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PREFACE

To describe the scope of this work, I must go back to when Stan Gibilisco, editorial advisor of the
dictionary series, asked me to be in charge of this volume. I appreciated the idea of a compendium
of mathematical terms used in the sciences and engineering for two reasons. Firstly, mathematical
definitions are not easily located; when I need insight on a technical term, I turn to the analytic index
of a monograph that seems related; recently I was at a loss when trying to find “Viète’s formulas ∗,”
a term used by an Eastern-European student in his homework. I finally located it in the Encyclopaedic
Dictionary of Mathematics, and that brought home the value of a collection of esoteric terms, put
together by many people acquainted with different sectors of the literature. Secondly, at this time we
do not yet have a tradition of cross-disciplinary terms; in fact, much interaction between mathematics
and other scientific areas is in the making, and times (and timing) could not be more exciting. The
EPSRC∗∗ newsletter Newsline (available on the web at www.epsrc.ac.uk), devoted to mathematics,
in July 2001 rightly states “Even amongst fellow scientists, mathematicians are often viewed with
suspicion as being interested in problems far removed from the real world. But . . . things are changing.”

Rapidly, though, my enthusiasm turned to dismay upon realizing that any strategy I could devise
was doomed to fail the test of “completeness.” What is a dictionary? At best, a rapidly superseded
record of word/symbol usage by some groups of people; the only really complete achievement in
that respect is, in my view, the OED. Not only was such an undertaking beyond me, the very attempt
at bridging disciplines and importing words from one to another is still an ill-defined endeavor —
scientists themselves are unsure how to translate a term into other disciplines.

As a consequence what service I can hope this book to provide, at best, is that of a pocket manual
with which a voyager can at least get by in a basic fashion in a foreign-speaking country. I also hope
that it will have the small virtue to be a first of its kind, a path-breaker that will prompt others to follow.
Not being an applied mathematician myself, I relied on the generosity of the following team of authors:
Lorenzo Fatibene, Mauro Francaviglia, and Rudolf Schmid, experts of mathematical physics; Toni
Kazic, a biologist with broad and daring interdisciplinary experience; Hong Qian, a mathematical
biologist; and Ralf Hiptmair, who works on numerical solution of differential equations. For oper-
ations research, Giovanni Andreatta (University of Padua, Italy), directed me to H.J. Greenberg’s web
glossary, and Toni Kazic referred me to the most extensive web glossary in chemistry, authored by
A.D. McNaught and A. Wilkinson. To all these people I owe much more than thanks for their work. I
know the reward that would most please them is for this book to have served its readers well: please
write me any comments or suggestions, and I will gratefully try to put them to future use.

Emma Previato, Department of Mathematics and Statistics
Boston University, Boston, MA 02215-2411 – USA

e-mail: ep@bu.edu

∗They are just the elementary symmetric polynomials, in case anyone beside me didn’t know
∗∗Engineering and Physical Sciences Research Council, UK.
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glossary/ glossary.html ,1996-2000.
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General Manager, Production Division
RSC Publishing, Royal Society of Chemistry
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© 2003 by CRC Press LLC 

http://www.iupac.org/publications/compendium/index.html
http://www.iupac.org/publications/compendium/index.html
http://carbon.cudenver.edu/~hgreenbe/glossary/index.php
http://carbon.cudenver.edu/~hgreenbe/glossary/index.php


A
a posteriori error estimator An algorithm
for obtaining information about a discretization
error for a concrete discrete approximation uh of
the continuous solutionu. Two principal features
are expected from such device:

(i.) It should be reliable: the estimated error
(norm) must be proportional to an upper bound
for the true error (norm). Thus, discrete solutions
that do not meet a prescribed accuracy can be
detected.

(ii.) It should be efficient: the error estimator
should provide some lower bound for the true
error (norm). This helps avoid rejecting a discrete
solution needlessly.

In the case of a finite element discretization an
additional requirement is the locality of the a
posteriori error estimator. It must be possible to
extract information about the contributions from
individual cells of the mesh to the total error. This
is essential for the use of an a posteriori error esti-
mator in the framework of adaptive refinement.

abacus Oldest known “computer” circa
1100 BC from China, a frame with sliding beads
for doing arithmetic.

Abbe’s sine condition (Ernst Abbe 1840–
1905) n′l′ sin β ′ = nl sin β where n, n′, β, β ′

are the refraction indices and refraction angles,
respectively.

Abelian group (Niels Henrik Abel 1802–
1829 ) A group (G, ·) is called Abelian or com-
mutative if a · b = b · a for all a, b ∈ G.

Abelian theorems (1) Suppose
∑∞

n=0 anx
n

converges for |x| < R and for x = R. Then the
series converges uniformly on 0 ≤ x ≤ R.

(2) Forn ≥ 5 the general equation ofnth order
cannot be solved by radicals.

Abel’s integral equation f (x) = ∫ x

0
φ(ξ)√
x−ξ

dξ , where f (x) is C1 with f (0) = 0, is called
Abel’s integral equation.

aberration The deviation of a spherical mir-
ror from perfect focusing.

abscissa In a rectangular coordinate system
(Cartesian coordinates) (x, y) of the plane R2, x
is called the abscissa, y the ordinate.

absolute convergence A series
∑

xn is said
to be absolute convergent if the series of absolute
values

∑ |xn| converges.

absolute convergence test If
∑ |xn| con-

verges, then
∑

xn converges.

absolute error The difference between the
exact value of a number x and an approximate
value a is called the absolute error �a of the
approximate value, i.e., �a = |x − a|. The quo-
tient δa = �a

a
is called the relative error.

absolute ratio test Let
∑

xn be a series of
nonnegative terms and suppose limn→∞

|xn+1|
|xn| =

ρ.

(i.) If ρ < 1, the series converges absolutely
(hence converges);

(ii.) If ρ > 1, the series diverges;

(iii.) If ρ = 1, the test is inconclusive.

absolute temperature −273.15◦C.

absolute value The absolute value of a real
number x, denoted by |x|, is defined by |x| = x

if x ≥ 0 and |x| = −x if x < 0.

absolute value of an operator Let A be a
bounded linear operator on a Hilbert space, H.
Then the absolute value of A is given by |A| =√
A∗A, where A∗ is the adjoint of A.

absolutely continuous A function x(t)

defined on [a, b] is called absolutely continuous
on [a, b] if there exists a function y ∈ L1[a, b]
such that x(t) = ∫ t

a
y(s)ds + C, where C is a

constant.

absorbance A logarithm of the ratio of inci-
dent to transmitted radiant power through a
sample (excluding the effects on cell walls).
Depending on the base of the logarithm, decadic
or Napierian absorbance are used. Symbols:
A,A10, Ae. This quantity is sometimes called
extinction, although the term extinction, better
called attenuance, is reserved for the quantity
which takes into account the effects of lumines-
cence and scattering as well.
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absorbing set A convex set A ⊂ X in a vec-
tor space X is called absorbing if every x ∈ X

lies in tA for some t = t (x) > 0.

acceleration The rate of change of velocity
with time.

acceleration vector If �v is the velocity vec-
tor, then the acceleration vector is �a = d �v

dt
; or if

�s is the vector specifying position relative to an
origin, we have �v = d�s

dt
and hence �a = d2�s

dt2 .

acceptor A compound which forms a chem-
ical bond with a substituent group in a bimolecu-
lar chemical or biochemical reaction.

Comment: The donor-acceptor formalism is
necessarily binary, but reflects the reality that few
if any truly thermolecular reactions exist. The
bonds are not limited to covalent. See also donor.

accumulation point Let {zn} be a sequence
of complex numbers. An accumulation point of
{zn} is a complex number a such that, given any
ε > 0, there exist infinitely many integers n such
that |zn − a| < ε.

accumulator In a computing machine, an
adder or counter that augments its stored number
by each successive number it receives.

accuracy Correctness, usually referring to
numerical computations.

acidity function Any function that meas-
ures the thermodynamic hydron-donating or
-accepting ability of a solvent system, or a closely
related thermodynamic property, such as the ten-
dency of the lyate ion of the solvent system
to form Lewis adducts. (The term “basicity
function” is not in common use in connection
with basic solutions.) Acidity functions are not
unique properties of the solvent system alone,
but depend on the solute (or family of closely
related solutes) with respect to which the thermo-
dynamic tendency is measured.

Commonly used acidity functions refer to
concentrated acidic or basic solutions. Acidity
functions are usually established over a range
of composition of such a system by UV/VIS
spectrophotometric or NMR measurements of
the degree of hydronation (protonation or Lewis

adduct formation) for the members of a series
of structurally similar indicator bases (or acids)
of different strengths. The best known of these
functions is the Hammett acidity functionH0 (for
uncharged indicator bases that are primary aro-
matic amines).

action (1) The action of a conservative
dynamical system is the space integral of the total
momentum of the system, i.e.,∫ P2

P1

∑
i

mi

d �ri
dt

· d �ri

where mi is the mass and �ri the position of the
ith particle, t is time, and the system is assumed
to pass from configuration P1 to P2.

(2) Action of a group: A (left) action of a
group G on a set M is a map ) : G×M −→ M

such that:

(i.) )(e, x) = x, for all x ∈ M , e is the
identity of G;

(ii.) )(g,)(h, x)) = )(g · h, x), for all
x ∈ M and g, h ∈ G. (g · h denotes the group
operation (multiplication) in G.

If G is a Lie group and M is a smooth mani-
fold, the action is called smooth if the map ) is
smooth.

An action is said to be:

(i.) free (without fixed points) if )(g, x) =
x, for some x ∈ M implies g = e;

(ii.) effective (faithful) if )(g, x) = x for all
x ∈ M implies g = e;

(iii.) transitive if for every x, y ∈ M there
exists a g ∈ G such that )(g, x) = y.

See also left action, right action.

action angle coordinates A system of gen-
eralized coordinates (Qi, Pi) is called action
angle coordinates for a Hamiltonian system
defined by a Hamiltonian function H if H

depends only on the generalized momenta Pi but
not on the generalized positions Qi . In these
coordinates Hamilton’s equations take the form

∂Pi

∂t
= 0 ,

∂Qi

∂t
= ∂H

∂Pi

© 2003 by CRC Press LLC 



action, law of action and reaction (New-
ton’s third law) The basic law of mechanics
asserting that two particles interact so that the
forces exerted by one upon another are equal in
magnitude, act along the straight line joining the
particles, and are opposite in direction.

action functional In variational calculus
(and, in particular, in mechanics and in field
theory) is a functional defined on some suitable
space F of functions from a space of independent
variables X to some target space Y ; for any
regular domain D and any configuration ψ of
the system it associates a (real) number AD[ψ].
A regular domain D is a subset of the space X

(the time t ∈ R in mechanics and the space-time
point x ∈ M in field theory) such that the action
functional is well-defined and finite; e.g., if X is
a manifold, D can be any compact submanifold
ofX with a boundary ∂D which is also a compact
submanifold.

By the Hamilton principle, the configurations
ψ which are critical points of the action func-
tional are called critical configurations (motion
curves in mechanics and field solutions in field
theory).

In mechanics one has X = R and the relevant
space is the tangent bundle TQ to the configura-
tion manifold Q of the system. Let γ̂ = (γ, γ̇ )

be a holonomic curve in TQ which projects onto
the curve γ in Q and L : TQ → R be the
Lagrangian of the system, i.e., a (real) func-
tion on the space TQ. The action is given by
AD[γ ] = ∫

D
L(γ (t), γ̇ (t)) dt . D can be any

closed interval. If suitable boundary conditions
are required on γ one can allow also infinite inter-
vals in the parameter space R.

In field theoryX is usually a space-time mani-
fold M and the relevant space is the k-order
jet extension J kB of the configuration bundle
(B,M, π, F ) of the system. Let σ̂ be a holo-
nomic section in J kB which projects onto the
section σ in B and L : J kB → R be the
Lagrangian of the system, i.e., a (real) func-
tion on the space J kB. The action is given
by AD[σ ] = ∫

D
L(σ̂ (x)) ds, where L(σ̂ (x))

denotes the value which the Lagrangian takes
over the section; D ⊂ M can be any regular
domain and ds is a volume element. If suitable
boundary conditions are required on the sections
σ one can allow also infinite regions up to the
whole parameter space M .

action principle (Newton’s second law)
Any force �F acting on a body of mass m induces
an acceleration �a of that body, which is pro-
portional to the force and in the same direction
�F = m�a.

action, principle of least The principle
(Maupertius 1698–1759) which states that the
actual motion of a conservative dynamical sys-
tem from P1 to P2 takes place in such a way that
the action has a stationary value with respect to
all possible paths betweenP1 andP2 correspond-
ing to the same energy (Hamilton principle).

activation energy (Arrhenius activation
energy) An empirical parameter characterizing
the exponential temperature dependence of the
rate coefficient k,Ea = RT 2(d ln k/dT ), where
R is the gas constant and T the thermodynamic
temperature. The term is also used for threshold
energies in electronic potential surfaces, in
which case the term requires careful definition.

activity In biochemistry, the catalytic power
of an enzyme. Usually this is the number of sub-
strate turnovers per unit time.

adaptive refinement A strategy that aims to
reduce some discretization error of a finite ele-
ment scheme by repeated local refinement of the
underlaying mesh. The goal is to achieve an
equidistribution of the contribution of individ-
ual cells to the total error. To that end one relies
on a local a posteriori error estimator that, for
each cell K of the current mesh ;h, provides an
estimate ηK of how much of the total error is due
to K .

Starting with an initial mesh ;h, the refine-
ment loop comprises the following stages:

(i.) Solve the problem discretized by means
of a finite element space built on ;h;

(ii.) Determine guesses for the total error of
the discrete solution and for the local error contri-
butions ηh. If the total error is below a prescribed
threshold, then terminate the loop;

(iii.) Mark those cells of ;h for refinement
whose local error contributions are above the
average error contribution;

(iv.) Create a new mesh by refining marked
cells of ;h and go to (i.).

Algorithms for the local refinement of simplicial
and hexaedral meshes are available.
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addition reaction A chemical reaction of
two or more reacting molecular entities, resulting
in a single reaction product containing all atoms
of all components, with formation of two chem-
ical bonds and a net reduction in bond multipli-
city in at least one of the reactants. The reverse
process is called an elimination reaction. If the
reagent or the source of the addends of an add-
ition are not specified, then it is called an addition
transformation.

See also [addition, α-addition, cheletropic
reaction, cycloadition.]

adduct A new chemical species AB, each
molecular entity of which is formed by direct
combination of two separate molecular entities
A and B in such a way that there is change in
connectivity, but no loss, of atoms within the
moieties A and B. Stoichiometries other than 1:1
are also possible, e.g., a bis-adduct (2:1). An
intramolecular adduct can be formed whenA and
B are groups contained within the same molecu-
lar entity.

This is a general term which, whenever appro-
priate, should be used in preference to the less
explicit term complex. It is also used specifically
for products of an addition reaction.

adiabatic lapse rate (in atmospheric chemistry)
The rate of decrease in temperature with increase
in altitude of an air parcel which is expanding
slowly to a lower atmospheric pressure without
exchange of heat; for a descending parcel it is the
rate of increase in temperature with decrease in
altitude. Theory predicts that for dry air it is equal
to the acceleration of gravity divided by the spe-
cific heat of dry air at constant pressure (approx-
imately 9.8◦Ckm−1). The moist adiabatic lapse
rate is less than the dry adiabatic lapse rate and
depends on the moisture content of the air mass.

adjacency list A list of edges of a graph G
of the form

[vi − [vj , vk, . . . , vn], vj − [vi, vl, . . . , vm]],

. . . , vn − [vi, vp, . . . vq],
where

E = {(vi, vj ), (vi, vk), . . . , (vi, vn), (vj , vl),
. . . , (vj , vm), . . . , (vn, vp), . . . , (vn, vq)},

and i, j, k, l, m, n, p, and q are indices.

Comment: Note that in this version any node
is present at least twice: as the key to each sublist
(X−[. . . ] and as a member of some other sublist
(−[X]). This representation is a more compact
version of the connection tables often used to
represent compound structures.

adjacent For any graph G(V, E), two nodes
vi , vi ′ are adjacent if they are both incident to
the same edge (share an edge); that is, if the edge
(vi, vi ′) ∈ E . Similarly, two edges (vi, vi ′),
(vi ′ , vi ′′) are adjacent if they are both incident to
the same vertex; that is if {vi, vi ′ }∩{vi ′ , vi ′′ } �= ∅.

Comment: Two atoms are said to be adjacent
if they share a bond; two reactions (compounds)
are said to be adjacent if they share a compound
(reaction).

adjoint representations (on a [Lie] group G)
(1) The action of any group G onto itself defined
by ad : G → Hom(G) : g �→ adg . The
group automorphism adg : G → G is defined
by adg(h) = g · h · g−1.

(2) On a Lie algebra. If G is a Lie group
the adjoint representation above induces by deri-
vation the adjoint representation of G on its Lie
algebra g. It is defined by Teadg : g → g where
Te denotes the tangent map (see tangent lift). IfG
is a matrix group, then the adjoint representation
is given by Teadg(ξ) = g · ξ · g−1.

(3) Also defined is the adjoint representa-
tion Ad : g → Hom(g) of the Lie algebra
g onto itself. For ξ , ζ ∈ g, the Lie algebra
homomorphism Adξ : g → g is defined by
commutators Adξ (ζ ) = [ξ, ζ ].

adsorbent A condensed phase at the surface
of which adsorption may occur.

adsorption An increase in the concentration
of a dissolved substance at the interface of a con-
densed and a liquid phase due to the operation of
surface forces. Adsorption can also occur at the
interface of a condensed and a gaseous phase.

adsorptive The material that is present in
one or other (or both) of the bulk phases and
capable of being adsorbed.
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affine bundle A bundle (A,M, π;A)which
has an affine space A as a standard fiber and tran-
sition functions acting on A by means of affine
transformations.

If the base manifold is paracompact then any
affine bundle allows global sections. Examples
of affine bundles are the bundles of connections
(transformation laws of connections are affine)
and the jet bundles πk+1

k : J k+1C → J kC.

affine connection A connection on the
frame bundle F(M) of a manifold M .

affine coordinates An affine coordinate sys-
tem (0; x1, x2, ..., xn) in an affine space A con-
sists of a fixed pont 0 ∈ A, and a basis {xi} (i =
1, ..., n) of the difference space E. Then every
pont P ∈ A determines a system of n numbers
{ξ i} (i = 1, ..., n) by �0P = ∑n

i=1 ξ
ixi . The

numbers {ξ i} (i = 1, ..., n) are called the affine
coordinates of P relative to the given system.
The origin 0 has coordinates ξi = 0.

affine equivalence A special case of para-
metric equivalence, where the mapping ) is an
affine linear mapping, that is, )(x) := Ax + t
with a regular matrix A ∈ R

n,n and t ∈ R
n (n the

dimension of the ambient space).
For affine equivalent families of finite ele-

ment spaces on simplicial meshes in dimension
n the usual reference element is the unit simplex
spanned by the canonical basis vectors of R

n.
In the case of a shape regular family {;h}h∈H

of meshes and affine equivalence, there exist
constants Ci > 0, i = 1, ..., 4, such that

C1diam(K)n ≤ | det AK | ≤ C2diam(K)n,

‖AK‖ ≤ C3diam(K),

‖A−1
K ‖ ≤ C4diam(K)−1 ∀K ∈ ;h, h ∈ H.

Here ‖.‖ denotes the Euclidean matrix norm, and
the matrix A belongs to that unique affine map-
ping taking a suitable reference element on K .
These relationships pave the way for assessing
the behavior of norms under pullback.

affine frame An affine frame on a manifold
M at x ∈ M consists of a point p ∈ Ax(M)

(where Ax(M) is the affine space with differ-
ence space E = TxM) and an ordered basis
(X1, ..., Xn) of TxM (called a linear frame at
x). It is denoted by (p;X1, ..., Xn).

affine geometry The geometry of affine
spaces.

affine map Let X and Y be vector spaces
and C a convex subset of X. A map T : C →
Y is called an affine map if T ((1 − t)x + ty)

= (1 − t)T x + tT y for all x, y ∈ C, and all
0 ≤ t ≤ 1.

affine mapping (1) Let A be an affine space
with difference space E. Let P �→ P ′ be a map-
ping from A into itself subject to the following
conditions:

(i.) �P1Q1 = �P2Q2 implies �P ′
1Q

′
1 = �P ′

2Q
′
2;

(ii.) The mapping φ : E → E defined by
φ( �PQ) = �P ′Q′ is linear.
Then P �→ P ′ is called an affine mapping.
If a fixed origin 0 is used in A, every affine
mapping x �→ x ′ can be written in the form
x ′ = φx+ b, where φ is the induced linear map-
ping and b = �00′.

(2) Let M,M ′ be Riemannian manifolds. A
map f : M → M ′ is called an affine map if the
tangent map Tf : TM → TM ′ maps every hori-
zontal curve into a horizontal curve. An affine
map f maps every geodesic of M into a geodesic
of M ′.

affine representation A representation of a
Lie group G which operates on a vector space V
such that all φg : V → V are affine maps.

affine space Let E be a real n-dimensional
vector space and A a set of elements P,Q, ...

which will be called points. Assume that a rela-
tion between points and vectors is defined in the
following way:

(i.) To every ordered pair (P,Q) of A there
is an assigned vector of E, called the difference
vector and denoted by �PQ;

(ii.) To every point P ∈ A and every vector
x ∈ E there exists exactly one point Q ∈ A such
that �PQ = x;

(iii.) If P,Q,R are arbitrary points in A, then
�PQ+ �QR = �PR.

Then A is called an n-dimensional affine space
with difference space E.

The affine n-dimensional space An is distin-
guished from R

n in that there is no fixed origin;
thus the sum of two points of An is not defined,
but their difference is defined and is a vector
in R

n.

© 2003 by CRC Press LLC 



Airy equation The equation y ′′ − xy = 0.

AKNS method A procedure developed by
Ablowitz, Kaup, Newell, and Segur (1973) that
allows one, given a suitable scattering problem,
to derive the nonlinear evolution equations solv-
able by the inverse scattering transform.

algebra An algebra over a field F is a ring
R which is also a finite dimensional vector space
over F , satisfying (ax)(by) = (ab)(xy) for all
a, b ∈ F and all x, y ∈ R.

algebraic equation Let f (x) = anx
n +

an−1x
n−1 + ...+ a1x + a0 be a polynomial in

R[x], where R is a commutative ring with unity.
The equation anx

n + an−1x
n−1 + ... + a1x +

a0 = 0 is called an algebraic equation.

ALGOL A programming language.

algorithm A process consisting of a specific
sequence of operations to solve certain types of
problems.

alignment In dealing with sequence data
such as DNAs and proteins, one compares two
such molecules by matching the sequences.
Sequence alignment means finding optimal
matching, defined by some criteria usually called
“scores.” Between two binary sequences, for
example, the Hamming distance is a widely used
score function.

almost complex manifold A manifold with
an almost complex structure.

almost complex structure A manifold M is
said to possess an almost complex structure if it
carries a real differentiable tensor field J of type
(1, 1) satisfying J 2 = −I .

almost everywhere A property holds almost
everywhere (a.e.) if it holds everywhere except
on a set of measure zero.

almost Hermitian A manifold M with a
Riemannian metric g invariant by the almost
complex structure J , i.e., g and J satisfy

g(Ju, Jv) = g(u, v)

for any tangent vectors u and v.

almost Kähler An almost Kähler manifold
is an almost Hermitian manifold (M, J, g) such
that the fundamental two-form ; defined by
;(u, v) = g(u, Jv) is closed.

almost periodic A function f (t) is called
almost periodic if there exists T (ε) such that for
any ε and every interval Iε = (x, x + T (ε)),
there is x ∈ Iε such that, |f (t + x)− f (t)| < ε.

ααα-limit set Consider a dynamical system
u(t) in a metric space (M, d) which is described
by a semigroup S(t), i.e., u(t) = S(t)u(0),
S(t + s) = S(t) · S(s) and S(0) = I . The α-
limit set, when it exists, of u0 ∈ M , or A ⊂ M ,
is defined as

α(u0) =
⋂
s≤0

⋃
t≤s

S(−t)−1u0,

or
α(A) =

⋂
s≤0

⋃
t≤s

S(−t)−1A .

Notice, φ ∈ α(A) if and only if there exists
a sequence ψn converging to φ in M and a
sequence t → +∞, such that φn = S(tn)ψn ∈
A, for all n.

alphabet A set of letters or other characters
with which one or more languages are written.

alternating series A series that alternates
signs, i.e., of the form

∑
n(−1)nan, an ≥ 0.

alternation For any covariant tensor field
K on a manifold M the alternation A is defined
as

(AK)(X1, ..., Xr) =
1

r!

∑
π

(sign π)

K(Xπ(1), ..., Xπ(r))

where the summation is taken over all r! permu-
tations π of (1, 2, ..., r).

amplitude of a complex number The angle
θ is called the amplitude of the complex number
z = reiθ = r(cos θ + i sin θ).

amplitude of oscillation The simplest equa-
tion of a linear oscillator is md2x

dt2 = −kx. It has
the solution x(t) = A cos(t

√
k/m − c). A is

called the amplitude.
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analog In contrast to digital, analog means a
dynamic variable taking a continuum of values,
e.g., a timepiece having hour and minute hands.

analog computation Instead of using
binary computation as in a digital computer, one
uses a device which has continuous dynamic
variables such as current (or voltage) in an elec-
trical circuit, or displacement in a mechanical
device.

analog computer A device that computes
using analog computation. A computer that
operates with numbers represented by directly
measurable quantities (e.g., voltage).

analog multiplier Using analog computa-
tion to obtain the product, as output, of two
(input) quantities.

analog variable See analog and analog
computation.

analytic dynamics A dynamical system is
called analytic if the coefficients of the vector
field are analytic functions.

analytic function A function f (x) is called
analytic at x = a if it can be represented by a
power series

f (x) =
∞∑
n=0

cn(x − a)n ,

convergent for |x| < r , for some r > 0.

analytic geometry A part of geometry in
which algebraic methods are used to solve geo-
metric problems.

analytic manifold A manifold M such that
its coordinate transition functions are analytic.
See chart.

analytic structure The set (atlas) of coor-
dinate patches on an analytic manifold M . See
chart.

analytical function A function which
relates the measure value Ĉa to the instrument
reading, X, with the value of all interferants, Ci ,
remaining constant. This function is expressed
by the following regression of the calibration
results:

Ĉa = f (X)

The analytical function is taken as equal to the
inverse of the calibration function.

analytical index The analytical index of an
elliptic complex {Dp,Ep} is defined as

index{Dp,Ep} =
∑
p

(−1)pdim ker �p,

where �p = dδ + δd is the Laplacian on p-
forms.

analytical unit (analyser) An assembly of
subunits comprising: suitable apparatus permit-
ting the introduction and removal of the gas,
liquid, or solid to be analyzed and/or calibration
materials; a measuring cell or other apparatus
which, from the physical or chemical properties
of the components of the material to be analyzed,
gives signals allowing their identification and/or
measurement; signal processing devices (ampli-
fication, recording) or, if need be, data processing
devices.

angle A system of two rays extending from
the same point. The numerical measure of an
angle is the degree (measured as a fraction of
360◦, the entire angle from a line to itself ) or the
radian (= 180/π degrees).

angle between curves Let c1(t) and c2(t)

be two curves intersecting at t0, i.e., c1(t0) =
c2(t0) = p. The angle between c1 and c2 at p
is given by the angle between the two tangent
vectors ċ1(t0) and ċ2(t0).

angle between lines Let L1 and L2 be two
nonvertical lines in the plane with slopes m1 and
m2, respectively. If θ , the angle from L1 to L2,
is not a right angle, then

tan θ = m2 −m1

1 +m1m2
.
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angle between planes The angle between
two planes is given by the angle between the two
normal vectors to these planes.

angle between vectors Let �u ∈ R
n and �v ∈

R
n be two vectors in R

n. The angle θ between �u
and �v is given by

cos θ = �u · �v
‖u‖‖v‖ ,

where the dot product �u · �v =∑n
i=1 uivi and the

norm is ‖u‖2 =∑n
i=1 u

2
i , if �u = (u1, ..., un) and

�v = (v1, ..., vn).

angle of depression The angle between the
horizontal plane and the line from the observer’s
eye to some object lower than the line of her eyes.

angle of elevation The angle between the
horizontal plane and the line from the observer’s
eye to some object above her eyes.

angle of incidence The angle that a line (as
a ray of light) falling on a surface or interface
makes with the normal vector drawn at the point
of incidence to that surface.

angle of reflection The angle between a
reflected ray and the normal vector drawn at the
point of incidence to a reflecting surface.

angle of refraction The angle between a
refracted ray and the normal vector drawn at the
point of incidence to the interface at which the
refraction occurs.

angular Measured by angle.

angular acceleration The rate of change per
unit time of angular velocity; i.e., if the angular
velocity is represented by a vector �ω along the
axis of rotation, then the angular acceleration �α
is given by �α = d �ω

dt
.

angular momentum, LLL (or moment of momen-
tum of a particle about a point) A vector
quantity equal to the vector product of the
position vector of the particle and its momentum,
L = r × p where r(t) = d

dt
r(t) is the velocity

vector and p = m · r is the momentum. For spe-
cial angular momenta of particles in atomic and
molecular physics different symbols are used.

angular variables Let M be a manifold and
S1 the unit circle. A smooth map ω : M → S1

is called an angular variable on M .

angular velocity If a particle is moving in
a plane, its angular velocity about a point in the
plane is the rate of change per unit time of the
angle between a fixed line and the line joining
the moving particle to the fixed point.

anion A monoatomic or polyatomic species
having one or more elementary charges of the
electron.

annihilation operator For the harmonic
oscillator with Hamiltonian H = 1

2 (p
2 + ω2q2)

the annihilation operator a is given by a =
1√
2ω
(p− iωq). The creation operator a∗ is given

by a∗ = 1√
2ω
(p + miωq). Then H = ω

2 (aa
∗ +

a∗a) and we have aψ(N) = √
Nψ(N − 1) and

a∗ψ(N) = √
N + 1ψ(N + 1).

annihilator Let X be a vector space, X∗ its
dual vector space, and Y a subspace of X. The
annihilator M⊥ of M is defined as M⊥ = {f ∈
X∗ | f (x) = 0, f or all x ∈ M}.

annulus The region of a plane bounded by
two concentric circles in the plane. Let R > r ,
the annulus A determined by the two circles of
radius R and r , respectively, (centered at 0) is
given by

A = {�x = (x, y) ∈ R
2 | r < ‖�x‖ < R}

where ‖�x‖ =
√

x2 + y2.

anomalies In quantum field theories anom-
alies are quantum effects of conservation laws;
i.e., if one has a conservation law at the classical
level which is not true at the quantum level, this
is expressed by an anomaly, e.g., scale invariance
is violated when quantized, which gives rise to a
scale factor, the anomaly.

Anosov system A diffeomorphism on a
manifold which has a hyperbolic structure every-
where is called an Anosov system.

ansatz An “assumed form” for a solution; a
simplified assumption.
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antibody A protein (immunoglobulin) pro-
duced by the immune system of an organism in
response to exposure to a foreign molecule (anti-
gen) and characterized by its specific binding to
a site of that molecule (antigenic determinant or
epitope).

anticommutator If A,B are two linear
operators, their anticommutator is {A,B} =
AB + BA.

antiderivation A linear operator T on a
graded algebra (A, ·) satisfying T (a · b) = T a ·
b+ (−1)(degree of b)a · T b for all a, b ∈ A.

antiderivative A function F(x) is called an
antiderivative of a function f (x) if F ′(x) =
f (x).

antigen A substance that stimulates the
immune system to produce a set of specific
antibodies and that combines with the antibody
through a specific binding site or epitope.

antimatter Matter composed of antipar-
ticles.

antiparticle A subatomic particle identical
to another subatomic particle in mass but oppos-
ite to it in the electric and magnetic properties.

antiselfdual A gauge field F such that F =
− ∗ F , where ∗ is the Hodge-star operator.

aphelion The point in the path of a celestial
body (as a planet) that is farthest from the sun.

apogee The point in the orbit of an object (as
a satellite) orbiting the earth that is the greatest
distance from the center of the earth.

applied potential The difference of poten-
tial measured between identical metallic leads
to two electrodes of a cell. The applied poten-
tial is divided into two electrode potentials, each
of which is the difference of potential existing
between the bulk of the solution and the interior
of the conducting material of the electrode, an
i R or ohmic potential drop through the solution,
and another ohmic potential drop through each
electrode.

In the electroanalytical literature this quan-
tity has often been denoted by the term voltage,
whose continued use is not recommended.

approximate solution Consider the differ-
ential equation (*) x ′ = f (x, t) , x ∈ ; ⊂
R

n, t ∈ [a, b]. The vector valued function y(t)

is an ε-approximate solution of (*) if ‖y ′(t) −
f (t, y(t))‖R

n < ε, for all t ∈ [a, b].

arc (1) A segment, or piece, of a curve.
(2) The image of a closed interval [a, b] under

a one-to-one, continuous map.

arc length Let σ : [a, b] → R
n be a C1

curve. The arc length l(σ ) of σ is defined as

l(σ ) =
∫ b

a

‖σ ′(t)‖dt.

arccosecant The inverse trigonometric
function of cosecant. The arccosecant of a
number x is a number y whose cosecant is x,
written as y = csc−1(x) = arc csc(x), i.e.,
x = csc(y).

arccosine The inverse trigonometric func-
tion of cosine. The arccosine of a number x

is a number y whose cosine is x, written as
y = cos−1(x) = arc cos(x), i.e., x = cos(y).

arccotangent The inverse trigonometric
function of cotangent. The arccotangent of a
number x is a number y whose cotangent is
x, written as y = cot−1(x) = ctn−1(x) =
arc cot(x), i.e., x = cot(y).

arcsecant The inverse trigonometric func-
tion of secant. The arccosecant of a number x

is a number y whose secant is x, written as
y = sec−1(x) = arc sec(x), i.e., x = sec(y).

arcsine The inverse trigonometric function
of sine. The arcsine of a number x is a number
y whose sine is x, written as y = sin−1(x) =
arc sin(x), i.e., x = sin(y).

arctangent The inverse trigonometric func-
tion of tangent. The arctangent of a number x

is a number y whose tangent is x, written as
y = tan−1(x) = arc tan(x), i.e., x = tan(y).

area of surface Consider the surfaceS given
by z = f (x, y) that projects onto the bounded
region D in the xy-plane. The area A(S) of the
surface S is given by

A(S) =
∫ ∫

D

√
f 2
x + f 2

y + 1 dD.
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area under curve Let a curve be given by
y = f (x), a ≤ x ≤ b. The area A under this
curve from a to b is given by the integral

A =
∫ b

a

f (x)dx .

Argand diagram The basic idea of complex
numbers is credited to Jean Robert Argand, a
Swiss mathematician (1768–1822). An Argand
diagram is a rectangular coordinate system in
which the complex number x+ iy is represented
by the point whose coordinates are x and y. The
x-axis is called real axis and the y-axis is called
imaginary axis.

argument The collection of elements satis-
fying some relation r is called the set of argu-
ments of r .

argument of complex number See ampli-
tude of a complex number.

arithmetic The study of the positive integers
1, 2, 3, 4, 5, ... under the operations of addition,
subtraction, multiplication, and division.

arithmetic difference The arithmetic dif-
ference of two numbers a and b is |a − b|.

arithmetic division To determine the arith-
metic quotient

[
a
b

]
of two nonnegative integers a

and b, where [x] is the greatest integer, which is
not bigger than x.

arithmetic mean The arithmetic mean of n
numbers a1, a2, ..., an is

x = a1 + a2 + · · · + an

n
.

arithmetic progression A sequence of
numbers a1, a2, ..., an, ... in which each follow-
ing number is obtained from the preceding num-
ber by adding a given number r , i.e., an = a1 +
(n− 1)r .

arithmetic quotient See arithmetic divi-
sion.

arithmetic sequence A sequence a, (a +
d), (a + 2d), · · · , (a + nd), · · · , in which each
term is the arithmetic mean of its neighbors.

arithmetic sum The sum of an arithmetic
sequence

∑N
n=0(a + nd).

arity The number of arguments of a relation.

array A display of objects in some regular
arrangements, as a rectangular array or matrix
in which numbers are displayed in rows and
columns, or an arrangement of statistical data in
order of increasing (or decreasing) magnitude.

array index In a rectangular array such as a
matrix the element in the ith row and j th column
is indexed as aij .

artificial intelligence A branch of computer
science dealing with the simulation of intelligent
behavior of computers.

ascending sequence A sequence {an} is
called ascending (increasing) if each term is
greater than the previous term, i.e., an ≥ an−1.
If an > an−1 then it is called monotone ascend-
ing/increasing.

ASCII American Standard Code for
Information Interchange. A code for represent-
ing alphanumeric information.

Ascoli Giulio Ascoli (1843–1896), Italian
analyst.

Ascoli’s theorem Let {fn} be a family of
uniformly bounded equicontinuous functions on
[0, 1]. Then some subsequence {fn(i)} converges
uniformly on [0, 1].

assembler A computer program that auto-
matically converts instructions written in assem-
bly language into computer language.

assembly Computation of a finite element
stiffness matrix A from the element matrices AK

belonging to the cells K of the underlying mesh
;h. The general formula is

A =
∑
K∈;h

IKAKI
T
K ,

where the IK are rectangular matrices reflect-
ing the association of local and global degrees
of freedom.
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assembly language A programming lan-
guage that consists of instructions that are
mnemonic codes for corresponding machine lan-
guage instructions.

associated bundle If (P,M,p : G) is a
principal bundle and λ : G × F → F is a left
action of the Lie group G and a manifold F , then
one can define a right action ofG onP ×F using
the canonical right actionR ofG onP as follows:

(p, f ) · g = (Rgp, λ(g
−1, f )).

The quotent space P ×λ F ≡ (P × F )\G
has a canonical structure of a bundle (P ×λ

F,M, π;F ) and it is called an associated bundle
to P .

Trivializations of P induce trivializations of
P ×λ F , principal connections on P induce con-
nections on P ×λ F , right invariant vector fields
on P induce vector fields on P ×λ F . The transi-
tion functions of P ×λ F are the same transition
functions of P represented on F by means of the
action λ.

association The assembling of separate
molecular entities into any aggregate, especially
of oppositely charged free ions into ion pairs or
larger and not necessarily well-defined clusters
of ions held together by electrostatic attraction.
The term signifies the reverse of dissociation, but
is not commonly used for the formation of def-
inite adducts by colligation or coordination.

associative Describing an operation among
objects x, y, z, ..., denoted by • , such that (x •
y) • z = x • (y • z). For example, addition
and multiplication of numbers associative (x +
y) + z = x + (y + z), (x · y) · z = x · (y · z),
for all numbers x, y, z.

asymptote A straight line associated with a
plane curve such that as a point moves along an
infinite branch of the curve the distance from the
point to the line approaches zero and the slope of
the tangent to the curve at the point approaches
the slope of the line.

asymptote to the hyperbola The standard
form of the equation of the hyperbola in the plane
is x2/a2 − y2/b2 = 1. The lines y = bx/a and
y = −bx/a are its asymptotes.

asymptotic freedom Property of quantum
field theories which says that interactions are
weak at high energies (momenta). Mathemat-
ically this means that suitably normalized correl-
ation functions tend to the correlation function of
a free theory when the momenta go to infinity.

asymptotic series A function f (x) on
(0, a), a > 0, is said to have

∑
anx

n as asymp-
totic series (expansion) as x ↓ 0, written f (x) ∼∑

anx
n, x ↓ 0, if, for each N

lim
x↓0

[
f (x)−

N∑
n=0

anx
n

]/
xN = 0.

asymptotically dense Let {Vh}h∈H, H some
index set, be a family of finite dimesional sub-
spaces of the Banach space V . This family is
called asymptotically dense, if⋃

k∈H

Vh = V,

where the closure is with respect to the norm
of V .

asymptotically equal Two functions f and
g are said to be asymptotically equal (at infinity)
if, for every N > 0, we have

lim
x→∞ xN(f (x)− g(x)) = 0.

asymptotically optimal A finite-element
solution of a variational problem is regarded as
asymptotically optimal, if it is quasi optimal, pro-
vided that the meshwidths of the underlying tri-
angulations stay below a certain threshold.

asymptotically stable Let X be a vector
field on the manifold M and Ft its flow. A crit-
ical point m0 of X is called asymptotically stable
if there is a neighborhood V of m0 such that for
each m ∈ V there exists an integral curve cm(t)

of X starting at m for all t > 0, Ft(V ) ⊂ Fs(V )

if t > s and limt→+∞ Ft(V ) = {m0}. m0
is asymptotically unstable if it is asymptotically
stable as t → −∞.

Atiyah Sir Michael Atiyah (1929–), Dif-
ferential Geometer/Mathematical Physicist, Pro-
fessor emeritus University of Edinburgh. Fields
Medal 1966, Knighted 1983.
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Atiyah-Singer index theorem The Atiyah-
Singer index theorem gives the equality between
the analytic index and the topological index of an
elliptic complex over a compact manifold. The
analytical index of an elliptic complex {Dp,Ep}
is defined as

index{Dp,Ep} =
∑
p

(−1)pdim ker �p.

The topological index of an elliptic complex
{Dp,Ep} is defined as

topindex{Dp,Ep}
=
∫
ψ(M)

ch(K(D))Lρ∗todM,

where ch(K(D)) is the Chern character of the
symbol bundle K(D), ρ the projection of the
compactified cotangent bundle ψ(M) onto M ,
and tod(M) the Todd class.
Theorem (Atiyah-Singer) index{Dp,Ep} =
topindex{Dp,Ep}.

atlas An atlas on a manifold M is a collec-
tion of charts whose domains cover M .

atmosphere (of the earth) The entire mass
of air surrounding the earth which is composed
largely of nitrogen, oxygen, water vapor, clouds
(liquid or solid water), carbon dioxide, together
with trace gases and aerosols.

atomic formula A term f (t1, . . . , tn),
where f is a relation.

Comment: Note this is “atomic” in the com-
puter science and linguistic, not the chemistry,
senses.

atomic units System of units based on four
base quantities: length, mass, charge, and action
(angular momentum) and the corresponding base
units the Bohr radius, a0, rest mass of the elec-
tron, me, elementary charge, e, and the Planck
constant divided by 2π, �.

attenuance, DDD Analogous to absorbance,
but taking into account also the effects due to

scattering and luminescence. It was formerly
called extinction.

attractor Consider a dynamical system u(t)

in a metric space (M, d) which is described by
a semigroup S(t), i.e., u(t) = S(t)u(0), S(t +
s) = S(t) · S(s) and S(0) = I . An attractor for
u(t) is a set A ⊂ M with the following proper-
ties:

(i.) A is an invariant set, i.e., S(t)A = A,

for all t ≥ 0.

(ii.) A possesses an open neighborhood U

such that, for every u0 ∈ U , S(t)u0 converges to
A as t → ∞:

dist (S(t)u0, A) → 0 as t → ∞,

where the distance d(x,A) = infy∈A d(x, y).

augmented matrix If a system of linear
equations is written in matrix form A�x = �b, then
the matrix [A|�b] is called the augmented matrix.

autocatalysis A reaction in which the prod-
uct also serves as a catalyst. Hence this reaction
is nonlinear with a positive feedback. Autocata-
lysis is an important ingredient for an oscillatory
chemical reaction.

automorphism An isomorphism of a set
with itself. Also an isomorphism of an object
of a category into itself.

autonomous system A system of differen-
tial equations d �x

dt
= F(�x) is called autonomous

if the independent variable t does not appear
explicitly in the function F .

autoparallel A vector fieldX on a Riemann-
ian manifold M is called autoparallel along a
curve c(t) if the covariant derivative of X along
c vanishes, i.e., ∇ċ(t)X = 0. In local coordinates

c̈i (t)+ Ni
jk(c(t))ċ

j (t)ċk(t) = 0 .

Hence ċ is autoparallel along c if c is a geodesic.
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average The average value of a function
f (x) over an interval [a, b] is given by the num-
ber

1

b − a

∫ b

a

f (x) dx

axial gauge For a fixed vector n, there exists
a gauge transformation A → A′ such that
n · A′(x) = 0 . This is called the axial gauge.

axiom A statement that is accepted without
proof. The axioms of a mathematical theory
are the basic propositions from which all other
propositions can be derived.

axis of rotation A straight line about which
a body or geometric figure is rotated.

axis of symmetry A straight line with
respect to which a body or geometric figure is
symmetrical.

azimuth Horizontal direction expressed as
the angular distance between the direction of a
fixed point and the direction of an object.

In polar coordinates (r, θ) in the plane the
polar angle θ is called the azimuth of the
point P .

© 2003 by CRC Press LLC 



B
Bäcklund transformations Transforma-
tions between solutions of differential equations,
in particular soliton equations. They can be used
to construct nontrivial solutions from the trivial
solution.

Formally: Two evolution equations ut =
K(x, u, u1, ..., um) and vt = G(y, v, v1, ..., vn)

are said to be equivalent under a Bäcklund
transformation if there exists a transformation
of the form y = ψ(x, u, u1, ..., un), v = φ(x,

u, u1, ..., un).

bag An unordered collection of elements,
including duplicates, each of which satisfies
some property. An enumerated bag is delimited
by braces ({x}).

Comment: Unfortunately, the same delimiters
are used for sets and bags. See also list, sequence,
set, and tuple.

Baire space A space which is not a count-
able union of nowhere dense subsets. Example:
A complete metric space is a Baire space.

Baker-Campell-Hausdorff formula For
any n× n matrices A,B we have

e−sABesA = B+s[A,B]+ s2

2
[A, [A,B]]+· · ·

balanced set A subsetM of a vector spaceV
over R or C such that αx ∈ M , whenever x ∈ M

and |α| ≤ 1.

ball Let (X, d) be a metric space. An open
ball Ba(x0) of radius a about x0 is the set of all
x ∈ X such that d(x, x0) < a. The closed ball
B̄a(x0) = {x ∈ X | d(x, x0) ≤ a}.

Banach Stefan Banach (1892–1945). Pol-
ish algebraist, analyst, and topologist.

Banach algebra A Banach spaceX together
with an internal operation, usually called multi-
plication, satisfying the following: for all x,

y, z ∈ X,α ∈ C

(i.) x(yz) = (xy)z

(ii.) (x+y)z = xz+yz, x(y+z) = xy+xz

(iii.) α(xy) = (αx)y = x(αy)

(iv.) ‖xy‖ ≤ ‖x‖‖y‖
(v.) X contains a unit element e ∈ X, such

that xe = ex = x

(vi.) ‖e‖ = 1.

Banach fixed point theorem Let (X, d) be
a complete metric space and T : X → X a
contraction map. ThenT has a unique fixed point
x0 ∈ X , i.e., T (x0) = x0.

Banach manifold A manifold modeled on a
Banach space.

Banach space A normed vector space which
is complete in the metric defined by its norm.

barrel A subset of a topological vector space
which is absorbing, balanced, convex, and
closed.

barreled space A topological vector space
E is called barreled if each barrel inE is a neigh-
borhood of 0 ∈ E, i.e., the barrels form a neigh-
borhood base at 0.

barycenter The barycenter (center of mass)
of the simplex σ = (a0, ..., ap) is the point

bσ = 1

p + 1
(a0 + · · · + ap).

barycentric coordinates Let p0, ..., pn be
n + 1 points in n-dimensional Euclidean space
En that are not in the same hyperplane. Then for
each point x ∈ En there is exactly one set of real
numbers (λ0, ..., λn) such that

x = λ0p0 + λ1p1 + · · · + λnpn

and
λ0 + λ1 + · · · + λn = 1.

The numbers (λ0, ..., λn) are called barycentric
coordinates of the point x.
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base for a topology A collection B of open
sets of a topological space T is a base for the
topology of T if each open set of T is the union
of some members of B.

base space Let π : E → B be a smooth
fiber bundle. The manifold B is called the base
space of π .

basis graph A subgraph G′(V, E ′) of
G(V, E) such that E ′ ⊂ E , and that all pairs of
nodes {vi, vj } ⊂ V in G and G′ are connected
(i, j indices).

basis, Hamel A maximal linear independ-
ent subset of a vector space X. Such a basis
always exists by Zorn’s lemma.

basis of a vector space A subset E of a vec-
tor space V is called a basis of V if each vector
x ∈ V can be uniquely written in the form

x =
n∑

i=1

aiei , ei ∈ E.

The numbers a1, ..., an are called coordinates of
the vector x with respect to the basis E.
Example: E = (e1, ..., en) with e1 =
(1, 0, ..., 0), e2 = (0, 1, 0, ...., 0), ..., en =
(0, 0, ..., 1) is the standard basis of V = R

n.

Bayes formula Suppose A and B1, ..., Bn

are events for which the probabilityP(A) is not 0,∑n
i=1 P(Bi) = 1, and P(B and Bj ) = 0 if

i �= j . Then the conditional probabilityP(Bj |A)
of Bj given that A has occurred is given by

P(Bj |A) =
P(Bj )P (A|Bj)∑n
i=1 P(Bi)P (A|Bi)

.

beam equation ut + uxxxx = 0.

Becchi-Rouet-Stora-Tyutin (BRST) trans-
formation In nonabelian gauge theories the
effective action functional is no longer gauge
invariant, but it is invariant under the BRST
transformation s

sA = dη + [A, η],

sη = −1

2
[η, η] , sη̄ = b , sb = 0.

whereA is the vector potential and η and η̄ are the
ghost and anti-ghost fields, respectively. One of
the main properties of the BRST transformation
s is its nilpotency, s2 = 0.

Belousov-Zhabotinskii reaction A chem-
ical reaction which involves the oxidation of mal-
onic acid by bromate ions, BrO−

3 , and catalyzed
by cerium ions, which has two states Ce3+ and
Ce4+. With appropriate dyes, the reaction can be
monitored from the color of the solution in a test
tube. This is the first reaction known to exhibit
sustained chemical oscillation. Spatial pattern
has also been observed in BZ reaction when dif-
fusion coefficients for various species are in the
appropriate region.

Benjamin-Ono equation The evolution
equation

ut = Huxx + 2uux

where H is the Hilbert transform

(Hf )(x) = 1

π

∫ +∞

−∞

f (ξ)

ξ − x
dξ .

Berezin integral An integration technique
for Fermionic fields in terms of anticommuting
algebras. Let B = B+ ⊕ B− be a DeWitt alge-
bra (super algebra) and y �→ f (y) a supersmooth
function from B− into B. Then f (y) = f0+f1y

with f0, f1 in B. The Berezin integral of f on
B− is ∫

B−
f (y)dy = c1f1

where c is a constant independent of f .

Bergman kernel Let M be an n-dimen-
sional complex manifold andH the Hilbert space
of holomorphic n-forms on M . Let h0, h1, h2, ...

be a complete orthonormal basis of H and
z1, ..., zn a local coordinate system of M . The
Bergman kernel form K is defined by

K = K∗dz1 ∧ · · · ∧ dzn ∧ dz̄1 ∧ · · · ∧ dz̄n,

the function K∗ is the Bergman kernel function
on M .

Bergman metric Let M be an n-dimen-
sional complex manifold, in any complex coord-
inate system z1, ..., zn. The Kähler metric

ds2 = 2
∑

gαβ̄dz
αdz̄β .

with
gαβ̄ = ∂2 logK∗/∂zα∂z̄β

is called the Bergman metric of M .
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Bernoulli equation Let f (x), g(x) be con-
tinuous functions and n �= 0 or 1, the Bernoulli
equation is dy

dx
+ f (x)y + g(x)yn = 0.

Bernoulli numbers The coefficients of the
Bernoulli polynomials.

Bernoulli polynomials

Bm(z) =
m∑

k=0

(
m

k

)
Bkz

m−k.

The coefficientsBk are called Bernoulli numbers.
The Bernoulli polynomials are solutions of the
equations

u(z+ 1)− u(z) = mzm−1 , m = 2, 3, 4, ...

Bessel equation The differential equation

z2 d
2y

dz2 + z
dy

dz
+ (z2 − n2)y = 0.

Bessel function For n ∈ Z the nth Bessel
functionJn(z) is the coefficient of tn in the expan-
sions ez[t−1/t]/2 in powers of t and 1/t . In gen-
eral,

Jn(z) =
1

π

∫ π

0
cos(nt − z sin t)dt

=
∞∑
r=0

(−1)r

r!N(n+ r + 1)

( z
2

)n+2r
.

Jn(z) is a solution of the Bessel equation.

beta function The beta function is defined
by the Euler integral

B(z, y) =
∫ 1

0
t z−1(1 − t)y−1dt

and is the solution to the differential equation

−(z+ y)u(z+ 1)+ zu(z) = 0.

The beta function satisfies

B(z, y) = N(z) · N(y)
N(z+ y)

.

See gamma function.

Betti number Let Hp be the pth homology
group of a simplicial complex K . Hp is a finite
dimensional vector space and the dimension of
Hp is called the pth Betti number of K .

Let M be a manifold and Hp(M) the pth De
Rham cohomology group. The dimension of the
finite dimensional vector space Hp(M) is called
the pth Betti number of M .

Bianchi’s identities In a principal fiber bun-
dle P(M,G) with connection 1-form ω and
curvature 2-form ; = Dω (D is the exter-
ior covariant derivative), Bianchi’s identity is
D; = 0.

In terms of the scalar curvature R on
a Riemannian manifold, Bianchi’s identity is
R(X, Y,Z)+ R(Z,X, Y )+ R(Y,Z,X) = 0.

bifurcation The qualitative change of a
dynamical system depending on a control param-
eter.

bifurcation point Let Xλ be a vector field
(dynamical system) depending on a parameter
λ ∈ R

n. As λ changes the dynamical system
changes, and if a qualitative change occurs at
λ = λ0, then λ0 is called a bifurcation point
of Xλ.

bi-Hamiltonian A vector field XH is called
bi-Hamiltonian if it is Hamiltonian for two
independent symplectic structures ω1, ω2, i.e.,
XH(F) = ω1(H, F ) = ω2(H, F ) for any func-
tion F .

bijection A map φ : A → B which is at the
same time injective and surjective.

A map φ is invertible if and only if it is a
bijection.

bijective A function is bijective if it is both
injective and surjective, i.e., both one-to-one
and onto. See also onto, into, injective, and
surjective.

bilateral network There are two classes of
simple neural networks, the feedforward and
feedback (forming a loop) networks. In both
cases, the connection between two connected
units is unidirectional. In a bilateral network,
the connection between two connected units is
bi-directional.
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bilinear map Let X, Y,Z be vector spaces.
A map B : X × Y → Z is called bilinear if it is
linear in each factor, i.e.,

B(αx + βy, z) = αB(x, z)+ βB(y, z),

B(z, αx + βy) = αB(z, x)+ βB(z, y).

binary A binary number system is based on
the number 2 instead of 10. Only the digits 0 and
1 are needed. For example, the binary number
101110 = 1 · 25 + 0 · 24 + 1 · 23 + 1 · 22 +
0 · 20 = 46 in decimal notation.

A binary operation is an operation that
depends on two objects. Addition and, multi-
plication are binary operations.

binomial The formal sum of two terms,
e.g., x + y.

binomial coefficients The coefficients in the
expansion of (x + y)n. The (k + 1)st binomial
coefficient of order n is the coefficient of xn−kyk ,
and it is given by(n

k

)
= n!

k!(n− k)!
.

This is also the number of combinations of n

things k at a time.

bioassay A test to determine whether a
chemical has any biological function (sometimes
also called activity). This is usually accom-
plished by a set of chemical reactions leading
to an observable change in biological systems or
in test tubes.

biochemical graph A set of biochemical
reactions, their participating molecules, and
labels for reactions, molecules, and subgraphs,
represented as a graph.

Comment: The considered biochemical
graphs are sometimes hypergraphs, mathemat-
ically. However, the key results and algorithms
of the two objects are equally applicable; the
common usage in computer science is to use
the word “graph.” Notice this is simply the
biochemical network with an empty parameter
set. See also biochemical network.

biochemical motif A motif describing a bio-
chemical relationship between two compounds
in the donor-acceptor formalism.

Comment: The constraint for bimolecular
relationship permits use of the common donor-
acceptor language. A reaction may have more
than one such relationship. Note that the bio-
chemical donor-acceptor relationship is often
opposite to that of the chemical one: thus a
phosphoryl donor is a nucleophile acceptor. See
also chemical, dynamical, functional, kinetic,
mechanistic, phylogenetic, regulatory, thermo-
dynamic, and topological motifs.

biochemical network A mathematical net-
work N(V, E,P,L) representing a system R
of biochemical reactions, their participating
molecular species; descriptive, transformational,
thermodynamic, kinetic, and dynamic param-
eters describing the reactions singly and com-
posed together; and labels giving the names of
reactions, molecules, and subnetworks. V is the
bipartite set of vertices: Vm representing molecu-
lar species; Vr representing reactive conjunctions
of molecules, V = Vm∪ Vr . E = Es ∪ Ed ∪ Ec is
the set of relations between molecule and reactive
conjunction vertices, e(λ, vm,i, vr,j ) ∈ E , where
for each pair (vm,i, vr,j ), λ is one and only one
of {s, d, c} = L: a molecule is a member of
the set of coreacting species that appear sinis-
tralaterally, dextralaterally, or catalytically in the
reaction equation. Members of the parameter set
P apply to vertices, edges, and connected graphs
of vertices and edges as biochemically appro-
priate and as such information is available. If
there are no parameters (P = ∅), the network
N(V, E,P,L) reduces to its graph N′(V, E,L).
Labels apply to vertices, edges, and subnetworks
and take the form of one of the elements of
{lm,i , lr,j , l((m,i),(r,j)), l{Vm,Vr ,E}}.

Comment: The network is a biochemical
graph whose nodes, edges, and subgraphs have
qualitative and quantitative parameters. Thus
concentration is a property of a compound node;
�G0′ is a property of a set of compound and reac-
tive conjunction nodes, and their incident edges;
kcat is a property of the edge joining an enzyme to
its reaction; molecular structure is a property of a
compound node; etc. Not all nodes or edges need
be so marked; and in fact much known informa-
tion is at present unavailable electronically.
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biochemical reaction A biochemical reac-
tion is any spontaneous or catalyzed transfor-
mation of covalent or noncovalent molecular
bonds which occur in biological systems, written
as a balanced, formal reaction equation, includ-
ing all participating molecular species, whose
kinetic order equals the sum of the partial orders
of the reactants, including the active form of any
catalyst(s). Equally, a composition of a set of
bichemical reactions.

Comment: The definition places no restric-
tions on the level of resolution of the description,
or size and complexity of reacting species; thus, it
permits the recursive specification of processes.
“Distinct origin” means molecular species aris-
ing from different precursors. Thus, two pro-
tons, if one came from water and the other from
a protein, would be individually recorded in the
equation. By “kinetic significance” is meant
any molecular species which at any concentra-
tion contributes a term to the empirical rate law
of the overall reaction. From the empirical rate
law, the reaction’s apparent kinetic order is the
sum of the partial orders of the reactants (includ-
ing catalysts). The restriction to active forms
of the catalyst includes those instances where
the catalyst must be activated, by either covalent
modification or ligand binding, or is inhibited by
those means, so that not all molecules present
are equally capable of catalysis. The definition
places no restrictions on the level of resolution of
the description, or size and complexity of reac-
ting species, thus permitting the recursive speci-
fication of processes. The recursion scales over
any size or complexity of process.

bioinformatics See computational biology.

biological functions The roles a molecule
plays in an organism.

Comment: By function (called here biological
function to distinguish it from the mathematical
sense of function), biologists mean both how
a molecule interacts with its milieu and what
results from those interactions. The results
are often decomposed into biochemical, physio-
logical, or genetic functions, but it is equally
plausible to consider, for example, the ultrastruc-
tural function of a molecule (what part of the
cell’s microanatomy does it build, how strong
is it, etc.). What is critical is to realize that a

molecule always has more than one function; at
a minimum it must be made and degraded.

biometrics The field of study that uses
mathematical and statistical tools to solve bio-
logical problems and solving mathematical and
statistical problems arising from biology. In
recent years, it has a much narrower meaning
in practice: it mainly deals with statistical analy-
sis and methodology applicable to biology and
medicine.

bipartite Describing a graph G(V, E)
whose chromatic number χ(G) = 2.

Comment: Informally, a graph will be bipar-
tite if it has two distinct sets of nodes and if nodes
of each type are always adjacent to the other.
Thus the biochemical graph is bipartite because
it has a set of compound nodes and a set of reac-
tive conjunction nodes, and each is connected to
the other.

black hole (general relativity) A hypothet-
ical object in space with so intense a gravitational
field that light and matter cannot escape.

blob See denser subgraph.

block A portion of a macromolecule, com-
prising many constitutional units that has at least
one feature which is not present in the adjacent
portions. Where appropriate, definitions relating
to macromolecule may also be applied to block.

block matrix If a matrix is partitioned in
submatrices it is called a block matrix.

Bogomolny equations The self-dual Yang-
Mills-Higgs equations are called Bogomolny
equations. They are

Fµν =
1

2
εµνρσFρσ

where Fab = 1
2εabcBc, Fa4 = Daφ , a, b, c =

1, 2, 3. The solutions of the Bogomolny equa-
tions are called magnetic monopoles.

Bohr radius rB = h2

4π2mee
2 = 0.529 ×

10−8 cm, where h is the Planck constant, me is
the rest mass of the electron, and e is the electron
charge.
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Boltzmann constant The fundamental
physical constant k = R/L = 1.380 = 658×
10−23JK−1, where R is the gas constant and
L the Avogadro constant. In the ideal gas
law PV = NkT , where P is the pressure, V
the volume, T the absolute temperature, N

the number of moles, and k is the Boltzmann
constant.

Boltzmann equation Boltzmann’s equation
for a density function f (x, v, t) is the equation
of continuity (mass conservation)

∂f

∂t
(x, v, t)+ ẋ

∂f

∂x
(x, v, t)+ v̇

∂f

∂v
(x, v, t) = 0.

Bolzano-Weierstrass theorem (for the real line)
If A ⊂ R is infinite and bounded, then there
exists at least one point x ∈ R that is an accu-
mulation point of A; equivalently every bounded
sequence in R has a convergent subsequence.

In metric spaces: compactness and sequential
compactness are equivalent.

bond There is a chemical bond between
two atoms or groups of atoms in the case that
the forces acting between them are such as to
lead to the formation of an aggregate with suf-
ficient stability to make it convenient for the
chemist to consider it as an independent “molecu-
lar species.”

See also coordination.

bond order,ppprsrsrs The theoretical index of the
degree of bonding between two atoms relative to
that of a single bond, i.e., the bond provided by
one localized electron pair. In molecular orbital
theory it is the sum of the products of the cor-
responding atomic orbital coefficients (weights)
over all the occupied molecular spin-orbitals.

Borel sets The sigma-algebra of Borel sets
of R

n is generated by the open sets of R
n.

An element of this algebra is called Borel
measurable.

Bose-Einstein gas A gas composed of par-
ticles with integral spin.

Bose-Einstein statistics In quantum statis-
tics of the distribution of particles among vari-
ous possible energy values there are two types of
particles, fermions and bosons, which obey the
Fermi-Dirac statistics and Bose-Einstein statis-
tics, respectively. In the Fermi-Dirac statis-
tics, no more than one set of identical particles
may occupy a particular quantum state (i.e., the
Pauli exclusion principle applies), whereas in the
Bose-Einstein statistics the occupation number is
not limited in any way.

Boson A particle described by Bose-
Einstein statistics.

boundary LetA ⊂ S be topological spaces.
The boundary ofA is the set ∂A = Ā−A◦, where
Ā is the closure and A◦ is the interior of A in S.

boundary layer The motion of a fluid of low
viscosity (e.g., air, water) around (or through)
a stationary body possesses the free velocity of
an ideal fluid everywhere except in an extremely
thin layer immediately next to the body, called
the boundary layer.

boundary value problem The problem of
finding a solution to a given differential equation
in a given setAwith the solution required to meet
certain specified requirements on the boundary
∂A of that set.

bounded linear operator A bounded linear
operator from a normed linear space (X1, ‖.‖1)

to another normed linear space (X2, ‖.‖2) is a
map T : X1 → X2 which satisfies

(i.) T (αx + βy) = αT (x) + βT (y) for all
x, y ∈ X1, α, β ∈ R ; linearity

(ii.) ‖T x‖2 ≤ C‖x‖1, for some constant
C ≥ 0, all x ∈ X1 ; boundedness.

Boundedness is equivalent to continuity.

Bourbaki, N. A pseudonym of a changing
group of leading French mathematicians. The
Association of Collaborators of Nicolas Bour-
baki was created in 1935. With the series of
monographs Eléments de Mathématique they
tried to write a foundation of mathematics based
on simple structures.
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Boussinesq equation

utt − uxx + 3(u2)xx − uxxxx = 0.

Bramble-Hilbert lemma A crucial tool for
proving local interpolation estimates for para-
metric equivalent finite elements. Given a
bounded domain ; ⊂ R

n with Lipschitz-
continuous boundary, it states that, for k ∈ N0,
0 < s ≤ k + 1,

infp∈Pk(;)‖u− p‖Hs(;) ≤ C|u|Hs(;)

∀u ∈ Hs(;),

where C = C(s, k,;) > 0 and Pk(;) stands
for the space of multivariate polynomials of total
degree ≤ k on ;. The proof of this lemma
relies on the compact embedding of Hs(;) in
L2(;), a fact that is known as Rellich’s lemma.
The Bramble-Hilbert lemma can be extended to
spaces of polynomials with separate degree ≤ k

in each independent variable and to non-standard
anisotropic Sobolev spaces.

branch point (in polymers) A point on a
chain at which a branch is attached.

Notes: (1)A branch point from whichf linear
chains emanate may be termed an f -functional
branch point, e.g., five-functional branch point.
Alternatively, the terms trifunctional, tetrafunc-
tional, pentafunctional, etc. may be used, e.g.,
pentafunctional branch point.

(2)A branch point in a network may be termed
a junction point.

branched chain (in polymers) A chain with
at least one branch point intermediate between
the boundary units.

branching process A stochastic process,
Xn, models the number of individuals in the nth
generation. Usually both X and n take inte-
ger values, and Xn is Markovian. Let Z be the
random variable representing the number of off-
spring in the next generation of a single indi-
vidual. Assuming all individuals are identical,
then Xn+1 is the sum of the Xn values of Z. This
sum of a random number of identically, inde-
pendent random variables can be analytically
obtained using the method of the generating
function: Qn+1(s) = Qn(R(s)) where generat-
ing functions Qn(s) = ∑∞

k=0 Prob{Xn = i}sk
and R(s) =∑∞

k=0 Prob{Z = k}sk .

bridge An edge spanning two connected
components of a graph.

Comment: The mathematical word accurately
conveys the structure: two subgraphs joined by
a single edge.

Brouwer’s fixed point theorem Every con-
tinuous map from the closed ball in R

n into itself
has at least one fixed point.

Brownian dynamics To circumvent the dif-
ficulties of MD (see molecular dynamics), one
approach is to introduce a larger time step in
the simulation. This naturally leads to motion
being stochastic and hence the dynamic of the
molecule is Brownian motion–like. One essen-
tial difference between Brownian dynamics and
MD is that the water molecules are explicit in the
latter, whereas they contribute as a random force
and a viscous medium in the former. Brownian
dynamics have the advantage of large time steps.
Its diffculty lies in the uncertainty about the inter-
atomic interaction on the large time step and in
implicit water, known as coarse-graining.

Brownian motion A stochastic process
{X(t) : t ≥ 0} is a Brownian motion process
(or Wiener process) if

(i.) X(0) = 0;

(ii.) for each t , X(t) is a normal random vari-
able with zero mean;

(iii.) if a < b ≤ c < d, the random variables
X(b)−X(a) and X(d)−X(c) are independent
and have the same distributions whenever b −
a = d − c.

BRST Named after Becchi, Rouet, Stora,
and Tyutin, BRST quantization is a method of
quantizing gauge theories. After the introduc-
tion of ghost fields the effective Lagrangian is
no longer gauge invariant, but has a new global
symmetry, called BRST symmetry. The BRST
operator s is defined on the algebra of local oper-
ators making it into a differential graded algebra.
The induced coboundary operator of the asso-
ciated cohomology (called BRST cohomology) is
the BRST operator s, satisfying s2 = 0. The clas-
sical BRST transformations of the vector poten-
tial A and the ghost field η are

sA = dη + [A, η] , sη = −1

2
[η, η].
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bulk sample The sample resulting from the
planned aggregation or combination or sample
units.

bundle A triple (E,B, π), consisting of two
topological spaces E and B and a continous
surjective map π : E → B. E is called the
total space, B the base space, and π−1(x) the
fiber at x ∈ B. A trivial bundle is of the form
π : B × E → B with π = pr1 the projec-
tion onto the first factor. If all fibers π−1(x) are
homeomorphic to a space F , and the bundle is
locally trivial; i.e., there are homeomorphisms
ψi : Ui × F → π−1(Ui) ( Ui an open cover of
B) with transition maps which are homeomorph-
isms, then the bundle is called a fiber bundle and
F is called the typical fiber. If the typical fiber
F is a vector space, the bundle is called a vector
bundle. If the spaces E,B are smooth mani-
folds and all the maps above are smooth, then the
bundles are called smooth fiber bundles. Exam-
ples are the tangent bundle and cotangent bundle
of a smooth manifold B. A principal fiber bun-
dle consists of a smooth fiber bundle (E,B, π)

and a Lie group G acting freely on E on the
right (u, g) ∈ E × G → ug ∈ E satisfying
ψi(x, gh) = ψi(x, g)h , x ∈ Ui, g, h ∈ G.

bundle morphisms If B = (B,M, π, F )

and B′ = (B ′,M ′, π ′, F ′) are two fiber bun-
dles, a bundle morphism is a pair of maps (), φ)

such that ) : B → B ′, φ : M → M ′ and
π ′ ◦ ) = φ ◦ π ; i.e., ) sends fibers into fibers.
One usually summarizes this property by saying
that the following diagram:

B
)−→ B ′

↓ ↓
M

φ−→M ′

is commutative. If the bundles are endowed with
some additional structure (e.g., vector bundles)

the bundle morphism is usually required to
preserve that structure (e.g., to be linear on
fibers).

A bundle morphism (), φ) is called a strong
morphism if φ is a diffeomorphism. It is called
vertical if M = M ′ and φ = idM . If )

is surjective, (), φ) is called a bundle epimor-
phism. If ) is injective, (), φ) is called a bundle
monomorphism. If) is a diffeomorphism, thenφ
is also a diffeomorphism and ()−1, φ−1) is a bun-
dle morphism, called the inverse morphism. In
that case (), φ) is called a bundle isomorphism.

If (xµ, yi), (x ′µ, y ′i ) are fibered coordinates
on B and B′, the local expression of a fibered
morphism is: {

x ′µ = f µ(x)

y ′i = Y i(x, y)

Burger’s equation ut = uxx + u2
x .

bursting Some biological cells exhibit brief
bursts of oscillations in their membrane electric
potential interspersed with quiescent periods
during which the membrane potential changes
only slowly. The first mathematical model for
this phenomenon was proposed by T.R. Chay
and J. Keizer in terms of five coupled nonlin-
ear ordinary differential equations in which a
slow oscillator modulates a high frequency oscil-
lation. When the slow oscillating variable (S)
passes some numerical value µ, the high fre-
quency oscillation occurs; while when the slow
oscillating variable is below the critical value, the
fast oscillation disappears and the corresponding
variable F changes slowly. Hence the overall
dynamics of F shows bursts of high frequency
oscillations when S > µ, interspered with qui-
escent periods when S < µ. (cf. J. Rinzel, Burst
oscillations in an excitable membrane model.
In: Ordinary and Partial Differential Equations,
Eds. B.D. Sleeman and R.J. Jarvis, Springer-
Verlag, New York, 1985).
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C
Calabi-Yau spaces Complex spaces with a
vanishing first Chern class or, equivalently, with
trivial canonical bundle (canonical class). They
are used to construct possibly realistic (super)
string models.

calcium-induced calcium release A posi-
tive feedback component in the calcium dynam-
ics of biological cells (see autocatalysis). It
is known from experiments that some calcium
channels (see ion channel) which are respon-
sible for calcium influx into cytosol are positively
modulated by the calcium in the cytosol. This
mechanism has been suggested as being respon-
sible for the widely observed calcium oscillation
in cells.

calibration curve See calibration function.

calibration function (in analysis) The
functional (not statistical) relationship for the
chemical measurement process, relating the
expected value of the observed (gross) signal or
response variable E(y) to the analyte amount
x. The corresponding graphical display for a
single analyte is referred to as the calibration
curve. When extended to additional variables or
analytes which occur in multicomponent analy-
sis, the “curve” becomes a calibration surface or
hypersurface.

Callan-Symanzik equation A type of
renormatization group equation in quantum field
theory which studies the variation of the Green’s
function with respect to the physical mass.

Camassa-Holm equation A shallow water
equation which is a completely integrable system
having peakon solutions

∂tu− ∂t∂
2
xu+ 3u∂xu− 2∂xu∂

2
xu− u∂3

xu = 0.

Campbell-Hausdorff formula Also known
as Baker-Campbell-Hausdorff formula, is the
formula for the product of exponentials in
a Lie algebra expA expB = exp{A + B+
1
2 [A,B]+ 1

12 [A, [A,B]]+ 1
12 [B, [B,A]]+· · ·+

cn[A[A . . . [A,B] . . . ]]}.
candidate device A subgraph of the bio-
chemical graph with particular topological
properties, without necessarily having distinct
biochemical or dynamical properties.

canonical bracket On a symplectic
manifold (M,ω) with canonical coordinates
(q1, . . . qn, p1, . . . pn) we have the canonical
(Poisson) bracket between any two functions F

and G on M as

{F,G} =
n∑

i=1

(
∂F

∂qi

∂G

∂qi
− ∂F

∂pi

∂G

∂qi

)
.

canonical coordinates (Darboux’s the-
orem) On any symplectic manifold (M,ω) there
exist local coordinates (q1, . . . qn, p1, . . . pn),
called canonical coordinates, such that

ω =
n∑

i=1

dqi ∧ dpi .

canonical one-form On any cotangent
manifold T ∗M there is a unique one-form T

such that α∗T = α for any one form α on M .
In canonical coordinates (q1, . . . qn, p1, . . . pn),
T is given by

T =
n∑

i=1

pidq
i.

canonical symplectic form On any cotan-
gent manifold T ∗M there is a unique symplectic
form ; defined as ; = −dT where T is the
canonical one-form. In canonical coordinates
(q1, . . . qn, p1, . . . pn), ; is given by

; =
n∑

i=1

dqi ∧ dpi.

canonical transformation A smooth map
f between two symplectic manifolds (M1, ω1)

and (M2, ω2) is called canonical or symplec-
tic if it preserves the symplectic forms, i.e.,
f : (M1, ω1) → (M2, ω2), f

∗ω2 = ω1.

c

© 2003 by CRC Press LLC © 2003 by CRC Press LLC 



cardinality The number of elements in a set.
Comment: Often denoted by S or |S|, where

S is any set. See also countable set, denumerably
infinite set, finite set, infinite set, and uncountably
infinite set.

carotenes Hydrocarbon carotenoids (a sub-
class of tetraterpenes).

carotenoids Tetraterpenoids (C40), formally
derived from the acylic parent ψ,ψ-carotene I
by hydrogenation, dehydrogenation, cyclization,
oxidation, or combination of these processes.
This class includes carotenes, xanthophylls, and
certain compounds that arise from rearrangement
of the skeleton of I or by loss of part of this
structure. Retinoids are excluded.

Cartan matrix For a semisimple Lie alge-
bra of rank l the Cartan matrix [Aij ] is defined

by Aij = 2(αi ,αj )

(αi ,αi )
where α1, · · · , αl is the system

of simple roots.

Casimir Elements in the universal envelop-
ing algebra of a Lie algebra that commute with
all other elements of the Lie algebra are called
Casimirs.

Casimir function On a Poisson manifold
(P, { , }), a function C that Poisson commutes
with every function F is called a Casimir func-
tion, i.e., {C,F } = 0 for all F .

Casorati-Weierstrass theorem Let f have
an essential singularity at z0 and letw ∈ C. Then
there exists z1, z2, z3, . . . such that zn → z0 and
f (zn) → w.

catalyst A substance that increases the rate
of a reaction without modifying the overall stand-
ard Gibbs energy change in the reaction; the pro-
cess is called catalysis. The catalyst is both a
reactant and product of the reaction. The words
catalyst and catalysis should not be used when
the added substance reduces the rate of reaction
(see inhibitor).

Catalysis can be classified as homogeneous
catalysis, in which only one phase is involved,
and heterogeneous catalysis, in which the reac-
tion occurs at or near an interface between
phases. Catalysis brought about by one of the

products of a reaction is called autocatalysis.
Catalysis brought about by a group on a reactant
molecule itself is called intramolecular catalysis.

The term catalysis is also often used when
the substance is consumed in the reaction (for
example: base-catalyzed hydrolysis of esters).
Strictly, such a substance should be called an
activator.

Comment: Reactions are written at many
levels of resolution, and those reactions which
detail how the catalyst functions will not meet
this definition. But that is appropriate, since
the molecule which functions catalytically in one
reaction will be a substrate in the reactions which
describe the catalysis.

Cauchy-Goursat theorem Suppose that
f : D → C is analytic on a disk D ⊂ C; then f

has an antiderivative F on D, i.e., F ′(z) = f (z),
which is analytic in D, and, if γ is any closed
curve in D, then

∫
γ
f = 0.

Cauchy integral formula Let f be analytic
within and on a simple closed curve γ and z0 a
point in the interior of γ . Then

f (z0) =
1

2πi

∫
γ

f (z)

z− z0
dz.

Cauchy-Riemann equations (Cauchy-
Riemann theorem) Let; ⊂ C be an open set
and f : ; → C be a function f (z) = u(x, y)

+iv(x, y). Then f ′(z0) exists if and only if f is
differentiable in the sense of real variables and,
at z0 = (x0, y0), u, v satisfy the Cauchy-
Riemann equations

∂u

∂x
= ∂v

∂y
, and

∂u

∂y
= −∂v

∂x
.

Cauchy-Riemann theorem See Cauchy-
Riemann equations.

Cauchy-Schwarz inequality In any inner
product space (V ,< , >) for any x, y ∈ V

| < x, y > | ≤ ‖x‖‖y‖.

Cauchy sequence A sequence {xn} in a
metric space (M, d) such that for every ε > 0
there exists an integer N such that d(xm, xn) < ε

whenever m > N and n > N .
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Cauchy theorem If a function f is analytic
in a region ; and γ is a closed curve in ; which
is homotopic to a point in ;, then

∫
γ
f = 0. See

homotopy.

Cayley transform Let A be a closed sym-
metric operator on a Hilbert space. Then (A −
iI )(A + iI )−1 is called the Cayley transform
of A .

Cea’s lemma Let a be a bilinear/sesqui-
linear form on a real/complex Banach space V ,
which satisfies:

Continuity:
|a(u, v)| ≤ C‖u‖V ‖v‖V , ∀u, v ∈ V,

V-ellipticity:
|R{a(u, v)}| ≥ α‖u‖2

V , ∀u ∈ V.

Suppose that Vh ⊂ V is a closed subspace of
V . For f ∈ V ′, let u ∈ V, uh ∈ Vh stand for
solutions of the variational problems

a(u, v) = f (v) ∀v ∈ V,

a(uh, vh) = f (vh) ∀vh ∈ Vh.

These are unique according to the Bramble-
Hilbert lemma. Then Cea’s lemma asserts that

‖u− uh‖ ≤ C

α
infvh∈Vh

‖u− vh‖V .

If a is symmetric/Hermitian the constant C
α

can
be replaced with 1. A generalization of Cea’s
lemma to sesqui-linear forms that satisfy an inf-
sup condition is possible. Assume that instead
of being V-elliptic the bilinear form a satisfies,
with α > 0,

supvh∈Vh

|a(uh, vh)|
‖vh‖V

≥ α‖uh‖V ∀uh ∈ Vh.

Then, provided that a unique continuous solution
u ∈ V of the above variational problem exists,
there holds

‖u− uh‖V ≤ (1 + Cα−1
)

infvh∈Vh
‖u− vh‖V .

chain (in polymers) The whole or part of
a macromolecule, an oligomer molecule or a
block, comprising a linear or branched sequence
of constitutional units between two boundary
constitutional units, each of which may be either

an end-group, a branch point or an otherwise-
designated characteristic feature of the macro-
molecule.

Notes: (1) Except in linear single-strand
macromolecules, the definition of a chain may
be somewhat arbitrary.

(2)A cyclic macromolecule has no end groups
but may nevertheless be regarded as a chain.

(3) Any number of branch points may be
present between the boundary units.

(4) Where appropriate, definitions relating to
macromolecule may also be applied to chain.

chain rule Let X, Y,Z be Banach spaces
and f : X → Y , g : Y → Z be differen-
tiable of class Ck . Then g ◦ f : X → Z is of
class Ck and

D(g ◦ f )(x) = Dg(f (x)) ◦Df (x).
See derivative.

characteristic classes Chern classes
c1, . . . , ck are defined for a complex vector
bundle of dimension k (or equivalently for a
GL(k,C) principal bundle) ci ∈ H 2i (M).

Pontrjagin classes p1, . . . , pj are defined for
a real vector bundle of dimension k (or equiv-
alently for a GL(k,R) principal bundle) pi ∈
H 4i (M).

Stiefel-Whitney classes w1, . . . , wk are
defined for a real vector bundle of dimension
k (or equivalently for a GL(k,R) principal
bundle). They are Z2 characteristic classes
wi ∈ Hi(M;Z2).

characteristic cone The principal sym-
bol Pm(x, ξ) = ∑

|α|=m cα(x)ξ
α of a (lin-

ear partial) differential operator P(x,D) =∑
|α|≤m cα(x)D

α is homogeneous of degree m

in ξ . The set

CPm
(x) = {ξ ∈ R

n | Pm(x, ξ) = 0}
is called the characteristic cone of P at x.

characteristic equation For an n×nmatrix
A the equation det(A− λI) = 0.

characteristic function The characteristic
function of a set A is defined by

χA(x) =
{

1 if x ∈ A

0 if x �∈ A
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characteristic polynomial See characteris-
tic equation.

characteristic set The characteristic set of
a pseudodifferential operator P is the subset
Char(P ) ⊂ T ∗M − 0 defined by p(x, ξ) = 0,
where p(x, ξ) : T ∗M − 0 → R is the principal
symbol of P .

characteristic x-ray emission X-ray emis-
sion originates from the radiative decay of
electronically highly excited states of matter.
Excitation by electrons is called primary excita-
tion and by photons, secondary or fluorescence
excitation. Particle induced x-ray emission
(PIXE) is produced by the excitation of heav-
ier particles such as protons, deuterons, or heavy
atoms in varying degrees of ionization. Emis-
sion of photons in the x-ray wavelength region
occurs from ionized gases or plasmas at high
temperatures, nuclear processes (low-energy end
of the gamma-ray spectrum) and from radiative
transitions between muonic states.

Characteristic x-ray emission consists of a
series of x-ray spectral lines with discrete fre-
quencies, characteristic of the emitting atom.
Other features are emission bands from transi-
tions to valence levels. In a spectrum obtained
with electron or photon excitation the most
intense lines are called diagram lines or normal
x-ray lines. They are dipole allowed transitions
between normal x-ray diagram levels.

charge conjugation For a Dirac spinorψ =(
ψL

ψR

)
the charge conjugate spinor is ψc =(

σ 2ψ∗
R

−σ 2ψ∗
L

)
, where ∗ means the complex con-

jugate and σ 2 =
(

0 −i

i 0

)
is the secomd Pauli

spin matrix. Note that (ψ∗)∗ = ψ .

chart A chart on a manifold M is a pair
(U, φ) where U is an open subset of M and φ

is bijection form U onto an open subset of R
n.

U is called a coordinate patch, φiφ
−1
j are coor-

dinate transition functions.

Chebyshev’s inequality If f ∈ (Lp, µ)

(0 < p < ∞), then for any α > 0

µ{x : |f (x)| > α} ≤
(‖f ‖p

α

)p

.

chemical equation A balanced elementary
reaction equation, bimolecular or less on one
side, which describes the organic chemistry of
the noncatalytic species of an overall biochem-
ical reaction by one of five fundamental organic
mechanisms (substitution, addition, elimina-
tion, rearrangement, and oxidation-reduction).
Equally, a set of such reaction equations which
sums to the overall biochemical reaction.

Comment: These mechanisms distinguish
all the various subtypes (nucleophilic, elec-
trophilic, free-radical; heterolytic, homolytic,
pericyclic; direct electron, hydride, hydrogen
atom transfer, ester intermediates, displacement,
and addition-elimination reactions).

chemical measurement process (CMP) An
analytical method of defined structure that has
been brought into a state of statistical control,
such that its imprecision and bias are fixed,
given the measurement conditions. This is
prerequisite for the evaluation of the performing
characteristics of the method, or the development
of meaningful uncertainty statements concerning
analytical results.

chemical motif A motif describing a chem-
ical relationship between two compounds in the
donor-acceptor formalism.

Comment: The constraint for bimolecular
relationship permits use of the common donor-
acceptor language. A reaction may have more
than one such relationship. See also biochem-
ical, dynamical, functional, kinetic, mechanistic,
phylogenetic, regulatory, thermodynamic, and
topological motives.

chemical potential In thermodynamics, the
partial molar Gibbs free energy. In a thermal
equilibrium with many chemical reactions, all
components have to have the same chemical
potential.

chemical reaction A process that results in
the interconversion of chemical species. Chem-
ical reactions may be elementary reactions or
stepwise reactions. (It should be noted that
this definition includes experimentally observ-
able interconversions of conformers.)

Detectable chemical reactions normally
involve sets of molecular entities, as indicated
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by this definition, but it is often concep-
tually convenient to use the term also for
changes involving single molecular entities (i.e.,
“microscopic chemical events”).

chemical species An ensemble of chem-
ically identical molecular entities that can
explore the same set of molecular energy lev-
els on the time scale of the experiment. The term
is applied equally to a set of chemically identi-
cal atomic or molecular structural units in a solid
array.

For example, two conformational isomers
may be interconverted sufficiently slowly to be
detectable by separate NMR spectra and hence
to be considered to be separate chemical species
on a time scale governed by the radiofrequency
of the spectrometer used. On the other hand, in a
slow chemical reaction the same mixture of con-
formers may behave as a single chemical species,
i.e., there is virtually complete equilibrium popu-
lation of the total set of molecular energy levels
belonging to the two conformers. Except where
the context requires otherwise, the term is taken
to refer to a set of molecular entities containing
isotopes in their natural abundance. The word-
ing of the definition given in the first paragraph is
intended to embrace both cases such as graphite,
sodium chloride, or a surface oxide, where the
basic structural units may not be capable of iso-
lated existence, as well as those cases where they
are.

In common chemical usage generic and spe-
cific chemical names (such as radical or hydrox-
ide ion) or chemical formulae refer either to a
chemical species or to a molecular entity.

Chern classes See characteristic classes.

chiral group In QCD (quantum chromo
dynamics) the group SU3 × SU3. See chromo-
dynamics, quantum.

chiral transformation The transformation
of a Dirac spinor ψ → eiβγ5ψ is called chiral
transformation, or chiral symmetry, where β is
a constant and γ5 = iγ 0γ 1γ 2γ 3 with the 4 × 4
gamma matrices defined by the Pauli matrices

σ 1 =
(

0 1
1 0

)
, σ 2 =

(
0 −i

i 0

)
, σ 3 =

(
1 0
0 −1

)
by γ i =

(
0 −σ i

σ i 0

)
.

chirality The components ψL,ψR of a
Dirac spinor ψ → eiβγ5ψ are called chiral com-
ponents or Weyl components.

cholesteric phase See liquid-crystal transi-
tions.

Christoffel symbols on a (pseudo)-
Riemannian manifold (M, g), the coefficients of
the Levi-Civita connection. If g = gµν(x) dxµ

⊗ dxν is the local expression of the metric
tensor, its Christoffel symbols are given by:

{αβµ}g = 1
2g

αε
(−∂εgβµ + ∂βgµε + ∂µgεβ

)
where gαε denotes the covariant inverse metric,
and ∂µ denotes the partial derivative with respect
to xµ.

Under changes of local coordinates x ′µ =
x ′µ(x), Christoffel symbols transform as:

{αβµ}′g = J α
γ

({γ δν}gJ̄ δ
β J̄

ν
µ + J̄

γ
βµ

)
where J α

γ = ∂x ′α
∂xγ is the jacobian of the coordinate

transformation, J̄ γ
α = ∂xγ

∂x ′α is the inverse Jaco-

bian, and we set J̄ γ
βµ = ∂2xγ

∂x ′β∂x ′µ . If ∇ denotes the
covariant derivative operator associated to the
Levi-Civita connection, then one has:

∇∂µ
∂ν = {λµν}g ∂λ.

chromatic number The minimum number
of colors needed to color the nodes of a graph,
such that no two adjacent nodes have the same
color. Denoted χ(G).

chromodynamics, quantum (QCD) The
quantum field theory describing the strong inter-
actions of quarks and gluons.

chromophore The part (atom or group of
atoms) of a molecular entity in which the elec-
tronic transition responsible for a given spectral
band is approximately localized. The term arose
in the dyestuff industry, referring originally to the
groupings in the moleculaer that are responsible
for the dye’s color.
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chromosome A self-replicating structure
consisting of DNA complexes with various pro-
teins and involved in the storage and transmission
of genetic information; the physical structure that
contains genes (cf. plasmid). Eukaryotic cells
have a characteristic number of chromosomes
per cell (cf. ploidy) and contain DNA as linear
duplexes. The chromosomes of bacteria consist
of double-standed, circular DNA molecules.

circulation In the theory of Markov pro-
cesses, the probability flux in a stationary
state which can be achieved by two types of
balance: detailed balance and circular balance.
For most Markov processes, the sufficient and
necessary condition for zero circulation is time-
reversibility.

class CCCkkk A function f : U ⊂ R
n → R

m

is differentiable of class Ck , 0 ≤ k ≤ ∞, if all
partial derivatives ∂αf

∂xα , 0 ≤ |α| ≤ k, of f up to
order k exist and are continuous.

classical Fourier integral operator A
Fourier integral operator Au = ∫ ∫

eφ(x,ξ)

a(x, ξ)u(y)dy is called classical if it has a clas-
sical symbol a(x, ξ).

classical groups The matrix groups GL(n),

SL(n), U(n), SU(n),O(n), SO(n), Sp(2n) are
called classical Lie groups.

classical limit In quantum mechanics when
the Planck constant h→̄0 classical mechanics is
recovered.

classical mechanics Classical mechanics
vis-à-vis quantum mechanics and relativistic
mechanics. The equations of motion in classical
mechanics are Hamilton’s equations or equiva-
lently the Euler-Lagrange equations, formulated
on a finite dimensional symplectic manifold.

classical path A distinction between clas-
sical and quantum mechanics. In classical
mechanics a particle takes only one path to go
from a point q to a point q ′, while all paths
contribute in quantum mechanics. The three
colors R, G, and B belong to the representation
of SU(3).

classical symbol A symbol a(x, ξ) of a
pseudodifferential operator (or Fourier integral
operator) of order m is called classical if there
exist C∞ functions aj (x, ξ), positively homoge-
neous of degree m − j in ξ (i.e., a(x, τξ) =
τm−j aj (x, ξ), τ > 0) such that asymptotically

a(x, ξ) ∼
∞∑
j=0

aj (x, ξ).

Clifford algebra Clifford algebra is a for-
mulation of algebra which unifies and extends
complex numbers and vector algebra. It is based
on the Clifford product of two vectors a and b

which is written ab. The product has two parts,
a scalar part and a bivector part. The scalar part
is symmetric and corresponds with the usual dot
product a · b = 1

2 (ab+ ba). The bivector part is
antisymmetric and can be thought of as a directed
area, defining a plane a∧b = 1

2 (ab−ba). Then
the Clifford product can be written as ab = a ·
b + a ∧ b.

closed curve A closed curve (or closed path)
in a space M is a curve γ : [a, b] → M such that
γ (a) = γ (b).

closed form An exterior form ω on a mani-
fold having vanishing exterior differential dω =
0. Exact forms are closed. The converse is not
true in general. It is true on contractible mani-
folds (e.g., on star-shaped open sets of R

m by
Poincaré’s lemma). De Rham cohomology stud-
ies the topological properties of manifolds by
classifying closed forms that are not exact.

Example: The form ω = (x2 + y2)−1

(xdy − ydx) is a closed (but not exact) form
defined on R

2 − {0}; in fact, it locally reduces to
dϕ on the unit circle x2 + y2 = 1, but it is not
an exact form since ϕ cannot extend to a single-
valued coordinate function on the whole of the
circle.

closed graph theorem If X and Y are
Banach spaces and T : X → Y is a closed linear
operator defined on all of X then T is bounded
(i.e., continuous).

closed operator A linear operatorT : X →
Y , between two Banach spaces X and Y and
having a dense domain D(T ) ⊂ X is closed if its
graph N(T ) = {(x, T x) : x ∈ D(T )} is closed
in X × Y .
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closed orbit An orbit γ (t) of a vector field
X is called closed if there is a τ > 0 such that
γ (t + τ) = γ (t) for all t .

closed set The complement of an open set in
a topological space (X, τ(X)). The class χ(X)

of closed sets has the following properties:

(i.) The empty set ∅ and the whole space X

are elements in χ(X);

(ii.) The union of a finite number of elements
in χ(X) is still in χ(X); and

(iii.) The intersection of a (possibly infinite)
family of elements in χ(X) is still in χ(X).

closure For a subset A of a topological
space, the smallest closed set containing A.
Denoted Ā.

coacervation The separation into two liquid
phases in colloidal systems. The phase that is
more concentrated in colloid component is the
coacervate, and the other phase is the equilibrium
solution.

coadjoint action The coadjoint action Ad∗

of a Lie group G on the dual of its Lie algebra
g∗ is defined as the dual of the adjoint action of
G on g. It is given by

< Ad∗
gα, ξ >=< α,Adgξ >,

for g ∈ G, α ∈ g∗, ξ ∈ g, where <,>

is the pairing between g∗ and g and Adg(ξ) =
Te(Rg−1 ◦ Lg)ξ .

coadjoint orbit The orbits of the coadjoint
action, i.e., Oα = {Ad∗

gα | g ∈ G,α ∈ g∗} ⊂
g∗. Coadjoint orbits carry a natural symplectic
structure, the induced Poisson bracket is the Lie-
Poisson bracket given by

{F,H }(α) = −
〈
α,

[
δF

δα
,
δH

δα

]〉
.

coadjoint representation The coadjoint
representation of a Lie group G on the dual of its
Lie algebra g∗ is given by the coadjoint action
Ad∗ by

Ad∗ : G → GL(g∗, g∗),
Ad∗

g−1 = (Te(Rg ◦ Lg−1))∗.

coboundary operator See cochain com-
plex.

cochain complex A cochain complex con-
sists of a sequence of modules and homomor-
phisms

· · · → Cq−1 → Cq → Cq+1 → · · ·
such that at each stage the image of a given
homomorphism is contained in the kernel of the
next. The homomorphism dq : Cq → Cq+1 is
called coboundary operator. We have d2 = 0.
The kernel Zq = ker dq is the module of qth
degree cocycles and the image Bq = im dq−1

is the module of qth degree coboundaries. The
qth cohomology module Hq is defined as Hq =
Zq/Bq .

cocycle See cochain complex

codifferential On a Riemannian manifold
(M, g) the codifferential δ : ;k(M) →
;k−1(M) is defined by

δα = (−1)n(n+k)+1+Ind(g) ∗ d ∗ α , α ∈ ;k(M),

where ∗ is the Hodge operator and d the exterior
derivative. We have δ2 = 0.

codomain See relation. See also domain,
image, range.

coercivity Let V be a Banach space. A
sesqui-linear form a : V × V → C is coer-
cive on V , if there exists a constant α > 0 and a
compact operator K : V → V ′ such that

|R{a(u, u)} + (K(u), u)| ≥ c‖u‖2
V ∀u ∈ V.

cohomology See deRham cohomology
group.

coisotropic (sub)manifold (in a symplectic
manifold [P,ω]) A submanifold M ⊂ P of
a symplectic manifold (P, ω) such that at any
point p ∈ M the tangent space is contained in its
symplectic polar, i.e.,

TpM ⊂ (TpM)o.

The dimension of a coisotropic manifold M is at
least half of the dimension of P .
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col (saddle point) A mountain-pass in a
potential-energy surface is known as a col or sad-
dle point. It is a point at which the gradient is
zero along all coordinates, and the curvature is
positive along all but one coordinate, which is the
reaction coordinate, along which the curvature is
negative.

colligation The formation of a covalent
bond by the combination or recombination of two
radicals (the reverse of unimolecular homolysis).
For example, ˙OH +H3C

˙ → CH3OH .

colloid A short synonym for colloidal sys-
tem.

colloidal The term refers to a state of sub-
division, implying that the molecules or poly-
molecular particles dispersed in a medium have
at least in one direction a dimension roughly
between 1 nm and 1 µm, or that in a system dis-
continuities are found at distances of that order.

color (1) (in mathematics) A nonlabel token
for an edge or node of a graph. A coloring of
the graph G is the set of colors assigned to the
nodes, such that no two adjacent nodes have the
same color. An edge coloring is the set of colors
assigned to edges; a proper edge coloring is the
set of colors such that no two adjacent edges have
the same color.

Comment: These need not be physical colors,
though it is perhaps easiest to think of them that
way. Note that colorings are by definition proper,
whereas edge colorings need not be. The differ-
ence between definitions of node and edge color-
ings may have been motivated in the beginning
by the four color map problem.

(2) (in quantum QCD) Gluons and quarks
have an additional type of polarization (degree
of freedom) not related to geometry. “The idiots
physicists, unable to come up with any wonder-
ful Greek words anymore, called this type of
polarization by the unfortunate name of color.”
(R.P. Feynman in QED: The Strange Theory of
Light and Matter, Princeton University Press,
Princeton, NJ 1985).

commutation relations If a classical
Hamiltonian H(qi, pi) is quantized, one con-
siders qi and pi as operators on a Hilbert
space satisfying the commutation relations
[qi, pj ] = δij and [qi, qj ] = [pi, pj ] = 0.

commutative Referring to a set A with a
binary operation * satisfying

a ∗ b = b ∗ a

for all a, b ∈ A. See also Abelian group.

commutator (in an associative algebra A)
The binary operation given by

[A,B] = A · B − B · A.

For example, this is the definition for the com-
mutator of the Lie algebra GL(n,R) of n × n

matrices. Notice that it satisfies the Jacobi iden-
tities

[[A,B], C] + [[B,C], A] + [[C,A], B] = 0.

The commutator of two vector fields X =
Xµ∂µ, Y = Yµ∂µ is defined by

[X, Y ] = (Xµ∂µY
ν − Yµ∂µX

ν)∂ν.

More generally any binary operation defining
a Lie algebra, namely, the Lie-product obeying
Jacobi identities. See also Lie algebra.

compact (1) A topological space (X, τ(X))

is compact if from any open covering of X one
can always extract a finite subcovering. If X is a
topological subspace of a metric space, “com-
pact” is equivalent to “closed and bounded.”
Thence closed intervals are compact in R; closed
balls are compact subsets of R

m (as well as in any
metric space).

(2) (locally) A topological space X is locally
compact if every point p ∈ X has a compact
neighborhood.

compact operator Let X and Y be Banach
spaces and T : X → Y a bounded linear oper-
ator. T is called compact or completely continu-
ous if T maps bounded sets inX into precompact
sets (the closure is compact) in Y . Equivalently,
for every bounded sequence {xn} ⊂ X , {T xn}
has a subsequence convergent in Y .

compact set A subset M of a topological
space X is called compact if every system of
open sets of X which covers M contains a finite
subsystem also covering M .
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compact support A continuous function f
has compact support if its support supp(f ) =
{x : f (x) �= 0} is a compact set.

competition One class of models for popu-
lation dynamics in which species are competing
for the same, limited resource. Hence, the growth
rate of one species decreases with increasing
population of the other and vice versa. Such
a system is likely to exhibit extinction of the
weaker species. Stable co-existence is possible,
however, under a delicate balance.

complement Given a set A, the set of all
elements not in A, denoted Ā or Ac.

complete space A metric space (M, d) is
complete if every Cauchy sequence {Xn} in M

converges in M . That is, there is x ∈ M such
that d(xn, x) → 0, as n → ∞
complete vector field A vector field X on a
manifold M is complete if its flow φt is defined
for all t ∈ R, ( d

dt
φt (x) = X(φt(x)) for all

t ∈ R).

completely continuous See compact oper-
ator.

completely integrable system A Hamilto-
nian system defined over a symplectic manifold
(P, ω) of dimension 2n with n first integrals Fi

in involution, i.e., such that {Fi, Fj } = 0 for all
pairs (i, j). The equations of motion of a com-
pletely integrable system can be formally inte-
grated. Explicitly, a Hamiltonian system (vector
field) XH on R

2n is called completely integrable
if there exist n constants of the motion f1, . . . fn
which are linearly independent and in involution,
i.e., {fi, fj } = 0 for all i, j = 1, ..., n.

complex A molecular entity formed by loose
association involving two or more component
molecular entities (ionic or uncharged), or the
corresponding chemical species. The bonding
between the components is normally weaker than
in a covalent bond.

The term has also been used with a variety
of shades of meaning in different contexts; it
is therefore best avoided when a more explicit
alternative is applicable. In inorganic chemistry
the term “coordination entity” is recommended
instead of “complex.”

complex conjugate The complex conjugate
of the complex number z = x+ iy is the complex
number z̄ = x − iy.

complex number A number of the form x+
iy, where x and y are real numbers and i2 = −1.

complex structure A complex structure on
a real vector space V is a linear map J : V → V

such that J2 = Id. Setting iz = J(z) gives V

the structure of a complex vector space.

complex vector space A complex vector
space V is a vector space over the field of com-
plex numbers C; i.e., scalar multiplication λz is
defined for complex number λ ∈ C, z ∈ V .

composition Consider two functions,
f : A → B and g : C → D, over four sets
A,B,C,D. If f (A) ⊆ C, then the result of
applying f and g in succession is equivalent to
the application of a single composite function,
denoted g ◦ f : A → D. g ◦ f is defined for
any x ∈ A as (g ◦ f )(x) = g(f (x)).

compound Any molecule or assembly of
molecules.

Comment: These range in size from single
nuclei (H+) to DNA to transport complexes
embedded in cell membranes on up. One often
distinguishes between enzymes and metabolites,
smaller molecules. The boundary between
“macromolecular” and “smaller” is not fixed pre-
cisely, but is perhaps about 1000 daltons.

compound’s reactions A compound’s reac-
tions is the set of reactions in which that com-
pound participates.

Comment: See reaction’s compounds.

computational biology The development
and application of theory, algorithms, heuristics,
and computational systems, including electronic
databases, to biological problems; and equally,
the application of biological concepts, materials,
or processes to problems not originating in bio-
logy; and activities at the interface of these two.

Comment: This definition is broad, but still
useful; it includes areas such as the representa-
tion of information in electronic databases, the
construction and maintenance of those databases
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(including interfaces), the development of bio-
logically realistic automated reasoning methods,
and any underlying mathematical techniques,
the management of computations over widely
distributed, very heterogeneous systems like
the World Wide Web; molecular computing;
nanotechnology (where computational issues are
raised or where biological artifacts are used in
computation); and the problems that biology
poses for the foundations of computer science.

In a nutshell, computational biology is “com-
puting about biology and computing with biol-
ogy.”

Occasionally, one sees a distinction between
computational biology and bioinformatics, with
the notion that computational biology is theory
and algorithms and bioinformatics are databases
and retrieval. This is a distinction without a dif-
ference, since most biological problems require
both. To the extent that biological problems are
molecular, computational biology overlaps with
computational chemistry. Often the distinction
is more one of investigator origin (chemist vs.
biologist), degree of resolution of the question
(quantum-mechanical vs. tissue), and platform
choice (SGI vs. Sun).

computational complexity The time and
space an algorithm requires to solve a problem.

Comment: Time and space have a mathemat-
ical relationship to the size N and complexity
of the problem. Thus algorithms are described
as being linear, polynomial, etc., depending on
the function of N in the relation between it
and time or space. Functions are designated
O(f (N)), meaning the algorithm requires on the
order of f (N) resources. Algorithms which are
polynomial represent the practical upper bound
of feasibility for large N , with lower values
for exponents and determinism of the algorithm
obviously preferable. Many problems requir-
ing supra-polynomial resources can be addressed
in favorable cases. Occasionally other metrics,
such as the number of statements in the program,
are defined for particular purposes.

computational step A computational step
si ∈ S consists of three components:

(i.) recognizing Ki,I ′ (the set of inputs
actually presented for that computational step)
from KI (the set of possible inputs for the total
computation);

(ii.) recognizing Ki,O′ (the set of outputs
actually produced by the computational step)
from KO (the set of possible outputs for the total
computation);

(iii.) mapping ci : Ki,I ′ → Ki,O′ (its compu-
tation for that step), ci ∈ C, the set of all compu-
tations.

Comment: This definition is a bit unusual in
that it explicitly includes the recognition of the
actual inputs and outputs from among the sets
of possible ones, rather than just the mapping
among them. The reason is that one can then
place discrete, Turing computations firmly in a
framework which accommodates both them and
the analog computations of molecular machines,
for example, for DNA computers. See determin-
istic, nondeterministic computations.

concerted process Two or more primitive
changes are said to be concerted (or to consti-
tute a concerted process) if they occur within
the same elementary reaction. Such changes
will normally (though perhaps not inevitably) be
“energetically coupled.” (In the present context
the term “energetically coupled” means that the
simultaneous progress of the primitive changes
involves a transition state of lower energy than
that for their successive occurrence.) In a con-
certed process the primitive changes may be syn-
chronous or asynchronous.

configuration space The configuration
space of a mechanical system is an n dimen-
sional manifold Q with local (position) coord-
inates qi, . . . , qn. Then T ∗Q is the momentum
phase space.

conformal mapping A map which pre-
serves angles. A conformal diffeomorphism on
a Riemannian manifold (M, g) is a diffeomor-
phism φ : (M, g) → (M, g) such that φ∗g =
f 2g for a nowhere vanishing function f .

conformation The spatial arrangement
of the atoms affording distinction between
stereoisomers which can be interconverted by
rotations about formally single bonds. Some
authorities extend the term to include inversion
at trigonal pyramidal centers and other polytopal
rearrangements.

See also tub conformation.
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conjugate momenta For a Lagrangian
L(qi, q̇i) the conjugate momenta pi are

pi =
∂L

∂q̇i

conjugated system (conjugation) In the
original meaning a conjugated system is a
molecular entity whose structure may be
represented as a system of alternating single and
multiple bonds. For example, CH2 = CH −
CH = CH2, CH2 = CH − C ≡ N . In
such systems, conjugation is the interaction of
one p-orbital with another across an intervening
σ -bond in such structures. (In appropriate molec-
ular entities d-orbitals may be involved.) The
term is also extended to the analogous interac-
tion involving ap-orbital containing an unshared
electron pair, e.g., Cl − CH = CH2.

connected Describing a topological space
(X, τ(X)) in which the empty set, ∅, and the
whole space, X, are the only subsets which
are both closed and open. The open interval
I = (0, 1) ⊂ R is connected in the standard
topology. The union of I and the open interval
(−1, 0) is not connected. In fact, both I and
(−1, 0) are at the same time open and closed,
since they complement each other.

See pathwise connected.

connected graph A graph G(V, E) is con-
nected if there is a path between any two vertices,
{vi, vj } ∈ V , for all pairs of vertices.

Comment: Visually, connected graphs are
those which are in “one piece.” Note that if a con-
nected graph contains a cycle, breaking the cycle
once is guaranteed to preserve the connectedness
of the graph. The effect of subsequent breaks will
depend on the topology of the graph.

connection of a bundle A distribution (of
rank m = dim(M)) of planes �b ⊂ TbB over
the total space B of a bundle (B,M, π;F). The
spaces �b ⊂ TbB are required to be nonvertical
so that �b ⊕ Vb - TbB, where Vb denotes the
subspace of vertical vectors.

connectivity In a chemical context, the
information content of a line formula, but omit-
ting any indication of bond multiplicity.

conservation law A conservation law or
conserved quantity of a vector fieldX is any func-
tion F such that F ◦ φt = F where φt is the flow
of X. See constant of motion.

conservative vector field A vector field F

on a region in R
n is called conservative if it is

the gradient of a function f , i.e., F = ∇f .

conserved current For a time-independent
Lagrangian system a conserved current is a first
integral.

In field theory, it is a (m − 1)-form E over
some jet-prolongation J hB such that it is closed
once evaluated on a critical section σ , i.e., such
that

d[(jhσ )∗E] = 0

See Lagrangian system.

constant of motion A function f : M → R

on a manifold M is called a constant of motion
of a vector field X on M if f ◦Ft = f , where Ft

is the flow of X. If XH is a Hamiltonian vector
field, then f is a constant of motion of XH if the
Poisson bracket {f,H } = 0. See conservation
law.

constitutional unit An atom or group of
atoms (with pendant atoms or groups, if any)
comprising a part of the essential structure of a
macromolecule, an oligomer molecule, a block,
or a chain.

contact form A 1-form over J kB which
identically vanishes on holonomic sections jkσ .
They are locally expressed as

ωi = dyi − yi
νdxν

ωi
µ = dyi − yi

µνdxν

. . .

ωi
µ1...µk−1

= dyi − yi
µ1...µk−1ν

dxν.

One defines three different ideals of contact
forms:

;c(J
kB) is the bilateral ideal gen-

erated algebraically by contact 1-forms
(ωi, ωi

µ, . . . , ω
i
µ1...µk−1

).

;∗
c (J

kB) is the differential bilateral ideal
generated by contact 1-forms (i.e., it includes
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products and exterior differentials of gener-
ators). Accordingly, this includes also the 2-
forms dωi

µ1...µk−1
= −dyi

µ1...µk−1ν
∧ dxν .

;̄∗
c (J

kB) is the ideal of all forms vanishing
on all holonomic sections, including all (m+h)-
forms with h > 0.

continuity equation The law of conserva-
tion of mass of a fluid with density ρ(x, t) and
velocity v is called continuity equation

∂ρ

∂t
+ div (ρv) = 0.

continuous function A function between
topological spaces such that the inverse image
of every open set is open.

continuous spectrum The continuous spec-
trum σc(T ) of a linear operator T on a Hilbert
space H consists of all λ ∈ C such that T −λI is
a one-to-one mapping of H onto a dense proper
subspace of H.

continuously differentiable A function f :
U ⊂ R

n → R
m whose partial derivatives ∂fi

∂xj

exist and are continuous is called continuously
differentiable or of class C1.

contractible A topological space X is con-
tractible when the identity map id : M → M

(defined by id(x) = x)) and the constant map
cx : M → M (defined by cx(y) = x)) are homo-
topic. See homotopy.

contraction (1) (in metric topology) A map
T : (M, ρ) → (M, ρ) of a metric space (M, ρ)

into itself such that there exists a constant λ, 0 <

λ < 1 such that

ρ(T x, T y) ≤ λρ(x, y), for all x, y ∈ M.

(2) (in networks) In a network (or graph),
the replacement of a larger subnetwork by a
smaller using a sequence of mathematical oper-
ations. Network N′ is a contraction of network
N if N′ can be obtained from N by a sequence
of node, edge, parameter, or label combination
operations.

Comment: The nature of the combination
operations and their operands can vary con-
siderably depending on the intended result of

the contraction. However, no other nonmathe-
matical information is required for contrac-
tions of models of biological systems, such as
biochemical networks (unlike expansion). Such
information may be beneficial, for example, in
suggesting appropriate approximations. An
expansion is the reverse operation.

contraction mapping theorem Let T :
(M, ρ) → (M, ρ) be a contraction mapping of
a complete metric space (M, ρ) into itself. Then
T has a unique fixed point; i.e., there exists a
unique x0 ∈ M such that T x0 = x0.

contravariant/covariant tensor A tensor T
on a vector spaceE, contravariant of order r and
covariant of order s is a multilinear map

T : E∗ × · · · × E∗ × E × · · · × E → R

(r copies of E∗ and s copies of E).

convergent sequence A sequence {xn}
having a limit L. That is, for every neighbor-
hood U of L, we have xn ∈ U for all except
finitely many n.

convex combinations See convex hull.

convex hull The convex hull of a set A in a
vector space X is the set of all convex combina-
tions of elements of A, i.e., the set of all sums
t1x1 + · · · tnxn, with xi ∈ A, ti ≥ 0,

∑
ti = 1, n

arbitrary.

convex set A set C ⊂ X is convex if for any
x, y ∈ C, tx+(1− t)y ∈ C for all t (0 < t < 1).

convolution The convolution f ∗ g of two
functions f and g is given by

f ∗ g(x) =
∫

f (x − y)g(y)dy.

coordinate See basis of a vector space.

coordinate patch See chart.

coordinate transition function See chart.
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coordination The formation of a covalent
bond, the two shared electrons of which have
come from only one of the two parts of the
molecular entity linked by [iut,] as in the reaction
of a Lewis acid and a Lewis base to form a Lewis
adduct; alternatively, the bonding formed in this
way. In the former sense, it is the reverse of
unimolecular heterolysis. “Coordinate cova-
lence” and “coordinate link” are synonymous
(obsolescent) terms. The synonym “dative bond”
is also obsolete. (The origin of the bonding
electrons has by itself no bearing on the char-
acter of the bond formed. Thus, the formation of
methyl chloride from a [methylu cation] and a
chloride ion involves coordination; the resultant
bond obviously differs in no way from the C–
Cl bond in methyl chloride formed by any other
paty, e.g., by colligation of a methyl radical and
a chlorine atom.)

The term is also used to describe the number of
ligands around a central atom without necessarily
implying two-electron bonds.

copolymer A polymer derived from more
than one species of monomer.

Note: Copolymers that are obtained by
copolymerization of two monomer species are
sometimes termed bipolymers, those obtained
from three monomers terpolymers, those
obtained from four monomers quaterpoly-
mers, etc.

copolymerization Polymerization in which
a copolymer is formed.

corrosion An irreversible interfacial reac-
tion of a material (metal, ceramic, polymer) with
its environment which results in consumption of
the material or in dissolution into the material of
a component of the environment.

Often, but not necessarily, corrosion results
in effects detrimental to the usage of the material
considered. Exclusively physical or mechanical
processes such as melting or evaporation, abra-
sion or mechanical fracture are not included in
the term corrosion.

cosecant The function csc(x) = 1
sin(x) . See

sine.

cosine The function cos(x) = eix+e−ix

2 . Geo-
metrically, it is the ratio of the lengths of adjacent
side to hypotenuse for a right triangle with angle
x for 0 < x < π

2 .

cosmological constant In general relativity
it is possible to add the term Lgµν to the energy-
momentum tensor, where L is the cosmological
constant, and gµν is the space-time metric tensor.

cotangent The function cot(x) = 
cos x
sin x . See

cosine, sine.

Coulomb gauge In gauge theory the
Coulomb gauge is defined by taking ∂iAi = 0,
where A is the vector potential.

Coulomb potential The Coulomb potential
)(x) of a source function f on Rn is given by

)(x) =
∫

R
n

‖x − y‖2−nf (y)dy.

For n = 3, this is the potential function for
Newton’s theory of gravitation.

countable additivity A measure µ has
the property of countable additivity if given
A1, A2, . . . a sequence of pairwise disjoint meas-
urable sets then

µ(

∞⋃
i=1

Ai) =
∞∑
i=1

µ(Ai).

countable set A set is countable if it is
either finite or denumerable. See also cardinal-
ity, denumerably infinite set, finite set, infinite set,
and uncountably infinite set.

covalent bond A region of relatively high
electron density between nuclei which arises at
least partly from sharing of electrons and gives
rise to an attractive force and characteristic inter-
nuclear distance.

covariant derivative On a Riemannian
manifold (M, g) the covariant derivative of a
vector field Y along the vector field X is the vec-
tor field ∇XY locally given by

∇XY = XjY kNi
jk

∂

∂qi
+Xj ∂Y

k

∂qj

∂

∂qk

where Ni
jk are the Christoffel symbols of g.
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The covariant derivative of a section σ of a
bundle (B,M, π;F)  with respect to a connec-
tion N is defined by

∇Xσ = T σ(X)− N(X)

=Xµ(∂µσ
i − Ni

µ(x, σ ))∂i

where X = Xµ∂µ is a vector field over M , T
is the tangent map and N(X) is the horizontal
lift of X with respect to the connection N. It is
a vertical vector field defined over the section σ ,
i.e., a section of the bundle T B → M which
projects over the section σ : M → B.

covariant tensor See contravariant tensor.

covering space of MMM A space C and a pro-
jection π : C → M which is a local diffeomor-
phism. A covering space can be regarded as a
bundle with a discrete standard fiber. Covering
spaces are characterized by the property of the
lifting of curves: if γ is a curve in M based at the
point x ∈ M and b ∈ B is a point projecting on
x = π(b), then there exists a unique curve γ̂ inB

based at b which projects over γ (t) = π(γ̂ (t)).
Furthermore, the lift of two homotopic curves
produces two curves of B which are still homo-
topic.

critical configuration See Hamilton prin-
ciple.

critical point A critical point of a vector
field X is a point x0 such that X(x0) = 0.

crystallographic group Crystals are
formed with symmetries. In three-dimensional
space, these symmetries are represented by
the crystallographic groups. These include
rotation, reflection (point group), and translation
(lattice symmetry) as basic elements, and their
composition (e.g., screw axes and glide planes)
lead to a finite group. More specifically, 32
point groups combined with 14 Bravais lattices
(7 primitive and 7 nonprimitive) result in 230
unique space groups which describe the only
ways in which identical objects may be arranged
in an infinite 3D lattice. A simpler, practical
approach leading to the same result studies
translations in a lattice, introducing two new

kinds of symmetry operations, screw axes and
glide planes. (cf. G.H. Stout and L.H. Jensen,
X-Ray Structure Determination: A Practical
Guide, 2nd ed., John Wiley & Sons, New York,
1989).

curl The curl of a vector field F = (F1,

F2, F3) on R
3 is

curl F =∇ × F

=
(
∂F3

∂y
− ∂F2

∂z

)
i +
(
∂F1

∂z
− ∂F3

∂x

)
j

+
(
∂F2

∂x
− ∂F1

∂y

)
k

curve (in a topological space X) A continu-
ous map γ : R → X. Sometimes the domain
is restricted to an interval I ⊂ R; if the origin
0 ∈ R is a point of I , then the curve is said to
be based at x = γ (0). If X is a differentiable
manifold, the curve γ is usually required to be
differentiable.

Not to be confused with the trajectory or path
which is the image of the curve, i.e., the subset
.(γ ) ⊂ X of the space X.

One can suitably define the composition of
two curves γ , λ : [0, 1] → X provided that
γ (1) = λ(0). Notice that even if the two curves
γ and λ are differentiable, the composition λ∗ γ
can be nondifferentiable.

cycle A path through the graph G(V, E)
consisting of nodes V ′ = {v1, v2, v3, . . . , vn}
and edges E ′ = {(v1, v2), (v2, v3), . . . , (vn, v1)},
V ′ ⊆ V , E ′ ⊆ E . The length of the cycle is n.

Comment: It is the property of “pathness,”
that there is a sequence of edges connecting the
nodes in the cycle, which distinguishes a cycle
from a disconnected subgraph. This is the only
part of the definition which might otherwise not
be intuitive.

cytoskeleton A dynamic polymer network
underneath the cell membrane. It is mostly
responsible for the mechanics, i.e., shape and
motility, of cells. The main types of filaments
in the network are actin filaments, microtubules,
and intermediate filaments. There are many
other different proteins involved in the network.
They regulate the state and dynamics of the
network.
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D
dalton The unit of molecular weight, in
g/mol.

Comment: A mole (abbreviated mol) is an
Avogadro’s number (N ) of molecules, approxi-
mately equal to 6.02252 × 1023 molecules/mol.

Darboux’s theorem On any symplectic
manifold (M,ω) there exist local coordi-
nates (canonical coordinates) (x1, . . . , xn,

y1, . . . , yn) in which the symplectic form ω

takes the form

ω =
n∑

i=1

dxi ∧ dyi .

dark current See responsivity.

dark output See responsivity.

dark resistance See responsivity.

data model A computational method for
implementing a domain model.

Comment: This is the database management
system, object-oriented model, set of MatLab
functions, etc., which [reify] the ideas in the
domain model. Thus, it is the computational
machinery, not (per se) the intellectual basis of
the abstract model of the domain.

decreasing function A function f (x) such
that f (y) ≤ f (x) whenever x ≤ y.

definite integral Let f be a function defined
on a closed interval [a, b] and P a partition a =
x0 < x1 < x2 < · · · < xn = b of [a, b]. Let |P |
denote the length of the longest subinterval in the
partition P and let x̄i ∈ [xi−1, xi] be arbitrary. If
the limit

lim
|P |→0

n∑
i=1

f (x̄i)(xi − xi−1)

exists, f is called (Riemann) integrable and∫ b

a

f (x)dx = lim
|P |→0

n∑
i=1

f (x̄i)(xi − xi−1)

is called the definite integral (or Riemann inte-
gral) of f from a to b.

degree The number of edges incident to a
node; here notated as d(v).

Comment: The number of reactions in which
a compound participates is its degree. Simi-
larly, the number of compounds participating in
a reaction is the degree of the reaction. Since the
best-known biochemical network described has
an enzyme for every reaction, one usually means
nonenzymatic degree, when applying the word
to reactions. Note this would not be the case for
other versions of the biochemical network which
include spontaneous reactions, or detailed kinetic
and mechanistic views of reactions in which the
enzyme does not necessarily appear in the reac-
tion equations as a formal catalyst.

degree of polymerization The number of
monomeric units in a macromolecule or oligomer
molecule, a block, or a chain.

degrees of freedom A system ofN particles,
free from constraints, has 3N independent coor-
dinates (positions and momenta) called degrees
of freedom.

delocalization A quantum mechanical con-
cept most usually applied in organic chemistry
to describe the π -bonding in a conjugated sys-
tem. This bounding is not localized between two
atoms: instead, each link has a “fractional double
bond character” or bond order. There is a cor-
responding “delocalization energy,” identifiable
with the stabilization of the system compared
with a hypothetical alternative in which formal
(localized) single and double bonds are present.
Some degree of delocalization is always present
and can be estimated by quantum mechanical cal-
culations.

delta function See Dirac delta function.

dense A subset S in a space X is dense (in
X ) if its closure S̄ = X.

denser subgraph A subgraph G′ of the bio-
chemical network such that the degree of each
reaction node vr,i is greater than or equal to x,
and the degree of each compound node vm,j is
less than or equal to y; that is, d(vr,i ) ≥ x,

d(vm,j ) ≤ y.
Comment: Because any two denser subgraphs

formed with the same values of x and y are not
necessarily isomorphic, denser subgraphs are not
necessarily motives. Familarly known as a blob.
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denumerably infinite set A set which is
equivalent to the set of natural numbers, N.
(There is a bijection between the set and N.)
See also cardinality, finite set, infinite set, and
uncountably infinite set.

deoxyribonucleic acids (DNA) High-
molecular-weight linear polymers, composed of
nucleotides containing deoxyribose and linked
by phosphodiester bonds; DNA contain the
genetic information of organisms. The double-
stranded form consists of a double helix of
two complementary chains that run in opposite
directions and are held together by hydrogen
bonds between pairs of the complementary
nucleotides and Hoogsteen (stacking) forces.

deRham cohomology group The quotient
groups of closed forms by exact forms on a
manifold M are called the deRham cohomol-
ogy groups of M . The kth deRham cohomology
group of M is

Hk(M) = ker dk/range dk−1,

where dk is the exterior derivative on k forms.

derivation (of an R-algebra A) Given R

a ring, an R-linear map D : A → A (i.e.,
D(λx + µy) = λD(x) + µD(y)) such that the
Leibniz rule holds, i.e., ∀x, y ∈ A D(xy) =
D(x)y + xD(y). A derivation on a manifold
M is a derivation of the function algebra A =
C∞(M).

Example: let F(R) be the R-algebra of real
valued (differentiable) functions f : R → R
over R. The ordinary derivative D : F(R) →
F(R) is a derivation.

Notice that A is not required to be an associ-
ative algebra. In particular the definition applies
to Lie algebras where the Leibniz rule reads as
D([x, y]) = [D(x), y] + [x,D(y)].

Example: let L be a Lie algebra. For all x ∈
L, the map adx : L → L defined by adx : y �→
[x, y] is a derivation.

derivative The derivative of a function f :
R → R at a point x is the function f ′ defined by

f ′(x) = lim
h→0

f (x + h)− f (x)

h

provided that this limit exists, f is called dif-
ferentiable at the point x with derivative f ′(x).
More generally, if X, Y are Banach spaces U ⊂
X open, and f : U ⊂ X → Y , then the Frechet
derivative of f is map Df : U → L(X, Y ),
where L(X, Y ) is the vector space of bounded
linear operators for X to Y defined by

Df (x)h = lim
t→0

f (x + th)− f (x)

t
.

If this limit exists f is called differentiable at x
with (total or Frechet) derivative Df (x).

deterministic computation A deterministic
computation Cd specifies a computation C : KI ′

→ KO′ such that the cardinalities (denoted S,
where S is any set) of the sets of presented inputs
and produced outputs (KI ′ and KO′ , respec-
tively) are 1 (KI ′ = KO′ = 1); each compu-
tational step is a one-to-one mapping between
the presented input and the produced output (∀ci ,
ci ∈ Cd is one-to-one); and the probability that
each symbol in the sets of presented inputs and
produced outputs exists is 1 (∀σi,I ′ , σi,I ′ ∈ KI ′ ,
∀σi,O′ , σi,O′ ∈ KO′ , Pe(σi,I ′) = Pe(σi,O′) = 1).

Comment: As with the definitions of compu-
tation, nondeterministic, and stochastic compu-
tations, the goal here is to place the usual theory
of computing within a framework that accom-
modates molecular computers. Like any other
system of chemical reactions, a molecular com-
puter is surrounded by many copies of its possible
inputs and outputs. These copies of symbols
are populations of symbols, each type of sym-
bol occuring at some frequency in its respective
population (Pe). Pe(σi) for any particular σi can
vary depending on the constitution of KI, KO,
and the properties of a particular ci ; so there
exists a probability density function over K. For
computation over a number of steps, a vector Pe
of probabilities for each step to each σi would
be assigned. Notice that a unit cardinality does
not imply that the length of the input and output
tokens is one. See also nondeterministic and
stochastic computations.

device A subnetwork of the biochemical net-
work with distinct dynamical (and perhaps bio-
chemical) properties.
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dextralateral The set of obligatorily co-
reacting species arbitrarily written on the right-
hand side of a formal reaction equation.

Comment: Formal reaction equations repre-
sent two sets of molecular species, one written on
the left and the other on the right-hand side of the
equation. The placement of a set on a side of the
equation is completely arbitrary. The equation is
understood to be symmetric in that the reaction’s
chemistry proceeds in both the “forward” (left
to right) and “backward” (right to left) simultan-
eously, until dynamic equilibrium is achieved.
For the (bio)chemistry to proceed, each member
of a set of coreacting species must be present. For
each, the higher its concentration, the easier it is
to observe the reaction and the faster the reaction
will occur.

Since the reactions are reversible, the equa-
tions are symmetric, and the placement of sets
of coreacting species in the equation is arbitrary,
the sets of species are designated sinistralateral
and dextralateral. These designations distinguish
them from the sets of substrates and products:
these terms indicate the role a molecule plays in
the reaction. See also direction, dynamic equi-
librium, formal reaction equation, microscopic
reversibility, product, rate constant, reversibil-
ity, sinistralateral, and substrate.

diagonalizable A linear transformation T :
V → V on a vector space V is called diagonal-
izable (or semi-simple) if there exists a basis of
V consisting entirely of eigenvectors of T . See
linear.

diagram level (in x-ray spectroscopy) A
level described by the removal of one electron
from the configuration of the neutral ground
state. These levels form a spectrum similar to
that of a one-electron or hydrogen-like atom but,
being single-valency levels, have the energy scale
reversed relative to that of single-electron levels.
Diagram levels may be divided into valence
levels and core levels according to the nature of
the electron vacancy. Diagram levels with orbital
angular momentum different from zero occur in
pairs and form spin doublets.

diagram line (in x-ray spectroscopy) See
characteristic x-ray emission and x-ray satellite.

diameter For any bounded domain K ⊂ Rn

we define its diameter by

diam(K) := sup{|x − y|, x, y ∈ K}.

diffeomorphism A diffeomorphism of class
Ck is a Ck differentiable map f which is invert-
ible such that f −1 is also of class Ck .

differentiable See derivative.

differentiable manifold A topological space
M is called differentiable manifold of class Cp if
each point x ∈ M has a neighborhood U(x) ⊂
M (called local chart or coordinate patch) which
is homeomorphic to an open set in a vector
space (Rn), and such that the change of coor-
dinates (coordinate transition functions) are dif-
ferentiable maps of class Cp. See chart.

differential equation An equation involv-
ing a function and some of its derivatives, e.g.,
f ′′(x)+ f (x) = 0.

differential form A differential form of
degree r (or an r-form) on an open set U in a
vector space X is a smooth map ω : U → LrX∗

from U into the rth alternating product of X∗.

differential operator LetE andF be vector
bundles over a manifold M and C∞(E), C∞(F )

the spaces of smooth sections. A differential
operator is a linear map L : C∞(E) → C∞(F )

such that L(fg) = (Lf )g+ (Lg)f for all f, g ∈
C∞(E).

diffusion equation The diffusion equation
or heat equation is of the following form, for
u = u(x, t), x ∈ R

n

(∂t −�)u = 0 .

e.g., in two dimensions ∂2u(x,t)

∂x2 = ∂u(x,t)

∂t
.

diffusion-driven instability This is a bifur-
cation phenomenon in nonlinear diffusion-
reaction equations. If when all the diffusion
terms are absent, the remaining nonlinear ODE
has a stable fixed point, but when a diffusion term
is present, the spatially homogeneous solution
corresponding to the stable fixed point is unsta-
ble, we say the system has a diffusion-driven
instability.
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Dini’s theorem Let {fn} be a sequence of
continuous functions converging pointwise to
a continuous function f . If {fn} is monotone
increasing sequence, then the convergence is uni-
form.

dipole–dipole interaction Intermolecular
or intramolecular interaction between molecules
or groups having a permanent electric dipole
moment. The strength of the interaction depends
on the distance and relative orientation of the
dipoles. The term applies also to intramolecu-
lar interactions between bonds having permanent
dipole moments.

Dirac Paul Adrien Maurice Dirac (1902–
1984), Swiss/English theoretical physicist,
founder of relativistic quantum mechanics.
Nobel prize for physics 1933 (shared with
Schrödinger).

Dirac delta function The generalized func-
tion δ(x − x0) defined by∫ ∞

−∞
f (x)δ(x − x0)dx = f (x0).

Dirac delta measure The measure δy
located at some arbitrary, but fixed y ∈ R

n is
defined for A ⊂ R

n as

δy(A) =
{

1 if y ∈ A

0 if y �∈ A.

Dirac equation The equation

(i � ∂ −m)ψ = 0

whereψ is a wave function describing a relativis-
tic particle of mass m and � ∂ := γ µδµ with γ µ

the Dirac gamma matrices.

Dirac gamma matrices The 4× 4 matrices

γ 0 =
(
I 0
0 −I

)
, γ j =

(
0 σ j

−σ j 0

)
,

j = 1, 2, 3, where I is the 2 × 2 identity matrix

and σ j are the Pauli matrices σ 1 =
(

0 1
1 0

)
,

σ 2 =
(

0 −i

i 0

)
, σ 1 =

(
1 0
0 −1

)
, i2 = −1.

Dirac Laplacian The square root of the
Dirac operator, i.e., we have � D2ψ = �ψ , the
d’Alembert operator.

Dirac operator A linear first-order partial
differential operator with nonconstant coeffi-
cients, defined between sections of the spin bun-
dle. It is defined as covariant derivative followed
by Clifford product. Locally the Dirac operator
is given by

� Dψ =
∑
µ

γ µ δ

δxmu
ψ

where γ µ are the Dirac gamma matrices.

Dirac spinors Elements in the full complex
spin representation as opposed to elements in the
half spin representation which are called Weyl
spinors and elements in the real spin representa-
tion which are called Majorana spinors.

directed edge A sequence of two nodes
(ordered pair) in a graph; often denoted
〈vi, vi+1〉.

Comment: These are the edges that are drawn
with arrows, indicating a direction of travel or
flow. See edge.

direction In a formal reaction equation, the
consumption of sinistralateral coreactants (the
“forward” direction); equally, the consumption
of dextralateral coreactants (the “reverse” direc-
tion).

Comment: Chemical and biochemical reac-
tions can be thought of as a composite of two
reactions. One that consumes sinistralateral core-
actants, producing dextralateral ones or proceed-
ing left to right and the opposite. These two
directions are often represented as half reactions
which are formal equations that specify only
one of the two directions. The intrinsic rates of
the two directions, as measured by their respec-
tive rate constants can differ very significantly.
See also dextralateral, dynamic equilibrium, for-
mal reaction equation, microscopic reversibility,
product, rate constant, reversibility, sinistralat-
eral, and substrate.

Dirichlet boundary condition Specifica-
tion of the value of the solution to a partial dif-
ferential equation along a bounding surface.

Dirichlet problem The problem of finding
solutions of the Laplace equation�u = 0 (uxx+
uyy = 0 in two dimensions) that take on given
boundary values.

© 2003 by CRC Press LLC 



discrete spectrum The discrete spectrum or
point spectrum σp(A) of a linear operator A is
the set of all λ for which (λI − A) is not one-
to-one, i.e., σp(A) is the set of all eigenvalues
of A.

discrete topology In the discrete topology
on a set S every subset of S is an open set.

disjoint Two collections, especially sets
such as A and B, are said to be disjoint if
A ∩ B = ∅.
dissipative A linear operator T : H → H

on a Hilbert space (H,< , >) is called dissi-
pative if Re < T u, u >≤ 0 for all u ∈ H .

dissociation (1) The separation of a molecu-
lar entity into two or more molecular entities
(or any similar separation within a polyatomic
molecular entity). Examples include unimolecu-
lar heterolysis and homolysis, and the separation
of the constituents of an ion pair into free ions.
(2) The separation of the constituents of any
aggregate of molecular entities.

In both senses dissociation is the reverse of
association.

distribution A distribution on an open set
U ⊂ R

n is a continuous linear functional on
C∞

c (U) (smooth functions with compact sup-
port).

distribution (of subspaces) A family of
subspaces �x ⊂ TxM one for each x ∈ M .
When the dimension of the subspaces �x is con-
stant with respect to x such a dimension k is
called the rank of the distribution. One should
add some regularity condition in order not to
allow too odd dependence of the subspace on
the point x. Usually one asks that locally there
exist k local vector fields, called generators of�,
spanning�x at each point of an open setU ⊂ M .

divergence Let M be a manifold with vol-
ume ; and X a vector field on M . Then the
unique function div;X ∈ C∞(M) such that
the Lie derivative LX; = (div;X); is called
the divergence of X. If M = R

3 and X =
(f1, f2, f3) then

divX = ∂f1

∂x
+ ∂f2

∂y
+ ∂f3

∂z
.

divergence theorem Also called Gauss’s
theorem. Let ; be a region in R

3 and ∂; the
oriented surface that bounds ;, and denote by n

the unit outward normal vector to ∂;. Let X be
a vector field defined on ;. Then∫

;

(div X)dV =
∫
∂;

(X · n)dS.

divergent sequence A sequence that is not
convergent.

dividing surface A surface, usually taken
to be a hyperplane, constructed at right angles
to the minimum-energy path on a potential-
energy surface. In conventional transition-state
theory it passes through the highest point on the
minimum-energy path. In generalized versions
of transition-state theory the dividing surface can
be at other positions; in variational transition-
state theory the position of the dividing surface
is varied so as to get a better estimate of the rate
constant.

DNA See deoxyribonucleic acids.

DNA supercoil A DNA molecule has a dou-
ble helical structure (see double helix). Con-
sider the axis of the double helix as a space
curve; it is known experimentally that the curve
can have non-planar geometry. For example, it
can be solenoidal itself, thus the name supercoil.
DNA from some organisms have their helical
axis being a closed space curve with topological
linking numbers, i.e., knot. (cf., W.R. Bauer,
F.H.C. Crick, and J.H. White, Sci. Am., 243,
118, 1980).

domain In computer science, a domain is a
discipline, an area of physical reality, or a thought
modeled by a representation; in essence, its sub-
ject. In mathematics, a domain is the set on
whose members a relation operates.

Comment: For further comments on the
mathematical sense of domain, see relation. See
also image and range.

domain model A formal model of a particu-
lar domain (in the computational sense).

Comment: It is this that a database or artificial
intelligence system, or indeed any abstract model
of a phenomenon, reifies. It is distinguished
from a data model, which is an implementation
method (such as relational, object-oriented, or
declarative database).
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dominated convergence theorem Let {fn}
be a sequence in L1 such that fn → f almost
everywhere and there exists a nonnegative g ∈
L1 such that |fn| ≤ g almost everywhere for all
n. Then f ∈ L1 and

∫
f = limn→∞

∫
fn.

donor A compound which breaks a chem-
ical bond, yielding a substituent group which
forms a new bond in a bimolecular chemical or
biochemical reaction. See acceptor.

dot product See angle between vectors.

double helix The structure of DNA in all
biological species is in the form of a double helix
made of two chain molecules. Each chain is a
polymer made of four types of nucleotide: A
(adenine), G (guanine), T (thymine), and C (cyto-
sine). The structure that was first proposed by
J.D. Watson and F.H.C. Crick immediately leads
to a possible mechanism of biological heredity.
This was later confirmed by experiments and
hence provides a molecular basis for genetics.

drawing See rendering.

dual See dual vector space, complement.

dual basis LetE be a finite dimensional vec-
tor space with basis (e1, . . . , en) . The dual basis
(α1, . . . , αn) of the dual space E∗ is defined by
αj (ei) = δ

j
i , where δ

j
i = 1 if j = i and 0 other-

wise.

dual vector space Let V be a vector space
(over the field K); the set V ∗ of all linear func-
tionals α : V → K can be endowed with a struc-
ture of vector space by defining (λα +µβ)(v) =
λ α(v)+ µ β(v) (where λ, µ ∈ K; v ∈ V ). The
vector space V ∗ so obtained is called the (alge-
braic) dual vector space of V .

If V is a topological vector space the set of
all linear and continuous functionals α : V →
K with the standard linear structure introduced
above is called the topological dual space of V ,
and it is still denoted by V ∗.

If V is finite dimensional, then dim(V ) =
dim(V ∗). See also dual basis.

duality techniques (Aubin-Nitsche trick)
These are used to establish a priori estimates
for the discretization error of finite element
schemes in norms weaker than the natural norms
associated with the continuous variational
problem. For example, let H,V be Hilbert
spaces, V continuously embedded in H , and
a : V × V → C a continuous and V-elliptic
sesqui-linear form. Write u ∈ V, uh ∈ Vh for
the solutions of

a(u, v) = f (v) ∀v ∈ V,

a(uh, vh) = f (vh) ∀vh ∈ Vh,

where Vh is some closed subspace of V (a con-
forming finite element space) and f ∈ V ′. For
φ ∈ H denote by g(φ) ∈ V the solution of

a(v, g(φ)) = (φ, v)H ∀v ∈ V.

Then, choosing φ := u − uh we obtain via
Galerkin orthogonality

‖u− uh‖2
H = a(u− uh, g(u− uh)) ≤

‖a‖‖u− uh‖V infvh∈Vh
‖g(u− uh)− vh‖V

If g(φ) possesses extra regularity beyond merely
belonging to V , the second term on the right-
hand side will become very small compared to
‖u − uh‖H , if the resolution of the finite ele-
ment space is increased. Thus, when considering
families of finite element spaces, the H -norm of
the discretization error may converge asymptot-
ically faster than the V -norm.

Duffing equation The Duffing equation

ẍ + x + εx3 = 0
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is an example of weakly nonlinear oscillators,
i.e., small perturbations of the linear oscillator
ẍ + x = 0.

Dym’s equation The nonlinear evolution
equation

ut = 2(u−1/2)xxx.

dynamic equilibrium In a chemical or bio-
chemical reaction, the continuous reaction of
sinistralateral and dextralateral sets of coreac-
tants, such that no net change in the concentra-
tions of each members of both sets occurs.

Comment: What determines which direc-
tion of a reaction forward or backward will
predominate is the relative concentration of
reactants forming the two sets of obligatorily co-
reacting species. High concentrations of one set
will drive the chemistry in the direction which
consumes the reactants of that set, until the two
sets are in equilibrium. See also dextralateral,
direction, formal reaction equation, microscopic
reversibility, product, rate constant, reversibility,
sinistralateral, and substrate.

dynamic viscosity, ηηη For a laminar flow of
a fluid, the ratio of the shear stress to the velocity
gradient perpendicular to the plane of shear.

dynamical motif A conserved pattern of
dynamical regimes for a reaction or group of
reactions.

Comment: Notice this is distinct from a device
in that the latter is not required to exhibit
conservation. See also biochemical, chemical,
functional, kinetic, mechanistic, phylogenetic,
regulatory, thermodynamic, and topological
motives.

dynamical system (1) The flow Ft of a vec-
tor field X on a manifold M; i.e., Ft : M → M

is a one-parameter group of diffeomorphisms,
Ft+s = Ft◦Fs , and satisfies the differential equa-
tion

d

dt
Ft (x) = X(Ft(x)) .

(2) (autonomous dynamical system) a pair
(M,X) where M is a manifold and X is a vector
field over M . An integral curve γ : R → X is
such that

γ̇ = X ◦ γ
where γ̇ is the tangent vector to γ .

(3) (non-autonomous dynamical system over
M ) a dynamical system (M̂, X̂) over M̂ = R ×
M such that X̂ = ∂t +X(t, x), where X(t, x) is
a time-dependent vector field over M .

See equilibrium point, first integral.
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E
edge An unordered pair of nodes in a graph,
usually denoted as a tuple of arity two with the
two nodes as arguments. Thus (vi, vj ) = (vj , vi)

(the edge is symmetric).
Comment: Edges are usually represented as

lines or arcs in renderings of a graph or network.
Incidence relation and undirected edge are syn-
onyms. See directed edge.

effective Lagrangian An effective Lagran-
gian describes the behavior of a quantum field
theory at large distances (low energy).

eigenspace See eigenvalue.

eigenvalue For a linear operator A : X →
X a scalar λ is called eigenvalue of A if there is
a nontrivial solution x to the equation Ax = λx.
Such an x is called eigenvector corresponding to
λ. The subspace of all solutions of the equation
(A − λI)x = 0 is called the eigenspace of A

corresponding to λ.

eigenvector See eigenvalue.

eikonal equation In geometrical optics the
Hamilton-Jacobi equation H(x, dS(x)) = 0.

Einstein Albert Einstein (1879–1955) Ger-
man-American physicist. The inventor of special
and general relativity theory. Nobel prize in
physics 1922. Popularly regarded as a genius
among geniuses, the greatest scientist in history.
Everything should be formulated as simple as
possible, but not simpler.

Einstein equations Einstein’s field equa-
tion of general relativity (for the vacuum) is the
system of second-order partial differential equa-
tions

Rµν = 0

where Rµν is the Ricci curvature tensor.

Einstein tensor On a pseudo-Riemannian
manifold (M, g), the tensorGµν = Rµν− 1

2Rgµν
where Rµν is the Ricci tensor and R is the Ricci
scalar of the Levi-Civita connection of the met-
ric g.

By extension, on a manifold M with a con-
nection Nα

βµ, it is the tensor with the same local
expression where Rµν is now the Ricci tensor
and R is the Ricci scalar of the connection fixed
on M .

Because of Bianchi identities we have
∇µG

µ
·µ = 0.

electric charge, QQQ Integral of the electric
current over time. The smallest electric charge
found on its own is the elementary charge, e, the
charge of a proton.

electrode potential, EEE Electromotive force
of a cell in which the electrode on the left is a
standard hydrogen electrode and the electrode
on the right is the electrode in question.

electrodynamics Classical electrodynamics
is described by Maxwell’s equations of an elec-
tromagnetic field. Quantum electrodynamics
(QED) is the theory of interaction of light with
matter and is described by the Dirac equations
γµ(i∇µ − eAµ)ψ = mψ .

electromagnetic field In modern geometric
terms a 2-form on space-time M given as fol-
lows. Let A be a connection 1-form (vector
potential). Its curvature 2-form FA, given by
FA = dA + 1

2 [A ∧ A], is the electromagnetic
field. In local coordinates FA = 1

2Fµνdx
µdxν .

From the Lagrangian L = − 1
2 (FA ∧ ∗FA) (∗

the Hodge star operator) we obtain that classical
equations of motion d ∗ FA = 0. These together
with the Bianchi identity dFA = 0 are Maxwell’s
equations (in empty space).

electromagnetism One of the four elemen-
tary forces in nature. Classical electrodynamics
is governed by Maxwell’s equations for the elec-
tromagnetic field.

c
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element matrix Given a linear variational
problem, based on the sesqui-linear form a : V ×
V → C, and V-conforming finite element (K,

VK,XK)with shape functions b1, · · · , bM,M =
dimVK , the corresponding element matrix is
given by

AK := (a(bi, bj ))
M
i,j=1.

The bilinear form a could be replaced by a dis-
crete approximation ah (see variational crime).

elementary charge Electromagnetic funda-
mental physical constant equal to the charge
of a proton and used as atomic unit of charge
e = 1.602 177 33(49)× 10−19C.

See electric charge.

elementary forces The four elementary
forces in nature are gravitation, electromag-
netism, weak nuclear force, and strong nuclear
force.

elementary reaction A reaction in which
no reaction intermediates have been detected, or
need to be postulated in order to describe the
reaction on a molecular scale. Until evidence to
the contrary is discovered, an elementary reac-
tion is assumed to occur in a single step and to
pass through a single transition state.

elementary symbol See semiote.

elimination The reverse of an addition reac-
tion or transformation. In an elimination two
groups (called eliminands) are lost most often
from two different centers (1/2/elimination or
1/3/elimination, etc.) with concomitant forma-
tion of an unsaturation in the molecule (double
bond, triple bond) or formation of a new ring.

elliptic equation A linear partial differen-
tial equation (PDE) on R

n of order m with con-
stant coefficients is of the form

∑
|j |≤m ajD

ju =
f . It is called elliptic if the equation in p,∑

|j |=m ajp
j = 0 has no real solution p �= 0.

ellipticity A sesqui-linear form a : V ×
V → C on a Banach space V is said to be
V-elliptic, if

|Ra(u, v)| ≥ α‖u‖2
V , ∀u ∈ V

with a constant α > 0. An inf-sup condition for
a is an immediate consequence.

empty collection For sets, bags, lists, and
sequences, the empty collection is the corres-
ponding collection which has no elements: thus
the empty set, empty list, etc. It is denoted by the
corresponding delimiters with nothing between
them; thus { }, [ ], and 〈 〉 for empty set, empty
list, and empty sequence, respectively.

Comment: If a bag is empty, it reduces to the
empty set, also denoted ∅. See also bag, list,
sequence, set, and tuple.

end-group A constitutional unit that is an
extremity of a macromolecule or oligomer
molecule.

An end-group is attached to only one con-
stitutional unit of a macromolecule or oligomer
molecule.

endomorphism (1) A map from a set to
itself, satisfying certain conditions depending on
the nature of the set. For example, f (x ∗ y) =
f (x) ∗ f (y), if the set is a group.

(2) A morphism (not necessarily invertible) of
an object of a category into itself.

energy function For a Hamiltonian system,
the Hamiltonian is also called the energy function
of the system.

energy, kinetic In classical mechanics, that
part of the energy of a body which the body pos-
sesses as a result of its motion. A particle of mass
m and speed v has kinetic energy E = 1

2mv2.

energy-momentum tensor In classical field
theory invariance of the Lagrangian under trans-
lations implies, via the Noether theorem, conser-
vation of energy-momentum. Let the Lagranian
on space-time be given by L(φ, ∂µφ); then the
conserved energy-momentum tensor T is given
by

Tµν = ∂L
∂(∂µφi)

∂νφi − gµνL , ∂Tµν = 0.

In general relativity the energy-momentum
tensor is defined as the conserved current
(via Noether’s theorem) given by varying the
metric. And in Yang-Mills theory (including
Maxwell’s equation) the energy-momentum ten-
sor is defined as conserved current obtained by
varying the gauge invariant Lagrangian with
respect to the Yang-Mills gauge invariant frame.
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entropy The quantitative measure of disor-
der, which in turn relates to the thermodynamic
functions, temperature, and heat.

enzyme A catalyst occurring naturally in a
biochemical system, or derived from or modeled
upon a naturally occurring enzyme. Enzymes are
a class of proteins made of polypeptide.

Comment: Until about 15 years ago all known
enzymes were proteins, but since then a number
of naturally occurring, catalytic RNAs have been
discovered. This definition includes the products
of laboratory manipulation as well as molecules
found in nature.

epimorphism A surjective morphism be-
tween objects of a category. For example, an
epimorphism of vector spaces is a linear surjec-
tive map; an epimorphism of groups is a surjec-
tive group homomorphism; an epimorphism of
manifolds is a surjective differentiable map. See
also bundle morphism.

epitope Any part of a molecule that acts as
an antigenic determinant. A macromolecule can
contain many different epitopes, each capable
of stimulating production of a different specific
antibody.

equations of motion The equations which
select the evolution of a mechanical system, or
more generally any system with only one inde-
pendent variable.

See Hamilton principle and Euler-Lagrange
equations.

equicontinuous Referring to a family F of
functions with the property that for every ε > 0
there exists a δ > 0 such that |f (x)− f (y)| < ε

whenever |x − y| < δ for all f ∈ F .

equilibrium constant For any reaction ri
that is at equilibrium and whose solutes are at
infinite dilution, ri ∈ R (where R is a system of
reactions), the equilibrium constant, Keq,i is

Keq,i =
∏Xd,i

j=1 x
ni,d,j
j∏Xs,i

j=1 x
ni,s,j
j

= ki/k−i ,

where xj is the concentration of reactant xj ,
ni,s|d,j is the stoichiometry of that reactant on

the sinistralateral (s) or dextralateral (d) side
of the reaction equation for reaction ri , Xs|d,i
is the number of reactants on the sinistralat-
eral and dextralateral sides, respectively (| used
here as logical “or”), and ki, k−i are the forward
and reverse rate constants, respectively. For the
entire system of reactions, Keq,R is

Keq,R =
N∏
i=1

Keq,i .

Comment: This definition sets up conditions
that allow one reasonably to approximate
thermodynamic activities by concentrations, and
reactant order by stoichiometries. It also
assumes that experiments measuring the appar-
ent equilibrium constant have been done by
measuring the constant at several different con-
centrations of reactants and extrapolating the
results to zero concentration. Under these con-
ditions, the equilibrium constant as used by
biochemists comes reasonably close to the equi-
librium constant as defined in thermodynamics.
See also formal reaction equation.

equilibrium point (1) A point x0 is called
an equilibrium point, critical point, or singular
point of a vector field X if X(x0) = 0. If Ft is
the flow of X then Ft(x0) = x0 for all t .

(2) (of a dynamical system (M,X ) A point
x ∈ M such that X(x) = 0. The constant curve
cx(t) = x in an equilibrium point is an integral
curve.

equilibrium solution See coacervation.

equivalence classes See equivalence rela-
tion.

equivalence relation A relationR = {(a, b)
|a, b ∈ A} that is, a ∼ b ⇔ (a, b) ∈ R from A

to itself such that:

(i.) ∀a ∈ A, a ∼ a;

(ii.) ∀a, b ∈ A, a ∼ b ⇒ b ∼ a;

(iii.) ∀a, b, c ∈ A, a ∼ b, b ∼ c ⇒ a ∼ c.

If ∼ is an equivalence relation, the equiva-
lence class of a ∈ A is the subset [a] = {b ∈
A : b ∼ a}. If c ∈ A is not in the equivalence
class of a (i.e., c �∈ [a] or equivalently a �∼ c)
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then [c] and [a] are disjoint. The set A/ ∼ of
all equivalence classes is a partition of the set A,
and it is called the quotient of A with respect to
the relation ∼.

Example: Let ≡n be the relation in Z defined
by a ≡n b if and only if n divides a − b,
i.e., if there exists an integer k ∈ Z such that
a − b = nk. It is an equivalence relation. If
a ≡n b we say that a is congruent to b modulo n.
The equivalence classes are [a]n = {a + kn :
k ∈ Z}. The quotient space is denoted by
Zn = {[0]n, [1]n, . . . , [n − 1]n} and it is finite.
The structure of additive group of Z induces a
structure of additive group on Zn with respect to
the operation [a]n+[b]n = [a+b]n which is well
defined; i.e., it does not depend on the representa-
tives chosen for the equivalence classes. In fact,
if a′ ∈ [a]n and b′ ∈ [b]n, then [a′]n + [b′]n =
[a′ + b′]n = [a + b]n = [a]n + [b]n.

Specializing to the case n = 2, the quotient
space Z2 is made of two elements [0]2 and [1]2.
The class [0]2 is the neutral element with respect
to the additive structure, while one has [1]2 +
[1]2 = [0]2. By using the function exp(iπn),
Z2 with the additive structure is mapped into the
group of signs with the obvious multiplicative
group structure.

equivalent norms Two norms ‖ ‖1 and ‖ ‖2
on a normed vector space X such that there is a
positive number c such that c−1‖x‖1 ≤ ‖x‖2 ≤
c‖x‖1 for allx ∈ X. On finite dimensional vector
spaces all norms are equivalent.

equivariant See principal bundle.

Erlanger program A plan initiated by Felix
Klein in 1872 to describe geometric structures in
terms of their groups of automorphisms.

essential singularity A singularity of an
analytic function that is not a pole.

essential spectrum For a linear operator
A : X → X on a normed vector space X the
set of scalars λ such that either ker(A − λI) is
infinite dimensional or the image of A−λI fails
to be a closed subspace of finite codimension.

essentially self-adjoint operator See self-
adjoint operator.

Euler Leonhard Euler (1707–1783) Swiss
mathematician. Some say the most prolific math-
ematician in history and the first modern math-
ematician universalist. He worked at the St.
Petersburg Academy and the Berlin Academy of
Science.

Euler equations The motion of a perfect
fluid in a domainM ( a smooth Riemannian mani-
fold with boundary) is governed by the Euler
equations {

∂u
∂t

+ ∇uu = −∇p

div u = 0

where u is the velocity field of the fluid and p is
the pressure.

The motion of a rigid body with angular
momentum X = (X1,X2,X3) and principal
moments of inertia I = (I1, I2, I3) is governed
by the Euler equations

Ẋ1 = I2−I3
I2I3

X2X3

Ẋ2 = I3−I1
I1I3

X1X3

Ẋ3 = I1−I2
I1I2

X1X2 .

Euler-Lagrange equations The Lagrang-
ian formulation of a classical mechanical sys-
tem described by a Lagrangian L(q1, . . . qn,

q̇1, . . . q̇n) is given by the principle of least action,
which leads to the Euler-Lagrange equations

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 , i = 1, . . . , n.

These are equivalent to Hamilton’s equations.
In field theory where the Lagrangian L

depends on fields ϕi(x) and their derivatives
∂µϕi(x), the Euler-Lagrange equations become

∂L(x)
∂ϕi(x)

− ∂µ
∂L(x)

∂[∂µϕi(x)]
= 0 , i = 1, . . . , n.

For a mechanical Lagrangian system (Q,L)

over the configuration space Q with local
coordinates qi the Lagrangian is a function
L(t, qi, ui)with (qi, ui) local coordinates over
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the tangent bundle TQ. Euler-Lagrange equa-
tions are given by{

ui = q̇ i

∂L

∂qi − d
dt

∂L

∂ui
= 0

where dot denotes time derivative.
For a Lagrangian system (B, L)  of a field

theory over the configuration bundle B =
(B,M, π, F ) let us choose local fibered coord-
inates (xµ, yi, yi

µ, . . . , y
i
µ1...µk

) over the k-jet
prolongation J kB and the Lagrangian of the
form L = L(xµ, yi, yi

µ, . . . , y
i
µ1...µk

) ds, where
ds is the standard local volume element of the
base manifold M . Euler-Lagrange equations are
given by

yi
µ = dµy

i , . . . , yi
µ1...µk

= dµ1...µk
yi

∂L

∂yi − dµ
∂L

∂yi
µ

+ · · · + (−1)kdµ1...µk

∂L

∂yi
µ1 ...µk

= 0

where dµ denotes the total derivative with respect
to xµ (i.e., dµ = ∂µ + yi

µ∂i + yi
µν∂

ν
i + · · · ).

See Hamilton principle and Lagrangian sys-
tem.

Euler’s formula eiθ = cos θ + i sin θ

reveals a profound relationship between complex
numbers and the trigonometric functions.

Euler’s integral The representation for the
gamma function

N(z) =
∫ ∞

0
t z−1e−t dt.

Euler’s method The simplest numerical
integration scheme for a differential equation
ẋ = f (x). The update rule is xn+1 = xn +
f (xn)+�t .

evaluation map Let F(M) denote a set of
functions on a manifold M . The evaluation map
is given by ev : F(M)×M → R : ev(f, x) =
f (x) , f ∈ F(M), x ∈ M .

even function A function f (x)  such that
f (−x) = f (x), for all x. If g(−x) = −g(x),
for all x, then g is an odd function.

event In probability theory, a measurable
set. In relativity, a point in space-time.

evolution equation The equations of motion
of a dynamical system. They describe the time
evolution of a system and are given by differential
equations of the form

dx(t)

dt
= F(x(t)).

evolution operator As time passes, the state
ψ of a physical system evolves. If the state is ψ0

at time t0 = 0 and it changes to ψ at a later
time t , one sets Ft(ψ0) = ψ . The operator Ft

is called the evolution operator. Determinism
is expressed by the group property Ft ◦ Fs =
Ft+s , F0 = identity.

exact form An exterior k-form ω ∈ ;k(M)

which is the exterior differential of a (k − 1)-
form ω, i.e., ω = dθ . Of course, exact forms are
closed, i.e., dω = 0. See also closed form.

Example: The form ω = xdx + ydy in R
2 is

an exact form, since ω = d
[

1
2 (x

2 + y2)
]
.

excitability The concept of excitability first
appeared in the literature on neural cells
(neurons). It was shown experimentally that a
small trigger in the membrane current can lead
to large, transient response in membrane elec-
trical potential. This is known as action potential,
and it is responsible for the rapid communica-
tions between neurons. The mathematical model
for this phenomenon was Huxley and it exhibits,
among many other features, the threshold phe-
nomenon (see also threshold phenomenon).

excluded volume A polymer is made of
a chain of molecules. These molecules cannot
occupy the same position in three-dimensional
space. In the simple theory for polymers (see
Gaussian chain), one neglects this effect. A more
realistic models for a polymer must to consider
this effect.

expansion In a network (or graph), the
replacement of a smaller subnetwork by a larger
one using a sequence of operations on nodes,
edges, parameters, and labels.
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Comment: In applying it to models of biol-
ogy such as biochemical networks, expansion
requires additional information that specifies
which expansion operation, with its components,
is appropriate. This is quite distinct from con-
traction, which needs only its mathematical oper-
ations. See contraction.

expectation In probability theory the
expectation of an random variable f (measur-
able function) is the integral

∫
f dµ.

exponential (1) The unique solution to the
differential equation f ′(x) = f (x), with initial
condition f (0) = 1. It can also be defined by its
power series

ex = 1 + x + x2

2!
+ x3

3!
+ · · ·

(2) The exponential map of a Lie group G

is defined as follows: Let g be the Lie algebra
of G. Any ξ ∈ g corresponds to a left invariant
vector field Xξ onG. Let cξ be the integral curve
of Xξ passing through e ∈ G, c(0) = e. The
exponential map is now defined as exp : g →
G : exp(ξ) = cξ (1).
Example: For G = GL(n), exp(A) = 1 + A +
A2

2! + A3

3! + · · ·
(3) The exponential map on a Riemannian

manifold (M, g) is defined as exp : TxM → M :
exp(v) = γ (1) where γ is the (unique) geodesic
with initial conditions (x, v), i.e., γ (0) = x and
γ̇ (0) = v ∈ TxM .

extension In this context only, the use of
an explicit, fully instantiated, representation of
a datum in a database or model.

Comment: The restriction is meant to avoid
philosophical wrangling and confine the dis-
course to that of databases. See also intension.

exterior algebra (of a vector space V ) The
Z-graded algebra of skew-symmetric covariant
tensors on V . If V is finite dimensional, {ei} is
a basis of V and {ei} the dual basis in V ∗ then
we denote by T (V ) = ⊕Tk(V ) the Z-graded
algebra of covariant tensors on V . It is infinite
dimensional, and it is spanned by

I, ei, ei ⊗ ej , . . . , ei1 ⊗ · · · ⊗ eik , . . .

The exterior algebra L(V ) = ⊕Lk(V ) is the
quotient of this algebra by the bilateral ideal
generated by the elements of the form ei ⊗ ej −
ej ⊗ ei . If V is of dimension dim(V ) = m,
L(V ) is a finite dimensional Z-graded algebra
of dimension 2m. The induced multiplication
∧ : L(V )×L(V ) → L(V ) is called the exter-
ior product. An element in Lk(V ) is called an
exterior k-form on V .

Example: Let ;k(M) denote the space of
all exterior k-forms on a manifold M , k =
1, . . . , n = dimM . The exterior algebra ;(M)

or Grassman algebra of M is the direct sum of
the spaces ;k(M), i.e., ;(M) = ⊕n

k=1;
k(M).

exterior derivative A family of operators,
on a manifold M , d : ;k(M) → ;k+1(M)

(k = 1,2,. . . n = dim M), ;k(M) the space of exte-
rior k − f orms on M , such that

(i.) d is a ∧-antiderivative, i.e., d(α ∧ β) =
dα ∧ β + (−1)kα ∧ dβ , α ∈ ;k(M);

(ii.) d2 = 0;

(iii.) for f ∈ ;0(M) = C∞(M) we have
(df )i = ∂f

∂xi .

exterior differential The derivation d of the
exterior algebra of a manifold M defined as fol-
lows: if ω = 1

k!ωµ1...µk
dxµ1 ∧ . . . ∧dxµk is a

k-form then its exterior differential dω is a (k +
1)-form locally expressed as

dω = 1
(k+1)! (k + 1)∂[µωµ1...µk ]dx

µ ∧ dxµ1 ∧
· · · ∧ dxµk

The exterior algebra with the exterior differential
defines a cohomology (i.e., one has d ◦ d = 0),
and it is called deRahm cohomology.

A form ω in the kernel ker(d) (i.e., dω = 0) is
called a closed form; a form ω in the image .(d)
(i.e., ω = dθ for some form θ ) is called exact.
An exact form is always closed. The converse is
true only provided some topological conditions
are met on M . For example, the Poincaré lemma
proves that all closed forms in M are exact when
the manifold M is contractible.
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exterior differential algebra (of a manifold M)
The Z-graded algebra L(M) = ⊕kLk(M),
where Lk(M) is the set of k-forms over M . An
element ω ∈ Lk(M) is a skew-symmetric map
that associates to k vector fields (X1, . . . , Xk) a
function ω(X1, . . . , Xk). Such a map is F(M)-
linear in all its arguments, e.g., ∀f , g ∈ F(M)

ω(fX1 + gY1, . . . , Xk)

= fω(X1, . . . , Xk) + gω(Y1, . . . , Xk)

In other words, a k-form ω is a skew-symmetric,
F(M)-linear form on the F(M)-module X(M)

of vector fields over M .

exterior form Let X (M) denote the space
of smooth vector fields on a manifold M . An
exterior k-form (or exterior differential form of
order k) is a k-multilinear map α : X (M)×· · ·×
X (M) → C∞(M), k factors, which is skew
symmetric, i.e., changes sign if two arguments
are interchanged.

exterior product The exterior product or
wedge product of an exterior k-form α ∈ ;k(M)

and an l-form β ∈ ;l(M) is the k + l-form
α ∧ β ∈ ;k+l(M) defined by

α ∧ β(X1, . . . Xk+l) =
∑

(sign σ)α

×(Xσ(1), . . . , Xσ(k))β(Xσ(k+1), . . . Xσ(k+l)),

where the sum is taken over all permutations σ
of {1, 2, . . . , k + l}.

Basic properties of the ∧-product are

(i.) ∧ is bilinear, i.e., α∧ (tβ+ sγ ) = t (α∧
β)+ s(α ∧ γ ) , t, s ∈ R;

(ii.) α ∧ (β ∧ γ ) = (α ∧ β) ∧ γ ;
(iii.) α∧β = (−1)klβ ∧α, α ∈ ;k(M), β ∈

;l(M).

external photoelectric effect See photo-
emissive detector.
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F
fff -functional branch point See branch
point.

facilitated diffusion The Fickian diffusion
of a solute, J = D(cb − ca)/(b − a), can be
enhanced by the presence of a protein which
combines reversibly with the solute. The dif-
fusion coefficient of the protein is, of course,
significantly lower than that of the solute. Never-
theless, it enhances the overall diffusion of the
solute across a distance b−a with concentration
difference cb − ca . The resolute to this counter-
intuitive phenomenon is that the free solute
concentration ca at a is different from the total
solute concentration at a due to the reversible
binding. There is an amount of solute bound to
the protein. [PS]a = Kca[P ]a where [P ]a is
the concentration for unbound protein at a, K is
the binding constant. Hence the total solute at
a is (1 + K[P ]a)ca which can be significantly
greater than ca if K[P ]a 3 1. (cf. J.D. Murray
and J. Wyman, J. Biol. Chem., 246, 5903, 1971).

Faddeev-Popov ghost (not the ghost of Fad-
deev or Popov) In quantum field theory
with gauge invariant Lagrangian one can inte-
grate over the gauge group by fixing a gauge.
This leads to the effective Lagrangian, which
is no longer gauge invariant, by introducing
new anticommuting auxiliary scalar fields, so-
called Faddeev-Popov ghosts. They have sim-
ilar properties as the Maurer-Cartan form and
can be interpreted as Lie algebra cohomologies.
Integration over such a slice introduces a
determinant term change of coordinates which
is lifted to the exponent of the action, i.e.,
added to the Lagrangian as a Gaussian integral.
This determinant is called the Faddeev-Popov
determinant. This leads to BRST quantization
theory. This method of quantization of a system
with symmetry is known as the Faddeev-Popov
procedure.

Fahrenheit scale A temperature scale
devised by Fahrenheit (1686–1736) on which
the freezing point of water is 32 degrees and the
boiling point of water is 212 degrees, both at
standard pressure. (This scale is still used in the
U.S.)

faithful action An action )g : M → M ,
g ∈ G, of a group G on a space M is called
faithful or effective if )9 = idM implies g = e.

faradaic current A current corresponding
to the reduction or oxidation of some chemical
substance. The net faradaic current is the alge-
braic sum of all the faradaic currents flowing
through an indicator or working electrode.

fast Fourier transform (FFT) A discrete
Fourier transform algorithm which converts a
sampled complex-valued function of time into
a complex-valued function of frequency. It typ-
ically reduces the number of computations from
order N2 to N log N .

Fermi-Dirac statistics In the Fermi-Dirac
statistics or quantum statistics, no more than one
of a set of identical particles may occupy a par-
ticular quantum state (i.e., the Pauli exclusion
principle applies), whereas in the Bose-Einstein
statistics, the occupation number is not limited.
Particles described by these statistics are called
fermions and bosons, respectively.

fermion A particle described by Fermi-
Dirac statistics.

Feynman diagram A sketch in momentum
space of the Green’s functions describing the
interactions of particles. External lines in a dia-
gram represent incoming particles and vertices
represent interactions. Straight lines represent
electrons and wavy lines photons. Feynman’s
idea was that expectation values of quantities in
quantum theory should be obtained by summing
the values of these quantities over all histories,
i.e., over all diagrams and for each diagram over
all positions in space-time for the particle inter-
actions. These summations over all histories are
known as Feynman path integrals.
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Feynman rules The rules that describe the
manipulations with Feynman diagrams. These
allow physicists to compute Green’s functions in
quantum field theory.

fiber bundle A quadruple B = (B,M,

π;F)  where B, M , and F are differentiable
manifolds and π : B → M is a surjective map
of maximal rank. B is called the total space, M
the base manifold, F the standard fiber, and π
the projection. Furthermore, a trivialization is
required, i.e., a family {(Uα, tα)}α∈I such that:

(i.) Uα are open sets which cover the whole
of M , i.e.,

⋃
α∈I Uα = M;

(ii.) tα : π−1(Uα) → Uα × F are
diffeomorphisms.

Each (Uα, tα) is called a local trivialization.
If a global trivialization tα : B → M × F exists
(i.e., if one can take I = {1} and U1 = {M})
the bundle is said to be trivial. Trivializations
amount to requiring that the total space B of
a bundle is locally diffeomorphic to the triv-
ial model M × F . Examples: The cylinder
(S1 × R, S1, p1,R) is a trivial bundle, while the
Moebius strip is fibered over S1 but it is not triv-
ial, not being globally isomorphic to a Cartesian
product.

A preferred class of coordinates (xµ; yi) is
then selected on B such that xµ are coordinates
on M and yi are coordinates on F . These coor-
dinates are called fibered coordinates; the bundle
structure actually amounts to being allowed to
separate coordinates in B into two subsets (xµ

and yi) in a coherent way.
One can restrict trivializations to the fiber

π−1(x) over a point x ∈ Uα , obtaining diffeo-
morphisms tα(x) : π−1(x) → F . When two
local trivializations are involved (i.e., x ∈ Uαβ =
Uα

⋂
Uβ), we can define the maps g(αβ) : F →

F given by g(αβ) : tα(x) ◦ t−1
β (x). The maps

g(αβ) : Uαβ → Diff(F ) are called transition
functions. They satisfy the cocycle property, i.e.,

gαα = idF

gαβ = [gβα]−1

gαβ ◦ gβγ ◦ gγα = idF

If a family of maps g(αβ) : Uαβ → Diff(F ),
which satisfies the cocycle property, the base

manifold M and the standard fiber F are pro-
vided, then there exists a bundle (B,M, π;F)

(unique up to isomorphisms) (see bundle mor-
phisms) having g(αβ) as transition functions. The
total space of this bundle is identified with the
disjoint union

∐
α∈I Uα×F [modulo] the equiva-

lence relation

(α, x, f ) ∼ (β, y, g)

if x = y, g = g(βα)(f )

Fiber bundles are tightly related to variational
calculus. In this framework coordinates xµ on
the base manifold are regarded as independent
variables while yi are identified with dependent
variables (i.e., dynamical fields). A configura-
tion is a (global) section of the bundle, i.e., a
map σ : M → B such that π ◦ σ = idM .

field (1) In algebra, a commutative ring K

with at least two elements such that for each
a, b ∈ K, a �= 0 there exists a unique x ∈ K

such that a · x = b. Examples are the rational,
real, and complex numbers.

(2) In physics, functions (real or complex val-
ued) on configuration space are called scalar
fields and in general, a field can be a section of
any vector bundle over space-time.

field equations The equations which select
the evolution of a field theory.

See Hamilton principle and Euler-Lagrange
equations.

finite element LetK ⊂ R
n be a domain with

piecewise smooth boundary, and write VK for
a finite dimensional space of piecewise smooth
functions or vector fields onK . IfXK is a basis of
the dual spaceV ′

K , then the triple (K, VK,XK) is
a valid finite element. The functionals in the set
XK are referred to as local degrees of freedom,
VK as local space, and K is called a (geomet-
ric) element. For a meaningful finite element
the functionals in XK have to be localized in
the sense that they are associated with vertices,
edges, faces, etc. of the geometric element. This
means that, for φ ∈ XK , the value φ(v), v ∈ VK ,
only depends on the restriction of v onto a par-
ticular vertex, edge, face, etc.
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finite element space Given a triangulation
;h of ;, consider a finite element (K, VK,XK)

for each cell K ∈ ;h. A related (global) finite
element space Vh has to satisfy (for suitable
m ∈ N)

Vh ⊂ V ∗
h :=

{v : ; → C
M defined a.e. in ;,

v|K ∈ VK ∀K ∈ ;h}.
The global finite element space is said to be
conforming with respect to a space V of func-
tions/vector fields defined a.e. on ;, if Vh ⊂ V .
Often, this leads to the definition

Vh = V ∗
h ∩ V.

In many cases, the requirement of conformity
amounts to conditions on the continuity of global
finite element functions at boundaries between
geometric elements. This is due to the fact
that functions in V ∗ are piecewise smooth. For
instance, conformity in H 1(;) entails global
continuity, and finite element functions inH 2(;)

even have to be globally continuously differen-
tiable.

Actually, the glue between the (local) finite
elements is provided by the degrees of free-
dom, because in practice Vh is introduced as
Vh := {v ∈ V ∗

h , ∀K, T ∈ ;h : φ(v|k) =
κ(v|T ) if φ ∈ XK, κ ∈ XT are of the same type
and are associated with the same vertex, edge,
face, etc. of the global mesh}. It goes without
saying that this construction imposes tight con-
straints on the choice of the local finite elements.
Local degrees of freedom of the finite elements
belonging to adjacent cells have to match.

This makes it possible to convert the local
degrees of freedom into nodal degrees of freedom.
These are obtained by collecting all local degrees
of freedom into one setXh and weeding out func-
tionals that agree on Vh. By definition of Vh, the
remaining functionals in Xh := {φ1, · · · , φN },
N = dimVh, form a basis of the dual space.

finite set A set whose cardinality is either 0
or a natural number. See also cardinality, count-
able set, denumerably infinite set, infinite set, and
uncountably infinite set.

first integral For a dynamical system
(M,X) a function F : M → R such that X(F)

= 0. The definition is equivalent to requiring
that F ◦ γ is constant for any integral curve γ

of X.
More generally, a function F : R ×M → R

which is constant along the curves of motion.
Equivalently, let us define X̂ = ∂t + X; F is a
first integral if X̂(F ) = 0.

fixed point A point x0 ∈ M is called a fixed
point of a map T : M → M if T (x0) = x0.

flow The flow of a vector field X on a
manifold M is the one-parameter group of
diffeomorphisms Ft : M → M , (Ft+s = Ft ◦Fs)
such that

d

dt
Ft (x) = X(Ft(x)), for all x ∈ M.

In other words, t �→ Ft(x) is an integral curve
(trajectory) of X with initial condition x ∈ M .
Flows are also called dynamical systems.

flow rate (of a quantity) Quantity X (e.g.,
heat, amount, mass, volume) transferred in a time
interval divided by that time interval. General
symbols: qX, Ẋ.

fluence, F,Z,H0F,Z,H0F,Z,H0 At a given point in space,
the radiant energy incident on a small sphere
divided by the cross-sectional area of that sphere.
It is used in photochemistry to specify the energy
delivered in a given time interval (for instance,
by a laser pulse).

flux The flux of a compound xj is ∂xj/∂t

or xj t .
Comment: Biochemically, flux is frequently

used to describe the consumption of indi-
vidual molecules by a series of reactions in
dynamic equilibrium. Experimentally, flux can
be determined by giving a fixed amount of a par-
ticular compound with a radioactive or heavy
isotope to a population of cells, then measur-
ing the amount and rate of movement of the
isotope into compound(s) derived from the first.
Since the cells are usually in a metabolic steady
state, the assumption is that all the reactions
are in dynamic equilibrium. Compound con-
centrations do not change over time (ẋi = 0).
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Mathematically, the definition of flux varies. The
alternative taken here is simply to write the
ordinary differential velocity equations as partial
differential equations, so that ẋi becomes ∂xi/∂t
or xi t . An alternative is to define flux relative
to some other compound, which allows one to
incorporate the dynamic equilibrium condition
directly; the form will vary, much as it does in
a physical context. Still another is to use flux in
other functions without defining what it is math-
ematically. In general, the word is best used only
when it is mathematically explicit.

Fock space In quantum mechanics, the full
Hilbert space of states.

Focker-Plank equation Let U ⊂ R
n be

open and u : U × R → R. The Focker-Plank
equation for u is

ut −
n∑

i,j=1

(aiju)xixj −
n∑

i=1

(biu)xi = 0.

form See differential form.

formal reaction equation The representa-
tion of a chemical or biochemical reaction, the
participating molecular species, and the chem-
ical, kinetic, and thermodynamic parameters per-
taining to those species in that reaction and to the
reaction itself.

The biochemical denotation of formal reac-
tion equations, for example

x1 + x2 + . . . � xm + xm+1 + . . .

for a set of reactants, xj ∈ X , carries with it many
less obvious layers of convention, meaning, and
information. To make these layers more explicit,
the formal reaction equation can be rewritten
more systematically as follows. Let the set R
be a system of reactions ri , 1 ≤ i ≤ N among a
set of molecular species X = {xj }, 1 ≤ j ≤ M

(called reactants); i, j , N , and M are any posi-
tive integers. Each reactant xj may participate in
more than one reaction, and every reaction has at
least two reactants. Each reaction ri is described
by a formal reaction equation of the form

Xs,i∑
j=1

ni,s,j x
ki
j ⇔k−i

Xd,i∑
j=1

ni,d,j xj

where the sets of reactants written sinistralat-
erally (s) and dextralaterally (d) in the formal
reaction equation are Xs,i and Xd,i , respectively;
Xs,i and Xd,i are the number of reactants in each
set (see cardinality); ni,{s|d},j is the stoichiometry
of reactant xj in Xs,i or Xd,i ( | is logical or); and
ki and k−i are the forward and reverse reaction
rate constants, respectively. A species appearing
catalytically in a reaction equation is included
on both sides. R is then described by the set of
formal reaction equations, one for each ri ∈ R.
See also dextralateral, direction, dynamic equi-
librium, microscopic reversibility, product, rate
constant, reversibility, sinistralateral, stoichiom-
etry, and substrate.

Fourier Jean Babtiste Joseph, Baron de
Fourier (1768–1830). French analyst and mathe-
matical physicist.

Fourier coefficients Let {xi}i∈I be an
orthonormal basis in a Hilbert space (H,<,>).
Then every x ∈ H can be written as a Fourier
series

x =
∑
i∈I

< x, xi > xi .

The coefficients < x, xi > are called the Fourier
coefficients of x with respect to the basis {xi}.
Fourier integral operator A Fourier inte-
gral operatorA of order k on a compact manifold
M is locally of the form, for any u ∈ C∞

c (M),

Au(x) = (2π)−n

∫ ∫
eiϕ(x,y,ξ)a(x, y, ξ)

× u(y)dydξ,

where a(x, y, ξ) is a symbol of order k, and
ϕ(x, y, ξ) is a nondegenerate phase function.
This defines a bounded linear operator between
the Sobolev spaces A : Hs

c (M) → Hs−k
c (M).

Fourier series See Fourier coefficients.

Fourier transform Let f ∈ L1(Rn). The
Fourier transform of f , denoted by f̂ is the func-
tion on R

n defined by

f̂ (k) =
∫

R
n

e−2πik·xf (x) dx.

The Fourier transform f �→ f̂ is norm preserv-
ing from L2(Rn) to L2(Rn).
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frame A set of n linearly independent vec-
tors in the tangent space to an n dimensional
manifold at a point.

Frechet derivative Let V,W be Banach
spaces, U ⊂ V open. A map F : U → W is
called Frechet differentiable at the point x ∈ U

if it can be approximated by a linear map in the
form

F(x + h) = F(x)+DF(x)h+ RF(x, h)

where DF(x), called the Frechet derivative of F
atx, is a bounded (continuous) linear map fromV

to W , i.e., DF(x) ∈ L(V,W) and the remainder
RF(x, h) satisfies

lim
h→0

RF(x, h)

‖h‖ = 0.

If the map DF : U → L(V,W) is continuous in
x, then F is called continuously differentiable
or of class C1. If F is Frechet differentiable
at x then F is Gateaux-Levi differentiable at x
and DF(x)h = DF(x, h). If F is Gateaux-
Levi differentiable at each point x ∈ U and the
map DF : U → L(V,W) is continuous, then
F is Frechet differentiable at each x. In finite
dimensions, i.e., V = R

n,W = R
m, this means

F : R
n → R

m is Frechet differentiable if all
partial derivatives of F exist and are continuous.

Frechet space A topolocical vector space
which is metrizable and complete. Examples are
Banach and Hilbert spaces.

Fredholm alternative If T is a compact
operator on a Banach space, then either (I−T )−1

exists or T x = x has a nonzero solution.

Fredholm integral equation The equation

f (x) = u(x)+
∫ b

a

k(x, t)f (t)dt.

Fredholm operator A bounded linear oper-
ator T : V → W between Banach spaces V

and W such that

(i.) Ker(T ) = T −1(0) is finite dimensional;

(ii.) Rang(T ) = T (V ) is closed;

(iii.) W/T (V ) is finite dimensional.

Example: If V = W and K is a compact oper-
ator, then I −K is Fredholm.
The integer ind T = dim T −1(0) − dim W/

T (V ) is called the index of T.

free action An action )g : M → M,g ∈
G, of a group G on a space M which has no fixed
points, i.e., )g(x) = x implies g = e.

free Lagrangian In field theory, a
Lagrangian without interaction of the involved
fields. The corresponding theory is called a free
theory.

function An association of exactly one
object from a set (the range) with each object
from another set (the domain). This is equivalent
to defining the function f as a set, f ⊆ A × B.
For f to be a function, it must be the case that if
(x, y) ∈ f and (x, z) ∈ f , then y = z.

Comment: This last condition is equivalent to
saying if a = b, f (a) = f (b). Functions are
also called mappings and transformations. See
also bijection, biological functions, and relation.

functional The term functional is usually
used for functions whose ranges are R or C.
A functional f on a vector space V is a lin-
ear functional if f (x + y) = f (x)+ f (y), and
f (αx) = αf (x), for all x, y ∈ V and scalar α.

functional analysis The theory of infinite
dimensional linear algebra, i.e., the theory of
topological vector spaces (e.g., Hilbert, Banach,
or Frechet spaces) and linear operators between
them (bounded or unbounded).

functional derivative Let V be a Banach
space, V ∗ its dual space, and F : V → R differ-
entiable at x ∈ V . The functional derivative ofF
with respect to x is the unique element δF

δx
∈ V ∗

(if it exists), such that

DF(x) · y =<
δF

δx
, y >, for all y ∈ V

where<,>: V ∗×V → R is the pairing between
V ∗ and V and DF is the Frechet derivative of F ,
i.e., DF(x) · y = limt→0

1
t
[F(x + ty)− F(x)].

functional motif A pattern present more
than once in a set of biochemical reactions,
described from any point of view.
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Table 1 Some Examples of Functional Motives
Type An Example

Biochemical Methyl transfer reaction
Thermodynamic Reaction ri has �G′ = Gi , reaction ri+1 has

�G′ = Gi+1, Gi > 0, Gi+1 < 0, |Gi+1| > |Gi |
Chemical Aldol condensation
Mechanistic Phosphoenzyme intermediate
Kinetic Non-allosteric sequential enzyme
Dynamical Connected reactions exhibiting birythmicity
Topological Reactions and compounds forming a cycle of length

n, 4 ≤ n ≤ 7, with at least one reaction requiring
an additional compound not a member of the cycle

Regulatory Rate increased upon binding of ligand
Phylogenetic Mammalian phosphoglycerate mutases

Comment: Types of motif and some examples
can be found in Table 1 below. See also bio-
chemical, chemical, dynamical, kinetic, mecha-
nistic, phylogenetic, regulatory, thermodynamic,
and topological motives.

functor (1) A function between categories.
(2) An operator denoting the relation satisfied

by a tuple’s arguments.
Comment: Where the functor, also called an

operator in some contexts, is written is largely a
matter of convention. Some operators are written
as prefixes (e.g., derivatives, logical predicates);
others are infix operators, such as the common
arithmetic ones; and still others are postfix oper-
ators, such as exponentiation. Consider the equa-
tion x = y + a. This equation uses two binary
operators, = and +, seen more easily by writing
the operations as relations = (+(y, a), x).

fundamental theorem of algebra Every
polynomial of degree n ≥ 1 with complex coef-
ficients has at least one root in the complex num-
bers C.

fundamental theorem of calculus Let f be
continuous (hence integrable) on [a, b] and let F
be an antiderivative of f (i.e., F ′(x) = f (x)),
then ∫ b

a

f (x)dx = F(b)− F(a).

fusion (in biotechnology) The amalgama-
tion of two distinct cells or macromolecules into
a single integrated unit.

futile cycle A cycle of alternating com-
pound and reactive conjunction nodes which,
stoichiometrically, regenerates all compounds
in the cycle and consumes more nucleotide
or coenzyme molecules than it produces.

Comment: The biochemical connotation of
the word is strongly dependent on the notion
of futility. A disproportionately large energy
or substituent consumption for no apparent syn-
thetic or catabolic change. It also depends on
stoichiometry. Clearly for futility to occur, all
“nonenergetic” molecules which enter the cycle
must remain in it. Thus if some proportion are
diverted out of the cycle to other fates, so that
the stoichiometry condition is broken, the cycle
will decay and energy or substituent consump-
tion will decline.

The quotation marks of “nonenergetic” are
meant to warn of elastic biological language.
Every molecule has the intrinsic energy of its
chemical bonds, so strictly speaking no molecule
is nonenergetic. But in a biochemical context,
certain bonds of certain molecules such as ATP
and NADH are broken in many reactions to yield
particularly convenient amounts of energy for the
reaction or a substituent group for transfer to
another molecule. Compounds used as energy
or substituent sources are regenerated by many
other reactions. The net result is that energy
or substituent groups (or both) are transferred
among molecules by these “energetic” or “cur-
rency” metabolites.
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G
GGG-graded algebra An algebra A together
with a map # : g �→ Ag called the degree map
which associates a vector subspace Ag to any
element g ∈ G. The subspaces Ag are not neces-
sarily subalgebras. However, the product of A

is compatible with the degree map, in the sense
that if a ∈ Ag and b ∈ Ah then a · b ∈ Agh.
The elements a ∈ Ag are called homogeneous of
degree g.

Galerkin method An approach to the dis-
cretization of a variational problem

u ∈ V :< A(u), u >= 0 ∀v ∈ V,

V a Banach space, A : V → V ′ continu-
ous. It relies on two finite dimensional subspaces
Vh,Wh ⊂ V to obtain the discrete variational
problem

uh ∈ Vh : < A(uh), vh >= 0 ∀vh ∈ Wh. (4)

The space Vh is called the trial space, the space
Wh is known as the test space. If Vh = Wh we
confront a Ritz-Galerkin method, the more gen-
eral case is often referred to as a Petrov-Galerkin
method. Necessary and sufficient conditions for
existence and uniqueness of solutions of (4) are
supplied inf-sup conditions.

Galerkin orthogonality Let a be a sesqui-
linear form on a Banach space V and Vh be a
subspace of V that may represent a finite element
space. For f ∈ V ′ the functions u ∈ V and
uh ∈ Vh are to satisfy

a(u, v) = f (v) ∀v ∈ V,

a(uh, vh) = f (vh) ∀vh ∈ Vh.

The Galerkin orthogonality refers to the straight-
forward relationship

a(u− uh, vh) = 0 ∀vh ∈ Vh.

Galilei group The closed subgroup of
GL(5,R) consisting of Galilei transformations,
i.e., of matrices of the following block structure R v a

0 1 t

0 0 1


where R ∈ SO(3), v, a ∈ R

3, r ∈ R.

gamma function The complex function
given by

N(z) =
∫ ∞

0
t z−1e−t dt

for complex z with positive real part.

Gȧrding inequality The inequality satisfied
by a coercive sesquilinear form on some Sobolev
space.

Gateaux derivative Let V,W be Banach
spaces, U ⊂ V open. The Gateaux derivative or
directional derivative of a map F : U ⊂ V →
W at the point x ∈ U in direction h ∈ V is
defined by

DF(x, h) = lim
t→0

1

t
[F(x + th)− F(x)].

F is called Gateaux differentiable at x ∈ U if
DF(x, h) exists for all h ∈ V .

Gateaux-Levi derivative Let V,W be
Banach spaces, U ⊂ V open. A map F : U →
W is called Gateaux-Levi differentiable at the
point x ∈ U if it is Gateaux differentiable at x
and the map h ∈ V �→ DF(x, h) from V to W is
linear and bounded. If F is Gateaux-Levi differ-
entiable, we can set DF(x)h = DF(x, h) and
get

F(x + h) = F(x)+DF(x)h+ RF(x, h)

where

lim
t→0

RF(x, th)

t
= 0, f or each h ∈ V.

gauge group The group of gauge transfor-
mations.
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gauge invariant In field theory, a Lagran-
gian which admits a gauge transformation.

gauge theory A quantum field theory with a
gauge invariant Lagrangian.

gauge transformation In field theory a
transformation of the fields which leaves the
equations of motion invariant. For example, in
electrodynamics if we add to the electromagnetic
potential A the gradient of a function ∇φ, then
the Maxwell equations are invariant under this
gauge transformation A �→ A+ ∇φ.

In terms of principal fiber bundles a gauge
transformation is an automorphism of the total
space that covers the identity of the base space,
i.e.: If π : P → M is a principal G bundle,
then a diffeomorphism φ : P → P is called
a gauge transformation if φ(p · g) = φ(p) · g
for all p ∈ P, g ∈ G and π(f (p)) = π(p).
Gauge transformations form an infinite dimen-
sional Lie group (under composition), called the
group of gauge transformations or gauge group.
Elements of its Lie algebra are called infinitesi-
mal gauge transformations.

Gaussian chain The simplest mathematical
model for a polymer chain molecule. The model
treats the molecule as a random walk and neglects
the excluded volume effect. Each step in the walk
is assumed to be a random variable. In the limit of
a large number of steps, the distribution for the
end-to-end distance is approximately Gaussian
distributed. (cf. P.J. Flory, Statistical Mechanics
of Chain Molecules, John Wiley & Sons, New
York, 1969.)

general linear group The n2 dimensional
Lie group of linear isomorphisms form R

n to R
n,

denoted by GL(n,R). The group of linear iso-
morphisms form C

n to C
n is called the (complex)

general linear group, denoted byGL(n,C). A ∈
GL(n) if A is an invertible real (complex) n× n

matrix, i.e., det A �= 0.

generalized function Let ; ⊂ R
n be open

and C∞
0 (;) the Frechet space of infinitely dif-

ferentiable functions with compact support in
;. A generalized function or distribution is
a continuous linear functional on the space
C∞

0 (;).

geodesic In Riemannian geometry a curve γ
whose velocity γ̇ is autoparallel to γ , i.e., satis-
fies the geodesic equations ∇γ̇ (t)γ̇ (t) = 0, or, in
local coordinates

γ̈ i + Ni
jkγ̇

j γ̇ k = 0,

whereNi
jk are the Christoffel symbols. For exam-

ple, in R
n geodesics are straight lines.

More generally, given a manifold M with a
connection N, a curve whose tangent vector γ̇

is parallel transported along the curve itself, i.e.,
∇γ̇ γ̇ = 0.

geodesic equations See geodesic.

geodesic motion For the kinetic energy
Lagrangian, with metric tensor gij

L(qi, q̇i) = 1

2

n∑
i,j=1

gij (q)q̇
i q̇j

the Euler-Lagrange equations are called
geodesic flow or geodesic motion; they are
equivalent to the geodesic equations.

Gibbs energy diagram A diagram showing
the relative standard Gibbs energies of reactants,
transition states, reaction intermediates and
products, in the same sequence as they occur in
a chemical reaction. These points are often con-
nected by a smooth curve (a “Gibbs energy pro-
file,” commonly still referred to as a “free energy
profile”) but experimental observation can pro-
vide information on relative standard Gibbs ener-
gies only at the maxima and minima and not at
the configurations between them. The abscissa
expresses the sequence of reactants, products,
reaction intermediates, and transition states and
is usually undefined or only vaguely defined by
the reaction coordinate (extent of bond break-
ing or bond making). In some adaptations the
abscissas are, however, explicitly defined as bond
orders, Bronsted exponents, etc.

Contrary to statements in many textbooks, the
highest point on a Gibbs energy diagram does not
necessarily correspond to the transition state of
the rate-limiting step. For example, in a stepwise
reaction consisting of two reaction steps:

(i.) A+ B
→← C;

(ii.) C +D → E.
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One of the transition states of the two reaction
steps must (in general) have a higher standard
Gibbs energy than the other, whatever the con-
centration ofD in the system. However, the value
of that concentration will determine which of the
reaction steps is rate-limiting. If the particular
concentrations of interest, which may vary, are
chosen as the standard rate, then the rate-limiting
step is the one of highest Gibbs energy.

Gibbs energy of activation (standard free
energy of activation), �‡G0 The standard
Gibbs energy difference between the transition
state of a reaction (either an elementary reaction
or a stepwise reaction) and the ground state of the
reactants. It is calculated from the experimental
rate constant k via the conventional form of the
absolute rate equation:

�‡G = RT [ln(kB/h)− ln(k/T )]

where kB is the Boltzmann constant and h

the Planck constant (kB/h = 2.08358 ×
1010 K−1s−1). The values of the rate constants,
and hence Gibbs energies of activation, depend
upon the choice of concentration units (or of the
thermodynamic standard state).

Gram-Schmidt orthogonalization A pro-
cess to construct an orthonormal basis in a
Hilbert space out of an arbitrary Hilbert basis.

Green’s functions Auxiliary functions used
to solve nonhomogeneous boundary value prob-
lems. Example: The general solution of the
boundary value problem

−y ′′ = f (x) , y(0) = 0, y(1) = 0

can be written in the form

y = φ(x) =
∫ 1

0
G(x, s)f (s)ds

where G(x, s) is the Green’s function defined by

G(x, s) =
{

s(1 − x), 0 ≤ s ≤ x,

x(1 − s), x ≤ s ≤ 1 .

Green’s theorem A special case of Stokes’
theorem for the plane. LetP,Q be differentiable
functions in a region ; ⊂ R

2, then∫ ∫
;

(
∂Q

∂x
− ∂P

∂y

)
=
∫
∂;

Pdx +Qdy.

grammar For any language L, the grammar
X is the set of rules specifying the syntax of well-
formed constructs in L.

Comment: A synonym for the rules (and con-
fusingly, sentences formed by applying the rules)
is “productions.” Grammars have three func-
tions: to generate and to recognize constructs
in a language, and to transform one language
to another. The most familar example of a
grammar comes from string grammars built from
natural languages, which specify the syntactic
properties a sentence must fulfill for it to be
“legal.” Many grammars, and the languages
they describe, fall into a hierarchy of increasing
mathematical complexity first devised by Noam
Chomsky. A context-sensitive grammar, one of
the more complex types, specifies that a token’s
output depends on its context. Examples in
English are a little contrived: perhaps the best
is “Dick and Jane went north and south, respec-
tively.” Here “respectively” signals a mapping
function, so that Dick went north and Jane south.
Grammars are commonly applied to recognize
features of DNA and protein sequence. In that
context they are usually called string grammars.
They are also used to recognize and generate pat-
terns of chemical and biochemical structure and
function. See graph grammar.

graph A graph G(V, E) consists of a set
of vertices V , V �= ∅ and a set of edges
e(λ, vi, vj ) ∈ E, E ≥ ∅, where λ ∈ L,L �= ∅
is the type of relation the edge expresses, and
{vi, vj } ∈ V, i �= j are the (possibly empty) ver-
tices associated with that edge.

Comment: This definition has edges express-
ing relationships but allows them to be
unbounded by vertices on either or both sides
(“free” edges). This latter feature is particularly
useful in specifying certain types of graphs and
operators upon them. All the graphs considered
here are finite; have one and only one edge join-
ing any pair of nodes (are not multigraphs); and
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have no edges with only one node (loops; not a
pseudograph). Derived from G. Rozenberg (per-
sonal communication).

graph grammar A grammar over a set G of
graphs G(V, E).

Comment: Like a natural language or string
grammar, a graph grammar provides rules to
generate, recognize, and transform graphs; for
example, expanding a token for a substituent
group into the atoms and bonds of that group,
or contracting the group to an abbreviation. Mir-
roring the chemistry, one could form bonds and
specify orientation by examining an atom’s con-
text. This suggests the grammar is context-
sensitive. However, to date the only formal
proofs for molecular languages are that linear
polymers such as DNA are greater than context-
free (noncontext-free), a superset which includes
the context-sensitive grammars among its mem-
bers. So while it is reasonable to conjecture that
molecules form a context-sensitive language,
there is no formal proof yet.

graph theory The branch of mathematics
dealing with the topological relationships among
abstract graphs.

Comment: Graph theory is a rich source for
pattern recognition algorithms.

Grassman algebra See exterior algebra.

ground In logic and logic programming, a
term which is not, or does not include, a variable.

Comment: The restriction is meant to avoid
wiring confusion.

group (1) A defined linked collection of
atoms or a single atom within a molecular entity.
The use of the term in physical organic and gen-
eral chemistry is less restrictive than the defini-
tion adopted for the purpose of nomenclature of
organic compounds.

(2) A set G with a binary operation which is
associative. Each element is assumed to have an
inverse and G contains an identity element.

group homomorphism A map φ : G → H

between two groups such that

φ(eG) = eH φ(g1 · g2) = φ(g1) · φ(g2)

where eG and eH denote the identity elements of
the groups G and H , respectively.
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H
h-version of finite elements A strategy that
seeks to achieve a sufficiently small discretiza-
tion error of a finite element scheme for a bound-
ary value problem by using fine meshes. This can
mean a small global meshwidth or local refine-
ment. The latter is employed in the context of
adaptive refinement.

half-life The time t1/2 required for one half
of a population to change randomly from some
state ∫ to another state ∫ ′. At least one of these
two states must be observable.

Comment: The classic example of half-life is
radioactivity. In any sample of matter, some of
the nuclei will be radioactive isotopes and the
remainder not. The decline in the radioactivity
of the sample is governed by a first-order Poisson
process

N = N0e
−λt

where1 N and N0 are the current and original
number of radioactive atoms in the sample and
λ the characteristic decay constant for an iso-
tope. Thus t1/2 = ln 2/λ. Judged by the metric
of radioactivity, nonradioactivity is a nonobserv-
able state (though it can of course be observed
by other assays).

Hamilton equations Let (q1, . . . , qn, p1,

. . . , pn) be canonical coordinates and H a
smooth function. Hamilton’s equations for H

are

q̇ i = ∂H

∂ṗi

, ṗi = −∂H

∂q̇i
, i = 1, . . . , n.

Hamilton-Jacobi equation Let U ⊂ R
n be

open and u : U×R → R. The Hamilton-Jacobi
equation for u is

ut +H(Du, x) = 0,

where Du = Dxu = (ux1
, . . . , uxn

) denotes the
gradient of u with respect to the spatial variable
x = (x1, . . . , xn).

1This notation is restricted to this discussion and char-
acteristic of that seen in other texts on this subject; do not
confuse it with notation on reactions elsewhere, especially
the use of N and λ.

Hamilton principle The principle accord-
ing to which the action functional determines
configurations of motion (also called critical con-
figurations). Critical configurations are those
for which the action functional is stationary with
respect to all compactly supported deformations.
For this reason, the Hamilton principle is also
called the principle of stationary action.

In Lagrangian systems the Hamilton principle
is equivalent to the Euler-Lagrange equations,
which, depending on the number of independent
variables (n = 1 or n > 1), are called equations
of motion or field equations, respectively.

See also Lagrangian system and action func-
tional.

Hamiltonian system Let (M,ω) be a sym-
plectic manifold and H : M → R a smooth
function. The corresponding Hamiltonian vec-
tor field XH is determined by the condition
ω(XH , Y ) = dH · Y. The flow of XH in canon-
ical coordinates satisfies Hamilton’s equations
and is called a Hamiltonian system.

More generally, an evolution equation is
called a Hamiltonian system if it can be written in
the form Ḟ = {F,H } with respect to some Pois-
son bracket { , }. H is called the Hamiltonian of
the system.

Hamiltonian vector field Let (P, { , }) be
Poisson manifold and H ∈ C∞(P ). The Hamil-
tonian vector field XH of H is defined by

XH(G) = {H,G}, for all G ∈ C∞(P ).

Hammett equation (Hammett relation) The
equation in the form:

lg(k/k0) = ρσ

or
lg(K/K0) = ρσ

applied to the influence of meta- or para-
substituents X on the reactivity of the func-
tional group Y in the benzene derivative m- or
p-XC6H4Y . k or K is the rate or equilibrium
constant, respectively, for the given reaction of
m- or p-XC6H

4Y ; k0 or K0 refers to the reac-
tion of C6H5Y , i.e., X = H ; σ is the substituent
constant characteristic of m- or p-X: ρ is the
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reaction constant characteristic of the given reac-
tion of Y . The equation is often encountered in
a form with lg k0 or lg K0 written as a separate
term on the right-hand side, e.g.,

lg k = ρσ + lg k0

or
lgK = ρσ + lgK0

It then signifies the intercept corresponding to
X = H in a regression of lg k or lg K on σ .

See also Yukawa-Tsuno equation.

harmonic form A k-form α on a manifold
M is called harmonic if �α = 0, where � =
dδ + δd is the Laplace-deRham operator on M .

harmonic frequency generation Produc-
tion of coherent radiation of frequency kν(k =
2, 3, . . .)  from coherent radiation of frequency
ν. In general, this effect is obtained through the
interaction of laser light with a suitable optical
medium with nonlinear polarizability. The case
k = 2 is referred to as frequency doubling, k = 3
is frequency tripling, and k = 4 is frequency
quadrupling. Even higher integer values of k are
possible.

harmonic function A function u satisfying
�u = 0. See Laplace equation.

harmonic oscillator The function H =
1
2 (−d2/dx2 + x2) is the Hamiltonian of the har-
monic oscillator (assumingm = 1) . The integral
curves (trajectories) are circles.

heat, q,Qq,Qq,Q Energy transferred from a hotter
to a cooler body due to a temperature gradient.

heat equation Let U ⊂ R
n open and u :

U × R → R. The heat equation or diffusion
equation for u is

ut −�u = 0.

heat kernel On Rn × R
n the function

et�(x, y) = (4πt)−n/2exp

{
−|x − y|2

4t

}
The action of the heat kernel on a function f is
defined by

(et�f )(x) =
∫

R
n

et�(x, y)f (y)dy.

Heisenberg uncertainty principle In quan-
tum mechanics, a principle set forth by Heisen-
berg which asserts that the simultaneous exact
measurements of the values of position and
momentum is impossible. If �q is the range
of values found for the coordinate q of a particle,
and �p is the range in the simultaneous meas-
urement of the corresponding momentum, then
�q ·�p ≥ h, where h is the Planck constant.

helicity A quantitative measure of the
amount of helix in a polymer molecule with heli-
cal structure.

helix In biochemistry, a molecular structure
having a given skew symmetry. For proteins,
there is α-helix which was first proposed by
L. Pauling. For DNAs, there is a double helix.

helix-coil transition A mathematical model
originally develped for the probability distribu-
tion of α-helix formation in a polypeptide. The
model is formulated based on the transfer matrix
method. It is a generalization of one-dimensional
Ising model (cf. D. Poland and H.A. Scher-
aga, Theory of Helix-Coil Transitions, Academic
Press, New York, 1970).

Helmholtz equation Let U ⊂ R
n be open

and u : U ⊂ R
n → R. The Helmholtz equation

or eigenvalue equation for u is

−�u = λu.

Hermitian operator See self-adjoint oper-
ator.

heterolysis (heterolytic) The cleavage of a
covalent bond so that both bonding electrons
remain with one of the two fragments between
which the bond is broken.

Higgs mechanism In quantum field theory,
the spontaneous breaking of gauge symmetry, in
which a massless gauge boson (Goldstone boson)
and a massless scalar field combine to form a
massive gauge boson, called a Higgs boson.

Hilbert-Schmidt operator A bounded lin-
ear operator T on a Hilbert space H is called
Hilbert-Schmidt if traceT ∗T < ∞, that is,∑

λj < ∞ for the eigenvalues of T ∗T .
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Hilbert space A vector space H which has
an inner product < , > (scalar product) and
is complete with respect to the induced norm
‖x‖2 =< x, x >.

Hodgkin-Huxley model A mathematical
model for the dynamics of electrical potential
and ionic currents, due to sodium and potas-
sium, across a biological cell membrane. It
consists of four nonlinear ordinary differen-
tial equations. The model exhibits various
interesting behavioral characteristics observed
experimentally such as threshold phenomenon
and oscillation. See threshold phenomenon and
excitability.

Hölder inequality Let p, q, r be positive
integers satisfying p, q, r ≥ 1 and p−1 + q−1 =
r−1. If f ∈ Lp(X, dµ), g ∈ Lq(X, dµ), then
fg ∈ Lr(X, dµ) and Hölder’s inequality holds:

‖fg‖r ≤ ‖f ‖p‖g‖q

homeomorphism (between two topological
spaces X and Y ) A map ϕ : X → Y which
is continuous with a continuous inverse map
ϕ−1 : Y → X.

homolysis (homolytic) The cleavage of a
bond (“homolytic cleavage” or “homolytic fis-
sion”) so that each of the molecular fragments
between which the bond is broken retains one
of the bonding electrons. A unimolecular reac-
tion involving homolysis of a bond (not forming
part of a cyclic structure) in a molecular entity
containing an even number of (paired) electrons
results in the formation of two radicals.

It is the reverse of colligation. Homolysis is
also commonly a feature of bimolecular substitu-
tion reactions (and of other reactions) involving
radicals and molecules.

homotopy Let X and Y be topological
spaces and ϕ : X → Y and φ : X → Y

be two continuous maps from X to Y . They
are homotopic if there exists a continuous map
F : [0, 1] ×X → Y such that

(i.) F(0, x) = ϕ(x);

(ii.) F(1, x) = φ(x).

The map F is called a homotopy between ϕ
and φ.

Let A ⊂ X be a subset; a homotopy F
between the maps ϕ and φ is a homotopy relative
to A ⊂ X if we have also:

(iii.) ∀t ∈ [0, 1], ∀a ∈ A, F(t, a) = φ(a) =
ϕ(a).

In particular one can consider homotopy of
loops based at x0 ∈ X in a topological space X.
Homotopy relative to A = {x0} is an equivalence
relation on the set of all loops based at x0 ∈ X

and the quotient space π0(X, x0) is called the
homotopy group of X. It is in fact a group under
the compositions induced by loop composition
(see loop); this group does not depend on the base
point x0 ∈ X, and it is a topological invariant
of X.

See also contractible.

horizontal lift (induced by a connection �b)
The unique vector N(X) ∈ �b projecting onto
X. Local generators of the space �b are of the
form ∂µ − Ni

µ(x, y)∂i . If X = Xµ∂µ is a vec-
tor field over M , then the horizontal lift of X is
locally given by

N(X) = Xµ(∂µ − Ni
µ(x, y))∂i ∈ �b

hydrocarbons Compounds consisting of
carbon and hydrogen only.

hydron The general name for the cationH+;
the species H− is the hydride anion and H is
the hydro group. These are general names to
be used without regard to the nuclear mass of
the hydrogen entity, either for hydrogen in its
natural abundance or where it is not desired to
distinguish between the isotopes.

hyperbola The conic section with equation
x2/a2 − y2/b2 = 1. See asymptote to the hyper-
bola.
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hyperbolic critical point A critical point
m0 of a vector field X (i.e., X(m0) = 0) is called
hyperbolic or elementary if none of the eigenval-
ues of the linearizationX′(m0) (called character-
istic exponents) has zero real part. Liapunov’s
theorem shows that near a hyperbolic critical
point the flow looks like that of its linearization.

hyperbolic equation A second-order par-
tial differential equation of the form

Auxx +Buxy +Cuyy +Dux +Euy + Fu = G

such that B2 − 4AC > 0. It is called parabolic
if B2 − 4AC = 0 and elliptic B2 − 4AC < 0.
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I
ideal (of an algebraA) A left ideal is a vector
subspace I ⊂ A such that ∀a ∈ A, i ∈ I, a · i ∈
I . Analogously, a right ideal is a vector subspace
I ⊂ A such that ∀a ∈ A, i ∈ I, i · a ∈ I . A
bilateral ideal is left ideal which is also a right
ideal.

The quotient of an algebra by a bilateral ideal
is an algebra. In the category of algebras with
unity, proper ideals are not subalgebras. In fact,
if the unit 1 ∈ I belongs to the ideal, then I = A.
On the contrary, ideals of Lie algebras are always
subalgebras.

identity (1) An element e of a set X with a
binary operation * satisfying

a ∗ e = e ∗ a = a

for all a ∈ X.
(2) A true mathematical equation.

image Let r be a relation with domainA and
codomain B, and let a ∈ A, r(a) ∈ B. Then the
image of a under r , r(a) ∈ B, is produced by
applying r to a.

Comment: See the comment on relation for
more details. See also codomain, domain, range,
and relation.

immersional wetting A process in which a
solid or liquid, β, is covered with a liquid, α,
both of which were initially in contact with a gas
or liquid, δ, without changing the area of the αδ-
interface.

immunoglobulin (Ig) A protein of the
globulin-type found in serum or other body fluids
that possesses antibody activity. An individual Ig
molecule is built up from two light (L) and two
heavy (H) polypeptide chains linked together by
disulfide bonds. Igs are divided into five classes
based on antigenic and structural differences in
the H chains.

implicit function theorem Let V,W,Z be
Banach spaces, U1 ⊂ V,U2 ⊂ W open and
f : U1 ×U2 → Z differentiable. For some x0 ∈
U1, y0 ∈ U2 assume D2f (x0, y0) : W → Z is
an isomorphism. Then there are neighborhoods
U0 of x0 and Z0 of f (x0, y0) and a unique differ-
entiable map g : U0 ×Z0 → U2 such that for all
(x, z) ∈ U0 × Z0

f (x, g(x, z)) = z.

incidence relation See edge.

incident A node vi is incident to an edge
(vi ,vj ), since it is an end point of the edge.

index See Fredholm operator, Atiyah-
Singer index theorem.

inf-sup condition A sesqui-linear form a :
V × V → C on a Hilbert space V satisfies an
inf-sup condition if, for some α > 0,

supv∈V
|a(u, v)|
‖v‖V

≥ α‖u‖V ∀u ∈ V,

supv∈V
|a(u, v)|
‖v‖V

> 0 ∀u ∈ V.

This is necessary and sufficient for the variational
problem

u ∈ V : a(u, v) = f (v) ∀v ∈ V

to possess a unique solution for any f ∈ V ′. The
solution satisfies ‖u‖V ≤ α−1‖f ‖V ′ .

For a linear symmetric variational saddle
point problem with sesqui-linear forms a : V ×
V → C and b : V × W → C the suitable inf-
sup conditions claim the existence of constants
α, β > 0 such that

R{a(u, u)} ≥ α‖u‖2
V ∀u ∈ Ker(B),

supv∈V
|b(v, p)|
‖v‖V

≥ β‖p‖V ∀p ∈ V

where

Ker(B) := {v ∈ V : b(v, q) = 0 ∀q ∈ W } .
Then the variational saddle point problem, which
seeks u ∈ V, p ∈ W such that

a(u, v)+ b(v, p) = f (v) ∀v ∈ V

c
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b(u, q) = g(q) ∀q ∈ W,

has a unique solution. It satisfies

‖u‖V ≤ 
1

α
‖f ‖V ′ +

(‖a‖
α

+ 1

)
1

β
‖g‖W ′ ,

‖p‖W ≤
1

β

(‖a‖
α

+ 1

)
‖f ‖V ′ +

(‖a‖
α

+ 1

) ‖a‖
β2 ‖g‖W ′ .

Similar results are known for nonsymmetric sad-
dle point problems.

infinite set A set whose cardinality is not
finite. See also cardinality, countable set, denu-
merably infinite set, finite set, and uncountably
infinite set.

infix An operator written between its
operands; thus for two operands x and y and
operator f , the syntax is xfy. See also func-
tor, postfix, prefix, and relation.

inherent viscosity (of a polymer) The ratio
of the natural logarithm of the relative viscosity,
ηr , to the mass concentration of the polymer, c,
i.e.,

ηinh ≡ ηln = (ln ηr)/c.

The quantity ηln, with which the inherent viscos-
ity is synonymous, is the logarithmic viscosity
number.

Notes: (1)The unit must be specified: cm3g−1

is recommended.
(2) These quantities are neither viscosities nor

pure numbers. The terms are to be looked at
as traditional names. Any replacement by con-
sistent terminology would produce unnecessary
confusion in the polymer literature.

inhibitor A substance that diminishes the
rate of a chemical reaction; the process is called
inhibition. Inhibitors are sometimes called nega-
tive catalysts, but since the action of an inhibitor
is fundamentally different from that of a catalyst,
this terminology is discouraged. In contrast to a
catalyst, an inhibitor may be consumed during
the course of a reaction. In enzyme-catalyzed
reactions an inhibitor frequently acts by binding
to the enzyme, in which case it may be called an
enzyme inhibitor.

injection A map φ : A → B which is
injective, so that whenever φ(a1) = φ(a2) then
a1 = a2.

injective Let A and B be two sets, with A

the domain and B the codomain of a function
f . Then the function f is injective if, for any
x and x ′ ∈ A, x �= x ′, their images f (x) �=
f (x ′). Injective functions are also called one-to-
one transformations of A into B. See also into,
onto, bijection, and surjection.

inner product An inner product or scalar
product on a complex vector space V is a map
< , >: V × V → C such that, for all x, y, z ∈
V, α ∈ C

(i.) < x, y >= < y, x > (the bar denotes
complex conjugate);

(ii.) < x + y, z >=< x, z > + < y, z >;

(iii.) < αx, y >= α < x, y >;

(iv.) < x, x >≥ 0;

(v.) < x, x >= 0 only if x = 0.

Such a space is called an inner product space.

inner product operator Let M be a mani-
fold, ;k(M) the space of exterior k-forms on M

and X a vector field on M . The inner product
operator iX is the linear map iX : ;k+1(M) →
;k(M) defined by

iXω(X1, . . . , Xk) = ω(X,X1, . . . , Xk) ,

ω ∈ ;k+1(M),X1, . . . Xk vector fields. iX is an
antiderivative with respect to the ∧ product.

instance In logic and logic programming, A
is an instance of B if there exists a substitution θ

such that A = Bθ . See also instantiation.

instantiation In logic and logic program-
ming, the substitution of a ground term for a vari-
able to produce an instance of the variable.

Comment: Substitution has specialized mean-
ings in chemistry and logic programming; here
the logic programming meaning is used. See also
instance.

integrable distribution A distribution of
subspaces � such that for each point x ∈ M

there exists an integral manifold through x.
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integral (sub)manifold (of a distribution of sub-
spaces � of rank n) A submanifold N ⊂ M

such that TxN ⊂ �x for all x ∈ N . Usually N

is required to be of dimension n = rank(�)

integrable system A Hamiltonian system
XH on a 2n-dimensional symplectic manifold
(Mω) such that there exist n linearly indepen-
dent functions H = F1, . . . , Fn in involution,
i.e., {Fi, Fj } = 0, i, j = 1, . . . , n and dFi(m)

are linearly independent at each point m ∈ M .

integral curve Let X be a vector field on a
manifold M . An integral curve of X with initial
condition x0 at t = 0, is a smooth curve c :
[a, b] → M such that c(0) = x0 and

c′(t) = X(c(t)), for all t ∈ [a, b].

See also dynamical system.

intension In this context only, the use of an
implicit representation of a datum in a database
or model, which is not fully instantiated within
the database and whose value must be computed
according to the representation.

Comment: The restriction is meant to avoid
philosophical wrangling and confine the dis-
course to that of databases. A common inten-
sional representation is a declarative rule, but the
output of a statistical algorithm, federated to a
database and performed on data derived from it
or other computations, is another example. See
also extension.

interior (of a set) For a subset A of a topo-
logical space, the set of points p ∈ A such that
A also contains a neighborhood of p.

intermediate A molecular entity with a life-
time appreciably longer than a molecular vibra-
tion (corresponding to a local potential energy
minimum of depth greater than RT ) that is
formed (directly or indirectly) from the reactants
and reacts further to give (either directly or indi-
rectly) the products of a chemical reaction; also
the corresponding chemical species.

internal energy, UUU Quantity of change
which is equal to the sum of heat, q, brought
to the system and work, w, performed on it,
�U = q + w. Also called thermodynamic
energy.

into In mathematics, sometimes the word is
used to identify a one-to-one mapping, some-
times simply a mapping of a set X which trans-
forms points of X into points of another set Y ,
e.g., y = x2 is a mapping of the real numbers
into the real numbers, or onto the nonnegative
real numbers. See also onto, bijection, injection,
and surjection.

intramolecular (1) Descriptive of any pro-
cess that involves a transfer (of atoms, groups,
electrons, etc.) or interactions between different
parts of the same molecular entity.

(2) Relating to a comparison between atoms
or groups within the same molecular entity.

intramolecular isotope effect A kinetic iso-
tope effect observed when a single substrate,
in which the isotopic atoms occupy equivalent
reactive positions, reacts to produce a nonstatis-
tical distribution of isotopomeric products. In
such a case the isotope effect will favor the path-
way with lower force constants for displacement
of the isotopic nuclei in the transition state.

intrinsic rate constant See rate constant.

intrinsic viscosity (of a polymer) The lim-
iting value of the reduced viscosity, ηi/c, or the
inherent viscosity, ηinh, at infiinite dilution of the
polymer, i.e.,

[η] = lim
c→0

(ηi/c) = lim
c→0

ηinh

Notes: (1) This term is also known in the lit-
erature as the Staudinger index.

(2) The unit must be specified; cm3g−1 is rec-
ommended.

(3) This quantity is neither a viscosity nor a
pure number. The term is to be looked on as a
traditional name. Any replacement by consistent
terminology would produce unnecessary confu-
sion in the polymer literature. Synonymous with
limiting viscosity number.

inverse function theorem Let V,W be
Banach spaces, U ⊂ V open and f : U ⊂
V → W differentiable. If Df (x0) is a lin-
ear isomorphism Df (x0) : V → W , then f

is a local diffeomorphism, i.e., a diffeomorphism
from a neighborhood of x0 onto a neighborhood
of f (x0).
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inverse inequality Inequalities bounding
stronger norms (in the sense that they contain
higher derivatives) of functions in finite dimen-
sional spaces by weaker norms. An impor-
tant example are bounds for the H 1(;)-norm of
finite element functions in terms of their L2(;)-
norm. The constants in these inequalities are
invariably for families of approximating spaces
that are asymptotically dense. For instance, for
the above pair of norms and h-version families
of H 1(;)-conforming finite element spaces on
quasi-uniform and shape regular meshes the con-
stant will grow like O(h−1) where h is the mesh
width.

inverse relation If R ⊆ A × B is a rela-
tion from A to B, then the set R−1 = {(b, a) |
(a, b) ∈ R} is a subset of B × A. R−1 is called
the inverse of R.

invertible A map φ : A → B is invertible if
there exists a map φ−1 : B → A such that

φ−1 ◦ φ = idA φ ◦ φ−1 = idB

The map φ−1 is called the inverse of φ.

involution of functions Two functions f

and g on a symplectic manifold are in involu-
tion when their Poisson bracket vanishes, i.e.,
{f, g} = 0.

involutive distribution A distribution of
subspaces � on M with generators XA such that
[XA,XB] ∈ � where [ , ] is the commutator. A
distribution is involutive if and only if it is inte-
grable (Frobenius theorem).

ion channel In biochemistry, a protein,
embedded in cell membrane, which conducts
ionic current of specific ions. An ion channel
can be either passive or modulated by the electri-
cal voltage across the cell membrane. The latter
is often called voltage-gated ion channel. (cf. B.
Hille, Ionic Channels of Excitable Membranes,
2nd ed., Sinauer Associates, Sunderland, MA,
1992).

ion pair A pair of oppositely charged ions
held together by Coulomb attraction without for-
mation of a covalent bond. Experimentally, an
ion pair behaves as one unit in determining con-
ductivity, kinetic behavior, osmotic properties,
etc.

Following Bjerrum, oppositely charged ions
with their centers closer together than a distance

q = 8.36 × 106z+z−/(εrT )pm

are considered to constitute an ion pair (“Bjerrum
ion pair”). [z+ and z− are the charge numbers of
the ions, and εr is the relative permittivity (or
dielectric constant) of the medium.]

An ion pair, the constituent ions of which are
in direct contact (and not separated by an inter-
vening solvent or other neutral molecule) is des-
ignated as a “tight ion pair” (or “intimate” or
“contact ion pair”). A tight ion pair of X+ and
Y− is symbolically represented as X+Y−.

By contrast, an ion pair whose constituent
ions are separated by one or several solvents or
other neutral molecules is described as a “loose
ion pair,” symbolically represented as X+||Y−.
The members of a loose ion pair can readily inter-
change with other free or loosely paired ions in
the solution. This interchange may be detectable
(e.g., by isotopic labeling) and thus affords an
experimental distinction between tight and loose
ion pairs.

A further conceptual distinction has some-
times been made between two types of loose
ion pairs. In “solvent-shared ion pairs” the
ionic constituents of the pair are separated by
only a single solvent molecule, whereas in
“solvent-separated ion pairs” more than one sol-
vent’s molecule intervenes. However, the term
“solvent-separated ion pair” must be used and
interpreted with care since it has also widely been
used as a less specific term for “loose” ion pair.

ionizing radiation Any radiation consisting
of directly or indirectly ionizing particles or a
mixture of both, or photons with energy higher
than the energy of photons of ultraviolet light or
a mixture of both such particles and photons.

irradiance, EEE Radiant power received by
a surface divided by the area of that surface.
For collimated beams this quantity is sometimes

© 2003 by CRC Press LLC © 2003 by CRC Press LLC 



called intensity and given the symbol I . See also
photon irradiance.

irradiation Exposure to ionizing radiation.

isomer One of several species (or molecular
entities) that have the same atomic composition
(molecular formula) but different line formulae
or different stereochemical formulae and hence
different physical and/or chemical properties.

isomorphic Two sets are isomorphic if there
is an isomorphism between them. Two graphs,
G′ and G, are isomorphic if their nodes can be
labeled with the numbers 1, 2, . . . , p such that
whenever vi is adjacent to vj in G, v̇i and v̇j are
adjacent in G′, 1 ≤ i, j ≤ p, i �= j .

isomorphism (1) A bijection between two
sets which preserves all structure shared by the
sets (e.g., group structure).

(2)A morphism between objects of a category
which is both surjective and injective.

isotope effect The effect on the rate or equi-
librium constant of two reactions that differ only
in the isotopic composition of one or more of
their otherwise chemically identical components
is referred to as a kinetic isotope effect or a
thermodynamic (or equilibrium) isotope effect,
respectively.

isotopically labeled Describing a mixture
of an isotopically unmodified compound with one
or more analogous isotopically substituted com-
pound(s).

isotopically modified Describing a com-
pound that has a macroscopic composition such
that the isotopic ratio of nuclides for at least one
element deviates measurably from that occurring
in nature. It is either an isotopically substituted
compound or an isotopically labeled compound.

isotopically substituted Describing a com-
pound that has a composition such that essen-
tially all the molecules of the compound have
only the indicated nuclide(s) at each designated
position. For all other positions, the absence of
nuclide indication means that the nuclide com-
position is the natural one.

isotopically unmodified Describing a com-
pound that has a macroscopic composition such
that its constituent nuclides are present in the pro-
portions occurring in nature.

isotopologue A molecular entity that differs
only in isotopic composition (number of isotopic
substitutions), e.g., CH4 CH3D, CH2D2.

isotopomer Isomers having the same num-
ber of each isotopic atom but differing in their
positions. The term is a contraction of “iso-
topic isomer.” Isotopomers can be either con-
stitutional isomers (e.g., CH2DCH = 0 and
CH3CD = 0) or isotopic stereoisomers (e.g.,
(R)- and (S) − CH3CHDOH or (Z)- and
(E)− CH3CH = CHD).

isotropic (sub)manifold (in a symplectic mani-
fold [P,ω]) A submanifold M ⊂ P of a
symplectic manifold (P, ω) such that at any point
p ∈ M the tangent space contains its symplectic
polar, i.e.,

(TpM)o ⊂ TpM.

The dimension of an isotropic manifold M is at
most half of the dimension of P .

isotropy group Let ) : G×M → M be a
smooth action of the Lie groupG on the manifold
M . For each x ∈ M the group

Gx = {g ∈ G | )(g, x) = x}

is called the isotropy group of ) at x.
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J
jet bundle Let (B,M, π;F)be a bundle and
Nx(π) be the set of local sections defined around
x ∈ M . The jet space at x is the space J k

x B of
equivalence classes, denoted by jkx σ , in Nx(π),
of sections having contact k at x (i.e., two local
sections are equivalent if they have the same k-
order Taylor polynomial). The union of all such
jet spaces

J kB =
⋃
x∈M

J k
x B

is a bundle over M (as well as over B and over all
J hB for h ≤ k), and it is called the k-jet prolon-
gation of B. If (xµ; yi) are fibered coordinates
of B, then (xµ, yi, yi

µ, . . . , y
i
µ1...µk

) are fibered
coordinates of J k

B . The coordinates yi
µ1...µh

are

meant to be symmetric with respect to the lower
indices µ1 . . . µh for all 1 < h < k.

Any section σ(x) = (xµ, yi(x)) induces a
section of J kB defined by

jkσ (x) = (xµ, yi(x), ∂µy
i(x), . . . , ∂µ1...µk

yi(x))

which is called the k-jet prolongation of σ .

Any bundle morphism ) : B → B ′ (pro-
jecting over a diffeomorphism φ : M → M ′)
induces a bundle morphism J k) : J kB → J kB ′

defined by

jk)(jkx σ ) = jkf (x)() ◦ σ ◦ f −1)

which is called the k-jet prolongation of ).

Analogously, any projectable vector field X

over B induces a projectable vector field jkX

over J kB which is called the k-jet prolongation
of X.

junction point See branch point.
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K
Karle-Hauptman method In x-ray crystal-
lography, the diffraction pattern is essentially
the Fourier transform of the periodic crystal
structure which has both an amplitude and a
phase. In practice, the phase information cannot
be obtained; hence, one has to invert the Fourier
transform without the phase and, hence, the algo-
rithm is not unique. J. Karle and H. Haupt-
man developed a system of inequalities which the
amplitudes have to satisfy. Using these inequal-
ities as constraints, one can uniquely determine
the inverse Fourier transform if the number of
atoms in a unit cell is sufficiently small. The
inequalities are based on the fact that the elec-
tron density is a positive function of which the
diffraction is the Fourier transform (cf. J. Karle,
J. Chem. Inf. Comput. Sci., 34, 381, 1994).

killing field On a Riemannian manifold
(M, g) a vector field X such that the Lie deriva-
tive LXg = 0.

killing vector Over a pseudo-Riemannian
manifold (M, g), a vector field ξ = ξµ(x) ∂µ ∈
X(M) such that the Lie derivative $ξ g vanishes.
If {αβµ}g are the Christoffel symbols of the metric
g, ξ is a killing vector if and only if it satisfies
the killing equation:

∇µξν + ∇νξµ = 0

where ξν = gλνξ
λ and ∇µξν = ∂µξν − {λνµ}gξλ

Accordingly, killing vectors are infinitesimal
generators of isometries of g. A killing vec-
tor is uniquely determined once one specifies its
value ξµ(x0) at a point x0 ∈ M together with
its derivatives ∂νξ

µ(x0). (In fact, by deriving of
the killing equation one obtains a Cauchy prob-
lem which uniquely determines the component
functions ξµ.) On a manifold M of dimension m

one can have at most m(m + 1)/2 killing vec-
tors. The manifolds with exactly m(m + 1)/2
killing vectors are called maximally symmetric;
e.g., the plane, the sphere, and the hypersphere
are maximally symmetric.

kinetic energy, Ek Energy of motion. For
a body of mass m, Ek = mv2/2, where v is the
speed.

kinetic equation A balanced reaction equa-
tion which describes an elementary step in
the kinetic sequence of an overall biochemical
reaction among unambiguously identified reac-
tants. There is no constraint on the number of
participating species. Equally, a set of such equa-
tions which can be combined by any allowed
operation or combination of operations to pro-
duce kinetics identical to those measured for the
overall biochemical reaction.

Comment: The requirement that the equa-
tion be elementary ensures that its order will be
the sum of the molecularities of the reactants
(otherwise, it will be the reactants’ activities).
Kinetic sequences here considered correspond
to the common word descriptors (sequential,
ping-pong, etc.). The requirement for identified
species distinguishes among different proteins
which catalyze the “same” reactions but at differ-
ent rates. Since most kinetic sequences consist
of more than one elementary step, the equations
will usually occur in groups. Since not all reac-
tions are sequential, the definition provides that
they can be combined by operators other than
summation, such as Boolean operators or coeffi-
cients representing the frequency of a particular
type of event in a population of simultaneously
occurring events.

kinetic equivalence Referring to two reac-
tion schemes which imply the same rate law. For
example, consider the two schemes (i.) and (ii.)
for the formation of C from A:

(i.) A
k1 ,OH−

−→←−
k−1 ,OH−

B
k2−→ C

providing that B does not accumulate as a reac-
tion intermediate.

d[C]

dt
= k1k2[A][OH−]

k2 + k−1[OH−]
(1)

(ii.) A
k1−→←−
k−1

B
k2−→

OH− C

Providing that B does not accumulate as a reac-
tion intermediate:

d[C]

dt
= k1k2[A][OH−]

k−1 + k2[OH−]
(2)
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Both equations for d[C]/dt are of the form

d[C]

dt
= r[A][OH−]

1 + s[OH−]
(3)

where r and s are constants (sometimes called
“coefficients in the rate equation”). The equa-
tions are identical in their dependence on con-
centrations and do not distinguish whetherOH−

catalyzes the formation of B, and necessarily also
its reversion to A, or is involved in its further
transformation to C. The two schemes are there-
fore kinetically equivalent under conditions to
which the stated provisos apply.

kinetic motif A kinetic sequence and asso-
ciated constants, represented as a set of balanced
reactions and their parameters, conserved over
different molecules, reactions, or combinations
thereof.

Comment: One of several different appli-
cations of graph theory to biochemistry is to
represent such kinetic motifs. Notice there is
no constraint on the number of species in the
reaction equation. The definition may later be
expanded to include noninitial studies. The
words used to characterize qualitatively enzyme
kinetics (ping-pong, ordered) are useful but
incomplete. In practice, recognition of the values
of the constants will clearly be within tolerances
to minimize experimental variation. See also
chemical, dynamical, functional, mechanistic,
phylogenetic, regulatory, thermodynamic, and
topological motives.

kinetic order The kinetic order of a bio-
chemical reaction is the sum of the molecular-
ities of the reaction. A reaction is said to be of
nth order in a reactant (partial order) if the stoi-
chiometry of that reactant in the reaction equation
is n.

Comment:As defined here, the biochemical reac-
tion corresponds to that for an elementary chem-
ical reaction. The nice correspondence among
molecularity, stoichiometry, and order is a direct
consequence of the restriction to elementary
reactions. In practice, the (partial) order is sim-
ply that exponent for a molecular species in a
kinetic equation that fully accounts for the pro-
duction or consumption of that species, the over-
all order being the sum of the partial orders for
all species. Thus until a reaction is established to
be elementary, one cannot assume that the expo-
nents will be the stoichiometries. If the concen-
tration of a reactant is so large compared to the
others as to be “effectively infinite,” then the reac-
tion becomes zeroth order for that reactant.

kinetic proofreading A mathematical
model based on the kinetics of transcription
(from DNA to RNA) or translation (from RNA
to protein) which explains how an extremely
high accuracy is achieved in these biological
processes in the presence of thermal noise. The
key idea is that these biological processes utilize
free energy in order to obtain high fidelity (cf.
J.J. Hopfield, Proc. Natl. Acad. Sci. U.S.A., 71,
4135, 1974).

Kolmogorov equation Let U ⊂ R
n open

and u : U × R → R. The Kolmogorov equation
for u is

ut −
n∑

i,j=1

aijuxixj
−

n∑
i=1

biuxi
= 0.

Korteweg-deVries (KdV) equation Let
U ⊂ R

n open and u : U × R → R. The
Korteweg-deVries (KdV) equation is the shallow
water wave equation

ut + uux + uxxx = 0 .
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L
label A unique identifier for a node or edge
of a graph, network, or a subnetwork (subgraph).

Comment: Thus, compound names are labels
for those nodes, and an edge is labeled by giving
the tuple of nodes which it joins, so (vi, vj ).

laboratory sample The sample or subsam-
ple(s) sent to or received by the laboratory.
When the laboratory sample is further prepared
(reduced) by subdividing, mixing, grinding, or
by combinations of these operations, the result
is the test sample. When no preparation of the
laboratory sample is required, the laboratory
sample is the test sample. A test portion is
removed from the test sample for the perfor-
mance of the test or for analysis. The laboratory
sample is the final sample from the point of view
of sample collection but it is the initial sample
from the point of view of the laboratory. Several
laboratory samples may be prepared and sent to
different laboratories or to the same laboratory
for different purposes. When sent to the same
laboratory, the set is generally considered as a
single laboratory sample and is documented as a
single sample.

Ladyshenskaja-Babuška-Brezzi (LBB) condi-
tion A sufficient condition for the stability
of finite element schemes for saddle point prob-
lems. It amounts to requiring uniform inf-sup
conditions for the pair of finite element spaces
used in a Galerkin discretization of the saddle
point problem.

Lagrange finite elements A parametric
equivalent family of finite elements giving rise to
H 1(;)-conforming finite element spaces. Para-
metric equivalence is based on the following pull-
back mapping for functions

F)(u)(x) := u()(x)) x ∈ K.

Thus, it is sufficient to specify the finite elements
for reference elements. Lagrangian finite ele-
ments can be distinguished by their polynomial
degree k ∈ N.

First, consider the unit simplex K in R
n. The

local space VK agrees with the space of multi-
variate polynomials of total degree ≤ k, k ∈ N,

VK

:=
{

x �→
∑

α∈N
n
0 ,|α|≤k

aαx
α1
1 · · · xαn

a , aα ∈ C

}
.

The local degrees of freedom are based on point
evaluations

Xk

:=
{
φp : C(K) → C, φ(u) = u(p),p ∈ P

}
,

where

P

:=
{

1

k
(l1, · · · , ln)T , li ∈ N0,

n∑
i=1

li ≤ k

}
⊂ K.

Obviously, we have

dimVK =
(
n+ k

k

)
.

On the unit hyper-cube K ⊂ R
N , the geomet-

ric reference element for quadrilateral and hexa-
hedral meshes, the local spaces VK are given by
polynomials with degree ≤ k in each indepen-
dent variable

VK

:=
{

x �→∑
α∈N

n
0 ,αi≤k aαx

α1
1 · · · xαn

a , aα ∈ C

}
.

Local degrees of freedom are given by point
evaluation in the points

P :=
{

1

k
(l1, · · · , ln)T , li ∈ N0, li ≤ k

}
⊂ K,

which means

dimVK = (k + 1)n.

Lagrangian The Lagrangian formulation
of mechanics is based on the variational principle
of Hamilton. To describe a mechanical system
one chooses a configuration space Q with coor-
dinates qi , i = 1, . . . , n. Then one introduces
the Lagrangian function L = K − V , where K
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is the kinetic and V the potential energy. The
variational principle states

δ

∫ b

a

L(qi, q̇i , t)dt = 0

which leads to the Euler-Lagrange equations of
motion

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 , i = 1, . . . , n.

See also Lagrangian system.

Lagrangian (sub)manifold (in a symplectic
manifold [P,ω]) A submanifold M ⊂ P

of a symplectic manifold (P, ω) which is both
isotropic and coisotropic, i.e., such that

TpM = (TpM)o.

The dimension of a Lagrangian manifold M is
exactly half of the dimension of P .

Lagrangian symmetry A transformation
leaving a Lagrangian system invariant.

For example, let (M,L) be a
time-independent Lagrangian system; a
transformation ) : M → M , locally given
by )(x) = x ′, can be lifted to the tangent
space T) : TM → TM , locally given by
T)(x, v) = (x ′, v′). It is a Lagrangian
symmetry if the following identity is satisfied

L(x ′, v′) = L(x, v).

In field theory, a bundle morphism ) : B →
B, which lifts to the jet prolongation jk) :
J kB → J kB, such that

(j k))∗L = L.

Lagrangian system A dynamical system
which is defined by the action functional induced
by a Lagrangian.

A time-independent Lagrangian system is a
pair (Q,L) where Q is a manifold, called the
configuration space, and L : TQ → R is a func-
tion on the tangent space of Q. The function L

is called the Lagrangian of the system.
A Lagrangian field theory is a pair (B, L)

where B = (B,M,p;F) is a fiber bundle,

called the configuration bundle, and L is a hori-
zontal m-form over the k-jet prolongation J kB
[m being the dimension of the base manifold
m = dim(M)]. The dynamical system is induced
by the action functional on the sections σ of the
configuration bundle:

AD(σ) =
∫
D

(jkσ )∗L

where (j kσ )∗L denotes evaluation of the
Lagrangian L along the (jet prolongation) of the
configuration σ . See also action functional.

lamp A source of incoherent radiation.

language A language L = (K,N , c,X)

can be described either as a tuple of the lan-
guage’s alphabet (K), the set of nonterminals
(N ), the symbol denoting a construct in the lan-
guage (c), and the set of grammar rules (X); or
equally, the nonempty countable set of allowed
constructs C, C ∈ K∗, where K∗ is the set of all
possible constructs formed over the alphabet K.

Comment: Programs (for example, databases
and queries upon them) are necessarily expressed
in some arbitrary language.

Laplace equation Let U ⊂ R
n open and

u : U → R. The Laplace equation for u is

�u =
n∑

i=1

uxixi
= 0.

Lax-Milgram lemma This lemma asserts
the existence and uniqueness of solutions of vari-
ational problems with elliptic sesquilinear forms.
It is a particular case of more general results for
sesquilinear forms satisfying inf-sup conditions.

left action (of a group on a space X ) A map
λ : G×X → X such that:

(i.) λ(e, x) = x;

(ii.) λ(g1 · g2, x) = λ(g1, λ(g2, x));

where G is a group, e its neutral element, · the
product operation in G, and X a topological
space. The maps λg : X → X defined by
λg(x) = λ(g, x) are required to be homeomor-

phisms. A map λ̂ : G → Hom(X) defined
by λ̂(g) = λg is thence associated to a left
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action λ. The orbit of a point x ∈ X is the subset
ox = {x ′ ∈ X : ∃g ∈ G,λ(g, x) = x ′}. The
action is transitive if ox = X (for any x ∈ X).

The action is free if it has no fixed points,
i.e., if there exists an element x ∈ X such that
λ(g, x) = x, then one has g = e. Example:
Rotations in R

3 are not free and not transitive;
translations are free and transitive.

If X has a further structure, one usually
requires λ to preserve the structure. For exam-
ple, if X is a topological space, λg are required
to be continuous for any g ∈ G.

If X = V is a vector space, λg are required to
be linear for any g ∈ G and in this case the left
action is also called a representation of G on V .

If X = M is a manifold, λg are required to be
diffeomorphisms for any g ∈ G.

If λ is a left action, then one can define a right
action by setting ρ(x, g) = λ(g−1, x).

left invariance The property that an object
on a manifold M is invariant with respect to a left
action of a group on M . For example, a vector
field X ∈ X(M) is left invariant with respect to
the left action λg : M → M if and only if:

Txλg X(x) = X(g · x).
left translations (on a group G) The left
action of G onto itself defined by λ(g, h) =
λg(h) = g · h. Notice that, if G is a Lie group,
λg ∈ Diff(G) is a diffeomorphism but not a
homomorphism of the group structure. See also
right translations and adjoint representations.

Legendre transformation Given a Lagran-
gian L : TQ → R, the Legendre transformation
FL : TQ → T ∗Q is defined in local coordinates
(qi, q̇i) of TQ by

FL(qi, q̇i) = (qi, pi) , where pi =
∂L

∂q̇i
.

This gives an equivalence between the Euler-
Lagrange equations and the Hamilton equations
of motion.

length In the context of graph theory, the
length of a path or cycle is the number of edges
in the particular subgraph.

Comment: Lengths are an instance of the more
general class of measures (such as string length,
absolute value of a number, etc.).

Levi-Civita connection The symmetric
(linear) connection Nα

βµ on a (pseudo)-
Riemannian manifold (M, g) uniquely defined
by the requirement that the metric g is parallel,
i.e., ∇g = 0. Equivalently, it is the only
connection Nα

βµ such that

(i.) it is symmetric, i.e., torsionless, i.e.,
Nα
βµ = Nα

µβ ;

(ii.) it is compatible with the (pseudo)-metric
structure, i.e.,

∂λ gµν − Nε
µλ gεν − Nε

νλ gµε = 0.

The coefficients of the Levi-Civita connection
are usually denoted by Nα

βµ = {αβµ}g and can be
expressed as a function of the (pseudo)-metric
tensor and its first derivatives; they are called
Christoffel symbols.

Lewis acid A molecular entity (and the cor-
responding chemical species) that is an electron-
pair acceptor and, therefore, able to react with a
Lewis base to form a Lewis adduct, by sharing
the electron pair furnished by the Lewis base.

Lewis adduct The adduct formed between
a Lewis acid and a Lewis base.

Lewis base A molecular entity (and the cor-
responding chemical species) able to provide a
pair of electrons and thus capable of coordina-
tion to a Lewis acid, thereby producing a Lewis
adduct.

Lie algebra A vector spaceL endowed with
an operation [ , ] : L × L → L having the
following properties

(i.) [ , ] is bilinear;

(ii.) [ , ] is antisymmetric (or skew-
symmetric), i.e., [A,B] = −[B,A];

(iii.) [ , ] satisfies Jacoby identity (i.e.,
[[A,B], C] + [[B,C], A] + [[C,A], B] = 0).

The operation [ , ] is called the Lie bracket or
commutator. Notice that usually Lie algebras are
not associative. See Lie group for the definition
of a Lie algebra of the Lie group G.

Lie derivative Let α be an exterior k-form
and X a vector field with flow ϕt . The Lie deriva-
tive of α along X is given by

LXα = lim
t→0

1

t
[(ϕ∗

t α)− α].
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Lie group A group G which has a compati-
ble manifold structure such that both the product ·
: G × G → G and the inversion i : G → G :
g �→ g−1 are differentiable maps.

Left translations Lg : G → G defined by
Lg(h) = g · h are diffeomorphisms. If v ∈ TeG

is a tangent vector in the unit e ∈ G we can
define a vector field λv(g) = TeLg(v) which is
left-invariant, i.e., T Lgλv(h) = λv(g · h). Any
left-invariant vector field on G is obtained in this
way. The set XL(G) of left-invariant vector fields
form a Lie subalgebra of the Lie algebra of all
vector fields X(G). The Lie algebra XL(G) is
isomorphic to TeG as a vector space, so that it is
finite dimensional (dim(XL(G)) = dim TeG =
dim G). It is called the Lie algebra of G.

Analogously, right-translations Rg : G → G

defined by Rg(h) = h · g are diffeomorphisms.
If v ∈ TeG is a tangent vector we can define
a vector field ρv(g) = TeRg(v) which is right-
invariant, i.e., T Rgρv(h) = ρv(h · g). Any
right-invariant vector field on G is obtained in
this way. The set XR(G) of right-invariant vector
fields form a Lie subalgebra of the Lie algebra
of vector fields X(G). The Lie algebra XR(G)

is canonically isomorphic to XL(G) as a vec-
tor space, so that it is also finite dimensional
(dim(XR(G)) = dim G). Clearly, if the group
G is Abelian, then XL(G) and XR(G) coincide.

Lie-Poisson bracket Let g be a Lie algebra,
g∗ its dual space and < , >: g∗ × g → R

the natural pairing, < µ, ξ >= µ(ξ). The Lie-
Poisson bracket of any F,G : g∗ → R is defined
by

{F,G}±(µ) = ±〈µ,
[
δF

δµ
,
δG

δµ

]
〉

where δF
δµ

∈ g is the functional derivative of F at
µ defined by

lim
t→0

1

t
[F(µ+ tν)− F(µ)] = 〈ν, δF

δµ
〉.

With the Lie-Poisson bracket, g∗ is a Poisson
manifold.

lifetime (mean lifetime), τττ The lifetime of
a chemical species which decays in a first-order
process is the time needed for a concentration
of this species to decrease to 1/e of its original

value. Statistically, it represents the mean life
expectancy of an excited species. In a reacting
system in which the decrease in concentration
of a particular chemical species is governed by
a first-order rate law, it is equal to the recipro-
cal of the sum of the (pseudo)unimolecular rate
constants of all processes which cause the decay.
When the term is used for processes which are
not first order, the lifetime depends on the initial
concentration of the species, or of a quencher,
and should be called apparent lifetime instead.

limiting current The limiting value of a
faradaic current that is approached as the rate of
the charge-transfer process is increased by vary-
ing the potential. It is independent of the applied
potential over a finite range, and is usually evalu-
ated by subtracting the appropriate residual cur-
rent from the measured total current. A limiting
current may have the character of an adsorption,
catalytic, diffusion, or kinetic current, and may
include a migration current.

line formula A two-dimensional represen-
tation of molecular entities in which atoms are
shown joined by lines representing single or
multiple bonds, without any indication or impli-
cation concerning the spatial direction of bonds.

linear A vector space is often called a linear
space. A map T : V → W from a linear spaceV
into a linear space W is called linear or a linear
transformation or a linear operator if T (x + y)

= T (x) + T (y) and T (αx) = αT (x) for all
x, y ∈ V , α ∈ C.

linear chain A chain with no branch points
intermediate between the boundary units.

linear functional A linear scalar valued
function f : V → C on a vector spaceV . Some-
times continuity of f is also assumed.

linear group (of a vector space V ) The
group of automorphisms of V (which is a group
with respect to composition). It is denoted by
GL(V ).

Also the matrix group of all invertible (finite)
matrices. It can be noncanonically identified
with GL(Rm), and it is denoted by GL(m,R).
If dim(V ) = m, then there exists a group iso-
morphism between GL(V ) and GL(m,R) which
is induced by the choice of a basis of V ; both
GL(V ) and GL(m,R) are Lie groups.
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linear macromolecule A macromolecule,
the structure of which essentially comprises
the multiple repetition in linear sequence of
units derived, actually or conceptually, from
molecules of low relative molecular mass.

linear operator See linear.

linear transformation See linear.

Liouville’s equation Let U ⊂ R
n open and

u : U ×R → R. The Liouville equation for u is

ut −
n∑

i=1

(biu)xi = 0.

liquid-crystal transitions A liquid crystal
is a molecular crystal with properties that are
both solid- and liquid-like. Liquid crystals are
composed predominantly of rod-like or disk-like
molecules, that can exhibit one or more differ-
ent, ordered fluid phases as well as the isotropic
fluid; the translational order is wholly or partially
destroyed but a considerable degree of orien-
tational order is retained on passing from the
crystalline to the liquid phase in a mesomorphic
transition.

(1) Transition to a nematic phase. A meso-
morphic transition that occurs when a molecular
crystal is heated to form a nematic phase in which
the mean direction of the molecules is parallel or
antiparallel to an axis known as the director.

(2) Transition to a cholesteric phase. A meso-
morphic transition that occurs when a molecu-
lar crystal is heated to form a cholesteric phase
in which there is simply a spiraling of the local
orientational order perpendicular to the long axes
of the molecules.

(3) Transition to a smectic state. A mesomor-
phic transition that occurs when a molecular crys-
tal is heated to yield a smectic state in which
there is a one-dimensional density wave which
produces very soft/disordered layers.

list An unordered collection of elements,
that may include duplicates. An enumerated list
is delimited by brackets ([x]).

Comment: Notice the definitions of set, bag,
and list progressively release constraints on the
elements in the various collections. The elements
of sets and bags have some relationship to each

other (for example, they satisfy a generating rela-
tion like y = x2 or are all employees in a com-
pany), but either may or may not have repeated
elements. The elements of a list need not have
any relationship to each other. Notice further that
none of these definitions requires that the mem-
bers of the collection be ordered in some way. If
they were, one would speak of an ordered set,
bag, or list. For example, one might sort the
elements of a set alphabetically or in UNIX sort
order. See also bag, sequence, set, and tuple.

load vector The right-hand side of a vari-
ational problem posed over the Banach space
V is an element of the dual space V ′.
When discretization by means of a conform-
ing finite element space Vh is performed,
f has to be evaluated for the nodal basis
functions bi, i = 1, · · · , N := dim Vh,
of Vh. The resulting vector (f (bi))

N
i=1 has

been dubbed load vector in calculations of
linear elasticity.

logistic equation A nonlinear equation with
a x(1 − x) term. It was first motivated from
modeling biological population growth. In the
context of ordinary differential equations, the
equation, dx/dt = ax(1 − x) can be solved.
In the context of difference equations, xn+1 =
axn(1−xn). This equation exhibits a wide range
of interesting nonlinear phenomena: bifurcation
and periodic doubling to chaos.

London forces Attractive forces between
apolar molecules, due to their mutual polariz-
ability. They are also components of the forces
between polar molecules. Also called “disper-
sion forces.”

loop (based at x0 ∈ X ) A curve γ : I → X

such that γ (0) = γ (1) = x0 and I = [0, 1].
The set of all loops of X based at x0 ∈ X can be
endowed with a group product. Let λ, γ : I →
X be two loops; the product λ ∗ γ : I → X is
the following loop

λ ∗ γ (t) =
{
γ (2t) 0 ≤ t ≤ 1/2

λ(2t − 1) 1/2 ≤ t ≤ 1.

© 2003 by CRC Press LLC 



The group structure is not commutative. It
is compatible with the homotopy equivalence
relation so that it induces the group structure of
the homotopy groupπ0(X, x0) ofX (based at x0).

Let us now consider the homotopy groups
π0(X, x0) and π0(X, x1) at two different points
of X and a path γ : I → X connecting the two
points, i.e., γ (0) = x0 and γ (1) = x1. We can
define a group isomorphism i between π0(X, x0)

and π0(X, x1) given by

i(λ) = γ−1∗λ∗γ ∈ π0(X, x0) λ ∈ π0(X, x1)

where γ−1 is the path γ−1(t) = γ (1 − t).

Lorentz group The special orthogonal
group SO(1,m − 1) of isometries of R

m with
the standard indefinite metric η of signature
(1,m−1). Let us choose an orthonormal basisEi

in R
m, the metric is expressed by η = ηij E

i⊗Ej

(where Ei is the dual basis). The matrix ηij is

defined by η00 = 1, ηii = −1 when i > 0 and
ηij = 0 when i �= j . An endomorphism α :
R

m → R
m is an element of the Lorentz group if

and only if

Aa
i ηab A

b
j = ηij α(Ei) = A

j
i Ej .

Lorentzian manifold A pair (M, g) formed
by a manifold M and a Lorentzian metric g on
M , i.e., a pseudo-Riemannian metric of signature
either (1,m− 1) or (m− 1, 1).

luminescence Spontaneous emission of
radiation from an electronically or vibrationally
excited species not in thermal equilibrium with
its environment.

lyate ion The anion produced by hydron
removal from a solvent molecule. For example,
the hydoxide ion is the lyate ion of water.
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M
macromolecule (polymer molecule) A
molecule of high relative molecular mass, the
structure of which essentially comprises the
multiple repetition of units derived, actually or
conceptually, from molecules of low relative
molecular mass.

Notes: (1) In many cases, especially for syn-
thetic polymers, a molecule can be regarded as
having a high relative molecular mass if the addi-
tion or removal of one or a few of the units has
a negligible effect on the molecular properties.
This statement fails in the case of certain macro-
molecules for which the properties may be criti-
cally dependent on fine details of the molecular
structure.

(2) If a part of the whole of the molecule
has a high relative molecular mass and essen-
tially comprises the multiple repetition of
units derived, actually or conceptually, from
molecules of low relative molecular mass, it may
be described as either macromolecular or poly-
meric, or by polymer used adjectivally.

manifold A (usually connected) topologi-
cal space M such that there exists an atlas
{(Uα, ϕα)}α∈I , i.e., a collection such that:

(i.) {Uα}α∈I is an open covering of M;

(ii.) ϕα : Uα → Wα is a local homeomor-
phism onto Wα = ϕα(Uα) ⊂ R

m;

(iii.) ϕβ ◦ ϕ−1
α : Wα → Wβ are local homeo-

morphisms of class Ck .

The maps ϕβ ◦ ϕ−1
α : Wα → Wβ are called

transition functions. The integer m is the dimen-
sion of M . A manifold M is usually assumed to
be paracompact.

If k = 0, M is called a topological (real)
manifold; if k = ∞, it is called a differentiable
(real) manifold. If the transition functions are
analytical, then M is called an analytical (real)
manifold. If charts (Uα, ϕα) are valued in C

m

and transition functions are, holomorphic, then
the manifold is called a complex manifold.

For example, the sphere S2 ⊂ R
3 (x2 + y2 +

z2 = 1) is both a real and a complex manifold.
The real structure is given by the real charts

ϕN(x, y, z) =
(

x

1 − z
,

y

1 − z

)
, z �= 1 and

ϕS(x, y, z) =
(

x

1 + z
,

y

1 + z

)
, z �= −1

while the complex atlas is given by

ϕN(x, y, z) =
x + iy

1 − z
, z �= 1 and

ϕS(x, y, z) =
x − iy

1 + z
, z �= −1.

mapping See function.

mass, mmm Base quantity in the system of
quantities upon which SI is based.

mass lumping Approximation of the mass
matrix by a diagonal matrix. This is usually
achieved by replacing the L2(;)-inner product
with a mesh-dependent inner product (., .)h on a
finite element space Vh that is based on numer-
ical quadrature. A prominent example is sup-
plied by linear Lagrangian finite elements and
vertex based quadrature: on a triangular mesh
;h it boils down to

(uh, vh)L2(;) ≈
∑
T ∈Th

|T |
3

3∑
i=1

uh(a
T
i )v̄h(a

T
i )

× uh, vh ∈ Vh,

where aT
1 , aT

2 , aT
3 stand for the vertices of the

triangle T . As the degrees of freedom for Vh are
associated with vertices of the mesh, the diagonal
structure of the resulting “lumped” mass matrix
is evident.

mass matrix The matrix arising from a finite
element discretization of the L2(;)-inner prod-
uct (; ⊂ R

n a bounded domain): if ψ1 · · · , ψN

stands for the nodal basis of the finite element
space Vh ⊂ L2(;), then the corresponding mass
matrix is given by ((ψi, ψj )L2(;))

N
i,j=1. The term

mass matrix has its origin in the finite element
analysis of problems of linear elasticity.
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mass spectrometer An instrument in which
beams of ions are separated (analyzed) according
to the quotient mass/charge, and in which the ions
are measured electrically. This term should also
be used when a scintillation detector is employed.

matrix (1) (in analysis) A rectangular array
of scalars. A matrix with n rows and m columns
represents a linear operator from an m dimen-
sional vector space to an n dimensional vector
space.

(2) (in analytical chemistry) The components
of the sample other than the analyte.

matrix effect (1) (in analytical chemistry)
The combined effect of all components of the
sample other than the analyte on the measure-
ment of the quantity. If a specific component
can be identified as causing an effect then this is
referred to as interference. See matrix.

(2) (in surface analysis) Effects which cause
changes in Auger-electron, photoelectron, sec-
ondary ion yield, or scattered ion intensity, the
energy or shape of the signal of an element in
any environment as compared to these quantities
in a pure element.
(a) Chemical matrix effects: changes in the
chemical composition of the solid which affect
the signals as described above.
(b) Physical matrix effects: topographical and/or
crystalline properties which affect the signal as
described above.

maximal common subgraph Two graphs,
G1 and G2, have a maximal common subgraph
if there exists a graph, G′, which is the largest
subgraph common to G1 and G2.

maximal element (in a partially ordered set
[A,�]) Referring to an elementm ∈ A such
that there is no element a ∈ A except a = m such
that a�m. See ordering and minimum.

maximum (in a partially ordered set [A,�])
Referring to an elementm ∈ A such that ∀a ∈ A,
m�a. See ordering.

Maxwell’s equations In electrodynamics,
for an electric field E(x, t) and magnetic field
B(x, t) Maxwell’s equations in the vacuum are

Et = curl B
Bt = −curl E
div B = div E = 0.

Maxwell-Vlasov equations Let f (x, v, t)

denote the plasma density and E(x, t),B(x, t)
the electric and magnetic fields, respectively.
The equations for a collisionless plasma of a sin-
gle species of charged particles with charge e

and massm are described by the Maxwell-Vlasov
equations

∂f

∂t
+ v · ∂f

∂x
+ e

m
(E + 1

c
v × B) · ∂f

∂v
= 0,

1
c
∂B
∂t

= −curl E,

1
c
∂E
∂t

= −curl B − 1
c
jf ,

div E = ρf and divB = 0

where the current of f is given by jf =
e
∫
vf (x, v, t)dv, and the charge density by

ρf = e
∫
f (x, v, t)dv.

measurable set A measure on a set S is fre-
quently defined only on certain subsets of S,
forming a σ algebra (closed under countable
unions and differences of its members). Sets in
this σ algebra are called measurable sets.

measure (1) A numerical determination of
size. For example, the cardinality, if x is a set;
or the length, if x is a sequence; or the absolute
value, if x is a number.

(2) A nonnegative, real valued function µ

defined on certain subsets of a set S and satis-
fying

(i.) µ()) = 0

(ii.) µ(∪Un) = ∑
µ(Un) when {Un} is a

pairwise disjoint, countable sequence of sets.

mechanism (of a reaction) A detailed
description of the process leading from the reac-
tants to the products of a reaction, including a
characterization as complete as possible of the
composition, structure, energy, and other prop-
erties of reaction intermediates, products, and
transition states. An acceptable mechanism of a
specified reaction (and there may be a number of
such alternative mechanisms not excluded by the
evidence) must be consistent with the reaction
stoichiometry, the rate law, and with all other
available experimental data, such as the stereo-
chemical course of the reaction. Inferences
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concerning the electronic motions which dynam-
ically interconvert successive species along the
reaction path (as represented by curved arrows,
for example) are often included in the description
of a mechanism.

It should be noted that for many reactions
all this information is not available and the sug-
gested mechanism is based on incomplete exper-
imental data. It is not appropriate to use the term
mechanism to describe a statement of the proba-
ble sequence in a set of stepwise reactions. That
should be referred to as a reaction sequence, and
not a mechanism.

mechanistic equation A balanced elemen-
tary reaction equation, bimolecular or less on
one side, which describes the ligand binding,
organic chemical, and conformational rearrange-
ment reactions which occur on an unambigu-
ously identified entity, whose net effect in the
biochemical reaction is catalytic, to produce an
overall biochemical reaction. Equally, a set of
such reaction equations which can be combined
by summation or logical operators to produce the
overall biochemical reaction.

Comment: The requirement that the equation
be elementary ensures that its order will be the
sum of the molecularities of the reactants. All
types of interactions are included. Since the aim
of the equations is to describe interactions at the
catalytic species, it follows that that molecule
will not appear in these equations as a catalyst.
The requirement for clearly identified species
distinguishes among different catalysts carrying
out the “same” reactions at different rates. The
definition provides that they can be combined by
summation or logical operators to represent alter-
native paths through the space of possible reac-
tions, depending on the consequences of prior
reactions in the set.

mechanistic motif A repeated pattern over
mechanistic equations.

Comment: See also biochemical, chemical,
dynamical, functional, kinetic, phylogenetic,
regulatory, thermodynamic, and topological
motives.

medium The phase (and composition of the
phase) in which chemical species and their reac-
tions are studied in a particular investigation.

meiosis The reductive cell division which
results in daughter cells containing one copy of
each of the chromosomes of the parent. The
entire meiotic process involves two separate
divisions (meiosis I and meiosis II). The first divi-
sion is a true reductive division with the chromo-
some number being halved, whereas the second
division resembles mitosis in many ways. Thus,
a diploid parental cell will give rise to haploid
daughter cells (cf. ploidy).

memory A memory is a storage device of
fixed half-life for data and programs that per-
mit any combination of reading from and writing
to it.

mesh width The mesh width of a triangula-
tion ;h is the maximal diameter of its cells.

mesomeric effect The effect (on reaction
rates, ionization, equilibria, etc.) attributed to a
substituent due to overlap of its p- or π -orbitals
with the p- or π -orbits of the rest of the molecu-
lar entity. Delocalization is thereby introduced
or extended, and electronic charge may flow to
or from the substituent. The effect is symbolized
by M .

Strictly understood, the mesomeric effect
operates in the ground electronic state of the
molecule. When the molecule undergoes elec-
tronic excitation or its energy is increased on the
way to the transition state of a chemical reac-
tion, the mesomeric effect may be enhanced by
the electromeric effect, but this term is not much
used, and the mesomeric and electronic effects
tend to be subsumed in the term resonance effect
of a substituent.

mesomorphic transition A transition that
occurs between a fully ordered crystalline solid
and an isotropic liquid. Mesomorphic transitions
can occur

(i.) from a crystal to a liquid crystal,

(ii.) from a liquid crystal to another liquid
crystal, and

(iii.) from a liquid crystal to an isotropic liq-
uid.

mesopause (in atmospheric chemistry) That
region of the atmosphere between the meso-
sphere and the thermosphere at which the tem-
perature is a minimum.
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mesosphere That region of the atmosphere
which lies above the stratopause (about 4752
km) and below the mesopause (about 8090 km)
and in which temperature decreases with increas-
ing height; this is the region in which the lowest
temperatures of the atmosphere occur.

metabolite A molecule which participates
noncatalytically in metabolism and is not an inor-
ganic ion or element.

Comment: This seems a bit circular, because
it depends on being able to recognize what
metabolism is. Metabolites tend to be relatively
small (usually less than 1000 daltons molecu-
lar weight) and structurally simple. They can be
monomers or polymers (for example, fatty acids),
but are not usually considered to be macro-
molecules or their smaller polymers (oligonu-
cleotides, peptides). As should be obvious, the
notion of a metabolite is rather elastic.

metric A metric on a set M is a map d :
M ×M → R satisfying for all x, y, z ∈ M ,

(i.) d(x, y) ≥ 0, equal 0 iff x = y, positive
definiteness,

(ii.) d(x, y) = d(y, x), symmetry,

(iii.) d(x, z) ≤ d(x, y) + d(y, z), triangle
inequality.

A metric space is a pair (M, d).

metric space See metric.

Michaelis-Menten kinetics The mathemat-
ical model for enzyme kinetics based on the law
of mass action. The resulting equations are non-
linear. However, due to the peculiar nature of
the enzymatic reaction in which the concentra-
tion of the enzyme is usually significantly greater
than that of the substrate, the system of nonlinear
ordinary differential equations can be treated by
singular perturbation. This treatment gives the
steady-state approximation well known in bio-
chemical literature.

microscopic reversibility The continuous
reaction of sinistralateral and dextralateral sets
of coreactants, such that no net change in the
concentrations of coreactants occurs over meas-
urable time.

Comment: Once equilibrium is attained, any
reaction will continue in both directions, shifting
the reaction away from and back toward equilib-
rium from instant to instant, but by infinitesi-
mally small changes. See also dextralateral,
direction, dynamic equilibrium, formal reaction
equation, product, rate constant, reversibility,
sinistralateral, and substrate.

migration (1) The (usually intramolecular)
transfer of an atom or group during the course of
a molecular rearrangement.

(2) The movement of a bond to a new position,
within the same molecular entity, is known as
“bond migration.”

Allylic rearrangements, e.g.,

RCH = CHCH2X −→ RCCHCH = CH2|
X

exemplify both types of migration.

minimal biochemical network The min-
imal biochemical network is the network

NB0
({vm,1, vm,2, vr,1}, {e(s, vm,1, vr,1),

e(d, vm,2, vr,1)},∅, {lm,1, lm,2, lr,1}).
Comment: This is a network of a single spon-

taneous reaction, without any known parameters
but for which the identities of the reactants (but
not their stoichiometry, a parameter of the edges)
are known.

minimal element (of a partially ordered set
[A,�]) An element m ∈ A such that there is
no element a ∈ A except a = m such that m�a.
See ordering and minimum.

minimal surface equation Let U ⊂ R
n

open and u : U × R → R. The minimal surface
equation for u is

div

(
Du

(1 + |Du|2)1/2

)
= 0,

where Du = Dxu = (ux1
, . . . , uxn

) denotes the
gradient of u with respect to the spatial variable
x = (x1, . . . , xn).

minimum (of a partially ordered set [A,�])
An element m ∈ A such that ∀a ∈ A, a�m.
See ordering.
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minimum-energy reaction path The path
corresponding to the steepest descent from the
col of a potential-energy surface into the two
valleys. The reaction coordinate corresponds
to this minimal path. Some workers refer to
the minimum-energy reaction path as simply the
reaction path but this is not recommended as it
leads to confusion.

Minkowski space The metric vector space
(R4, η) with the signature (1, 3).

mixed finite elements A rather general term
for finite element spaces meant to approximate
vector fields. Prominent representatives are

(i.) H(div;;)-conforming Raviart-Thomas
elements required for the discretization of mixed
variational formulations of second-order elliptic
boundary value problems.

(ii.) H(curl;;)-conforming Nédélec ele-
ments (edge elements) used to approximate elec-
tromagnetic fields.

(iii.) a variety of schemes for the approxi-
mation of velocity fields in computational fluid
mechanics.

mixed variational formulation Consider a
second-order elliptic boundary value problem

−div(Agradu) = f on ; ⊂ R
n, u|∂; = gD.

Formally its mixed formulation is obtained by
introducing the flux j := Agradu as new
unknown, which results in a system of first-order
differential equations

j − Agradu = 0 , −divj = f.

The first equation is tested with v ∈ H(div;;)

and integration by parts is carried out. The sec-
ond equation is tested with q ∈ L2(;). We
end up with the variational problem: seek j ∈
H(div;;), u ∈ L2(;) such that∫

;

A−1j · vdx +
∫
;

divvudx =
∫
N

gv · ndS

∀v ∈ H(div;;),∫
;

divjqdx = −
∫
;

f qdx ∀q ∈ L2(;).

This is a symmetric saddle point problem,
which can be discretized by means of v ∈
H(div;;)-conforming mixed finite elements for
the flux unknown. Solving the second-order
elliptic boundary value problem is equivalent
to minimizing a convex energy functional on
H 1

0 (;). Convex analysis teaches that this gives
rise to primal and dual variational problems. The
latter leads to the mixed variational formulation.

module (over a ring R) A set M endowed
with an inner binary operation, called the sum
+ : M ×M → M and a binary operation called
the product (by a scalar) · : R × M × M . The
structure (M,+) is a commutative group and the
product by scalars satisfies the following axioms:

(i.) ∀λ, µ ∈ R, ∀v ∈ M: λ(µ ·v) = (λµ) ·v
(ii.) λ · (v + w) = λ · v + λ · w

(iii.) (λ+ µ) · v = λ · v + µ · v
(iv.) IR · v = v

If R is a field then an R-module is nothing but
a vector space.

mole An Avogadro’s number of molecules
(N ≈ 6.023 × 1023).

molecular dynamics Based on Newton’s
law of motion and treating atoms in a molecule
as classical particles with interaction, molecu-
lar dynamics simulate the motion of the entire
molecule on a computer. This approach has been
successful in studying the dynamics of small
molecules but has not yielded a complete pic-
ture of the dynamics of biologically important
molecules, e.g., proteins. The difficulty is mainly
the stiff nature of the many-body system and the
limited computational power.

molecular entity Any constitutionally or
isotopically distinct atom, molecule, ion, ion
pair, radical, radical ion, complex, conformer,
etc., identifiable as a separately distinguishable
entity.
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Molecular entity is used here as a general term
for singular entities, irrespective of their nature,
while chemical species stands for sets or ensem-
bles of molecular entities. Note that the name of a
compound may refer to the respective molecular
entity or to the chemical species; e.g., methane,
may mean a single molecule of CH4 (molecu-
lar entity) or a molar amount, specified or not
(chemical species), participating in a reaction.

The degree of precision necessary to describe
a molecular entity depends on the context. For
example “hydrogen molecule” is an adequate
definition of a certain molecular entity for some
purposes, whereas for others it is necessary to
distinguish the electronic state and/or vibrational
state and/or nuclear spin, etc. of the hydrogen
molecule.

molecularity The number of reactant
molecular entities that are involved in the
microscopic chemical event constituting an
elementary reaction. (For reactions in solution
this number is always taken to exclude molecular
entities that form part of the medium and which
are involved solely by virtue of their solvation
of solutes.) A reaction with a molecularity
of one is called “unimolecular,” one with a
molecularity of two “bimolecular,” and of three
“termolecular.”

moment of a force, MMM , about a point The
vector product of the radius vector from this point
to a point on the line of action of the force and
the force, M = r × r × F .

momentum, ppp Vector quantity equal to the
product of mass and velocity.

momentum map Let a Lie group G act on a
Poisson manifold P and let g be the Lie algebra
of G. Any ξ ∈ g generates a vector field ξP (the
infinitesimal generator of the action) on P by

ξP (x) =
d

dt
[exp(tξ) · x]|t=0.

Suppose there is a map J : g → C∞(P ) such
that XJ(ξ) = ξP , for all ξ ∈ g. The map J :
P → g∗ defined by

〈J (x), ξ〉 = J (ξ)(x) , ξ ∈ g, x ∈ P

is called the momentum map of the action.

Monge-Ampere equation Let U ⊂ R
n be

open and u : U × R → R. The Monge-Ampere
equation for u is

det (D2u) = f,

where Du = Dxu = (ux1
, . . . , uxn

) denotes the
gradient of u with respect to the spatial variable
x = (x1, . . . , xn).

monomer A substance composed of mono-
mer molecules.

monomer molecule A molecule which can
undergo polymerization thereby contributing
constitutional units to the essential structure of a
macromolecule.

monomeric unit (nomoner unit, mer) The
largest constitutional unit contributed by a single
monomer molecule to the structure of a macro-
molecule or oligomer molecule.

Note: The largest constitutional unit con-
tributed by a single monomer molecule to
the structure of a macromolecule or oligomer
molecule may be described either as monomeric
or by monomer used adjectivally.

monomorphism An injective morphism
between objects of a category. For example, a
monomorphism of vector spaces is a linear injec-
tive map; a monomorphism of groups is an injec-
tive group homomorphism; a monomorphism of
manifolds is an injective differentiable map. See
also bundle morphisms.

motif For any collection of objects X =
{x1, x2, . . . , xn}, xi is a motif if there exists an
xj ∈ X, i �= j such that f (xi) = xj . If xi
occurs in X at least twice, that is, if xi = xj for
1 ≤ i, j ≤ n, i �= j , it is an exact motif or an
exact match.

Comment: The relationship f is a transfor-
mation between xi and xj . For nucleic acid and
protein sequences, the most common motives are
the percent identity and percent similarity rela-
tionships, which are usually set to some thresh-
old value such that the identity (similarity) of the
resulting string is at least that threshold value.
When X is a set of graphs, then f is either the
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relationship of subgraph (for motif ) or isomor-
phism (for exact motif ).

For our purposes the term “pattern” is synony-
mous with motif. It is not obvious that the notion
of motif as used in biology is isomorphic to that
of pattern. Definitions of motif and pattern have
been developed to cover problems arising from
tessellation of surfaces (such as tiling a plane
like your bathroom floor). Instead, our intent
is to capture the notion of motif as it is used in

biological pattern recognition, most commonly
in DNA and protein sequence motives.

Officially, motif may be pluralized either
motives (with the accent on the last syllable) or
motifs. One will find both in the biological liter-
ature.

See also biochemical, chemical, dynamical,
functional, kinetic, mechanistic, phylogenetic,
regulatory, thermodynamic, and topological
motives.
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N
Navier-Stokes equations Let U ⊂ R

n be
open and u : U × R → R

n. The Navier-Stokes
equations for incompressible, viscous flows are{

ut + u ·Du = −Dp

div u = 0

where Du = Dxu = (ux1
, . . . , uxn

) denotes the
gradient of u with respect to the spatial variable
x = (x1, . . . , xn).

neighborhood (of a point p in a topological
space) A set containing an open set contain-
ing p.

nematic phase See liquid-crystal transi-
tions.

network A mathematical graph N(V, E,
P,L) consisting of a set of nodes (or vertices)
V , a set of edges between the nodes E , a set of
parameters P describing properties of subgraphs
of the network, and a set of labels L.

Comment: If P = ∅ the network reduces to its
corresponding graph [denoted either N′(V, E,L)
or G(V, E,L) according to one’s taste]. In gen-
eral, all graph algorithms apply to networks, but
there are some specialized algorithms, relying on
the parameters, which do not apply to graphs.

nodal basis The basis {b1, · · · , bN } of a
finite element space Vh dual to the set Xh of
global degrees of freedom, that is, φk(bi) =
δik, i, k = 1, · · · , N , is called the nodal basis
of Vh. Thanks to the localization of the degrees
of freedom, the nodal basis functions are locally
supported. More precisely, supp bi is contained
in the closure of the union of all those cells of ;h

that share the vertex, face, edge, etc. to which the
related global degree of freedom is associated.

nodal interpolation operator Given a finite
element space Vh with set Xh of nodal degrees
of freedom, we can define a projection

Ih : S ∪ Vh → Vh , φ(Ihu) = φ(u) ∀φ ∈ Xh,

where S is a space of sufficiently smooth func-
tions/vector fields for which the evaluation of
degrees of freedom is well defined. Note that for
many finite element spaces that are intended as
conforming approximating spaces for a function
space V , S will be strictly contained in V . Nodal
interpolation operators are local in the sense that
for each cell K of the underlying triangulation
the restriction of Ihu onto K depends on u|K̄ .

node A node, vi (i indexing the nodes of the
graph), is a member of the set of nodes (V) of a
mathematical graph or network.

Comment: Each node is commonly rendered
by a geometric point, but in fact it is simply an
element of any set; so in a set of integers, each
integer would be a node of a graph. A com-
mon synonym is vertex. When reactions and
compounds are both nodes in the representation
of a biochemical network, because there are two
types of nodes, the network is said to be bipartite.

nonconforming finite elements A finite
element space Vh is called nonconforming with
respect to a function space V if Vh �⊂ V . Using
Vh to discretize a variational problem over V

amounts to a variational crime. However, it
might be feasible, if Vh satisfies certain consis-
tency conditions expressed in Strang’s second
lemma.

nondeterministic computation Let the sets
of presented inputs and produced outputs be KI ′

and KO′ , respectively; the cardinalities of sets be
denoted by the double overset bars; and σi,I ′ and
σi,O′ be the particular symbols presented to or
produced by the mapping ci .

Then a nondeterministic computation Cn

specifies a computation C : KI ′ → KO′ , such
thatKI ′ ≥ 1;KO′ ≥ 1; at least one mapping ci ∈
Cn transforming presented inputs to presented
outputs is many-to-many; and ∀σi,I ′ , σi,I ′ ∈
KI ′ , ∀σi,O′ , σi,O′ ∈ KO′ , the probabilities that
each exists, Pe(σi,I ′) and Pe(σi,O′), are unity.

Comment: This computation is not stochastic,
but it is nondeterministic. There is at least one

c
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step in the computation where the output pro-
duced is not a function of the input presented,
even though all inputs and outputs exist with
probability one. See deterministic and stochastic
computations.

nonenzymatic degree The degree of a react-
ive conjunction node excluding the macro-
molecular catalyst.

nonlinear optical effect An effect brought
about by electromagnetic radiation the magni-
tude of which is not proportional to the irradi-
ance. Nonlinear optical effects of importance
to photochemistry are harmonic frequency
generation, lasers, Raman shifting, upconver-
sion, and others.

norm (of a vector) See angle between vec-
tors, normed space.

normal Perpendicular, as a vector to a sur-
face or to another vector.

normed space A vector spaceXwith a norm
||x|| defined, for x ∈ X, satisfying

(i.) ||x|| ≥ 0 and equality only when x = 0,

(ii.) ||x + y|| ≤ ||x|| + ||y||, and

(iii.) ||λx|| = |λ| ||x||.

Nöther’s theorem (1) If the Lie algebra
g acts canonically on the Poisson manifold P ,
admits a momentum map J : P → g∗, and
H ∈ C∞(P ) is g-invariant, i.e., ξP (H) = 0 for
all ξ ∈ g, then J is a constant of the motion for
H , i.e.,

J ◦ ϕt = J

where ϕt is the flow of the Hamiltonian vector
field XH .

(2) (of a Lagrangian system) A map between
1-parameter families of Lagrangian symmetries
and conserved currents. For example, let (M,

L) be a time-independent Lagrangian system
and X = Xλ∂λ an infinitesimal generator of

symmetries; the associated conserved current is
given by

E = ∂L

∂uλ
Xλ

where (xλ, uλ) are local coordinates on the tan-
gent bundle TM .

nuclear decay A spontaneous nuclear trans-
formation.

nuclear fission The division of a nucleus
into two or more parts with masses of equal order
of magnitude, usually accompanied by the emis-
sion of neutrons, gamma radiation, and, rarely,
small charged nuclear fragments.

nucleic acids Macromolecules, the major
organic matter of the nuclei of biological cells,
made up of nucleotide units, and hydrolyzable
into certain pyrimidine or purine bases (usually
adenine, cytosine, guanine, thymine, or uracil),
d-ribose or 2-deoxy-d-ribose, and phosphoric
acid.

See deoxyribonucleic acids.

nucleosides Ribosyl or deoxyribosyl de-
rivatives (rarely, other glycosyl derivatives) of
certain pyrimidine or purine bases. They are
thus glycosylamines or N -glycosides related to
nucleotides by the lack of phosphorylation. It has
also become customary to include among nucleo-
sides analogous substances in which the glycosyl
group is attached to carbon rather than nitrogen
(“C-nucleosides”). See also nucleic acids.

nucleotides Compounds formally obtained
by esterification of the 3′ or 5′ hydroxy group of
nucleosides with phosphoric acid. They are the
monomers of nucleic acids and are formed from
them by hydrolytic cleavage.

nuclide A species of atom, characterized by
its mass number, atomic number, and nuclear
energy state, provided that the mean life in that
state is long enough to be observable.
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oligomer A substance composed of
oligomer molecules. An oligomer obtained by
telomerization is often termed a telomer.

oligomer molecule A molecule of inter-
mediate relative molecular mass, the structure
of which essentially comprises a small plurality
of units derived, actually or conceptually, from
molecules of lower relative molecular mass.

Notes: (1) A molecule is regarded as having
an intermediate relative molecular mass if it has
properties which do vary significantly with the
removal of one or a few of the units.

(2) If a part or the whole of the molecule
has an intermediate relative molecular mass
and essentially comprises a small plurality of
units derived, actually or conceptually, from
molecules of lower relative molecular mass, it
may be described as oligomeric, or by oligomer
used adjectivally.

one-dimensional Ising model One of the
most important models in statistical mechanics.
It consists of a set of identical spins {..., S−2,

S−1, S0, S1, S2, ...} with nearest neighbor inter-
action energy JSiSi+1. Each spin can take values
±1. An infinite one-dimensional Ising system
can exhibit phase transition behavior.

onto A mapping or transformation of a set
X which transforms points of X to those in Y is
a mapping of X onto Y if each point of Y is the
image of at least one point of X. For example,
y = 3x + 2 is a mapping of the real numbers onto
the real numbers; y = x2 is a mapping of the real
numbers into the real numbers, or onto the non-
negative real numbers. See also into, bijection,
and injection.

open covering (of a topological space [X,τ(X)])
A family {Uα}α∈I of open sets in X such that⋃

α∈I Uα = X where I is any set of indices. On
a paracompact manifold M every open covering
contains a locally finite covering, i.e., an open

covering {Uα}α∈I such that for anyx ∈ M there is
an open neighborhood Ux which intersects just a
finite number of elementsUα of the covering. On
a paracompact manifold M every open covering
contains a good covering, i.e., an open covering
{Uα}α∈I such that for any finite set of indices
α1, α2, . . . , αk ∈ I the intersection Uα1α2...αk

=⋂k
i=0 Uαi

(which is an open set by definition) is
topologically trivial, i.e., it is contractible.

open neighborhood (of a point x of a topo-
logical space [X, τ(X)]) An open subset
U ⊂ X containing x.

open set A subset U ⊂ X of a topological
spaceXwhich is an element of its topology τ(X).

In R
n, with the standard metric topology, a

subset U ⊂ R
n is open if any point x ∈ U is con-

tained inU together with an open n-ball centered
at x of radius r , i.e.,Br

x = {y ∈ R
n : |y−x| < r}.

orbit of an action See left action and right
action.

order of reaction, nnn If the macroscopic
(observed, empirical, or phenomenological) rate
of reaction (v) for any reaction can be expressed
by an empirical differential rate equation (or
rate law) which contains a factor of the form
k[A]α[B]β ... (expressing in full the depen-
dence of the rate of reaction on the concentrations
[A],[B]...) where α, β are constant exponents
(independent of concentration and time) and k

is independent of [A] and [B], etc. (rate con-
stant, rate coefficient), then the reaction is said
to be of order α with respect to A, of order β

with respect to B,..., and of (total or overall) order
n = α + β + . . .. The exponents α, β, ... can
be positive or negative integral or rational non-
integral numbers. They are the reaction orders
with respect to A,B, ... and are sometimes called
“partial orders of reaction.” Orders of reaction
deduced from the dependence of initial rates of
reaction on concentration are called “orders of
reaction with respect to concentration”; orders
of reaction deduced from the dependence of the
rate of reaction on time of reaction are called
“orders of reaction with respect to time.”

The concept of order of reaction is also applic-
able to chemical rate processes occurring in
systems for which concentration changes (and

c
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hence the rate of reaction) are not themselves
measurable, provided it is possible to measure a
chemical flux. For example, if there is a dynamic
equilibrium according to the equation:

aA � pP

and if a chemical flux is experimentally found,
(e.g., by NMR line-shape analysis) to be related
to concentrations by the equation

φ−A/α = k[A]α[L]λ

then the corresponding reaction is of orderα with
respect to A,... and of total (or overall) order
n(= α + λ + . . .). The proportionality factor
k above is called the (nth order) “rate coeffi-
cient.” Rate coefficients referring to (or believed
to refer to) elementary reactions are called “rate
constants” or, more appropriately, “microscopic”
(hypothetical, mechanistic) rate constants.

The (overall) order of a reaction cannot be
deduced from measurements of a “rate of appear-
ance” or “rate of disappearance” at a single value
of the concentration of a species whose concen-
tration is constant (or effectively constant) during
the course of the reaction. If the overall rate of
reaction is, for example, given by

ν = k[A]α[B]β

but [B] stays constant, then the order of the reac-
tion (with respect to time), as observed from
the concentration change of A with time, will
be α, and the rate of disappearance of A can be
expressed in the form

νA = kobs[A]α.

The proportionality factor kobs deduced from
such an experiment is called the “observed rate
coefficient,” and it is related to the (α+β)th order
rate coefficient k by the equation:

kobs = k[B]β.

For the common case when α = 1, kobs is often
referred to as a “pseudo-first-order rate coeffi-
cient” (kψ).

For a simple (elementary) reaction a partial
order of reaction is the same as the stoichio-
metric number of the reactant concerned and
must therefore be a positive integer. The overall

order is then the same as the molecularity. For
stepwise reactions there is no general connec-
tion between stoichiometric numbers and partial
orders. Such reactions may have more complex
rate laws, so that an apparent order of reaction
may vary with the concentrations of the chemi-
cal species involved and with the progress of the
reaction. In such cases, it is not useful to speak
of orders of reaction, although apparent orders
of reaction may be deducible from initial rates.
In a stepwise reaction, orders of reaction may in
principle always be assigned to the elementary
steps.

ordering (of a set) (1) Preordering: a rela-
tion � on a set A such that

(i.) ∀a ∈ A a�a;

(ii.) ∀a, b, c ∈ A a�b, b�c ⇒ a�c.

(2) Partial ordering: a preordering such that

(i.) ∀a, b ∈ A a�b and b�a ⇒ a = b.

(3) Total ordering: a partial ordering such that

(i.) ∀a, b ∈ A a�b or b�a.

Examples: The inclusion is a partial ordering
in the power set P(X) of a set X. The relation ≥
is a total ordering in the real line R. The relation
z�w if and only if |z| ≥ |w| defined on the com-
plex plane C is a preordering but not a partial
ordering.

oregonator R.M. Noyes and R.J. Field at
the University of Oregon developed a mathemat-
ical model, consisting of three coupled nonlinear
ordinary differential equations, for the BZ reac-
tion (see Belousov-Zhabotinskii reaction). The
model was shown to have a limit cycle, hence
firmly established the theoretical basis of chemi-
cal oscillation (cf. R.M. Noyse, J. Chem. Educ.,
66, 190, 1989).

orientation (of an m-dimensional manifold M )
A nondegenerate m-form over M . If (M, g) is a
(pseudo)-Riemannian manifold and ds = dx1∧
dx2 ∧· · ·∧dxm is the canonical local basis of m-
forms over M , then η = √

gds is an orientation.
The manifolds that allow orientations are

called orientable, and they allow oriented
atlases, i.e., atlases with transition functions with
definite positive Jacobians.
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Ornstein-Uhlenbeck process A Gaussian,
Markov stochastic processes defined by a linear
stochastic differential equation

dX = −bXdt + adW(t)

in which a, b > 0, and W(t) is the Wiener pro-
cess, i.e., dW/dt is the white noise.

orthogonal Describing two elements V1, V2
of a Hilbert space such that 〈v1,v2〉 = 0.

orthogonal group The group O(m) is the
group of isometries of R

m with the standard posi-
tive definite metric δ. Let us choose an ortho-
normal basis Ei in R

m, the metric δ is expressed
by δ = δij Ei ⊗ Ej (where Ei is the dual
basis). An endomorphism α : R

m → R
m is an

element of the orthogonal group O(m) if and
only if

Aa
i δab A

b
j = δij α(Ei) = A

j
i Ej .

Thence the inverse of an orthogonal matrix coin-
cides with its transpose. Example: Rotations in
R

3 (as well as reflections) are elements of O(3).
Analogously, the orthogonal group O(r, s)

(with r + s = m) is the group of isometries of
the indefinite metric of signature (r, s) on R

m.
Example: The Lorentz group is the orthogonal
group O(1,m− 1).

The subgroup of isometries α : R
m → R

m

which preserve the orientation of (Rm, η) is
denoted by SO(r, s), and it is called the special
orthogonal group.

orthonormal basis An orthonormal set
which is also a basis. Synonym: complete
orthonormal set.

orthonormal set A set {uα} of a Hilbert
space H satisfying

〈uα, uβ〉 =
{

0 if α �= β

1 if α = β
.
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p-Laplacian equation Let U ⊂ R

n be open
and u : U × R → R. The p-Laplacian equation
for u is

div(|Du|p−2Du) = 0,

where Du = Dxu = (ux1
, . . . , uxn

) denotes the
gradient of u with respect to the spatial variable
x = (x1, . . . , xn).

p-version of finite elements The finite
element discretization of a boundary value prob-
lem is built upon a fixed mesh. A family of
finite elements is employed that supplies finite
element spaces for a wide range of local polyno-
mial degrees. The idea of the p-version of finite
elements is to get an acceptable discrete solu-
tion by using a sufficiently high degree polyno-
mial. A local variant of the p-version raises the
polynomial degree only on cells where a better
approximation is really needed to reduce the dis-
cretization error; cf., adaptive refinement.

parallel transport A vector field X defined
along a curve γ in a manifold M with a connec-
tion N such that

∇γ̇ X = 0

where γ̇ denotes the tangent vector to the
curve γ .

parametric equivalence Two finite ele-
ments (K, VK,XK) and (T , VT ,XT ) are para-
metric equivalent, if there is a piecewise smooth
bijective mapping ) : K → T and a bijective
linear mapping F) : VT → Vk , the pull-back,
such that

XT = {κ : VT → C, κ(u) = φ(F)u), φ ∈ Xk}.

Sloppily speaking, this means that both the geo-
metric elements and the local spaces can be
mapped onto each other, and that the local
degrees of freedom are invariant with respect

to pull-back. An important consequence is that
nodal interpolation operators and pull-backs
commute:

F)(Ihu|T ) = Ih(F)(u))|K,

for all sufficient smooth functions/vector fields u
on T .

Given an infinite family of meshes {;h}h∈H,
H an index set, a related family of finite ele-
ment spaces is considered parametric equivalent,
if there is a small number of finite elements to
which all elements of the family are parametric
equivalent. These elements are called reference
elements.

Parametric equivalence is a key tool in most
proofs of local a priori interpolation estimates for
families of finite element spaces and their associ-
ated nodal interpolation operators. If the meshes
are shape regular, it is often possible to gauge
the change of norms under pull-back. First the
interpolation error is estimated on the reference
element(s). Then, the relationship of commuta-
tivity given above is used to conclude an estimate
for an arbitrary element.

partial differential equation A differential
equation involving a function of more than one
variable, and hence partial derivatives.

partition A set of subgraphs, {G′(V ′, E ′),
G′′(V ′′, E ′′), . . .} of a graph G(V, E), such that
the subgraphs are disjoint.

partition of unity Let M be a paracompact
manifold and {Uα}α∈I a locally finite covering
(see open covering). A partition of unity relative
to {Uα}α∈I is a family of (smooth) local functions
fα : M → R such that:

(i.) ∀x ∈ M , fα(x) ≥ 0;

(ii.) suppfα ⊂ Uα;

(iii.) ∀x ∈ M ,
∑

α∈I fα(x) = 1;

where suppfα denotes the support of the function
fα , i.e., the closure of the set {x ∈ M : fα(x)

�= 0}.
Notice that the sum in P3 is finite since the

covering {Uα}α∈I is locally finite. The functions
fα of a partition of unity can be required to be
real-analytic only in trivial situations. In fact,
any analytical function which is identically zero
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outside Uα is zero everywhere. On the contrary,
the functions fα can be required to satisfy less
stringent regularity conditions such as C∞.

Partitions of unity are often used to prove
existence of a global object once local objects
are known to exist in M . For example, let M be
a (paracompact) C∞ manifold and {(Uα, xα)}α∈I
an atlas of M . This means that Uα are diffeo-
morphic (via the maps xα : Uα → R

m) to an
open set xα(Uα) ⊂ R

m (m = dim(M)). Con-
sequently, there exist local (strictly) Riemann-
ian metrics gα induced on Uα (via the maps
xα : Uα → R

m) by the standard metric
δαβ on R

m. Notice that metrics are second
rank, nondegenerate, positive definite tensors.
If {(Uα, fα)} is a partition of unity relative to
the open covering {Uα}, we can then define the
second-order tensors fα gα , one for each α ∈ I .
They are global tensors but they identically van-
ish outside Uα so that they are not suitable to
define a Riemannian metric overM . Let us, how-
ever, consider the combination g =∑α∈I fα gα
(which exists since {Uα} is locally finite). Then
g is a global Riemannian metric over M , since
linear combinations with positive coefficients of
positive definite tensors are still positive definite.
The same argument cannot be applied in gen-
eral to arbitrary signature and in particular to the
Lorentzian case. In those cases, in fact, further
topological conditions have to be satisfied for a
global metric to exist.

parts of collections For any bag, list,
sequence, or set, a subpart (subbag, sublist, sub-
sequence, or subset) is a portion of the original
collection. If the part is less than the original
collection, it is a proper subbag, sublist, subse-
quence, or subset, and we denote the relationship
between the part and the collection by part⊂ col-
lection. Otherwise, the relationship is denoted by
⊆ to indicate the part may be equal to the whole.

Comment: A set, bag, list, or sequence may
contain another of its type. For example, {a, b} ⊂
{a, b, c} and 〈a, b〉 ⊂ 〈a, b, c〉.

In forming parts of collections, bear in
mind that the part must satisfy the same
properties as the whole. For example, if we
have S = 〈a, b, c, d, e〉, then any derived
subsequence must have the same precedence
relations: {〈a, b〉, 〈b, c, d〉, 〈d, e〉} is a set of

valid subsequences, but 〈d, c〉 is not a subse-
quence of S. See also bag, empty collection, list,
sequence, set, and superset.

path An alternating sequence of nodes and
edges drawn from a graph G(V, E), such that they
form a connected subgraph, G′(V ′, E ′), where
V ′ ⊆ V and E ′ ⊆ E .

Comment: A path through a graph is simply
a connected subgraph whose nodes and edges
appear in sequence: just begin at the beginning
and walk along the path to the end. If one permits
oneself to let the nodes of the path be implicitly
represented by the edges, the path becomes a
sequence of edges. See also pathway, sequence,
and terminal nodes.

pathway A sequence of biochemical reac-
tions and their compounds whose nodes and
edges form a path and have historically been con-
sidered by biochemists to be a pathway.

Comment: This definition seems a little
circular, but in fact what we define as biochem-
ical pathways is largely determined by the his-
tory and results of the experiments involved in
their discovery. Definitions of particular path-
ways vary slightly among different sources. For
example, some authors include phosphorylation
of d-glucopyranose as part of glycolysis; others
do not. Still others refer to the next step as the
first “committed step” in glycolysis. See also
path, sequence, and terminal nodes.

pathwise connected The property of a topo-
logical space (X, τ(X)) that any two points can
be joined by a curve. See connected. Pathwise
connectedness implies connectedness. The con-
verse is false.

Example: The subset in R
2 given by the union

of the set L = {(0, x) : x ∈ [0, 1]} and the set
S = {(x, sin( 1

x
)) : 0 ≤ x} is connected but not

pathwise connected.

pattern See motif.

pendant node See singleton node.
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pericyclic reaction A chemical reaction in
which concerted reorganization of bonding takes
place throughout a cyclic array of continu-
ously bonded atoms. It may be viewed as a
reaction proceeding through a fully conjugated
cyclic transition state. The number of atoms in
the cyclic array is usually six, but other num-
bers are also possible. The term embraces a
variety of processes, including cycloadditions,
cheletropic reactions, electrocyclic reactions,
and sigmatropic rearrangements, etc. (provided
they are concerted).

photoelectrical effect The ejection of an
electron from a solid or a liquid by a photon.

photoelectron spectroscopy (PES) A spec-
troscopic technique that measures the kinetic
energy of electrons emitted upon the ionization
of a substance by high energy monochromic
photons. A photoelectron spectrum is a plot
of the number of electrons emitted vs. their
kinetic energy. The spectrum consists of bands
due to transitions from the ground state of an
atom or molecular entity to the ground and
excited states of the corresponding radical cation.
Approximate interpretations are usually based on
“Koopmans theorem” and yield orbital energies.
PES and UPS (UV photoelectron spectroscopy)
refer to the spectroscopy using vacuum ultra-
violet sources, while ESCA (electron spec-
troscopy for chemical analysis) and XPS use
X-ray sources.

photoemissive detector A detector in
which a photon interacts with a solid surface,
which is called the photocathode, or a gas,
releasing a photoelectron. This process is called
the external photoelectric effect. The photoelec-
trons are collected by an electrode at positive
electric potential, i.e., the anode.

photon Particle of zero charge, zero rest
mass, spin quantum number 1, energy hν, and
momentum hν/c (h is the Planck constant, ν the
frequency of radiation, and c the speed of light);
carrier of electromagnetic force.

photon flow, )p)p)p The number of photons
(quanta, N ) per unit time. (dN/dt , simplified
expression: )p = N/t when the number of pho-
tons is constant over the time considered.) The
SI unit is s−1. Alternatively, the term can be used
with the amount of photons (mol or its equivalent
Einstein), the SI unit then being mol s−1.

photon fluence, H 0
pH 0
pH 0
p The integral of the

amount of all photons (quanta) which traverse
a small, transparent, imaginary spherical target,
divided by the cross-sectional area of this tar-
get. The photon fluence rate, E0

p, integrated over
the duration of the irradiation (

∫
E0

pdt , simpli-
fied expression: H 0

p = E0
pt when E0

p is constant
over the time considered). Photons per unit area
(quanta m−2). The SI unit is m−2. Alternatively,
the term can be used with the amount of photons
(mol or its equivalent Einstein), the SI unit then
being mol m−2.

photon fluence rate, E0
pE0
pE0
p The rate of photon

fluence. Four times the ratio of the photon flow,
)p, incident on a small, transparent, imaginary
spherical volume element containing the point
under consideration divided by the surface of that
sphere, SK . (

∫
4π Lpdw, simplified expression:

E0
p = 4)p/SK when the photon flow is constant

over the solid angle considered). The SI unit
is m−2s−1. Alternatively, the term can be used
with the amount of photons (mol or its equivalent
Einstein), the SI unit then being mol m−2 s−1. It
reduces to photon irradiance for a parallel and
normally incident beam not scattered or reflected
by the target or its surroundings.

photon flux Synonymous with photon irra-
diance.

photon irradiance, EpEpEp The photon flow,
)p, incident on an infinitesimal element of sur-
face containing the point under consideration
divided by the area (S) of that element (d)p/ds,
simplified expression: Ep = )p/S when the
photon flow is constant over the surface con-
sidered). The SI unit is m−2s−1. Alternatively,
the term can be used with the amount of photons
(mol or its equivalent Einstein), the SI unit then
being mol−2s−1. For a parallel and perpendicu-
larly incident beam not scattered or reflected by
the target or its surroundings photon fluence rate
(E0

p) is an equivalent term.
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phylogenetic motif Any motif conserved
over biological species. See also biochemical,
chemical, dynamical, functional, kinetic, mech-
anistic, regulatory, thermodynamic, and topo-
logical motives.

physical quantity (measurable quantity) An
attribute of a phenomenon, body, or substance
that may be distinguished qualitatively and deter-
mined quantitatively.

planar graph A graph that can be drawn in
the plane with no edges crossing.

plasmid An extrachromosomal genetic ele-
ment consisting generally of a circular duplex
of DNA which can replicate independently of
chromosomal DNA. R-plasmids are responsible
for the mutual transfer of antibiotic resistance
among microbes. Plasmids are used as vectors
for cloning DNA in bacteria or yeast host cells.

ploidy A term indicating the number of sets
of chromosomes present in an organism, e.g.,
haploid (one) or diploid (two).

Poisson-Boltzmann equation A mathemat-
ical model for the ionic gas (plasma) or ionic
solution. The nonlinear equation is established
based on two physical laws: the Poisson equation
relating the electric potential to charge distribu-
tion, and the Boltzmann law relating the charge
distribution to electric potential. It has been
shown that this equation is a good model for
many applications even though it suffers from
some thermodynamic inconsistency. The lin-
earized equation and its solution is known as
Debye-Hückel theory. The one-dimensional ver-
sion of the nonlinear equation can be applied
to modeling the charge distribution near a flat,
charged membrane; this is known as Guy-
Chapman equation.

Poisson bracket Let (P, ω) be a symplectic
manifold, ξA a system of canonical coordinates
and f , g two real functions on P . Then the Pois-
son bracket of f and g is defined as the function

{f, g} = ω−1(df, dg) = ωAB(∂Af )(∂Bg).

Functions on P with Poisson bracket form a
Lie algebra. There exists a Lie algebra homo-
morphism between the Lie algebra of functions
on P and vector fields, given by

H �→ XH(f ) = {H, f }.

It is an isomorphism when constants are quo-
tiented out of functions.

More generally, let P be a smooth manifold
and C∞(P ) the space of smooth functions. A
Poisson bracket or Poisson structure on P is an
operation { , } : C∞(P ) × C∞(P ) → C∞(P )

satisfying the following

(i.) {F,G} is real, bilinear in F and G,

(ii.) {F,G, } = −{G,F }, skew symmetric,

(iii.) {{F,G}, H } + {{H,F },G} + {{G,H },
F } = 0, Jacobi identity,

(iv.) {FG,H } = F {G,H }+{F,H }G, Leib-
niz rule.

Poisson equation Let U ⊂ R
n open and u :

U × R → R. The (nonlinear) Poisson equation
for u is

−�u = f (x).

Poisson manifold A smooth manifold P

with a Poisson bracket { , }. Examples: Sym-
plectic manifolds are Poisson manifolds, where
the Poisson bracket is defined by

{F,G}(x) = ω(x)(XF (x),XG(x)), x ∈ M

where XF is the Hamiltonian vector field of F .

polar coordinates The parameterization of
the plane R

2 as X = (r, θ), where r > 0 is the
absolute value |X| and θ is the angle (in radians)
between the horizontal axis and the segment from
O to X.

pole A complex number z0 is a pole of a func-
tion f (z) if f (z) is analytic in 0 < |z − z0| < ε,
for some ε > 0 and not analytic at z0, but
(z− z0)

nf (z) is analytic at z0, for some positive
integer n.
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pollution effect If some feature of a problem
has an indirect and nonobvious adverse impact
on the accuracy that can be achieved by a dis-
cretization scheme, a pollution effect can be
observed. A prominent example is the deteriora-
tion of certain asymptotic rates of convergence of
finite element schemes for second-order elliptic
boundary value problems in the presence of reen-
trant corner. Another case is the loss of accuracy
suffered by standard finite element schemes for
the Helmholtz equation −�u− κu = f when κ

becomes large.

polymer A substance composed of macro-
molecules.

polymerization The process of converting
a monomer or a mixture of monomers into a
polymer.

polynomial A linear combination of non-
negative, integer powers of a variable (or
unknown) x,

p(x ) = a0 + a1x + · · · + anx
n.

population genetics One can study genetics
from either a molecular point of view (see double
helix) or from a population point of view. Popula-
tion genetics studies where the gene is located in
a chromosome, and how it is passed from gener-
ation to generation from the pedigree of heredi-
tary markers.

population model A system of mathemat-
ical equations representing the proposed relation
between the population sizes and their growth
rates. The often used equations in textbooks,
such as exponential growth, logistic equation,
predator-prey, and competition are simplified
population models.

porous medium equation Let U ⊂ R
n

open and u : U × R → R. The porous medium
equation for u is

ut −�(uγ ) = 0.

Post production system (PPS) A finite
grammar X over a finite set of symbols K which
produces a set of constructs, C, from an initial
construct c0 ∈ C, such that each construct in C
can be obtained from one or more symbols in
K by a finite derivation, where each step in the
derivation is a rule πi ∈ X.

Comment: The constructs were strings repre-
senting logical predicates, and the grammar the
rules of logical derivation and proof, in Post’s
original formulation (E.L. Post, “Finite combin-
atory processes. Formulation I”, J. Symbolic
Logic, 1, 103–105 (1936)). The class of Post-
generated construct sets is a member of the class
of recursively enumerable sets. The grammar
may be deterministic or nondeterministic, but its
execution is not stochastic. See universal Turing
machine and von Neumann machine.

postfix An operator written after its
operands. Thus for two operands x and y and
operator f , the syntax is xyf .

Comment: Remember calculators with
reverse Polish notation? In many instances this
is the most natural order of all; for example,
exponentiation. See also functor, infix, prefix,
and relation.

posynomial A positive sum of polynomials∑
i cjXj x(j)

a(i,j), where cj > 0. Each mono-
mial is the product

Xjx(j)
a(i,j) = x(1)a(i,1) ·x(2)a(i,2) ·. . .·x(n)a(i,n)

and [a(i, j)] is called the exponent matrix.
This is the fundamental function in geometric
programming.

potential energy, Ep, VEp, VEp, V Energy of position
or orientation in a field of force.

potential-energy profile A curve describ-
ing the variation of the potential energy of the
system of atoms that make up the reactants and
products of a reaction as a function of one geo-
metric coordinate, and corrresponding to the
“energetically easiest passage” from reactants to
products (i.e., along the line produced by join-
ing the paths of steepest descent from the transi-
tion state to the reactants and to the products).
For an elementary reaction, the relevant geo-
metric coordinate is the reaction coordinate. For
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a stepwise reaction it is the succession of reaction
coordinates for the successive individual reac-
tion steps. (The reaction coordinate is some-
times approximated by a quasi-chemical index of
reaction progress, such as degree of atom transfer
or bond order of some specified bond.)

potential-energy (reaction) surface A geo-
metric hypersurface on which the potential
energy of a set of reactants is plotted as a func-
tion of the coordinates representing the molecu-
lar geometries of the system.

For simple systems two such coordinates
(characterizing two variables that change during
the progress from reactants to products) can be
selected, and the potential energy plotted as a
contour map.

For simple elementary reactions, e.g., A −
B + C → A + B − C, the surface can show
the potential energy for all values of the A,B,C
geometry, providing that the ABC angle is fixed.

For more complicated reactions a different
choice of two coordinates is sometimes pre-
ferred, e.g., the bond orders of two different
bonds. Such a diagram is often arranged so that
reactants are located at the bottom left corner and
products at the top right. If the trace of the rep-
resentative point characterizing the route from
reactants to products follows two adjacent edges
of the diagram, the changes represented by the
two coordinates take place in distinct succes-
sion. If the trace leaves the edges and crosses
the interior of the diagram, the two changes are
concerted. In many qualitative applications it is
convenient (although not strictly equivalent) for
the third coordinate to represent the standard
Gibbs energy rather than potential energy.

Using bond orders is, however, an oversim-
plification, since these are not well defined, even
for the transition state. (Some reservations con-
cerning the diagrammatic use of Gibbs energies
are noted under Gibbs energy diagram.)

The energetically easiest route from reactants
to products on the potential-energy contour map
defines the potential-energy profile.

power series A formal summation of the

form
∞∑
n=0

cn(x − a)n, where a and c0, c1, . . . are

complex numbers.

power set (of a set A) The set of all subsets
ofA (the empty subset included). It is denoted by
P(A) or 2A. For example, the empty set ∅ has no
element. Its power set P(∅) = {∅} has exactly
one element. The power set of A = {a, b} is
P(A) = {∅, {a}, {b}, A}. In general, if A has n

elements, the power set has 2n elements.

predator-prey population model A math-
ematical model, in terms of a pair of ordinary
differential equations, representing the popula-
tions of two species with prey-predator relation.
Such systems are likely to exhibit oscillation or
even limit cycles. Generalization to more than
two species is possible and, in fact, is widely
used in applications.

prefix An operator written before its
operands. Thus for two operands x and y and
operator f , the syntax is f xy or f (x, y). See
also functor, infix, postfix, and relation.

prey-predator relation Two biological spe-
cies are in the following relation: the growth
rate of the predator increases with increasing
prey population, and the growth rate of the prey
decreases with increasing predator population.
The popular examples are fish and sharks, and
deer and wolves.

primary sample The collection of one of
more increments or units initially taken from a
population.

The potions may be either combined (com-
posited or bulked sample) or kept separate (gross
sample). If combined and mixed to homogeneity,
it is a blended bulk sample. The term “bulk sam-
ple” is commonly used in the sampling literature
as the sample formed by combining increments.
The term is ambiguous since it could also mean
a sample from a bulk lot, and it does not indicate
whether the increments or units are kept separ-
ate or combined. Such use should be discour-
aged because less ambiguous alternative terms
(composite sample, aggregate sample) are avail-
able. “Lot sample” and “batch sample” have also
been used for this concept, but they are self-
limiting terms. The use of “primary” in this sense
is not meant to imply the necessity for multistage
sampling.

© 2003 by CRC Press LLC 



primitive change One of the conceptually
simpler molecular changes into which an ele-
mentary reaction can be notionally dissected.
Such changes include bond rupture, bond for-
mation, internal rotation, change of bond length
or bond angle, bond migration, redistribution of
charge, etc.

The concept of primitive change is helpful
in the detailed verbal description of elementary
reactions, but a primitive change does not repre-
sent a process that is by itself necessarily observ-
able as a component of an elementary reaction.

principal bundle A bundle (P,M,p;G)

with a Lie group G as standard fiber and transi-
tion functions valued in the same G and acting
on G by means of left translations Lg : G →
G : h �→ g · h. On principal bundles a global
and canonical right action Rg of G is defined by

Rg : P → P : (x, h) �→ (x, h · g).
This action is free, transitive on fibers and verti-
cal (i.e., it is formed by vertical automorphisms),
and it completely characterizes the principal
bundle. An object is called equivariant if it pre-
serves the canonical right action Rg .

On a principal bundle there is a one-to-one
correspondence between local trivializations and
local sections. Hence, a principal bundle is triv-
ial if and only if it allows a global section.

principal connection A connection over a
principal bundle (P,M,p;G) which preserves
the canonical right action, i.e.,

T Rg(Hp) = Hp·g.

In physics it is also called a gauge field.

product In chemistry and biochemistry, the
molecular species yielded by a reaction running
in a particular direction.

Comment: The distinction is between the
molecular result of a reaction and where a com-
pound is represented in the arbitrarily written for-
mal reaction equation. When a reaction occurs
in a particular direction (either forward or back-
ward), the substrates and products are known,
and this identification of molecules with chem-
ical roles is independent of where the molecules
appear in the formal equation representing the

reversible reaction. See also dextralateral, direc-
tion, dynamic equilibrium, formal reaction equa-
tion, microscopic reversibility, rate constant,
reversibility, sinistralateral, and substrate.

projectable vector field A projectable vec-
tor field is a vector field on a bundle (B,M, π;F)

inducing by projection a vector field on the base
manifold M . Locally, it is expressed as

\ = ξµ(x)∂µ + ξ i(x, y)∂i

where (xµ; yi) are fibered coordinates. The flow
of a projectable vector field is formed by fibered
automorphisms. Vector fields that are not pro-
jectable do not preserve the bundle structure.

protein folding The dynamical process of
obtaining its structure (see protein structure),
under appropriate conditions such as tempera-
ture, pH, etc., from an arbitrary initial structure.
In test tubes, it is known experimentally that
many proteins can reach their respective, almost
unique three-dimensional structures. How this
process works is still not completely known,
even though it is generally accepted that the pro-
cess is governed by the intramolecular interac-
tions between atoms and interaction between the
molecule and water in which the process occurs.

protein structure A protein molecule has
a well-defined three-dimensional structure in
terms of the relative spatial coordinates of all
its atoms. Most of our current knowledge about
the protein structures are derived from labora-
tory determinations of the structures of many
proteins using the methods of x-ray crystallogra-
phy or nuclear magnetic resonance spectroscopy.
The former requires a protein to form a crystal,
while the latter can obtain the structure of a pro-
tein in aqueous solution. No reliable computa-
tional method exists yet for obtaining the spatial
structure of a protein from its chemical struc-
ture (known as its amino acid sequence in bio-
chemical literature).

pseudodifferential operator A pseudo-
differential operator P of order k on a com-
pact manifold M is locally of the form: for any
u ∈ C∞

c (M)

Pu(x) =
(2π)−n

∫ ∫
ei(x−y)·ξ a(x, y, ξ) × u(y)dydξ,
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where a(x, y, ξ) is a symbol of order k. This
defines a bounded linear operator between the
Sobolev spaces P : Hs

c (M) → Hs−k
c (M).

psychometry The use of a wet-and-dry bulb
thermometer for measurement of atmospheric
humidity.

purine bases Purine and its substitu-
tion derivatives, especially naturally occurring
examples.

pyrimidine bases Pyrimidine and its substi-
tution derivatives, especially naturally occurring
examples.
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Q
QCD See chromodynamics, quantum.

quantum yield, ))) The number of defined
events which occur per photon absorbed by the
system. The integral quantum yield is:
) = (number of events)/(number of photons

absorbed)
For a photochemical reaction:

) = (amount of reactant consumed or product
formed)/(amount of photons absorbed)

) = d[x]/dt

n

where d[x]/dt is the rate of change of a mea-
surable quantity, and n the amount of photons
(mol or its equivalent einstein) absorbed per unit
time. ) can be used for photophysical processes
or photochemical reactions.

quasi-optimal Describing a V -conforming
finite element scheme used to discretize a vari-
ational problem posed over the space V with the

property that the discrete solutions uh satisfy

‖u− uh‖V ≤ Cinfvh∈Vh
‖u− vh‖V .

Here, u ∈ V denotes the solution of the continu-
ous variational problem. In a strict sense, the
constant C > 0 must not depend on the choice of
Vh. In a loose sense, it may depend on the family
of finite elements, but not on the triangulation,
on whichVh is built. In a very loose sense, if fam-
ilies of triangulations are involved, one demands
that the constant C be independent of the mesh
width, but it may depend on shape regularity.

quasi-uniform A family {;h}h∈H,H an
index set, of triangulations of a domain ; ⊂ R

n

is called quasi-uniform, if there exists a C > 0
such that

sup

{
max{diam(K),K ∈ ;h}
min{diam(K),K ∈ ;h}

, h ∈ H

}
≤ C.

Sloppily speaking, the cells of all meshes of
a quasi-uniform family have about the same
diameter. This permits us to provide asymptotic
a priori estimates for interpolation and approxi-
mation errors of finite element spaces in terms of
the mesh widths.

quotient space See equivalence relation.
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R
radiant (energy) flux, P,)P,)P,) Although flux
is generally used in the sense of the “rate of trans-
fer of fluid, particles or energy across a given sur-
face,” the radiant energy flux has been adopted
by IUPAC as equivalent to radiant power, P .
(P = ) = dQ/dt , simplified expression: P =
) = Q/t when the radiant energy,Q, is constant
over the time considered). In photochemistry, )
is reserved for quantum yield.

radiant exposure, HHH The irradiance, E

integrated over the time of irradiation (
∫
E dt ,

simplified expression H = Et when the irradi-
ance is constant over the time considered). For a
parallel and perpendicularity, incident beam not
scattered or reflected by the target or its surround-
ings, fluence (H0) is an equivalent term.

radiant power, P,)P,)P,) Same as radiant
(energy) flux, ). Power emitted, transferred, or
received as radiation.

radiation A term embracing electromag-
netic waves as well as fast moving particles. In
radioanalytical chemistry the term usually refers
to radiation emitted during a nuclear process
(radioactive decay, nuclear reaction, nuclear fis-
sion, accelerators).

radical (free radical) A molecular entity
such as CH3,

˙SnH3, Cl· possessing an unpaired
electron. (In these formulae the dot, symboliz-
ing the unpaired electron, should be placed so
as to indicate the atom of highest spin density, if
this is possible.) Paramagnetic metal ions are not
normally regarded as radicals. However, in the
“isolobal analogy” the similarity between certain
paramagnetic metal ions and radicals becomes
apparent.

At least in the context of physical organic
chemistry, it seems desirable to cease using the
adjective “free” in the general name of this type
of chemical species and molecular entity, so that
the term “free radical” may in the future be

restricted to those radicals which do not form
parts of radical pairs.

Depending upon the core atom that pos-
sesses the unpaired electron, the radicals can be
described as carbon-, oxygen-, nitrogen-, metal-
centered radicals. If the unpaired electron occu-
pies an orbital having considerable s or more or
less pure p character, the respective radicals are
termed σ - or π -radicals.

In the past, the term “radical” was used to des-
ignate a substituent group bound to a molecular
entity, as opposed to “free radical,” which now-
adays is simply called radical. The bound entities
may be called groups or substituents, but should
no longer be called radicals.

radioactive The property of a nuclide of
undergoing spontaneous nuclear transformations
with the emission of radiation.

radioactive decay Nuclear decay in which
particles or electromagnetic radiation are emit-
ted or the nucleus undergoes spontaneous fission
or electron capture.

radioactivity The property of certain
nuclides of showing radioactive decay.

radiochemistry That part of chemistry
which deals with radioactive materials. It
includes the production of radionuclides and
their compounds by processing irradiated mate-
rials or naturally occurring radioactive materials,
the application of chemical techniques to nuclear
studies, and the application of radioactivity to
the investigation of chemical, biochemical, or
biomedical problems.

radioluminescence Luminiscence arising
from excitation by high energy particles or
radiation.

radionuclide A nuclide that is radioactive.

radius of gyration, sss A parameter charac-
terizing the size of a particle of any shape.

For a rigid particle consisting of mass ele-
ments of mass mi , each located at a distance ri
from the center of mass, the radius of gyration s,

c
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is defined as the square root of the mass-average
of the r2

i for all the mass elements, i.e.,

s =
(∑

i mir
2
i∑

i mi

)1/2

For a nonrigid particle, an average overall con-
formation is considered, i.e.,

〈s2〉1/2 = 〈∑i mir
2
i 〉1/2(∑

i mi

)1/2

The subscript zero is used to indicate unperturbed
dimensions, as in 〈s2〉1/2

0 .

range Let r be a relation with domain A and
codomain B, and let a ∈ A, r(a) ∈ B. Then the
range of r is the set of all images, r(ai),∀ai ∈ A.
The range is denoted by either r(A) or I .

Comment: See the comment on relation for
more details. In particular, note that the range
and codomain of a relation are not necessarily
equivalent. See also domain, image, and rela-
tion.

rate coefficient See order of reaction and
kinetic equivalence.

rate constant The parameter expressing the
intrinsic rate at which a reaction can proceed in
a particular direction; denoted k, usually with a
subscript indicating which direction of the reac-
tion is meant.

Comment: This parameter is also called the
“intrinsic rate constant.” For any reaction the
quotient of the rate constants (forward over
reverse) is the equilibrium constant for the reac-
tion as written in a particular formal reaction
equation. The actual rate achieved in a particu-
lar direction is the product of the rate constant
and the concentrations of each of the obliga-
torily coreacting species for that direction. See
also dextralateral, direction, dynamic equilib-
rium, formal reaction equation, microscopic
reversibility, product, reversibility, sinistra-
lateral, and substrate.

rate-controlling step The rate-controlling
(rate-determining or rate-limiting) step in a reac-
tion occurring by a composite reaction sequence
is an elementary reaction, the rate constant for

which exerts a strong effect, stronger than that
of any other rate constant, on the overall rate.
It is recommended that the expressions rate-
controlling, rate-determining, and rate-limiting
be regarded as synonymous, but some special
meanings sometimes given to the last two expres-
sions are considered under a separate heading.

A rate-controlling step can be formally
defined on the basis of a control function (or
control factor) CF, identified for an elementary
reaction having a rate constant ki by

CF = (∂ ln v∂ ln ki)Kj , kj

where v is the overall rate of reaction. In per-
forming the partial differentiation all equilibrium
constants Kj and all rate constants except ki are
held constant. The elementary reaction having
the largest control factor exerts the strong influ-
ence on the rate v and a step having a CF much
larger than any other step may be said to be rate-
controlling.

A rate-controlling step defined in the way
recommended here has the advantage that it is
directly related to the interpretion of kinetic iso-
tope effects.

As formulated, this implies that all rate con-
stants are of the same dimensionality. Consider,
however, the reaction of A and B to give an inter-
mediate C, which then reacts further with D to
give products

A+ B
k1−→←−
k−1

C (1)

C +D
k2−→ Products. (2)

Assuming that C reaches a steady state, then the
observed rate is given by

v = k1k2[A][B][D]

k−1 + k2[D]
.

Considering k2[D] a pseudo-first-order rate con-
stant, then k2[D] >> k−1, and the observed rate
v = k1[A][B] and kobs = k1. Step (1) is said to
be the rate-controlling step.

If k2[D] << k−1, then the observed rate

v = k1k2

k−1
[A][B][D].
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rate law (empirical differential rate equation)
An expression for the rate of reaction of a particu-
lar reaction in terms of concentrations of chem-
ical species and constant parameters (normally
rate coefficients and partial orders of reaction)
only. For examples of rate laws see equations
(1)-(3) under kinetic equivalence.

rate of change (of a function f (t), with respect
to t) (1) Average rate of change over [t1, t2]
is

f (t2)− f (t1)

t2 − t1
.

(2) Instantaneous rate of change at t = t1 is

df

dt
(t1).

reactant A substance that is consumed in
the course of a chemical reaction. It is some-
times known, especially in the older literature, as
a reagent, but this term is better used in a more
specialized sense as a test substance that is added
to a system in order to bring about a reaction or to
see whether a reaction occurs (e.g., an analytical
reagent).

reaction Any chemical or biochemical
transformation of matter and energy.

Comment: This definition includes both spon-
taneous and catalyzed reactions. The word
“transformation” is used in the general English
sense, not the mathematical or linguistic sense.

reaction coordinate A geometric param-
eter that changes during the conversion of one
(or more) reactant molecular entities into one
(or more) product molecular entities and whose
value can be taken for a measure of the progress
of an elementary reaction (for example, a bond
length or bond angle or a combination of bond
lengths and/or bond angles; it is sometimes
approximated by a nongeometric parameter,
such as the bond order of some specified bond).
In the formalism of “transition-state theory,” the
reaction coordinate is that coordinate in a set of
curvilinear coordinates obtained from the con-
ventional ones for the reactants which, for each
reaction step, leads smoothly from the configur-
ation of the reactants through that of the transition
state to the configuration of the products. The

reaction coordinate is typically chosen to follow
the path along the gradient (path of shallowest
ascent/deepest descent) of potential energy from
reactants to products.

The term has also been used interchangeably
with the term transition coordinate, applicable
to the coordinate in the immediate vicinity of the
potential energy maximum. Being more specific,
the name transition coordinate is to be preferred
in that context.

reaction-diffusion equation Let U ⊂ R
n

be open and u : U × R → R
n. The reaction-

diffusion equation for u is

ut −�u = f (u).

reaction path (1) A synonym for mech-
anism.

(2) A trajectory on the potential-energy
surface.

(3) A sequence of synthetic steps.

reaction’s compounds The set of molecular
species, including catalysts, which participate in
that reaction. See compound’s reactions.

reactive (reactivity) As applied to a chem-
ical species, the term expresses a kinetic prop-
erty. A species is said to be more reactive or
to have a higher reactivity in some given con-
text than some other (reference) species if it has
a larger rate constant for a specified elemen-
tary reaction. The term has meaning only by
reference to some explicitly stated or implicitly
assumed set of conditions. It is not to be used
for reactions or reaction patterns of compounds
in general.

The term is also more loosely used as a phe-
nomenological description not restricted to ele-
mentary reactions. When applied in this sense
the property under consideration may reflect not
only rate, but also equilibrium, constants.

reduced viscosity (of a polymer) The ratio
of the relative viscosity increment to the mass
concentration of the polymer, c, i.e., ηi/c, where
ηi is the relative viscosity increment.

Notes: (1) The unit must be specified; cm3g−1

is recommended.
(2) This quantity is neither a viscosity nor a

pure number. The term is to be looked on as
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a traditional name. Any replacement by con-
sistent terminology would produce unnecessary
confusion in the polymer literature. Synony-
mous with viscosity number.

reference material A substance or mixture
of substances, the composition of which is known
within specified limits, and one or more of the
properties of which is sufficiently well estab-
lished to be used for the calibration of an appar-
atus, the assessment of a measuring method or
for assigning values to materials. Reference
materials are available from national laborator-
ies in many countries [e.g., National Institute for
Standards and Technology (NIST), U.S., Com-
munity Bureau of Reference, U.K.].

regulatory motif A conserved topological
motif which reduces or increases the activity of
a gene, enzyme, or macromolecular complex.

Comment: See also biochemical, chemical,
dynamical, functional, kinetic, mechanistic,
phylogenetic, thermodynamic, and topological
motives.

relation (between two sets) A relation
between A and B is any subset R ⊂ A×B of the
Cartesian product of the two sets. If (a, b) ∈ R

we say that a is related to b (in that order), and
we write a R b. If R can be produced by some
operation or procedure r , then we often call r the
relation.

For example, consider A = {a, b, c} and B =
{1, 2, 3}, and let r(ai, bi), ai ∈ A, bi ∈ B, 1 ≤
i ≤ 3. Then R = {(a, 1), (b, 2), (c, 3)}.

Consider a relation r between two sets A
and B. A is called the domain of r and B its
codomain. The elements of B related, via a rela-
tion r to an element a ∈ A is called the image of a
under r , and denoted by r(a). The union r(A) of
all r(a), a ∈ A, is called the range of r , and can
also be denoted I . Thus, r(A) may be a proper
subset of B. So, the range is not necessarily the
same as the codomain.

See also domain, image, and range, and rela-
tion.

A relation f is called a function if for each
a ∈ A there exists a unique b ∈ B such that af b.
If f is a function and a f b we writef (a) = b

and f : A → B, with f : a �→ b. Notice that
according to this definition, which is standard in
algebra, the map f : x �→ 

1
x

is not a function
f : R → R since it is not defined in 0 ∈ R.
Of course, it is a function on the smaller space
R − {0}.

relative molar mass Molar mass divided by
1 g mol−1 (the latter is sometimes called the
standard molar mass).

relative molecular mass, MrMrMr Ratio of the
mass of a molecule to the unified atomic mass
unit. Sometimes called the molecular weight or
relative molar mass.

relative responsivity See responsivity.

relative viscosity The ratio of the viscosity
η of the solution to the viscosity ηs of the sol-
vent, i.e., ηr = η/ηs . Synonymous with viscos-
ity ratio.

relative viscosity increment The ratio of
the difference between the viscosities of solution
and solvent to the viscosity of the solvent, i.e.,
ηi = (η− ηs)/ηs , where η is the viscosity of the
solution and ηs is the viscosity of the solvent.

The use of the term “specific viscosity” for
this quantity is discouraged, since the relative
viscosity increment does not have the attributes
of a specific quantity.

relaxation oscillator For some oscillatory
dynamics with a limit cycle, parts of the cycle are
traversed quickly in comparison with other parts.
This is often referred to as a relaxation oscilla-
tor. This phenomenon suggests that the under-
lying ordinary differential equations for such a
system have a small parameter which is present
in a crucial place to cause this rapid variation in
the solution. A widely used class of models for
such phenomena is a system du/dt = f(u, α),
dα/dt = εg(u, α) which can be analyzed by
singular perturbation for small ε.

© 2003 by CRC Press LLC © 2003 by CRC Press LLC 



rendering A physical model or drawing
of an object intended for direct perception by
humans.

Comment: The key notion is that the model
is directly perceived by humans, usually visu-
ally. For example, renderings can be images
drawn on a raster screen, a physical molecular
model, or a projection in a virtual reality environ-
ment. A rendering is distinct from the informa-
tion it contains or its abstract specification, and
is strongly determined by the device used for its
achievement and the intended method of percep-
tion. Thus renderings of the same landscape in
oils and water colors can have distinctly different
characters, even if the landscapes are completely
isomorphic. Synonymous with drawing.

representation (1) A representation of an
object a ∈ A is an image ψq(a) ∈ Z which
preserves a property q such that

(i.) uniqueness: the mapping, ψq , between
A and Z for q is one-to-one and onto (notated
ψq : a �−→ ψq(a), a ∈ A, ψq(a) ∈ Z, and

(ii.) equivalent transformations: for some
transformation ζ over the set of objects A,

ζ : a �−→ a′,

a, a′ ∈ A, there exists a transformation ζ ′ over
the set of representations,

ζ ′ : ψq(a) �−→ ψq(a
′),

ψq(a), ψq(a
′) ∈ Z, such that the result of ψq

applied to ζ(a)  is identical to the result of ζ ′

applied to ψq(a), or

ψq ◦ ζ(a) = ζ ′ ◦ ψq(a) = ψq(a
′)

where◦ is the composition operator. ψq(ζ ) = ζ ′,
so we say that ζ and ζ ′ are equivalent transfor-
mations.

Equally, a set of such representations Z.
Comment: The intent here is to capture two

of the most salient features of a representation
as the term is commonly used in artificial intel-
ligence and databases. The first is that the rep-
resentation is simply an image of something in
the “real world” which preserves some property
important to the user, geometric isomerism, hair

color, or reaction rate. In general expressive rep-
resentations will mirror the object closely and
in ways that reflect how humans conventionally
represent that object in their heads, often via
language. However, it must be remembered that
strictly speaking, there is no requirement for any
relationship between a term and a representa-
tion for an object, apart from the properties of
the transformations between them. Note that
a database can contain multiple representations
which upon (internal) transformation are infor-
mationally equivalent, provided that each pre-
serves a different property. Thus a molecule can
be represented by a configuration rule, a key-
pair list, or the terminal form. Each preserves a
different property of the molecule (configuration
of substituent groupings, edges in the structural
graph, atoms, and bonds); all are interconvert-
ible by the grammar; and each is optimized for a
specific class of computation.

The second is that if the representation is to
be useful for computations which do something
more sophisticated than simply looking up data,
it must permit one to define a computational
transformation which mimics a “real-world oper-
ation” sufficiently so that for the preserved prop-
erty of interest, the result of the computational
transformation is the image of the result of the
real-world operation. The word is used as both a
singular and a collective noun. See also seman-
tics and semiote.

(2) (of a group G) A linear left action of a
group on a vector space V . To any group ele-
ment g ∈ G an automorphism of V is associ-
ated. Example, the group of rotations SO(3) is
represented on R

3 by matrix multiplication.

representative sample A sample resulting
from a sampling plan that can be expected to
reflect adequately the properties of interest of the
parent population.

A representative sample may be a random
sample or, for example, a stratified sample,
depending upon the objective of sampling and
the characteristics of the population. The degree
of representativeness of the sample may be lim-
ited by cost or convenience.
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resolvent See spectrum.

resonance effect See mesomeric effect.

responsivity (in detection of radiation), RRR

Detector input can be, e.g., radiant power, irradi-
ation, or radiant energy. It produces a measurable
detector output which may be, e.g., an electri-
cal charge, an electrical current or potential or
a change in pressure. The ratio of the detector
output to the detector input is defined as the
responsivity. It is given in, e.g., ampere/watt,
volt/watt. The responsivity is a special case of
the general term sensitivity.

Dark current is the term for the electrical out-
put of a detector in the absence of input. This is a
special case of the general term dark output. For
photoconductive detectors the term dark resist-
ance is used.

If the responsivity is normalized with regard
to that obtained from a reference radiation, the
resulting ratio is called relative responsivity. For
measurements with monochromatic radiation at
a given wavelength λ the term spectral responsiv-
ity R(λ) is used. In some cases the relative spec-
tral responsivity, where the spectral responsivity
is normalized with respect to the responsivity at
some given wavelength, is used. The dependence
of the spectral responsivity on the wavelength is
described by the spectral responsivity function.
The useful spectral range of the detector should
be given as the wavelength range where the rela-
tive responsivity does not fall below a specified
value.

rest point (of a balance) The position of the
pointer with respect to the pointer scale when the
motion of the beam has ceased.

retinoids Oxygenated derivatives of 3,7-
dimethyl-1-(2,6,6-trimethylcyclohex-1-enyl)
nona-1,3,5,7-tetraene and derivatives thereof.

reversibility In chemistry and biochemistry,
the notion that any reaction can proceed in
both directions, at least to some extent. See
also dextralateral, direction, dynamic equilib-
rium, formal reaction equation, microscopic
reversibility, product, rate constant, sinistra-
lateral, and substrate.

Ricci scalar On a manifold M with a con-
nection N and a metric g the contraction of the
Ricci tensor of N with the inverse metric

R = gµνRµν.

Ricci tensor The contraction of the Riemann
tensor defined by

Rβν = Rα
· βαν = −Rα

· βνα.

It is symmetric in the indices (β, ν).

Riemannian manifold A pair (M, g)

formed by a manifold M of dimension m and
a Riemannian metric g on it. If the metric is
positive definite (i.e., of signature (m, 0)) then
it is called strictly Riemanniann; if the metric is
indefinite then it is called pseudo-Riemannian.

Riemannian metric A positive definite
inner product on the tangent space to a manifold
at x, for each point x of the manifold, varying
continuously with x.

right action (of a group on a space X ) A
map ρ : X ×G → X such that:

(i.) ρ(x, e) = x;

(ii.) ρ(x, g1 · g2) = ρ(ρ(x, g1), g2);

where G is a group, e its neutral element, ·
the product operation in G, and X a topologi-
cal space. The maps ρg : X → X defined by
ρg(x) = ρ(x, g) are required to be homeomor-
phisms. If X has a further structure one usually
requires ρ to preserve the structure. If ρ is a right
action, then one can define a left action by setting
λ(g, x) = ρ(x, g−1). See also left action.

right invariance The property that an object
on a manifold M is invariant with respect to a
right action of a group on M . For example, a
vector field X ∈ X(M) is right invariant with
respect to the right action ρg : M → M if and
only if:

Txρg X(x) = X(x · g).

right translations (on a group G) The right
action of G onto itself defined byρ(h, g) =
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ρg(h) = h · g. Notice that, if G is a Lie group,
ρg ∈ Diff(G) is a diffeomorphism but not a
homomorphism of the group structure. See also
left translations and adjoint representations.

ring A nonempty set R, with two binary
operations + and · , which satisfy the following
axioms:

(i.) with respect to+, R is an Abelian group;

(ii.) · is associative: a · (b · c) = (a ·b) · c for
all a, b, c ∈ R;

(iii.) + and · satisfy the distributive laws:
a · (b + c) = a · b + a · c and (b +
c) · a = b · a + c · a, for a, b, c ∈ R.
R is called a commutative ring if it is commu-
tative with respect to · .

rotation An orthogonal tranformation of a
Euclidean space (V , g). See orthogonal group.
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S
saddle point Let f : X × Y −→ R. Then,
(x∗, y∗) is a saddle point of f if x∗ minimizes
f (x, y∗) on X, and y∗ maximizes f (x∗, y) on Y .
Equivalently,

f (x∗, y) ≤ f (x∗, y∗) ≤ f (x, y∗)

for all x in X, y in Y.

von Neumann (1928) proved this equivalent to:

Inf [Sup{f (x, y) : y ∈ Y } : x ∈ X]

= Sup[Inf{f (x, y) : x in X} : y ∈ Y ]

= f (x∗, y∗).

saddle point problem On Banach spaces
V,W consider the functionalJ : V×W → R. A
saddle point problem seeks a pair (u, p) ∈ V×W

such that

J (u, p) = infv∈V supq∈WJ(v, q).

Necessary conditions for this kind of stationary
point often lead to symmetric linear variational
problems with saddle point structure: seek u ∈
V, p ∈ W such that

a(u, v)+ b(v, p) = f (v) ∀v ∈ V,

b(u, q) = g(q) ∀q ∈ W,

where a : V × V → C, b : V × W → C

are sesqui-linear forms, and f, g stand for lin-
ear forms on V and W , respectively. Specimens
of variational saddle point problems are encoun-
tered in the case of mixed variational formula-
tions, the Stokes problem of fluid mechanics, and
whenever a linear constraint is taken into account
by a Lagrangian multiplier.

sample (in analytical chemistry) A portion
of material selected from a larger quantity of
material. The term needs to be qualified, e.g.,
bulk sample, representative sample, primary
sample, bulked sample, or test sample.

The term “sample” implies the existence of
a sampling error, i.e., the results obtained on
the portions taken are only estimates of the
concentration of a constituent or the quantity of
a property present in the parent material. If there
is no or negligible sampling error, the portion
removed is a test portion, aliquot, or specimen.
The term “specimen” is used to denote a portion
taken under conditions such that the sampling
variability cannot be assessed (usually because
the population is changing), and is assumed for
convenience, to be zero. The manner of selection
of the sample should be prescribed in a sampling
plan.

sample unit The discrete identifiable por-
tion suitable for taking as a sample or as a portion
of a sample. These units may be different at dif-
ferent stages of sampling.

satisfiability problem Find a truth assign-
ment to logical propositions such that a (given)
collection of clauses is true (or ascertain that
at least one clause must be false in every truth
assignment). This fundamental problem in com-
putational logic forms the foundation for NP-
completeness

scalar Given a vector space V , a member
of the field from which scalar multiplication of
vectors in V is defined.

scalar product See inner product.

scaling Changing the units of measurement,
usually for the numerical stability of an algo-
rithm. The variables are transformed as x

′ = Sx,
where S = diag(sj ). The diagonal elements are
the scale values, which are positive: s1, . . . , sn >

0. Constraint function values can also be scaled.
For example, in an LP, the constraints Ax = b,
can be scaled byRAx = Rb, whereR = diag(ri)
such that r > 0. (This affects the dual values.)
Some LP scaling methods simply scale each col-
umn of A by dividing by its greatest magnitude
(null columns are identified and removed).

c
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Example A column scaling A row scaling

10x+100y=500 .333x+y=500 x+10y =50
30x +.3y =.2 x+.003y =.2 300x +3y =2

Another method is logarithmic scaling, which
scales by the logarithm of the greatest magnitude.
More sophisticated methods are algorithmic, tak-
ing both row and column extremes into account.

scaling argument (homogeneity argument)
The idea is to exploit the behavior of norms
of functions or vector fields under pull-backs
related to scaling transformations x �→ δx,
δ > 0. Very closely related to techniques relying
on parametric equivalence.

scatter search A population-based meta-
heuristic, starting with a collection of reference
points, usually obtained by the application of
some heuristic. A new point is created by tak-
ing combinations of points in the population, and
rounding elements that must be integer valued. It
bears some relation to a genetic algorithm, except
that scatter search uses linear combinations of
the population, while the GA crossover operation
can be nonlinear.

scheduling (e.g., jobs) A schedule for a
sequence of jobs, say j1, . . . , jn, is a specifica-
tion of start times, say t1, . . . , tn, such that cer-
tain constraints are met. A schedule is sought
that minimizes cost and/or some measure of time,
like the overall project completion time (when the
last job is finished) or the tardy time (amount by
which the completion time exceeds a given dead-
line). There are precedence constraints, such as
in the construction industry, where a wall cannot
be erected until the foundation is laid.

There is a variety of scheduling heuristics.
Two of these for scheduling jobs on machines
are list heuristics: the Shortest Processing Time
(SPT) and the Longest Processing Time ( LPT).
These rules put jobs on the list in non-decreasing
and non-increasing order of processing time,
respectively.

Other scheduling problems, which might not
involve sequencing jobs, arise in production
planning.

Schrödinger equation LetU ⊂ R
n be open

and u : U ×R → R. The Schrödinger equation
for u is

iut +�u = 0.

scintillators Materials used for the mea-
surement of radioactivity, by recording the
radioluminescence. They contain compounds
(chromophores) which combine a high fluores-
cence quantum efficiency, a short fluorescence
lifetime, and a high solubility. These compounds
are employed as solutes in aromatic liquids and
polymers to form organic liquid and plastic scin-
tillators, respectively.

search tree The tree formed by a branch and
bound algorithm strategy. It is a tree because
at each (forward) branching step the problem is
partitioned into a disjunction. A common one is
to dichotomize the value of some variable, x ≤ v

or x ≥ v + 1. This creates two nodes from the
parent:

[parent node]
x ≤ v x ≥ v + 1

↙ ↘
[left child] [right child]

secant The function

sec(x) = 1

cos x

See cosine.

secant method A method to find a root of a
univariate function, say F . The iterate is

x(k+1) = xk − F(xk)[xk − x(k−1)]

F(xk)− F(x(k−1))
.

If F is in C2 and F
′′
(x) �= 0, the order of con-

vergence is the golden mean, say, g (approx. =
1.618), and the limiting ratio is:∣∣∣∣2F ′(x)

F ′′(x)

∣∣∣∣(g−1)

.
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second-order conditions A descendant
from classical optimization, using the
second-order term in Taylor’s expansion.
For unconstrained optimization, the second-
order necessary condition (for f in C2) is
that the Hessian is negative semidefinite (for a
max). Second-order sufficient conditions are the
first-order conditions plus the requirement that
the Hessian be negative definite.

For constrained optimization, the second-
order conditions are similar, using projection
for a regular mathematical program and the
Lagrange multiplier rule. They are as follows
(all functions are in C2, and the mathematical
program is in standard form, for x∗ a local maxi-
mum):

(i.) Second-order necessary conditions.
There exist Lagrange multipliers, (u, v), such
that u ≥ 0 and ug(x∗) = 0 for which: (1)
gradx[L(x∗, u, v)] = 0, and (2) Hx[L(x∗, u, v)]
is negative semi-definite on the tangent plane.

(ii.) Second-order sufficient conditions. The
above necessary conditions hold but with (2)
replaced by (2

′
) Hx[L(x∗, u, v)] is negative def-

inite on the tangent plane.

selectively labeled An isotopically labeled
compound is designated as selectively labeled
when a mixture of isotopically substituted com-
pounds is formally added to the analogous
isotopically unmodified compound in such a way
that the position(s) but not necessarily the num-
ber of each labeling nuclide is defined. A selec-
tively labeled compound may be considered as a
mixture of specifically labeled compounds.

self-adjoint operator A linear operator T

on a Hilbert space (H,<,>) such that T ∗ =
T , where the (Hilbert)-adjoint T ∗ is defined by
< x, Ty >=< T ∗x, y >, x, y ∈ H . See also
symmetric operator. A symmetric operator T is
called essentially self-adjoint if its closure T̄ is
self-adjoint.

self-avoiding random walk A random walk
which does not pass any space point twice. In
three dimensions, this is a more realistic model
for polymer chains. See Gaussian chain and
excluded volume.

self-concordance Properties of a function
that yield nice performance of Newton’s method
used for line search when optimizing a barrier
function. Specifically, let B be a barrier function
for S = {x ∈ X : g(x) ≤ 0} with strict interior
S0. Let x be in S and let d be a direction vector
in R

n such that the line segment [x− td, x+ td]
is in S for t in [0, t∗], where t∗ > 0. Then, define
F : [0, t∗] −→ R by:

F(t) = B(x + td)

(while noting that F depends on x and d). The
function F is self-concordant if it is convex in
C3 and satisfies the following for all x and d:

|F ′′′
(0)| ≤ 2F

′′
(0)(3/2).

One calls F k-self-concordant in an open convex
domain if

|F ′′′
(0)| ≤ 2kF

′′
(0)(3/2).

The logarithmic barrier function, associated with
linear programming, is self-concordant with k =
1. This further extends naturally to functions
in R

n.

semantic mapping A bijective, partial func-
tion between each member of the set of symbols,
σj ∈ K, and its semantics: ω : σj �−→ ω(σj ),
ω the mapping operator. The set of semantic
mappings, ;, is defined for each element of the
domain and codomain to which they apply.

Comment: Notice that ω is a partial func-
tion. There will be elements of the domain (the
symbol set of the language) for which a given
mapping will not be defined. See also semantics
and semiote.

semantics For each symbol σj in the alpha-
bet K, j a positive integer index, its semantics,
ω(σj ), is a computationally executable definition
of the meaning of σj . It is found or produced by
applying a semantic mapping ω to σj , denoted
ω : σj �−→ ω(σj ), such that ω is one-to-one,
onto, and defined for that σj . Under these condi-
tions, we call both symbol and mapping seman-
tically well formed.

Comment: This is equivalent to saying that
every term in a language, L, which describes
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a universe of discourse, has a unique and pre-
cise meaning. This definition, which is appro-
priate for computation but not for linguistics,
eliminates multiple connotations for a single
term except as it can be recursively fragmented to
other terms having unique semantics. In that case,
however, the ultimate terms would necessarily be
used in preference to the more connotation-rich
term. The language can be formal or not, though
it is more likely that any arbitrary mapping will
be unique if it is derived from a formal language.
Of course, natural language is used to describe
the phenomenal universe and the objects within
it (see representation); the meanings of terms in
the natural language are mental constructs. Thus
in defining the natural language term “reaction”
corresponding to a biochemical transformation
(the object), one specifies the type of informa-
tion understood — chemical mechanism, kinetic
regime, formal equation, etc., fragmenting the
term into a set of terms, then mapping each term
to a meaning. The representation of the object
in the database is arbitrary and independent of
the term referencing that object. Semantics are
distinct from database schemata, which describe
the relationships among objects internal to the
database but depend on the observer to recognize
the mappings. This notion of semantics echoes
that of conceptual graphs, but without depending
upon its graphical apparatus. See also represen-
tation, semiote, and term semantics.

semidefinite program Min {cx : S(x) ∈
P }, where P is the class of positive semidefi-
nite matrices, and S(x) = S0 + Sumj {x(j)Sj },
where each Sj , for j = 0, . . . , n is a (given) sym-
metric matrix. This includes the linear program
as a special case.

semi-infinite program A mathematical pro-
gram with a finite number of variables or con-
straints, but an infinite number of constraints
or variables, respectively. The randomized pro-
gram is a semi-infinite program because it has an
infinite number of variables when X is not finite.

semiote A semiote is a symbol denoting the
semantics of a useful elementary part of an idea,
datum, or computation.

More formally, let a symbol be denoted σ0 and
the set of all symbols other than σ0 be denoted

K′ = K − {σ0}. A member of the set K′ is
denoted σj , j a positive integer indexing K′.
Then σ0 is considered to be an elementary sym-
bol, or semiote, if three conditions are fulfilled.

(i.) well-formed. There is one and only one
well-formed mapping ω such that ω : σ0 �−→
ω(σ0).

(ii.) unique. The symbol σ0 and its seman-
tics, ω(σ0), are unique, or

σ0 �= σj , ω(σ0) �= ω(σj ),

∀ σj ∈ K′, ω(σj ) ∈ ;(K′).
(iii.) elementary. Denote the set of all possi-

ble constructs of symbols in K′ by C ′, and a par-
ticular construct, ck , k a positive integer index.
Then σ0 is elementary if, for a well-formed map-
ping ω, the semantics of every construct, ω(ck),
is not equal to the semantics of σ0, ω(σ0), or

ω(σ0) �= ω(ck), ∀ ck ∈ C ′.

The semiote σ0 is denoted ς . Every semiote has
four properties:

(i.) its formally defined, computable seman-
tics;

(ii.) its formally defined, computable syntax;

(iii.) its informally defined, natural language
semantics; and

(iv.) its informally defined, natural language
syntax.

The set of all semiotes is denoted Kς , and is
also called the semantic basis set. A construct
of semiotes is called a bundle of semiotes or a
semiotic bundle.

Comment: For the natural world there are
as many mental models and domain models as
there are scientists and databases. Some of
their terms’ semantics and representations will
be isomorphic among people and databases (and
between people and databases), but many will
not. Semiotes, singly or more usually com-
bined, are intended to map between the multiple
meanings humans assign to terms of a lan-
guage describing the phenomenal world and
the multiple ways in which objects and oper-
ations on them from that world can be repre-
sented in databases. The proposition is that an
abstract layer of semiotes, incrementally and dis-
tributively formulated and maintained, clearly
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specifies the semantics of these models for the
purposes of exchanging computations. Each site
offering data or computations to the network
would locally maintain a publicly readable list
of mappings between its internal representation
and the semiotes and a parser implementing those
mappings as needed by the local engine. Simi-
larly, sites posing computations would maintain
mappings and parser between their internal rep-
resentation and the semiotes. All sites are free
to change their schema, engines, and proffered
services at any time in any manner. Flexibil-
ity of use and ease of definition is promoted by
making semiotes representing the smallest use-
ful part, and combining these together. See also
representation and semantics.

sensitivity (1) (in mass spectrometry) Two
different measures of sensitivity are recom-
mended. The first, which is suitable for relatively
involatile materials as well as gases, depends
upon the observed change in ion current for a
particular amount or change of flow rate of sam-
ple through the ion source. A second method of
stating sensitivity, that is most suitable for gases,
depends upon the change of ion current related
to the change of partial pressure of the sample in
the ion source.

It is important that the relevant experimental
conditions corresponding to sensitivity measure-
ment should always be stated. These include in a
typical case details of the instrument type, bom-
barding electron current, slit dimensions, angular
collimation, gain of the multiplier detector, scan
speed, and whether the measured signal corre-
sponds to a single mass peak or to the ion beam
integrated over all masses. Some indication of
the time involved in the determination should be
given, e.g., counting time or bandwidth. The sen-
sitivity should be differentiated from the detec-
tion limit.

(2) (in metrology and analytical chemistry)
The slope of the calibration curve. If the curve
is in fact a “curve,” rather than a straight line,
then of course sensitivity will be a function of
analytic concentration or amount. If sensitivity
is to be a unique performance characteristic, it
must depend only on the chemical measurement
process, not upon scale factors.

sensitivity analysis The concern with how
the solution changes if some changes are made
in either the data or in some of the solution values
(by fixing their value). Marginal analysis, which
is concerned with the effects of small perturba-
tions, may be measurable by derivatives. Para-
metric analysis is concerned with larger changes
in parameter values that affect the data in the
mathematical program, such as a cost coeffi-
ciency or resource limit.

Under suitable assumptions, the multipliers in
the Lagrange multiplier rule provide derivatives
of the optimal response function, i.e., under cer-
tain conditions, (u, v) = grad∗f (b, c).

separable program The functions are sep-
arable: f (x) = ∑j fj (xj ), g(x) =

∑
j gj (xj ),

and h(x) = ∑
j hj (xj ). The classical (LP)

approaches to separable programming are called
lambda-form and delta-form, both using piece-
wise linear approximations.

Let {xk} be a specified set of points, where
xk = [x(k, 1), x(k, 2), . . . , x(k, n)], and let y =
{y(k, j)} be decision variables that are the coef-
ficients of convex combinations, giving the fol-
lowing linear program:

Max Sumkj{y(k, j)fj (x(k, j))} : y ≥ 0,∑
k
y(k, j) = 1 for each j,∑

kj
y(k, j)gj (x(k, j)) ≤ 0,∑

kj
y(k, j)hj (x(k, j)) = 0.

A restricted basis entry rule is invoked during
the simplex method to yield an approximate solu-
tion. (However, this is dominated by the general-
ized Lagrange multiplier method, which can be
viewed as generating the approximating break-
points a posteriori, getting successively finer
near the solution.)

The delta form uses the differences: u(k, j) =
x(k, j)− x(k− 1, j). The associated functional
differences are:

Df (k, j) = fj (x(k, j))− fj (x(k − 1, j)),

Dg(k, j) = gj (x(k, j))− gj (x(k − 1, j)),

Dh(k, j) = hj (x(k, j))− hj (x(k − 1, j)).
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Then, the approximating LP is:

Max
∑

kj
Df (k, j)u(k, j) : 0 ≤ u ≤ 1,

∑
kj
Dg(k, j)u(k, j) ≤ b,

∑
kj
Dh(k, j)u(k, j) = c,

where b = −∑j gj (x(0, j)) and c = −∑j hj

(x(0, j))  (a similar constant was dropped from
the objective). Another restricted basis rule is
invoked: u(k, j) > 0 implies u(k, q) = 1 for
all q < j and all k.

separating hyperplane A hyperplane for
which two (given) sets lie in opposite half spaces.
The separation is strict if the two sets are con-
tained in their respective open half space.

sequence An ordered countable collection
of elements which can include duplicates. The
ordering need not reflect a mathematical relation.
An enumerated sequence is delimited by angle
brackets (〈x〉).

Comment: The key notion of a sequence is
that of succession: that for any two elements of a
sequence, a and b, a ≺ b iff a occurs to the left of
b in the sequence (we adopt the convention that
we read the sequence from left to right). Be care-
ful not to confuse ≺ with <; a could be 12 and b

could be 5, yet still a ≺ b (read “a precedes b”).
Classic examples of sequences are paths through
graphs and strings, such as DNA sequences.

sequencing problems Finding an ordering,
or permutation, of a finite collection of objects,
like jobs, that satisfies certain conditions, such as
precedence constraints.

sequential decision process See time-
staged.

sequential linear programming (SLP)
Solving a nonlinear program by a sequence
of linear approximations and using linear
programming to solve each one. The linear
approximations are usually done by using the
first-order Taylor expansion.

sequential quadratic programming (SQP)
Solving a nonlinear program by a sequence of
quadratic approximations and using quadratic
programming to solve each one. The approxima-
tions are usually done by using the second-order
Taylor expansion.

sequential unconstrained minimization tech-
nique (SUMT) This is the penalty function
approach.

sesqui-linear Describing a complex-valued
function of two variables which is linear in the
first variable and conjugate-linear in the second.

series A formal sum
∑

j aj , where < aj >

is a sequence.

set An unordered collection of elements,
without duplicates, each of which elements satis-
fies some property. An enumerated set is delim-
ited by braces ({x}).

Comment: Some authors permit sets to
include duplicates. See also bag, list, sequence,
and tuple.

set difference Given two sets,A andB, their
difference, D = A−B, is the set of all elements
of A not found in B: ∀d ∈ D, d ∈ A and d �∈ B.

Comment: Synonymous with set subtraction.
Similar operations can be defined for bags, lists,
and sequences. See also symmetric difference.

set of reactions A collection of reactions.

set subtraction See set difference.

shadow price An economic term to denote
the rate at which the optimal value changes with
respect to a change in some right-hand side that
represents a resource supply or demand require-
ment. This is sometimes taken as synonymous
with the dual price, but this can be erroneous, as
in the presence of degeneracy.

shape function Given a finite element
(K, VK,XK) the set of local shape functions is
the basis of VK that is dual to XK .
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shape regular Let ;h, h ∈ H,H an index
set, be a family of meshes of a domain ; ⊂ R

n.
For each cell K ∈ ;h we define

rK =
sup[r >0,∃x∈K : {y∈R

n : |y−x|<r}⊂K]

that is, rK stands for the radius of the largest
ball that fits into K . Then the family {;h}h∈H

is called shape regular if there exists a constant
C > 0 such that

sup{diam(K)/rK,K ∈ ;h, h ∈ H} ≤ C.

This constant is sometimes referred to as shape
regularity measure, or shortly, shape regularity.
In classical finite element theory shape regularity
in conjunction with affine equivalence is a crucial
prerequisite for proving asymptotic estimates for
approximation errors and interpolation errors of
families of finite element spaces.

shear stress, τττ Force acting tangentially to
a surface divided by the area of the surface.

Sherman-Morrison formula The useful
identity

[A+ ab
′
]−1 = A−1 − [A−1]ab

′
[A−1]

1 + b
′
[A−1]a

where A is a nonsingular n×n matrix and a and
b are n-vectors.

shortest path In a graph or network, this is a
path from one node to another whose total cost is
the least among all such paths. The cost is usually
the sum of the arc costs, but it could be another
function (e.g., the product for a reliability prob-
lem, or max for a fuzzy measure of risk). There
are some particular labeling algorithms given.

signomial The difference between two
posynomials. This class of function defines the
general geometric program.

simplex (pl. simplices) {x ∈ R
n+ :

∑
xj =

1}. For n = 1, this is a point (x = 1). For n = 2,
this is a line segment, joining points (1, 0) and
(0, 1). For n = 3, this is a triangle, joining the
vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1). This
is sometimes called an n-simplex, denoted by Sn

(note its dimension is n− 1). The open simplex
excludes the axes: {x ∈ Sn : x > 0}.

More generally, some authors define a sim-
plex to be the convex hull of any n + 1 affinely
independent vectors, and refer to the special case
of the unit vectors as the standard simplex.

simplex method An algorithm invented to
solve a linear program by progressing from one
extreme point of the feasible polyhedron to an
adjacent one. The method is an algorithm strat-
egy, where some of the tactics include pricing
and pivot selection.

The elementary simplex method is the name
of Dantzig’s original (1947) algorithm, with the
following rules applied to the standard form: Min
{cx : Ax = b, x ≥ 0}.

Let dj = reduced cost of xj ; terminate if
dj ≥ 0 for all j .

(i.) Select dj < 0 as one of greatest magni-
tude.

(ii.) In the associated column (j) of the
tableau, compute the min ratio: xi/a(i, j) :
a(i, j) > 0. (If a(., j) ≤ 0, LP is unbounded).

(iii.) Enter xj into the basic set, in exchange
for xi , and update the tableau.

Among the variations are:

(i.) select the incoming variable (j) differ-
ently;

(ii.) select the outgoing variable (i) differ-
ently, especially to avoid cycling; and

(iii.) do not maintain a tableau (use a factored
form of the basis).

The revised simplex method is the use of a
particular factored form of the basis: B =
[E1E2 . . . Ek] (after k iterations), where each Ei

is an elementary matrix. Then, the revised sim-
plex method uses forward transformation to pivot
and backward transformation to update the pric-
ing vector. (For this distinction, the elementary
simplex method is sometimes called the tableau
method.)

The simplex method draws its name
from imagining a normalization constraint,∑

j xj = 1, and thinking of the j th column of
A to be selected by the weight xj in Sw. Then,
at an iteration, an m-simplex is specified by
the basic variables, and an adjacent simplex is
chosen to improve the objective value. This
view is in requirements space.
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simplicial subdivision Given a simplex, S,
its simplicial subdivision is a collection of sim-
plices, say {Ti} such that ∨i{Ti} = S and for any
i and j , either the intersection Ti∧Tj is empty or
equals the closure of a common face. The mesh
of the subdivision is the diameter of the largest
subsimplex. This arises in a fixed point approach
to compute an economic equilibrium.

simulated annealing An algorithm for solv-
ing hard problems, notably combinatorial opti-
mization, based on the metaphor of how
annealing works: reach a minimum energy state
upon cooling a substance, but not too quickly
in order to avoid reaching an undesirable final
state. As a heuristic search, it allows a non-
improving move to a neighbor with a probabil-
ity that decreases over time. The rate of this
decrease is determined by the cooling sched-
ule, often just a parameter used in an exponen-
tial decay (in keeping with the thermodynamic
metaphor). With some (mild) assumptions about
the cooling schedule, this will converge in prob-
ability to a global optimum.

sine The function

sin(x) = eix − e−ix

2i

Geometrically, it is the ratio of the lengths of
opposite side to hypotenuse of a right triangle
with an angle x, for 0 < x < π

2 .

singleton node A node of degree one. Syn-
onymous with pendant node.

sinistralateral The set of obligatorily core-
acting species arbitrarily written on the left-hand
side of a formal reaction equation.

Comment: See dextralateral for explanatory
comments. See also direction, dynamic equi-
librium, formal reaction equation, microscopic
reversibility, product, rate constant, reversibil-
ity, and substrate.

skew symmetric matrix (AAA) A is square and
A

′ = −A.

slack variable In an inequality constraint of
the form g(x) ≤ b, the slack is b − g(x), which
is designated by the slack variable, s. Then, the
original constraint is equivalent to the defining
equation, g(x)+ s = b, plus s ≥ 0.

Slater’s (interiority) condition Originally
for the purely inequality system with g convex,
it means there exists x for which g(x) < 0. More
generally, for a mathematical program in stand-
ard form, it means there exists x in X for which
g(x) < 0 and h(x) = 0.

slope Of a nonvertical straight line with
equation y = mx + b is by definition the num-
ber m.

smetic state See liquid-crystal transitions
and mesomorphic phase.

smooth Referring to a continuously differ-
entiable function.

solitons There are types of wave equations
called soliton type equations that admit special
solitary wave solutions called solitons. These
solitons have the following property: suppose
two solitons are moving left to right, well separ-
ated with the smaller one to the right. After some
time the bigger one catches up, the waves overlap
and interact. Still later the bigger wave separates
from the smaller one, and eventually regains its
initial shape and velocity. The only effect of the
interaction is a phase shift.

Example: The Korteweg-deVries equation has
solitons of the form

u = 2k2sech2k(x − 4k2t − x0), k, x0 constants.

spanning tree (problem) A subgraph that
is a tree containing all nodes. The max weight
spanning tree problem is to find a spanning tree
such that the sum of (given, positive) weights of
the edges is a maximum.

The max spanning tree problem is solvable by
the following greedy algorithm:

Input. Connected graph with weights,
w1 ≥ . . . ≥ wm.

Output. Maximum weight spanning
tree, T .

(i.) Initialization: Set k = 1; T = graph
with given nodes and no edges.

(ii.) Iteration (until k = m − 1): Test if the
kth edge forms a cycle with T . If not, add it to T ;
if so, discard the edge. In either case, increment
k and iterate.
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sparsity The fraction of zeros in a matrix. If
A ism by n, andA(i, j) �= 0 for k of its elements,
its sparsity is k/mn. Large linear programs tend
to be very sparse, increasing as the dimensions
get large. For example, consider the standard
transportation problem with s sources and d des-
tinations. This has m = (s + d) constraints and
n = sd variables. Each column, however, has
exactly two nonzeros since A is the incidence
matrix of the network, so its sparsity is 2n/mn,
or simply 2/m, which decreases as the number
of sources and/or destinations grows large. The
sparsity of a simple graph (or network) is the
sparsity of its adjacency matrix. More generally,
the sparsity of a multigraph refers to the average
degree of its nodes.

specially ordered set (SOS) Certain sets of
nonnegative variables that are required to sum to
1. For computational efficiency, it is sometimes
better to define these sets by some marking data
structure, rather than include them along with
other equality constraints. There are two types
of SOSs, distinguished by what they represent.
A Type 1 SOS is one in which each variable is
binary, so the constraint is one of multiple choice.
A Type 2 SOS is one in which a restricted basis
entry rule is used, as in the lambda-form of sep-
arable programming.

specifically labeled An isotopically labeled
compound is designated as specifically labeled
when a unique isotopically substituted com-
pound is formally added to the analogous isotopi-
cally unmodified compound. In such a case, both
position(s) and number of each labeling nuclide
are defined.

spectral radius (of a matrix, A) The radius
of the following disk that contains the spectrum:
r(A) = Max{|y| : y is an eigenvalue of A}.
spectral responsivity function See respon-
sivity.

spectrum Let T be a linear operator on a
Banach space V . A complex number λ is said
to be in the resolvent set ρ(T ) of T if λI − T

is a bijection with bounded inverse. Rλ(T ) =
(λI − T )−1 is called the resolvent of T at λ. If
λ �∈ ρ(T ), then λ is said to be in the spectrum
σ(T ) of T . The set of all eigenvalues of T is
called the point spectrum of T .

spectrum of a matrix The set of eigenval-
ues of A.

stability region The set of parameter values
for which an optimal solution remains optimal.
This arises naturally in combinatorial optimiza-
tion, where a solution is often a subgraph, such
as a tree, and the question is for what range
of arc weights is this subgraph optimal (such
as a spanning tree that is minimum for given
weights). More generally, x could be a solu-
tion generated by some algorithm, A, from an
initial value x0. Then, suppose the feasibility
region F(p) depends on the parameter p and
the objective f (xjp) also depends on p. Let
X(p,A, x0) denote the generated solution from
algorithm A, starting at x0, with parameter value
p. Let the parameter set be P (which includes
p∗). The stability region of x∗ = X(p∗, A, x0)

is {p ∈ P : x∗ = X(p,A, x0)}. The algorithm
may be a heuristic, so x∗ need not be optimal.
For example, one could use an n-opt heuristic
for the traveling salesman problem, so x repre-
sents a tour. The parameters could be the costs,
or they could be the location of each point in a
euclidean TSP. The stability region is the set of
costs, or coordinates in the plane, for which the
tour generated by n-opt is the same.

stable As applied to chemical species, the
term expresses a thermodynamic property, which
is quantitatively measured by relative molar
standard Gibbs energies. A chemical species A

is more stable than its isomer B if �rG
0 > 0 for

the (real or hypothetical) reaction A → B, under
standard conditions. If for the two reactions:

P → X + Y (�rG
0
1)

Q → X + Z (�rG
0
2)

�rG
0
1 > �rG

0
2, P is more stable relative to

the product Y than is Q relative to Z. Both in
qualitative and quantitative usage the term stable
is therefore always used in reference to some
explicitly stated or implicitly assumed standard.

The term should not be used as a synonym
for unreactive or “less reactive” since this con-
fuses thermodynamics and kinetics. A relatively
more stable chemical species may be more reac-
tive than some reference species toward a given
reaction partner.
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stable mathematical program Roughly,
one whose solution does not change much under
perturbation. For the inequality case, we have
the following stability conditions:

(i.) {x ∈ X : g(x) ≤ b} is bounded for some
b > 0.

(ii.) cl{x ∈ X : g(x) < 0} = {x ∈ X : g(x)
≤ 0}.
The first stability condition pertains to upper
semicontinuity and the second, called the closure
condition, pertains to lower semicontinuity.

The conditions are not only sufficient to
ensure the respective semicontinuity, but they are
necessary when:

(i.) {x ∈ X : g(x) ≤ 0} is bounded,

(ii.) {x ∈ X : g(x) < 0} is not empty.

standard deviation, sss The positive square
root of the sum of the squares of the deviations
between the observations and the mean of the
series, divided by one less than the total num-
ber in the series. The standard deviation is the
positive square root of the variance, a more fun-
damental statistical quantity.

state A state of a system, sj ∈ S, where
S is the set of states of the system, is a distinct
observable or derivable variable.

Comment: The definition is meant to cover
both the intensive states of thermodynamics and
the states of computations and computational
devices. By these definitions Post production
systems have neither memory nor states; instead,
the set of constructs C formed during a derivation
is discussed.

stationary point Usually this is used to
mean a Kuhn-Tucker point, which specializes to
one for which gradf (x) = 0 if the mathematical
program is unconstrained. In the context of an
algorithm, it is a fixed point.

stationary policy In a dynamic program, a
policy that is independent of time, i.e., x∗(s, t) =
T (s) (some function of state, but not of time, t).

statistical genetics Genetics is a stochastic
process. Statistical genetics studies the genetics
by using the concepts and methods from the the-
ory of probability and statistics. See population
genetics.

steady state (stationary state) In a kinetic
analysis of a complex reaction involving unstable
intermediates in low concentration, the rate of
change of each such intermediate is set equal to
zero, so that the rate equation can be expressed
as a function of the concentrations of chemical
species present in macroscopic amounts. For
example, assume that X is an unstable interme-
diate in the reaction sequence:

A+ BA
k1−→←−
k−1

X

X + C
k2−→ D.

Conservation of mass requires that:

[A] + [X] + [D] = [A]0

which, since [A]0 is constant, implies:

−d[X]/dt = d[A]/dt + d[D]/dt.

Since [X] is negligibly small, the rate of forma-
tion of D is essentially equal to the rate of dis-
appearance of A, and the rate of change of [X]
can be set equal to zero. Applying the steady
state approximation (d[X]/dt = 0) allows the
elimination of [X] from the kinetic equations,
whereupon the rate of reaction is expressed:

d[D]/dt = −d[A]/dt = k1k2[A][C]

k−1 + k2[C]

Notes: (1) The steady state approximation
does not imply that [X] is even approximately
constant, only that its absolute rate of change
is very much smaller than that of [A] and
[D]. Since according to the reaction scheme
d[D]/dt = k2[X][C], the asusmption that [X]
is constant would lead, for the case in which C

is in large excess, to the absurd conclusion that
formation of the product D will continue at a
constant rate even after the reactant A has been
consumed.

(2) In a stirred flow reactor a steady state
implies a regime in which all concentrations are
independent of time.

steel beam assortment problem A steel
corporation manufactures structured beams of a
standard length, but a variety of strengths. There
is a known demand of each type of strength, but a
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stronger one may fulfill demand (or part thereof )
for another beam (but not conversely). The manu-
facture of each type of steel beam involves a
fixed charge for its setup. In addition, there is
a shipping cost proportional to the difference in
the demanded strength and the actual strength,
and proportional to the quantity shipped.

Let

N = number of varieties of strengths
D(t) = demand for beam of strength st

( where s1 ≥ s2 ≥ ... ≥ sN)

x(t) = amount of beams of strength st
manufactured

pt(x(t)) = manufacturing cost of x(t) units
of beam of strength st (including)
fixed charge

y(t) = total excess of beams of strength
s1, ..., st before fulfilling demand
D(t + 1), . . . ,D(N)

ht (y(t)) = shipping cost( = c[s(t + 1)− st ]
Min{y(t),D(t)}).

Although t does not index time, the mathemat-
ical program for this problem is of the same form
as the production scheduling problem, using the
inventory balance equations to relate y and x.
This is valid because s1 ≥ s2 ≥ . . . ≥ sN implies
y(t) can be used to fulfill demand D(t + 1) +
D(t + 2)+ . . .+D(N). (Also, note that here ht

is not a holding cost.)

steepest ascent (descent, if minimizing) A
class of algorithms, where x

′ = x + sd , such
that the direction vector d is chosen by maximiz-
ing the initial velocity of change, and the step
size (s) is chosen by line search. Generally used
in the context of unconstrained optimization, the
mathematical program is Max{f (x) : x ∈ R

n},
where f is in C1. (For descent, change Max to
Min.) Then, d is chosen to maximize the first-
order Taylor approximation, subject to a normal-
ization constraint: Max{gradf (x)d : ‖d‖ = 1},
where ‖d‖ denotes the norm of the direction vec-
tor, d. When the Euclidean norm is used, this
yields the original steepest ascent algorithm by
Cauchy, which moves in the direction of the gra-
dient:

d = gradf (x)/‖gradf (x)‖.

(No direction vector is sought if gradf (x) = 0;
such algorithms stop when reaching a stationary
point.)

Other norms, such as ‖d‖2 = d
′
Qd , where Q

is symmetric and positive definite, lead to other
directions that are steepest relative to that norm.
In particular, ifQ = Hf (x), this yields the modi-
fied Newton method.

Steiner problem Find a subgraph of a
graph, say G

′ = [V
′
, E

′
], such that V

′
contains

V ∗ (a specified subset of nodes), and Sum{c(e) :
e ∈ E

′ } is minimized. It is generally assumed
c ≥ 0. When |V ∗| = 2, this is the shortest path
problem. When |V ∗| = |V |, this is the (min-
imum) spanning tree problem.

step size A scalar (s) in an algorithm of the
form: x

′ = x + sd, where d is the direction
vector. After d is chosen (nonzero), the step
size is specified. One step size selection rule
is line search; another is a fixed sequence, like
sk = 1/k.

stepwise reaction A chemical reaction with
at least one reaction intermediate and involving
at least two consecutive elementary reactions.

stereochemical formula (stereoformula) A
three-dimensional view of a molecule either as
such or in a projection.

sticking coefficient (in surface chemistry)
The ratio of the rate of adsorption to the rate at
which the adsorptive strikes the total surface, i.e.,
covered and uncovered. It is usually a function
of surface coverage, of temperature and of the
details of the surface structure of the adsorbent.

stiffness matrix The Galerkin discretiza-
tion of a linear variational problem by means of a
finite element spaceVh leads to a linear system of
equations. If a stands for the sesqui-linear form
of the variational problem, the system matrix is
given by

A := (a(bi, bj ))
N
i,j=1,

where {b1, · · · , bN }, N = dimVh, is the nodal
basis of Vh. If the sesqui-linear form a arises
from the weak formulation of a boundary value
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problem for a partial differential equation, the
interaction of the basis functions will be local in
the sense that

meas(supp bi ∩ supp bj ) = 0 ⇒ a(bi, bj ) = 0.

This leads to considerable sparsity of the stiffness
matrix, which is key to the efficiency of finite
element schemes.

stochastic computation Let the set of sym-
bols of the computation beK, and the probability
that a particular symbol σi exists bePe(σi). Then
a computation C is executed stochastically if for
at least one σi ∈ K,Pe(σi) ≤ 1; or if at least one
ci ∈ C is a stochastic function.

Comment: This definition explicitly posits
that determinism is a property of a computation
and stochasticity that of its execution. An exam-
ple of the latter is when at least one σi has a half-
life which is not orders of magnitude greater than
that of tC , the time needed to execute the com-
putation, so that one cannot rely upon σi to per-
sist throughout the lifetime of the computation
(including the step of actually detecting it). See
deterministic and nondeterministic computation.

stochastic matrix A nonnegative matrix
whose row sums are each 1. (A column stochas-
tic matrix is one whose column sums are 1.) This
arises in dynamic programs whose state transi-
tion is described by a stochastic matrix contain-
ing the probabilities of each transition.

stochastic program A program written in
the form of a mathematical program extended
to a parameter space whose values are random
variables (generally with a known distribution
function). This is converted to a standard form
by forming a certainty equivalent. Here are some
certainty equivalents:

(1) Average value. Replace all random vari-
ables with their means.

(2) Chance constraint. Given a stochastic
program with a random variable, p, in its con-
straint: g(x;p) ≤ 0, a certainty equivalent is
to replace this with the constraint, P [g(x;p) ≤
0] ≥ a, where P [ ] is a (known) probability
function on the range of g, and a is some accep-
tance level (a = 1 means the constraint must

hold for all values of p, except on a set of mea-
sure zero). Some models separate constraints
with several levels:

P [gi(x;p) ≤ 0 for all i in Ik] ≥ ak

for k = 1, ..., K.

The case of one chance constraint with the
only random variable being the right-hand side
is particularly simple. Suppose F is the cumu-
lative distribution function of b for the chance
constraint P [g(x) ≤ b] ≥ a. If b is a continuous
random variable and F is continuous and strictly
increasing, the chance constraint is equivalent to
g(x) ≤ F−1(1 − a) (where F−1 is the inverse
function of F ). In particular, if g(x) = Ax, the
program remains linear.

(3) Recourse model. This assumes decisions
are made over time where the effect of an early
decision can be compensated by later decisions.
The objective is to optimize the expected value.
The two-stage model has the form

Maxf1(x1;p1)+ f2(x2;p2) :

x1 ∈ X1, x2 ∈ X2, g(x1;p1)+ g(x2;p2) ≤ 0.

(Sums could be replaced by other operators.)
Once x1 is implemented, p1 becomes known and
x2 is chosen. The certainty equivalent is

Max E[f1(x1;p1)+ F2(x1|p1)] : x1 ∈ X1,
where

F2(x1|p1) = Sup{E[f2(x2;p2)] :

x2 ∈ X2(p2), g(x2;p2) ≤ −g(x1;p1)}
for all p2 (except on set of measure zero).
(E[ ] denotes the expected value.) The “Sup” is
used to define F2, the second stage value for a
particular value of x1, because the choice of x1
might be infeasible. The nature of the recourse
model is pessimistic: x must be chosen such that
the original constraints hold no matter what the
values of the random variables. With a finite
number of possibilities, this means a system of
constraints for each possible realization of p =
(p1, p2). This sextends recursively to a k-stage
model.

The linear two-stage recourse model has the
form:

maxE[c]x + E[F(x;p)] :
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Ax = b, x ≥ 0,

where

F(x;p) = max d(p)y : W(p)y

= w(p)− T (p)x, y ≥ 0.

Here the second stage variable is denoted y. It is
determined after x has been set and the random
variablep has been realized. The LP data depend
on p as functions, d(p),W(p),w(p), and T (p).
The fixed recourse model has W(p) = W . The
complete recourse model assumes it is fixed and
{Wy : y ≥ 0} is all of R

m (where m = number
of rows of W ). This means that no matter what
value of x is chosen for the first stage, there is
feasible recourse (y). This is simple recourse if
W = [I − I ], so we can think of y as having
two parts: ypos and yneg. The second stage LP
simplifies to the following:

max dpos(p)ypos + dneg(p)yneg :

ypos, yneg ≥ 0

ypos − yneg = w(p)− T (p)x.

The certainty equivalent depends upon the
underlying decision process. If it is adaptive, the
recourse model applies (but RO might be more
practical). The chance constraint model repre-
sents a notion of an allowed frequency of viola-
tions, as in environmental control models.

stoichiometry The number of moles of a
reactant used in a reaction, normalized to the
number of moles of all the other reactants.

Comment: Stoichiometries are always inte-
gers, because they are determined by chemical
indivisibility of atoms. See mole.

Strang’s lemmas Consider a linear vari-
ational problem a(u, v) = f (v), v ∈ V posed
over a Hilbert space V . Commiting a vari-
ational crime the corresponding discrete vari-
ational problem reads

uh ∈ Vh : ah(uh, vh) = fh(vh) ∀vh ∈ Vh,

where Vh ⊂ V is a V -conforming finite element
space, ah : Vh × Vh → C a sesqui-linear form,
andfh : Vh → C a linear form. If ah isV-elliptic,
that is,

|R{ah(vh, uh)}| ≥ α‖vh‖2
V ∀vh ∈ Vh,

then the first of Strang’s lemmas tell us

‖u− uh‖V
≤ C(infvh∈Vh

(‖u− vh‖V
+ supwh∈Vh

|a(vh,wh)− ah(vh, wh)|
‖wh‖V

)

+ supwh∈Vh

|f (wh)− fh(wh)|
‖wh‖V

),

with C = C(α, ‖a‖, ‖ah‖) > 0. The second
Strang’s lemma targets a non-conforming choice
of Vh, that is Vh �⊂ V . As ‖.‖V is not necessarily
well defined for functions of V , we have to intro-
duce a mesh-dependent norm ‖.‖h on Vh+V for
which ah is elliptic

|R{ah(vh, uh)}| ≥ α‖vh‖h ∀vh ∈ Vh.

Moreover, we have to require continuity

|ah(u, vh)| ≤ c‖u‖h‖vh‖h
∀u ∈ Vh + V, vh ∈ Vh.

Then with C = C(α, c) > 0

‖u− uh‖V ≤ C(infvh∈Vh
‖u− vh‖V

+ supwh∈Vh

|a(vh,wh)− ah(vh, wh)|
‖wh‖V

).

stratopause That region of the atmosphere
which lies between the stratosphere and the
mesosphere and in which a maximum in the tem-
perature occurs.

stratosphere The atmospheric shell lying
just above the troposphere which is characterized
by an increasing temperature with altitude. The
stratosphere begins at the tropopause (about 10–
15 km height) and extends to a height of about
50 km, where the lapse rate changes sign at the
stratopause and the beginning of the mesosphere.

strict interior Let {x ∈ X : g(x) ≤ b} be
the level set of g. Then, its strict interior is {x ∈
X : g(x) < b}. (This is not to be confused
with the relative interior or the set interior. See
interior.)

strictly complementary Each complemen-
tary pair of variables must have exactly one zero
(the other positive).
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strictly concave function Negative of a
strictly convex function.

strictly convex function A convex function
that also satisfies the defining inequality strictly
for distinct points, say x and y:

f (ax + (1 − a)y) < af (x)+ (1 − a)f (y)

for all a in (0, 1).

strictly quasiconcave function Negative of
a strictly quasiconvex function.

strictly quasiconvex function X is a convex
set and f (ax + (1 − a)y) < Max {f (x), f (y)}
for all x, y in X for which f (x) �= f (y), and a

is in (0, 1). Note: f need not be quasiconvex.

strong collision A collision between two
molecules in which the amount of energy trans-
ferred from one to the other is large compared
with kBT , where kB is the Boltzmann constant
and T the absolute temperature.

strongly concave function Negative of a
strongly convex function.

strongly convex function A function f in
C2 with eigenvalues of its Hessian bounded away
from zero (from below): there exists K > 0
such that h

′
Hf (x)h ≥ K‖h‖2 for all h in

R
n. For example, the function 1 − exp(−x)

is strictly convex on R, but its second derivative
is − exp(−x), which is not bounded away from
zero. The minimum is not achieved because the
function approaches its infimum of zero without
achieving it for any (finite) x. Strong convexity
rules out such asymptotes.

strongly quasiconcave function Negative
of a strongly quasiconvex function.

strongly quasiconvex function (f on X )
On a convex set X f (ax + (1 − a)y) < Max
{f (x), f (y)} for all x, y in X, with x �= y, and
a in (0, 1).

subadditive function f (x + y) ≤ f (x) +
f (y) where x, y in the domain implies x + y is
in the domain.

subbag See parts of collections.

subdifferential (of f at x) ∂f (x) = {y : x

is in argmax {vy − f (v) : v ∈ X}}. If f

is convex and differentiable with gradient,
gradf, ∂f (x) = {gradf (x)}. Example: f (x) =
|x|. Then, ∂f (0) = [−1, 1].

The subdifferential is built on the concept of
supporting hyperplane, generally used in convex
analysis. When f is differentiable in a deleted
neighborhood of x (but not necessarily at x), the
B-subdifferential is the set of limit points:

∂Bf (x) = {d : there exists {xk} > x

and {gradf (xk)} > d}.
If f is continuously differentiable in a

neighborhood of x (including x), ∂Bf (x) =
{gradf (x)}. Otherwise, ∂Bf (x) is generally not
a convex set. For example, if f (x) = |x|,
∂Bf (0) = {−1, 1}.

The Clarke subdifferential is the convex hull
of ∂Bf (x).

subgradient A member of the subdifferen-
tial.

subgraph A graph G′(V ′, E ′) is a subgraph
of G(V, E) if every node and edge present in G′

is present in G; that is, V ′ ⊆ V and E ′ ⊆ E . G′

is a proper subgraph of G if G′ �= G.

sublist See parts of collections.

submodular function Let N be a finite set
and let f be a function on the subsets of N into
R. Then, f is submodular if it satisfies:

f (S ∧ T ) ≤ f (S)+ f (T )− f (S ∧ T )

for S, T subsets of N .

subnetwork A network N′(V ′, E ′,P ′,L′) is
a subnetwork of N(V, E,P,L) if every node,
edge, parameter, and label present in N′ is present
in N; that is, V ′ ⊆ V; E ′ ⊆ E ; P ′ ⊆ P; and
L′ ⊆ L. N′ is a proper subnetwork of N if also
N′ �= N.

subsequence A subset of a sequence, with
the order preserved.
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subset See parts of collections.

subspace A subset of a vector space that is,
itself, a vector space. An example is the null
space of a matrix, as well as its orthogonal com-
plement.

substituent atom (group) An atom (group)
that replaces one or more hydrogen atoms
attached to a parent structure or characteristic
group except for hydrogen atoms attached to a
chalcogen atom.

substitution In logic and logic program-
ming, a substitution θ is a finite set of pairs of
the form Xi = ti , where Xi ∈ X are unique vari-
ables (Xi �= Xj for all i �= j and Xi �∈ tj for any
i and j ), and ti ∈ t are ground terms. Thus, the
result, A′, of applying a substitution θ to a com-
plex term A, denoted Aθ , is the term obtained by
replacing each Xi in A by ti in the new term A′,
for every pair Xi = ti ∈ θ .

Comment: It is important to realize that θ
is a set of mappings or transformations (substi-
tutions) between the variables in the variable-
containing term in the original language, and
a term from the transformed language with all
variables fully substituted. This mapping pro-
duces the ground terms t . Thus, one can as well
write θ = X1 = t1, X2 = t2, . . . , Xn = tn. Do
not confuse this usage with the chemical mean-
ing of substitution.

substitution reaction A reaction, elemen-
tary or stepwise, in which one atom or group in a
molecular entity is replaced by another atom or
group. For example,

CH3Cl +OH− → CH3OH |Cl−

substrate (1) (in biochemistry) The specific
molecules which are recognized by an enzyme.

(2) (in chemistry) A chemical species, the
reaction of which with some other chemical
reagent is under observation (e.g., a compound
that is transformed under the influence of a cat-
alyst).

Comment: The term should be used with care.
Either the context or a specific statement should
always make it clear which chemical species in
a reaction is regarded as the substrate. The dis-
tinction is between the molecular material of a

reaction and where a compound is represented in
the arbitrarily written formal reaction equation.
See also dextralateral, direction, dynamic equi-
librium, formal reaction equation, microscopic
reversibility, product, rate constant, reversibil-
ity, and sinistralateral.

successive approximation The iterative
scheme by which an approximation is used for
the basic design of an algorithm. The sequence
generated is of the form x(k+1) = xk + A(xk),
where A is an algorithm map specified by its
approximation to some underlying goal. Typ-
ically, this is used to find a fixed point, where
A(x) = 0 (e.g., seeking f (x) = x, let A(x) =
f (x) − x, so the iterations are x(k+1) = f (xk),
converging to x∗ = f (x∗) if f satisfies certain
conditions, such as being a contraction map).

Here are some special types:

(i.) Inner approximation

(ii.) Outer approximation

(iii.) Successive linear approximation

(iv.) Successive quadratic approximation

sufficient matrix Let A be an n× n matrix.
Then, A is column sufficient if

[xi(Ax)i ≤ 0 for all i] ⇒
[xi(Ax)i = 0 for all i].

A is row sufficient if its transpose is column suffi-
cient. A is sufficient if it is both column and row
sufficient. One example is when A is symmetric
and positive semidefinite. This arises in linear
complementarity problems.

superset A set which contains another set. If
the superset and the contained set can be equal,
the relation between them is denoted superset ⊇
contained set; otherwise it is denoted ⊃.

Comment: The same idea can be applied to
other types of collections, just considering parts
of collections in the opposite sense. See also
bag, empty collection, list, parts of collections,
sequence, and set.

surface tension, γ, σγ, σγ, σ Work required to
increase a surface area divided by that area.
When two phases are studied it is often called
interfacial tension.
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surjection A map φ : A → B which is sur-
jective.

surjective Let A and B be two sets, with
A being the domain and B the codomain of a
function f . Then the function f is surjective if,
for any y ∈ B, there is at least one element
x ∈ A with f (x) = y. Thus, the range of
a surjective functions is equal to its codomain.
Surjective functions are also said to be onto B,
and may be many-to-one. See also bijection and
injection.

symmetric difference Given two sets, A

and B, their symmetric difference is defined as
A⊗ B = (A− B) ∪ (B − A).

Comment: To visualize this more clearly,
think about the elements of the two difference
sets, A−B and B −A. An element d1 ∈ A−B

if and only if d1 ∈ A and d1 �∈ B. This must
be true for all of the elements of A − B, by the
definition for set difference. Similarly, for an
element d2 ∈ B − A. So the intersection of the
two difference sets, A − B and B − A must
be empty: any elements shared between A and
B would already be removed by the set difference

operation. So what is left over are the elements
which are present in only one of the two sets, for
each of the two sets. See also set difference.

symmetric operator An operator T ,
densely defined on a Hilbert space, satisfying
< T u, v >=< u, T v > for all u, v in the
domain of T .

symplectic manifold A pair (P, ω) where
P is a manifold and ω is a closed non-degenerate
2-form on P . As a consequence P is of even
dimension 2n.

Canonical coordinates are coordinates (qλ,

pλ) such that the local expression of ω is of the
form ω = dpλ ∧ dqλ. Canonical coordinates
always exist on a symplectic manifold (Darboux
theorem).

syntax For a symbol σ , a unique and precise
definition of the form of the term and all terms
composing it.

Comment: Syntax defines such things as
whether a term is a constant or a variable, how
many arguments it has, and the syntax of those
arguments.
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T
tableau (pl. tableaux) A detached coef-
ficient form of a system of equations, which can
change from x + Ay = b to x ′ + A′y ′ = b′.
The primes denote changes caused by multiply-
ing the first equation system by the basis inverse
(a sequence of pivots in the simplex method).
Other information could be appended, such as
the original bound values.

tabu search This is a metaheuristic to solve
global optimization problems, notably combina-
torial optimization, based on multilevel mem-
ory management and response exploration. It
requires the concept of a neighborhood for a trial
solution (perhaps partial). In its simplest form, a
tabu search appears as follows:

(i.) Initialize. Select x and set Tabu List T =
null. If x is feasible, set x∗ = x and f ∗ = f (x∗);
otherwise, set f ∗ = − inf (for minimization set
f ∗ = inf).

(ii.) Select move. Let S(x) = set of neigh-
bors of x. If S(x)\T is empty, go to update.
Otherwise, select y in argmax {E(v) : v in
S(x)\T }, where E is an evaluator function that
measures the merit of a point (need not be the
original objective function, f ). If y is feasible
and f (y) > f ∗, set x∗ = y and f ∗ = f (x∗).
Set x = y (i.e., move to the new point).

(iii.) Update. If some stopping rule holds,
stop. Otherwise, update T (by some tabu update
rule) and return to select move.

There are many variations, such as aspiration
levels, that can be included in more complex
specifications.

tangent (function) The function

tan(x) = sin x

cos x
.

See cosine, sine.

tangent cone Let S be a subset of R
n and

let x∗ be in S. The tangent cone, T (S, x∗), is
the set of points y such that there exist sequences
{an}, an ≥ 0 and {xn} in S such that {xn} → x∗

and {‖an(xn−x∗)−y‖} → 0. This arises in con-
nection with the Lagrange multiplier rule much
like the tangent plane, though it allows for more
general constraints, e.g., set constraints. In par-
ticular, when there are only equality constraints,
h(x) = 0, T (S, x∗) = null space of gradh(x∗)
if grad h(x∗) has full row rank. (There are some
subtleties that render the tangent cone more gen-
eral, in some sense, than the tangent plane or
null space. It is used in establishing a necessary
constraint qualification.)

tangent lift A general procedure to associate
canonically an object on the tangent bundle TM

of a manifold M once an object is given on M .
In particular:

(i.) Tangent lift of a parametrized curve γ :

I ⊂ R → M: let us define τγ (t0) = dγ

dt
|t=t0

the tangent vector to the curve γ at t = t0 ∈ I .
We can define the tangent lift of γ as the curve
γ̂ : I → TM : t �→ (γ (t), τγ (t)). If γ µ(t) is
the local expression of γ , then (γ µ(t), γ̇ (t)) is
the local expression of γ̂ .

(ii.) Tangent lift of a map φ : M → N : if
tangent vectors are identified with derivations of
the algebra of local functions, the tangent map
T φ : TM → TN : v �→ w is defined by
w(f ) = v(f ◦ φ). If x ′µ = φµ(x) is the local
expression of φ, then the local expression of the
tangent map T φ is given by:

x ′µ = φµ(x)

w′µ = vν∂νφ
µ(x)K

(iii.) Tangent lift of a vector field ξ =
ξµ(x) ∂µ ∈ X(M): a vector field ξ̂ =
ξµ(x) ∂

∂xµ + ξ̂ µ(x) ∂
∂vµ

over TM locally given

by ξ̂ µ = ξν∂νξ
µ. Notice that the tangent lift of

a commutator coincides with the commutator of
lifts, i.e., [ξ, ζ ]ˆ = [ξ̂ , ζ̂ ].

tangent plane Consider the surface, S =
{x ∈ R

n : h(x) = 0}, where h is in C1. A
differentiable curve passing through x∗ in S is
{x(t) : x(0) = x∗ and h(x(t)) = 0 for all t in
(−e, e)}, for which the derivative, x ′(t), exists,

c
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where e > 0. The tangent plane at x∗ is the
set of all initial derivatives: {x ′(0)}. (This is
a misnomer, except in the special case of one
function and two variables at a nonstationary
point.) An important fact that underlies the clas-
sical Lagrange multiplier theorem when the rank
of gradh(x∗) is full row (x∗ is then called a reg-
ular point): the tangent plane is {d : gradh(x∗)
d = 0}.

Extending this to allow inequalities, the
equivalent of the tangent plane for a regular point
(x∗) is the set of directions that satisfy first-order
conditions to be feasible:

{d : gradh(x∗)d = 0 and

grad gi(x
∗)d ≤ 0 for all i : gi(x

∗) = 0}.

target analysis This is a metaheuristic to
solve global optimization problems, notably
combinatorial optimization, using a learning
mechanism. In particular, consider a branch and
bound strategy with multiple criteria for branch
selection. After solving training problems, hind-
sight is used to eliminate dead paths on the search
tree by changing the weights on the criteria: set
w > 0 such that wVi ≤ 0 at node i with value
Vi , that begins a dead path, and wVi > 0 at each
node, i, on the path to the solution. If such
weights exist, they define a separating hyper-
plane for the test problems. If such weights do
not exist, problems are partitioned into classes,
using a form of feature analysis, such that each
class has such weights for those test problems in
the class. After training is complete, and a new
problem arrives, it is first classified, then those
weights are used in the branch selection.

Taylor expansion For f inCn, Taylor’s the-
orem is used by dropping the remainder term.
The first-order expansion is f (x) = f (y) +
gradf (x)(x − y), and the second-order expan-
sion is f (x) = f (y) + gradf (x)(x − y)+
(x − y)tHf (x)(x − y)/2.

Taylor series For a function, f , having all
order derivatives, the series

∞∑
k=0

f (k)(h)

k!
(x − h)k,

where f (k) is the kth derivative of f . Truncating
the series at the nth term, the error is given by:

|En(h)| =
∣∣∣f (x)− n∑

k=0

f (k)(h)

k!
(x − h)k

∣∣∣.
This is a Taylor expansion, and for the Taylor
series to equal the functional value, it is necessary
that the error term approaches zero for each n:

lim
h→0

En(h) = 0.

In any case, there exists y in the line segment
[x, x + h] such that

En(h) =
f (n+1)(y)

(n+ 1)!
(y − h)n+1.

Taylor theorem Let f : (a−h, a+h) → R

be in Cn+1. Then, for x in (a, a + h),

f (x) = f (a)+ [f (1)(a)][x − a]+
...+ [f (n)(a)][(x − a)n]/n! + Rn(x, a),

whereRn(x, a), called the remainder, is given by
the integral:∫ x

a

(x − t)n

n!
f (n+1)(t) dt.

This extends to multivariate functions and
is a cornerstone theorem in nonlinear program-
ming. Unfortunately, it is often misapplied as
an approximation by dropping the remainder,
assuming that it goes to zero as x → a.

telegraph equation Let U ⊂ R
n be open

and u : U ×R → R. The telegraph equation for
u is

utt + dut − uxx = 0.

temperature inversion (in atmospheric chem-
istry) A departure from the normal decrease
of temperature with increasing altitude. A
temperature inversion may be produced, for
example, by the movement of a warm air mass
over a cool one. Intense surface inversions may
form over the land during nights with clear skies
and low winds due to the radiative loss of heat
from the surface of the earth. The temperature
increases as a function of height in this case.
Poor mixing of the pollutants generally occurs
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below the inversion, since the normal convective
process which drives the warmer and lighter air
at ground-level to higher altitudes is interrupted
as the rising air parcels encounter the warmer air
above. Temperature inversions near the surface
are particularly effective in trapping ground-level
emissions.

temperature jump A relaxation technique
in which the temperature of a chemical system
is suddenly raised. The system then relaxes to
a new state of equilibrium, and analysis of the
relaxation processes provides rate constants.

temperature lapse rate (in atmospheric chem-
istry) The rate of change of temperature
with altitude (dT /dz). The rate of tempera-
ture decrease with increase in altitude which is
expected to occur in an unperturbed dry air mass
is 9.8 × 103 ◦C min−1. This is called the dry
adiabatic lapse rate. The lapse rate is taken
as positive when temperature decreases with
increasing height. For air saturated with H2O
the lapse rate is less because of the release of
the latent heat of water as it condenses. The
average tropospheric lapse rate is about 6.5 ×
103◦C min−1. The lapse rate has a negative value
within an inversion layer.

tensor See contravariant tensor.

term (1) A variable, constant, or complex
expression of the form f (σ1, σ2, . . . , σn) where
there exists at least one σi (that is, the arity of f is
always positive). If f is a relation (or predicate)
symbol, then f (σ1, σ2, . . . , σn) is an atomic for-
mula.

Comment: Note that this definition is recur-
sive (a term is either a term or a function of terms),
and that it includes both variable and constant (or
ground) terms. It is taken to be synonymous with
token.

(2) (in x-ray spectroscopy) A set of levels
which have the same electron configuration and
the same value of the quantum numbers for total
spin S and total orbital angular momentum, L.

term semantics If for each σj ∈ K there is
at least one semantic mappingω that is semantic-
ally well formed, then we say the term semantics
of; : K �−→ ;(K) are well-formed, where; is

the set of all semantically well-formed mappings
operating on K and ;(K) is the set of defined
semantics for the members of K.

Comment: This notion of term semantics
extends in the domain direction the notions of
semantics of programs, and is consistent with it.
See semantics and semiote.

term, T Energy divided by the product of
the Planck constant and the speed of light, when
of wave number dimension, or energy divided by
the Planck constant, when of frequency dimen-
sion.

terminal nodes The first and last nodes in
the sequence of nodes and edges forming a path.
If the path is a connected tree, the last nodes are
the leaves of the tree (letting the root of the tree
be the first node of the sequence). See also path
and sequence.

test sample The sample, prepared from the
laboratory sample, from which test portions are
removed for testing or for analysis.

theorem of the alternative Any of several
theorems that establish that two systems are alter-
natives. See, for example, Fredholm alternative.

thermal conductance, GGG Heat flow rate
divided by the temperature difference.

thermal conductivity, λλλ Tensor quantity
relating the heat flux, Jq to the temperature gra-
dient, Jq = −λ grad T .

thermal resistance, RRR Reciprocal of the
thermal conductance.

thermodilatometry A technique in which a
dimension of a substance under negligible load is
measured as a function of temperature while the
substance is subjected to a controlled tempera-
ture program.

Linear thermodilatometry and volume
thermodilatometry are distinguished on the basis
of the dimensions measured.
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thermodynamic isotope effect The effect
of isotopic or substitution on an equilibrium con-
stant is referred to as a thermodynamic (or equi-
librium) isotope effect. For example, the effect
of isotopic substitution in reactant A that partici-
pates in the equilibrium:

A+ B
←−−→ C

is the ratioK1/Kh of the equilibrium constant for
the reaction in which A contains the light isotope
to that in which it contains the heavy isotope. The
ratio can be expressed as the equilibrium constant
for the isotopic exchange reaction

A1 + Ch ←−−→ Ah + C1

in which reactants such as B that are not isotopi-
cally substituted do not appear.

The potential energy surfaces of isotopic
molecules are identical to a high degree
of approximation, so thermodynamic isotope
effects can only arise from the effect of isotopic
mass on the nuclear motions of the reactants and
products, and can be expressed quantitatively in
terms of partition function ratios and for nuclear
motion:

K1

Kh
= (Q1

nuc/Q
h
nuc)C

(Q1
nuc/Q

h
nuc)A

.

Although the nuclear partition function is a prod-
uct of the translational, rotational, and vibra-
tional partition functions, the isotope effect is
determined almost entirely by the last named,
specifically by vibrational modes involving
motion of isotopically different atoms. In the
case of light atoms (i.e., protium vs. deuterium
or tritium) at moderate temperatures, the isotope
effect is dominated by zero-point energy differ-
ences.

thermodynamic motif A conserved pattern
of changes in the thermodynamic quantities
G,H, or S for a set of reactions. See also
biochemical, chemical, dynamical, functional,
kinetic, mechanistic, phylogenetic, regulatory,
and topological motives.

thermolysis The uncatalyzed cleavage of
one or more covalent bonds resulting from expo-
sure of a compound to a raised temperature, or
a process in which such cleavage is an essential
part.

thermosphere Atmospheric shell extending
from the top sof the mesosphere to outer space.
It is a region of more or less steadily increasing
temperature with height, starting at 70 or 80 km.
It includes the exosphere and most or all of the
ionosphere (not the D region).

threshold energy, E0E0E0 Potential energy gap
between reactants and the transition state, some-
times involving the zero point energies, but
usually not.

threshold phenomenon For a linearly sta-
ble fixed point in a system of ordinary differ-
ential equations, returning to the fixed point is
monotonic for small perturbations. But for per-
turbations greater than a threshold, the dynamic
variables can undergo large excursion before
returning to the fixed point (see excitability).

tight constraint Same as active constraint,
but some authors exclude the redundant case,
where an inequality constraint happens to hold
with equality, but it is not binding.

time constant (of a detector), τcτcτc If the
output of a detector changes exponentially with
time, the time required for it to change from its
initial value by the fraction [1 − exp(−t/τc)]
(for t = τc) of the final value, is called the time
constant.

time-staged A model with a discrete time
parameter, t = 1, ..., T , as in dynamic program-
ming, but the solution technique need not use the
DP recursion. The number of time periods (T) is
called the planning horizon.

tint The edge coloring corresponding to the
type of biochemical relationship between two
nodes of the biochemical network.

Comment: The three fundamental relation-
ships are sinistralateral, dextralateral, and
catalyst. The sum of the sinistralateral and dex-
tralateral relationships is the reactant relation-
ship. These relationships are directly specified in
the database. Note that tint is not a proper edge
coloring as two adjacent edges can have identical
colors.
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titre (titer) The reacting strength of a stand-
ard solution, usually expressed as the weight
(mass) of the substance equivalent to 1 cm3 of
the solution.

token See term.

tolerance approach An approach to sen-
sitivity analysis in linear programming that
expresses the common range that parameters can
occupy while preserving the character of the
solution. In particular, suppose B is an optimal
basis and rim data changes by (Db,Dc). The
tolerance for this is the maximum value of t for
which B remains optimal as long as |Dbi | ≤ t

for all i and |Dcj | ≤ t for all j . The tolerance for
the basis, B, can be computed by simple linear
algebra, using tableau information.

tolerances Small positive values to control
elements of a computer implementation of an
algorithm. When determining whether a value,
v, is nonnegative, the actual test is v > −t , where
t is an absolute tolerance. When comparing two
values to determine if u ≥ v, the actual test is

u− v ≤ ta + tr |v|,

where ta is the absolute tolerance (as above), and
tr is the relative tolerance (some make the rela-
tive deviation depend on u as well as on v, such
as the sum of magnitudes, |u| + |v|). Almost
every MPS has a tolerance for every action it
takes during its progression. In particular, one
zero tolerance is not enough. One way to test
feasibility is usually one that is used to deter-
mine an acceptable pivot element. In fact, the
use of tolerances is a crucial part of an MPS,
including any presolve that would fix a variable
when its upper and lower bounds are sufficiently
close (i.e., within some tolerance). A tolerance
is dynamic if it can change during the algorithm.
An example is that a high tolerance might be used
for line search early in an algorithm, reducing it
as the sequence gets close to an optimal solu-
tion. The Nelder-Mead simplex method illus-
trates how tolerances might change up and down
during the algorithm.

Another typical tolerance test applies to re-
siduals to determine if x is a solution to Ax = b.

In this case, the residual is r = Ax − b, and the
test has the form:

‖r‖ ≤ ta + tr‖b‖,
where ‖ ‖ is some norm.

topological invariant A quantity enjoyed
by a topological space which is invariant with
respect to homeomorphisms.

topological motif A subnetwork of the bio-
chemical network invariant under topological
transformation.

Comment: See also biochemical, chemical,
dynamical, functional, kinetic, mechanistic,
phylogenetic, regulatory, and thermodynamic
motives.

topological sort This sorts the nodes in a
network such that each arc, say kth, has Tail(k) <
Head(k) in the renumbered node indexes. This
arises in a variety of combinatorial optimization
problems, such as those with precedence con-
straints. If the nodes cannot be topologically
sorted, the network does not represent a partially
ordered set. This means, for example, there is
an inconsistency in the constraints, such as jobs
that cannot be sequenced to satisfy the asserted
precedence relations.

topological space A pair (X, τ(X)) where
X is a set and τ(X) its topology. Different
choices of the topology τ(X) of a space X corre-
spond to different topological structures on X.
Examples: If (X, d) is a metric space, then
we can define U ∈ τ(X) if and only if for all
x ∈ U there exists an open ball Br

x = {y ∈ X :
d(x, y) < r} such that x ∈ Br

x ⊂ U ⊂ X. This
is called the metric topology of (X, d).

On any set X we can define the trivial top-
ology τ(X) = {∅, X} and the discrete topology
in which τ(X) is the set of all subsets ofX (so that
any subset of X is open in the discrete topology).

topological transformation A one-to-one
correspondence between the points of two geo-
metric figures A and B which is continuous in
both directions. If one figure can be transformed
into another by a topological transformation,
the two figures are said to be topologically
equivalent.
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Comment: This is one of two standard
definitions. Common examples are smooth
deformation of a triangle into a circle; a sphere
into a beaker (a cup without a handle); and a
trefoil knot into a circle. In the last case, the
transformation is allowed to cut the perimeter of
the figure so long as the cut ends are rejoined in
their original manner. Note that expansions and
contractions of the network are not topological
transformations.

topology (1) (of a network) The topology of
a network G(V, E) is the set of nodes V and their
incidence relations in the network, E .

Comment: Specified here are two particular
topological properties which are to remain invari-
ant under a topological transformation, such as a
continuous deformation. The standard definition
requires only that the edges remain invariant to
transformation. This is perfectly reasonable for
networks derived from mathematics, but does
not fit the biological case as well. Many net-
works will include singleton nodes which are
important, but whose edges are not yet known.
Hence the standard definition is here augmented
to cover this case as well. There are a number of
other important senses of the word which are not
directly relevant here.

(2) (on a set X ) A set τ(X) of subsets of
X, called open sets, which satisfy the following
axioms:

(i.) the empty set ∅ and the whole space X

are elements in τ(X);

(ii.) the intersection of a finite number of ele-
ments in τ(X) is still in τ(X); and

(iii.) the union of a (possibly infinite) family
of elements in τ(X) is still in τ(X).

torque, TTT Sum of moments of forces not
acting along the same line.

torsion tensor Let Nα
βµ be a (linear)

connection on a manifold M . The torsion of
the connection is the tensor T α

βµ = Nα
βµ − Nα

µβ .
Despite the fact that the connection is not a ten-
sor, the torsion is a tensor since nonhomogeneous
terms in the transformation rules of connections
cancel out.

total ion current (in mass spectrometry)
(1) (after mass analysis) The sum of the separate
ion currents carried by the different ions con-
tributing to the spectrum. This is sometimes
called the reconstructed ion current.

(2) (before mass analysis) The sum of all the
separate ion currents for ions of the same sign
before mass analysis.

totally unimodular matrix See unimodular
matrix.

toxicity (1) Capacity to cause injury to a
living organism defined with reference to the
quantity of substance administered or absorbed,
the way in which the substance is administered
(inhalation, ingestion, topical application, injec-
tion) and distributed in time (single or repeated
doses), the type and severity of injury, the time
needed to produce the injury, the nature of the
organism(s) affected and other relevant condi-
tions.

(2) Adverse effects of a substance on a living
organism defined with reference to the quantity
of substance administered or absorbed, the way
in which the substance is administered (inhala-
tion, ingestion, topical application, injection) and
distributed in time (single or repeated doses), the
type and severity of injury, the time needed to
produce the injury, the nature of the organism(s)
affected, and other relevant conditions.

(3) Measure of incompatibility of a substance
with life. This quantity may be expressed as the
reciprocal of the absolute value of median lethal
dose (1/LD50) or concentration (1/LC50).

trace element Any element having an aver-
age concentration of less than about 100 parts per
million atoms (ppma) or less than 100 µg per g.

trajectory (in reaction dynamics) A path
taken by a reaction system over a potential-
energy surface, or a diagram or mathematical
description that represents that path. A trajec-
tory can also be called a reaction path.

transfer Movement of a component within
a system or across its boundary. It may be
expressed using different kinds of quantities,
e.g., rates of change dQ/dt or �Q/�t .
Examples are mass rate, dmB/dt or �mB/�t ;
substance rate, dnB/dt or �nB/�t .
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transformation (1) (in chemistry) The con-
version of a substrate into a particular prod-
uct, irrespective of reagents or mechanisms
involved. For example, the transformation of
aniline (C6H5NH2) into N -phenylacetamide
(C6H5NHCOCH3) may be effected by use of
acetyl chloride or acetic anhydride or ketene. A
transformation is distinct from a reaction, the full
description of which would state or imply all the
reactants and all the products.

(2) (in mathematics) See function.

transient (chemical) species Relating to
a short-lived reaction intermediate. It can be
defined only in relation to a timescale fixed by
the experimental conditions and the limitations
of the technique employed in the detection of the
intermediate. The term is a relative one.

Transient species are sometimes also said to
be metastable. However, this latter term should
be avoided, because it relates a thermodynamic
term to a kinetic property, although most
transients are also thermodynamically unstable
with respect to reactants and products.

transient phase (induction period) The
period that elapses prior to the establishment of
a steady state. Initially the concentration of a
reactive intermediate is zero, and it rises to the
steady-state concentration during the transient
phase.

transition function See manifold.

transition state In theories describing ele-
mentary reactions it is usually assumed that
there is a transition state of more positive molar
Gibbs energy between the reactants and the prod-
ucts through which an assembly of atoms (ini-
tially composing the molecular entities of the
reactants) must pass on going from reactants to
products in either direction. In the formalism
of transition state theory the transition state of
an elementary reaction is that set of states (each
characterized by its own geometry and energy)
in which an assembly of atoms, when randomly
placed there, would have an equal probability of
forming the reactants or of forming the products
of that elementary reaction. The transition state
is characterized by one and only one imaginary

frequency. The assembly of atoms at the transi-
tion state has been called an activated complex.
(It is not a complex according to the definition in
this compendium.)

It may be noted that the calculations of reac-
tion rates by the transition state method and
based on calculated potential-energy surfaces
refer to the potential energy maximum at the
saddle point, as this is the only point for which
the requisite separability of transition state coor-
dinates may be assumed. The ratio of the num-
ber of assemblies of atoms that pass through to
the products to the number of those that reach
the saddle point from the reactants can be less
than unity, and this fraction is the transmission
coefficient κ . (There are reactions, such as the
gas-phase colligation of simple radicals, that do
not require activation and which therefore do not
involve a transition state.)

transition state theory A theory of the rates
of elementary reactions which assumes a special
type of equilibrium, having an equilibrium con-
stant K‡, existing between reactants and acti-
vated complexes. According to this theory the
rate constant is given by

k = (kBT /h)K
‡

where kA is the Boltzmann constant and h is the
Planck constant. The rate constant can also be
expressed as

k = (kBT /h) exp(�‡S0/R) exp(−�‡H 0/RT )

where �‡S0, the entropy of activation, is the
standard molar change of entropy when the acti-
vated complex is formed from reactants and
�‡H 0, the enthalpy of activation, is the cor-
responding standard molar change of enthalpy.
The quantities Ea (the energy of activation) and
�‡H 0 are not quite the same, the relationship
between them depending on the type of reaction.
Also

k = (kBT /h)− exp(−�‡G0/RT )

where �‡G0, known as the Gibbs energy of
activation, is the standard molar Gibbs energy
change for the conversion of reactants into
activated complex. A plot of standard molar
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Gibbs energy against a reaction coordinate is
known as a Gibbs-energy profile; such plots,
unlike potential-energy profiles, are temperature-
dependent.

In principle, the expressions for k above must
be multiplied by a transmission coefficient, κ ,
which is the probability that an activated com-
plex forms a particular set of products rather than
reverting to reactants or forming alternative prod-
ucts.

It is to be emphasized that �‡S0,�‡H 0, and
�‡G0 occurring in the former three equations
are not ordinary thermodynamic quantities, since
one degree of freedom in the activated complex
is ignored.

Transition-state theory has also been known
as the absolute rate theory, and as activated-
complex theory, but these terms are no longer
recommended.

transition structure A saddle point on a
potential-energy surface. It has one negative
force constant in the harmonic force constant
matrix. See also transition state.

translation The action of a group (V ,+)

regarded as a group of transformations onV itself
through the action T : V × V → V given by

T : (T , v) �→ v + T .

transport equation Let U ⊂ R
n be open

and u : U × R → R. The (linear) transport
equation for u is

ut +
n∑

i=1

biuxi
= 0.

transportation problem Find a flow of
least cost that ships from supply sources to con-
sumer destinations. This is a bipartite network,
N = [S∗T ,A], where S is the set of sources, T is
the set of destinations, and A is the set of arcs. In
the standard form, N is bi-complete (A contains
all arcs from S to T ), but in practice networks
tend to be sparsely linked. Let c(i, j) be the unit
cost of flow from i in S to j in T , s(i) = supply
at ith source, and d(j) = demand at j th destina-
tion. Then, the problem is the linear program

Minimize
∑

ij
{c(i, j)x(i, j) : i in S, j inT }

where x ≥ 0,∑
j
{x(i, j) : j in T } ≤ s(i) for all i in S,∑
i
{x(i, j) : i in S} ≥ d(j) for allj in T .

The decision variables (x) are called flows, and
the two classes of constraints are called supply
limits and demand requirements, respectively.
(Some authors use equality constraints, rather
than the inequalities shown.) An extension is
the capacitated transportation problem, where
the flows have bounds x ≤ U .

transpose (of a matrix [aij ]) The matrix
[aji].

transposition theorem Same as a theorem
of the alternative.

transshipment problem This is an exten-
sion of the transportation problem whereby the
network is not bipartite. Additional nodes serve
as transshipment points, rather than providing
supply or final consumption. The network is
N = [V,A], whereV is an arbitrary set of nodes,
except that it contains a nonempty subset of sup-
ply nodes (where there is external supply) and a
nonempty subset of demand nodes (where there
is external demand). A is an arbitrary set of arcs,
and there could also be capacity constraints.

traveling salesman problem (TSP) Given
n points and a cost matrix, [c(i, j)], a tour is
a permutation of the n points. The points can
be cities, and the permutation the visitation of
each city exactly once, then returning to the
first city (called home). The cost of a tour,
〈i1, i2, ..., in−1, in, i1〉, is the sum of its costs:

c(i1, i2)+ c(i2, i3)+ ...+ c(in−1, in)+ c(in, i1),

where (i1, i2, ..., in) is a permutation of {1, ..., n}.
The TSP is to find a tour of minimum total cost.
The two common integer programming formula-
tions are:

ILP: min
∑

ij cij xij : x ∈ P, xij ∈ {0, 1}
Subtour elimination constraints:

∑
i,j∈V

xij ≤ |V | − 1 for ∅ �= V ⊂ {1, . . . , n} (V �=
{1, . . . , n})
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where

xij =
{

1 j follows city i in tour

0 otherwise

QAP: min
∑

ij cij

(∑n−1
k=1 xikxjk+1 + xinxj1

)
:

x ∈ P, xij ∈ {0, 1},

where

xij =
{

1 if tour has city i in position j

0 otherwise

In each formulation, P is the assignment poly-
tope. The subtour elimination constraints in ILP
eliminate assignments that create cycles.

For example, in subtours (1 → 2 → 3 → 1)
(length 3) and (4 → 5 → 4) (length 2), the first
subtour is eliminated by V = {1, 2, 3}, which
requires x12 + x23 + x31 ≤ 2. The second sub-
tour is eliminated by V = {4, 5}, which requires
x45 + x54 ≤ 1.

tree A connected graph containing no
cycles.

triangle inequality A property of a distance
function: f (x, y) ≤ f (x, z) + f (z, y) for all
x, y, z.

triangular matrix A square matrix A, is
called upper triangular if all elements are zero
below the main diagonal, i.e., A(i, j) = 0 for
i > j . It is called lower triangular if its
transpose is upper triangular. We sometimes call
a matrix triangular if it is either lower or upper
triangular.

triangulation/mesh Given a bounded
domain ; ⊂ R

n with piecewise smooth bound-
ary a triangulation/mesh ;h of ; is a finite set
{Ki}Mi=1,M ∈ N, of piecewise smooth open
subsets of ;, called cells, such that

(i.) the interior of the closure of each cell is
the cell itself.

(ii.) the union
⋃

K∈;h
K̄ coincides with ;̄

and Ki ∩Kj = ∅, if i �= j (open partition prop-
erty).

(iii.) The intersection of the closures of any
two cells is either empty or a vertex, edge, face,
etc., of both.

This means that a triangulation constitutes
a nondegenerate cellular decomposition of ;.
Special types of meshes are simplicial meshes,
for which all the cells are n-simplices. In two
dimensions the cells of quadrilateral meshes
have four, possibly curved, edges each. Their
three-dimensional counterparts are hexaedral
meshes, whose cells are bricks (with curved faces
and edges). In a straightforward fashion the con-
cept can be generalized to the notion of a triangu-
lation of a compact piecewise smooth manifold
(with or without boundary). In the case of adap-
tive refinement it is often desirable to relax the
above requirements by admitting hanging nodes.
These are vertices of some cells that lie in the
interior of edges of other cells.

triple point The point in a one-component
system at which the temperature and pressure of
three phases are in equilibrium. If there are p

possible phases, there are p!/(p − 3)!3! triple
points. Example: In the sulfur system four pos-
sible triple points (one metastable) exist for the
four phases comprising rhombicS (solid), mono-
clinic S (solid), S (liquid), and S (vapor).

triplet state A state having a total electron
spin quantum number of 1.

triprismo- An affix used in names to denote
six atoms bound into a triangular prism.

trivial bundle A bundle (B,M, π;F)

which has a global trivialization so that the total
space is diffeomorphic to the Cartesian product
B - M × F . Trivial bundles always allow
global sections, and they are the local model of
all bundles.

tropopause The region of the atmosphere
which joins the troposphere and stratosphere,
and where the decreasing temperature with alti-
tude,characteristic of the troposphere ceases, and
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the temperature increase with height which is
characteristic of the stratosphere begins.

troposphere The lowest layer of the atmos-
phere, ranging from the ground to the base of
the stratosphere (tropopause) at 10–15 km of
altitude depending on the latitude and meteoro-
logical conditions. About 70% of the mass of the
atmosphere is in the troposphere. This is where
most of the weather features occur and where the
chemistry of the reactive anthropogenic species
released into the atmosphere takes place.

Trotter product formula If A and B are
self-adjoint operators and A + B is essentially
self-adjoint, then

lim
n→∞(eitA/neitB/n)n = ei(A+B)t .

true value (in analysis), τττ The value that
characterizes a quantity perfectly in the condi-
tions that exist when that quantity is considered.
It is an ideal value which could be arrived at only
if all causes of measurement error were elim-
inated, and the entire population was sampled.

truncated gradient Projection of the gradi-
ent of a function, f (in C1) on a box, [a, b], to
put zeros in coordinates if the sign of the par-
tial derivative is negative at the lower bound or
it is positive at the upper bound. This yields a
feasible direction.

trust region method The iteration is defined
as x

′ = x+p, where p is the (complete) change
(no separate step size), determined by a subprob-
lem of the form

Max F(p) : ‖p‖ ≤ D,

whereF depends on the iterate and is an approxi-
mation of the change in objective function value.
The particular norm and the magnitude of D

determine the set of admissible change values
(p), and this is called the trust region. A com-
mon choice of F is the quadratic form using the
Taylor expansion about the current iterate, x, as

F(p) = gradf (x)p + p
′
[Hf (x)]p/2.

Using the Euclidean norm and applying the
Lagrange multiplier rule to the subproblem
yields p from the equation

[Hf (x)− uI ]p = −gradf (x) for some u ≥ 0.

Note that for u = 0, the iteration is Newton’s
method, and for very large u, the iteration is
nearly Cauchy’s steepest ascent.

tub conformation A conformation (of sym-
metry group D2d ) of an eight-membered ring in
which the four atoms forming one pair of diamet-
rically opposite bonds in the ring lie in one plane
and all other ring atoms lie to one side of that
plane. It is analogous to the boat conformation
of cyclohexane.

Tung distribution (of a macromolecular assem-
bly) A continuous distribution with the dif-
ferential mass-distribution function of the form:

fw(x)dx = abxb−1 exp(−axb)dx

where x is a parameter characterizing the chain
length, such as relative molecular mass or degree
of polymerization and a and b are positive
adjustable parameters.

tunneling The process by which a par-
ticle or a set of particles crosses a barrier on
its potential-energy surface without having the
energy required to surmount this barrier. Since
the rate of tunneling decreases with increasing
reduced mass, it is significant in the context of
isotope effects of hydrogen isotopes.

tuple A collection of elements which satisfy
some relation r . A tuple is delimited by paren-
theses ((x, y)), and is usually written with the
relation as the functor of the tuple; thus r(x, y).

Comment: Note that a sequence is not equiv-
alent to a tuple. The functor is omitted when it
is absolutely clear what relation it satisfies. See
also bag, list, relation, sequence, and set.

Turing pattern A.M. Turing was the first
person who proposed a mechanism for pattern
formation in a spatially homogeneous system
to involve chemical reactions and diffusion of
two species. The pattern formation is due to
diffusion-driven instability.
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U
unbounded mathematical program The
objective is not bounded on the feasible region
(from above, if maximizing; from below, if min-
imizing). Equivalently, there exists a sequence
of feasible points, say {xk} for which {f (xk)}
diverges to infinity (minus infinity, if minimiz-
ing).

unconstrained mathematical program One
with no constraints (can still have X be a proper
subset of Rn, such as requiring x to be integer-
valued.)

unconstrained optimization Taken liter-
ally, this is an unconstrained mathematical
program. However, this phrase is also used in
a context that X could contain the strict inte-
rior, with constraints of the form g(x) < 0,
but the mathematical program behaves as uncon-
strained. This arises in the context of some algo-
rithm design, as the solution is known to lie in the
interior of X, such as with the barrier function.

uncountably infinite set An infinite set
which is not denumerably so. See also cardinal-
ity, countable set, denumerably infinite set, finite
set, and infinite set.

undirected edge See edge.

unified atomic mass unit Non-SI unit of
mass (equal to the atomic mass constant), defined
as one twelfth of the mass of a carbon-12 atom
in its ground state and used to express masses
of atomic particles, u = 1.660 5402(10) ×
10−27 kg.

uniformly bounded Referring to a familyF
of functions such that the same bound holds for
all functions in F . For example,

f (x) ≤ µ

with the same µ, for all f ∈ F .

unimodal function A function which has
one mode (usually a maximum, but could mean a
minimum, depending on context). If f is defined
on the interval [a, b], let x∗ be its mode. Then,
f strictly increases from a to x∗ and strictly
decreases from x∗ to b (reverse the monotonicity
on each side of x∗ if the mode is a minimum).
(For line search methods, like Fibonacci, the
mode could occur in an interval, [a∗, b∗], where
f strictly increases from a to a∗, is constant (at
its global max value) on [a∗, b∗], then strictly
decreases on [b∗, b].)

unimodular matrix A nonsingular matrix
whose determinant has magnitude 1. A square
matrix is totally unimodular if every nonsingular
submatrix from it is unimodular. This arises in
(linear) integer programming because it implies
a basic solution to the LP relaxation is integer-
valued (given integer-valued right-hand sides),
thus obtaining a solution simply by a simplex
method. An example of a totally unimodu-
lar matrix is the node-arc incidence matrix of
a network, so basic solutions of network flows
are integer-valued (given integer-valued supplies
and demands).

unimolecular See molecularity.

unisolvence A set of functionals on a finite
dimensional vector spaceVh is called unisolvent,
if it provides a basis of the dual space of Vh.
Unisolvence is an essential property of degrees
of freedom in the finite element method.

unit An identity element.

unit circle A circle of radius 1. Usually, the
term refers to the circle of radius 1 and center 0
in the complex plane ({z : |z| = 1}).

unitary group An automorphism α :
C

m → C
m is called unitary if, once a basisEi has

been chosen in C
m, the matrix U

j
i representing

the automorphism by α(Ej ) = U
j
i Ej satisfies

U−1 = U †, i.e., if the inverse of U coincides
with the transpose of the complex conjugated
matrix.

c
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The group of all such matrices is called the
unitary group, and it is denoted by U(m). The
subgroup of unitary matrices with det U = 1 is
denoted by SU(m).

unitary matrix A nonsingular matrix whose
Hermitian adjoint equals its inverse (same as
orthogonal for real-valued matrices). See self-
adjoint operator.

univariate optimization A mathematical
program with a single variable.

universal set The set containing all sets, or
sets of interest; denoted U . See also universe of
discourse.

Comment: In databases, one frequently
speaks of a universe of discourse, the set of
all terms, facts, relations, and functions used in
reifying the database’s model of its world (its
domain model). For many purposes the two are
equivalent.

universal Turing machine A universal
Turing machine (UTM) is a discrete automaton
that executes a computation C. It has a read-write
head that reads symbols from and writes them
to an unbounded but finite, immutable memory.
The memory stores symbols from a finite symbol
set

K = KI ∪KO ∪KC,

where KI = 2, KO = 1, and KC are the sym-
bols internal to the computation. At each step
the automaton assumes one of a finite number
of discrete states, si, si ∈ S. A computation
C is defined as a set of tuples each of the form
(si, σi,I ′ , si+1, σi,O′ , ai), where si is the automa-
ton’s state at the ith step, σi,I ′ the symbol read
into the automaton at that step (Ki,I ′ = Ki,O′ =
1), si+1 is the new state the automaton assumes
upon completion of step i (which will be its state
as it commences step i + 1), σi,O′ is the sym-
bol output at step i, and ai is the action altering
the position of the tape in the head that is per-
formed at the end of that step (move it left, right,
or nowhere). The values for each σ and ∫ persist
in the automaton long enough for it to execute

each step. One of the symbols input to C refers
to an emulation of a particular Turing machine
stored in the UTM memory. This emulation is
the set of all tuples (si, σi,I ′ , si+1, σi,O′ , ai) for
that machine and forms the algorithm. The algo-
rithm may be deterministic or nondeterministic,
but the machine executes it nonstochastically.

Comment: This definition differs slightly
from Minsky’s (cf. M.L. Minsky, Computation:
Finite and Infinite Machines, Prentice-Hall,
Englewood Cliffs, NJ, 1967). See Post produc-
tion system and von Neumann machine.

universe of discourse The nonempty set,
Ud , of all possible constant terms of a program.
More generally, the area of nature, thought,
or existence described by a program or set of
programs.

Comment: For many purposes, this is equiva-
lent to the universal set. See universal set.

unreactive Failing to react with a specified
chemical species under specified conditions. The
term should not be used in place of stable, since
a relatively more stable species may neverthe-
less be more reactive than some reference species
toward a given reaction partner.

unstable The opposite of stable, i.e., the
chemical species concerned has a higher molar
Gibbs energy than some assumed standard. The
term should not be used in place of reactive
or transient, although more reactive or transient
species are frequently also more unstable.

Very unstable chemical species tend to
undergo exothermic unimolecular decomposi-
tions. Variations in the structure of the related
chemical species of this kind generally affect the
energy of the transition states for these decom-
positions less than they affect the stability of the
decomposing chemical species. Low stability
may therefore parallel a relatively high rate of
unimolecular decomposition.

upper semicontinuity (or upper semicontinuous
[USC]) Suppose {xk} → x.

Of a function, lim sup f (xk) = f (x).
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Of a point-to-set map, let Ne[S] be a neigh-
borhood of the set S. For each e > 0, there exists
K such that for all k > K,A(xk) is a subset of
Ne[A(x)]. Here is an example of what can go
wrong. Consider the feasibility map with

g(x) =


(x +√

2)2 − 1 if x < 0

exp{−x} if x ≥ 0

Note g is continuous and its level set is
[−√

2 − 1,−√
2 + 1]. However, for any b > 0,

{x : g(x) ≤ b} = [−√
2 − √

1 + b,−√
2 +√

1 + b]/[− log b,∞), which is not bounded.
The map fails to be (USC) at 0 due to the lack of
stability of its feasibility region when perturbing
its right-hand side (from above).

upper triangular matrix A square matrix,
A, such that A(i, j) = 0 for i ≥ j .

utility function A measure of benefit, used
as a maximand in economic models.
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V
valid inequality An inequality constraint
added to a relaxation that is redundant in the ori-
ginal mathematical program. An example is a
linear form, ax ≤ b, used as a cutting plane in
the LP relaxation of an integer program.

A linear form that is a facet of the integer poly-
hedron.

value iteration This is an algorithm for
infinite horizon [stochastic] dynamic programs
that proceeds by successive approximation to sat-
isfy the fundamental equation

F(s) = Opt {r(x, s)+a
∑

s
′ P(x, s, s

′
)F (s

′
)},

where a is a discount rate. The successive
approximation becomes the DP forward equa-
tion. If 0 < a < 1, this is a fixed point, and
Banach’s theorem yields convergence because
then “Opt” is a contraction map. Even when
there is no discounting, policy iteration can apply.

value (of a quantity) Magnitude of a particu-
lar quantity generally expressed as a unit of mea-
surement multiplied by a number.

variable metric method Originally referred
to as the Davidon-Fletcher-Powell (DFP)
method, this is a family of methods that
choose the direction vector in unconstrained
optimization by the subproblem: d∗ in
argmax {gradf (x)d : ‖d‖ = 1}, where ‖d‖
is the vector norm (or metric) defined by the
quadratic form, d

′
Hd . With H symmetric

and positive definite, the constraint d
′
Hd = 1

restricts d by being on a circle, i.e., equidistant
from a stationary point, called the center (the ori-
gin in this case). By varying H , as in the DFP
update, to capture the curvature of the objective
function, f , we have a family of ascent algo-
rithms. Besides DFP, if one chooses H = I , we

have Cauchy’s steepest ascent. If f is concave
and one chooses H equal to the negative of the
inverse Hessian, we have the modified Newton’s
method.

variable upper bound (VUB) A constraint
of the form: xi ≤ xj .

variational calculus An approach to solv-
ing a class of optimization problems that seek a
functional (y) to make some integral function (J )
an extreme. Given F in C1, the classical uncon-
strained problem is to find y in C1 to minimize
(or maximize) the following function:

J (y) =
∫ x1

x0

F(x, y, y ′)dx.

An example is to minimize arc length, where

F =
√

(1 + y ′2). Using the Euler-Lagrange
equation, the solution is y(x) = ax + b, where
a and b are determined by boundary conditions:
y(x0) = y0 and y(x1) = y1.

If constraints take the form G(x, y, y
′
) = 0,

this is called the problem of Lagrange; other
forms are possible.

variational crime Consider a linear vari-
ational problem a(u, v) = f (v), v ∈ V, f ∈
V ′, a : V × V → C a sesqui-linear form, V a
Banach space. In two ways a discretization based
on a finite element space Vh can go beyond the
usual Galerkin framework:

(i.) The sesquilinear form a and the linear
form f may be replaced with mesh-dependent
approximations ah : Vh × Vh → C and fh :
Vh → C. This happens, for instance, when
numerical quadrature is employed for the eval-
uation of integrals.

(ii.) The finite element space Vh might be
non-conforming with respect to V , that is
Vh �⊂ V .

Whether these variational crimes still lead to a
meaningful discrete problem can be checked by
means of Strang’s lemmas.

variational inequality Let F : X → R
n.

The variational inequality problem is to find x

in X such that F(x)(y − x) ≥ 0 for all y in X.
This includes the complementarity problem.

c
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vector (1) A directed line segment in R
2 or

R
3, determined by its magnitude and direction.
(2) An element of a vector space.

vector bundle A bundle (B,M, π;V ) with
a vector space V as a standard fiber and such
that the transition functions act on V by means
of linear transformations. Vector bundles always
allow global sections.

vector field A vector-valued function V ,
defined in a region D (usually in R

3). The vector
V (p), assigned to a point p ∈ D, is required to
have its initial point at p.

vector product For two vectors x = (x1,

x2, x3) and y = (y1, y2, y3) in R
3, the vector

x×y = (x2y3−x3y2, x3y1−x1y3, x1y2−x2y1).

vector space A set closed under addition and
scalar multiplication (by elements from a given
field). One example is R

n, where addition is
the usual coordinate-wise addition, and scalar
multiplication is t (x1, ..., xn) = (tx1, ..., txn).
Another vector space is the set of all m × n

matrices. If A and B are two matrices (of the
same size), so is A+B. Also, tA is a matrix for
any scalar, t in R. Another vector space is the set
of all functions with domain X and range in R

n.
If f and g are two such functions, so are f + g

and tf for all t in R. Note that a vector space
must have a zero since we can set t = 0. See
also module.

vehicle routing problem (VRP) Find opti-
mal delivery routes from one or more depots to a
set of geographically scattered points (e.g., popu-
lation centers). A simple case is finding a route
for snow removal, garbage collection, or street
sweeping (without complications, this is akin to
a shortest path problem). In its most complex
form, the VRP is a generalization of the TSP, as
it can include additional time and capacity con-
straints, precedence constraints, plus more.

velocity, v, cv, cv, c Vector quantity equal to the
derivative of the position vector with respect to
time (symbols, u, v,w for components of c).

vertex See node.

vertex cover Given a graph, G = [V,E], a
vertex cover is a subset of V , say C, such that for
each edge (u, v) in E, at least one of u and v is in
C. Given weights, {w(v)} for v in V , the weight
of a vertex cover is the sum of weights of the
nodes in C. The minimum weight vertex cover
problem is to find a vertex cover whose weight is
minimum.

vertical automorphism A bundle mor-
phism ) : B → B on a bundle (B,M, π;F)

which projects over the identity, i.e., such that
π ≡ idM ◦ π = π ◦ ). Locally a vertical mor-
phism is of the following form{

x ′ = x

y ′ = Y (x, y).

vertical vector field A vector field \ over
a bundle (B,M, π;F) which projects over the
zero vector of M . Locally, it is expressed as

\ = ξ i(x, y)∂i

where (xµ; yi) are fibered coordinates. The flow
of a vertical vector field is formed by vertical
automorphisms.

viscosity See dynamic viscosity.

voltage (in electroanalysis) The use of this
term is discouraged, and the term applied poten-
tial should be used instead, for nonperiodic sig-
nals. However, it is retained here for sinusoidal
and other periodic signals because no suitable
substitute for it has been proposed.

von Neumann machine (vNM) A device
that stores a program specifying an algo-
rithm or heuristic in memory; includes separ-
able arithmetic and logic processing units and
input/output facilities and executes a discrete
computation on the input data using the stored
program. It assumes a finite number of distinct
internal states and operates on a finite number of
symbols K. It may or may not store the input
and output, as desired. For convenience allow
execution to be either sequential on a single pro-
cessor or sequential within each of a set of pro-
cessors joined together by various schemes for
message passing and storage. The machine is
a nonstochastic device executing deterministic
or nondeterministic algorithms. See universal
Turing machine and Post production system.
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W
wall-coated open-tubular (WCOT) column
(in chromatography) A column in which the liq-
uid stationary phase is coated on the essentially
unmodified smooth inner wall of the tube.

warehouse problem The manager of a
warehouse buys and sells the stock of a certain
commodity, seeking to maximize profit over a
period of time, called the horizon. The ware-
house has a fixed capacity, and there is a hold-
ing cost that increases with increasing levels of
inventory held in the warehouse (this could vary
period to period). The sales price and purchase
cost of the commodity fluctuate. The warehouse
is initially empty and is required to be empty at
the end of the horizon. This is a variation of the
production scheduling problem, except demand
is not fixed. (Level of sales is a decision variable,
which depends on whether cost is less than price.)

Let

x(t) = level of production in periodt
(before sales)

y(t) = level of inventory at the end of
period t

z(t) = level of sales in period t

W = warehouse capacity
h(t, u) = holding cost of inventory u

from period t to t + 1
p(t) = production cost (per unit of produc-

tion)
s(t) = sales price (per unit)
T = horizon

Then, the mathematical program is:

Minimize
∑
t

h(t, y(t))+ px − sz :

x, y, z ≥ 0; y(0) = y(T ) = 0;
y(t) = y(t − 1) + x(t) − z(t) ⇐ W

for t = 1, ..., T .

wash out (in atmospheric chemistry) The
removal from the atmosphere of gases and some-
times particles by their solution in or attachment
to raindrops as they fall.

wave equation Let U ⊂ R
n open and u :

U ×R → R. The (linear) wave equation for u is

utt −�u = 0.

The (nonlinear) wave equation for u is

utt −�u = f (u).

wave function (state function), Z,ψ, φZ,ψ, φZ,ψ, φ The
solution of the Schrödinger equation, eigen-
function of the Hamiltonian operator.

wave height (electrochemical) The limit-
ing current of an individual wave, frequently
expressed in arbitrary units for convenience.

wave number, σ ν̃σ ν̃σ ν̃ The reciprocal of the
wavelength λ, or the number of waves per unit
length along the direction of propagation. Sym-
bols ν̃ in a vacuum, σ in a medium.

wavelength, λλλ Distance in the direction of
propagation of a periodic wave between two suc-
cessive points where at a given time the phase is
the same.

wavelength converter Converts radiation
at one wavelength to radiation at another
detectable wavelength or at a wavelength of
improved responsivity of the detector. The clas-
sical wavelength converter consists of a screen of
luminescent material that absorbs radiation and
radiates at a longer wavelength. Such materials
are often used to convert ultraviolet to visible
radiation for detection by conventional photo-
tubes. In X-ray spectroscopy, a converter that
emits optical radiation is called a scintillator. In
most cases wavelength conversion is from short
to long wavelength, but in the case of conver-
sion of long to short wavelength the process is
sometimes called upconversion. Wavelengths of
coherent sources can be converted using non-
linear optical techniques. A typical example is
frequency doubling.

c
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wavelength dispersion (in x-ray emission
spectroscopy) Spatial separation of characteristic
x-rays according to their wavelengths.

wavelength-dispersive x-ray fluorescence
analysis A kind of x-ray fluorescence
analysis involving the measurement of the
wavelength spectrum of the emitted radiation
e.g., by using a diffraction grating or crystal.

wavelength error (in spectrochemical analysis)
The error in absorbance which may occur if there
is a difference between the (mean) wavelength
of the radiation entering the sample cell and the
indicated wavelength on the spectrometer scale.

wavelet An orthonormal basis of L2(Rn).
They are used as phase space localization meth-
ods. A typical example of a family of wavelets
ψj,k(x) in one dimension is given by

ψj,k(x) = 2−j/2ψ(2−j x − k)

= 2
−j

2 ψ(
x − 2j k

2j
), j, k ∈ Z,

where ψ is a smooth function with reasonable
decay (say, |ψ(x)| < C(1 + |x|)−(1+ε)), and
such that

∫
ψ(x)dx = 0. Wavelets bases provide

unconditional bases for many classical function
spaces, such as Lp spaces 1 < p < ∞, Sobolev
spacesWs , Besov spacesBp,s

q , Hölder spacesCs ,
Hardy space H 1, and BMO space.

wavelet transformations Approximations
that can have lower complexity than fast Fourier
transforms (FFT), namely, O(log N)  instead of
O(N log N).

weak collision A collision between two
molecules in which the amount of energy trans-
ferred from one to the other is not large compared
to kBT (kB is the Boltzmann constant and T the
absolute temperature). See strong collision.

weak formulation To cast a boundary value
problem for a partial differential operator into
weak form means that it is stated as a variational
problem over some Banach space V . The usual
way to get this weak formulation from the strong

form of a boundary value problem is through inte-
gration by parts, using Green’s formulas.

wedge projection A stereochemical projec-
tion, roughly in the mean plane of the molecule,
in which bonds are represented by open wedges,
tapering off from the nearer atom to the farther
atom.

Weierstrass theorem See Bolzano-Weier-
strass theorem.

weight,GGG Force of gravity acting on a body,
G = mg, where m is its mass and g the acceler-
ation of free fall.

weighted mean If in a series of observations
a statistical weight (wi) is assigned to each value,
a weighted mean xw can be calculated by the
formula

xw =
∑

wixi∑
wi

Comment: Unless the weights can be assigned
objectively, the use of the weighted mean is not
normally recommended.

well-ordered set A partially ordered set
(A,�) such that for all B ⊂ A (B non-empty)
B has a minimum.

well posed Most people mean that the math-
ematical program has an optimal solution. Some
mean just that it is feasible and not unbounded.

wet bulb temperature In psychrometry, the
temperature of the sensor or the bulb of a ther-
mometer in which a constantly renewed film of
water is evaporating. The temperature of the
water used to renew the film must be at the tem-
perature of the gas.

wetting tension (or work of immersional wet-
ting per unit area) The work done on a
system when the process of immersional wet-
ting involving unit area of phase β is carried out
reversibly:
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wWαβδ = γ βδ − γ αβ

where γ αβ and γ βδ are the surface ten-
sions between two bulk phases α,β and β, δ,
respectively.

White’s formula A closed DNA molecule
modeled as a ribbon has a twist (Tw) with respect
to its central line (the line of centroids) and
a writhe (Wr) which represents the contortion
of the central line in space. It was shown by
J.H. White, that Tw + Wr = linking number, a
topological invariant. White’s formula relates
DNA structure to knot theory (see also DNA
supercoil; cf. J.H. White, Am. J. Math., 91, 693
(1969)).

wind rose A diagram designed to show the
distribution of wind direction experienced at a
given location over a considerable period of time.
Usually shown in polar coordinates (distance
from the origin being proportional to the prob-
ability of the wind direction being at the given
angle usually measured from the north). Similar
diagrams are sometimes used to summarize the
average concentrations of a given pollutant seen
over a considerable period of time as a function
of direction from a given site (sometimes called
a pollution rose).

wood horn A mechanical device that acts by
absorption as a perfect photon trap.

wood lamp A term used to describe a low-
pressure mercury arc. See lamp.

work,www,WWW Scalar produce of force, F , and
position change, d r, w = ∫ F × d r.

work hardening Opposite of work soft-
ening, in which shear results in a permanent
increase of viscosity or consistency with time.

work of adhesion The work of adhesion per
unit area, wαβδ

A , is the work done on the system
when two condensed phases α and β, forming
an interface of unit area, are separated reversibly
to form unit areas of each of the αδ- and βδ-
interfaces.

w
αβδ
A = γ αδ + γ βδ − γ αβ

where γ αβ , γ αδ , and γ βδ are the surface ten-
sions between two bulk phases α, β; α, δ and
β, δ, respectively.

The work of adhesion as defined above, and
traditionally used, may be called the work of
separation.

work of cohesion per unit area Of a single
pure liquid or solid phase α,wα

C is the work done
on the system when a column α of unit area is
split, reversibly, normal to the axis of the column
to form two new surfaces each of unit area in
contact with the equilibrium gas phase.

wα
C = 2γ α

where γ α is the surface tension between phase α
and its equilibrium vapor or a dilute gas phase.

work softening The application of a finite
shear to a system after a long rest may result
in a decrease of viscosity or consistency. If the
decrease persists when the shear is discontinued,
this behavior is called work softening (or shear
breakdown), whereas if the original viscosity or
consistency is recovered this behavior is called
thixotropy.

working electrode An electrode that serves
as a transducer responding to the excitation signal
and the concentration of the substance of interest
in the solution being investigated, and that per-
mits the flow of current sufficiently large to effect
appreciable changes of bulk composition within
the ordinary duration of a measurement.

working set Constraints believed to be
active at a solution.

wormlike chain (in polymers) A hypo-
thetical linear macromolecule consisting of an
infinitely thin chain of continuous curvature; the
direction of a curvature at any point is ran-
dom. The model describes the whole spectrum
of chains with different degrees of chain stiffness
from rigid rods to random coils, and is particu-
larly useful for representing stiff chains. In the
literature this chain is sometimes referred to as a
Porod-Kratky chain. Synonymous with continu-
ously curved chain.
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X
ξξξ - (xi-) A symbol used to denote unknown
configuration at a chiral center.

xanthophylls A subclass of carotenoids
consisting of the oxygenated carotenes.

xenobiotics Manmade compounds with
chemical structures foreign to a given organism.

xenon lamp An intense source of ultravio-
let, visible, and near-infrared light produced by
electrical discharge in xenon under high pressure.

xerogel A term used for the dried out open
structures which have passed a gel stage during
preparation (e.g., silica gel); and also for fried out
compact macromolecular gels such as gelatin or
rubber.

XPRESS-MP A mathematical program-
ming modeling system and solver.

XPS See photoelectron spectroscopy.

x-radiation Radiation resulting from the
interaction of high-energy particles or photons
with matter.

x-ray escape peak In a gamma or x-ray
spectrum, the peak due to the photoelectric effect
in the detector and escape, from the sensitive part
of the detector, of the x-ray photon emitted as a
result of the photoelectric effect.

x-ray fluorescence The emission of charac-
teristic x-radiation by an atom as a result of the
interaction of electromagnetic radiation with its
orbital electrons.

x-ray fluorescence analysis A kind of
analysis based on the measurement of the ener-
gies and intensities of characteristic x-radiation
emitted by a test portion during irradiation with
electromagnetic radiation.

x-ray intensity Essentially all x-ray meas-
urements are made by photon counting tech-
niques but the results are seldom converted to
radiant flux or irradiance or radiant exposure.
The term photon flux would be appropriate if
the measurements were corrected for detector
efficiency but this is seldom done for x-ray chem-
ical analysis. Therefore, the term x-ray inten-
sity, I , is commonly used and expressed as
photons/unit time detected. Likewise the term
relative x-ray intensity, Ir , is used to mean the
intensity for the analyte in an unknown specimen
divided by the intensity for a known concentra-
tion of the analyte element.

x-ray level An electronic state occurring as
the initial or final state of a process involving
the absorption or emission of x-ray radiation. It
represents a many electron state which, in the
purely atomic case, has total angular momentum
(J = L+S) as a well-defined quantum number.

x-ray photoelectron spectroscopy (XPS) Any
technique in which the sample is bombarded with
x-rays and photoelectrons produced by the sam-
ple are detected as a function of energy. ESCA
(Electron Spectroscopy for Chemical Analysis)
refers to the use of this technique to identify ele-
ments, their concentrations, and their chemical
state within the sample.

x-ray satellite A weak line in the same
energy region as a normal x-ray line. Another
name used for weak features is non-diagram
line. Recommendations as to the use of these
two terms have conflicted. Using the term dia-
gram line as defined here, non-diagram line
may well be used for all lines with a different
origin. The majority of these lines originate from
the dipole-allowed de-excitation of multiply ion-
ized or excited states, and are called multiple-
ionization satellites. A line where the initial
state has two vacancies in the same shell, notably
the K-shell, is called a hypersatellite. Other
mechanisms leading to weak spectral features
in x-ray emission are, e.g., resonance emission,
the radiative auger effect, magnetic dipole, and
electric quadrupole transitions and, in metals,

c
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plasmon excitation. Atoms with open electron
shells, i.e., transition metals, lanthanides, and
actinides, show a splitting of certain x-ray lines
due to the electron interaction involving this
open shell. Structures originating in all these
ways as well as structures in the valence band of
molecules and solid chemical compounds have
in the past been given satellite designations.

x-ray spectroscopy Consists of three steps:

(i.) excitation to produce emission lines
characteristic of the elements in the material,

(ii.) measurement of their intensity, and

(iii.) conversion of x-ray intensity to concen-
tration by a calibration procedure which may
include correction for matrix effects.
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Y
Yang-Mills theory A nonabelian gauge the-
ory. For a fixed compact Lie group G with Lie
algebra g, the field in this theory is vector poten-
tialA, i.e., a connection 1-form on some principal
G bundle. Let FA be the curvature 2-form of the
connection A. The fundamental Lagrangian in
pure gauge theory is

L(A) = 1

2
|FA||dnx|,

where |FA| denotes the norm in the Lie algebra.
From the variational principle we get the equa-
tions of motion, the Yang-Mills equations

dA ∗ FA = 0,

where dA is the covariant derivative with respect
to A and ∗ is the Hodge star operator. For any A

we also have the Bianchi identity dAFA = 0. In
local coordinates we have:

Fµν = ∂µAν − ∂νAν + i[Aµ,Aν], and

L = T r(FµνF
µν).

Then the Yang-Mills equations become

∂µFµν + i[Aµ, Fµν] = 0.

year Unit of time, a = 31 556 952 s. The
year is not commensurable with the day and not

a constant. The value given corresponds to the
Gregorian calendar year (a = 365.2425 d).

yield, YYY (in biotechnology) Ratio express-
ing the efficiency of a mass conversion process.
The yield coefficient is defined as the amount
of cell mass (kg) or product formed (kg, mol)
related to the consumed substrate (carbon or
nitrogen source or oxygen in kg or moles) or to
the intracellular ATP production (moles).

yield stress The shear stress σ0 or τ0 at
which yielding starts abruptly. Its value depends
on the criterion used to determine when yielding
occurs.

Young’s inequality Let p, q, r ≥ 1 and
1/p + 1/q + 1/r = 2. Let f ∈ Lp(Rn), g ∈
Lq(Rn), h ∈ Lr(Rn). Then∣∣∣∣∫

R
n

f (x)(g ∗ h)(x)dx

∣∣∣∣
≤ Cp,q,r,n‖f ‖p‖g‖q‖h‖r .

Yukawa-Tsuno equation A multiparameter
extension of the Hammett equation to quan-
tify the role of enhanced resonance effects on
the reactivity of meta- and para-substituted
benezene derivatives, e.g.,

lg k = lg k0 + ρ[σ + r(σ+ − σ)].

The parameter r gives the enhanced resonance
effect on the scale (σ+ − σ) or (σ − σ), respec-
tively.
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Z
Zeeman effect The splitting or shift of spec-
tral lines due to the presence of an external mag-
netic field.

zigzag phenomenon Successive directions
are orthogonal, causing Cauchy’s steepest ascent
to converge slowly. The successive orthogonal-
ity comes from optimizing the (scalar) step size
with (exact) line search, but the issue runs deeper.
In general, the zigzag phenomenon causes small
steps around a ridge.

Zimm-Rouse model A stochastic math-
ematical model for the dynamics of an ideal-
ized polymer chain. The linear chain is modeled
as a collection of N beads connected by N − 1
springs. A system of stochastic differential equa-
tions for the N particles defines a multivariate
Gaussian process. The equations can be solved
using normal mode method. This model is a gen-
eralization of the Ornstein-Uhlenbeck process.

Zorn’s lemma If S is a partially ordered
set such that each totally ordered subset has an
upper bound in S, then S has a maximal ele-
ment. Partially ordered means that for some pairs
x, y ∈ S there is an ordering relation x ≤ y;
totally ordered means for each pair x, y ∈ S one
either has x ≤ y or y ≤ x. The Zorn lemma is
equivalent to the axiom of choice.

c
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