10.4.2a)
dt 8t dq1 dp1 3p! dql

= — + [H, f] (10.4-2b)
dt

where

[H.f| = i L M - 4 ^ (10.4-2C)
9qi dp1 9pi dq1

is the Poisson bracket of f with H.

We note that the Poisson bracket is the Jacobian of the transformation (H, f) to (pi, q'). If f does not
depend explicitly on t and the Poisson bracket [H, f] is zero, we deduce from Equation
(10.4-2b) that f is a constant of motion. The Hamiltonian and the total energy are examples of
constants of motion. Setting f = H into Equation (10.4-2c), we observe as expected that H is a
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constant of motion. The converse is also true. The Poisson brackets of all constants of motion with
H vanish. This provides a test for constants of motion.

Hamilton's equations of motion, Equations (10.3-6a, b), may be written in terms of Poisson brackets.
From Equation (10.4-2c), we obtain

[H,PJ] = - 5 ^ = - ^ (10.4-3a,b)
J aq1 aqJ

[H, qj] = 8 i j ^ = ^ (10.4-3c,d)
J ap1 aPJ

Combining Equations (10.3-6a, b, 4-3a to d) yields

qj = [H, qj] (10.4-4a)

p j = [H, pj] (10.4-4b)

The Poisson bracket, for any pair of dynamical quantities f and g, is defined as

[g,f] = | « - ^ - ^ r ^ (10.4-5)
dp1 dq1 dq1 dp1

From Equation (10.4-5), we deduce that, for any three quantities f, g and h, we have

[g,f] = -[f, g] (10.4-6a)

[f + g,h] = [f, h] + [g, h] (10.4-6b)

[fg, h] = f [g , h] + g[f, h] (10.4-6c)

[f, [g, h] ] + [g, [h, f] ] + [h, [f, g] ] = 0 (10.4-6d)

[pj, pk] = 0 (10.4-6e)

[qj, qk] = 0 (10.4-6f)

[Pj,qk] = S j k (10.4-6g)

Equation (10.4-6d) is known as Jacobi's identity. In theory it is possible to construct from this
identity a constant of motion, if two constants of motion are known. Thus if in Equation (10.4-6d),
we put h = H (Hamiltonian), f and g are two constants of motion and their Poisson brackets with H
vanish. Equation (10.4-6d) reduces to
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[H, [f,g]] = 0 (10.4-7)

Equation (10.4-7) shows that [f, g], the Poisson bracket of f with g, is a constant of motion. Thus
the Poisson bracket of a constant of motion with another constant of motion yields another constant of
motion. However, often the constants of motion so obtained are trivial functions of the original
constants of motion. The properties of Poisson brackets as given by Equations (10.4-6a to g) are the
properties of Lie algebra [see Lipkin (1985)]. The Poisson bracket corresponds to the commutator
in quantum mechanics.

10.5 CANONICAL TRANSFORMATIONS

In Section 10.2, we have shown that if a generalized coordinate is cyclic, its corresponding momentum
is a constant. Thus it will be desirable to transform all the generalized coordinates to cyclic
coordinates. Normally the most obvious generalized coordinates will not be cyclic. We should then
look for a set of generalized coordinates which contains the largest subset of cyclic coordinates. In the
Hamiltonian formulation, both the generalized coordinates and the generalized momenta have the same
status. Thus we shall consider the transformation from the set (p1, q1) to a new set (P\ Q1) given by

P1 = PMq1,... , q n , p 1 , . . . , p n , t ) (10.5-la)

Q1 = Q1 (q1, ... , qn, p1, ... , pn, t) (10.5-lb)

We also require that the new P'and Q* satisfy Hamilton's equations of motion. That is to say, there
exists a function M (P1, QJ) such that

Q1 = ^ M (10.5-2a)
3P1

P 1 = - ^ (10.5-2b)

Transformations given by Equations (10.5-2a, b) are known as canonical transformations.

If now all the Q* are cyclic coordinates, then M is a function of the P1 only and the P1 are
constants. Equation (10.5-2a) can then be integrated to yield

Q1 = f i (P 1 , . . . ,P n ) t + ci (10.5-3)

where fj = and c; is a set of arbitrary constants to be determined from the initial conditions.
3P1
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Thus if we can find the momenta P1, the coordinates Q1 as well as M, we can integrate the
equations of motion. Those quantities can be obtained via the so-called generating function F.

Since the sets {pJ, qJ} and {P1, Q'} both satisfy Hamilton's equations, we expect them to satisfy
Hamilton's principle which is given in Example 9.10-3. Using Equation (10.3-1), Hamilton's
principle can be expressed as

SI = 8 I (pm qm - H (pj, qJ, t) | dt = 0 (10.5-4a)

81 = 81 | P m Q m - M ( P j , Qj,t)jdt = 0 (10.5-4b)

The two integrals given in Equations (10.5-4a, b) can differ at most by an arbitrary function of the

form " £ . This can be seen by observing that on integrating ^E with respect to t between the limits
dt dt

we obtain F(t2) - F(tj) and since the variation at the end points is zero, the variation of the integral

— is zero. Thus we have
dt

p m q m - H = P m Q m - M + < i E (10.5-5)

where F is the generating function.

The generating function F can be a function of (4n + 1) variables, the old set {p\ q1}, the new set
{P1, Q'} and the time t. Equations (10.5-la, b) impose 2n constraints, so that we only have
(2n +1) independent variables. The generating function can be one of the following forms

F = Fl (qj, Qj, t) , F = F2 (qJ, pj, t) , (10.5-6a,b)

F = F3 (pj, QJ, t) , F = F4 (pj, PJ, t) (10.5-6c,d)

The form of F to be chosen depends on the problem.

If the form Fj is chosen, then

dt 3t dqi dQ]

Substituting Equation (10.5-7) into Equation (10.5-5) yields

(10.5-7)
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p m q m - H = P m Q m - M + ^ - + ̂ - q m + ̂ i - Q m (10.5-8)
at 9qm 9Qm

On the right side of the Equation (10.5-8), we have changed the dummy index from j to m. Since

we consider the qm and Qm to be independent, the coefficients of q m and Q m in Equation
(10.5-8) must be identically zero. We thus have

Pm = - f ^ T (10-5"9b)
H = M - ^ - L (10.5-9c)

dt

The other generating functions can be obtained by using the Legendre transformation and is described
in Goldstein (1972). We note that if F is not an explicit function of time, then

H = M (10.5-10)

Example 10.5-1. Obtain a cyclic coordinate for the problem considered in Example 10.2-1. The
Hamiltonian H is given by

H = l[-^+G(q)2] (10.5-11)

Note that q is not a cyclic coordinate.

We choose a generating function of type F, and write

Fj = nuo (q)2c o tQ (10.5-12)

where co is defined in Equation (10.2-13c).

From Equations (10.5-9a to c), we obtain

f)F
p = _ L = mcoqcotQ (10.5-13a,b)

dq

p = _9F L = mco(qf (l0.5-13c,d)
3Q 2sin2Q

(10.5-9a)
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H = M (10.5-13e)

Equations (10.5-13a to d) may be rewritten as

«»2 = ^ dO.5-14.0

(p)2 = 2mcoPcos2Q (10.5-14b)

Combining Equations (10.5-11, 13e, 14 a, b) yields

M = !(2o)Pcos2Q + 2coPsin2Q) (10.5-15a)

= (DP (10.5-15b)

Thus Q does not appear explicitly in M and is a cyclic coordinate.

From Equation (10.5-2a), we obtain

Q = ~ = co (10.5-16a,b)

Integrating Equations (10.5-16a,b) yields

Q = cot + c (10.5-17)

where c is an arbitrary constant to be determined from initial condition.

From Equation (10.5-2b), we deduce that P is a constant and we denote it by 50. From Equations

(10.5-13c, d), we then deduce

, ,? 25n sin2 Q
q f = —Q i - (10.5-18)

™ m a v

Substituting Equation (10.5-17) into Equation (10.5-18) yields

q = V—&• sin (cot + c) (10.5-19a)

= \\—2- [sin cot cose + cos cot sine] (10.5-19b)
V mco

Equation (10.5-19b) is identical to Equation (10.2-14a) with
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A = V—2- sine (10.5-20a)
V m © v '

B = \ —2. cose (10.5-20b)
V mco '

Note that in Example (10.2-1), we had to solve a differential equation, as opposed to using a canonical
transformation in the present example. Such a transformation obviates solving a differential equation.

10.6 LIOUVILLE'S THEOREM

The dynamical evolution of a particle is given by a trajectory in the phase space and any point on that
trajectory corresponds to the state of that particle at a particular time. Thus if the position and
momentum of a particle are known at a given instant of time, which can be taken to be the initial time,
the motion of that particle is determined. Similarly if the system consists of N particles and has n
degrees of freedom, we need 2n initial conditions, namely: p'(0) and q1 (0) (i = 1, 2, ... , n). We
also need to solve 2n equations of motion so as to obtain the trajectory in the phase space, which is a
2n-dimensional space. If n is very large, it is very unlikely that we can accurately determine the 2n
initial conditions. Further it will be time consuming to solve the 2n first order equations of motion.
Thus we do not have a precise knowledge of the system. This leads us to the concept of an ensemble
introduced by Gibbs.

We consider the system we are investigating to be made up of a large number of subsystems; that is to
say, we consider an ensemble of subsystems such that each subsystem of the ensemble has the same
structure as the original system. We can associate a trajectory in the phase space to the motion of a
particular subsystem of the ensemble. No trajectories may intersect since this would violate the
uniqueness of the system. That is to say, reversing the motion from a point of intersection would lead
to the unacceptable possibility of more than one motion for the subsystems. We may also define a
density p in the phase space which describes the condition of the ensemble. If N is the number of
particles in the actual system, we write

N = f pdp1.. . dpn dq1... dqn (10.6-1)

The density p is a function of the generalized coordinates q1, ... ,qn, momenta p1, ... , pn and
time t. We have assumed that the systems in the ensemble are numerous enough so that p can be
considered to be a continuous function. The integral in Equation (10.6-1) is a volume integral in the
2n-space.
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Let Q be a volume fixed in the phase space and S be the surface enclosing Q.. Let r be a vector

whose components are q1, ... , qn, p1, ... , pn, that is to say, _r is a vector in the 2n-space. The

law of conservation of subsystems in the ensemble leads to

^ \ p d r i . . . d r 2 n = - I p r - n d S (10.6-2)

a s

where n is the unit outward normal to the surface S.

Applying the divergence theorem to Equation (10.6-2), we obtain

^ j p drj.. . dr2n + I div (pr) dr, ... dr2n = 0 (10.6-3)

Since O is fixed in space and is arbitrary, Equation (10.6-3) implies

In Equation (10.6-4), we have used the summation convention and we have sum from i = 1 to
i = 2n. Replacing r}, ... , r2n by q1, ... , qn, p1, ... , pn, Equation (10.6-4) becomes

^ - + — ( p q V — (PP1) = 0 (10.6-5a)
at dq1 dp1

or ^ + q l ^ + p i ^ _ + p ^ i + ^ i = 0 (10.6-5b)
dt dq1 dp1 dq1 dp1

From Equation (10.3-6a,b) we have

*ii = J!^ = J± (10.6.6a,b)
aq1 a^aq1 aPj

It follows that

^ + ^ = 0 (10.6-7)
aq1 ap1

(10.6-4)
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Note the similarity of Equation (10.6-7) to the equation of continuity in fluid dynamics. Combining
Equations (10.6-5b, 7) yields

dp . : dp . : dp
— + q 1 ~ + p 1 — = 0 (10.6-8)
dt aq1 ap1

Since p is a function of q1, p* and t, Equation (10.6-8) can be written as

§ f = 0 (10.6-9)

where ~ is the material derivative (total or substantial derivative).

Thus along a trajectory, p is a constant.

Using Equations (10.3-6a, b, 4-2c), Equation (10.6-8) can be written as

9p + 3H 3p_ _ 3H 3p_ = Q m

dt dp1 dq1 dq1 dp1

^ - + [H, p] = 0 (10.6-10b)
3t

If the system is in equilibrium, p is not an explicit function of t and Equation (10.6-10b) reduces to

[H, p] = 0 (10.6-11)

Thus in the state of equilibrium, p is a constant of motion. The total energy or the Hamiltonian H
are constants of motion. Functions of these quantities are possible forms for p.

Equation (10.6-8) expresses Liouville's theorem. It is the analogue of the conservation of mass in
continuum mechanics and is a fundamental theorem in statistical mechanics.

It should be pointed out that Liouville's theorem is valid only in the phase space. There is no
equivalent theorem in the configuration or momentum space. This suggests that the Hamiltonian
formalism is the most appropriate one in statistical mechanics.

The ideas and methods used to solve problems in Hamiltonian mechanics can be extended to other
fields of science and technology. Chemical reactions, for example, are modeled by kinetic rate
equations, which form a set of first order equations, with time as the independent variable. They are
not unlike Hamilton's equations of motion. If we consider n chemical species which we denote by
Aj , . . . , An and the mass of Aj by mA , we have n equations involving n, m A , and time. Since

the total mass is conserved, we have one constraint and the number of degrees of freedom is n - 1.
The reaction can be described in the (n - l)-dimensional space, known as the reaction space, with
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coordinates mA , ... , mA and the time has been eliminated. The reaction space corresponds to

the phase space. Further, the equations are coupled and are difficult to solve. We therefore look for
equivalent generalized coordinates. In this case we choose a transformation that will transform m*
to b- so that the equations will be decoupled. If the equations are linear, the required transformation

is the transformation that will diagonalise the rate-constant matrix. Wei and Prater (1962) have
eloquently shown how this can be done.

In recent years, there is a growing acceptance of oscillating chemical reactions and the occurrence of
chaos in non-equilibrium chemical reactions [Epstein (1983), Roux (1983)]. A knowledge of
Hamiltonian mechanics can be helpful in the understanding of these processes.

10.7 DISCRETE PROBABILITY THEORY

The theory of probability was started in the 17th century by Fermat, Pascal, Leibnitz and Bernouilli
and was associated with gambling. It is now applied in many fields of science, technology and
commerce.

We shall start from the simplest experiment which is tossing a coin. The outcome of this experiment is
either head or tail. If the coin is unbiased, then it is as likely to fall on its head as on its tail. The two
events are equally likely and we assign to each the probability of 112. Two events are said to be
independent if they do not interact. If we toss a coin twice, the outcome of the first toss does not
influence the outcome of the second toss. Thus the first toss and the second toss are independent. If
we denote two events by A and B and if the probability that event A occurs is p (A) and that event
B occurs is p(B) then the probability that both events occur, which we denote by AB, is the
product p (A) p (B). The probability of having two successive heads on tossing a coin twice is 11 A.

Two events A, B are said to be mutually exclusive if when event A occurs, event B cannot
occur. In the experiment of tossing a coin, the events of the coin landing on its head and landing on its
tail are two mutually exclusive events. The two events cannot occur simultaneously. If A and B are
two mutually exclusive events then the probability of AB is zero, that is to say, event AB cannot
occur. We assign the value zero to the probability of an event which cannot happen.

We denote by A U B the event that either A or B or both occur. If A and B are mutually
exclusive, then the probability of A U B is the sum of the probabilities of A and B. In our coin
experiment, if A is the event of landing on its head and B on its tail, the probability of A U B is
one, the sum of two halves. The probability of certainty is one. We have excluded the possibility that
the coin may roll away. It must fall either on its head or on its tail. Thus the event A U B is certain to
occur.
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The basic rules can be summarized as follows

(a) p (A) denotes the probability that event A occurs;

(b) p(A)>0;

(c) p (A) = 0, event A does not occur;

(d) p (A) = 1, event A is certain to occur;

(e) p(AB) = p(A) p(B), if A and B are independent;

(0 p (A U B) = p (A) + p (B), if A and B are mutually exclusive;

(g) p (A U B) = p (A) + p (B) - p (AB), if A and B are not mutually exclusive;

The conditional probability of A given B is defined as the probability of A occurring
given that B has happened and is denoted by p (A IB).

(h) PCAIB) = ^§-
P(B)

If A and B are independent, then p(AIB) = p(A).

To compute the probability of an event A we have to define the sample space. Since the sample space
is discrete, we can determine all the elements of the space. The probability of A is the ratio of the
number of elements of A to the total number of elements of the space. We have thus used the
relative frequency of event A as its probability. This is the definition in practice. In theory we
need the number of elements in the sample space to tend to infinity. To facilitate this computation we
state briefly the rules of combination and permutation.

Suppose we have n elements a j , . . . , an and out of that set of n elements we want to draw a sample
of r elements. There are two procedures of selecting those elements. There is the sampling with
replacement. In this case, once an element has been selected, it is returned and is available to be drawn
again. If the sampling is random, that is to say, each element is equally likely to be selected, then the
first element can be chosen in n ways. Since there is replacement and once again the sampling is
random, there are n ways of choosing the second element. The total number of ways for choosing
the first two elements is thus n2. Thus the total number of possible samples of size r is nr.

In the second procedure, replacement is not allowed. In this case, once an element has been chosen, it
is no longer available to be selected. Thus the first element can be chosen in n ways and the second
element in n - 1 ways, since the number of elements available is now n - 1. The third element can
be chosen in n - 2 ways and continuing along the same reasoning we find that the number of
choices is n (n - 1).... (n - r + 1) and this product is denoted by Pn r , that is to say
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Pn r = n (n - 1) .... (n - r + 1) (10.7-la)

= OTO! ( 1 0 7 - l b )

where n! = n (n - 1) ... 1.

Pn r denotes the number of permutations of n elements taken r at a time.

If n = r, Equation (10.7-1 b) becomes

Pn,n = n! (10.7-2)

Thus there are n! ways of permuting n elements, that is to say, n! ways of ordering n elements.

In the determination of the number of permutations, the order of selection is important. A change in
the order of the r elements will result in a new selection. If a change of order in the r elements does
not make a difference to the final result, we need to find the number of combinations of n elements
taken r at a time.. This is denoted by C n r . Such a situation would occur if all r elements are alike.

Since the number of permutations of r elements is r! and the number of permutations of n elements
taken r at a time is Pn r , Cn r is given by

Cn r = - M (10.7-3a)

= Tu%k> (10'7-3b)

Example 10.7-1. Find (a) the number of permutations, (b) the number of combinations of the
letters A, B, C, D in sets of two.

(a) The number of permutations is

P 4 ; 2 = 12 (10.7-4)

(b) The number of combinations is

C4>2 = Y = 6 (10.7-5)

As the sample is small, we can list the elements in each case.

In case (a), we have: AB, BA, AC, CA, AD, DA, BC, CB, BD, DB, CD, DC.

In case (b), we make no distinction between AB and BA, the order is not important (similarly for the
other pairs AC, CA,...) and the number of elements in this case is half that of (a).
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Example 10.7-2. We have n undistinguishable balls to be distributed randomly in n cells. What
is the probability of having one ball in each cell?

The first ball can placed in any of the n cells. That is to say, there are n possibilities. Similarly the
second ball can be placed in any of the n cells. Reasoning along the same line, we find that the total
number of ways of randomly distributing the n balls in n cells is nn. To have only one ball in each
cell is equivalent to sampling without replacement: once a cell is filled it cannot be used again. Thus
the number of permutations is Pn n which is given by Equation (10.7-2). The total number of

possibilities is nn of which n! are favorable. Thus the probability p of having one ball in each cell
is

P = ni
nn (10.7-6)

If n = 6, p turns out to be 0.015, which shows that if we have six balls and six cells, the probability
that each cell will contain a ball is 0.0154, a small probability!

Example 10.7-3. A sample of n elements is partitioned into k subgroups. The first subgroup
contains rj elements, the second r2 elements, ... , the kth subgroup contains rk elements.
Determine the number of ways the partition can be done.

To form the first subgroup, we have to select r̂  elements from a sample of n elements. Within the
subgroup, the order of the r j elements is not important. The number of ways of forming such a
subgroup is Cn r . The number of elements in the sample is now reduced to (n - rj) out of which we

have to choose r2 elements to form the second subgroup. The number of ways of accomplishing this
is Cn_r r . Similarly the kth subgroup can be obtained in Cn_r _r _ _r r ways. Thus the
partition can be achieved in C n r Cn_r r ... Cn_r _r _ _r r ways. Using Equation (10.7-3b),

we have

= n! ( n - r } ) ! (n - tx - r2 - ... - r ^ ) !
^n,r i - n-rrr2-...-rk.1(rk ^ i ( n - r , ) ! r2! ( n - ^ - r 2 ) ! "" r k ! ( n - r 1 - . . . - r k ) !

(10.7-7a)

= - r - ^ r (10.7-7b)
r i ! r 2 ! . . . r k !

Note that

r 1 + r 2 + ... + rk = n (10.7-8)
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Example 10.7-4. In Example 10.7-2, we deduced the probability of having one ball in each cell.
We now consider the case of having six balls distributed in six cells with three of the cells containing
two balls. Determine the probability of such a partition.

The cells are divided into two groups, those that contain balls and those that are empty, and each group
has three elements. The number of ways of doing this is given by Equation (10.7-7b) and is
6! / (3! 3!). The partition of the six balls into three subsets of two elements each and three subsets that
are empty can be achieved in 6! /(2! 2! 2!) ways. Thus the total number of ways (N) of obtaining a
distribution of three cells containing two balls each is

N = £Lfii (10 7-9)
3! 3! 2! 2! 2! K '

The six balls can be put randomly in the six cells in 66 ways. Thus the probability p of obtaining the
desired distribution is

p = N. = 0.0386 (10.7-10a,b)
66

Comparing with Example 10.7-2, we find that the distribution considered in the present example is
more than twice as likely to happen as the distribution considered in the previous example, though
intuition might suggest otherwise.

10.8 BINOMIAL, POISSON AND NORMAL DISTRIBUTION

Binomial Distribution

We now consider the case where the trials can have only two outcomes, such as tossing a coin. Also,
the placing of balls in cells give rise to either empty cells or cells containing one or more balls. If we
throw a dice we can have a six or not. Of the two outcomes, one is a success with probability p and
the other a failure with probability q. Since there are only two possible outcomes

p + q = 1 (10.8-1)

We assume that p remains constant in n trials and that the trials are independent. We can now
calculate the probability b (k; n, p) of k successes in n trials.

In the n trials, we have k successes with probability p and (n - k) failures with probability q. The
events are independent and the probability of k successes and (n - k) failures is pk qn~k. The order
of the successes is not important, so that the k successes can be arranged in Cn ^ ways. Thus
b (k; n, p) is given by

b(k;n,p) = C n k pkqn-k (10.8-2a)
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= Fu^Pk^k <I 0-8-2 b>

If we expand (p + q)n as a binomial expansion, we obtain

(q + p)" = q" + nqn-lp + "i^dl qn-2p2 + ... + " fo-D - ("~k+1) qn-kpk + ... + pn

(10.8-3a)

= qn + C n J q"-Jp + Cn>2 qn~2p2 + ... + Cn k q"-kpk + ... + p" (10.8-3b)

Comparing Equations (10.8-3a, 2a), we find that b (k; n, p) is the kth term of the expansion of
(q + p)n. Thus this distribution is known as the binomial distribution.

Using Equations (10.8-1, 2a, 3b), we obtain

JT b(k; n, p) = 1 (10.8-4)
k=0

Example 10.8-1. Compute the probability of obtaining one six in twelve throws of a dice.

The probability of obtaining a six in one throw, if the dice is perfect, is 1/6. The trials are independent
and the probability of obtaining a six in each throw remains the same. Then from Equation (10.8-2b),
we have

b(l; 12, 1/6) = ^ j (1) (I)11 = 0.269 (10.8-5a,b)

To compare the probability of having k successes with k - 1 successes, we have from Equation
(10.8-2b)

b f e n> P> = n] k qn-k ( k - l ) ! ( n - k + l ) ! ( 1 0 8-6a)
b(k-l;n,p) k!(n-k)! y H n ! pk-lqn-k+l

= P ( n ~ k + 1 ) (10.8-6b)
kq

= 1 + ( n ± l ) p - k
kq

From Equation (10.8-6c), we note that as k increases from 0 to n, b (k; n, p) at first increases until
k is equal to m and then decreases. The value of m is given by

(n+ l ) p - 1 < m < (n+l)p (10.8-7)

(10.8-6c)



832 ADVANCED MATHEMATICS

The number m is the most probable number of successes. If (n + l)p is an integer and is
equal to m, we deduce from Equation (10.8-6c)

b(m;n, p) = b ( m - l ; n , p) (10.8-8)

Example 10.8-2. A coin is tossed 40 times. Calculate the probabilities of obtaining (a) 25 heads,
(b) 20 heads.

(a) We assume that the coin is perfect and that each toss is independent.

The probability of obtaining 25 heads is

b(25;40, 1/2) = ^ ^ (yf5(^)1 5 = 0.0366 (10.8-9a,b)

(b) The probability of obtaining 20 heads is

b(20;40, 1/2) = ^ ° ^ - ^f° ^f° = 0.1254 (10.8-10a,b)

We note that 20 is the most probable number of heads but its probability is still small, though greater
than for 25 heads. Only in one out of eight experiments can we expect to have twenty heads.

•

To calculate n! can be tedious, especially when n is greater than ten. We can then use Stirling's
formula which is

n! - (27tn)1/2 nn e~n (10.8-11)

The percentage error decreases dramatically as n increases. The exact value of 10! is 3 628 800.
Stirling's formula yields 3 598 600 resulting in a percentage error of 0.8%. For 100! the percentage
error reduces to 0.08%.

Poisson Distribution

In many cases, n is large and successes are rare; that is to say, p is small. In such a case, it is
desirable to find an approximation to the binomial distribution. The product n p is the average or
expected value and is denoted by X. We assume that A, is not small The probability of failure is,
using Equations (10.8-2b, 1)

b(0;n, p) = Of p0qn (10.8-12a)
n!

= ( l - p ) n (10.8-12b)
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= (1 -X/n)n (10.8-12c)

Taking the logarithms of both sides of Equation (10.8-12c) and expanding the resulting right side, we
obtain

inb(0;n,p) = n i n ( l - U n ) (10.8-13a)

= n - — - — - . . . (10.8-13b)
I n 2n2 /

as n—> °o, Equation (10.8-13b) implies

b(0;n,p) « e~x (10.8-14)

Equation (10.8-6b) may be written as

b(k;n,p) _ ?i + p ( l - k ) ( -
b(k-l;n,p) " k ( l -p ) ( 1 ° - 8 - 1 5 a )

- ^ (10.8-15b)
Jv

since p is small.

From Equations (10.8-14, 15b), we obtain

b(l ;n, p) - e~xX (10.8-16)

Similarly

b(2;n,p) - | b(l;n,p) (10.8-17a)

- ~ e~^ (10.8-17b)

Generalizing, we obtain

b(k;n,p) - ^ - e-^ (10.8-18)

This can be shown by induction as follows.

Assume that Equation (10.8-18) is true for k = s, from Equations (10.8-15b, 18), we then have
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b(s+l; n, p) - -r^k— b(s; n, p) (10.8-19a)
(s + >.)

~ r^TV K e~X (10.8-19b)
(s + 1) s!

T, S + l

" (TTT)! e~" (la8-19c)

Thus Equation (10.8-18) is true for (s + 1) and from Equation (10.8-16), we know that it is true for
s = 1 and thus, by induction, it is true for all s. We denote the approximation of b (k; n, p) under
the conditions p—> 0, n—> °o and np—> finite X by p (k; X). Equation (10.8-18) is now written
as

p(k; X) = A- e-* (10.8-20)

The distribution p (k; X) given by Equation (10.8-20) is known as the Poisson distribution.

The expansion of ê 1 is

e^ = i + A, + ... +-£|-+ ... (10.8-21)

Combining Equations (10.8-20, 21) yields

X P(k; A,) = 1 (10.8-22)
k=0

for any fixed X.

Since the sum of p (k; X) is one, the Poisson distribution is also a distribution of random rare events
and is not merely an approximation of the binomial distribution. The number of atoms disintegrating
per second in a quantity of radioactive substance, the number of misprints in a book, the number of
hits on a target, the number of wrong telephonic connections, the number of reported cases of a rare
disease , and the number of automobile accidents in a fixed time interval at a particular spot, are all
examples of the Poisson distribution.

We now derive an approximation of b (k; n, p) relaxing the condition that p has to be small.

Normal Distribution

Let u denote the deviation from the mean value np.

u = k - n p (10.8-23)
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If i denotes the number of failures, then i is given by

i = n - k (10.8-24a)

= n - u - n p (10.8-24b)

= nq-u (10.8-24c)

Substituting Equations (10.8-23, 24c) into Equation (10.8-2b) yields

b(k; n, p) = -fl pnP+u qn^u (10.8-25)

^ (u + np)! (nq-u)! F M

Taking the logarithms on both sides gives

Znb = Zn n! + (np + u) in p + (nq - u) in q - in (np + u)! - in (nq - u)! (10.8-26)

Using Stirling's formula [Equation (10.8-11)], we have

in n! « -L in (2nn) + n in n - n (10.8-27)

Similarly

in (np + u)! « 1 in [2K (np + u)] + (np + u) in (np + u) - (np + u) (10.8-28a)

» 1 in [2rc (np + u)] + np (l+ JL) in [np (l+ ̂ ) ] - (np + u) (10.8-28b)

- lin[27t(np+u)] + n p ( l + ^ ) [ i n n p + i n ( l + ^ ) ] - ( n p + u ) (10.8-28c)

- i-in[27U(np + u)] + np ( l + n ^ ) i n n p + ̂ L L _ ( n p + u)

(10.8-28d)

in (nq-u)! - I in[27i (nq-u)] + nq( l - J L ) i n n q - ^ ^ - ( n q - u )

(10.8-28e)

Substitution of Equations (10.8-27, 28d, 28e) in Equation (10.8-26) yields

in b = -̂ [in (27tn) - in 27U (np + u) - in 2% (nq - u)] + n in n

_np(l+_u_\ i nnp + -U ^ nq(l--M innq--U ^~
P l npj[ P np 2 n2p 2J 4 l nqj^ 4 nq 2^2q2

- n + (np + u) + (nq - u) + np (l+ ̂ -\ i n p + nq ( l - ̂ -\ i n q (10.8-29a)
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2
1 0 4TU (np + u ) ( n q - u ) B /1 u \ r « n 1
2 L 27tn J \ ^V)

- ( 1 + ^)( u -4)- n q ( 1 -^) [ i n n q -" n q ] + ( 1 ^)( u + ^ J ) (ia8-29b)
2 2

- -J- in27Cnpq--^— --^— (10.8-29c)
2 2np 2nq

2
- - !>8n27cnpq- -y— (10.8-29d)

2 2npq

Taking the anti-logarithm of Equation (10.8-29d), we obtain

b (k; n, p) « 1 exp (-u2 / 2npq) (10.8-30)

V27tnpq

To simplify the expression on the right side of Equation (10.8-30), we introduce

a = Vnpq (10.8-31a)
x = i (10.8-31b)

a
Equation (10.8-30) now becomes

b (k; n, p) « - 4 = e"x2/2 (10.8-32a)
a V2rc

« ^r <p(x) (10.8-32b)

In Equation (10.8-32b), (p(x) is given by

cp(x) = -k= e-x2/2 (10.8-33)

V2lu
The function cp (x) is known as the standard normal density function. The quantity a is the
standard deviation of the binomial distribution.

In the binomial distribution, we calculated the probability of k successes in a discrete sample space.
The function cp (x) is now a continuous function of a continuous variable x. The variable x is a
measure of the departure from the mean value np [see Equation (10.8-23)]. x can be on either side
of the mean value np , so that its value can range from -°o to °°. Using the result given in Chapter 4,
Problem 9b, we obtain

(10.8-31a)
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I (p(x)dx = 1 (10.8-34)

Thus (p (x) satisfies the condition that the sum (integral) of all probabilities is a certainty and is equal
to one.

The cumulative distribution function of a standard normal random variable is denoted by O (x)
and is defined as

Jf x 2

I e~y/ 2dy (10.8-35)

<£ is also known as the normal distribution function . O (x) increases steadily from 0 to 1. The
values of <D (x) for positive values of x are tabulated.

We list some of the properties of (p (x) and O (x)

(a) (p (x) is symmetrical about x = 0;

(b) (p (x) has its maximum at x = 0, that is, when k = np, the most probable number of
successes;

(c) O(-x) = 1 - O(x); (10.8-36)

(d) The probability that x lies between a and b, a < b, is

p ( a < x < b ) = O(b)-O(a) (10.8-37)

Equation (10.8-37) is known as Laplace's limit theorem.

In terms of the original variables, Equation (10.8-32b, 33) can be written as

b(k; n, p) « l e x p - ( k ~ n p ) 2 (10.8-38a)
V2;unpq \ 2npq

cp fc°E) = JL; exp - t ^ l (10.8-38b)
^[fnpqj i2n 2npq /

Equations (10.8-38a, b) can be used in the case of discrete variables whereas Equations
(10.8-32b, 33) are for continuous variables.
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Example 10.8-3. The probability of being dealt a full house in a hand of poker is 0.0014.
Compute the probability of being dealt at least two full houses in one thousand hands.

Getting a full house is a rare event which can be assumed to follow the Poisson distribution. The
parameter A, is

I = 0.0014 x 1000 = 1.4 (10.8-39a,b)

The probability of having at least two houses is

p = 1 - p (0; X) - p (1; X) (10.8-40a)

= 1 - e"1-4 - 1.4 e"1-4 (10.8-40b)

= l - 2 . 4 e - L 4 = 0.408 (10.8-40c,d)

Example 10.8-4. A machine is known to produce on an average one faulty item out of twenty.
Calculate the probability that out of a sample of twenty items, there will be at most one defective item.

We assume that the distribution is Poisson and the parameter X is given by

1 = 2 ° X 2 O = l (10.8-41a,b)

The probability of having at most one faulty item is

p = p(0; l) + p ( l ; l ) (10.8-42a)

= e ^ + e"1 = 0.736 (10.8-42b,c)

The probability of having at least one defective item is

q = 1 -p = 0.264 (10.8-43a,b)

Thus it is almost twice more likely to find at most one faulty item than to find more than one faulty
item.

Example 10.8-5. A perfect coin is tossed 40 times. Determine the probability of having twenty
heads.

The probability of getting a head is 1/2. In this case, the distribution is normal and not Poisson since
the value of p associated with each toss is 0.5, which is not small.

From Equation (10.8-38a), we obtain
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p = ^ L = exp(- ( 2°~0 2 Q ) 2) - 0.13 (10.8-44a,b)

We could also use Equation (10.8-37) to determine the probability of twenty heads. In this case, x
has to be transformed into a continuous variable. The number 19.5 and 20.5 span the range closest to
the integer 20. The number of heads should then be between 19.5 and 20.5 and this leads us to
calculate aandb via Equations (10.8-23, 31a, b)

b = ^ = ^ - 0.16 (10.8-45a,b)

a = ( 1 9 -^2 2 0 ) « _ 0 . l6 (10.8-45c,d)

The probability of having twenty heads is thus

p = 0(0.16)-4> (-0.16) (10.8-46a)

= 2 O ( 0 . 1 6 ) - l - 0.13 (10.8-46b,c)

We have used Equation (10.8-36) and a Table of O.

Both methods, as expected, give the same answer.

Example 10.8-6. The heights of 10 000 young men follow closely a normal distribution with a
mean of 69 inches and a standard deviation of 2.5 inches. Find

(a) the expected number of men N2 to be at least 6 feet tall;

(b) the expected number of men to be exactly 6 feet tall;
(c) the expected number of men N to be between 70 inches and 74 inches tall.

(a) We first calculate the probability of the number of men whose heights are 6 feet (= 72 inches)
and below. From Equation (10.8-37), we have

pf--6^ < x < ? 2 ~ 6 9 ) = O(1.2)-O(-28) - 0.885 (10.8-47a,b)

The expected number of men who are at most 6 feet tall is

Nt = 10 000x0.885 = 8 850 (10.8-48a,b)

The number of men that are at least 6 feet tall is

N2 = 10000-8 850 = 1 150 (10.8-49a,b)
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(b) In this case, a = b = 1.2 and the probability (area of a line) is zero. We do not expect
anybody to be exactly 6 feet tall, since we cannot measure to that level of accuracy.

(c) P f - ^ T ^ -X-1^TT') = *(2)-*(0-4) (10.8-50a)

- 0.977-0.655 « 0.322 (10.8-50b,c)

The number of men N whose heights are between 70 and 74 inches is

N = 0.322x10 000 = 3 200 (10.8-51a,b)

10.9 SCOPE OF STATISTICAL MECHANICS

In Section 10.8, we have seen that statistical methods can be employed to solve real problems. These
same methods are used to solve problems in mechanics. In statistical mechanics, we predict the
macroscopic properties of the system from its microscopic properties. For example, the pressure on
the wall of a gas container is due to the impacts of the gas molecules on the wall. A pressure gauge is
not able to measure the pressure exerted by each individual molecule but it measures only an average
force due to a large number of impacts. Since the number of impacts per second per square centimeter
is of the order of a few billion, statistical methods are most appropriate.

In Section 10.2, we established that the state of a dynamical system is defined if the generalized
coordinates and momenta are known. Since we are dealing with a system of a large number of
particles, it is impossible to know the initial conditions of each particle and it is prohibitively
impossible to solve the equations of motion. Consequently the idea of an ensemble was introduced in
Section 10.6.

We illustrate the idea of an ensemble by considering a simple example. Suppose the oscillator in
Example 10.2-1 is isolated and is in equilibrium. Since it is isolated, it does not exchange energy with
any other system. Its energy is therefore constant. Let its energy be in the range E and E + AE. In
quantum mechanics, E cannot be determined exactly. In classical mechanics, E can theoretically be
determined exactly but in practice there is bound to be an error AE in its determination. In the phase
plane, as shown in Example 10.2-1, the trajectory for a constant E is an ellipse. In our example, we
have two ellipses, one corresponding to E and the other to E + AE as shown in Figure 10.9-1. If
we know the initial conditions, we can solve the equations of motion and predict the coordinate q and
momentum p of the oscillator at any time. But suppose as stated earlier, that we do not know the
initial conditions with sufficient precision and we are unable to solve the equations of motion. All we
know is that the oscillator is isolated, in equilibrium and its energy lies between E and E + AE.
Though we cannot predict its coordinate q and its momentum p, we know they must be in the area
between the two ellipses in the phase plane. There are many oscillators which could satisfy the
conditions of being isolated and having energy in the specified range and they form an ensemble.
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They could have distinct initial conditions but they all will be confined to the area between the two
ellipses in the phase plane. We can now introduce statistical methods. We subdivide the area between
the ellipses into small cells, each of size Aq Ap, as shown in Figure 10.9-1. We introduce a
probability distribution f (q, p), which is a continuous function of q and p. The probability of an
oscillator occupying the cell of size Aq Ap at (q, p) is

prob. = f(q,p)AqAp (10.9-1)

If there is one oscillator then the integral I I f (q, p) dq dp over the relevant area is one.

f>Ap

FIGURE 10.9-1 Phase diagram of an oscillator at two different energy levels

We can extend to the case of N particles with n degrees of freedom. We have n generalized
coordinates q^, ... , qn and n generalized momenta pj , ... , pn, and the dimension of the phase
space is 2n. The phase space is divided into cells of size Ap1; ... , Apn and Aq1?... , Aqn and the
probability distribution function is f (q b ... , qn, p b ... , pn). For brevity, we write q and p for
q1, ... , qn and p ] ; ... , pn respectively. Similarly Aq and Ap stand for Aq1? ... , Aqn and
Apj, ... , Apn respectively. Then f (q, p) Aq Ap is the probable number of particles in the cell of size
Aq Ap at (q, p). The function f(q, p) is known as the phase space distribution function.
The integral of f (q, p) over the whole phase space is N, the total number of particles. In many
cases, f is normalized such that its integral over the complete phase space is one, and in this case, f
is the probability density.
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If B (q, p) is any quantity associated with the system, then the average value of B, denoted by

<B>, is

( [ B(q,p)f(q,p)dqdp
<B> = — (10.9-2)

fj f(q,p)dqdp

Based on some plausible physical assumptions, it is possible to determine f. The average value of the
physical quantities can be calculated.

10.10 BASIC ASSUMPTIONS

One of the basic assumptions is that all microstates having the same energy have the same probability
of existence. Let us consider an isolated system consisting of N particles in a volume V. Since the
system is isolated, its energy is constant. Suppose it lies in the range E and E + AE. All systems
having N particles occupying volume V with energy in the range E and E + AE form an ensemble.
The probability assumption for such an ensemble in equilibrium is that each of its accessible states is
equally likely. Thus the probability Pr of finding a system with energy Er is given by

(C i f E < E r < E + AE
Pr = / (10.10-la.b)

\ 0 otherwise

where C is a constant. Such an ensemble is called a microcanonical ensemble.

If the system is in thermal contact with other systems or heat reservoirs then there will be an exchange
of energy and its energy will not be constant. An ensemble of such systems which are in thermal
equilibrium is known as a canonical ensemble.

Consider two systems A and B which are in thermal equilibrium with the same heat reservoir. We
denote the probability of finding the system A with energy EA by PA(EA). Similarly the probability
of finding B with energy EB is PB (EB). The systems A and B can be regarded as one system with
energy EA + B and the probability of the composite system with energy EA + B is denoted by
PA+B (EA+B)- Since A and B are macroscopic system, we can assume that the interaction energy is
negligible compared to EA and EB, so that

EA+B = EA + EB d0-1 0-2)

Using Equation (10.10-2), we have

P A + B ( E A + B ) = P A + B ( E A + E B ) O0.10-3)
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The right side of Equation (10.10-3) can be interpreted as expressing the probability of system A
having energy EA while, at the same time, system B has energy EB. We assume systems A and
B to be independent. Using relation (e) of Section 10.7, we have

P A + B ( E A + E B ) = P A ( E A ) W (10-10-4)

Since we have assumed systems A and B to be independent, EA and EB are independent.
Differentiating the left side of Equation (10.10-4) with respect to EA, we have

^ [PA+B(EA + BB )] = ^ ^ [^(BA + EB)]d-^AlM ( l o . l O . 5 a )

= P A + B ( E A + E B ) (10.10-5b)

where the prime refers to differentiation with respect to (EA + EB).

Similarly

^ [PA+B (EA + EB)1 = PA+B (EA + EB) (10.10-6)

Differentiating both sides of Equation (10.10-4) and using Equations (10.10-5b, 6), we have

PA(EA) PB(EB) = PA(EA) PglEg) (10.10-7)

where the prime refers to differentiation with respect to the argument.

Equation (10.10-7) implies

P A ( E A ) _ ^ ( B B ) _ a n n m SaM
P A ( E A ) " P B ( E B ) " " P (10.10-8a,b)

Since systems A and B are independent, P is a constant, that is to say, it is a quantity independent
of systems A and B.

Integrating Equations (10.10-8a,b), we have

PA(EA) = CAe-PEA (10.10-9a)

PB(EB) = CBe-PEB (10.10-9b)

where CA and CB are constants and depend on the systems. The quantity J3 is independent of A
and B but may depend on the heat reservoir. The temperature T is the quantity that characterizes a
reservoir, thus p can depend on T.
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Generalizing Equations (10.10-9a, b), we state that the probability Pr of a system in thermal
equilibrium in a particular state with energy Er is

Pr = Ce-pEr (10.10-10)

To determine C we sum over all possible microstates, and we obtain

JCe"^ = 1 (10.10-11)
r

Thus C is given by

C = 1 (10.10-12)

r

Equation (10.10-10) may be written as

Pr = Z ^ e ^ r (10.10-13)

where Z = £ e"^.
r

If the energy can vary continuously, the distribution function f (E) is given by

f(E) = De-PE (10.10-14)

where E is a continuous function of the coordinates q, and momenta pj. The constant D can be
obtained by integrating over the whole phase space. Thus, using the notation of Equation (10.9-2),
we have

D | | e"pEdqdp = 1 (10.10-15)

Using Equation (10.10-15), Equation (10.10-14) can be written as

f (E) = Z"1 DN e~pE (10.10-16)

where Z = DN (( e~pEdqdp.

The quantity DN has been introduced so that Z becomes dimensionless. Note that in Equation
(10.10-13), Z is dimensionless. In classical mechanics, it is usual to assume DN to be unity. The
quantity Z (which stands for Zustandssumme, state sum) is called the partition function. The
exponential factor e~PE is known as the Boltzmann factor. The probability distribution given by
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Equations (10.10-13, 16) is known as the canonical distribution, and DN is assumed to be unity.
The factor P is given by

p = 1/kT (10.10-17)

where k is Boltzmann's constant and T is the temperature.

10.11 STATISTICAL THERMODYNAMICS

The internal energy U of a system is identified as the statistical average energy <E>. Thus
combining Equations (10.9-2, 10-13), we have

U = <E> = z r ' J ^ e " ^ (10.11-la,b)
r

On differentiating the partition function Z with respect to p, we obtain

— = - 1 ^ " ^ (10.11-2)
dp r

Comparing Equations (10.11-la, b, 2), we find that

U = - Z - ! ^ (10.1 l-3a)

= — (-inZ) (10.1 l-3b)

ap
The partition function Z is a function of the temperature T and the volume V. Thus

d( inZ) = ^ - ( i n Z ) d T + ̂ - ( i n Z ) d V (10.1 l-4a)
a I a V

= — ( i n Z ) d T ^ + ̂ ( i n Z ) d V (10.1 l-4b)

= — (inZ)dp+^-(inZ)dV (10.11-4c)

ap a v

= -Udp+^-linZJdV (10.11-4d)
ov

= -d(up)+pdU+^-UnZ)dV (10.11-4e)
a V
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Using Equation (10.10-17), Equation (10.1 l-4e) can be written as

dU = k T d ^ n Z + u p l - k T ^ r UnZ)dV (10.11-5)

From the laws of thermodynamics, we can relate the quantities in Equation (10.11-5) to other
thermodynamic variables. We recall that the first law of thermodynamics may be written as

dU = -dW + dQ (10.11-6)

where dW is the infinitesimal work done by the system and dQ is the infinitesimal heat absorbed by
the system.

The second law of thermodynamics introduces the entropy S and dS is related to dQ by

dS = ^ (10.11-7)

For an ideal gas, the work done dW is given by

dW = pdV (10.11-8)

where p is the pressure.

Substituting Equations (10.11-7, 8) into Equation (10.11-6) yields

dU = - p d V + TdS (10.11-9)

Comparing Equations (10.11-5, 9), we deduce

p = k T ^ y U n Z ) (10.11-10a)
a V

dS = k d ( i n Z + Up) (10.11-10b)

On integrating Equation (10.1 l-10b), we obtain

S = k i n Z + kU(3 + constant (10.11-11)

The constant term in Equation (10.11-11) has no physical significance since only a change in S can
be measured.

We now introduce the Helmholtz free energy A which is defined as

A = U - T S (10.11-12)
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Differentiating A yields

dA = d U - T d S - S d T (10.11-13)

Combining Equations (10.11-9, 13) results in

d A = - p d V - S d T (10.11-14)

We consider A to be a function of two independent variables T and V, that is to say

A = A(T,V) (10.11-15)

It then follows that

dA = l | £ dT+ ~ dV (10-11-16)
\ d l / v \CV/T

Comparing Equations (10.11-14, 16) yields

(5v)T = "P (1011-17a)

I?A\
~ = -S (10.11-17b)
Wl/y

Since A is a continuous function of T and V with continuous partial derivatives, we deduce from
Equations (10.1 l-17a,b)

IU) = [W\ (ian-i8)
The four thermodynamic variables p, V, S and T are not all independent. They are related via
Equation (10.11-9). We can consider any two of them as independent variables. In the definition of
A, we have assumed T and V to be the independent variables.

A function H (S, p) is now introduced. H is known as the enthalpy and is defined as

H = U + pV (10.11-19)

On differentiating, we have

dH = dU + pdV + Vdp (10.11-20)

Since H is a function of S and p, we can write
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dH = | £ - dS+ ^ dp (10.11-21)
\dsjv \dp!s

Combining Equations (10.11-9, 20, 21), we deduce

r)H\
T = ^ - (10.11-22a)

V = ~ (10.11-22b)
Wp/S

Cross differentiation of Equations (10.1 l-22a, b) yields

(II • i l
The Gibbs free energy G is usually assumed to be a function of T and p and is defined as

G = H - T S (10.11-24a)

or G = A + pV (10.11-24b)

Proceeding as in the case of A and H, we deduce that

S = - -Kzr (10.11-25a)

V = ~) (10.11-25b)

In an isothermal process, dT = 0 and Equation (10.11-13) becomes

dU = dA + TdS (10-11-26)

From Equations (10.11-6, 7, 26), we deduce

dA = -dW (10.11-27)

Substituting Equation (10.11-11) into Equation (10.11-12), choosing the constant term to be zero and
p= 1/kT, we obtain

A = - k T i n Z (10.11-28)

(10.11-23)

(10.11-25c)
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From Equation (10.11-28), Z can be written as

Z = e - ^ 1 " (10.11-29a)

= e-PA (10.11-29b)

The probability P as given by Equation (10.10-13) can now be written as

Pr = e ^ " ^ (10.11-30)

This form of Pr is quite common in statistical mechanics.

Example 10.11-1. Calculate the partition function Z of a perfect monoatomic gas containing N
atoms, each of mass m.

Let vj be the velocity of atom i, Ej be the kinetic energy. The potential energy is zero since, for a

perfect gas, the interatomic forces are negligible.

E i = t m X i * Xi (10.11-31a)

= l m ( v 2 + v2 + v 2 ) . (10.11-31b)

The partition function Z is given by Equation (10.10-16) with D N = 1

Z = I I e"pEi e"pE2 ... e-pEn dr dv (10.11-32)

where d.r and dv are d£j ... d£ n and dv1 ... dy n respectively.

Since the energy does not depend on the position of the atoms, the Ei are independent of the £ j , and

we can carry out the integral with respect to d£. There are N atoms and since each integral with

respect to d r j yields the volume V,

Z = VN I ... I e~PEi ...e^EN dvj ... dv n (10.11-33)
; N ;

Each of the integrals in Equation (10.11-33) is given by
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oo oo oo

1 = f [ [ e-P(1/2)m(v2x + V' + V ' ) d v x d v y d v z (10.11-34)

-OO -OO -OO

The limits of the integral are the same for each of the velocity components vx, vy, vz, so that
Equation (10.11-34) can be written as

I = I e-(1 / 2>Pm v 2 dv (10.11-35)
y-°° /

Using the results given in Chapter 4, Problem 9b, we find

I = I2x)3/2 (10.11-36)
Ipm/

Substituting I into Equation (10.11-33) yields

Z = V N M 3 N / 2 (10.11-37)
Ipm/

inZ = N/enV + ̂ K inf-^L\ (10.11-38)
2 Ipmj

The internal energy U, Equation (10.1 l-3b), is given by

U = - — [ N i n V + ^ in/-^L\l (10.11-39a)
ap [ 2 \pmjj

= -MPEL 2K\ (10.11-3%)
2 2TU [ m(3 j

= ~ (10.11-39c)

The pressure p is given by Equation (10.1 l-10a). Using Equation (10.11-38), we obtain

p = k T ^ [NinV + ̂  i n | ^ | ] (10.11-40a)
a V [ 2 U3m)J

= ™i (10.11-40b)
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Equation (10.1 l-40b) is the equation of state for a perfect gas. Thus if the partition function Z can be
calculated, all the other thermodynamic variables can be deduced. In Example 10.11-1, it was easy to
calculate Z since the atoms did not interact. In the liquid state, for example, where there are strong
interactions, the calculation of Z is difficult and the integral in Equation (10.10-16) cannot be
evaluated.

10.12 THE EQUIPARTITION THEOREM

The energy E of a system is a function of the n generalized coordinates q, and the n generalized
momenta pj. Suppose that E can be written as the sum of two parts

E = cpJ + E ' ( q i , ... , qn, p2, ... , p n ) (10.12-1)

where c is a positive constant.

In many actual situations, E is a quadratic function of the momenta.

The partition function Z, Equation (10.10-16), can be written as

Z = I ... I e"pW+E') dPl dq dp2 ... dpn (10.12-2a)

= I e"Pcpi dp! I ... I e-pE'dq dp2 ... dpn (10.12-2b)

= |4'2Z' (10.10-2c)

\PcJ
where Z' stands for the remaining multiple integrals.

The internal energy U is given by

U = - — [inZ] (10.12-3a)
3(3

= -— [ J - inW + inZ'l (10.12-3b)
3(3 [2 ((3cj

= J- -A inZ1 (10.12-3c)
2(3 3(3

= ^-kT + U' (10.12-3d)
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Thus the internal energy (average energy) is the sum of the two terms y k T and U' . The

contribution to U from cp^ is y k T and is independent of c. Similarly if other variables in Z

appear as quadratic forms in E, they too will contribute — kT each to U. Thus the contribution to

U of each quadratic term in E is ~ kT. This result is known as the equipartition theorem.

Example 10.12~l. Calculate the internal energy U of a harmonic oscillator. The problem of an
oscillator was introduced in Example 10.2-1.

It is seen that, from Equations (10.2-10, 11), the energy E is

E = 1 m q 2 + l Gq2 (10.12-4)

From the partition theorem each of the quadratic terms will contribute }- kT to U, so

U = kT (10.12-5)

10.13 MAXWELL VELOCITY DISTRIBUTION

Consider a monoatomic gas in a container of volume V, kept a temperature T. Interactions between

molecules can be neglected. The total energy of the system is the sum of the energies of the individual

molecules. If the mass of a molecule is m and its velocity is v, then its energy E, which is purely

kinetic, is

E = \ m X 2 (10.13-la)

= ^ P 2 (10.13-lb)

where p is the momentum.

We assume that there is no preferred location in the container, that is to say, we do not consider a
density gradient. The probability of a molecule lying in a cell of size Aq Ap at (p, q) is independent
of the generalized coordinate q .

The probability of finding a molecule in a region (dq, dp) about (q, p) is given by

Prob. = Cexp(-p2 /2mkT) dq dp (10.13-2)

where C is a constant.
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To obtain C, we use the normalization condition. It is certain that there is a molecule in the whole
phase space. The integration of Equation (10.13-2) yields

1 = II Cexp(-p2/2mkT) dqdp (10.13-3a)

= C V l exp(-p2/2mkT) dp (10.13-3b)

where V is the generalized volume.

From Chapter 4, Problem 9b, we have

I exp (-p2/2mkTJ dp = (27tmkT)3/2 (10.13-4)

Substituting Equation (10.13-4) into Equation (10.13-3b), we deduce that C is given by

c = 1 ^7 (10.13-5)
V(27 tmkTr 2

Equation (10.13-2) can now be written as

PrOb- = V ( 2 l i f ) 3 / 2 eXp (~£2/ m k T) da dE (10.13-6)

The probable number of molecules Np in a region (dq, dp) around (q, p) is given by

N P = X M d a dE (10.13-7a)

XM = (v) (^cmkT I3 ' ' eXP ( -E 2 / 2 m k T ) (10.13-7b)

The distribution function %M is known as the Maxwell velocity distribution and it is normalized
to N, the total number of molecules in V. It is also known as a Gaussian distribution. We note
that the Equation (10.13-7b) is similar to Equation (10.8-33) and %M is also referred to as a normal
distribution.

10.14 BROWNIAN MOTION

In 1828, Robert Brown, a biologist, drew attention to the movements of pollen suspended in a fluid.
Some of his contemporaries attributed the motion of the pollen to the fact that they were alive. It was
later found that all sufficiently small particles, be they organic or inorganic, will move when suspended
in a fluid. Such a motion became known as Brownian motion.
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It is now known that the motion of these minute particles is due to the collision of the fluid molecules
with these particles. The fluid molecules are in random motion and thus will occasionally hit the
particles. One molecule by itself may not have the momentum to displace the particle, but the
combined contribution of the collision of several fluid molecules on the same particle at the same time
could displace the particle. The probability of such an event is not zero. Brownian motion can be
explained in probabilistic terms.

The mathematics developed to provide an understanding of Brownian motion has led to the opening of
a new field in mathematics known as stochastic processes. As a result, the application of
Brownian motion is no longer confined to pollen dispersal. Its present range of application extends
from diffusion processes to the modelling of stock prices. Exploring all the avenues that it has opened
up is beyond the scope of this book. We shall consider only the Langevin approach to Brownian
diffusion.

Suppose that the mass of the suspended particle is m. The particle is acted on by a rapid fluctuating

force K (t) caused by the bombardment of the particle by the fluid molecules. The mean value of

K (t) over a suitable time interval is zero. In addition, a resistive force F acts on the particle. The

equation of motion is

m ^ = K(t)-_F (10.14-1)

where y is the velocity.

It is usual to assume that the particle is spherical with radius a, and the resistive force F_ is given by

Stake's formula

I? = 67tr|ay (10.14-2)

where r\ is the viscosity of the fluid.

Substituting Equation (10.14-2) into Equation (10.14-1), we obtain

dv
m - = = K(t)-6rcr |av (10.14-3)

dt — ~~
Forming the scalar product of Equation (10.14-3) with T_ , the vector position of the particle, yields

dv
m r » — = r »K -67tr |ar • v (10.14-4)

~~ dt — — ~ ~
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The following results will be needed

f ( r « r ) = 2 r - / = 2 r - v (10.14-5a,b)
at ~ ~ ~ at ~~ ~

d2 dv
- ^ - ( 1 ' r ) = 2 r « - ^ + 2 v - v (10.14-5c)

Substituting Equations (10.14-5a to c) into Equation (10.14-4) yields

r 2 1
— A r ( r * r ) - 2 w = r »K -37UTia— ( r - r ) (10.14-6)
2 [dr ~ J "~ dt

The time average of r • K is zero since r and K are uncorrelated and the average value of K is

zero. From the equipartition theorem (Section 10.12), we deduce in the present case, where v has

three components, that the average < y • v > is

m<v«v> = 3kT (10.14-7)

Taking the average of all the terms in Equation (10.14-6) leads to

4 < r . r > + ^ l i A < r . r > =6M: (1014.8)

dt m dt m

The solution of Equation (10.14-8) is

< ! • ! > = ^ - ( « t - l ) + ^ - +C2e- ( x t (10.14-9)
ma a

where a = —, Cj andC2 are arbitrary constants to be determined from initial conditions.

In the limit as t —> °°, <£ • r > tends to

l i m < r . r > = 6kTi (10.14-10a)
t->oo ~ ~ m a

= - i ^ 1 (10.14-10b)

We note from Equation (10.14-10b) that <£•£> is proportional to the temperature T and time t

and inversely proportional to the radius a of the particle and the viscosity r|. Thus the larger the
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particle the smaller the contribution < r • r > , that is to say, the distance the particle travels is reduced.

That <£ • jr> is proportional to t has been observed experimentally and is also a result of the

diffusion process. We also note the absence of the density in Equation (10.14-10b).

A modern survey on the development of Brownian motion in mechanics is given by Russel (1983).
Lavenda (1985) has written an article popularizing the importance of Brownian motion.

PROBLEMS

la. In Example 10.2-1, it was shown that the trajectory of the system

q + co2q = 0

in the phase plane is a closed curve.

Sketch the trajectory of the system

•• 2

q - 0 ) q = 0

in the phase plane.

2b. For a conservative system, the total energy is constant. This is expressed as

l m ( q ) 2 + (Kq) = C

By differentiating with respect to time, show that the energy equation can be written as

mq = f(q)

Express f (q) in terms of <|> (q).

The points of equilibrium of the system are the points at which the acceleration is zero (q = 0).
What can you deduce about the potential <() at the points of equilibrium? If m = 1 and C = 1,
show that the equation of the trajectories is

p = ± V2 — 2<j>

What happens when <|> > 1 ?
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Sketch the function § and the trajectories for the following cases

(i) <|> = (q)2, (ii) <|> = 1 - i- (q)2, (iii) <|> = (q)3, (iv) <j) = I

3 a. A particle of unit mass moves under a force F given by

F = -&• r

where r_ is the vector position of the particle relative to an origin and K is a constant.

If the motion is two-dimensional and we choose a polar coordinate system (r, 9), show that the
Hamiltonian H is given by

H-I[W 2 + (£) 2 ] -£
Obtain the r and 0 components of the equation of motion.

4a. Show that the transformation

Q = q tan p , P = i n sin p

is a canonical transformation.

5a. Using the definition of the Poisson bracket given by Equation (10.4-5), verify Equations
(10.4-6e to g).

6b. Liouville's theorem is given, in Bird et al. (1987), by Equation (17.2.2) and is written as

at " f dx{ (x t }

where the xj are the generalized coordinates and momenta.

Show that in the case of a single particle, the equation given by Bird et al. (1987) is the same as
Equation (10.6-10b) with p = f.

Verify that a steady solution of Equation (10.6-10b) for a single harmonic oscillator is given by

P = Po-H"

where p0 and P are constants and H is the Hamiltonian.
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7a. Twelve identical balls are randomly distributed in a box. Calculate the probability of

(i) having three balls in the first quarter of the box;

(ii) having six balls in the first quarter of the box;

(iii) having all twelve balls in the first quarter of the box.

8a. A dilute suspension contains ten spheres per liter. A sample (one tenth of that solution) is
removed. What is the probability that there is (a) at least one sphere, (b) at most one sphere in
the sample.

You may assume that the particles are distributed according to a Poisson distribution.

9b. In Section 10.9, we have defined the mean value for a continuous distribution. The mean
value (x) of a random variable which assumes values xj, X2, ... with corresponding finite
probabilities f (xj), f (X2), ••• is given by

(x) = Xxif(xi)
i

Show that, for a Poisson distribution, the mean value (x) is A,.

10a. There are 3 x 103 spheres in a box. Calculate the number of different combinations for the

spheres in order to have 1100 spheres in the front third of the box.

Assuming that the distribution is normal, calculate the probability of having exactly 1100
spheres in the front third of the box.

Answer: 1O858 ; 8.8 x 10~6

lla. A polymer chain may be idealized by n + 1 beads, joined by n links, each of length a. r_ is

the end-to-end vector of the chain and we assume spherical symmetry. The probability density

of the chain distribution f (n, r) can be shown to be

/ , ? \-3/2 _ 3 r 2 \
f(n,r) = |7 ia2n exp -^-\

X2 ' 2a2n/

where r = I r I.

Calculate (r ), the mean value of r2. Answer: a2n
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12b. Assuming a Maxwell distribution, calculate the average values of (a) the x-component of the

velocity vx ; (b) the speed v (= V vx2 + v 2 + vz2); (c) the square of the velocity v2 of a

molecule in a gas at temperature T.

Why is (vx) not equal to -̂ (v) ? Answer: 0 ; v ^^X ; ^kT

13b. In Bird et al. (1977), the partition function Z for a macromolecular solid is given by

Z = / - e x p - £ 5 £ E ( r v - r ) - ( r v - r )
Jeq v, n ^JV1

where Jeq, Hv^ are constants, _rv and £„ are positions vectors of the junctions.

Combining Equations (10.11-11, 12), show that the Helmholtz free energy A is given by

A = - k T ^ n f - L ) + 1 £ H v ^ ( £ v - r ) - ( r v - r )
\Jeq/ z v,(i

V<(X

Under what condition(s) is the change in A equal to the work done?
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APPENDIX I

THE EQUATION OF CONTINUITY
IN SEVERAL COORDINATE SYSTEMS

RECTANGULAR COORDINATES

CYLINDRICAL COORDINATES

| . + I | : ( p r V r ) + I | _ ( p v 9 ) + | _ ( p V z ) = 0 (A.I-2)

SPHERICAL COORDINATES

^- + \ | - (pr2vr) + - ? - A- (pve sinG) + - J — | r (Pv^) = 0 (A.I-3)
dt rz dr rsin6 30 r sin9 d(|) v

(A.I-1)
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APPENDIX II

THE EQUATION OF MOTION
IN SEVERAL COORDINATE SYSTEMS

RECTANGULAR COORDINATES

In terms of velocity gradients for a Newtonian fluid with constant p (density)
and n (viscosity)

x-component

/3vY dvY 3vY 3v x \ dp 3 vY 3 vY 3 vY / A TT _
p h r 1 +v Y - v 1 + vv -=rJL+ v_ -TT^I + U *• + ^ + ^ + P g Y (A.II-1)

\dt x 5x y a y z a z / ax a x 2 a y 2 a z 2 x

y-component

9 9 9

/ av v a v v a v v 3v v a p 3 v v 3 v v ? vv
P \-=r- + vv -^r1- + vv - ^ + v_ -=-*- = — ^ - + 1 1 + + + pg,, (A.II-2)

\ a t x ax y dy Z 5 z a y \ a x 2 a y 2 a z 2 y

z-component

9 9 9
/3v_ dv7 3v7 3v_\ ap d v d y d \

p h r +vY ^r-^ + vv -^-z-+ v7 ^r-^ = — - +U + + + pgv (A.II-3)
l a t x ^ y a y z d z l dz a x 2 a y 2 a z 2 z
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CYLINDRICAL COORDINATES

In terms of velocity gradients for a Newtonian fluid with constant p and \i

r-component
3vr 9vr vfl 3v_ VQ 3vr

— L + v — L + — —t —2.+ v — L

at r dr r ae r z az j

aP a / i a \ 1 a2Vr 2 aVfi a2v

ar ar \r dr j r2 ae2 r2 39 3z2

9-component

KI at r 3r r 30 r z 3z I

i a vfl 2 avr a vo

+ - — f + T + ~ f +pge <A-n-5)
r2 a e 2 r2 ae az 2

z-component

(dvv dv7 vfl 3v7 3 v 7 \
n —— + v —— H—— —— + v —— I
p ( a t r ar r ae z azj

dp i a / 3v 1 i a2v a2v
= - ^ + H r — + - + +Pg7 (A.II-6)

3z [ r a r l dr) r 2 dQ2 a Z 2 j *

(A.II-4)
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SPHERICAL COORDINATES

In terms of velocity gradients for a Newtonian fluid with constant p and fi

r-component

9vr 9vr vA 9vr VA 9vr vo + v? 1
P\ dt r dr r 50 rsine d<|> r I

= JjL+ii v V ^ - T ^ — v e c o c e - ^ - ^ + pg, (A.n-7)
8r r2 r2 90 r2 r 2 s in0 d(f> /

9-component

( 2 \

^ e + v ^Ze . Xe?Ze , vd> 9 v e , V e v d) c o t e
3t r 9r r 99 rsine 9<|) r r

/
1 9p 1^2 2 9vr vfl 2cos9 9vA

r 99 \ r2 99 r 2 s in 2 9 r 2 s in 2 9 9^

(^-component

I dt r 9r r 90 r sin 9 9(j) r r I

1 9p I 2 VA 2 9v 2cos9 9vfl\ / A T T m

= - + WV v r f + - 1 + _ ^ + p g (A.II-9)
rsin9 9(() \ r2sin29 r2 sin9 d<\> r2sin29 dty)

V2s = i i r ^ + -J— ± Sin9 ^ + ! ^ (A.II-10)
r2 9r 9r r2sin0 99 90 r 2 s in 2 9 9<j>2

(A.II-8
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APPENDIX III

THE EQUATION OF ENERGY
IN TERMS OF THE TRANSPORT PROPERTIES

IN SEVERAL COORDINATE SYSTEMS

For Newtonian fluids of constant p (density) and k (thermal conductivity)

RECTANGULAR COORDINATES

- (dT dT oT dT\ . o2T d2T d2T
p C n 3— + vY r̂— + vv 3 - + v7^— = k + +

p l a t * 3 x y a y - d z j d x i 9 y 2 d z i j

n 1^VY\2 (^VV\ /d v 7 \ 2 (3vv 3vv /8vY 9v_\2 3vv 3v7
+ 2 ^ 1 ^ + 3 ^ + 3 ^ +\l —i +—i + U-i- +3-^ + -^i +3-^

L \ o x / \ o y / \ a z j J l\dy dx \ d z d x / dz ay

(A.III-1)

CYLINDRICAL COORDINATES
r

- 3T 3T v e 3T dT 1 3 f 3T 1 32T 92T
P at r d r r 80 Z 3z ^r 9 r \ dr r2 9 0 2 ^2

n i(d\\2 |~W3vfi \ f P V 7 \ 2 \ /fdVfl ! 3 v z f (dV7 d V r 2

l \ o r / [ r \ o 0 rIJ \ d z M H 3z r 36 J \dr dz

(A.III-2)
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SPHERICAL COORDINATES

- (dT 9T ve 9T VA 9T\ . [ 1 9 2 5 T \ 1 9 . . 9T
pCnU— +vr^— + — ^77 +—r^r ^rr = k —— r z — +— sm6

1 32T . /9v_ /l 9ve v / 1 3VA v vecot8

r2s in29 3(|)2 L\3r \r 90 r \rsin6 dty r r

r n 2 r ]2 r -|2\
9 /ve \ 1 9v_ 1 9v 9 /v<a sinG 9 / VA \ \ 9vfi

[ 9 r v r ; r 36 J [rsin6 d<\> 9r v r ;J [ r 9 6 \ s i n e i rsin9 3<|)J |

(A.III-3)
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APPENDIX IV

THE EQUATION OF CONTINUITY OF SPECIES A
IN SEVERAL COORDINATE SYSTEMS

For constant p (density) and J9^g (binary diffusivity)

RECTANGULAR COORDINATES

^ A + f V x ^ + v ^ A + ^A) = J S ) ^ + ^ £ A + ^ + R (A.IV-1)

CYLINDRICAL COORDINATES

dcA I dc/, 1 9cA 9cA\ 1 d 9cA\ 1 3 c A 3 cA

3t [ r a r e r 3 6 z dz J A B ^ ^ j f2 ^ ^ j A

(A.IV-2)

SPHERICAL COORDINATES

3cA / 3cA 1 dcA 1 9cA\

„ f i 3 | 23cA\ i a / . o a c A \ I a2cA]
r 2 a r l dr I r 2 s in9 30 \ 3 9 / r 2 s i n 2 6 3(|)2

(A.IV-3)
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