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Preface

This new edition of my algebra textbook has a number of changes.
The most significant is that the book now tries to live up to its title better

than it did in the previous edition: the introductory chapter has more than
doubled in length, including basic material on proofs, numbers, algebraic manip-
ulations, sets, functions, relations, matrices, and permutations. I hope that it is
now accessible to a first-year mathematics undergraduate, and suitable for use
in a first-year mathematics course. Indeed, much of this material comes from
a course (also with the title ‘Introduction to Algebra’) which I gave at Queen
Mary, University of London, in spring 2007.

I have also revised and corrected the rest of the book, while keeping the
structure intact. In particular, the pace of the first chapter is quite gentle; in
Chapters 2 and 3 it picks up a bit, and in the later chapters it is a bit faster
again. Once you are used to the way I write mathematics, you should be able
to take this in your stride. Since the book is intended to be used in a variety of
courses, there is a certain amount of repetition. For example, concepts or results
introduced in exercises may be dealt with later in the main text. New material
on the Axiom of Choice, p-groups, and local rings has been added, and there are
many new exercises.

I am grateful to many people who have helped me. First and foremost, Robin
Chapman, for spotting many misprints and making many suggestions; and Csaba
Szabó, who encouraged his students (named below) to proofread the book very
thoroughly! Also, Gary McGuire spotted a gap in the proof of the Fundamental
Theorem of Galois Theory, and R. A. Bailey suggested a different proof of Sylow’s
Theorem. The people who notified me of errors in the book, or who suggested
improvements (as well as the above) are Laura Alexander, Richard Anderson,
M. Q. Baig, Steve DiMauro, Karl Fedje, Emily Ford, Roderick Foreman, Will
Funk, Rippon Gupta, Matt Harvey, Jessica Hubbs, Young-Han Kim, Bill Mar-
tin, William H. Millerd, Ioannis Pantelidakis, Brandon Peden, Nayim Rashid,
Elizabeth Rothwell, Ben Rubin, and Amjad Tuffaha; my thanks to all of you,
and to anyone else whose name I have inadvertently omitted!

P.J.C.
London
April 2007

Preface to the first edition
The axiomatic method is characteristic of modern mathematics. By making our
assumptions explicit, we reduce the risk of making an error in our reasoning based



vi Preface

on false analogy; and our results have a clearly defined area of applicability which
is as wide as possible (any situation in which the axioms hold).

However, switching quickly from the concrete to the abstract makes a heavy
demand on students. The axiomatic style of mathematics is usually met first in a
course with a title such as ‘Abstract Algebra’, ‘Algebraic Structures’, or ‘Groups,
Rings and Fields’. Students who are used to factorising a particular integer or
finding the stationary points of a particular curve find it hard to verify that a
set whose elements are subsets of another set satisfies the axioms for a group,
and even harder to get a feel for what such a group really looks like.

For this reason, among others, I have chosen to treat rings before groups,
although they are logically more complicated. Everyone is familiar with the
set of integers, and can see that it satisfies the axioms for a ring. In the early
stages, when one depends on precedent, the integers form a fairly reliable guide.
Also, the abstract factorisation theorems of ring theory lead to proofs of impor-
tant and subtle properties of the integers, such as the Fundamental Theorem
of Arithmetic. Finally, the path to non-trivial applications is shorter from ring
theory than from group theory.

I have been teaching algebra for the whole of my professional career, and
this book reflects that experience. Most immediately, it grew out of the Abstract
Algebra course at Queen Mary and Westfield College. Chapters 2 and 3 are based
fairly directly on the course content, and provide an introduction to rings (and
fields) and to groups. The first chapter contains essential background material
that every student of mathematics should know, and which can certainly stand
repetition. (A great deal of algebra depends on the concept of an equivalence
relation.)

Chapter 4, on vector spaces, does not try to be a complete account, since
most students would have met vector spaces before they reach this point. The
purpose is twofold: to give an axiomatic approach; and to provide material in
a form which generalises to modules over Euclidean rings, from where two very
important applications (finitely generated abelian groups and canonical forms of
matrices) come.

Chapter 7 carries further the material of Chapters 2 and 3, and also intro-
duces some other types of algebra, chosen for their unifying features: universal
algebra, lattices, and categories. This follows a chapter in which the number sys-
tems are defined (so that our earlier trust that the integers form a ring can be
firmly founded), the distinction between algebraic and transcendental numbers
is established, and certain ruler-and-compass construction problems are shown
to be impossible. The final chapter treats two important applications, drawing
on much of what has gone before: coding theory and Galois Theory.

As mentioned earlier, Chapters 2 and 3 can form the basis of a first course on
algebra, followed by a course based on Chapters 5 and 7. Alternatively, Chapter 3
and Sections 7.1–7.8 could form a group theory course, and Chapters 2 and 5 and
Sections 7.9–7.14 a ring theory course. Sections 2.14–2.16, 6.6–6.8, 7.15–7.18, and
8.6–8.11 make up a Galois Theory course. Sections 6.1–6.5, and 6.9–6.10 could
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supplement a course on set theory, and Sections 2.14–2.16, 7.15–7.18, and 8.1–
8.5 could be used in conjunction with some material on information theory for
a coding theory course.

Some parts of the book (Sections 7.8, 7.13, and probably the last part of
Chapter 7) are really too sketchy to be used for teaching a course; they are
designed to tempt students into further exploration.

At the end, there is a list of books for further reading, and solutions to
selected exercises from the first three chapters.

Asterisks denote harder exercises.
There is a World Wide Web site associated with this book. It contains solu-

tions to the remaining exercises, further topics, problems, and links to other sites
of interest to algebraists. The address is

http://www.maths.qmul.ac.uk/˜pjc/algebra/

Thanks are due to many generations of students, whose questions and per-
plexities have helped me clarify my ideas and so resulted in a better book than
I might otherwise have written.

P.J.C.
London
December 1997

http://www.maths.qmul.ac.uk/~pjc/algebra/
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1 Introduction

The purpose of this chapter is to introduce you to some of the notation and ideas
that make up mathematics. Much of this may be familiar to you when you begin
the study of abstract algebra. But, if it is not, I have tried to provide a friendly
introduction. Your job is to practice unfamiliar skills until you are fluent. If you
do not feel confident, please read this chapter carefully.

Much more than most scholarly disciplines, mathematics is structured; each
subject assumes knowledge of its prerequisites and builds on them. But nobody
studies mathematics starting with the logical foundations and working upwards.
My view of the subject is more like a building which has basements and attics,
but where you enter at the ground floor, with the knowledge you already have;
then you can go upstairs to the applications or down to the foundations as you
please.

This chapter, after a brief discussion of the structure and symbolism of
mathematics, proceeds to give accounts of the topics which make up the com-
mon language of mathematicians: numbers, sets, functions, relations, formulae,
equations, matrices, and logic. Much of the material comes back later in more
serious and rigorous form. For example, in the first section, I will prove two
famous theorems from Greek mathematics, about the infinitude of the primes and
the irrationality of the square root of 2, even though numbers are not discussed
until the second section.

What is mathematics?
Mathematics is not best learned passively; you don’t sop it up like
a romance novel. You’ve got to go out to it, aggressive, and alert,
like a chess master pursuing checkmate.

Robert Kanigel (1991).

No one would doubt that a mathematics book is not like a novel. It is full
of formulae using strange symbols and Greek letters, and contains words like
‘theorem’, ‘proposition’, ‘lemma’, ‘corollary’, ‘proof’, and ‘conjecture’. Many of
these words are themselves Greek in origin.

This is the legacy of Pythagoras, who was probably the first mathematician in
anything like the modern sense (as opposed so somebody who used mathematics,
such as a surveyor or an accountant). We know little about Pythagoras, and
what we do know is unreliable, but it is clear that he cared very deeply about
the subject:
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the word ‘theory’ . . . was originally an Orphic word, which
Cornford interprets as ‘passionate sympathetic contemplation’ . . .
For Pythagoras, the ‘passionate sympathetic contemplation’ was
intellectual, and issued in mathematical knowledge . . . To those
who have reluctantly learnt a little mathematics in school this
may seem strange; but to those who have experienced the intox-
icating delight of sudden understanding that mathematics gives,
from time to time, to those who love it, the Pythagorean view will
seem completely natural . . .

Bertrand Russell (1961).

1.1 Notations. The most important thing about mathematics is that the
assertions we make have to have proofs; in other words, we must be able to
produce a logical argument which cannot be attacked or refuted. We will see
many proofs; the next section contains two classics from the ancient Greeks.

The words ‘Theorem’, ‘Proposition’, ‘Lemma’, and ‘Corollary’ all have
the same meaning: a statement which has been proved, and has thereby
become part of the body of mathematics. There are shades of difference: a
theorem is an important statement; a proposition is one which is less impor-
tant; a lemma has no importance of its own but is a stepping stone on the
way to a theorem; and a corollary is something which follows easily from a
theorem.

The word ‘Proof’ indicates that the argument establishing a theorem (or other
statement) will follow. The end of the argument is marked by the special symbol
�. If an exercise asks you to ‘prove’, ‘show’, or ‘demonstrate’ some statement,
you are being asked to construct a proof yourself.

A ‘Conjecture’ is a statement which is believed to be true but for which
we do not yet have a proof. Much of what mathematicians do is working to
establish a conjecture (or, since not all conjectures turn out to be true, to refute
one). Another important part of our work is to make conjectures based on our
experience and intuition, for others to prove or disprove. (The great twentieth-
century Hungarian mathematician Paul Erdős said, ‘The aim of life is to prove
and to conjecture.’)

Mathematicians have not always been consistent about applying these terms.
Sometimes it happens that a result which first appeared as a lemma came to be
regarded as more important than the theorem it was originally used to prove.
(See Gauss’ Lemma in Chapter 2 for an example. One result in Chapter 6, Zorn’s
Lemma, is really an axiom!) Also, one of the most famous conjectures (until
recently) was ‘Fermat’s Last Theorem’, which asserted that there cannot exist
natural numbers x, y, z, n with x, y, z > 0 and n > 2 such that xn + yn = zn.
Fermat asserted this theorem and claimed to have a proof, but no proof was
found among his papers and it is now believed that he was mistaken in thinking
he had one; but the name stuck. The conjecture was proved by Wiles in the
1990s, but we still call it ‘Fermat’s Last Theorem’ rather than ‘Wiles’ Theorem’.
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A ‘Definition’ is a precise way of saying what a word means in the math-
ematical context. Here is Humpty Dumpty’s view (in the words of Lewis
Carroll):

When I use a word, it means exactly what I want it to mean,
neither more nor less.

In mathematics, we use a lot of words with very precise meanings, often quite
different from their usual meanings. When we introduce a word which is to have
a special meaning, we have to say precisely what that meaning is to be. Usually,
the word being defined is written in italics. For example, you may meet the
definition:

An m × n matrix is an array of numbers set out in m rows and
n columns.

From that point, whenever you come upon the word ‘matrix’, it has this
meaning, and has no relation to the meanings of the word in geology, in medicine,
and in science fiction.

Most of the specialised notation in mathematics will be introduced as we go
along. Because we use so many symbols in our arguments, one alphabet is not
enough, and letters from the Greek alphabet are often called on. Table 1.1 shows
the Greek alphabet.

Other alphabets including Hebrew and Chinese have been used on occasion
too.

Another specialised alphabet is ‘blackboard bold’:

ABCDEFGHIJKLMNOPQRSTUVWXYZ.

This alphabet originated because, in print, mathematicians can use bold type
for special purposes, but bold type is difficult to reproduce on the blackboard
with a piece of chalk. These letters are typically used for number systems:

• N for the natural numbers 1, 2, 3, . . .
• Z for the integers . . . ,−2,−1, 0, 1, 2, . . .
• Q for the rational numbers or fractions such as 3/2
• R for the real numbers, including

√
2 and π

• C for the complex numbers, including i (the square root of −1).

Most of these letters are self-explanatory, but why Z and Q? The German word
for numbers is Zahlen, which gives us the Z. The rational numbers cannot be R,
so remember Q for quotients.

1.2 Proofs. The real answer to our earlier question ‘What is mathemat-
ics?’ is: Mathematics is about proofs. A proof is nothing but an argument to
convince you of the truth of some assertion. Mathematical statements require
proofs, which should be completely convincing, though you might have to work
to understand the details. If, after a lot of effort, you are not convinced by an
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Table 1.1 The Greek alphabet

Name Capital Lowercase

alpha A α
beta B β
gamma Γ γ
delta ∆ δ
epsilon E ε
zeta Z ζ
eta H η
theta Θ θ
iota I ι
kappa K κ
lambda Λ λ
mu M µ
nu N ν
xi Ξ ξ
omicron O o
pi Π π
rho P ρ
sigma Σ σ
tau T τ
upsilon Υ υ
phi Φ φ
chi X χ
psi Ψ ψ
omega Ω ω

argument, then either the author has not made it clear, or the argument is not
correct.

The proofs should ultimately be founded on logic; but we will not be too
precise now about what constitutes a logically valid argument.

Here are two fine examples of proofs, from the time of ancient Greek
mathematics. In each case, the statement is not at all obvious, but the proof
persuades you that it must be true. In each case, the strategy is what we call
‘proof by contradiction’: that is, we show that assuming the opposite of what we
are trying to prove leads to an absurdity or contradiction. Also, in each case, the
proof has an ingenious twist.

The first theorem, probably due to Euclid, states that the series of prime
numbers goes on for ever; there is no largest prime number. (A prime number
is a natural number p greater than 1 which is not divisible by any natural numbers
except for itself and 1. Notice that this definition says that the number 1 is not
a prime number, even though it has no divisors except itself and 1. This makes
sense; we will see the reason later.)
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Theorem 1.1 There are infinitely many prime numbers.

Proof Our strategy is to show that the statement must be true because, if we
assume that it is false, then we are led to an impossibility.

So we suppose that there are only finitely many primes. Let there be n primes,
and let them be p1, p2, . . . , pn. Now consider the numberN = p1p2 · · · pn+1. That
is, N is obtained by multiplying together all the prime numbers and adding 1.

Now N must have a prime factor (this is a property of natural numbers which
we will examine further later on). This prime factor must be one of p1, . . . , pn
(since by assumption, these are all the prime numbers). But this is impossible,
since N leaves a remainder of 1 when it is divided by any of p1, . . . , pn.

Thus our assumption that there are only finitely many primes leads to a
contradiction, so this assumption must be false; there must be infinitely many
primes.

The second theorem was proved by Pythagoras (or possibly one of his stu-
dents). This theorem is surrounded by legend: supposedly Hipparchos, a disciple
of Pythagoras, was killed (in a shipwreck) by the gods for revealing the disturbing
truth that there are ‘irrational’ numbers.

Theorem 1.2
√
2 is irrational; that is, there is no number x = p/q (where p

and q are whole numbers) such that x2 = 2.

Proof Again the proof is by contradiction. Thus, we assume that there is a
rational number p/q such that (p/q)2 = 2, where p and q are integers. We can
suppose that the fraction p/q is in its lowest terms; that is, p and q have no
common factor.

Now p2 = 2q2. Thus, the number p2 is even, from which it follows that p
must be even. (The square of any odd number is odd: for any odd number has
the form 2m + 1, and its square is (2m + 1)2 = 4m(m + 1) + 1, which is odd.)
Let us write p = 2r. Now our equation becomes 4r2 = 2q2, or 2r2 = q2. Thus,
just as before, q2 is even, and so q is even.

But if p and q are both even, then they have the common factor 2, which
contradicts our assumption that the fraction p/q is in its lowest terms.

Now we look at a few proof techniques, and introduce some new terms.

Proof by contradiction We have just seen two examples of this. In order to
prove a statement P, we assume that P is false, and derive a contradiction from
this assumption.

Proof by contrapositive The contrapositive of the statement ‘if P, then
Q’ is the statement ‘if not Q, then not P’. This is logically equivalent to the
original statement; so we can prove this instead if it is more convenient.

Converse Do not confuse the contrapositive of a statement with its converse.
The converse of ‘if P, then Q’ is ‘if Q, then P’. This is not logically equivalent to
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the original statement. For example, it can be shown that the statement ‘if 2n−1
is prime, then n is prime’ is true; but its converse, ‘if n is prime, then 2n − 1 is
prime’ is false: the number n = 11 is prime, but 211 − 1 = 2047 = 23× 89.

This example by Lewis Carroll might help you remember the difference
between a statement and its converse.

‘Come, we shall have some fun now!’ thought Alice. ‘I’m glad
they’ve begun asking riddles.–I believe I can guess that,’ she added
aloud.
‘Do you mean that you think you can find out the answer to it?’
said the March Hare.
‘Exactly so,’ said Alice.
‘Then you should say what you mean,’ the March Hare went on.
‘I do,’ Alice hastily replied; ‘at least–at least I mean what I say–
that’s the same thing, you know.’
‘Not the same thing a bit!’ said the Hatter. ‘You might just as
well say that “I see what I eat” is the same thing as “I eat what
I see”!’ ‘You might just as well say,’ added the March Hare, ‘that
“I like what I get” is the same thing as “I get what I like”!’
‘You might just as well say,’ added the Dormouse, who seemed to
be talking in his sleep, ‘that “I breathe when I sleep” is the same
thing as “I sleep when I breathe”!’
‘It is the same thing with you,’ said the Hatter, and here the con-
versation dropped, and the party sat silent for a minute, while
Alice thought over all she could remember about ravens and
writing-desks, which wasn’t much.

Counterexample Given a general statement P, to show that P is true it is
necessary to give a general proof; but to show that P is false, we have to give one
specific instance in which it fails. Such an instance is called a counterexample.
In the preceding paragraph, the number n = 11 is a counterexample to the
general statement ‘if n is prime, then 2n − 1 is prime’.

Sufficient condition, ‘if ’ We say that P is a sufficient condition for Q
if the truth of P implies the truth of Q; that is, P implies Q. Another way of
saying the same thing is ‘if P, then Q’, or ‘Q if P’. In symbols, we write P ⇒ Q.

Necessary condition, ‘only if ’ We say that P is a necessary condition
for Q if the truth of P is implied by the truth of Q, that is, Q implies P. (This
is the converse of the statement that P implies Q.) We also say ‘Q only if P’.

Necessary and sufficient condition, ‘if and only if ’ We say that P is
a necessary and sufficient condition for Q if both of the above hold, that
is, each of P and Q implies the other. We also say ‘P if and only if Q’. Note
that there are two things to prove: that P implies Q, and that Q implies P. In
symbols, we write P ⇔ Q.
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Proof by induction This is a very important technique for proving things
about natural numbers. We discuss it later in this chapter.

1.3 Axioms. In the proofs in the last section, we used various properties of
numbers: every integer greater than 1 has a prime factor; any number is either
odd or even; and any fraction can be put into its lowest terms by cancelling
common factors. Later on in the book we will examine these assumptions.

The process of examining our hidden assumptions is very important in math-
ematics. Each assumption should be proved, but the proof will probably involve
more basic assumptions. There is a sense in which everything can be built from
nothing using only the processes of logic. Usually this is much too long-winded;
so instead we start by making our basic assumptions explicit.

It used to be thought that the basic assumptions of mathematics were true
statements about the real world. Euclid’s geometry was the model for many
centuries. Euclid begins with axioms, which he regarded as ‘self-evident truths’,
and deduced a huge body of theorems from them. But one of his axioms, the
‘axiom of parallels’, is far from self-evident. Mathematicians tried hard to prove
it, but eventually were forced to admit that it was possible to construct a kind of
geometry in which this axiom is false. (This is now referred to as non-Euclidean
geometry.)

Now we regard the axioms as starting points which we choose, depending on
the branch of mathematics we are studying. The theorems we prove will be true
in any system (including any real-world system) which happens to satisfy the
axioms.

One of the advantages of this approach is that, instead of proving theorems
about, say, the integers, we can prove theorems about ‘principal ideal domains’;
as long as the integers satisfy the axioms for principal ideal domains, our theo-
rems will be true in the integers. This is how we shall justify the assumptions of
the last section about primes and common factors.

It is very important, however, not to bring in any hidden assumptions. For
example, if we are doing geometry, the axioms will probably refer to points and
lines; we must only use properties of points and lines specified in the axioms,
rather than our commonsense view of how points and lines behave.

The German mathematician David Hilbert put it like this:

One must be able at any time to replace ‘points, lines, and planes’
with ‘tables, chairs, and beer mugs’.

Here is a small example. Suppose that we are doing geometry with just the
following three of Euclid’s axioms:

(1) Any two points lie on a unique line.
(2) If the point P does not lie on the line L, then there is exactly one line L′

passing through P and parallel to L.
(3) There exist three non-collinear points.
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We understand that ‘collinear’ means ‘lying on a common line’, and that two lines
are ‘parallel’ if no point lies on both. Notice that if two lines are not parallel then
they have exactly one common point (for more than one common point would
violate Axiom (1)).

According to Hilbert’s dictum, it would be equally valid to begin

(1) Any two tables lie on a unique chair.
(2) . . .

From these axioms, we can prove the following theorem:

Theorem 1.3 Two lines parallel to the same line are parallel to one another.

Proof Let L′ and L′′ be two lines both parallel to L. Arguing by contradic-
tion, suppose that L′ and L′′ are not parallel. Then they have a point P in
common. But now there are two lines L′ and L′′ containing P and parallel to L,
contradicting Axiom (3).

This is ‘obviously’ true in the ordinary Euclidean plane, but we have proved
it in any geometry satisfying the axioms. Here is a less obvious example:
Points: A,B,C,D,E, F,G,H, I
Lines: ABC,DEF,GHI,ADG,BEH,CFI,AEI,BFG,CDH,AFH,

BDI,CEG.
It is some labour to verify the axioms, but once this is done then the conclusion of
the theoremmust hold. Indeed, the linesDEF andGHI are both parallel toABC,
and they are parallel to one another. Here we seem to be a longway from traditional
geometry, and it does not seem so stupid to say that A,B,C, . . . are tables and
ABC,DEF, . . . are chairs, and that any two tables lie on a unique chair!

An even simpler example is the following:
Points: A,B,C,D
Lines: AB,CD,AC,BD,AD,BC.
In this case, there is only one line parallel to a given one, so the theorem holds
‘vacuously’: we cannot choose two lines L′ and L′′ parallel to L. This is a bit
puzzling at first: what is going on here?

A statement of the form ‘If P, then Q’ is true, according to the rules of logic,
if P is false. We discuss this further on page 60. If P can never be true, we
sometimes say that the statement is ‘vacuously’ true.

Non-Euclidean geometry was discovered in the nineteenth century. By the
early twentieth century, the ‘axiomatic method’ had become the paradigm for
mathematics.

Exercise 1.1 Prove from Axioms (1)–(3) the following assertions:

(a) Any line passes through at least two points.
(b) Any two lines pass through the same number of points.
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Exercise 1.2 Give an example of a system of points and lines satisfying Axioms (1)
and (3) but not (2) (a ‘non-Euclidean geometry’).

Exercise 1.3 Let n be a natural number. Show that n2 is even if and only if n is
even. (We say that n is even if n = 2m for some natural number m, and is odd if
n = 2m + 1 for some natural number n. The exercise asks you to show two things: if
n is even then n2 is even; and if n2 is even, then n is even. In this question you are
permitted to use the fact that every natural number is either even or odd: the proof
of this obvious-looking assertion is the subject of Exercise 1.12 later on.)

Exercise 1.4 Let the prime numbers, in order of magnitude, be p1, p2, . . .. Prove that
pn+1 ≤ p1p2 · · · pn + 1.

Exercise 1.5 (a) Prove that, for any prime number p,
√
p is irrational.

(b) Prove that the cube root of 2 is irrational.

Exercise 1.6 Fill in the details in the following argument.

Proposition 1.4 If n is a positive integer which is not a perfect square, then√
n is irrational.

Proof Suppose that
√
n = a/b, where a/b is a fraction in its lowest terms.

Then a/b = nb/a, so the fractional parts of these two numbers are equal, say
d/b = c/a, where 0 < c < a and 0 < d < b. Then a/b = c/d, contradicting the
assumption that a/b is in its lowest terms.

(This argument is taken from The Book of Numbers, by J. H. Conway and
R. K. Guy.)

Exercise 1.7 Can you prove that, if 2n − 1 is prime, then n is prime? (We will see the
proof later in this chapter.)

Exercise 1.8 (a) Write down the converse of the statement

If n is an even integer greater than 2, then n is the sum of two prime numbers.
(b) Is the converse true or false? Why?

Remark The statement given in (a) is a famous conjecture due to Goldbach.
It is believed to be true, but this is not yet known.

Exercise 1.9 Is the following argument valid? If not, why not?
We are going to prove that a triangle whose sides have lengths 3, 4, and 5 is right-angled.

By Pythagoras’ Theorem, if a triangle with sides a, b, c is right-angled, with
hypotenuse c, then a2 + b2 = c2.

Now 32 + 42 = 9 + 16 = 25 = 52.
So the triangle is right-angled.
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Numbers
Algebraic formulae often have symbols in them: x, a, and so on. In elementary
algebra we think of these as numbers. But the domain we consider has an effect
on whether the equations have solutions or not.

1.4 The number systems. We consider briefly the different kinds of num-
ber systems used in elementary algebra. You should be familiar with most of
these. In Chapter 6, we will go into more detail on exactly how the different
kinds of number are constructed.

The natural numbers The natural numbers are the ones we use to count:
1, 2, 3, and so on. They are sometimes called counting numbers. Actually, there
is no agreement among mathematicians about whether 0 should be included
as a natural number or not. Historically, the positive numbers arose (for use
in counting) before the dawn of history, whereas zero is a much more recent
and problematic invention. It is also more difficult for children to grasp. Brian
Butterworth, an expert on the development of number sense in childhood, says,
in his book The Mathematical Brain:

Although the idea that we have no bananas is unlikely to be a
new one, or one that is hard to grasp, the idea that no bananas,
no sheep, no children, no prospects are really all the same, in that
they have the same numerosity, is a very abstract one.

Logically, however, it makes sense to count zero as the smallest natural number,
as we will see.

Fortunately, it does not very much matter what view we take about this.
The set of natural numbers is denoted by N.
The important property of natural numbers to an algebraist is that they can

be added and multiplied. If one heap contains m beans and another has n beans,
then together the two heaps contain m+ n beans. Moreover, if we arrange some
beans in a rectangular array with m rows and n columns, then mn beans are
required.

These operations satisfy some simple laws, sometimes called the laws of
arithmetic:

• m+ n = n+m and mn = nm (the commutative laws);
• m+ (n+ p) = (m+ n) + p and m(np) = (mn)p (the associative laws);
• (m+ n)p = mp+ np (the distributive law).

In addition, adding zero, or multiplying by one, leaves any natural number
unchanged.

The bean-counting interpretation allows us to picture these laws; some people
find that the pictures provide convincing explanations. For example, Figure 1.1
shows the distributive law.

The reverse operations are not always possible. Subtraction, defined by
requiring that m − n is a number x such that n + x = m, is only possible if
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Fig. 1.1 (5 + 3) · 4 = 5 · 4 + 3 · 4

m is at least as large as n (in symbols, m ≥ n). Division, defined by requiring
that m/n is a number y such that ny = m, is only possible if m is a multiple of n
(in symbols, n | m). Warning : Be sure to distinguish betweem m/n (a number),
and n | m (a statement, which is either true or false). If n does not divide m, we
write n |/m.

We already saw Euclid’s proof that there are infinitely many prime numbers.
Of course there are infinitely many composite numbers too: for example, every
even number greater than 2 is composite. (A number n > 1 is composite if it
is not prime.)

The natural numbers have a very important property, sometimes called the
induction property.

Theorem 1.5 Let S be any set of natural numbers. Suppose that

(a) 0 belongs to S;
(b) for any natural number n, if n belongs to S, then n+ 1 belongs to S.

Then S = N, that is, S is the set of all natural numbers.

This theorem is true because the natural numbers are the ‘counting numbers’;
that is, given any natural number n, it is possible (at least in principle) to start
at zero and count up to n: ‘zero, one, two, three, . . . , n’. Now the first number
in the chain is in S; and as soon as we know that a number is in S then the next
number is in S too. After n steps we find that n is in S.

Sometimes this is called the ‘domino property’. Imagine we have an infinite
number of dominoes standing in a line, labelled 0, 1, 2, . . .. The dominoes are
arranged in such a way that, if number n falls, it will knock over number n+ 1.
Then, if we knock over domino number 0, we can be sure that all the dominoes
will fall. This is exactly what the induction property says, with S as the set of
labels of dominoes that fall over. See Figure 1.2.

Even ifm is not a multiple of n, all is not lost. At school we learn the division
algorithm:

Theorem 1.6 (Division algorithm for natural numbers) Let m and n be
any natural numbers with n > 0. Then there exist natural numbers q and r such
that

(a) m = nq + r;
(b) r < n.
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Fig. 1.2 Which dominoes will fall?

Moreover, q and r are unique; that is, if also m = nq′ + r′, where r′ < n, then
q = q′ and r = r′.

The numbers q and r are called the quotient and remainder when m is
divided by n. (The numbers m and n are sometimes called the dividend and
the divisor.)

Proof First we show the uniqueness. Suppose that m = nq+ r = nq′ + r′ with
r < n and r′ < n. If r = r′, then nq = nq′, so q = q′. Suppose that r �= r′. Then
one of them is larger; say r > r′. Then

r − r′ = n(q′ − q),

so the same natural number is both less than n and a multiple of n, which is not
possible.

Now we show the existence. Consider the multiples of n: n, 2n, 3n,. . .. Even-
tually we reach one which is greater than m (for certainly (m + 1)n > m). Let
q be the last integer x for which xn ≤ m; that is, nq ≤ m but n(q + 1) > m. (It
may be that q = 0.) Put r = m−nq. Then r ≥ 0 but r < n; and m = nq+r.

The integers As we have seen, subtraction is not always possible for natural
numbers. To get round this, we enlarge the number system to include negative
numbers as well as positive numbers and zero, giving the set

Z = {. . . ,−2,−1, 0, 1, 2, 3, . . .}
of integers. Thus, we can add, subtract, and multiply integers. The laws we saw
for natural numbers extend to the integers.

We enlarge the number system because we are trying to solve equations
which cannot be solved in the original system. At every stage in the process,
people first thought that the new numbers were just aids to calculating, and
not ‘proper’ numbers. The names given to them reflect this: negative numbers,
improper fractions, irrational numbers, imaginary numbers! Only later were they
fully accepted. You may like to read the book Imagining Numbers by Barry
Mazur, about the long process of accepting imaginary numbers.

The natural numbers 1, 2, . . . are positive, while −1,−2, . . . are negative.
Integers satisfy the law of signs: the product of a positive and a negative number
is negative, while the product of two negative numbers is positive.
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The rational numbers Similarly, division is not always possible for integers.
To get round this, we enlarge the number system to the set Q of rational
numbers, of the form m/n where n �= 0. By cancellation, we may assume that
n > 0 and that the fraction is in its ‘lowest terms’, that is, m and n have no
common factor. For example, 20/(−12) is the same as −5/3.

We can write rules for adding and multiplying rational numbers:

a

b
+
c

d
=
ad+ bc

bd
,

a

b
− c

d
=
ad− bc

bd
,

a

b
× c

d
=
ac

bd
,

a

b

/
c

d
=
ad

bc
if c �= 0.

The last rule says: to divide by a fraction, turn it upside down and multiply.
Thus, we can add, subtract, multiply, and divide rationals (except for division

by zero). The usual laws extend to the rational numbers.

The real numbers There are still many equations we cannot solve with ratio-
nal numbers. One such equation is x2 = 2. (We saw Pythagoras’ proof of this
in Theorem 1.2.) Other equations involve functions from trigonometry (such as
sinx = 1, which has the irrational solution x = π/2) and calculus (such as
log x = 1, which has the irrational solution x = e).

So, we take a larger number system in which these equations can be solved,
the real numbers. A real number is a number that can be represented as an
infinite decimal. This includes all the rational numbers and many more, including
the solutions of the three equations above; for example,

2
5 = 0.4
1
7 = 0.142857142857 . . . ,

√
2 = 1.41421356237 . . . ,
π
2 = 1.57079632679 . . . ,

e = 2.71828182846 . . .

In the last three cases, we cannot write out the number exactly as a decimal,
but the approximation gets better as the number of digits increases.

The arithmetic operations (excluding division by zero) extend from Q to R,
and the laws of arithmetic continue to hold.

The completeness of R (the fact that there are no gaps) is shown by various
results from analysis such as the Intermediate Value Theorem: a continuous
function cannot go from negative to positive values without passing through zero.

The complex numbers Although there are no gaps in the real numbers, there
are still some equations which cannot be solved. For example, the square of any
real number is positive, so there is no real number x satisfying the equation

x2 = −1.
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We enlarge the real numbers to the set C of complex numbers by adjoining a
special number i satisfying this equation. Thus, complex numbers are expressions
of the form x + yi, where x and y are real numbers. The rules for addition and
multiplication are exactly what you would expect, except that i2 is replaced by
−1 whenever it appears. Thus,

(x1 + y1i) + (x2 + y2i) = (x1 + x2) + (y1 + y2)i,

(x1 + y1i)(x2 + y2i) = (x1x2 − y1y2) + (x1y2 + x2y1)i.

The number i is sometimes called ‘imaginary’, since at first it seemed to
mathematicians to be less ‘real’ than the real numbers. The term ‘complex’,
on the other hand, is not meant to suggest that the complex numbers are more
difficult to understand than the real numbers, but only that each complex number
x+ yi is made up of a kind of ‘compound’ of two real numbers x and y; we call
x and y the real and imaginary parts of x+ yi. The complex number x− yi is
called the complex conjugate of z, and is written z.

All the arithmetic operations (except, as usual, division by zero) are possible,
and the laws of arithmetic hold. Here, unlike for the other forms of numbers,
we do not have to take on trust that the laws hold; we can prove them for
complex numbers (assuming their truth for real numbers). Here, for example, is
the distributive law. Let z1 = x1 + y1i, z2 = x2 + y2i, and z3 = x3 + y3i. Now

z1(z2 + z3) = (x1 + y1i)((x2 + x3) + (y2 + y3)i)

= (x1(x2 + x3)− y1(y2 + y3)) + (x1(y2 + y3) + y1(x2 + x3))i,

and

z1z2 + z1z3 = ((x1x2 − y1y2) + (x1y2 + x2y1)i)

+ ((x1x3 − y1y3) + (x1y3 + x3y1)i)

= (x1x2 − y1y2 + x1x3 − y1y3) + (x1y2 + x2y1 + x1y3 + x3y1)i,

and a little bit of rearranging shows that the two expressions are the same.

Example

2− 3i
4 + i

=
(2− 3i)(4− i)

42 + 12

=
5− 14i
17

,

which can be verified by multiplying the result by 4 + i.

Moreover, quadratic, cubic, and higher-degree equations can always be solved
in the complex numbers. (This is the Fundamental Theorem of Algebra,
proved by Gauss.)

No further enlargements of the number system are possible without sacrificing
some properties.
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The rules for addition and subtraction can be put like this

To add or subtract complex numbers, we add or subtract their
real parts and their imaginary parts.

The rule for multiplication looks more complicated as we have written it out.
There is another representation of complex numbers which makes it look simpler.
Let z = x+ yi, and suppose that z �= 0. We define the modulus and argument
of z by

|z| =
√
x2 + y2,

arg(z) = θ where cos θ = x/|z| and sin θ = y/|z|.

In other words, if |z| = r and arg(z) = θ, then

z = r(cos θ + i sin θ).

For example, let z = 1 + i. Then the modulus of z is

|z| =
√

12 + 12 =
√
2,

and the argument θ satisfies cos θ = 1/
√
2 and sin θ = 1/

√
2, so that θ = π/4.

Now the rules for multiplication and division are

To multiply two complex numbers, multiply their moduli and add
their arguments. To divide two complex numbers, divide their
moduli and subtract their arguments.

The complex plane, or Argand diagram The complex numbers can be
represented geometrically, by points in the Euclidean plane (which is usually
referred to as the Argand diagram or the complex plane for this purpose).
The complex number z = x + yi is represented as the point with coordinates
(x, y). Then |z| is the length of the line from the origin to the point z, and arg(z)
is the angle between this line and the x-axis. See Figure 1.3.

In terms of the complex plane, we can give a geometric description of addition
and multiplication of complex numbers. The addition rule is the parallelogram
rule (see Figure 1.4).

Multiplication is a little bit more complicated. Let z be a complex number
with modulus r and argument θ, so that z = r(cos θ + i sin θ). Then the way to
multiply an arbitrary complex number by z is a combination of a stretch and
a rotation: first we expand the plane so that the distance of each point from
the origin is multiplied by r; then we rotate the plane through an angle θ. See
Figure 1.5, where we are multiplying by 1 + i =

√
2(cos(π/4) + i sin(π/4)); the

dots represent the stretching out by a factor of
√
2, and the circular arc represents

the rotation by π/4.
Now let us check the correctness of our rule for multiplying complex numbers.

Remember that the rule is: to multiply two complex numbers, we multiply the
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z= a+ bi

a= r cos θ

b = r sin θ

θ

0

z = r

Fig. 1.3 The Argand diagram

0

z1

z2

z1+ z2

Fig. 1.4 Addition of complex numbers

moduli and add the arguments. To see that this is correct, suppose that z1 and
z2 are two complex numbers; let their moduli be r1 and r2, and their arguments
θ1 + θ2. Then

z1 = r1(cos θ1 + i sin θ1),

z2 = r2(cos θ2 + i sin θ2).

Then

z1z2 = r1r2(cos θ1 + i sin θ1)(cos θ2 + i sin θ2)
= r1r2((cos θ1 cos θ2 − sin θ1 sin θ2) + (cos θ1 sin θ2 + sin θ1 cos θ2)i)
= r1r2(cos(θ1 + θ2) + i sin(θ1 + θ2)),

which is what we wanted to show.
From this we can prove De Moivre’s Theorem.
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. . .
. . .

. .
.

0

3 + 2i

(3 + 2i)(1 + i)
= 1 + 5i

Fig. 1.5 Multiplication of complex numbers

Theorem 1.7 For any natural number n, we have

(cos θ + i sin θ)n = cosnθ + i sinnθ.

Proof The proof is by induction. Starting the induction is easy since (cos θ +
i sin θ)0 = 1 and cos 0 + i sin 0 = 1.

For the inductive step, suppose that the result is true for n, that is,

(cos θ + i sin θ)n = cosnθ + i sinnθ.

Then

(cos θ + i sin θ)n+1 = (cos θ + i sin θ)n · (cos θ + i sin θ)

= (cosnθ + i sinnθ)(cos θ + i sin θ)

= cos(n+ 1)θ + i sin(n+ 1)θ,

which is the result for n+ 1. So the proof by induction is complete.
Note that, in the second line of the chain of equations, we have used the

inductive hypothesis, and in the third line, we have used the rule for multiplying
complex numbers.

The argument is clear if we express it geometrically. To multiply by the
complex number (cos θ + i sin θ)n, we rotate n times through an angle θ, which
is the same as rotating through an angle nθ.
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De Moivre’s Theorem is useful in deriving trigonometrical formulae. For
example,

cos 3θ + i sin 3θ = (cos θ + i sin θ)3

= (cos3 θ − 3 cos θ sin2 θ) + (3 cos2 θ sin θ − sin3 θ)i,

so

cos 3θ = cos3 θ − 3 cos θ sin2 θ,

sin 3θ = 3 cos2 θ sin θ − sin3 θ.

These can be converted into the more familiar forms cos 3θ = 4 cos3 θ − 3 cos θ
and sin 3θ = 3 sin θ − 4 sin3 θ by using the equation cos2 θ + sin2 θ = 1.

In Analysis, the definition of the exponential function is extended from the
real numbers to the complex numbers so that

eiθ = cos θ + i sin θ.

If we do this, then the modulus-argument form of a complex number is z = reiθ,
and we have

eiθ1 · eiθ2 = ei(θ1+θ2).

De Moivre’s Theorem becomes

(eiθ)n = einθ.

1.5 Induction. The induction property of the natural numbers—which says
that if you start at the beginning and step through them one at a time, then you
eventually reach any number—is an important proof technique.

We summarise the Principle of Induction formally in a theorem as follows.
(In the domino example of Figure 1.2, P(n) is the proposition ‘Domino number n
will fall’.)

Theorem 1.8 (Principle of Induction) Let P(n) be a statement about the
natural number n. Suppose that

(a) P(0) is true;
(b) For any natural number n, if P(n) is true, then P(n+ 1) is true.

Then P(n) is true for every natural number n.

Proof Let S be the set of all those natural numbers n for which P(n) is true.
Then the hypotheses of the theorem tell us that 0 ∈ S, and that, if n ∈ S, then
n + 1 ∈ S. So the induction property shows us that S is the set of all natural
numbers.
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There are several variations on this principle. Perhaps, in place of knowing
P(0), we know P(1). Then we can conclude that P(n) holds for all n ≥ 1. A
similar statement would hold with 100, or any fixed number, replacing 1.

It is important to note that, in a proof by induction, we have two jobs: to
prove P(0) (called starting the induction) and to prove that the implication
from P(n) to P(n + 1) holds (called the inductive step). However, there is
another version, called the Principle of Strong Induction, which appears to
get by without starting the induction.

Theorem 1.9 (Principle of Strong Induction) Let P(n) be a statement
about the natural number n. Suppose that, for any natural number n, if P(m)
is true for all m < n, then P(n) is true. Then P(n) is true for every natural
number n.

Proof This time let S be the set of natural numbers n having the property
that P(m) holds for all m < n. Now:
(a) 0 ∈ S; for there are no natural numbers m < 0, so P(m) vacuously holds

for all of them!
(b) If n ∈ S, then P(m) holds for all m < n. By hypothesis, P(n) holds. Now

any number m < n+1 either satisfies m < n or m = n, and P(m) holds in
either case. So n+ 1 ∈ S.

By the Induction Property, S contains all natural numbers; so, given n, we have
n+ 1 ∈ S, so P(n) is true.

It is time to have an example of the use of this principle. Suppose that you
are asked to find the sum of the first n squares, that is, find

12 + 22 + · · ·+ n2.

It is a daunting task without help. But suppose you are told, or guess, that the
answer is n(n+ 1)(2n+ 1)/6. Then you can prove your guess by induction. Let
P(n) be the statement

12 + 22 + · · ·+ n2 = n(n+ 1)(2n+ 1)/6.

Now P(1) is true: for, when n = 1, the left-hand side is 12 = 1, and the right-hand
side is 1 · 2 · 3/6 = 1.

Suppose that P(n) is true; that is,

12 + 22 + · · ·+ n2 = n(n+ 1)(2n+ 1)/6.

Then

12 + 22 + · · ·+ n2 + (n+ 1)2 = n(n+ 1)(2n+ 1)/6 + (n+ 1)2

= (n+ 1)(2n2 + n+ 6n+ 6)/6

= (n+ 1)(n+ 2)(2n+ 3)/6.
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But the right-hand side is what we get from our expression n(n+ 1)(2n+ 1)/6
by substituting n+ 1 for n. So we have verified P(n+ 1).

By the Principle of Induction, we have proved P(n) for all n ≥ 1.
Study this proof carefully. It seems at first that we are assuming what we

are asked to prove. If we were, the argument would not be valid. You should
convince yourself that this is not the case.

Here is another example. Consider the sequence

√
2,

√
2 +

√
2,

√
2 +

√
2 +

√
2, . . . .

We want to show that the terms of this sequence increase, but are never greater
than 2.

Let xn be the nth term of the sequence. The relationship between consecutive
terms is

xn+1 =
√
2 + xn.

We prove by induction that xn < xn+1 and xn < 2 for all n.
Both of these statements are true for n = 0. (Why is

√
2 <

√
2 +

√
2?)

Suppose that xn < xn+1. Then

xn+1 =
√
2 + xn <

√
2 + xn+1 = xn+2,

since
√
2 + x is a strictly increasing function of x for positive x. (This means

that, if x < y, then
√
2 + x <

√
2 + y.)

Now suppose that xn < 2. Then

xn+1 =
√
2 + xn <

√
2 + 2 = 2,

using the same fact again.
So we have proved the inductive step, and both statements follow by

induction.
Incidentally, from real analysis we know that an increasing sequence which is

bounded tends to a limit. What is the limit of this sequence? (If you cannot see
the answer immediately, calculate a few terms of the sequence.)

Here is an example of the use of strong induction. This is a result which was
used in the proof of Euclid’s Theorem.

Proposition 1.10 Any natural number greater than 1 has a prime factor.

Proof We have to show that, if n > 1, then n has a prime factor. We do this
by strong induction. Let n be a natural number, and assume that, if m is any
natural number satisfying 1 < m < n, then m has a prime factor.

• If n ≤ 1 then the statement is vacuously true.
• If n is prime, then it is a prime factor of itself, and the statement is true.
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• Suppose that n is composite; then n = ab, where 1 < a, b < n. By the
induction hypothesis, a has a prime factor p. Now p is a prime factor of n,
and so again the statement is true.

We have covered all cases, and so the proof is done.

Another consequence of the induction property is the following fact about
the natural numbers.

Theorem 1.11 Let T be any non-empty subset of the natural numbers. Then
T has a smallest element.

Proof We show the contrapositive form of this statement: that is, if T is a
subset of the natural numbers which has no smallest element, then T is empty.

So suppose that T has no smallest element. Let S be the complement of T , the
set of all natural numbers not in T . Let n be a natural number, and suppose that
every natural numberm smaller than n belongs toS. Then nmust belong toS also;
for, if n ∈ T , then n would be the smallest element of T (since all smaller numbers
are in S). By the Strong Induction principle, S = N, and so T is empty.

This property is sometimes referred to as the well-ordering property.

Exercise 1.10 Show that (x+ yi)(x− yi) = x2 + y2. Hence show that, if x+ yi �= 0,
then we can divide by it:

u+ vi
x+ yi

=
(
ux+ vy
x2 + y2

)
+

(
vx− uy
x2 + y2

)
i.

Exercise 1.11 Show that the square root of x+ yi is

±
((√

1
2

(
x+

√
x2 + y2

))
+

(√
1
2

(
−x+

√
x2 + y2

))
i

)
.

[Hint : Square it and see!] Can you be sure that both the real and imaginary parts are
genuine real numbers (that is, they are square roots of non-negative real numbers)?

Exercise 1.12 Prove by induction that every natural number is either even or odd.
Prove also that no natural number can be both even and odd.

Exercise 1.13 Prove the following statements by induction.

(a) The sum of the first n positive integers is n(n+ 1)/2.
(b) The sum of the cubes of the first n positive integers is equal to the square of their

sum.

Exercise 1.14 When the mathematician Gauss was in primary school, his teacher
asked the class to add up all the numbers from 1 to 100. Gauss saw that, if he took the
sum

S = 1 + 2 + 3 + · · · + 99 + 100,
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and wrote it down reversed,

S = 100 + 99 + 98 + · · · + 2 + 1,

then each pair of numbers in the two sums adds up to 101. So

2S = 100× 101 = 10100,

and S = 5050. Your job is to turn this into a general proof that the sum of the natural
numbers from 1 to n is n(n+ 1)/2.

Exercise 1.15 Use induction to prove each of the following statements:

(a) For all n ≥ 1,

1
1× 3

+
1

3× 5
+ · · · + 1

(2n− 1)× (2n+ 1)
=

n

2n+ 1
.

(b) 4n ≥ 16n2 for all n ≥ 4.
(c) For all n ≥ 2,

1
22 − 1

+
1

32 − 1
+ · · · + 1

n2 − 1
=

3
4

− 1
2n

− 1
2(n+ 1)

.

Exercise 1.16 Let a1, a2, a3, . . . be numbers satisfying the rules that a1 = 1 and
an = 2an−1 for all n > 1.

(a) Write down the first few numbers an.
(b) Guess a formula for an.
(c) Prove your guess by induction.

Exercise 1.17 (∗) Euclid’s proof that there are infinitely many primes gives us a rule
for finding a new prime, if we already have a finite number:

Suppose that we have found n primes already, say p1, p2, . . . , pn.

Multiply them together and add one: let N be this number, so that N = p1p2 · · · pn+1.

If N is prime, take it to be the next prime pn+1. Otherwise, take pn+1 to be the
smallest prime which divides N .
Euclid gives us a guarantee that pn+1 is different from all the primes p1, . . . , pn.

Take p1 = 2. Use MAPLE or a calculator to find p2, p3, . . . , p8.
Experiment with taking different primes for p1. Does the prime 2 always turn up in

the list sooner or later? Does the prime 3 always turn up? What is the main difficulty
in the calculation?

Exercise 1.18 Prove, using the well-ordering property, that an infinite strictly decreas-
ing sequence of positive integers (that is, a sequence a1, a2, a3, . . . satisfying an > an+1
for all n) cannot exist.

Exercise 1.19 What is wrong with the following argument?

Proposition 1.12 All horses have the same colour.
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Proof Let P(n) be the proposition that, in a set of n horses, all the horses
have the same colour. We start the induction with P(1), which is clearly true.

Now suppose that P(n) is true. Let {H1, . . . , Hn+1} be a set of n+1 horses.
Then {H1, . . . , Hn} is a subset containing n horses; by P(n), they all have the
same colour. Similarly, {H2, . . . , Hn+1} is a set of n horses, so these also have the
same colour. It follows that {H1, . . . , Hn+1} all have the same colour; so P(n+1)
is true.

By the Principle of Induction, P(n) is true for all positive integers n.

Elementary algebra
Abu Ja’far Muhammad ibn Musa al-Khwarizmi (whose name gives us the word
‘algorithm’) wrote an algebra textbook which included much of what is still
regarded as elementary algebra today. The title of his book was Hisab al-jabr
w’al-muqabala. The word al-jabr means ‘restoring’, referring to the process of
moving a negative quantity to the other side of an equation; the word al-muqabala
means ‘comparing’, and refers to subtracting equal quantities from both sides
of an equation. Both processes are familiar to anyone who has to solve an
equation! The word al-jabr has, of course, been incorporated into our language as
‘algebra’.

In this section we briefly revise the techniques of elementary algebra.

1.6 Formulae and equations. A formula, or expression, is some collec-
tion of symbols like

x3 sin(log10 x) + xx
xx

+ 196883.

This formula contains a variable x, and the assumption is that if we assign
a numerical value to x, then we can in principle evaluate the formula and
obtain a number. (We may not be able to do that in practice; if, for example,
x = 3, then the above formula cannot be evaluated because the universe
is not large enough to write down the answer!) We allow a formula to
contain more than one variable. Thus, x2 + 2y is a formula with two variables
x and y.

In Algebra, for the most part, we use only formulae built up using
the arithmetic operations (addition, subtraction, multiplication, and division)
and sometimes others such as exponentiation and taking square roots. More
complicated functions such as sines and logarithms lie in the domain of
‘analysis’.

An equation is a mathematical statement of the form

F1 = F2,

where F1 and F2 are formulae. Now it may be that, no matter what values we
substitute for the formulae F1 and F2, the equation is true. In this case, the
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equation is called an identity. An example of an identity is

x4 + x2 + 1 = (x2 + x+ 1)(x2 − x+ 1).

If an equation is not an identity, then there still may be some values of the
variables for which the equation is true when these values are substituted. The
procedure of finding all such values is called solving the equation, and the values
are the solutions. An equation may have no solution, or one, or more than one.
For example, the equation

x2 = x+ 2

has two solutions: x = 2 and x = −1.
In solving an equation, we can apply any operation to it provided that we do

the same thing to both sides. For example, from the above equation, we could
obtain x2 − x = 2 (by subtracting x from each side), or 2x2 = 2x + 4 (by
multiplying each side by 2). However, we cannot obtain 2x2 = 2x + 2, since we
have failed to multiply everything on the right by 2.

Originally, the purpose of algebra was to solve equations!

1.7 Brackets. The formulae 2x+ 5 and 2(x+ 5) are different; when x = 2,
the first evaluates to 9 and the second to 14.

The difference between them depends on a convention universally adopted in
mathematics:

In evaluating a formula, we perform multiplications and divisions
before additions and subtractions.

This rule is called precedence of operators.
Thus, in the first formula above, we multiply 2 and x and then add 5 to the

result. If we wish instead to add x and 5 and then multiply 2 by the result, we
have to change the precedence of the operators. So we supplement the precedence
rule by another rule asserting that, if part of a formula is enclosed in brackets,
then this part is evaluated first and then treated as a single quantity in the later
evaluation. The second formula above thus does exactly what we want.

Brackets can be nested, in which case they are evaluated from the inside out.
For example, the formula

x+ 2(y + 3(z + 4))

says: ‘add z to 4, multiply the result by 3, add y to this, multiply the result by
2, and finally add x’.

Remember the distributive law we met earlier, which states that

a(b+ c) = ab+ ac.
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Using this, if a formula contains brackets, we may replace it by a formula not
containing brackets. This is called expanding the brackets. For example, the
formula with nested brackets above can be changed into

x+ 2y + 6z + 24.

Brackets may contain arbitrarily complicated expressions. If you are expand-
ing brackets, remember to multiply everything inside the brackets. So 2(3x +
4y + 5z) = 6x+ 8y + 10z, for example.

If several brackets have to be multiplied together, the work should be done
in stages:

(a+ b)(c+ d) = (a+ b)c+ (a+ b)d = ac+ bc+ ad+ bd.

Finally, note that mathematicians use several types of brackets, such as ( ),
[ ], { }. In the past, these were all used in formulae; some mathematical pub-
lishers even had rules about the order in which they were to be used in a nested
expression!

The rule now is only to use the ordinary ‘parentheses’ ( ) for this job, as
the others have different meanings. We have seen that ‘braces’ { } are used for
sets, while ‘square brackets’ [ ] are sometimes used to denote the integer part
or ‘round-down’ of the expression, as in [9/2] = 4. (It is better to use the more
specialised brackets � 	 for this, so that �9/2	 = 4. Then we can use 
 � for
‘round-up’, as in 
9/2� = 5.)

Still other brackets such as ‘angle brackets’ 〈 〉 are used with other specialised
meanings. We can also think of modulus signs | | as a kind of brackets.

Some mathematical expressions have implicit brackets. In the formulae

a+ b

c+ d
−

√
e+ f,

the three additions must be performed before the division and taking the square
root, even though there are no actual brackets in the formulae.

1.8 Fractions. Formulae may contain fractions, such as
a+ b

c+ d
above. This

can also be written (to save space) as (a+ b)/(c+ d).
The rules for manipulating fractions are

•
a

b
+
c

d
=
ad+ bc

bd
;

•
a

b
− c

d
=
ad− bc

bd
;

•
a

b
· c
d
=
ac

bd
;

•
a

b

/ c

d
=
ad

bc
;

•
ax

bx
=
a

b
.
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The addition and subtraction rules involve putting the fractions over a com-
mon denominator. They are easily proved using the last rule (the cancellation

rule) in reverse. Thus
a

b
=
ad

bd
, and

c

d
=
bc

bd
; now they have the same denominator

and can be added.
Do not learn these rules. Rather, you should practice until you can manipulate

fractions without thinking. Also, fractions can be cancelled at any time, not just

the end of the calculation. If you have to work out
1
5
− 3

40
, it is better to write

them with a denominator of 40 to get

1
5
− 3

40
=

8− 3
40

=
5
40

=
1
8

than to apply the rules literally:

1
5
− 3

40
=

1 · 40− 3 · 5
40

=
25
200

=
1
8
;

the bigger numbers in the second calculation make mistakes more likely.

1.9 Square roots. The square root of a non-negative number x is the
non-negative number y such that y2 = x. Notice that, at least for real numbers,
only non-negative numbers have square roots, and that the square root is itself
non-negative. So, even though it is true that (−4)2 = 16, yet the square root
of 16 is 4 and not −4.

There is no simple formula for adding square roots. The multiplication rule
is

√
a ·

√
b =

√
ab.

This means that x
√
a =

√
x2a if x is non-negative.

Remember that square roots are implicitly bracketed. Thus when we multiply
out, everything under the square root sign must be multiplied:

x
√
a+ b =

√
x2a+ x2b.

But do not make the mistake of thinking that
√
a+ b =

√
a+

√
b; this is almost

always wrong!
Similar principles hold for cube (and other) roots.

1.10 Powers. If n is a positive integer, then xn means the expression
obtained by taking n factors x and multiplying them together: for example,
x4 = x · x · x · x.

The rules for expressions with powers are:

• xm+n = xm · xn;
• xmn = (xm)n;
• (xy)n = xn · yn.
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Mathematicians have extended this definition: if x is positive, it is possible
to give a meaning to xr for any real number r, in such a way that the three laws
just stated continue to hold. The important cases to remember are

x0 = 1, x−1 =
1
x
, x1/2 =

√
x.

In general, x−r = 1/xr.

1.11 Polynomials. A polynomial in the variable x is a formula which is
a sum of a number of terms each of the form axn, where a is a number and
n a non-negative integer. (Remember that x0 = 1, so that ax0 is just a.) In
this section we take the word ‘number’ to mean ‘real number’. An example of a
polynomial is

27x5 + 203x2 − 31x+ 5.

Often we use the function notation f(x) to denote a polynomial in the variable
x. Then, if c is any number, f(c) denotes the evaluation of f(x) when x is given
the value c.

The expressions axn making up a polynomial are its terms, and the degree
of the term axn is the number n. A constant term is one whose degree is zero.

We assume that the coefficient a of any term is non-zero (we omit any terms
with zero coefficients), and that different terms have different degrees (as several
terms with the same degree can be combined into a single term). The only
problem here is that there is a polynomial with no terms at all, which we write
as 0 (the alternative would be not to write anything, which may be confusing!).

Polynomials are added and multiplied as formulae. This means that, if the
same power of x occurs in two polynomials, then when we add them we can
combine the corresponding terms. For example,

(27x5 + 203x2 − 31x+ 5) + (x3 − 200x2 + 31x+ 7) = 27x5 + x3 + 3x2 + 12.

A polynomial can also be thought of as a function, whose value for a given value
of x is obtained by substituting the value of x and then evaluating the result.

In fact, the question ‘what exactly is a polynomial?’ is much more difficult
to answer than indicated, here. To mention just two problems:

• If two polynomials are identical apart from the fact that the variables have
been given different names, are they the same polynomial or not?

• If two polynomials give rise to identical functions, are they the same
polynomial or not?

In the next chapter, we will see how mathematicians currently view these
questions.

Addition and multiplication of polynomials satisfy many of the same laws as
the same operations for numbers: the commutative, associative, and distributive
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laws all hold. These statements do not strictly require that the coefficients of
the polynomials are real numbers: it is enough that the coefficients themselves
should satisfy these three laws, so any of the standard number systems will
do (See Exercise 1.25.) Also, adding the polynomial 0, or multiplying by the
polynomial 1, has no effect.

The degree of a polynomial is the largest degree of any of its terms. (Accord-
ing to this definition, the zero polynomial 0 does not have a degree. Some people
arbitrarily set its degree to be −1, or −∞, but my convention seems simpler.) A
polynomial with degree 0, 1, 2, 3, 4, or 5 is called constant, linear, quadratic,
cubic, quartic, or quintic, respectively.

As for integers, there is a division algorithm for polynomials: if f(x) and
g(x) are polynomials, then there exists a quotient q(x) and a remainder r(x)
such that

• f(x) = g(x)q(x) + r(x);
• either r(x) = 0, or r(x) has degree smaller than the degree of g(x).

The way of finding the quotient and remainder is very similar to the division
algorithm for integers. If the remainder r(x) is the zero polynomial, we say that
g(x) divides f(x).

Here is an example: Divide x4 + 4x3 − x− 5 by x2 + 2x− 1.

x2 + 2x − 3
x2+ 2x− 1

)
x4+ 4x3 − x −5
x4+ 2x3 − x2

2x3 + x2 − x
2x3 + 4x2 − 2x

−3x2 + x − 5
−3x2 − 6x + 3

7x − 8

This calculation shows that when we divide x4 +4x3 − x+5 by x2 +2x− 1, the
quotient is x2 + 2x− 3 and the remainder is 7x− 8.

In one particular case, it is easy to calculate the remainder:

Theorem 1.13 (Remainder Theorem) If f(x) is divided by x − c, the
remainder is f(c).

Proof Suppose that f(x) = (x − c)q(x) + r(x). Since r(x) has degree less
than 1, it is a constant polynomial. Then substituting x = c we find that f(c) =
r(c), so that r(x) is the constant polynomial f(c) (or the zero polynomial, if
f(c) = 0).

From this we immediately obtain Theorem 1.14.

Theorem 1.14 (Factor Theorem) Let f(x) be a polynomial and c a number.
Then x− c divides f(x) if and only if f(c) = 0.
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A non-constant polynomial is called irreducible if it cannot be written as the
product of two polynomials of smaller degree. Any linear polynomial is obviously
irreducible, since the only polynomials of smaller degree are constants.

Over the real numbers, the polynomial x2 + 1 is irreducible. For, if it is not
irreducible, it must have a factor of degree 1, which we can take to be x− c for
some real number c; then the Factor Theorem shows that c2 + 1 = 0, which is
impossible.

This argument would fail if our numbers were complex numbers. Indeed, we
would have

x2 + 1 = (x+ i)(x− i).

Irreducible polynomials play a similar role to prime numbers, with one
main difference: any non-constant polynomial can be factorised into irreducible
polynomials, but the factors are not unique. For example,

6x2 − 6 = (2x+ 2)(3x− 3) = (3x+ 3)(2x− 2).

We will see in the next chapter how, in a much more general situation, we can
prove a ‘unique factorisation theorem’ for polynomials.

To conclude this section, I mention that it is possible to have polynomials
in more than one variable. For example, a polynomial in x and y is a sum of
terms of the form axmyn, where a is a number and m and n are non-negative
integers.

1.12 Quadratic and cubic equations. A polynomial equation is an
equation of the form f(x) = g(x), where f(x) and g(x) are polynomials. By
subtracting g(x) from both sides, we can write this as h(x) = 0, where h(x) is
the polynomial f(x)−g(x). In this form, we say that the equation is quadratic,
cubic, . . . , if h(x) is quadratic, cubic, . . . .

Throughout the history of mathematics, one of the most important topics
has been the problem of solving polynomial equations.

Here is Al-Khwarizmi’s solution of the quadratic equation x2 + 10x = 39. In
the quotation, the ‘root’ is x and the ‘square’ is x2; according to the conventions
of his day, Al-Khwarizmi did not consider the possibility of negative solutions.
In modern terminology his solution is

x =
√
52 + 39− 5 = 3.

What is the square which combined with ten of its roots will give
a sum total of 39? The manner of solving this type of equation is
to take one-half of the roots just mentioned. Now the roots in the
problembefore us are 10. Therefore take 5, whichmultiplied by itself
gives 25, an amount which you add to 39 giving 64. Having taken
then the square root of this which is 8, subtract from it half the
roots, 5 leaving 3. The number three therefore represents one root
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of this square, which itself, of course is 9. Nine therefore gives the
square.

Abu Ja’far Muhammad ibn Musa al-Khwarizmi (about 810)

Notice how Al-Khwarizmi does not use symbols (which were a long way in
the future in his time), but explains the method clearly with an example. In
essence, he gives us an algorithm to solve any equation of the form x2 + ax = b:
halve the coefficient of x, square it, add the constant term, take the square root,
subtract half the coefficient of x.

The only differences between this and the modern formula is that now we do
not mind negative numbers in our equations, so we write any quadratic as

x2 + ax+ b = 0,

and similarly we allow both positive and negative solutions. Thus, our b is the
negative of Al-Khwarizmi’s, and we have to subtract it instead of adding, giving
the well-known formula

x = ±
√

(a/2)2 − b− a/2 =
−a±√

a2 − 4b
2

.

The key idea in obtaining this solution is completing the square. We
recognise that

x2 + ax+ (a/2)2 = (x+ a/2)2,

and so by adding (a/2)2 − b to both sides of the equation x2 + ax + b = 0 we
obtain

(x+ a/2)2 = (a/2)2 − b,

so that x+a/2 = ±√
(a/2)2 − b, and subtracting a/2 from both sides we obtain

the solution.
Can we do anything similar for more complicated equations? Consider the

cubic equation

x3 + ax2 + bx+ c = 0.

We try completing the cube, using the fact that

x3 + ax2 + (a2/3)x+ a3/27 = (x+ a/3)3,

so that the given equation becomes

(x+ a/3)3 = (a2/3− b)x+ (a3/27− c).

Now it is not so simple, since there is still an x on the right. It took
mathematicians hundreds of years to figure out what to do next!

We continue this story later in the book.
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Exercise 1.20 This exercise contains a few ‘drill’ questions on manipulation of formu-
lae. If you cannot do them quickly and accurately, it is very important that you should
practice similar examples until you can. These examples are taken from a course at
Queen Mary, University of London, entitled ‘Essential Mathematics’; the name of the
course is chosen for a good reason!

(a) Evaluate

5
30

− 1
7

×
((

4− 18
27

) /8
3
+

(
3
8

)2

×
(
7
4

× 7
9
+

5
12

))
.

(b) Simplify (−ab2c3
cb3

)3 (
a5

−b7c
)−2

.

(c) Compute the remainder when −x4 + 3x2 + 2x− 1 is divided by x2 + 2.
(d) Add and simplify

1
y2 − 2y − 15

+
3

y2 − 10y + 25
.

(e) Compute f
(−1/a3

)
, where

f(x) =
x2 − x− 1
x− 1

.

(f) Simplify

1√
5

√
30− √

12
√
15

(
√
2− √

3)2

to the form m+ n
√
d, where m, n, and d are integers.

(g) Simplify √
x2 − x3 − √

4− 4x.

(h) Solve the equation

4x− x2 − 9
x+ 3

=
6

3x− 1
.

Exercise 1.21 Show by means of an example that the distributive law fails for the
‘round-down’ brackets � �; that is, it is not true that a�b + c� = ab + ac. Indeed it is
not even equal to �ab�+ �ac�.

Exercise 1.22 Show directly that xn − cn is divisible by x− c for any natural number
n. Deduce the Remainder Theorem from this.

Exercise 1.23 Use the preceding exercise to show that x − 1 divides xk − 1 for any
natural number k, and deduce that m − 1 divides mk − 1 for any natural number m.
By taking m = 2l, show that 2l − 1 divides 2kl − 1. Deduce that, if 2n − 1 is prime,
then n is prime. (Compare page 6, where we showed that the converse is false.)
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Exercise 1.24 If you know the Intermediate Value Theorem, use it to show that (over
the real numbers) there is no irreducible polynomial of degree 3.

Exercise 1.25 Show that the proof of commutativity of multiplication of polynomials
requires the commutativity and associativity of addition for the coefficients, as well as
the commutativity of their multiplication.

Exercise 1.26 Let f be a polynomial, and let f(t) be the result of substituting the
real number t for the indeterminate x. Are the following statements true or false? If
false, what is the correct rule?

(a) (f + g)(t) = f(t) + g(t);
(b) (fg)(t) = g(f(t)).

Sets
In this section, we take a quick look at sets, mainly to introduce the notation
for unions, intersections, Cartesian products, and so forth, and to examine the
concepts of relations and functions, especially equivalence relations. Although we
cannot say what a set is without going round in circles, sets provide the accepted
basis for mathematics.

1.13 Introduction. It is very difficult to define a set. On the other hand,
everybody knows what a set is, and the explanation ‘a set is a collection of
objects’, though no good as a definition (What is a collection?), is quite clear.
What is important is that we can tell, of any particular element, whether or not
it belongs to the set in question. A set is completely determined when we know
all of its members.

Often, we use capital letters for sets, and lower case for their elements. We
write x ∈ X to denote that the element x is a member of (or belongs to) the set
X, and x /∈ X for the negation of this.

How do we specify a set?
If it is finite, we can just list its elements inside braces, or curly brackets {}.

Thus, {1, 3, 4, 5, 9} is a set with five elements.
Certain familiar infinite sets have names. Thus, N, Z, Q, R, and C denote

the sets of numbers, which we met earlier. Other infinite sets can be described
by giving a test for membership in the set. For example,

{x ∈ Z : x = 2y + 1 for some y ∈ Z}

is the set of odd integers.

1.14 Sets and set operations. Two sets are equal if they have the same
members. For example,

{2} = {x ∈ Z : x > 0, x is even, x is prime}.
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So the basic test for equality is

A = B means that (x ∈ A) ⇔ (x ∈ B) for all elements x.

Notice that, to prove two sets equal, we have to prove two things: every element
of A is in B; and every element of B is in A. (Remember that P ⇔ Q means
P ⇒ Q and Q ⇒ P.)

The empty set is the set which has no members. It is written as ∅, a zero
with a slash; not the Greek letter φ (phi).

The empty set is a notorious source of trouble in mathematics. Arguing about
it requires cool-headed logic rather than intuition. If you have proved a general
fact about sets, it is worth checking that it holds for the empty set. Here is an
example of how to argue with the empty set:

There is only one empty set. For suppose that E1 and E2 are empty sets.
For any element x, the statements (x ∈ E1) and (x ∈ E2) are both false, since
E1 and E2 have no members. So, according to the rule for ‘if and only if’, the
statement (x ∈ E1) ⇔ (x ∈ E2) is true, and by the basic test for equality, we
have E1 = E2. Informally, E1 and E2 have the same members (viz., none at all).

A is a subset of B if A consists of some (perhaps all) of the elements of B.
This is written as A ⊆ B, like a curved ‘less than or equal’ sign. So the basic
test for a subset is

A ⊆ B means that (x ∈ A) ⇒ (x ∈ B) for all elements x.

Note that this involves half the work of proving that A = B. Any set is a
subset of itself. Also, the empty set is a subset of any set. (For consider the
proposition (x ∈ ∅) ⇒ (x ∈ A). For any x, the statement x ∈ ∅ is false; and a
false proposition implies any proposition, so the implication is true.) These two
subsets, which always exist, are the trivial subsets.

If A ⊆ B and A �= B, we say that A is a proper subset of B, and write
A ⊂ B.

Now we turn to some ways of building new sets from old.

Definition The union of two sets A and B is the set of all elements lying in
either A or B:

A ∪B = {x : x ∈ A or x ∈ B}.

The intersection of A and B is the set of all elements lying in both:

A ∩B = {x : x ∈ A and x ∈ B}.

The difference A \B consists of the elements which lie in A but not in B:

A \B = {x : x ∈ A and x /∈ B}.
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A∪B A B

A

A∩B

B A B A B A B

AB

Fig. 1.6 Venn diagrams for set operations

The symmetric difference A�B consists of the elements which lie in one of
A and B but not in both, so that we have

A�B = (A \B) ∪ (B \A) = (A ∪B) \ (A ∩B).

For example, if A = {2, 3, 5} and B = {1, 2, 4}, then A ∪ B = {1, 2, 3, 4, 5},
A ∩B = {2}, A \B = {3, 5}, and A�B = {1, 3, 4, 5}.

These concepts are conveniently illustrated by Venn diagrams (see
Figure 1.6).

An ordered pair (a, b) has a first element a and a second element b.
This means that two ordered pairs (a, b) and (c, d) are equal if and only if both
a = c and b = d. So the ordered pair (a, b) is not the same as the set {a, b}: the
elements of a set do not come in any particular order, so {a, b} is the same as
{b, a}. (It does not matter exactly how ordered pairs are defined.)

Definition Let A and B be sets. Their Cartesian product is the set

A×B = {(a, b) : a ∈ A, b ∈ B},
the set of all ordered pairs with first element in A and second element in B. If
A = B, we write A2 for A×A.

The name ‘Cartesian’ commemorates Descartes, who unified algebra and geom-
etry by the insight that the Euclidean plane (a geometric object) is essentially
the same as the set R × R = R2: each point of the plane can be represented by
its Cartesian coordinates, which are an ordered pair (x, y) of real numbers; and
every pair of real numbers represents a point.

More generally, if n is a positive integer, then an ordered n-tuple, writ-
ten (a1, a2, . . . , an), has a first, second, . . . , nth element; and (a1, . . . , an) =
(b1, . . . , bn) if and only if a1 = b1, . . . , an = bn. The Cartesian product of
A1, A2, . . . , An is

A1 ×A2 × · · · ×An = {(a1, a2, . . . , an) : a1 ∈ A1, a2 ∈ A2, . . . , an ∈ An},
and An = A × A × · · · × A (n factors). Thus, according to Descartes, Rn is
n-dimensional space.
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The number of elements in a set A is called the cardinality of A, and written
as |A|. Although we use the same notation as for the absolute value or modulus of
a number, the meaning is quite different. For example, |−3| = 3, but |{−3}| = 1.

There is a theory of cardinalities of infinite sets, developed by Cantor in the
nineteenth century, but we do not need this yet. If the set A is finite, then its
cardinality is a non-negative integer. Here are a couple of basic results about
cardinalities of finite sets.

Proposition 1.15 Let A and B be finite sets. Then

(a) |A ∪B| = |A|+ |B| − |A ∩B|;
(b) |A×B| = |A| · |B|.

Finally, note that the elements of a set may themselves be sets. For example,
{1, {1, 2}} is a set with two elements: the number 1 and the set {1, 2}. This
process can be continued as far as we like: there are sets like {{{{1}}}}; and
this is not the same set as {{{1}}}. Somewhere in the Galaxy there is a race of
set theorists to which this comment seems natural and obvious. But, for human
beings, the concept of a set of sets seems to cause panic and confusion, especially
when we have to perform operations on its members (which are sets) as if they
were single objects. This is unavoidable in algebra, as you will see when we reach
factor rings in the next chapter. You have been warned!

1.15 Functions. Until fairly recently, mathematicians thought of functions
as formulae: the logarithm function log10 x, the sine function sinx, or more com-
plicated compounds such as the one given on page 23. Later they introduced
functions with ‘split’ definitions, such as

f(x) =
{

1 if x is rational;
0 if x is irrational.

Eventually it seemed impossible to make a definition of a formula general enough
for everything that mathematicians wanted to consider; so a completely different
approach was taken.

Think of a function F as a black box, where we can feed any element of A
into the box, and an element of B will emerge at the other end.

x F F (x)

The name of the function is F ; we put x into the black box and F (x) comes
out. Be careful not to confuse F , the name written on the black box, with F (x),
which is what comes out when x is put in. Sometimes the language makes it hard
to keep this straight. For example, there is a function which, when you put in x,
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outputs x2. We tend to call this ‘the function x2’, but it is really ‘the squaring
function’, or ‘the function x �→ x2’. (You see that we have a special symbol �→
to denote what the black box does.)

Black boxes are not really mathematical notation, so we reformulate this
definition in more mathematical terms. We have to define what we mean by a
function F . Now there will be a set X of allowable inputs to the black box; X
is called the domain of F . Similarly, there will be a set Y which contains all
the possible outputs; this is called the codomain of F . (We do not necessarily
require that every value of Y can come out of the black box. For the squaring
function, the domain and the codomain are both equal to R, even though none
of the outputs can be negative.)

The important thing is that every input x ∈ X produces exactly one output
y = F (x) ∈ Y . The ordered pair (x, y) is a convenient way of saying that the
input x produces the output y. Then we can take all the possible ordered pairs
as a description of the function. Thus we come to the formal definition:

Definition A function F : A → B is a subset of A × B such that, for every
element a ∈ A, there is a unique element b ∈ B for which (a, b) ∈ F . We write
b = F (a) if (a, b) ∈ F . (Note that the definition says nothing at all about the way
in which the function values are actually calculated.) We call F (a) the image
of a under F .

A function is also often called a mapping or map: if F : A → B, we say
that F maps elements of A to elements of B (or maps A to B). The sets A
and B are called the domain and codomain of F , respectively. The image or
range of F is the set of values that come out of the black box when all elements
of the codomain are fed in:

Im(F ) = {F (a) : a ∈ A}.
It is a subset of the codomain.

A function F : A→ B is said to be one-to-one or injective if a �= b implies
F (a) �= F (b) (so that different points have different images under F ). It is onto
or surjective if every point of B is the image of some point of A. It is bijective,
or a one-to-one correspondence, if it is both injective and surjective. If F is
a bijection, then the elements of A are ‘paired up’ with elements of B by F , so
that, if the sets are finite, they must have the same number of elements.

If F is a bijective function from X to Y , then there is an inverse function
G from Y to X which takes every element y ∈ Y to the unique x ∈ X for which
F (x) = y. In other words, the black box for G is the black box for F in reverse:

x = G(y) if and only if y = F (x).

The inverse function G is also bijective. Thus a bijective function F and its
inverse G satisfy

• G(F (x)) = x for all x ∈ X;
• F (G(y)) = y for all y ∈ Y .
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Notice that F is the inverse function of G.

Proposition 1.16 If |A| = m and |B| = n, then the number of functions from
A to B is nm.

Proof We can represent a function from A to B as a table with two columns,
where we write all the elements of A in the first column, and the value of F (a)
opposite the entry a. Now there are |B| = n choices for each entry in the second
column of the table; since there are m entries, there are nm possible tables. Each
table specifies a unique function.

Sometimes we represent a function F : A → B by a picture, where we show
the two sets A and B, and draw an arrow from each element a of A to the
element b = F (a) of B. For such a picture to show a function, each element of
A must have exactly one arrow leaving it. Now

• F is one-to-one (injective) if no point of B has two or more arrows entering it;
• F is onto (surjective) if every point of B has at least one arrow entering it;
• F is one-to-one and onto (bijective) if every point of B has exactly one arrow
entering it; in this case, the arrows match up the points of A with the points
of B.

Here are some illustrations. The first is not a function because some elements of
A have more than one arrow leaving them while some have none.

A

Not a function

A

B

Onto, not one-to-one

B

A
B

One-to-one, not onto

A

One-to-one and onto

B
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1.16 Binary operations.

Definition A binary operation on a set A is a function F from A×A to A.

Often we write such an operation differently: either with infix notation, using a
symbol such as ◦, where we put a◦b for F (a, b); or with juxtaposition, where we
simply write ab for F (a, b). (Of course, addition in a number system is a binary
operation, written in infix notation with the symbol +; and multiplication is
usually written as juxtaposition.) Other symbols used for operations include +,
·, ×, −, ∗.

More generally, if n is a positive integer, an n-ary operation on A is a
function from An to A. We use the terms ‘unary’ and ‘binary’ for n = 1, 2
respectively. But for n �= 2, there is no analogue of infix notation or juxtaposition.

We can think of a binary operation as a black box with two inputs and one
output: we put in a and b, and a ◦ b comes out.

Proposition 1.17 If |A| = n, then the number of binary operations on A

is nn
2
.

Proof An operation is a function from A × A to A. Since |A × A| = n2 and
|A| = n, the result follows from Proposition 1.16.

Suppose that we have a binary operation on A, denoted by ◦ in infix notation.
Then we have the ‘closure condition’

(C) (Closure law): For all a, b ∈ A, a ◦ b ∈ A.
This is really trivial because the operation is a function to the set A. It seems
less trivial if we ask the question: When does ◦ give an operation on a subset
X of A? This will occur if and only if X satisfies the closure law; that is, for all
a, b ∈ X, a ◦ b ∈ X. We will ask this question very often!

A binary operation on a finite set can be described by an operation table.
Let A = {a1, . . . , an}. Take an n×n table, and label the rows and columns with
the elements a1, . . . , an. In the position in row i and column j, put the element
ai ◦ aj . The whole table can be labelled with the name of the operation.

Example Let A = {α, β, γ}, and define an operation ◦ by

x ◦ y =
{
x if x �= y,
α if x = y.

The operation table is

◦ α β γ

α α α α
β β α β
γ γ γ α

.
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In this case there is a simple rule describing the operation. But even when there
is no obvious rule, the operation table describes an operation completely.

Example In the above example, which subsets X of A have the property that
◦ defines an operation on X? That is, which satisfy the closure law?

The only such subsets of X are ∅, {α}, {α, β}, {α, γ}, and A. For the empty
set certainly satisfies closure. If X is non-empty and x ∈ X, then x ◦x = α ∈ X.
There are four sets containing α, the other four listed above; they all satisfy
closure. For example, for {α, γ}, the operation table is

◦ α γ

α α α
γ γ α

.

1.17 Relations. A binary relation can be thought of as a statement which,
given any two elements of a set A, is either true or false for that pair. For example,
the relation ‘less than’ on the integers is true for the pair (5, 17), and false for
the pair (−1,−2). We know the relation completely if we know the set of pairs
for which it is true. So we make a formal definition:

Definition A binary relation R on a set A is a subset of the Cartesian
product A×A.

A binary relation can be thought of as a black box with two inputs, for which
the only possible outputs are ‘yes’ and ‘no’. If we put in a and b, the output is
‘yes’ if the pair (a, b) satisfies the relation, and ‘no’ if it does not.

Proposition 1.18 If |A| = n, then the number of binary relations on A is 2n
2
.

Proof Proposition 1.16, since a binary operation is a function from A × A to
{yes,no}.

Often we represent a binary relation by infix notation, in which we place a
symbol between a and b to indicate that (a, b) ∈ R. Typical symbols used are ∼,
≡, as well as the more familiar =, ≤, <, and so on. So, for example, we might
use a ∼ b to denote (a, b) ∈ R.

For example, if A = {1, 2, 3}, then the relation ‘less than’ on A is the set
{(1, 2), (1, 3), (2, 3)}.

More generally, for any positive integer n, an n-ary relation on A is a subset
of An.

1.18 Equivalence relations. Let R be a binary relation on A. Here are
three laws which R may or may not satisfy:

(Eq1) (Reflexive law): (a, a) ∈ R for all a ∈ A.
(Eq2) (Symmetric law): If (a, b) ∈ R then (b, a) ∈ R.
(Eq3) (Transitive law): If (a, b) ∈ R and (b, c) ∈ R then (a, c) ∈ R.
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For example, the relation ‘less than’ on the set {1, 2, 3} satisfies (Eq3)—the
only possible choice of a, b, c with (a, b), (b, c) ∈ R is a = 1, b = 2, c = 3, and
indeed (1, 3) ∈ R—but neither (Eq1) nor (Eq2). The relation ‘less than or equal’
on the set {1, 2, 3} satisfies (Eq1) and (Eq3) but not (Eq2).

A very important type of relation consists of equivalence relations:

Definition An equivalence relation on A is a binary relation satisfying
(Eq1), (Eq2), and (Eq3); that is, one which is reflexive, symmetric, and transitive.

If R is an equivalence relation, we define the equivalence class of the element
a ∈ A to be {b ∈ A : (a, b) ∈ R}, the set of all elements related to a by R.

Example Let R be the relation ‘congruent mod 4’ on the set of integers.
That is,

R = {(a, b) : a, b ∈ Z, a− b = 4x for some x ∈ Z}.

Now R is
• reflexive, since a− a = 4 · 0;
• symmetric, since if a− b = 4x then b− a = 4(−x);
• transitive, since if a− b = 4x and b− c = 4y then a− c = 4(x+ y).

So R is an equivalence relation. Among its equivalence classes, we find

E(0) = {. . . ,−8,−4, 0, 4, 8, . . .},
E(1) = {. . . ,−7,−3, 1, 5, 9, . . .},
E(2) = {. . . ,−6,−2, 2, 6, 10, . . .},
E(3) = {. . . ,−5,−1, 3, 7, 11, . . .}.

Note that these four classes cover all the integers without any overlap. Moreover,
E(4) = E(0), and so on; no new classes are obtained. We will see that these are
characteristic properties of an equivalence relation.

Definition A partition of a set A is a set {A1, A2, . . .} of subsets of A such
that

(a) Ai �= ∅ for all i;
(b) each element of A lies in exactly one of the sets Ai—in other words,

(b1) A1 ∪A2 ∪ · · · = A, and
(b2) Ai ∩Aj = ∅ for i �= j.

So, in the above example, {E(0), E(1), E(2), E(3)} is a partition of Z.

Theorem 1.19 (Equivalence Relation Theorem) (a) Let R be an equiva-
lence relation on a set A. Then the set of equivalence classes is a partition of A.

(b) Conversely, let {A1, A2, . . .} be a partition of A. Then there is an
equivalence relation on A whose equivalence classes are A1, A2, . . ..
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In other words, equivalence relations and partitions are the same thing.

Proof (a) Let R be an equivalence relation on A. We have to show that the
equivalence classes form a partition (satisfying conditions (a) and (b) of the
definition). So take a ∈ A. Then (a, a) ∈ R by (Eq1), so a ∈ E(a) by definition
of E(a). This has two consequences. First, E(a) is non-empty (since at least
it contains a). Second, since a was arbitrary, every element of A is in some
equivalence class. It remains to show that different classes don’t overlap. So
suppose that the element a lies in two classes E(b) and E(c). Then (b, a), (c, a) ∈
R. By (Eq2), (a, c) ∈ R; then by (Eq3), (b, c) ∈ R, and by (Eq2) again, (c, b) ∈ R.
We want to show that E(b) = E(c); by the test for equality of sets, we must show
that every element of E(b) is in E(c) and vice versa. So take x ∈ E(b). Then
(b, x) ∈ R. Since (c, b) ∈ R, (Eq3) gives (c, x) ∈ R, so x ∈ E(c). The reverse
implication is similar.

(b) Now let {A1, A2, . . .} be a partition of A. Define a relation R on A by
the rule

R = {(a, b) : a, b ∈ Ai for some i}.
This relation R is

• reflexive: for, given a ∈ A, some set Ai contains a, and so a, a ∈ Ai, whence
(a, a) ∈ R;

• symmetric, trivially;
• transitive: for suppose that (a, b), (b, c) ∈ R. Then a, b ∈ Ai for some i, and
b, c ∈ Aj for some j. But only one set of the partition contains b, so Ai = Aj .
Then a, c ∈ Ai, and (a, c) ∈ R.

So R is an equivalence relation.
Suppose that a ∈ Ai (there is exactly one such set Ai for any a). We claim

that E(a) = Ai. To show this, first take any x ∈ E(a). Then (a, x) ∈ R, so
a, x ∈ Aj for some j. Since only one set contains a, we must have Aj = Ai,
and x ∈ Ai. Conversely, if x ∈ Ai, then a, x ∈ Ai, and so (a, x) ∈ R, whence
x ∈ E(a). The claim is proved.

In fact, more is true. If we take an equivalence relation R, apply the con-
struction of (a) to obtain a partition, and then apply the construction of (b), the
equivalence relation that we obtain is just R.

We will later meet the term ‘canonical form’. If R is an equivalence relation
on a set A, a canonical form is just a choice of one element from an equivalence
class of R. So we can say that every element of A is equivalent to a unique element
‘in canonical form’. In the example before the Equivalence Relation Theorem,
the elements {0, 1, 2, 3} can be taken as canonical forms. The term also carries a
suggestion that the canonical forms are in some way ‘simpler’ or ‘more natural’
than arbitrary elements of A.

We now show how equivalence relations are important in the study of func-
tions which are not necessarily one-to-one or onto. Let F : A → B be such a
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A F B

a F (a)

Fig. 1.7 A function

function. We defined the image of F written Im(F ), as the subset of B consisting
of values of F :

Im(F ) = {b ∈ B : b = F (a) for some a ∈ A}.
Thus

• F is onto if and only if Im(F ) = B.

The kernel of F is the relation R on A in which two elements of A are related
if they map to the same element of B:

KER(F ) = {(a1, a2) : a1, a2 ∈ A,F (a1) = F (a2)}.
Then it is easy to show that

• KER(F ) is an equivalence relation on A, which is equal to the relation of
equality if and only if F is one-to-one.

By the Equivalence Relation Theorem 1.19, we can think of KER(F ) as either an
equivalence relation or a partition. Later, we will meet a different kind of kernel
(which we will write as Ker(F )) which is a subset (rather than a partition) of A;
and we will stop to examine the relationship. Only very special functions have
kernels in the second sense!

In Figure 1.7, the ‘blocks’ on the left-hand side are the equivalence classes of
KER(F ), and the ‘oval’ on the right is Im(F ).

Let us look at an example. Let A and B both be the set {1, 2, 3, 4, 5}, and
let F be the function given by the formula F (x) = x2 − 6x + 10. (We do not
insist that a function should be given by a formula; but if it is, then this is a
convenient way to specify it.) Then, as a set of ordered pairs (a subset of A×B),
we have

F = {(1, 5), (2, 2), (3, 1), (4, 2), (5, 5)}.
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Note that, as required, every member of A occurs as the first component in
exactly one of these pairs. We have

Im(F ) = {1, 2, 5},

and the equivalence classes of KER(F ) are the three sets

{1, 5}, {2, 4}, {3}.

1.19 Permutations and combinations. The term ‘permutation’ has two
different meanings in mathematical language, neither of which is the same as its
everyday meaning in the world of football pools.

In the nineteenth century, a permutation of a finite set S = {a1, . . . , an}
meant an arrangement of the elements of the set in order. For example, if n = 5
and S = {1, 2, 3, 4, 5}, then (3, 5, 4, 1, 2) is a permutation.

There is a ‘natural’ order on this particular set, namely (1, 2, 3, 4, 5). Now
the permutation can be produced by a ‘substitution’, the function f from the
set S to itself which takes 1 to 3, 2 to 5, 3 to 4, and so on. Such a substitution is
one-to-one and onto (that is, bijective); and conversely, every bijective function
from S to itself defines a permutation. So we can regard the function f and the
n-tuple as different aspects of the same thing.

So we make a definition:

Definition A permutation of a set S to be a bijective function from S to S.
If S = {1, 2, . . . , n}, then the n-tuple (f(1), f(2), . . . , f(n)) is called the passive
form of the permutation.

We can write a permutation in so-called two-line notation by writing the
elements of the domain S in the first line and their images in the second. In our
example above, the two-line notation for f is(

1 2 3 4 5
3 5 4 1 2

)
,

so that the function f maps each element in the first line to the element imme-
diately below it. In this notation, it is not compulsory to write the first line in
the usual order. We could, for example, write the same permutation as(

2 5 1 3 4
5 2 3 4 1

)
.

If the first row is in its usual order, then the second row is the passive form of
the permutation.

How many permutations of {1, . . . , n} are there? We can answer this by
counting the passive forms. The first element f(1) may be any one of {1, . . . , n},
so there are n choices. The second element cannot be equal to the first (since f
is one-to-one), so there are n−1 choices. Similarly there are n−2 choices for the
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third, and so on. Finally, the last element must be the only one not yet used. So
the total number of permutations is

n · (n− 1) · (n− 2) · · · 2 · 1,
the product of all natural numbers from 1 to n inclusive. This number is called
n factorial, and written as n!.

For convenience in later formulae, we extend the definition of the factorial
function by setting 0! = 1.

The notion of permutation is sometimes extended. For k ≤ n, we define a k-
permutation of S = {1, . . . , n} to be a k-tuple (a1, . . . , ak) whose members are
distinct elements from S. (This could be regarded as the passive form of a one-
to-one function from {1, . . . , k} to {1, . . . , n}.) The number of k-permutations is,
by a similar argument,

n · (n− 1) · · · (n− k + 1)

(where there are k terms in the product); this number is denoted by nPk. note
that

nPk =
n!

(n− k)!
,

and in particular nPn = n!.
The essential property of permutations is that ‘order is important’; a

k-permutation of S is an ordered selection of k distinct elements of S. If we
do not care about the order in which the objects are selected, we obtain a
k-combination of S. Thus, a k-combination is just a subset containing k
elements.

The number of k-combinations of an n-element set is denoted by nCk, or,

more commonly, by
(
n

k

)
. Since each k-combination can be ordered in k! ways,

we have (
n

k

)
=

nPk

k!
=

n!
k! (n− k)!

.

If k = 0 or k = n, there is only one k-combination (the empty set or the
whole of S, respectively). Because of our convention that 0! = 1, the formula
does give the right answer in this case.

The numbers
(
n

k

)
are usually called binomial coefficients. This is because

they occur as coefficients in the Binomial Theorem:

Theorem 1.20 (Binomial Theorem) For any natural number n,

(x+ y)n =
n∑

k=0

(
n

k

)
xkyn−k.
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Proof We have

(x+ y)n = (x+ y)(x+ y) · · · (x+ y) (n factors).

When the brackets are all expanded, we obtain a sum of many terms, each of
the form xkyn−k for some k: such a term is obtained by multiplying together xs
chosen from k of the brackets and ys from the remaining brackets. The number
of ways we can choose k brackets to pick the xs from (and hence the coefficient

of xkyn−k) is
(
n

k

)
.

1.20 More on permutations. There is another convenient way to repre-
sent a permutation, namely cycle notation. Let f be a permutation of S =
{1, . . . , n}. Choose any point of S (let us say a0), and follow what happens to
it as we apply f repeatedly, Since S is finite, we must eventually come back to
an element we have met before. Now this must be our starting point a0. For let
us suppose that this procedure generates successively a0, a1, . . . , ar−1 which are
all distinct, and then ar which is equal to some as with s < r. If s > 0 then
we have

f(ar−1) = ar = as = f(as−1);

since f is one-to-one, we must have ar−1 = as−1, which contradicts our choice of
ar as the first repeat. So ar = a0. Now the r-tuple (a0, a1, a2, . . . , ar−1) is called
a cycle of f . The notation tells us that f maps each point of the cycle except
the last to the next one along, while the last point comes back to the first.

If f(a0) = a0, then we have a cycle with just one element, namely (a0).
If every element of S occurs in the cycle, we are finished. Otherwise, choose a

point which has not yet been used, and repeat the procedure. A similar argument
shows that the cycle we generate has no elements in common with the previous
one. Continue like this until we are finished. Then we simply juxtapose the cycles
to obtain the cycle notation for f .

Here is an example. Let f be the function which maps 1 �→ 4, 2 �→ 7, 3 �→ 3,
4 �→ 8, 5 �→ 1, 6 �→ 5, 7 �→ 2, and 8 �→ 6. This is a permutation: in two-line
notation it is

f =
(
1 2 3 4 5 6 7 8
4 7 3 8 1 5 2 6

)
.

Start with the first element, 1. Follow its successive images under f until it
returns to its starting point:

f : 1 �→ 4 �→ 8 �→ 6 �→ 5 �→ 1.

This gives us a cycle (1, 4, 8, 6, 5).
If this cycle contains all the elements of the set {1, . . . , n}, then stop.

Otherwise, choose the smallest unused element (in this case 2, and repeat the
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procedure:

f : 2 �→ 7 �→ 2,

so we have a cycle (2, 7) disjoint from the first.
We are still not finished, since we have not seen the element 3 yet. Now

f : 3 �→ 3, so (3) is a cycle with a single element. Now we have the cycle
decomposition:

f = (1, 4, 8, 6, 5)(2, 7)(3).

By convention, in the cycle notation, we usually omit any cycle containing
just one element. Thus the permutation (1, 4, 2) of {1, . . . , 5} fixes 3 and 5. If
every point is fixed, this convention would tell us to write nothing: instead, in
this case, we write (1).

Associated with any permutation f is a number, either +1 or −1, called the
sign of f . It is defined to be (−1)n−c(f), where c(f) is the number of cycles of
f in cycle notation (including cycles with just one element). For example, the
sign of (1, 3, 4)(2, 5) is (−1)5−2 = −1, while the sign of (1, 4, 2) is (−1)5−3 = +1
(don’t forget the two cycles (3) and (5)). We denote the sign of the permutation
f by sign(f). We sometimes use instead the parity of f , which is defined to be
the parity (even or odd) of n − c(f). Thus even parity is the same as sign +1,
and odd parity is the same as sign −1.

Another parameter of a permutation f is its order, defined to be the smallest
positive number m such that, if f is applied m times, then every element of
S returns to its original position. Now if f has a cycle of length r, then the
elements of this cycle return to their original positions whenever the number of
applications of f is a multiple of r (and only then). So every point returns to its
starting position if and only if the number of applications is a multiple of every
cycle length. We conclude that the order of a permutation is the least common
multiple of its cycle lengths.

For example, the order of (1, 3, 4)(2, 5) is 6.
We will say more about permutations in Chapter 3.

Exercise 1.27 Let A and B be sets. Prove that A = B if and only if both A ⊆ B and
B ⊆ A hold.

Exercise 1.28 (a) Prove Proposition 1.15.
(b) Prove by induction that, if A is a finite set, then |An| = |A|n for all positive

integers n.

Exercise 1.29 Let A be a set with m elements. Then each of the following two sets
contains mn elements:

• the set An;
• the set of functions from {1, 2, . . . , n} to A.
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Find a bijection between these two sets.

Exercise 1.30 How many functions are there from {1, 2, 3} to {1, 2, 3, 4}? How many of
these are (a) one-to-one, or (b) onto? Repeat this question for functions from {1, 2, 3, 4}
to {1, 2, 3}.
Exercise 1.31 Each of the following attempts fails to define a function on the specified
set. Explain why it fails, and how you could make the definition into a function.

(a) F : R → R, F (x) = 1/x.
(b) F : C2 → C2, F (a, b) = (c, d) if c and d are the roots of the quadratic

x2 + ax+ b = 0.

Exercise 1.32 For each of the eight combinations of (Eq1), (Eq2), and (Eq3), find a
relation on the set {1, 2, 3} which satisfies precisely that combination of axioms.

Can this be done on the set {1, 2}?
Exercise 1.33 Does the Equivalence Relation Theorem hold if A is the empty set?
[How many equivalence relations are there on ∅? How many partitions of the empty set
are there?]

Exercise 1.34 (a) Show that A×A is an equivalence relation on A.
(b) Show that {(a, a) : a ∈ A} is an equivalence relation on A. (This is the relation

of equality.)

Exercise 1.35 Show that there are exactly five equivalence relations on a set of three
points. How many are there on a set of four points?

Exercise 1.36 In each of the following cases, state whether the relation ∼ on the set
X is (i) reflexive, (ii) symmetric, or (iii) transitive:

(a) X is the set of positive integers, x ∼ y if x divides y.
(b) X is the set of countries of Europe, x ∼ y if x and y have a common border.
(c) X is the set of capital cities of Europe, x ∼ y if it is possible to travel from x to

y by train.
(d) X is the set of integers, x ∼ y if x ≤ y.
(e) X is the set of integers, x ∼ y if x− y is divisible by 4.

In those cases where the relation is an equivalence, describe its equivalence classes.

Exercise 1.37 Let F : A→ B be a function. Show that F induces a bijection between
the set of equivalence classes of the kernel KER(F ) and the set Im(F ).

Exercise 1.38 Consider the following argument:

False proposition If a relation is symmetric and transitive then it is reflexive.

Proof Let R be a symmetric and transitive relation. Take (x, y) ∈ R. Then
(y, x) ∈ R (since R is symmetric), and so (x, x) ∈ R (since R is transitive; put
z = x in the transitive law). So R is reflexive.

(a) Say what is wrong with this argument.
(b) Give a counterexample to the false proposition.
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Exercise 1.39 (∗) Let X be a set, and let ∼ be a relation on X which is reflexive and
transitive. Write x ≡ y to mean that both x ∼ y and y ∼ x hold.

(a) Prove that ≡ is an equivalence relation.
(b) Suppose that x ∼ y, and suppose that x1 and y1 belong to the equivalence classes

of x and y respectively. Prove that x1 ∼ y1.

Exercise 1.40 (∗) Show that ordered pairs can be defined by the rule

(a, b) = {{a}, {a, b}}.
[You are asked to show that {{a}, {a, b}} = {{c}, {c, d}} if and only if a = c and b = d.
Be sure to cover all cases in your argument.]

Exercise 1.41 Recall that, formally, a function is a set of ordered pairs. How many
functions are there from the empty set to the empty set? How many of them are
one-to-one? How many are permutations?

Exercise 1.42 Write down the orders of all the permutations of the set {1, . . . , 5}.
(You should not attempt to write down all the permutations and find the order of each
one!)

Exercise 1.43 Show that a permutation which has odd order must be an even
permutation.

Is the converse true?

Modular Arithmetic
In this section we define the arithmetic of ‘integers mod m’ for any positive
integer m. First, we look at Euclid’s Algorithm.

1.21 Euclid’s Algorithm.

Definition The greatest common divisor, or g.c.d., of two positive inte-
gers m and n is the largest positive integer which divides both. We write it as
gcd(m,n).

Thus, gcd(12, 18) = 6.
We can extend the notion of greatest common divisor to the case where

one of the integers is equal to 0. Since any positive integer divides 0, we see
that gcd(m, 0) = m if m �= 0. If both m and n are zero, then gcd(0, 0) is
undefined (according to our definition above), so we adopt the convention that
gcd(0, 0) = 0.

Euclid gave a rule for finding the greatest common divisor of two natural
numbers, based on the division algorithm.

Theorem 1.21 Let m and n be natural numbers. Then

gcd(m,n) =
{
m if n = 0,
gcd(n, r) if m = nq + r with 0 ≤ r < n.
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Proof The first statement is true by definition. For the second, suppose that
m = nq + r. Then also r = m − nq. So any integer which divides m and n also
divides n and r; and vice versa; so the greatest common divisor of m and n is
equal to the greatest common divisor of n and r.

This is all very well, but the second line simply replaces the calculation of one
g.c.d. by another; why does this help? Notice that r < n. This means that, if we
apply Euclid’s Theorem repeatedly, the second number of the pair of numbers
whose g.c.d. we are finding gets smaller at each step. This cannot go on indef-
initely; sooner or later, it becomes zero, and the first line applies. So Euclid’s
Theorem gives us a constructive method to calculate the g.c.d. of two natural
numbers. We refer to it as Euclid’s Algorithm. (An ‘algorithm’ is just a con-
structive method, like a recipe or a set of directions, for achieving some result.)
Here it is more formally

To find gcd(m,n):
Put a0 = m and a1 = n.
As long as the last number ak found is non-zero, put ak+1 equal
to the remainder when ak−1 is divided by ak.
When the last number ak is zero, then the g.c.d. is ak−1.

An example should make it clear.

Example Find gcd(198, 78).
a0 = 198, a1 = 78.
198 = 2 · 78 + 42, so a2 = 42.
78 = 1 · 42 + 36, so a3 = 36.
42 = 1 · 36 + 6, so a4 = 6.
36 = 6 · 6 + 0, so a5 = 0.

So gcd(198, 78) = 6.

Euclid’s Algorithm actually does more than this. It expresses the greatest
common divisor of m and n in terms of the original numbers.

Theorem 1.22 For any two natural numbers m and n, there exist integers x
and y such that gcd(m,n) = xm+ yn.

I will not give a proof here: we will see this in much greater generality in
the next chapter. But here is an example to show how it works. Refer to the
preceding example showing that gcd(198, 78) = 6.

Example

6 = 42− 36

= 42− (78− 42) = 2 · 42− 78

= 2(198− 2 · 78)− 78 = 2 · 198− 5 · 78,
so x = 2, y = −5.
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1.22 The integers mod m.

Definition Let m be a positive integer. We define a relation on the set Z,
called ‘congruence modulo m’ and written ≡m, by the rule

x ≡m y ⇔ m | (y − x).

Often, instead of a ≡m b, we write x ≡ y (mod m). The meaning is exactly the
same.

Proposition 1.23 The relation ≡m is an equivalence relation on Z with
m equivalence classes. The numbers 0, 1, . . . ,m − 1 are representatives of the
equivalence classes.

The proof is left as an exercise.
Now we denote the set of equivalence classes by Zm; this is a set with m

elements. We denote the equivalence class containing the integer x by [x]m. So
we can write

Zm = {[0]m, [1]m, . . . , [m− 1]m}.

Sometimes we will be lazy and just write x instead of [x]m.
Now we can do arithmetic with the elements of Zm: we add and multiply

them by the rules

[x]m + [y]m = [x+ y]m, [x]m · [y]m = [xy]m.

There is a problem with these definitions. Since [x]m means ‘the equivalence
class containing x’, you would be within your rights to use different represent-
atives for the two equivalence classes. Then adding and multiplying them will give
different representatives for the classes [x]m + [y]m and [x]m · [y]m. Is it possible
that we could actually arrive at different classes? If so, our definitions would be
no good! In fact, this is not possible. Here is the argument for multiplication; try
addition for yourself.

Suppose that [x]m = [x′]m and [y]m = [y′]m. Then, by definition, x ≡m x′

and y ≡m y′, so x′ = x + um and y′ = y + vm for some integers u and v. But
then

x′y′ = (x+ um)(y + vm) = xy + (xy + vx+muv)m,

so xy ≡m x′y′, and [xy]m = [x′y′]m, as required.
Here, for example, are the addition and multiplication tables of Z4. We write

x instead of [x]4 in these tables, and we use the representatives 0, 1, 2, 3 for the
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equivalence classes.

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

· 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

Subtraction is always possible in Zm, but division is not. We say that y is
the inverse of x mod m if [x]m[y]m = [1]m. (If [x]m has an inverse, then we can
divide by it simply by multiplying by its inverse.)

Theorem 1.24 In Zm, the element [x]m has an inverse if and only if
gcd(x,m) = 1.

Proof If [x]m has an inverse [y]m, then xy ≡m 1, so xy = 1 + um. Let d =
gcd(x,m). Then d | x and d | m, so d | xy − um = 1; thus we must have d = 1.

Conversely, suppose that gcd(x,m) = 1. Now Euclid’s Algorithm gives us
numbers y and v such that xy+vm = 1; hence xy ≡m 1, or [x]m[y]m = [1]m.

Now calculations can be done in Zm as if the elements were ordinary numbers
(but remembering that x and y represent the same element if they are congruent
mod m).

Example Find
2
3
+

3
5
in Z13.

First method Find the inverses of 3 and 5 mod 13:

3 · 9 ≡13 1, so 1/3 = 9;

5 · 8 ≡13 1, so 1/5 = 8.

(How did I find these? Either by trial and error, or by the method based on
Euclid’s Algorithm explained in the last subsection.)

Hence 2/3 + 3/5 = 2 · 9 + 3 · 8 = 42 = 3, or [3]13 to be more accurate.
Second method

2
3
+

3
5
=

2 · 5 + 3 · 3
2 · 3 =

19
15

=
6
2
= 3.

Exercise 1.44 Find all solutions of the equation x2 = 2 (a) in Z17; (b) in Z19.

Exercise 1.45 (a) Let p be a prime number. Prove that the binomial coefficient

(
p

k

)

is a multiple of p for 1 ≤ k ≤ p− 1.
(b) Use the Binomial Theorem and induction on n to show that, if p is a prime

number, then np ≡p n for all natural numbers n. [Hint : Expand (n+1)p by the Binomial
Theorem; all terms except the first and the last are divisible by p.]
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Remark This result is known as Fermat’s Little Theorem.

Exercise 1.46 (∗) In this question we look at the converse of Fermat’s Little
Theorem.

(a) Show that 2341 ≡341 2, but 341 is not a prime. (The number 341 is called a
pseudoprime to base 2.)

(b) Show that a561 ≡561 a for any integer a, but 561 is not a prime. (The number 561
is called a Carmichael number, after Robert D. Carmichael, who first studied
numbers with this property.) Hint : Show that

• if p is prime and m = k(p− 1) + 1, then am ≡p a;
• if m is a product of distinct prime numbers then a ≡m b holds if and
only if a ≡p b for each prime number dividing m.

(c) Can you find any more Carmichael numbers?

Matrices
Another familiar system of objects which make up part of the subject-matter of
Algebra consists of matrices.

Anyone who has used a spreadsheet program knows the importance of 2-
dimensional tables of numbers. A matrix is just such a table.

Definition Amatrix of size m×n, or an m×n matrix, is an array of numbers
with m rows and n columns.

We denote the entry in row i and column j of the matrix A by (A)ij , or often
in lower-case form by aij . So

A =



a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . .
am1 am2 . . . amn


 .

For small matrices, we may want to avoid writing lots of subscripts by writing,
for example, a 2× 2 matrix A as

A =
(
a b
c d

)
.

1.23 Matrices and determinants. A matrix is simply a table of numbers.
However, if the matrix is square, there is a single number which can be calcu-
lated from it (whose theoretical significance we will see later on). This is the
determinant of the matrix.

Two notations are commonly used. We write the determinant of the matrix
A as det(A) or detA. Alternatively, if the matrix is written out as a table (in



Introduction 53

round brackets), we denote the determinant by the same table surrounded by
vertical bars; thus

det
(
a b
c d

)
=

∣∣∣∣ a b
c d

∣∣∣∣ .
How is it defined? The rule can be written down easily in small cases:

det

(
a b

c d

)
= ad− bc,

det



a b c

d e f

g h i


 = aei+ bfg + cdh− ceg − bdi− afh.

The process can be described as follows. We form all the terms which can be
made by choosing one element from each row and column of the matrix. Some
of these are given minus signs, and the results added up. Which terms get which
signs?

For 2×2 matrices, the term on the north-west to south-east diagonal is given
a + sign and the term on the north-east to south-west diagonal has a − sign.
The same rule holds in the 3× 3 case if we imagine the matrix as a tile which is
repeated. One negative term is highlighted.

a b c a b · · ·
d e f d e

g h i g h

a b c a b · · ·
d e f d e

...
. . .

This rule does not extend to larger matrices, however. The correct rule uses
the notion of the sign of a permutation, which we defined in the preceding section.
Notice that any term obtained by choosing one element from each row and one
from each column can be specified by a function f : we choose the element from
row k and column f(k), for k = 1, . . . , n. This function must be a permutation,
and so has a sign, which we denote by sign(f). Now this sign is affixed to the
term in the expansion.

Thus, the general formula is: if A = (aij) is an n× n matrix, then

det(A) =
∑
f∈Sn

sign(f)a1 f(1)a2 f(2) · · · an f(n),

where Sn is the set of all permutations of {1, . . . , n}. So the number of terms in
the sum is n!.
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In the case n = 3, the term bdi is selected by the permutation mapping 1 to
2, 2 to 1, and 3 to 3, that is, (1, 2)(3) in cycle notation; its sign is (−1)3−2 = −1,
as indeed we saw.

1.24 Addition and multiplication. As mentioned earlier, matrices can be
added and multiplied. Here are the rules for 2×2 matrices. Let A and B be 2×2
matrices: say

A =
(
a b
c d

)
,

B =
(
a′ b′

c′ d′

)
.

We define addition and multiplication by the rules

A+B =
(
a+ a′ b+ b′

c+ c′ d+ d′

)
,

AB =
(
aa′ + bc′ ab′ + bd′

ca′ + dc′ cb′ + dd′

)
.

The rule for addition is straightforward: just add the entries in corresponding
positions in the two matrices. The rule for multiplication seems to have little
rhyme or reason to it. You may well have met this rule in geometry and seen
how it arises from geometric transformations. If not, you will have to wait until
Chapter 4 for an algebraic representation. But you should not try to memorise
the rule; it is easy to explain how it works. To find a particular entry in AB, for
example the entry in the first row and second column, we look at the first row
of A (containing entries a and b) and the second column of B (with entries b′

and d′). Now multiply each entry in the chosen row of A by the corresponding
entry in the chosen column of B (giving ab′ and bd′), and add these to obtain
the entry of AB in the required position.

For example:


→ 1 2

3 4







↓
5 6

7 8


 =


 22




1 · 6 + 2 · 8 = 22.

Now it is possible to show that most of the now-familiar properties hold for
matrices: addition is commutative and associative, multiplication is associative,
and the distributive law holds. But there is a surprise: multiplication is not
commutative. Take the matrices in the above example: let

A =
(
1 2
3 4

)
, B =

(
5 6
7 8

)
.
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Now check that

AB =
(
19 22
43 50

)
, BA =

(
23 34
31 46

)
.

There is nothing special about these two matrices; they happened to be the first
pair that I thought up. It is quite rare for two matrices to commute!

Now we could do as we did for polynomials, and examine the proofs of those
laws that do hold to see what properties of the matrix entries are being used. We
find that these are just the same properties as we are proving for the matrices
(commutativity and associativity for addition, associativity for multiplication,
distributive laws). In this way, we prove general theorems for matrices with
entries from a whole range of number systems.

For completeness, we define addition and multiplication for matrices of arb-
itrary size. Let A and B be matrices; let A have (i, j) entry aij (this is shorthand
for the entry in the ith row and jth column), and let B have (i, j) entry bij .

The (i, j) entry of A+B is just the sum aij + bij of the corresponding entries
of A and B. In order for this to make sense, we need that for each entry of A
there is an entry in the same position in B and vice versa; that is, A and B must
have the same size. Hence

A+B is defined if and only if A and B are both m× n matrices,
for some m and n; then A+B is also m× n.

The (i, j) entry of AB is worked out as we described above. We select the
ith row of A and the jth column of B; then we multiply each element aik of the
first by the corresponding element bkj of the second, and add all these terms,
obtaining the formula ∑

k

aikbkj

for the (i, j) entry of AB. For this to work, the number of elements in each row
of A (which is the number of columns of A) must be equal to the number of
elements in each column of B (which is the number of rows of B). So we have

AB is defined if and only if A is m × n and B is n × p for some
m,n, p; then AB is m× p.

(And, in the above sum, k runs from 1 to n.)
In particular, if A and B are both square matrices (this means that they have

the same number of rows as columns) of the same size, then both the sum A+B
and the product AB are defined. We will see later that, in this case,

det(AB) = det(A) · det(B).

However, it is not true that det(A+B) = det(A) + det(B).
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1.25 Linear equations. The theory of matrices grew from the problem of
solving equations, specifically linear equations in several variables. Such a system,
involving m equations in n variables, can be written in the form

a11x1 + a12x2 + · · · + a1nxn = b1,
a21x1 + a22x2 + · · · + a2nxn = b2,

...
am1x1 + am2x2 + · · · + amnxn = bm.

Such a system gives us a matrix of coefficients, the table of numbers aij :

A =



a11 a12 · · · a1n
a21 a22 · · · a2n
...

am1 am2 · · · amn


 .

Such a system of equations may have no solution, or a unique solution, or
more than one solution. Matrix theory allows us to determine which possibility
occurs and gives us tools to calculate the solutions if they exist. Here, without
proof, is part of the answer for the case where the numbers of equations and
variables are equal. Suppose that the system of equations is

a11x1 + a12x2 + · · · + a1nxn = b1,
a21x1 + a22x2 + · · · + a2nxn = b2,

...
an1x1 + an2x2 + · · · + annxn = bn.

Let A be the matrix of coefficients, and let b be the 1 × n matrix (the column)
with entries b1, b2, . . . , bn. Let Bi be the matrix obtained from A by replacing
the ith column by the column b.

Theorem 1.25 With the above notation,

(a) If det(A) �= 0, then the equations have unique solution, given by

xi =
det(Bi)
det(A)

, i = 1, . . . , n.

(b) If det(A) = 0, then either the equations have no solution, or they have more
than one solution.

This result perhaps explains the name of the mysterious ‘determinant’
function: it determines whether or not the equations have a unique solution.
The formula for the solution in part (a) is Cramer’s Rule.

We will see the proof of this theorem, and give details of how to calculate
which possibility occurs, in Chapter 4.
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For example, the equations

3x+ 2y = 22

4x+ 3y = 31

have the unique solution

x =

∣∣∣∣22 2
31 3

∣∣∣∣∣∣∣∣3 2
4 3

∣∣∣∣
=

66− 62
9− 8

= 4,

y =

∣∣∣∣3 22
4 31

∣∣∣∣∣∣∣∣3 2
4 3

∣∣∣∣
=

93− 88
9− 8

= 5.

Exercise 1.47 Prove the distributive law for 2 × 2 matrices. What properties of the
matrix entries are used in your proof?

Exercise 1.48 Look at the example of non-commutative matrices in the text. Observe
that the sum of the elements on the ‘main diagonal’ is the same for AB as for BA (that
is, 19 + 50 = 23 + 46). Is this a coincidence?

Exercise 1.49 An n×nmatrix A = (aij) is upper triangular if aij = 0 whenever i >
j. (This means that all elements below the ‘main diagonal’ a11, a22, . . . , ann are zero.)
Prove that the sum and product of upper triangular matrices are upper triangular.
Is multiplication of upper triangular matrices commutative?

Exercise 1.50 Solve the following equations:

x + 2y + 3z = 10,
2x + 5y + 10z = 26,
3x + 10y + 26z = 55.

Exercise 1.51 Solve the following equations, for any real number c:

x + 2y + 3z = 10,
2x + 5y + 10z = 26,
3x + 8y + 17z = c.

Exercise 1.52 Professor Fibonacci buys a pair of newborn rabbits at the beginning of
month 0. Assume that rabbits are infertile until they are two months old, from which
time each pair produces one pair of offspring every month for ever. Let xn be the
number of pairs of baby rabbits at the start of month n, and yn the number of pairs
of rabbits which are at least one month old. Show that(

xn+1
yn+1

)
=

(
0 1
1 1

) (
xn

yn

)
,
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and deduce that (
xn

yn

)
=

(
0 1
1 1

)n (
1
0

)
.

How many pairs of rabbits does the Professor have after a year?

Appendix: Logic
Reasoning and logic are to each other as health is to medicine, or—
better—as conduct is to morality. Reasoning refers to a gamut of
natural thought processes in the everyday world. Logic is how we
ought to think if objective truth is our goal—and the everyday
world is very little concerned with objective truth. Logic is the
science of the justification of conclusions we have reached by nat-
ural reasoning.

Julian Jaynes (1976).

1.26 Logic and truth tables. We are usually able to tell without too much
trouble whether or not a simple mathematical argument is valid. For example,
the argument

All men are mortal; grass is mortal; therefore all men are grass

is not logically valid, although it may express a poetic truth. In more complicated
cases, it is good to know that the rules of logic have been codified and can be
applied mechanically.

We build up expressions and arguments from basic propositions or state-
ments, each of which may be either true (T) or false (F). For the purpose of the
argument, it does not matter what these propositions are; the logical validity of
an argument should not depend on the meanings of its propositions. We denote
propositions by the letters p, q, r . . .

We are allowed to combine propositions with various connectives, as fol-
lows. For each connective, we give its meaning in words and then in a truth
table. All we are interested in is which combinations of truth values of the basic
propositions make the compound proposition true.

• Conjunction, ‘and’. The combination ‘p and q’ is true if both p and q are
true, and is false in all other cases. We write ‘p and q’ as p∧ q (or sometimes
p&q). The truth table is

p q p ∧ q
T T T
T F F
F T F
F F F
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• Disjunction, ‘or’. The combination ‘p or q’ is true if either p or q is true (or
possibly both). This connective is sometimes called ‘inclusive or’, as distinct
from ‘exclusive or’, which is true only when exactly one of p and q is true.
We write ‘p or q’ as p ∨ q. The truth table is

p q p ∨ q
T T T
T F T
F T T
F F F

• Negation, ‘not’. The truth value of ‘not p’ is opposite to that of p: it is
false when p is true, and vice versa. Writing ‘not p’ as ¬p, the truth table is

p ¬p
T F
F T

• Implies, ‘if . . . then . . . ’. The truth table for ‘p implies q’, written p⇒ q,
is a bit surprising at first. The implication is true in all cases except when p
is true and q is false. We return to this at the end of the section. The truth
table is

p q p⇒ q
T T T
T F F
F T T
F F T

• Equivalent, ‘if and only if ’. This connective, written p ⇔ q, is true if
and only if p and q have the same truth value (both true or both false). The
truth table is

p q p⇔ q

T T T
T F F
F T F
F F T

Note that p⇔ q means the same as p⇒ q and q ⇒ p.

Every valid rule of logic can be proved using truth tables. For example, con-
sider the technique of ‘proof by contradiction’. In order to prove a proposition p,
we assume the negation of p, that is, ¬p, and deduce a contradiction x (whose
truth value is F). In other words, we prove (¬p) ⇒ x. It follows from the truth
table for implication that, if x is false and (¬p) ⇒ x is true, then ¬p is false;
that is, p is true.
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Again, consider the ‘proof’ that all men are grass. We are given p ⇒ r and
q ⇒ r, and are supposed to deduce that p ⇒ q. But if it happens that p and r
are true and q is false, then both p ⇒ r and q ⇒ r are true but p ⇒ q is false.
So the deduction is not valid.

The rule that if p is false then p⇒ q is true, whatever proposition q may be,
is often found perplexing. But it does agree with everyday usage. Suppose that
I say to you, ‘If it is fine tomorrow, we will go to the Zoo.’ If it rains tomorrow
then, whether or not we go to the Zoo, I did not lie to you! The only case in
which I have lied would be if it is fine and we do not go to the Zoo.

Bertrand Russell was asked about this by a philosopher, who said, ‘Is it true
that, if 1 + 1 = 3, then you are the Pope?’ Russell improvised the following
argument on the spot.

Suppose that 1 + 1 = 3. Subtracting 1 from each side we obtain
1 = 2. Now the Pope and I are two; therefore we are one.

1.27 Sets and logic. An unexpected application of truth tables is to proving
complicated identities about sets. Let A,B,C, . . . be sets, contained in some large
set U (the ‘universe’), and let p be the proposition asserting that x ∈ A, q the
proposition x ∈ B, r the proposition x ∈ C, and so on. Each of p, q, r, . . . may
be true or false, depending on the point x. But, for example, p ∧ q is true if and
only if x ∈ A ∩ B, so p ∧ q represents the set A ∩ B. Similarly, p ∨ q represents
A ∪ B; ¬p represents A′ = U \ A (the complement of A in the ‘universe’); and
other connectives correspond to other combinations. Now suppose that we have
to prove an identity, say

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

This will follow if we can show that the two propositions p∧ (q∨ r) and (p∧ q)∨
(p ∧ r) are equivalent (that is, always have the same truth value). This can be
done quite mechanically as follows:

p q r q ∨ r p ∧ (q ∨ r) p ∧ q p ∧ r (p ∧ q) ∨ (p ∧ r)
T T T T T T T T
T T F T T T F T
T F T T T F T T
T F F F F F F F
F T T T F F F F
F T F T F F F F
F F T T F F F F
F F F F F F F F

The result follows because the entries in the columns labelled p ∧ (q ∨ r) and
(p ∧ q) ∨ (p ∧ r) are identical.
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Truth tables thus formalise the arguments using Venn diagrams that we met
earlier.

Exercise 1.53 Prove that (p ⇒ q) ∨ (q ⇒ p) is logically valid (that is, true for all
combinations of truth values of p and q).

Remark This shows clearly that logical implication does not involve any
material connection between propositions!

Exercise 1.54 Explain why the words ‘necessary’ and ‘sufficient’ are used as described
on page 6.

Exercise 1.55 If p and q are the propositions x ∈ A and x ∈ B respectively, show
that x ∈ A�B is the proposition ¬(p⇔ q). What set is represented by p⇒ q?

Exercise 1.56 Prove, using truth tables, that (A ∪ B)′ = A′ ∩ B′ for any two sets A
and B.

Miscellaneous exercises

Exercise 1.57 Find the least positive integer N such that every integer n ≥ N can
be written in the form 4a+ 7b for some choice of integers a ≥ 0 and b ≥ 0. Prove that
your N has this property.

Exercise 1.58 True or false? Give reasons.

(a) The square of any integer is congruent to 0 or 1 mod 4.
(b) For any natural number n ≥ 3, (n2 + n+ 2)/2 is a prime number.

Exercise 1.59 Let S be the set of all 2×2 real matrices of the form
(

cos θ sin θ
− sin θ cos θ

)
for real numbers θ.

(a) Let A and B be two matrices in S. Prove that AB ∈ S.
(b) Is multiplication of matrices in S commutative?

Exercise 1.60 Find all complex numbers z satisfying z3 = 1.

Exercise 1.61 State the Binomial Theorem, and use it to evaluate

n∑
r=0

(
n

r

)
(−1)r2n−r.

Exercise 1.62 (∗) (a) Let n be a positive integer with the property that every positive
integer m ≤ n/2 is a divisor of n. Show that n is 1, 2, 3, 4, or 6.

(∗∗) (b) Let n be a positive integer with the property that every positive integer
m <

√
n is a divisor of n. Show that n is a divisor of 24.



62 Introduction

Exercise 1.63 Here is an extract from some lecture notes on Geometry.

The scalar product is a way of multiplying two vectors to produce
a scalar (a real number).
Let u,v be non-zero vectors represented by �AB, �AC. We define
the angle between u and v to be the angle θ (in radians), with
0 ≤ θ ≤ π, between �AB and �AC.
The scalar product (or dot product) u · v is |u| |v| cos θ, if u and
v are non-zero vectors and θ is the angle between them. If u = 0
or v = 0 then we define u · v = 0.

(a) What is this? Is it a definition, a theorem, a proof, an example, or just some
chit-chat?

(b) Your boss asks you to summarise it in a brief bullet point, without using any
symbols. What would you say?

(c) Why are the zeros in the last sentence written in different typefaces?

Exercise 1.64 Prove that, for any two positive integers m and n,

gcd(m,n) · lcm(m,n) = mn,

where gcd(m,n) and lcm(m,n) are the greatest common divisor and least common
multiple of m and n.

Does any similar result hold for three positive integers?

Exercise 1.65 What is the largest possible order of a permutation of {1, 2, . . . , 8}?
Give an example of such a permutation. Are there any permutations with this order
which have odd parity? Are there any which have even parity?

Exercise 1.66 Give an example of a real polynomial of degree 4 which is reducible
even though it has no real roots.
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Rings and subrings
This chapter is about rings, which are abstract systems in which addition and
multiplication are defined. The prototype is the ring Z of integers, with the
ordinary arithmetic operations. This is the example to which we keep coming
back: we are interested in seeing how far the familiar properties of integers (as
outlined in Chapter 1) can be extended.

2.1 Introduction. A ring is a set with two binary operations called addi-
tion and multiplication. We use the same notation for these operations in a
general ring as in the integers: addition is represented by an infix +, and multi-
plication by either juxtaposition or an infix ·. (That is, we denote the sum of a
and b by a+ b, and their product by either ab or a · b.)

A ring is defined by a list of axioms, which follows. These are divided into
three groups, involving addition, multiplication, and both operations, respec-
tively. These are meant to be familiar properties of Z. I will assume without
proof that they all hold in Z.

Axioms for addition
(A0) (Closure law): For all a, b ∈ R, a+ b ∈ R.
(A1) (Associative law): a+ (b+ c) = (a+ b) + c for all a, b, c ∈ R.
(A2) (Zero law): There exists 0 ∈ R such that a+0 = 0+ a = a for all a ∈ R.
(A3) (Inverse law): For all a ∈ R, there exists b ∈ R with a+ b = b+ a = 0.
(A4) (Commutative law): a+ b = b+ a for all a, b ∈ R.
Axioms for multiplication
(M0) (Closure law): For all a, b ∈ R, ab ∈ R.
(M1) (Associative law): a(bc) = (ab)c for all a, b, c ∈ R.
Mixed axiom
(D) (Distributive laws): (a + b)c = ac + bc and c(a + b) = ca + cb for all
a, b, c ∈ R.

The two distributive laws are sometimes called the left and right distribu-
tive laws respectively. Please do not try to remember which is which; I will not
use these names.

The closure laws (A0) and (M0) are not strictly necessary: when we say that
addition and multiplication are operations on R, it follows that the closure laws
must hold! We will see the reason for requiring them when we come to look at
subrings in Section 2.4.
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Just as, when buying a personal computer, you are offered various extra
features (more RAM, larger hard disk, etc.), so it is possible to have extra features
in your ring if you are prepared to spend a bit more. Some of these are as follows.
A ring R is a ring with identity if it satisfies

(M2) (Identity law): There exists 1 ∈ R with 1 �= 0 such that a1 = 1a = a for
all a ∈ R.

R is a division ring if it satisfies (M2) and also

(M3) (Inverse law): For all a ∈ R with a �= 0, there exists b ∈ R with
ab = ba = 1.

R is a commutative ring if it satisfies

(M4) (Commutative law): ab = ba for all a ∈ R.
Finally, a commutative division ring is called a field.

Note that the extra multiplicative axioms are almost exact parallels of the
additive axioms that we require in any ring. The exception is that, in the inverse
law, we only require that non-zero elements have multiplicative inverses. We will
see the reason for this soon.

Many authors make the convention that a ring must have an identity. In
other words, they assume axiom (M2) along with (A0)–(A4), (M0), (M1),
and (D).

In fact, some go so far as to use the word rng (sic) for a structure which I
called a ring (that is, satisfying (A0)–(A4), (M0), (M1), and (D), so that they
can use the term rIng for ‘rng with Identity’.

Of course it is just convention. When different groups of mathematicians use
different conventions, you are free to choose the one you like best, but you must
accept that other people will do things differently. When we have learned a bit
more about rings, I will explain why I took the decision I did on page 79.

The commutative law for addition follows from the other axioms for a ring
with identity. The simple argument for this is outlined on page 69. A different
proof is outlined in the solution to Exercise 2.7.

Remark Remember that the qualifying expressions in the terms ‘commutative
ring’ and ‘ring with identity’ refer to the multiplication. The addition in a ring
is always commutative, and there is always an identity (or zero) element for
addition.

2.2 Examples of rings.

Example 1 Our prototype of a ring is the ring Z of integers. It is indeed a ring;
in fact, it is a commutative ring with identity (but not a field, since, for example,
there is no integer x such that 2x = 1). I assume that all of these properties of
integers are familiar to you. To give formal proofs, it is necessary to have a
careful definition of the integers. This is done in courses on the Foundations of
Mathematics: we will look at the arguments in Chapter 6.
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Example 2 Other familiar number systems, such as Q (the rational numbers),
R (the real numbers), and C (the complex numbers), are fields.

Example 3: Matrix rings Let R be any ring. Let Mn(R) denote the set of
all n×n matrices with elements in R. We can define addition and multiplication
on Mn(R) by rules which look exactly the same as those for matrices of real
numbers, which we saw in the last chapter. That is, if A=(aij) and B=(bij)
(this means that the element in row i and column j of A is aij , etc.), then

A+B = C = (cij), where cij = aij + bij ,

A ·B = D = (dij), where dij =
n∑

k=1

aikbkj .

(Note that the rule for matrix addition depends on addition of ring elements,
while the rule for matrix multiplication involves calculating n products and
adding them up. There is a potential problem here, since we can only add two
elements at a time: we will see in the next section that it does not matter how
we perform the additions.)

It can be shown that Mn(R) is a ring. (See Exercise 2.2 for the case n = 2.)
If R has an identity, then so does Mn(R) (the usual identity matrix with 1

on the diagonal and 0 everywhere else). But Mn(R) is not commutative except
in trivial cases, and is never a division ring for n> 1.

Example 4: Polynomial rings For any ring R, the set R[x] of all polynomials
with coefficients in R is a ring. This is a generalisation of the familiar case of
real polynomials. We will discuss exactly what a polynomial is, and how addition
and multiplication should be defined in general, in Section 2.9.

Example 5: Finite rings A finite ring can be specified by giving operation
tables for its addition and multiplication. For obvious reasons, these tables are
usually called addition tables and multiplication tables.

For example, it can be shown that the structure given by

+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

is a field. This can be proved directly, but it takes some work. For example,
to verify the associative law (A1) from the tables, we have to substitute all
possible values of a, b, and c. There are two possibilities for each of these, so
23 =8 instances of the law to be checked. Also, of course, eight instances of
the associative law for multiplication, four of the commutative law, 16 of the
distributive law . . . . For larger finite rings the situation is even worse. The moral
is that, if all else fails, this method can be used; but usually it is better to have
a more theoretical proof!
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You probably recognised that the ring with the above tables is Z2, the integers
mod 2. In fact, Zm is a ring, for any positive integer m. But not all finite rings
are of this kind. Here is one which is not.

+ 0 1 a b

0 0 1 a b
1 1 0 b a
a a b 0 1
b b a 1 0

· 0 1 a b

0 0 0 0 0
1 0 1 a b
a 0 a a 0
b 0 b 0 b

Example 6: Zero rings Let R be a set with one binary operation + satisfying
axioms (A0)–(A4). (Later, we will see that such a thing is called an abelian
group.) Is it possible to define a multiplication on R so that it becomes a ring?
The answer is yes: it is always possible, by the trivial rule

ab = 0 for all a, b ∈ R,
where 0 is the zero element given by (A2).

To prove this, we check the remaining axioms:
(M0): For all a, b ∈ R, ab = 0 ∈ R.
(M1): For all a, b, c ∈ R, (ab)c = 0 = a(bc).
(D): For all a, b, c ∈ R, we have (a+ b)c = 0, while ac+ bc = 0+0 = 0, using

property (A2). Similarly the other way round.
A ring constructed in this manner (one in which all products are zero) is

called a zero ring. Such rings always exist, but they are not very exciting.

Example 7 The set of all even integers is a ring. It is commutative, but does
not have an identity. (There is no even integer e such that ex = x for all even
integers x.)

Example 8: Boolean rings Just as Descartes aimed to turn geometry into
algebra by setting up coordinates in the Euclidean plane, so Boole attempted to
turn set theory (and logic) into algebra, as we see below. The main legacy of his
attempt is that his name is familiar to every computer scientist.

Let X be a set, and let R denote the power set of X, the set of all subsets of
X. (This is sometimes denoted by P(X).) We define operations on R as follows.
For A,B ⊆ X, we let A+B be the symmetric difference of A and B, the set
of all elements lying in either A or B but not both. (This is sometimes written
A�B.) Also, we let A ·B be the intersection A ∩B.

Now R is a ring. Let us check the axioms.
(A0): Clear.
(A1): Use a Venn diagram or truth table to show that (A + B) + C and

A + (B + C) are both equal to the set of elements which are either in all three
of the sets A,B,C or in exactly one of them.

(A2): A+ ∅ = A, since nothing is in the empty set; so ∅ is the zero element.
(A3): A+A = ∅, since there is no element which lies in A but not in both A

and A.(!) So the inverse of A is A.



Rings 67

(A4): Clear.
(M0): Clear.
(M1): (AB)C and A(BC) both consist of the elements lying in all three sets.
(D): Prove this by means of a Venn diagram or truth table.
Now R is a commutative ring. It has an identity, namely the whole set X

(since X ∩ A = A for any A ⊆ X). But it is not a division ring if X has more
than one element: the equation A∩B = X can never hold if A is a proper subset
of X.

A ring of this form is called a Boolean ring. For example, when X = {0, 1},
the addition and multiplication tables are as follows:

+ ∅ {0} {1} {0, 1}
∅ ∅ {0} {1} {0, 1}

{0} {0} ∅ {0, 1} {1}
{1} {1} {0, 1} ∅ {0}

{0, 1} {0, 1} {1} {0} ∅

· ∅ {0} {1} {0, 1}
∅ ∅ ∅ ∅ ∅

{0} ∅ {0} ∅ {0}
{1} ∅ ∅ {1} {1}

{0, 1} ∅ {0} {1} {0, 1}

2.3 Properties of rings. In this section we prove a few basic properties
which follow from the ring axioms.

1. In a ring, we can only add elements two at a time. What if we want to add
more than two elements? We have to put in brackets to convert the sum into
a succession of pairwise additions. However, because of the associative law, the
answer is the same no matter how we put in the brackets. For example, consider
a+b+c+d. There are five possible ways of evaluating this, corresponding to the
five bracketings ((a+b)+c)+d, (a+(b+c))+d, (a+b)+(c+d), a+((b+c)+d),
and a + (b + (c + d)). Now (a + b) + c = a + (b + c), so the first two are equal.
Similarly, (b+c)+d = b+(c+d), so the fourth and fifth are equal. Now consider
(a+b)+(c+d). Putting a+b = x, this is x+(c+d) = (x+c)+d = ((a+b)+c)+d;
similarly, putting c+d = y, it works out to a+(b+(c+d)). So all the expressions
are equal.

We usually write a+ b+ c+ d, leaving out the brackets.
In fact, the sum of any number of elements does not depend on the bracketing

used to work it out. This might seem obvious to you as an extension of the above
argument. But we can (and should) give a correct formal proof.

Proposition 2.1 In a ring, the sum a1 + · · ·+ an of any number of elements
is independent of the bracketing used to work it out.

Proof The proof is by induction on n. For n = 1 and n = 2, there is nothing to
prove. For n = 3, there are just two possible bracketings, namely (a1 + a2) + a3
and a1 + (a2 + a3), and the associative law tells us that they are equal. So let
us assume that the result holds for sums of fewer than n terms, and prove it for
sums of n terms. The induction hypothesis allows us to write a1 + · · · + am for
the sum of m terms whenever m < n.
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Now consider two bracketings of the sum of a1, . . . , an. In the evaluation of
each bracketing, at the last-but-one stage, we will have two expressions, the sum
of a1, . . . , ak, and the sum of ak+1, . . . , an, which are then added at the last stage.
By the induction hypotheses, each of these smaller sums is independent of the
bracketing, and so we can write the whole expression as

(a1 + · · ·+ ak) + (ak+1 + · · ·+ an),

where 0 < k < n. Similarly, the other expression reduces to

(a1 + · · ·+ al) + (al+1 + · · ·+ an),

where 0 < l < n.
If k = l, these expressions are clearly equal. So suppose not. We may assume

that k < l. Now, again using the inductive hypothesis, we can write the first as

(a1 + · · ·+ ak) + ((ak+1 + · · ·+ al) + (al+1 + · · ·+ an)),

and the second as

((a1 + · · ·+ ak) + (ak+1 + · · ·+ al)) + (al+1 + · · ·+ an).

But these have the form x+ (y + z) and (x+ y) + z, where

x = a1 + · · ·+ ak,

y = ak+1 + · · ·+ al,

z = al+1 + · · ·+ an;

by the associative law, they are equal.

The argument does not depend on the fact that the operation is called ‘addi-
tion’, but only on the associative law. So the same is true, for example, for the
operation of multiplication in a ring.

2. Axiom (A2) guarantees that a zero element exists. Could there be more than
one? Suppose that z1 and z2 are two zero elements in a ring R; that is, for all
a ∈ R,

a+ z1 = z1 + a = a = a+ z2 = z2 + a.

Then we have
z1 = z1 + z2 = z2.

So the zero element is unique. A very similar argument shows that, in a ring
with identity, the identity element is unique.

3. It is also true that inverses (as given by (A3)) are unique. For suppose that b
and c are both inverses of a. This means that

a+ b = b+ a = 0 = a+ c = c+ a.
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Now

b+ (a+ c) = b+ 0 = b,

(b+ a) + c = 0 + c = c.

By the associative law, the left-hand sides are equal; so b = c.
We write the inverse of a as −a. Also, we abbreviate a+(−b) to a− b. Notice

that we are falling into mathematical bad habits here: the symbol − is being
used in the first place as a unary operator (taking a to −a), and in the second as
a binary operator (combining a and b to form a− b). In fact, people are used to
this double use and have no trouble with it, but many calculators have different
buttons for the two different uses of −.

Similarly, in a division ring, the multiplicative inverse of a non-zero element
a is unique (and is written a−1, so that aa−1 = a−1a = 1).

4. The cancellation law holds for addition:

(C) (Cancellation Law): If a+ c = b+ c, then a = b.

Proof Suppose that a+ c = b+ c. Add −c to each side:

(a+ c)− c = (b+ c)− c,

a+ (c− c) = b+ (c− c),

a+ 0 = b+ 0,

a = b.

5. Here is the proof that the commutative law for addition follows from the other
axioms in a ring with identity.

Expand (1 + 1)(a+ b) in two ways. We get

(1 + 1)(a+ b) = (1 + 1)a+ (1 + 1)b

= a+ a+ b+ b,

and

(1 + 1)(a+ b) = 1(a+ b) + 1(a+ b)

= a+ b+ a+ b.

So a+ a+ b+ b = a+ b+ a+ b. Cancelling a from the front and b from the end
gives a+ b = b+ a, as required.

6. For any a ∈ R, a0 = 0a = 0.

Proof
a(0 + 0) = a0 + a0.
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Also, 0 + 0 = 0, so
a(0 + 0) = a0 = a0 + 0.

Now use (C) to cancel a0 from the equation to give a0 = 0.
The proof that 0a = 0 is similar.

Remark This is the reason why axiom (M3) for a division ring only requires
non-zero elements to have multiplicative inverses; for 0 �= 1, and x0 = 0 for all
X ∈ R, so there cannot exist b with b0 = 1.

7. For any a ∈ R, −(−a) = a.

Proof −(−a) is the inverse of −a; that is, it is an element which, when added
to −a, gives zero. But we know that a added to −a gives zero. Since inverses are
unique, these two inverses of −a must be equal.

8. For any a, b ∈ R, −(a+ b) = −b− a.

Proof We have to show that −b− a is the inverse of a+ b. So add it to a+ b:

−b− a+ (a+ b) = −b+ (−a+ a) + b

= −b+ 0 + b

= −b+ b

= 0,

as required.

2.4 Subrings. Let R be a ring. A subring of R is a subset S ⊆ R which
itself forms a ring (using the same operations as those in R).

Let us see what checking the axioms involves in this case.
(A0): We require closure, that is, for all a, b ∈ S, a+ b ∈ S.
(A1): The associative law automatically holds for all a, b, c ∈ S, since it holds

for all a, b, c in the larger set R.
(A2): We require that the zero element of R lies in S.
(A3): For each a ∈ S, we require that −a ∈ S.
(A4): This holds automatically, by the same argument as for (A1).
(M0): We require that S is closed under multiplication.
(M1): This is automatic, as for (A1). The same is true of (D).
We conclude that, of the eight axioms, four are automatically true, just

because we are looking at a subset of a ring. (These are the axioms assert-
ing that all elements satisfy some equation.) So we only have to require the two
closure axioms, the zero and inverse axioms.

In fact, we can whittle these down to three:

Theorem 2.2 (First Subring Test) A non-empty subset S of a ring R is a
subring provided that, for all a, b ∈ S, we have a+ b, ab,−a ∈ S.
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Proof We are given the closure and inverse axioms; we have to show that
0 ∈ S. But S is non-empty, so take any element a ∈ S. Then, by assumption,
−a ∈ S, and so 0 = a+ (−a) ∈ S, as required.

We can do even better, reducing the number of tests to two: closure under
subtraction and multiplication.

Theorem 2.3 (Second Subring Test) A non-empty subset S of a ring R is
a subring provided that, for all a, b ∈ S, we have a− b, ab ∈ S.

Proof Suppose that S is closed under subtraction and multiplication. To show
it is a subring, we verify the conditions of the First Subring Test. Take an element
a ∈ S. Then a− a = 0 ∈ S; so 0− a = −a ∈ S, and the inverse law holds. Now
take a, b ∈ S. Then −b ∈ S, and so a − (−b) = a + b ∈ S, and we have closure
under addition. Closure under multiplication is given; so S is a subring.

Example We find all the subrings of the ring Z of integers.
First, we show that, for any integer m, the set mZ = {mx : x ∈ Z} of all

multiples of m is a subring. Take a, b ∈ mZ; let a = mx, b = my, for some
integers x, y. Then

a− b = m(x− y) ∈ mZ,

ab = m(mxy) ∈ mZ,

so mZ passes the Second Subring Test.
Now we show that every subring of Z is of this form. So let S be a subring.

Certainly 0 ∈ S. If S = {0}, then S = 0Z is of the required form. So suppose
not. If n ∈ S, then also −n ∈ S; so S must contain some positive integer. Let m
be the smallest positive integer in S. We will prove that S = mZ. Proving this
equality involves showing that each element of one set is in the other and vice
versa.

First, take any element of mZ, say mx. If x = 0, then mx = 0 ∈ S. If
x > 0, then mx = m + m + · · · + m (x terms), and m ∈ S; so mx ∈ S
by closure. If x < 0, let x = −y. Then my ∈ S as above, and then
mx = −my ∈ S.

Conversely, take any element of S, say n. By the Division Algorithm for
integers, we can divide n by m, obtaining a quotient q and remainder r; thus,
n = mq + r, and 0 ≤ r < m. Now n ∈ S and mq ∈ S, so r = n −mq ∈ S. If
r > 0, we have a contradiction to the fact that m is the smallest positive integer
in S. So, necessarily, r = 0 and n = mq ∈ mZ.

Remark If you are asked to prove that something is a ring, it is usually much
easier to recognise that it is a subset of a structure known to be a ring, and then
apply one of the subring tests, than it is to check the eight ring axioms directly.
Bear this in mind when you tackle Problems 2.1 and 2.3.
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Exercise 2.1 Which of the following sets are rings (with the usual addition and
multiplication):

(a) the natural numbers;
(b) the real polynomials of degree at most n;
(c) all polynomials with integer coefficients;
(d) all polynomials with integer coefficients and constant term zero;
(e) all polynomials with integer coefficients and degree at most four;
(f) all real polynomials f such that f(2) = 0;
(g) all integers divisible by 3;
(h) all non-singular 2 × 2 real matrices;
(i) all complex numbers of the form a+ bi for a, b ∈ Z;
(j) all real functions of the form f(x) = ax+ b for a, b ∈ R.

Exercise 2.2 Let R be a ring, and let M2(R) denote the set of all 2× 2 matrices with
elements from R. Define addition and multiplication of 2 × 2 matrices by the usual
rules: (

a b
c d

)
+

(
e f
g h

)
=

(
a+ e b+ f
c+ g d+ h

)
,

(
a b
c d

)
·
(
e f
g h

)
=

(
ae+ bg af + bh
ce+ dg cf + dh

)
.

Prove carefully that M2(R) is a ring.

Exercise 2.3 Which of the following sets of 2 × 2 matrices over the real numbers
are rings (with the addition and multiplication defined in Problem 2.2)? Which are
commutative? Which have an identity? Which are division rings?

(a) The set of all symmetric matrices (matrices A satisfying A� = A).
(b) The set of all skew-symmetric matrices (matrices A satisfying A� = −A).
(c) The set of all upper-triangular matrices (matrices of the form

(
a b
0 c

)
).

(d) The set of all strictly upper-triangular matrices (matrices of the form
(
0 a
0 0

)
).

(e) The set of matrices of the form
(
a b
−b a

)
.

[The transpose A� of a matrix A =
(
a b
c d

)
is given by A� =

(
a c
b d

)
.]

Exercise 2.4 Prove that, in any ring R,

(a1 + a2 + · · · + am)(b1 + b2 + · · · + bn) = a1b1 + a1b2 + · · · + a1bn
+ a2b1 + · · ·
+ amb1 + · · · + ambn.

Exercise 2.5 Let R be a ring. For a positive integer n, let n · x denote x+ · · ·+ x (n
terms). Prove that
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(a) (m+ n) · x = m · x+ n · x and (mn) · x = m · (n · x).
(b) if 1 is an identity and n · 1 = 0, then n · x = 0 for all x.

Exercise 2.6 Let x and y be elements of a ring R, and suppose that xy = yx. Prove
the Binomial Theorem for n > 0:

(x+ y)n =
n∑

i=0

(
n

i

)
· xn−iyi.

[As in the preceding question, m · x = x+ · · · + x (m terms).]

Exercise 2.7 Let R be a ring with identity element 1.

(a) Prove that (−1) · x = −x, where −1 and −x are the additive inverses of 1 and x.
(b) Show that −(x+ y) = −y − x.
(c) Hence show that the commutativity of addition can be deduced from the other

axioms for a ring with identity.

Show that this is false if no identity element exists. [Hint : Let all products be zero.]

Exercise 2.8 Let R be a ring in which every element x satisfies x2 = x (where x2

means xx).

(a) By evaluating (x+ x)2, show that x+ x = 0 for all x ∈ R.
(b) By evaluating (x+ y)2, show that R is commutative.

Remark Any Boolean ring satisfies the condition x2 = x for all x ∈ R. It can
be shown that any finite ring satisfying this condition is a Boolean ring.

In the spirit of abstract algebra, we will re-define the term Boolean ring to
mean a ring R with identity satisfying x2 = x for all x ∈ R.

Exercise 2.9 Let R and S be rings. Define operations on R × S (the set of ordered
pairs) by the rules

(r1, s1) + (r2, s2) = (r1 + r2, s1 + s2),

(r1, s1)(r2, s2) = (r1r2, s1s2).

Prove that R × S is a ring. Show further that R × S is commutative if and only if R
and S are commutative, and that R×S has an identity if and only if R and S do. Can
R× S ever be a field?

Remark R × S is known as the direct product or direct sum of the two
rings R and S.

Exercise 2.10 (a) Let R be a ring in which the elements are the integers, and the
addition is the same as in Z. Is it possible that the multiplication is different from that
in Z? Can you describe all such rings?

(b) (∗∗) Let R be a ring in which the elements are the integers, and the mul-
tiplication is the same as in Z. Is it possible that the addition is different from
that in Z?
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(Part (b) is much more difficult than part (a); you are not expected to solve it at
this stage. We will return to this later.)

Exercise 2.11 (∗) The field C of complex numbers was described in Chapter 1
as the set of all objects a + bi, where a and b are real numbers, where addition
and multiplication are defined according to ‘the usual rules’ subject to the extra
condition that i2 = −1. Hamilton constructed a larger number system, the quater-
nions, as follows. The elements of H are all objects of the form a + bi + cj + dk.
Addition and multiplication are defined according to the usual rules, subject to the
condition that multiplication of the elements 1, i, j, k works according to the following
table:

· 1 i j k
1 1 i j k
i i −1 k −j
j j −k −1 i
k k j −i −1

Prove that H is a non-commutative division ring. [Hint : Define the conjugate of
the element z = a+ bi + cj + dk to be z = a− bi − cj− dk.] Prove that

zz = (a2 + b2 + c2 + d2) · 1.

Homomorphisms and ideals
Two rings are essentially the same for the purposes of algebra (the technical
term is ‘isomorphic’) if we can match up their elements in such a way that
addition and multiplication correspond; that is, if a corresponds to a′ and b to
b′, then a + b corresponds to a′ + b′ and ab to a′b′. In this section, we define a
weaker relationship between rings, which merely asserts that they are somewhat
alike.

2.5 Cosets. The first topic seems to be a digression, but its relevance will
become clear soon. Let S be a subring of the ring R. We will partition R into
subsets called cosets of S.

Define a relation E on the set R by the rule that (a, b) ∈ E if b − a ∈ S. I
claim that E is an equivalence relation. It is

• reflexive, since a− a = 0 ∈ S;
• symmetric, since if b− a ∈ S then a− b = −(b− a) ∈ S;
• transitive, since if b− a ∈ S and c− b ∈ S then c− a = (c− b)+ (b− a) ∈ S.

So it is indeed an equivalence relation.
By the Equivalence Relation Theorem, R is partitioned into equivalence

classes E(a), where E(a) = {b : (a, b) ∈ E}. These equivalence classes are called
the cosets of S in R. We examine them a bit more closely, and observe that

E(a) = S + a = {s+ a : s ∈ S}.
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To see this, first take b ∈ S+ a. Then b = s+ a for some s ∈ S, so b− a = s ∈ S,
whence (a, b) ∈ E and b ∈ E(a). Conversely, if b ∈ E(a), then b− a ∈ S. Putting
s = b− a, we have b = s+ a ∈ S + a as required.

Example Let R = Z and S = 4Z. Then

S = S + 0 = {. . . ,−8,−4, 0, 4, 8, . . .},
S + 1 = {. . . ,−7,−3, 1, 5, 9, . . .},
S + 2 = {. . . ,−6,−2, 2, 6, 10, . . .},
S + 3 = {. . . ,−5,−1, 3, 7, 11, . . .},

and S + 4 = S, at which point the sequence repeats. (Compare the example in
Section 1.4.3.)

More generally, if R = Z and S = nZ, where n is a positive integer, then the
coset nZ+ a is the set of all integers congruent to a mod n. Thus, the cosets are
the congruence classes mod n, and there are n of them altogether.

The element a is called a coset representative for the coset S + a. Note
that the system is perfectly democratic: any element of a coset can serve as its
representative. (Actually, this is very slightly misleading in one case. The subring
S is a coset of itself, namely S + 0; and while we could use any of its elements
as a representative, it is most natural to use the element 0.)

2.6 Homomorphisms and ideals. I introduce these two slightly strange
words by means of an example. Suppose that I am short-sighted (actually this is
correct), and that when I look at an integer I can only see whether it is even or
odd. I will not know much about the integers, but I will know enough to make
some consistent statements about addition and multiplication: for example, even
plus even equals even. My knowledge can be summarised in tables:

+ even odd
even even odd
odd odd even

· even odd
even even even
odd even odd

.

This looks very much like the two-element ring of Example 5 in Section 2.2. The
point is that it is indeed a ring, and captures a little bit of the ‘shape’ of the
ring of integers.

We define a homomorphism from a ring R to a ring S to be a function or
map θ : R→ S which satisfies

θ(a+ b) = θ(a) + θ(b),

θ(ab) = θ(a)θ(b)

for all a, b ∈ R. Note that the addition and multiplication on the left of these
equations are the operations in R, while those on the right are the opera-
tions in S.
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Having said this, I will perversely change notation right away. There are good
reasons for writing the result of applying θ to a, not as θ(a), but as aθ. With this
notation, we say that the map θ is written on the right. One reason is that, in
algebra, we often have to apply a function θ followed by another function φ: this
is written as aθφ, whereas if we wrote functions on the left we would have to
say φ(θ(a)), and always remember to reverse the order. From now on, functions
with an algebraic significance, such as homomorphisms, will always be written
on the right; while functions with no such significance, such as polynomials, will
be written on the left. So f(x) = x2 + 1 is a polynomial, and fθ is the result of
applying to it some homomorphism from the ring of all polynomials to another
ring. Confused? Remember that not everybody uses this convention!

Let us rewrite the definition of a homomorphism in the new notation
θ : R→ S is a homomorphism if

(a+ b)θ = aθ + bθ,

(ab)θ = (aθ)(bθ).

The word homomorphism means ‘similar shape’; this is meant to suggest that
some of the ‘shape’ of the ring R is captured by S, as in our example. In this
terminology, if S is the ring {0, 1} of Example 5 of Section 2.2, then the function
θ : Z → S defined by

nθ =
{

0 if n is even
1 if n is odd,

is a homomorphism.
A homomorphism which is also a bijection (a one-to-one and onto function)

is called an isomorphism. If there is an isomorphism from R to S, we say that
the rings R and S are isomorphic. This means that they are ‘matched up’ by
the function θ in such a way that the addition and multiplication are the same.
So, from the point of view of abstract algebra, we will regard the two rings as
being the same, even if their actual elements are quite different (one ring might
consist of matrices and the other of polynomials, say). We denote ‘R and S are
isomorphic’ by R ∼= S.

Any homomorphism θ : R→ S has the additional properties

0θ = 0,

(a− b)θ = aθ − bθ

for all a, b ∈ R. The first equation follows from

0θ + 0θ = (0 + 0)θ = 0θ = 0θ + 0

by using the Cancellation Law in S. The second from the fact that

(a− b)θ + bθ = (a− b+ b)θ = aθ.
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Our main task in this section is to see just how much a homomorphism blurs
the structure of a ring, and how much shape is preserved.

Example We will find all homomorphisms from the ring Z to itself. Let θ be
a homomorphism. Suppose that 1θ = n. Then 2θ = (1 + 1)θ = n+ n = 2n, and
similarly (by induction), mθ = mn for all positive integers m. Moreover, 0θ = 0,
and for positive m we have (−m)θ = −mθ = −mn. So θ multiplies every integer
by n.

So far, we have only used the additive property. Now we turn to multiplica-
tion, and observe that

n = 1θ = 1θ · 1θ = n · n = n2,

so that n = 0 or n = 1. So there are only two homomorphisms, namely

• θ0: x �→ 0 for all x;
• θ1: x �→ x for all x.

In fact, these rules define ‘trivial’ homomorphisms on any ring R. So our favourite
ring Z is somewhat poor in homomorphisms: the only homomorphisms from Z

to itself are the trivial ones possessed by all rings. (Of course, as we saw, there
are homomorphisms from Z to other rings.)

A homomorphism θ : R→ S is a function, and so has an image and a kernel
in the sense of Section 1.18. As promised there, we simplify the definition of the
kernel slightly.

Definition Let θ : R→ S be a homomorphism of rings. The image of θ is

Im(θ) = {s ∈ S : s = rθ for some r ∈ R},

and the kernel of θ is

Ker(θ) = {r ∈ R : rθ = 0}.

Remark In Section 1.18, the kernel of a function was defined to be the equiva-
lence relation in which two elements are equivalent if they have the same image.
So Ker(θ) is the equivalence class containing 0 of the relation KER(θ).

Proposition 2.4 Let θ : R→ S be a ring homomorphism.

(a) Im(θ) is a subring of S.
(b) Ker(θ) is a subring of R which has the additional property that, for any

x ∈ Ker(θ) and r ∈ R, we have rx, xr ∈ Ker(θ).
(c) Two elements of R are mapped to the same element of S under θ if and

only if they lie in the same coset of Ker(θ).

Part (c) of this result states that the equivalence classes of the equivalence
relation KER(θ) are precisely the cosets of the subring Ker(θ). This is why we
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use the simpler definition: we can obtain the entire kernel (in the first sense)
from the subring Ker(θ). This also shows an important property of cosets.

Proof (a) We apply the subring test. Take s1, s2 ∈ Im(θ). Then s1 = r1θ and
s2 = r2θ, for some r1, r2 ∈ R. Then

s1 − s2 = r1θ − r2θ = (r1 − r2)θ ∈ Im(θ),

s1s2 = (r1θ)(r2θ) = (r1r2)θ ∈ Im(θ);

so Im(θ) is a subring of S.
(b) Similarly, take r1, r2 ∈ Ker(θ). Then r1θ = r2θ = 0; so

(r1 − r2)θ = r1θ − r2θ = 0− 0 = 0,

(r1r2)θ = (r1θ)(r2θ) = 0 · 0 = 0;

so r1 − r2, r1r2 ∈ Ker(θ), and Ker(θ) is a subring.
Now we check the extra condition. Suppose that x ∈ Ker(θ) and r ∈ R. Then

(rx)θ = (rθ)(xθ) = rθ · 0 = 0,

and so rx ∈ Ker(θ). Similarly, xr ∈ Ker(θ).
(c) Suppose that r1θ = r2θ. Then (r2 − r1)θ = 0, so x = r2 − r1 ∈ Ker(θ);

then r2 ∈ Ker(θ) + r1, so r1 and r2 lie in the same coset of Ker(θ). Conversely,
if r1 and r2 lie in the same coset, say r2 = r1 + x with x ∈ Ker(θ); then
r2θ = r1θ + xθ = r1θ, since x ∈ Ker(θ).

The extra property of the subring Ker(θ) is so important that it is given
a special name. An ideal of a ring R is a subring S of R such that, for any
s ∈ S and r ∈ R, we have rs, sr ∈ S. The term was invented by Kummer, who
invented ‘ideal numbers’ in an attempt to correct a mistake in his attempted
proof of Fermat’s Last Theorem. Unfortunately, he did not succeed, and we had
to wait another hundred years until Fermat’s Last Theorem was proved; but the
concept of an ideal is crucial for ring theory.

To test for an ideal, we should test for a subring and then check the extra
condition. But we can simplify things:

Theorem 2.5 (Ideal Test) A non-empty subset S of a ring R is an ideal of
R if and only if

(a) for all s1, s2 ∈ S, we have s1 − s2 ∈ S;
(b) for all s ∈ S and r ∈ R, we have rs, sr ∈ S.
Proof All that is missing is closure under multiplication; but this is just the
special case of (b) corresponding to the case in which r ∈ S.

So we can say more briefly:

The kernel of a homomorphism θ : R→ S is an ideal of R.
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Example We found in Section 2.4 that the subrings of Z are all the sets of
the form nZ for n ∈ Z, where nZ consists of all multiples of n. Now all of these
subrings are ideals. For take r ∈ Z and s ∈ nZ, say s = nx for some x ∈ Z. Then
rs = sr = n(rx) ∈ nZ. So we have found all the ideals of Z.

2.7 Should a ring have an identity? What are the reasons for not
requiring the existence of an identity in a ring?

First, it is convenient that an ideal is a particular kind of subring. But if rings
are required to have identities, then all their ideals (with one exception) fail to
be subrings! (In the next chapter, we will see a close analogy between groups,
subgroups, and normal subgroups on one hand, and rings, subrings, and ideals
on the other. This analogy would fail if ideals were not subrings.)

Proposition 2.6 Let R be a ring with identity element 1, and I an ideal
containing 1. Then I = R.

Proof For any element r ∈ R, we have r = 1 · r ∈ I.
Second, there are several important examples of rings which are used in

various branches of mathematics and which do not contain identities. For
example,

• C0(R), the ring of continuous real-valued functions with bounded support;
• the direct sum of an infinite collection of rings (even if all the factors have
identities).

Third, the argument that a more general definition is better. In topology,
there was a debate over whether a topological space should be required to satisfy
the ‘Hausdorff condition’ or not; this was resolved in favour of the more general
approach.

Finally, the traditional defence: if a ring does not have an identity, we can
put one in!

Proposition 2.7 Let R be a ring. Then there is a ring R∗ with identity which
contains a subring isomorphic to R.

Proof Let

R∗ = R× Z = {(r, n) : r ∈ R,n ∈ Z},

and define addition and multiplication on R∗ by the rules

(r1, n1) + (r2, n2) = (r1 + r2, n1 + n2),

(r1, n1) · (r2, n2) = (r1r2 + n2r1 + n1r2, n1n2),

where the product nr of an integer and a ring element is defined as in Exercise 2.5
for positive n (that is, the sum of n copies of r), with 0r = 0 and (−m)r = −(mr)
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for n= −m < 0. [Warning : This is not the direct product of rings defined in
Exercise 2.9.]

Now a small amount of checking shows that

• R∗ is a ring;
• (0, 1) is the identity of R∗;
• S = {(r, 0) : r ∈ R} is a subring of R∗ (in fact, it is an ideal);
• the map r �→ (r, 0) is an isomorphism from R to S.

Of course, if R already has an identity element, then this element is no longer
the identity of R∗.

2.8 Factor rings and isomorphism theorems. For any integer n, the set
nZ of multiples of n is an ideal of Z (and all ideals are of this form). We saw
earlier that the cosets of nZ are just the congruence classes mod n. But we can
do more: we can add and multiply integers mod n. This means that, if we take
two congruence classes nZ+x and nZ+ y, then the sum of any integer from the
first class and any integer from the second will always lie in the congruence class
nZ+ (x+ y); and, similarly, the product of integers from these classes will lie in
nZ+ xy. In this way, we can define operations of addition and multiplication on
the set of congruence classes mod n (a finite set with n elements). With these
operations, the set of congruence classes becomes a ring.

This all works much more generally; for any ideal I of a ring R, it is possible
to make the set of cosets of I in R into a ring, called the ‘factor ring’ of R by I
and denoted R/I, as follows.

Definition Let I be an ideal in the ring R. The factor ring or quotient ring
R/I is the set of cosets of I in R, with operations of addition and multiplication
defined by

(I + x) + (I + y) = I + (x+ y),

(I + x)(I + y) = I + xy.

Theorem 2.8 The factor ring, as defined above, is indeed a ring.

Proof Before we verify the axioms, there is one very important thing to check:
that the definition is a good one. On the face of it, the definition depends on the
choice of coset representatives. It is not clear that, if x1 and x2 are two repre-
sentatives of a coset of I, and y1 and y2 are two representatives of another coset,
then x1 + y1 and x2 + y2 lie in the same coset (and similarly for multiplication).
Suppose that we have such elements. Then x2 = x1+a and y2 = y1+ b, for some
a, b ∈ I. Then

(x2 + y2)− (x1 + y1) = (x1 + a+ y1 + b)− (x1 + y1) = a+ b ∈ I,
(x2y2)− (x1y1) = (x1 + a)(y1 + b)− (x1y1) = x1b+ ay1 + ab ∈ I,
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where, in the last step, ab ∈ I since I is a subring, and x1b, ay1 ∈ I since I is an
ideal. So the operations on R/I are indeed well defined.

Now the rest of the proof involves verifying the axioms, which is routine.
The closure laws need no proof, since we have well-defined operations. For the
associative law (A1), we have

((I + x) + (I + y)) + (I + z) = (I + (x+ y)) + (I + z)

= I + ((x+ y) + z)

= I + (x+ (y + z))

= (I + x) + (I + (y + z))

= (I + x) + ((I + y) + (I + z)).

The proofs of (A4), (M1), and (D) are very similar. The zero element is I+0 = I,
and the inverse of I + x is I + (−x) (which, of course, we write as I − x).

You were warned in the last chapter that a set of sets is difficult to think
about, especially if we have to perform operations on its elements. Here is
precisely that situation. But it is so important that it is worth taking some
trouble to grasp the ideas.

You may recognise that, if R is the ring Z of integers and I is the setmZ of all
multiples of the positive integer m, then the ring R/I is precisely the structure
we called ‘the integers mod m’ in Chapter 1, and denoted by Zm. We will use
the same notation here. The integers mod m provide a very good example of a
factor ring.

The factor ring comes as the image of a natural homomorphism, as follows:
Remember that the elements of R/I are the cosets of I in R. Now define a map
θ : R → R/I by the rule that xθ = I + x for all x ∈ R. Checking that θ is
a homomorphism and is straightforward (we could say that the definitions of
addition and multiplication in R/I were chosen to make this work):

(x+ y)θ = I + (x+ y) = (I + x) + (I + y) = xθ + yθ,

(xy)θ = I + xy = (I + x)(I + y) = (xθ)(yθ).

The image of θ is R/I, since every coset has the form I + x for some x ∈ R.
What is the kernel of θ? Since the zero element of R/I is the coset I, we have

Ker(θ) = {x ∈ R : I + x = I} = {x ∈ R : x ∈ I} = I.

We call the map θ the canonical homomorphism from the ring R to its factor
ring R/I. Hence we have proved the following:

Theorem 2.9 The canonical homomorphism θ : R → R/I defined by xθ =
I +x for x ∈ R is indeed a homomorphism; its image is R/I and its kernel is I.

Armed with the concept of factor rings and the canonical homomorphism, we
can return to our analysis of the image and kernel of an arbitrary homomorphism.
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Theorem 2.10 (First Isomorphism Theorem) Let θ : R → S be a ring
homomorphism. Then

(a) Im(θ) is a subring of S;
(b) Ker(θ) is an ideal of R;
(c) R/Ker(θ) ∼= Im(θ).

Proof We have already shown (a) and (b). For (c), there is only one reasonable
definition of a map φ fromR/I to S, where I = Ker(θ): we must put (I + x)φ = xθ
for all x ∈ R. As usual, we have to show that this is well defined. So let x1 and x2 be
representatives of the same coset of I, so that x2 = x1 + a for some a ∈ I. Then

x2θ = (x1 + a)θ = x1θ + aθ = x1θ,

since aθ = 0; so (I + x1)φ = (I + x2)φ, and φ is indeed well defined.
To show that φ is a homomorphism, we have

(I + (x+ y))φ = (x+ y)θ = xθ + yθ = (I + x)φ+ (I + y)φ,

(I + xy)φ = (xy)θ = (xθ)(yθ) = ((I + x)φ)((I + y)φ).

Now φ is clearly onto Im(θ), since for any s ∈ Im(θ) we have s = xθ = (I+x)φ.
Finally, suppose that (I + x)φ = (I + y)φ. Then xθ = yθ, so (y − x)θ = 0; thus
y − x ∈ Ker(θ), and x and y represent the same coset of Ker(θ).

There are two further ‘Isomorphism Theorems’ relating a ring R to a factor
ring R/I.

Theorem 2.11 (Second Isomorphism Theorem) Let I be an ideal of R.
There is a one-to-one correspondence between the set of subrings of R which
contain I and the set of subrings of R/I. Under this correspondence, ideals of R
containing I correspond to ideals of R/I.

Proof If S is a subring of R containing I, then any coset of I with a
representative in S is completely contained in S. (For, if I ⊆ S and x ∈ S,
then I + x ⊆ S by closure of S.) Moreover, I is an ideal of S, since it is closed
under subtraction and under multiplication by elements of S. So the factor ring
S/I is the set of all cosets of I in S, and is a subring of R/I (as it is a ring in
its own right). Conversely, let T be a subring of R/I. Then T is a set of cosets
of I; the union of all these cosets is a subset T̂ of R, which is easily seen to be
a subring of R containing I. Hence we have the one-to-one correspondence. The
further statement about ideals is an easy exercise.

Theorem 2.12 (Third Isomorphism Theorem) Let I be an ideal of R and
S a subring of R. Then

(a) I + S = {a+ s : a ∈ I, s ∈ S} is a subring of R containing I;
(b) I ∩ S is an ideal of S;
(c) S/(I ∩ S) ∼= (I + S)/I.
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Proof All this can be proved directly; but a little trick, based on the natural
homomorphism θ : R→ R/I, makes it easier. We let φ be the restriction of θ to
S. That is, φ maps S to R/I, and the value sφ for s ∈ S is just sθ. (We simply
forget how θ acts on elements outside S.) Clearly, φ is a homomorphism: the two
conditions in the definition hold for arbitrary elements of R, and so certainly for
all elements of S.

(a) What is the image of φ? We see that Im(φ) consists of all cosets
I + s for which the representative is in S. These form a subring of R/I, by
Theorem 2.10(a). The union of all these cosets is the set

{a+ s : a ∈ I, s ∈ S} = I + S

by Theorem 2.11; so I + S is a subring of R which contains I. Incidentally, we
see that Im(φ) = (I + S)/I.

(b) What is the kernel of φ? We see that Ker(φ) consists of all the elements
of S mapped to zero by θ. Since Ker(θ) = I, we have Ker(φ) = I ∩ S, which is
thus an ideal of S, by Theorem 2.10(b).

(c) By Theorem 2.10(c), S/Ker(φ) ∼= Im(φ); that is, S/(I ∩ S) ∼= (I + S)/I,
as required.

These theorems are quite abstract, and the proofs are very condensed. Here
is an example in detail.

Example Let R = Z, and let I be the ideal 4Z. The cosets of I are the
congruence classes mod 4. For simplicity, we will write the class 4Z+k as k (being
careful to distinguish between the integer and the coset). Now the addition and
multiplication tables of Z4 = Z/4Z are as follows (ignore the underlines for the
moment):

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

· 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

Now 2Z is a subring of Z containing 4Z: the corresponding subring of Z/4Z is
the set of cosets containing even numbers. These are the underlined cosets in the
tables above: inspection of the tables shows that we do indeed have closure, so
that {0, 2} is a subring of Z/4Z, as it should be by Theorem 2.11. (Indeed, it is
an ideal, also in accordance with that Theorem.)

Let S = 6Z, a subring of R = Z, and I the ideal 4Z. Then

I + S = {4x+ 6y : x, y ∈ Z} = 2Z,

the subring of R containing I described above. Also, 4Z ∩ 6Z = 12Z, since
an integer is divisible by both 4 and 6 if and only if it is divisible by 12. So
Theorem 2.12 asserts that 6Z/12Z ∼= 2Z/4Z. The second of these factor rings
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consists of the underlined elements in the above tables; the first has the following
tables:

+ 0 6
0 0 6
6 6 0

· 0 6
0 0 0
6 0 0

(Note that 6 · 6 = 36 ≡12 0.) Inspection shows that the two factor rings are
indeed isomorphic, by the correspondence 0 ↔ 0, 2 ↔ 6.

2.9 Polynomials. Like sets, polynomials are easy to understand, but diffi-
cult to define; we must make the attempt.

Usually, a polynomial is written as a sum of terms, where each term is a
product of a coefficient and a power of an ‘indeterminate’ x. Traditionally, the
coefficients are real numbers, and a polynomial is regarded as a function from
R to R. In keeping with the spirit of abstract algebra, we allow the elements of
any ring R as coefficients; and we do not care what a polynomial really is, as
we are only interested in the rules for adding and multiplying polynomials. (In
fact, over some rings, different polynomials define the same function. We saw in
Section 2.2 that x2 = x for all elements x of a Boolean ring R; so the polynomials
x and x2 would define the same function.)

Clearly, a polynomial is specified by giving its coefficients. But even these
are not uniquely determined. If a polynomial has degree n, we can add to it an
extra term 0xn+1 without changing it. Accordingly, we allow a polynomial to
have infinitely many terms, but specify that in all but a finite number of them
the coefficient is zero.

Now we are ready for the formal definition.
A polynomial over a ring R is an infinite sequence (a0, a1, a2, . . .) of elements

of R, indexed by the non-negative integers, with the property that there exists
an integer n such that ai = 0 for all i > n. In accordance with the usual notation,
we write the sequence (a0, a1, a2, . . .) as a0 + a1x + a2x

2 + · · · , or (if n is as in
the definition) as

∑n
i=0 aix

i.
Addition and multiplication of polynomials are defined by the ‘usual’ rules

(essentially the ones we saw in Chapter 1):

(∑
aix

i
)
+

(∑
bix

i
)
=

∑
cix

i, where ci = ai + bi,

(∑
aix

i
)
·
(∑

bix
i
)
=

∑
dix

i, where di =
i∑

j=0

ajbi−j .

We let R[x] denote the set of polynomials over R, with the above addition and
multiplication.

Theorem 2.13 For any ring R, R[x] is a ring. It is commutative if and only
if R is commutative; it has an identity if and only if R has an identity; but it is
never a division ring.
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The proof involves checking all the axioms; it will not be given here. The
important thing to note is that the closure laws hold: adding and multiplying
polynomials produce a sequence which has only finitely many non-zero terms,
hence again a polynomial. Indeed, if we define the degree deg(f) of a non-zero
polynomial to be the greatest integer n for which the coefficient of xn is non-zero,
then we have

deg(f + g) ≤ max(deg(f),deg(g)),

deg(fg) ≤ deg(f) + deg(g).

(We do not define the degree of the zero polynomial, since it has no non-zero
terms at all. Some people would define its degree to be −∞, while others would
say −1; but these are mere conventions.)

A constant polynomial is a polynomial
∑
aix

i with ai = 0 for i > 0. In
other words, the constant polynomials are the zero polynomial and the poly-
nomials whose degree is zero. They form a subring of R[x] isomorphic to R.
Often, we don’t distinguish carefully between the ring element r and the constant
polynomial r =

∑
aix

i with a0 = r and ai = 0 for i > 0.

Remarks 1. If we consider all the infinite sequences of elements of R, without
imposing the restriction that only finitely many are non-zero, and use the same
definitions of addition and multiplication, we obtain another important ring, the
formal power series ring over R, denoted R[[x]]. (The word ‘formal’ signifies
that we do not attempt to sum the power series, and are not concerned with
questions of convergence.)
2. Here is another definition of polynomials, which avoids the need to consider
infinite sequences at the expense of another complication. Let X denote the set
of all finite sequences (a0, a1, . . . , an) of elements of R. (The number n can take
any value. In particular, we include the empty sequence, which has no terms at
all.) Now we define a relation E on X by the rule that (s, t) ∈ E if t can be
obtained from s by either adding or deleting any number of zeros from the right-
hand end of the sequence. It can be shown that E is an equivalence relation; its
equivalence classes are polynomials. To add or multiply polynomials f and g,
we choose representative sequences s = (a0, . . . , an) and t = (b0, . . . , bm) from
the equivalence classes f and g. We may assume that m = n, by adding zeros to
the shorter sequence. Now define f + g to be the equivalence class of s+ t, and
fg the equivalence class of st, where addition and multiplication of sequences
is defined as before. It can be shown that these operations do not depend on
the choice of representatives of the equivalence classes, so that they are well
defined; and that, with these operations, the set of equivalence classes is a ring.
Furthermore, this ring is isomorphic to the ring of infinite sequences which we
defined before.
3. The upshot of this section is that you already understand polynomials, and
you should think of them just as you did before; but they can be put on a proper
theoretical basis, with some work.
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Exercise 2.12 Let I be an ideal of a ring R. Prove that Mn(I) (the set of n × n
matrices with elements in I) is an ideal of Mn(R). (For an easier question, do the case
n = 2.) Prove also that Mn(R)/Mn(I) ∼=Mn(R/I).

Exercise 2.13 Let I be an ideal in a commutative ring R. Prove that I[x] (the ring
of polynomials over I) is an ideal in R[x]. Prove also that R[x]/I[x] ∼= (R/I)[x].

Exercise 2.14 (∗) Let R be a ring with identity. Suppose that J is an ideal inMn(R).
Prove that there is an ideal I of R such that J =Mn(I). [Hint: let Eij be the matrix
unit with 1 in row i and column j and 0 everywhere else. Prove that, if A = (aij),
then EkiAEjl has entry aij in the (k, l) position and zeros elsewhere. Now let I be the
set of all elements of R which appear as an entry in some matrix of J . Show that, for
any r ∈ I, the matrix with r in the top-left corner and 0 elsewhere belongs to J . Hence
show that I is an ideal, and that J =Mn(I).]

Exercise 2.15 (a) Show that, in the ring Z, mZ contains nZ if and only if m divides n.
(b) How many ideals does the ring Z60 have? How many of these ideals are maximal

(in the sense that I is maximal if I �= R but no ideal J satisfies I ⊂ J ⊂ R)?
(c) Repeat part (b) for the ring Zn, where n = pa1

1 · · · par
r and p1, . . . , pr are distinct

primes, and a1, . . . , ar are positive integers.

Exercise 2.16 (a) Prove that the Gaussian integers, the complex numbers of the
form a+ bi, where a, b are integers, form a subring of C.

(b) Prove that the Eisenstein integers, the complex numbers of the form a +
b
√−3, where either a, b are integers or a − 1

2 , b − 1
2 are integers, form a subring of C.

(So, for example, 1 +
√−3 and − 1

2 + 5
2

√−3 are Eisenstein integers but 1
2 − √−3 is

not.)

Exercise 2.17 Let R be a commutative ring and u ∈ R. Show that the map θ :
R[x] → R defined by ‘substituting u for x’; that is,

∑
aix

i �→ ∑
aiu

i, is a
homomorphism.

Exercise 2.18 Let R be the ring R[x] of all real polynomials. Define a function θ :
R → C by the rule that fθ = f(i). Prove that θ is a homomorphism, that its image is
C, and that its kernel is the ideal (x2 + 1)R consisting of all polynomials divisible by
x2 + 1. Hence show that

R[x]/(x2 + 1)R[x] ∼= C.

Exercise 2.19 Construct a homomorphism from Zmn to Zn, for any positive integers
m,n.

Exercise 2.20 Let Y be a subset of the set X. Let P(X) and P(Y ) be the Boolean
rings of subsets of X and Y , respectively. Show that the map θ : P(X) → P(Y ) defined
by Aθ = A ∩ Y is a homomorphism, and find its image and kernel.

Exercise 2.21 Let R be the ring of real upper-triangular 2× 2 matrices (those of the

form
(
a b
0 c

)
for a, b, c ∈ R). Let I be the set of strictly upper-triangular matrices (of

the form
(
0 b
0 0

)
) and S the set of diagonal matrices (of the form

(
a 0
0 c

)
).
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(a) Prove that I is an ideal of R.
(b) Prove that S is a subring of R. Is it an ideal?
(c) Prove that R/I is isomorphic to S.

Factorisation
One of the most important properties of the integers is the so-called Fundamental
Theorem of Arithmetic, which asserts that any integer can be factorised into
primes in an essentially unique way. We want to examine the rings in which such
a result could hold.

2.10 Zero-divisors and units. In contrast to the situation in Z, it can
happen in an arbitrary ring that the product of two non-zero elements is zero.
For example, 2 · 2 = 0 in Z4, and

(1 0
0 0

)(0 0
0 1

)
=

(0 0
0 0

)
in M2(R). For much of the

rest of this chapter, we are especially interested in rings in which this does not
happen. Accordingly, we define it away:

• A zero-divisor in a ring R is a non-zero element a ∈ R such that there
exists a non-zero element b ∈ R with ab = 0.

• An integral domain is a commutative ring with identity which has no
zero-divisors.

Strictly speaking, in the first definition, a is a left zero-divisor, and b is a right
zero-divisor; but, as the second definition suggests, we are mostly interested
in commutative rings, and in these, the concepts of left and right zero-divisor
coincide.

The condition ‘no zero-divisors’ can also be stated in the form: if ab = 0, then
either a = 0 or b = 0. Thus, Z, our prototype of a ring, is also our prototype of an
integral domain, as the name would suggest. Integral domains have many nice
properties. For example, there is a multiplicative version of the cancellation
law:

(C′) In an integral domain, if ab = ac and a �= 0, then b = c.

For, if ab = ac, then a(b − c) = 0; in an integral domain, if a �= 0, this implies
that b− c = 0; that is, b = c.

Let R be a ring with identity. The element a ∈ R is a unit if there exists
b ∈ R with ab = ba = 1. The element b is called the inverse of a, and is written
a−1. It is unique; for if b and c are both inverses of a, then

c = 1c = (ba)c = b(ac) = b1 = b.

You should compare this with the proof of uniqueness of additive inverses in
Section 2.3.

Proposition 2.14 Let R be a ring with identity.
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(a) The identity is a unit; it is equal to its inverse.
(b) If a is a unit, then so is a−1; its inverse is a.
(c) If a and b are units, then so is ab; its inverse is b−1a−1.

Proof (a) 1 · 1 = 1.
(b) This is shown by the equations aa−1 = a−1a = 1.
(c) We have

(ab)(b−1a−1) = a(bb−1)a−1 = a1a−1 = aa−1 = 1,

and, similarly, (b−1a−1)(ab) = 1.

Here is how Hermann Weyl explains part (c) of this proposition in his book
Symmetry (1952).

With this rule, although perhaps not with its mathematical expres-
sion, you are all familiar. When you dress, it is not immaterial in
which order you perform the operations; and when in dressing you
start with the shirt and end up with the coat, then in undressing
you observe the opposite order; first take off the coat and the shirt
comes last.

Examples 1. A ring with identity is a division ring if and only if every non-zero
element is a unit.

2. The units in Z are 1 and −1.
3. In the next proposition, we find the zero-divisors and units in the ring Zn

of integers mod n, where n > 1.

Proposition 2.15 An element x �= 0 of Zn is a zero-divisor if and only if x
and n have greatest common divisor (g.c.d.) greater than 1; it is a unit if and
only if x and n have greatest common divisor 1.

In other words, in Zn, every non-zero element is either a zero-divisor or a
unit (but not both, see Exercise 2.22).

Proof Suppose that d = gcd(x, n) is the greatest common divisor of x and n.
(a) If d > 1, then (n/d) is a non-zero element of Zn; and x(n/d) =

(x/d)n ≡n 0.
(b) Suppose that d = 1. By the Euclidean algorithm, there are integers p and

q such that xp+ nq = 1. But this means that xp = px ≡n 1, so that x is a unit
(and p is its inverse).

Conversely, if x is a zero-divisor, then x is not a unit, so d is not 1 — that
is, d > 1 — and similarly for (b).

Two elements a, b of the integral domain R are said to be associates if there
is a unit u ∈ R such that b = au. Note that, by the above Proposition, it follows
that being associates is an equivalence relation: it is



Rings 89

• reflexive, since a = a1;
• symmetric, since b = au implies a = bu−1;
• transitive, since b = au and c = bv imply c = a(uv).

(Here u and v are units; and the proposition shows that 1, u−1 and uv are units.)
By the Equivalence Relation Theorem, R is partitioned into equivalence

classes, called associate classes.
For example, in Z, the associate classes are the sets {n,−n} for all non-

negative integers n.

2.11 Irreducibles and factorisation. In this section, we examine the pos-
sibility of factorising elements of a ring into ‘irreducible’ elements (which cannot
themselves be further factorised), and look at a special class of rings in which
the analogue of the Fundamental Theorem of Arithmetic holds.

First, we will make some simplifying assumptions about the ringR. We always
assume that R is commutative, so that we can regard ab and ba as essentially the
same factorisation of a ring element. (So, in a factorisation, we do not care about
the order of the factors.) Also, we exclude divisors of zero. For, if ab = 0, then
ac = a(b+c) for any element c, and there is little chance of unique factorisations.

Accordingly, we assume, in this section and the next two, that

R is an integral domain.

Also, units provide another problem. In Z, we regard 2 · 3 and (−2) · (−3)
as ‘essentially the same’ factorisation of 6. More generally, if x = ab, and u is a
unit with inverse v, then x = (au)(vb), and we want to think of this as the same
factorisation. We note that a and au are associates, as are b and vb. So we think
of two factorisations as the same if the factors in one are associates of factors
in the other. For the same reason, we do not regard units as counting towards a
factorisation, or we could multiply them ad infinitum.

This leads us to the appropriate definitions.

Definition Let R be an integral domain.

• An element p ∈ R is irreducible if p is not zero or a unit, and if, whenever
p = ab, either a or b is a unit (and the other is an associate of p).

• R is a unique factorisation domain or UFD if it holds that
(a) every element other than zero and units can be factorised into

irreducibles;
(b) if p1 · · · pm = q1 · · · qn, where the pi and qj are irreducibles, thenm = n,

and (possibly after re-ordering) pi and qi are associates for i = 1, . . . , n.

Briefly, condition (a) says that factorisations into irreducibles exist, while (b)
says that they are ‘unique up to order and associates’. (Note that any associate
of an irreducible is irreducible.)

So the ‘Fundamental Theorem of Arithmetic’ says that Z is a UFD. (We
will prove this later, in Section 2.13.) However, things here are a little different
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from our first view of the FTA. Instead of factorising positive integers into pos-
itive primes, we factorise arbitrary integers into arbitrary (positive or negative)
primes—remember that p and −p are associates.

In a trivial way, a field is a UFD: it does not have any elements which are
not zero or units!

One of the most substantial results about UFDs is the following:

Theorem 2.16 (Gauss’ Lemma) If R is a UFD, then R[x] is a UFD.

The proof of this result will be given in Chapter 7.
In particular, if F is a field, then F [x] is a UFD. This will be proved in

Section 2.13, since it uses techniques similar to those for Z.
An important property of UFDs is that ‘greatest common divisors exist’.

In the case of the integers, we interpret the word ‘greatest’ in its usual sense
for numbers. In general, this is not possible; the greatest common divisor is a
common divisor which is divisible by every common divisor, in a sense which the
next definition makes precise.

Definition Let R be a commutative ring.

• For a, b ∈ R, we say that a divides b (in symbols, a | b) if b = ac for some
c ∈ R.

• The element d is a greatest common divisor or g.c.d. of a and b if
(a) d divides a and d divides b;
(b) for any e ∈ R, if e divides a and e divides b then e divides d.

Thus, the greatest common divisor is not necessarily greatest in any absolute
sense. In an arbitrary ring, two elements may have no greatest common divisor
at all.

Theorem 2.17 (a) In an integral domain, if a divides b and b divides a, then
a and b are associates.

(b) In an integral domain, if a and b have a greatest common divisor, then any
two g.c.ds are associates.

(c) In a unique factorisation domain, every two elements have a greatest
common divisor.

Proof (a) If a = 0 then b = 0 and there is nothing to prove. So suppose not.
Let b = ac and a = bd, then a = acd, so a(1− cd) = 0. Since a �= 0 and R is an
integral domain, cd = 1; so c and d are units, and a and b are associates.

(b) If d1 and d2 are both g.c.ds of a and b, then (by part (b) of the definition)
each divides the other; so they are associates.

(c) Assume that a and b are non-zero and not units. (Can you deal with
the remaining cases?) Factorise a into irreducibles. Then, up to associates, every
divisor of a is a product of some of the irreducibles in the factorisation of a.
(For suppose that a = xy. Factorise x and y into irreducibles. Combining these
gives a factorisation of a, which must be equal to the given one, up to order
and associates.) So we find the g.c.d. of a and b by factorising both elements
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into irreducibles, and taking all the irreducibles which (up to associates) occur
in both factorisations.

If this sounds somewhat complicated, it is just a generalisation of the arg-
ument which says, for example, that the g.c.d. of 24.32.52.7 and 23.33.5.11 is
23.32.5.

This method finds the greatest common divisor, in principle. But it is not
really an algorithm, since it depends on finding the factorisations of a and b, and
we do not know how to do this in an arbitrary UFD (only that it can be done).

We conclude this section with an example of failure of the unique factorisation
property.

Example Let R = {a + b
√−5 : a, b ∈ Z}. Then R is a ring, with the usual

definition of addition and multiplication of complex numbers. Moreover, R is an
integral domain.

We first find the units of R. Let a+ b
√−5 be a unit; suppose that

(a+ b
√−5)(x+ y

√−5) = 1.

Taking the square of the modulus of this equation (and using the fact that
|a+ b

√−5|2 = a2 + 5b2), we obtain

(a2 + 5b2)(x2 + 5y2) = 1.

Since a, b, x, y are integers, the only possibility is b = y = 0, a2 = x2 = 1, so
that a = ±1. So the units are 1 and −1, and the associates of an element r are
r and −r.

Consider the equation

6 = 2 · 3 = (1 +
√−5)(1−√−5).

We claim that all of the factors 2, 3, 1 +
√−5, 1 − √−5 are irreducible. Then

certainly the factorisations are not the same up to order and associates!
To show that 2 is irreducible, suppose that

2 = (a+ b
√−5)(x+ y

√−5).

Taking the norm squared as before, we obtain

4 = (a2 + 5b2)(x2 + 5y2).

As before, this implies that b = y = 0, so that a = ±1 or ±2, and x = ±2 or ±1.
So one factor is a unit, and the other is an associate of 2. So 2 is irreducible. By
a very similar argument, all the other factors are irreducible too.

So R is not a unique factorisation domain.
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2.12 Principal ideal domains or PIDs. In the ring Z, every ideal consists
of all multiples of a fixed integer. This is a very important property, which we
now study in general.

Definition Let a1, . . . , an be elements of a ring R. The ideal generated by
a1, . . . , an, denoted by 〈a1, . . . , an〉, is the smallest ideal containing these ele-
ments. (‘Smallest’ has the sense of inclusion; it is a subset of every ideal that
contains a1, . . . , an.) Be aware that this is often written as (a1, . . . , an). However,
this risks confusion with the n-tuple (a1, . . . , an). Angle brackets as used here
are very common in mathematics to convey the idea of generation.

From the definition, it is not obvious that such an ideal exists. It can be
shown that it does exist in any ring. But in a special case, it is easy to describe:

Proposition 2.18 Let R be a commutative ring with identity, and let a1, . . . , an
be elements of R. Then

〈a1, . . . , an〉 = {x1a1 + x2a2 + · · ·+ xnan : x1, . . . , xn ∈ R}.

Proof Let I = {x1a1 + · · · + xnan : x1, . . . , xn ∈ R}, the set of all linear
combinations of a1, . . . , an. We have to show that I is an ideal, that I contains
a1, . . . , an, and that any ideal containing a1, . . . , an necessarily contains all of I.

I is an ideal: (a) if a, b ∈ I, say a = x1a1+· · ·+xnan and b = y1a1+· · ·+ynan,
then

a− b = (x1 − y1)a1 + · · ·+ (xn − yn)an ∈ I.
(b) If a = x1a1 + · · ·+ xnan ∈ I and r ∈ R, then

ar = ra = (rx1)a1 + · · ·+ (rxn)an ∈ I.

So I passes the Ideal Test.
I contains a1, . . . , an: for 1 ≤ i ≤ n, we have

ai = 0a1 + · · ·+ 0ai−1 + 1ai + 0ai+1 + · · ·+ 0an ∈ I.

Any ideal containing a1, . . . , an contains I: Let J be an ideal of R containing
a1, . . . , an. For any x1, . . . , xn ∈ R, we have xiai ∈ J , and hence x1a1 + · · · +
xnan ∈ J (using the fact that J is an ideal, and so is closed under addition and
under multiplication by elements of R). So every element of I is in J , which
means that I ⊆ J .

An ideal of R is principal if it is generated by a single element. By the
proposition, if R is a commutative ring with identity, then a principal ideal is of
the form 〈a〉 = aR = {ax : x ∈ R}. In other words, 〈a〉 consists of all elements
divisible by a. In an integral domain, principal ideals have some further nice
properties:

Proposition 2.19 Let R be an integral domain.



Rings 93

(a) For a, b ∈ R, if 〈a〉 = 〈b〉, then a and b are associates.
(b) For a, b ∈ R, if 〈a, b〉= 〈d〉, then d is a greatest common divisor of

a and b.

Proof (a) Suppose that 〈a〉 = 〈b〉. Then a ∈ 〈b〉 = bR, so b divides a, and
similarly a divides b. By Theorem 2.17, a and b are associates.

(b) Suppose that 〈a, b〉 = 〈d〉. Then a, b ∈ 〈d〉, so (as above) d divides both
a and b. On the other hand, d ∈ 〈a, b〉, so d = ax + by for some x, y ∈ R. Let e
be any common divisor of a and b. Then a = eu and b = ev for some u, v. Then
we have d = ax + by = eux + evy = e(ux + vy); that is, e divides d. So d is a
greatest common divisor.

Definition A principal ideal domain or PID is an integral domain with the
property that every ideal is principal.

Proposition 2.20 (a) Let R be a PID. Then any two elements a, b ∈ R have
a greatest common divisor d, which can be written in the form d = ax+ by
for some x, y ∈ R.

(b) Z is a PID.

Proof (a) The ideal 〈a, b〉 is principal, and hence has the form 〈d〉 for some d.
Now apply part (b) of the previous proposition.

(b) We found that every ideal of Z has the form nZ, that is, 〈n〉 in the present
notation.

What has all this to do with factorisation? The following important result
holds:

Theorem 2.21 Every principal ideal domain is a unique factorisation domain.

Proof Let R be a PID. We have to show two things: that elements of R can be
factorised into irreducibles; and that the factorisation of an element is unique (up
to order and associates). The first part is quite substantial; the proof is deferred
until Chapter 7. I will show here that factorisations are unique. This depends on
the following fact.

Proposition 2.22 Let p be an irreducible element in a PID R. If p divides ab,
then p divides a or p divides b.

Proof Suppose that p divides ab but p does not divide a. Then the greatest
common divisor of p and a is 1. (Remember that g.c.ds exist in a PID.) So there
exist x, y ∈ R such that px+ ay = 1. Multiplying this equation by b, we obtain
pxb + aby = b. Now p clearly divides pxb; and p divides aby (since p divides ab
by assumption); so p divides b. The result is proved.

It follows that if p is irreducible and p divides a1 · · · an, then p divides ai for
some i.
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This property fails in the ring R = {a + b
√−5 : a, b ∈ Z} discussed in the

preceding section. For 2 divides 6 = (1+
√−5)(1−√−5), but 2 does not divide

either factor.
Now we return to the proof that a PID is a UFD. Suppose that we have two

factorisations of an element of the PID R, say

a = p1p2 · · · pm = q1q2 · · · qn,

where the pi and qj are irreducible. Now p1 divides q1 · · · qn, so by the remark
following the proposition, p1 divides qj for some j. By re-ordering the product,
we can assume that p1 divides q1. Since p1 and q1 are irreducible, they must be
associates, say p1 = q1u for some unit u. Then we have

p1p2 · · · pm = (q1u)(u−1q2) · · · qn.

By the Cancellation Law,

p2 · · · pm = q′
2 · · · qn,

where q′
2 = u−1q2, an associate of q2. Continuing in this manner we find that

m = n and that pi and qi are associates for all i (after suitable re-ordering), and
we are done.

We close this section with an example of a UFD which is not a PID. This is
the ring Z[x] of polynomials over the integers. It is a UFD by Gauss’ Lemma. The
g.c.d. of the elements 2 and x is obviously 1; but there do not exist polynomials
f and g such that 2f(x) + xg(x) = 1, since the constant term of the left-hand
side is even. Said otherwise, the ideal 〈2, x〉 generated by 2 and x (which is the
set of all polynomials whose constant term is even) cannot be generated by a
single element.

2.13 Euclidean domains or EDs. We now look at an even more specialised
class of rings (which, however, includes our prototype Z as well as polynomial
rings over fields).

Definition Let R be a commutative ring with identity.

• A Euclidean function on R is a function d from the set of non-zero
elements of R to the non-negative integers which satisfies
(a) d(ab) ≥ d(a) for a, b �= 0;
(b) if a, b ∈ R with b �= 0, then there exist q, r ∈ R with a = bq + r and

either r = 0 or d(r) < d(b).
• R is a Euclidean domain, if there exists a Euclidean function on R.

Examples 1. Z is a ED. Take d(a) = |a| for non-zero a ∈ Z. If also b �= 0, then
clearly

d(ab) = |ab| = |a| · |b| = d(a)d(b) ≥ d(a),
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since d(b) ≥ 1. For (b), suppose that b �= 0. If b > 0, divide a by b to obtain a
quotient q and remainder r; then a = bq + r with 0 ≤ r < b; that is, r = 0 or
d(r) < d(b) = b. If b < 0, divide a by −b instead.

2. For any field F , the polynomial ring F [x] is a ED. In this case, we take
the Euclidean function to be d(f) = deg(f), the degree of the polynomial f .
(Recall that we did not define deg(f) if f = 0, but we do not need a value for
d(0) either.)

(a) If f, g are non-zero, then d(fg) = d(f) + d(g) ≥ d(f).
(b) Suppose that g �= 0; we wish to find q, r with f = gq + r and r = 0 or

deg(r) < deg(g). The proof is by induction on the degree of f . Let m = deg(f),
n = deg(g). If m < n, we can take q = 0 and r = f . So suppose that m ≥ n. Let

f(x) = amx
m + lower terms,

g(x) = bnx
n + lower terms,

where am and bn are non-zero. Put

f1(x) = f(x)− (amb−1
n )xm−ng(x).

(This is defined since the coefficients form a field and bn �= 0.) The coefficient of
xm in f1 is am− (amb−1

n )bn = 0, and clearly there are no terms of higher degree.
So deg(f1) < m = deg(f). By the induction hypothesis, we have f1 = gq1 + r1,
where r1 = 0 or deg(r1) < deg(g). Then

f = g(amb−1
n xm−n + q1) + r1;

so we can take q = amb
−1
n xm−n + q1, r = r1.

The reason for the term ‘Euclidean domain’ is that this is the class of rings in
which the Euclidean Algorithm for finding the greatest common divisor of two
elements can be made to work. We met the Euclidean Algorithm for integers in
Chapter 1. The general case is exactly the same. I will present it here in a way
influenced by computer programming, as a recursive algorithm. But you do not
need to know anything about computers in order to follow this. Just remember
that an algorithm takes some data as input and produces some other data as
output; we must specify what the algorithm is expected to do, and then we must
prove that the algorithm really does what is claimed.

Euclidean Algorithm Let R be a Euclidean domain.
Input: Two elements a, b ∈ R.
Output: An element c ∈ R which is a greatest common divisor of a and b.

We write c = gcd(a, b) for this output.
Operation: If b = 0, then set gcd(a, b) = a.
Otherwise, choose q, r ∈ R such that a = bq + r with either r = 0 or d(r) <

d(b); set gcd(a, b) = gcd(b, r).
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It is not clear that we have defined anything: why should gcd(b, r) be easier
to calculate than gcd(a, b)? Imagine that we are given two elements a and b,
and are trying to find gcd(a, b). If b = 0, we obtain immediately the result a.
Suppose not. Now observe that either r = 0, in which case we finish at the second
step, or we have to calculate gcd(b, r) with d(r) < d(b). During the calculation,
the second alternative can only occur finitely often, since the value of d on the
second argument of the function is strictly smaller at each instance, and a strictly
decreasing sequence of non-negative integers cannot continue for ever. So, after
a finite number of steps, the algorithm does terminate and produce a result.

Now, we have to show that it gives the correct result. The proof is by induction
on d(b) (taking the base case of the induction to be b = 0). In order to do this,
we need to show two things:

(a) the greatest common divisor of a and 0 is a;
(b) if a = bq + r, then the greatest common divisor of a and b is equal to the

greatest common divisor of b and r (up to associates).

The first fact should be clear if a �= 0; you should think about it and convince
yourself that it also holds if a = 0. (Use the definition of greatest common divisor,
rather than any prejudices about greatest integers, etc.)

For the second point, observe that any divisor of a and b also divides r =
a − bq, while any divisor of b and r also divides a = bq + r. So the set of all
common divisors of a and b is the same as the set of common divisors of b and
r, and the greatest common divisors must be associates, as required.

As we saw in case of the integers, the Euclidean Algorithm has another fea-
ture; it can be used to express the g.c.d. of a and b as a linear combination of
these two elements. This is also true in general:

Enriched Euclidean Algorithm Let R be a Euclidean domain.
Input: Two elements a, b ∈ R.
Output: An element c ∈ R which is a greatest common divisor of a and b,

together with two elements x and y such that c = ax+ by.
Operation: If b = 0, then we set c = a, x = 1, y = 0.
Otherwise, we write a = bq+ r with r = 0 or d(r) < d(b) as usual, and apply

the algorithm to b and r. Suppose that the output is c′, x′, and y′. Then we put
c = c′, x = y′, and y = x′ − y′q.

The proof that this algorithm terminates, and finds the g.c.d. correctly, is
exactly as for the original version. We have to show that c = xa + yb. This is
obvious in the first case of the algorithm. In the second case (arguing, as before,
by induction), we may assume that c′ = bx′ + ry′. Then

c = c′ = bx′ + (a− bq)y′ = ay′ + b(x′ − qy′),

as required.
Now we turn to some theoretical properties of Euclidean domains.

Proposition 2.23 (a) A Euclidean domain is an integral domain.
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(b) If R is a Euclidean domain and a, b are non-zero elements with a | b and
d(b) = d(a), then a and b are associates.

Proof (a) If a and b are non-zero, then d(ab) ≥ d(a), so ab �= 0.
(b) By condition (b), a = bq + r, where r = 0 or d(r) < d(a). Suppose that

r �= 0. Then a divides b, so a divides r = a− bq; by condition (a), d(r) ≥ d(a), a
contradiction. So we must have r = 0, whence a = bq. So each of a and b divides
the other, and these elements are associates.

Now we come to the main result:

Theorem 2.24 (a) A Euclidean domain is a principal ideal domain.
(b) A Euclidean domain is a unique factorisation domain.

Proof (a) Let R be a Euclidean domain. Take any ideal I ∈ R: we have to
show that I is a principal ideal. The argument is similar to our determination
of the ideals in Z. First, 0 ∈ I; and, if I consists only of 0, then I = 〈0〉, and
so I is principal. So we may suppose that I contains some non-zero elements.
Choose an element a ∈ I such that d(a) is as small as possible. (This depends
on the fact that the values of d are non-negative integers, so there is necessarily
a smallest one.) We claim that I = 〈a〉. As usual, we have to show that any
element of either set is contained in the other. First, take x ∈ 〈a〉; then x is of
the form x = ar for some r ∈ R, and so x ∈ I (since a ∈ I and I is an ideal).
Conversely, take x ∈ I. By part (b) of the definition of a Euclidean function,
we write x = aq + r, where r = 0 or d(r) < d(a). Now x ∈ I and aq ∈ I, so
r = x − aq ∈ I; and, since a was chosen as an element of I with d(a) as small
as possible, it cannot happen that d(r) < d(a), so we must have r = 0, and
x = aq ∈ 〈a〉. Thus indeed I = 〈a〉.
(b) If we had proved Theorem 2.21, this would immediately follow from (a). Since
we didn’t do that, we have some work to do. We showed that factorisation is
unique (up to order and associates) in any PID; so we only have to do the other
part, to prove that any element (other than zero and units) has a factorisation
in R. So take a ∈ R with a �= 0 and a not a unit. We show by induction on d(a)
that a has a factorisation. In other words, we assume that any element b with
d(b) < d(a) has a factorisation.

If a is irreducible, then we have a factorisation (with only one factor!), so
suppose that a = bc, where neither b nor c is a unit. Now by condition (a),
d(b) ≤ d(a) and d(c) ≤ d(a). If d(b) < d(a) and d(c) < d(a), then by the inductive
hypothesis, both b and c have factorisations; combining these gives a factorisation
of a. So we can suppose that d(b) = d(a). But then a and b are associates, by
part (b) of the Proposition: a contradiction. The proof is finished.

Let us summarise our findings. We have three classes of integral domains:

• unique factorisation domains;
• principal ideal domains;
• Euclidean domains.
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Theorems 2.21 and 2.24 show that

ED ⇒ PID ⇒ UFD.

We see the increasing strength of these conditions by looking at the facts about
greatest common divisors:

• In a UFD, any two elements have a g.c.d.;
• In a PID, any two elements a, b have a g.c.d. d, and d = xa + yb for some
x, y;

• In a ED, any two elements a, b have a g.c.d. d, and d = xa + yb for some
x, y; moreover, d, x, y can be found by using the Euclidean Algorithm.

You might expect here an example of a PID which is not a ED. Such rings
do exist; T. S. Motzkin showed that the ring

R = {a+ b
√−19 : either a, b ∈ Z or a− 1

2 , b− 1
2 ∈ Z}

is an example. But the proof is more difficult. (You can read it in volume 55 of
the Bulletin of the American Mathematical Society, starting on page 1142.)

Exercise 2.22 Show that, in a commutative ring with identity, no element can be
both a zero-divisor and a unit.

Exercise 2.23 Write down the associate classes in the ring Z12.

Exercise 2.24 (∗) Find all positive integers m with the property that every unit a in
Zm satisfies a2 = 1.

Exercise 2.25 Let R be an integral domain. Show that the units of R[x] are precisely
the constant polynomials which are units of R.

Exercise 2.26 (a) Let F be a field. Show that a matrix A ∈ Mn(F ) is a unit if
and only if det(A) �= 0; and that a non-zero matrix A is a zero-divisor if and only if
det(A) = 0.

(∗) (b) More generally, let R be a commutative ring with identity. Prove that
A ∈ Mn(R) is a unit if and only if det(A) is a unit in R. [Hint : If det(A) is a unit,
use the ‘cofactor formula’ to find an inverse of A. Conversely, if AB = BA = I, take
determinants to show that det(A) is a unit.]

Exercise 2.27 Let x be an element in a ring with identity, and suppose that xn = 0 for
some positive integer n. Prove that 1+x is a unit. [Hint : (1+x)(1−x+x2−x3+· · · ) = 1.]

Exercise 2.28 (a) Find the greatest common divisor of the real polynomials f(x) =
x2 + 3x+ 2 and g(x) = x5 + 2x4 + 5x3 + 6x+ 2.

(b) Give a simple description of the ideal 〈f(x), g(x)〉 of R[x].

Exercise 2.29 (a) Show that the ring R = {x + yi : a, b ∈ Z} of Gaussian integers is
a Euclidean domain, with Euclidean function d(x+ yi) = x2 + y2. [Hint: For (b), take
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a, b ∈ R with b �= 0, and write a/b = u+ vi in C, where u and v are rational numbers.
Then choose m,n ∈ Z such that

|(u+ vi)− (m+ ni)| ≤ 1/
√
2,

by considering lattice points with integer coordinates in the complex plane.]
(∗) (b) Show that the ring of Eisenstein integers (Exercise 2.16(b)) is a Euclidean

domain, by using the triangular lattice similarly.

Exercise 2.30 (a) Describe the units in the ring of Gaussian integers.
(∗) (b) Show that the irreducibles in the ring of Gaussian integers are of two types:

primes p ∈ Z which cannot be written as the sum of two integer squares; and elements
x+ yi, where x2 + y2 is a prime in Z. (For example, 3 is a ‘Gaussian prime’; 5 is not,
since 5 = (2 + i)(2 − i), but the two factors are both Gaussian primes.)

Remark A theorem of Number Theory asserts that a prime p can be expressed
as the sum of two squares if and only if p = 2 or p ≡4 1.

Fields
Recall that a field is a commutative ring with identity in which division is pos-
sible by non-zero elements. Rings are easy to build: we have seen polynomial
rings, matrix rings, Boolean rings, cartesian products. Almost always, these rings
turn out not to be fields. In fact, there are only two standard methods of con-
structing fields: applied to the integers, they produce the rationals, and the
integers mod p.

2.14 Field of fractions. The first method involves going from a ring to its
‘field of fractions’, which generalises the construction of the rational numbers
from the integers.

Let R be an integral domain. A field F is a field of fractions of R if

(a) R is a subring of F ;
(b) Any element of F can be written in the form ab−1 for some a, b ∈ R (where

b−1 is calculated in F ).

For example, the rational numbers Q form the field of fractions of the integers
Z. Any field is its own field of fractions.

Theorem 2.25 Any integral domain has a field of fractions.

Proof Let R be an integral domain. We let S be the set of all ordered pairs
(a, b) for a, b ∈ R, b �= 0. We intend that the ordered pair (a, b) will represent
the element ab−1. But, of course, ab−1 = cd−1 if (and only if) ad = bc; so we
want the ordered pairs (a, b) and (c, d) to represent the same element of F if this
condition holds. Accordingly, we define an equivalence relation ∼ on S by the
rule

(a, b) ∼ (c, d) if and only if ad = bc.
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We prove that this really is an equivalence relation. First, (a, b) ∼ (a, b), since
ab = ba (R is commutative). Then, if (a, b) ∼ (c, d), then ad = bc, and so cb = da;
this means (c, d) ∼ (a, b). Finally, suppose that (a, b) ∼ (c, d) and (c, d) ∼ (e, f).
Then ad = bc and cf = de. So

adf = bcf = bde,

and by the cancellation law (since d �= 0) we deduce that af = be; so (a, b) ∼
(e, f). So ∼ really is an equivalence relation.

Now we let [a, b] denote the equivalence class of the ordered pair (a, b): [a, b] =
{(c, d) : ad = bc}. Let F be the set of equivalence classes. We define addition
and multiplication on F by the following rules:

[a, b] + [c, d] = [ad+ bc, bd],

[a, b] · [c, d] = [ac, bd].

(To see where these definitions come from, work out what you would expect
(ab−1) + (cd−1) and (ab−1)(cd−1) to be, by the usual rules for fractions.)

We have to check that these operations are well defined, and that they do
indeed make F a field. All of this is straightforward checking. Finally, the map
that takes a to the equivalence class [a, 1] is a one-to-one homomorphism from R
to F , so we can regard R as a subring of F . Moreover, the inverse of the element
[b, 1] is [1, b] if b �= 0; and [a, b] = [a, 1][b, 1]−1. So, if we identify R with its image
in F under this embedding, we see that F is indeed a field of fractions of R.

In fact, the field of fractions is unique (up to isomorphism). This is another
way of saying that the only possible way to construct a field of fractions is the
way we actually did it.

2.15 Maximal ideals and fields. The second method of constructing fields
generalises the passage from the integers to the integers modulo a prime: the field
is constructed as a factor ring. To study this, first we need a different test for
when a ring is a field.

Proposition 2.26 Let R be a commutative ring with identity. Then R is a
field if and only if the only ideals in R are {0} and R itself.

Proof For the forward implication, suppose that R is a field. Take any ideal
I of R. Suppose that I �= {0}; we have to show that I = R, that is, that every
element of R is in I. Certainly, some non-zero element is in I, say a ∈ I. Now,
for any x ∈ R, we have x = (xa−1)a ∈ I. So I = R.

For the converse, let R be a commutative ring with identity whose only ideals
are {0} and R. We have to show that all its non-zero elements have inverses. So
take a ∈ R with a �= 0. Let I be the ideal (a) = aR. Then I �= {0}, since
a ∈ I; so I = R. Thus, 1 ∈ I = aR, so there exists b ∈ R with ab = ba = 1, as
required.
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We say that the ideal I of the ring R is a maximal ideal of R if I �= R
but there is no ideal J properly between I and R; that is, if J is an ideal with
I ⊆ J ⊆ R, then J = I or J = R.

Theorem 2.27 Let R be a commutative ring with identity, and I an ideal of
R. Then R/I is a field if and only if I is a maximal ideal of R.

Proof This follows immediately from the proposition and the correspondence
between ideals of R/I and ideals of R containing I given by the Second
Isomorphism Theorem (Theorem 2.11).

How do we recognise maximal ideals?

Proposition 2.28 Let R be a principal ideal domain, and take a ∈ R with
a �= 0. Then 〈a〉 is a maximal ideal of R if and only if a is irreducible.

Proof In an integral domain, we have 〈a〉 ⊆ 〈b〉 if and only if b divides a, and
〈a〉 = 〈b〉 if and only if a and b are associates. In particular, 〈a〉 = R if and only
if a is a unit (an associate of 1: note that 〈1〉 = R). Hence 〈a〉 is maximal if and
only if every element b which divides a is either an associate of a or a unit; but
this is exactly the condition that a is irreducible. Finally, if R is a principal ideal
domain, then there are no other ideals to spoil the maximality of (a).

Example R = Z. We see that Zn is a field if and only if n is prime. (In fact
we knew this already. For we showed that m is a unit in Zn if and only if m and
n are coprime; and this holds for all non-zero residues mod n if and only if n is
prime.)

We will apply this result to polynomial rings in the next section.

2.16 Field extensions, finite fields. The standard procedure for
constructing the complex numbers from the real numbers is to ‘adjoin’ a square
root of −1; that is, an element i satisfying i2 + 1 = 0. We will now describe this
procedure, ‘adjoining the root of a polynomial’, in more detail.

Theorem 2.29 Let F be a field, and f a polynomial which is irreducible in
F [x]. Then there is a field K containing F and an element α satisfying f(α) = 0.

Proof The construction is simple. We set K = F [x]/〈f〉. This is a field by the
results of the last section: F [x] is a principal ideal domain and we are given that
f is irreducible, so 〈f〉 is a maximal ideal in F [x], and F [x]/〈f〉 is a field.

We have to show that

(a) K contains (a field isomorphic to) F ;
(b) K contains a root α of f .

(a) Set I = 〈f〉. For a ∈ F , let a denote the coset I + a, and let F be the set
of all such cosets. We show that the map a �→ a is an isomorphism from F to F .
It is one-to-one, since if a = b then b − a ∈ 〈f〉, so b − a = 0 (as any non-zero
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element of 〈f〉 has degree at least as great as that of f). The homomorphism
property is clear.

(b) We take α to be the coset I + x. Let

f(x) = anx
n + · · ·+ a1x+ a0.

Then

f(α) = an(I + x)n + · · ·+ a1(I + x) + a0(I + 1)

= (I + anx
n) + · · ·+ (I + a1x) + (I + a0)

= I + (anxn + · · ·+ a1x+ a0)

= I + f(x)

= I

and we are done, since I is the zero element of F [x]/I.

Our proof shows that a field with the required properties exists. However, it
is defined as a factor ring, which is not the most convenient form for calculation.
As always, calculation in a factor ring is very much easier if we can make a good
choice of coset representatives!

Let f be an irreducible polynomial of degree n > 0 over the field F . We claim
that every coset of the ideal 〈f〉 in F [x] has a unique representative r satisfying
r = 0 or deg(r) < n. Such an r exists because of the Euclidean property of F [x].
(If g is any polynomial, and g = fq+r, then g and r differ by a multiple of f , and
so 〈f〉+ g = 〈f〉+ r.) If r1 and r2 are two representatives of the same coset with
ri = 0 or deg(ri) < n for i = 1, 2, then 〈f〉+ r1 = 〈f〉+ r2, so r1 − r2 ∈ 〈f〉; this
means that f divides r1−r2. But since deg(f) = n, this implies that r1−r2 = 0,
so r1 = r2.

Moreover, a simple argument (similar to the one in the above proof) shows
that the coset 〈f〉+ r is equal to r(α), where α is the coset 〈f〉+ x.

This means that

Every element of K = F [x]/〈f〉 can be uniquely expressed in the
form

c0 + c1α+ c2α
2 + · · ·+ cn−1α

n−1,

where c0, c1, . . . , cn−1 ∈ F .
The addition and multiplication in K are given by the usual
arithmetic rules, with the added condition that f(α) = 0.

The construction of C = R[x]/〈x2 + 1〉 is a familiar example: every complex
number is uniquely expressible as c0 + c1i, where i2 = −1.

For another example, let us construct a finite field of order 4.
We start with the field F =Z2, with elements 0 and 1. Consider the polyno-

mial x2 + x + 1 ∈ F [x]. This polynomial is irreducible, since the only possible
factorisation would be into two linear factors, which would imply that the
polynomial has a root in F ; but 02 + 0 + 1 �= 0 and 12 + 1 + 1 �= 0. Let
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K = F [x]/〈x2+x+1〉, and let α be the coset 〈x2+x+1〉+x, so that α2+α+1 = 0.
The field K has four elements: K = {0, 1, α, α + 1}. (This is our canonical rep-
resentation above.) Letting β = α+1 = α2 (noting that x = −x in the field K),
we obtain the following tables:

+ 0 1 α β

0 0 1 α β
1 1 0 β α
α α β 0 1
β β α 1 0

· 0 1 α β

0 0 0 0 0
1 0 1 α β
α 0 α β 1
β 0 β 1 α

If p is a prime, and n a positive integer, then a finite field of order pn can
be constructed in the same way if an irreducible polynomial of degree n over Zp

can be found. Galois showed that this is always possible:

Theorem 2.30 For any prime number p and any positive integer n, there is an
irreducible polynomial of degree n over Zp, and hence a finite field of order pn.

Exercise 2.31 Show that the polynomial x2 + 1 is irreducible over Z3, and hence
construct a field of order 9.

Exercise 2.32 Show that the polynomials x3+x+1 and x3+x2+1 are both irreducible
over Z2. Are the corresponding fields of order 8 isomorphic?

Exercise 2.33 Show that, if F is a field with q elements and f an irreducible
polynomial of degree n over F , then the field K = F [x]/〈f〉 has qn elements.

Exercise 2.34 Prove that any two fields of fractions F1 and F2 of an integral domain R
are isomorphic, where the isomorphism θ : F1 → F2 can be chosen so that its restriction
to the subring R of F1 is the identity map.

Exercise 2.35 A subset X of a ring R is called multiplicatively closed if a, b ∈ X
implies ab ∈ X.

(a) Prove that R is an integral domain if and only if the set of non-zero elements
of R is multiplicatively closed.

∗(b) Let R be a commutative ring with identity, and let X be a multiplicatively
closed subset of R containing 1 but not 0. Define an equivalence relation ∼ on R ×X
by the rule that (a, b) ∼ (c, d) if and only if ad = bc. Define operations of addition and
multiplication on the set F of equivalence classes of ∼ as in Section 2.14. Prove that F
is a ring containing R, in which every element of X has an inverse, and every element
of F can be written as ab−1, where a ∈ R and b ∈ X.

Appendix: Miscellany
We end with some miscellaneous topics.

2.17 Cage on zero. The American composer John Cage wrote the following.
What is he talking about? (Think about this before reading the following
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discussion.)

Curiously enough, the twelve-tone system has no zero in it. Given
a series: 3, 5, 2, 7, 10, 8, 11, 9, 1, 6, 4, 12 and the plan of obtaining
its inversion by numbers which when added to the corresponding
ones of the original series will give 12, one obtains 9, 7, 10, 5, 2,
4, 1, 3, 11, 6, 8 and 12. For in this system 12 plus 12 equals 12.
There is not enough of zero in it.

John Cage (1968).

I contend that Cage is confusing two different zeros, the zero element of the
real numbers and the zero element of the integers mod 12.

Real numbers Cage was very much attracted to the Zen concept of emptiness.
One of his most famous compositions, entitled 4′33′′, involves a pianist sitting
at the keyboard of a piano for 4 minutes and 33 seconds without striking a note;
the audience notices the background noise (since no emptiness is truly empty).
The real numbers represent sound intensity, so zero is the absence of sound.

Integers mod 12 Musical notation is based on the fact that notes an octave
apart (that is, when the frequency of one is double that of the other) have a very
similar subjective effect in melodic terms. So we regard such notes as ‘equivalent’.
More generally, two notes are equivalent if they are a whole number of octaves
apart.

In Western music, only a discrete set of notes is used. The octave is divided
into 12 intervals called semitones. Thus, the semitones appear (on a keyboard,
say), stretching to infinity in both directions like the integers. As above, two
semitones are equivalent if they differ by a whole number of octaves; that is,
if (as integers) they are congruent mod 12. So the musical scale, for thematic
purposes, has the structure of the integers mod 12. Various musical operations
fit into this framework. For example, transposition just involves adding a fixed
constant to each note. Inversion involves replacing each equivalence class by its
negative. (This is what Cage describes.)

Two kinds of zeros The equivalence classes referred to are the congruence
classes mod 12, that is, the cosets of 12Z in Z. We can make any choice of coset
representatives we like. Mathematicians usually use 0, 1, 2, . . . , 11. Musicians use
12 instead of 0 as the representative of the class 12Z, so that their semitones are
labelled 1, 2, 3, . . . , 12.

Now Cage’s arithmetic checks, since −3 = 9, −5 = 7, and so on, in Z12 (the
integers mod 12). The mathematician says −0 = 0, the musician −12 = 12; it is
exactly the same, just involving a different choice of coset representative.

So, contrary to what Cage says, there is a zero in the twelve-tone scale (but
musicians call it 12); and it has nothing to do with the real number zero, the
zero of intensity or absence of sound when the pianist is not striking the keys.
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Footnote The title of Cage’s piece mentioned above itself blurs the categories
between different kinds of numbers. Four minutes and thirty-three seconds make
273 seconds; and −273 is the temperature of absolute zero in the Celsius scale.
If he had used the Fahrenheit scale, Cage would presumably have titled his piece
7′39′′; but this duration may have taxed the patience of the audience too far!

2.18 Solution to Exercise 2.10. Exercise 2.10 asks whether it is possible
to have a ring whose elements are the integers, with (a) the same addition as Z

but different multiplication, or (b) the same multiplication but different addition.
Part (a) is easy if you remember the definition of a zero ring from Section 2.2:

if we are given the operation of addition satisfying axioms (A0)–(A4), and we
define multiplication by ab = 0 for all a, b, we obtain a ring. (For a more
challenging question, try to describe all the possible definitions of multiplication
which would give a ring.)

Part (b) is much harder. If you tried this question, you probably attempted
to write down an explicit rule for addition which would make R into a ring.
I do not know how to do that. Instead, I will give here a solution which is
non-constructive, and is an illustration of the concept of factorisation, which we
discussed in Sections 2.10–2.13.

Let R be a ring in which the set of elements is Z and the multiplication is the
same as that in Z. We start by making a list of properties of R. Any property
which is defined purely in terms of multiplication, which holds in Z, will hold in
R. Thus, we have the following:

(a) R is commutative.
(b) R has an identity element 1.
(c) R has no divisors of zero. (Thus, R is an integral domain.)
(d) R has just two units, 1 and z, where z2 = 1. (In fact, in Z, we have z = −1,

but −1 depends on the addition, so we cannot assert that z = −1 here.
Confusingly, z is the integer whose name is −1, but we do not know that
it is the additive inverse of 1.)

(e) R has infinitely many irreducibles (by the theorem of Euclid).
(f) R is a unique factorisation domain.

In fact, these properties determine the multiplication in R completely. For,
if they hold, then any non-zero element can be uniquely written as upa1

k1
· · · par

kr
,

where u = 1 or z, p1, p2, . . . are the irreducibles (one from each associate class),
and a1, . . . , ar are positive integers. Now the rule for multiplying these elements
is clear.

This means that, if we can find a ring S different from Z having properties
(a)–(f), then S will have the same multiplication as Z, and so R = S is a solution
to the problem.

The simplest example of such a ring is the polynomial ring F [x], where
F = Z3 is the field of integers mod 3. This is a UFD (since it is a Euclidean
domain); its units are the two non-zero constants; and Euclid’s proof holds virtu-
ally unchanged to show that there are infinitely many irreducibles. (If there were
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only finitely many irreducibles, say f1, . . . , fr, then the polynomial f1 · · · fr + 1
would not be irreducible, but would not be divisible by any irreducible, a
contradiction.)

For example, we might let the irreducible polynomials x, x+1, x− 1, x2 +1,
. . . correspond to the prime numbers 2, 3, 5, 7, . . . . Then, using ⊕ for the
new addition, we have 1 ⊕ 1 = −1, 3 ⊕ 5 = −2, 4 ⊕ 1 = 7, 7 ⊕ 1 = 15,
and so on.

2.19 Ideals in matrix rings. A commutative ring R with identity, whose
only ideals are the trivial ones (namely, {0} and R), is necessarily a field (see
Proposition 2.24). This is false if we do not assume commutativity. The ring
Mn(F ) of all n × n matrices over the field F has only the trivial ideals, as we
shall see; but it is not a division ring for n > 1, since there are non-zero singular
matrices.

Theorem 2.31 Let R be a commutative ring with identity, and n a positive
integer.

(a) If S is an ideal of R, then Mn(S) is an ideal of Mn(R).
(b) Every ideal of Mn(R) is of this form.

Proof (a) If S is an ideal of R, then it is a ring, and so Mn(S) is a ring, so (by
definition) a subring of Mn(R). Now take A = (aij) ∈ Mn(S), and X = (xij) ∈
Mn(R). The (i, j) entry of AX is

n∑
k=1

aikxkj .

Now aikxkj ∈ S, since aik ∈ S and S is an ideal. Summing over k then gives an
element of S. So AX ∈Mn(S). Similarly XA ∈Mn(S). So Mn(S) is an ideal of
Mn(R).

(b) Suppose that T is an ideal of Mn(R). Let S be the set of elements of R
which occur as entries in matrices in T . We show that S is an ideal of R and
that T =Mn(S).

Let Eij denote the matrix with 1 in row i and column j, and 0 in all other
positions. Also, let S′ be the set of all elements x ∈ R such that xE11 ∈ T . (Here
xE11 is the matrix with x in the top left-hand corner and all other entries zero.)
Step 1 S′ = S.

For clearly S′ ⊆ S. Let x ∈ S; then there is a matrix A = (aij) ∈ T such that
apq = x. Now it is easily checked that

E1pAEq1 = apqE11 = xE11.

Since T is an ideal, xE11 ∈ T , so x ∈ S′.
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Step 2 S is an ideal of R.
Take x, y ∈ S and r ∈ R. Then xE11, yE11 ∈ T . Then, for any r ∈ R, we

have

(x+ y)E11 = xE11 + yE11 ∈ T,
(rx)E11 = (rE11)(xE11) ∈ T,
(xr)E11 = (xE11)(rE11) ∈ T,

since T is an ideal of Mn(R). So x+ y, rx, xr ∈ S, and S is an ideal of R.
Step 3 T =Mn(S).

By definition, T ⊆Mn(S). Suppose that A = (aij) ∈Mn(S). Then

A =
n∑

i,j=1

Ei1(aijE11)E1j ∈ T,

since aijE11 ∈ T by Step 1 and T is an ideal.

Thus, for example, the ring of 2× 2 matrices over the ring of integers mod 4
has just three ideals:

• the zero ideal;
• the ideal consisting of matrices with every entry 0 or 2;
• the whole ring.

A ring R is defined to be simple if the only ideals in R are {0} and R.
Thus, any field (or, indeed, any division ring) is simple. From Theorem 2.31 we
immediately conclude:

Corollary 2.32 Let F be a field, and n a positive integer. Then Mn(F ) is a
simple ring.

Exercise 2.36 Recall the definition of the direct product R× S of two rings R and
S: the elements of R × S are all ordered pairs (r, s), where r ∈ R and s ∈ S; and the
operations are componentwise, that is,

(r1, s1) + (r2, s2) = (r1 + r2, s1 + s2), (r1, s1) · (r2, s2) = (r1r2, s1s2).

Let R′ = {(r, 0) : r ∈ R} and S′ = {(0, s) : s ∈ S}. Prove that R′ and S′ are ideals of
R× S isomorphic to R and S respectively.

Now suppose that T is a ring which contains ideals R and S having the property
that every element of T can be written uniquely in the form r + s, where r ∈ R and
s ∈ S. Prove the following assertions:

(a) R+ S = T and R ∩ S = {0}.
(b) If r ∈ R and s ∈ S, then r and s commute (that is, rs = sr).
(c) The map θ from R× S to T given by (r, s)θ = r + s is an isomorphism.
(d) T is isomorphic to R× S.
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Exercise 2.37 Let R be a ring, and a an element of R. Remember that 〈a〉 means the
ideal generated by a, which by definition is the smallest ideal of R containing a.

(a) Prove that 〈a〉 is the set of all elements of R of the form

na+ sa+ at+
m∑
i=1

siati,

where m and n are integers, m ≥ 0, and s, t, si, ti are elements of R (and na has
its usual meaning).

(b) Suppose that R has an identity. Show that the terms na, sa, and at can
be dropped from the expression above.

(c) The element a is said to be central if it commutes with every element
of R. Show that, if R has an identity and a is central, then

〈a〉 = aR = {ar : r ∈ R}.

(d) Give a description of 〈a〉 in the case where a is central but R does not
necessarily have an identity.

Exercise 2.38 Let F be a field and n a positive integer. Let R be the ring Mn(F )
of n × n matrices over F . Let a = E11 be the matrix with entry 1 in the first row
and column, and all other entries zero. By Theorem 2.31, we know that 〈a〉 = R. So,
by part (b) of the preceding exercise, every element of R can be written in the form∑m

i=1 siati, for some elements si, ti ∈ R. Show that there are elements of R which
cannot be expressed as the sum of fewer than n terms of the form siati, for si, ti ∈ R.

Exercise 2.39 An element e of a ring is said to be an idempotent if e2 = e.

(a) Let e be an idempotent in a ring with identity. Show that 1 − e is also
an idempotent.

(b) Let R and S be rings with identity. Show that the elements (1, 0) and
(0, 1) are central idempotents of the direct product R × S, whose sum is the
identity of R× S.

(c) Conversely, suppose that T is a ring with identity and e is a central
idempotent of T with e �= 0, 1. Prove that T ∼= R × S, where R = eT and
S = (1− e)T .

Exercise 2.40 An element r of a ring R is said to be nilpotent if rn = 0 for some
positive integer n.

(a) Prove that a non-zero nilpotent element is a zero divisor. Is the converse
true?

(b) Prove that, in a commutative ring, the set of nilpotent elements is an
ideal.
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(c) Let n be a positive integer. Find all nilpotent elements of the ring Zn of
integers mod n. (Since, by the previous part they form an ideal, they must consist
of all multiples of n∗ for some integer n∗ dividing n. Your job is to calculate n∗

in terms of n.)

Exercise 2.41 Let R be a ring with identity. Prove that, if the element r ∈ R is
nilpotent, then 1 + r is a unit.

Exercise 2.42 Prove that, in a matrix ring Mn(R), any strictly upper triangular
matrix is nilpotent.
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We now turn to the study of groups. A group is a set with a single binary
operation. So groups are much less structured than rings. We will see that this
gives a different flavour to the subject.

Groups and subgroups
3.1 Introduction. Groups resemble rings in many ways. The main difference
is that the conditions defining a group are less stringent (only one operation and
four axioms, half as many as for rings), so that examples of groups are more
numerous and varied. But also, there is no ‘canonical example’ of a group,
corresponding to the ring Z, on which to base our definitions and test our
intuition.

First, there is a problem of notation. Many examples of groups are based
on number systems, as we will see. Sometimes, the operation is addition, and
the identity element is 0; at other times, the operation is multiplication, and the
identity is 1. So we define a group using terminology different from both of these,
not carrying the freight of associations of plus or times.

A group is a set G with a binary operation ◦ satisfying the following laws:

(G0) (Closure law): For all g, h ∈ G, g ◦ h ∈ G.
(G1) (Associative law): g ◦ (h ◦ k) = (g ◦ h) ◦ k for all g, h, k ∈ G.
(G2) (Identity law): There exists e ∈ G such that g ◦ e = e ◦ g = g for all
g ∈ G.

(G3) (Inverse law): For all g ∈ G, there exists h ∈ G with g ◦ h = h ◦ g = e.

After we defined rings, we gave some extra conditions that select special
classes of rings. We do the same here, but there is only one such class to be
defined. We say that a group is abelian, or commutative, if it satisfies:

(G4) (Commutative law): g ◦ h = h ◦ g for all g, h ∈ G.
(The term ‘abelian’ is much more common than ‘commutative’ in this context; it
commemorates the mathematician N. Abel. In fact, many things are named after
mathematicians who had some involvement in their discovery; but the ultimate
accolade is that the word has passed so much into common usage that we use a
lower-case letter for it.)

At this point, you should stop and compare the axioms (G0)–(G4) with the
first five ring axioms (A0)–(A4). You will see that they are exact translations:
we have put ‘group G’ in place of ‘ring R’, ◦ for +, e for the zero element 0, and
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used letters g, h, k instead of a, b, c. This brings us naturally to our first examples
of abelian groups . . . .

3.2 Examples of groups.

Example 1 It follows from our observation at the end of the last section that,
if R is any ring, then (R,+) (meaning the set R with the operation +, where
we forget entirely about the multiplication), is an abelian group. So every ring
gives us an abelian group, called the additive group of the ring.

Conversely, we saw in Section 2.2 that, given any abelian group R, where the
group operation is written as + and the identity as 0, we obtain a ring (a zero
ring) by defining the ring multiplication by the rule

ab = 0 for all a, b ∈ R.

So abelian groups are exactly the same as additive groups of rings. For
this reason, in the study of abelian groups, it is customary to write the group
operation as + rather than ◦, and the identity as 0.

Example 2: Groups of units Here is another construction of a group from
a ring, this time using the multiplication. It is not true that the ring with the
operation of multiplication forms a group. However, we do find a group as follows:

Let R be a ring with identity. Let U(R) be the set of units of R. (Recall that
u is a unit if there exists v ∈ R such that uv = vu = 1.) Now (U(R), ·) is a
group. To show this, we have to check the axioms. But most of the work is done
for us.

Just after the definition of units in Section 2.10, we proved Proposition 2.14,
with three parts:

• The product of two units is a unit. Thus, the units satisfy (G0).
• The identity is a unit. Thus, the units satisfy (G2).
• The inverse of a unit is a unit. Thus, the units satisfy (G3).

This leaves us with just the associative law to check; but the associative law
holds for units because it holds for all elements of the ring, by (M1). So the
claim is proved.

The group U(R) is called the group of units of R.
Here are a few examples of this construction.

1. U(Z) = {+1,−1}. So this set is a group, having just two elements, under
the operation of multiplication.

2. If F is a field, then every non-zero element is a unit. Thus, F \{0} is a group
under multiplication. This group is called the multiplicative group of the
field, often written as F ∗.

3. Again let F be a field, and let n be a positive integer. Then the set Mn(F )
of n × n matrices over F is a ring. A matrix A is a unit if and only if
it is invertible (or non-singular); that is, det(A) �= 0. Thus, the group
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U(Mn(F )) of units of F consists of all the invertible n × n matrices. This
group is referred to as GL(n, F ), and called the general linear group. (It is
linear because matrices are the topic of Linear Algebra, and general because
it is the largest possible group we could make out of n×n matrices with the
operation of matrix multiplication.)

Example 3: Permutations Let Ω be a set. A permutation of Ω is a one-
to-one and onto function (a bijection) π : Ω → Ω.

We write xπ for the image of the element x under the permutation π, rather
than π(x) as you might expect. The reasons are somewhat similar to those that
we discussed in the last chapter for writing homomorphisms ‘on the right’.

We define the operation of composition of permutations as follows: if π1 and
π2 are permutations, their composition π1 ◦ π2 is given by x(π1 ◦ π2) = (xπ1)π2.
In other words, apply π1, then π2.

This shows the reason for writing permutations on the right of their arg-
uments. If we wrote them on the left, then ‘first π1, then π2’ would be π2(π1(x)),
and we would either have to set (π1 ◦ π2)(x) = π2(π1(x)), or else redefine comp-
osition to mean ‘first π2, then π1’. Life is complicated enough without that! But
you are hereby warned: some people do exactly that.

How do we describe a permutation? In the case where Ω is finite, there are
two commonly used notations, which we met in Chapter 1. Take Ω to be the set
{1, 2, . . . , n}.

Two-line notation for the permutation π: We write the elements 1, 2, . . . , n
in the top row of an array. Below the element x we write its image xπ under the
permutation. So, for example,

π =
(
1 2 3 4 5 6
2 5 3 6 1 4

)

is the permutation which maps 1 to 2, 2 to 5, 3 to 3, and so on.
This notation enables us to count the number of permutations. The image of

1 (the number written under 1) can be any of the n elements of Ω. When it is
chosen, the image of 2 can be any of the remaining n− 1 elements, the image of
3, any of the remaining n− 2, and so on. So the number of permutations is

n · (n− 1) · (n− 2) · · · 2 · 1 = n!,

the product of the numbers from 1 to n (or ‘n factorial’).
Cycle notation is more compact. Given the permutation π, choose a point 1;

open a bracket and write 1, followed by its image under π, followed by its image,
and so on, until the next step would return us to 1; then close the bracket. Then
pick the smallest number not used so far, and repeat the procedure with it;
continue until all numbers have been used. The sequences in brackets are called
the cycles of π.
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For example, the permutation π described above in two-line notation would
be written as (1, 2, 5)(3)(4, 6). The calculation goes, ‘1 maps to 2, to 5, back to
1; then 3 maps to itself; then 4 maps to 6, back to 4’. So π has three cycles.

Note that the point 3, which is fixed by the permutation, lies in a cycle with
just one element (a cycle of length 1). By convention, we simply omit cycles of
length 1. So π would be written as (1, 2, 5)(4, 6). There is one exception to this
convention. If we applied it to the identity, then everything would be omitted,
and we would write nothing at all! Usually we put in a token cycle of length 1
and write the identity as (1).

Now let Sym(Ω), the symmetric group on Ω, be the set of all permutations
of Ω, with the operation of composition. We claim that it is a group.

(G0) If π1 and π2 are permutations, then so is π1 ◦ π2.
• Proof that it is one-to-one: suppose that x(π1 ◦ π2) = y(π1 ◦ π2). Then
(xπ1)π2 = (yπ1)π2. Since π2 is one-to-one, we see that xπ1 = yπ1; then
since π1 is one-to-one, x = y.

• Proof that it is onto: Given x ∈ Ω, there exists y ∈ Ω such that yπ2 = x,
since π2 is onto; then there exists z ∈ Ω such that zπ1 = y, since π1 is
onto. Then z(π1 ◦ π2) = x.

(G1) x((π1 ◦ π2) ◦ π3) = (x(π1 ◦ π2))π3 = ((xπ1)π2)π3,
x(π1 ◦ (π2 ◦ π3)) = (xπ1)(π2 ◦ π3) = ((xπ1)π2)π3.

In other words, both (π1 ◦ π2) ◦ π3 and π1 ◦ (π2 ◦ π3) say ‘apply π1, then π2,
then π3’.

(G2) The identity permutation ε defined by xε = x for all x (leaving everything
where it is) satisfies ε ◦ π = π = π ◦ ε for all permutations π.

(G3) If π is a permutation, it is a one-to-one and onto function, and hence has an
inverse function σ, where xσ = y if and only if yπ = x. Then π◦σ = σ◦π = ε.

If Ω = {1, 2, . . . , n}, we write the symmetric group Sym(Ω) as Sn for brevity.
Thus, Sn is a group with n! elements. For example, S3 consists of the six elements
(in cycle notation) (1) (the identity), (1, 2, 3), (1, 3, 2), (1, 2), (2, 3), and (1, 3). It
turns out that S3 is the smallest non-abelian group.

Example 4: Automorphism groups Let R be a ring. An automorphism
of R is an isomorphism θ : R → R; in other words, it is a permutation of R
which happens also to be a homomorphism satisfying

(x+ y)θ = xθ + yθ, (xy)θ = (xθ)(yθ),

using the notation of Example 3.
Let Aut(R) be the set of all automorphisms of R. Then Aut(R) is a group,

the automorphism group of R.
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(G0) If θ1 and θ2 are automorphisms, so is θ1 ◦ θ2: for

(x+ y)(θ1 ◦ θ2) = ((x+ y)θ1)θ2

= (xθ1 + yθ1)θ2

= (xθ1)θ2 + (yθ1)θ2

= x(θ1 ◦ θ2) + y(θ1 ◦ θ2),

and similarly for multiplication.
(G1) As in Example 3.
(G2) The identity permutation is an automorphism of R.
(G3) The inverse of an automorphism is an automorphism.

Remark There is absolutely nothing special about rings here, unlike the
situation in Examples 1 and 2. If X is any class of mathematical objects for
which we can formulate the notion of homomorphism (or isomorphism), then
Aut(X) is a group for any X ∈ X .

For example, we will be able to talk about the automorphism group of a
group, once we have defined group homomorphisms.

Example 5 Since a group is a set with a binary operation, a finite group can
be specified by its operation table, or Cayley table, as it is usually called in
this case, after Arthur Cayley, who pioneered the use of such tables.

For example, here is the Cayley table of a group with four elements:

◦ e a b c

e e a b c
a a e c b
b b c e a
c c b a e

You may recognise this as the additive group of the field with four elements
which we constructed in Section 2.16, or of the Boolean ring of subsets of {1, 2}
in Section 2.2. It is an important enough group to have a name: it is the Klein
group, or the four-group. The German translation of the latter name, Viere-
gruppe, gives rise to the notation V4 for the group. (The first name commemorates
the mathematician Felix Klein, not the fact that it is quite a small group.)

We will see further examples later on.

3.3 Properties of groups. Before proceeding further, we will change our
notation for groups. As we saw, abelian groups are the same as additive groups
of rings, and are usually written with the symbol + for the group operation
and 0 for the identity. However, most other groups have more in common with
multiplicative systems. Accordingly, we will use juxtaposition instead of ◦ for
the group operation. Often, we refer to gh as the product of g and h. We also
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use 1 instead of e for the identity element of a group, and g−1 for the inverse of
the element g. (We will see the uniqueness of identity and inverses shortly.)

Many of these properties will remind you of similar properties for rings.
Usually the proofs are almost identical; but they will be repeated here.

1. Products The product g1 · · · gn, strictly speaking, requires the insertion of
brackets so that it can be evaluated, and potentially has many values according
to how the brackets are inserted. However, in Proposition 2.1, we showed that
the value of the sum of n elements of a ring is independent of the bracketing
used to work it out. We remarked that the proof uses only the associative law.
So the same is true for the product of n elements of a group.

2. Uniqueness of identity The identity element of a group is unique.
For suppose that e and f are two identities in a group. Then

e = ef = f.

We will denote the unique identity element by 1.

3. Uniqueness of inverses The inverse of any group element is unique.
For, if h and k are both inverses of g, then

h = h1 = h(gk) = (hg)k = 1k = k.

We will denote the inverse of g by g−1.
Now our notation for a group is consistent with the notation for the group

of units of a ring introduced in Section 2.10.

4. Properties of inverses (a) (gh)−1 = h−1g−1. [For

(gh)(h−1g−1) = g(hh−1)g−1 = g1g−1 = gg−1 = 1,

and similarly the other way around.]
(b) 1−1 = 1, clearly.
(c) (g−1)−1 = g. [For the equations gg−1 = g−1g = 1 show that g has the

properties of the inverse of g−1; and inverses are unique.]

5. Cancellation Laws

(C1) (Left Cancellation Law): If gx = gy, then x = y.
(C2) (Right Cancellation Law): If xg = yg, then x = y.

For suppose that gx = gy. Then

x = 1x = (g−1g)x = g−1(gx) = g−1(gy) = (g−1g)y = 1y = y.

The proof of the right cancellation law is similar.

6. Exponents Now we define gn for any element g ∈ G, and any integer n.
If n > 0, we define gn to be the product of n factors equal to g. (As we noted
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in Point 1 above, this is well defined.) For n = 0, we set g0 = 1, the identity.
Finally, for n < 0, say n = −m, we define g−m = (gm)−1. Now we have laws of
exponents, as in elementary algebra:

(a) gm · gn = gm+n.
(b) (gm)n = gmn.
(c) If gh = hg, then (gh)n = gnhn.

Note that the third of these laws does not hold for arbitrary elements g, h. (We
say that g and h commute if gh = hg. Like regular commuters, if g and h
commute, then they can move back and forth in any product of gs and hs. Every
time we find a factor · · ·hg · · · in the product, we can replace it by · · · gh · · · .
In this way, we can bring the gs in front of the hs. In particular, the product
(gh)n = ghgh · · · gh is equal to gg · · · ghh · · ·h = gnhn.) This proves the assertion
for positive n. The remaining cases are left as an exercise.

3.4 Subgroups. Let G be a group. A subgroup of G is a subset of G which,
using the same operation as in G, is itself a group. We write H ≤ G to indicate
that H is a subgroup of G (as opposed to H ⊆ G, which just means that H is
a subset of G). If H is a subgroup of G, which is not the whole of G, we write
H < G.

Let us consider the group axioms for H, a subset of G.

(G0) Closure requires that the product of any two elements of H is in H.
(G1) Since the associative law holds for any elements of G, it certainly holds

for any elements of the subset H.
(G2) We require that the identity 1 of G should belong to H.
(G3) We require that the inverse h−1 of any element h ∈ H should also belong
to H.

So the associative law comes free, and we only have to check the other three
axioms. If H is non-empty, we can dispense with the identity. For assume the
closure and inverse laws, and take any h ∈ H. Then h−1 ∈ H by the inverse law,
and so hh−1 = 1 ∈ H by the closure law. Our conclusion is as follows:

Theorem 3.1 (First Subgroup Test) Let H be a non-empty subset of the
group G. Then H is a subgroup of G if and only if

(a) for all h1, h2 ∈ H, we have h1h2 ∈ H;
(b) for all h ∈ H we have h−1 ∈ H.
Just as for rings, we can replace these two tests by a single one:

Theorem 3.2 (Second Subgroup Test) Let H be a non-empty subset of
a group G. Then H is a subgroup if and only if, for all h1, h2 ∈ H, we have
h1h

−1
2 ∈ H.
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Proof Clearly the condition holds if H is a subgroup. So assume that it does
hold. Take any h ∈ H. Then hh−1 = 1 ∈ H; and so 1h−1 = h−1 ∈ H. So we have
condition (b) of the First Subgroup Test. Now take h1, h2 ∈ H. Then h−1

2 ∈ H,
and so h1(h−1

2 )−1 = h1h2 ∈ H. So condition (a) holds too.

Remark If the group operation is written as +, then h1h
−1
2 would be written

as h1 − h2. So this condition is the exact counterpart of the similar one in the
Second Subring Test. We see this in the following example:

Example Let G be the additive group of the ring Z. Find all subgroups of G.
We already found that any subring, and any ideal, is of the form nZ (all

multiples of n) for some integer n. It turns out that the subgroups are exactly
the same.

First, we use the Second Subgroup Test to show that nZ is a subgroup.
Clearly it is non-empty. Take two elements of nZ, say nx and ny. Their difference
is nx− ny = n(x− y) ∈ nZ. So nZ passes the test.

Now let H be an arbitrary subgroup. We follow the strategy we used for
subrings. If H consists just of 0, then H = 0Z; so suppose not. The inverse
of a negative number is positive, so H must contain positive numbers; let n
be the smallest positive number in H. Then any positive multiple of n can be
obtained by adding n the appropriate number of times, and so is in H. Then
n(−x) = −nx for positive x, so negative multiples are in H; and clearly 0 ∈ H.
So H contains nZ.

Conversely, take any number m ∈ H; we wish to show that n divides m.
Divide m by n; that is, write m = nq + r, where 0 ≤ r < n. By subtracting n
q times from m (or adding it −q times, if q is negative), we see that r ∈ H. Now
n is the smallest positive number in H, and r < n; so necessarily r = 0, and n
divides m, as required. So H = nZ.

Exercise 3.1 Which of the following structures (G, ◦) are groups?

(a) G = P(X), A ◦B = A�B (symmetric difference);
(b) G = P(X), A ◦B = A ∪B;
(c) G = P(X), A ◦B = A \B (difference);
(d) G = R, x ◦ y = xy;
(e) G is the set of positive real numbers, x ◦ y = xy;
(f) G = {z ∈ C : |z| = 1}, x ◦ y = xy;
(g) G is the interval (−c, c),

x ◦ y = x+ y
1 + xy/c2

[this example describes the addition of velocities in Special Relativity];
(h) G = {a, b}, a ◦ a = a ◦ b = a, b ◦ a = b ◦ b = b;
(i) G = {a, b}, a ◦ b = b ◦ a = a, a ◦ a = b ◦ b = b.

[In (a)–(c), P(X) is the set of all subsets of X, where X is a set with at least two
elements.]
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Exercise 3.2 (a) Show that the symmetric group S3 is non-abelian, by finding two
of its elements which do not commute.

(b) Show that Sn is non-abelian for any n ≥ 3.

Exercise 3.3 Show that the following set of six matrices is a group:{(
1 0
0 1

)
,

(
0 1
−1 −1

)
,

(−1 −1
1 0

)
,

(
1 0
−1 −1

)
,

(−1 −1
0 1

)
,

(
0 1
1 0

)}
.

Is it an abelian group?

Exercise 3.4 If A is a subset of a group G, we let A−1 = {a−1 : a ∈ A}. Also, for
A,B ⊆ G, we let AB = {ab : a ∈ A, b ∈ B}. Prove that A is a subgroup of the group
G if and only if AA−1 ⊆ A.

Exercise 3.5 Let U(R) be the group of units of the ring R = {a + b√2 : a, b ∈ Z}.
Is U(R) finite or infinite?

Exercise 3.6 Let R be a commutative ring with identity element 1. Let S be the set
of all solutions of x2 = 1 in R. Show that S, with the operation of multiplication, is an
abelian group.

Exercise 3.7 (a) Show that (gh)2 = g2h2 if and only if gh = hg.
(b) Show that (gh)−1 = g−1h−1 if and only if gh = hg.
∗(c) Show that, if there exists a number m such that the equation (gh)n = gnhn

holds for n = m, n = m+ 1 and n = m+ 2, then gh = hg.

[Since (gh)0 = 1 = g0h0 and (gh)1 = gh = g1h1, we see that part (c) is ‘best
possible’—the equation holding for two consecutive values does not suffice to make g
and h commute—and also that (a) and (b) are special cases of (c), taking m = 0,
m = −1 respectively.]

Exercise 3.8 Let R be a ring. Show that Aut(R) is a subgroup of Sym(R).

Exercise 3.9 (∗) Let G be a set with a binary operation ◦. (As usual, this presupposes
that the closure law (G0) holds.) Suppose that in addition the following three axioms
hold:

(a) the associative law (G1), that is, (g ◦ h) ◦ k = g ◦ (h ◦ k) for all g, h, k ∈ G;
(b) there exists e ∈ G such that e ◦ g = g for all g ∈ G;
(c) for any g ∈ G, there exists h ∈ G such that h ◦ g = e (where e is as in (b)).

Prove that G is a group.

Exercise 3.10 (∗) Let G be a set with a binary operation ◦. Suppose that g satisfies
conditions (a) and (b) of Question 2, and also the following:

(c′) for any g ∈ G, there exists h ∈ G such that g ◦ h = e (where e is as in (b)).

Show that G need not be a group. [Hint : Take the operation defined by g ◦ h = h for
all g, h ∈ G.]

Exercise 3.11 Prove the laws of exponents in a group (point 6 of Section 3.3).
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Exercise 3.12 (∗∗) A group which contains elements a, b, c, d, e (none of them equal
to the identity) such that

ab = c, bc = d, cd = e, de = a, ea = b.

Find the orders of the elements a, b, c, d, e.

Subgroups and cosets
3.5 Cosets. Given a subgroup of a group, we can partition the group into
cosets, much as we did for subrings of a ring. But there is a complication: because
of the non-commutativity, a subgroup has two different kinds of cosets, left cosets
and right cosets.

Let H be a subgroup of a group. We define two relations ∼L and ∼R on G,
as follows:

• g1 ∼L g2 if and only if g−1
1 g2 ∈ H;

• g1 ∼R g2 if and only if g2g−1
1 ∈ H.

Each of these is an equivalence relation. Here is the proof for ∼L; try ∼R for
yourself.

(Eq1) g−1
1 g1 = 1 ∈ H, so g1 ∼L g1; ∼L is reflexive.

(Eq2) If g−1
1 g2 ∈ H, then

(g−1
1 g2)−1 = g−1

2 (g−1
1 )−1 = g−1

2 g1 ∈ H,

so g1 ∼L g2 implies g2 ∼L g1; ∼L is symmetric.
(Eq3) If g−1

1 g2 ∈ H and g−1
2 g3 ∈ H, then

(g−1
1 g2)(g−1

2 g3) = g−1
1 (g2g−1

2 )g3 = g−1
1 g3 ∈ H,

so g1 ∼L g2 and g2 ∼L g3 imply g1 ∼L g3; ∼L is transitive.

The equivalence classes of ∼L are called left cosets, while those of ∼R are
called right cosets. We now give a more usable description of these cosets.

Proposition 3.3 Any left coset of the subgroup H of G has the form gH =
{gx : x ∈ H}, while any right coset has the form Hg = {xg : x ∈ H}.
Proof We prove this for right cosets; the argument for left cosets is very similar.

Let X be the equivalence class of ∼R containing the element g ∈ G, so that

X = {y ∈ G : g ∼R y} = {y ∈ G : yg−1 ∈ H}.

If y ∈ X, then yg−1 = x ∈ H, so y = xg ∈ Hg; and conversely.



120 Groups

For example, let G = S3, the symmetric group on the set {1, 2, 3}, and let H
be the subgroup S2 = {(1), (1, 2)}. The left cosets of H are

H = {(1), (1, 2)},
(1, 2, 3)H = {(1, 2, 3), (2, 3)},
(1, 3, 2)H = {(1, 3, 2), (1, 3)};

while the right cosets are

H = {(1), (1, 2)},
H(1, 2, 3) = {(1, 2, 3), (1, 3)},
H(1, 3, 2) = {(1, 3, 2), (2, 3)}.

[In more detail: The left coset (1, 2, 3)H consists of the two elements
(1, 2, 3)(1) and (1, 2, 3)(1, 2). the first is (1, 2, 3), since (1) is the identity. To work
out the second, remember that we compose permutations from left to right. So
the composite maps 1 to 2, back to 1; 2 to 3 which is then fixed; and 3 to 1 to
2. The result is the permutation (2, 3).]

Note that the left and right cosets are not the same in this case. However,
there are equally many cosets of each type. This is not an accident.

Theorem 3.4 Let H be a subgroup of the group G. Then there is a bijection
between the left cosets and the right cosets of H in G; so there are equally many
of each.

Proof For any set X of elements of G, we put X−1 = {x−1 : x ∈ X}. Then
(X−1)−1 = X. We show that, if X is a right coset, then X−1 is a left coset, and
vice versa. So the correspondence X �→ X−1 is the required bijection.

First note that H−1 = H. For H contains the inverse of each of its elements,
so H−1 ⊆ H. Now, taking the inverse of both sides, we find that H = (H−1)−1 ⊆
H−1. So equality holds.

Now let X = Hg = {hg : h ∈ H} be a right coset. Then

X−1 = {g−1h−1 : h ∈ H} = g−1H−1 = g−1H

is a left coset. The reverse implication is similar.

In the example, we see that the inverses of the first, second, and third left
cosets are the first, third, and second right cosets, respectively.

3.6 Orders; Lagrange’s Theorem. The order of a group G, written |G|,
is the cardinality of the set G, the number of elements in the group. This may
be finite or infinite. Thus, the order of the symmetric group Sn is n!, while the
order of the additive group of Z is infinite.

If H is a subgroup of G, the index of H in G, written |G : H|, is the number
of right cosets of H in G. (By Theorem 3.4, we could have used left cosets, and
the answer would be the same.)



Groups 121

Theorem 3.5 (Lagrange’s Theorem) Let H be a subgroup of the finite group
G. Then

|G| = |H| · |G : H|.
In particular, the order of H divides that of G.

Proof We know that G can be written as the disjoint union of the right cosets
of H. The number of cosets is |G : H|. The proof is finished if we can show that
the number of elements in each coset is equal to |H|.

Define a function f : H → Hg by f(h) = hg. By our characterisation of
right cosets, f is onto (this says that every element of Hg is of the form hg for
h ∈ H). Now we show that f is one-to-one. Suppose that f(h1) = f(h2). Then
h1g = h2g. By the right cancellation law, h1 = h2. So f is indeed one-to-one,
and is a bijection. Thus |Hg| = |H|, and the proof is complete.

Remark This gives another proof of Theorem 3.4 in the case of a finite group.
For exactly the same argument shows that each left coset has |H| elements, so
the numbers of left and right cosets are both equal to |G|/|H|.

We now define the order of an element of a group. This is quite a different
concept from the order of the group; but we will see that there is a connection.

Let g be an element of a group G. If there exists a positive integer n such
that gn = 1, then the least such positive n is called the order of g. If no such n
exists, then we say that g has infinite order.

Theorem 3.6 (a) Let g be an element of the group G. Then the set

{gm : m ∈ Z}
is a subgroup of G; its order is equal to the order of g.
(b) The order of any element of a finite group G divides the order of G.
(c) If g has finite order n, then gm = 1 if and only if n divides m.

Proof Let H be the set {gm : m ∈ Z}. Take two elements of H, say gp and gq.
Then gp(gq)−1 = gp−q ∈ H. By the Second Subgroup Test, H is a subgroup.

If g has infinite order, then all of the powers gm are distinct, since gp = gq

for p > q implies gp−q = 1. So H is infinite.
Suppose, on the other hand, that g has order n. If m = nk, then gm =

(gn)k = 1. Conversely, suppose that gm = 1. Write m = nq + r with 0 ≤ r < n.
Then gr = gm−nq = 1. We cannot have r > 0, since n is the smallest positive
integer such that gn = 1. So r = 0 and n divides m. This proves (c). Now
(a) follows, since the argument shows that any power of g is equal to one of
g0 = 1, g1 = g, g2, . . . , gn−1.

Now (b) follows by applying Lagrange’s Theorem to the subgroup H.

Definition We use the notation 〈g〉 for the subgroup

{gn : n ∈ Z}
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used in the preceding proof, and call it the subgroup generated by g. [Note:
This is not the same as the ideal (a) generated by the element a of a ring. If we
took all multiples of g by elements of G, we would obtain the whole group!]

3.7 Cyclic groups. A cyclic group is a group generated by a single
element; that is, a group consisting of all the powers of one of its elements.

Example 1 The additive group of Z is a cyclic group of infinite order,
while the additive group of Zn is a cyclic group of finite order n for any positive
integer n.

For any positive integer m can be written as 1 + 1 + · · ·+ 1 (m terms); this
is the mth power of 1 (but written in additive notation!) The negative integers
are the inverses of the positive ones, and so are negative powers of 1; zero is the
zero-th power of 1.

Example 2 The set of complex numbers which are nth roots of unity forms a
group with the operation of multiplication; this group is cyclic of order n.

For the nth roots of 1 are the complex numbers e2πik/n for k = 0, 1, . . . , n−1;
they are all powers of e2πi/n.

There is only one type of cyclic group of each possible order. (When we have
formulated the notion of isomorphism for groups, we will see that any two cyclic
groups of the same order are isomorphic.) We will denote the cyclic group of
order n by Cn (including the possibility n = ∞).

Not every group is cyclic. In the first place, cyclic groups are necessarily
abelian: for gmgn = gm+n = gngm for all m,n. And not all abelian groups are
cyclic. The Klein group V4 (see Example 5 in Section 3.2) is abelian but not
cyclic. Indeed, we can recognise cyclic groups as follows:

Proposition 3.7 A finite group G of order n is cyclic if and only if it contains
an element of order n.

Proof If g has order n, then the elements g0 = 1, g1 = g, . . . , gn−1 of 〈g〉 are
all distinct; since there are n of them, they comprise all of G. The converse is
clear.

The Klein group has order 4, but all its elements except the identity have
order 2. So it is not cyclic.

We can describe completely the subgroups of cyclic groups. For the infinite
cyclic group (the additive group of Z), we already did this in Section 3.4. For
finite cyclic groups, the following result holds:

Theorem 3.8 Let G = 〈g〉 be a cyclic group of order n. Then, for each divisor
m of n, there is a unique subgroup of G of order m, which is a cyclic group
generated by gn/m; and these are all the subgroups of G.

Proof Let H be a subgroup of G, and let k be the smallest positive integer
such that gk ∈ H. We claim that gl ∈ H if and only if k divides l. The proof
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is along now familiar lines. If l = kq, then gl = (gk)q ∈ H. Conversely, suppose
gl ∈ H, and let l = kq + r with 0 ≤ r < k. Then gr = gl−kq ∈ H, and so r = 0.

In particular, gn = 1 ∈ H, so k divides n. Putting m = n/k, we see that H is
generated by gn/m, and that H has m elements g0 = 1, gk, g2k, . . . , g(m−1)k.

Exercise 3.13 Let H be a subgroup of a group G. Show that any left coset of H is
equal to a right coset of some subgroup (not necessarily H).

Exercise 3.14 (a) Let g be an element of a group G. Let I = {n ∈ Z : gn = 1}. Prove
that I is an ideal of Z. Use this to show that (a) and (c) of Theorem 3.6 hold.

(b) Apply a similar idea to the proof of Theorem 3.8.

Exercise 3.15 An involution in a group G is an element g having order 2; that is,
such that g2 = 1 but g �= 1.

(a) Show that, if G is a group of odd order, then G contains no involutions.
(b) Show that, if G is a group of even order, then G contains at least one involution.

[Hint : Pair up the elements of G with their inverses. The only elements which are
unpaired (because they are equal to their own inverses) are the identity and the
involutions.]

Exercise 3.16 (∗) This exercise generalises part (b) of the preceding one. Prove the
following:

Theorem 3.9 (Cauchy’s Theorem) Let G be a finite group, and p a prime number
which divides the order of G. Then G contains an element of order p.

Hint : Let

Ω = {(g1, g2, . . . , gp) : g1g2 · · · gp = 1},
a subset of the Cartesian power Gp. Let π be the following permutation of Ω:

(g1, g2, . . . , gp)π = (g2, . . . , gp, g1).

In other words, π shifts every coordinate back one place and moves the first coordi-
nate to the end. Show that π really is a permutation of Ω, in other words, that if
(g1, g2, . . . , gp) ∈ Ω, then also (g2, . . . , gp, g1) ∈ Ω.

Now decompose Ω into cycles of the permutation π. Show that

(a) if gp = 1, then (g, g, . . . , g) ∈ Ω and this element is fixed by π;
(b) all other elements of Ω belong to cycles of size p.

Show that |Ω| = |G|p−1. It follows that |Ω| is divisible by p. Since all cycles have size
1 or p, the number of fixed points is also divisible by p. But (1, 1, . . . , 1) is a fixed point;
so there are at least p− 1 fixed points of the form (g, g, . . . , g) where g has order p.

Exercise 3.17 (∗) In this question we use Lagrange’s Theorem to prove Fermat’s
Little Theorem.

Let m be a positive integer. Define φ(m) to be the number of integers x satisfying
0 ≤ x ≤ m− 1 and gcd(x,m) = 1. The function φ is called Euler’s totient function.
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(a) Show that the order of the group of units of Zm is φ(m).
(b) Deduce that, if gcd(x,m) = 1, then xφ(m) ≡m 1.
(c) If p is a prime number, show that φ(p) = p−1. Deduce that, if p does not divide

x, then xp−1 ≡p 1.
(d) Hence show that, if p is a prime number, then xp ≡p x for all integers x.

Homomorphisms and normal subgroups
3.8 Definitions. The definition of a group homomorphism is almost iden-
tical to that of a ring homomorphism; the only difference is the simplification
resulting from the fact that there is only one operation. As for rings, we write
group homomorphisms ‘on the right’.

Let G and H be groups. A homomorphism θ : G→ H is a function θ from
G to H that satisfies the condition

(g1g2)θ = (g1θ)(g2θ)

for all g1, g2 ∈ G.
It follows from the definition that, if θ is a homomorphism, then

1Gθ = 1H , where 1G and 1H are the identity elements of G and H respectively;
g−1θ = (gθ)−1 for all g ∈ G.
A homomorphism that is one-to-one and onto is called an isomorphism. If

there is an isomorphism fromG toH, then we say thatG andH are isomorphic.
As is the case for rings, if two groups are isomorphic, then from the point of view of
abstract algebra they are the same, even if their elements are completely different.

We have to deal with some unfinished business.

Theorem 3.10 Two cyclic groups of the same order are isomorphic.

Proof Let G = 〈g〉 and H = 〈h〉 be cyclic groups of the same order; that is,
either both are infinite, or both have order n for some positive integer n.

We define a function θ : G → H by the rule gmθ = hm for all m ∈ Z. If
G has infinite order, then the powers of g are all distinct, and θ is well defined.
This is also true in the finite case. For suppose that gk = gl. Then gk−l = 1, so
n divides k − l. But then we have hk−l = 1, so hk = hl.

Now θ is trivially a homomorphism, since

(gkgl)θ = gk+lθ = hk+l = hkhl = (gkθ)(glθ).

It is clear that θ is onto. Finally, θ is obviously one-to-one if G is infinite; while,
if G has order n, then

gkθ = glθ ⇒ gk−lθ = 1 ⇒ hk−l = 1 ⇒ n | (k − l) ⇒ gk−l = 1 ⇒ gk = gl.

Thus θ is an isomorphism.

As mentioned earlier, we denote the cyclic group of order n by Cn.
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We saw that a ring homomorphism blurs the structure of a ring; for groups,
the situation is very similar.

Example We will find all homomorphisms from the group Z to itself. Let θ
be a homomorphism. Suppose that 1θ = n. Then 2θ = (1 + 1)θ = n + n = 2n,
and similarly (by induction), mθ = mn for all positive integers m. Moreover,
0θ = 0, and for positive m we have (−m)θ = −mθ = −mn. So θ multiplies every
integer by n.

So far, this is identical with the situation for rings. But now there is no
multiplicative structure to restrict things further: for any m, the function θm
that multiplies everything by m is a group homomorphism.

A homomorphism θ : G→ H is a function, and so has an image and a kernel
in the sense of Section 1.15. As for rings, we simplify the definition of the kernel.

Definition Let θ : G→ H be a homomorphism of groups. The image of θ is

Im(θ) = {h ∈ H : h = gθ for some g ∈ G},

and the kernel of θ is

Ker(θ) = {g ∈ G : gθ = 1}.

Proposition 3.11 Let θ : G→ H be a group homomorphism. Then:

(a) Im(θ) is a subgroup of H.
(b) Ker(θ) is a subgroup of G which has the additional property that, for any
x ∈ Ker(θ) and g ∈ G, we have g−1xg ∈ Ker(θ).

(c) Two elements of G are mapped to the same element of H under θ if and
only if they lie in the same right coset of Ker(θ).

Proof (a) We apply the subgroup test. Take h1, h2 ∈ Im(θ). Then h1 = g1θ
and h2 = g2θ, for some g1, g2 ∈ G. Then

h1h
−1
2 = (g1θ)(g2θ)−1 = (g1g−1

2 )θ ∈ Im(θ);

so Im(θ) is a subgroup of H.
(b) Similarly, take g1, g2 ∈ Ker(θ). Then g1θ = g2θ = 1; so

(g1g−1
2 )θ = (g1θ)(g2θ)−1 = 1;

so Ker(θ) is a subgroup.
Now we check the extra condition. Suppose that x ∈ Ker(θ) and g ∈ G. Then

(g−1xg)θ = (gθ)−1 · 1 · (gθ) = 1,

and so g−1xg ∈ Ker(θ).
(c) Suppose that g1θ = g2θ. Then (g2g−1

1 )θ = 1, so x = g2g
−1
1 ∈ Ker(θ);

then g2 = xg1 ∈ Ker(θ)g1, so g1 and g2 lie in the same right coset of Ker(θ).
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Conversely, if g1 and g2 lie in the same coset, say g2 = xg1 with x ∈ Ker(θ); then
g2θ = (xθ)(g1θ) = g1θ, since x ∈ Ker(θ).

As in the case of rings, the extra property of the subgroup Ker(θ) is so
important that it is given a special name. A normal subgroup of a group G is
a subgroup H of G such that, for any x ∈ H and g ∈ G, we have g−1xg ∈ H.
We write H � G to indicate that H is a normal subgroup of G. If H � G and
H is not equal to G, we write H � G.

So we can say more briefly: The kernel of a homomorphism θ : G → H is
a normal subgroup of G. Normal subgroups play much the same role in group
theory that ideals do in ring theory.

There are several equivalent definitions of a normal subgroup.

Theorem 3.12 Let H be a subgroup of a group G. Then the following are
equivalent:

(a) for all g ∈ G, x ∈ H, we have g−1xg ∈ H;
(b) for all g ∈ G, we have g−1Hg = H;
(c) for all g ∈ G, we have Hg = gH.

Proof Since, by definition, g−1Hg is the set of all elements g−1xg for x ∈ H,
we see that condition (a) can be rewritten as g−1Hg ⊆ H. So (a) is implied by
(b). Conversely, suppose that (a) holds, so that g−1Hg ⊆ H for all g. Replacing
g by g−1, we see that gHg−1 ⊆ H. Multiply this equation on the left by g−1 and
on the right by g, to obtain H ⊆ g−1Hg. So equality holds, and we have (b).

We get from (b) to (c) by multiplying on the left by g, and back again by
multiplying by g−1.

Part (c) of the theorem says that a subgroup is normal if and only if its
left and right cosets are the same. So our earlier example (with G = S3 and
H = S2) of a subgroup with different left and right cosets is also an example of
a non-normal subgroup.

Here are some simple tests which guarantee that a subgroup is normal.

Proposition 3.13 Let H be a subgroup of a group G. Each of the following
conditions implies that H is a normal subgroup:

(a) G is abelian;
(b) H is finite and is the only subgroup of G of its order;
(c) H has index 2 in G.

Proof We illustrate the three parts of the preceding theorem.

(a) If G is abelian, then g−1xg = x for all x, g ∈ G. So test (a) applies.
(b) Suppose that H is the only subgroup of G of order m, for some finite

m. It is not hard to show that g−1Hg is a subgroup of G, also of order m. So
g−1Hg = H for any g ∈ G, and test (b) applies.
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(c) The statement that H has index 2 in G implies that it has just two right
cosets, one of which is H, so the other coset must be all the rest, namely G \H.
In the same way, H has just two left cosets, H and G \ H. Hence the left and
right cosets coincide, and test (c) applies.

3.9 Factor groups and isomorphism theorems. Let N be a normal sub-
group of a group G. We are going to define a ‘factor group’ G/N whose elements
are the cosets ofN inG (left or right, it’s the same, sinceN is normal). This works
in much the same way as for factor rings. We then prove the exact analogues of
the isomorphism theorems for rings. Since the proofs are virtually identical to
the earlier ones, the discussion will be briefer.

Definition Let N be a normal subgroup in the group G. The factor group,
or quotient group, G/N is the set of (left or right) cosets of N in G, with
operation defined by

(Ng1)(Ng2) = Ng1g2.

Theorem 3.14 The factor group, as defined above, is indeed a group.

Proof First we have to check that the definition is a good one: that is, if g′
1 and

g′
2 represent the same cosets as g1 and g2 respectively, then g′

1g
′
2 represents the

same coset as g1g2. So suppose that Ng1 = Ng′
1 and Ng2 = Ng′

2. Say g
′
1 = xg1

and g′
2 = yg2, where x, y ∈ N . Then

g′
1g

′
2 = xg1yg2 = xzg1g2,

where the last equality holds because g1y ∈ g1N = Ng1, and so g1y is equal to
zg1 for some z ∈ N . But then Ng′

1g
′
2 = Ng1g2, as required.

Now the rest of the proof involves verifying the axioms, which is routine. The
closure law needs no proof, since the operation is well defined. For the associative
law (G1), we have

((Ng1)(Ng2))(Ng3) = (Ng1g2)Ng3 = N(g1g2)g3,

(Ng1)((Ng2)(Ng3)) = Ng1(Ng2g3) = Ng1(g2g3),

and the right-hand sides are equal, by the associative law for G. The identity of
G/N is N1 = N , and the inverse of Ng is Ng−1.

The factor group comes as the image of a natural homomorphism, which (as
in the case of rings) is called the canonical homomorphism. Remember that
the elements of G/N are the cosets of N in G. Now define a map θ : G→ G/N
by the rule that gθ = Ng for all g ∈ G. Checking that θ is a homomorphism is
straightforward from the definition of the operation in G/N ,

(g1θ)(g2θ) = (Ng1)(Ng2) = Ng1g2 = (g1g2)θ.
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The image of θ is G/N , since every coset has the form Ng for some g ∈ G. What
is the kernel of θ? Since the identity element of G/N is the coset N , we have

Ker(θ) = {g ∈ G : Ng = N} = {g ∈ G : g ∈ N} = N.

Hence we have proved the following:

Theorem 3.15 The canonical homomorphism θ : G → G/N defined by gθ =
Ng for g ∈ G is indeed a homomorphism; its image is G/N and its kernel is N .

Now we return to our analysis of the image and kernel of an arbitrary
homomorphism.

Theorem 3.16 (First Isomorphism Theorem) Let θ : G → H be a group
homomorphism. Then:

(a) Im(θ) is a subgroup of H;
(b) Ker(θ) is a normal subgroup of G;
(c) G/Ker(θ) ∼= Im(θ).

Proof We have already shown (a) and (b). For (c), there is only one reasonable
definition of a map φ from G/N to H, where N = Ker(θ): we must put (Ng)φ =
gθ for all g ∈ N . As in the ring case, we can show that φ is well defined, that it
is a homomorphism, that it is onto Im(θ), and that it is one-to-one.

The second and third ‘Isomorphism Theorems’ relating a group G to a factor
group G/N also work as in rings.

Theorem 3.17 (Second Isomorphism Theorem) Let N be a normal sub-
group of G. There is a one-to-one correspondence between the set of subgroups of
G which contain N and the set of subgroups of G/N . Under this correspondence,
normal subgroups of G containing N correspond to normal subgroups of G/N .

Theorem 3.18 (Third Isomorphism Theorem) Let N be a normal
subgroup of G and H a subgroup of G. Then:

(a) NH = {nh : n ∈ N,h ∈ H} is a subgroup of G containing N ;
(b) N ∩H is a normal subgroup of H;
(c) H/(N ∩H) ∼= (NH)/N .

3.10 Conjugacy. There is another equivalence relation defined on a group,
which is very important.

Let G be a group. We say that elements x, y of G are conjugate (written
x ∼ y) if y = g−1xg for some g ∈ G.
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Conjugacy is an equivalence relation, since it is

(Eq1) reflexive: x = 1−1x1 for any x ∈ G.
(Eq2) symmetric: if y = g−1xg, then x = (g−1)−1yg−1.
(Eq3) transitive: if y = g−1xg and z = h−1yh, then z = (gh)−1x(gh).

Hence, G is the disjoint union of the equivalence classes, which are called
conjugacy classes.

Conjugacy classes are closely related to normal subgroups:

Proposition 3.19 The subgroup H of the group G is normal if and only if H
is the union of some (possibly all) of the conjugacy classes of G.

Proof One of the equivalent conditions for normality of H is that g−1Hg = H
for all g ∈ G. But this says that g−1xg ∈ H for all x ∈ H and all g ∈ G; that is,
for every element of H, its entire conjugacy class is contained in H.

Another important property of conjugacy is the following.

Proposition 3.20 Conjugate elements of a group have the same order.

Proof

(g−1xg)n = g−1xg · g−1xg · · · g−1xg = g−1xng,

so (g−1xg)n = 1 if and only if xn = 1.

We can calculate the size of a conjugacy class in terms of another subgroup
of G. The centraliser of the element x ∈ G, written CG(x), is the set of all
elements of G which commute with x:

CG(x) = {g ∈ G : gx = xg}.
Theorem 3.21 (a) For any element x ∈ G, CG(x) is a subgroup of G.

(b) There is a bijection between the conjugacy class of an element x of G and
the set of cosets of CG(x) in G.

(c) (the class equation)

∑
i

1
|CG(xi)| = 1,

where the elements xi are representatives of the conjugacy classes.

Proof (a) If g and h commute with x, so do gh and g−1.
(b) The bijection takes the conjugate g−1xg to the coset CG(x)g. To show

that it is a bijection, we must show that g−1xg = h−1xh if and only if CG(x)g =
CG(x)h. In fact, both are equivalent to the assertion that gh−1 ∈ CG(x).

(c) It follows from (b) and Lagrange’s Theorem 3.5 that the size of the con-
jugacy class containing x is equal to |G|/|CG(x)|. Now the sum, over a set of
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conjugacy class representatives, of the class sizes, is clearly equal to |G|. Dividing
this equation by |G| gives the result.

The centre of a group G, written Z(G), is the set of elements of G which
commute with every element of G:

Z(G) = {x ∈ G : xg = gx for all g ∈ G}.

(The letter Z stands for the German Zentrum, ‘centre’.)

Proposition 3.22 The centre of a group G is a normal subgroup.

To show that it is a subgroup, apply the subgroup test: if x and y commute
with everything in G, then so does xy−1. Now an element x belongs to Z(G) if
and only if x is conjugate only to itself; that is, its conjugacy class is {x}. Thus,
Z(G) is a union of conjugacy classes, and hence a normal subgroup.

We can use these ideas to show that, if the order of G is a prime power, then
necessarily G has a non-trivial normal subgroup.

Theorem 3.23 Let G have order pn, where p is prime and n > 0. Then
Z(G) �= {1}.
Proof The sum of the conjugacy class sizes in G is pn. But each class size is
a divisor of pn, say pai , for i = 1, . . . ,m. Suppose that k of these class sizes are
equal to p0 = 1, so that |Z(G)| = k. All of the others are powers of p which are
at least p, and hence are divisible by p. So we obtain k+ lp = pn. It follows that
k is divisible by p. Thus Z(G) is a subgroup of G whose order is divisible by p,
hence is not 1.

There are other applications of these ideas. For example, we say that two
subgroups H and K of the group G are conjugate if K = g−1Hg for some
g ∈ G. Again, this is an equivalence relation on subgroups. [Check first that, if
H is a subgroup, then so is g−1Hg.] Now a subgroup is normal if and only if it
is conjugate only to itself. Moreover, conjugate subgroups have the same order.
So, if H is the only subgroup of G of its order, then it is necessarily normal.

Exercise 3.18 Let F be a field, and let G be the set

{(
a b
0 1

)
: a, b ∈ F, a �= 0

}

of 2 × 2 matrices over F . Let N be the set of all matrices in G with a = 1, and H the
set of all matrices in G with b = 0.

(a) Prove that G is a group.
(b) Prove that N is a normal subgroup of G, which is isomorphic to the additive

group of F .
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(c) Prove that H is a subgroup of G, which is isomorphic to the multiplicative group
of F . Is it normal?

(d) Prove that G/N ∼= H.

Exercise 3.19 (∗) Prove that the group of the preceding exercise, in the case where
F = Z3, is isomorphic to the symmetric group S3.

Exercise 3.20 Let G be the set of all ordered pairs (a, b), where a and b are real
numbers and a �= 0. Define an operation ◦ on G by the rule that

(a1, b1) ◦ (a2, b2) = (a1a2, b1a2 + b2).

Prove carefully that G with this operation is a group.
Now show that G is isomorphic to the group of all permutations of the real numbers

of the form x �→ ax+ b, where a �= 0.
Could you use this information to make the argument for the first part of the

question easier?

Exercise 3.21 Let G be a group with the property that G/Z(G) is cyclic. If G/Z(G)
is generated by the coset Z(G)g, show that every element of G can be written in the
form zgi for some z ∈ Z(G) and some i ∈ Z. Deduce that G is abelian (so that in fact,
Z(G) = G).

Exercise 3.22 (∗) (a) Let G be a group. For any element g ∈ G, let ιg be the function
from G to G defined by xιg = g−1xg. Show that ιg is an automorphism of G. [It is
called the inner automorphism induced by the element g.]

(b) Show that the set {ιg : g ∈ G} is a subgroup of Aut(G). [This subgroup is called
the inner automorphism group of G, denoted Inn(G).]

(c) Show that the map g �→ ιg is a homomorphism from G to Aut(G), whose image
is the inner automorphism group Inn(G) and whose kernel is the centre Z(G). Deduce
that Inn(G) ∼= G/Z(G).

(d) Show that Inn(G) is a normal subgroup of Aut(G). [By definition, the factor
group Aut(G)/ Inn(G) is the outer automorphism group of G, denoted Out(G).]

Exercise 3.23 Find all subgroups of the symmetric group S3. Which of them are
normal subgroups? [S3 is the group of all permutations of {1, 2, 3}.]

Exercise 3.24 Show that the group of all real numbers (with the operation of addi-
tion) is isomorphic to the group of positive real numbers (with the operation of
multiplication).

Exercise 3.25 Let N be a normal subgroup of a group G, and let H be any subgroup.
Show that NH is a subgroup of G. [Recall that NH is the set {nh : n ∈ N,h ∈ H}.]
Which (if any) of the following statements are true?

(a) If H is a normal subgroup, then NH is a normal subgroup.
(b) If NH is a normal subgroup, then H is a normal subgroup.

Exercise 3.26 Let G1 be the group of integers (with the operation of addition), and
G2 = Zn, the group of complex nth roots of unity (with the operation of multiplication).
Define a function θ : G1 → G2 by the rule

θ(k) = e2πik/n

for k ∈ G1.
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(a) Prove that θ is a homomorphism. What are its image and kernel?
(b) Show that the cosets of the kernel of θ have the form

{x : x ∈ Z, x ≡n k}

for k = 0, 1, . . . , n − 1. Hence show that the additive group of integers mod n is
isomorphic to Zn.

Exercise 3.27 (a) Prove that C2 is the only finite group which has just two conjugacy
classes. [Hint : Use the class equation.]

(b) Find the conjugacy classes in S3. [There are three of them.]
(c) Prove that no finite group of order greater than 6 can have three conjugacy

classes.
∗∗(d) Show that there is a function f such that a finite group with r conjugacy

classes has order at most f(r).

Exercise 3.28 Our first example in this chapter was a construction of an abelian group
from a ring (the additive group of the ring). In this exercise, we reverse the procedure
and construct a ring from an abelian group.

Let A be an abelian group. An endomorphism of A is a homomorphism from A
to A. Let End(A) be the set of all endomorphisms of A. We define two operations on
End(A), pointwise addition, and composition, as follows:

a(θ + φ) = aθ + aφ,

a(θφ) = (aθ)φ.

Prove that End(A), equipped with these operations, is a ring. (It is called, naturally,
the endomorphism ring of A.)

Some special groups
3.11 Cayley’s Theorem. Before the rise of the axiomatic method in the
late nineteenth century, group theory was already a flourishing subject; but, of
course, the meaning of the term ‘group’ was different. A group always consisted of
elements of some special type, with a specified composition law. Most commonly,
a group was either a permutation group (whose elements are permutations
of a set, and whose operation is composition of permutations), or a matrix
group (whose elements are matrices, and whose operation is matrix multipli-
cation). In modern terminology, we could say that the early group theorists
studied subgroups of the symmetric group Sym(Ω) or of the general linear group
GL(n, F ).

In order that this body of knowledge should not be lost, it is necessary to
ensure that the new groups (axiomatically defined) are really the same as the
old ones. We already showed in Section 3.2 that the symmetric group and the
general linear group are groups in the axiomatic sense, and hence their sub-
groups are too. The point of Cayley’s Theorem is to show the converse of this for
permutation groups: that is, every group ‘is’ a permutation group. Of course this
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is not literally true, since the elements may not be permutations. In the spirit of
abstract algebra, the correct statement goes like this:

Theorem 3.24 (Cayley’s Theorem) Every group is isomorphic to a permu-
tation group (a subgroup of the symmetric group).

Cayley proved this theorem by means of the Cayley table of the group. Before
embarking on the general proof, we will work a particular case: the Klein group
V4. To begin the proof, we rewrite its Cayley table, calling the group elements
{g1, g2, g3, g4}.

◦ g1 g2 g3 g4
g1 g1 g2 g3 g4
g2 g2 g1 g4 g3
g3 g3 g4 g1 g2
g4 g4 g3 g2 g1

Now we use the columns of this table to define some permutations. Each
column is labelled with one of the elements g1, . . . , g4. It contains all the elements
g1, . . . , g4 in some order. We let πj be the permutation which maps the number
i to the index of the element in the ith row and jth column.

For example, in the second column, the elements are (g2, g1, g4, g3), and so
π2 is the permutation which maps 1 to 2, 2 to 1, 3 to 4, and 4 to 3; that is,
in cycle notation, π2 = (1, 2)(3, 4). In the same way, we find the other three
permutations: π1 is the identity; π3 = (1, 3)(2, 4); and π4 = (1, 4)(2, 3).

Now the proof of Cayley’s Theorem for this group consists in showing that
{π1, π2, π3, π4} is a group, and moreover, is isomorphic to the original Klein
group (where the isomorphism maps gi to πi for i = 1, 2, 3, 4).

Proof of Cayley’s Theorem Let G = {g1, . . . , gn}. (This proof presupposes
that the group G is finite; but in fact it works in the same way for infinite n,
except that the set of indices of the gs will be infinite.) We take Ω = {1, . . . , n},
and find a subgroup of Sym(Ω) isomorphic to G.

First, we define permutations π1, . . . , πn of Ω. For 1 ≤ i ≤ n, let πi be the
function which maps j to k if gjgi = gk holds in G. (This corresponds as above
to the ith column of the Cayley table of G.) This function is one-to-one: for, if
jπi = lπi = k, then gjgi = glgi = gk, whence gj = gl by the Right Cancellation
Law, so j = l. Moreover, it is onto, since for any k, if gkg−1

i is the element gj ,
then gjgi = gk and so jπi = k. Hence πi is a bijection, and thus a permutation.

Now we define a map θ from G to Sym(Ω) by the rule that giθ = πi. We
claim that θ is a homomorphism, and that Ker(θ) = {1}.

Take gs, gt ∈ G. Suppose that gsgt = gu. We have to show that πsπt = πu,
by applying both sides to an arbitrary element i and checking that the results
are equal.
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Let iπs = j, jπt = k, iπu = l; we must show that k = l. By definition, we
have

gigs = gj , gjgt = gk, gigu = gl.

Hence

gl = gi(gsgt) = (gigs)gt = gjgt = gk,

and so l = k as required.
Now suppose that gi ∈ Ker(θ). Then πi is the identity, so jπi = j for all j.

But this means that gjgi = gj , whence (by the Left Cancellation Law) gi = 1.
So Ker(θ) = 1.

Thus, by the First Isomorphism Theorem, G is isomorphic to Im(θ), a
subgroup of Sym(Ω).

This is not the only way of finding a subgroup of a symmetric group which is
isomorphic to a given group. For example, the proof of Cayley’s Theorem shows
that S3 (a group of order 6) is isomorphic to a subgroup of S6; but this group is
given to us as a subgroup of S3. Again, an entirely different way to realise the
Klein group inside S4 is given in Exercise 3.29.

As for matrix groups: Exercise 3.30 shows that every finite permutation group
is isomorphic to a matrix group. Hence, by Cayley’s Theorem, every finite group
is isomorphic to a matrix group. However, not every infinite group is isomorphic
to a matrix group.

3.12 Small groups. How many different groups are there? In this section,
we will examine groups of small order (up to 8), and verify most of the
entries in Figure 3.1, which gives the number of groups of given order (up to
isomorphism).

Of course, there is only one group of order 1, since there is no choice
about the operation! The next observation settles four of the remaining seven
values.

Proposition 3.25 A group of prime order is cyclic.

Proof Let G be a group of prime order p. Take any element g ∈ G which is
not the identity. The order of g divides p, and is not 1, hence is p. Now we know
that a group G containing an element g whose order is equal to |G| is cyclic.
(The p distinct powers of g must comprise the whole of G.)

Order 1 2 3 4 5 6 7 8
Number of groups 1 1 1 2 1 2 1 5

Fig. 3.1 Small groups
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Of course, we also know that cyclic groups of the same order are isomorphic.
This verifies the table entries for orders 2, 3, 5, and 7.

The remaining entries require more work.

Groups of order 4 Let G be a group of order 4. If G contains an element of
order 4, then it is cyclic. So suppose not. Then the order of any element of G
apart from the identity is equal to 2; in other words, g2 = 1 (or, equivalently,
g−1 = g) for all g ∈ G.

From this, we deduce that G is abelian. For example, take any two elements
g, h ∈ G. Then

gh = g−1h−1 = (hg)−1 = hg.

Let G = {1, a, b, c}. We construct the operation in G. We know the product
of 1 with anything, and we know that g2 = 1 for any element g. What is ab? It
cannot be 1, since this implies b = a−1 = a; it cannot be a, since this implies b = 1
by cancellation; and similarly it cannot be b. So necessarily ab = c. In exactly
the same way, the product of any two of a, b, c is the third; so the multiplication
is determined.

We have shown that there are at most two non-isomorphic groups of order 4,
the cyclic group and one other. Since we already know that two different groups
exist (namely, the cyclic group C4 and the Klein group V4), the verification is
complete.

Groups of order 6 We begin with a useful result.

Proposition 3.26 Let G be a finite group in which every element g satisfies
g2 = 1. Then the order of G is a power of 2.

Proof This follows from Cauchy’s Theorem 3.9, proved in Exercise 3.16: for if
|G| were not a power of 2, it would be divisible by some odd prime p, and G
would contain an element of order p. Here is a direct proof.

We showed above that G must be abelian. Now verify the following:

If H is a subgroup of G and g /∈ H, then H ∪Hg is a subgroup of G.

We prove this using the First Subgroup Test. Every element of G is equal to
its inverse, so H ∪Hg is closed under taking inverses. We have to show that it
is closed under multiplication. Take two elements of H ∪Hg; each is of the form
h or hg, for some h ∈ H. Since G is abelian, we can bring the gs to the end of
the product; we find an element of one of the forms h1h2, h1h2g, or h1h2g

2. By
closure of H and the fact that g2 = 1, this element is in H ∪Hg.

Now start with the identity and form an increasing chain of subgroups by
applying this result as long as the current subgroup is not the whole of G.
Eventually the process must terminate when we reach G. But each subgroup in
the chain is twice as large as its predecessor, and so has order a power of 2.



136 Groups

We return to the matter in hand. Let G be a group of order 6. If G contains
an element of order 6, then it is cyclic; so suppose not. Then any element of
G has order 1, 2, or 3. Since 6 is not a power of 2, there must be an element
a of order 3. Also, since 6 is even, there must be an element b of order 2 (see
Exercise 3.15).

We claim that the elements 1, a, a2, b, ab, a2b of G are all distinct. Certainly
the first three are all distinct, since a has order 3, and the last three are all
distinct, by the Right Cancellation Law. Moreover, b is different from 1, a, a2,
since it has order 2. Consider ab. If ab = 1, then b = a−1; if ab = a, then b = 1;
if ab = a2, then b = a. All are impossible. Similarly for a2b.

So G = {1, a, a2, b, ab, a2b}. It remains to determine the multiplication.
We will know how to multiply any two elements once we know which of

the six elements is ba. For the only difficulty will occur when we multiply an
element ending with b by an element beginning with a; any other product can
be identified by the rules we have already. (For example, (a2)(a2b) = a4b = ab.)
Now ba is not equal to 1 (or b = a−1); it is not a (or b = 1); it is not a2 (or
b = a); and it is not b (or a = 1). So ba = ab or ba = a2b.

If ba = ab, then (ab)n = anbn for all n, by the Exponent Law. Then (ab)2 =
a2 �= 1, (ab)3 = b3 = b �= 1. So the order of ab is not 1, 2, or 3; it must be 6,
contrary to our case assumption. So it must be the case that ba = a2b. Then the
multiplication is determined, so there is at most one group (up to isomorphism).

Since we already know two groups of order 6 (the cyclic group C6 and the
symmetric group S3), the entry in the table is verified.

Groups of order 8 This is more difficult (in part because there are five
different groups), and we will simply outline the steps. Let G have order 8.
If G contains an element of order 8, then G is cyclic; if every element g satisfies
g2 = 1, there is just one type of group. So we may assume that every element
has order 2 or 4 (except for the identity), and that there is an element a of
order 4.

Take any element b which is not a power of a. Then, as above, we find
that G = {1, a, a2, a3, b, ab, a2b, a3b}. Now we need two pieces of information to
determine the multiplication: we have to know which of these eight elements is
b2, and which is ba. We find that b2 = 1 or b2 = a2, and that ba = ab or ba = a3b.
This seems to give us four different groups, which added to the two already found
would make six. But two of them are the same. In the group given by b2 = 1
and ba = ab, set b′ = ab; then (b′)2 = a2 and b′a = ab′. So the same group arises
in two different guises.

It remains to show that all five possibilities really are groups (Exercise 3.34).

3.13 Symmetric and alternating groups. We have already met the sym-
metric group Sn, the group of all permutations of {1, . . . , n}. In this section, we
will decide when two elements of Sn are conjugate, and find the normal subgroups
of Sn for n ≤ 5.

The conjugacy test will depend on the cycle notation for permutations, which
we met in Section 3.2. To review, let π be a permutation of {1, . . . , n}. To write
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cycle notation for π, we do the following: Open a bracket and write any element
of {1, . . . , n} (we might as well take 1, but it does not matter.) Then write the
image of this point under successive applications of π, until this image returns
to its starting point (which it does in a finite number of steps). Then close the
bracket. While any elements of {1, . . . , n} remain, open a bracket, and follow the
same procedure.

The cycle structure of π is the list of the lengths of its cycles. Each number
occurs as many times in the list as there are cycles of that length. By con-
vention, we write the cycle lengths in increasing order. Thus, the permutation
(2, 5)(3, 7, 8)(6, 9) of {1, . . . , 9} has cycle structure 1, 1, 2, 2, 3. (Remember that
we do not write cycles of length 1).

Here is a first indication of the kind of information that we can read off from
the cycle structure.

Proposition 3.27 The order of a permutation is equal to the least common
multiple of the lengths of its cycles.

Proof Let the cycle lengths of π be a1, . . . , ar. If we compose π ai times, then
all points in the cycle of length i return to their starting positions. The same is
true if we compose it any number of times which is a multiple of ai. So, if we
evaluate πm, where m is divisible by all of a1, . . . , ar, then every point returns to
its starting position; that is, πm = (1). On the other hand, if m is not divisible
by some ai, say m = aiq+r, where 0 < r < ai, then points in a cycle of length ai
are shifted r places along by πm, so πm �= (1). We conclude that πm = 1 if and
only ifm is a common multiple of a1, . . . , ar. So the order of π, which is the least
positive m such that πm = 1, is the least common multiple of a1, . . . , ar.

Recall that two elements x, y of a group G are conjugate if y = g−1xg for
some g ∈ G.
Theorem 3.28 Two elements of Sn are conjugate if and only if they have the
same cycle structure.

Proof Suppose first that y = g−1xg. Consider any cycle of x, say
(p1, p2, . . . , pk). This means that x maps p1 to p2 to . . . to pk and back to
p1. Let qi = pig for i = 1, . . . , k. We check that y maps q1 to q2 to . . . to qk
and back to q1. For i < k, the effect of the composition g−1xg on qi maps it to
pi (for pig = qi, so qig−1 = pi), then to pi+1, then to qi+1. Similarly, qk goes
to q1. So (q1, q2, . . . , qk) is a cycle of y. Every cycle arises thus, and the cycle
decomposition of y is obtained. So y has the same cycle structure as x.

For the converse, suppose that x and y have the same cycle structure. Write y
under x (both in cycle notation) so that cycles of y are under cycles of the same
length of x. (Include cycles of length 1 in this step.) Then let g be the permutation
that maps each point in the cycle notation for x to the point directly beneath it.
The argument of the preceding paragraph shows that g−1xg = y, so that x and
y are conjugate.
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Example Let x = (1, 4, 6)(2, 5)(3) and y = (2, 5, 4)(1, 6)(3). Then a per-

mutation g such that g−1xg = y is given by g =
(
1 2 3 4 5 6
2 1 3 5 6 4

)
in

two-line notation, or (1, 2)(4, 5, 6) in cycle notation. (It is pure coincidence
that the cycle structure of g is the same as that of x and y. There is nothing
unique about g; if we had written y as (5, 4, 2)(6, 1)(3), we would have obtained

g =
(
1 2 3 4 5 6
5 6 3 4 1 2

)
= (1, 5)(2, 6).)

Let us use this result to compute the conjugacy classes in Sn for n = 4, 5,
and hence to find the normal subgroups of these groups.

The group S4 We list the possible cycle structures, and the number of elem-
ents of each possible structure, in the following table. (Ignore the column labelled
‘Parity’ for now.)

Cycle structure # elements Parity
1, 1, 1, 1 1 E
1, 1, 2 6 O
2, 2 3 E
1, 3 8 E
4 6 O

24

How do we calculate the numbers? There is a general formula, but in this case
it is easier to do it directly. There are

(4
2

)
= 6 permutations of cycle structure

1, 1, 2, since we must choose the two points to be transposed from {1, 2, 3, 4} and
then the other two are fixed. The number for cycle structure 2, 2 is half of this,
since each such element is made up of two transpositions, and each transposition
occurs once in such a permutation. For type 1, 3, there are four choices of the
fixed point, and two ways of permuting the other three in a 3-cycle. Finally,
consider 4-cycles. We can take each to start (1, in cycle notation); then there
are 3! = 6 ways to fill in the other three numbers, each giving a different cycle.
Of course, there is only one identity. As a check, these numbers add up to the
group order.

To find the normal subgroups of S4, we use the fact that a subgroup is normal
if and only if it is a union of some of the conjugacy classes; of course the conjugacy
class of the identity must be included. So first we solve the problem: how can
we take some of the conjugacy class sizes which add up to a divisor of 24? (This
last requirement comes from Lagrange’s Theorem.)

If we include 1 but not 8, then (since all other class sizes are multiples of
3) the sum is congruent to 1 mod 3. The only such divisors of 24 are 1 and 4.
The first corresponds to the identity only (which is a normal subgroup), and the
second to the identity and the three permutations of cycle structure 2, 2 (which
form the Klein group, also a normal subgroup).
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If we include both 1 and 8, the only possible divisors are 12 = 1 + 8 + 3,
and 24, the sum of all the divisors. The latter corresponds to taking the whole
of S4, which is trivially a normal subgroup. The former case also gives a normal
subgroup. This can be checked directly, but it is a special case of something much
more general.

We define the parity of a permutation π to be the parity of n − c(π),
where c(π) is the number of cycles in the cycle structure of π (including cycles
of length 1). It is either even or odd. Check that the parities of elements of
S4 are correctly given in the above table. We also define the sign of a per-
mutation π to be (−1)n−c(π): so odd and even parity correspond to − and
+ sign. We saw this definition in Chapter 1; now we will see a remarkable
property.

We are going to show the following:

Theorem 3.29 The map θ that takes a permutation π to its parity is a
homomorphism from Sn to the group Z2 of integers mod 2. Its kernel, the
set of all permutations of even parity, is a normal subgroup of Sn having
index 2.

Proof There are several steps to the proof.

Step 1 First we show that, if τ is a transposition (a permutation
interchanging two points and fixing the rest), then π and πτ have opposite
parity. To see this, we have to count cycles of πτ . These are the same as the
cycles of π except for the ones containing the two points interchanged by τ , say
i and j. Now check that, if i and j are in the same cycle of π, this splits into
two cycles of πτ , while if they are in different cycles of π, these cycles get ‘glued
together’ in πτ .

So c(πτ) = c(π) ± 1, and the difference of 1 in either direction changes the
parity.

Step 2 Any permutation is a product of transpositions. There are
many different expressions, using different numbers of transpositions; but the
parity of the number of transpositions needed to express π is equal to the
parity of π.

To see that any permutation is a product of transpositions, we only need to
check this for one cycle, since we can deal with the cycles separately. Now verify
that

(1, 2, 3, . . . , n) = (1, 2)(1, 3) . . . (1, n).

The identity has n cycles of length 1, so its parity is even; and thus, by Step 1,
the parity of a product of k transpositions is equal to the parity of k.

Step 3 Parity is a homomorphism. We need to show that the parity of π1π2 is
the sum (mod 2) of the parities of π1 and π2. But this is clear from Step 2, on
expressing π1 and π2 as products of transpositions.
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The normal subgroup of Sn consisting of permutations with even parity is
called the alternating group, written An. Its order is n!/2. (The name comes
from a different description of An. A function f(x1, x2, . . . , xn) is called alter-
nating if it changes sign when two of its variables are interchanged. The simplest
example of such a function is

∏
i<j(xj − xi), Now the alternating group consists

of all permutations which, when applied to the variables x1, . . . , xn, leave the
value of an alternating function unchanged. The symmetric group is related to
‘symmetric functions’ in the same way.)

Remark It follows from the theorem that sign is a homomorphism from Sn to
the multiplicative group {+1,−1}.

Now we proceed to find the normal subgroups of S5. First, we list the
conjugacy classes. (For convenience we have given them names.)

Name Cycle structure # elements Parity
C1 1, 1, 1, 1, 1 1 E
C2 1, 1, 1, 2 10 O
C3 1, 2, 2 15 E
C4 1, 1, 3 20 E
C5 2, 3 20 O
C6 1, 4 30 O
C7 5 24 E

120

A normal subgroup N of S5 is a union of conjugacy classes, including the
class C1. If N does not include C7, then |N | ≡5 1, and |N | divides 24, whence
|N | = 1 and N = {1}. If, however, N does include C7, then |N | ≥ 25, whence
|N | = 40, 60, or 120, and N also includes C3. Now

(1, 2)(3, 4) · (1, 2)(3, 5) = (3, 4, 5),

so ifN contains C3, it also contains at least one element of C4, whenceN contains
C4. This leaves only two possibilities: either N = C1 ∪ C3 ∪ C4 ∪ C7 = A5, or
N = S5. We conclude:

Proposition 3.30 The only normal subgroups of S5 are {1}, A5, and S5.

3.14 Symmetry groups. Some further examples of groups arise geometri-
cally, as groups of symmetries of polygons and polyhedra.

Let P be a regular polygon with n vertices. Assume that its centre is at the
origin. A symmetry of the polygon is a transformation which maps vertices
of the polygon bijectively to vertices, and edges to edges. Alternatively, we can
think of a symmetry as a transformation of the Euclidean space which maps the
vertices and edges of the polygon to themselves.

There are two types of symmetries: rotations about the origin through
multiples of 2π/n radians; and reflections in ‘axes of symmetry’ of the polygon.
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There are clearly n rotations, each of which is obtained by composing the rota-
tion through 2π/n an appropriate number of times. Hence, the rotations form
a cyclic group of order n. Also, there are n reflections. If n is odd, each axis of
symmetry joins a vertex to the midpoint of the opposite side. If n is even, how-
ever, there are two types of axes of symmetry: one type joins a pair of opposite
vertices (there are n/2 of these), the other joins the midpoints of a pair of oppo-
site sides (and there are also n/2 of these). The full group of symmetries is called
the dihedral group of order 2n, written D2n (but note that some people call
it Dn).

Figure 3.2 shows the axes of symmetry in the two cases.

Theorem 3.31 The symmetry group of a regular n-gon is the dihedral group
of order 2n. It has a cyclic normal subgroup of order n consisting of rotations;
every element outside this subgroup has order 2.

How do we represent symmetries? One method is to regard the symmetry
group as consisting of permutations of the vertices; we number the vertices from
1 to n and write down the permutations. Another is to think of them (as described
above) as Euclidean transformations. Since we chose the polygon to have its
centre at the origin, these transformations can be represented by matrices.

For example, consider the square with vertices at (±1,±1), shown in
Figure 3.3. Number its vertices anti-clockwise starting from the top left, as in
the figure. Then the elements of the group of symmetries are as follows, as either

Fig. 3.2 Axes of symmetry

12

3 4

Fig. 3.3 Symmetries of a square
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permutations or matrices (rotations first, then reflections):

(1), (1, 2, 3, 4), (1, 3)(2, 4), (1, 4, 3, 2),

(1, 4)(2, 3), (1, 2)(3, 4), (2, 4), (1, 3)(
1 0
0 1

)
,

(
0 1
−1 0

)
,

(−1 0
0 −1

)
,

(
0 −1
1 0

)
,

(
1 0
0 −1

)
,

(−1 0
0 1

)
,

(
0 1
1 0

)
,

(
0 −1
−1 0

)

Note that a rotation has determinant +1, while a reflection has determi-
nant −1. The map A �→ det(A) is a homomorphism from the symmetry group
of the regular n-gon onto the multiplicative group {+1,−1} (cyclic of order 2);
the kernel is the rotation group (cyclic of order n).

We have only defined the dihedral group D2n above for n ≥ 3. However, with
the geometrical approach, we can extend the definition to n = 1 and n = 2 as
well, taking rotations through multiples of 2π/n and corresponding reflections.
For n = 1, we have the identity rotation and one reflection, giving D2 ∼= C2. For
n = 2, we have a group of order 4 isomorphic to the Klein group, containing two
rotations and two reflections: in matrix terms,

D4 =
{(

1 0
0 1

)
,

(−1 0
0 −1

)
,

(
1 0
0 −1

)
,

(−1 0
0 1

)}
.

In three dimensions, the figures analogous to regular polygons are regular
polyhedra, which have regular n-gons for faces and regular m-gons for ‘vertex
figures’ (obtained by slicing off a corner). There are only five of these, the so-
called Platonic solids. To see that there cannot be more than five, recall that
the internal angle in a regular n-gon is π(1 − 2/n). The angles of the m faces
surrounding a vertex must add up to strictly less than 2π. (If the sum was 2π,
as for four squares or three hexagons, the figure would lie flat and not fold up;
more than 2π would be even further from creating a polyhedron.) So we have

mπ(1− 2/n) < 2π,

whence 1/m+1/n > 1/2. This inequality has the solutions (m,n) = (3, 3), (3, 4),
(4, 3), (3, 5), and (5, 3).

This shows that not more than five regular polyhedra can exist. But we
can construct models of each of the five. In the order described above, they are
the tetrahedron, hexahedron (cube), octahedron, dodecahedron, and icosahedron
respectively. The Greek prefixes in the names of these figures stand for the total
numbers of faces they have, namely 4, 6, 8, 12, and 20 respectively. Figures 3.4
and 3.5 show the regular polyhedra.
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Fig. 3.4 Tetrahedron, cube, and octahedron

Fig. 3.5 Dodecahedron and Icosahedron

Theorem 3.32 The properties of the five Platonic polyhedra are given in the
following table:

Name Faces Edges Vertices Rotation Symmetry
Group Group

Tetrahedron 4 6 4 A4 S4
Cube 6 12 8 S4 S4 × C2

Octahedron 8 12 6 S4 S4 × C2
Dodecahedron 12 30 20 A5 A5 × C2
Icosahedron 20 30 12 A5 A5 × C2

Proof You will be greatly helped in following this proof if you have models of
the polyhedra available as you read. The models make the first three columns
of numbers clear. The other thing to notice is that there is a ‘duality’ relation
between the cube and the octahedron. If we take the six points at the centres
of the faces of a cube as vertices, we obtain an octahedron, and vice versa. This
explains why the number of faces of the cube is equal to the number of vertices
of the octahedron, and vice versa. It also implies that these two figures have the
same rotation group and the same symmetry group (thinking of these groups
as Euclidean transformations fixing the figures in question). A similar duality
relation holds between the dodecahedron and the icosahedron. The tetrahedron
is ‘self-dual’: if we put vertices at its face centres, we obtain another tetrahedron.
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Now, in each case, the order of the rotation group is the product of the
number of faces and the number of edges of a face. For imagine that we have a
frame on the table into which a face of the solid fits. We can specify a rotation
by saying which face should go into the frame, and in which orientation. Thus
we find that the rotation groups have orders 12, 24, 24, 60, 60 respectively. Also,
in all cases the map A �→ det(A) is a homomorphism from the symmetry group
onto the group {±1} whose kernel is the rotation group; so the symmetry group
is twice as large as the rotation group.

It remains to identify the groups.
For the tetrahedron, there are four vertices, which are permuted by any sym-

metry; since there are 24 = 4! symmetries, the symmetry group must be S4. The
rotation group is a normal subgroup of index 2, which must be the alternating
group A4 (either by our determination of all normal subgroups of S4 in the last
section, or by inspection).

For the other figures, the argument is more dependent on the models. A
cube has four diagonals (joining opposite vertices) which are permuted by its
symmetries. No non-identity rotation can fix all the diagonals [why?], so the rota-
tion group is S4. However, the reflection represented by the matrix −I (inversion
in the centre) fixes all diagonals. In fact, this matrix commutes with all trans-
formations in the group, so {±I} is the centre of the symmetry group, and is
a normal subgroup. From this it can be deduced that the symmetry group is
S4 × C2 (Exercise 3.40).

In the remaining case, the argument requires a more elaborate model, or very
good geometrical intuition! It is possible to ‘inscribe’ a cube into a dodecahedron,
so that the vertices of the cube are eight of the twenty vertices of the dodecahe-
dron, in just five different ways. These five inscribed cubes are permuted among
themselves by the rotations of the icosahedron. Thus, the rotation group is a
subgroup of order 60 of S5. Such a subgroup has index 2, and hence is normal,
so is necessarily A5. The proof that the symmetry group is A5 × C2 is much as
before. (Another approach is given in Exercise 3.41.)

Exercise 3.29 Show that the set

{(1), (1, 2), (3, 4), (1, 2)(3, 4)}

of permutations also forms a group isomorphic to the Klein group.

Exercise 3.30 Let π be a permutation of {1, . . . , n}. Define the permutation matrix
P (π) as follows: P (π) is an n× n matrix whose (i, j) entry is equal to 1 if iπ = j, and
is 0 otherwise. So each row or column of P (π) contains exactly one entry 1.

Prove that P (π1π2) = P (π1)P (π2). Hence show that every finite permutation group
is isomorphic to a matrix group (over any field).

Exercise 3.31 Let G = {g1, . . . , gn} be a group. Show that the Cayley table of G is an
n× n array with entries g1, . . . , gn with the following property: each element gi occurs
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exactly once in any row or column of the array. (Arrays with this property are called
Latin squares. They are used in design of experiments in statistics.)

Show that G is abelian if and only if its Cayley table is symmetric (equal to its
transpose).

Exercise 3.32 Let G and H be groups. Let G × H be the Cartesian product of the
sets G and H (the set of all ordered pairs (g, h), with g ∈ G and h ∈ H). Define an
operation on G×H by the rule

(g1, h1)(g2, h2) = (g1g2, h1h2).

Prove that G×H is a group. (This group is called the direct product of the groups
g and H.)

Prove that |G×H| = |G| · |H|.
Prove that the direct product of abelian groups is abelian.

Exercise 3.33 (a) Prove that the Klein group V4 is isomorphic to C2 × C2.
(b) Prove that C2 × C3 ∼= C6.
(c) Among groups of order 8, we find C8, C4 × C2, and C2 × C2 × C2. Identify them

in the analysis of groups of order 8 given above.

Exercise 3.34 (a) Prove that the eight permutations

(1), (1, 2, 3, 4), (1, 3)(2, 4), (1, 4, 3, 2),

(1, 2)(3, 4), (1, 3), (1, 4)(2, 3), (2, 4)

form a non-abelian group. [Hint : Construct a Cayley table.]
(b) Prove that the eight matrices(

1 0
0 1

)
,

(−1 0
0 −1

)
,

(
i 0
0 −i

)
,

(−i 0
0 i

)
,

(
0 1
−1 0

)
,

(
0 −1
1 0

)
,

(
0 i
i 0

)
,

(
0 −i
−i 0

)

over the complex numbers form a non-abelian group, not isomorphic to the group in
(a). [Hint : Count elements of order 2.]

Note These two groups are called the dihedral group and the quater-
nion group of order 8, respectively. The quaternion group arises from the
quaternions discovered by W. R. Hamilton (see Exercise 2.11). If i, j, k are
the quaternion ‘units’, satisfying

i2 = j2 = k2 = ijk = −1,

then the quaternion group consists of the eight elements

{±1,±i,±j,±k}.

Exercise 3.35 (a) Prove that, if p and q are distinct primes, then the direct product
of Zp and Zq is isomorphic to Zpq.
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(b) Prove that, if p is prime, then the direct product of Zp with itself is not
isomorphic to Zp2 .

Exercise 3.36 Show that the alternating group A4, of order 12, has no subgroup of
order 6.

(This shows that the converse of Lagrange’s Theorem is false; it is not true in
general that, if G is a group of order n, and m divides n, then G has a subgroup of
order m.)

Exercise 3.37 Let G be the dihedral group of order 8, the group of symmetries of a
square. Let z be the symmetry which is a rotation through 180◦. Verify that the centre
Z(G) is the subgroup {1, z}. Now G/Z(G) is a group of order 4: is it the cyclic group
or the Klein group?

Exercise 3.38 (∗) There are three partitions of the set {1, 2, 3, 4} into two sets of size
2, namely,

• A = {{1, 2}, {3, 4}};
• B = {{1, 3}, {2, 4}};
• C = {{1, 4}, {2, 3}}.

Any permutation g of {1, 2, 3, 4} induces a permutation g∗ of the set {A,B,C}. For
example, if g is the cyclic permutation (1, 2, 3, 4), then g∗ = (A,C)(B).

Show that the map θ : S4 → S3 defined by θ(g) = g∗ is a homomorphism. Describe
the image and kernel of θ, and check that

| Im(θ)| · |Ker(θ)| = |S4|.

Exercise 3.39 (∗) Let G be a group having two normal subgroups N and M with
the properties that NM = G and N ∩M = {1}. Show that an element of M and an
element of N commute. Show that any element of G can be written uniquely in the
form nm, for n ∈ N and m ∈M . Hence show that G ∼= N ×M .

Verify that these conditions are satisfied when G is the symmetry group of a cube,
N the rotation group, and M = {±I}.

Exercise 3.40 Calculate the conjugacy classes in the rotation group of the cube (in
terms of type of axis of rotation and angle of rotation), and match them up with the
conjugacy classes in the symmetric group S4.

Exercise 3.41 Take a model of either a dodecahedron or an icosahedron; pick it up
by one edge, and hold it with this edge horizontal at the ‘north pole’. Check that,
on the ‘equator’, there are two horizontal edges at antipodal points (in the direction of
the ends of the top edge), and two vertical edges at the intermediate points, while at
the ‘south pole’ there is an edge parallel to the one at the ‘north pole’.

This means that any edge belongs to a unique set of six edges in three mutually
perpendicular directions. The thirty edges thus define five such sets of six (or ‘frames’,
as we shall call them).

Show that any rotation induces a permutation on the set of five frames, and no
rotation except the identity can fix all five frames.

Deduce that the rotation group of the figure is isomorphic to A5.
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Appendix: How many groups?
We have seen that the number of binary operations on a set of n elements is nn

2
.

These are systems satisfying the axiom (G0).
Even if we count them up to isomorphism, we obtain a very rapidly growing

function. For the number of structures on a set of n elements isomorphic to a
given one is at most the number n! of bijections of the set; so up to isomorphism
the number F0(n) of binary systems satisfies

F0(n) ≥ nn
2
/n! ≥ nn

2
/nn = nn

2−n.

One measure of the strength of the group axioms is to estimate how many
structures satisfy various collections of axioms.

It is clear that the identity and inverse laws alone are not very powerful.
If we take A = {a1, . . . , an}, where a1 is the identity, then the first row and
column of the operation table are determined, but the remaining entries are
arbitrary; so there are n(n−1)2 such structures, and at least n(n−1)2/(n− 1)! up
to isomorphism. Similarly, we get a lower bound for the number satisfying the
inverse law by counting just those for which each element is its own inverse; there
are n(n−1)(n−2) of these, so at least n(n−1)(n−2)/(n− 1)! up to isomorphism.

A better approach is to consider the cancellation laws. Notice that we used the
associative law as well as the identity and inverse laws to prove the cancellation
laws in a group. (For example, if ab = ac, then a−1(ab) = a−1ac; using the
associative law, (a−1a)b = (a−1a)c, whence b = c.) Notice, too, that in a finite
structure, the identity and cancellation laws imply the existence of inverses. For
the cancellation law implies that the map x �→ ax is one-to-one; in a finite
structure, this map is also onto, so there exists x such that ax = 1. However,
we need the associative law to prove that left and right inverses are equal: if
ax = 1 = ya, then x = (ya)x = y(ax) = y.

Accordingly, we define a quasigroup to be a set with a binary operation
◦ in which the equations ax = b and ya = b have unique solutions x and y
for any given a and b. Another way of saying the same thing is that the operation
table has the property that each element occurs exactly once in each row or
column.

A Latin square is an n × n array containing n different entries, such that
each entry occurs exactly once in each row and once in each column. Thus, a
set with a binary operation is a quasigroup if and only if its operation table is a
Latin square.

In addition, we define a loop to be a quasigroup with identity. Taking the
identity to be the first element, this requires that the entries in the first row and
column of the operation table are equal to the row and column labels.

So we see that the numbers of quasigroups and loops with n elements are
each at least L(n)/n!, where L(n) is the number of Latin squares of order n. The
value of L(n) is not known precisely, but it is known to be at least (cn)n

2
for

some positive constant c. As before, dividing by n! doesn’t have much effect.
By contrast, the number of groups is much smaller:
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Theorem 3.33 The number of non-isomorphic groups of order n does not
exceed nn log2 n.

Proof First, we present some terminology. In a group G, the subgroup gen-
erated by the elements g1, . . . , gr is the smallest subgroup containing these
elements; we say that g1, . . . , gr generate G if there is no proper subgroup of
G which contains them. We write G = 〈g1, . . . , gr〉 in this case, generalising
the notation for cyclic groups. Another characterisation of this is: every element
of G can be written as a product of elements chosen from g1, . . . , gr and their
inverses.

Step 1 A group of order n can be generated by at most log2 n elements.
To show this, choose elements g1, g2, . . . so that g1 is not the identity and

gi+1 is not in the subgroup Hi generated by g1, . . . , gi for each i > 1, as long
as possible. Then H1 = 〈g1〉 is not the identity, so |H1| ≥ 2. Also, since Hi+1
properly contains Hi, its order is a proper multiple of that of Hi by Lagrange’s
Theorem, and so |Hi+1| ≥ 2|Hi|. By induction, |Hi| ≥ 2i for all i. When the pro-
cess terminates, we have Hi = G, so n ≥ 2i, or i ≤ log2 n; and, by construction,
G can be generated by i elements.

Step 2 By Cayley’s Theorem, there is a subgroup of the symmetric group Sn
which is isomorphic to G. Thus, there is an isomorphism θ from G to a subgroup
of Sn. If G = 〈g1, . . . , gr〉, then any element of G is a product of some of g1, . . . , gr
and their inverses. So the image of this element under θ is determined by the
images of g1, . . . , gr, which are r elements of Sn.

Hence the number of groups of order n is not greater than the number of
choices of r elements of Sn, where r = �log2 n	 (the integer part of log2 n). This
number is (n!)log2 n.

Finally, n!, which is the product of the n numbers from 1 to n, is not greater
than nn. So the number of groups of order n does not exceed nn log2 n.

In the above proof, the essential ingredients are Lagrange’s Theorem and
Cayley’s Theorem, two of the most basic results about groups. Using much
more advanced group theory, this result has been improved. It is known that
the number of groups of order n is at most nc(log n)2 for some positive constant
c. In other words, the exponent is reduced from n log n to the much smaller
c(log n)2.

Even Cayley’s Theorem is not essential for this proof. If we are building
the Cayley table of G, it is enough to construct the rows corresponding to the
generating elements g1, . . . , gr, since all other products can then be computed
using the associative law. Now the number of r × n tables does not exceed
nnr ≤ nn log2 n.

On the basis of this theorem, we might be tempted to conclude that the
associative law is the most powerful of the group axioms. We define a semigroup
to be a set with a binary operation satisfying the associative law, that is, a
structure in which axioms (G0) and (G1) hold.
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It is beyond the scope of this book to give an estimate for the number of
semigroups with n elements. However, the numbers of small semigroups have
been calculated. The table below shows that the number grows much faster than
the number of groups. The numbers in the table are up to isomorphism.

So it is more accurate to say that the combination of all the group axioms is
more than the sum of its parts.

n Operations Quasi Loops Semi Groups
groups groups

1 1 1 1 1 1
2 10 1 1 5 1
3 3330 5 1 24 1
4 178981952 35 2 188 2
5 2483527537094825 1411 6 1915 1
6 14325590003318891522275680 1130531 109 28634 2

These numbers are taken from Neil Sloane’s On-Line Encyclopedia of Integer
Sequences, on the web at http://www.research.att.com/˜njas/sequences/

Recently, a team of group theorists (Hans Ulrich Besche, Bettina Eick and
Eamonn O’Brien) marked the end of the second millennium by counting the
groups with order at most 2000 up to isomorphism. There are 49 910 529 484
groups, of which 49 487 365 422 have order 210 = 1024. By contrast, of course,
if p is prime, there is only one group of order p. So the counting function for
groups is very erratic.

http://www.research.att.com/~njas/sequences/


4 Vector spaces

By the time you reach this point, you will probably have met vector spaces in
another course: perhaps matrices, geometry, mechanics, or linear algebra. The
treatment here may be somewhat different. A vector space is an algebraic object
like a ring or a group, and we will start with a collection of axioms, as we did
in the chapters on rings and groups. Then we turn to subspaces and homomor-
phisms, and find that homomorphisms between vector spaces can be represented
by matrices, and indeed by matrices of a particularly simple form. In the last
section, we see that for matrices with elements in a Euclidean domain (such as
the integers), similar results apply. This result will seem a bit unmotivated; but
we will put it to work in the next chapter!

Vector spaces and subspaces
4.1 Introduction. The notion of a vector space grew from the discovery by
Descartes that points in the Euclidean plane can be represented by ordered pairs
of real numbers (and points in 3-dimensional space by ordered triples). We are
faced with two completely different descriptions: a point in the plane, or a pair
of real numbers. Moreover, operations on vectors look quite different according
to which description is used. For example, we add vectors by the ‘parallelogram
law’ used in mechanics, and we add pairs of real numbers ‘componentwise’; but
the result is the same.

Furthermore, we want the possibility to generalise. We want to be able to talk
about Euclidean space of n dimensions, for any n. (This is not just an intellectual
game, but has important applications in fields as far apart as quantummechanics,
statistics, and signal processing.) Also, we want to be able to use fields other than
the real numbers. Computers send information as sequences of binary digits (that
is, n-tuples from the field Z2). So we define the concept of a vector space over an
arbitrary field F . We call the elements of F scalars, to distinguish them from
the vectors.

To set up the axioms, we regard two operations on vectors as basic. There
is a binary operation of addition, written as + as usual. Also, for every field
element c, there is a unary operation of scalar multiplication by c, written as
juxtaposition: the product of the scalar c and the vector v is written as cv (with
the scalar on the left).

There is a potential problem here, since we have two different kinds of things,
scalars and vectors, both of which can be added; there are two multiplications,
one combining two scalars, the other a scalar and a vector; and we will see that
there is a vector named 0 as well as a scalar with the same name. Sometimes,
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this problem is dealt with by using bold type for vectors. This is common in
3-dimensional mechanics, for example, where a vector is a ‘geometric’ object,
unlike a scalar. I want to stress that a vector space, just like a field or a group, is
an algebraic object; so I do not adopt this convention. I will usually use letters
from near the end of the alphabet (typically u, v, w) for vectors, and letters from
the other end (c, d) for scalars. There will be times when no convention can avoid
confusion completely!

We now give the formal definition. Let F be a field. A vector space over
F , or F -vector space, is a set V with a binary operation + (addition) and,
for each c ∈ F , a unary operation of scalar multiplication by c, satisfying the
following axioms:

Addition axioms
(VA0) (Closure law): For all v, w ∈ V , we have v + w ∈ V .
(VA1) (Associative law): u+ (v + w) = (u+ v) + w for all u, v, w ∈ V .
(VA2) (Zero law): There exists 0 ∈ V such that v + 0 = 0 + v = v for all
v ∈ V .

(VA3) (Inverse law): For all v ∈ V , there exists w ∈ V with v+w = w+v = 0.
(VA4) (Commutative law): v + w = w + v for all v, w ∈ V .
Scalar multiplication
(VM0) (Closure law): For all c ∈ F and v ∈ V , we have cv ∈ V .
(VM1) For all c ∈ F and v, w ∈ V , we have c(v + w) = cv + cw.
(VM2) For all c, d ∈ F and v ∈ V , we have (c+ d)v = cv + dv.
(VM3) For all c, d ∈ F and v ∈ V , we have (cd)v = c(dv).
(VM4) (Unital law): For all v ∈ V , we have 1v = v (where 1 is the identity

of F ).

Remark 1. The addition axioms assert that a vector space, with the operation
of addition, is an abelian group. This is a convenient way to remember them.

2. It is possible to state the other axioms more briefly, too. If A is an abelian
group, then the set End(A) of all homomorphisms from A to A is a ring, whose
addition is defined pointwise, and whose multiplication is composition. (This is
the endomorphism ring of A: see Exercise 3.28.)

a(φ1 + φ2) = aφ1 + aφ2,

a(φ1φ2) = (aφ1)φ2.

Now let V be a vector space over F , and, for each c ∈ F , let µc denote the oper-
ation of scalar multiplication by c, the function from V to V given by vµc = cv.
Then axiom (VM1) says that µc is a homomorphism; that is, µc ∈ End(V ). Next,
let θ be the function from F to End(V ) mapping the element c to the homomor-
phism µc. Then axioms (VM2) and (VM3) say that θ is a ring homomorphism,
and axiom (VM4) says that θ maps the identity element of F to the identity
homomorphism.
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So we can reformulate the definition as follows:
A vector space over F consists of an abelian group V and a ring
homomorphism θ from F to End(V ) which maps the identity to
the identity.

Perhaps you find this less helpful than the list of ten axioms. But it does
point to a close connection between vector spaces, groups and rings, and it is in
a form which makes it easier to generalise in a meaningful way.

4.2 Examples.

Example 1 Let V = Fn, the set of all n-tuples of elements of F . Define
addition and multiplication ‘coordinatewise’: that is,

(a1, a2, . . . , an) + (b1, b2, . . . , bn) = (a1 + b1, a2 + b2, . . . , an + bn),

c(a1, a2, . . . , an) = (ca1, ca2, . . . , can).

This is a very important example.When we considered rings, we saw that, while
there are quite varied examples, the ring of integers was sufficiently typical to
act as a prototype. For groups, the examples were so varied that there was no
useful prototype. The situation is different here. Not only is Fn the prototype
of a vector space; we will see that every ‘finite-dimensional’ vector space looks
exactly like Fn.

For this reason, it is worth stopping to check that the ten vector space axioms
do hold for Fn. All the arguments are similar, and straightforward. For example,
here is the proof of (VM3):

(cd)(a1, . . . , an) = (cda1, . . . , cdan) = c(da1, . . . , dan) = c(d(a1, . . . , an)).

(We used the associative law for multiplication in F here.)

Example 2 Let Ω be any set, and let V be the set of all functions from Ω to
the field F . Define addition and scalar multiplication of functions ‘pointwise’:

(f + g)(x) = f(x) + g(x),

(cf)(x) = cf(x)

for all x ∈ Ω. Then V is a vector space over F .
In the case where Ω is finite, say Ω = {x1, . . . , xn}, we can represent the func-

tion f uniquely by giving the list of its values, (f(x1), . . . , f(xn)). Any n-tuple
of elements of F forms the list of values of a unique function. So we can identify
V with the set Fn of all such lists. The addition and multiplication are the same
as in Example 1.

Things are more interesting in the case where Ω is infinite. Suppose, for
example, that F is the field R of real numbers, and that Ω is either R or an
interval in R. By restricting to ‘interesting’ classes of functions, such as contin-
uous functions or differentiable functions, we obtain further vector spaces. This
is the subject-matter of Functional Analysis.
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Example 3 Let K be a field, containing a subfield F . Now suppose that we
are slightly forgetful, and while we can remember how to add elements of K, we
can only remember how to multiply them by elements of F . Then with this loss
of information, K becomes an F -vector space.

In particular, any field F is a vector space over itself; but this is no surprise,
since we can represent F as F 1, the set of all 1-tuples.

A more interesting case is that where K = F [x]/(f), where f is an irre-
ducible polynomial over F of degree n. As we saw in Section 2.16, K can be
represented as

K = {c0 + c1α+ · · ·+ cn−1α
n−1 : c0, c1, . . . , cn−1 ∈ F},

and in this representation we can add elements ofK or multiply them by elements
of F (coordinatewise) without knowing the precise equation f(α) = 0 satisfied
by α. So this is just Example 1 again.

Example 4 The first vector space studied by mathematicians was the
Euclidean plane. How do we see it as a vector space?

A vector, in elementary geometry or mechanics, has magnitude and direction.
If we choose a point in the plane to be the origin, then a vector is thought of
as an arrow with its tail at the origin and its head at an arbitrary point of the
plane. (The zero vector is a special case. Its head and tail are both at the origin;
its length is zero and its direction is not defined.)

Two vectors v, w are added by the parallelogram law: construct a paral-
lelogram with one vertex at the origin and two sides corresponding to v and w
(so that the heads of these vectors are two more vertices); then the fourth vertex
is the head of v + w. (This has to be modified if v and w point in the same or
opposite directions, since then the parallelogram degenerates into a line.) If c
is positive, then to multiply a vector v by c we take a vector with c times the
length but in the same direction. If c is negative, we multiply the length by −c
and reverse the direction. Finally, we take 0v to be the zero vector.

Following Descartes, we represent each point of the plane by a pair (x, y)
of real numbers (its coordinates). In a similar way, we can represent a vector
by coordinates, taking the coordinates of its head. Thus, this labelling identifies
the set of vectors with R2. It can be checked that the rules for addition and
multiplication, when expressed in coordinates, are precisely those of Example 1.

Example 5 In communication between computers, data is sent in the form
of binary words, consisting of n-tuples of zeros and ones (for some fixed word
length n). We regard the entries in such a word as being integers mod 2, that
is, belonging to the field F2 = Z/2Z. Assume for example that n = 8. Now
suppose that, during transmission, the signal is distorted by interference, so that,
at the receiving end, the second, third, and fifth bits of the transmitted word
are received incorrectly. Since changing an element of F2 can be done simply by
adding 1 to it, we see that the effect of the noise is to add to the transmitted word
the vector (01101000). In this sense, the received word is ‘signal plus noise’, the
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addition being performed in the vector space F8
2. We will consider error correction

further in Chapter 8.

4.3 Properties of vector spaces. Since a vector space is an abelian group
(so far as addition is concerned), we can immediately deduce that all the
properties of abelian groups hold. For example,

(a) the sum of n vectors is well defined, independent of bracketing or order;
(b) the zero is unique;
(c) the additive inverse of any element is unique.

Here are a couple more simple properties.

(d) 0v = 0 for any v;
(e) (−1)v = −v for any v.

Proof (d) 0v = (0+0)v = 0v+0v, by (VM2). Hence 0v = 0 by the Cancellation
Law (which is valid in any abelian group).

(e) (−1)v + v = (−1)v + 1v = (−1 + 1)v = 0v = 0; so (−1)v is the inv-
erse of v.

4.4 Subspaces. What happens next should be fairly familiar now. A subset
W of the vector space V (over a field F ) is a subspace if it forms a vector space
in its own right. As we saw for groups and rings, in order thatW is a subspace, it
is enough to check the various closure properties, since universal laws such as the
associative and unital laws will be inherited by W from V . In this case, we have
to check closure under addition and scalar multiplication, and thatW contains 0
and contains the inverses of its elements. In fact, the first two conditions suffice:

Theorem 4.1 (First subspace test) A non-empty subset W of a vector
space V is a subspace of V if and only if it is closed under addition and scalar
multiplication; that is, w1, w2 ∈ W implies w1 + w2 ∈ W , and c ∈ F , w ∈ W
implies cw ∈W .

Proof Closure under scalar multiplcation does the trick for us. For any w ∈W ,
we have 0 = 0w ∈ W and −w = (−1)w ∈ W , by the properties proved in the
last section.

As before, we can combine the two kinds of closure into a single test:

Theorem 4.2 (Second subspace test) The non-empty subset W of the
vector space V over F is a subspace if and only if, for any c1, c2 ∈ F and
w1, w2 ∈W , we have c1w1 + c2w2 ∈W .

Proof If W is a subspace, and c1, c2, w1, w2 are given, then the closure laws
show that c1w1 + c2w2 ∈W .

Conversely, suppose that this condition holds. Then, choosing c2 = 0, we see
that c1w1 ∈ W for all c1 ∈ F and w1 ∈ W ; that is, W is closed under scalar
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multiplication. Similarly, choosing c1 = c2 = 1 shows that it is closed under
addition.

4.5 Linear independence and bases. Let V be a vector space over F ,
and let v1, v2, . . . , vn be vectors of V . We say that v1, v2, . . . , vn are linearly
dependent if there are scalars c1, c2, . . . , cn, not all zero, such that

c1v1 + c2v2 + · · ·+ cnvn = 0.

Note the importance of the phrase ‘not all zero’. If we allowed the coefficients
c1, . . . , cn to be all zero, then the equation would be true for any n vectors. Note
that if one of the vectors, say vi, is zero, then they are linearly dependent: take
ci = 1 and cj = 0 for j �= i. In a similar manner, if two of the vectors are equal,
say vi = vj , then they are linearly dependent: take ci = 1, cj = −1, and ck = 0
for k �= i, j.

Linear dependence can be formulated in another way. An expression a1w1 +
· · ·+ amwm is called a linear combination of the vectors w1, . . . , wm.

Proposition 4.3 The vectors v1, . . . , vn are linearly dependent if and only if
one of them can be expressed as a linear combination of the others.

Proof Suppose first that the vectors are linearly dependent. That is, we have
c1v1 + · · · + cnvn = 0, where the coefficients are not all zero. Say that ci �= 0.
Then we have

vi = −(c1c−1
i )v1 − · · · − (ci−1c

−1
i )vi−1 − (ci+1c

−1
i )vi+1 − · · · − (cnc−1

i )vn.

In other words, vi is a linear combination of the others.
Conversely, let vi is expressed as a linear combination of the other vectors.

Then, subtracting vi from both sides of this equation, we find a linear combina-
tion of all the vectors equal to zero, where the coefficient of ci is −1 �= 0; so the
vectors are linearly dependent.

If the vectors v1, v2, . . . , vn are not linearly dependent then, naturally enough,
they are called linearly independent. This is a negative definition, so we
reformulate the concept more positively. The vectors v1, v2, . . . , vn are linearly
independent if, whenever an equation

c1v1 + c2v2 + · · ·+ cnvn = 0

holds, then we have c1 = c2 = . . . = cn = 0.

Example Show that the vectors (1, 1, 1), (1, 2, 0), and (0, 1,−3) in R3 are
linearly independent.

Solution Suppose that the equation

a(1, 1, 1) + b(1, 2, 0) + c(0, 1,−3) = 0
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holds. In other words,

(a+ b, a+ 2b+ c, a− 3c) = (0, 0, 0).

This gives us three equations

a+ b = 0,

a+ 2b+ c = 0,

a− 3c = 0,

for the three unknowns a, b, c. Solving these equations, we find that a = b =
c = 0. So the vectors are linearly independent.

A related concept is the span of a list of vectors. Let v1, v2, . . . , vn be elements
of a vector space V over F . The span of these vectors, written 〈v1, . . . , vn〉F , is
the set of all linear combinations of v1, . . . , vn. (If the field F is clear, we omit it
from the notation.)

Proposition 4.4 〈v1, . . . , vn〉F is a subspace of V .

Proof We apply the subspace test. Take two vectors in 〈v1, . . . , vn〉F , say w =
c1v1 + · · ·+ cnvn and w′ = c′1v1 + · · ·+ c′nvn. Then. for any a, a

′ ∈ F ,

aw + a′w′ = (ac1 + a′c′1)v1 + · · ·+ (acn + a′c′n)vn

is a linear combination of v1, . . . , vn.

A list v1, v2, . . . , vn is called a spanning set for V if 〈v1, . . . , vn〉 = V . If it
is both linearly independent and a spanning set, it is called a basis.

Theorem 4.5 The following conditions for a finite subset X of a vector space
are equivalent:

(a) X is a maximal linearly independent set;
(b) X is a minimal spanning set;
(c) X is a linearly independent spanning set.

Proof We show that each of (a) and (b) is equivalent to (c).
(c) implies (a): If X is a basis for V , then every vector in V is a linear

combination of X; so adding any vector to X gives a linearly dependent set,
which means that X is maximal.

(a) implies (c): If X is maximal independent, then any vector v added to X
gives a linearly dependent set. In a dependence relation, the coefficient of v must
be non-zero (else X would be linearly dependent); so we can use the relation to
express v as a linear combination of X. So X spans V , and is a basis.

(c) implies (b): If X is a basis, then no element of X is a linear combination
of the others, so no proper subset is spanning.
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(b) implies (c): If X is a minimal spanning set, then no element of X is
a linear combination of the others (or it could be dropped without losing the
spanning property); so X is linearly independent.

Now if a vector space has a basis, we know what it looks like:

Theorem 4.6 (a) If X is a basis for V , then every element of V has a unique
expression as a linear combination of X.

(b) If V has a basis containing n elements, then V is isomorphic to Fn.

Proof Let v1, . . . , vn be a basis. Any element v ∈ V has an expression as a
linear combination, say v = c1v1+ · · ·+cnvn. Suppose that there is another such
expression, say v = c′1v1 + · · ·+ c′nvn. Then

(c1 − c′1)v1 + · · ·+ (cn − c′n)vn = 0.

Since v1, . . . , vn are linearly independent, the coefficients are all zero; so ci = c′i
for all i.

Now we map V to Fn by taking v = c1v1 + · · · + cnvn to the n-tuple
(c1, . . . , cn). The first part of the theorem shows that it is a bijection; and clearly
it preserves addition and scalar multiplication.

Now we know exactly what a vector space with a basis looks like, except for
the possibility that there are bases with different numbers of elements. We now
show that this cannot happen.

To do this, we first need a technical result about linear equations.
Let x1, . . . , xn be variables taking values in a field F . A homogeneous linear

equation in x1, . . . , xn is an equation of the form c1x1 + · · ·+ cnxn = 0, where
c1, . . . , cn are given elements of F . A solution is just an assignment of values to
the variables so that the equation holds.

Proposition 4.7 Given m homogeneous linear equations in n variables, with
m < n, there is a simultaneous solution to the equations with not all the variables
equal to zero.

Proof We prove the result by induction onm. Ifm = 0, there are no equations,
and any assignment of values will do. So the induction starts.

Suppose that the result holds for fewer than m equations. Consider one of
the given equations, say c1x1+ · · ·+cnxn = 0. If all the coefficients c1, . . . , cn are
equal to zero, then the equation carries no information and can be discarded,
reducing the number of equations by one. So suppose that some coefficient is
non-zero, without loss the coefficient cn. Now divide this equation by cn, and
it expresses xn in terms of the other variables. Substitute this expression in the
remaining equations. We end up with m − 1 equations in n − 1 variables. By
induction, these have a non-zero solution. So we obtain a non-zero solution to
the original set of equations.

The result is proved.
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Now we return to the properties of linear independence. Let V be a vector
space, and let I denote the set of linearly independent finite subsets of V . By
definition, the empty set is linearly independent.

Theorem 4.8 (Properties of linear independence) (a) If X ∈ I and
Y ⊂ X, then Y ∈ I.

(b) (Steinitz exchange axiom) Suppose that X,Y ∈ I with |Y | > |X|. Then
there exists y ∈ Y \X such that X ∪ {y} ∈ I.

Proof (a) If we have a linear combination of a subset Y ofX equal to zero, then
we obtain a linear combination of all of X with the same value, by taking the
coefficients of the remaining vectors to be zero. Since X is linearly independent,
all the coefficients must be zero. So Y is linearly independent.

(b) Suppose that both {x1, . . . , xm} and {y1, . . . , yn} are linearly indepen-
dent, with m < n. Let us also suppose, arguing for a contradiction, that the set
{x1, . . . , xm, yi} is linearly dependent, for any i (with 1 ≤ i ≤ n). This means
that there is a linear combination of x1, . . . , xm, yi which is equal to zero, with not
all the coefficients zero. The coefficient of yi must be non-zero, since x1, . . . , xm
are linearly independent. Dividing by this coefficient, and taking yi to the other
side of the equation, we find that yi is a linear combination of x1, . . . , xm for
every i. Suppose that

yi = ci1x1 + · · ·+ cimxm

for i = 1, . . . , n. We claim that the vectors y1, . . . , yn are linearly dependent.
Could an equation

a1y1 + · · ·+ anyn = 0

hold? Substituting the expression for the ys in terms of the xs, we find that the
coefficient of xj is

a1c1j + · · ·+ ancnj = 0.

Regarding these as m linear equations for the n unknowns a1, . . . , an, we see
from the proposition that they have a non-zero solution. So y1, . . . , yn are linearly
dependent. But this contradicts the fact that they are linearly independent! So
the original assumption, that x1, . . . , xm, yi is linearly dependent for all i must
be wrong; so this set is linearly independent for some value of i, as required. This
completes the proof.

From this theorem we can deduce an important property. If there are no bases,
then we call the vector space infinite-dimensional; it is finite-dimensional
otherwise. So a space is infinite-dimensional if every linearly independent set can
be enlarged to a larger linearly independent set. Infinite-dimensional spaces are
important, but here we are only concerned with the finite-dimensional ones.
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Theorem 4.9 If V has a basis, then any two bases have the same number of
elements.

Proof Suppose that X and Y are both maximal. By the Steinitz exchange
axiom, if |X| < |Y |, then we could obtain a linearly independent set containing
X by adding an element of Y , which contradicts the maximality of X. Similarly,
the assumption that |Y | < |X| leads to a contradiction. So |X| = |Y |.

If the vector space V has a basis (that is, if it is finite-dimensional), then the
number of elements in any basis is called the dimension of V .

Theorem 4.10 Two finite-dimensional vector spaces over the same field F are
isomorphic if and only if they have the same dimension.

Proof Combine the results of Theorems 4.9 and 4.6.

4.6 Intersection and sum. Let V be a vector space, and let U,W be sub-
spaces of V . The intersection U ∩W is a subspace, and is the largest subspace
of V contained in both U and W . See Exercise 4.2 which also asks you to show
that the union U ∪W is not usually a subspace. Instead, we define the following:

The sum of the subspaces U and W is the set

U +W = {u+ w : u ∈ U,w ∈W}.

It is a subspace, and is the smallest subspace of V which contains both U andW .

Proof We apply the Subspace Test. Take two vectors u + w and u′ + w′ in
U +W , and two scalars c, c′ ∈ F . Then

c(u+ w) + c′(u′ + w′) = (cu+ c′u′) + (cw + c′w′) ∈ U +W,

since cu+ c′u′ ∈ U and cw + c′w′ ∈W .
Clearly, both U and W are contained in U +W . (For example, a vector in

U has the form u + 0.) Moreover, any subspace which contains both U and W
must contain U +W , so it is the smallest such subspace.

In the finite-dimensional case, the following equation connects the dimensions
of these spaces:

Theorem 4.11 If U and W are subspaces of V , then

dim(U ∩W ) + dim(U +W ) = dim(U) + dim(W ).

Proof Let dim(U) = m, dim(W ) = n, and dim(U ∩W ) = k. Choose a basis
x1, . . . , xk for U ∩ W . This is a linearly independent set in U , and so it can
be extended to a basis for U , say x1, . . . , xk, u1, . . . , um−k. Similarly, it can be
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extended to a basis x1, . . . , xk, w1, . . . , wn−k forW . We claim that all the vectors
x1, xk, u1, . . . , um−k, w1, . . . , wn−k form a basis for U +W . Given this, the result
follows: for we have

dim(U +W ) = k + (m− k) + (n− k) = m+ n− k

= dim(U) + dim(W )− dim(U ∩W ).

Any vector in U +W can be written as a linear combination of the xi, ui, and
wi; so we have a spanning set. Suppose that we have a linear dependence

a1x1 + · · ·+ akxk + b1u1 + · · ·+ bm−kum−k + c1w1 + · · ·+ cn−kwn−k = 0.

Transposing, we obtain

a1x1 + · · ·+ akxk + b1u1 + · · ·+ bm−kum−k = −c1w1 − · · · − cn−kwn−k.

The left-hand expression is in U , and the right-hand expression in W ; so both
sides lie in U ∩W . So they can be expressed in a third form, d1x1 + · · ·+ dkxk.
Now this and the left-hand side are two expressions for a vector of U in terms of
the basis of U , so they coincide; that is, ai = di for i = 1, . . . , k, and bi = 0 for
i = 1, . . . ,m− k. Performing the same argument with the right-hand expression
gives 0 = di for i = 1, . . . , k, and ci = 0 for i = 1, . . . , n − k. Combining
these, we see that all the coefficients are zero. So the xs, us, and ws are linearly
independent, completing the proof.

Exercise 4.1 Let V be the vector space of all real-valued functions on the unit interval
[0, 1]. Show that each of the following is a subspace of V :

(a) the bounded functions;
(b) the continuous functions;
(c) the differentiable functions;
(d) the functions f satisfying f(0) = f(1).

Exercise 4.2 Let W and U be subspaces of the vector space V .

(a) Prove that the intersection W ∩ U is a subspace of V .
(b) Prove that the unionW ∪U is a subspace if and only if one ofW and U contains

the other.

Exercise 4.3 Let V be the Euclidean plane, regarded as a real vector space.
(a) Prove that the set {0}, the whole space V , and any line through the origin, are

subspaces of V .
(b) Prove further that every subspace of V is of one of these types.

Exercise 4.4 Show that the set of all n-tuples of elements of F which satisfy a given
collection of homogeneous linear equations is a subspace of Fn.
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Exercise 4.5 In V = R4, let U = 〈(1, 2, 0,−1), (2, 1, 1, 3), (1,−1, 1, 2)〉, and let W =
〈(3, 2, 0, 2), (2, 2, 0, 1)〉. Find a basis for U ∩W .

Exercise 4.6 (∗∗) The conditions we proved for linearly independent sets in a vector
space in Theorem 4.8 have been applied much more widely. In the tradition of abstract
mathematics, they are now considered as axioms.

A matroid consists of a finite set E and a non-empty family I of subsets of E,
satisfying the two conditions

(Mat1) If X ∈ I and Y ⊆ X, then Y ∈ I.
(Mat2) (Exchange axiom) If X,Y ∈ I and |X| < |Y |, then there exists y ∈ Y \X

such that X ∪ {y} ∈ I.
Thus, Theorem 4.8 states: A vector space, equipped with the family of its independent
subsets, is a matroid. This was the original, motivating example. But there are other
important examples in discrete mathematics. Verify the following.

(a) A graph consists of a set V of vertices and a set E of edges, each edge joining
a pair of vertices. We allow an edge to join a vertex to itself (such an edge is called a
loop), and we also allow more than one edge to join the same pair of vertices (such
edges are called parallel).

A circuit in a graph is a sequence e1, e2, . . . , en of edges, such that there are distinct
vertices v1, v2, . . . , vn so that ei joins vi and vi+1 or i < n while en joins vn and v1. A
circuit with n = 1 is a loop, and a circuit with n = 2 consists of two parallel edges.
A set of edges is acyclic if it contains no circuit.

Prove that, if I is the set of acyclic sets of edges, then (E, I) is a matroid.

(b) Let E be a set, and let X be a family of subsets of E. We say that a sub-
set {e1, e2, . . . , er} of E is a partial transversal for X if there exist distinct sets
X1, X2, . . . , Xr in X such that ei ∈ Xi for i = 1, 2, . . . , r.

Prove that, if I is the set of all partial transversals for X , then (E, I) is a matroid.

Remark In a matroid (E, I), all maximal members of I have the same number
of elements.

Linear transformations and matrices
4.7 Linear transformations. In this section, we examine homomorphisms
of vector spaces. So this corresponds to ‘homomorphisms and ideals’ of rings, or
‘homomorphisms and normal subgroups’ of groups. There are two differences.
First, the homomorphisms of vector spaces are almost universally called ‘linear
transformations’ or ‘linear maps’. Second, in the cases of rings and groups, we
saw that kernels of homomorphisms are subrings or subgroups that satisfy some
additional property. Here, by contrast, any subspace can be the kernel of a
homomorphism.

Let V and W be vector spaces over the same field F . A linear trans-
formation from V to W is a function θ : V → W which satisfies the following
conditions:

(a) For any v1, v2 ∈ V , (v1 + v2)θ = v1θ + v2θ.
(b) For any v ∈ V , c ∈ F , (cv)θ = c(vθ).
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These two conditions are equivalent to the single condition

(c1v1 + c2v2)θ = c1(v1θ) + c2(v2θ)

for v1, v2 ∈ V and c1, c2 ∈ F .
As you would expect, the image of θ is

Im(θ) = {w ∈W : w = vθ for some v ∈ V },
while its kernel is

Ker(θ) = {v ∈ V : vθ = 0}.
The image is a subspace of W , whose dimension is called the rank of θ; the
kernel is a subspace of V , whose dimension is the nullity of θ.

Let U be a subspace of V . Set v1 ∼ v2 if v2 − v1 ∈ U . This is an equivalence
relation, whose equivalence classes are the cosets of U in V . (This is exactly
the same usage as for the cosets of a subgroup of an abelian group, where no
distinction between left and right cosets has to be made. In fact, the cosets in
the present sense are exactly the cosets of U in the additive group of V .) A coset
of U has the form

U + v = {u+ v : u ∈ U}.
Theorem 4.12 (a) Im(θ) is a subspace of W .
(b) Ker(θ) is a subspace of V .
(c) Two vectors v1, v2 ∈ V satisfy v1θ = v2θ if and only if they lie in the same

coset of Ker(θ).

Proof This works in the same way as for groups or rings.
(a) If w1, w2 ∈ Im(θ), say w1 = v1θ and w2 = v2θ, and c1, c2 ∈ F , then

c1w1 + c2w2 = c1(v1θ) + c2(v2θ) = (c1v1 + c2v2)θ ∈ Im(θ),

so Im(θ) is a subspace.
(b) If v1, v2 ∈ Ker(θ), then v1θ = v2θ = 0, so

(c1v1 + c2v2)θ = c1(v1θ) + c2(v2θ) = 0,

so c1v1 + c2v2 ∈ Ker(θ); so Ker(θ) is a subspace.
(c) v1θ = v2θ if and only if v2 − v1 ∈ Ker(θ), that is, if and only if Ker(θ) +

v1 = Ker(θ) + v2.

Given a subspace U of a vector space V , we define the factor space V/U
as follows: its elements are the cosets of U in V , and addition and scalar
multiplication are defined in the now-familiar way:

(a) (U + v1) + (U + v2) = U + (v1 + v2);
(b) c(U + v) = U + cv.
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Proposition 4.13 If U is a subspace of V , then the factor space V/U is a
vector space. If V is finite-dimensional, then dim(V/U) = dim(V )− dim(U).

Now the Isomorphism Theorems hold. I state the first one without proof, and
leave the others as exercises.

Theorem 4.14 (First Isomorphism Theorem) Let θ : V →W be a linear
transformation. Then

(a) Im(θ) is a subspace of W ;
(b) Ker(θ) is a subspace of V ;
(c) V/Ker(θ) ∼= Im(θ).

As a corollary, we have:

Proposition 4.15 (Rank and Nullity Theorem) If θ : V →W is a linear
transformation, then dim(Im(θ)) + dim(Ker(θ)) = dim(V ).

We give another proof of this important result.

Proof Choose a basis u1, . . . , ur for Ker(θ), where r = dim(Ker(θ)). This is
a linearly independent set in V , and so can be extended to a basis for V , say
u1, . . . , ur, v1, . . . , vn−r, where n = dim(V ). We claim that v1θ, . . . , vn−rθ is a
basis for Im(θ). From this, it follows that dim(Im(θ)) = n− r, and the result is
proved.

v1θ, . . . , vn−rθ spans Im(θ): choose any vector of Im(θ), say vθ. Write v in
terms of the basis for V , say

v = b1u1 + · · ·+ brur + c1v1 + · · ·+ cn−rvn−r.

Now apply θ. Since uiθ = 0 for all i (as these vectors are in the kernel of θ),
we have

vθ = c1(v1θ) + · · ·+ cn−r(vn−rθ),

as required.
v1θ, . . . , vn−rθ are linearly independent : Suppose that

c1(v1θ) + · · ·+ cn−r(vn−rθ) = (c1v1 + · · ·+ cn−rvn−r)θ = 0.

So c1v1 + · · ·+ cn−rvn−r ∈ Ker(θ). Hence this vector can be written in terms of
the basis for Ker(θ), say

c1v1 + · · ·+ cn−rvn−r = b1u1 + · · ·+ brur.

This implies that

−b1u1 − · · · − brur + c1v1 + · · ·+ cn−rvn−r = 0.

But the us and vs are linearly independent, since they form a basis for V . So
bi = ci = 0 for all i, as required.
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4.8 Matrices. A matrix is simply a rectangular array, whose entries can
be anything at all but are most usually numbers (or, more generally, elements
of a field). Its purpose may be just to record these numbers (which might be
distances between cities, results in a football league, or transition probabilities
in a stochastic process); but by far the most important use of matrices is to
describe linear transformations of a vector space.

Let U and V be finite-dimensional vector spaces. Choose bases u1, . . . , um
for U , and v1, . . . , vn for V . Then U and V can be identified with Fm and Fn

respectively, where, for example, the vector (x1, . . . , xm) ∈ Fm corresponds to
x1u1 + · · · + xmum ∈ U . Now let S : U → V be a linear transformation. For
1 ≤ i ≤ m, uiS is a vector in V , so has the form ai1v1 + · · · + ainvn, where
aij ∈ F . Then we say that the matrix A = (aij), the m × n matrix having
entry aij in row i and column j, represents S relative to the given bases for
U and V .

The choice of bases thus has two effects: the vector spaces are identified
with Fm and Fn, and the linear transformation is represented by a matrix. The
connection goes deeper:

Proposition 4.16 Let S : U → V be a linear transformation. Choose bases in
U and V , and let A be the matrix representing S relative to these bases. Then if U
and V are identified with Fm and Fn, the action of S is given by x �→ xA, where
x ∈ Fm is regarded as a 1×m matrix, and the operation is matrix multiplication.

Proof We calculate. The m-tuple (x1, . . . , xm) corresponds to
∑m

i=1 xiui,
which is mapped to

m∑
i=1

xi(uiS) =
m∑
i=1

n∑
j=1

xiaijvj .

The coefficient of vj is
∑m

i=1 xiaij , which is the jth coordinate in the matrix
product xA.

Composition of linear transformations corresponds to matrix multiplication:

Proposition 4.17 Let S : U → V and T : V → W be linear transformations
of finite-dimensional vector spaces. Choose bases in the three spaces, and let
A and B be the matrices representing S and T respectively. Then the matrix
representing ST is AB.

Proof Let the basis for U be u1, . . . , um, let that for V be v1, . . . , vn, and let
that for W be w1, . . . , wp. Also, let A = (aij) and B = (bjk). These matrices are
m× n and n× p respectively, they can be multiplied.

We have

uiST =
n∑

j=1

aijvjT =
n∑

j=1

p∑
k=1

aijbjkwk.
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So the coefficient of wk is
∑n

j=1 aijbjk, which is precisely the (i, k) entry of AB,
by the definition of matrix multiplication.

These results are not a miracle. Once we agree that the most important
purpose of a matrix is to represent a linear transformation, we naturally want
to define matrix multiplication so as to reflect the composition of linear trans-
formation. So we should instead regard these results as justifying the rather
unintuitive definition of matrix multiplication. Think of the above proposition
in these terms: ‘I want the matrix product to correspond to composition of
transformations. What definition should I use?’

4.9 Change of basis. The matrix representing a linear transformation is
defined only relative to bases for the two vector spaces. Change the bases, and
the matrix will change. We now have to understand how this change works.
Again, matrices are involved.

Let V be a finite-dimensional vector space. Let v1, . . . , vn and v′
1, . . . , v

′
n be

two bases for V . The transition matrix between the two bases is the n × n
matrix Q = (qij), where v′

i =
∑n

j=1 qijvj . (The rule is: express the new basis
vectors in terms of the old ones, and take the matrix of coefficients.)

Suppose that v′′
1 , . . . , v

′′
n is yet another basis, and let Q′ be the transition

matrix from the primed to the doubly primed basis. Then the transition matrix
from the unprimed to the doubly primed basis is Q′Q. (Note the reversal!) For
we have

v′′
i =

n∑
j=1

q′
ijv

′
j =

n∑
j=1

n∑
k=1

q′
ijqjkvk.

The coefficient of vk is thus
∑n

j=1 q
′
ijqjk, which is the (i, k) entry of Q′Q.

The transition matrix from a basis to itself is the identity matrix I. Hence
it follows that, if Q is the transition matrix between two bases of V , then the
transition matrix between the bases in the reverse direction is Q−1. In particular,
we see that a transition matrix is invertible (that is, it has an inverse).

Now we can describe the effect of changes of basis on the matrix of a linear
transformation.

Theorem 4.18 Let S : U → V be a linear transformation. Choose two bases
for U and V ; let the transition matrix between the first and second bases in U
be P , and the transition matrix between the first and second bases in V be Q.
Suppose that the matrix representing S relative to the first bases in U and V is
A, and the matrix representing S relative to the second bases is A′. Then

A′ = PAQ−1.
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Proof Let u1, . . . , um and u′
1, . . . , u

′
m be the two bases for U , and let v1, . . . , vn

and v′
1, . . . , v

′
n be the two bases for V . Then A′ = (a′

il), where

u′
iS =

n∑
j=1

a′
ijv

′
j .

Set Q−1 = R = (rij). Then

u′
i =

m∑
j=1

pijuj , vk =
n∑

k=1

rklv
′
l.

Hence

u′
iS =

m∑
j=1

pijujS =
m∑
j=1

n∑
k=1

pijajkvk =
m∑
j=1

n∑
k=1

n∑
l=1

pijajkrklv
′
l

So a′
il =

∑
j

∑
k pijajkrkl, or A

′ = PAR = PAQ−1.

Now, if S is a linear transformation from U to V , there is a good choice of
basis which greatly simplifies the form of the matrix. This is the choice that we
made in the Rank and Nullity Theorem, with a small twist.

Theorem 4.19 Let S : U → V be a linear transformation. Then there is a
natural number r and a choice of bases in U and V such that the matrix of S
relative to these bases is (

Ir O
O O

)
,

where Ir is an r × r identity matrix and O denotes a zero matrix of the appro-
priate size.

Proof Choose a basis for Ker(S) and extend to a basis for U . Choose the
numbering so that, if u1, . . . , um is the basis for U , then the last n − r basis
vectors form a basis for Ker(S). The Rank and Nullity Theorem tells us that, if
vi = uiS for i = 1, . . . , r, then v1, . . . , vr are linearly independent, and so can be
extended to a basis for V , say v1, . . . , vn.

Now we have

uiS =
{
vi if i ≤ r,
0 otherwise;

so the matrix representing S relative to this basis is as claimed.

The matrices P and Q are not unique here; but, whichever ones we choose,
the number r (called the rank of the matrix A) is the same, since r is the
dimension of the image of the linear transformation represented by A.
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Sometimes, two matrices A and A′ of the same size are called ‘equivalent’
if they represent the same linear transformation relative to possibly different
bases. Another way of saying the same thing is that A and A′ are equivalent if
there exist invertible matrices P and Q such that A′ = PAQ−1. Now ‘equiva-
lence’ is an equivalence relation; and every equivalence class contains a unique

matrix of the form
(
I O
O O

)
. So the number of ‘equivalence’ classes is equal to

the number of possible values of r, which is 1 + min(m,n), since all the values

0, 1, . . . ,min(m,n) can occur. (The matrices
(
I O
O O

)
form a set of canonical

forms for the relation of ‘equivalence’, since each equivalence class contains just
one of them.)

4.10 Elementary operations. Theorem 4.19 describes canonical forms for
the relation of ‘equivalence’, but gives no hint about how to find r, P,Q for
a given A. We now consider this problem, and end up giving a different (and
algorithmic) proof of the theorem.

We define three types of elementary row operations on a matrix A, as
follows:

(Er1) Add a scalar multiple of one row to another.
(Er2) Multiply a row by a non-zero scalar.
(Er3) Interchange two rows.

Note Strictly speaking, the operations of type (Er3) are unnecessary, since
they can be obtained by a combination of the other types. Given two rows (say
the ith and jth rows, Ri and Rj), the sequence of operations:

• add the ith row to the jth;
• subtract the jth row from the ith;
• add the ith row to the jth;
• multiply the ith row by −1;

has the effect

(Ri, Rj) �→ (Ri, Rj +Ri) �→ (−Rj , Rj +Ri) �→ (−Rj , Ri) �→ (Rj , Ri).

However, it is convenient to keep all three types.

For example, consider the matrix
(
2 3
4 5

)
, and perform elementary opera-

tions as follows:

• Subtract twice the first row from the second: we obtain
(
2 3
0 −1

)
.

• Add three times the second row to the first: we obtain
(
2 0
0 −1

)
.
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• Multiply the first row by 1/2: we obtain
(
1 0
0 −1

)
.

• Multiply the second row by −1: we obtain
(
1 0
0 1

)
.

You should compare this procedure with the technique for solving linear
equations. Suppose, for example, that we were given the equations

2x+ 3y = 8,

4x+ 5y = 14.

We subtract twice the first equation from the second to eliminate x, giving
−y = −2. Adding three times this equation to the first gives 2x = 2. Now these
equations imply x = 1, y = 2.

Not every matrix can be transformed to the identity by performing elemen-
tary row operations on it. We now investigate just what can be achieved by these
operations.

Definition A matrix A is said to be in echelon form if the following two
conditions hold:

(Ech1) If a row of A is non-zero, then its first non-zero entry is equal to 1. (This
entry is called the leading 1 of the row.)

(Ech2) The non-zero rows occur before all the zero rows; and, if the ith and jth
rows are both non-zero with i < j, then the leading 1 in the jth row occurs
to the right of that in the ith row.

It is in reduced echelon form if the following condition also holds:
(Ech3) All other entries in the column containing a leading 1 are zero.

The term ‘echelon form’ is meant to suggest the way geese fly: each goose
flies behind and to one side of the one in front (presumably for aerodynamic
reasons).

For example, the matrix 
1 2 0 3 4
0 0 1 5 6
0 0 0 0 0




is in reduced echelon form. If the entry in the first row and third column had
instead been 7, the matrix would be in echelon but not reduced echelon.

Note that it follows from (Ech1) and (Ech2) that, if the matrix A is in echelon
form, then all the entries in the column of a leading 1 which lie below that
leading 1 must be zero; that is, half of the condition (Ech3) holds automatically.

Theorem 4.20 Any matrix can be transformed into reduced echelon form by
a sequence of elementary row operations.
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Proof The algorithm proceeds in two stages. First, we apply a recursive pro-
cedure to bring the matrix into echelon form. Then it is a fairly simple matter
to convert echelon to reduced echelon. In fact, the algorithm is just the familiar
solution method for systems of linear equations, slightly disguised.

Let A be a matrix. We define the following procedure. If A = O, then A is
already in echelon form; so we simply report success. Suppose that A �= O. Let
m be the number of the leftmost column which contains a non-zero entry, and
let k be the number of the topmost row having a non-zero entry in this column.
First, if k > 1, then interchange the first and kth rows; thus we can assume that
k = 1. Next, if a1m �= 1, multiply the first row by (a1m)−1; thus we can assume
that a1m = 1. Now, for every i > 1 for which aim �= 0, subtract aim times the
first row from the ith row. This gives us a matrix in which every entry after the
first in the mth column is zero.

Let B be the submatrix consisting of all rows except the first. Apply the
algorithm recursively to reduce B to echelon form. Since the first row of A
is untouched by these operations, and all elements of A in the other rows
and the first m columns are zero, the same operations can be applied to A
without affecting what we have done already. The resulting matrix is in ech-
elon form, as all the leading 1s in rows after the first occur in columns after
the mth.

The description in terms of linear equations is very natural. If all columns
before the mth are zero, then the first m − 1 variables do not actually appear
in the equations at all (they will end up as free parameters in the solution).
We take the first variable xm which does occur, and divide by its coefficient
in some equation. This effectively uses that equation to express xm in terms of
later variables. Subtracting multiples of this equation from the others amounts
to using the expression for xm to eliminate it from the remaining equations.
The recursive step says ‘solve these equations for xm+1, . . . , xn’. Then use these
solutions to find xm, and we have finished.

In Stage 2, we have A in echelon form, and wish to convert it to reduced
echelon. We work through the non-zero rows from top to bottom. Consider the
ith row, and suppose that its leading 1 appears in the mith column. As we
remarked earlier, all elements of this column below the ith row are already zero.
If an earlier row (say, the jth) has a non-zero element in the mith column, we
remove it by subtracting ajmi

times the ith row from the jth row. Since all
entries in the ith row earlier than the mith column are zero, earlier entries in
the jth column are unaffected, although later ones may change.

This corresponds to massaging the solution we already found for the linear
equations. As we saw, columns containing leading 1s correspond to vari-
ables which can be expressed in terms of later variables; all other variables
appear as independent parameters in the solution. Now converting to reduced
echelon ensures that, in the solution, each variable is expressed in terms of
the free parameters only; no further substitutions are required to read off
the values.
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All this is easier to understand in terms of a worked example. We take
a matrix and apply the algorithm to it, following our progress with the
corresponding set of linear equations.

Let

A =


0 1 2 3 4 5
0 2 4 7 9 12
0 0 0 2 5 4


.

The corresponding system of equations reads

x2 + 2x3 + 3x4 + 4x5 + 5x6 = 0,

2x2 + 4x3 + 7x4 + 9x5 + 12x6 = 0,

2x4 + 5x5 + 4x6 = 0.

(For simplicity, we have taken the right-hand sides of the equations to be zero.)
The first non-zero elements occur in the second column. The first row already

has entry 1 in this column, so we do not need to swap or divide; this entry will
be a leading 1. Subtracting twice the first row from the second, we obtain

0 1 2 3 4 5
0 0 0 1 1 2
0 0 0 2 5 4


.

In terms of equations, we have expressed x2 = −2x3 − 3x4 − 4x5 − 5x6, and
substituted in the second equation to obtain x4 + x5 + 2x6 = 0. The third
equation is unaltered.

Now we consider, recursively, the matrix

B =
(
0 0 0 1 1 2
0 0 0 2 5 4

)
,

and the corresponding equations

x4 + x5 + 2x6 = 0,

2x4 + 5x5 + 4x6 = 0.

Again, no swap or division is required, and subtracting twice the first row from
the second makes the new second row (0 0 0 0 3 0). With the equations, we have
written x4 = −x5 − 2x6 and substituted to obtain 3x5 = 0.

At the last step we have C = (0 0 0 0 3 0). Dividing by 3 gives (0 0 0 0 1 0),
which is in echelon form. We have simply deduced that x5 = 0. So we have solved
the equations in terms of the free parameters x1, x3, x6; our matrix in echelon
form is 

0 1 2 3 4 5
0 0 0 1 1 2
0 0 0 0 1 0


.
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Now, in Stage 2, we remove the 3 above the leading 1 in the second row by
subtracting three times the second row from the first, giving a new first row
(0 1 2 0 1 − 1); and the 1s above the leading 1 in the third row by subtracting
the third row from each of the first and second rows. This gives the matrix

0 1 2 0 0 −1
0 0 0 1 0 2
0 0 0 0 1 0




in reduced echelon. The corresponding solution of the equations is

x2 = −2x3 + x6,

x4 = −2x6,

x5 = 0,

where x1, x3, x6 are arbitrary.
There is another way we can view this theorem. For each elementary row

operation, there is a corresponding elementary matrix obtained by performing
that operation on the identity matrix. For example, if there are two rows, then the
operation ‘add twice the first row to the second’ corresponds to the elementary

matrix
(
1 0
2 1

)
.

Proposition 4.21 (a) Let E be the elementary matrix corresponding to a
given elementary row operation τ . Then the matrix obtained by performing the
operation τ on A is EA.

(b) The result of applying any sequence τ1, τ2, . . . , τr of elementary row
operations to a matrix A is Er · · ·E2E1A.

Proof (a) This is proved by multiplying the matrices to check, for each type
of row operation. For example, if τ is the operation of adding λ times the ith
row to the jth, then E is the matrix with diagonal entries equal to 1, (j, i) entry
λ, and all other entries zero. Then the (k, l) entry of EA is equal to λail + ajl
if k = j, and is akl otherwise; that is, EA is the matrix obtained from A by the
operation τ . The argument in the other cases is similar.

(b) This is now obvious.

Note that any elementary matrix is invertible, since any elementary row
operation can be ‘undone’ by another operation of the same type.

Theorem 4.22 (a) Any invertible matrix is a product of elementary matrices.
(b) For any matrix A, there is an invertible matrix P such that PA is in

reduced echelon form.

Proof Let A be an invertible n× n matrix. By the previous result, there exist
elementary matrices E1, E2, . . . , Er so that B = Er · · ·E1A is in reduced echelon
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form. Now B must be the identity matrix. For B is invertible, so no row of B
can be zero. Let the leading 1 in the ith row of B occur in column mi. Then
1 ≤ m1 < m2 < . . . < mn ≤ n. So we have mi = i for every i. Now, since every
column contains a leading 1, all the elements apart from the leading 1s are zero.
So B has entries 1 on the diagonal and 0 elsewhere; that is, B = I.

Now it follows that A = E−1
1 E−1

2 · · ·E−1
r is a product of elementary matrices.

(b) This follows immediately from part (b) of the Proposition together with
Theorem 4.20.

In order to complete the analysis, we define elementary column opera-
tions in a similar way to the elementary row operations:

(Ec1) Add a scalar multiple of one column to another.
(Ec2) Multiply a column by a non-zero scalar.
(Ec3) Interchange two columns.

Suppose that the matrix A is in reduced echelon form. Let A = (aij) have
its leading 1s in row i and column mi, for 1 ≤ i ≤ r, with m1 < m2 < · · · < mr.
Apart from the leading 1s, any non-zero element aij occurs in a row i ≤ r and a
column j > mi which is not of the form mk for any k. Now column mi has entry
1 in the ith row and zeros everywhere else; so if we subtract aij times column mi

from column j, we replace aij by zero and do not change any other element of
the matrix. Thus, by applying a number of operations of type (Ec1), we produce
a matrix in which all the elements apart from the leading 1s are zero.

Now use operations of type (Ec3) to swap columns 1 and m1, 2 and m2, . . . ,
r and mr (if necessary). The resulting matrix has its leading 1s in position (i, i)

for i = 1, . . . , r. In other words, it has the form
(
I O
O O

)
, where the identity

matrix I has size r × r. This is the canonical form of A under ‘equivalence’.
Furthermore, just as elementary row operations can be performed by multi-

plying on the left by elementary matrices, so elementary column operations can
be performed by multiplying on the right (except that it is necessary to trans-
pose the elementary matrices in order to have the correct effect). As before, a
product of elementary matrices is invertible.

So we have given an algorithmic proof of Theorem 4.19.

Our algorithm for converting a matrix into the canonical form for equivalence
was based on the idea of performing first the row operations required to convert
it to reduced echelon, and then finishing with comparatively simple column oper-
ations. This is efficient for many purposes. For example, to calculate the rank of
a matrix, apply row operations until it is in echelon form (it is not necessary to
continue to reduced echelon), and count the number of non-zero rows.

However, if we do not insist on the strict separation between row and column
operations, it is possible to reduce a matrix more simply, as we now see. The
advantage of this simpler method is that it applies (with suitable modification)
in a more general situation, as we see in the next section.
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Algorithm for canonical form under equivalence We are given an m×n
matrix A.

If A = O, we are finished.
Otherwise, suppose that aij is a non-zero element. By swapping the first row

with the ith (if i > 1) and the first column with the jth (if j > 1), we may
assume that i = j = 1.

Multiplying the first row by a−1
ij , we may assume that a11 = 1.

Now subtracting ai1 times the first row from the ith (for i > 1) and subtract-
ing a1j times the first column from the jth (for j > 1), we may assume that all
entries in the first row and column other than a11 are zero.

Let B be the matrix obtained by deleting the first row and column of A.
Recursively reduce B to canonical form. Then re-insert the first row and column
to find the canonical form of A.

4.11 Determinants. For small matrices, it is very common to define
the determinant by writing down the formula and deducing the interesting
properties. Thus, for example,

if A =
(
a b
c d

)
, then det(A) = ad− bc;

if A =


a b c
d e f
g h i


 , then det(A) = aei+ bfg + cdh− afh− bdi− ceg.

For larger matrices, the formulae become too cumbersome. (We will see that the
formula for the determinant of an n × n matrix has n! terms.) So we give an
axiomatic treatment instead.

We define ‘a’ determinant function to be a function satisfying three axioms.
We prove that there is a unique such function. After this is done, we are justified
in referring to ‘the’ determinant.

Definition A determinant function on n × n matrices over a field F is a
function det :Mn(F ) → F satisfying the following axioms:

(D1) det(A) is a linear function of the ith row of A (keeping the other rows
constant), for each i.

(D2) If two rows of A are equal, then det(A) = 0.
(D3) det(I) = 1, where I is the identity matrix.

Condition (D1) means the following. If A,A′, A′′ are three matrices which
have the same entries in all rows except the ith, and if their ith rows are
respectively Ri, R′

i, R
′′
i , where R′′

i = cRi + c′R′
i for some c, c′ ∈ F , then

det(A′′) = cdet(A) + c′ det(A′). For example,

det
(
x+ 3y 2x+ 4y

5 6

)
= xdet

(
1 2
5 6

)
+ y det

(
3 4
5 6

)
.
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Theorem 4.23 There is a unique determinant on Mn(F ), for any positive
integer n and field F .

Proof The key to this theorem is to study the effects of the three types of
elementary row operation on the determinant.

Let A be any n× n matrix over F .
(ED1): If B is obtained from A by adding c times the ith row to the jth, then

det(B) = det(A). For let C be the matrix obtained from A by deleting the
jth row and substituting the ith. Then det(C) = 0 by (D2), since C has two
equal rows. By (D1),

det(B) = det(A) + cdet(C) = det(A).

(ED2): If B is obtained from A by multiplying the ith row by c, then det(B) =
cdet(A). This is immediate from (D1).

(ED3): If B is obtained from A by interchanging two rows, then det(B) =
−det(A). For we noted, after the three types of elementary operation were
defined, that the operation (Er3) (interchanging two rows) can be realised
by composing three operations of type (Er1) (which do not change the deter-
minant, by point (ED1)) with one of type (Er2), namely multiplying a row
by −1 (which multiplies the determinant by −1, by point (ED2)).
Now there is a sequence of elementary row operations which converts A to

reduced echelon form (say B). Thus we have

Er · · ·E2E1A = B,

where E1, . . . , Er are elementary matrices. Since A is square, either B has a
zero row, or B is the identity I. In the first case, det(B) = 0 by (D1); in the
second, det(B) = 1, by (D3). Moreover, each elementary operation multiplies
det(A) by a factor which depends only on the operation applied. So, as a result,
det(B) = cr · · · c1 det(A), where c1, . . . , cr are the factors associated with the
operations. Thus det(A) is determined uniquely.

We have shown that, if there exists a determinant function, then it is unique.
It remains to show that there really is such a function. This is somewhat
technical, and you may want to skip the next argument at first reading.

Recall that the sign of a permutation g ∈ Sn is equal to (−1)p, where p,
the parity of g, is equal to the parity of n minus the number of cycles of g. We
write it as sign(g). Now consider the following function D(A) of n× n matrices
A = (aij):

D(A) =
∑
g∈Sn

sign(g)a1 1ga2 2g . . . anng,

a sum of n! terms, each a product of n factors aij and a sign. We claim that the
function D satisfies (D1)–(D3).
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(D1): Each term in the sum involves just one entry from the ith row, namely
ai ig, and so is a linear function of the ith row. The same is true of the sum.

(D2): Suppose that the ith and jth rows are equal, that is, aik = ajk for all
k. Let t be the transposition (i j). Then H = {1, t} is a subgroup of Sn,
and so Sn can be partitioned into n!/2 right cosets of H. Consider the two
terms in D(A) corresponding to the elements g, tg of a coset Hg. The factors
taken from rows other than the ith and jth are the same. From the ith and
jth rows, we take ai igaj jg and ai itgaj jtg. But these are equal, since it = j,
jt = i, and aik = ajk. Moreover, g and tg differ by a transposition, so have
opposite signs. Thus, the two terms cancel. Since this holds for each coset,
D(A) = 0.

(D3): For A = I, the only non-zero entries are the diagonal entries aii, and so
the only non-zero term in the expression for D(A) is the one coming from the
identity permutation. Since ai i1 = 1 for all i, and the identity has sign 1, the
value of D(I) is 1.

In order to prove the important properties of determinants, we look once
more at the elementary row operations.

We associated with each such operation τ a factor c(τ), by which the deter-
minant of A is multiplied when τ is applied to A. We also have an elementary
matrix E(τ), obtained by applying τ to the identity matrix.

Proposition 4.24 c(τ) = det(E(τ)).

Proof This is clear from the fact that det(I) = 1.

Theorem 4.25 (a) For any A,B ∈ Mn(F ), we have det(AB) = det(A)
det(B).

(b) det(A) �= 0 if and only if A is invertible.

Proof There is an invertible matrix P (a product of elementary matrices) such
that PA is in reduced echelon form; thus, either PA has a zero row (if A is
not invertible), or PA = I (if A is invertible). Moreover, if P = Er · · ·E1, then
c(Er) · · · c(E1) det(A) = det(PA).

If A is not invertible, then det(PA) = 0, and so det(A) = 0. If A is invert-
ible, then PA = I, so det(PA) = 1. Thus c(Er) · · · c(E1) det(A) = 1, and so
det(A) �= 0. This proves (b).

If A is not invertible, then neither is AB, and so det(AB) = 0 = 0det(B) =
det(A) det(B). Suppose that A is invertible. Then, as above,

c(Er) · · · c(E1) det(A) = 1.

Now the same sequence of elementary operations, applied to AB, yields the
equation Er · · ·E1AB = PAB = IB = B, and so

c(Er) · · · c(E1) det(AB) = det(B).
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It follows from these two equations that

det(A)−1 det(AB) = c(Er) · · · c(E1) det(AB) = det(B),

so that det(AB) = det(A) det(B), proving (a).

Theorem 4.26 det(A) = det(A�), where A� is the transpose of the matrix A.

Proof A typical term in the formula for det(A�) is

sign(g)a1g 1a2g 2 · · · ang n.

Now, if h is the inverse of g, then sign(h) = sign(g) (since g and h have the same
cycle structure); so we can re-order the factors and write this term as

sign(h)a1 1ha2 2h · · · an nh.

As σ ranges over the symmetric group, so does its inverse; so we obtain all the
terms in det(A), and conclude that det(A�) = det(A).

Determinants over rings It is possible to define determinants of matrices
whose entries are taken from any commutative ring. There are several ways to
do this. One of these is an axiomatic approach similar to the one we used before.
It is easier to use what we already know.

If R is an integral domain, then it can be embedded in a field F (its field of
fractions, see Section 2.14). Now any matrix over R can be regarded as a matrix
over F , and its determinant calculated as before. One advantage of this approach
is that our previous results will apply: for example, the axioms (D1)–(D3)
all hold.

If R is an arbitrary commutative ring, we can define the determinant of an
n × n matrix over R using the formula we worked out in Theorem 4.23. This
time, however, we cannot assume that earlier results apply, but must rework the
proofs. As an example, if R is a zero ring, then the determinant of any n × n
matrix over R is zero for n > 1.

One final method can be applied when the ring R contains a subring K which
is a field. We consider the matrix X = (xij) whose entries are independent inde-
terminates overK (that is, elements of the polynomial ring S = K[x11, . . . , xnn]).
Now S is an integral domain, so we can compute the determinant of X in the
field of fractions of S. Now we obtain the determinant of an arbitrary matrix
over R by substituting elements of R for the indeterminates. (This substitution
is a ring homomorphism from S to R.)

Some special determinants The general formula for a determinant is very
cumbersome even for moderate n. It is important that there are various spe-
cial matrices whose determinants can be evaluated more simply by ‘product
formulae’. In particular, it is easy to decide whether or not such determinants
are zero.

We consider two types here: Vandermonde determinants and circulants.
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Definition A Vandermonde determinant is one of the form

V (a1, a2, . . . , an) = det




1 1 . . . 1
a1 a2 . . . an
a2
1 a2

2 . . . a2
n

. . . . . . . . . . . .
an−1
1 an−1

2 . . . an−1
n




for a1, a2, . . . , an ∈ F .
Proposition 4.27 V (a1, a2, . . . , an) =

∏
1≤i<j≤n

(aj − ai).

In particular, the determinant is zero if and only if ai = aj for some i �= j.

Proof First, we evaluate V (x1, x2, . . . , xn), where x1, x2, . . . , xn are indeter-
minates over F (this is calculated in the field of fractions of F [x1, x2, . . . , xn]).
Once the formula of the proposition is established in this situation, it is just a
polynomial identity, and remains true if we substitute ai for xi, i = 1, . . . , n.

Let us then regard V as a polynomial f(xn) in xn with coefficients in the
field of fractions of F [x1, . . . , xn−1]. Under the substitution xn = xi, for i < n,
the matrix has two equal columns, and so its determinant is zero. So (xn − xi)
is a factor of f(xn). By inspection, f has degree n− 1, so x1, . . . , xn−1 are all its
roots. Thus

V (x1, . . . , xn) =W (x1, . . . , xn−1)
∏
i<n

(xn − xi),

where W does not depend on xn. Repeating this procedure for the other
variables, we see that

V (x1, . . . , xn) = Z
∏
i<j

(xj − xi),

where Z does not depend on any of the variables; that is, Z ∈ F .
To evaluate Z, we consider the term in x2x

2
3 · · ·xn−1

n in the expansion of V .
In the formula for the determinant as a sum over permutations, this term comes
only from the identity permutation, and so its coefficient is +1. In the product
form, we must take xn from all n−1 factors containing it, then xn−1 from all n−2
factors which contain it but not xn, and so on. In other words, from each factor,
we take the variable with the greater suffix, which has the positive sign. So the
coefficient is +Z. We conclude that Z = 1, and the proposition is proved.

Definition A circulant C(a0, a1, . . . , an−1) is a determinant of the form

C(a0, a1, . . . , an−1) = det




a0 a1 . . . an−2 an−1
an−1 a0 a1 . . . an−2
. . . . . . . . . . . . . . .
a1 . . . . . . an−1 a0


,

where a0, . . . , an−1 ∈ F .
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Proposition 4.28 Suppose that F contains a primitive nth root of unity, say
ω. Then

C(a0, a1, . . . , an−1) =
n−1∏
i=0

(a0 + a1ω
i + · · ·+ an−1ω

(n−1)i).

Proof Consider the vector vi = (1 ω−i ω−2i . . . ω−(n−1)i). (We number the
coordinates from 0 to n − 1, and where necessary we take them mod n.) Let A
be the n× n matrix whose determinant is C. Also, let

λi = a0 + a1ω
i + · · ·+ an−1ω

i(n−1).

Then

(viA)j = aj + aj−1ω
−i + · · ·+ aj−n+1ω

−i(n−1).

But this is equal to λiω−ij , in other words, λi times the jth entry of vi. Thus
viA = λivi.

The vectors v0, v1, . . . , vn−1 form a basis for Fn. (There are n of them, and
they are linearly independent, since the determinant of the matrix with columns
v�
0 , v

�
1 , . . . , v

�
n−1 is the Vandermonde determinant V (1, ω−1, . . . , ω−(n−1)); and

the elements 1, ω−1, . . . , ω−(n−1) are all distinct, since they are all the powers of a
primitive nth root of unity.) So, if P is the matrix whose rows are v1, v1, . . . , vn−1,
then PAP−1 is the matrix representing the same linear transformation as A
relative to the new basis. This matrix is diagonal, and has as its diagonal entries
λ0, λ1, . . . , λn−1. Hence

det(A) = det(PAP−1) =
n−1∏
i=0

λi,

as required.

4.12 Matrices over Euclidean domains. We are going to prove a ‘canoni-
cal form theorem’ for matrices over a Euclidean domain. (In fact, the same result
holds more generally, over a principal ideal domain; but the proof needs an extra
trick, and is not given here.) This theorem appears to be of no particular use.
But we will see that, by applying it to the two most important examples of
Euclidean domains (the ring of integers, and the polynomial ring over a field),
we obtain two unexpected bonuses: a structure theorem for finitely generated
abelian groups, and a canonical form for the matrix of a linear transformation
from a vector space to itself.

We start with a quick revision course on Euclidean domains. See Section 2.13
for more details. A Euclidean domain is an integral domain R (a commutative
ring with identity and no divisors of zero) having a Euclidean function d from
the set of non-zero elements of R to the set of non-negative integers, satisfying
the following conditions:
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(a) if a and b are non-zero, then d(ab) ≥ d(a);
(b) if b �= 0 and a is arbitrary, then there exist q, r ∈ R with a = bq + r and

either r = 0 or d(r) < d(b).

A Euclidean domain is a principal ideal domain (each ideal is generated
by a single element), and hence a unique factorisation domain. Moreover, the
Euclidean Algorithm finds, for any two elements a and b, the greatest common
divisor (g.c.d.) d of a and b, and elements x and y such that d = xa+ yb.

Let R be any commutative ring with identity. We define elementary row
operations on matrices over R almost exactly as we did over a field. The only
difference is that, in order to ensure that any elementary row operation can be
undone, we restrict operation (Er2) by allowing only multiplication by units. In
detail, the operations are:

(Er1) Add any multiple of one row to another.
(Er2) Multiply a row by a unit of R.
(Er3) Interchange two rows.

We also define the analogous elementary column operations (Ec1), (Ec2),
and (Ec3).

Theorem 4.29 Let A be an m× n matrix over a Euclidean domain R. Then
A can be transformed, by means of elementary row and column operations, to a

matrix of the form
(
D O
O O

)
, where D is an r × r matrix with diagonal entries

d1, d2, . . . , dr and zeros elsewhere, and O is a zero matrix of any appropriate
size. Moreover, di �= 0 for 1 ≤ i ≤ r, and di divides di+1 for 1 ≤ i ≤ r − 1. The
number r is uniquely determined by A, and the elements d1, . . . , dr are unique
up to associates.

This theorem generalises Theorem 4.19, since if R is a field then any non-zero
element of R is associate to 1.

The ring elements d1, d2, . . . , dr are called the invariant factors of the

matrix A. The matrix
(
D O
O O

)
is called the Smith normal form of A.

To prove that the required form exists, it is enough to prove the following:

By performing elementary row and column operations, we can
convert A into a matrix B such that the element d1 = b11 divides
every element in B and the remaining elements in the first row
and column are all zero.

For then B has the form

B =
(
d1 O
O C

)
,

where O is a 1× (n− 1) row or a (m− 1)× 1 column of zeros, and every element
of C is divisible by d1. By induction, C can be converted to Smith normal form
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by elementary row operations. Suppose that its invariant factors are d2, . . . , dr,
where di divides di+1 for 2 ≤ i ≤ r − 1. The elementary operations applied to
C do not change the property that all of its elements are divisible by d1; so d1
divides d2, as required.

We prove that, if not every element of A is divisible by a11, then we can apply
elementary operations to find a matrix A′ with d(a′

11) < d(a11).

Case 1 Suppose that some element of the first row is not divisible by a11, say
a1j , for j > 1. By the Euclidean property, we can write a1j = a11q + r, where
r �= 0 (since a11 does not divide a1j) and hence d(r) < d(a11). Now subtract q
times the first column from the jth column. The new entry in the jth column is
a1j − qa11 = r. Now interchange the first and jth columns, to obtain a matrix
with (1, 1) entry r.

Case 2 If some element of the first column is not divisible by a11, the argument
is similar, but using row operations instead of column operations.

Case 3 Finally, suppose that a11 divides every element in the first row and
column, but does not divide the entry aij . Suppose that ai1 = xa11. Subtracting
x− 1 times the first row from the ith, we obtain a matrix with (i, 1) entry equal
to a11. The new (i, j) entry is aij − (x − 1)a1j = bij , say. Since a11 divides a1j
but not aij , it does not divide bij . Write bij = qa11 + r, where d(r) < d(a11).
Now, subtracting q times the first column from the jth, we obtain a matrix with
(i, j) entry bij − qa11 = r. Finally, a row interchange and a column interchange
bring r to the (1, 1) position.

Now the value of d(a11) can only decrease a finite number of times, since it
is a non-negative integer. So, after a finite number of steps, we reach a matrix
all of whose elements are divisible by a11.

Finally, if a1j = qja11 for j > 1, then subtracting qj times the first col-
umn from the jth produces a matrix with (1, j) entry zero. Similarly, by row
operations, we may assume that all entries ai1 are zero for i > 1.

This completes the existence proof. What about the uniqueness of the
elements di (up to associates)?

In the first place, d1 is determined: it is the greatest common divisor of all
the elements in A. For it is easily checked that the elementary operations do
not alter the greatest common divisor of all the entries up to associates (that
is, at worst the g.c.d. is multiplied by a unit). For the final matrix, the greatest
common divisor is d1, since this is an entry and it divides all the others.

The other elementary divisors are determined by a somewhat more compli-
cated rule:

For 1 ≤ i ≤ r, the greatest common divisor of all the determinants
of i × i submatrices of A is equal to d1d2 · · · di; for i > r, this
greatest common divisor is zero.
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The proof is similar: one shows that the greatest common divisor of the i × i
submatrices is multiplied by a unit (hence not changed, up to associates) by
elementary operations, while the greatest common divisor for a matrix in the
Smith normal form is d1d2 · · · di if i ≤ r, or 0 if i > r.

So the theorem is proved.

Example Consider the matrix
(
4 6
8 10

)
over the integers. The greatest com-

mon divisor of the entries is 2, while the determinant is −8; so we expect the

Smith normal form to be
(
2 0
0 4

)
. Let us see what operations achieve this result.

First, 4 does not divide 6; indeed, 6 = 4+2. So subtract the first column from

the second, to obtain
(
4 2
8 2

)
. Now interchange the first and second columns,

obtaining
(
2 4
2 8

)
.

Now 2 does divide all the other entries, so we subtract twice the first column

from the second, giving
(
2 0
2 4

)
, and then subtract the first row from the second,

giving
(
2 0
0 4

)
.

The final result is in Smith normal form.

Exercise 4.7 (a) Prove the First Isomorphism Theorem for vector spaces.
(b) Formulate and prove the Second and Third Isomorphism Theorems.

Exercise 4.8 Let A = (aij) be an n × n matrix over the field F . Define the (i, j)
cofactor Aij of A to be (−1)i+j times the determinant of the matrix obtained from A
by deleting the ith row and jth column.

(a) Prove that
∑n

j=1 aijAij = det(A). [Hint : Show that the left-hand side satisfies
the axioms for a determinant.]

(b) Prove that, for i �= k, ∑n
j=1 aijAkj = 0. [Hint : By (a), this is the determinant

of a matrix with two equal rows.]
(c) Define the adjoint of A to be the matrix Adj(A) whose (i, j) entry is Aji. Prove

that A · Adj(A) = det(A)I.

Exercise 4.9 Put the integer matrix
6 10 0
6 0 15
0 10 15




into Smith normal form. Check your result by calculating determinants.

Exercise 4.10 Show that the reduced echelon form of a matrix over a field is unique.



5 Modules

A module bears the same relationship to a vector space as a ring does to a field.
As this suggests, modules exist in much greater profusion than do vector spaces.
We know everything about a vector space over a given field F once we know its
dimension; but to specify a module, more detailed information is required. One
of the themes of modern algebra is that the modules for a given ring capture
a good deal of the structure of the ring. Our main goal in this chapter is the
description of modules over Euclidean domains. The structure theorem tells us
about finitely generated abelian groups, and also gives us canonical forms for
matrices over fields.

Introduction
5.1 Definition of modules. A module is a ‘vector space over a ring’. That
is, it satisfies almost exactly the same axioms as a vector space, with scalars
taken from a ring rather than a field. There are two small differences, resulting
from the extra generality. First, since a ring does not necessarily have an identity
element, we cannot impose the axiom involving the identity. Second, since ring
multiplication may not be commutative, there are two forms of the axiom involv-
ing multiplication of scalars, leading to two different kinds of module. There is
also a notational difference: sometimes we choose to write scalars on the right,
instead of on the left as we did for vector spaces.

Formally, then, let R be a ring. We define a right R-module to be a set M
with a binary operation of addition (written +) and, for each r ∈ R, a unary
operation of scalar multiplication by r (where we write the result of multiplying
m by r as mr), satisfying the following axioms:

(MA0) For all m1,m2 ∈M , we have m1 +m2 ∈M .
(MA1) For all m1,m2,m3 ∈M , we have m1 + (m2 +m3) = (m1 +m2) +m3.
(MA2) There exists 0 ∈M such that m+ 0 = 0 +m = m for all m ∈M .
(MA3) For all m ∈ M , there exists −m ∈ M such that m + (−m) =
(−m) +m = 0.

(MA4) For all m1,m2 ∈M , m1 +m2 = m2 +m1.
(MM0) For all r ∈ R and m ∈M , we have mr ∈M .
(MM1) For all r ∈ R, m1,m2 ∈M , we have (m1 +m2)r = m1r +m2r.
(MM2) For all r1, r2 ∈ R, m ∈M , we have m(r1 + r2) = mr1 +mr2.
(MM3) For all r1, r2 ∈ R, m ∈M , we have m(r1r2) = (mr1)r2.
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If the ring R has an identity 1, then we call M a unital module if it also
satisfies

(MM4) For all m ∈M we have m1 = m.

Axiom (MM3) says that scalar multiplication by r1r2 is the same as multipli-
cation by first r1 and then r2. We could imagine structures in which this works
the other way around, that is, first r2, then r1. These are called left R-modules.
It would be possible simply to write an alternative version of (MM3) for left mod-
ules. But it is more natural to change the notation, so that scalar multiplication
by r takes m to rm (with the scalar on the left). Formally, then, we define a
left R-module to be a set M with a binary operation of addition and a unary
operation of scalar multiplication by r for each r ∈ R (written rm) such that
axioms (MA0)–(MA4) above hold, and also

(MM0′) For all r ∈ R and m ∈M , we have rm ∈M .
(MM1′) For all r ∈ R, m1,m2 ∈M , we have r(m1 +m2) = rm1 + rm2.
(MM2′) For all r1, r2 ∈ R, m ∈M , we have (r1 + r2)m = r1m+ r2m.
(MM3′) For all r1, r2 ∈ R, m ∈M , we have (r1r2)m = r1(r2m).

Note that (MM0′)–(MM2′) are identical to (MM0)–(MM2), but written in
different notation; only (MM3′) is really different.

Again, if R has an identity 1, the left R-module is called unital if 1m = m
for all m ∈M .

Just as for a vector space, we can express the axioms more briefly in abstract
language. Let M be a right R-module. Axioms (MA0)–(MA4) assert that M ,
with the operation of addition, is an abelian group. The map θr :M →M given
by mθr = mr is an endomorphism of the abelian group M (a homomorphism
from M to itself). The set of all endomorphisms forms a ring End(M), and the
map φ : R → End(M) given by rφ = θr is a homomorphism. So we could
say: A right R-module is an abelian group M with a homomorphism from R
to End(M). Moreover, it is a unital module if and only if the homomorphism φ
maps the identity of R to the identity of End(M).

For left modules, there is a complication. Our definition of the endomorphism
ring of an abelian group takes multiplication of endomorphisms to be composition
in the usual order. It is necessary to reverse this order. Accordingly, given any
ring R, we define the opposite ring R◦ as follows: the elements of R◦ are the
elements of R and addition is the same as in R; but multiplication (which we
will denote by ◦) is given by the rule

r1 ◦ r2 = r2r1.

It can be shown that R◦ is a ring, and shares most of the properties of R. Now
we can say: A left R-module consists of an abelian group M together with a
homomorphism ψ from R◦ to End(M); it is unital if and only if ψ maps the
identity of R◦ to the identity endomorphism. In other words, a left R-module is
a right R◦-module.
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Of course, all this confusing complication about left and right modules is
unnecessary if the ring R is commutative. In this case, we simply speak of
R-modules, without specifying left or right. This explains why we did not meet
the left–right distinction when we were studying vector spaces.

5.2 Examples of modules.

Example 1 If F is a field, a vector space over F is an F -module (left or right),
and conversely. Modules generalise vector spaces.

Example 2 Let R be any ring. Then we can make R into either a left or a right
R-module, as follows. In either case, we take the module addition to be the ring
addition. Also, in either case, we take the scalar multiplication to be the ring
multiplication, but interpreted differently: for a right module, r1r2 is the result
of multiplying the module element r1 by the ring element r2; for a left module,
r2 is the module element, and r1 the scalar.

If R has an identity, then these modules are automatically unital.
We call these modules the free right and left R-modules of rank 1.

Example 3 This generalises example 2. Let n be a positive integer, and let Rn

denote the set of n-tuples of elements of R. We make Rn into a right R-module
by defining

(x1, x2, . . . , xn) + (y1, y2, . . . , yn) = (x1 + y1, x2 + y2, . . . , xn + yn),

(x1, x2, . . . , xn)r = (x1r, x2r, . . . , xnr),

or a left module by defining

(x1, x2, . . . , xn) + (y1, y2, . . . , yn) = (x1 + y1, x2 + y2, . . . , xn + yn),

r(x1, x2, . . . , xn) = (rx1, rx2, . . . , rxn).

These are the free right and left R-modules of rank n.
Theorem 4.10 shows that any finite-dimensional vector space is a free module

of rank n for a unique value of n. For general rings, things are much more
complicated: most modules are not free, and free modules of different ranks may
be isomorphic.

Example 4 Any module is an abelian group, if we forget the scalar multipli-
cation and consider just the addition. Can we go back from abelian groups to
modules? It turns out that any abelian group can be made into a Z-module in a
natural way.

Let M be an abelian group (whose operation is written as +). Now define a
scalar multiplication by Z as follows:

if n > 0 and x ∈M , then nx = x+ x+ · · ·+ x (n terms);
0x = 0, where the second zero is the identity element of M ;
if n = −m where m > 0, then nx = −(mx).
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So we have the general principle: Abelian groups are the same thing as
Z-modules.

Example 5 Let M = Fn, where F is a field. Then M is a vector space over
F , and hence a (left) F -module. But it is also a right Mn(F )-module, where
Mn(F ) is the ring of n× n matrices over F . (‘Scalar multiplication’ of a vector
by a matrix is given by the usual formula for matrix multiplication, regarding
the vector as a 1× n matrix.)

A structure M like this, which is a left module for R and a right module for
S and satisfies the additional axiom
(MB) For all r ∈ R, s ∈ S and m ∈M , we have (rm)s = r(ms),

is called an R–S bimodule.

Example 6 This is an important example for applications.
Let V be a vector space over F , and let S be a linear transformation from V

to V . For any polynomial f ∈ F [x], we can define a linear transformation f(S)
on V as follows: if

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0,

then we put

f(S) = anS
n + an−1S

n−1 + · · ·+ a1S + a0I,

where Sn is the n-fold composition of S with itself (vSn = (· · · (vS)S · · · )S,
where S occurs n times), and I is the identity transformation.

Now we make V into a F [x]-module by the rule

vf(x) = vf(S).

We will see that the structure of this module reflects the properties of S in a
very precise way.

Example 7 Here is a further generalisation of the free R-modules of rank 1
from Example 2. If I is an ideal in the ring R, then both I and R/I are (right or
left) R-modules. For I, we take the addition and multiplication of R, but only
add two elements of I, or multiply an element of I by an element of R. (Both of
these operations yield results in I, by the definition of an ideal.)

For R/I, the construction is similar. We use the addition defined in the
factor ring, and scalar multiplication (I + x)r = I + xr (for a right module) or
r(I+x) = I+rx (for a left module). It is necessary to check that these operations
are well defined, as well as proving the module axioms.

5.3 Submodules and homomorphisms. We formulate the notions of sub-
module and module homomorphism for right modules. The definitions for left
modules are very similar.
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Definition Let M be a right R-module. A submodule N of M is a subset
of M which is an R-module (with respect to the addition and scalar multipli-
cation of M).

As usual, in order to test whether N is a submodule, it suffices to check the
closure laws, since all other laws hold automatically. Accordingly we have

Theorem 5.1 (Submodule Test) The non-empty subset N of M is a sub-
module if and only if it is closed under subtraction and scalar multiplication.

Proof The closure conditions are clearly necessary. Suppose that they hold.
Closure under subtraction ensures that N is a subgroup of the abelian group
(M,+). So the result follows.

Let M and N be right R-modules. A (R-module) homomorphism from M
to N is a map θ :M → N which preserves addition and scalar multiplication:

(m1 +m2)θ = m1θ +m2θ,

(mr)θ = (mθ)r,

for all m,m1,m2 ∈ M and r ∈ R. (The second equation indicates that the
homomorphism does not affect the scalars in R.)

An isomorphism is a homomorphism which is one-to-one and onto.
The image Im(θ) of a homomorphism θ is {mθ : m ∈ M}, and the kernel

Ker(θ) is {m ∈M : mθ = 0}.
If K is a submodule of M , then we can define a factor module M/K,

whose elements are the cosets of K inM . (These cosets are defined because K is
a subgroup of the abelian group (M,+). For the same reason, addition on M/K
is well defined.) Now scalar multiplication on M/K is given by the rule

(K +m)r = K +mr.

As usual, we can check that this is well defined, and that M/K is an R-module.

Theorem 5.2 Let θ :M → N be an R-module homomorphism. Then the image
and kernel of θ are submodules of N and M respectively; and M/Ker(θ) ∼= Im(θ)
(as R-modules).

The proof is an exercise.

5.4 Annihilators, cyclic modules, direct sums. This section develops a
few tools of module theory, which will be applied in the next. We assume from
now on that our rings are commutative and have identities, and that our modules
(for which the left–right distinction is not necessary) are unital.

Definition Let R be a commutative ring with identity, and M a unital
R-module. The annihilator of M , written Ann(M), is the set

{r ∈ R : mr = 0 for all m ∈M}.
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The submodule of M generated by m1, . . . ,mn is the set

〈m1, . . . ,mr〉 = {m1r1 + · · ·+mnrn : r1, . . . , rn ∈ R}.

We say that M is finitely generated if there is a finite set of elements of
M which generates M . We say that M is cyclic if it is generated by just one
element.

Remark In the case where the module M is equal to R (as in Example 1),
the submodule generated by a set of elements is exactly the same as the ideal
generated by these elements; this is why we use the same notation.

Here is a general result about these concepts.

Theorem 5.3 Let M be a unital module over a commutative ring R with
identity.

(a) Ann(M) is an ideal of R.
(b) For any m1, . . . ,mn ∈ M , the set 〈m1, . . . ,mn〉 is a submodule of M , and

is the smallest submodule containing m1, . . . ,mn.
(c) If M is cyclic, then M ∼= R/Ann(M) (as R-module).

Proof (a) We apply the Ideal Test.
If r1, r2 ∈ Ann(M), then mr1 = mr2 = 0, so m(r1 + r2) = mr1 +mr2 = 0, and
r1 + r2 ∈ Ann(M).

If r ∈ Ann(M) and s ∈ R, then mr = 0, so m(rs) = (mr)s = 0, so that
rs ∈ Ann(M).

Thus Ann(M) is an ideal of R.
(b) We apply the Submodule Test:

If m1r1 + · · ·+mnrn,m1s1 + · · ·+mnsn ∈ 〈m1, . . . ,mn〉, then the sum of these
elements is

m1r1 + · · ·+mnrn +m1s1 + · · ·+mnsn

= m1(r1 + s1) + · · ·+mn(rn + sn) ∈ 〈m1, . . . ,mn〉.

If m1r1 + · · ·+mnrn ∈ 〈m1, . . . ,mn〉 and s ∈ R, then

(m1r1 + · · ·+mnrn)s = m1(r1s) + · · ·+mn(rns) ∈ 〈m1, . . . ,mn〉.

So 〈m1, . . . ,mn〉 is a submodule.
Moreover, this submodule contains

mi = m10 + · · ·+mi−10 +mi1 +mi+10 + · · ·+mn0

for i = 1, . . . , n. (Here we used the unital property of M .) Any submodule N of
M which contains m1, . . . ,mn contains all multiples miri, and hence all linear
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combinations m1r1 + · · ·+mnrn, of these elements. So 〈m1, . . . ,mn〉, as defined,
is the smallest submodule containing these elements.

(c) Let M = 〈m〉 be a cyclic R-module with annihilator I. We define a map
θ :M → R/I by the rule

(mr)θ = I + r.

This will be the required isomorphism. First, we show that it is well defined and
one-to-one. Note that r ∈ I if and only if mr = 0. For, if r ∈ I, then mr = 0,
since I is the annihilator of M and m ∈ M . Conversely, suppose that mr = 0.
Take any element of M ; by assumption, it has the form mx for some x ∈ R.
Then (mx)r = m(xr) = m(rx) = (mr)x = 0. So r ∈ Ann(M) = I.

Now

mr1 = mr2 ⇔ m(r1 − r2) = 0

⇔ r1 − r2 ∈ I
⇔ I + r1 = I + r2,

so θ is well defined and one-to-one.
Clearly, θ is onto. Finally,

(mr1)θ + (mr2)θ = (I + r1) + (I + r2) = I + (r1 + r2) = (m(r1 + r2))θ,

and

((mr)θ)s = (I + r)s = I + rs = (mrs)θ,

so θ is a module isomorphism.

Remark Conversely, if I is an ideal of R, then R/I is a cyclic R-module,
generated by the coset I+1: for any element of R/I has the form I+r = (I+1)r
for some r ∈ R.
Definition Let M = 〈m1, . . . ,mn〉 be a finitely generated R-module. We say
that M is freely generated by m1, . . . ,mn if

m1r1 + · · ·+mnrn = 0 implies r1 = . . . = rn = 0.

M is free if it is freely generated by some finite set.

Theorem 5.4 Let M be a R-module, where R is a commutative ring with
identity.

(a) M is freely generated by m1, . . . ,mn if and only if every element of M can
be uniquely expressed in the form m1r1 + · · ·+mnrn, for r1, . . . , rn ∈ R.

(b) M is free if and only if it is isomorphic to Rn for some natural number n.
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Proof (a) The condition that every element of M has an expression of this
form is just the statement that M = 〈m1, . . . ,mn〉. The uniqueness of the rep-
resentation is equivalent to the definition of freeness, since m1r1 + · · ·+mnrn =
m1s1 + · · ·+mnsn if and only if m1(r1 − s1) + · · ·+mn(rn − sn) = 0.

(b) Suppose thatM is freely generated by m1, . . . ,mn, so that every element
of M can be written uniquely in the form m1r1 + · · · + mnrn. Then the map
θ :M → Rn given by

(m1r1 + · · ·+mnrn)θ = (r1, r2, . . . , rn)

is easily checked to be an R-module isomorphism.
Conversely, Rn is freely generated by e1, . . . , en, where ei is the n-tuple with

1 in the ith position and 0 in all other positions, since

(r1, . . . , rn) = e1r1 + · · ·+ enrn.

Definition Let M and N be R-modules. The direct sum M ⊕N of M and
N is the set of all ordered pairs (m,n), with m ∈ M and n ∈ N , with addition
given by

(m1, n1) + (m2, n2) = (m1 +m2, n1 + n2),

and scalar multiplication by

(m,n)r = (mr, nr).

Proposition 5.5 If M and N are R-modules, then M ⊕N is an R-module.

The proof is an exercise.

The direct sum of modules can be extended to the sum of any finite number
of terms, in an obvious way. The next result enables us to recognise a direct sum.

Theorem 5.6 Let M be an R-module, where R is a commutative ring with
identity. Suppose that M contains submodules M1,M2, . . . ,Mn such that any
element of M can be uniquely written as m1 +m2 + · · ·+mn, with mi ∈Mi for
i = 1, . . . , n. Then M is isomorphic to the direct sum of M1, . . . ,Mn.

Proof We define a map θ :M1 ⊕ · · · ⊕Mn →M by the rule

(m1,m2, . . . ,mn)θ = m1 +m2 + · · ·+mn.

The hypothesis of the theorem guarantees that this mapping is one-to-one and
onto, and it is easily checked that it is a homomorphism.

Remark The free module Rn is isomorphic to the direct sum of n copies of
the free module R of rank 1.
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Exercise 5.1 Show that the set of all m × n matrices over F is a Mm(F )–Mn(F )
bimodule (with the usual matrix addition and multiplication).

Exercise 5.2 Let M be an R-module, and let I = Ann(M). Show that M can be
regarded as an R/I-module, where scalar multiplication is given by the rule

m(I + r) = mr.

Exercise 5.3 Let R be a commutative ring with identity.

(a) Prove that, if M is an R-module generated by a single element, then M ∼=
R/Ann(M) (where R/Ann(M) is an R-module as in Example 7).

(b) Conversely, show that, if I is an ideal of R, then R/I (as R-module) is generated
by a single element.

(c) Show that, if I and J are ideals of R, then there is an R-module homomorphism
from R/I onto R/J if and only if I ⊆ J .
Remark Here we see the ideal structure of R reflected in the 1-generator
R-modules and their epimorphisms.

Modules over a Euclidean domain
5.5 The structure theorem. In general, modules can exist in enormous
profusion. In order to understand a ring, we should study its modules. In this
section, we examine finitely generated modules over Euclidean rings, and prove
a structure theorem.

Theorem 5.7 A finitely generated module over a Euclidean domain is isomor-
phic to a direct sum of cyclic modules.

This gives a very precise description of the structure of such modules. The
direct sum is an explicit construction. Any cyclic R-module is isomorphic to R/I
for some ideal I. If R is a Euclidean domain, then all its ideals are principal, so
I = (r) for some r ∈ R, unique up to associate.

The theorem also has important applications, as we will see.
The theorem will be deduced from another, seemingly unrelated theorem,

which gives more detailed information.

Theorem 5.8 Let R be a Euclidean domain, M a free module of rank n, and
N a submodule of M . Then there exist elements m1, . . . ,mn ∈ M , a natural
number r ≤ n, and elements d1, . . . , dr ∈ R such that

(a) M is freely generated by m1, . . . ,mn;
(b) N is freely generated by m1d1, . . . ,mrdr;
(c) di divides di+1 for i = 1, . . . , r − 1.

Proof We will need to show that N is finitely generated. Then we will find that
the rest of the work has already been done. So we begin with the assumption
that N is finitely generated, and return later to justify this assumption.
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We identify M with Rn, where n is its rank. Let x1, . . . , xm be generators
of N . Each of these generators is an element of Rn, so we can summarise this
information by taking them as the rows of a matrix A, of size m × n, with
elements in R. This matrix determines N ; indeed, in the terminology of vector
spaces, N is the ‘row space’ of A.

According to the Smith normal form Theorem 4.29, we can bring A to the

form
(
D O
O O

)
, where D is a diagonal matrix of size r×r whose diagonal entries

satisfy di | di+1 for i = 1, . . . , r, and O denotes a zero matrix of the appropriate
size. What would the submodule corresponding to a matrix of this form look
like? If ei denotes the element of Rn with 1 in the ith position and zeros else-
where, then M is the free module generated by e1, . . . , en, and N a submodule
freely generated by d1e1, . . . , drer. In other words, the conclusions of the theorem
would hold.

So we have to examine how the effect of elementary row and column
operations on the matrix A translates into the module M and submodule N .

• Elementary row operations merely change the generating set for N . For
suppose the rows of A are x1, . . . , xm as before. For each type of row oper-
ation, the submodule closure conditions imply that the new rows (such as
xi + xjc or xic with c a unit) belong to N . So the submodule N ′ generated
by the new rows is contained in N . However, in each case, we can undo the
effect of the operation by another operation of the same kind; so a similar
argument shows that N is contained in N ′, whence N = N ′.

• Elementary column operations change the free basis for M . We will prove
this for operations of type (Ec1); the argument for the other types is similar
but easier. So, as above, let e1, . . . , en be the free basis forM . Consider what
happens when we replace ej by ej − eic, for some c ∈ R. It is still true that
any element of M can be expressed uniquely in terms of these elements: for
example,

e1r1 + · · ·+ enrn = e1r1 + · · ·+ ei(ri + rjc)

+ · · ·+ (ej − eic)rj + · · ·+ enrn.

So we do have again a basis forM . In terms of coordinates, we have added c
times the jth coordinate to the ith. If this process is done for every generator
of N (every row of A), the result is to apply to A the column operation
consisting of adding c times the jth column to the ith. In other words, the
rows of the transformed matrix are the generators of N , expressed with
respect to a different basis for M .

The conclusion is that elementary operations do not change the moduleM or
the submodule N , but merely our representation of them. Hence we may indeed
assume that N is the row space of a matrix in the Smith normal form, and the
theorem is proved.
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It remains to show that N is indeed finitely generated, so that it can be
represented as the row space of a matrix. The proof is by induction on n, there
being nothing to prove when n = 0.

Let J be the set of all elements of R which occur as first component of an
element of N :

J = {r1 ∈ R : ∃r2, . . . , rn ∈ R with (r1, . . . , rn) ∈ N}.
Since N is a submodule, it is closed under subtraction and multiplication by
elements of R. It follows that the same is true for J , which is thus an ideal of R.
Since R is a principal ideal domain, we have J = (a) for some a ∈ R.

Choose b2, . . . , bn ∈ R such that (a, b2, . . . , bn) ∈ R. Also, let

N1 = {(r1, . . . , rn) ∈ N : r1 = 0}.
Now take any element (r1, . . . , rn) ∈ N . We have r1 = as for some s ∈ R. Then

(r1, . . . , rn)− (a, b2, . . . , bn)s ∈ N1.

Hence N is generated by (a, b2, . . . , bn) together with a generating set for N1.
But N1 is a submodule of Rn−1, hence finitely generated (by induction); and so
N is finitely generated.

This concludes the proof of the theorem.
Let M be an arbitrary finitely generated R-module. Suppose that M =

(m1, . . . ,mn). Define a map θ : Rn →M by the rule

(r1, r2, . . . , rn)θ = m1r1 +m2r2 + · · ·+mnrn.

It is straightforward to show that θ is an R-module homomorphism, and that
Im(θ) =M . Let N = Ker(θ).

By the submodule theorem, we can choose a basis e1, e2, . . . , en for Rn such
that, for some d1, . . . , dr ∈ R,

• e1d1, . . . , erdr is a basis for N ;
• di divides di+1 for i = 1, . . . , r − 1.

We claim that M is isomorphic to the direct sum of the cyclic submodules
(e1θ), . . . , (enθ), and that the annihilator of (eiθ) is the ideal (di) of R (so that
(eiθ) ∼= R/(di).

Using the characterisation of direct sums in Theorem 5.6, we have to show
that every element of M is uniquely expressible in the form x1 + x2 + · · ·+ xn,
with xi ∈ (eiθ) for all i. That any element can be so represented follows from
the fact that e1, . . . , en is a basis for Rn. Suppose that

x1 + · · ·+ xn = y1 + · · ·+ yn,

with xi, yi ∈ (eiθ). Let xi = eiθri, and yi = eiθsi. Then
∑
ei(ri−si) ∈ Ker(θ) =

N . By the structure of N , we conclude that di divides (ri − si) for all i, so that
ei(ri − si) ∈ Ker(θ), and so eiθri = eiθsi for all i, as required.
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We have done better than originally promised. What we have actually proved
is the following theorem:

Theorem 5.9 Let M be a finitely generated module over a Euclidean domain.
Then there exist elements d1, . . . , dn ∈ R such that

(a) none of the di are units;
(b) di divides di+1 for i = 1, . . . , r − 1;
(c) di = 0 for i > r;
(d) M ∼= R/(d1)⊕ · · · ⊕R/(dn).

Note If di is a unit, then (di) = R, and so R/(di) = {0}. Taking the direct
sum of a module with {0} does not change the module. So we can delete all the
units from among the di. (By the divisibility condition, they will occur only at
the start.)

Note also that R/{0} = R, so the number of direct summands isomorphic to
R is n− r.

Definition The number of indices i such that di = 0 is called the torsion-
free rank of the module M , and the non-zero ring elements d1, . . . , dr are the
invariant factors. They form a complete set of invariants for the module. Thus,
two finitely generated R-modules are isomorphic if and only if they have the same
torsion-free rank and the same invariant factors (up to associates). The meaning
of the term ‘invariant factors’ should be fairly clear; that of ‘torsion-free rank’
somewhat more mysterious. Some light will be shed on this strange terminology
in the section on abelian groups.

5.6 The primary decomposition. A module can often be written in many
different ways as a direct sum of submodules. In this section, we discuss a par-
ticular decomposition for torsion modules over a principal ideal domain, which
will lead to a simpler canonical form for matrices.

Proposition 5.10 Let R be a principal ideal domain. Let M be an R-module
for which Ann(M) = 〈r〉 is non-zero. Suppose that r = r1r2, where r1 and r2
are coprime. Then M =M1 ⊕M2, where M1 and M2 are submodules of M with
Ann(M1) = 〈r1〉 and Ann(M2) = 〈r2〉.

For example, the cyclic group C6 of order 6 is a Z-module with annihilator
(6); and we saw that C6 ∼= C2 ⊕ C3, where the subgroups C2 and C3 have
annihilators (2) and (3) respectively.

Proof Let M1 = {m ∈ M : mr1 = 0}, and similarly M2 = {m ∈ M :
mr2 = 0}. Then M1 and M2 are submodules:

m,n ∈M1 ⇒ mr1 = nr1 = 0 ⇒ (m+ n)r1 = 0 ⇒ m+ n ∈M1,

m ∈M1, r ∈ R⇒ mr1 = 0 ⇒ (mr)r1 = mr1r = 0 ⇒ mr ∈M1,

and similarly for M2.
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Now Ann(M1) is an ideal of R, and hence is of the form 〈s1〉 for some s1.
By definition, r1 ∈ Ann(M1), so s1 divides r1, say r1 = s1x. Now take any
element m ∈ M . Then 0 = mr = (mr2)r1; so, by definition, mr2 ∈ M1. Then
mr2s1 = 0. Sincem was arbitrary, s1r2 ∈ Ann(M) = 〈r1r2〉, so r1r2 divides s1r2,
whence r1 divides s1. Since each of r1 and s1 divides the other, these elements
are associates, and so Ann(M1) = 〈r1〉. Similarly, Ann(M2) = 〈r2〉.

It remains to show thatM =M1⊕M2; equivalently, that any elementm ∈M
can be represented uniquely in the form m = m1 + m2 with m1 ∈ M1 and
m2 ∈M2.

First, we show that such a representation exists. Since R is a principal ideal
domain, and (r1, r2) = (1), there exist x, y ∈ R such that xr1 + yr2 = 1. Then

m = m1 = myr2 +mxr1;

and (myr2)r1 = (mx)r = 0, so myr2 ∈M1, and similarly mxr1 ∈M1.
For the uniqueness, suppose that m1 +m2 = m′

1 +m′
2, where m1,m

′
1 ∈ M1

and m2,m
′
2 ∈ M2. Then m1 −m′

1 = m′
2 −m2, so this element lies in both M1

and M2. So it is enough to prove that M1 ∩M2 = {0}. Take any element m
which lies in this intersection. Then mr1 = mr2 = 0. So

m = m1 = m(xr1 + yr2) = (mr1)x+ (mr2)y = 0,

as required. This completes the proof.

Reading the proof carefully, we see that there is an alternative description
of the submodules: M1 = Mr2 = {mr2 : m ∈ M}, and M2 = Mr1 = {mr1 :
m ∈M}.
Theorem 5.11 (Primary decomposition) Let M be a module over a prin-
cipal ideal domain R. Let Ann(M) = 〈r〉, and suppose that r = pn1

1 pn2
2 · · · pnk

k ,
where p1, . . . , pk are irreducible and n1, . . . , nk are positive integers. Then

M =M1 ⊕ · · · ⊕Mk,

where M1, . . . ,Mk are submodules of M and Ann(Mi) = 〈pni
i 〉.

This follows immediately by induction from the previous result. Note that
there is no choice at all about the submodulesMi; forMi consists of all elements
m ∈ M such that mpni

i = 0. The Mi are called the primary components
of M .

Proposition 5.12 Let M be a finitely generated torsion module over a
Euclidean domain. Then M is isomorphic to a direct sum of cyclic submodules
whose annihilators are powers of irreducibles.

Proof First we apply the primary decomposition to M , expressing it as a
direct sum of submodules whose annihilators are powers of irreducibles. These
submodules are finitely generated. (More generally, if M = 〈m1, . . . ,mk〉, then
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Mr = 〈m1r, . . . ,mkr〉.) So each of these submodules is a direct sum of cyclic
submodules, the annihilator of each of which is a power of an irreducible.

We could alternatively first decompose M as a direct sum of cyclic modules,
and then decompose each of these cyclic submodules according to the primary
decomposition. (Taking k = 1 in the parenthetical remark above, we see that
if M is cyclic, then so is Mr for any r ∈ R, and in particular the primary
constituents of M are cyclic.)

The generators of the annihilators of these cyclic submodules are called
the elementary divisors of M . The elementary divisors are just the fac-
tors obtained when the invariant factors of M are factorised into powers of
irreducibles. Like the invariant factors, they are unique:

Theorem 5.13 Suppose that M is expressed in two different ways as a direct
sum of cyclic submodules whose annihilators are powers of irreducibles. Then the
annihilators are the same, up to associates.

Proof It is enough to prove this when Ann(M) is a prime power. (This follows
because any cyclic submodule with prime power annihilator is contained in one
of the primary components, and these are uniquely determined.) So assume that
Ann(M) = 〈pn〉, where p is irreducible.

Let M =M1 ⊕ · · · ⊕Mk, where Mi is a cyclic module with annihilator 〈pni〉,
where 1 ≤ ni ≤ n.

Now 〈p〉 is a maximal ideal of R, and hence R/〈p〉 is a field. Now consider
the submoduleMp ofM , and let N be the factor moduleM/Mp. We claim that
M/Mp is a vector space over R/〈p〉. The main point is that scalar multiplication
is well defined: if 〈p〉 + r = 〈p〉 + s, then s = r + px and so mr and ms differ
by an element of Mp. Now the cosets containing the generators m1, . . . ,mk of
the cyclic summands form a basis for this vector space; so dim(M/Mp) = k
(as R/〈p〉-vector space).

Now suppose that ni > 1 for i ≤ k1, while nk1+1 = . . . = nk = 1. Then
Mp is the direct sum of cyclic modules generated by m1p, . . . ,mk1p. (We have
mk1+1p = . . . = mkp = 0, so these elements generate trivial submodules which
can be ignored.) So dim(Mp/Mp2) = k1 (as R/〈p〉-vector space).

Continuing in this way, we find that the dimension of Mpj/Mpj+1 is equal
to the number of n1, . . . , nk which are greater than j.

But, given a set of positive integers n1, . . . , nk, if we are told how many of
them are greater than j for each j ≥ 0, then we can recover the numbers ni.

For example, if the dimensions of the spaces M/Mp, Mp/Mp2, Mp2/Mp3,
Mp3/Mp4, Mp4/Mp5 are respectively 7, 3, 3, 1, 0, then there are seven numbers
ni, and they are 1, 1, 1, 1, 3, 3, 4.

Remark The elementary divisors are obtained from the invariant factors by
factorising each of them into prime powers and taking all the prime powers
obtained. Conversely, suppose that we are given the elementary divisors. Take the
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largest power of each irreducible which occurs, and multiply them all together;
this is the largest invariant factor. Now remove these elementary divisors and
repeat the procedure.

For example, if the elementary divisors are 2, 4, 4, 3, 9, 5, then the invariant
factors (in the reverse of the usual order) are 4 · 9 · 5 = 180, 4 · 3 = 12, and 2.

Applications
5.7 Finitely generated abelian groups. We have seen that an abelian
group is exactly the same thing as a Z-module. Since Z is our prototype of a
Euclidean domain, we can immediately apply our structure theorem to obtain
the structure of finitely generated abelian groups:

Theorem 5.14 Let A be a finitely generated abelian group. Then

A ∼= Cd1 ⊕ · · · ⊕ Cdr
⊕ C∞ ⊕ · · · ⊕ C∞,

where d1, . . . , dr are positive integers with di | di+1 for i = 1, . . . , r − 1, Cd is a
cyclic group of finite order d, and C∞ is an infinite cyclic group.

The uniqueness part of the module structure theorem gives us extra
information.

Theorem 5.15 Suppose that

Cd1 ⊕ · · · ⊕ Cdr ⊕ C∞ ⊕ · · · ⊕ C∞ ∼= Ce1 ⊕ · · · ⊕ Ces ⊕ C∞ ⊕ · · · ⊕ C∞,

where di, ej > 1 for all i, j, di | di+1 for i = 1, . . . , r − 1 and ej | ej+1 for
j = 1, . . . , s − 1. Let the numbers of C∞ summands of the two groups be u and
v respectively. Then u = v, r = s, and di = ei for i = 1, . . . , r.

Note that the theorem is false without the divisibility condition. For example,
C2 ⊕ C3 ∼= C6.

In the abelian group Cd1 ⊕ · · · ⊕ Cdr ⊕ C∞ ⊕ · · · ⊕ C∞, we call the sum
Cd1 ⊕ · · · ⊕Cdr

of the finite cyclic groups the torsion part, and the sum of the
infinite cyclic groups the torsion-free part; the number of infinite summands
is the torsion-free rank of the group. Note that the torsion part consists of all
the elements of finite order.

Where does this terminology come from? The answer lies in the field of
‘algebraic topology’, and it would take another book to explain it in detail;
what follows is only a rough sketch. One of the central problems of topology
is how to distinguish between different topological spaces (surfaces, etc.), or to
decide whether two quite different recipes give the same or different spaces. (The
kind of recipe that we are thinking of here can be described by example. If we
take a rectangular strip of paper, bend it round, and join the ends, we obtain
a cylinder. If we give the end a 180◦ twist before joining the ends, we obtain
instead a Möbius band.)
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Topologists discovered that it is possible to associate a collection of abelian
groups with a space, so that if two spaces are the same, then the groups associated
with them are isomorphic. These groups can be calculated from a description of
the space (as above). So, if we calculate the groups from the descriptions of two
spaces, and the groups turn out not to be isomorphic, then the spaces are really
different. (The converse is false; different spaces may give the same groups.)

Now the presence of elements of finite order (other than the identity) in the
group indicates some ‘twisting’ of the space (as in the Möbius band). Hence
the name torsion elements was used for elements of finite order in an abelian
group, and the group was called torsion-free if it has no elements of finite order
except the identity.

If we regard an abelian group as a Z-module, then a torsion element is one
whose annihilator is not the zero ideal. Hence, as in the last section, we can
generalise to modules over an arbitrary commutative ring: a torsion element
of such a module is one whose annihilator is not the zero ideal, and a module is
torsion-free if 0 is its only torsion element.

Theorems 5.14 and 5.15 enable us to count abelian groups. The result is given
in terms of a famous number-theoretic function.

Definition The partition function p(n) is the function whose value on the
positive integer n is the number of ways of writing n as the sum of positive
integers, where the order of the summands is unimportant.

For example, p(4) = 5, because

4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1.

(We do not count 3 + 1 and 1 + 3 separately.)
By convention, p(0) = 1.

Proposition 5.16 Let fA(n) be the number of abelian groups of order n.

(a) If m = pm1
1 · · · pmk

k , where p1, . . . , pk are distinct primes, then

fA(n) = fA(pm1
1 ) · · · fA(pmk

k ).

(b) If p is prime, then fA(pm) = p(m) (the partition function of m).

Proof (a) By the primary decomposition, an abelian group of order n is
the direct sum of abelian groups of orders pm1

1 , . . . , pmk

k ; it determines, and is
determined by, the choices of these groups.

(b) To each expression n = a1 + a2 + · · ·+ ar corresponds a group, the direct
sum of cyclic groups of orders pa1 , pa2 , . . . , par . These groups are all different,
and every abelian group of order pn is isomorphic to one of them.

For example, the number of abelian groups of order 108 = 2233 is p(2)p(3) =
2 · 3 = 6. The groups are given in the following table, which lists the forms given
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by the invariant factors as well as the elementary divisors:

C4 ⊕ C27 ∼= C108,

C2 ⊕ C2 ⊕ C27 ∼= C2 ⊕ C54,

C4 ⊕ C3 ⊕ C9 ∼= C3 ⊕ C36,

C2 ⊕ C2 ⊕ C3 ⊕ C9 ∼= C6 ⊕ C18,

C4 ⊕ C3 ⊕ C3 ⊕ C3 ∼= C3 ⊕ C3 ⊕ C12,

C2 ⊕ C2 ⊕ C3 ⊕ C3 ⊕ C3 ∼= C3 ⊕ C6 ⊕ C6.

It can be shown, from the above result, that the number of abelian groups of
order n is not greater than n (Exercise 5.4).

5.8 Normal forms of matrices. In this section, we tackle a problem which
appears similar to the canonical form under equivalence (see Section 4.9). There,
we began with a linear transformation θ : U → V , and remarked that any
choice of bases in U and V gives rise to a matrix representing θ, and matrices
A,B representing the same transformation relative to different bases are related
by B = PAQ−1. Moreover, there is a choice of bases such that the matrix

representing θ has the simple form
(
I O
O O

)
. The submatrix I is r × r, where

r is the rank of θ (the dimension of its image), so there is unique matrix of this
form which represents θ.

The situation we consider here is that θ is a linear transformation from a
vector space V to itself. We represent θ by choosing a basis {v1, . . . , vn} for V ,
and letting viθ =

∑
aijvj ; then θ is represented by the matrix A = (aij). The

difference is that, instead of choosing two different bases in the source and target
spaces, we have only the freedom to choose one basis. If we use a different basis,
with transition matrix P , then the new matrix B representing θ is given by
B = PAP−1. (Because there is only one basis to change, we must have P = Q
in the earlier formalism.) Can we find a set of ‘simple’ matrices so that each
linear transformation from V to itself can be represented by one of them? Since
our freedom to transform is less, there will be more matrices in such a set. (We
are seeking canonical forms for a ‘finer’ equivalence relation than before.)

We solve this problem by using θ to make V into a module for the polynomial
ring F [x], such that the module captures the structure of θ. As in Example 6 of
Section 5.2, we make V an F [x]-module by setting

vf(x) = vf(θ),

where powers of θ are calculated by composition. This module is finitely
generated, since a basis for it as F -vector space certainly generates it as a module.

We will apply the structure theorems for modules over Euclidean domains
(since F [x] is certainly a Euclidean domain). First, we have to see what cyclic
modules look like.
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Definition Let f(x) be a monic polynomial in F [x].

f(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0.

The companion matrix C(f) is the n× n matrix given by

C(f) =




0 1 0 . . . 0 0
0 0 1 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 1

−a0 −a1 −a2 . . . −an−2 −an−1


.

(In other words, in the first n − 1 rows, the entries immediately to the right of
the diagonal are 1, and all others zero; the last row consists of the coefficients of
f (excluding the coefficient of xn), in reverse order and with the sign changed.)
Furthermore, if m is a positive integer, let the extended companion matrix
C(m, f) be the matrix with m×m blocks, each n× n, given by

C(m, f) =




C J O . . . O O
O C J . . . O O
. . . . . . . . . . . . . . . . . .
O O O . . . C J
O O O . . . O C




with C on the diagonal, J immediately to the right, and zeros elsewhere, where
C = C(f) is the companion matrix of f , and J is a matrix with 1 in the south-
west corner (row n and column 1) and zero elsewhere. Note that C(f) = C(1, f).

Proposition 5.17 Let θ be a linear transformation on V , and suppose that the
corresponding F [x]-module is cyclic, with annihilator (gm). Then there is a basis
for V relative to which the matrix of θ is C(m, g).

Proof Suppose that θ : V → V is a linear transformation, and V is a cyclic
F [x]-module, say V = vF [x]. We claim that V has a basis v1, . . . , vn, where
vi = vθi−1 for i = 1, . . . , n. It is clear that the vectors v, vθ, vθ2, . . . span V .
Choose n minimal such that v, vθ, . . . , vθn are linearly dependent. Then it must
be the case that the coefficient of vθn in such a linear combination is non-zero;
so vθn can be expressed as a linear combination of v, vθ, . . . , vθn−1. Hence the
span of these vectors is mapped to itself by θ, and hence is the whole of V
(since V = vF [θ]). By minimality of n, the vectors v, vθ, . . . , vθn−1 are linearly
independent; so they form a basis for V .

Set vi = vθi−1 for i = 1, . . . , n. Then viθ = vi+1 for i = 1, . . . , n− 1. Suppose
that

vnθ = −a0v1 − · · · − an−1vn
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for some a0, . . . , an−1 ∈ F . Then the matrix representing θ relative to this basis
is the companion matrix of

f(x) = xn + an−1x
n−1 + · · ·+ a0.

In addition, vf(θ) = 0. It follows that, for any polynomial h, we have

vh(θ)f(θ) = vf(θ)h(θ) = 0.

Since V = vF [x], we see that Ann(V ) = (f). So we have now proved the
proposition for m = 1.

We showed above that {vθi−1 : 1 ≤ i ≤ n} is a basis for the cyclic module V ,
where n = dim(V ). It is easy to see that, if fi−1(x) is any polynomial of degree
i− 1, for 1 ≤ i ≤ n, then the set {vfi−1(θ) : 1 ≤ i ≤ n} is also a basis.

Suppose that Ann(V ) = (f) where f = gm, and g is a polynomial of degree
k (with km = n). Then xi−1g(x)j−1 is a polynomial of degree (i− 1) + k(j − 1).
Taking 1 ≤ i ≤ k and 1 ≤ j ≤ m, these degrees take all values from 0 to km− 1,
so we obtain an alternative basis for V , namely the vectors wij = vθi−1g(θ)j−1.

What is the matrix representing θ relative to this basis? We have wijθ =
wi+1 j for i < k, and, if

g(x) = xk + bk−1x
k−1 + · · ·+ b0,

then

wkjθ = w1jθ
k = −b0w1j − · · · − bk−1wkj + w1 j+1,

with the convention that w1m+1 = 0. Thus the matrix of θ is exactly C(m, g),
as claimed.

Theorem 5.18 (Normal forms of matrices) Let θ : V → V be a linear
transformation, and regard V as an F [x]-module in the usual way.

(a) If the invariant factors of the module are d1(x), . . . , dr(x), then there is
a basis for V relative to which θ is represented by a block diagonal matrix with
C(d1), . . . , C(dr) on the diagonal and zeros elsewhere.

(b) If the elementary divisors of the module are e1(x)m1 , . . . , ek(x)mk , then
there is a basis for V relative to which θ is represented by a block diagonal matrix
with C(m1, e1), . . . , C(mk, ek) on the diagonal and zeros elsewhere.

Matrices of the shape described in (a) or (b) of this theorem are said to be
in rational canonical form or primary rational canonical form respec-
tively. (Note that, in the rational canonical form we require that di divides di+1
for i = 1, . . . , r − 1, while in the primary rational canonical form we require
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that each ei is irreducible.) So we can restate the theorem in matrix form
as follows:

Theorem 5.19 Let A be a n× n matrix over F .

(a) There is an invertible n × n matrix P such that PAP−1 is in rational
canonical form.

(b) There is an invertible n × n matrix Q such that QAQ−1 is in primary
rational canonical form.

Moreover, the rational and primary rational canonical forms of a given matrix
are unique (up to the order of the diagonal blocks in the primary rational case).

There is one particularly important case of this theorem. Suppose that
the field F is algebraically closed. (Traditionally, this analysis is given for the
field C.) Then any non-constant polynomial has a root in F , and hence a linear
factor. So the only irreducible polynomials are those of the form x−a for a ∈ F .
Now C(x− a) is the 1× 1 matrix (a). Hence C(m,x− a) has the form



a 1 0 . . . 0 0
0 a 1 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . a 1
0 0 0 . . . 0 a


.

Such a matrix is called a Jordan block. So the primary rational form
immediately gives the following result.

Theorem 5.20 (Jordan form) Let A be a n×n matrix over an algebraically
closed field F . Then there is an invertible n × n matrix Q over F such that
QAQ−1 is a block diagonal matrix with Jordan blocks on the diagonal and zeros
elsewhere.

5.9 The Cayley–Hamilton Theorem. Let A be an n × n matrix over a
field F . Then the n2 + 1 matrices A0 = I, A1 = A,A2, . . . , An2

lie in the n2-
dimensional vector space Mn(F ), and so they are linearly dependent. Hence A
satisfies a polynomial equation of degree at most n2.

The Cayley–Hamilton Theorem shows that there is a specific polynomial
equation of degree n which is satisfied by A, the so-called characteristic equation
of A.

The minimal polynomial of A is the monic polynomial of least degree
which is satisfied by A. It is unique. Indeed,

J = {f ∈ F [x] : f(A) = O}
is an ideal of F [x], and the minimal polynomial ofA is the unique monic generator
of this ideal. Hence any polynomial f such that f(A) = O is divisible by the
minimal polynomial.
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Definition The characteristic polynomial of the matrix A is the polynomial
det(xI −A).

Theorem 5.21 (The Cayley–Hamilton Theorem) Let c(x) and m(x) be
the characteristic and minimal polynomials of the matrix A. Then:

(a) c(A) = O;
(b) m(x) divides c(x).

Remarks The two parts of the theorem are clearly equivalent. The theorem
can be proved by a direct calculation, which does not require all the background
of the rational canonical form. But the proof given here may provide more insight.

Proof The strategy is in three parts. First, we show that it suffices to deal
with matrices in rational canonical form. Next, we show that it suffices to deal
with companion matrices of polynomials. Finally, we prove the theorem directly
for these matrices. The proof is an illustration of the way in which a canonical
form theorem can be used to simplify calculations.

Step 1 We show that, if P is invertible, then A and PAP−1 have the same
characteristic polynomials and the same minimal polynomials. Since, for every A,
there is an invertible P such that PAP−1 is in rational canonical form, it suffices
to prove the theorem for these.

For the characteristic polynomial, we have

det(xI − PAP−1) = det(P (xI −A)P−1)

= det(P ) det(xI −A) det(P )−1

= det(xI −A),

using the multiplicative property of determinants.
For the minimal polynomial, we observe that, if f is any polynomial, then

f(PAP−1) = Pf(A)P−1,

so f(A) = O if and only if f(PAP−1) = O.

Step 2 Let A be in rational canonical form. Thus, A has diagonal blocks
C(f1), C(f2), . . . , C(fr), and O elsewhere, where C(f) is the companion matrix
of f , and f1, . . . , fr are the invariant factors of A (so that fi divides fi+1 for
1 ≤ i ≤ r − 1). We claim that a companion matrix C(f) has characteristic and
minimal polynomial both equal to f . (The proof of this is given in Step 3.) Now
the determinant of a block diagonal matrix is the product of the determinants
of the diagonal blocks. Hence the characteristic polynomial of A is the product
of the characteristic polynomials of C(f1), . . . , C(fr); that is, it is f1 · · · fr.

Also, fi is the minimal polynomial of C(fi). Since fi divides fr for all i, we
see that fr(C(fi)) = O for all i, and hence that fr(A) = O. So the minimal
polynomial divides fr, and hence divides the characteristic polynomial.
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In fact, fr is the minimal polynomial, since a polynomial of smaller degree
would not be satisfied by the block C(fr).

Step 3 Let A = C(f), where

f(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0.

Thus,

xI −A =



x −1 0 . . . 0
0 x −1 . . . 0
. . . . . . . . . . . . . . .
0 . . . 0 x −1
a0 a1 . . . an−2 x+ an−1


.

We prove that det(xI −A) = f(x) by induction on n.
For n = 1, we have f(x) = x− a0 and A = (a0), so the assertion is true.
Suppose that it holds for n − 1. Consider the formula for det(xI − A) as a

sum over permutations. Since there are only two non-zero elements in the first
row, the only permutations which contribute to the sum are those with 1g = 1
or 1g = 2.

If 1g = 1, the (1, 1g) entry of xI − A is equal to x. Apart from this factor,
the terms are just those in the determinant of the matrix with the first row and
column deleted. This matrix is xI − B, where B is the companion matrix of
the polynomial xn−1 + an−1x

n−2 + · · · + a1. By the inductive hypothesis, the
contribution is x(xn−1 + · · ·+ a1).

If 1g = 2, then 2g �= 2. The only other non-zero element in the second row
is in the third column, so we can assume that 2g = 3. Similarly 3g = 4, . . . ,
(n − 1)g = n, ng = 1. Thus, g is a cyclic permutation, and its sign is (−1)n−1.
The term that we obtain is (−1)n−1a0, since the (i, i+ 1) entry of xI −A is −1
for 1 ≤ i ≤ n− 1, while the (n, 1) entry is a0. So there is a single term a0.

Thus

det(xI −A) = x(xn−1 + · · ·+ a1) + a0 = f(x),

as required.
For the minimal polynomial, let V be a vector space with basis v1, . . . , vn,

and let θ be a linear transformation of V with matrix A relative to this basis.
Thus viθ = vi+1 for i+ 1, . . . , n− 1, while

vnθ = −a0v1 − · · · − an−1vn.

Thus, vi = v1θ
i−1 for i = 1, . . . , n, while v1f(θ) = 0. Then

vif(θ) = v1θ
i−1f(θ) = v1f(θ)θi−1 = 0,
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so f(θ) is represented by the zero matrix. Thus, f(A) = 0. Clearly no polyno-
mial equation of smaller degree can be satisfied by A; so f(x) is the minimal
polynomial.

The proof is complete.

Note that the minimal polynomial of a matrix is equal to the last elementary
divisor, while the characteristic polynomial is the product of all the elementary
divisors.

This observation adds a little extra to the Cayley–Hamilton Theorem:

Proposition 5.22 An irreducible polynomial divides the characteristic polyno-
mial if and only if it divides the minimal polynomial.

Proof Since the minimal polynomial divides the characteristic polynomial, the
reverse implication is clear. Conversely, any irreducible which divides the char-
acteristic polynomial must divide one of the invariant factors, and hence must
divide the last invariant factor, which is the minimal polynomial.

We conclude with a very brief discussion of one of the most important topics
in linear algebra, namely, eigenvalues and eigenvectors. Again, this approach is
not the most direct, but does show the usefulness of the rational canonical form.

Definition An eigenvector of the n×n matrix A over F is a non-zero vector
v ∈ Fn such that vA = λv for some scalar λ. The corresponding eigenvalue of
A is λ.

Theorem 5.23 Let A ∈Mn(F ). The following conditions for the scalar λ are
equivalent:

(a) λ is an eigenvalue of A;
(b) λ is a root of the characteristic polynomial of A;
(c) λ is a root of the minimal polynomial of A.

Proof (a) implies (c): Let f(x) be the minimal polynomial of A. If vA = λv
with v �= 0, then 0 = vf(A) = f(λ)v; so f(λ) = 0.

(c) implies (b) by the Cayley–Hamilton Theorem 5.21(b).
(b) implies (a): If det(λI −A) = 0, then λI −A is not invertible. A non-zero

vector v ∈ Ker(λI −A) is an eigenvector of A with eigenvalue λ.

The concepts of eigenvalue and eigenvector can be applied to linear transfor-
mations also. We omit the details.

5.10 An application: league tables. In many league competitions, teams
are awarded a fixed number of points for a win or a draw. It may happen that
two teams win the same number of matches and so are equal on points, but
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the opponents beaten by one team are clearly ‘better’ than those beaten by the
other. How can we take this into account?

You might think of giving each team a ‘score’ to indicate how strong it is,
and then adding the scores of all the teams beaten by team T to see how well
T has performed. Of course this is self-referential, since the score of T depends
on the scores of the teams that T beats. So suppose we ask simply that the
score of T should be proportional to the sum of the scores of all the teams
beaten by T .

Now we can translate the problem into linear algebra. Let T1, . . . , Tn be the
teams in the league. Let A be the n × n matrix whose (i, j) entry is equal to
1 if Tj beats Ti, and 0 otherwise. Now for any vector (x1, x2, . . . , xn) of scores,
the jth entry of xA is equal to the sum of the scores xi for all teams Ti beaten
by Tj . So our requirement is simply that

x should be an eigenvector of A with all entries positive.

Here is an example. There are six teams A, B, C, D, E, and F. Suppose that

A beats B, C, D, E;
B beats C, D, E, F;
C beats D, E, F;
D beats E, F;
E beats F;
F beats A.

The matrix A is 


0 0 0 0 0 1
1 0 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 0 0
0 1 1 1 1 0



.

We see that A and B each have four wins, but that A has generally beaten the
stronger teams; there was one upset when F beat A. Also, E and F have the
fewest wins, but F took A’s scalp and should clearly be better.

Calculation with MAPLE shows that the vector

(0.7744, 0.6452, 0.4307, 0.2875, 0.1920, 0.3856)

is an eigenvector of A with eigenvalue 2.0085. This confirms our view that A is
top of the league and that F is ahead of E; it even puts F ahead of D.

But perhaps there is a different eigenvalue and/or eigenvector which would
give us a different result?

In fact, there is a general theorem called the Perron–Frobenius theorem
which gives us conditions for this method to give a unique answer. Before we
state it, we need a definition.
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Let A be an n× n real matrix with all its entries non-negative. We say that
A is indecomposable if, for any i, j with 1 ≤ i, j ≤ n, there is a number m
such that the (i, j) entry of Am is strictly positive.

This odd-looking condition means, in our football league situation, that for
any two teams Ti and Tj , there is a chain Tk0 , . . . , Tkm

with Tk0 = Ti and
Tkm

= Tj , such that each team in the chain beats the next one. Now it can be
shown that the only way that this can fail is if there is a collection C of teams
such that each team in C beats each team not in C. In this case, obviously
the teams in C occupy the top places in the league, and we have reduced the
problem to ordering these teams. So we can assume that the matrix of results is
indecomposable.

In our example, we see that B beats F beats A, so the (2, 1) entry in A2 is
non-zero. Similarly for all other pairs. So A is indecomposable in this case.

Theorem 5.24 (Perron–Frobenius Theorem) Let A be a n×n real matrix
with all its entries non-negative, and suppose that A is indecomposable. Then,
up to scalar multiplication, there is a unique eigenvector v =

(
x1 . . . xn

)�

for A with the property that xi > 0 for all i. The corresponding eigenvalue is the
largest eigenvalue of A.

So the Perron–Frobenius eigenvector solves the problem of ordering the teams
in the league.

Remarks 1. Further refinements are clearly possible. For example, instead of
just putting the (i, j) entry equal to 1 if Tj beats Ti, we could take it to be the
number of goals by which Tj won the game.

2. This procedure has wider application. How does an Internet search engine
find the most important web pages that match a given query? An impor-
tant web page is one to which a lot of other web pages link; this can be
described by a matrix, and we can use the Perron–Frobenius eigenvector to do the
ranking.

Exercise 5.4 (a) Prove that p(n) ≤ 2n for all n. [Hint : The number of partitions of n
containing at least one part i for i < n is p(n− i); so

p(n) ≤
n∑

i=1

p(n− i),

where we have ≤ since some partitions are counted more than once. Now use induction.]
(b) Hence show that fA(pm) ≤ 2m for any prime p.
(c) Hence show that fA(n) ≤ n for any n.

Exercise 5.5 Prove the Cayley–Hamilton Theorem for 2 × 2 and 3 × 3 matrices by
direct calculation. [This was done by Cayley, and the 4 × 4 case by Hamilton; it was
Frobenius who produced the first general proof.]
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Exercise 5.6 Prove that two 3 × 3 complex matrices are similar if and only if they
have the same characteristic and minimal polynomials.

Is the same true for 4 × 4 matrices?

Exercise 5.7 Show that the invariant factors of a matrix A over a field F are the
non-constant diagonal elements in the Smith normal form of the matrix xI − A over
F [x].

Exercise 5.8 The name rational canonical form comes from the fact that if a
matrix A has rational entries, then so does its rational canonical form, even if we work
over a larger field. More generally, if A is an n × n matrix over F , and K is a field
containing F , then the rational canonical forms of A over F and over K are identical.
Prove this.

[This is not true for the primary rational canonical form, since enlarging the field
may cause irreducible polynomials to become reducible. For example, the real matrix

C(x2 + 1) =
(

0 1
−1 0

)
is in (primary) rational canonical form over R, but over C, its

Jordan form is
(
i 0
0 −i

)
.]

Exercise 5.9 (a) Prove that, for any eigenvalue λ of the matrix A, the set of
eigenvectors with eigenvalue λ, together with the zero vector, is a subspace of Fn.

(b) Prove that, if v1, . . . , vk are eigenvectors associated with distinct eigenvalues
λ1, . . . , λk respectively, then v1, . . . , vk are linearly independent.

Exercise 5.10 Find the eigenvalues and eigenvectors of the real matrix


11 −1 −4

−1 11 −4
−4 −4 14


.

Exercise 5.11 Give a proof of Theorem 5.23 in the order (a) implies (b) implies (c)
implies (a).

Exercise 5.12 In Section 3.2, we made the easy observation that any abelian group
is the additive group of a ring. Prove that any finitely generated abelian group is the
additive group of a ring with identity.

Exercise 5.13 An abelian group G is generated by elements x1, . . . , xn satisfying the
relations

ai1x1 + · · · + ainxn = 0

for i = 1, . . . , n, where aij ∈ Z. (We assume that all relations satisfied by x1, . . . , xn

are consequences of these.) Let A be the matrix (aij). Prove that

(a) if det(A) = 0, then G is infinite;
(b) if det(A) �= 0, then |G| = | det(A)|.
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Exercise 5.14 An abelian group G is generated by elements x, y, z satisfying the
relations

6x+ 10y = 0,

6x+ 15z = 0,

10y + 15z = 0

(with the same convention as in the preceding exercise). Write G as a direct sum of
cyclic groups.



6 The number systems

The nineteenth-century German mathematician Leopold Kronecker said, ‘God
made the integers; the rest is the work of man’. Many others, including
non-mathematicians, have felt similarly

What could be more general than 2, which can represent two galax-
ies or two pickles, or one galaxy plus one pickle (the mind doth
boggle), or just 2 gently bobbing—where? It, like God, is an “I
am” and many have thought that it must be a precipitate of ulti-
mate reality.

Alfred W. Crosby (1997).

We may take it that by the integers, Kronecker meant the counting num-
bers (the positive integers). Any civilisation that has left records knew how to
count. The other number systems (zero and negative integers, rational numbers,
real numbers, and complex numbers) are very much more recent. Historians of
mathematics can trace for us the origin and development of these systems.

If we start with the positive integers, we have a system in which addition
and multiplication can be performed, but subtraction and division cannot. More
precisely, subtraction and division are not operations on natural numbers; they
do not satisfy the closure law. In Section 2.14, we saw how to embed an integral
domain into a field (its field of fractions); in other words, such a ring can be
embedded in a larger ring in which division is possible. The prototype for this
process is the enlargement of the integers to the rational numbers. We will see
that a very similar process can be used to build the integers from the natural
numbers.

It is more difficult to construct the real numbers from the rationals. We want
to enlarge the rationals to include not only the roots of polynomials (such as√
2), but also other useful numbers such as π and e. In effect, we have to plug

the gaps in the rationals, and this is not entirely an algebraic process; some ideas
from analysis, such as Cauchy sequences, are needed in this procedure. Once we
have the real numbers, we obtain the complex numbers by a process that we
have already seen in Section 2.16: adjoining a root of the polynomial equation
x2 + 1 = 0.

However, science marches on, and various tasks that were once God’s preserve
are now carried out by white-coated technicians. So it is that mathematical
logicians have created the natural numbers, and indeed have created them out
of nothing (more precisely, starting from the empty set).
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In the first section of this chapter, we will look at these constructions in
some detail. In the second section, we examine the distinction between algebraic
numbers (those which satisfy some polynomial equation with integer coefficients)
and transcendental numbers (those which do not): we prove in three different
ways that transcendental numbers exist, and show that the classical problems of
squaring the circle, duplicating the cube and trisecting the angle are insoluble
with ruler and compass. In the final section, we treat in a little more detail some
aspects of set theory: cardinality and the Axiom of Choice.

To the complex numbers
6.1 The natural numbers. The natural numbers were invented for the
purpose of counting. It is easy to believe that the earliest pastoral societies
relied on counting for keeping tallies of their flocks. There is some evidence that
this was done by establishing a bijection between the animals in a flock and a
collection of pebbles or marks on a stick. A more sophisticated method is to have
names for the natural numbers, independent of any physical representation of
them. From that, it is a short step to algorithmic manipulation of numbers, so
that subtraction can be used to establish how many animals are missing when
the herd returns.

It does not really matter what names are used for the numbers, any more
than it matters what material is used to construct the standard metre. However,
it is very convenient if, for example, the standard number 248 is a set with 248
elements. If we adopt this principle, then zero should be a set with no elements.
As we saw, there is a unique empty set, and this we take as zero. Then the
number 1 should be a set with one element; using what we have to hand, we take
it to be {0}. Then we take 2 = {0, 1}, 3 = {0, 1, 2}, and so on. We see that each
natural number is the set consisting of all smaller natural numbers (including
zero). This leads us to the formal construction.

Definition

• The empty set is a natural number (called zero, and written 0).
• If n is a natural number, then so is n ∪ {n}.
• Every natural number is generated by these two rules.

The natural number n ∪ {n} is called the successor of n. We temporarily
write it as s(n); later we will call it n+ 1.

The most important property of the natural numbers is the principle of
induction.

Theorem 6.1 Let P (n) be a proposition about the natural number n. Suppose
that

(a) P (0) is true; and
(b) P (n) implies P (s(n)) for any natural number n.

Then P (n) holds for all natural numbers n.
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Proof The definition of the natural numbers makes clear that the set of natural
numbers satisfying P is the same as the set of all natural numbers.

The Principle of Induction can be used for definitions as well as proofs. In
order to define a function f on the set of natural numbers, it is enough to define
f(0) and to define f(s(n)) in terms of f(n). For example, we define addition by

m+ 0 = m,

m+ s(n) = s(m+ n),

for all natural numbers m and n, and then define multiplication by

m · 0 = 0,

m · s(n) = m · n+m,

for all m and n. From these definitions, it is possible to prove all the ‘elementary’
properties of addition and multiplication. The proofs are quite complicated to
follow, since they use the idea of ‘double induction’. We are trying to prove a
proposition such as the commutative law m+ n = n+m which depends on two
variables. We prove it by induction on n, so we have to show that m+0 = 0+m
and also that (m + n = n +m) ⇒ (m + s(n) = s(n) +m). Each of these sub-
propositions is proved by induction on m (since at the beginning, induction is
the only tool we have!) We can formalise ‘double induction’ as follows:

Theorem 6.2 Let P (m,n) be a proposition about pairs of natural numbers.
Assume that:

(a) P (0, 0) is true.
(b) P (0, n) implies P (0, s(n)) for all n.
(c) P (m, 0) implies P (s(m), 0) for all m.
(d) For a given value of m, from the truth of P (m,x) for all x, and also that

of P (s(m), n) for some n, we can infer the truth of P (s(m), s(n)).

Then P (m,n) is true for all m and n.

Proof Hypotheses (a) and (b) are the base case and inductive step for the
proof of P (0, n) for all n. Similarly, hypotheses (c) and (d) are the base case and
inductive hypothesis for a proof (by induction on n) of the statement that, if
P (m,n) holds for all n, then P (s(m), n) holds for all n. Together these show by
induction on m that P (m,n) holds for all m.

Using this principle, we show the commutative law for addition.

Proposition 6.3 m+ n = n+m for all natural numbers m,n.

Proof For double induction, we have to show:

(a) 0 + 0 = 0 + 0;
(b) 0 + n = n+ 0 implies 0 + s(n) = s(n) + 0;
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(c) m+ 0 = 0 +m implies s(m) + 0 = 0 + s(m);
(d) m + x = x +m for all x, and s(m) + n = n + s(m), imply s(m) + s(n) =

s(n) + s(m).

Here (a) is a triviality. To prove (b), assume that 0+n = n+0; that is, 0+n =
n, since n+0 = n by definition of addition. Now, by definition, 0+s(n) = s(0+n),
which is equal to s(n) by the assumption, and is equal to s(n)+0 by the definition
of addition again. Now (c) is just (b) in disguise, so it is also true.

To prove (d), we assume that m + x = x +m for all x (and the fixed value
of m), and that s(m) + n = n + s(m) (where n has some fixed value also).
We have

s(m) + s(n) = s(s(m) + n) = s(n+ s(m)) = s(s(n+m)),

where the first and third equalities follow from the definition of addition, and
the second from our assumptions. Similarly,

s(n) + s(m) = s(s(n) +m) = s(m+ s(n)) = s(s(m+ n)).

By assumption, m + n = n +m; it follows that s(m) + s(n) = s(n) + s(m), as
required.

It follows from the definition of addition that n+1 = n+ s(0) = s(n). So we
can replace the notation s(n) by the more familiar n+ 1.

Various further properties can be proved in a similar way. I will not give the
proofs. Here is a list of what is needed; if you have great powers of perseverance,
and work through them all, you will have put the natural numbers on a firm
logical basis.

• Closure laws: For all a, b ∈ N, we have a+ b, ab ∈ N.
• Associative laws: For all a, b, c ∈ N, we have a + (b + c) = (a + b) + c and
a(bc) = (ab)c.

• Commutative laws: For all a, b ∈ N, we have a+ b = b+ a and ab = ba.
• Distributive law : For all a, b, c ∈ N, we have a(b+ c) = ab+ ac.
• Zero law : For all a ∈ N, we have a+ 0 = a.
• Identity law : For all a ∈ N, we have a1 = a.
• Cancellation laws: If a + b = a + c, then b = c; if a �= 0 and ab = ac, then
b = c.

We can also define the usual ordering on the natural numbers: a ≤ b holds if
and only if there is a natural number c such that a+ c = b.

6.2 The integers. The motivation for extending the natural numbers to
include negative numbers is to allow subtraction; more precisely, to produce
a number system which is closed under subtraction. Accordingly, we want to
construct numbers called a − b for all a, b ∈ N, where a − b is a solution x to
the equation x + b = a. There are a couple of problems. First, if a ≥ b, then
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N already contains an element a − b. Second, the same integer will have many
different names, since (for example) 2− 3 = 5− 6.

Accordingly, we represent the integer a− b by the ordered pair (a, b), and we
want to ensure that, if a − b = c − d (in other words, if a + d = b + c), then
the pairs (a, b) and (c, d) should represent the same integer. This is a job for an
equivalence relation!

So here is the formal definition:
Define a relation ∼ on the set of ordered pairs of natural numbers by the

rule that (a, b) ∼ (c, d) if and only if a + d = b + c. Then ∼ is an equivalence
relation:

• Since a+ b = b+ a, we have (a, b) ∼ (a, b); so ∼ is reflexive.
• If a + d = b + c, then c + b = d + a; so (a, b) ∼ (c, d) implies (c, d) ∼ (a, b),
and ∼ is symmetric.

• Suppose that (a, b) ∼ (c, d) and (c, d) ∼ (e, f). Then a + d = b + c and
c+ f = d+ e. Thus

a+ c+ f = a+ d+ e = b+ c+ e,

and the cancellation law implies that a + f = b + e; that is, (a, b) ∼ (e, f),
and ∼ is transitive.

Definition An integer is an equivalence class of the relation ∼. We denote
the equivalence class containing (a, b) temporarily by [a, b]. We define addition
and multiplication of equivalence classes by the rules

[a, b] + [c, d] = [a+ c, b+ d],

[a, b] · [c, d] = [ac+ bd, ad+ bc].

Let Z denote the set of integers with these operations.

Where do these definitions come from? The symbol [a, b] is going to be the
integer a− b; and we have

a− b = c− d⇔ a+ d = b+ c,

(a− b) + (c− d) = (a+ c)− (b+ d),

(a− b) · (c− d) = (ac+ bd)− (ad+ bc).

Theorem 6.4 The set Z, with the above-defined operations, is a commutative
ring with identity, and is an integral domain.

Proof Before we begin the verification of the axioms, we must first prove that
the operations are well defined. That is, we must prove that, if (a, b) ∼ (a′, b′)
and (c, d) ∼ (c′, d′), then (a+ c, b+ d) ∼ (a′ + c′, b′ + d′) and (ac+ bd, ad+ bc) ∼
(a′c′ + b′d′, a′d′ + b′c′). In yet other words, we must show that, if a+ b′ = b+ a′

and c+ d′ = d+ c′, then (a+ c) + (b′ + d′) = (b+ d) + (a′ + c′) and (ac+ bd) +
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(a′d′ + b′c′) = (ad+ bc) + (a′c′ + b′d′). These facts follow from the properties of
N by tedious but elementary algebraic manipulations.

Now we verify the eight ring axioms, the commutative law, and the existence
of an identity. Relatively straightforward calculations are needed. Take the left
distributive law as an example. For any natural numbers a, b, c, d, e, f ,

[a, b]([c, d] + [e, f ]) = [a, b][c+ e, d+ f ]

= [a(c+ e) + b(d+ f), a(d+ f) + b(c+ e)],

[a, b][c, d] + [a, b][e, f ] = [ac+ bd, ad+ bc] + [ae+ bf, af + be]

= [ac+ bd+ ae+ bf, ad+ bc+ af + be]

and the equality of the right-hand sides follows from properties of N.
The zero element is the class [a, a]; the negative of [a, b] is [b, a]; and the

identity is the class [1, 0].
To see that Z is an integral domain, it is convenient to choose representatives

for the equivalence classes as follows: If a > b, then [a, b] = [a − b, 0]; if a < b,
then [a, b] = [0, b−a]. So we may assume that either a or b is zero. Now take two
non-zero integers, each represented as either [a, 0] or [0, b] with a or b non-zero.
For their product there are several cases. For example,

[a, 0] · [0, b] = [0, ab] �= 0,

since if a, b �= 0 then ab �= 0 by the Cancellation Law for N.

The set N is embedded isomorphically into Z by the map taking a to [a, 0].
Since [a, b] + [b, 0] = [a+ b, b] = [a, 0], we see that x = [a, b] is the solution to the
equation x + b = a, where we identify a and b with the corresponding integers
[a, 0] and [b, 0] respectively. So we can denote [a, b] by the more usual notation
a− b. Moreover,

[a, b]− [c, d] = [a+ d, b+ c],

so subtraction is everywhere defined on Z.
The ordering on Z can be defined by the rule that a ≤ b if and only if b− a

is a natural number. Equivalently, [a, b] ≤ [c, d] if and only if the inequality
a+ d ≤ b+ c holds in the natural numbers.

6.3 The rational numbers. The construction of the rational numbers from
the integers is quite similar to the construction of the integers from the natural
numbers. In Z, we can add, subtract, and multiply, but not always divide; we
want to add elements a/b, that is, solutions of bx = a, whenever b �= 0. Similar
comments about the non-uniqueness of the representation a/b apply. If you stud-
ied Section 2.14, you will have seen the process: Q is the field of fractions of Z.
I will run through the construction more briefly.
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Let X be the set of all pairs (a, b) of integers with b �= 0. Define a relation ∼
on X by the rule that (a, b) ∼ (c, d) if and only if ad = bc. This relation is:

• reflexive, since ab = ba;
• symmetric, since ad = bc implies cb = da;
• transitive, since ad = bc and cf = de imply adf = bcf = bde, and hence that
af = be (since d �= 0 and Z is an integral domain).

Hence ∼ is an equivalence relation. We let [a, b] denote the equivalence class
containing (a, b), and let Q be the set of equivalence classes (its elements are
called rational numbers).

Now we define addition and multiplication of rational numbers by the rules

[a, b] + [c, d] = [ad+ bc, bd],

[a, b] · [c, d] = [ac, bd].

(These are motivated by the rules for adding and multiplying fractions, since
[a, b] is to represent the rational number a/b.) It can now be shown that these
operations are well defined (independent of the choice of representatives), and
also that the following holds:

Theorem 6.5 Q, with the above operations, is a field.

Moreover, Z is embedded isomorphically into Q by the map taking a to [a, 1].
If (as usual) we denote this element by the same symbol a, then if b �= 0 we have
b−1 = [1, b], and hence [a, b] = ab−1 = a/b, as we intended.

Of course, any equation bx = a, with a, b ∈ Q and b �= 0, can now be solved.
If a = [a1, a2] and b = [b1, b2] with b1 �= 0, then a/b = [a1b2, a2b1].

The ordering of the rational numbers can be defined. The rational number
[a, b] is positive if a and b have the same sign (both positive or both negative);
then q ≤ r if and only if r − q is zero or positive.

6.4 The real numbers. At each stage after the natural numbers so far,
we have been enlarging the number system so as to make an operation (either
subtraction or division) defined everywhere it should be; in other words, to ensure
that equations (x+ b = a or bx = a respectively) have solutions.

The next stage is different. There are still many equations which do not have
solutions (for example, the equation x2 = 2 which gave the Pythagoreans so
much trouble). There are also various non-algebraic equations that we would
like to solve, such as sinx = 1 or log x = 1. These fail to have solutions because,
although we can approximate the solutions as closely as we like, we cannot
express them exactly by rational numbers. Although the rationals are dense
(in the sense that between any two we can always find another), there are still
many gaps between them that we have to fill.

The technique follows the general outline that we have used before. First,
we find a method to represent one of the ‘missing’ numbers. We calculate what
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it means for two such representations to define the same number, and hence
define an equivalence relation on them. Then we define a ‘real number’ to be an
equivalence class of this relation, and give rules for addition and multiplication of
real numbers. However, unlike the previous case, we can now use the machinery
of rings and ideals to help.

There are two methods commonly used for the construction of the real num-
bers, namely Cauchy sequences and Dedekind cuts. The fields constructed
by these two approaches turn out to be isomorphic. I will use Cauchy sequences,
which permit a more algebraic approach. The motivation is the representation
of a real number by an infinite decimal expansion. Such a decimal has the form
n.a1a2a3 . . ., where n is an integer and a1, a2, a3, . . . are decimal digits. This
number is the limit of the sequence

n, n.a1 = n+ a1/10, n.a1a2 = n+ a1/10 + a2/100, . . .

Each term in the sequence is rational, and the sequence is a Cauchy sequence
according to the following definition. We use the notation |q| for the modulus
of the rational number q; that is,

|q| =
{

q if q ≥ 0,
−q if q ≤ 0.

Definition

• A Cauchy sequence of rational numbers is defined to be a sequence
q0, q1, q2, . . . with qn ∈ Q for all n, satisfying the following condition: for any
positive rational ε, there exists a positive integer N such that |qm − qn| < ε
whenever m,n > N .

• A null sequence of rational numbers is a sequence q0, q1, q2, . . . with qn ∈ Q

for all n, satisfying the following condition: for any positive rational ε, there
exists a positive integer N such that |qn| < ε whenever n > N .

We define addition and multiplication of sequences componentwise: that is,
if (qn) and (rn) denote the sequences with nth terms qn and rn respectively, their
sum has nth term qn + rn, and their product has nth term qnrn.

Let C and N denote the sets of Cauchy sequences and null sequences
respectively.

Theorem 6.6 C is a commutative ring with identity, and N is a maximal ideal
in C.
Proof The proof that C is a commutative ring involves some fairly standard
verification of axioms; a kind of mixture of algebra and analysis. Its zero and iden-
tity are the constant sequences with values 0 and 1 respectively. Two examples
will illustrate.
Closure under multiplication: We use the fact that any Cauchy sequence is
bounded. For let (qn) be a Cauchy sequence. Choosing ε = 1 in the defini-
tion, let N have the property that |qm − qn| < 1 for m,n > N . It follows
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that |qn| < |qN+1| + 1 for n > N . So, if B is the greatest of the numbers
|q1|, |q2|, . . . , |qN |, |qN+1|+ 1, then we have |qn| ≤ B for all n.

Now let (qn) and (rn) be Cauchy sequences, bounded by B and C respectively.
Given ε > 0, choose N so that |qm− qn| < ε/2C for m,n > N , and choose M so
that |rm − rn| < ε/2B for m,n > M . Let P be the greater of M and N . Then,
for m,n > P , we have

|qmrm − qnrn| = |qmrm − qmrn + qmrn − qnrn|
≤ |qm| · |rm − rn|+ |rn| · |qm − qn|
< B(ε/2B) + C(ε/2C)

= ε.

So (qnrn) is a Cauchy sequence.
Commutative law for multiplication: The nth terms of (qn)(rn) and (rn)(qn)
are, respectively, qnrn and rnqn, which are equal, by the commutative law for
multiplication in Q.

It is not obvious that N is a subset of C. Let (qi) be a null sequence, and let
ε > 0 be given. Choose N so that |qn| < ε/2 for n > N (this is done by applying
the definition of a null sequence with ε/2 replacing ε). Then, if m and n are both
greater than N , we have |qm| < ε/2 and |qn| < ε/2; so |qm − qn| < ε. Thus (qn)
is a Cauchy sequence.

Now further standard verification shows that N is an ideal of C. (We again
require the fact that Cauchy sequences are bounded).

To show that N is a maximal ideal, let J be any ideal of C which properly
contains it; we must show that J = C. Take any sequence (qn) which lies in J
but not in N . Then (qn) is not a null sequence. Negating the definition of a
null sequence yields the following: there exists some ε > 0 such that, for any N ,
there are terms qn of the sequence with n > N such that |qn| ≥ ε. But (qn) is a
Cauchy sequence; so, taking ε/2 in the definition, we find a numberM such that
|qm − qn| < ε/2 for all m,n > M . We know that there exists some m > M with
|qm| ≥ ε; it follows that |qn| > ε/2 for all n > M . In other words, apart from
finitely many terms at the start, the sequence (qn) is bounded away from zero.

Now let (xn) be any Cauchy sequence. Define a sequence (rn) by

rn =
{
0 if qn = 0,
xn/qn if qn �= 0.

The case qn = 0 can only occur finitely often. Using this and the fact that qn
is bounded away from zero for n > M , it can be shown that (rn) is a Cauchy
sequence. Hence (rn)(qn) ∈ J .

But rnqn = xn whenever qn �= 0; that is, for all but finitely many values. So
the sequence (xn − rnqn) is zero from some point onwards, and hence certainly
a null sequence, and thus in J . Then (xn) = (xn − rnqn) + (rn)(qn) ∈ J also.
Since (xn) was an arbitrary Cauchy sequence, we have J = C, as required.
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Definition A real number is an element of the ring R = C/N .

Theorem 6.7 R is a field.

This follows from the preceding theorem and Theorem 2.27.
There is an isomorphic embedding of Q into R: we map any rational number

q to the coset of N containing the constant sequence (q). (This coset consists of
all sequences of rational numbers which have the limit q.) Furthermore, we can
now define Cauchy sequences of real numbers, and it is possible to show that
every Cauchy sequence of real numbers converges to a real number; that is, the
field of real numbers is complete. (To define Cauchy sequences of real numbers,
we need first to define the modulus of a real number, which itself depends on the
ordering, defined below.)

In accordance with our original motivation, we note that the decimal expan-
sion of a real number does indeed give a Cauchy sequence representing that
number. Also, it can be shown that every real number has a decimal expansion
(that is, the coset of N representing that number contains a particular Cauchy
sequence of the type arising from a decimal expansion).

The ordering of the real numbers can be defined as follows: We say that a
Cauchy sequence (qn) is positive if it is not a null sequence and qn > 0 for
all but finitely many values of n. Then we say that (qn) < (rn) if (rn − qn) is
positive. Now it can be shown that, if (qn) < (rn), then (q′

n) < (r′
n) for any

Cauchy sequences (q′
n) and (r′

n) which differ from (qn) and (rn) respectively by
null sequences. This means that we have a well defined ordering on the cosets of
N in C, that is, on the real numbers.

6.5 The complex numbers. We have already met the construction of the
complex numbers from the reals. The aim is to enlarge the real numbers to a field
containing a square root of −1 (a root of the polynomial equation x2 + 1 = 0).
We will see that we get much else too.

As an instance of the construction of a field extension in which a given irre-
ducible polynomial has a root (described in Section 2.16), we define the field C

of complex numbers as the factor ring R[x]/(x2 + 1). (The polynomial x2 + 1 is
irreducible in R[x], because a2 + 1 ≥ 1 > 0 for all a ∈ R.) If i denotes the root
of the polynomial x2 + 1 (that is, the coset (x2 + 1) + x), then every element
of C can be written in the form a + bi, where a and b are real, and the expres-
sion for a given complex number in this form is unique. Now the addition and
multiplication are given by the usual ‘rules of arithmetic’, putting i2 = −1:

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i,

(a+ bi) · (c+ di) = (ac− bd) + (ad+ bc)i.

One of the most important properties of C is the ‘Fundamental Theorem of
Algebra’. This shows that it is not necessary to construct still larger fields to
include roots of more complicated polynomials.
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Theorem 6.8 (Fundamental Theorem of Algebra) Any non-constant
polynomial in C[x] has a root in C.

Despite its name, the ‘Fundamental Theorem of Algebra’ is not a theorem of
algebra at all. All known proofs of it (and there are many) require some argu-
ments from analysis. The best-known proof uses Liouville’s Theorem, a result
which comes at the end of a first course on complex analysis. Liouville’s Theorem
states that a complex analytic (that is, everywhere differentiable) function which
is bounded must be constant. If f were a non-constant polynomial with no roots
in C, then it can be shown that 1/f(z) → 0 as z → ∞, and hence that 1/f is
bounded; Liouville’s Theorem would then imply that 1/f (and hence also f) is
constant, a contradiction.

In Chapter 8, there is a completely different proof. It replaces most of the
analysis by algebra, using only facts about R which are consequences of the
Intermediate Value Theorem. By contrast, it uses some fairly sophisticated group
theory.

Definition We say that a field F is algebraically closed if it has the prop-
erty that any non-constant polynomial in F [x] has a root in F . Thus we can
express the conclusion of the Fundamental Theorem of Algebra more simply:
C is algebraically closed.

Exercise 6.1 Prove that 2 + 2 = 4.

Remark Bertrand Russell, in his History of Western Philosophy, says:

‘3’ means ‘2+1’, and ‘4’ means ‘3+1’. Hence it follows (though the
proof is long) that ‘4’ means the same as ‘2+2’. Thus mathematical
knowledge ceases to be mysterious.

Exercise 6.2 Prove that, if a and b are natural numbers (regarded as sets, as in the
construction), then the following are equivalent:

(a) a ≤ b; (b) a ⊆ b; (c) a ∈ b.

Exercise 6.3 In the construction of natural numbers, we take

0 = ∅, 1 = {∅}, 2 = {∅, {∅}}, 3 = {∅, {∅}, {∅, {∅}}}, . . .

So each natural number is represented by a string of symbols from the alphabet with
four symbols: ∅, opening and closing braces, and comma. Calculate the number of
occurrences of each symbol in the string representing n.

Exercise 6.4 Prove carefully that Z is a ring.
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Exercise 6.5 (∗) Prove the division algorithm for Z: if a, b ∈ Z with b > 0, then there
exist q, r ∈ Z with a = bq + r and 0 ≤ r < b.

Exercise 6.6 (∗) Prove the Principle of the Supremum for R: if S is a non-empty
subset of R which has an upper bound, then S has a least upper bound.

Algebraic and transcendental numbers
Among the real (or complex) numbers, there are some (such as

√
2 or i) which

satisfy polynomial equations with integer coefficients, and others (like π and e)
which do not. In this section, we examine the distinction between the two classes
of numbers, and give an application to ruler-and-compass constructions.

6.6 Algebraic numbers. We followed the traditional approach to the con-
struction of the number systems. Another way to proceed, having constructed
the rationals, would be to add next the roots of polynomials, and then put in all
the other useful numbers that we require.

Instead of doing that, we now look back and examine the algebraic numbers
(the roots of polynomials over the rationals), and establish that they do form a
field.

Definition Let F be a field, E a subfield of F , and a ∈ F . We say that a is
algebraic over E if there is a non-zero polynomial f ∈ E[x] such that f(a) = 0
(evaluated in F ).

We will prove that the set of all elements of F which are algebraic over E is
a field. In order to do this, we require some results about field extensions.

Definition Let F be a field, E a subfield of F .

(a) For a ∈ F , the field generated by a over E is defined to be the smallest
subfield of F which contains both E and a, denoted by E(a).

(b) The degree of F over E, denoted by [F : E], is the dimension of F as
a vector space over E (when we allow multiplication only of elements of F
by elements of E, as in Example 3 in Section 4.2.)

Proposition 6.9 Let E be a subfield of F , and a ∈ F . Then a is algebraic over
E if and only if [E(a) : E] is finite.

Proof Suppose first that [E(a) : E] = n is finite. Then the n + 1 elements
1, a, a2, . . . , an of the vector space E(a) over E must be linearly dependent. So
there exist scalars c0, c1, c2, . . . , cn ∈ E, not all zero, such that

c0 + c1a+ c2a
2 + · · ·+ cna

n = 0.

This equation says that the non-zero polynomial f(x) = c0 + c1x + · · · + cnx
n

has a as a root; so a is algebraic over E.
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Conversely, suppose that a is algebraic over E. Let f ∈ E[x] be a monic poly-
nomial of least degree satisfied by a. (This is called the minimal polynomial
of a over E.) Now f is irreducible in E[x]. For, if f = gh, where g and h have
smaller degree than f , then we have g(a)h(a) = 0 in F ; so either g(a) = 0 or
h(a) = 0, contrary to the choice of f as the polynomial of smallest degree that
has a as a root.

Let g be any polynomial in E[x]. Obviously, if f divides g, then g(a) = 0.
Conversely, suppose that g(a) = 0. Write g = fq+r, where r = 0 or r has degree
less than deg(f). But r(a) = g(a) − f(a)q(a) = 0; so, by choice of f , we have
r = 0, and f divides g.

Now let θ be the ‘evaluation’ homomorphism from E[x] to F defined by
gθ = g(a). We have Ker(θ) = 〈f〉 (by the preceding paragraph: for this equation
says that g(a) = 0 if and only if f divides g). Hence Im(θ) ∼= E[x]/〈f〉, by
the First Isomorphism Theorem. Since f is irreducible, E[x]/(f) is a field. Thus,
Im(θ) is a field containing E and a. Also, we know from Section 4.2 that E[x]/〈f〉,
and hence Im(θ), is a finite-dimensional vector space over E. So [E(a) : E] is
finite, as required.

Theorem 6.10 Suppose that E,F,G are fields with E ⊆ F ⊆ G. Then [G : E]
is finite if and only if both [G : F ] and [F : E] are finite. If this holds, then

[G : E] = [G : F ] · [F : E].

Proof If [G : E] is finite, then so is [F : E] (since F is a subspace of G, as
E-vector spaces); and so also is [G : F ] (since a basis for G as E-vector space
certainly spans G as F -vector space).

Conversely, suppose that [F : E] = m and [G : F ] = n are finite. Let
f1, . . . , fm be a basis for F as E-vector space, and let g1, . . . , gn be a basis for
G as F -vector space. We claim that the mn elements figj , for i = 1, . . . ,m and
j = 1, . . . , n, form a basis for G as E-vector space. Proof of this claim will show
that [G : E] is finite, and also prove the product formula for the degree.
Spanning : Take a ∈ G. Express it in terms of the basis over F ; say

a = b1g1 + · · ·+ bngn.

Now each bj is an element of F , so can be written in terms of the basis over E:

bj = c1jf1 + · · ·+ cmjfm.

Substitution gives

a =
m∑
i=1

n∑
j=1

cijfigj .

So the elements figj form a spanning set.
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Linearly independent : Suppose that

m∑
i=1

n∑
j=1

cijfigj = 0.

Each term in the sum over j, namely
∑m

i=1 cijfi, is an element of F . Since
g1, . . . , gn are linearly dependent over F , we must have

∑m
i=1 cijfi = 0 for each j.

Now the linear independence of f1, . . . , fm over E shows that all the coefficients
cij are zero.

This completes the proof.

Theorem 6.11 Let E and F be fields with E ⊆ F . Then the set of all elements
of F which are algebraic over E is a field containing E.

Proof In Chapter 2, we did not specifically develop a subfield test. But we will
be done if we prove that the set A of elements algebraic over E is a subring con-
taining the inverses of all its non-zero elements. For it is certainly commutative
(since it is contained in the field F ) and has an identity (since it contains the
field E). So we have to show that, for any a, b ∈ A, we have a− b ∈ A, ab ∈ A,
and a−1 ∈ A if a �= 0.

So choose any a, b ∈ A. Then a is algebraic over E, so [E(a) : E] is finite.
And b is algebraic over E, hence certainly algebraic over E(a); so [E(a, b) : E(a)]
is finite (where we have used E(a, b) as an abbreviation for E(a)(b), the field
generated by a and b over E). By the above proposition, [E(a, b) : E] is finite.
But E(a, b) contains a − b, ab, and a−1 (if a �= 0); so all these elements are
algebraic over E, and lie in A, as required.

Now we let A be the set of all complex numbers which are algebraic over Q.
Then A is a field. Its elements are called algebraic numbers. Using the
Fundamental Theorem of Algebra, we can show:

Theorem 6.12 A is an algebraically closed field.

The proof depends on the following result. If E is a subfield of F , we say that
F is algebraic over E if every element of F is algebraic over E.

Proposition 6.13 Let E,F,G be fields with E ⊆ F ⊆ G. If F is algebraic over
E, and G is algebraic over F , then G is algebraic over E.

Proof Take any element c ∈ G. Since c is algebraic over F , there is a polyno-
mial f(x) = xn + an−1x

n−1 + · · · + a0 in F [x] such that f(c) = 0. Now each of
a0, a1, . . . , an−1 is algebraic over E. So each of [E(a0) : E], [E(a0, a1) : E(a0)],
and so on, is finite. So [E(a0, a1, . . . , an−1) : E] is finite. If F0 is the field
E(a0, a1, . . . , an−1), then c satisfies the polynomial f with coefficients in F0;
so c is algebraic over F0, and [F0(c) : F0] is finite. Thus [F0(c) : E] is finite, and
c lies in F0(c); so [E(c) : E] is finite, and c is algebraic over E. So, by definition,
G is algebraic over E.
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Proof of the Theorem Take any non-constant polynomial f ∈ A[x]. By the
Fundamental Theorem of Algebra, f has a root c ∈ C. Then A[c] is algebraic
over A, which is itself algebraic over Q by definition; so A[c] is algebraic over Q.
But every complex number algebraic over Q is in A; so c ∈ A. Thus f has a root
in A, and we conclude that A is algebraically closed.

6.7 Transcendental numbers. Nothing we have said so far allows us to
conclude that the field of complex numbers is really different from the field A of
algebraic numbers. If these two fields were the same, there would be no need to
go through the construction of the real numbers by Cauchy sequences; everything
could be obtained from Q by adjoining roots of polynomials.

To lend an air of mysticism to the proceedings, we define a transcendental
number to be a complex number which is not algebraic, that is, an element of
C \ A. The question is: Do transcendental numbers exist?

The answer is that they do; but there are three entirely different ways of reach-
ing this conclusion. The first is to show that some very familiar number such as e
(the base of natural logarithms) or π (the ratio of the circumference of a circle to
its diameter) is transcendental. This was achieved for e by Hermite in 1873, and
for π by Lindemann in 1882. (A modification of Hermite’s proof is given below,
involving various simplifications.) The second approach, taken by Liouville in
1844, was to write down a particular number which is easy to prove transcen-
dental. The third, most revolutionary, approach is that of Cantor in 1874. He
gave an argument which shows that ‘almost all’ numbers are transcendental, but
without exhibiting even a single example!

First proof: The transcendence of e

Proposition 6.14 e is transcendental.

Proof We assume, to the contrary, that e is algebraic, and let

anen + · · ·+ a1e + a0 = 0,

where the coefficients ai are rational. Multiplying this equation by the least
common multiple of the denominators, we may assume that the ai are integers.
Furthermore, assuming we took the minimal polynomial of e, we have a0 �= 0.

We let p be any prime number, and define the polynomial

f(x) =
xp−1(x− 1)p(x− 2)p · · · (x− n)p

(p− 1)!
.

Now f is a polynomial of degree np+ p− 1 with rational coefficients. Let f (i)(x)
be the polynomial obtained by differentiating f(x) i times. Note that f (i)(x) = 0
for i ≥ np+ p. We also require the following property:

For all i, and for j = 0, 1, . . . , n, f (i)(j) is an integer, and is divisible by p
unless j = 0 and i = p− 1.
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The proof uses Leibniz’s rule for differentiating a product. Suppose that j �= 0.
To evaluate f (i)(j), we add all of the terms obtained by writing i as a sum of n+1
non-negative integers m0, . . . ,mn, differentiating the kth factor (x−k)p (or xp−1

if k = 0) mk times, multiplying the product of the results by a suitable integer
coefficient (a so-called multinomial coefficient), and dividing by the denominator
(p − 1)! of f . If (x − j)p is differentiated fewer than p times, there is a factor
(x − j), which vanishes when we substitute x = j; if it is differentiated more
than p times, then it is zero; and if it is differentiated exactly p times, then the
result is p!, which leaves p on division by (p − 1)!. The contribution from all of
the other factors multiplies this by an integer. So the result is a multiple of p.

Now suppose that j = 0. Again, we only obtain a non-zero contribution if the
first term xp−1 is differentiated p− 1 times; the resulting term (p− 1)!, divided
by the denominator (p− 1)!, leaves 1. Again, the effect of the other factors is to
multiply the result by an integer. If any other factor is differentiated even once,
there will be a factor of p in the product, and so the result is divisible by p. So
only in the case when j = 0 and i = p− 1 is the result not divisible by p (and it
is definitely not divisible by p in that case).

Let F (x) be the sum of f(x) and its derivatives of all orders. (As we saw, this
is a finite sum.) Now F ′(x) is the sum of all the derivatives; so F ′(x)− F (x) =
−f(x). Now

d
dx

(
e−xF (x)

)
= e−x(F ′(x)− F (x)) = −e−xf(x).

Hence, for j = 0, . . . , n,

aj

∫ j

0
e−xf(x) dx = ajF (0)− aje−jF (j).

Multiply this equation by ej and sum over j = 0, 1, . . . , n,
n∑

j=0

(
ajej

∫ j

0
e−xf(x) dx

)
= F (0)

n∑
j=0

ajej −
n∑

j=0

ajF (j)

= −
n∑

j=0

np+p−1∑
i=0

ajf
(i)(j).

Here we have used the supposed equation
∑n

j=0 aje
j = 0 satisfied by e, together

with the definition of F as the sum of f and its derivatives.
This last equation is the key to the proof. We show that the left-hand side

can be made arbitrarily close to zero by choosing p to be sufficiently large. We
also show that the right-hand side is an integer not divisible by p, and hence
has modulus at least 1. This is a contradiction, which completes the proof. So it
remains to establish the two assertions.

First, consider the left-hand side. For 0 ≤ x ≤ n, we have

|f(x)| ≤ nnp+p−1/(p− 1)!,
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so that ∣∣∣∣∣∣
n∑

j=0

(
ajej

∫ j

0
e−xf(x) dx

)∣∣∣∣∣∣ ≤
n∑

j=0

|ajej |
∫ j

0

nnp+p−1

(p− 1)!
dx

=
n∑

j=0

|ajej |j · n
np+p−1

(p− 1)!
,

and the last expression tends to zero as p→∞.
Now consider the right-hand side; call it R. Our observation about f shows

that R is indeed an integer. Moreover, all terms except −a0f
(p−1)(0) are integers

divisible by p. So R ≡p −a0f
(p−1)(0). If we choose p greater than |a0| then,

using the fact that a0 �= 0 (see the start of the proof) and f (p−1)(0) is not
divisible by p, we see that R is not divisible by p, as claimed. This completes
the proof.

This proof is taken (with thanks) from Ian Stewart’s book Galois Theory.
In the same book, you will find an account of the proof that π is transcendental.
This is similar but more complicated. (In the exercises after this chapter, Stew-
art gives a number of ‘true or false?’ questions, one of which reads: ‘Sometimes
the only way to prove a theorem is to pull rabbits out of hats.’ You may
agree!)

Second proof: Transcendence of Liouville’s number Liouville devised a simpler
proof that transcendental numbers exist. He first showed that it is impossible
to find very good rational approximations to irrational algebraic numbers (in a
suitable sense). Then he wrote down a number which has very good rational
approximations, and deduced that this number must be transcendental.

Given any real number α, we can find rational numbers as close to it as we
choose. The rational numbers with denominator q cover the real line with a gap
of 1/q between two consecutive ones, so we can find one of these within 1/q of
any real number. What makes a good rational approximation to α is that the
difference between α and the approximation p/q is much smaller than 1/q.

This is the result about approximating algebraic numbers.

Theorem 6.15 Let α be an algebraic number whose minimal polynomial has
degree n. Then there is a constant c > 0 such that there are only finitely many
rational numbers p/q satisfying |α− p/q| < 1/cqn.

Proof Let f(x) be the minimal polynomial of α, the polynomial of least degree
having α as a root. Multiplying by the least common multiple of the denom-
inators of the coefficients of f , we may assume that all the coefficients are
integers.

Consider the derivative f ′. This is a continuous function, and so it is bounded
on any closed interval; say, |f ′(x)| ≤ c for x ∈ [α− 1, α+ 1].
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Now there are only finitely many rational numbers p/q such that 1 <
|α − p/q| < 1/cqn (this can only hold if q < (1/c)1/n). So any other ratio-
nal approximation p/q for which |α − p/q| < 1/cqn must lie in the interval
[α− 1, α+ 1]. We show that there are no such rationals.

The Mean Value Theorem tells us that

f(α)− f(p/q) = (α− p/q)f ′(ξ),

where ξ is some real number between α and p/q. Now f(α) = 0, by assumption.
Also f(p/q) �= 0: for f is irreducible in Q[x] and has degree greater than 1, and so
has no rational root. Since the coefficients of f are integers, f(p/q) is a rational
number with denominator qn, so |f(p/q)| ≥ 1/qn. Also, since ξ is in the interval
[α− 1, α+ 1], we have |f ′(ξ)| ≤ c.

Putting all this together, we get |α− p/q| ≥ 1/cqn.

Liouville’s number is the real number with decimal expansion

α = 0.110001000000000000000001 . . .

(the ones occur in positions 1!, 2!, 3!, . . .). In other words,

α =
∞∑
n=1

10−n!.

Now α is irrational, since any rational number has a terminating or periodic
decimal expansion. Let an be the nth partial sum of the series for α; that is,
an =

∑n
m=1 10

−m!. Then an is a rational number p/q, where q = 10n!. Also,
α− an < 2 · 10−(n+1)! = 2/qn+1. So, given n, and given any positive constant c,
we have |α−am| < 1/cqnm for all sufficiently largem, where qm is the denominator
of the rational number am. So it is impossible that α satisfies a polynomial of
degree n. Since this is true for all n, we see that α is transcendental.

Third proof: Transcendence of almost all numbers In the late nineteenth cen-
tury, Cantor was developing the concept of the cardinal number of elements
in an infinite set, allowing him to compare the sizes of infinite sets. One of the
triumphs of his theory is the following proof of the existence of transcendental
numbers, which is technically much simpler than either of the other proofs.

Definition An infinite set X is countable if there is is a bijection between X
and the set N of natural numbers; that is, if the elements of X can be labelled
as x0, x1, x2, . . . (indexed by the natural numbers).

Among Cantor’s discoveries was the following result:

Theorem 6.16 (a) The set A is countable.
(b) The sets R and C are not countable.
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Proof (a) For A, we have to list all the algebraic numbers in a sequence.
Each algebraic number is the root of a polynomial f , and by multiplying by the
least common multiple of the denominators we can assume that f has integer
coefficients. Now each polynomial has only finitely many roots, so if we can list
all the polynomials then we can list the algebraic numbers.

To list the integer polynomials, we define the height of the non-constant
polynomial anxn + an−1x

n−1 + · · · + a0 to be the positive integer n + |an| +
|an−1| + · · · + |a0|. There are only a finite number of polynomials with any
given height, and so we can list the roots of all the polynomials of height 2 (in
fact, there are just two such polynomials, namely x and −x), then height 3,
and so on.

(We are using here an instance of a general principle, according to which the
union of a countable number of finite sets is countable.)

(b) We will show that the unit interval (0, 1) ⊆ R is uncountable; the same
assertion then follows for the larger set C. Here are two proofs:

First proof This is Cantor’s famous ‘diagonal argument’. We represent the real
numbers in the unit interval as decimals, which may be finite (terminating), or
recurring, or neither. We assume that all the decimals are infinite, by appending
zeros to the finite ones (so, for example, 1/2 = 0.50000 . . .).

Suppose that the unit interval is countable; that is, we can list all its mem-
bers as r1, r2, r3, . . .. Let ri have the decimal expansion 0.xi1xi2xi3 . . .. We show
that the assumption is wrong, by constructing a number s which is not in the
list. We define s to be the number whose decimal expansion is 0.b1b2b3 . . .,
where

bi =
{
7, if aii = 5,
5 if aii �= 5.

Now, by construction, s �= ri, since the ith decimal digit of s is different from
that of ri. So s is not equal to any number in the list, and the assumption that
we have listed all the real numbers in (0, 1) must be wrong.

Second proof Again suppose that r1, r2, r3, . . . is a list of all the real numbers
in (0, 1). Take any positive real number ε, and for n = 1, 2, . . ., let In be the
interval of length ε/2n with centre at the point rn. (Possibly this interval is
not entirely contained in (0, 1), but this does not matter.) Since rn ∈ In, our
assumption that all the numbers in (0, 1) have been listed implies that the interval
(0, 1) is contained in the union of the intervals In. But (0, 1) has length 1, while
the union of the intervals In is at most

∑
ε/2n = ε. (The length may be smaller

since the intervals may overlap.)

Since C is uncountable but A is countable, there is at least one transcen-
dental number. But the proof gives no recipe to find one. (The first proof
appears constructive: it shows that, given a list of all the algebraic numbers, if
we knew the ith digit in the decimal expansion of the ith algebraic number in the
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list, we could construct a transcendental number. But this is only a theoretical
possibility.)

However, the proof gives more. We can see that the set of transcendental
numbers, like the set of complex numbers, is uncountable. (If it were countable,
and was enumerated as b1, b2, b3, . . ., then we could take a list of all the algebraic
numbers as in part (a) of the theorem, say a1, a2, a3, . . ., and produce a list of
all the complex numbers as a1, b1, a2, b2, a3, . . ., contrary to part (b).)

The second proof shows a little more. The algebraic numbers in the unit inter-
val, or indeed any countable set, can be covered by a union of intervals with total
length less than any preassigned positive number ε. So, if we choose a number
at random from the unit interval, with probability 1 it will be transcendental.
(In the language of measure theory, we say that the algebraic numbers form a
null set.)

Remark The similar fact that the rational numbers form a null set seems
to have been known to the remarkable fourteenth-century French mathemati-
cian Nicole Oresme. In his work De proportionibus proportionum, he states the
proposition

It is probable that two proposed unknown ratios are incommensurable.

On the basis of this and related ideas he argued that the future is unpre-
dictable and hence that astrology is futile. See Crosby’s book cited earlier, or
Karl Petersen’s Ergodic Theory, for more information about Oresme.

6.8 Ruler-and-compass constructions. The topic of ruler-and-compass
constructions has fascinated mathematicians since the days of the ancient Greeks.
The three famous problems (trisecting a general angle, duplicating a cube, and
squaring a circle), are all now known to be impossible; but this has not halted
the steady stream of ‘solutions’ which arrive at mathematics departments all
over the world!

The general set-up can be described as follows: We are given a finite set S
of points in the Euclidean plane, and wish to construct another finite set T . To
perform the construction, we are allowed two tools:

• a ruler or straightedge, which can be used to draw a line of arbitrary
length through any two points already constructed;

• a compass, which can be used to draw a circle whose centre is any con-
structed point, and whose radius is equal to the distance between any two
constructed points.

New points are constructed as the intersections of two lines, of a line and a circle,
or of two circles. The construction process is required to take only finitely many
steps.

The set S should contain at least two points, since otherwise nothing can
be constructed. It is conventional to assume that two of the points in S are the



The number systems 229

origin (0, 0) and the point (1, 0). (This convention simply sets the position and
scale of the coordinate axes.)

The works of Euclid, and the versions of them which have been fed to many
generations of schoolchildren in the past, contain the details of many construc-
tions: bisecting a line segment or an angle, constructing an equilateral triangle,
a square, or regular pentagon, dividing a line segment in the golden ratio, and so
on. But we show that certain things cannot be constructed by giving a necessary
condition.

If S is a finite set of points in R2, we define Q(S) to be the field generated by
the coordinates of all points in S; that is, the smallest field containing all these
coordinates.

Theorem 6.17 If T is constructible from S, then the coordinates of the points
in T lie in a field F containing Q(S) such that [F : Q(S)] is a power of 2.

Proof We look at one step in the construction, where one new point is cre-
ated, and show that its coordinates lie in an extension of the preceding field
with degree at most 2. Then, by the multiplicative formula for degrees of
extensions (Theorem 6.10), the final field has degree a power of 2 over the
initial one.

Suppose that we have constructed a set U of points. Their coordinates lie in
the field E = Q(U). Now we may draw a line joining two of these points, or a
circle with centre in U and radius equal to the distance between two points in U .
Coordinate geometry tells us how to find the equation of such a line or circle;
we claim that all coordinates in such an equation belong to E. For:

(a) The line joining (a, b) to (c, d) has equation (x− a)(d− b) = (y− b)(c− a).
(b) The circle with centre (a, b) and radius r has equation (x−a)2+(y−b)2 = r2.

If r is the distance between (c, d) and (e, f), then r2 = (c− e)2 + (d− f)2.

Now suppose that we construct a new point as the intersection of two such
curves.

(a) If both curves are lines, then we have to solve two linear equations with
coefficients in E; the solution lies in E.

(b) If one is a line and the other a circle, we can use the equation of the line
to find y in terms of x (or vice versa), and substitute into the equation of
the circle; we obtain a quadratic equation for x (or y). If the quadratic is
reducible in E[x], the solution lies in E; otherwise, it lies in an extension
E′ of E with [E′ : E] = 2. Once x has been found, the equation of the line
yields y without further enlarging the field.

(c) Suppose that both curves are circles, with equations x2+y2+ax+by+c = 0
and x2 + y2 +dx+ ey+ f = 0. Any solution must also satisfy the difference
of these equations, namely (a − d)x + (b − e)y + (c − f) = 0. This is the
equation of a line; so we are back in the situation of case (b).

The theorem is proved.
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We use this result to show that the classical problems are insoluble.

Duplicating the cube This problem gives the side of a cube of volume 1,
and asks for the side of a cube of volume 2 to be constructed. We may take
S = {(0, 0), (1, 0)}, so that Q(S) = Q. If the required length can be constructed,
then we can construct the point (21/3, 0), and so the final field F contains Q(21/3).

However, the polynomial x3 − 2 is irreducible over Q, since 21/3 is irrational.
So [Q(21/3) : Q] = 3. Since [F : Q] = 2n for some n, we conclude that [F :
Q(21/3)] = 2n/3, an obvious impossibility.

Trisecting the angle What is required in this problem is a general procedure
to trisect any angle. This can be refuted by showing just one angle that cannot
be trisected. (Some angles can be trisected, for example, a right angle: we can
construct an angle of 30◦ by bisecting the angle of an equilateral triangle.)

We show that the angle 60◦ cannot be trisected.
Note that, if an angle θ can be constructed, then the length cos θ is

constructible. Let c = cos 20◦. Then

4c3 − 3c = cos 60◦ = 1
2 ,

using the formula cos 3θ = 4 cos3 θ − 3 cos θ. So c is a root of the polynomial
8x3−6x−1 = 0. This polynomial is easily seen to be irreducible. Then the proof
continues exactly as for duplicating the cube.

Squaring the circle The problem is to construct a square whose area is equal
to that of a circle of unit radius; in other words, to construct a length of

√
π.

Since π is transcendental, by the result of Lindemann, it cannot lie in any exten-
sion of Q of finite degree, whether a power of 2 or not. So the construction is
impossible.

It may be the fact that this argument uses the relatively complicated proof of
the transcendence of π that leads to the existence of an army of ‘circle-squarers’
who do not accept it.

Exercise 6.7 Prove that, if a is transcendental over E, then E(a) is isomorphic to the
field of fractions of the polynomial ring E[x].

Exercise 6.8 Prove that it is not possible to construct a regular 7-gon with ruler
and compass. [Hint: The real number α = 2 cos(2π/7) satisfies the cubic equation
x3 + x2 − 2x− 1 = 0.]

More about sets
We used some arguments about the cardinalities of infinte sets in the preced-
ing section. This chapter finishes will a general account of Cantor’s theory of
cardinality, and a look at the Axiom of Choice.



The number systems 231

6.9 Cardinality. We used some basic notions of Cantor’s theory of cardinal
number to prove that almost all numbers are transcendental. Here is a more
detailed account, mostly without proofs.

We constructed each natural number as a set: the number n is the set
{0, 1, . . . , n − 1}. We say that a set A has cardinality n if there is a bijec-
tion between A and n. (This is well defined; there cannot be a bijection between
two different natural numbers.) We say that A is finite if it has cardinality n for
some natural number n, and infinite otherwise. Furthermore, A is countable
if there is a bijection between A and N, and is uncountable if it is infinite but
not countable.

One of the foundations of the theory is the Schröder–Bernstein theorem:

Theorem 6.18 (Schröder–Bernstein Theorem) If there are injective maps
from A to B and from B to A, then there is a bijection between A and B.

Using this, we can write |A| = |B| if there is a bijection from A to B; |A| ≤ |B|
if there is an injective map from A to B; and |A| < |B| if |A| ≤ |B| but there is
no bijection between them. [We have not defined the cardinality of a set, simply
these three relations between pairs of sets.] Clearly, if A ⊆ B, then |A| ≤ |B|.
Now the Schröder–Bernstein theorem states that, if |A| ≤ |B| and |B| ≤ |A|,
then |A| = |B|.

An example of Cantor’s diagonal argument is the following result, where P(A)
is the power set of A, the set of all subsets of A.

Theorem 6.19 |A| < |P(A)|.

Proof We can define an injection from A to P(A) by mapping the element
a ∈ A to the set {a}.

Suppose that F is a bijection between A and P(A). Let

B = {a ∈ A : a /∈ F (a)}.

Then B ∈ P(A), so by assumption B = F (b) for some b ∈ A. Now we ask: is
b ∈ B? If so, then by definition of B we have b /∈ f(b) = B; while if not, then
b ∈ f(b) = B. So either assumption leads to a contradiction. Hence no such
bijection can exist.

So the cardinal numbers of sets go on for ever; there is no largest set!
Some of Cantor’s discoveries are summarised in the following theorem:

Theorem 6.20 (a) The union and Cartesian product of countable sets are
countable.

(b) For any natural number n, |Nn| = |N|.
(c) A subset of a countable set is finite or countable.
(d) |Q| = |Z| = |N|, so Z and Q are countable.
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(e) |R| = |P(N)| > |N|, so R is uncountable.
(f) |C| = |R|.

In general, there may be sets A and B for which neither |A| ≤ |B| nor
|B| ≤ |A| holds; that is, there may be no injective map in either direction between
A and B. A set-theoretical principle called the Axiom of Choice ensures that
any two sets are comparable. We discuss this principle further in the next section.
It is independent of the other axioms for set theory; that is, it can be neither
proved nor disproved from them.

Cantor posed the famous Continuum Hypothesis, according to which
there does not exist a set A satisfying |N| < |A| < |R|; in other words, |R|
is the next cardinal number after |N|. This also turns out to be independent of
the other axioms (even including the Axiom of Choice).

6.10 The Axiom of Choice. This section contains a self-contained account
of the Axiom of Choice and its best-known application in algebra. We will use
this in the next chapter.

A family of sets is a collection (Xi : i ∈ I) of sets, where I is an index set.
Formally, we can regard it as a function F whose domain is the index set I, with
F (i) = Xi for all i ∈ I. A choice function for the family is a function f whose
domain is the index set I, satisfying f(i) ∈ Xi for all i ∈ I. Informally, f chooses
a member of each set Xi.

Of course, for a choice function to exist, it is necessary that each set Xi

should be non-empty. The Axiom of Choice asserts that this condition is also
sufficient:

Any family of non-empty sets has a choice function.

The Axiom of Choice cannot be proved or disproved from the other axioms
in a standard list of axioms for set theory, such as those of Zermelo and Fraenkel.
Note, however, that we do not need to invoke it to choose an element from a
single non-empty set, or even to choose elements from finitely many non-empty
sets; the other axioms justify doing this.

Bertrand Russell’s explanation shows what is going on here. Suppose that
you have a wardrobe containing infinitely many pairs of shoes. Can you choose
one shoe from each pair? Yes, just choose the left shoes. But if, instead, you
have infinitely many pairs of socks, then can you choose one from each pair? The
Axiom of Choice asserts that such a selection exists, even if (as here) there is no
rule for doing it.

It is this non-constructive nature of the Axiom of Choice which makes its
use somewhat controversial. Most mathematicians accept it, but perhaps more
because they cannot do without its remarkable consequences than because of
any philosophical reason.

We abbreviate the Axiom of Choice to AC.
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We now discuss two equivalent principles. First, some definitions:

Definitions A partial order on a set A is a reflexive, antisymmetric, and
transitive relation on A, usually written as ≤. In other words,

• if a ≤ b and b ≤ c then a ≤ c;
• a ≤ b and b ≤ a if and only if a = b.

We write a < b to mean a ≤ b and a �= b; and b > a means the same as a < b.
The relation is a total order if in addition the trichotomy law holds:

• for any a and b, exactly one of a < b, a = b, a > b holds.

A chain in a partially ordered set is a subset which is totally ordered by the
relation. An upper bound for a subset B is an element a satisfying b ≤ a for
all b ∈ B. A maximal element of A is an element a ∈ A satisfying a �< b for all
b ∈ A. The terms lower bound and minimal element are defined similarly.
A maximal or minimal element of a chain is usually called a greatest element
or least element respectively.

A well-order of A is a total order with the property that every non-empty
subset has a least element. (Apologies for the ugly grammar, which is a back-
formation from ‘well-ordered set’.)

Theorem 6.21 The following statements are equivalent:

(Axiom of Choice, AC) Any family of non-empty sets has a choice function.
(Zorn’s Lemma, ZL) If a partial order has the property that every chain has an
upper bound, then there exists a maximal element.

(Well-ordering Principle, WO) Every set has a well-order.

Proof (AC) implies (ZL): The idea of the proof is that, in order to find a
maximal element in a partial order, we start anywhere, and move upwards until
we come to one. This obviously works in a finite set; for an infinite set, more
care is required.

Assume AC, and let (A,≤) be a partially ordered set in which every chain
has an upper bound. Consider the family of upper bounds of chains, and let f
be a choice function for it; that is, for any chain C, f(C) is an upper bound
for C. Assume, for a contradiction, that A has no maximal element. Then, for
any a ∈ A, the set of elements greater than a is non-empty; again by AC, we
may let g(a) be an element greater than a.

Construct a chain B as follows. Start by including any element a ∈ A in B.
At any stage, if b is the greatest element of B so far, add g(b) to B; if B has
no greatest element, add f(B) to B. Each move retains the property that B is
a chain.

Now, by assumption, the chain B resulting from this construction has an
upper bound. But this is a contradiction, since if B has an upper bound b, we
can add either g(b) (if b ∈ B) or f(B) to it, so we had not finished.
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(ZL) implies (WO): Take a set A which we wish to well-order. Let X be the
set X of ordered pairs B,≤B), for which B is a subset of A and ≤B is a well-
order on B. Now define a relation ! on X by the rule that (B,≤B) ! (C,≤C) if
B ⊆ C and ≤B is the restriction of ≤C to B. Check that ! is a partial order on
X. Check also that every chain in (X,≺) has an upper bound (take the union of
all the sets and orderings in the chain). Assuming (ZL),X has a greatest element,
say (B,≤B). Now we must have B = A; for if not, choose an element a /∈ B and
define it to be greater than all elements of B to obtain a larger member of X.
So ≤A is a well-order on A.

(WO) implies (AC): We are given a family (Xi : i ∈ I) of non-empty sets. By
(WO), there is a well-order of their union

⋃
i∈I Xi. Now define f(i) to be the least

element of Xi with respect to this well-order; then f is a choice function.

Remark Convince yourself of the non-constructive nature of AC by trying to
construct a well-order of R.

Here is a typical (and very important) application of AC to algebra.

Theorem 6.22 (Krull’s Theorem) Assume AC. Then every ring with
identity has a maximal ideal.

Proof Let R be a ring with identity. Let A be the set of proper ideals of R.
The relation ≤ on A defined by I ≤ J if I ⊆ J is a partial order.

Suppose that B is a chain in A, and let K be the union of the ideals in B.
We claim that K ∈ A; that is, K is a proper ideal of R.

• If a, b ∈ K, then a ∈ I and b ∈ J for some I, J ∈ B. Since B is a chain,
then I ⊆ J or J ⊆ I holds; suppose the former. Then a, b ∈ J , so a− b ∈ J .
Hence a− b ∈ K.

• If a ∈ K and r ∈ R, then a ∈ I for some i ∈ B. Then ar, ra ∈ I, so
ar, ra ∈ K. Thus K passes the Ideal Test.

• To show that K is a proper ideal, suppose for a contradiction that K = R.
Then 1 ∈ K, so 1 ∈ I for some I ∈ B. But this is impossible, since members
of B are proper ideals by definition. (This is the only point where we use
the fact that R has an identity.)

By Zorn’s Lemma, A has a maximal element; that is, R has a maximal
(proper) ideal.

Remark Wilfrid Hodges has shown that the converse holds; the conclusion of
Krull’s Theorem is equivalent to the Axiom of Choice.

The Well-ordering Principle gives us a new proof technique: transfinite
induction. Let ≤ be a well-ordering of a non-empty set A. Then A has a least
element, which we will call 0. Moreover, if a is an element of A which is not the
greatest element, then the set of elements greater than A has a least element
s(a), called the successor of a.



The number systems 235

Now suppose that B is a subset of A. Assume that

• 0 ∈ B;
• if a ∈ B, then s(a) ∈ B;
• if b �= 0, b is not a successor, and every element smaller than b is in B, then
b ∈ B.

Then we can conclude that B = A. For if not, let c be the smallest element of
A \ B. Then c cannot be 0; it cannot be a successor; and then the final clause
shows that it cannot exist.

Here is an application, promised in the preceding subsection.

Proposition 6.23 Assume AC. Then for any two sets A and B, either there
is an injective map from A to B, or there is an injective map from B to A. In
other words, either |A| ≤ |B|, or |B| ≤ |A|.
Proof We may assume that both A and B are well-ordered. We attempt to
define a map f : A→ B as follows:

• f(0A) = 0B ;
• if f(a) = b, then f(s(a)) = s(b);
• if a �= 0 and a is not a successor, then f(a) is the least element of B not of
the form f(a′) for any a′ < a.

If we succeed in defining f , then it is an injective map from A to B. If we fail,
it is because at a certain point we have used up all the elements of B; then we
have an injective map from a subset of A onto B, whose inverse is an injective
map from B to A.

Exercise 6.9 Prove Theorem 6.20.

Exercise 6.10 Assuming AC, show that any infinite set contains a countable subset.
[Hint : Take a choice function f for the family of non-empty subsets of A. Now

define by induction a0 = f(A) and

an = f(A \ {a0, . . . , an−1})
for all positive integers n.]

Exercise 6.11 Assume AC. Show that, if R is a ring with identity, and I is a proper
ideal of R, then I is contained in a maximal ideal of R.

Exercise 6.12 Assume AC. Show that any Boolean ring R is isomorphic to a subring
of the ring of subsets of some set X.

[Hint : Take X to be the set of all maximal ideals of R.]

Exercise 6.13 A subset B of an arbitrary vector space V is a basis if every finite
subset of B is linearly independent, and every vector of V is in the span of some finite
subset of B. Assuming AC, show that every vector space has a basis.
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Exercise 6.14 Assume AC. Prove that there exists a discontinuous function f : R → R

satisfying

f(x+ y) = f(x) + f(y)

for all x, y ∈ R. Hint : Show first that every continuous solution to the displayed equation
has the form f(x) = cx for some real number c. Now regard R as a vector space over
the field Q. Show that the displayed equation is equivalent to the linearity of f , and
use a basis for the vector space to construct a discontinuous solution.



7 Further topics

In this chapter, we delve a little further into groups, rings, and fields, and examine
some other algebraic systems which have been studied.

Further group theory
The emphasis in this section is on finite groups. We prove Sylow’s theorems on the
existence of subgroups of prime power order, and the Jordan–Hölder Theorem,
which reduces the problem of describing all finite groups to describing the finite
simple groups and fitting them together. There is also some discussion of these
two sub-problems.

7.1 Permutation groups and group actions. As we already know, a per-
mutation group is a group whose elements are permutations; that is, a subgroup
of a symmetric group. It is more in keeping with the spirit of abstract algebra
that we should not tie down the elements of a group to being permutations.
Accordingly, we define an action of a group G on a set Ω. This will asso-
ciate to every group element a permutation, so that the permutations arising
will form a permutation group. But we do not require that the correspondence
between group elements and permutations is one-to-one. The formal definition
is as follows:

An action of a group G on a set Ω is a function µ : Ω × G → Ω with the
following two properties:

(GA1) µ(µ(x, g), h) = µ(x, gh) for all x ∈ Ω, g, h ∈ G.
(GA2) µ(x, 1) = x for all x ∈ Ω, where 1 is the identity of G.

These axioms are obviously related to the closure and identity laws for the group
G. You might have expected an axiom corresponding to the inverse law,

(GA3) µ(µ(x, g), g−1) = µ(µ(x, g−1), g) = x for all x ∈ Ω, g ∈ G;
but in fact this follows from (GA1) and (GA2) (Exercise 7.1).

You should think of µ(x, g) as the image of x under the permutation of Ω
corresponding to g. The next result guarantees that it does indeed work like that.

Proposition 7.1 (a) For any g ∈ G, the map πg : Ω → Ω defined by xπg =
µ(x, g) is a permutation.

(b) The map θ : G→ Sym(Ω) defined by gθ = πg is a homomorphism.
(c) Conversely, given any homomorphism θ : G → Sym(Ω), there is an

action µ of G on Ω given by µ(x, g) = x(gθ).
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Proof (a) The ‘derived axiom’ (GA3) says that the functions πg and πg−1 are
inverses of one another. A function that has an inverse is a permutation.

(b) This says that πgh = πgπh, which is the content of (GA1).
(c) Straightforward checking shows this.

Examples We will use three examples in which the action is derived from the
abstract group structure. In each case the axioms (GA1) and (GA2) are easily
checked.

(a) Let H be a subgroup of G. Let Ω be the set of all right cosets of
H in G. Define an action by µ(Ha, g) = H(ag). This is the action of right
multiplication.

(b) Define an action of G on itself (that is, Ω = G) by the rule µ(x, g) =
g−1xg. This is the action of conjugation.

(c) Let Ω be the set of all subgroups of G. Then G acts on Ω by conjugation:
µ(H, g) = g−1Hg.

Now we develop a little of the theory of group actions.
Let µ be an action of G on Ω. Define a relation ∼ on Ω by the rule that

x ∼ y if there exists g ∈ G with µ(x, g) = y. The reflexive, symmetric, and
transitive laws for ∼ follow almost immediately from the axioms (GA2), (GA3),
and (GA1) for an action (in other words, from the properties of identity, inverses,
and closure). So ∼ is an equivalence relation. Its equivalence classes are called
orbits. So x and y lie in the same orbit if the permutation corresponding to
some element of G carries x to y. The set Ω decomposes into a disjoint union of
orbits.

We say that the action is transitive if there is just one orbit, and intran-
sitive otherwise. In our examples, the action of G by right multiplication on
the right coset space is transitive, whereas (if G �= {1}) the action of G on
itself by conjugation is not; the orbits for the latter action are the conjugacy
classes of G.

The stabiliser of an element x ∈ Ω is the set

{g ∈ G : µ(x, g) = x}

of elements of G for which the corresponding permutation fixes x. It is
denoted Gx.

Theorem 7.2 (Orbit–Stabiliser Theorem) Given an action of G on Ω,
and x ∈ Ω:

(a) the stabiliser Gx is a subgroup of G;
(b) there is a bijection between the orbit of x and the set of right cosets of Gx

in G.
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Proof (a) Apply the subgroup test: the composition or inverse of permutations
fixing x fixes x. (Argue formally with the action µ if you prefer.)

(b) We show that, for any y belonging to the orbit of x, the set

X(x, y) = {g ∈ G : µ(x, g) = y}

is a right coset of H = Gx, and every right coset arises in this way. First, since y
lies in the orbit of x, there is an element of g such that µ(x, g) = y. Then every
element of the right coset Hg maps x to y. Conversely, if g′ maps x to y, then
g′g−1 fixes x, so lies in Gx = H; then Hg′ = Hg. So the set X(x, y) is a right
coset of Gx. Conversely, every right coset Gxg is contained in (and hence equal
to) X(x, µ(x, g)).

Remark If G is finite, the size of the orbit of x is equal to |G : Gx| = |G|/|Gx|.
In our examples,
(a) In the action of G on the right cosets of H by right multiplication, the

stabiliser of the coset H is the subgroup H. Show that the stabiliser of the coset
Hx is x−1Hx. The proposition is clear in this case.

(b) In the action of G by conjugation, the stabiliser of x is its centraliser
CG(x), and we recover the formula |G : CG(x)| for the size of the conjugacy
class.

(c) In the action of G by conjugation on its subgroups, the stabiliser of a
subgroup H is its normaliser

NG(H) = {g ∈ G : g−1Hg = H}.

This subgroup contains H, and indeed it is the largest subgroup of G in which
H is contained as a normal subgroup. If H is a normal subgroup of G, then
NG(H) = G.

Remark It can be shown that, with a suitably defined notion of isomorphism
of actions,

(a) every transitive action is isomorphic to the action by right multiplication
on the right cosets of a subgroup;

(b) the actions on the right cosets of two subgroups H and K are isomorphic
if and only if H and K are conjugate.

This gives us a complete classification of the transitive actions, and hence of
arbitrary actions, of a given group G; we just have to classify the subgroups up
to conjugacy.

Using the Orbit–Stabiliser Theorem, we can give a formula for the number
of orbits of a finite group acting on a finite set. If G acts on Ω, let fix(g) denote
the number of elements ω ∈ Ω which satisfy µ(ω, g) = ω (that is, the number of
points fixed by G).
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Theorem 7.3 (Orbit–Counting Lemma) The number of orbits of G on Ω
is given by the formula

1
|G|

∑
g∈G

fix(g).

Proof We count in two ways the number of pairs (ω, g) for which ω ∈ Ω, g ∈ G,
and g fixes ω.

On one hand, g fixes fix(g) points, so the number of pairs is

∑
g∈G

fix(g).

On the other hand, take ω ∈ Ω. The number of group elements fixing ω is the
order |Gω| of its stabiliser. Let O be the orbit containing Ω. Now every point of
O has stabiliser of the same order as ω, namely |Gω|; so the number of pairs with
ω ∈ O is |O| · |Gω| = |G|, by the Orbit–Stabiliser Theorem. That is, every orbit
contributes |G| pairs to the sum; so the total number of pairs is |G| multiplied
by the number of orbits.

Equating the two values and dividing by |G| gives the result.

Example How many ways are there of painting the faces of a cube with three
colours (say red, green, and blue), if two colourings differing by a rotation are
identified?

A colouring is a function from the six faces of the cube to the set
{red, green,blue} of colours; so there are 36 colourings. Let Ω be the set of these
colourings. We are asked to count the number of orbits on Ω of the group G of
rotations of the cube.

The group G has order 24 and consists of the following elements:

(a) The identity;
(b) three rotations through 180◦ about axes through face centres;
(c) six rotations through ±90◦ about axes through face centres;
(d) eight rotations through ±120◦ about axes through vertices;
(e) six rotations through 180◦ about axes through midpoints of edges.

Type (a) fixes all 36 colourings. For any other type, a colouring is fixed if
and only if faces in the same cycle get the same colour, so the number of fixed
colourings will be 3c, where c is the number of cycles of the rotation acting on the
faces of the cube. These numbers are 4, 3, 2, and 3 in cases (b)–(e) respectively.

So the number of orbits is

1
24

(
36 + 3 · 34 + 6 · 33 + 8 · 32 + 6 · 33) = 57.

We deduce from the Orbit-Counting Lemma a simple but useful result of
Jordan.
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Corollary 7.4 (Jordan’s Theorem) (a) Let G act transitively on the finite
set Ω, where |Ω| > 1. Then there is an element of G which fixes no point
of Ω.

(b) Let H be a proper subgroup of a finite group G. Then

⋃
g∈G

g−1Hg �= G.

Proof (a) By the Orbit-Counting Lemma, the average number of fixed points
of elements of G is equal to 1 (the number of orbits). The identity fixes more
than one point; so some element must fix less than one point.

(b) LetG act on the set of right cosets ofH by right multiplication. The action
is transitive. The point stabilisers are the conjugates g−1Hg. So the element
guaranteed by (a) lies in none of these conjugates.

7.2 Sylow’s Theorem. We next prove what is arguably the most important
theorem about finite groups, Sylow’s Theorem. It is motivated by the question:
Does Lagrange’s Theorem have a converse? Lagrange’s Theorem asserts that
the order of any subgroup of G divides the order of G. But not every divisor
occurs. The alternating group A4 has order 12 but has no subgroup of order 6
(Exercise 3.36).

Theorem 7.5 (Sylow’s Theorem) Let G be a group of order n = pam, where
p is prime and p does not divide m.

(a) G contains a subgroup of order pa.
(b) The number of subgroups of order pa is congruent to 1 mod p, and all these

subgroups are conjugate.
(c) Any subgroup of G of order a power of p is contained in a subgroup of

order pa.

Proof The proof involves the ideas of group actions.
For (a), let Ω be the set of all subsets of G of cardinality pa. This is a very

large set, of cardinality
(
pam

pa

)
. We define an action µ of G on Ω by ‘right

multiplication’:

µ(X, g) = Xg = {xg : x ∈ X}.

Now Ω splits into orbits for this action. We note that the sets making up any
orbit must cover the whole of G: for, if x ∈ X, then g ∈ µ(X,x−1g). So the size
of the orbit is at least n/pa = m, with equality if and only if the stabiliser is a
subgroup of order pa. Conversely, if X is a subgroup of order pa, then the orbit
of X consists of the right cosets of X, of which there are just m. If the size of an
orbit is larger than m, then (as it divides pam) it must be a multiple of p.
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So there are two kinds of orbits:

(a) orbits of size m, whose stabilisers have order pa;
(b) orbits of size divisible by p.

If we can show that the size of Ω is not divisible by p, then we can conclude that
orbits of the first type exist, and hence that G has subgroups of order pa.

Now the size of Ω is
(
pam

pa

)
. It is possible to show, using some number theory,

that this number is not divisible by p. But this can be done with a trick. The
size of Ω is completely independent of which group of order n we have chosen.
So consider the cyclic group of order n. We know that it has a unique subgroup
of order pa, hence has just one orbit of type (a). It follows that

(
pam

pa

)
≡p m,

so this number is not divisible by p. Thus part (a) of the Theorem is proved.
To prove parts (b) and (c), we take a different action. Let Ω be the set of all

subgroups of G of order pa (we know by (a) that this set is non-empty), and let
G act on Ω by conjugation: µ(X, g) = g−1Xg.

Let Q be any non-trivial subgroup of G whose order is a power of p. We
consider the action of Q on Ω obtained by restricting the action of G.

Suppose first that |Q| = pa, so that Q is one of the members of Ω. Clearly Q
fixes itself, and so lies in an orbit of size 1. We claim that Q fixes no other member
of Ω. If Q fixes a different subgroup X in this action, then by Exercise 7.3, we
have that QX is a subgroup, and

|QX| = |Q| · |X|/|Q ∩X| = pa · pa/pb = p2a−b,

where |Q ∩ X| = pb. But since the subgroups Q and X are different, their
intersection is a proper subgroup of each, and so b < a, whence 2a− b > a. But
this is impossible, since no higher power of p than pa divides |G| = pam.

So all the other orbits of Q have sizes which are greater than 1 but divide
|Q| = pa, and hence are divisible by p. It follows that |Ω| ≡p 1.

What about the orbits of G? These are obtained by glueing together orbits of
Q in some way. So the orbit containing Q has size congruent to 1 mod p, and all
the others have size congruent to 0 mod p. Could there be more than one orbit?
If P lies in a different orbit to Q, then the same argument would show that the
orbit of P has size congruent to 1 mod p and the others 0 mod p, which is clearly
impossible. So there is only one orbit for the action of G by conjugation; in other
words, all subgroups of order pa are conjugate. Thus, (b) is proved.

Finally, consider (c). Let Q have order pb, where 0 < b ≤ a. Every orbit of Q
on Ω has size dividing |Q|, and hence a power of p. Since |Ω| ≡p 1, at least one
orbit must have size 1. If this orbit is {P}, then as above we find that P ∩Q = Q,
whence Q ⊆ P .
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7.3 p-groups. If a group has prime power order, it has a number of special
properties not shared by arbitrary groups. These will be described later in this
section. I have chosen to give a composite result, which proves the basic property
of such groups at the same time as proving the first part of Sylow’s Theorem.
First, we prove Cauchy’s Theorem.

Theorem 7.6 (Cauchy’s Theorem) If a prime number p divides the order
of a group G, then G contains an element of order p.

Proof Let

Ω = {(g1, . . . , gp) ∈ Gp : g1 · · · gp = 1}.

We define an action of the cyclic group of order p on Ω by

(g1, . . . , gp)π = (gp, g1, . . . , gp−1)

where π generates Cp (that is, π shifts the coordinates cyclically). We have to
check that π maps Ω to itself. If (g1, . . . , gp) ∈ Ω, then gp = (g1 · · · gp−1)−1, so
gpg1 · · · gp−1 = 1 as required.

Now Cp has orbits of size 1 and p on Ω. An orbit of size 1 contains an element
(g, g, . . . , g) of Ω, where gp = 1; any other element of Ω lies in an orbit of size p.
Since |Ω| = |G|p−1 is divisible by p, the number of orbits of size 1 (and hence
the number of solutions of gp = 1) is also a multiple of p. One of these solutions
is g = 1, so there must be at least p− 1 more; these are elements of order p.

The principle used here states:

A group of p-power order, acting on a set of size divisible by p,
has the property that the number of fixed points is divisible by p;
hence, if there is at least one fixed point, then there are at least p.

We use this in the next proof.

Theorem 7.7 Let G be a group of order pam, where p is a prime not
dividing m. Then, for 0 ≤ i ≤ a,

Ai: G contains a subgroup of order pi;
Bi: if i < m, then any subgroup of order pi is contained normally in a subgroup

of order pi+1.

Proof The argument is an induction: we show that

A0 ⇒ B0 ⇒ A1 ⇒ · · · ⇒ Ba−1 ⇒ Aa

(the last statement Ba is vacuous). In other words, we have to start the induction
by showing A0, and the inductive step has two parts: Ai ⇒ Bi and Bi ⇒ Ai+1.

Statement A0 is easy: the identity subgroup will do.
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Suppose that Ai is true, with i < a. Let P be a subgroup of order pi, and
consider the action of P by right multiplication on its own right cosets. The
number of cosets is pa−im, a multiple of p; since P has p-power order and fixes
itself, it must fix another coset, say Px. Now the statement Pxg = Px for all
g ∈ P shows that x belongs to the normaliser of P . So [Ng(P ) : P ] is equal to
the number of fixed points of P in this action, hence divisible by p.

By Cauchy’s Theorem, NG(P )/P contains a subgroup Q of order p. This
subgroup corresponds to a subgroup Q of NG(P ) of order p|P | = pi+1 in which
P is normal.

Finally, it is trivial that Bi implies Ai+1 for i < a. So our inductive proof is
complete.

Corollary 7.8 (a) (First part of Sylow’s Theorem) A group of order pam,
where p is a prime not dividing m, contains subgroups of order pa.

(b) A group P of prime power order pa has the property that any proper
subgroup is properly contained in its normaliser; so there is a chain

P0 < P1 < · · · < Pa = P

of subgroups, where |Pi| = pi and each is a normal subgroup of the next.

The last part can be strengthened. We use the term p-group for a group
whose order is a power of a prime p.

Theorem 7.9 (a) The centre of a non-trivial p-group is non-trivial.
(b) If |P | = pa, then P has a chain

P0 < P1 < · · · < Pa = P

of subgroups, where |Pi| = pi and each is a normal subgroup of P . Moreover,
Pi+1/Pi

∼= Cp.

Proof Let P act on itself by conjugation. By our general principle stated ear-
lier, the number of fixed points (which is the order of the centre Z(P )) is greater
than 1. This proves (a). For (b), we proceed by induction. We take P0 = {1},
and P1 the subgroup generated by an element of order p in Z(P ). (Every sub-
group of Z(P ) is normal in P .) If we have constructed Pi, then we take Q to
be a normal subgroup of order p in P/Pi, and let Pi+1 be the corresponding
subgroup of P .

7.4 The Jordan–Hölder Theorem. In the remainder of this section, we
examine the structure of finite groups. It is not possible to give the kind of
description we gave for finite fields, where there is a unique field of each prime
power order; groups are much more complicated. First, we prove the Jordan–
Hölder Theorem, according to which any finite group is built from a unique
collection of simple groups. (A group G is simple if it is not the identity group
but its only normal subgroups are the trivial ones, the whole group and the
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identity.) This breaks the problem of describing groups into two parts: describing
the simple groups, and describing how they can be fitted together. The first part
has been completed, but the length and complexity of the proof have meant that
no self-contained account has yet appeared. The second problem is fairly well
understood, but we do not have a complete ‘solution’ to it.

Let G be a finite group. It is possible to choose a normal subgroup G1 of G
which ismaximal; that is, which is contained in no normal subgroup of G except
for itself and G. By the Second Isomorphism Theorem, the normal subgroups of
G/G1 correspond to subgroups of G containing G1; hence there are just two of
them, namely G/G1 and the identity. In other words, G/G1 is simple. Now we
repeat the procedure with G1. We end up with a sequence

G = G0 ≥ G1 ≥ G2 ≥ . . . ≥ Gr = {1},

with the properties that, for i = 1, 2, . . . , r, we have Gi � Gi−1 and Gi−1/Gi

is simple. The series displayed is called a composition series for G, and the
simple groups Gi−1/Gi are called the composition factors of G.

Note that we obtain a list of composition factors (so that the same simple
group may occur more than once), and also that the list of composition factors is
associated with a particular composition series. Note also that the product of the
orders of the composition factors of G is equal to the order of G. Furthermore,
given any descending series of subgroups, each normal in the preceding one, we
can refine the series by adding more terms to obtain a composition series, which
is just such a series in which no more terms can be inserted (since each term is
a maximal normal subgroup of its predecessor).

For example, S4 has a composition series

S4 ≥ A4 ≥ V4 = C2 × C2 ≥ C2 ≥ {1},

with composition factors S4/A4 ∼= C2, A4/V4 ∼= C3, V4/C2 ∼= C2, and C2/{1} ∼=
C2; in other words, C2 three times and C3 once. We have |S4| = 4! = 233.

The Jordan–Hölder Theorem asserts that, no matter what composition
series we choose forG, we will obtain the same composition factors (each repeated
the same number of times in both series).

Theorem 7.10 (Jordan–Hölder Theorem) Let

G = G0 ≥ G1 ≥ G2 ≥ . . . ≥ Gr = {1}

and

G = H0 ≥ H1 ≥ H2 ≥ . . . ≥ Hs = {1}

be two composition series for the finite group G. Then the lists of composition
factors obtained from the two series are the same. In particular, the series have
the same length (that is, r = s).
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Proof Our proof is by induction on the order of G. The induction begins with
the trivial group, which has the empty list of composition factors. So we assume,
inductively, that the theorem holds for all groups smaller than G.

If G1 = H1, then deleting G from the given series gives two composition series
for G1. By the induction hypothesis, they have the same lists of composition
factors (and the same length): adding G/G1 gives the list of composition factors
of G, and we are done. So we may suppose that G1 �= H1.

Let N = G1 ∩H1. Then N is the intersection of two normal subgroups of G,
and so is a normal subgroup. Also, G1H1 is a normal subgroup containing G1,
so G1H1 = G1 or G1H1 = G (by the maximality of G1 as normal subgroup).
The first alternative is impossible, since it implies H1 ≤ G1, whence H1 = G1
(since H1 is also maximal normal), contrary to assumption. So G1H1 = G.

From this it follows that

G/G1 = G1H1/G1 ∼= H1/(G1 ∩H1) = H1/N,

and similarly G/H1 ∼= G1/N .
Now let N = N0 ≥ N1 ≥ . . . ≥ Nt = {1} be a composition series for N . Let

L be the list of composition factors derived from this series. Adding G1 at the
start of the series gives a composition series for G1. By the inductive hypothesis,
L∪{G1/N} is the list of composition factors for G1, and is the same as obtained
from the composition series G1 ≥ G2 ≥ . . . ≥ {1}. Hence the list of composition
factors of G obtained from the first composition series is L ∪ {G1/N,G/G1}.

In the same way, the list obtained from the second series is L∪{H1/N,G/H1}.
But we have already showed that G/G1 ∼= H1/N and G/H1 ∼= G1/N . So the

two lists are the same.

7.5 Soluble groups. The Jordan–Hölder Theorem suggests that finite sim-
ple groups are the ‘building blocks’ of finite groups; any finite group is built
from a unique collection of simple groups (its composition factors). There are
two fundamentally different kinds of simple groups, and groups built entirely
from the first type have very different properties from those with some factors
of the second type.

The first type of simple group consists of the cyclic groups of prime order. By
Lagrange’s Theorem, these groups have no non-trivial subgroups at all, and so
certainly they are simple. A simple abelian group is necessarily cyclic of prime
order.

The second type consists of the non-abelian simple groups, which we will
discuss further in the next section.

A finite group G is soluble if all its composition factors are cyclic of prime
order. The strange name for this class of groups will remain mysterious until
we discuss the work of Galois in Chapter 8, connecting these groups with poly-
nomial equations which are ‘soluble by radicals’. In this section, we provide
the groundwork for that theory, by giving some alternative characterisations of
soluble groups.
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First, some more definitions. If x and y are elements of the group G, their
commutator, written [x, y], is the element x−1y−1xy. (Note that x and y
commute—that is, xy = yx—if and only if [x, y] = 1.) The commutator
subgroup, or derived group, of G, is the subgroup generated by all com-
mutators in G; it is written G′ or [G,G]. Finally, the derived series of G is the
series

G(0) ≥ G(1) ≥ G(2) ≥ . . .

defined by G(0) = G, G(i+1) = [G(i), G(i)] for i ≥ 0.

Lemma 7.11 For any group G, the subgroup [G,G] is normal in G and
G/[G,G] is abelian. Moreover, if N � G and G/N is abelian, then N ≥ [G,G].

Proof Calculation shows that

g−1[x, y]g = [g−1xg, g−1yg].

Hence conjugation by g merely permutes the commutators, and fixes the sub-
group they generate. Hence [G,G] is normal in G. Let H = [G,G]. Then, for any
x, y ∈ G, we have

[xH, yH] = [x, y]H = H,

since [x, y] ∈ H; and thusG/H is abelian. This argument shows further thatG/N
is abelian if N contains H. Conversely, suppose that G/N is abelian. Then, for
all x, y,

N = [xN, yN ] = [x, y]N,

so [x, y] ∈ N . Since this holds for all x and y, we have [G,G] ≤ N .

Theorem 7.12 The following conditions for the finite group G are equivalent:

(a) there is a series

G = G0 ≥ G1 ≥ G2 ≥ . . . ≥ Gr = {1}

of subgroups of G with Gi � Gi−1 and Gi−1/Gi cyclic of prime order for
i = 1, . . . , r;

(b) there is a series

G = H0 ≥ H1 ≥ H2 ≥ . . . ≥ Hs = {1}

of subgroups of G with Hi � Hi−1 and Hi−1/Hi abelian for i = 1, . . . , s;
(c) G(d) = {1} for some d.
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Proof Clearly (a) implies (b). Moreover, if (b) holds, then we can refine the
given series to a composition series; the composition factors are abelian simple
groups, and hence are cyclic of prime order, so (a) holds.

Suppose that (b) holds. Since H0/H1 is abelian, the lemma implies that
G(1) = [G,G] ≤ H1. This is the first stage of a proof by induction that G(i) ≤ Hi

for all i. Suppose that this holds for i = k. Then all commutators [g, h], for
g, h ∈ G(k), lie in H ′

k; so G
(k+1) ≤ H ′

k. Also, H ′
k ≤ Hk+1, since Hk/Hk+1 is

abelian. So the equation G(i) ≤ Hi holds also for i = k + 1. By induction, it
holds for all i; and so G(s) ≤ Hs = {1}.

Conversely, if G(d) = 1, then the normal series

G = G(0) ≥ G(1) ≥ . . . ≥ G(d) = {1}
has abelian factors, so (b) holds.

Corollary 7.13 A group of prime power order is soluble.

Proof Corollary 7.9 and Theorem 7.12.

Condition (a) is our definition of solubility. So the theorem gives three
equivalent characterisations of finite soluble groups.

For infinite groups, conditions (b) and (c) are equivalent (check that the
proof given above is valid), but not equivalent to (a) (which only holds for finite
groups!). So, in general, we take (b) or (c) as the definition of solubility.

7.6 Simple groups. If all finite simple groups were cyclic of prime order,
then all finite groups would be soluble. Unfortunately, this is not so. The
alternating group A5 is simple and non-abelian.

As mentioned earlier, the finite simple groups have been determined. This
theorem is probably the most complex ever proved, and is well beyond the scope
of this text. Even the description of the groups in the classification is more than
I can attempt here, except in broad outline.

According to the classification, the finite non-abelian simple groups are of
three types. First, there are the alternating groups An for n ≥ 5. (We will prove
their simplicity below.)

Then there are the so-called ‘groups of Lie type’, which are defined as cer-
tain groups of matrices over finite fields. The easiest type to describe are the
projective special linear groups. The special linear group SL(n, q) con-
sists of all n× n matrices over the finite field GF(q) which have determinant 1;
the group operation is matrix multiplication. The subgroup Z of this group con-
sisting of all scalar matrices with determinant 1 (that is, all cIn, where c ∈ GF(q)
and cn = 1), is normal; we set PSL(n, q) = SL(n, q)/Z. Now it can be shown
that PSL(n, q) is simple for all n ≥ 2 and all prime powers q, with the exception
of PSL(2, 2) and PSL(2, 3).

Finally, there are just 26 so-called ‘sporadic groups’, which have no uniform
definition and have to be constructed individually. The smallest has order 7920;
the largest, approximately 1054.
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Theorem 7.14 The alternating group An is simple for all n ≥ 5.

Proof We use a similar method to the one we employed to find the normal
subgroups of S5. We recall from the proof of Proposition 3.30 that the conjugacy
classes in S5 have sizes 1, 24, 15, 20, 10, 30, and 20, where the first four consist
of even permutations and make up A5. Obviously, a conjugacy class in S5 will
be a union of conjugacy classes in A5: we have to see how they split up.

Lemma 7.15 Let C be a conjugacy class in Sn, which is contained in An.
Then either C is a conjugacy class in An, or C is the union of two conjugacy
classes C ′ and C ′′ of the same size in An. The first alternative holds if and only
if some member of C commutes with an odd permutation.

Proof Since Sn acts transitively on C by conjugation, there is a bijection
between elements of C and cosets of the stabiliser of an element c ∈ C. Now, in
this case, the stabiliser of c is

{g ∈ Sn : g−1cg = c} = {g ∈ Sn : cg = gc} = CSn(c),

the centraliser of c.
If no odd permutation commutes with c, then H = CSn

(c) ≤ An, and so half
of the cosets of H lie in An and the other half in Sn \ An. So the orbit of An

containing c contains just half of the conjugacy class C, and C splits into two
classes of equal size.

On the other hand, suppose that H contains an odd permutation. Then
CAn

(c) = CSn
(c) ∩ An is a subgroup of index 2 in H. Now the size of the

An-conjugacy class is the index of the stabiliser, which is

|An : CAn(c)| = |Sn : CAn(c)|/2 = |Sn : CSn(c)| = |C|.

So C is a conjugacy class in An.

Now the conjugacy class of size 15 consists of elements with cycle struc-
ture (2, 2, 1) (products of two transpositions). Each of these commutes with a
transposition, so the class does not split in An. The class of size 20 consists of
3-cycles; the 3-cycle (1 2 3) commutes with the transposition (4 5), and again the
class does not split. The class of size 24 consists of 5-cycles. It can be shown that
a 5-cycle commutes only with its own powers, all of which are even permutations.
So this class splits into two classes of size 12 in A5.

We conclude that the conjugacy classes in A5 have sizes 1, 15, 20, 12, and
12. No sum of any proper sublist of these, including 1, is a divisor of 60. So
A5 has no normal subgroups except itself and the identity, and therefore it is
simple.

Now we show by induction that An is simple for n > 5. The inductive hypoth-
esis is that An−1 is simple. So let N be a non-trivial normal subgroup of An.
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Then NAn−1 is a subgroup of An containing An−1. If NAn−1 = An−1, then
N ≤ An−1; since N is normal, it is contained in all of the point stabilisers
(the conjugates of An−1), and so N = 1, contrary to assumption. Now An−1 is
a maximal subgroup of An, so it follows that NAn−1 = An.

The subgroup An−1 ∩ N is normal in An−1. By the inductive hypothesis,
An−1 ∩ N = An−1 or An−1 ∩ N = {1}. In the first case, N ≥ An−1, and the
equation NAn−1 = An implies N = An. In the second case, we have |N | = n,
and so An has a conjugacy class of size at most n− 1. By the lemma, Sn has a
conjugacy class of size at most 2(n− 1), which can be seen to be impossible for
n ≥ 6 (Exercise 7.13). So this case cannot occur, and we are done.

7.7 Extensions. The cyclic group C4 and the Klein group V4 both have
composition factors C2 (twice). So the composition factors alone are not enough
to determine a group. If simple groups are the building bricks of finite groups,
then extension theory is the mortar used to stick them together.

The general problem of extension theory is as follows: given groups A and B,
describe all possible groups G which have a normal subgroup N such that N is
isomorphic to A while G/N is isomorphic to B. (Such groups are called exten-
sions of A by B.) It is clear that a complete solution to this problem, together
with the list of finite simple groups, would allow us to describe finite groups
completely. Such a complete solution does not exist.

In this section, we examine an important special case of the extension
problem, when the group A is abelian. We will see that two pieces of informa-
tion are needed to define an extension of A by B: first, an action of B on A; and
then a factor set, a certain function from B ×B to A. Unfortunately, different
actions and factor sets may define isomorphic groups, so we do not get informa-
tion as precise as we would like; but we will prove some results based on this
approach.

Let A be an abelian normal subgroup of the group G, with G/A ∼= B. For
any g ∈ G, the map σg : A→ A defined by aσg = g−1ag is well defined (by the
normality of A), and is an automorphism of A. Now the map θ : G → Aut(A)
defined by gθ = σg is a homomorphism, since it is easily checked that σgσh =
σgh. Now A is abelian, so σa = 1 for a ∈ A. Thus A lies in the kernel of the
homomorphism θ. It follows that the value of gθ is the same for all elements
of the coset Ag. So θ induces a homomorphism φ : G/A = B → Aut(A). This
homomorphism is the action of B on A.

There is a special kind of extension of A by B known as a semidirect
product or split extension. This is an extension G containing a complement to
A, a subgroup H which satisfies AH = G, A∩H = {1}. Now a semidirect prod-
uct is determined up to isomorphism by the action. For we have H ∼= G/A = B,
and every element of G is uniquely expressible in the form ha for h ∈ H, a ∈ A.
We have

(h1a1)(h2a2) = (h1h2)(h−1
2 a1h2)a2 = (h1h2)(a1(h2φ)a2).
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So, if we identify H with B (to which it is isomorphic), and define an operation
◦ on B ×A by the rule

(b1, a1) ◦ (b2, a2) = (b1b2, a1(b2φ)a2),

the result is a group isomorphic to G.
The semidirect product of A by B using the action homomorphism φ : B →

Aut(A) is written as A � B, or (if we want to stress the action) A �φ B.
However, not every extension is split. For example, C4 and C2 ×C2 are both

extensions of C2 by C2 with trivial action (since both are abelian); the second, but
not the first, is a semidirect product. So we must look further. The complement
H is a special kind of set of coset representatives for A in G. So we choose an
arbitrary set of coset representatives, and describe the extension.

Let S be a set of coset representatives. We will always assume that we have
chosen the identity as the representative of the coset A. We also use the notation
g for the representative of the coset containing g. Note that the set of cosets (and
hence S) is in one-to-one correspondence with B. We write the representative of
the coset corresponding to b ∈ B as s(b).

Now any element of G has a unique representation of the form s(b)a, for
b ∈ B, a ∈ A. Also, s(b), acting by conjugation on A, induces the automorphism
bφ. Now

(b1)a1s(b2)a2 = (s(b1)s(b2))(a1(b2φ)a2),

and the only difference is that now we do not have s(b1)s(b2) = s(b1b2). However,
it is true that s(b1)s(b2) lies in the coset corresponding to b1b2; so we can write

s(b1)s(b2) = s(b1b2)f(b1, b2),

where f is a function from B ×B to A (that is, a function of two variables in B
taking values in A).

The function f is called a factor set.
Now it is clear that, if we know the action φ and the factor set f , then the

group is uniquely determined; taking its elements to be B × A as before, the
group operation ◦ is given by

(b1, a1) ◦ (b2, a2) = (b1b2, f(b1, b2)a1(b2φ)a2).

Note that, if the factor set is trivial (that is, it always takes the value 1), we have
the semidirect product.

At this point, for clarity, we change notation. We write the abelian group A
additively (so that 0 is the identity, and −a the inverse of a), and we write ab

instead of a(bφ).
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Theorem 7.16 The function f : B × B → A is a factor set if and only if it
satisfies

(a) f(1, b) = f(b, 1) = 0;
(b) f(b1, b2b3) + f(b2, b3) = f(b1b2, b3) + f(b1, b2)b3 .

Proof (a) follows from our choice of the identity as coset representative for the
coset A. (b) is obtained by (carefully) evaluating ((b1, 1) ◦ (b2, 1)) ◦ (b3, 1) and
(b1, 1) ◦ ((b2, 1) ◦ (b3, 1)) and equating the results.

Conversely, if (a) and (b) hold, then the operation ◦ defined above makes the
set A×B into a group which is an extension of A by B.

Our representation of the extension by a factor set depends on the choice
of the coset representatives. How does the factor set change if we use different
representatives? Suppose that the coset representatives s(b) and s′(b) give factor
sets f and f ′ respectively. We have s′(b) = s(b)d(b), where d is a function from
B to A satisfying d(1) = 0. Then we have

s(b1)d(b1)s(b2)(b2) = s(b1b2)d(b1b2)f ′(b1, b2).

After some calculation, and writing the result in additive notation, we obtain

f ′(b1, b2)− f(b1, b2) = d(b1)b2 + d(b2)− d(b1b2).

We call the factor sets f and f ′ equivalent if this condition holds. Thus, equiv-
alent factor sets arise from the same group with (possibly) different choices of
coset representatives.

It turns out that there is a convenient algebraic description of factor sets.
Since they are functions, we can add them pointwise:

(f1 ⊕ f2)(b1, b2) = f1(b1, b2) + f2(b1, b2).

The sum of factor sets is again a factor set (which can be checked using
Theorem 7.16), and indeed the factor sets form a group F with this operation.

The factor sets equivalent to the zero element (those of the form f(b1, b2) =
d(b1)b2 +d(b2)−d(b1b2) for some function d) are called inner factor sets. They
form a subgroup I of F . Now we define the extension group E(B,A) of A by B
(with the given action) to be the group F/I. Thus, elements of E(B,A) describe
extensions, and the zero element describes the split extension. In particular,

Every extension of A by B splits if and only if E(B,A) = {0}.

From this fact, we can obtain an important theorem on extensions:

Theorem 7.17 (Schur’s Theorem) Suppose that the abelian group A and
the group B have coprime orders. Then any extension of A by B splits.
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Proof Let |A| = m and |B| = n, with (m,n) = 1; suppose that pm + qn = 1
for some integers p and q. Let f ∈ F be a factor set. Since the values of f lie
in a group of order m, Lagrange’s Theorem shows that mf = 0 ∈ I. We show
that also nf ∈ I. It follows that f = (pm + qn)f ∈ I, so that I = F and
E(B,A) = F/I = {0}.

Define

d(b) =
∑
x∈B

f(x, b).

Now sum the equation

f(b1, b2b3) + f(b2, b3) = f(b1b2, b3) + f(b1, b2)b3

(equation (b) of Theorem 7.16) over b1 ∈ B, using the fact that b1b2 runs over
B as b1 does: we obtain

d(b2b3) + nf(b2, b3) = d(b3) + d(b2)b3 ,

so that nf(b2, b3) = d(b2)b3 + d(b3)− d(b2b3) is an inner factor set, as required.

Remark The theorem is true without the restriction that A is abelian. If either
A or B is soluble, then an inductive argument can be used to reduce the problem
to the case handled by Schur. This was done by Zassenhaus, and the result is
referred to as the Schur–Zassenhaus Theorem. In general, if the orders of A
and B are coprime, then at least one of them must be odd, and the celebrated
Feit–Thompson Theorem asserts that a group of odd order is soluble. But
the proof of this theorem is several hundred pages long!

7.8 A glimpse at homological algebra. The arguments used above give
a glimpse of an important area of algebra on which we have not yet touched,
known as homological algebra. The calculations that we made with factor sets
are not as ad hoc as they appear, but are part of a much larger scheme.

Let R be a ring, andM a right R-module. As part of the programme of study-
ing R via its modules, one can define a sequence of abelian groups Hn(R,M) for
n ≥ 0, called the cohomology groups of R with coefficients in M . This is in
part inspired by algebraic topology, where (abelian) groups are used as invariants
of topological spaces.

We cannot here even give the general definition, much less study the impor-
tant properties of the cohomology groups. It will suffice to say how they generalise
the extension group.

Let G be a group, and R a ring. We define the group ring to be the set of all
finite sums

∑
rigi, where ri ∈ R and gi ∈ G. Addition is defined coordinatewise:∑

rigi+
∑
sigi =

∑
(ri+si)gi. Multiplication is defined by extending the group

operation linearly. This multiplication is often called convolution: it is given by
the rule (∑

rigi

)
·
(∑

sigi

)
=

(∑
tigi

)
,
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where

ti =
∑

gjgk=gi

rjsk.

Now, if A is an abelian group on which G acts, then A becomes a right RG-
module, by extending the action of G on A linearly.

Now the following is true:

The extension group E(B,A) is equal to the second cohomology group
H2(ZB,A).

So the second cohomology group tells us about the splitting of extensions.
The first cohomology group also has a group-theoretic significance. In the

split extension G of A by B (with the given action), there are usually several
complements of A (subgroups H which satisfy AH = G,A ∩ H = {1}). The
number of conjugacy classes of such complements is equal to the order of the
first cohomology group H1(ZG,A). Indeed, there is a natural regular action of
H1(ZG,A) on the set of conjugacy classes.

For higher cohomology groups, the interpretations in terms of extensions are
less transparent.

Exercise 7.1 Show that (GA3) is a consequence of (GA1) and (GA2).

Exercise 7.2 Show that the proof of Cayley’s Theorem involves considering the action
of G by right multiplication on the set of right cosets of the trivial subgroup {1}.

Exercise 7.3 Let H and K be subgroups of the group G.

(a) Show that |HK| = |H| · |K|/|H ∩K|.
(b) Show that HK is a subgroup if and only if HK = KH.
(c) Suppose that h−1Kh = K for all h ∈ H. Show that HK is a subgroup.

Exercise 7.4 For each of the five regular solids, find a formula for the number of
colourings of the faces with r colours, two colourings differing by a rotation being
regarded as identical.

Exercise 7.5 What happens if we apply the Orbit-Counting Lemma to the action of
G on itself by conjugation?

Exercise 7.6 Let P be a p-group, and N a non-trivial normal subgroup of P . By
considering the action of P on N by conjugation, prove that N ∩ Z(P ) �= {1}.

Exercise 7.7 (∗) Let P be a Sylow p-subgroup of a finite group G, and letH = NG(P ).
Prove that NG(H) = H.

[Hint : if g ∈ NG(H), then g−1Pg is a Sylow subgroup of H; but H has only one
Sylow p-subgroup.]
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Exercise 7.8 (∗) Let G be a finite group. Show that the following properties of G are
equivalent:

(a) G is the direct product of its Sylow subgroups;
(b) if H is a proper subgroup of G, then NG(H) properly contains H.

[Hint : Any p-group satisfies (b), and this property is preserved by direct products.
For the converse, use the preceding question.]

Remark Such a group is said to be nilpotent.

Exercise 7.9 Deduce from Corollary 7.8 that, if p is prime, then any subgroup of
p-power order of a finite group G is contained in a Sylow p-subgroup of G.

Exercise 7.10 Let N be a normal subgroup of G, and P a Sylow p-subgroup of N .
Show that G = NG(P )N .

[Hint : Take g ∈ G. Then g−1Pg is a Sylow subgroup of N , and so g−1Pg = n−1Pn
for some n ∈ N . Then gn−1 = h ∈ NG(P ), and g = hn.]

Remark The argument in this question is called the Frattini argument.

Exercise 7.11 Prove the Jordan–Hölder Theorem for infinite groups having composi-
tion series of finite length.

Exercise 7.12 Show that a conjugacy class C in Sn splits into two classes in An if
and only if the cycle lengths of its members consist of distinct odd numbers.

Exercise 7.13 Show that, if an element c ∈ Sn has cycle type which contains the
number i with multiplicity ai, for i ≤ n, then the order of the centraliser of c is

f =
n∏

i=1

ai! iai ,

and hence that the conjugacy class of c has size n!/f . Deduce that the size of the
conjugacy class is greater than 2(n− 1) for n ≥ 6.

Exercise 7.14 Show that the group PSL(2, q) has order q(q2 − 1) if q is a power of 2,
and order q(q2 − 1)/2 if q is an odd prime power.

Exercise 7.15 The groups A5, PSL(2, 4), and PSL(2, 5) are all simple groups of order
60. Prove that they are all isomorphic.

Exercise 7.16 Prove that there is a unique simple group of order 60 (up to
isomorphism).

Exercise 7.17 Prove that a semidirect product A �φ B, where the action φ is trivial,
is the direct product A×B.

Exercise 7.18 Prove Theorem 7.16
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Exercise 7.19 Prove that E(Cp, Cp) ∼= Cp. [The split extension Cp × Cp corresponds
to the zero element of this group. The p− 1 non-zero elements are all associated with
the non-split extension Cp2 .]

Exercise 7.20 (a) Prove that the sum of factor sets is a factor set.
(b) Prove that an inner factor set is a factor set.
(c) Prove that the sum of inner factor sets is an inner factor set.

Further ring theory
We have some unfinished business from Chapter 2: the proof that any principal
ideal domain (PID) is a unique factorisation domain (UFD), and the proof of
Gauss’ Lemma. The first of these introduces a connection between factorisation
and chain conditions in a ring, and leads us to the Hilbert Basis Theorem.

7.9 PID implies UFD. In Chapter 2, we gave part of the proof that a prin-
cipal ideal domain is a unique factorisation domain: we showed the uniqueness,
but not the existence, of factorisations into irreducibles. Here is the remainder
of the proof. It depends on showing that a PID satisfies a condition which is
very important in more advanced ring theory, the ascending chain condition
(ACC) on ideals.

Proposition 7.18 Let R be a PID and let I1, I2, . . . be ideals in R forming an
ascending chain:

I1 ⊂ I2 ⊂ · · · .
Then the number of ideals in the chain is finite.

Proof Suppose that we have an infinite ascending chain of ideals; say, I1 ⊂
I2 ⊂ . . . . Let I =

⋃
In be the union of all the ideals in the chain. We apply the

Ideal Test to I:

(a) Take x ∈ I, r ∈ R. Now I =
⋃
In, so x ∈ In for some n. Since In is an

ideal, we have rx, xr ∈ In, so rx, xr ∈ I.
(b) Take x, y ∈ I. Then x ∈ In, y ∈ Im for somem. Without loss of generality,

n ≥ m; then Im ⊆ In, and so y ∈ In. Now x − y ∈ In, since In is an ideal; so
x− y ∈ I.

Thus I is indeed an ideal.
Now R is a PID, so I = 〈a〉 for some element a ∈ I. Now I =

⋃
n In,

and so a ∈ In for some n; so all multiples of a lie in In, whence I = In. But
In ⊂ In+1 ⊆ I, and we have a contradiction.

So an ascending chain of ideals must be finite.

Now we prove the theorem. Let R be a PID, and suppose a0 is an element
of R which is not zero or a unit and cannot be factorised into irreducibles. In



Further topics 257

particular, a0 itself is not irreducible (or we would have a factorisation with only
one term); say a0 = a1b1, where neither a1 nor b1 is zero or a unit. It cannot be
that both a1 and b1 have factorisations, or else we would obtain a factorisation
of a0 by combining them. Suppose, without loss, that a1 has no factorisation.
Then a1 = a2b2, where we may suppose that a2 has no factorisation; and so we
may continue with an = an+1bn+1 for all n.

Let In = 〈an〉. Since an = an+1bn+1 and bn+1 is not a unit, we have In ⊂ In+1;
so we have an infinite ascending chain of ideals, contrary to Proposition 7.18.

This establishes that every element in R (other than zero and units) has a
factorisation into irreducibles. We have already proved that the factorisation is
unique. So this completes the proof of Theorem 2.21.

7.10 Noetherian rings. The crucial step in the proof in the last section is
that, in a PID, there cannot be an infinite strictly ascending chain of ideals. This
followed from the fact that each ideal is generated by a single element. With a
little more effort, we can give a necessary and sufficient condition.

Theorem 7.19 The following conditions on a ring R are equivalent:

(a) there is no infinite strictly ascending chain of ideals of R;
(b) every ideal of R is generated by a finite number of elements.

Proof The proof that (b) implies (a) follows closely the argument in the last
section. Suppose that we have an ascending chain of ideals, say

I1 ⊆ I2 ⊆ . . . .

Then the union of this chain is an ideal I. Since we are assuming (b), the ideal I
is finitely generated; say, I = 〈r1, r2, . . . , rm〉. Now each of r1, . . . , rm belongs to
some ideal in the chain; say, rj ∈ Inj

for j = 1, . . . ,m. If n denotes the greatest
of n1, . . . , nm, then all of In1 , . . . , Inm are contained in In, by the fact that the
ideals form an ascending chain. Hence I = 〈r1, . . . , rm〉 ⊆ In. But obviously
In ⊆ I, since In is a member of a chain whose union is I. We conclude that
I = In, and the chain has at most n distinct terms in it.

Now we prove that (a) implies (b). Suppose that (a) holds for the ring R.
Suppose, for a contradiction, that I is an ideal which is not finitely generated.
Choose r1 ∈ I. Then 〈r1〉 ⊆ I; and the inclusion is strict, since otherwise I
would be generated by just one element. Hence we can choose r2 ∈ I \〈r1〉. Then
〈r1, r2〉 ⊆ I, and again the inclusion is strict.

Continuing in this way, we choose elements r1, r2, . . . ∈ I such that each one
is outside the ideal generated by its predecessors. Thus, if In = 〈r1, . . . , rn〉, the
chain

I1 ⊂ I2 ⊂ . . .

is a strictly increasing chain of ideals, contrary to assumption.
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In this proof, we made use of an innocent-looking principle: we showed that,
for each n, the set I \ In is non-empty, and proceeded to choose rn+1 from this
set. This is justified by the Axiom of Choice, which we discussed at the end
of the last chapter.

A ring R is called Noetherian, or is said to satisfy the ascending chain
condition on ideals (or the ACC), if condition (a) of the above theorem holds.
Thus, in particular, any principal ideal domain is Noetherian.

The last part of the proof in the preceding section shows the following:

Proposition 7.20 Let R be a Noetherian integral domain. Then every element
of R which is not zero or a unit can be factorised into irreducibles.

Here is an example of a non-Noetherian integral domain, in which factori-
sations into irreducibles do not necessarily exist. Let F be a field, and let R
be the ring of all expressions which are finite sums of terms of the form axq,
where a ∈ F , q is a non-negative rational number, and x is an indeterminate.
Addition and multiplication are defined in the ‘obvious’ way. (If we had said
‘non-negative integer’ rather than ‘non-negative rational number’, this would be
just the polynomial ring F [x].) Now x cannot be factorised into irreducibles: for

x = x1/2 · x1/2 = x1/2 · x1/4 · x1/4 = . . .

and none of the factors is a unit. From this, it is possible to extract an ideal
which is not finitely generated, or an infinite ascending chain of ideals.

On the other hand, the following theorem ensures a supply of Noetherian
rings.

Theorem 7.21 (Hilbert Basis Theorem) Let R be a commutative
Noetherian ring with identity. Then R[x] is Noetherian.

Proof Let J be an ideal in R[x]. Then it is not hard to show that the leading
coefficients of polynomials of degree n in J form an ideal In of R. Moreover,
In ⊆ In+1: for, if f ∈ J has degree n, then xf ∈ J has degree n+ 1 and has the
same leading coefficient as f .

Since R is Noetherian, the ascending chain I0 ⊆ I1 ⊆ . . . is finite. Say that
In = Im for all m > n. Moreover, In is finitely generated. Let f1, . . . , fk be
polynomials of degree n whose leading coefficients generate In.

Let g ∈ J be a polynomial of degree m ≥ n. Then, since Im = In, there are
elements r1, . . . , rk ∈ R such that r1f1+· · ·+rkfk has the same leading coefficient
as g. In other words, g−xm−n(r1f1+ · · ·+rkfk) belongs to J and has degree less
than m. By induction, every element of J is the sum of a polynomial with degree
less than n and one of the form f1h1 + · · ·+ fkhk, for some h1, . . . , hk ∈ R[x].

Similarly, for each p < n there is a finite set Sp of polynomials in J which
have degree p and whose leading coefficients generate Ip. Arguing as above, any
polynomial in J with degree less than n is a linear combination of S0∪· · ·∪Sn−1
(with coefficients in R).

So J is finitely generated.
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The dual condition to ACC is also important. A commutative ring R is said
to satisfy the descending chain condition or DCC, or to be Artinian, if
every strictly descending chain I1 ⊇ I2 ⊇ . . . of ideals is finite. This condition
turns out to be very strong:

Theorem 7.22 (Hopkins’ Theorem) If a commutative ring with identity is
Artinian, then it is Noetherian, and has the property that there is a finite upper
bound on the length of any chain of ideals.

The converse is false: the ring Z is Noetherian but not Artinian.
A similar result holds for non-commutative rings. We do not discuss this here:

see the books by McCoy or Cohn listed under Further Reading.

7.11 Gauss’ Lemma. Let R be a UFD. We want to show that the
polynomial ring R[x] is a UFD.

Take a polynomial f(x) = anx
n+· · ·+a1x+a0 ∈ R[x]. We define the content

of f , written C(f), to be the greatest common divisor (g.c.d.) of the coefficients
an, . . . , a1, a0. (Remember that greatest common divisors exist in a UFD, and
are determined uniquely up to associates.) We say that f is primitive if its
content is associate to 1 (that is, C(f) is a unit). Then any polynomial f can be
written f = C(f) · f1, where f1 is primitive.

Proposition 7.23 If f and g are primitive, then fg is primitive.

(This is the crucial step in the proof; it is sometimes called Gauss’ Lemma,
rather than the theorem that R[x] is a UFD.)

Proof Suppose that fg is not primitive; let p be an irreducible which divides
its content C(fg). Let

f = anx
n + · · ·+ a1x+ a0,

g = bmx
m + · · ·+ b1x+ b0.

Now f and g are primitive, so p cannot divide all the coefficients of either
polynomial. Choose r and s such that:

p | ai for i < r but p � | ar;
p | bj for j < s but p � | bs.

Consider the coefficient of xr+s in fg. This is given by

cr+s = · · ·+ ar−1bs+1 + arbs + ar+1bs−1 + · · · .

Now p divides ai for i < r, so p divides all the terms before arbs in the sum.
Similarly, p divides bj for j < s, so p divides all terms after arbs. But p does
not divide arbs, by assumption. (In a UFD, if an irreducible p divides ab, then
p divides a or p divides b.) So p does not divide the coefficient cr+s. But this
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contradicts the assumption that p divides the content of fg. The contradiction
shows that no such p can exist, so fg is primitive.

It follows that, for any two polynomials f and g, we have C(fg) = C(f)C(g).
For, if we write f = C(f)f1 and g = C(g)g1, where f1 and g1 are primitive, then
fg = C(f)C(g)f1g1, and f1g1 is primitive, so the content of fg is C(f)C(g).

Now the work of factorising a polynomial in R[x] can be divided into two
parts: factorise its content; and factorise a primitive polynomial. The content
can be factorised uniquely, since R is a UFD. For primitive polynomials, we
need to consider the field of fractions F of R.

Proposition 7.24 Let R be a UFD with field of fractions F .

(a) A primitive polynomial in R[x] is irreducible in R[x] if and only if it is
irreducible in F [x].

(b) If f and g are primitive polynomials in R[x] and f divides g in F [x], then
f divides g in R[x].

Proof (a) If f factorises in R[x], then it factorises in F [x]. Conversely, suppose
that f = gh in F [x]. The coefficients in g and h are fractions of elements of R; let
a and b be the least common multiples of their denominators. Then ag, bh ∈ R[x],
and abf = (ag)(bh). Hence

ab = C(abf) = C(ag)C(bh).

Now we can write ag = C(ag)g1, bh = C(bh)h1, where g1 and h1 are primitive.
Then

abf = C(ag)C(bh)g1h1.

From the two displayed equations and the fact that g1h1 is primitive, we see that
f = g1h1, a factorisation of f in R[x].

(b) Suppose that f = gh with h ∈ F [x]. As above, let b be the least common
multiple of the denominators of the coefficients in h. Then bf = g.bh in R[x], so

b = C(bh),

bf = gC(bh)h1,

where h1 is primitive. So f = gh1 as required.

Thus, factorisation of primitive polynomials in R[x] exactly mirrors their
factorisation in F [x], so is unique up to order and associates.

7.12 Eisenstein’s criterion. Gauss’ Lemma is very useful for the practical
business of factorising polynomials. As an application, here is a simple proof,
using Gauss’ Lemma, of the theorem of Pythagoras.
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Theorem 7.25
√
2 is irrational.

Proof It is enough to show that the polynomial x2 − 2 is irreducible over Q,
since if q =

√
2 were rational, then x−q would be a factor of x2−2. Now x2−2 is

a primitive polynomial over Z, so, if it factorised in Q[x], then it would factorise
in Z[x], by Gauss’ Lemma. But, if ax+ b divides x2− 2 in Z[x], then a divides 1,
and b divides −2; so the only possible factors are x + 1, x − 1, x + 2, or x − 2.
None of these is a factor, since none of ±1,±2 is equal to

√
2.

What Gauss’ Lemma is telling us here is that, if the monic integer polynomial
x2 − 2 has a rational root, then this root is an integer.

In view of the importance of Gauss’ Lemma, it is interesting that it has a
very much simpler proof for integer polynomials, or indeed for polynomials over
any PID.

Proposition 7.26 Let R be a principal ideal domain, and let f and g be
primitive polynomials in R[x]. Then fg is primitive.

Proof Suppose not, so that there is an irreducible element p ∈ R which divides
every coefficient of fg. Now F = R/(p) is a field. By considering the coefficients
of a polynomial f ∈ R[x] mod p, we obtain a polynomial f ∈ F [x].

Now f and g are non-zero, since p does not divide all the coefficients of f
or g (these polynomials are primitive); but f · g = fg = 0, by assumption. This
contradicts the fact that F [x] is an integral domain.

The trick in the proof could be stated like this. The natural homomorphism
from R to R/(p) = F extends to a homomorphism from R[x] to F [x].

This trick has other uses too.

Theorem 7.27 (Eisenstein’s criterion) Let R be a principal ideal domain,
and p an irreducible in R. Let

f(x) = anx
n + · · ·+ a1x+ a0

be a primitive polynomial in R[x] with the following properties:

(a) p does not divide the leading coefficient an;
(b) p divides the other coefficients an−1, . . . , a1, a0;
(c) p2 does not divide the constant term a0.

Then f is irreducible.

Proof Suppose that f = gh. By reducing mod p, we have f = gh. By assump-
tions (a) and (b), we have f = anx

n (all the other terms are equal to zero mod p).
Now the ways in which a power of x can factorise are very limited: we must have
g = bmx

m and h = cn−mx
n−m, say, with 0 < m < n. Thus we have

g(x) = bmx
m + · · ·+ b1x+ b0,

h(x) = cn−mx
n−m + · · ·+ c1x+ c0,
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where all the coefficients except the leading ones are divisible by p.
Now consider the constant term. We have a0 = b0c0, and p divides both b0 and

c0; so p2 divides a0, contradicting assumption (c). The theorem is proved.

Example 1 Taking p = 2, we see that x2 − 2 is irreducible over Z (and hence
over Q, by Gauss’ Lemma).

More generally, if p is prime and n > 1, then xn− p is irreducible, so the nth
root of p is irrational.

Example 2 Sometimes Eisenstein’s criterion does not apply to the given
polynomial, but can be made to do so by transforming it.

Consider the polynomial

f(x) = xp−1 + xp−2 + · · ·+ x+ 1,

where p is prime, whose roots are the complex pth roots of unity. Eisenstein’s
criterion does not apply, since 1 has no prime factors. Instead, we consider g(x) =
f(x+ 1). We have f(x) = (xp − 1)/(x− 1), so g(x) = ((x+ 1)p − 1)/x.

(a) The coefficient of xp−1 in g(x) is 1.
(b) For 1 ≤ i ≤ p − 2, the coefficient of xi in g(x) is the coefficient of xi+1 in

(x+ 1)p, namely
(

p
i+1

)
, which is divisible by p.

(c) The constant term in g(x) is equal to g(0) = f(1) = p, which is divisible by
p but not by p2.
By Eisenstein’s criterion, g (and hence also f) is irreducible.

Example 3 The polynomial x2 + y2−1 in Q[x, y] is irreducible. For we regard
this expression as a polynomial in R[x], where R = Q[y]: it has the form x2 +
0x+(y+1)(y− 1). Now Eisenstein’s criterion applies, where we take p to be the
irreducible y − 1 in R.

This argument works over any field in which y + 1 �= y − 1; that is, any field
of characteristic different from 2. It fails for a field of characteristic 2, and in this
case we have x2 + y2 − 1 = (x+ y − 1)2.

7.13 A glimpse at algebraic geometry. Algebraic geometry represents
the flowering of the seed planted by Descartes when he turned geometry into
algebra. It is a central subject of modern mathematics, and we can get no more
than a brief glimpse here. Fortunately, good introductory books are available.

An algebraic curve in the plane is a set of points whose coordinates satisfy
some polynomial equation. Examples such as a circle x2+y2 = 1 and a parabola
y = x2 are familiar, but many more complicated examples have been studied.

When we look at higher dimensions, however, we see that the definition
must be broadened. For example, in three dimensions, a polynomial equation
defines a surface, and a curve may be defined as the intersection of two surfaces.
Such a curve cannot be defined by a single equation. For example, the cylinders
x2 + y2 = 1 and x2 + z2 = 4 in 3-dimensional Euclidean space meet in a pair of
non-plane curves.
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The approach we take is to consider all polynomials which vanish on the set
of points in question. Accordingly, given a set S of polynomials in n variables
over a field F , the algebraic set A(S) defined by S is the set of all points in
Fn on which all the polynomials vanish. (So the curves referred to above form
A(x2 + y2 − 1, x2 + z2 − 4).) Conversely, for any subset X of Fn, we let I(X) be
the set of all polynomials vanishing on X.

We see immediately that I(X) is an ideal. By the Hilbert Basis Theorem
(Theorem 7.21), we know that I(X) is generated by a finite number of elements.
Moreover, A(〈f, g〉) = A(〈f〉)∩A(〈g〉). So any algebraic set is the intersection of
a finite number of algebraic sets defined by single polynomial equations.

The ideal I(X) has another important property: if fn ∈ I(X) for some
positive integer n, then f ∈ I(X). An ideal with this property is called a radical
ideal.

We might hope that there is an exact correspondence between algebraic sets
and radical ideals. In general, this is not so. For example, over the real numbers,
the equations x2+y2 = 0 and x2+y4 = 0 both define the algebraic set consisting
only of the origin. Of course, over the complex numbers, they define larger and
quite different algebraic sets. So we should work over an algebraically closed
field in order to obtain the nicest properties. Now Hilbert’s Nullstellensatz
(‘Theorem on zeros’) states the following:

Theorem 7.28 (Nullstellensatz) Let F be an algebraically closed field. Let
f, g1, . . . , gm be polynomials in n variables over F , and suppose that, for any
x ∈ Fn,

g1(x) = . . . = gm(x) = 0 ⇒ f(x) = 0.

Then, for some positive integer k, we have fk ∈ 〈g1, . . . gm〉.

Corollary 7.29 Let F be algebraically closed. Then the maps I and A defined
above are mutually inverse bijections between the algebraic sets in Fn and the
radical ideals in F [x1, . . . , xn].

Thus any problem about algebraic sets over an algebraically closed field F
can be translated into a problem about ideals in the polynomial ring. We cannot
pursue this correspondence much further; we end with a few observations.

It is clear that the correspondence above interchanges inclusion: a larger
algebraic set satisfies fewer equations. Adding ideals corresponds to intersecting
algebraic sets, while multiplying ideals corresponds to taking the union of alge-
briac sets. Also, since F [x1, . . . , xn] is a unique factorisation domain, an algebraic
set defined by a single polynomial is the union of a finite number of algebraic
sets defined by irreducible polynomials.

The coordinate ring of an algebraic set A is the ring F [x1, . . . , xn]/I(A). It
consists of all the functions on A which are algebraic (induced by polynomial
functions on Fn). It is a commutative Noetherian ring, generated over F by n
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elements (the images of the coordinate functions x1, . . . , xn under the canon-
ical homomorphism). The next stage of development in algebraic geometry is
to regard a set as a space in which to work, which is just as good as the orig-
inal space Fn: its coordinate ring replaces the polynomial ring, and a similar
correspondence between radical ideals and algebraic sets can be described. Now
the same algebraic set (as specified by its coordinate ring) may be represented in
many different ways in Fn (perhaps for different n); but now we can ignore these
differences in representation and correspond on the structure of the algebraic set.

To end on a specific note, here is the algebraic proof of a fact which is intu-
itively clear geometrically. We define a plane curve to be an algebraic set A(f),
where f ∈ F [x, y]; it is irreducible if f is irreducible.

Theorem 7.30 (Bezout’s Theorem) Let A(f) and A(g) be plane curves
over a field F such that A(f) is irreducible and not contained in A(g). Then
A(f) and A(g) intersect in only finitely many points.

Proof At least one of the variables, say x, must occur in f . LetK be the field of
fractions of F [y]. Then we can view f and g as elements in K[x]. Gauss’ Lemma
shows that f is irreducible in K[x]. The hypothesis that A(f) is not contained
in A(g) shows that f does not divide g. Hence f and g are coprime. Since K[x]
is a PID, there exist polynomials p and q in K[x] such that pf + qg = 1.

Now the coefficients of p and q are rational functions in y. So we can multiply
up by the least common multiple of their denominators (say, h(y)) to obtain

r(x, y)f(x, y) + s(x, y)g(x, y) = h(y),

where r = hp and s = hq.
Let (a, b) be a point lying on both curves. Then f(a, b) = g(a, b) = 0, and

so h(b) = 0. This equation has only a finite number of solutions; and for each
solution b, the equation f(x, b) has only a finite number of solutions in x. The
theorem is proved.

7.14 Local rings. In this section we consider only commutative rings with
identity.

Definition A local ring is a commutative ring with identity which has a
unique maximal ideal.

We shall give several constructions of local rings which are important in many
parts of algebra: formal power series rings, p-adic integers, and localisations. We
begin with a simple property of local rings.

Proposition 7.31 Let I be a proper ideal of a commutative ring R with iden-
tity. Then R is a local ring with maximal ideal I if and only if every element
outside I is a unit.

Proof Suppose that R is a local ring and I its maximal ideal. For a /∈ I, the
ideal aR generated by a is not contained in I. By Krull’s Theorem, if it were
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a proper ideal, it would be contained in a maximal ideal. So aR = R, whence
there exists b ∈ R with ab = 1.

Conversely, since no unit can lie in a proper ideal, it follows that if every
element outside I is a unit, then every proper ideal is contained in I, so that I
is the unique maximal ideal.

Definition Let F be a field. The formal power series ring over F is the set
F [[x]] of all infinite sequences (an) = (a0, a1, a2, . . .) of elements of F ; addition
and multiplication are defined by

• (an) + (bn) = (cn), where cn = an + bn;

• (an) · (bn) = (dn), where dn =
n∑

i=0

aibn−i.

We usually write the sequence (a0, a1, . . .) as
∑
n≥0

anx
n; then the addition and

multiplication appear natural. The set of elements
∑
anx

n of F [[x]] with a0 = 0
is easily seen to be an ideal. So the fact that F [[x]] is a local ring follows from
the next result.

Proposition 7.32 A formal power series
∑
anx

n in F [[x]] is invertible if
a0 �= 0.

Proof An inverse
∑
bnx

n for the given sequence should satisfy a0b0 = 1 and

a0bn + a1bn−1 + · · ·+ an−1b1 + anb0 = 0

for n > 0. The first equation gives b0 = a−1
0 . The second allows us to find the

other coefficients by induction: if we know b0, . . . , bn−1, then

bn = a−1
0

n∑
i=1

aibn−i.

The element
∑
bnx

n given by this induction is clearly the inverse of the given
element.

Remark If you have studied combinatorics, you may recognise the connection
between recurrence relations and inverses of formal power series.

Since the set I of formal power series with zero constant term is a maximal
ideal, we see that F [[x]]/I is a field; in fact, it is the field F .

Next, let p be a prime number. The p-adic integers are ‘limits’ of consistent
sequences of congruences modulo higher and higher powers of p. More precisely:

Definition A p-adic integer is a sequence (a1, a2, . . .), where an ∈ Zpn , satisfy-
ing the condition that an and an+1 are congruent modulo pn for n = 1, 2, . . .. (In
other words, an+1 represents the same element of Zpn as an does.) Addition and
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multiplication are defined componentwise: (an) + (bn) = (an + bn), (an) · (bn) =
(anbn). The ring of p-adic integers is denoted by Op.

Remark I have to make an apology here about conflicting notation. Many
mathematicians use the symbol Zp for the ring of p-adic integers, but (following
another very common convention) I have used this symbol for the ring of integers
mod p. The letter O is Gothic (or Fraktur) capital O. It is difficult to write
without practice; I recommend a capital O in handwriting in your notes.

Proposition 7.33 For any prime number p, Op is a local ring.

Proof First note that the identity element of Op is the all-1 sequence (the
constant sequence with value 1).

We have to show that a sequence (an) satisfying the defining condition, with
a0 �= 0, is invertible.

By Euclid’s Algorithm, we can find b0 such that a0b0 ≡p 1.
Suppose that we have found b1, . . . , bn such that aibi ≡pi 1 and bi+1 ≡pi bi.

Let bn+1 = bn + xpi. Now

an+1bn ≡pn anbn ≡pn 1,

so an+1bn ≡pn+1 1 + ypn. Then we find that

an+1bn+1 ≡pn+1 1 + ypn + xa0p
n + higher powers of p,

so that if we choose x to satisfy y + xa0 ≡p 0, we have succeeded. Thus by
induction we have constructed an inverse.

We will generalise this construction in Exercises 7.29 and 7.30.
The third construction is very general.

Definition Let R be a commutative ring with identity. A non-empty subset
S of R is called multiplicative if 0 /∈ S and, if a, b ∈ S, then ab ∈ S. If S is
multiplicative, we define RS−1 in a similar way to the construction of the field
of fractions of an integral domain: the elements are equivalence classes [r, s] of
ordered pairs (r, s) with r ∈ R and s ∈ S, where (r1, s1) is equivalent to (r2, s2)
if r1s2 = r2s1. Now define addition and multiplication of equivalence classes by

• [r1, s1] + [r2, s2] = [r1s2 + r2s1, s1s2],
• [r1, s1] · [r2, s2] = [r1r2, s1s2].

These operations are well defined and make RS−1 into a ring. The elements [r, 1],
for r ∈ R, form a subring isomorphic to R, and the elements [s, 1], for s ∈ S, are
invertible.

For example, if R is an integral domain, then the set of all non-zero elements
of R is multiplicative, and the ring R(R \ {0})−1 is the field of fractions of R.
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Definition An ideal I of a commutative ring R with identity is said to be a
prime ideal if, for any two elements a, b ∈ R, ab ∈ I implies a ∈ I or b ∈ I.
Note that I is prime if and only if R/I is an integral domain.

If I is a prime ideal, then S = R\I is multiplicative. We define the localisation
of R at I to be the ring RI = R(R \ I)−1.

Now it turns out that RI is a local ring. For let

J = {[r, s] : r ∈ I, s /∈ I}.

Then J is an ideal of RI , and it is easily checked that every element not in J is
invertible.

Exercise 7.21 Eisenstein’s criterion is in fact valid for polynomials over a unique
factorisation domain. Prove this.

Exercise 7.22 In this exercise, we show that the following three assertions about an
integer prime p are equivalent:

(a) either p = 2 or p is congruent to 1 mod 4;
(b) −1 is congruent to a square mod p;
(c) p is the sum of two squares of integers.

Proof (a) implies (b): For p = 2 this is trivial. For p = 4m + 1, use the fact
that the multiplicative group of Zp is cyclic of order 4m (Proposition 7.45), and
hence contains a cyclic subgroup of order 4.

(b) implies (c): Suppose that p divides a2 + 1. The ring Z[i] of Gaussian
integers is Euclidean, and hence a PID. Let J be the ideal (a + i, p). Let J =
(x+ yi). Show that x2 + y2 = p.

(c) implies (a): Any integer square is congruent to 0 or 1 mod 4.

Exercise 7.23 Let R be a commutative ring, and I an ideal of R. The radical of I is
defined to be the set of all r ∈ R for which rn ∈ I for some positive integer n.

(a) Prove that the radical of an ideal is a radical ideal.
(b) If g1, . . . , gm ∈ F [x1, . . . , xn], where F is algebraically closed, prove that

I(A(g1, . . . , gm)) is the radical of 〈g1, . . . , gm〉.

Exercise 7.24 Prove that the polynomials of degree at most n in F [x, y] form a vector
space of dimension (n+1)(n+2)/2. Can you find the analogous formula for polynomials
in k variables?

Exercise 7.25 Prove that F [[x]] (for a field F ) or Op (for a prime number p) are
integral domains.

Exercise 7.26 Show that the inverse of 1 − x − x2 in Q[[x]] is
∑
Fnx

n, where Fn is
the nth Fibonacci number (see Exercise 1.52).
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Exercise 7.27 Show that Z is a subring of Op.

Exercise 7.28 Let p be an odd prime, and a an integer. Suppose that a has a square
root in Zp. Prove that a has a square root in Op.

(∗) What happens if p = 2?

Exercise 7.29 (∗) This exercise and the next generalise the construction of the p-adic
integers.

Let R1, R2, . . . be commutative rings with identity. Suppose that, for all m ≥ n, we
have a homomorphism θm,n : Rm → Rn which is surjective. Suppose further that

• θn,n is the identity map for all n;
• for all p ≥ m ≥ n, θp,mθm,n = θp,n.

Now let lim
←
Rn denote the set of all sequences (r1, r2, . . .), where rn ∈ Rn for all n

and rmθm,n = rn for all m ≥ n. Define componentwise addition and multiplication on
this set, and show that it is a ring. (It is called the inverse limit of the family of rings
and homomorphisms.)

Exercise 7.30 (∗) Let I1 ⊃ I2 ⊃ . . . be a descending chain of ideals in a commuta-
tive ring R with identity, and suppose that

⋂
In = {0}. (Such a sequence is called a

filtration of R.)
Show that the rings Rn = R/In and natural homomorphisms θm,n : Rm → Rn

satisfy the conditions of the preceding exercise. (The ring R̂ = lim
←

(R/In) is called the

completion of R with respect to the filtration.)
Show that R is embedded in R̂ by the map r �→ (In + r : n ∈ N).
Show that, if R = Z and In = pnZ, where p is prime, then R̂ = Op.

Further field theory
We saw in Section 2.16 that the standard way to construct a field is by adjoining a
root of a polynomial to a smaller field. In this section, we examine the procedure
more closely, and iterate it to adjoin all the roots of a polynomial. We apply
this to prove a theorem of Galois on the existence and uniqueness of finite fields.
Apart from its intrinsic interest, this material is crucial to the two applications of
algebra we discuss in Chapter 8: Galois theory (on solving polynomial equations)
and coding theory (on correcting errors in message transmission).

7.15 Derivatives and repeated roots. Every student of calculus learns
to differentiate polynomials. Using, for brevity, the notation Df for df/dx, we
have:

If f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0,

then Df(x) = nanx
n−1 + (n− 1)an−1x

n−2 + · · ·+ a1.
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This statement makes sense for polynomials over any field (or indeed any ring),
as long as we do not try to use arguments involving limits. (As usual, we take
na to mean a+ a+ · · ·+ a (n terms) for positive integers n.)

In the spirit of the subject, we give an axiomatic treatment.

Theorem 7.34 For any field F , there is a unique F -linear map D : F [x] →
F [x] satisfying the following two conditions:

(Der1) D(fg) = f · (Dg) + (Df) · g;
(Der2) Dx = 1.

Proof We have

D1 = D(1 · 1) = 1 · (D1) + (D1) · 1,
so D1 = 0. By linearity, Dc = 0 for all c ∈ F . Also, D(x2) = x ·(Dx)+(Dx) ·x =
2x; and an easy induction argument then shows that D(xn) = nxn−1 for all
positive integers n. Hence, by linearity, D is given by the formula quoted earlier.

It remains to show that the map defined this way is F -linear and satis-
fies (Der1) and (Der2). The linearity and (Der2) are obvious. (Der1) follows by
linearity if we can prove it in the case where f and g are powers of x: and this
is done as follows:

D(xm · xn) = D(xm+n) = (m+ n)xm+n−1,

xm · (Dxn) + (Dxm) · xn = mxm−1 · xn + xm · nxn−1 = (m+ n)xm+n−1.

The use that we make of the derivative is the following. Contrary to one’s
expectation, perhaps, it can happen that, if f(x) is an irreducible polynomial
over F , then f can have two equal roots in some larger field. We want to decide
when this can happen. So first we give a test for repeated roots.

Theorem 7.35 A polynomial f(x) ∈ F [x] has repeated roots (possibly in an
extension field of F ) if and only if the greatest common divisor of f and Df is
not 1.

Remark The greatest common divisor is computed in F [x] by Euclid’s Algo-
rithm, as usual. If K is a larger field than F , we could make believe that this
calculation was taking place in K[x]; the answer is the same, and lies in F [x].
So extending the field does not change the g.c.d.

Proof Suppose that α is a repeated root of f , so that f(x) = (x− α)2g(x) in
some extension field of F . Then Df = 2(x − α)g + (x − α)2Dg. Hence (x − α)
divides both f and Df , and their g.c.d. is not 1. (By our remark above, we do
not have to specify the field in the last statement.)

Conversely, suppose that f has no repeated roots: so, in some extension field,

f(x) = c(x− α1)(x− α2) · · · (x− αn),
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where α1, α2, . . . , αn are all distinct. Up to a constant factor, any divisor of f is
a product of some of the factors (x − αi). But D(x − αi) = 1. So the product
rule for the derivative shows that Df is the sum of n terms, where the ith term
is c times the product of all (x − αj) for j �= i. Then (x − αi) divides all terms
except the ith, but does not divide the ith; so (x−αi) does not divide Df . Thus
the g.c.d. of f and Df is 1.

The characteristic of a field F is defined as follows: For positive integers
n, let n · 1 = 1 + · · · + 1 (n terms). If there is a positive integer n such that
n · 1 = 0, then the characteristic is the least such n; otherwise the characteristic
is zero. More concisely, it is the unique non-negative integer m generating the
ideal {n ∈ Z : n · 1 = 0} of Z.

Proposition 7.36 The characteristic of a field is zero or a prime.

Proof Suppose that the characteristic is n, and that n = rs, with r, s > 1.
Then 0 = n · 1 = (r · 1)(s · 1), so either r · 1 = 0 or s · 1 = 0, contradicting the
minimality of n.

Theorem 7.37 Let f be an irreducible polynomial over the field F , and suppose
that f has repeated roots in an extension of F . Then F has non-zero character-
istic p (a prime), and there is a polynomial g ∈ F [x] such that f(x) = g(xp).

Proof Let f have repeated roots. Then (f,Df) �= 1. But f is irreducible, so f
divides Df . This implies that Df = 0; for, if not, then deg(Df) < deg(f), but
the divisibility implies deg(Df) ≥ deg(f).

Each term aix
i of f gives rise to a term iaix

i−1 of Df . Since Df = 0, all of
these terms must be zero. So, for every i, either i = 0 or ai = 0. (Here i = 0
means that the element i · 1 of F is equal to 0.)

If F has characteristic zero, then i · 1 = 0 only if i = 0; so f is a constant
polynomial, which contradicts the hypothesis that it is irreducible. So we may
assume that F has non-zero characteristic p. Now i · 1 = 0 only if i is divisible
by p. So the only terms appearing in f are those aixi for which i is a multiple
of p. This means that f(x) is a polynomial in xp, as claimed. (Note that, if
f(x) = g(xp), then Df = 0.)

Let F be a field of prime characteristic p. We define the Frobenius map φ
on F to be the pth power map: cφ = cp for all c ∈ F .
Proposition 7.38 The Frobenius map is an endomorphism of F (a
homomorphism from F to F ).

Proof We have to show that

(a+ b)p = ap + bp,

(ab)p = apbp.
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The second equation is obvious. For the first, we use the Binomial Theorem:

(a+ b)p = ap +
(
p

1

)
· ap−1b+

(
p

2

)
· ap−2b2 + · · ·+ bp.

The first and last terms give ap + bp, which is what we require. All the inter-
mediate terms include binomial coefficients

(
p
i

)
, for 1 ≤ i ≤ p − 1. Now(

p
i

)
= p!/i!(p − i)!, and the numerator (but not the denominator) is divisible

by p; so p divides
(
p
i

)
, whence

(
p
i

) · c = 0 for any c ∈ F . The result is proved.

Since the Frobenius map is a homomorphism, its kernel is an ideal of F . But
the only ideals of the field F are F and {0}. Clearly 1φ = 1, so the kernel is not
F . Thus, Ker(φ) = {0}, and φ is one-to-one.

In general, φ is not necessarily onto. However, things are much simpler if it is.
Accordingly, we make a definition:

Definition The field F is said to be perfect if either:

(a) F has characteristic zero; or
(b) F has non-zero characteristic p, and every element of F has a pth root in F .

Note that the condition in (b) says precisely that the Frobenius map is onto,
and hence is an automorphism of F .

The connection with repeated roots is as follows:

Theorem 7.39 Let F be a perfect field. Then an irreducible polynomial over
F has no repeated roots in any extension field of F .

Proof Let F be perfect, and suppose (for a contradiction) that f is irreducible
and has repeated roots. By Theorem 7.37, f(x) = g(xp) for some polynomial
g. Let

g(x) = anx
n + · · ·+ a1x+ a0.

Since F is perfect, we can choose b0, b1, . . . , bn such that bpi = ai for i = 0, . . . , n.
Now set

h(x) = bnx
n + · · ·+ b1x+ b0.

Since the Frobenius map is a homomorphism, we have

h(x)p = bpnx
np + · · ·+ bp1x

p + bp0 = g(xp) = f(x).

Since f is the pth power of a polynomial in F [x], it is not irreducible, contrary
to assumption.

It is quite difficult to find an imperfect field (see Exercise 7.31). By definition,
all fields of characteristic zero are perfect. Also, the following holds:

Proposition 7.40 A finite field is perfect.
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Proof The Frobenius map is always one-to-one; and a one-to-one map from a
finite set to itself is necessarily onto.

7.16 Splitting fields. A splitting field of a polynomial f is a ‘smallest’ field
containing all the roots of f . This is only defined over a ‘base field’ F containing
the coefficients of f . For example, if we regard x2 + 1 as a real polynomial, its
splitting field is C; but if we regard it as a rational polynomial, its splitting field
is the much smaller field Q(i) = {a+ bi : a, b ∈ Q}.

Our goal in this section is to show that splitting fields exist and are unique
(over a specified base field), up to isomorphism. But, because the base field is
part of the data, we want to redefine the concept of isomorphism slightly:

Definition Let K,L be fields containing a subfield F . An F -isomorphism
θ : K → L is a field isomorphism from K to L which satisfies cθ = c for all
c ∈ F .
Remark If we regard K and L as F -vector spaces, then an F -isomorphism is
an F -linear transformation between them.

Definition Let f be a polynomial of degree n > 0 over F . A splitting field
of f over F is a field K containing F such that

(a) f(x) = c(x − α1) · · · (x − αn) in K[x] (so F ‘splits’ into linear factors
over K);

(b) no proper subfield of K containing F has this property (so K is generated
by F and the roots α1, . . . , αn of f).

Theorem 7.41 Let f be a non-constant polynomial over F . Then f has a
splitting field over F ; and any two such splitting fields are F -isomorphic.

Proof It is easy to see that there is a splitting field. For we can adjoin a root
of an irreducible polynomial to a field, as explained in Section 2.16. Now adjoin
a root α of an irreducible factor of f . Over F (α), we have f(x) = (x − α)g(x),
where deg(g) = deg(f) − 1. Inductively add roots of g until f splits into linear
factors. Now take the smallest field containing F and all the roots of f ; this will
be a splitting field.

To prove the uniqueness up to F -isomorphism, we actually prove something
which looks much more complicated than this, but is designed to streamline the
induction:

Proposition 7.42 Let θ : F → F1 be an isomorphism of fields. Let f(x) be a
polynomial over F , and f1(x) the corresponding polynomial over F1 (that is, if
f(x) =

∑
aix

i, then f1(x) =
∑

(aiθ)xi). Let K and K1 be splitting fields of f
and f1 over F and F1 respectively. Then there is an isomorphism φ : K → K1
whose restriction to F is θ.

Proof We need to know that each step (adjoining one root of an irreducible
polynomial) produces a unique field up to F -isomorphism. For this, we use the
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fact that F (α) is F -isomorphic to the ‘standard’ extension F [x]/(f), by the map
taking the coset (f) + g to the element g(α).

It follows that, if θ : F → F1 is an isomorphism of fields, f an irreducible
polynomial over F , f1 the corresponding polynomial over F1, and α and α1
roots of f and f1 respectively, then there is an isomorphism from F (α) to F1(α1)
extending θ. For θ induces in an obvious way an isomorphism from F [x] to F1[x],
which we shall also call θ, and maps f to f1, and hence takes the ideal (f) of
F [x] to the ideal (f1) of F1[x]. Thus, θ : F → F1 extends to an isomorphism
θ : F [x]/(f) → F1[x]/(f1). Now we obtain the required map by composing:

• the F -isomorphism from F (α) to F [x]/(f);
• θ;
• the F1-isomorphism from F1[x]/(f1) to F1(α1).

With this technical detail out of the way, the proof of the proposition (by
induction on the degree of f) is straightforward. Let θ : F → F1 be an iso-
morphism. Let α be a root of f in K, and α1 a root of the corresponding
irreducible factor of f1 in K1. Then, as noted, θ extends to an isomorphism
ψ : F (α) → F1(α1), which maps α to α1.

Now let f(x) = (x − α)g(x) (in F (α)[x]), and f1(x) = (x − α1)g1(x) (in
F1(α1)[x]). Then g and g1 are corresponding polynomials under ψ, andK andK1
are splitting fields of g and g1 over F (α) and F1(α1) respectively. By induction,
ψ extends to an isomorphism φ : K → K1; and φ extends θ, as required.

Taking F = F1 and θ to be the identity map, we obtain the theorem.

7.17 Finite fields. We have seen that finite groups have a rich and varied
structure, so that we cannot say, even to a very good approximation, how many
there are of any given order. Finite fields, however, are much more restricted. In
this section we will give the complete classification of finite fields, due to Galois,
and investigate some of their properties.

Theorem 7.43 (Galois’ Theorem on finite fields) The order of a finite
field is a prime power.

Conversely, there is a unique finite field of any given prime power order (up
to isomorphism).

Proof Let F be a finite field.
The characteristic of F must be non-zero. For the elements n · 1, for n ≥ 0,

cannot all be distinct; and, if m · 1 = n · 1, with m �= n, then (m− n) · 1 = 0.
Let the characteristic be p (noting that p is prime). Now the elements n · 1,

for n = 0, 1, . . . , p − 1, form a subfield Fp of F isomorphic to Zp. (The map
n �→ n · 1 is a ring homomorphism from Z to F : its kernel is pZ, by definition of
the characteristic.)

Now F is an extension field of Fp, and so is a vector space over Fp. Clearly,
it has finite dimension, say n. Then F is isomorphic (as Fp-vector space) to the
space Fn

p of all n-tuples of elements of Fp. This isomorphism tells us about the
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addition in F , but not the multiplication; so we have more work to do. But at
least we know that |F | = pn is a prime power; so the first part of the theorem is
established.

We also see that, if a field F has order a power of the prime p, then it has
characteristic p, and contains a subfield isomorphic to Fp.

Now we show that a field of order pn, if it exists, is unique. The pn − 1
non-zero elements of F form the multiplicative group; by Lagrange’s Theorem,
cp

n−1 = 1 for any non-zero element c ∈ F . Hence cp
n

= c for any such c. But
this also holds for c = 0. We conclude that the polynomial xp

n −x has all the pn

elements of F as its roots. So F is a splitting field for this polynomial over Fp

(any smaller field could not contain all the roots!) By the uniqueness of splitting
field (Theorem 7.41), F is unique, up to isomorphism.

It remains to show that fields of all possible prime power orders exist. This
can be done by showing that, for any n, there is an irreducible polynomial of
degree n over Fp. However, we now have the machinery in place for a simpler
proof.

Let p be prime and n a positive integer. Let Fp = Zp, and let F be the
splitting field of the polynomial xp

n − x over Fp. We will show that |F | = pn.
We have D(xp

n −x) = pnxp
n−1−1 = −1, since the characteristic is p. Hence

xp
n − x is coprime with its derivative, and so it has pn distinct roots in its

splitting field F . Let S be the set of these roots. We show that S is a field. By
minimality of the splitting field, it follows that S = F , and so that |F | = pn, as
required.

Let a and b be roots of xp
n −x; that is, apn

= a and bp
n

= b. We have to show
that a + b, ab, and (if a �= 0) 1/a, are also roots. For this purpose, we use the
Frobenius map, which is a homomorphism φ of F defined by cφ = cp. Applying
φ n times, we have cφn = cp

n

. This is also a homomorphism; so

(a+ b)p
n

= (a+ b)φn = aφn + bφn = ap
n

+ bp
n

= a+ b,

(ab)p
n

= (ab)φn = aφnbφn = ap
n

bp
n

= ab,

(1/a)p
n

= (1/a)φn = 1/(aφn) = 1/ap
n

= 1/a,

the last equation holding if a �= 0. So a + b, ab, and 1/a (if a �= 0) are roots of
xp

n − x, as required.

The unique field of order pn is called the Galois field GF(pn), after its
discoverer. (Sometimes the notation Fpn is used instead.)

We prove some structural properties of Galois fields.

Theorem 7.44 Let p and q be primes, m and n positive integers.

(a) The additive group of GF(pn) is isomorphic to the direct sum of n cyclic
groups of order p.

(b) The multiplicative group of GF(pn) is cyclic of order pn − 1.
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(c) The automorphism group of GF(pn) is cyclic of order n, generated by the
Frobenius map.

(d) GF(qm) is a subfield of GF(pn) if and only if p = q and m divides n.

Proof (a) In the proof of Galois’ Theorem, we worked out that GF(pn) is
additively isomorphic to (Zp)n. This is exactly what is required for (a).

(b) We will prove a more general result after this theorem.
(c) The Frobenius map φ is an automorphism. (This is a translation of the

fact that GF(pn), being a finite field, is perfect.) Now φn is the identity map on
F = GF(pn): for φn maps each element c to cp

n

, and we showed that cp
n

= c
for all c ∈ F . No smaller power of φ is the identity: for φm maps c to cp

m

, and
the equation xp

m

= x has at most pm roots for m < n. So φ generates a cyclic
group of order n of automorphisms of F .

It is harder to show that this is the full automorphism group. This follows
from a theorem that we will meet when we consider Galois Theory in Chapter 8.
Here is a more direct proof. By (b), the multiplicative group of F = GF(pn)
is cyclic, generated (say) by a. Now F = Fp(a), since no proper subfield can
contain a. Since [F : Fp] = n, the element a satisfies a polynomial of degree
n over Fp. Any automorphism of F must map a to one of the n roots of this
polynomial. Only the identity can fix a, since an automorphism fixing a must
fix every power of a. So different automorphisms map a to different roots, and
there are at most n automorphisms. Since we have a group of order n already
(generated by the Frobenius map), it must be the full automorphism group.

(d) Suppose that GF(qm) is a subfield of GF(pn). Applying Lagrange’s
Theorem to the additive groups shows that qm divides pn; so p = q (since p
and q are prime). Applying Lagrange’s Theorem to the multiplicative group
shows that pm − 1 divides pn − 1. We claim that this implies that m divides n.

Let n = mt + r, where 0 ≤ r ≤ m − 1. Since x − 1 divides xt − 1 for any
integer x, we see that pm − 1 divides pmt − 1, and hence divides pn − pr. It also
divides pn − 1 by assumption; so it divides pr − 1. But 0 ≤ pr − 1 < pm − 1; so
we must have pr − 1 = 0, whence r = 0 and m divides n.

Part (b) follows from a more general result:

Proposition 7.45 A finite subgroup of the multiplicative group of a field is
cyclic.

Proof We give two proofs. Both depend on the fact that a field contains at
most n different nth roots of unity. For an nth root of unity satisfies the equation
xn − 1 = 0, and this polynomial of degree n has at most n roots.

First proof This proof uses Theorem 5.14, the structure theorem for finitely
generated abelian groups. Let G be a subgroup of order n of the multiplicative
group of a field F . Then

G ∼= Cd1 × Cd2 × · · · × Cdk
,
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where d1d2 · · · dk = n and di divides di+1 for i = 1, . . . , k − 1. (We use
multiplicative, rather than additive, notation, since the group operation is multi-
plication.) Let p be a prime dividing d1. Then p divides di for all i. So each factor
Cdi

contains a cyclic subgroup of order p. Each subgroup contains p−1 elements
of order p. Together with the identity, we obtain (at least) 1+ k(p− 1) elements
of order dividing p. Hence 1 + k(p− 1) ≤ p, whence k = 1 and G is cyclic.

Second proof This proof is more elementary. Let ψ(m) be the number of
elements of order preciselym inG. Also, let φ(m) be Euler’s function, the number
of non-negative integers less than m which are coprime to m. We show that:

(a)
∑

m|n φ(m) = n;
(b)

∑
m|n ψ(m) = n;

(c) ψ(m) ≤ φ(m) for all m | n.
It follows that ψ(m) = φ(m) for all m | n. In particular, ψ(n) = φ(n) > 0. So G
contains an element of order n, and must be cyclic.

Proof of (a): We ask, how many non-negative integers k < n have the property
that the g.c.d. of k and n is n/m, for any divisor m of n? Putting e = n/m, we
see that the g.c.d. of k/e and n/e is 1; so there are φ(n/e) = φ(m) such integers.
Summing over m must give n, since all the integers 0, 1, . . . , n− 1 occur.

Proof of (b): Each element of G has some order which divides n.
Proof of (c): This is obvious if ψ(m) = 0, so suppose not. Then there is an

element of order m in G. It generates a cyclic group H of order m, containing
m solutions of xm = 1. So all solutions of xm = 1 lie in H. In particular, all
elements of order precisely m lie in H. But a cyclic group of order m contains
exactly φ(m) elements of order m. (If H = 〈h〉, then hl has order m if and only
if (l,m) = 1.) So ψ(m) = φ(m) in this case.

Proposition 7.46 Let q be a prime power. Then the polynomial xq
n − x over

GF(q) is the product of all the monic irreducible polynomials over GF(q) whose
degrees divide n.

Proof The roots of xq
n − x are all the elements of GF(qn). Each of these

generates GF(qm) for some m dividing n, and hence satisfies an irreducible poly-
nomial of degree m. Conversely, any root of an irreducible polynomial of degree
m dividing n generates GF(qm), and hence is contained in GF(qn).

Example Let q = 2 and n = 4. There are two irreducible polynomials of degree
1 over GF(2) = Z2, namely x and x − 1. There is one irreducible of degree 2,
whose roots are the two elements of GF(4) \GF(2); namely, x2 + x+ 1; and

x4 − x = x(x− 1)(x2 + x+ 1).

There are three irreducibles of degree 4, namely x4 + x + 1, x4 + x3 + 1, and
x4+x3+x2+x+1; the product of these three polynomials with x4−x is x16−x.
Roots of the third irreducible have order 5, since

(x− 1)(x4 + x3 + x2 + x+ 1) = x5 − 1.
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Roots of the other two irreducibles are primitive; that is, they have order 15 and
generate the multiplicative group of GF(16).

7.18 Wedderburn’s Theorem. Wedderburn’s Theorem allows us to
extend our classification of finite fields to a classification of finite division rings
very cheaply.

Theorem 7.47 (Wedderburn’s Theorem) A finite division ring is a field
(that is, it is commutative).

Proof We need two preliminaries. The first concerns cyclotomic polynomials.
The nth cyclotomic polynomial Φn(x) is the unique monic polynomial whose
roots are the primitive nth roots of unity in C. Since every nth root of unity is
a primitive mth root for some divisor m of n, we have

xn − 1 =
∏
m|n

Φm(x).

By induction, we see that Φm(x) is a polynomial over Z. Its degree is Euler’s
function φ(n), the number of congruence classes mod n which are coprime to n.

The second is a revision of some group theory. Recall from Section 7.1 that
any group G is a union of conjugacy classes, where g and h are conjugate if
and only if h = x−1gx for some x ∈ G. The number of elements in the conjugacy
class of G is |G : CG(g)|, where CG(g) is the subgroup

{x ∈ G : xg = gx}.
Now let F be a finite division ring. It is easy to check that the centre

Z(F ) = {x ∈ F : xa = ax for all a ∈ F}
is a subfield of F . Moreover, for any a ∈ F , its centraliser

CF (a) = {x ∈ F : xa = ax}
is a sub-division ring of F . Moreover, F itself, and any centraliser CF (a), is a
vector space over Z(F ) (with the given addition and scalar multiplication by
elements of Z(F )).

Let |Z(F )| = q, a prime power (since Z(F ) is a finite field). Then |F | = qn,
where n is the dimension of F as a Z(F )-vector space. Choose representatives
a1, . . . , ar for the conjugacy classes (in the multiplicative group) of elements not
in Z(F ). Suppose that CF (ai) has dimension mi over Z(F ), so that |CF (ai)| =
qmi . Then the centraliser of ai in the multiplicative group of F has order qmi −1,
so the size of the conjugacy class of ai is (qn− 1)/(qmi − 1). Since every element
of F \ Z(F ) lies in just one such class, we have the class equation

qn − 1 = q − 1 +
r∑

i=1

qn − 1
qmi − 1

.
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Now Φn(x) divides xn−1 (in Z[x]), and also Φn(x) divides (xn−1)/(xmi −1)
asmi < n. So, in Z, the non-zero integer Φn(q) divides qn−1 and (qn−1)/(qmi−
1) for each i. It follows from the class equation that Φn(q) divides q − 1.

But this is impossible for n > 1. (If n = 2, then Φ2(q) = q+1. If n > 2, then
φ(n) > 1, and Φn(q) is the product of φ(n) terms of the form (q − ω), where ω
is a primitive nth root of unity; each such factor is larger than q − 1.)

So we must have n = 1, whence F = Z(F ) is commutative.

Exercise 7.31 Define the field of rational functions over a field F to be the field
of fractions of the polynomial ring F [x]. (Its elements are of the form f(x)/g(x), where
f and g are polynomials and g �= 0.) Denote it by F (x).

Prove that the element x has no pth root in F (x), for p > 1. Deduce that, if F has
characteristic p, then F (x) is imperfect.

Now let F have characteristic p = 2, and let K = F (x). Show that the polynomial
y2 − x in K[y] is irreducible and has repeated roots.

Exercise 7.32 (a) Prove by induction that, if f(x) ∈ F [x] has degree n and splitting
field K, then [K : F ] ≤ n!.

(b) (∗) Prove by induction that, with the same hypotheses, [K : F ] divides n!.

Exercise 7.33 Let p be prime. Show that the g.c.d. of pm − 1 and pn − 1 is pk − 1,
where k is the g.c.d. of m and n.

Exercise 7.34 (a) Let an be the number of monic irreducible polynomials of degree n
over GF(q). Prove that ∑

m|n
mam = qn.

Hence, in the case q = 2, calculate an for n ≤ 6.
(b) Let bn be the number of monic primitive irreducible polynomials of degree n

over GF(q) (that is, polynomials any one of whose roots generates the multiplicative
group). Prove that

bn = φ(qn − 1)/n.

Calculate bn for q = 2 and n ≤ 6.

Other structures
The title of this section could mean one of two things. So far, we have con-
centrated on groups, rings, fields, vector spaces, and modules. There are a few
important types of algebras (though less important than those just listed) which
have been studied: Lie algebras are perhaps the most notable of these. One
approach would be a Cook’s tour through some of these.

Another approach is to look for unifying principles in algebra. The following
sections do that. First, we examine the notion of an algebra, as a set on which
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various operations are defined, and make the most general definition possible.
At first sight, it is surprising how much elementary group theory and ring theory
can be developed at this level of generality.

The last two sections are more radical departures. In the second, we examine
algebras from the viewpoint of their subalgebras and congruences (kernels of
homomorphisms), independently of the actual operations. Finally, we come to
the viewpoint that knowing the homomorphisms tells us all about a class of
algebras; and we do not need to know them as functions, but merely the rule for
composition. In this way, we find ourselves doing elementary algebra again, but
having climbed further up the mountain to reach a higher viewpoint.

7.19 Universal algebra. An algebra is a set carrying various operations.
Recall that an n-ary operation on a set A is a function µ : An → A. The
integer n is called the arity of µ. Binary operations are often written with infix
notation, as we have seen in the case of groups and rings. In general, this is
not possible, and we write operations on the right, as (x1, . . . , xn)µ if µ is an
n-ary operation. Given a family of operations with prescribed arities, we consider
a type of algebras with these operations. The type is described by the list of
arities of the operations. In fact, it is possible to dispense with brackets and
commas and write x1 · · ·xnµ; no ambiguity arises (see Exercise 7.38). But we
will not adopt this convention.

We allow the possibility of nullary operators (of arity zero); these are
just distinguished elements, sometimes referred to as constants. The identity
element of a group, and the zero of a ring, are examples.

The class of all algebras of given type is unlikely to be interesting. So we
specialise as follows: A law is an expression w1 = w2, where w1 and w2 are
expressions involving variables and operations, which properly define elements
of an algebra A when elements of A are substituted for the variables. A law is
satisfied in A if the equation is valid for all substitutions of elements of A for
the variables. Now a variety of algebras is the class of all algebras of a given
type which satisfy a given collection of laws.

Many classes of algebras we have met are varieties.

Example Consider the variety of algebras with a binary operator µ, unary
operator ι, and nullary operator ε, satisfying the laws

((x, y)µ, z)µ = (x, (y, z)µ)µ,

(x, ε)µ = (ε, x)µ = x,

(x, xι)µ = (xι, x)µ = ε.

This is just the class of groups: µ is the group operation, ι is inversion, and ε is
the identity. Thus groups form a variety of algebras of type (0, 1, 2).

Similarly, abelian groups, rings, commutative rings, rings with identity, and
so forth, form varieties (Exercise 7.35).
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Other varieties are less obvious. In Chapter 2, we considered Boolean rings,
which satisfy the law xx = x.

A group G is said to be metabelian if it has a normal subgroup N such
that both N and G/N are abelian. Now a group is metabelian if and only if it
satisfies the law

[[x1, x2], [x3, x4]] = 1,

where the commutator [x, y] is defined to be x−1y−1xy (Exercise 7.41). So
metabelian groups form a variety.

Example Fields do not form a variety: only non-zero elements have multiplica-
tive inverses, and this fact cannot be expressed as a law. (This does not prove
that fields cannot be made into a variety by some clever trickery. But we will see
later that this is so.)

The set of operators is not necessarily finite. We do not need specially
contrived examples for this.

Example For a given field F , the class of vector spaces over F is a variety.
It has a binary operation (addition), a unary operation (additive inverse), a
nullary operation (zero), and, for each c ∈ F , a unary operation (multiplication
by c).

Example Let G be a group. A G-set is an algebra with a unary operator µg
for each g ∈ G, satisfying the laws

xµ1 = x,

(xµg)µh = xµgh.

(The first equation is a law; the second represents one law for each pair (g, h)
of elements of G.) The G-sets form a variety, which is a familiar one: a G-set is
just a set on which there is an action of G by permutations (see Section 7.1).

You may have one of two common reactions at this point. One is a feeling of
freedom, or licence: anything goes. Indeed, mathematicians have studied a very
wide variety of varieties, or closely related structures: for example, semigroups,
quasigroups, partial groups, loops, sloops, squags, semirings, alternative rings,
Lie rings, near-rings, planar ternary rings, Lie algebras, Jordan algebras, Boolean
rings, quasifields, near-fields, near-domains, . . .

The other reaction is vertigo at the wide range of subject matter opened up
by this definition. But, in all the above cases, there is a good mathematical reason
for considering the class of algebras. I know of no instance where someone wrote
down a set of axioms out of the blue and invented a lively and important theory.
Axioms for a class of algebras always follow the introduction of the class for
other reasons. Each of these classes played some role in mathematics before its
axiomatic definition: Lie algebras in differential geometry, planar ternary rings
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in the theory of projective planes, Boolean algebras in logic, Jordan algebras in
physics, and so on.

A strength of the universal viewpoint in algebra is that many arguments
recur in similar form in different topics, and it is more efficient to do them once
in the most general context. We remarked in Chapter 3 that beginning group
theory (subgroups, homomorphisms, and so on) duplicates similar parts of ring
theory. In fact, the arguments work much more generally. We learn something
both from the generality of the arguments and from the modifications needed.

Definition Let A be an algebra of a given type. A subalgebra of A is a subset
which is closed under all the operators of A.

In the case of nullary operators, this asserts that the subalgebra must contain
all the constants of the algebra. It is clear that a subalgebra of A is an algebra of
the same type. Moreover, any law that is valid in A also holds in a subalgebra.
Hence:

Proposition 7.48 If an algebra A belongs to a variety V, then so does any
subalgebra of A.

A homomorphism θ : A → B, where A and B are algebras of the same
type, is a map from A to B satisfying

(a1, . . . , an)µAθ = (a1θ, . . . , anθ)µB

for all a1, . . . , an ∈ A, for all n-ary operators µ, and for all n. (In this equation µA
and µB are the operators on A and B which correspond. In future, we will adopt
the practice we have used for groups, rings, and every other kind of structure,
and suppress the subscripts.) Now the image of θ is a subalgebra of B. Moreover,
any law which holds in A also holds in the image of θ.

For rings, groups, vector spaces, and modules, we defined the kernel of a
homomorphism to be the inverse image of the identity, and showed that it is a
subalgebra of A. In general, we cannot do this, since there may be no ‘identity’—
our algebras may have no constants, or several, and even if they exist they may
not have appropriate properties.

The clue is the general definition of kernel in Chapter 1, as a partition (two
elements in the same part if they have the same image). In the above special
cases, this is the partition into cosets of the simpler ‘kernel’ (the inverse image
of the identity). In general, we just work with the partition.

Definition The kernel of a homomorphism θ is defined as the equivalence
relation KER(θ) which is given by the rule that (x, y) ∈ KER(θ) if and only if
xθ = yθ.

Although none of the parts of this partition may be a subalgebra, it still has
a property generalised from the coset partition of a normal subgroup.
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Definition A congruence on an algebra A is an equivalence relation E on A
with the property that, for any n-ary operation µ, if (ai, bi) ∈ E for i = 1, . . . , n,
then

((a1, . . . , an)µ, (b1, . . . , bn)µ) ∈ E.

Now it is clear that the partition KER(θ) defined by a homomorphism is a
congruence on A.

Definition Given a congruence E on A, the factor algebra A/E is defined
as follows: the elements of A/E are the classes of E; and, if [a] denotes the
congruence class of a, then

([a1], . . . , [an])µ = [(a1, . . . , an)µ].

That this is independent of the choice of representatives follows immediately
from the definition of a congruence. The map a �→ [a] from A to A/E is a
homomorphism whose kernel is E and whose image is A/E. Now we have all the
ingredients for the First Isomorphism Theorem:

Theorem 7.49 (First Isomorphism Theorem) Let θ : A→ B be a homo-
morphism. Then:

(a) Im(θ) is a subalgebra of B;
(b) KER(θ) is a congruence on A;
(c) A/KER(θ) ∼= Im(θ).

We note that this theorem works in the class of all algebras of given type, or
in any variety of algebras. The other isomorphism theorems also generalise, but
we do not pursue this here.

We have seen that varieties are closed under taking subalgebras and factor
algebras. They have another closure property as well.

Definition Let I be a set, and suppose that, for each i ∈ I, we are given an
algebra Ai, all of these algebras having the same type. The Cartesian product∏

i∈I Ai is defined to be the set of all functions f : I → ⋃
i∈I Ai satisfying

f(i) ∈ Ai for all i ∈ I. (These functions are choice functions for the family
(Ai : i ∈ I) of sets. The Axiom of Choice guarantees that the Cartesian product
of a family of non-empty sets is non-empty. For this reason, it is sometimes called
the ‘multiplicative axiom’.) For each n-ary operation µ in the type, we define
(f1, . . . , fn)µ to be the function given by

((f1, . . . , fn)µ)(i) = (f1(i), . . . , fn(i))µ.

Note that f1(i), . . . , fn(i) are elements of the algebra Ai, so we can apply to them
the operation µ on this algebra. It is again easy to see that, if all the algebras
Ai belong to a variety V, then so does their Cartesian product.
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This enables us to show that fields, integral domains, and so on do not form
varieties: the Cartesian product of two fields is not even an integral domain.
(Representing a function on a 2-element set as an ordered pair of values as
usual, we see that

(a, 0)(0, b) = (0, 0),

so (a, 0) is a zero-divisor if a �= 0.)
Remarkably, it turns out that these three closure properties characterise

varieties:

Theorem 7.50 A class of algebras (with a fixed set of operators) is a variety if
and only if it is closed under isomorphism and under taking subalgebras, factor
algebras, and Cartesian products.

7.20 Lattices. A lattice is an algebra with two binary operations, ∨ (‘join’)
and ∧ (‘meet’), and two constants, 0 and 1, satisfying the following axioms:

Idempotent laws: x ∨ x = x = x ∧ x.
Commutative laws: x ∨ y = y ∨ x and x ∧ y = y ∧ x.
Associative laws: (x ∨ y) ∨ z = x ∨ (y ∨ z) and (x ∧ y) ∧ z = x ∧ (y ∧ z).
Identity laws: x ∨ 0 = x = x ∧ 1.
Absorptive laws: x ∧ (x ∨ y) = x = x ∨ (x ∧ y).
Note that these axioms are unchanged under the exchange of ∨ and ∧, and
0 and 1. In this way, from any lattice L we obtain another lattice L∗, the
dual of L.

Where do lattices come from?We will use them to describe the subalgebras, or
the congruences, of an arbitrary algebra. But there is a more basic fact underlying
this: a lattice is a special kind of partially ordered set. Recall that a partial
order on a set X is a relation ≤ which is reflexive (x ≤ x), antisymmetric
(x ≤ y and y ≤ x imply x = y), and transitive (x ≤ y and y ≤ z imply x ≤ z). If
(X,≤) is a partially ordered set, and x, y ∈ X, we say that u is a least upper
bound, or supremum, of x and y if:

(a) x ≤ u and y ≤ u;
(b) if x ≤ v and y ≤ v then u ≤ v.

Note that a least upper bound, if it exists, is unique; for if u and u′ are both
least upper bounds, then u ≤ u′ and u′ ≤ u, whence u = u′. Dually, a greatest
lower bound, or infimum, is an element w such that:

(a) w ≤ x and w ≤ y;
(b) if z ≤ x and z ≤ y then z ≤ w.

Again, if it exists, it is unique. A least element 0 satisfies 0 ≤ x for all x; if it
exists, it is unique. Similarly for a greatest element.
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Theorem 7.51 Let (X,≤) be a partially ordered set. Suppose that

(a) X has a least element 0 and a greatest element 1;
(b) any two elements x, y have a least upper bound x ∨ y and a greatest lower

bound x ∧ y.
Then (X,∨,∧, 0, 1) is a lattice.

Conversely, let (X,∨,∧, 0, 1) be a lattice. Set x ≤ y if x∨y = y. Then (X,≤)
is a partially ordered set satisfying conditions (a) and (b) above.

Moreover, the constructions above are mutually inverse.

Proof Starting with a partially ordered set with properties (a) and (b), we
verify the lattice axioms. This is mostly straightforward. In the commutative
laws, both sides represent the least upper bound (or greatest lower bound) of x
and y. In the absorptive laws, x ≤ (x ∨ y), so the greatest lower bound of x and
x ∨ y is x.

Conversely, suppose that we are given a lattice. Note first that x ∨ y = y if
and only x ∧ y = x, so either can be chosen as the definition of x ≤ y. This
follows from the absorptive laws: if x ∨ y = y, then

x ∧ y = x ∧ (x ∨ y) = x.

We show that the relation ≤ is a partial order. Reflexivity x ≤ x follows from
the idempotent law x∨x = x. Antisymmetry follows from the commutative law:
if x ∨ y = y and y ∨ x = x, then x = y. Transitivity follows from the associative
law: if x ∨ y = y and y ∨ z = z, then

x ∨ z = x ∨ (y ∨ z) = (x ∨ y) ∨ z = y ∨ z = z.

Finally, we have to show that the constructions are inverse. Suppose that we
are given a lattice which arises from a partially ordered set. Then, if x ≤ y, the
least upper bound of x and y is y, so x ∨ y = y, and conversely. So the partial
order is uniquely determined.

In the other direction, we are given a partially ordered set arising from a
lattice. We have to show that 0 and 1 are least and greatest elements, and that
x ∨ y and x ∧ y are the least upper bound and greatest lower bound of x and y.
The first assertions are trivial: the identity laws 0 ∨ x = x and 1 ∧ x = x imply
that 0 ≤ x and x ≤ 1 for all x. For the second, we have

x ∨ (x ∨ y) = (x ∨ x) ∨ y = x ∨ y,
so x ≤ x ∨ y. Similarly, y ≤ x ∨ y. If x ≤ v and y ≤ v, then x ∨ v = v and
y ∨ v = v; so

(x ∨ y) ∨ v = x ∨ (y ∨ v) = x ∨ v = v,

whence x ∨ y ≤ v. Thus x ∨ y is the least upper bound. The argument for the
greatest lower bound is dual.
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Remark If a lattice L arises from a partially ordered set (X,≤), then its dual
L∗ is obtained from the partially ordered set (X,≥) obtained by reversing the
order.

Remark A finite lattice (or partially ordered set) can be represented by a
Hasse diagram in the plane. The points of the lattice are represented by
points in the plane, so that, if a < b, then the point b is higher (that is, larger
Y -coordinate) than a. We join a to b by a line segment if b covers a; that is,
a < b but no element c satisfies a < c < b. An example is shown in Figure 7.1.
Check that it is a lattice. Note that the order relation can be read off from the
covering relation: if a < z, then there is a chain a < b < . . . < z, each term
covering the one before.

There are two very important examples of lattices, which we now describe.

Example The subset lattice of a set S: the elements are all subsets of S,
and the partial order is inclusion. Thus, x ∨ y = x ∪ y, x ∧ y = x ∩ y, 0 = ∅, and
1 = S. The lattice shown in Figure 7.1 is the lattice of subsets of a 3-element set.

These lattices have some additional properties, notably the following:

Distributive laws: x∧(y∨z) = (x∧y)∨(x∧z) and x∨(y∧z) = (x∨y)∧(x∨z).
Any lattice satisfying these laws is called a distributive lattice. Clearly,

any sublattice of the subset lattice is distributive. The converse also holds, at
least for finite lattices:

Theorem 7.52 Any finite distributive lattice is isomorphic to a sublattice of
the subset lattice of a finite set.

In the infinite case, some additional properties are required in order to obtain
a similar characterisation.

Fig. 7.1 A Hasse diagram
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Note also that the dual of a distributive lattice is distributive.

Example Let A be an algebra (of some given type). Then the subalgebras of
A form a lattice, the subalgebra lattice of A. The meet of two subalgebras
is their intersection (which is always a subalgebra). The join of subalgebras B1
and B2 is usually not the union, which is not a subalgebra, but is, rather, the
subalgebra generated by B1 and B2, which can be described as the intersection
of all subalgebras containing them, or as the smallest set containing B1 and B2
and closed under the operations of A. The subalgebra 1 is A, while 0 is the
unique minimal subalgebra (the subalgebra generated by the constants).

Example The partition lattice of a set S is defined as follows. The elements
are the partitions of S (which we can regard as the equivalence relations on S.)
For partitions π1 and π2, we take π1 ≤ π2 if π1 refines π2, in the sense that
any part of π1 is contained in a part of π2. (If we regard a partition as being
an equivalence relation—that is a certain set of ordered pairs—this is just the
inclusion order on P(S × S).) So π1 ∧ π1 is the partition whose parts are all
non-empty intersections of parts of π1 with parts of π2. The partition π1 ∨ π2
is more difficult to describe: it is not just the union of the set of pairs, or the
partition whose parts are all unions of parts of π1 and π2. Instead, join two points
of S by an edge if they lie in the same part of either π1 or π2; then the parts of
π1 ∨ π2 are the connected components of this graph. The partition 0 is the one
with singleton parts (the relation of equality), while the partition 1 has just one
part, namely S.

Example More generally, if A is an algebra, then the congruences on A form a
lattice, the congruence lattice of A. The order is as in the partition lattice, and
the meet, 0, and 1 elements are the same; but the join π1∨π2 of two congruences
π1 and π2 must be taken as the meet of all those congruences that are coarser
than both.

Proposition 7.53 The congruence lattice of a group, ring, or vector space is
isomorphic to a sublattice of the subspace lattice.

Proof In the case of a group, the classes of a congruence are the cosets of a
normal subgroup; and the meet or join of two normal subgroups is a normal
subgroup. So the normal subgroups form a sublattice of the subgroup lattice
isomorphic to the congruence lattice. The arguments in the other cases are
similar.

Remark In an abelian group, every subgroup is normal, and so the subgroup
and congruence lattices are isomorphic. The same applies to a vector space, or
a ring (such as Z), in which every subring is an ideal.

We now consider two classes of lattices, the first more special than distributive
lattices, and the second more general.
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Boolean lattices form a special class of distributive lattices. In any lattice
L, a complement of x is an element x′ such that x ∨ x′ = 1 and x ∧ x′ = 0.
Complements may fail to exist, and they may not be unique. However, in a
distributive lattice, an element has at most one complement. For, if x′ and x∗

are complements of x, then

x′ = x′ ∧ 1 = x′ ∧ (x ∨ x∗) = (x′ ∧ x) ∨ (x′ ∧ x∗) = 0 ∨ (x′ ∧ x∗) = x′ ∧ x∗,

so x′ ≤ x∗. Similarly, x∗ ≤ x′; so x′ = x∗.
Note that 0 and 1 are complements of each other; and, if y is a complement

of x, then x is a complement of y.
A Boolean lattice is a distributive lattice in which each element has a

complement (necessarily unique).
It is usual to take complementation as an operation. This gives us the fol-

lowing definition. A Boolean lattice is a set X with operations ∨,∧, 0, 1,′ (of
arities 2, 2, 0, 0, 1) such that:

(a) (X,∨,∧, 0, 1) is a distributive lattice;
(b) x ∨ x′ = 1 and x ∧ x′ = 0.

The subset lattice of any set S is a Boolean lattice: complementation is given
by x′ = S \ x. These examples are typical:

Theorem 7.54 A finite Boolean lattice is isomorphic to the lattice of subsets
of a set.

This can be deduced from the representation theorem for distributive lattices,
or can be proved directly (Exercise 7.44).

Now we turn to a larger class. A lattice ismodular if it satisfies the following
condition:

Modular law: If x ≤ z, then x ∨ (y ∧ z) = (x ∨ y) ∧ z.
This property is weaker than the distributive law. It is self-dual, in that a

lattice satisfies the modular law if and only if its dual does (interchange x and
z in the statement to obtain its dual). As written, it is not a law, but it can be
converted into one by noting that x ≤ z if and only if x ∨ u = z for some u; so
the modular law can be written

x ∨ (y ∧ (x ∨ u)) = (x ∨ y) ∧ (x ∨ u).
So modular lattices form a variety. In particular, a sublattice of a modular lattice
is modular. The connection of the words ‘module’ and ‘modular’ is explained in
the first part of the next result.

Theorem 7.55 (a) For any ring R, the submodule lattice of an R-module is
modular.

(b) The congruence lattice of a group is modular.
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Remark In particular, this applies to the subspace lattice of a vector space,
or the subgroup lattice of an abelian group (a Z-module).

Proof (a) Let X,Y, Z be submodules of the R-module M , with X ≤ Z. The
join of two submodules is their sum. We have X +(Y ∩Z) ≤ (X +Y )∩Z, since
this holds in any lattice. Take z ∈ (X + Y ) ∩ Z. Then z ∈ Z, and z = x + y,
with x ∈ X, y ∈ Y . Since x ∈ X ≤ Z, we have y = z− x ∈ Z, so y ∈ Y ∩Z, and
z = x+ y ∈ X + (Y ∩ Z), as required.

(b) The argument is similar.

In Theorem 7.52, we saw that every finite distributive lattice is embeddable
in the lattice of subsets of a set. There is no similar theorem for modular lattices,
since there is no one modular lattice which is sufficiently general to embed the
subspace lattices of all finite vector spaces, for example. Nevertheless, there is
an important characterisation theorem for a subfamily of the modular lattices,
which we now state, after a few definitions.

An atom in a lattice is a minimal non-zero element. Thus, x is minimal if
x �= 0 but y ≤ x implies y = x or y = 0. A lattice is atomic if every point is the
join of a finite number of atoms. The rank of an element x in an atomic lattice
is the smallest number of elements whose join is x; and the rank of the lattice
is the rank of 1.

A line is a lattice consisting of 0, 1, and a set A of atoms, with |A| > 1. It is
proper if |A| > 2. See Figure 7.2. Note that a line with two atoms is isomorphic
to the direct product of the lattice {0, 1} with itself. (If we permitted a line to
have just one atom, such a line would not be atomic.)

A projective plane is an atomic modular lattice of rank 3 with the property
that the meet of any two elements of rank 2 is an atom. (Alternatively, it is an
atomic modular lattice of rank 3 whose dual has the same properties.) It is
proper if any element of rank 2 is above at least three atoms. Calling atoms
points and elements of rank 2 lines, we can draw geometric diagrams rather
than Hasse diagrams: see Figure 7.3. The points in this diagram are the atoms
of the lattice, and the six straight lines and one circle define seven sets of three
atoms corresponding to the lattice elements of rank 2; the 0 and 1 of the lattice
do not appear in the diagram.

Theorem 7.56 Let L be an atomic modular lattice. Then L is isomorphic to
the direct product of a finite number of lattices of the following form:

Fig. 7.2 A line
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Fig. 7.3 A projective plane

(a) L = {0, 1};
(b) a proper line;
(c) a proper projective plane;
(d) the submodule lattice of a finitely generated module over a division ring.

Remark By Wedderburn’s Theorem, a finite division ring is a field. So for
finite lattices, case (d) of the theorem becomes the subspace lattice of a finite-
dimensional vector space over a finite field.

7.21 Category theory. Category theory, sometimes dismissed as ‘abstract
nonsense’, began in a very technical part of mathematics, algebraic topology.
It has developed into an alternative foundation for the whole of mathematics (in
the most extreme form), and certainly a unifying principle which is algebraic in
nature but much wider in scope.

The underlying philosophy is that what is important about any class of math-
ematical structures is the structure-preserving maps between different objects in
the class. For example, suppose that our structures are just sets. If f : X → Y
and g : Y → Z are maps between sets, then there is a composite fg : X → Z.
Moreover, f is one-to-one if and only if there is a map g : Y → X with
fg = 1X (where 1X is the identity on X); and f is onto if and only if there
exists h : Y → X with hf = 1Y .

Similarly, other set-theoretic notions can be recognised. Here are some more
examples. The associative law for groups is usually stated as a law (in the sense
of universal algebra), asserting the equality of two expressions (ab)c and a(bc).
Another version involves the maps λa and ρa defined by left and right multipli-
cation by the element a: the associative law asserts that λa and ρc commute for
any a, c ∈ G:

bλaρc = (ab)c = a(bc) = bρcλa.

This version uses a mixture of elements and maps. But the law can be stated
using only maps. Let µ : G×G→ G be the group operation. If αi : Gi → Hi are
maps for i = 1, 2, then α1 × α2 : G1 ×G2 → H1 ×H2 is defined coordinatewise.
Now the associative law asserts that

(1× µ)µ = (µ× 1)µ,
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where 1 is the identity map on G. (The left-hand side maps (a, b, c) �→ (a, bc) �→
a(bc), and the right-hand side (a, b, c) �→ (ab, c) �→ (ab)c.)

In fact, we can define the Cartesian product of two sets using maps. Let X
and Y be sets. The Cartesian product X × Y is a set P which has ‘projections’
π1 and π2 to X and Y respectively (by taking the first and second coordinate of
each ordered pair). Moreover, if Z is any set and φ1 : Z → X and φ2 : Z → Y
any maps, then there is a map ψ : Z → P such that ψπi = φi for i = 1, 2.
(Set zψ = (zφ1, zφ2).) This property characterises the Cartesian product, up to
isomorphism. Moreover, exactly the same properties and characterisation hold if
we replace sets, maps, and Cartesian products by groups (or various other kinds
of structures), homomorphisms, and direct products.

For a final example, a basis X of a vector space V over F is a linearly
independent spanning set. However, bases are also characterised (and could be
defined) by the following mapping property: any map from X into an F -vector
space W can be uniquely extended to a linear map from V to W .

These examples give some insight into the viewpoint of category theory. The
general definition is as follows:

A category consists of the following data:

• A set O of objects.
• A set M of morphisms or arrows.
• A pair of functions, dom (domain) and cod (codomain), from M to O.
• For each x ∈ O, an identity morphism 1x.
• A partial operation of composition on M , the composition of f and g (if
it exists) being written fg.

It satisfies the following axioms:

• The composition fg exists if and only if cod(f) = dom(g). If this holds, then
dom(fg) = dom(f) and cod(fg) = cod(g).

• If fg and gh are both defined, then (fg)h = f(gh).
• dom(1x) = cod(1x) = x.
• If dom(f) = x and cod(f) = y, then 1xf = f = f1y.

We abbreviate the information dom(f) = x and cod(f) = y by writing f : x→ y.
Part of the philosophy of category theory is that morphisms are more impor-

tant than objects. In fact, a category can be defined using only the morphisms,
the partial composition, and the identity morphisms; we identify the objects with
their corresponding identity morphisms. See Exercise 7.56.

There are two, quite different, sources of examples of categories. Be careful
to distinguish these, although the strength of category theory is that really no
distinction needs to be made.

Classes of structures Let O be a set of mathematical structures of some
type. These may be universal algebras of a fixed type (such as groups, vector
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spaces over a given field, lattices). They may also, more generally, be topological
spaces, differentiable manifolds, algebraic curves, and so on.

Let M be the class of all structure-preserving maps between members of O.
(For algebras, we takeM to consist of all homomorphisms; for topological spaces,
all continuous maps; and so on.) For f ∈ M , we take dom(f) and cod(f) to be
the usual domain and codomain of f , and take composition to be the usual
composition of functions and 1x to be the identity map on x.

It may also be possible to obtain a category by taking just some of the struc-
ture preserving maps. For example, we could take just the one-to-one maps, or the
onto maps; for differentiable manifolds we could take the continuous functions,
the differentiable functions, the smooth functions . . .

A category of this sort, where the objects are sets (possibly with additional
structure) and the morphisms are functions, is called a concrete category.

Remark There is a set-theoretic point which has to be mentioned here,
although I will not elaborate on this. We want to consider the category of all
groups, for example. But the class of all groups is not a set; if it were, we
could not escape problems in the foundations of set theory, such as Russell’s
paradox. One way round this is to suppose that there is a very large ‘universal’
set U , in which all constructions which we want to perform can be made (some
models of set theory provide such a set), and to consider the set of all groups
which belong to U . If this remark means nothing to you, you may ignore it; if it
intrigues you and you would like to know more, read a textbook on set theory
and one on category theory and compare their approaches.

Individual structures It may surprise you to learn that a group G is an
example of a category. Take a single object called ∗ (say), and take G to be
the set of morphisms, with dom(g) = cod(g) = ∗ for all g ∈ G, and 1∗ = 1,
the identity of G. Since there is only one object, any pair of morphisms can be
composed.

With this example in mind, we could say that categories form just another
type of algebraic object, more general than groups.

But now we have the option of turning the generality on itself. There is a
category of all categories! (modulo the set-theoretic difficulties just discussed).

Categories are more general than groups in two respects: there can be more
than one object, and morphisms need not be invertible. Two intermediate classes
of structures are obtained by relaxing one or other of these conditions.

A groupoid is a category in which any morphism f : x → y has an inverse
g : y → x (such that fg = 1x and gf = 1y). An example is obtained by taking
any class of structures as objects, and the isomorphisms as morphisms.

A monoid is a category with a single object. In other words, it is a set with
a (total) operation of composition, satisfying the associative and identity axioms
for a group, but not necessarily the inverse axiom. Thus, the endomorphisms of
a single structure x (the homomorphisms from x to x) form a monoid.
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For convenience, we will in future say ‘Let C = (O,M) be a category’, mean-
ing that O and M are the sets of objects and morphisms of C. Of course,
the notation ignores part of the category structure (the composition and the
identities), but old habits die hard.

Let C = (O,M) be a category. A subcategory C ′ consists of a subset O′ of
O and a subset M ′ of M such that C ′ = (O′,M ′) is a category. An important
special case occurs whenM ′ consists of all the morphisms of C whose domain and
codomain lie in O′. In this case, C ′ is called a full subcategory. For example,
abelian groups form a full subcategory of the category of groups.

The philosophy of category theory is that morphisms carry the essential infor-
mation about objects. Naturally enough, we next define ‘morphisms between
categories’.

Let C = (O,M) and C ′ = (O′,M ′) be categories. A functor from C to C ′

consists of a pair of maps (denoted by the same symbol F ) from O to O′ and
from M to M ′, satisfying the following conditions:

• (fg)F = (fF )(gF ) whenever fg is defined;
• 1xF = 1xF for all x ∈ O.

Note that the map on morphisms (‘functions’) is an important part of a functor,
not just an appendage of the map on objects; the name ‘functor’ is intended to
suggest this.

Functors are very common in mathematics. For example, let C be some con-
crete category of algebraic structures, and let C ′ be obtained by ignoring some of
the structure. Then there is a forgetful functor from C to C ′. For example, let
C and C ′ be the categories of rings and abelian groups. Then the forgetful func-
tor F maps a ring to its additive group, and a ring homomorphism to the same
map (regarded merely as a group homomorphism). In particular, any concrete
category has a forgetful functor to a category of sets.

Here are some further examples.

Derived group A different kind of functor maps groups to abelian groups.
Let G be a group. The derived group G′ is the subgroup generated by all
commutators g−1h−1gh; it is the smallest normal subgroup with abelian factor
group (see Section 6.1.4). Now there is a functor from groups to abelian groups
which maps G to G/G′. Of course, we have to define the action of the functor
on morphisms (see Exercise 7.60).

Unit group The functor U , from the category of rings with identity to the
category of groups, maps a ring to its group of units. (Check that a ring homo-
morphism maps units to units and induces a group homomorphism on the group
of units.)

General linear group More generally, for any n, the functor GLn maps a
ring R with identity to the group GL(n,R) of invertible n× n matrices over R.
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Power set The power set operation defines a functor from the category of sets
to itself.

Homology In algebraic topology, one defines, for each positive integer n and
topological space X, an abelian group Hn(X), the nth homology group of
X. Homeomorphic spaces have isomorphic homology groups, and homology was
originally a tool for telling topological spaces apart. It turns out that continuous
maps between spaces induce homomorphisms between their homology groups.
So Hn is a functor from topological spaces to abelian groups.

Group actions Recall that any group G is a category with a single object ∗, in
which the morphisms are the group elements. What is a functor F from G to the
category of sets? ∗F is a set Ω. For all g ∈ G, gF is a map from Ω to Ω, such that
(g1g2)F = (g1F )(g2F ) and 1F is the identity map on Ω. This is precisely the
definition of a permutation action of G on Ω (see Axioms (GA1) and (GA2) in
Section 7.1). So functors fromG to sets are permutation representations (actions)
of G.

More generally, functors from G to any category C of algebras are actions
of G by automorphisms of an algebra in C. For example, if C consists of finite-
dimensional vector spaces over F , then a functor from G to C is a representation
of G by matrices over F .

We now move to the next level in this process. A natural transformation is
a homomorphism between functors: with each object, it associates a morphism
between the images of the object under the two functors. More precisely, let
F,G : C → C ′ be functors, where C = (O,M) and C ′ = (O′,M ′). A natural
transformation T : F → G is a function from O to M ′ with the following
properties:

• for any x ∈ O, dom(xT ) = xF and cod(xT ) = xG;
• for any f ∈M , with dom(f) = x and cod(f) = y, we have

(fF )(yT ) = (xT )(fG).

Note that fF : xF → yF , yT : yF → yG; and xT : xF → xG, fG : xG → yG,
so the composite morphisms on both sides are defined. The condition can be
represented by a commutative diagram as follows:

xF
fF−→ yF

xT ↓ ↓ yT

xG
fG−→ yG

This means that, if we start from an element of xF and map it to an element
of yG by following the arrows along either possible route, the result will be the
same (independent of the route taken).

It is probably still not clear what this definition means. In fact, mathematics
abounds in important examples. Here are a few.
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Determinant Let C be the category of commutative rings with identity, C ′

the category of groups. As a small specialisation of an earlier example, both U
(the group of units) and GLn (the group of invertible n×n matrices) are functors
from C to C ′. We claim that det (determinant) is a natural transformation from
GLn to U . The first assertion of the definition is that, for any commutative ring
R, det is a homomorphism from GL(n,R) to U(R): this, as we have seen, is a
fundamental property of the determinant, namely

det(AB) = det(A) det(B).

The second property connects this with ring homomorphisms. If f : R→ S is a
homomorphism, we have

(det(A))f = det(Af),

where f denotes also the induced maps GLn(R) → GLn(S) and U(R) → U(S)
(which we might, more consistently, call GLn(f) and U(f)).

Group actions Let G be a group. We saw that a functor from G to the cate-
gory of sets is just a permutation action ofG on a set Ω. A natural transformation
between two such functors (actions on sets Ω1 and Ω2) is a G-homomorphism
between two such actions: that is, a map T : Ω1 → Ω2 such that (αg)T = (αT )g
for all α ∈ Ω1.

Double duals The dual space of an F -vector space V is the vector space V ′

of all linear maps from V to F . Duality is not a functor as we have defined it,
since it ‘reverses arrows’; that is, if f : V → W is linear, then f ′ : W ′ → V ′ is
defined by

v(φf ′) = (vf)φ

for φ ∈ W ′, v ∈ V . (Duality is what is known as a contravariant functor.)If
D denotes duality, then D2 is a functor from the category of vector spaces to
itself. Also, there is a natural transformation T from the identity to D2: V T is
the map V → V ′′ under which the image of v ∈ V is the map φ → vφ from V ′

to F .
This makes precise the notion that there is a natural embedding of a space

into its second dual, independent of any choice of basis. If we want to embed a
space in its dual, we must make some choices: the embedding is not ‘natural’.

Exercise 7.35 Show that the classes of rings, commutative rings, rings with identity,
and abelian groups are varieties.

Exercise 7.36 Let V be a variety of algebras with two unary operations α1 and α2
and a binary operation β, satisfying the laws

(x, y)βα1 = x, (x, y)βα2 = y, (zα1, zα2)β = z.
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Prove that any algebra in V with more than one element is infinite.

Exercise 7.37 A quasigroup is an algebra with three binary operations µ, λ, ρ
satisfying the laws

(x, (x, y)µ)λ = y, (x, (x, y)λ)µ = y,

((x, y)µ, y)ρ = x, ((x, y)ρ, y)µ = x.

(a) Show that, in a quasigroup, the three equations (x, y)µ = z, (x, z)λ = y,
(z, y)ρ = x are equivalent. (Thus, λ and ρ are ‘left and right division’ with respect
to the ‘multiplication’ µ.)

(b) Show that the operation table of a binary operation µ on A has the property
that each element occurs exactly once in each row or column if and only if there are
operations λ and ρ such that the three operations µ, λ, ρ define a quasigroup on A.

[A table with the property described in this problem is a Latin square.]

Exercise 7.38 (∗) This exercise shows that, in an algebra of given type, we can write
elements unambiguously without needing brackets.

Consider an alphabet consisting of a set of variables and a set of operation symbols,
each operation symbol having a given non-negative arity. Define the variability of a
word in this alphabet to be the integer obtained by subtracting from its length the sum
of the arities of the operation symbols that it contains. A prefix of a word is obtained
by deleting any number of symbols from the end of the word. Show that a word w
represents a (unique) element of an algebra (after substituting elements of the algebra
for the variables) if and only if the following two conditions hold:

(a) w has variability 1;
(b) every non-empty prefix of w has positive variability.

Devise a decoding algorithm which tests whether a word satisfies this condition and,
if so, parses the word.

Exercise 7.39 (∗∗) Let A be the set of all words satisfying conditions (a) and (b)
above. For each n-ary operator symbol µ, and any n elements a1, . . . , an ∈ A, show
that a1 · · · anµ ∈ A. Hence show that A is an algebra with the given collection of
operators. Show that, if B is any algebra of the same type, and we choose an element
bi ∈ B corresponding to each variable xi, then there is a unique homomorphism from
A to B which maps xi to bi for each i.

[A is called the free algebra of the given type with the given set of variables as
generators.]

Exercise 7.40 Does the family of unique factorisation domains form a variety?

Exercise 7.41 In a group G, the commutator [x, y] of elements x and y is the element
x−1y−1xy.

(a) Show that [x, y] = 1 if and only if x and y commute.
(b) Hence show that G is abelian if and only if it satisfies the law [x1, x2] = 1.
(c) Let N be a normal subgroup of G such that G/N is abelian. Show that

all commutators [x, y] belong to N . Hence show that, if also N is abelian (so that
G is metabelian), then any two commutators commute, and G satisfies the law
[[x1, x2], [x3, x4]] = 1.

(d) Show that the subgroup H generated by all commutators in G (the derived
group or commutator subgroup of G) is normal, and that G/H is abelian.
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(e) Show that, if G satisfies the law [[x1, x2], [x3, x4]] = 1, then its derived group is
abelian, and hence G is metabelian.

∗(f) Generalise the above to show that soluble groups of derived length at most d
form a variety.

Exercise 7.42 A congruence on an algebra A is an equivalence relation on A; that is,
a subset E of A × A. Prove that it is a subalgebra of A × A. Is every subalgebra of
A×A a congruence? If not, can you formulate necessary and sufficient conditions?

Exercise 7.43 Let X be a Boolean lattice. Define new operations + and · on X by the
rules x+ y = x∨ y∧ (x∧ y)′, x · y = x∧ y. Prove that (X,+, ·) is a Boolean ring (a ring
satisfying the law x2 = x). Show also that any Boolean ring gives rise to a Boolean
lattice by taking x ∨ y = x+ y + xy, x ∧ y = xy.

Prove that the categories of Boolean lattices and Boolean rings are naturally
isomorphic.

Exercise 7.44 (∗) In this exercise, we show that a finite Boolean lattice is isomorphic
to the lattice of subsets of a set.

We must construct a set S, and a subset s(x) of S for each x ∈ S, such that:

• Every subset of S has the form s(x) for a unique x ∈ X.
• s(0) = ∅ and s(1) = S.
• s(x ∨ y) = s(x) ∪ s(y) and s(x ∧ y) = s(x) ∩ s(y).
• s(x′) = S \ s(x).
An ideal in a Boolean lattice X is a subset I of X such that:

• if a, b ∈ I then a ∨ b ∈ I;
• if a ∈ I and x ∈ X then a ∧ x ∈ I.
Note the analogy with ideals in a ring (with ∨ and ∧ taking the place of + and ·).

Let S be the set of all maximal ideals of X (those contained in no larger ideal), and
for x ∈ X, let s(x) denote the set of maximal ideals containing x.

Show that the properties listed above are indeed satisfied.

Exercise 7.45 (∗) Prove that a distributive lattice is modular.

Exercise 7.46 Prove that, in any lattice, if x ≤ z, then
x ∨ (y ∧ z) ≤ (x ∨ y) ∧ z.

[Hint : Show that, if ai ≤ bj for i, j = 1, 2, then a1 ∨ a2 ≤ b1 ∧ b2.]

Exercise 7.47 Complete the proof of Theorem 7.55(b).

Exercise 7.48 True or false?

(a) A partition lattice is modular.
(b) A subalgebra lattice is modular.

Exercise 7.49 Let S be a set, and F a field. Let V be the vector space of all functions
from S to F , with pointwise operations. For each partition π of S, let Vπ denote the
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subspace

{f ∈ V : f(x) = f(y) whenever x, y are in the same part of π}.
Prove that

(a) The map π �→ Vπ is one-to-one;
(b) Vπ1∨π2 = Vπ1 ∧ Vπ2 .

Is it true that the dual of the partition lattice of S is embeddable in the subspace lattice
of V ?

Exercise 7.50 A lattice is complete if any subset has a least upper bound and a
greatest lower bound.

(a) Show that a finite lattice is complete.
(b) Show that a lattice in which any subset has a greatest lower bound is complete.
(c) Show that the subalgebra lattice of an algebra is complete. What about the

congruence lattice?
(d) Give an example of a lattice which is not complete.

Exercise 7.51 Prove that a finite lattice is Boolean if and only if it is the direct
product of copies of {0, 1}.

Exercise 7.52 (a) Prove that the subspace lattice of a 2-dimensional vector space over
F is a line with |F | + 1 points.

(b) Prove that the subspace lattice of a 3-dimensional vector space is a projective
plane.

(c) Show that the lattice shown in Figure 7.3 is the lattice of subspaces of GF(2)3.

Exercise 7.53 Let L be an atomic lattice, with A the set of atoms. For any x ∈ L, let
S(x) denote the set of atoms a ∈ A satisfying a ≤ x.

(a) Prove that S(x) ∩ S(y) = S(x ∧ y).
(b) If L is Boolean, show that S(x′) = A \ S(x), and deduce that S(x ∨ y) =

S(x)∪S(y). Hence prove Theorem 7.54. [You have to show that a finite Boolean lattice
is atomic.]

Exercise 7.54 LetM3 be the three-point line and N5 the pentagon (Figure 7.4). Prove
that M3 is not distributive and N5 is not modular.

Exercise 7.55 (∗) Show that, if a finite line is the subgroup lattice of a group, then
the number of atoms is p + 1, where p is prime. Which groups have such a subgroup
lattice?

Fig. 7.4 Two lattices
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Exercise 7.56 Given a setM of morphisms with a partial composition and a subset
I of identities, suppose that the following conditions are satisfied:

• For any f, g, h ∈ M , if fg and gh are defined, then (fg)h and f(gh) are
defined and are equal.

• For any f ∈ M , there are unique identities i and j such that if and fj are
defined; and if = fj = f .

• For f, g ∈M , fg is defined if and only if there is an identity j such that fj
and jg are defined.

• For any identity i, ii is defined.

Prove that M is the set of morphisms of a category.

Exercise 7.57 Let X1 and X2 be groups. Let P be a group and let πi : P → Xi

(i = 1, 2) be homomorphisms. Suppose that, if Z is any group and φi : Z → Xi

(i = 1, 2) are homomorphisms, then there is a homomorphism ψ : Z → P such that
ψπi = φi for i = 1, 2.

Prove that P is isomorphic to X1 ×X2.

Exercise 7.58 (∗) We can turn the preceding exercise into a definition. Let X1 and X2
be objects in a category. A direct product of X1 and X2 is an object P and a pair
πi : P → Xi (i = 1, 2) of morphisms such that, for any object Z and morphisms φi :
Z → Xi (i = 1, 2), there is a unique morphism ψ : Z → P such that ψπi = φi for
i = 1, 2.

Show that any two direct products of X1 and X2 are isomorphic.
Give an example of two objects in a category which do not have a direct product.

Exercise 7.59 (∗∗) Give a similar definition of inverse limit in a category (see
Exercise 7.29).

Exercise 7.60 Let θ : G → H be a homomorphism of groups. Prove that G′θ ≤ H ′.
Hence show that θ induces a unique homomorphism θ∗ : G/G′ → H/H ′.

Hence show how to define a functor from groups to abelian groups which maps G
to G/G′ for any group G.

Exercise 7.61 Why is there no natural way to define a functor from groups to abelian
groups which maps G to Z(G) (the centre of G)?

Exercise 7.62 A preorder is a reflexive and transitive relation on a set.

(a) Show that any preordered set (X,P ) is a category, with object set X and
morphism set P , with dom(x, y) = x and cod(x, y) = y for all (x, y) ∈ P , and 1x =
(x, x).

(b) Show that a category is a preorder if and only if there is at most one morphism
with any given domain and codomain.

Exercise 7.63 Prove that GLn is a functor.



8 Applications

From the surprisingly many applications of abstract algebra, I have chosen just
two. One of these is the construction of Évariste Galois in the early nineteenth
century; it explains why there is no formula for the solution of a polynomial
equation of degree 5 or greater (comparable to the familiar formula x = (−b ±√
b2 − 4ac)/2a for the solution of the quadratic equation ax2 + bx+ c = 0). The

other is a much more recent development, the theory of error-correcting codes,
for transmitting information through noisy channels.

Coding theory
8.1 Codes. One of the most famous applications of coding theory occurred
in the exploration of the outer planets of the solar system by unmanned space
probes. These probes carried scientific equipment and cameras. The informa-
tion about temperatures, magnetic fields, and so on was very important to
astronomers, but the pictures of Jupiter, Saturn, and their moons made us all
aware of the existence of other worlds with their distinctive characters.

Typically, one of these probes had a generator capable of producing a few
hundred watts of electric power, of which only a few tens of watts was available to
the transmitter responsible for sending the information back to earth. This weak
signal had to be separated from the radio ‘noise’ produced by the universe, and
the useful information filtered from it. Naturally, sometimes the signal received
was incorrect as a result of this interference. The job of error correction is to
ensure that the correct information is received.

The procedure can be divided into a number of stages.

Stage 1: Generation of messages For simplicity, all information is sent as a
sequence of ‘words’ or blocks of zeros and ones. A picture is divided into a large
grid of small squares or ‘pixels’. Each pixel is then scanned and the intensity of
each of the three primary colours measured. This measurement is then digitised
to be an integer in the range [0, 255] say, and the resulting integer converted into
8-bit binary form. In this way, a picture becomes a very long string of zeros and
ones, which can be chopped up into blocks of fixed length.

Stage 2: Encoding Each block is then translated into a longer block called a
‘codeword’. This slows down the transmission time, since more bits have to be
sent; the redundancy is used for error correction. The encoding is devised so that
any two codewords look very different. Then even if a few bits are changed during
transmission, what is received should look more like the transmitted codeword
than any other, and decoding is possible.
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Stage 3: Transmission The codewords are sent by the transmitter, and
received by Earth-based equipment (possibly with some errors).

Stage 4: Decoding As explained, the receiver has the list of all possible
codewords, and can compare the received word to them to find which is most
similar.

Stage 5: Recovery of the information From the codeword, we can translate
back into the binary string, and interpret it as a picture (or as scientific data, as
appropriate).

We now develop the mathematical language to describe this.

Definition Let F be a set of symbols, called the alphabet (with |F | =
q > 1), and let n be a positive integer. A word of length n over F is an n-
tuple of symbols from F . It is common to write a word as a1a2 · · · an instead
of (a1, a2, . . . , an).

A code C of length n is a subset of the set Fn of all words of length n,
subject to the condition that |C| > 1. Its elements are called codewords.

Remarks The reason for requiring that |C| > 1 is that, if only one message
could be sent, no information could ever be conveyed (except the information
that the transmitter is operating). In the space probe, the alphabet F is the
binary alphabet {0, 1}.
Definition Let v, w be words of length n. The Hamming distance d(v, w)
from v to w is the number of coordinates where v and w differ:

d(v, w) = |{i : 1 ≤ i ≤ n, vi �= wi}|.
Remark The motivation here is that we regard a single ‘error’ in transmission
as changing one letter in a word. So the Hamming distance d(v, w) is the number
of errors which would be required to change the transmitted word v into the
received word w. We suppose that our system has the property that it is unlikely
that a large number of errors will occur; so, with high probability, the Hamming
distance between transmitted and received words is not too great.

Proposition 8.1 (a) For any words v, w, we have d(v, w) ≥ 0, and
d(v, w) = 0 if and only if v = w.

(b) For any words v, w, we have d(w, v) = d(v, w).
(c) (The triangle inequality.) For any words u, v, w, we have d(u, v) +
d(v, w) ≥ d(u,w).

Proof (a) and (b) are trivial.
For (c), note that d(u, v) errors will turn u into v, and a further d(v, w)

errors turn v into w. But some coordinates may have been changed twice, so the
distance from u to w may be smaller than the sum of d(u, v) and d(v, w).
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Remark In topology, ametric space is defined to be a setM with a ‘distance
function’ or metric d from M ×M to the non-negative real numbers satisfying
conditions (a), (b), and (c) of the proposition. So we have shown that the set of
words of length n, equipped with Hamming distance, is a metric space.

Definition Let e be a positive integer. The code C of length n is said to be
e-error-correcting if the following holds: for any word w of length n, there is
at most one codeword c ∈ C which satisfies d(w, c) ≤ e.

The reason for the name is as follows: Suppose that C is e-error-correcting.
Suppose that we use C in a communication system in which we know, or can
be fairly certain, that not more than e errors will occur during the transmission
of a single word. Then these errors will be corrected. For suppose that c is
transmitted and w received. Then by our assumption, d(c, w) ≤ e. Since C is
e-error-correcting, any other codeword c′ satisfies d(c′, w) > e. So c is the nearest
codeword to the received word, and the decoding is correct.

Definition Theminimum distance of a code C is the least distance between
two distinct codewords in C.

Theorem 8.2 The code C is e-error-correcting if and only if its minimum
distance is 2e+ 1 or greater.

Proof Suppose that C is not e-error-correcting, so that there exist a word
w and two different codewords c1 and c2 both at distance e or less from w:
that is, d(c1, w) ≤ e and d(c2, w) ≤ e. By the properties of Hamming distance,
d(w, c2) ≤ e, and so d(c1, c2) ≤ e + e = 2e. Hence it is not true that C has
minimum distance 2e+ 1 or more.

Conversely, suppose that C has minimum distance d ≤ 2e. Choose f to be the
integer part of d/2. Then f ≤ e and d− f ≤ e. There are two codewords c1 and
c2 with d(c1, c2) = d. Thus we can get from c1 to c2 by changing d coordinates.
Let these be changed one at a time, and let w be the word obtained when f
coordinates have been changed. Then d(c1, w) = f ≤ e, and d(c2, w) = d−f ≤ e.
So C is not e-error-correcting.

Thus, we want a good code to have large minimum distance (so that it will
correct as many errors as possible). We also want it to have as many codewords
as possible: the more codewords, the faster information can be sent.

To measure this, we define the rate of a code C of length n over an alphabet of
q symbols to be logq |C|/n. The motivation is that, if |C| = qk, then qk messages
can be encoded. Without the encoding, each message could be sent as a k-tuple;
after coding, it becomes an n-tuple, and so transmission is k/n times as fast as
without the encoding.
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The tension between error correction and rate is expressed in various inequal-
ities connecting the minimum distance and size of a code. Here are two of the
simplest:

Theorem 8.3 Let C be a code of length n over an alphabet of q symbols, having
minimum distance d.

(a) (Hamming bound): If d ≥ 2e+1 (that is, if C is e-error-correcting), then

|C| ≤ qn
/ e∑

i=0

(
n

i

)
(q − 1)i.

(b) (Singleton bound): |C| ≤ qn−d+1.

Proof (a) Let c be a codeword. We count the number of words w such that
d(c, w) ≤ e. How many satisfy d(c, w) = i? We have to make i errors, which we
can do by choosing i coordinates to change (in

(
n
i

)
ways), and then changing the

entry in each of these coordinates to a different symbol in the alphabet (q − 1
choices for each coordinate, so (q − 1)i altogether). Multiplying these numbers
and summing over i, the number of words w which satisfy d(c, w) ≤ e is

e∑
i=0

(
n

i

)
(q − 1)i.

We can regard these words as forming a ‘ball’ of radius e having the codeword c
as its centre.

If we do this for all codewords, there is no overlap among the words we find.
For, by assumption, C is e-error-correcting; so no word is at distance e or less
from more than one codeword. Geometrically, the balls are packed into the space
without overlap. So the number of words accounted for is

|C| ·
e∑

i=0

(
n

i

)
(q − 1)i.

But this cannot exceed the total number qn of words.
(b) Look at the codewords through a window which shows only the first

n−d+1 coordinates. The pieces we see are all different. For if the first n−d+1
coordinates of c1 and c2 are the same, then these codewords cannot differ in
more than the last n − (n − d + 1) = d − 1 coordinates; so d(c1, c2) ≤ d − 1,
contrary to assumption.

So the number of codewords does not exceed the total number qn−d+1 of
things that can be seen through the window.

Remark Codes which attain these bounds are of particular importance. Such
codes are called perfect for the Hamming bound, or maximum-distance
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separable (MDS for short) for the Singleton bound. We will see interesting
examples shortly, but here is a simple example. The repetition code of length
n consists of all codewords aa · · · a (for a ∈ F ). The idea is that, to get the
message through, repeat it lots of times! This code has q codewords (one for
each symbol), and the minimum distance is equal to the length n. The Singleton
bound for d = n asserts that |C| ≤ qn−n+1 = q, so this bound is met. In the case
q = 2, if n is odd, say n = 2e+ 1, the Hamming bound is also attained.

There is more to coding theory than just resolving this tension between large
minimum distance and many codewords. The codes should not be too difficult to
implement. (Recall the space probe: the encoding must be done by a simple low-
powered machine.) It turns out that concepts from algebra are crucial for this.

8.2 Linear codes. Let us formalise the encoding and decoding processes.
Let S be a set of messages, and C a code of length n over an alphabet F
with q symbols. Then encoding is a function ε : S → C, which is one-to-one
(since if two messages were assigned to the same codeword, the receiver could
never decide which had been intended). In fact, we normally assume that the
encoding function is a bijection, since codewords which are never used could be
removed from the code. In this case, there is an inverse map ε−1 which translates
codewords back to messages.

Decoding is a function δ : Fn → C. No formal restrictions are made; but often
we assume that it is nearest-neighbour decoding. This means that δ(w) is
always a codeword which is as near as possible to w (one which minimises d(c, w)
over all c ∈ C). If there is more than one codeword at the smallest distance from
w, then δ(w) should be one such, but we do not specify which one. We could
if required follow δ with the inverse of ε to get a map from Fn to the set S of
messages.

Usually, F is the so-called binary alphabet {0, 1}, which can be regarded
as the field Z2. We will be more general, and assume only that F is a finite field.
Then the set Fn is an n-dimensional vector space over F . We will see that there
are good reasons for assuming that C is a subspace of Fn. If it is a k-dimensional
subspace, then |C| = qk. So there are also qk messages in S, and we may assume
that they are all the k-tuples of elements of F . Then it is natural to make the
encoding map a linear transformation!

Definition Let the alphabet F be a finite field. The code C is a linear code
if it is a subspace of the F -vector space Fn.

There are other advantages too.

Definition Suppose that the alphabet is a finite field. The weight wt(w) of a
word w is the number of non-zero coordinates of w. The minimum weight of
a code is the smallest non-zero weight of any codeword.

Proposition 8.4 The minimum weight and minimum distance of a linear code
are equal.
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Proof First we show that d(v, w) = wt(v − w). This holds because the ith
coordinates of v and w are unequal if and only if the ith coordinate of v − w is
non-zero.

Now let C have minimum distance d and minimum weight f . Let d(c1, c2) = d.
Then wt(c1−c2) = d, and c1−c2 ∈ C by linearity; so d ≥ f (as f is the minimum
weight). Conversely, let wt(c) = f . Then, by definition, d(c, 0) = f , where 0 is the
all-zero word; and 0 ∈ C by linearity, so f ≥ d (as d is the minimum distance).
We conclude that d = f , as required.

Thus, instead of comparing all pairs of codewords to find the minimum dis-
tance, in a linear code it is only necessary to look at all codewords to find
the minimum weight.

Also, if c is transmitted and w received, then w = c+ x, where the weight of
x is equal to the number of errors which occurred.

How do we describe a linear code C?
Since C is nothing but a subspace of Fn, we choose a basis for it, a set of k

words of length n. We can arrange these vectors as the rows of a k × n matrix
G, called a generator matrix for C. Thus, formally, a generator matrix for C
is a matrix whose rows form a basis for C; and C is the row space of G.

The reason for the term ‘generator matrix’ is as follows: Any codeword can
be written uniquely as x1g1 + · · · + xkgk, where g1, . . . , gk are the rows of C.
More briefly, this is xG, where x = x1 · · ·xk ∈ F k. Thus, if the set S of messages
to be sent is the set F k of all words of length k, then the encoding map ε is just
the linear map x �→ xG from F k to Fn: it is one-to-one, and its image is C.

In the binary case, the matrix multiplication involved in computing the encod-
ing map can be performed by a very simple circuit, which can be built into a
space probe.

If we apply elementary row operations to G, we do not change its row space,
and hence the result is still a generator matrix for C. (We do, however, change
the encoding map.) By the results of Section 4.10, we can assume that G is
in reduced echelon form. Now, given a matrix in reduced echelon form, we can
apply column permutations to bring the columns containing the leading 1s to
the front, obtaining a matrix of the form (I A) in block form. Of course, a
column permutation does change the code: it has the effect of applying the
same permutation to all codewords. However, this does not change weights or
Hamming distances, which are the important things as far as coding theory goes;
the new code is as good as the old one. So we may assume, if necessary, that the
generator matrix is in the standard form G = (I A).

If G is in standard form, then the encoding map is given by

x �→ xG = (x xA).

We see that the first k symbols of the codeword are precisely the message being
sent. This makes the recovery of the message from the codeword after decoding
particularly simple. These k symbols are called the information digits, and
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the remaining n− k symbols the check digits. Encoding consists of taking the
message and adding to it some new digits for error correction.

It is time for an example.

Example 1 Over the binary field Z2, let

G =



1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1


.

Then G is the generator matrix, in standard form, of a binary linear code C with
length 7 and dimension 4. By listing all 24 = 16 codewords, it is easily checked
that the minimum weight is 3, so that C is 1-error-correcting. Encoding takes a
message x1x2x3x4 to a codeword x1 · · ·x7, where

x5 = x2 + x3 + x4,

x6 = x1 + x3 + x4,

x7 = x1 + x2 + x4.

This code attains the Hamming bound of Theorem 8.3(a), since

|C| = 16 = 27/(1 + 7(2− 1)).

This means that the balls of radius 1 with centres at the codewords cover the
whole of F 7, so that any word whatever is at distance 0 or 1 from a unique
codeword.

Hence, to decode, we could take the received word, look through the list of
16 codewords to find the one which is equal to it or differs in one place only,
decode to this codeword, and take the first four digits as the message.

In the next section, we give a more efficient decoding method.

8.3 Syndrome decoding. We begin by giving another description of a code.
The motivation comes from either linear algebra or coding theory.

In terms of linear algebra, we described a subspace of Fn as the row space of
a matrix, in other words, the image of a linear transformation. It would be just
as natural to use the kernel instead.

In coding theory terms, the motivation is even more convincing. The received
word has the form ‘codeword plus error’; we want to remove the error and reveal
the codeword. However, the error is unknown, and we know that the codeword
is chosen from a known subspace. So, instead, we remove the codeword to reveal
the error, and then find the codeword by subtracting the error from the received
word. Accordingly, we want a function f such that f maps every codeword to
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zero but f is one-to-one on possible error patterns. Of course, f should also be
linear, so that

f(codeword + error) = f(codeword) + f(error) = f(error),

from which the error can be determined.

Definition Let C be a linear code with length n and dimension k. A check
matrix for C is a (n − k) × n matrix H with the property that, for any word
w ∈ Fn, we have wH� = 0 if and only if w ∈ C.

Note that we take H, like G, to have n columns, so that we have to transpose
it in the equation.

The word wH� is called the syndrome of w.

Proposition 8.5 Let H be a check matrix for a linear e-error-correcting code.
Then, if w1 and w2 are any two words with weight at most e which have the
same syndrome, then w1 = w2.

Proof If w1H
� = w2H

�, then (w1 − w2)H� = 0, and so w1 − w2 ∈ C. But
w1 − w2 has weight at most 2e, whereas C has minimum (non-zero) weight at
least 2e+ 1. So, necessarily, w1 − w2 = 0.

Thus our condition that different error patterns have different images is
satisfied, at least for the errors that we can correct.

The decoding now works as follows: Given the received word, calculate its
syndrome, work out the error pattern which would produce that syndrome (for
example, look it up in a table), and subtract that error pattern from the received
word to give the codeword.

In our example, it can be checked that the matrix

H =


0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1




is a check matrix for the code of Example 1 earlier. Since the code is 1-error-
correcting, the relevant error patterns are 0 and the word ei with 1 in the ith
position and 0 elsewere, for i = 1, . . . , 7. The syndrome of 0 is 0; the syn-
drome of ei is the ith row of H�, which by inspection happens to be the base 2
representation of the integer i. So decoding is particularly simple:

Given a received word w, calculate its syndrome wH�. If it is zero, then no
error occurred; otherwise, if the syndrome is the base 2 representation of i, then
the ith digit is incorrect.

Suppose, in our example, that we wish to send the message 1101. This is
encoded as 1101001. Suppose that an error occurs in the second position, giving
the received word 1001001. Multiplying by H� gives the syndrome 010, which is
the second row of H�, or the base 2 representation of 2. So we correct the word
to 1101001, and extract the information 1101 correctly.
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If, on the other hand, two errors occurred, say in positions 2 and 5, the
received word would be 1001101, with syndrome 111; we would decode by chang-
ing the seventh digit, giving 1001100, and extract the wrong message 1001. Our
use of this code depends on the assumption that it is very unlikely that two or
more errors will occur during the transmission of a single word.

It is possible to look at syndrome decoding in another way. If an unknown
codeword is sent, and an error x occurs, then the received word belongs to the
coset C + x. Now C is the kernel of the linear transformation from Fn to Fn−k

represented by H�, so each such coset maps to a single word in Fn−k. We can
correct any assumed set of error patterns which are mapped one-to-one by H�;
that is, at most one from each coset. It is natural to choose the word of smallest
weight in a coset, as the most likely error pattern to occur. Such a word is called
a coset leader. (If two or more words have the minimum weight in a coset,
choose among them arbitrarily.) Then any syndrome specfies a unique coset,
and we can decode using a table of syndromes and corresponding coset leaders.

Syndrome decoding can be used for any linear code, although in particular
cases it may not necessarily be the most efficient way.

The minimum weight of a linear code can be found from its check matrix as
follows.

Proposition 8.6 Let C be a linear code with check matrix H. Then C has
minimum weight δ or greater if and only if any δ − 1 columns of H are linearly
independent.

Proof Let h1, . . . , hn be the columns of H. Then c1 · · · cn is a codeword if
and only if c1h1 + · · · + cnhn = 0. So codewords of weight f correspond to
dependence relations among sets of f columns; and the minimum weight is equal
to the minimum size of a set of linearly dependent columns.

Using the check matrix, it is easy to construct an important family of codes,
the Hamming codes. Let r be given, let F = GF(q), and let (F r)� be the
r-dimensional vector space of all columns of length r (that is, the r×1 matrices).
Then |X| = (qr − 1). Let X = (F r)� \ {0}. Call two elements of X equivalent
if one is a scalar multiple of the other. Each equivalence class contains q − 1
elements (since there are q−1 non-zero scalars); so there are n = (qr−1)/(q−1)
equivalence classes. Let Y be a set of representatives of the equivalence classes.
Thus Y consists of one non-zero vector from each 1-dimensional subspace of
(F ∗)�. Let H be the r × n matrix whose columns are the elements of Y . Then
we define the q-ary Hamming code of length n to be the linear code with check
matrix H.

Proposition 8.7 Hamming codes are perfect 1-error-correcting (that is, they
attain the Hamming bound).

Proof By construction, no column is zero, and no column is a multiple of
another. So any two columns are linearly independent. By Proposition 8.6, the
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code has minimum weight at least 3, and so it is 1-error-correcting. Since

|C| = qn−r = qn/(1 + n(q − 1)),

the Hamming bound of Theorem 8.3(a) is attained.

We can make the choice of columns definite by taking from each equivalence
class the unique vector whose first non-zero element is 1. For example, the ternary
(over GF(3)) Hamming code of length (33 − 1)/(3− 1) = 13 has check matrix

 0 0 0 0 1 1 1 1 1 1 1 1 1
0 1 1 1 0 0 0 1 1 1 2 2 2
1 0 1 2 0 1 2 0 1 2 0 1 2


.

One problem remains: How do we find a check matrix for a code?

Theorem 8.8 (a) Let G and H be matrices of size k × n and (n − k) × n
respectively over a finite field F , both having linearly independent rows. Then
G and H are the generator and check matrices for the same code if and only if
GH� = 0.

(b) Let G = (I A) be a generator matrix of a code C, in standard form. Then
a check matrix of the same code is H = (−A� I).

Proof (a) By assumption, the row space C of G and the null space C ′ of H
both have dimension k. Now GH� = 0 is equivalent to the assertion that every
row of G lies in C ′; that is, that C ⊆ C ′. So the result follows.

(b) The identity blocks in G and H ensure that their rows are linearly
independent; and GH� = −IA+AI = 0.

This gives a simple way to compute H, if G is in standard form.
In general, apply elementary row operations to G to bring it to reduced

echelon form. If it is in standard form, proceed as before. Otherwise, apply a
permutation π to its columns to bring it to standard form; then construct the
H for this standard form of G, and apply the inverse of π to its columns.

8.4 Cyclic codes. Cyclic codes form a subclass of the class of linear codes.
For these codes, an even more precise algebraic description is possible, leading
to improved decoding algorithms.

Definition Let C be a linear code of length over a field F . Then C is a cyclic
code if, for every word w = a1a2 · · · an ∈ C, the cyclic shift ana1a2 · · · an−1 is
also in C.

We translate into algebra in the following way. It is convenient to change
notation, and number the coordinates from 0 to n − 1, instead of from 1 to
n. Now, with each word w = a0a1 · · · an−1 ∈ Fn, we associate the polynomial
w(x) = a0 + a1x+ · · ·+ an−1x

n−1 ∈ F [x].
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Let I be the ideal of F [x] generated by xn − 1, and let R be the factor
ring F [x]/I. Now each coset of I in R has a unique representative which is a
polynomial of degree at most n − 1 (or zero). For, given any polynomial f(x),
we can use the division algorithm to write

f(x) = (xn − 1)q(x) + r(x),

where r = 0 or deg(r) < n; and f(x) and r(x) lie in the same coset of I.
So there is a natural bijection between R = F [x]/I and the set of polynomials

of degree at most n − 1 (together with 0), and hence with the set Fn of words
of length n. We will switch freely between these sets.

Proposition 8.9 A code C of length n is cyclic if and only if the corresponding
elements of R form an ideal.

Proof Multiplication by x corresponds to the cyclic shift. For consider a word
w = a0a1 · · · an−1. The corresponding polynomial is a0 + a1x+ · · ·+ an−1x

n−1.
Multiplying by x gives a0x+ a1x

2 + · · ·+ an−1x
n. Now xn and 1 lie in the same

coset of I = (xn − 1), so are equal in the factor ring. Thus, in R, the above
‘polynomial’ is equal to an−1 + a0x+ a1x

2 + · · · , which corresponds to the word
an−1a0a1 · · · , the cyclic shift of w.

Thus, if C is an ideal, it is closed under addition, and under multiplication
by any scalar (hence it is a linear code), and under multiplication by x, in other
words cyclic shift (and hence it is a cyclic code). Conversely, suppose that C is
a cyclic code. Then it is closed under addition, and under multiplication by any
scalar or by x. Combining these two operations, we can build any polynomial,
so C is closed under multiplying by any polynomial, and so is an ideal.

The problem now is to describe the ideals in the ring R. First, we observe
that they are all principal.

Proposition 8.10 Let R be a commutative ring with identity in which every
ideal is generated by a single element. Then the same properties hold for any
factor ring of R.

Proof Consider a factor ring R/I. By the Second Isomorphism Theorem, its
ideals are all of the form J/I, where J is an ideal of R containing I. Now, if
J = (r), then J/I = (I + r).

We cannot assume that the factor ring R/I is a principal ideal domain, how-
ever, even if R is; for it may not be an integral domain. For example, a factor
ring of Z has the form Zm for some m; all of its ideals are principal (by the
proposition), but it is an integral domain only if m is prime (in which case it is
a field).

Proposition 8.11 Any ideal of F [x]/(xn − 1) is generated by (the coset con-
taining) a monic polynomial g(x) which divides xn − 1. There is a unique such
polynomial for any ideal.
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Remark The polynomial g(x) is called the generator polynomial of the
cyclic code corresponding to the ideal (g(x)).

Proof Suppose that the ideal I is generated by f(x). Let g(x) be the g.c.d. of
f(x) and xn− 1 (in F [x]), chosen to be monic. Then g divides f , so (g) contains
f . But also, by the Euclidean Algorithm, g(x) = a(x)f(x) + b(x)(xn− 1). In the
factor ring R, this equation says g(x) = a(x)f(x); so also f divides g, and (f)
contains (g). Thus, g generates the ideal I. It is by definition a monic polynomial
dividing xn − 1.

The uniqueness follows from the Second Isomorphism Theorem. By assuming
that our polynomial divides xn−1, we see that the ideal of F [x] that it generates
contains (xn−1). So, if g1 and g2 were two such polynomials, they would generate
the same ideal of F [x]. Hence they would be associates in F [x]; that is, they would
differ only by a scalar factor. Since both are monic, they would be equal.

So to construct all cyclic codes of length n, we must factorise xn − 1 into
irreducibles in F [x], then list all divisors of xn−1 (the products of some of these
irreducibles), and for each divisor, form the corresponding ideal of R.

Theorem 8.12 Suppose that g(x) is the generator polynomial of the cyclic code
C. Let

g(x) = an−kx
n−k + an−k−1x

n−k−1 + · · ·+ a0,

with an−k = 1, and let g(x)h(x) = xn − 1, where

h(x) = bkx
k + bk−1x

k−1 + · · ·+ b0,

with bk = 1. Then a generator matrix G and a check matrix H for C are
given by

G =



a0 a1 . . . an−k 0 . . . 0
0 a0 a1 . . . an−k . . . 0
. . . . . . . . . . . . . . . . . . . . .
0 . . . 0 a0 a1 . . . an−k


,

H =



bk bk−1 . . . b0 0 . . . 0
0 bk bk−1 . . . b0 . . . 0
. . . . . . . . . . . . . . . . . . . . .
0 . . . 0 bk bk−1 . . . b0


.

Remark Both G and H are in echelon form. So the theorem implies that
dim(C) = k = n− deg(g(x)).

Proof The rows of G correspond to the polynomials g(x), xg(x), . . . , xk−1g(x),
so they all belong to C.
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Take any word x ∈ C, corresponding to a polynomial f(x)g(x) (mod xn−1).
Write f(x) = h(x)q(x) + r(x), where r = 0 or deg(r) < k. Then f(x)g(x) =
(xn − 1)q(x) + r(x)g(x), and this is congruent mod xn − 1 to r(x)g(x), which
is a linear combination of the polynomials xig(x) for i < k. Hence w is a linear
combination of the rows of G. So the row space of G is C, as claimed.

The (i, j) entry of G is aj−i, with the convention that al = 0 if l is outside
the range [0, n − k]. With a similar convention, the (i, j) entry of H is bk−j+i.
Hence the (i, j) entry of GH� is∑

l

al−ibk−l+j =
∑
m

ambk−i+j−m.

This is the (k − i + j)th coefficient of the product gh. Now 1 ≤ i ≤ k and
1 ≤ j ≤ n− k, so

k − k + 1 = 1 ≤ k − i+ j ≤ k − 1 + (n− k) = n− 1.

But g(x)h(x) = xn − 1, so all the relevant coefficients are zero. Thus GH� = 0,
and it follows from Theorem 8.8 that H is a check matrix for C.

Example We consider binary cyclic codes of length 7. We have

x7 − 1 = (x− 1)(x3 + x+ 1)(x3 + x2 + 1).

Thus there are 23 = 8 cyclic codes, corresponding to the divisors of x7 − 1 as
follows:
g(x) = 1. This code is generated by 1000000 and its cyclic shifts, and so it is
the whole of F7

2.
g(x) = x− 1. The code is generated by the word 1100000 and its cyclic shifts,
and consists of all words of even weight. The dimension is 6 and the minimum
weight is 2.

g(x) = x3 + x + 1. This code consists of the zero word, 1101000 and its cyclic
shifts, and every word obtained by interchanging zeros and ones. These 16
words form a code with dimension 4 and minimum weight 3 (and hence is
1-error-correcting). This is the code that we met in Example 1 earlier.

g(x) = x3+x2+1. This code is obtained from the previous one by reversing all
the codewords; so it is ‘equivalent’ (it has the same dimension and minimum
weight).

g(x) = (x− 1)(x3 +x+1). This code consists of the eight words of even weight
in the earlier example (with g(x) = x3 + x+ 1). It has minimum weight 4.

g(x) = (x− 1)(x3 + x2 + 1). This is the reverse of the preceding code.
g(x) = x6 + · · ·+ x+1. This is the repetition code spanned by the all-1 vector.
g(x) = x7 + 1. This is not a code at all, since it contains only the zero vector:
we require a code to have at least two codewords!

8.5 BCH codes. In the last two sections, we have seen ways to construct
codes for which the length and dimension are easy to calculate. Finding the min-
imum distance (or minimum weight), however, is much harder. In this section we
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examine a construction which enables one to specify a length n and a minimum
distance d, and find a code of length n and minimum distance at least d. More-
over, we can also give a lower bound for the dimension of the constructed code.
The construction was given independently by Bose and Ray-Chaudhuri and by
Hocquenghem; so the codes should be called BRH codes, but the term ‘BCH
codes’ has become standard.

The BCH codes depend on properties of finite fields. We now review these
properties.

Definition Let n and q be coprime integers. The order of q mod n is the
smallest positive integer e such that qe ≡n 1. (Note that the condition (n, q) = 1
implies that q is a unit mod n; the order of q mod n is just the order of q as an
element of the group of units of Zn.)

Definition A primitive nth root of unity in a field F is an element a whose
order in the multiplicative group of F is precisely n (that is, an = 1 but am �= 1
for 0 < m < n).

Proposition 8.13 Let q be a prime power, and let e be the order of q mod n.
Then the smallest field which contains GF(q) and a primitive nth root of unity
is GF(qe).

Proof Any field containing GF(q) has the form GF(qm) for some m. If GF(qm)
contains a primitive nth root of unity, then its multiplicative group contains a
subgroup of order n, and so n divides qm−1. Conversely, if n divides qm−1, then
the multiplicative group of GF(qm) (being cyclic) contains a cyclic subgroup of
order n, so that GF(qm) contains a primitive nth root of unity.

We also need the basic property of Vandermonde determinants (see
Section 4.11): If a1, . . . , an are distinct elements of a field F , and A is the n× n
matrix with (i, j) entry aj−1

i for 1 ≤ i, j ≤ n, then det(A) �= 0.
The codes that we construct will be cyclic codes of length n over GF(q),

where we assume that n and q are coprime. We are also given a positive integer
δ. We define the BCH code of length n and designed distance δ. We will
prove that the actual minimum distance is at least δ.

Let e be the order of q mod n, and let a be a primitive nth root of unity in
GF(qe). We take a representation of GF(qe) by e-tuples of elements of GF(q), in
the standard way: if α generates GF(qe) over GF(q) and satisfies the polynomial
f(x) = 0, where deg(f) = e, then every element of GF(qe) can be written
uniquely as c0 + c1α + · · · + ce−1α

e−1, and can be represented by the e-tuple
c0c1 · · · ce−1. For technical reasons, we use here the transpose of this e-tuple: that
is, we represent e by a e× 1 matrix. (The actual element α used is unimportant,
but we may choose α = a.)
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Now the BCH code of length n and designed distance δ over GF(q)
is the code with check matrix

H =




1 a a2 . . . an−1

1 a2 a4 . . . a2(n−1)

. . . . . . . . . . . .
1 aδ−1 a2(δ−1) . . . a(δ−1)(n−1)


.

Each matrix element belongs to the field GF(qe), and so is represented as an
e× 1 matrix over GF(q). Thus, H is a e(δ − 1)× n matrix over GF(q).

Theorem 8.14 The BCH code of length n and designed distance δ over GF(q)
has minimum distance at least δ, and has dimension at least n− e(δ − 1).

Proof To show that the minimum distance of a code is at least δ, it is necessary
and sufficient that any δ − 1 columns of a check matrix for the code are linearly
independent (see Proposition 8.6). Consider the determinant of the matrix (over
GF(qe)) formed by columns m1,m2, . . . ,mδ−1. This is

det


 am1 . . . amδ−1

. . . . . . . . .
am1(δ−1) . . . amδ−1(δ−1)


.

The ith column has a common factor ami �= 0. Taking out these factors, we
obtain a Vandermonde determinant V (am1 , . . . , amδ−1), which is also non-zero.

So the chosen columns are linearly independent over GF(qe), and so certainly
over the smaller field GF(q).

The dimension of the code is n minus the rank of the check matrix. This
rank is not greater than the number e(δ − 1) of rows. (The rows may not be all
independent.)

It is not obvious from the definition, but the following is true:

Proposition 8.15 BCH codes are cyclic.

Proof Any word v = c0c1 · · · cn−1 corresponds, as in the last section, to a
polynomial f(x) = c0 + c1x+ · · ·+ cn−1x

n−1. The conditions that the word lies
in the BCH code can be written as

f(ai) = c0 + c1a
i + · · ·+ cn−1a

i(n−1) = 0,

for i = 1, 2, . . . , δ − 1. Let g(x) be the least common multiple of the minimal
polynomials of a, a2, . . . , aδ−1 over GF(q). Then the word corresponding to f(x)
lies in the BCH code if and only if f(x) is divisible by g(x). Moreover, the roots
of g(x) are nth roots of unity, so g(x) divides xn − 1. So the BCH code is the
cyclic code with generator polynomial g(x).
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In many cases, we can use this observation to do better than the previous
lower bound for the dimension. This depends on the following fact:

Proposition 8.16 Let f(x) ∈ GF(q)[x], and suppose that α is a root of f in
some extension field. Then αq is also a root of f .

Proof Let q = pn, where p is prime. Then the map x �→ xq is the nth power of
the Frobenius map, and hence is an automorphism of the field K = GF(q)(α).
Let f(x) = anx

n + · · ·+ a0, so that

f(α) = anα
n + · · ·+ a0 = 0.

We apply the automorphism x �→ xq to this equation, noting that aqi = ai for all
i (since the coefficients ai belong to GF(q), and so are roots of the polynomial
xq − x). So

f(αq) = anα
qn + · · ·+ a0 = 0.

Now let v = c0c1 · · · cn−1 be a word of length n. By the preceding result, if we
can find two values i and j such that j ≡n iq

m for some m, then the ith and jth
conditions above are equivalent, and we can strike out the jth row of H. This
does not affect the code, but means that the check matrix has fewer columns, so
we obtain a larger lower bound for its dimension.

Example Consider the binary BCH code C with length 15 and designed
distance 5. The codewords correspond to the polynomials having roots
a, a2, a3, a4, where a is a primitive 15th root of unity (in GF(24): note that
the order of 2 mod 15 is 4.) This code has minimum weight 5 (and so is 2-
error correcting). The lower bound we gave earlier for its dimension is dim(C) ≥
15 − 4 · 4 = −1: this is of course useless! But, by the previous result, a2 and
a4 are unnecessary: it is enough to assume that a and a3 are roots. This gives
dim(C) ≥ 15− 4 · 2 = 7, so |C| ≥ 27 = 128.

If we take a to be a root of the polynomial x4 + x + 1 over GF(2), then
a3 (which is a 5th root of unity) is a root of x4 + x3 + x2 + x + 1. So the
generator matrix of the code is the product of these two polynomials. Since they
are irreducible, we see that the dimension of C is exactly 15− 8 = 7.

The Hamming bound for a 2-error-correcting code of length 15 gives |C| ≤
215/

(
1 + 15 +

(15
2

))
= 270.81 . . . ; since |C| is a linear code, the number of code-

words is a power of 2, so in fact |C| ≤ 256. So the dimension of C is within one
of best possible.

One important special case of BCH codes is that when n = q − 1. These
codes were discovered earlier, and are called Reed–Solomon codes. In this
case, the order of q mod n is clearly equal to 1. So the BCH bound for a code
of designed distance δ gives dim(C) ≥ n− δ + 1. On the other hand, if the true
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minimum distance is d, then d ≥ δ; and the Singleton bound (Theorem 8.3(b))
gives |C| ≤ qn−d+1, whence dim(C) ≤ n− d+ 1. Summarising, we have

n− d+ 1 ≤ n− δ + 1 ≤ dim(C) ≤ n− d+ 1,

so equality must hold throughout. Thus, we have

Proposition 8.17 A Reed–Solomon code (that is, a BCH code of length
n = q − 1 over GF(q)) with designed distance δ has minimum distance δ and
dimension n− δ+1. Hence it is maximum distance separable (that is, it attains
the Singleton bound).

Exercise 8.1 Consider the code over the alphabet {1, 2, 3} whose words are
112233, 223311, 331122, 123123, 231231, 312312. Find the minimum distance of this
code.

Exercise 8.2 A channel transmits binary digits in blocks of length 8. Because of
synchronisation problems, errors are more likely in the first four bits than in the second
four; the probability of incorrect transmission of a bit is 1

10 for the first four bits and
1

100 for the others. We use the following scheme to encode 4 bits of information for
transmission through the channel. The input a1a2a3a4 is encoded as b1b2b3b4b5b6b7b8,
where

(i) the first bit is repeated four times, that is,

b1 = b2 = b3 = b4 = a1;

(ii) the next three bits are sent without change, that is,

b5 = a2, b6 = a3, b7 = a4;

(iii) the last bit is a ‘parity check’ for the three preceding, i.e. an even number of
b5, b6, b7, b8 are equal to 1.

[For example, 1010 is encoded as 11110101.] Decoding is done as follows: Suppose
that c1c2c3c4c5c6c7c8 is received.

(a) If all or all but one of c1, c2, c3, c4 agree, we assume that their common value
is a1. If two of them are 0 and two are 1, we declare a decoding failure (‘an error has
occurred but we cannot correct it’).

(b) If the last four bits have even parity, that is an even number of them are 1, we
assume correct transmission, and set a2 = c5, a3 = c6, a4 = c7. Otherwise, we declare a
decoding failure.

[For example, 11101111 is decoded as 1111, while 11101101 gives a decoding
failure.]

Problems (a) Let C be the code, that is the set of all possible transmitted words.
How many words are there in C? What is the rate of C?

(b) Prove that C is a linear code. What is its dimension? Write down a generator
matrix for C.
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(c) Calculate the probabilities of incorrect decoding and of decoding failure using
this scheme. [Hint : The first four and the last four bits work quite independently, and
so can be treated separately. In the first four,

0 or 1 error → correct, 2 errors → failure, 3 or 4 errors → incorrect;
while in the last four,

0 errors → correct, 1 or 3 errors → failure, 2 or 4 errors → incorrect.
Now make a 3 × 3 table; work out the probability of each of the 9 outcomes, and the
overall result (correct, incorrect, or failure) in each case.]

Exercise 8.3 Let C be the linear code (over Z3) with generator matrix

G =
(
1 0 1 1
0 1 1 2

)
.

(a) How many words are there in C?
(b) What is the minimum distance of C?
(c) What is the minimum weight of C?
(d) Find a check matrix for C (a matrix whose null space is C).
(e) Encode 12, and decode 1021, using C.

Exercise 8.4 A binary code C of length 8 has generator matrix

G =



1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1


.

(a) Find a generator matrix in reduced echelon form.
(b) What is the minimum weight of C?
(c) Show that C can correct one error.
(d) Show that, if two errors occur during transmission, then C can detect this, but

cannot locate the position of the errors.
(e) Calculate a check matrix for C.
(f) Which syndromes correspond to the occurrence of one error?
(g) Decode the received word 10101101.

Exercise 8.5 Show that a repetition code with q = 2 and n odd attains the Hamming
bound.

Exercise 8.6 Verify the following table of values of the Hamming upper bound M for
the maximum size of a binary code of length 10 which can correct up to e errors:

e 1 2 3 4
M 93 18 5 2

Prove that, in fact, a 3-error-correcting code of length 10 cannot contain more than
two codewords. (Thus the Hamming bound is not always met!)

Construct a linear 1-error-correcting code of length 10 containing 32 codewords.
(∗) Can you find one with 64 codewords?

Exercise 8.7 Show that, in any binary linear code, the set of codewords of even weight
is a linear subcode (that is, a subspace of the vector space).
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Exercise 8.8 (a) Let C be a linear code with check matrix H. Show that C is
1-error-correcting if and only if no column of H is zero and no column is a multiple of
another.

(b) Suppose that the conditions of (a) hold. Verify the following rule for correcting
one error:

Calculate the syndrome of the received word w. If it is zero, then w is correct.
If it is a scalar multiple (say c) of the ith row of H�, then subtract c from the ith
coordinate of w.

Exercise 8.9 (a) Let F be the finite field with four elements {0, 1, ω, ω}. The
arithmetic operations in F can be deduced from the rules

1 + 1 = 0, 1 + ω = ω2 = ω.

Construct addition and multiplication tables for F .
(b) Let C be the linear code over F with generator matrix


1 0 0 1 1 1
0 1 0 1 ω ω
0 0 1 1 ω ω


.

Find the minimum weight of C, and a check matrix for C.
(c) Prove that no code over an alphabet of four symbols with the same length and

minimum distance as C can contain more codewords than C.

Exercise 8.10 Prove that, if a perfect 2-error-correcting ternary code of length n
exists, then 2n2 + 1 must be a power of 3.

Exercise 8.11 What is the dimension of the binary BCH code of designed distance 5
and length 31?

Exercise 8.12 A football pools competition requires contestants to predict the
possible result (home win, away win, or draw) of each of n matches. Show that, in
order to ensure that all or all but one of the predictions are correct, at least 3n/(2n+1)
entries are required. Explain why this bound can be met whenever n = (3d − 1)/2 for
some positive integer d.

Exercise 8.13 (∗) Prove that a q-ary Hamming code of length n is cyclic
if (q − 1, n) = 1.

Galois Theory
In Chapter 1 we saw the classical formula for the solution of a quadratic equation.
Similar formulae for solving cubic and quartic equations were discovered by
Tartaglia and Ferrari, and publicised by Cardano, in the Renaissance. Math-
ematicians searched unsuccessfully for such formulae for equations of higher
degree. The fact that no such formulae can exist is just one detail in Galois
Theory, which we now outline.
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Galois himself, who has a good claim to be regarded as the founder of modern
algebra, was killed in a duel in 1832 at the age of 21. Perhaps he would have
performed better in the duel but for the fact that he had spent the night before in
frantic activity, writing an account of all of his discoveries to his friend Chevalier.
The letter was not published for 15 years, and Galois’ work only found its rightful
place in mathematics in the second half of the nineteenth century.

8.6 Normality and separability. We are concerned here only with finite
extensions of fields. Recall that the field K containing F is a finite extension
of F if the dimension of K as F -vector space (forgetting mutiplication in K) is
finite; this dimension is called the degree of the extension, written [K : F ].

Recall also that a splitting field of a polynomial f(x) over F is a field
generated over F by the roots of f . It is a finite extension with degree at most n!,
where n is the degree of f . Galois theory is concerned with finding all the roots of
a polynomial, so splitting fields are important. Our first job is to recognise them.

Definition Let K be an extension of F . We say that K is a normal extension
of F if, whenever f is an irreducible polynomial in F [x] which has one root in
K, then all the roots of f lie in K (that is, f splits into linear factors in K[x]).

‘Normal’ is a much overused word in mathematics. But at this point, there
should be not too much risk of confusion between normal extensions of fields and
normal subgroups of groups.

Normality is a property of extensions rather than individual fields. We often
say ‘The extensionK/F is normal’, although we have not defined an actual object
K/F . We read K/F as ‘K over F ’.

For example, C is a normal extension of R, or of Q. However, if α is the real
cube root of 2, thenK = Q(α) is not a normal extension of Q. For the polynomial
x3 − 2 is irreducible over Q, by Eisenstein’s criterion; it has a root α ∈ K;
but it does not contain the other two roots of x3 − 2, since they are non-real,
whereas K is contained in the real numbers. In fact, we have the factorisation
x3 − 2 = (x − α)(x2 + αx + α2) in K[x], where the second factor is irreducible
in K[x].

Theorem 8.18 Let K be a finite extension of F . Then K/F is a normal
extension if and only if K is the splitting field of a poynomial in F [x].

Proof Suppose first that K/F is a normal extension. Since it is finite, K is
generated over F by finitely many elements a1, . . . , an. Let fi(x) be the minimal
polynomial of ai over F . Then fi(x) is an irreducible polynomial in F [x] with a
root in K, so (by normality) it has all its roots in K.

Consider the polynomial g(x) = f1(x) · · · fn(x). We know that g splits in K.
But g cannot split over any smaller field, since its splitting field contains all of
a1, . . . , an, and these elements generate K. So K is the spliting field of g.

Conversely, suppose that K is the splitting field of a polynomial g(x) over
F . Arguing for a contradiction, suppose that f(x) is an irreducible polynomial



Applications 319

in F [x] which has a root α ∈ K and another root β in an extension of K but
not in K. Now K is obviously the splitting field of g(x) over F (α). Also, the
splitting field of g(x) over F (β) is K(β) (since it is generated over F (β) by the
roots of g).

Now F (α) ∼= F (β), since α and β are roots of the same irreducible polynomial
overF . Moreover, there is anF -isomorphism fromF (α) toF (β) (see Section 7.16).
By the uniqueness result for splitting fields, this F -isomorphism can be extended
to an F -isomorphism between the splitting fields K and K(β) of g(x) over F (α)
and F (β) respectively. So [K(β) : F ] = [K : F ]. Since K ⊆ K(β), this implies
that [K(β) : K] = 1, so β ∈ K, contrary to assumption. The contradiction shows
that our assumption is untenable, and K/F is normal.

There is another potential difficulty, concerned with repeated roots of irre-
ducible polynomials. As we saw in Section 6.6, this cannot occur over a perfect
field (this includes all fields of characteristic zero, and all finite fields). The fix
is to define away the difficulty; it is somewhat technical, and you may want to
skip the next few paragraphs.

Recall that an irreducible polynomial is called separable if its roots in a
splitting field are all distinct. We now extend this definition. An arbitrary poly-
nomial f over F is called separable if all its irreducible factors are separable.
[Note: We do not require that all the roots of f are distinct. We do not mind if it
has a repeated irreducible factor.] We say that an extension K/F is separable
if, for every element a ∈ K, the minimal polynomial of a over F (which we know
is irreducible) is separable.

How do these two definitions of separability relate to each other?

Theorem 8.19 A finite normal extension K/F is separable if and only if K
is the splitting field of a separable polynomial over K.

Proof Examine the proof of the preceding theorem. If K/F is normal, then K
is the splitting field over F of a polynomial g which is constructed as the product
of the minimal polynomials of some elements of K. If K/F is separable, then all
these minimal polynomials are separable, and hence so is g.

The converse is more difficult. Before tackling it, we develop some elementary
properties of separability.

Proposition 8.20 Let a be separable over F , and let K be a field containing F .
Then a is separable over K.

Proof The minimal polynomial of a over K divides its minimal polynomial
over F . So, if the latter has no repeated roots, neither does the former.

Proposition 8.21 Let F be a field of characteristic p �= 0, and let a be algebraic
over F . Then a is separable over F if and only if F (a) = F (ap).

Proof Suppose that F (ap) = F (a). Then a ∈ F (ap), which is a finite extension
of F ; so a = f(ap) for some polynomial f . Now the polynomial g(x) = f(xp)−x
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has derivative −1, and hence has no repeated roots, and is satisfied by a; so a is
separable over F .

Conversely, suppose that a is separable over F . Then it is separable over F (b),
where b = ap. But a satisfies the polynomial xp − b = xp − ap = (x − a)p over
F (b). Since it is separable, its minimal polynomial over F (b) must be (x− a); so
a ∈ F (b), and F (a) = F (b).

Theorem 8.22 Let K be an extension of F . Then the set of elements of K
which are separable over F is a subfield of K containing F .

Proof We must show that, if a and b are separable over F , then so are a+b, ab,
and (if a �= 0) a−1. The argument is given for a+ b below. It is almost identical
for ab, while a−1 is an easy exercise.

Suppose, for a contradiction, that a and b are separable but a + b is not.
Then F has non-zero characteristic, say p. By Proposition 8.20, we can enlarge F
without changing the fact that a and b are separable. Since F (a+b) �= F ((a+b)p),
the element a+ b is inseparable over F ((a+ b)p). So, replacing F by F ((a+ b)p)
if necessary, we may assume that (a+ b)p ∈ F .

With this assumption, we have

F (a) = F (ap) = F (bp) = F (b),

the first and third equalities holding by Proposition 8.21, since a and b are
separable over F . Hence a+ b ∈ F (a).

We show next that cp ∈ F for any c ∈ F (a + b). Any such element is a
polynomial in a+b, say c =

∑
di(a+b)i, with di ∈ F ; then cp =

∑
dpi (a+b)

ip ∈ F
as claimed.

Now let m = [F (a) : F (a+ b)], and let g(x) be the minimal polynomial of a
over F (a+ b), an irreducible polynomial over F (a+ b). Let g(x) =

∑
cjx

j . Then
g(x)p =

∑
cpjx

jp is a polynomial of degree mp over F , and g(a)p = 0. Since
[F (a) : F ] = mp, the minimal polynomial of a over F has degree mp, and so it
must be g(x)p. But this polynomial has at most m distinct roots, contradicting
the fact that a is separable over F .

This contradiction shows that a+ b is separable.

Now we complete the proof of the theorem. Suppose that K is the splitting
field of a separable polynomial g(x) over F . Let L be the field consisting of all
elements of K separable over F . Then L contains the roots of g by assumption;
so L = K. �

The theory that Galois developed applies to all finite normal separable
extensions. So we make a definition:

Definition Let K/F be a field extension. We say that K/F is a Galois
extension if it is finite, normal, and separable.

8.7 The main theorem. Galois Theory relates field extensions to groups.
The groups arise in the following way:
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Definition Let K/F be a Galois extension of fields. The Galois group of the
extension, written Gal(K/F ), is the group of all F -automorphisms of K; that is,
all isomorphisms from K to itself which leave every element of F fixed.

Although the modern definition of a group was devised much later than
the time of Galois, he understood what is meant by the statement ‘the F -
automorphisms of K form a group’. This group carries in its structure a lot
of detailed information about the field extension. The key is the following piece
of numerical information:

Theorem 8.23 Let K/F be a Galois extension with Galois group G. Then
|G| = [K : F ].

Proof We use induction on [K : F ]; the result is clearly true when K = F . So
we assume the result for extensions of smaller degree than n = [K : F ].

Choose an element α ∈ K \ F , and let its minimal polynomial f(x) have
degree m. Then [F (α) : F ] = m, and so [K : F (α)] = n/m Also, K is a Galois
extension of F (α). So the group of F (α)-automorphisms of K has order n/m.

Now G acts on the set Ω of roots of f(x) in K, since the coefficients of this
polynomial lie in F . The stabiliser of α fixes every element of F (α), and so is
the Galois group of K over F (α). By induction, |Gα| = n/m.

Also, the roots of f are all distinct (by separability), and lie in K (by
normality); so |Ω| = m. Moreover, Proposition 7.42 implies that G acts tran-
sitively on Ω. (We can regard K as the splitting field of a polynomial having f
as one of its factors: now, if α, β ∈ Ω, then the F -isomorphism carrying α to β
extends to an F -automorphism of K.)

By the Orbit–Stabiliser Theorem 7.2, we have

|G| = |Ω| · |Gα| = m · (n/m) = n,

and we are done.

The most important facts about the connection between a field extension
K/F and its Galois group G is phrased in terms of subgroups H of G and
subfields L intermediate between F and K. If L is such a subfield, then K is a
Galois extension of L, and so the Galois group Gal(K/L) is a subgroup of G.
(It consists of those automorphisms of K which fix, not only all of F , but all
of L.) In the other direction, let H be a subgroup of G. Let Fix(H) be the set
of elements of K which are fixed by all the automorphisms in H. Then Fix(H)
is a subfield of K: for, if an automorphism fixes two elements a and b, then it
also fixes their sum, difference, product, and quotient (if b �= 0). Also, Fix(H)
contains F , since all elements of G are by definition F -automorphisms.

Now we can state the Main Theorem:
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Theorem 8.24 (Fundamental Theorem of Galois Theory) Let K/F be
a Galois extension with Galois group G. Then the maps

L �→Gal(K/L),

H �→Fix(H),

are mutually inverse bijections between the set of subfields of K containing F
and the set of subgroups of G. Moreover, we have

(a) [K : L] = |Gal(K/L)|, [L : F ] = |G : Gal(K/L)|;
(b) if L1 and L2 are intermediate fields, then L1 ⊆ L2 if and only if

Gal(K/L2) ⊆ Gal(K/L1);
(c) L/F is a normal extension if and only if Gal(K/L) is a normal subgroup

of Gal(K/F );
(d) if the equivalent conditions of (c) hold, then Gal(L/F ) is isomorphic to

Gal(K/F )/Gal(K/L).

Remark Correspondences with property (b) (that is, correspondences between
ordered sets which reverse the order) have become known asGalois correspon-
dences. The most important example is the one described in this theorem. Note
also the double occurrence of the word ‘normal’ in part (c). We see that the use
of the same term to describe the two very different concepts in group theory and
field theory is not accidental!

We need the following lemma. Its converse is also true, as we will see later.

Lemma 8.25 Let K/F be a finite extension. Suppose that there are only finitely
many fields L intermediate between F and K (that is, satisfying F ⊆ L ⊆ K).
Then K = F (a) for some a ∈ K.
Proof First, if F is a finite field, then so is K. Thus the hypothesis is certainly
true. We showed in Proposition 7.45 that the multiplicative group of K is cyclic.
If a is a generator, then obviously K = F (a), and so the conclusion is also true.
So we may suppose that F is infinite.

Suppose that K/F has only finitely many intermediate fields. Then for any
a, b ∈ K, we claim that there exists t ∈ F such that F (a, b) = F (a+ tb). For the
infinitely many intermediate fields F (a + sb), for s ∈ F , cannot all be distinct;
so there exist s1, s2 ∈ F with F (a+ s1b) = F (a+ s2b) = L, say. Then L contains
((a+s1b)−(a+s2b))/(s1−s2) = b, and L contains (s2(a+s1b)−s1(a+s2b))/(s2−
s1) = a. So L = F (a, b) as required.

Now K/F is finite, so K = F (a1, . . . , at) for some a1, . . . , at ∈ K. Inductively
use the above observation to replace these t generators by a single one.

Now we return to the proof of the Fundamental Theorem.

Proof For any intermediate field L, K is a Galois extension of L, and so
|Gal(K/L)| = [K : L]. But we have L ⊆ Fix(Gal(K/L)) = L′, say; and thus



Applications 323

Gal(K/L) = Gal(K/L′), and |Gal(K/L)| = [K : L′]. It follows that [L′ : L] = 1,
so that L = L′. Thus, Fix(Gal(K/L)) = L.

This also shows that there are only finitely many fields L between F and K.
By Lemma 8.25, K = F (a) for some a ∈ K.

Now let H be any subgroup of G. Then K is a Galois extension of Fix(H),
with Galois group H ′ (say), where H ≤ H ′. If we can prove that equality holds,
then Gal(Fix(H)) = H, and we have shown that Gal and Fix are mutually
inverse bijections. This follows from the next fact, with E = Fix(H):

Let K/E be a Galois extension with Galois group H. If H ′ < H,
then Fix(H ′) > E.

Suppose, for a contradiction, that Fix(H ′) = E. Let K = E(a) have degree
n over E, and let a = a1, . . . , an be the roots of the minimal polynomial of
a over E. Now H permutes a1, . . . , an transitively, and hence regularly. So the
proper subgroup H ′ cannot act transitively on this set. Let {a1, . . . , ar} be an
orbit. Then the coefficients of the monic polynomial with roots a1, . . . , ar, being
elementary symmetric functions of these quantities, are all fixed by H ′, and so
lie in E. Then a = a1 satisfies a polynomial of degree r over E, contradicting
the fact that [E(a) : E] = n.

Parts (a) and (b) of the Fundamental Theorem are now clear.
We turn to part (c). For any g ∈ G = Gal(K/F ), the conjugate Gal(K/L)g

fixes elementwise the field Lg = {ag : a ∈ L}. So Gal(K/L) is a normal subgroup
of G = Gal(K/F ) if and only if Lg = L for all g ∈ G. But, if f is an irreducible
polynomial over F with a root α ∈ L, then every root of f is the image of α
under an element of G; so the condition Lg = L for all g ∈ G is equivalent to
the condition that L contains all the roots of any polynomial such as f ; that is,
that L is a normal extension of F . Thus (c) holds.

Finally, suppose that these conditions hold for L. Then any element of G
fixes L as a set; so we have a homomorphism from G = Gal(K/F ) to Gal(L/F )
given by restricting elements of G to L. The kernel of this homomorphism is
just the subgroup of G fixing L elementwise, that is, Gal(K/L); and, since every
F -automorphism of L extends to an F -automorphism of K by Proposition 7.42,
the image of the homomorphism is Gal(L/F ). Thus (d) follows from the First
Isomorphism Theorem.

8.8 Solubility by radicals. We now come to the most famous application
of the theory developed by Galois: a criterion for the solubility of equations
by radicals. Throughout this section, we make the assumption that our fields
have characteristic zero. (The theory needs only minor changes in non-zero
characteristic: see Exercise 8.14.)

First, what is meant by solving an equation by radicals? Consider the familiar
formula for the solutions of the quadratic equation ax2 + bx+ c = 0; namely,

x =
−b±√

b2 − 4ac
2a

.
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The solutions are obtained from the coefficients of the polynomial by applying
field operations and extracting the square root of an element b2 − 4ac: this final
step may require a field extension. For a more complicated example, consider
the equation x4 − 4x2 + 2 = 0, with solutions x = ±

√
2±√

2. The solutions
lie in a field which is obtained from Q first by adjoining

√
2, and then adjoining√

2 +
√
2. (Since √

2−
√
2 =

√
2
/√

2 +
√
2,

the resulting field contains all the solutions.)
We make the following definitions:

(a) A field extension K/F is a simple radical extension if K = F (a) for
some a ∈ K with an ∈ F , [K : F ] = n, and F contains a primitive nth root
of unity.

(b) A field extension K/F is a radical extension if there are fields F =
F0 ⊂ F1 ⊂ . . . Fr = K such that Fi/Fi−1 is a simple radical extension for
i = 1, . . . , r.

(c) The polynomial f ∈ F [x] is soluble by radicals over F if its splitting
field is contained in a radical extension of F .

Remark The condition about roots of unity in the definition of a simple radical
extension is vacuous if n = 2, since the square roots of unity are ±1, both in F .
In general, it is possible to do without this condition, but we start with it (it
makes the arguments much simpler) and then work around it at the end.

Recall the definition of a soluble group in Section 7.5: the finite group G is
soluble if there is a series

G = G0 > G1 > . . . > Gr = 1

of subgroups of G, where Gi � Gi−1 and Gi−1/Gi = Gal(Fi/Fi−1) is cyclic for
i = 1, . . . , r.

Theorem 8.26 Let f be a polynomial over a field F of characteristic zero, with
Galois group G. Suppose that F contains a primitive |G|th root of unity. Then
f is soluble by radicals over F if and only if G is a soluble group.

We begin the proof with a special case.

Lemma 8.27 Let K/F be an extension of degree n, and assume that F contains
a primitive nth root of unity. Then K/F is a simple radical extension if and only
if it is normal with cyclic Galois group.

Proof Suppose first that K/F is a simple radical extension, say K = F (a),
where an = c ∈ F . Let ω be a primitive nth root of unity. Then the roots of
the polynomial xn − c are a, aω, . . . , aωn−1; so K is the splitting field of this
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polynomial, and is normal. Now we have K = F (a) = F (aωi) for any i; so there
is a unique element σi of the Galois group G = Gal(K/F ) mapping a to aωi.
Then G = {σ0, σ1, . . . , σn−1}. Now σi1 maps a to aωi; so σi1 = σi, and G is cyclic
(generated by σ1).

Conversely, suppose that K/F is normal, with cyclic Galois group G = 〈σ〉.
We have to find an element a ∈ K such that an ∈ F and K = F (a). It suffices
to find a ∈ K with a �= 0 such that aσ = ωa, where ω is a primitive nth root of
unity. For then anσ = ωnan = an, so b = an ∈ Fix(σ) = F ; and the images of a
under powers of σ (the nth roots of b) are all the roots of the minimal polynomial
of a, so [F (a) : F ] = n.

We find such an a by a trick. According to Artin’s Lemma 8.28 (see below),
the n endomorphisms 1, σ, σ2, . . . , σn−1 are linearly independent overK. So there
exists x ∈ K such that

a = x+ xσ/ω + xσ2/ω2 + · · ·+ xσn−1/ωn−1 �= 0.

(If this expression were zero for all x, then the linear combination 1 + σ/ω +
· · ·+ σn−1/ωn−1 would be the zero map.) Then

aσ = xσ + xσ2/ω + · · ·+ x/ωn−1 = aω,

as required.

Proposition 8.28 (Artin’s Lemma) Let σ1, . . . , σn be distinct automor-
phisms of a field K. Then σ1, . . . , σn are linearly independent over K (in the
sense that, if

n∑
i=1

ai(xσi) = 0

for all x ∈ K, where a1, . . . , an ∈ K, then a1 = . . . = an = 0.

Proof Suppose that we have such a relation, with not all the coefficients equal
to zero. Suppose that the numberm of non-zero coefficients is as small as possible.
Clearly, m > 1. We derive a contradiction by producing another relation with
fewer non-zero coefficients.

Assume that a1 �= 0 and a2 �= 0. Since the automorphisms are distinct, there
exists an element y ∈ K with yσ1 �= yσ2. Now (xy)σi = (xσi)(yσi) for each i.
Applying the dependence relation to xy, we obtain

a1(xσ1)(yσ1) + a2(xσ2)(yσ2) + · · · = 0

for all x ∈ K. Multiplying the original equation by yσ1 and subtracting gives

a2(yσ2 − yσ1)xσ2 + · · · = 0.
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This relation has fewer non-zero terms than the original one, but is not identically
zero (since a2 �= 0 and yσ1 �= yσ2). So we have the required contradiction.

Now we prove the theorem.
Suppose first that f is solvable by radicals, and let

F = F0 ⊂ F1 ⊂ . . . ⊂ Fr = K,

where Fi/Fi−1 is a simple radical extension of degree ni for i = 1, . . . , r, and
f splits in K.We may assume that K is a normal extension of F ; let G be its
Galois group. Let Gi = Gal(K/Fi) for i = 0, . . . , r. Then, by the FTGT,

G = G0 > G1 > . . . > Gr = 1,

where Gi � Gi−1; and Gi−1/Gi = Gal(Fi/Fi−1) is cyclic (of order ni) for i =
1, . . . , r, by Lemma 8.27. Thus, by definition, the group G is soluble. Now, if L is
the splitting field of f , then Gal(L/F ) is a homomorphic image of Gal(K/F ) = G
(again by the FTGT), and so is soluble.

Conversely, suppose that L is the splitting field of f , and that G = Gal(L/F )
is soluble. Then, by definition, there are subgroups

G = G0 > G1 > . . . > Gr = 1,

where Gi �Gi−1 and Gi−1/Gi is cyclic (of order ni, say) for i = 1, . . . , r. Letting
Fi = Fix(Gi), we see by the FTGT that [Fi : Fi−1] = ni and Gal(Fi/Fi−1) is
cyclic of order ni. By Lemma 8.27, Fi/Fi−1 is a simple radical extension; so K/F
is a radical extension, and f is soluble by radicals over F . �

Finally, we show that the assumption we used above, that the field F contains
appropriate roots of unity, is unnecessary. We do this by showing that a root of
unity lies in a radical extension.

Proposition 8.29 Let ω be a primitive nth root of unity over F . Then:

(a) F (ω)/F is a normal extension with abelian Galois group;
(b) ω is contained in a radical extension of F .

Proof (a) F (ω) is the splitting field of xn − 1 over F , since the roots of this
polynomial are the powers of ω. Let G be its Galois group. Any element σ of G
maps ω to some power ωr, and is uniquely determined by r; call this element σr.
Now σrσs and σsσr both map ω to ωrs; so they are equal. Thus G is abelian.

(b) Now the order of G is at most the number φ(n) of primitive nth roots
of unity, and hence less than n. Arguing by induction, the |G|th roots of unity
lie in a radical extension E of F . By Theorem 8.26, since an abelian group is
soluble, E(ω) is a radical extension of E, and hence of F , as required.

Let us see how these theoretical results lead to a formula for the solution of
a cubic or quartic equation. For this, we need a version of Newton’s Theorem on
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symmetric functions. A symmetric function s(x1, . . . , xn) is a polynomial in
x1, . . . , xn which is unchanged by any permutation of its arguments.

Theorem 8.30 (Newton’s Theorem) Let f be a polynomial of degree n.
Then any symmetric function of the roots of f can be expressed as a polynomial
in the coefficients of f .

Remark If f(x) = xn+a1x
n−1+ · · ·+an, then (−1)iai is the ith elementary

symmetric function of the roots of f ; that is, the sum of all products of the
roots i at a time. Newton’s Theorem asserts that any symmetric function can be
expressed as a polynomial in the elementary symmetric functions.

The cubic Let f be a polynomial of degree 3, with roots α, β, γ.
Since S3 has a normal subgroup of index 2 which is cyclic of order 3, we should

look for a function of the roots which has cyclic symmetry. Such a function is

∆ = (α− β)(β − γ)(γ − α).

Now D = ∆2 is a symmetric function of the roots, and so can be calculated in
terms of the coefficients; then ∆ is found by extracting a square root.

Now the analysis of cyclic extensions tells us to look at the quantity α+ωβ+
ω2γ = ρ. Since ρ3 has cyclic symmetry in the roots, it can be expressed in terms
of ∆ and the coefficients. Extracting the cube root gives ρ. We now have enough
information to determine the roots.

The quartic Let f be a polynomial of degree 4, with roots α, β, γ, δ.
This time, the key observation is that S4 has a normal Klein subgroup (con-

sisting of the identity, (α β)(γ δ), (α γ)(β δ), and (α δ)(β γ). We look for three
functions of the roots reflecting this symmetry: we can take

ξ =αβ + γδ,

η =αγ + βδ,

ζ =αδ + βγ.

Now the three elementary symmetric functions ξ+ η+ ζ, ξη+ ηζ + ζξ, and ξηζ,
are symmetric functions of α, β, γ, δ, and so can be calculated. Then ξ, η, ζ are
the roots of a cubic with known coefficients, and we already know how to solve
this. Finally, knowing these three quantities, it is easy to find α, . . . , δ by solving
quadratics.

There are various tricks which can be used to streamline these methods. For
the cubic, see Exercise 8.16.

Finally, we can prove that quintics are not soluble by radicals. Of course, it
suffices to write down a single quintic over Q whose splitting field is not a radical
extension of Q. We show that the quintic f(x) = x5 − 6x+ 3 has this property.

First, we observe that f is irreducible. This is immediate from Eisenstein’s
criterion (using the prime 3). So the Galois group G of the polynomial is a



328 Applications

transitive subgroup of the symmetric group S5, acting on the five roots of f .
By the Orbit–Stabiliser Theorem, |G| is divisible by 5. (This also follows by
observing that, if α is a root of f , then the subfield Q(α) of the splitting field
has degree 5 over Q.) By Sylow’s (or Cauchy’s) Theorem, G contains an element
of order 5, which must be a 5-cycle.

Next, we use some elementary calculus to show that f has exactly three real
roots. For the stationary points of f occur when 5x4−6 = 0; that is, x = ± 4

√
6/5.

Since there are only two stationary points, f can have at most three real roots.
But f(−2) = −17, f(−1) = 8, f(1) = −2, and f(2) = 23; by the Intermediate
Value Theorem, there is a root in each of the intervals (−2,−1), (−1, 1), and
(1, 2).

Now complex conjugation is an automorphism of the splitting field of f , which
fixes the three real roots and interchanges the two non-real ones; so it acts as a
transposition.

It can be shown (see Exercise 8.17) that a subgroup of S5 which contains
both a 5-cycle and a transposition must be the whole of S5. So the Galois group
of f is S5. Now S5 is insoluble (since it contains the non-abelian simple group
A5 as a normal subgroup); so f is not soluble by radicals.

8.9 Ruler-and-compass revisited. We now return to the subject of ruler-
and-compass constructions. We proved in Section 6.8 a sufficient condition for
a point p to be constructible with ruler and compass from a set S of points: its
coordinates should lie in an extension of Q(S) with degree a power of 2. (Recall
that Q(S) is the field generated over Q by the coordinates of the points of S;
we assume that (0, 0), (1, 0) ∈ S.) This enabled us to prove the impossibility of
certain classical construction problems. But the only tool we have so far to show
that a construction is possible is to give an explicit algorithm for doing it. It is
possible to improve this, by giving a necessary and sufficient condition.

Theorem 8.31 Let S be a set of points in the Euclidean plane, containing
(0, 0) and (1, 0). A point p can be constructed from S with ruler and compass
if and only if its coordinates lie in a normal extension of Q(S) with degree a
power of 2.

The proof uses a property of 2-groups, observed in Section 7.3:

Lemma 8.32 Let G be a group of order 2r. Then G has a chain

G = G0 > G1 > . . . > Gr = 1

of subgroups with the property that |Gi−1 : Gi| = 2 for i = 1, . . . , r.

Note that it follows that Gi � Gi−1 for all i, since a subgroup of index 2 is
normal. In particular, G is soluble.

Proof By Lemma 8.32, there is a non-identity element g in Z(G); we may
assume that g has order 2. Then {1, g} is a normal subgroup of G. We set Gr−1 =
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{1, g}. Now G/Gr−1 has order 2r−1. By induction, it has a chain of subgroups,
each of index 2 in the preceding. By the Second Isomorphism Theorem, these
subgroups have the form Gi/Gr−1, where the Gi are subgroups of G forming a
chain with the required properties.

Proof of the theorem Suppose first that p is constructible from S. Let
F0 = Q(S), and let Fi be the field generated by the coordinates of all points
constructed at step i of the construction. We showed in Section 6.8 that
[Fi : Fi−1] ≤ 2. So the final extension has degree a power of 2, although it
may not be normal. To rectify this, let fi(x) be the product of the minimal poly-
nomials of all points constructed at the ith stage, over F0, and Ki its splitting
field. Then K0 = F0, and Ki is obtained from Ki−1 by adjoining the solutions
to a finite number of quadratics. Hence we may interpolate a finite number of
intermediate fields between Ki−1 and Ki, each of degree 2 over its predecessor.
The final field Kr is normal over F0 and contains the coordinates of p.

For example, suppose that we want to construct α = 4
√
2, Then F0 = Q,

F1 = Q(
√
2), F2 = Q(α). Now F2 is not a normal extension of F0. But the

minimal polynomial of α over Q is x4 − 2 = (x2 − √
2)(x2 +

√
2). So K1 = F1,

and K2 is obtained by adjoining square roots of
√
2 and −√2. So we have the

chain

F0 = Q ⊂ F1 = Q(
√
2) ⊂ L = Q( 4

√
2) ⊂ K2 = Q( 4

√
2, i).

To prove the converse, we note that any quadratic equation with positive
discriminant can be solved with ruler and compass, by intersecting a line with
a circle. (We may assume that the quadratic is x2 + bx+ c = 0, where b2 > 4c.
Now draw the circle with centre (−b/2, 0) and radius

√
b2 − 4c/2: it has equation

x2 + bx+ c+ y2 = 0, so it intersects the x-axis in the required points.)
So, if the coordinates of p lie in an extension of Q(S) with a chain of inter-

mediate fields as in the theorem, then they can be found by successively solving
quadratics, and hence constructed with ruler and compass.

Sometimes an alternative form of the theorem is convenient, where we rep-
resent points in the Euclidean plane by complex numbers: given a point p with
coordinates (x, y), we let c(p) be the complex number x + iy. For a finite set S
of points, let c(S) = {c(p) : p ∈ S}. Now the following theorem can be shown:

Theorem 8.33 Let S be a set of points in the Euclidean plane, containing
(0, 0) and (1, 0). A point p can be constructed from S with ruler and compass if
and only if c(p) lies in a normal extension of Q(c(S)) with degree a power of 2.

Hint We have Q(c(p)) ⊆ Q(p)(i).

The Greeks knew how to construct regular polygons of various numbers
of sides (for example, pentagons and hexagons), but were unable to construct
various others (for example, heptagons). Using Theorem 8.33, it is possible to
give an exact characterisation of the constructible regular polygons. We need the
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concept of a Fermat prime, a prime number of the form Fn = 22n

+1 for some
integer n. The first few Fermat primes are F0 = 3, F1 = 5, F2 = 17, F3 = 257,
and F4 = 65537. Surprisingly, no further Fermat primes are known, though sev-
eral further numbers of this form are known to be composite. (For example,
Euler observed that 641 = 54 + 24 divides 54228 + 232, and also 641 = 5 · 27 + 1
divides 54 · 228 − 1, so 641 divides the difference F5.)

Theorem 8.34 A regular n-gon is constructible with ruler and compass if and
only if n is the product of a power of 2 and a number of distinct Fermat primes.

In particular, a regular 7-gon is not constructible, but a regular 17-gon is.
This last fact was first observed by Gauss; he was so pleased with it that he
made his career in mathematics, and asked for a regular 17-gon to be inscribed
on his tombstone. This was the first significant advance in ‘ruler-and-compass
geometry’ since the time of Euclid.

Proof I will not give the argument in detail, but outline the steps.
(a) By Theorem 8.33, a regular n-gon is constructible by ruler and compass if

and only if [Q(e2πi/n) : Q] is a power of 2.
(b) [Q(e2πi/n) : Q] = φ(n) (Euler’s function). In fact, the minimal polynomial

of e2πi/n over Q is the nth cyclotomic polynomial Φn(x), whose roots
are all the primitive nth roots of 1, and whose degree is φ(n); and it can
be shown that Φn(x) is irreducible over Q.

(c) If n1 and n2 are coprime, then φ(n1n2) = φ(n1)φ(n2); and φ(pa) = pa−1(p−
1) if p is prime.

Combining these steps, we see that the regular n-gon is constructible if and
only if each prime power factor pa of n has the property that pa−1(p − 1) is a
power of 2. This requires that either p = 2, or a = 1 and p − 1 is a power of 2.
Now if a number p = 2n + 1 is prime, then necessarily n is itself a power of 2,
and p is a Fermat prime. This completes the proof.

8.10 The Theorem of the primitive element. One curious corollary of
the Fundamental Theorem of Galois Theory is the following test for when a field
extension can be generated by one element. We saw one half of this theorem
earlier, in Lemma 8.25.

Theorem 8.35 (The Theorem of the Primitive Element) Let K/F be a
finite extension. Then the following are equivalent:

(a) K = F (a) for some a ∈ K;
(b) there are only finitely many fields L intermediate between F and K (that
is, satisfying F ⊆ L ⊆ K).

Proof We showed in Lemma 8.25 that (b) implies (a). For the converse, let
K = F (a) and let f be the minimal polynomial of a over F . For any intermediate
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field L, let fL be the minimal polynomial of f over L. Then fL divides f . There
are only a finite number of monic polynomials dividing f in K[x]. If we show that
the polynomial fL determines L, then it follows that the number of intermediate
fields is finite.

Let L′ be the field generated over F by the coefficients of fL. Then L′ ⊆ L.
Now deg(fL) = [L(a) : L] = [K : L]. Also, fL is irreducible over L, and hence
over its subfield L′; so [K : L′] = deg(fL). It follows that [L : L′] = 1, and
so L = L′.

Proposition 8.36 If K/F is a finite separable extension (in particular, if it is
a Galois extension), then K = F (a) for some a ∈ K.
Proof If K/F is a Galois extension, then the number of intermediate fields is
equal to the number of subgroups of the Galois group, by the FTGT, and hence
finite; so the result follows from the Theorem of the Primitive Element.

In general, let K = F (a1, . . . , at), and let fi(x) be the minimal polynomial
of ai over F . By assumption, each fi is separable, and hence f = f1 · · · ft is
separable. Thus, if L is a splitting field for f over F , then L/F is a Galois
extension, so has only finitely many intermediate fields (as above). A fortiori,
the same is true for K/F ; now argue as before.

8.11 Appendix: The Fundamental Theorem of Algebra. The
Fundamental Theorem of Algebra asserts that any non-constant polynomial over
the complex numbers has a root in C: in other words, C is algebraically closed.

As we saw in Section 6.5, this is not a theorem of algebra: its proof
requires some analysis. A proof using Liouville’s Theorem from complex analysis
was given there. It is possible to reduce, but not eliminate, the required anal-
ysis, as is done here, in an application of Galois theory. First we list the two
analytic facts that we require. Both are readily proved using the Intermediate
Value Theorem.

Proposition 8.37 (a) Any polynomial of odd degree over R has a root in R.
(b) Any positive real number has a real square root.

Sketch proof (a) Let f = anx
n + · · · with n odd and an �= 0. If an > 0,

then f(x) is positive for large positive x, and negative for large negative x; by
the Intermediate Value Theorem, f(x) = 0 for some value of x. The argument is
similar if an < 0.

(b) If a > 0, the function x2−a is positive for large positive x, and is negative
for x = 0.

Corollary 8.38 Any complex number has a complex square root.

Proof Let z = x+ iy with x, y ∈ R. Check that, if a2 = (
√
x2 + y2 + x)/2 and

b2 = (
√
x2 + y2−x)/2, and the signs of the square roots are appropriately chosen,

then (a+ ib)2 = z. (The square roots exist by Proposition 8.37(b).)
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We also list the group theory that we need:

(a) Sylow’s Theorem (Theorem 7.5).
(b) If |G| is a power of 2, greater than 1, then G has a subgroup of index 2.

(This follows from the solubility of 2-groups.)

Now we prove the theorem. Indeed, we prove the stronger assertion that R

has no finite extension of degree greater than 1 except for C. So let F be a finite
extension of R, of degree n. By enlarging F if necessary, we may assume that
F/R is a normal extension. Let G be its Galois group.

We claim first that |G| is a power of 2. For let P be a Sylow 2-subgroup
of G, and L the fixed field of P . Then [L : R] = |G : P | is odd. But, by
Proposition 8.37(a), R has no non-trivial extension of odd degree. So P = G.

Let H be a subgroup of G of index 2, and M its fixed field. Then M is
a quadratic extension of R, so of the form R(a), where a2 ∈ R. By Proposi-
tion 8.37(b), a is negative, and −a has a real square root c. So M = R(ci) = C.
The Galois group of F over C is H.

If |H| > 2, let K be a subgroup of index 2 in H, and N its fixed field. But
then N is a quadratic extension of C, contradicting Corollary 8.38. So H = 1
and F = C as required.

Exercise 8.14 (a) Let F be a field of characteristic p. Show that any separable
extension of F of degree p has the form F (α), where αp = α+ a for some a ∈ F .

(b) Let F be a field of characteristic p, and K a Galois extension of F . Prove that
there is a chain of subfields F = F0 ⊂ F1 ⊂ . . . ⊂ Fm = K where, for i = 1, . . . ,m, we
have Fi = Fi−1(αi), [Fi : Fi−1] = ni, and either αni

i ∈ Fi−1 and p � | ni, or αp−α ∈ Fi−1
and ni = p.

Exercise 8.15 (a) Calculate the Galois group of the polynomial x3 − 2 over Q. If K
is its splitting field, find all the subfields of K.

(b) Show that the Galois group of the polynomial x3 + x2 − 2x− 1 over Q is cyclic
of order 3.

Exercise 8.16 (a) Show that the cubic x3+ax2+bx+c+0 (over a field of characteristic
zero) can be reduced to one with a = 0 by a substitution of the form y = x + k for
some k (‘completing the cube’).

(b) Verify that, if ω is a primitive cube root of unity, then

x3 + y3 + z3 − 3xyz = (x+ y + z)(x+ ωy + ω2z)(x+ ω2y + ωz).

(c) Show that, if y and z satisfy y3 + z3 = c and yz = −b/3, then the roots of the
cubic x3 + bx+ c = 0 are −y − z, −ωy − ω2z, and −ω2y − ωz.

(d) Hence solve the general cubic by radicals.

Exercise 8.17 Show that a subgroup of S5 which contains the 5-cycle (1 2 3 4 5) and
a transposition must contain all transpositions, and hence must be S5.



Applications 333

Exercise 8.18 (a) Let G be a group and H a subgroup. Suppose that

• the intersection of the conjugates of H is 1;
• there is a chain

G = G0 > G1 > . . . > Gr = H

with |Gi−1 : Gi| = 2 for i = 1, . . . , r.

Prove that |G| is a power of 2.
(b) Call an extension K/F constructible if there is a chain of fields

F = F0 ⊂ F1 ⊂ . . . ⊂ Fr = K

with [Fi : Fi−1] = 2 for i = 1, . . . , r. Prove that, if the characteristic of F is not 2 and
K/F is constructible, then there is a constructible normal extension L/F with L ⊇ K.

(c) Hence give another proof of Theorem 8.31.
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There is no shortage of good books to choose if you want to read further. What
follows is only a very partial and personal choice from what is available.

The material in the first chapter is basic to all of mathematics, and is often
covered in books on Discrete Mathematics, such as Biggs [2]. (Numbers refer to
the bibliography below.)

A very important part of algebra, especially for applications, which has only
had a brief treatment in this book, is linear algebra. There are very many
textbooks on linear algebra; I suggest Kaye and Wilson [23] or Blyth and
Robertson [3,4].

There are many general algebra books which go further than this one. Two
examples are those of Cohn [10] and Lang [24].

Two books covering in greater detail some of the topics in this book are
Stewart [39] on Galois Theory, and Hartley and Hawkes [18] on modules over
Euclidean domains and their applications.

Books on general group theory include those of Macdonald [27] and Rose [33],
or the more encyclopaedic two-volume work by Suzuki [40]. Beyond a certain
point, the books become more specialised. The most detailed information about
groups is obtained by studying their representations, either as groups of perm-
utations (see Cameron [8], Dixon and Mortimer [15]) or as matrix groups (Curtis
and Reiner [14], Serre [37]). Another way of looking at representations of a group
G by matrices over a ring R is to study the finitely generated modules for the
group ring RG: this fits in with the modern philosophy that rings are best studied
via their module categories. Rotman’s book [34] is an introduction to homological
algebra.

There is a wide profusion of books on more specialised parts of group theory.
To mention just a few, we have Gorenstein’s account [17] of the classification of
finite simple groups, Johnson [20] on presentations of groups, Wilson [42] on the
finite simple groups, and Leedham-Green and McKay [25] on p-groups.

General accounts of ring theory are given by McCoy [29] and Cohn [10], and a
more thorough coverage (in two volumes) by Rowen [35]. For algebraic geometry,
long regarded as a fearsome subject for beginners, there are now some very good
introductions, such as those of Shafarevich [38] and Reid [32].

MacLane’s book [28] is a good introduction to categories; Enderton’s
book [16] on set theory gives you a firm foundation for Section 6.1 (and indeed
for all of mathematics). For a brief introduction see Cameron [7]. Van Lint [26]
will guide you further in coding theory, and Kaplansky [22] in Galois theory.

I have also given here details of books from which I have quoted in the text.



Further reading 335

1. Abu Ja’far Muhammad ifn Musa al-Khwarizml, Hisab al-jabr w’al-muqabala,
House of Wisdom, Baghdad, Ca-810.
2. Norman Biggs, Discrete Mathematics (2nd edition), Oxford University Press,

New York, 1989.
3. T. S. Blyth and E. F. Robertson, Basic Linear Algebra, Springer, London,

1998.
4. T. S. Blyth and E. F. Robertson, Further Linear Algebra, Springer, London,

2002.
5. Brian Butterworth, The Mathematical Brain, Macmillan, London, 1999.
6. John Cage, Silence: Lectures and Writings, Calder and Boyars, London, 1968.
7. P. J. Cameron, Sets, Logic and Categories, Springer, London, 1999.
8. P. J. Cameron, Permutation Groups, Cambridge University Press, Cam-

bridge, 1999.
9. Lewis Carroll, The Complete Illustrated Lewis Carroll, Wordsworth, Ware,

1996.
10. P. M. Cohn, Algebra, Wiley, London: Volume 1 (2nd edition 1982), Volume 2
(1977), Volume 3 (1991).
11. P. M. Cohn, Introduction to ring theory, Springer, London, 2000.
12. J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus, New York,
1996.
13. Alfred W. Crosby, The Measure of Reality: Quantification and Western
Society 1250–1600, Cambridge University Press, Cambridge, 1997.
14. C. W. Curtis and I. Reiner, Representations of Groups and Associative
Algebras, Wiley, New York, 1962.
15. J. D. Dixon and B. Mortimer, Permutation Groups, Springer, New York,
1996.
16. H. B. Enderton, Elements of Set Theory, Academic Press, New York, 1977.
17. D. Gorenstein, Finite Simple Groups: an Introduction to their Classification,
Plenum, New York, 1982.
18. B. Hartley and T. O. Hawkes, Rings, Modules and Linear Algebra, Chapman
& Hall, London, 1970.
19. J. Jaynes, The Origin of Consciousness in the Breakdown of the Bicameral
Mind, Houghton Mifflin, New York, 1976.
20. D. L. Johnson, Presentations of Groups, Cambridge University Press,
Cambridge, 1990.
21. Robert Kanigel, The Man Who Knew Infinity: A Life of the Genius
Ramanujan, Scribner, New York, 1991.
22. I. Kaplansky, Fields and Rings, University of Chicago Press, Chicago, 1969.
23. R. Kaye and R. A. Wilson, Linear Algebra, Oxford University Press, Oxford,
1998.
24. S. Lang, Algebra (3rd edition), Addison–Wesley, Reading, 1993.
25. C. R. Leedham-Green and S. McKay, The Structure of Groups of Prime
Power Order, Oxford University Press, Oxford, 2002.
26. J. H. van Lint, Introduction to Coding Theory (2nd edition), Springer, Berlin,
1992.
27. I. D. Macdonald, The Theory of Groups, Oxford University Press, Oxford,
1968.



336 Further reading

28. Saunders MacLane, Categories for the Working Mathematician, Springer,
Berlin, 1971.
29. N. H. McCoy, The Theory of Rings, Chelsea, New York, 1973.
30. J. von Neumann and O. Morgenstern, Theory of Games and Economic
Behavior, Princeton University Press, Princeton, 1944.
31. K. Petersen, Ergodic Theory, Cambridge University Press, Cambridge, 1983.
32. M. Reid, Undergraduate Algebraic Geometry, Cambridge University Press,
Cambridge, 1988.
33. J. S. Rose, A Course on Group Theory, Cambridge University Press,
Cambridge, 1978.
34. J. J. Rotman, An Introduction to Homological Algebra, Academic Press, New
York, 1979.
35. L. Rowen, Ring Theory (two volumes), Academic Press, San Diego, 1988.
36. Bertrand Russell, History of Western Philosophy, George Allen and Unwin,
London, 1961.
37. J.-P. Serre, Linear Representations of Finite Groups, Springer, New York,
1977.
38. I. R. Shafarevich, Basic Algebraic Geometry I: Varieties in Projective Space,
Springer-Verlag, Berlin, 1994.
39. Ian Stewart, Galois Theory (2nd edition), Chapman & Hall, London, 1989.
40. M. Suzuki, Group Theory (two volumes), Springer, New York, 1982, 1986.
41. Hermann Weyl, Symmetry, Princeton University Press, Princeton, 1952
(reprinted 1989).
42. R. A. Wilson, The Finite Simple Groups, Cambridge University Press,
Cambridge, 2008.

Further resources are available on the Web. I have listed a few below. Since
Web addresses change, it is better to search for these by name.
GAP website:
http://www.gap-system.org
GAP is a programming system for doing computations with algebraic struct-
ures, especially groups. The name is an acronym for ‘Groups, Algorithms and
Programming’.
Online Atlas of Finite Groups:
http://brauer.maths.qmul.ac.uk/Atlas/v3/
Detailed information about many finite simple groups, especially simple groups
or those ‘close to’ being simple.
Encyclopedia of Integer Sequences:
http://www.research.att.com/˜njas/sequences/
Here you can look up any interesting numberical sequence, such as the number
of groups of order n for n = 1, 2, . . ..
MacTutor History of Mathematics:
http://www-groups.dcs.st-and.ac.uk/˜history/
Here you can read the fascinating stories of the people who created modern
algebra.
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